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ABSTRACT

A CAPACITATED INVENTORY MODEL
WITH A FIXED ORDERING COST UNDER
STOCHASTIC DEMAND

Ozener, Okan Orsan
M.S., Department of Industrial Engineering
Supervisor: Assoc. Prof. Dr. Refik Giilli
Co-Supervisor: Prof. Dr. Nesim Erkip

July 2003, 97 pages

In this study, we investigate a single item, periodic review inventory problem
where the amount that can be ordered is limited. The demand for the item is a
random variable. Linear holding and backorder cost are charged per unit at the
end of a period. Other than variable cost charged per unit ordered, a positive
fixed ordering cost is incurred with each order given. The optimization criterion
is minimization of discounted cost over a planning horizon. We examine a special
case with a finite planning horizon, where optimality conditions can be deter-
mined. In this special case, demand values are assumed to be integer multiples
of the capacity. As a result, we show that an all-or-nothing policy is optimal.
Then, we investigate the infinite horizon problem of the same special case under

average cost criterion by defining the problem as a Discrete Time Markov Chain.
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Also in the light of these results for the special case, we develop a heuristic to the

original problem. We complement these results with a computational study.

Keywords: Capacity Constraint, Stochastic Demand, Fixed Ordering Cost, All-

or-Nothing Policy
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0Z

RASSAL TALEP ALTINDA SABIT
ISMARLAMA MALIYETLI KAPASITELI
ENVANTER MODELI

ézener, Okan Orsan
Yiiksek Lisans, Endiistri Miihendisligi Boliimii
Tez Yoneticisi: Assoc. Prof. Dr. Refik Giilli
Ortak Tez Yoneticisi: Prof. Dr. Nesim Erkip

Temmuz 2003, 97 sayfa

Bu caligmada, tiretim miktarinin sinirh oldugu, tek tiriinlii dénemsel gozden
gecirmeli, envanter problemi incelenmigtir. Uriin icin talep rassal bir degigkendir.
Dogrusal stok tagima ve yok-satma maliyetleri donem sonunda envanter duru-
muna gore hesaplanmaktadir. Birim bagina odenen iiretim maliyeti disinda, her
ismarlama yapildiginda 6denen pozitif bir sabit ismarlama maliyeti de bulunmak-
tadir. Eniyileme kriteri, bir planlama donemi i¢in indirimli maliyetin enazlan-
masidir. Sinirh planlama donemi olan 6zel bir problem incelenmisg ve bu problem
icin en iyi tiretim politikas1 belirlenmistir. Bu 0zel problemde, talep degerlerinin
kapasitenin katlari seklinde geldigi kabul edilmigtir. Daha sonra, sonsuz donemlik
ozel problem Kesikli Zamanli Markov Zinciri olarak tanimlanip, donemsel or-

talama maliyet kriteri altinda incelenmigtir. Bu sonuclarin 15181 altinda, genel



problem icin sezgisel bir ¢oziim geligtirilmigtir. Bu sonuclar sayisal caligmalarla

desteklenmistir.

Anahtar Kelimeler: Kapasite Kisiti, Rassal Talep, Sabit Uretim Maliyeti, Hep

yada Hi¢ Politikas1
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CHAPTER 1

INTRODUCTION

To reduce the costs and gain a competitive advantage, firms should improve the
efficiency of their operations. Inventory management has a key role in increasing
efficiency. Matching supply and demand is a critical challenge and to become
successful in this challenge, firms must lower the inventory related costs while
satisfying the demand of their customers. Although identifying the most effective

inventory control policy may be challenging, the benefits can be worthwhile.

Inventory control policies depend on the setting of the problem. Some proper-
ties of the problem are nature of demand, review policies, cost evaluation criteria,
presence of fixed ordering cost, presence of capacity constraint of the production
and finally length of the planning horizon. There are several analytical models
developed by researchers changing due to setting of the problem addressed. Un-
certainty of production systems is the main reason for holding inventories. Since
the nature of customer demand is the major factor creating the uncertainty in the
system, many inventory related problems have stochastic demand. For example,
the basic newsvendor model balances the cost of holding inventory and cost of
shortage of a single period problem under stochastic demand. Extensions of ba-
sic newsvendor model to multi period settings, capacitated production case, and
fixed ordering cost case are available in the literature. However, the simultaneous

inclusion of fixed ordering costs and capacitated production case has not been



investigated in detail.

With this in mind, we analyze the single item periodic review, capacitated
inventory model with fixed ordering cost in this study. Under periodic review
policy, inventory position is reviewed in every period and production/order deci-
sion is made with considering inventory position. Production/order decisions are
made before observing the actual demand in a period. Demand in each period is
a discrete random variable independent of demands in other periods. Because of
the production capacity, it may not be possible to reach some inventory levels by
ordering. Production/order leadtime is assumed to be zero. Performance mea-
sures of inventory systems are calculated in terms of costs. Although customer
satisfaction (service level) may be another performance measure, it is embedded
to system cost by shortage (backorder) cost term. The costs of the system con-
sist of holding and backorder costs which are charged per unit at the end of the
period, fixed and variable costs of ordering which are charged at the beginning of
the period. The variable production cost, inventory holding cost and backorder
cost are assumed to be linear. The optimization criterion is either minimizing av-
erage cost or discounted cost of the system over a planning horizon. Although the
optimal solutions have been developed for the cases in which either fixed ordering
cost or capacitated production individually exists, their simultaneous considera-
tion has not been studied extensively. Although there are several studies available
in the literature which partially characterize the optimal policy structure of this
problem setting, optimal policy has not been fully revealed yet.

This study attempts to solve a specific problem structure where demand is
defined as multiples of the capacity of production and develops a heuristic solu-
tion for the general problem structure. This specific problem structure resembles
batch production and batch ordering type problems. In these types of problems,
demand comes in batches and production is made in batches. Process type indus-
tries can be a good example of batch production. In such inventory/production
systems, all-or-nothing policy is optimal due to high fixed ordering cost. In the
specific problem structure defined above, capacity of production is one batch in

each period and demand also comes in batches. Hence, intuitively, optimal or-



dering policy may be an all-or-nothing policy even fixed ordering cost is not too
high.

The study is organized as follows: In Chapter 2 motivation of this study is
stated and the related work in the literature is summarized. In Chapter 3, we give
the formal statement and basic notation of the problem, state optimal policy of
the single period problem, and provide some computations and findings of general
case. In Chapter 4, we define the structure of a special case and we investigate
and analyze the characterization of this special case and optimal policy of this
special case. In Chapter 5, we investigate the infinite horizon problem of the
special case under average cost criterion by defining the problem as a Discrete
Time Markov Chain Model. In Chapter 6, in the light of the results of Chapter
5, we develop a heuristic approach to the infinite horizon problem of the general
case and evaluate the performance of the heuristic by comparing the results with

the dynamic programming solution.



CHAPTER 2

MOTIVATION AND LITERATURE

2.1 Motivation of the Study

Inventory management in efficient and cost effective manner is a major challenge
for companies. Many companies try to apply an effective inventory control policy,
in order to reduce the costs and increase service level. Companies have many ob-
jectives regarding the inventory control strategies. Handling demand uncertainty
and variability, best utilization of available production capacity, minimization of
the production setup costs, minimization of holding cost of inventory, and satis-
fying maximum number of customer (or achieving desired service level) are some
examples of these conflicting objectives.

Many studies have been carried out, showing how inventory decisions should
be made and many analytical models, depending on the type of inventory sys-
tem, have been developed. An inventory control system has many attributes such
as, inventory review policy, demand type, cost functions, production capacity,
planning horizon, and cost criterion. Each possible combination of these factors
creates a problem setting. There are many studies available in the literature,
addressing several types of problem settings and providing optimal solution for
these settings. However, optimal solution to the single item periodic review prob-
lem with fixed ordering/production cost and capacity constraint under stochastic

demand has not been fully characterized yet.
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When the fixed ordering/prodcution cost is positive and there is a finite upper
limit on the order amount in each period, problem becomes too complex and
balance between holding, backorder and fixed ordering cost becomes too hard to
identify. Relative benefit of ordering cannot be clearly assessed when capacity
restriction is imposed. The goal of this research is to understand system dynamics
and interactions between cost items and capacity restriction and provide efficient

solutions for this problem setting.

2.2 Classification of Inventory Problems

The single item inventory problem can have many different settings depending on
properties of the problem. Many of these problems have been studied extensively
and optimal solutions to these problems have been developed. However there are
some directions remaining relatively unexplored.

The problem we address is a periodic review problem. Unlike continuous re-
view policies where inventory position is monitored constantly, inventory position
is monitored at specific time intervals (periods) under periodic review policy.

Nature of the demand is another basis in classification of inventory problems.
In deterministic demand case, optimization criteria is deterministic and also costs
are deterministic.

In deterministic case, demand in each period is known at the beginning of the
planning horizon. However, demand may have high variability over periods and
presence of a production capacity may complicate the problem. These problems
are known as lot-sizing problems since the optimal policy determines the optimal
ordering quantity. The objective of lot sizing model is to minimize fixed ordering
costs and inventory holding costs over the planning horizon. Although most of the
studies in the literature on lot sizing problems do not allow backordering due to
deterministic demand, under production capacity restriction shortages may occur
and backorder costs may be applicable. The optimal solution to the basic lot
sizing problem (without capacity constraint and backordering) is Wagner-Within

algorithm which is a dynamic programming algorithm. Wagner-Within algorithm



states that either amount of inventory carried to a period from the previous period
or amount of production in that period is positive. In other words, demand in a
period is satisfied by either inventory from previous periods, or production of this
period but not both. Hence, inventory carried from one period to others should
be exactly equal to the sum of these future periods’ demands (Wagner-Within
1958). For example, in a problem with a finite planning horizon of T" periods,
the optimal production amount in period ¢ should be equal to total demand of
periods t,t + 1,...,7 where 1 < T.

If a stationary capacity restriction is imposed, the optimal policy can be found
by using a shortest path algorithm (Florian-Klein 1971). Florian-Klein show that
if production occurs in any period, it should be equal to the capacity except
one period in which excess amount is produced. If production capacity is non-
stationary, optimal solution has a property which is a modification of Wagner-
Within. This property tells us, either amount inventory carried to a period from
the previous period is zero, or production in that period is either zero or equal
to capacity.

The capacitated single-item discrete lot sizing problem with backorders can be
considered as the deterministic version of our problem. In these types of problems,
determining true optimal policies is difficult and time consuming. Hence many
heuristic solutions are used, which provide solutions that are either optimal or
very close to optimal. The major difference of our problem and the deterministic
capacitated lot sizing problem with backorders resulted from uncertainty. In
deterministic problem, backorder cost is incurred only when it is more economical
to backorder some amount than paying the fixed ordering cost per item plus
holding cost. In our problem setting, backorders are also faced because of the
stochastic demand. This uncertainty causes a need for safety stock consideration
which is not included in deterministic problem.

In stochastic demand case, costs are defined as expected costs. These costs
consist of four cost components, holding cost, backorder cost, variable production
cost and fixed ordering cost. Holding cost, backorder cost and variable production

cost are charged per unit whereas the fixed ordering cost is charged per order. In



most of the problem settings, variable production costs are taken zero without
loss of generality. Problems with stochastic demand are reviewed in the following
section.

Another classification basis is cost optimization criteria. In average cost cri-
terion, total cost incurred in multiple periods is divided to the number of periods
and in discounted cost criterion, cost in previous periods contribute to current
period’s cost through a discount factor.

Planning horizon of the problem is the last factor in classification. Planning
horizon in inventory problems can be either a finite horizon or infinite horizon.
In finite horizon problems, parameters that identify the optimal policies, such as
base stock level, are usually non-stationary whereas in infinite horizon problem

these parameters are stationary.

2.3 Literature Review

2.3.1 General Review of Periodic Inventory Problems

The literature on inventory control systems is extensive therefore we only review
the studies which are most relevant to our work.

The basic single period model with stochastic demand is the newsvendor
model. In the newsvendor model, holding cost and shortage cost are balanced and
optimal inventory level is the point which satisfies a critical ratio. This critical
ratio is expressed by ratio of unit backorder cost to unit backorder cost plus unit
holding cost. Cumulative probability of demand at optimal level should be equal
to the critical ratio. Since the cumulative distribution of the demand F'(x) is the
probability that demand is below x, the probability of satisfying all the demand
at the optimal inventory level is equal to the critical ratio.

When newsvendor model is extended to multiple periods with linear produc-
tion costs (no fixed ordering cost), then optimal ordering policy becomes a base
stock policy. In base stock policy, if the initial inventory position in any period
is below a critical level, enough should be ordered to bring the inventory position

up to critical parameter called S, otherwise nothing should be ordered. (Scarf
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1960).

When a positive fixed ordering cost K is introduced to the multi period prob-
lem, then optimal policy is defined by two parameters (s, S). Scarf (1960) proves
the optimality of such policy. In (s,S) policy, if the inventory position falls be-
low the critical level s, we order enough to bring the inventory position up to S,
otherwise we do not order.

When there is no fixed ordering cost, with a finite stationary upper bound of
ordering amount in a period, then modified base stock policy, which is proved by
Federgruen and Zipkin (1986) is optimal. Federgruen and Zipkin show that under
discounted cost optimization criterion, modified base stock policy is optimal. In
modified base stock policy, if the inventory position falls below a critical level S,
we order enough to bring the inventory position up to .S, if not possible then we
order capacity.

In the finite horizon problems, the critical parameters of the problems, such
as base stock level, order up to level, may vary from period to period. However,

in the infinite horizon cases, these parameters are stationary.

2.3.2 Problems with Fixed Ordering Cost and Capacity Constraint

When fixed ordering cost and finite upper bound on ordering amount are both
present, in single item periodic inventory problem, optimal ordering policy has
not been fully identified. Wijngaard (1972) have presented a 3-period problem
with deterministic demand where modified (s, S) type policies are not optimal.
In modified (s, S) policy, if the inventory level falls below a critical level s, we
order enough to bring the inventory position up to S or as close as possible to S.
Wijngaard (1972) also come up with following result in the same paper: If the
holding and stockout costs are linear and the demand is negative exponentially
distributed, and if among the (s, S) strategies there is a best one with capacity
is greater than S — s and s > 0, then this strategy is optimal overall.

Shaoxiang and Lambrecht (1996) attempt to characterize the optimal solution

and suggest that optimal policy in capacitated production, non-linear cost case



shows a pattern of X-Y band structure. This X-Y band structure can be explained
as follows: It is optimal to order full capacity when inventory drops below X, and
it is optimal to order nothing when inventory is above Y. Between X and Y the
ordering pattern depends on the problem. By this observation, computational
effort for optimal policies is reduced. Although the X and Y bounds may vary
from period to period, they prove the existence of global bounds that can be
applied for all periods. They also provide a counter example for why a modified
(s,S) is not optimal. In modified (s, .S), order quantity should be non-increasing
functions which is not the case in numerical example.

Gallego and Wolf (2000) extend the work of Shaoxiang and Lambrecht (1996),
and partially characterize the optimal order policy. Following the X-Y band
structure of Shaoxiang and Lambrecht (1996), they suggest to divide the space
into four regions by using parameters s and s’, and investigate the optimal policies
in these regions, by defining CK convexity which is a generalization of K convexity
of Scarf. They show that optimal capacitated policy has an (s, S)-like structure
depending on the regions. In two of these regions optimal policy is completely
specified, while in the other two, it is partially specified. Depending upon the
relationship between s, s’ and capacity, optimal policy will take one of the two
pre-specified forms. These two optimal policy forms and regions in these forms
are presented in Figure 2.1. However, this policy structure cannot fully reveal
the optimal order policy in the region between s and s’ and there may exist some
intervals in this region where it is optimal to start and stop ordering.

Chan and Song (2003) provide an efficient algorithm to compute the optimal
ordering policy parameters and show that it is enough to compute optimal or-
dering quantities for only a subset of inventory positions falling between X and
Y bounds. As a result of this, computational effort of dynamic programming is
reduced. They introduce (alpha,beta) convexity which is similar to CK convex-
ity of Gallego and Wolf (2000). If the expected optimal cost for the n-period
planning horizon problem is (K, C'P) (fixed ordering cost, capacity) convex, then
an efficient algorithm is possible for computing the optimal ordering quantities

for inventory positions between X and Y. They illustrate the algorithm on a nu-
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Figure 2.1: Optimal policy forms

merical example. Steps of the algorithm can be summarized as follows: After
determining X-Y band, ordering quantities are assigned for inventory position
values which are not between X and Y. Then, find sy value and find ordering
quantities at so. Then, assign optimal order quantities increasing by one as in-
ventory position is decreasing by one. When ordering quantity reaches capacity,
restart by computing the ordering quantity for the following inventory position

by dynamic programming and continue the algorithm.

2.3.3 Stochastic Lot Sizing Problem

The deterministic version of the lot sizing problem and the solution procedures
are reviewed in Subsection 2.3.1. In this subsection, we present a brief review
of literature on the stochastic lot scheduling problem and discuss similarities
of this problem to our problem. Stochastic lot scheduling problem deals with
scheduling production of single/multi products with stochastic demand structure
with limited/unlimited production capacity (Sox et all 1999). Many analytical
methods are applied to this problem differ based on the structure of the problem.
Capacitated single item discrete time models, which are called capacitated lot

sizing problem, is most similar one to our problem.
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Sox et all (1999), survey the literature on the stochastic lot scheduling prob-
lem. They provide a framework for comparing several approaches in the existing
literature. They discuss the complexity of the problem by comparing with the
deterministic problem. They state some differences with deterministic problem
such as safety stock consideration. The finite production capacity, which should
be shared among the products, increases the amount of safety stock which is
needed to maintain a specified service level. Inventory reduces the setup cost of
production and serves as a buffer against stockouts because of the variation in the
demand. They classify the studies in the literature into two categories: dynamic
sequencing and cyclic sequencing. However this classification belongs to multi
item problem setting, and is not related to our problem.

Sox and Muckstadt (1997) formulate the stochastic lot scheduling problem
with setup times and costs as a stochastic mathematical model with a finite
planning horizon. The objective function is minimization of total cost of planned
production and setups and expected cost of inventory holding cost and backorder
cost. They use Lagrangian decomposition and subgradient optimization to solve
the problem. The subproblems are single item stochastic lot sizing problems that
are solved by branch and bound algorithm.

Dellaert and Melo (1996) provide a heuristic solution to a single item capaci-
tated stochastic lot sizing problem in a make to order environment. The objective
is to determine the optimal size of the production in each period in order to min-
imize expected costs, which include setup costs, holding costs, and penalty costs,
over a planning horizon. They suggest a (z,T,d)-rule which means, production
only takes place during a period for which the required deliveries are at least x
units. In that case, the known orders for the next 71" periods are manufactured if
the available capacity is not exceeded. Otherwise, the parameter § controls the
production amount.

The major differences of stochastic scheduling problems from our problem, are
multi item setting and setup time consideration in scheduling problems. Multi
item setting requires scheduling approaches which are not related to our problem

setting. When problem is reduced to single item setting without setup time, it
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becomes stochastic lot sizing problem which is similar to our problem.
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CHAPTER 3

DESCRIPTION OF THE GENERAL MODEL

In this chapter, we define our problem setting and present some properties about
problem. In Section 3.1, description of the problem and in Section 3.2 basic
notation of the problem is given. In Section 3.3, optimal policy of the single
period problem is stated and some computations and findings for the general
case are provided. A computational analysis on a numerical example is also

presented in Section 3.3.

3.1 Description of the Problem

As we mentioned before, we analyze the single item periodic review produc-
tion/inventory problem in this study. We assume that demand in any period is a
discrete random variable and this random variable is independent but not neces-
sarily identically distributed from period to period. Linear holding and backorder
costs are charged per unit of inventory at the end of each period. A fixed ordering
cost is associated with each order decision. Furthermore, amount of order in any
period is limited with a positive capacity value. We assume that leadtime is zero.
The objective is to minimize the expected discounted cost of system over a finite
or infinite horizon.

The sequence of events are as follows: The state of the system at the begin-

ning of each period is defined by the inventory position. At the beginning of each

13



period considering the inventory position value, decision of how much to produce
is given. Order amount corresponds to the decision variable in dynamic program-
ming formulation. If production occurs, other than variable production cost per
unit ordered, a fixed ordering cost is incurred for that period. Ordered amount
arrives instantaneously, then demand is realized and satisfied with on-hand in-
ventory, unsatisfied demand is fully backordered, and holding and backorder costs
are assessed at the end of the period.

The difficulty about this problem setting can be explained as follows. In base
stock policy, cost of holding inventory and cost of shortage are balanced. In
multi period setting of same problem, with positive fixed ordering cost, there is
a critical point s, where it is preferable to pay the fixed ordering cost to achieve
the optimal inventory level S, where holding and backorder costs are balanced.
Therefore at initial inventory levels below s, it is economical to order, otherwise
it is not. However, if a finite ordering capacity is introduced to the problem, it
may not be possible to reach the optimal inventory level S, at some initial inven-
tory positions. Therefore under capacity limitations, tradeoff between holding,
backorder and fixed ordering cost in a multi period setting is hard to determine.
Many local minimum points in expected cost functions will be formed depending
on the relationship between demand distribution, capacity and cost parameters.
Therefore, ordering amount versus initial inventory position curve will be an un-
predictable curve due to the nature of the problem. For example, unlike other
problem settings, ordering amount may increase in some regions as initial in-
ventory value increases. As a result of this, optimal ordering policy cannot be

determined like other cases.

3.2 Notation of the Problem

The following notation is used throughout this study.
n = period index
D,, = non-negative random demand of period n (when there are n periods

left in planning horizon). Demand in any period is independent and identically
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distributed from period to period with a probability distribution P,, ie., P, =
Pr(D=r),r=0,1,.... If demand distribution is not identical in each period,

probability distribution should have a period index also like P,,,

C = capacity of production, a positive integer

b = backorder cost per unit per period

h = holding cost per unit per period

K = fixed cost of ordering

v = unit variable cost

Tn = inventory level prior to placing any order in period n

yn = inventory level after placing an order, before demand is realized in period
n:

For any parameters given above, a period index can be used (such as h,, C,)

if that parameter is non-stationary. If a parameter is stationary then it is used

without an index.
v = discount factor (0 <~y < 1)
The following assumptions are standard to pose as otherwise the analysis

becomes non conventional.

1. Unit backorder cost should be greater than the unit variable cost (b > v).
Otherwise, ordering never takes place, and it would be optimal to backorder

all demand instead of purchasing.

2. Unit backorder cost times production capacity should be greater than the
fixed cost of ordering (b + C' > K). Otherwise ordering never takes place,
and it would be optimal to backorder all demand instead of paying the fixed
cost for single period problem. As number of periods to go increases, this

assumption can be relaxed.

3. Expected value of the demand should be less than capacity (E[D] < C).

Otherwise system will not be stable in the long run.
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3.3 General Case of the Problem

In this section, we present some findings about the general case of the problem.
First, recursive cost functions of the dynamic problem are explained and some
properties of these functions are presented. In the second subsection, optimal
policy of the single period problem is discussed. In the third subsection, multi
period extension of the problem is analyzed; a numerical example is given to
show that modified (s, S) policy is not optimal. Finally, in the fourth subsection,

a computational analysis for the multi period problem is presented.

3.3.1 Properties of Cost Functions

L(y) is the one period expected holding and backorder cost function with given

inventory position y. L(y) can be expressed as;

L(y) = hE[(y — D)"] + bE[(D — y)] (3.1)
Some properties about L(y) are as follows;

1. L(y) is a non-negative convex function. Since holding and backorder costs
are linear, L(y) is a discrete convex function. It can be shown by taking the

second difference of L(y) since the demand is a discrete random variable.

2. If it is assumed that either unit holding cost h or unit backorder cost b is

positive then lim,_, 1o[L(y)] = oc.

These two properties are required for L(y) to have a minimum point at a
finite inventory position. Moreover, if unit holding or unit backorder cost is non-
stationary, then this function should have a period index L, (y).

J.(z) is the expected cost for an n-period horizon problem if the beginning
inventory level is x.

Gn(y) is the expected cost for an n-period horizon problem if the inventory
level after production decision is .

d(z) is an indicator function whether a fixed ordering cost is incurred or not.

d(z) =1, when x > 0.
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G,(y) and J,(x) are as follows;

Gu(y) = vy+ L(y) + vE[Ju1(y — Dn)] (3.2)
Jo(z) = —vz+ msryr%i&c {Gn(y) + Ké(y —2)} (3.3)

Here, we should state one important assumption about these functions. At the
end of the planning horizon, all leftover inventory is salvaged with zero cost/profit.
Therefore, at the end of the planning horizon when number of periods to go is
equal to zero, all cost are zero. In other words, Jy(.) = Gy(.) = 0 for any inventory
position value.

O, (x) denote the optimal order amount when the initial inventory is equal
to = in period n. It is obvious that O,(x) can have a maximum value equal to
capacity in our problem setting.

Let H,(z) be the cost difference between ordering decision and order nothing

decision when the initial inventory is equal to x in period n.

H,(z) = min {G,(y)+ K —G,(x)} (3.4)

w<y<z+C

Therefore, it is optimal to order when H,(x) is negative and not to order
when H, (z) is positive. If H,(x) is equal to zero, then one is indifferent to order
or not.

Before advancing to the next step, we should define two policy parameters;

S, = inventory level where the minimum of G, (y) is achieved in any period
n. Global minimum of G, (y) may not be unique, in that case minimum of these
inventory levels is taken as S,,.

s, = greatest inventory level such that G,,(s,) > G,(S,) + K in any period

Some properties about .J,,(x) and G, (y) are as follows;
1. G4(y) is equal to L(y) when variable cost of ordering v is equal to zero.

2. G1(y) is a convex function as the sum of two convex functions. Therefore

G1(y) has a global minimum point at a finite inventory position 5.
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3. G,(y) is a decreasing function for y < S;. (Shaoxiang and Lambrecht 1996)

4. J,(x) is a non increasing function for x < S;. (Shaoxiang and Lambrecht

1996)
5. Gp(y) has a finite minimizing argument S,. (Gallego and Wolf 2000)
6. Jo(x) > Jy_1(x) for n > 1. (Chan and Song 2003)

These properties of functions L(y), J,,(x) and G,,(y) will help us understanding
the dynamics of the problem. For example, X-Y band structure of Shaoxiang
and Lambrecht (1996), and optimal policy of the single period problem can be
explained by these properties of functions. In the following subsection, optimal
policy of the single period problem is discussed by using the properties shown

above.

3.3.2 Single Period Problem

The single period problem resembles the last period of an N-period problem.
This is the last period to go, and all costs are zero when n is equal to zero so,
Gi(y) = vy + L(y) and Ji(z) = —ve + ming<y<,yc {G1(y) + Ko(y —x)}. We
have already stated that at the previous subsection that G;(y) is convex and has
a global minimum point at the inventory level S;. If there were not a capac-
ity restriction on the ordering amount, the optimal policy would be an (sq,5))
policy. However capacity restriction prevents the optimal policy to have (s,.5)
structure. Fortunately, introduction of capacity constraint to the single period
problem does not complicate things too much since G;(y) is convex. However,
due to relationship between capacity value and parameters (s, .S1) two cases have

to be considered to define the optimal policy. These are,

Case 1: If S| —s; < C': In this case, capacity restriction is not that binding and
order up to level S; can be reached from reorder level s; with this capacity
value. In this case, function O;(z) is defined in three regions and optimal

ordering amounts in these regions are;
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(
C r< 5 —-C

Oiz) =9 S —z S, —C<z<s (3.5)

LO s1<x

In the first region where initial inventory position, x, is less than order up
to level minus capacity (S; —C), Gi(xz) > G1(z + C) + K due to convexity
of G1(z) and definition of s;. Ordering amount, O;(z), is equal to capacity
since we want to be as close as possible to S; due to convexity of G(z). In
other two regions, capacity is no longer a constraint for the order amount
since we never want to exceed the global minimum of function G(y), S,
and between S; — C and sy, it is optimal to order up to S;. After s; it is
optimal not to order, since benefit of ordering is less than the fixed ordering

cost in this region.

Case 2: 57 — sy > C: In this case, capacity constraint is more restrictive and
order up to level S; cannot be reached from reorder level s; with this capac-
ity value. Hence, the initial inventory positions where it is optimal to order
is less than s;. Let z be the greatest point such that it is economical to
order full capacity; z = max{z : G1(z) > Gy(x + C) + K}. By definition
z is less than s;. In this case, function O;(x) is defined in two regions and

optimal ordering amounts in these regions are;

O1(z) = - (3.6)

In this case, the capacity restriction does not allow us to reach the global
minimum S; from the region where it is economical to order. By definition
of z , the region where it is economical to order (x < z) is defined. The
order quantity in this region is equal to capacity since we want to be as

close as possible to S; due to convexity of G (y). Order amount is equal to
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zero when x > z, benefit of ordering cannot cover the fixed ordering cost in

this region.

Here we present an example for the cases above. Assume that h = 1.0,
b =120, K = 55.0, v = 1.0, and CY = 15 in the first case and C® = 6 in
the second case. Demand is discrete uniform between 0 and 9. Function G(y) is

presented in Figure 3.1.
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10S,-Cls s, 0S,-C@s S, 10 15 20 25
Figure 3.1: Curve of G1(y)
It can be seen from Figure 3.1 that S; = 8 and s; = —2, so in the first case

S, — CM is equal to —7 which is smaller than s;, so optimal order policy is a
modified (s, S) type policy. In Figure 3.2 below, optimal order quantities O, (z),
when capacity is equal to 15, are presented.

When capacity is equal 6, then S; — C® is equal to 2 which is greater than s,
so optimal order policy is a modified (s, .S) type policy but ordering amounts are
equal to capacity since z < s;. The parameter z isequal to-3 and 2z = -3 < 51 =
—2 as it is stated before. In Figure 3.3 below, optimal order quantities O,(z),

when capacity is equal to 6, are presented.
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Figure 3.3: Curve of O;(z) when capacity is equal to 6
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The optimal order policy for the single period problem is a modified (s,.S)
policy depending on relationship between sy, S; and capacity. Either S; — C or
z, depending on which one is active, serves as the X — bound of Shaoxiang and

Lambrecht (1996).

3.3.3 Multi Period Problem

The single period optimal policy is proved to be a modified (s, .S) policy. However,
this policy cannot be extended to multi period problem. Under a modified (s, .5)
policy, order quantity should be non increasing function of the inventory level at
the beginning of a period (Shaoxiang and Lambrecht 1996) which is not the case
for this problem. Consider the example below,

Assume that A = 1.0, b = 15.0, K = 55.0, v = 1.0, and C' = 20. Demand is
equal to 8 with a probability of 0.95 and 9 with a probability of 0.05. Function

Go(y) is presented in Figure 3.4.
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Figure 3.4: Curve of G5(y)

From the graph of function Gs(y), we can identify one local minimum point

which is at 8 and one global minimum point which is at 16. As the number
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of periods to go, n, increases, number of local minimum points increases. For
example, in Figure 3.5, the graph of function G7(y) is presented. The function
G7(y) has 7 local minimum points at inventory values; 8, 17, 20, 24, 40, 48, and

56, and a global minimum point at 36.
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Figure 3.5: Curve of G7(y)

These local minimum points of G, (y) are the points which are the combina-
tions of possible demand values and capacity. These local minimums cause the
order amount functions to have an unusual pattern.

It can be clearly seen from the order quantity versus inventory position graph
(Figure 3.6) that order quantity is not a non increasing function of the inventory
level. In fact, it looks like a combination of several modified (s, .S) order quantity
functions. The order amount is equal to capacity when inventory level is below
—12, then it starts to decrease with a step size of one until -5. After -5 ordering
amount is equal to capacity again and after -3 it starts to decrease again and
goes on like this. It can be seen from Figure 3.6 that there are many ‘kinks’
in the curve of O,(y). These ‘kinks’ in the order amount function are resulted

from capacity constraint and those local minimum points. Function G, (y) is
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Figure 3.6: Curve of O;(y)

neither convex nor K-convex. Gallego and Wolf (2000) prove that G, (y) is not a
K-convex function but a CK-convex function. Therefore, at a specific inventory
position ¥, it may be optimal to order less than capacity to reach a local minimum
point rather than full capacity, even if it is optimal to order full capacity at an
inventory position greater than y. This property of order quantity function is the
reason for difficulty of defining the optimal policy of multi period problem.

Shaoxiang and Lambrecht (1996) attempt to characterize the optimal solution
to multi period problem and proposed X-Y band structure which implies that
there is a point X, until where the ordering amount is equal to capacity and
a point Y, from where the ordering capacity is zero. Gallego and Wolf (2000)
extend the work of Shaoxiang and Lambrecht (1996), partially characterize the
optimal order policy and investigated the optimal policies between X-Y band.
However, this policy structure cannot fully reveal the optimal order policy and
cannot explain the ‘kinked’ curve of order quantity function.

These kinks can be identified by determining the local minimums of the func-

tion G, (y). Unfortunately, as the number of periods to go increases, number of
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local minimum points also increases since local minimum points are combinations
of several demand values and capacity. Hence, it is difficult to identify the general
behavior of the order amount curve and so the optimal policy structure of the

multi period problem.

3.3.4 Computational Analysis

In this subsection, we present some findings from a computational study on the
multi period problem with respect to various parameters. Here, we need to rede-
fine parameter z,. Let 2, be the highest inventory level such that order amount
is positive. That is z, = max{z : O,(z) > 0} for any period n. Computational
analysis on a numerical example will be presented in order to show how func-
tions J,(z), Gp(y), and parameters z,, S, are affected by cost parameters, order
capacity, demand distribution, and number of periods to go.

Consider the example; h = 2.0, b = 20.0, K = 80.0, v = 2.0, and C' = 20.
Demand is equal to 8 with a probability of 0.70 and 10 with a probability of 0.30.
Now, we itemize the factors, which affect the cost functions and parameters, and

illustrate their effects on this example.

e Number of periods to go: As the number of periods to go increases, values
of cost functions at the same inventory level increase. That is, J,(z) >
Jn—1(z), Gy(y) > Gn—1(y) (Chan and Song 2003). However the policy
parameter S, does not increase as in the modified base stock policy (Fed-
ergruen and Zipkin 1986), and also z, values do not show a steady pattern
(initially increase then decrease and again increase). The reason for this
behavior can be explained as follows: In base stock policy, in each period a
critical point S is tried to be achieved. When capacity constraint is present,
then S, value may increase as n increases. Because fixed ordering cost is
zero, number of orders in a planning horizon is not important in this case.
However in our case, the number of orders in a planning horizon becomes
a major concern because of the fixed ordering cost. For example, when

capacity is equal to three times of expected demand in a period, it may
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be optimal to order only once in a three period interval which results in a

cyclic pattern in the values of S,,.

In Table 3.1 below, S,, and z, values for different values of n are presented.

Table 3.1: Values of S,, and z, with respect to number of periods to go

Period | 1 | 2 | 3 |4 |5 |6 | 7|89 10

Zn 3| T |6 | T |6 | T|6]6]6]|6

e Unit holding cost: As unit holding cost increases, it is observed that value
of cost function at the same inventory level at the same period increases.
Because either inventory holding cost increases or amount of inventory on
hand decreases which increases the expected backorder cost. On the other
hand, the policy parameters S,, and z, are observed to decrease since in-

ventory holding becomes less beneficial.

e Unit backorder cost: As unit backorder cost increases, it is observed that
value of cost function at the same inventory level at the same period in-
creases. Because either total backorder cost increases or inventory on hand
value increases which increases the inventory holding cost. Moreover, the
policy parameters S,, and z, are observed to increase since an increase in

penalty cost of stockout increases the incentive to hold inventory.

e Fixed ordering cost: As fixed cost of ordering increases, it is observed that
value of cost function at the same inventory level increases. Since for each
order, higher costs are incurred and any attempt to decrease fixed order-
ing cost incurred in a planning horizon will increase inventory holding and
backorder cost. Moreover, the policy parameter S,, is observed to increase
since inventory on hand becomes more valuable due to increased allocated

fixed cost to each ordered item. On the other hand, policy parameter z,
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is observed to decrease since the relative benefit of ordering full capacity

decreases.

In Table 3.2 below, G,,(y), Sn, and z, values are presented. Holding cost,
backorder costs, and fixed ordering costs are decreased by 50 percent and
increased by 50, 100, and 400 percent, and corresponding G,(y), S, and
2z, values for n = 10 are given in Table 3.2. It can be inferred from the
table that cost function and parameters values are most sensitive to the
percentage change in fixed ordering cost. Moreover, percentage change in
unit holding cost has greater effect on the cost function and parameters

than percentage change in unit backorder cost.

Table 3.2: Values of G,,(y), S, and z, with respect to cost parameters

Holding Cost | Backorder Cost | Fixed Ordering Cost
% Increase | Sig | z10 | Go | Sio | 210 | Gio | Sio | 210 Gio
50% | 48 | 7 [ 496 | 26 | 5 | 585 | 18 | 7 455
0% | 34| 6 [602] 34| 6 | 602 | 34| 6 602
50% | 18 | 6 | 667 | 34 | 7 | 610 | 44 | 6 718
100% | 18 | 6 | 719 | 34 | 7 | 628 | 44 | 6 799
400% | 16 | 4 | 979 | 36 | 8 | 628 | 82 | 6 948

e Capacity: An increase in capacity result in a decrease in cost, since the
problem’s feasible region becomes larger. In capacitated problems, there is
motivation for holding inventories for future periods because future demand
may not be satisfied with the capacity in future periods. As capacity value
increases, this motivation decreases because capacity constraint becomes
less binding. Also, inventory on hand becomes less valuable since order
cost per item decreases. Therefore, policy parameter S, is observed to
decrease. However, policy parameter z, may increase at the beginning
since it may become possible to reach some desired inventory levels with a

higher capacity value. But from a certain point, z, may decrease since the
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relative benefit of order full capacity decreases.

In Table 3.3 below, G,(y), S,, and z, values are presented. Production
capacity is decreased by 50 percent and increased by 50, 100, and 400
percent, and corresponding G, (y), S,, and z, values for n = 10 are given
in Table 3.3. It can be inferred from the table that increasing capacity
value causes considerable decrease in the total cost of the system at the
beginning. However, it is interesting that 50 percent increase in capacity
and 100 percent increase in capacity have approximately same minimum

cost value although they are achieved at different inventory levels.

Table 3.3: Values of G,,(y), Sy, and z, with respect to Capacity Value

Capacity
% Increase | Sig | 210 | Gho
-50% | 44 | 7 | T54
0% | 34 | 6 | 602
50% | 34 | 5 | 577
100% | 26 | 5 | 577
400% | 26 | 5 | 277

e Expected demand: Increase in expected demand causes an increase in costs
in our example. Moreover, the parameter z, is observed to increase. How-
ever, parameter S, does not show any pattern. In Table 3.4 below, G, (y),
Sy, and z, values for n = 10 are presented when expected value of demand
is equal to 7.6, 8.6, 9.6, 10.6 and 11.6. S,, value peaks (=40) when expected
demand is equal to 9.6. This situation may be explained as follows: When
expected demand is equal to 9.6 = 10 and capacity is equal to 20, it is
optimal to order once in every two periods and local and global minimum

points of cost function G,,(y) occurs at multiples of capacity.

e Maximum demand: Increase in maximum demand (while maintaining the

same expected demand value) causes an increase in costs in our example.
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Table 3.4: Values of G, (y), Sy, and z, with respect to Expected Demand

Expected demand || Sig | 210 | G1o
7.6 44 | 5 | 555
8.6 34 | 6 | 602
9.6 34 | 8 | 648
10.6 26 | 9 | 708
11.6 26 | 10 | 764

Moreover, the parameter 2, is observed to increase. However policy param-
eter S, does not show any pattern. In Table 3.5 below, G, (y), Sy, and z,
values for n = 10 are presented when maximum value of demand is equal to
10, 15, 20 and 30. S, value peaks (=32) when maximum demand is equal to
15. This situation may be explained as follows: When maximum demand
is equal to 15 22 16 and other possible demand value is equal to 8 (which is
equal to half of the maximum demand), minimum points of cost function
G, (y) occur at multiples of 8. Hence Sj, value is equal to 32 rather than

34 or 36.

Table 3.5: Values of G, (y), S, and z, with respect to Maximum Demand

Maximum demand || Sio | 210 | G1o
10 34 | 6 | 602
15 32 | 7 |682
20 36 | 7 | 742
30 44 | 15 | 872

We conduct this computational analysis to gain some insight about the prob-
lem structure. Due to the results presented in Subsections 3.3.3 and 3.3.4, we
believe that any monotone ordering policy cannot capture the essence of the sys-

tem behavior. Therefore, a simple policy is not expected to be optimal for this
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problem structure. With this in mind, we define a special case of this problem
where optimality conditions can be achieved with simple monotone policies. We
expect to utilize the results of this special case in developing effective heuristic

solution for the general case of the problem.
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CHAPTER 4

A SPECIAL CASE WITH RESTRICTED
DEMAND DISTRIBUTION AND
NON-STATIONARY PARAMETERS

In Chapter 3, we showed that the optimal policy for single period problem is
a modified (s,S) policy. Also, we showed that this policy cannot be extended
to multi period problem and we presented some properties of the multi period
problem. Due to these properties, we believe that optimal policy for general
case of the problem is difficult to identify. In this chapter, we analyze a special
case of the problem where we prove the optimality of an all-or-nothing policy
for a specific structure of demand and capacity relation. In this specific problem
structure, demand is defined as multiples of the capacity of production. In other
words, capacity of production is one batch in each period and demand also comes
in batches each period. Process type industries can be a good example of batch
production. In these types of systems, production usually has high fixed cost
and setup time. As a result, all-or-nothing policy may be optimal. However,
due to relation between demand structure and capacity in our special case, all-
or-nothing is optimal even for the problems with low fixed ordering cost. This
simple monotone policy may be utilized in developing a heuristic solution for the

general case of the problem. In Section 4.1, definition of the special case and
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differences between the special case and the general case are given. In Section
4.2, we set out characteristics for the finite horizon problem of the special case,
and prove that optimal policy for this problem is an all-or-nothing policy with a
threshold level. Finally, in Section 4.3, a computational analysis for the special

case with a numerical example is given.

4.1 Definition of the Special Case

In general case, it is assumed that demand in any period is a discrete random
variable and this random variable is independent and identically distributed from
one period to another. In this special case, demand in any period is equal to any
integer multiple of a base demand d with a known probability. These demand
probabilities change over periods. That is; demand in a period when n-periods left
in the planning horizon, (D,,), is equal to rd (r = 0,1..., R) with a probability of
prn. Therefore, we may have a non-stationary demand distribution in the special
case. Moreover, the capacity in a period is equal to base demand value (d).
Linear holding and backorder costs are charged per unit of inventory at the end
of each period and a fixed ordering cost is associated with each order decision.
However, the cost parameters can also be period dependent and we denote unit
backorder cost, unit holding cost, fixed (ordering) cost and unit variable cost in
period n as b, h,, K,, and v, respectively. We assume that the leadtime is zero.
The objective is to minimize the expected discounted cost of system over a finite
horizon.

Assumptions of the general case still holds for this special case. The system is
stable: That is, expected value of demand in a period is smaller than the capacity
(3202 g pra < 1 for all n). Fixed ordering cost should be less than or equal to unit
backorder cost times capacity for the single period problem. This assumption is
necessary in the special case as well, otherwise production will not occur. Finally,
unit backorder cost should be greater than unit variable cost (b, > v,).

With new problem setting, some of the difficulties aroused in the general

case are eliminated. Difficulties about the general case were explained in the
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previous chapter as follows: Under capacity limitations, tradeoff between holding,
backorder and fixed ordering costs in a multi period setting is hard to determine.
Function G,(y) is neither convex nor K-convex and have many local minimum
points which are combinations of several demand values and capacity. Moreover,
order quantity is not a non increasing function of the inventory level, and order
quantity curve has kinks which are resulted from capacity constraint and these
local minimum points. Also, number of local minimum points increases as number
of periods to go increases. An approximation for this number in any period n
can be possible values of convolution of demand distribution minus a multiple of
capacity. This multiple of capacity should be smaller than n times capacity since
it is possible to order at most n times in an n period horizon. It can be easily
concluded that if demand points do not have a relation with capacity as in the
special case, there will be many local minimum points of the function G(y).

In the special case, all possible demand values are multiples of the base de-
mand (d) and also order capacity is equal to d. This greatly reduces the total
number of different combinations of demand values and capacity. Therefore, num-
ber of local minimum points of function G, (y) becomes smaller and it becomes
easier to determine these local minimum points. Since each possible combination
is a multiple of d, intuitively, it is expected that local minimum points occur at
points which are multiples of base demand. Although function G, (y) is still nei-
ther convex nor K-convex in the special case, G, (y), restricted to certain points
may exhibit convexity property. If so, the kinks in the order quantity versus
initial inventory curve may be eliminated. Due to these simplifications, it may be

possible to characterize the optimal order policy of the special case completely.

4.2 Characteristics of the Finite Horizon Problem

4.2.1 Properties of Local Minimum Points of Expected Cost Function

Before discussing the properties of local minimum points, first we have to define
the term local minimum point as it is used in this chapter. A point is called a

local minimum point, if it is the minimum point of an interval of length equal
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to capacity (d). Therefore for any interval with length d, there can be only one
local minimum point. This definition is illustrated in Figure 4.1. Although point
a is a local minimum point in general definition, it is not by our definition. Local
minimum point of that interval is point b. If the local minimum point of any
interval is not unique, smallest point of these local minimum points is taken as

the local minimum point of that interval.

A Capacity

Figure 4.1: Local minimum point of an interval with length C

As stated earlier, it is expected that local minimum points of expected cost
function G, (y) occurs at points which are multiples of base demand (d). In Figure
4.2, local minimum points of function G(y) are highlighted. All of these points
are multiples of d (d = 10 in the example) as seen in Figure 4.2. If this property is
proved, then at any initial inventory point x, it would be optimal to order either
nothing or up to a multiple of base demand. Capacity is equal to d, hence in an
interval (z, z+ C], there can be only one point which is a multiple of d. Therefore
optimal ordering decision is restricted to two alternatives; order nothing or order
up to nearest multiple of d. Now, assume that initial inventory position at the

beginning of a planning horizon is a multiple of d. Then, optimal ordering policy
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becomes an ‘all-or-nothing policy’ which means either order nothing or order full
capacity. If proved, order amount can take values only zero or d when we limit
our state space to multiples of d. In that case, kinks will not exist and behavior

of order amount function may be identified clearly.
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Figure 4.2: Local minimum points of function G, (y)

We intend to prove that any point that is not a multiple of d cannot be a local
minimum of an interval with length equal to capacity. To prove that, we shall
show that, for any interval with length equal to d, minimum point of G, (y) is
achieved at a multiple of d. Therefore, for any integer m, mdggfrgl%rrrlz—l—l)d {Gn(y)} =

min {G,(md), G,((m + 1)d)}. Following theorem shows the properties of local

minimum points.

Theorem 1 For any integer m and ie{0,1,...,d} the following statements are

true for all n:
a. Gp(md+1) > aG,(md) + (1 — a)G,((m + 1)d) where a = (d —1i)/d
b. Gp(md +1i) > min{G,(md),G,((m+1)d)}
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c. Minimum point of G, (y) occurs at an integer multiple of base demand d.
d. Jo(md) = —vymd + min {G,(md), G,,((m + 1)d) + K, }

Proof: Proof of Theorem 1 is available at Appendix A.1. Here, we present

a sketch for this proof. We prove Theorem 1 by induction.

1. For n = 1, we proved the part (a) of the induction and all other parts follow

the part (a) of the induction.
2. For n = k, we assumed that all parts of the induction are true.

3. For n = k + 1, we proved the part (a) of the induction by using the part
(d) of the induction assumption in period k. And all other parts follow the
part (a) of the induction.

Part (a) of Theorem 1 states that for any period n and integer m, G,,(md+1)
is greater than or equal to the convex combination of G, (md) and G,,((m+1)d).

Part (b) of Theorem 1 follows part (a). By part (b), the point G,,(md+1) lies
above the line connecting two other points; G,,(md) and G, ((m + 1)d). In other
words either G, (md) or G,,((m + 1)d) is the local minimum point of the interval
[md, (m + 1)d].

Parts (c) immediately follows part (b) and states that S, is an integer multiple
of d due to fact that all of local minimum points are multiples of d.

Part (d) of Theorem 1 also follows part (b). Due to part (b) of Theorem 1, it
is not reasonable to order any amount less than capacity if initial inventory is an
integer multiple of d. Therefore, if the inventory position is equal to md, then it
is optimal to order full capacity (C') or not to order in any period for any integer

m which is part (d) of Theorem 1.

Corollary 1 Optimal policy is an ‘all-or-nothing policy’ if we restricted the ini-

tial inventory levels to the multiples of d.

Proof: Due to part (d) of Theorem 1, we can conclude that optimal ordering

policy is an ‘all-or-nothing’ policy when state space is limited to the multiples
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of d. Since ordering decision is restricted to two alternatives at a multiple of d;
either order nothing or order full capacity.

By Theorem 1 and Corollary 1, we show that optimal ordering policy is an
‘all-or-nothing’ policy. In other words, if we start with an inventory position
value which is a multiple of base demand (capacity), we will surely end up with
an inventory position value which is also a multiple of base demand (capacity)
and the order amounts are always either zero or capacity, therefore there will be
no kinks in the order quantity function. However, we do not yet show that order
quantity is a non increasing function of the inventory level. There could exist a
number of intervals where it is optimal to start and stop ordering and this will

prevent us from identifying the optimal order policy clearly.

4.2.2 Convexity of the Function G, (y)

In the previous section, we have proved that local minimum points of the function
Gn(y) occurs at the multiples of d and optimal ordering policy is an all-or-nothing
policy at these points. This leads to; if the initial inventory position is a multiple
of base demand (capacity), we will surely end up with an inventory position which
is also a multiple of base demand (capacity) at the end of the planning horizon.
Therefore, now we only care about the points that are multiples of d and we limit
our state space to the multiples of d.

Our goal in this section is to show that order quantity is a non increasing
function of the inventory level so in optimal policy, there can be no intervals
where it is optimal to start and stop ordering. In fact, we aim to prove that a
threshold policy, which is characterized by a period dependent threshold level,
is optimal. This threshold policy can be explained as follows; at each period if
initial inventory position is below a certain threshold level of that period, order

full capacity, otherwise order nothing. So function O, (z) is as follows;

On(z) = (4.1)



At the previous subsection, we have shown that ordering decision at any initial

inventory position is limited to two options. Therefore,

Je(md) = —vgmd + min {Gy(md), Gx((m + 1)d) + K} (4.2)

So, when making the ordering decision, one has to compare benefit of having
a capacity more inventory on hand and paying the fixed and variable cost of
ordering. We redefine the function H,(md) since only two options are available at
an initial inventory value md. H,(md) determines the tradeoff between ordering

and do nothing;

H,(md) = Gy((m + 1)d) + K; — Gy(md) (4.3)

and function O,(md) can be expressed as follows;

o 0 Hp(md)>0
n(md) = (4.4)

C 0> Hy(md)

If function H,(md) is a non increasing function, which means relative benefit
of ordering full capacity cannot increase as inventory position value increases,
then function O, (md) will be a non increasing function also. Behavior of function
H,(md) depends on the properties of function G,(md). If function G,(md) is
convex, then both H,(md) and O, (md) will be non increasing functions. As a
result, when it is optimal not to order at an inventory position, it can never be
optimal to order at a greater inventory position. Hence, we can conclude that
a period dependent threshold policy is optimal for our problem structure. On
the other hand, if G, (md) is not convex, there will be more than a single region
where it is optimal to order full capacity and also more than a single region,
where it is optimal to order nothing. This complicates identifying the optimal
ordering policy. In Figure 4.3 graph of function G,,(y) is presented. The bold line
passing through the points which are multiples of d (=10 in the example) form a
piecewise linear function. We attempt to show that this piecewise linear function

is a convex function and if so G, (md) is convex.
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Figure 4.3: Graph of function G, (y)

Before going through the theorem about convexity of G, (md), a lemma should

be stated which will be required in Theorem 2.

Lemma 1 Let G(z) be a function only defined at integer points. G(z) is a convex

function if G(z) satisfies that G(m+1) < 1G(m)+1G(m+2) for any integer m.

Proof: G(x) is a function only defined at integer points. Inequality :G(m)+
1G(m +2) > G(m + 1) holds for any integers m. If we rearrange the terms of

the inequality, we get;
G(m+2)>2G(m+1)—G(m)
Gm+2)—Gm+1)>G(m+1) —G(m) (4.5)
which is the standard convexity definition for discrete functions. O

The following theorem shows the convexity of G,(md) and establishes the
optimality of threshold policy.

Theorem 2 For any integer m, the following statements are true for all n:

a. Gu((m+1)d) < 1G,(md) + LG, ((m + 2)d)

1
2 2

b. Function G,(md) is convex
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Proof: Proof of Theorem 2 is presented in Appendix A.2.

Corollary 2 Optimal policy is an ‘all-or-nothing policy with a threshold level’ .
If initial inventory is below a threshold level then order full capacity, otherwise

order nothing.

Proof: By using Lemma 1 and Theorem 1, we prove Theorem 2 which states
that G,,(md) is convex. So if the inventory position is less than a threshold value,
then it is optimal to order full capacity (C') otherwise it is optimal not to order
in any period. By Theorem 2 and Corollary 2, we show that optimal ordering
policy is a period dependent threshold policy. As a result, order quantity is a non
increasing function of the inventory level so in optimal policy there is only one
region where it is optimal to order full capacity, and only one region where it is
optimal to not order. Let s, be the threshold level in period n, then it is optimal
to order full capacity in region (—o0,s,) and it is optimal to order nothing in
region [s,,, 00).

We call this policy as a period dependent threshold policy since threshold level
Sp is non-stationary because cost parameters and demand distributions are period
dependent. Also number of periods left to go is another factor for non-stationarity

even if cost parameters and demand distributions are stationary.

4.2.3 Behavior of the Decision Variables with respect to the Period

Index under Stationary Parameters

For our problem instance, we prove that the function G, (md) is convex and the
optimal order policy is an ‘all-or-nothing policy’. This threshold policy can be
characterized by a period dependent decision variable; s,,. The decision variable
sp is defined as the smallest integer multiple of capacity (d) that satisfies Gy, (s,,) <
Gn(sn +d) + K. In other words s,, = min{z : H,(xz) > 0} which means smallest
inventory level that it is optimal not to order. Therefore, by definition at all
inventory levels below s, it is optimal to order which is exactly the definition of

threshold point. Decision variable s, is non-stationary because of many factors
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such as; period dependent cost parameters and demand distribution, and number
of periods left in the planning horizon.

Recall that, decision variable S, is the point where G,, is minimized. From
the properties of G, which are discussed is Subsection 4.2.1, S,, is also an integer
multiple of capacity (d).

Next we intend to show the relationship between these two variables and
periods. However, in order to define such a relationship, we restrict ourselves
to the case where parameters are stationary so we drop the period index from
unit backorder, unit holding, unit variable and fixed ordering costs and also from
demand probabilities.

As the number of periods to go decreases, (as we get closer to the end of the
planning horizon), threshold level and inventory level where global minimum is
reached are expected to decrease. If proved, s, and S, are non decreasing in n.
This is not the case in the general case. Recall that in general case, S, shows
a cyclic pattern in some specific problem settings. This is due to capacity and
demand distribution relationship when fixed ordering cost is present. In order to
avoid fixed ordering cost, it may be optimal to order ¢ times in a j period interval
(7 < 7), which results in a cyclic pattern in S,, values. However this cyclic pattern
is not expected in this special case since there exists a specific relation between
demand values and capacity. So we may attempt to define a behavior of variables
(Sn, Sp) with respect to number of period left to go n.

Before going the next step, we should state the following lemmas:
Lemma 2 For the stationary problem, for any period n, s, < S,.

Proof: It is obvious that the smallest point that satisfies G, (s,) < Gn(s, +
d) + K is less than or equal to S, due to convexity of function G,,. Since func-
tion H,(x) is always negative when inventory level is greater than or equal to
Sp. Assumption about fixed ordering cost (K is less than unit backorder cost
multiplied by capacity b.C) is needed to guarantee the existence of such point for

single period problem.
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Lemma 3 For the stationary problem, for any period n , j being an integer multi-

ple of d, and for j < S,, we have G,,(j—d)—Gp(j) > 0 and J,,(j—d)— J,(j) > 0.

Proof: By definition of S,, and convexity of GG,,, proof is obvious.

Theorem 3 For any j being an integer multiple of d, the following statements

are true for any period n, n =1,2,... for the stationary problem:
a. Jn(j—d) = Jn(j) 2 Jn1(j — d) = Ju-1(j) where j < Sy
b. Guy1(j — d) = Gnia(§) = Gu(j — d) — Gu(j) where j < S,
c. Spy1 2> Sn

d. Sn41 2 Sn

Proof: Proof of Theorem 3 is presented in Appendix A.3. Here, we present
a sketch for this proof. We prove Theorem 3 by induction.

1. For n = 1, we proved the part (a) of the induction and parts (b) and (c)
follow part (a). After proving part (c), statement in part (b) is extended
from ‘j < Sy’ to ‘j < Sy’. Then, part (d) of the induction is proved.

2. For n = k, we assumed that all parts of the induction are true.

3. For n = k4 1, we proved the part (a) of the induction by using a property
of cost difference and parts (b) and (c) follow part (a). After proving part
(c), statement in part (b) is extended from ‘j < S, to ‘j < S,41’. Then,

part (d) of the induction is proved.

We prove Theorem 3 and by this theorem we show that, order up to level
S, and threshold point s, are nondecreasing as the number of periods to go
increases under stationary parameters. As the number of periods to go decreases,
less inventory is carried since threshold level is reduced when cost parameters and

demand distribution are stationary.
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4.3 Computational Analysis for the Special Case

In this section, we present some computational findings about problem investi-
gated in this chapter. Although this section is very similar to the computational
analysis carried out in Chapter 3, we expect to verify our analytical findings here.
Like computational analysis of the general case, examples are presented in order
to show how functions .J,,(x) and G, (y), and variables s,, and S, are affected by
cost parameters, demand distribution, and number of periods to go.

Consider the example; h = 2.0, b = 20.0, K = 80.0, v = 2.0, and C' = 10.
Demand is equal to 0 with a probability of 0.50, 10 with a probability of 0.30, 20
with a probability of 0.10 and 30 with a probability of 0.10. Expected value of
the demand is equal to 8 which is smaller than capacity value and finally discount

factor is equal to 0.95.

e Number of periods to go: As the number of periods to go increases, values
of cost functions at the same inventory level increase. That is, J,(z) >
Jn1(x), Gp(y) > G, _1(y). In Subsection 4.2.3, it is proved that the vari-
ables S,, and s,, are non decreasing as number of periods to go increases. In

Table 4.1 below, S,, and s,, values for different values of n are presented.

Table 4.1: Values of S,, and s, with respect to number of periods to go

Period | 1 | 2 | 3 |4 |5 |6 | 7|89 ]10

e Unit holding cost: As unit holding cost increases, it is observed that value of
cost function at the same inventory level increases. Because either inventory
holding cost increases or amount of inventory on hand decreases which
increases the expected backorder cost. On the other hand, the variables
S, and s, are expected to decrease since inventory holding becomes less

beneficial.
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e Unit backorder cost: As unit backorder cost increases, it is observed that
value of cost function at the same inventory level increases. Because either
total backorder cost increases or inventory on hand value increases which
increases the inventory holding cost. Moreover, the variables S,, and s,, are
expected to increase since an increase in penalty cost of stockout increases

the incentive to hold inventory.

e Fixed ordering cost: As fixed cost of ordering increases, it is observed that
value of cost function at the same inventory level increases since each order
costs more. Any attempt to decrease total fixed ordering cost incurred in a
planning horizon increases total inventory holding cost and backorder cost.
Moreover, the variable S,, is observed to increase since inventory on hand
becomes more valuable due to increased allocated fixed cost to each ordered
item. However, variable s, is observed to decrease since the relative benefit

of ordering full capacity decreases.

Table 4.2: Values of G,,(y), Sy, and s,, with respect to cost parameters

Holding Cost | Backorder Cost | Fixed Ordering Cost
% Increase | Sip | s10 | Gio | Sio | 10 | Gio | S | S10 Go
-50% | 70 | 40 | 665 | 50 | 30 | 795 | 50 | 40 810
0% | 50 | 30 | 913 | 50 | 30 | 913 | 50 | 30 913
50% | 40 | 30 | 1097 | 60 | 40 | 980 | 60 | 30 983
100% | 40 | 30 | 1243 | 60 | 40 | 1026 | 70 | 30 1044
400% | 20 | 20 | 1826 | 70 | 60 | 1172 | 90 | 30 1478

In Table 4.2, G,,(y), Sn, and s, values are presented. Holding cost, back-
order costs, and fixed ordering costs are decreased by 50 percent and in-
creased by 50, 100, and 400 percent, and corresponding G, (y), Sy, and s,
values for n = 10 are given in Table 4.2. Unlike analysis of the general
case, cost function and variables values are most sensitive to the percentage

change in unit holding cost rather than fixed ordering cost. Moreover per-
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centage change in fixed ordering cost has greater effect on the cost function
and variables than percentage change in unit backorder cost. This differ-
ence can be explained as follows; Capacity is restricted in the special case
and expected value of the demand is very close to capacity value in this
example and also unit backorder cost is relatively high. Therefore, it is not
possible to benefit from economies of scale in ordering and number of orders
in a 10 period problem is somewhat stable. Hence, system behavior is less

sensitive to changes in fixed ordering cost.

e Expected demand: Increase in expected demand causes an increase in cost
in our example. Moreover, the variables S,, and s, also increase. In Table
4.3 below, G, (y), Sy, and s, values for different expected values of demand
such as 7, 8,9, and 10 when n = 10 are presented. Recall that in Subsection
3.3.4, there are some conditions where variable behavior does not have any

pattern. Those types of situations do not occur in the special case analysis.

Table 4.3: Values of G, (y), Sp, and s, with respect to Expected Demand

Expected demand || Sio | s10 | Go
7 50 | 30 | 867
8 50 | 30 | 913
9 60 | 40 | 955
10 70 | 40 | 1000

e Maximum demand: Increase in maximum demand (while maintaining the
same expected demand value) causes an increase in cost in our example.
Moreover, the variables S, and s, increase. In Table 4.4, G, (y), S,, and
sp values for maximum demand values 20, 30, 40 and 50 when n = 10
are presented. Recall that in general case there are some conditions where
variable behavior does not show any pattern, which may be resulted from
capacity demand relationship. Those types of situations do not occur in

the special case analysis.
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Table 4.4: Values of G,,(y), S, and z, with respect to Maximum Demand

Maximum demand || Sig | s10 | Gio
20 50 | 30 | 760
30 50 | 30 | 913
40 60 | 40 | 1018
50 60 | 50 | 1091
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CHAPTER 5

CHARACTERISTICS OF THE INFINITE
HORIZON PROBLEM WITH RESTRICTED
DEMAND DISTRIBUTION AND AVERAGE

COST CRITERION

In Chapter 4, we defined a special case for the general problem and established
the optimal policy for that special case under discounted cost criterion. The
optimal policy is an all-or-nothing policy with a threshold level. In this chapter,
we analyze infinite horizon problem of the same special case under average cost
criterion and under stationary parameters. In Section 5.1, Discrete Time Markov
Chain model of the infinite horizon problem is presented. Each state of Markov
Chain is the shortfall level from the threshold/order up to level. Determination
of the threshold level using steady state distribution of shortfall level is also
discussed in Section 5.1. In Section 5.2, we present an analysis of the optimal

threshold level.

5.1 Infinite Horizon Model

In the previous chapter, we define a special case of the general problem. In this

special case, all possible demand values are multiples of a unit capacity. The
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objective is to minimize the expected discounted cost of system over a finite
horizon. We show that if the initial inventory is a multiple of capacity, then
optimal order policy is an all-or-nothing policy specified by a period-dependent
threshold level. So inventory levels other than multiples of capacity can never
be reached with this policy. As a result of this, at the beginning of each period,
we are at an inventory position which is a multiple of d we make our order
decision depending on our inventory position relative to threshold level; either
order full capacity or nothing, then order arrives and demand is faced and we
carry positive or negative inventory which is also a multiple of d to the following
period. Therefore, in this special case, we restrict our state space of inventory
level to the multiples of capacity.

In this chapter, we are interested with the infinite horizon problem of the
special case under average cost criterion. We apply an all-or-nothing policy char-
acterized by a threshold level as the ordering policy for this problem. We should
state a conjecture here: All-or-nothing policy is optimal for the infinite horizon
problem with special demand structure under average cost criterion.

An all-or-nothing policy with a threshold level in our setting implies that the
inventory position will always be less than or equal to the threshold level. Since
capacity is equal to d in our special case, inventory level can never be above the
threshold level once it goes below the threshold level. In fact, problem becomes a
base stock policy, whenever inventory level is below base stock / threshold level,
s, order full capacity, otherwise order nothing. Hence, parameter s can be viewed
as the order up to level. Inventory level can take a maximum value of threshold
level in the long run. We suggest that the inventory positions be represented as
shortfalls from the threshold level. The shortfall w is defined as the amount of
inventory that is less than threshold level: s — z = w. Shortfalls are not same
as backorders; backorder means we have negative inventory values (amount of
unsatisfied customer demand), on the other hand, shortfall means amount that
cannot be produced because of capacity constraint. Steady state distribution of
these shortfall levels represent the system condition in the long run and can be

used in determination of threshold level and calculation of average cost in the
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infinite horizon problem.

5.1.1 Discrete Time Markov Chain Model of the Special Case

As stated before, the inventory position can be represented as shortfall from the
threshold level. These shortfall levels represent the states of the Markov chain.
In this subsection, we present a Markov model of the infinite horizon problem
of the special case. By using the state transition probabilities, we determine
the steady state distribution of shortfalls from the threshold level. Then, using
this steady state distribution, average cost per period of the inventory system is
calculated and the optimal threshold level where the average cost is minimum
is determined. In order to do these, we first describe our Markov model. The
length of the epoch of our Markov chain is the period of the inventory model.
The state of the system at the beginning of each period is defined by the shortfall
from the threshold level. The sequence of events for this Discrete Time Markov

chain model is presented in Figure 5.1;

order demand realized costs evaluated
and states are
updated

®
[ 4

period starts

Figure 5.1: Sequence of events in an epoch

At the beginning of each period depending on the shortfall level, order decision
is given. That is, if shortfall is equal to zero, nothing is ordered. If shortfall is

greater than zero production occurs. Other than variable production cost per
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unit ordered (total variable cost paid is equal to unit variable cost multiplied by
capacity in each order since order amount is equal to capacity), a fixed ordering
cost is incurred for that period. Ordered amount arrives instantaneously raising
inventory position value by one (thus reducing shortfall level by one). Then,
demand is realized and satisfied with on-hand inventory, unsatisfied demand is
fully backordered, and holding and backorder costs are assessed at the end of
the period. Shortfall level of the system is updated. Shortfall level follows a
discrete time Markov chain with an infinite state space. That is, shortfall level
can take values between zero and infinity {w = 0,1,...}. Demand in each period
is discrete and stationary. Let p; be the probability that demand is equal to jd for
all je{0,1,...}. These demand probabilities form the state transition probability
matrix of the Markov chain. Let a;; be the transition probabilities from state i

to state j. Then a;;’s are;

0 j+1—i<0

Pj+1—i J+1—12>0

Figure 5.2: State Transition Diagram

If the shortfall level is equal to zero, than the shortfall level in the next period
is equal to demand level in this period because when the shortfall is zero nothing

is ordered. If the shortfall level is positive, than shortfall level in the next period
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is equal to shortfall level plus demand level minus one because a unit capacity
is ordered when shortfall is positive. Therefore, from any positive shortfall level
1, we cannot reach a shortfall level j if 7 > 1 — 4. In Figure 5.2, a partial state
transition diagram of Markov chain is presented where only transitions from state
0 and state 1 are presented as examples.

The state transition probability matrix is illustrated in Figure 5.3;
0 1 2 3 4 5 6
Po P1 P2 P3 Ps Ps Pe
Po P1 P2 Pz Ps Ps  Ps
0O Po P P2 Ps Ps Ps
0 Po P1 P2 Ps Pa
0O Po P1 P2 Ps
0 Po P1 P2
0 Ppo P2

o Uk W N PP O

Figure 5.3: State Transition Probability Matrix

It can be inferred from Figure 5.3 that transition probabilities depend only
on demand probabilities of the problem. This Markov chain is recurrent if
oD < 1. This makes sense intuitively: Y °° p,r is the ratio of expected
value of demand in a period to capacity. If this ratio is greater than 1, shortfall
will grow without bound and the Markov chain will be transient. Since Markov
chain is assumed to be irreducible, two assumption for demand distribution should
be made also; py > 0 and pg + p; < 1. First assumption is identical to our as-
sumption about expected value of demand (expected value of demand should be
smaller than or equal to capacity). Second assumption is needed to have short-
falls greater than 1. Otherwise, shortfall level can take only two values; zero or
one. For a detailed proof of existence of steady state distribution see Kulkarni
(1995).
Let m; be the steady state probability of state ¢. Since our Markov chain is
irreducible, recurrent and aperiodic, we solve m = 7 P. We have already stated

that transition probabilities of Markov chain depend only on demand probabili-
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ties. Hence, steady state distribution also depend only on demand probabilities.
As a result; any problem having the same demand probabilities will have the same
shortfall distribution in the longrun whatever the cost parameters or threshold
levels are. In other words, changing cost parameters or setting different threshold
levels do not affect the steady state distribution of shortfall. So, by m = 7P, we

get following equations;

o
Ty = Zm-aij (52)
i=0
this yields
j+1
T =Topj + D FiDj-it1 (5.3)
i=1

Kulkarni (1995) determines the m; values by using generating function of lim-

iting distributions and comes up with following result.

Mo =1— Zp,r (5.4)
This result turns out to be what we eXp;czed. In each state other than 0, we
order full capacity, therefore average number of order in a period can be denoted
by 1 — my which should be equal to the ratio of expected value of the demand to

capacity. Moreover, 7; 's are computed as follows;

o 1 —po
m = o
Po
1— _
Po
1— _ _
T3 = Po — D1 p2(7r0+7r1+7r2)+227r2
Do Do

(5.5)

and in general;

Tjr1 = iﬁ:Opz(zj: 7Ti) + zj:ﬂ-i zj: (pk/pO) (56)

Po i=0 =2 k=j—i+2
By using mp =1 — Y22 por = % all the steady state probabilities can be com-
puted using a simple computer code. After finding the steady state distribution,

long run expected cost per period can be written as follows;
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AC(s) = im[sflhpr(s—i—kl—r)%— 3 bpr(r—s+i—1)]

i=1 r=0 r=s—i+1

b omoS (s — 1)+ 3 bpe(r — 8)] + (1 = 7o) K + (1 — mo)vC(5.7)

r=0

Average cost per period has four components; holding cost, backorder cost,
fixed ordering cost and variable cost. Holding and backorder cost calculation is
based on shortage level and threshold level. For each shortage level other than
zero, inventory carried to the following period is positive if demand is less than
threshold level minus shortage plus one (amount that is ordered in that period),
and negative if demand is greater than that value. If shortage is zero, inventory
carried to the following period is positive if demand is less than threshold level
minus shortage since nothing is ordered in that period, and negative if demand
is greater than that value. Moreover, for each shortage level other than zero, a
fixed ordering cost and capacity times unit variable cost are incurred. Shortfall
distribution only depends on the demand probabilities therefore average cost per
period is a function of threshold level so we may define it as AC(s). Average cost
function is a convex function (goes to infinity as s goes to minus and plus infinity)
and has a finite minimizing point s*. Optimal threshold level is equal to the one
when minimum average cost per period is achieved so equals to s*. Because
demand is a discrete random variable, function AC/(s) is not continuous. So we
cannot take derivative to find the global minimum point. Instead of derivative,
we will evaluate the differences between AC(s + 1) and AC(s). Since AC(s)
is convex, this statement AC(s + 1) — AC(s) goes from negative to positive as
s increases and s* is the point where this difference becomes positive for the
first time. Although it corresponds to different inventory positions, steady state
distribution of shortfall is the same for all threshold levels, so determining the

differences are quite easy;

00 5—i+2 s—i+1
AC(s+1) —AC(s) = > m[ > hp(s—i+2—71)— > hp(s—i+1—7)
i=1 r=0 r=0
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+ i bp,(r — s +i—2) - i bp,(r — s +i—1)]

r=s—1+2 r=s—i+1
s+1 s
+ m>_hp(s+1—71)=> hp(s—r)
r=0 r=0

FY bl —s— 1) = S byl — 5)] (5.8)

r=s+1

Note that, fixed ordering cost and capacity times variable cost terms cancel
each other, since these costs are not related with the threshold level. By increasing
threshold level, total inventory holding cost increases and total inventory backo-
rder cost decreases and we aim to find the threshold level where total inventory
related cost is minimum. Since, when determining the optimal threshold level,
fixed ordering cost is not our concern in this problem structure, we expected a
result somewhat similar to the optimal solution to base stock policy. If necessary

eliminations are done in the Equation 5.8, it reduces to;

oo s—i+1 oo
AC(s+1)—AC(s) = >.m[ > hp,— > bp]
=1 r=0 r=s—1i+2
s+1 00
+ 77'0[2 hp, — Z bpr]
r=0 r=s+1

However in this statement there is a problem of the lower limit of the sum;
res—_it2 bpr. When i is greater than s + 2 lower limit becomes negative. To
avoid this situation, we can replace Y., , p, with (1—Y*2¢"" p,) and similarly
S 11 Pr is replaced with (1 —327_;p,). Moreover we can update the upper limit

of m; as s 4+ 1 since upper limits of the sums inside are s — i + 1.

s+1 s—i+1
AC(s+1) — AC(s) = (h+b)[ Zm Z pr] + (h+b) WOZp,—b (5.9)

s* is the smallest point that satisfies;
s+1 s—i+1
AC(s+1) — ZTI’Z Z pr+7r02p,_b+h (5.10)
This statement is the probability of shortfall plus demand minus order amount

is less than threshold level, in other words, probability of not being stockout.
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Optimal threshold level s* is the smallest point where this probability is greater
than or equal to the critical ratio b%h This result is exactly the same as base
stock policy result as expected due to insensitivity to fixed ordering cost. If
we return back to our Markov model, in which each state represents shortage
from threshold level. So stockout occurs when shortage level is greater than
threshold level. Therefore, probability of not being stockout in the long run can
be expressed as sum of the steady state probabilities of states {0,1,...,s} which

is 37, m; intuitively.

Proposition 1 Optimal threshold level is the smallest s that satisfies Y2;_,m; >

b
b+h "

Proof:
We know that m; = Efill i * Pjr1-i + mop; from properties of steady state
probabilities. When we simplify the Equality 5.10;

s+1 s—i+1 K]

Zﬂ-’i Z Dr + o Zp'r
=1 =0 r=0

ToPo + T1Po + ToP1 + T1P1 + TP + - - .

AC(s+1) — AC(s)

+ Tops +TPs+ ...+ Tsp1Po

o+ 71 ...+ Tg

S
>
i=0

Optimal threshold point is the smallest point that satisfies;

S

b
P> — 5.11
2T, (5-1)
So algebraically, we show that AC(s+ 1) — AC(s) is minimized when sum of

the steady state probabilities of states {0,1,...,s} reaches the critical ratio b%h

Optimal threshold level is the smallest point that probability of not being stock-

out in any period is greater than or equal to critical ratio b%h This newsvendor
type result is expected since threshold level is only affected by holding cost, back-
order cost, and demand distribution. As a result, for any given problem instance

satisfying the properties of the special case, steady state distribution of shortfall
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levels can be computed by a simple computer code and optimal threshold level s*
can be calculated by using steady state distribution and unit backorder/holding
cost. Again, average cost per period for the infinite horizon problem can be

computed using the optimal threshold level s*.

5.1.2 Analysis of the Optimal Threshold Level

In this subsection, we discuss how threshold level of the infinite horizon problem

s* is affected by cost parameters and demand distribution.

e Unit holding cost and unit backorder cost: Since the optimal threshold level

b

is determined by the critical ratio ;77,

as long as ratio of unit backorder
cost to unit holding cost is constant, optimal threshold level is the same. If
relative value of unit backorder cost to unit holding cost increases optimal

threshold level also increases.

e Fixed ordering cost and unit variable cost: As stated before, optimal thresh-
old level is not affected by values of fixed ordering cost and unit variable
cost as long as the assumptions about fixed ordering cost and unit variable
cost are valid (K < bC for single period problem and v < b). Since every
time the shortage level is positive, fixed ordering cost and capacity times

unit variable cost are incurred regardless of threshold level.

e Expected demand: Increase in expected demand results in a decrease in

@). Moreover, all other steady state

7o value since it is equal to (1 —
probability values change not only for their dependency to m value, but
also for the change in state transition probabilities (demand probabilities).
Nevertheless, we expect that optimal threshold level value is nondecreasing

as expected value of demand increases.

e Maximum demand: Increase in maximum demand (while maintaining the
same expected demand value) has no effect on 7y value. Also, it is obvious
that optimal threshold point is less than or equal to the maximum possible

value of the demand. Since if inventory on hand is equal to maximum
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possible demand value, probability of stockout is zero. However, it is hard
to determine how the threshold level is affected as maximum demand value

increases.
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CHAPTER 6

APPLICATION AND TESTING THE
ALL-OR-NOTHING POLICY TO THE
INFINITE HORIZON PROBLEM WITH A
GENERAL DEMAND DISTRIBUTION AND
AVERAGE COST CRITERION

In Chapter 5, we analyzed the infinite horizon problem of the special case under
average cost criterion and presented a Discrete Time Markov Chain model of the
special case and determination of the threshold level using steady state distribu-
tion of this Markov chain. In this chapter, we construct a similar Markov model
for the general demand case where the ordering policy is restricted to an all-or-
nothing threshold policy. In Section 6.1, a discrete time Markov chain model
of the general problem is presented when policy is an all-or-nothing type. De-
termination of threshold level using the steady state distribution is discussed in
Section 6.1 as well. Section 6.2 presents a comparison of this model with the opti-
mal solution found by the dynamic programming. Performance of all-or-nothing

heuristic in different problem settings is illustrated with examples.
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6.1 Infinite Horizon Model

In the previous chapter, we present a Discrete Time Markov Chain model for
the infinite horizon problem of the special case under average cost criterion. The
optimal policy for the special case is well defined as an all-or-nothing policy
characterized by a threshold level. It turned out to be that this threshold level is
a base stock level at the same time in the infinite horizon problem because of the
relationship between possible demand values and capacity. Therefore, we suggest
that the inventory positions can be represented as shortfalls from the threshold
level. Steady state distribution of shortfall levels represent the long run condition
of the system, and this distribution are computed by using demand probabilities.
Average cost per period is defined using these steady state probabilities. Finally,
optimal threshold level for the infinite horizon problem is determined which turns
out to be similar to the base stock level policy for the special case.

Now, we attempt to model the infinite horizon problem for the general dis-
crete demand case as a discrete time Markov chain, by restricting the ordering
policy to an all-or-nothing policy with a threshold level. We determine the opti-
mal threshold level and by using this threshold level, average cost per period is
calculated and compared with the average cost calculated by the dynamic pro-
gramming formulation to test the performance of the all-or-nothing policy as a
heuristic for the general case. Since, capacity does not have any relationship with
the possible demand values, problem cannot turn out to be a base stock policy
like the special case in Chapter 5. Application of the all-or-nothing policy to the
general case may force certain state to take values higher than the threshold level,
as we are only allowed to produce at capacity. Hence, states of the Markov chain
are defined as shortfall from threshold level, so we may have negative shortfalls

which means our states of Markov chain may start with a negative number.

6.1.1 Discrete Time Markov Chain Model of the General Case

In this subsection, a Discrete Time Markov Chain model of the infinite horizon

problem with general demand case is presented. As in the model for the special
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case, the inventory positions are represented as shortfalls from the threshold level.
These shortfall levels represent the states of the Markov chain. Unlike previous
case, shortfall levels can take negative values since capacity may be greater than
many possible demand values. In the long run, independent of the inventory
position at the beginning of the planning horizon, inventory level eventually drops
below the threshold level. The smallest shortfall level that ordering is possible
is 1 and ordering brings the shortfall level to 1 — C' (where C is the capacity).
Therefore the smallest value that shortfall can take is 1 — C'. We first determine
the state transition probabilities of Markov chain. Then, by using these state
transition probabilities, we determine the steady state distribution of shortfall
from threshold level. By using this steady state distribution, average cost per
period of the inventory system is calculated and the optimal threshold level where
the average cost is minimum can be determined. Like the model presented in
Chapter 5, the length of the epoch of our Markov chain is the period of the
inventory model. The state of the system at the beginning of each period is
defined by the shortfall from threshold level. The sequence of events for this
Markov chain is very similar to the one defined in the previous chapter and

presented in Figure 6.1;

®- Py ®- ®
L4 @ ®

order demand realized costs evaluated
and states are
updated

period starts

Figure 6.1: Sequence of events in an epoch
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At the beginning of each period depending on the shortfall level, order decision
is given. In other words, if shortfall is not positive, nothing is ordered. If shortfall
is positive production occurs, other than variable production cost per unit ordered
(total variable cost paid is equal to unit variable cost multiplied by capacity in
each order), a fixed ordering cost is incurred for that period. Ordered amount
arrives instantaneously raising inventory position value by capacity value (thus
reducing shortfall level by capacity value). Then, demand is realized and satisfied
with on-hand inventory, unsatisfied demand is fully backordered, and holding
and backorder costs are assessed at the end of the period. Shortfall level of
the system is updated. Shortfall level follows a Markov process with infinite
state space, that is, shortfall level can take values between —C'+ 1 and infinity
{t=—-C+1,-C+2,...}. Demand in each period is discrete and stationary and
no longer multiples of d. Let p; be the probability that demand is equal to j for
all je{0,1,...}. These demand probabilities form the state transition probability
matrix of the Markov chain. Let a;; be the transition probabilities from state i

to state j. Then a;;’s are;

0 j—i<0 i <0
pji—i  J—12>0 i <0
a; =14 " (6.1)
0 J+C—-1<0 >0
| Pj+c—i j+C—-1>0 i>0

If the shortfall level is not positive, than the shortfall level in the next period is
equal to shortfall level plus demand level in this period because when the shortfall
is not positive, nothing is ordered. If the shortfall level is positive, than shortfall
level in the next period is equal to shortfall level plus demand level minus capacity
because a unit capacity is ordered when shortfall is positive. Therefore from any
positive shortfall level ¢, we cannot reach a shortfall level j if j > C' —i. In Figure
6.2, a partial state transition diagram of Markov chain is presented where only
transitions from state -C+1 and 1 are presented as examples.

The state transition probability matrix is presented in Figure 6.3;

It can be inferred by the Figure 6.3, transition probabilities depend only
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Figure 6.2: State Transition Diagram for General Case

-C+1-C+2-C+3 . . 0 1 2
C+1|po P1 P2 . . Pca Pc Pc+
C+2(0 po pP1 . . Pc2 Pc1 Pc
-C+3| 0 0 po . . Pc3 Pc2 Pca

0 0 0 0 . . Po P .
Po P11 P2 . . Pca Pc Pc+
0 pPo P . . Pc2 Pc1 Pc

Figure 6.3: State Transition Probability Matrix for General Case
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on demand probabilities of the problem like in the special case. This Markov
chain is recurrent if Y72 p,r < C. This makes sense intuitively: > 72, p,r is the
expected value of demand in a period. If expected demand in a period is greater
than capacity, shortfall will grow without bound and the Markov chain will be
transient. Let m; be the steady state probability of state 7. Since our Markov
chain is irreducible, recurrent and aperiodic, if we solve m = 7 P.

We have already stated that transition probabilities of Markov chain depend
only on the demand probabilities like in the special case. Hence, steady state
distribution also depend only on demand probabilities. As a result; any problem
having the same demand probabilities have the same shortfall distribution in the
longrun whatever the cost parameters or threshold levels are. In other words,
changing cost parameters or setting different threshold levels do not affect the
steady state distribution of shortfall. On the other hand, capacity value affects
the steady state distribution of shortfall because changing capacity value also
changes the state space of the Markov chain. So, by m = 7P, we get the following

equations ;

Ty = Z T3 Qg5 (62)
i=—C+1

Also m; > 0 for all 7. Unfortunately determining the m; values is not as easy
as the previous Markov chain. Therefore a state reduction algorithm described
in Heyman et all (1991) is used for determining the steady state values. In
this state reduction algorithm, r; which gives the expected number of visits to
state i between two visits to state 0 (—C + 1 in our case), are computed. Then,
normalized r; values are taken as steady state probabilities of states of the Markov
chain. All the steady state probabilities are computed by a simple computer code
using state reduction algorithm. After finding the steady state distribution, long

run expected cost per period can be written as follows;

[e%e) s—i+C 00
AC(s) = > m[ > hp(s—i+C—r)+ bp,(r—s+i—C)]
=1 r=0 r=s—i+C
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0 s—1 00

+ Z Wi[thr(s—r—i)—F Z bpr(r — s +1)]

i=—C+1 r=0 r=s—1
+ K> m+0C> m (6.3)
i=1 i=1

Average cost per period has four components; holding cost, backorder cost,
fixed ordering cost and variable cost. Holding and backorder cost calculation is
based on shortage level and threshold level. For each positive shortage level, in-
ventory carried to the following period is positive if demand is less than threshold
level minus shortage plus capacity (amount that is ordered in that period), and
negative if demand is greater than that value. If shortage is zero or negative,
inventory carried to the following period is positive if demand is less than thresh-
old level minus shortage since nothing is ordered in that period, and negative if
demand is greater than that value. Moreover for each positive shortage level, a
fixed ordering cost and capacity times unit variable cost are incurred. Given the
capacity value, shortfall distribution only depends on the demand probabilities
therefore average cost per period is a function of threshold level so we may define
it as AC(s) as in the special case. Average cost function is a convex function
(goes to infinity as s goes to minus and plus infinity) and has a finite minimizing
point s*. Optimal threshold level is equal to the one when minimum average
cost per period is achieved so is equal to s*. Because demand is a discrete ran-
dom variable, function AC(s) is not continuous. So we cannot take derivative
to find the global minimum point. Instead of derivative, we will evaluate the
differences between AC(s+1) and AC(s). Since AC(s) is convex, this statement
AC(s+1)—AC(s) goes from negative to positive as s increases and s* is the point
where this difference becomes positive for the first time. Although it corresponds
to different inventory position value, steady state distribution of shortfall is the
same for all threshold levels, so determining the differences are quite easy like in

the special case;

00 s—i+C+1 s—i+C
AC(s+1)—AC(s) = >.m[ >, hp(s—i+C+1—7r)— > hp(s—i+C—r)
=1 r=0 r=0
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oo

+ oo obp(r—s+i—-C—1)— i bp,(r—s+i—C)]

r=s—i+C+1 r=s—i+C
0 s—i+1 s—1
+ Z ml > hpr(s+1—i—r)—2hpr(s—i—r)
i C+1 r=0
+ Z bp (r—s+i—1)— pr,«r—s%—z)]
r=s—i+1 r=s—1

Note that, fixed ordering cost and capacity times variable cost terms cancel
each other, since these costs are not related with the threshold level. By increasing
threshold level, total inventory holding cost increases and total inventory backo-
rder cost decreases and we aim to find the threshold level where total inventory
related cost is minimum. Since, when determining the optimal threshold level,
fixed ordering cost is not our concern in this problem structure, we expected a re-
sult somewhat similar to the optimal solution to base stock policy like in Chapter

5. If necessary eliminations are done in the Equation 6.4, it reduces to;

00 s—i14+C o0
AC(s+1)—AC(s) = > m[ >, hp,— > bp]
=1 r=0 r=s—i+C+1
0 s—i+1 o0
+ > ml Y hpe— Y bp]
i=—C+1 r=0 r=s—i+1

However, in this statement there is a problem of the lower limit of the sum;
S s_ivct1 bpr. When 4 is greater than s + C' + 1 lower limit becomes negative.
To avoid this situation, we can replace Y°° . . p, with (1 — 226" p,) and
similarly 372, ;. pr is replaced with (1—32%_f p,). Moreover, we can update the
upper limit of m; as s + C' in the first part since upper limits of the sums inside

are s — 1+ C.

s+C s—i+C

0 s—1
AC(s+1)— AC(s) = (h+b)[ ZTI’Z Z prl+(h+0) > m > p]—b
r= i=—C+1 r=0
s* is the smallest point that satisfies;
s+C s—i+C

AC(s+1) Zm Z pr+ Z szpr_b+h (6.6)

r= i=—C+1 r=0
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This statement is the probability of shortfall plus demand minus order amount
is less than threshold level, in other words probability of not being stockout.
Optimal threshold level s* is the smallest point where this probability is greater
than or equal to the critical ratio b%h This result is exactly the same as the
result in the previous chapter. Therefore, base stock policy type solution is also
applicable for our model of general case as expected due to insensitivity to fixed
ordering cost. In the special case model, this result is simplified by using the
properties of steady state probabilities of Markov chain. Therefore, we may
apply the same method here. Stockout occurs when shortage level is greater than
threshold level. Therefore, probability of not being stockout in the long run can be
expressed as the sum of the steady state probabilities of states {-C+1,-C+2,... s}

which is 337, 7 intuitively.

Proposition 2 Optimal threshold level is the smallest s that satisfies Y ;__ ., m >

b+h"

Proof:
We know that 7; = 3772 _ ., m; * a;; from properties of steady state probabil-
ities. When we simplify the Equation 6.6;
s+C  s—i+C

AC(s +1) = AC(s) = Zm Z Pt Z mZpr

—C+1 r=0
7T1p0 + 7T—C+1p0 + mp1 + Topo + T—c41P1 + T—c2Po + - ..

+ MPsyc 1+ TPsyc2+ .-+ T cy1Ps+c-1 T+ T c42Ps+C-2 - - -

T_C41+T—C42... + T

s
>,
1

=—C+1

Optimal threshold point is the smallest point that satisfies;

S

b
S > )
. Ty (6.7)

So algebraically, we show that AC(s+ 1) — AC(s) is minimized when sum of

the steady state probabilities of states {-C+1,-C+2,...,s} reaches to the critical

ratio b%h Optimal threshold level is the smallest point that probability of not
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being stockout in any period is greater than or equal to the critical ratio b%h
This newsvendor type result is expected since threshold level is only affected by
holding cost, backorder cost, and demand distribution. As a result, if the policy
is restricted to all-or-nothing policy with a threshold level, steady state distribu-
tion of shortfall levels can be computed by a simple computer code and optimal

*

threshold level for all-or-nothing policy, s*, can be calculated by using steady
state distribution and unit backorder/holding cost. Average cost per period can

be determined using the optimal threshold level s*.

6.2 Testing Performance of All-or-nothing Heuristic

In the previous section, a Discrete Time Markov Chain model for the general
case is presented when policy is restricted to all-or-nothing policy for the infinite
horizon problem. In this section, we test the performance of this heuristic on a
set, of example problem settings. Different combinations of problem parameters
such as, demand distribution, cost parameters and capacity values are used in

testing procedure. The steps of the testing procedure is as follows;

e We find the optimal cost per period through dynamic programming model.

e For the same problem setting, we compute the average cost per period by

the discrete time Markov chain formulation.

e Then, we compare the results of the heuristic with the results of the dynamic

programming model.

Unfortunately, a problem arises in computing infinite horizon average cost
with dynamic programming. The main handicap of the dynamic programming,
as the number of periods-to-go increases, the number of initial inventory values
increases rapidly. Therefore, length of planning horizon can be taken relatively
short. As a result, the planning horizon is not long enough for the average cost
per period to converge. If we could solve the dynamic program for sufficiently

large planning horizons, average cost per period would converge and would be
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independent of the initial inventory value at the beginning of the planning hori-
zon. However, this is not the case and average cost values cannot recover from
the dependence to the initial inventory value in our planning horizon and is a
function of initial inventory value. As a result, some parameters like capacity
and maximum demand are taken relatively smaller to have a longer planning
horizon (N = 70 in our computations) and to obtain a good approximation for
the infinite horizon average cost of the problem.

One problem still remains. Although we tried to have a longer planning
horizon in dynamic programming, average cost value did not converge. Therefore,
an approximate value for average cost should be used in comparison with heuristic
result. One alternative can be using the average cost for a set of beginning
inventory level. For example, using the average cost for beginning inventory
levels -5, 0, 5, 10, 15. However, these beginning inventory levels will not be
robust to the changes in the problem setting. Consider the situation, demand is
zero or one and capacity is one. In this problem setting, an inventory value of
15 or -15 will have a great impact on the average cost. Therefore, including or
excluding the cost at these inventory levels in calculating average cost leads to
over or underestimation of the average cost per period.

So, we suggest another approximation (actually lower bound) for the average
cost in the long run which is taking the minimum average cost for all initial
inventory values. In other words, taking the average cost at the initial inventory
level S,,. Since this value is the smallest possible value of the all possible average
cost per period, this will be a lower bound for the actual average cost per period
of the system. Comparing the result of heuristic with this approximation will
underestimate the performance of heuristic since we assume that average cost
per period is equal to minimum average cost.

We can itemize the parameters used to generate different problem settings as

follows;

e Demand Distribution: Two sets of demand distribution are used in the

problems. In the first set, possible demand values are {5,6,7,8,9,10} with
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their respective probabilities {0.06,0.05,0.35,0.35,0.15,0.04}. This distri-
bution resembles normal distribution with a mean of 7.6. The reason for
choosing small values for possible demands is explained above as the limi-
tation of the computation of the dynamic programming formulation. The
other set consists of two possible demand values {9,10} with probabilities

of {0.95,0.05} respectively and the mean value of demand is equal to 9.05.

e Unit Holding Cost: It is obvious that, the system’s dynamics is affected
by the relative values of the cost parameters not necessarily by their ab-
solute values. Therefore, unit holding cost is taken as 1 and all other cost

parameters are selected relative to the unit holding cost

e Unit Backorder Cost: Unit backorder cost is taken as 3, 5, and 10 in our
problems. These unit backorder values, lead the ratio, - to take values

' bth
of 0.75, 0.83 and 0.91.

e Unit Variable Cost: Important point in determining the unit variable cost
value, it should be always less than unit backorder cost by the assumptions
of the problem. In fact, unit variable cost taken as zero in all our problem

settings, as the total demand will always be satisfied.

e Capacity: To test the effects of capacity restriction on the problem, different
capacity values are used in the test examples. Ratio of the expected demand
in a period to the capacity value gives us the utilization of the capacity in the
long run. The capacity values are selected so as to have capacity utilization
values 95 percent, 84 percent, 76 percent, 69 percent for the first demand
distribution and 90, 82, 75, 69 percent for second the distribution.

e Fixed Ordering Cost: Fixed ordering cost is allowed to take values of 15,

40 and 100 in our examples.

Table 6.1 summarizes the computational result of performance of our heuristic

when possible demand values are {5,6,7,8,9,10} with respective probabilities of
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Table 6.1: Performance test of Heuristic for demand set 1

[ No|[[h| b | K | C|Low. Bou. | Heu. Res. | Dev |

1 113 ] 15| 8 16.91 17.96 6.2
2 113 ] 15]9 15.92 16.28 2.2
3 113 1] 15|10 15.08 15.38 2
4 113 ] 15 |11 14.42 14.69 1.9
5 113 ] 40 | 8 39.47 41.71 5.7
6 113140 |9 35.64 37.39 4.9
7 11| 3| 40 | 10 3291 34.38 4.5
8 113 ] 40 |11 30.7 31.96 4.1
9 113 (100 | 8 87.45 98.71 12.9
10113 (100 9 78.8 88.05 11.7
11 || 1| 3 | 100 | 10 72.16 79.98 10.8
12 || 1| 3 | 100 | 11 66.74 73.42 10
131|515 | 8 17.45 18.62 6.7
415159 16.27 16.77 3
15|15 | 15 |10 15.63 15.92 1.9
6|15 |15 |11 14.97 15.23 1.7
171 5 | 40 | 8 40.28 42.37 5.2
18115 |40 |9 36.28 37.88 4.4
19 |1 5 | 40 |10 33.56 34.92 4
20 (| 1] 5 | 40 | 11 31.35 32.51 3.7
21 (| 1] 5 | 100 | 8 89.2 99.37 114
22 (1] 5 [100| 9 80.19 88.54 10.4
23 || 1| 5 | 100 | 10 73.43 80.52 9.7
24 (| 1] 5 | 100 | 11 67.89 73.96 9
25 (|1 ]10] 15 | 8 18.28 19.54 6.9
26 (| 1]10] 15 | 9 16.6 17.39 4.8
27 (|1 ]10 ] 15 | 10 16.15 16.44 1.9
28 (|1]10] 15 |11 15.53 15.8 1.7
29 (|1 ]10] 40 | 8 41.22 43.29 5
30 ||1]10| 40 | 9 36.99 38.5 4.1
31 || 1|10 40 | 10 34.18 35.44 3.7
32 ||1]10] 40 | 11 32 33.08 34
33 || 1|10 100 | 8 90.87 100.3 10.4
34 110|100 ]| 9 81.48 89.17 9.4
35 || 1|10 | 100 | 10 74.51 81.04 8.8
36 || 1] 10| 100 | 11 68.92 74.53 8.1
Average Dev. 6
Max. Dev 12.9
Min Dev. 1.7
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{0.06, 0.05,0.35,0.35,0.15,0.04}. Column Low.Bou. is the average cost approx-
imation calculated by minimum average cost. Column Heu.Res is the average

cost calculated by heuristic. Finally, column Dev is the percent deviation of

Heu.Res— Low.Bou. % 100.
Low.Bou.

heuristic result from Low.Bou., which is equal to

We evaluate the performance of heuristic by looking at the deviation from
Low.Bou.. Although using deviation from Low.Bou. as a performance criteria
underestimates the performance of the heuristic, it is an upper bound for the
deviation from the actual average cost. Average deviation from Low.Bou. is 6
percent and maximum deviation is 13 percent as shown in Table 6.1. So, we may
conclude that our heuristic performs well for this demand distribution.

For the second demand set, there are only two possible demand values. This
type of demand distribution causes more trouble such as kinked curve of order
quantity function. Therefore, for most of the problem sets, we do not expect to
have an optimal policy which is an all-or-nothing policy in the long run with this
demand structure. So, we expect to get worse performance of heuristic compared
to the performance on first demand set. Table 6.2 summarizes the computational
result of our performance test of heuristic when possible demand values are {9, 10}
with probabilities {0.95,0.05}.

As expected, average deviation, maximum deviation and minimum deviation
from Low.Bou. are greater than corresponding values of previous demand set.
Average deviation from Low.Bou. is 8 percent and maximum deviation is 19
percent as shown in Table 6.2. So, we may conclude that our heuristic performs
well for this demand distribution also.

As a conclusion, for the infinite horizon problem under average cost criterion,
all-or-nothing policy with a threshold level is a well performing heuristic, even in

the problematic demand structures.
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Table 6.2: Performance test of Heuristic for demand set 2

[ No|[[h| b | K | C|Low. Bou. | Heu. Res. | Dev |

1 113 ] 15 |10 14.85 17.29 16.4
2 113 ] 15 |11 14.85 16.44 10.7
3 13| 15 | 12 14.85 15.81 6.5
4 13| 15 |13 14.78 15.3 3.5
5 1| 3 | 40 | 10 38.15 39.91 4.6
6 1] 3] 40 |11 35.52 37 4.2
7Tl 1] 3| 40 |12 33.37 34.67 3.9
8 1] 3 | 40 | 13 31.57 32.7 3.6
9 1| 3 {100 10 85.49 94.21 10.2
10| 1| 3 | 100 |11 78.84 86.37 9.5
11| 1| 3 | 100 | 12 73.36 79.92 8.9
12 || 1| 3 | 100 | 13 68.72 74.47 8.4
B1|5 |15 |10 14.95 17.69 18.3
415 |15 |11 14.95 16.89 13
515 |15 |12 14.95 16.31 9.1
16|15 | 15 | 13 14.85 15.85 6.7
171 5 | 40 | 10 38.59 40.31 4.5
81| 5 | 40 |11 36.09 37.46 3.8
19|15 | 40 | 12 33.74 35.17 4.2
20 || 1] 5 | 40 | 13 32.07 33.25 3.7
21 | 1] 5 | 100 | 10 86.78 94.61 9
22 (| 1] 5 | 100 | 11 80.03 86.82 8.5
23 (| 1] 5 | 100 | 12 74.44 80.42 8
24 || 1] 5 | 100 | 13 69.8 75.02 7.5
25 (|1 ]10] 15 | 10 15.2 18.08 19
26 (| 1]10] 15 |11 15.2 17.34 14.1
27 (| 1] 10| 15 | 12 15.2 16.77 10.3
28 (|1 ]10] 15 | 13 14.98 16.32 8.9
29 (|1 ]10] 40 | 10 38.92 40.71 4.6
30| 1]10] 40 | 11 36.46 37.91 4
31 || 1|10 40 | 12 33.98 35.63 4.9
32 || 1|10 40 | 13 32.43 33.73 4
33 || 1] 10| 100 | 10 87.86 95 8.1
34 || 1]10] 100 | 11 81.02 87.27 7.7
35 || 1| 10| 100 | 12 75.2 80.88 7.5
36 || 1] 10| 100 | 13 70.64 75.5 6.9
Average Dev. 8
Max. Dev 19
Min Dev. 3.5
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CHAPTER 7

CONCLUSION

In this study, we analyzed the single item periodic review, capacitated inventory
model with fixed ordering cost. Demand in each period was assumed to be a
discrete random variable independent of demands in other periods. The opti-
mization criterion was either minimizing average cost or discounted cost of the

system over a planning horizon.

For this problem setting, we first showed that the optimal policy for a single
period problem is a modified (s, S) type policy. Then, we showed that this mod-
ified (s,S) type policy cannot be optimal for the multi period problem and we
discussed the reasons why an optimal policy for the multi period problem is hard
to identify. Afterwards, we performed a computational analysis on a numerical
example and investigated the behavior of the inventory system respect to changes
in some problem parameters. By this computational analysis, we identified some
points where system behavior contradicts with our expectations. As a result, we
concluded that any simple monotone policy cannot be optimal for this problem
structure. This result gave us motivation to define a special case of this problem

where optimal order policy can be achieved with simple monotone policies.

Next, we defined a specific problem structure where demand is defined as
multiples of the capacity of production. We investigated the characteristics of this

special case problem with finite planning horizon. We came up with the following
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result for that special case: If the initial inventory position at the beginning of a
planning horizon is a multiple of capacity value, then partial ordering never occurs
and optimal policy is an all-or-nothing policy. Then, we proved the convexity of
the expected cost function defined at the points which are multiples of capacity.
These results, led us to define the optimal policy as an all-or-nothing policy with
a threshold level. Then, we showed that threshold level is non decreasing as the
number of periods to go increases, and we performed a computational analysis
for the special case.

Furthermore, we investigated the infinite horizon problem of the special case
under average cost criterion by defining the problem as a Discrete Time Markov
Chain Model. The states of the Markov chain were defined as the shortfall levels
from the threshold value. We showed that by using the steady state distribu-
tion, optimal threshold level can be computed. It turned out to be that optimal

threshold level is insensitive to fixed ordering cost and unit variable cost. Optimal

b

5ip asin base stock

threshold point is the point that satisfies a critical ratio of
policy. We also showed that average cost per period can be computed by using
the optimal threshold level.

We extended our results of Discrete Time Markov Chain Model to infinite
horizon problem of the general case and developed a heuristic which is again
all-or-nothing policy. In this heuristic, optimal threshold level and average cost
per period is computed by using the steady state distribution of shortfall level
and critical ratio of b%h To test the performance of heuristic, we created a set of
problems with different demand distributions, cost parameters and capacity value.
We compared the result of the heuristic with the average cost value obtained from
the dynamic programming model. Heuristic performed well for all of the cases
and deviation from optimal solution remain under ten percent in most of the
cases. On average, deviation from optimal solution (lower bound) was around
seven percent.

A possible further research point can be determining the conditions where

all-or-nothing policy performs better (optimal or very close to optimal) and de-

veloping hybrid policies. In these hybrid policies, total capacity value is divided
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into small values and total fixed ordering cost is allocated to each small capacity.
As an example, more than one supplier (capacity) are available with different
capacity values and fixed ordering costs. The ordering policy is restricted to an
all-or-nothing policy with each supplier (capacity). Therefore, order policy will
be a combination of all-or-nothing policies with different suppliers. For some
initial inventory levels, it will be optimal to give order to all suppliers, and for
some inventory levels it will be optimal to give order to a subset of suppliers.
This multi supplier model can be reduced to single supplier model by dividing
the capacity into smaller capacity values. This is expected to be a better approx-
imation for our problem especially when the capacity is much larger than the
expected demand of a period. The main problem that arises here is to allocate
the fixed ordering cost to smaller capacity values.

Another possible path for further research is to utilize the result for special
case in developing heuristics for the problems with general demand structure.
By small modifications, this general demand structure may be expressed by a
special demand structure or by a combination of special demand structures like
in Chapter 4. As a result, optimal order policy for the problem with general
demand structure can be approximated by all-or-nothing type policies.

Finally, a possible path for further research is to define a partial character-
ization of optimal policy for problems with shorter planning horizons. Then,
resulting policy may be used as a myopic approximation to problems with longer
planning horizons. This partial characterization of optimal policy should capture
the unsystematic behavior of the system such as not monotone behavior of or-
der amount curve. We use the term partial characterization since it is hard to

determine optimal policy even for two period planning horizon problem.
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APPENDIX A

PROOFS OF LEMMAS AND THEOREMS

A.1 Proof of Theorem 1

We prove Theorem 1 by induction. Before induction, we should show a proposi-

tion that will be used in proof of Theorem 1.

Proposition 3 When unit variable cost is zero, than function J,(x) is less than

equal to G, (y) + Ko(y — x) where ye[z,z + C].

Proof: If the unit variable cost is zero, then J,(x) is equal to min{G,(y) +
K(y — z)} where ye[z, z + C]. Hence all possible values G, (y) + Kd(y — x) is
greater than equal to minimum of these values which is .J,(x). O

Now, we can return back to our proof of Theorem 1. Part (a) of induction
states that any point between two consecutive multiples of d (e [md,(m-+1)d]),
has an expected cost value G,,(md + i) which is greater than or equal to convex
combination of expected costs of extreme points G,,(md) and G, ((m+1)d). This
also means that, point G, (md+1) lies on or above the line connecting two points
at two consecutive multiples of d, G,,(md) and G,,((m + 1)d) as shown in Figure
Al

Forn =1,

m M
Gi(md) = vymd+ Z pr1(md — rd)hy + Z pr1(rd — md)by

r=0 r=m+1
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Position

Figure A.1: Convex combination of two consecutive multiple of d

Gi((m+1)d) = vn(m+1)d+ i pri[(m + 1)d — rd)hy

r=0

+ i/[: prifrd — (m + 1)d]b,

r=m+1
Gi(md+1) = vi(md+1i)+> pa(md+i—rd)h
r=0
M
+ Z pri(rd —md — )by
r=m+1

G1(y) has three parts; variable cost part, holding cost part and backorder cost
part. First note that, variable cost part of md + 7 is exactly equal to the convex
combination of the others: v;(md + i) = avymd + (1 — a)vy(m + 1)d.

Next, each component of holding cost part p,;(md + i — rd)h; is exactly
equal to convex combination of others’ so total expected holding cost when initial
inventory md+1 is equal to the convex combination of the total expected holding

cost of extreme points.

pri(md+i—rd)hy = apq(md—rd)h; + (1 — a)p[(m+ 1)d — rdlhy
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ZpTl(mdei—rd)hl = OzZpH(md—rd)hl

r=0 r=0

 1=a)S pul(m+1)d - rdh

r=0

Similarly for backorder costs;

pri(rd —md — )by = app(rd —md)by + (1 — @)pp[rd — (m + 1)d]b;

M M
Y pralrd—md—0)b = a Y pu(rd—md)b

r=m+1 r=m+1

+ (1-a) % prifrd — (m + 1)d]b;

r=m+1

which means total expected backorder cost when initial inventory md + i is equal

to convex combination of total expected backorder cost of extreme points. So,

Gi(md+1i) = aGi(md)+ (1 —a)Gi[(m+ 1)d].

Therefore we proved (a) which means Gy(md + i) is greater than or equal to
the convex combination of G1(md) and G1((m + 1)d).

Part (b) of induction states that any point between two consecutive multiples
of d, that is in [md,(m+1)d], has an expected cost value G, (md+ i) greater than
minimum of expected costs of extreme points G, (md) and G, ((m + 1)d). If a
point lies above a line connecting two extreme points of the interval, minimum
point of this interval cannot be this point and also it is greater than at least
one of the extreme points of the interval. Since this statement is true for all
i € [md,(m+1)d], either Gy(md) or Gi((m + 1)d) is minimum in the interval
[md, (m + 1)d).

Part (c¢) immediately follows part (b) and states that .S; is an integer multiple
of d. Because all of local minimum points are multiples of d, the global minimum
point should also be a multiple of d.

Part (d) of induction also follows part (b). Due to part (b) of induction, it
is not reasonable to order any amount less than capacity if initial inventory is

an integer multiple of d. So if the inventory position is equal to md, then it is
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optimal to order full capacity (C') or not to order in the first period which is part
(d) of the induction.

For n = 1, we show that all parts of the induction argument are true. For

n = k we assume all statements of induction to be true.
Forn =k +1,

Part (a) of induction;

Grii(md) = Gi(md) +7> priia[Je(md — rd)]

r=0

Gk+1((m + 1)d) = Gl[(m + 1)d] + Y f:prkﬂ[:]k(md +d— Td)]

r=0
Grii(md+1i) = Gi(md+i) 4+~ i}prkJrl[Jk(md —rd+1)]

We have shown that Gi(md + i) = aG1(md) + (1 — a)G1((m + 1)d) for any set
of cost parameters in the first part of induction. If we can prove that expected
cost before ordering J(md + i) is greater than or equal to convex combination
of expected costs before ordering at extreme points of the interval; aJy(md) +
(1 — a)Ji((m + 1)d). Then, we can prove that G, (md + i) > aG,(md) + (1 —
a)G,((m + 1)d) for all m and for any i e{1,2...d — 1}.

By part (d) of induction assumption for n = k ordering decision at a point

multiple of d is limited to two options; order nothing or order full capacity so

that we can write the following equations;

Je(md) = —uvgmd+ min{Gg(md),Gr((m+ 1)d) + K} (A.1)
Je((m+1)d) = —v(m+1)d
+ min{G((m+ 1)d), Ge((m + 2)d) + Kx} (A.2)

However, if the initial inventory value is not a multiple of d, there are more than
two options for ordering decision. (But not as much as the general case since local

minimum points are at multiples of d when n = k and this limits the number of
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options for ordering decision). So;

(

Gr(md+j) + K je{i+1,...,d—1
Je(md+1i) = —vg(md+i)+min #l ) * t J

Gr((m+1)d) + Ky

| Gil(m+1)d +j) + Ki je{1,2,....4}
(A.3)

We want to prove that Ji(md + i) > aJg(md) + (1 — a)Ji((m + 1)d) when
a = (d—1)/d. For variable cost parts, vx(md+1i) = avpymd+ (1 —a)vg(m-+1)d, so
we can take unit variable cost v is equal to zero without loss of generality in this
proof. When unit variable cost is zero, Proposition 3 is valid. So by Proposition
3 and Equation A.1, we can state that, both possible options’ costs; G (md) and
Gr((m+1)d) + K are either greater than or equal to Jx(md) when unit variable
cost vy is equal to zero by. Similarly, from equation A.2, both Gy ((m + 1)d) and
Gr((m + 2)d) + K}, are also either greater than or equal to Jx((m + 1)d) when
v = 0. There are four possible values J;(md + i) as can be seen in equation A.3

which means we have four cases to consider.

Case 1: If Gx(md + i) is minimum: In this case, it is optimal to stay at the
initial inventory position and order nothing. Either fixed ordering cost is
to high, or relative benefit of being at a greater inventory position does not

cover the the fixed ordering cost.
Je(md + i) = Gr(md +1i) > aGg(md) + (1 — a)Gr((m + 1)d)
> aJiy(md) + (1 —a)J((m+ 1)d)

First inequality follows from the part (a) of the induction assumption in
period k. Second inequality is justified by by Proposition 3 which states
that G(md) > Ji(md) and Gy((m + 1)d) > Jy((m + 1)d) when v, = 0.
Therefore, aGj(md) > a.Ji(md) and (1—a)Gy((m+1)d) > (1—a)Jp((m+
1)d).

Case 2: If Gy(md + j) + Kj is minimum where je{i + 1,...,d — 1}: In this

case, it is optimal to order but not up to the nearest multiple of d, which
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is (m + 1)d. Therefore we can conclude that Gy ((m + 1)d) cannot be the
local minimum of interval [md,(m+1)d] which means that local minimum
point is Gi(md) ( min {Gg(md), Gx((m + 1)d)} = Gg(md)). Hence the line
connecting two extreme points of the interval has a positive slope as shown
in Figure A.2. Otherwise it would be optimal to order at least up to (m+1)d
with an expected cost of Gg((m + 1)d) + Kj. Let  be the coefficient used
in evaluating the convex combination cost functions at point md + j. Since

i<j,a=(d—1i)/d>p=(d—7j)/d. So;

\ Cost

i (m+1)d Inventory
Position

Figure A.2: Graph of situation in Case 2

Jp(md + i) = Gg(md + j) + Ky, > Gx(md + j)
> pGr(md) + (1 = B)Gr((m + 1)d)
> aGr(md) + (1 — a)Gr((m + 1)d)
> aJy(md) + (1 — a)Je((m + 1)d)

First inequality holds because K} is non-negative. Second inequality follows
from the part (a) of the induction assumption in period k. Third one is due
to two properties given above; a > f and Gg(md) < Gi((m + 1)d). These

two inequalities are illustrated in Figure A.2. Point A (G(md—+j7)) is greater

83



than or equal to point B (convex combination at point md + j), therefore
than point C' (convex combination at point md+ i) as shown on Figure A.2.
Fourth inequality is justified by Proposition 3 which states that Gy (md) >
Jr(md) and similarly G ((m+1)d) > Ji((m+1)d) when vy = 0. Therefore,
aGr(md) > aJg(md) and (1 — a)Gr((m + 1)d) > (1 — a)Jp((m + 1)d).

Case 3: If Gi((m + 1)d) + K}, is minimum: In this case, it is optimal to order
up to the nearest multiple of d, which is (m + 1)d.

Je(md+i) = Gi((m+1)d) + K}

Y

a{Gr((m+1)d) + K} + (1 — )Gi((m + 1)d)

> adp(md) + (1 — a)Jo((m + 1)d)

First inequality holds as Kj; > aKj remains when cancellations are done
and a < 1, and second inequality is justified by Proposition 3 which states
that, Gy ((m+1)d)+ Ky > Ji(md) and similarly G ((m+1)d) > Ji((m+1)d)
when v, = 0. Therefore, aGy((m+1)d)+ Ky > aJg(md) and (1—a)Gr((m+
Dd) > (1 = a)Jg((m + 1)d).

Case 4: If Gx((m + 1)d + j) + K}, is minimum where je{1,2,...,i}: In this
case, it is optimal to order not up to the nearest multiple of d, which is
(m + 1)d but to a point greater than (m + 1)d which means, there exist
at least one point between [(m+1)d,(m-+1)d+i] where the expected cost is
smaller than G¢((m + 1)d. Therefore, we can conclude that Gy((m + 1)d
cannot be the local minimum point of the interval [(m+1)d,(m+2)d] due to
part (b) of the induction argument for n = k. So local minimum point is
min {Gx((m + 1)d), Gx((m + 2)d)} = G((m+ 2)d) and the line connecting
points G ((m + 1)d) and Gi((m + 2)d has a negative slope as shown in
Figure A.3. Otherwise, it would be optimal to order up to (m+1)d with
a cost of Gi((m + 1)d) + Kj. Let 3 be the coefficient used in evaluating
the convex combination cost functions at point md + j. Since 1 > j, a =

(d—i)/d < B(d—j)/d . So;
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Figure A.3: Graph of situation in Case 4

Je(md+14) = Gip((m+1)d+j) + Ky
B{Gk((m +1)d) + K} + (1 = B) {Gr((m + 2)d) + K}
a{Gr((m+1)d)+ Ky} + (1 — @) {Gr((m + 2)d) + K}

AVARRNAY/

Vv

aJg(md) + (1 — a)Ji((m + 1)d)

First inequality holds because of K, = K\ + (1 — ) K}, and part (a) of
the induction assumption in period k. Second inequality is true due to two
properties given above; a <  and Gi((m + 2)d) < Gg((m + 1)d). These
two inequalities are illustrated in Figure A.3. Point A (Gy(md + j)) is
equal to or greater than point B (convex combination at point md + j),
therefore than point C' (convex combination at point md + i) as shown
on Figure A.2. Third inequality is justified by Proposition 3 which states
that, Gx((m + 1)d) + Ky > Ji(md) and similarly Gi((m + 2)d) + Kj >
Je((m+1)d) when vy = 0. Therefore, aGy((m+1)d) + Ky, > aJg(md) and
(1—a)Gr((m +2)d) + K), > (1 — a)Jy((m + 1)d).
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For all cases we proved that J,(md + 1) > aJy(md) + (1 — o) Jx((m + 1)d). The

coefficient p,r11 is non-negative so,

Je(md+1i) > adyg(md)+ (1 — a)Jp((m + 1)d)
Je(md+1i—rd) > aJy(md—rd)+ (1 —a)Jy((m+1)d—rd)
R R
S prkdimd+i—rd) > @) pusrJe(md —rd)
r=0 r=0
R
+ (1—a)d p1Je((m+1)d — rd)
r=0

R R
Y prkrrdkmd+i—rd) > ya ) puiidi(md — rd)

r=0 r=0

+ (1 -a) zlj:prkﬂe]k((m + 1)d — rd)

R R
Gi(md) + 7Y prepride(md +i—rd) > Gi(md) +vad_ prriaJy(md — rd)
r=0 r=0
R

+ (1 =) prsnrJe((m+1)d — rd)

G;H_l(md + Z) 2 OéGk+1(mrd:)0+ (1 - oz)GkH((m + 1)d)

So we prove that Gyy1(md + 1) is greater than or equal to aGjy1(md) + (1 —
@)Gri1((m + 1)d).

Part (a) of Theorem 1 states that for any period n and integer m, G, (md+1)
is greater than or equal to the convex combination of G, (md) and G,,((m+1)d).

Part (b) of Theorem 1 follows part (a). By part (b), the point G,,(md+ 1) lies
above the line connecting two other points; G, (md) and G, ((m + 1)d). In other
words either G, (md) or G,,((m + 1)d) is the local minimum point of the interval
[md, (m + 1)d].

Parts (c) immediately follows part (b) and states that S, is an integer multiple
of d due to fact that all of local minimum points are multiples of d.

Part (d) of Theorem 1 also follows part (b). Due to part (b) of Theorem 1, it
is not reasonable to order any amount less than capacity if initial inventory is an
integer multiple of d. Therefore, if the inventory position is equal to md, then it
is optimal to order full capacity (C') or not to order in any period for any integer

m which is part (d) of Theorem 1. O
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A.2 Proof of Theorem 2

We prove Theorem 2 by induction.

Part (a) of induction states that any point ((m+1)d) which is multiple of d, has
an expected cost value G, ((m + 1)d) less than or equal to convex combination of
(in fact, average of) expected costs of two neighbour points G,(md) and G, ((m+
2)d).

Forn =1,

Gi(md) = wvymd+ me(md — rd)hy + Dms1y1dby

r=0

M
+ Z pri(rd — md)by

r=m+2

Gi((m+1)d) = vn(m+1)d+ f:pﬂ[(m +1)d—rdh1 +0

r=0

+ i/[: prifrd — (m + 1)d]b

r=m+2

Gl((m + 2)d) = vl(m + 2)d + Zp,q(md +1i— Td)hl —I—p(m+1)1dh1

r=0

M
+ Z pri(rd — md — )by

r=m-42

G1(y) has three parts; variable cost part, holding cost part and backorder
cost part. First, note that, variable cost part of (m + 1)d is exactly equal to
convex combination of others vi((m + 1)d) = svimd + svi(m + 2)d. Next
each component of holding cost part p,1((m + 1)d — rd)h; is exactly equal to
the convex combination of others’, so total expected holding cost when initial
inventory (m + 1)d is equal to convex combination of total expected holding cost

of extreme points.

1 1
pri((m+1)d —rd)hy = ip,q(md —rd)hy + §p,«1[(m + 2)d — rd]hy

m 1 m
Zp,q((m—l—l)d—rd)hl = §Zpr1(md—rd)h1

r=0 r=0

1 m
5 > pral(m+2)d — rdlhy
r=0
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Similarly for backorder costs;
1
pri(rd— (m+1)d)by = =pp(rd—md)b; + §pr1[7“d — (m + 2)d)b,

% pri(rd— (m+1)d)by =

r=m+2

pri(rd — md)by

<
[\

+ prifrd — (m + 2)d]b,

DN | — N|— N —

Il Il
M= 2

<
[\

which means total expected backorder cost when initial inventory (m + 1)d is
equal to convex combination of total expected backorder cost of extreme points.
Finally 0 < %p(m+1)1dbl + %p(mﬂ)ldhl since righthand side is positive. So we
have;

Gr((m + 1)d) < %Gl(md) + %Gl((m +2)d) (A4)

We proved part (a) of induction for n = 1 which means G;((m + 1)d) is less
than or equal to the convex combination of G;(md) and G1((m + 2)d). In the
light of Lemma 1 and Theorem 1, this yields (b) immediately, which tells us
that G (md) is convex (which we already know from optimality analysis of single
period problem). So if the inventory position less than a threshold value, then it
is optimal to order full capacity (C') otherwise it is optimal not to order in the
first period. For n = k we assume all statements to be true.

Forn =k +1,

R
Grii(md) = Gi(md) +7> prisa[Je(md — rd)]

r=0

Gk+1((m + l)d) = Gl((m + 1)d) + Y f:prkﬂ[:]k(md +d— Td)]

r=0

Gk+1((m+2)d) = Gl((m+2)d)+7§:prk+1[Jk(md+2d—rd)]

=0

We have shown that Gy ((m+1)d) < 3G (md)+ 3G, ((m+2)d) in the first part
of induction. If we can prove that expected cost before ordering Ji,((m + 1)d) is
less than or equal to convex combination of expected costs before ordering at md
and (m+2)d; $Jp(md) + Ji((m + 2)d) then we can prove that G,,((m+1)d)) <
5Gn(md) + 3G, ((m + 2)d) for all m (integer). Function J; has been proved to
be as follows at points md, (m + 1)d and (m + 2)d;
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Gk (md)
Jr(md) = —vpmd + min (A.5)

Gr((m+1)d) + K,

| Gi((m+1)d)
Je((m + 1)d) = —vg(m + 1)d + min (A.6)

| Gil(m+2)d) + K,

| Gr((m+2)d)
Je((m +2)d) = —vi(m + 2)d + min (A.7)

| Gr((m +3)d) + Ky

We want to prove that Ji((m+1)d) < $.Ji(md) + 5.J,((m+2)d). For variable
cost components, vg(m-+1)d = Jvgmd—+ Sv,(m+2)d, so we can take unit variable
cost vy is equal to zero without loss of generality in this proof. There are two
alternatives for ordering decision at each inventory level, so two possible values for
each term Jy,(md), Ji((m+1)d), Jp((m+2)d) which means we have eight cases to
consider. However due to convexity assumption in period k, some combinations
are not possible. As an example, if Jy(md) = Gy(md), it is optimal to order
nothing when initial inventory is equal to md. Since Gy(md) convex, it is not
optimal to order anything if initial inventory value is greater than md. Therefore
if Jp(md) = Gg(md), Ji((m + 1)d) cannot be equal to Gg((m + 2)d) + K. For
this reason, four of the eight cases are eliminated, so there are four possible cases

left to be considered.

Case 1: If Jy(md) = Gi(md), Jp((m + 1)d) = Gx((m + 1)d), Ji((m + 2)d) =
Gr((m+2)d): In this case, it is optimal to stay at the initial inventory po-
sition and order nothing for all three inventory levels. Either fixed ordering
cost is too high, or relative benefit of being at a greater inventory position
does not cover the fixed ordering cost. Being at an inventory level, which
is greater than global minimum point for all three inventory levels may be

another reason for this situation.

Gr((m+1)d) < %Gk(md) + %Gk((m +2)d)

89



Jl(m+1)d) < Jimd) + S J((m +2)d)

First inequality is true due to part (a) of the induction assumption for n = k

and second one follows the first inequality.

Case 2: If Jy(md) = Gp((m+1)d) + Ky, Jp((m+1)d) = Gx((m+1)d), Ji((m +
2)d) = Gi((m + 2)d): In this case, it is optimal to order capacity when
initial inventory position is md, and order nothing for other two inventory

levels. So threshold level is equal to (m + 1)d at period k.

Gr((m + 1)d)

VAN

[Gr((m +2)d) + K]

IN

SGi((m+ 1)d) + S[Gil(m +2)d) + K]

%[Gk((m +1)d) + K] + %Gk((m +2)d)

Jk((m + 1)d)

VAN

%ﬁﬁmﬂ+%#“m+2ﬂ)

First inequality holds since Ji((m+1)d) is equal to Gi((m+1)d), therefore
Gr((m + 2)d) + K}, is greater than or equal to Gi((m + 1)d). Otherwise,
Ji((m+1)d) would be equal to Gy ((m+2)d)+ K. Second one immediately

follows first one and in third inequality terms are rearranged.

Case 3: If Jy(md) = Gg((m + 1)d) + Ky, Je((m + 1)d) = Gg((m + 2)d) + Ky,
Je((m + 2)d) = Gi((m + 2)d): In this case, it is optimal to order capacity
when initial inventory position is md or (m+ 1)d, and order nothing for the
other two inventory level (m + 2)d. So threshold level is equal to (m + 2)d
at period k.

Gr((m+ 2)d) + K,

IN

Gr((m +1)d)

;%mn+n@+%KhWn+%@+Kﬂ

IN

%[Gk((m +1)d) + K] + %Gk((m +2)d)

IN

To((m + 1)d) %ﬁﬁm@+%h“m+2ﬂ)
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First inequality holds since Ji((m + 1)d) is equal to Gi((m + 2)d) + K,
therefore Gy ((m + 1)d) is greater than or equal to Gg((m + 2)d) + K.
Otherwise, Ji((m + 1)d) would be equal to Gi((m + 1)d). Second one

immediately follows first one and in third inequality terms are rearranged.

Je((m + 2)d) = Gg((m + 3)d) + Kj: In this case, it is optimal to order
capacity at all three inventory levels. So threshold level is greater than

(m + 2)d at period k.

Gil(m+2)d) < %ak«m +1)d) + %ak((m +3)d)
Gr((m+2)d)+ K, < %[Gk((m + 1)d) + K] + %[Gk((m +3)d) + K|

J(m+1)d) < %Jk(md)—f—%Jk((m—FQ)d)

First inequality is true due to part (a) of the induction assumption for n = k

and in second one same term K is added to both side of the inequality.

For all cases, we proved that Jiy((m+1)d) < 1Ji(md) + 3.Jx((m + 2)d) and these
conditions still hold when each component is multiplied by a non negative term
Pri+1- Therefore sums of these terms also have the same property even multiplied
by a positive discount factor 7. So we prove that Gy,1((m + 1)d) is less than or
equal to 2Gpy1(md) + £Gpy1((m+2)d). We conclude the induction argument for
part (a) which is G, ((m+ 1)d) is less than or equal to the convex combination of
Gpn(md) and G, ((m+2)d) for any integer m and period n. By using Lemma 1 and

Theorem 1, parts (b) follows immediately which states that G,,(md) is convex.O

A.3 Proof of Theorem 3

We prove Theorem 3 by induction. Before induction, we should show a property
that is used in proof of Theorem 3.

Let j be an integer multiple of d; Recall that Ji(j) can take two values; G (j)
or Gr(j+d)+ K (Theorem 1 part (d)). Because of this property and convexity;
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Je((j — d)) — Je(j) can take three different values. For any period k and j being

an integer multiple of d;

Gr((J—d) = Gil(j) j—d=si

Je((G = d)) = Jp(j) =vd+min{ Gu(j)+ K —Gp(j) j—d<sy<j (A8

L Gp(j) —Gr(j+d) J< s

Since Ji((j — d)) — Ji(j) can take three different values, we have three cases to

consider;

Case 1: If Ji((j — d)) — Jk(j) = vd + Ge((j — d)) — Gg(j): In this case, it is
optimal not to order at both inventory levels; (j — d and j) which means
threshold level in period k is less than or equal to j — d. At point (j — d),

J) = Ge((j —d)) =

j) from both side of

~—~

it is optimal not to order which means that K + Gy
Je((7 —d)) +v(j + d). If we subtract Ji(j) +vj = Gy
the inequality, K + vd > vd + Gi((j — d)) — Gx(j) = Ju((j — d)) — Jx(j)

~—~

Case 2: If Ji((j —d)) — Jk(j) = vd + Gi(j) + K — Gi(j): In this case, it is
optimal to order at (j — d) and not to order at j, which means threshold
level in period & is j and Ji((j — d)) — Jx(j) = vd + K since Gi(j) terms

cancel each other.

Case 3: If Ji((j —d)) — Jx(j) = vd+Gi(j) — Gi(j+d): In this case, it is optimal
to order at both inventory levels; (j —d and j) which means threshold level
in period k is greater than j. At point j, it is optimal to order which means
that Gy (j) > K+G((j+d)). If we rearrange the terms and vd to both side
of the equation, we get Ji((j—d))—Ji(j) = vd+Gi(j) —Gr(j+d) > K+vd.

Now, we can return to our induction argument. This induction states that cost
difference between two consecutive points (multiples of d) increases as number of
period to go increases if these points lies at the left of the S,,. As a result, if it
is optimal to order at an inventory level in current period, it is certain that it

is optimal to order at the same inventory level in previous periods. Moreover, it
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states that policy parameters s, and S, increase as number of periods to go n
increases.
We shall prove all parts of theorem by induction.

For n =1 and j is an integer multiple of d,

a. Ji(j—d)—J1(j) > Jo(j —d) — Jo(j) = 0 where j < S;. By assumption,
Jo(x) = 0 for all z. By Lemma 3, left hand side of inequality is always

non-negative when j < S;. Therefore, part (a) is proved for n = 1.

b. Gy(j —d) — Ga(j) > G1(j — d) — G1(j) where j < Si. Go(j — d) — Go(j)
is equal to G1(j —d) — G1(j) + ZE o p [ Ji(j —d — 1) — Ji(j — r)]. Terms
G1(j — d) — G1(j) on both side of inequality cancel each other. Moreover,
Ji(j —d —r)— Ji(j — r) is non-negative for any positive integer r where

j < S by part (a) of induction. Therefore, part (b) is proved for n = 1.

c. So > S;. Due part (b) of induction, term Go(j — d) — G4(j) is always positive
for all 7 < S;. So it is clear that minimum of this period is greater than
or equal to the minimum of the previous period. Due to convexity of G,
left hand side of the equation (G5(j — d) — G1(j)) is greater than or equal
to zero when S; < 7 < .S, and right hand side is always zero in this region.

Therefore statement in part (b) can be extended from j < S; to j < Ss.

d. sy > s;. By definition s, is the smallest point that satisfies Ga(s9) — Ga(s2 +
d) < K. Similarly, s; is the smallest point that satisfies G1(s1)—G1(s1+d) <
K. Due to Lemma 2 above, s; < S5 and we will investigate condition in

two cases;

Case 1: If so < Sy: In this case, by part (b) of induction argument is valid.
Hence, G (s2) — G (52 +d) is less than or equal to Ga(s2) — Ga(s2+d).
Second statement is less than or equal to K by definition of s,, so first
statement is also less than or equal to K. Since, sy is the smallest
point that satisfies G1(s1) — G1(s1 +d) < K so all other values that
satisfy the same inequality is greater than s; by definition of s; so that

S92 Z S1.
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Case 2: If s, = Sy: In this case, part (b) of induction argument is not valid
since s + d = Sy 4+ d which is greater that S; so we cannot compare
G1(s2) — Gi(sg + d) with G1(s1) — G1(s1 + d). However, we already
know that Sy > S; again by part (¢) of the induction and by Lemma

2, we can conclude that s, = S5 > 57 > 51 50 59 > s7.

So we proved all parts of induction for n = 1 and we continue to the next
step. For n = k we assume all statements to be true.

Forn =k +1,

a. Jpp1(j —d) = Je1(g) = Ji(j — d) — J(j) where j < Spiq. In proving
this statement, the main difficulty faced that because of ordering decision
in both inventory points (j — d) and j in both periods k& and k + 1 , this
statement can take different values. We have shown that Jyi(j — d) —

Jr+1(j) can take three different values;

Gre1(J —d) = Gra(j)  J—12 sp

Ji1(j—d)—=Jk11(j) = vd+min Gri1(J) + K —Gr1(§) J—1<sp1 <

L Gr1(J) = Gra1(J +d)  J < sk
(A.9)

By induction assumption when n = k, we know that Gy11(j — d) — Gg11(j)

is greater than or equal to G (j —d) — Gi(j) where j < Sgi1 and spyq > sy.

We have three cases to consider for Jy1(j — d) — Ji41(J):

Case 1: If Jy1(j —d) — Jpy1(J) = vd+Ggy1(j —d) — Gr41(j): In this case,
it is optimal not to order at both initial inventory position (j — d) and
j in period k + 1. Therefore threshold level in period k + 1 is smaller
than or equal to j — d. From part (d) of induction , we know that
Sga1 > Sg. As a result, threshold level in period £ is also smaller than
or equal to j — d. Therefore statement Ji(j — d) — Jx(j) is equal to
vd 4+ Gi(j — d) — G(j) because both initial inventory position (j — d)

and j is greater than or equal to threshold level of period £k and it is
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optimal not to order at both inventory position. When two statements
vd+ Gry1(j — d) — Gg11(j) and vd + Gi(j — d) — G (j) are compared
vd terms cancel out and we conclude that Ggi1(j — d) — Gy (j) >

Gi(j —d) = Gi(j).-

Case 2: If Jy11(j—d)—Jp1(j) = vd+Gr1(j)+ K—Gry1(j) = vd+ K: In
this case, it is optimal to order at (j — d) and not to order j in period
k + 1. Therefore, threshold level in period k£ 4+ 1 is equal to j. From
part (d) of induction , we know that sx,; > s,. As a result, threshold
level in period k is smaller than or equal to j. Therefore statement
Je(j — d) — Ji(j) can be equal to either vd + Gi(j — d) — G(j) or
vd + Gi(j) + K — Gi(j) = vd + K depending on the order decision
at (j — d) in period k. From the property of Jy(j — d) — Ji(j) given
above, we know that if Ji(j —d) — Jx(j) = vd+ Gi(j —d) — Gk (j) then
Je(j —d) — Ji(j) <wvd+ K. So in both cases Jy1(j — d) — Jp1(J) =
vd+ K > Ju(j —d) — Jp(j)

Case 3: If Jyi1(j — d) — Jp1(J) = vd + Gr41(J) — Gr11(J + d): In this
case, it is optimal to order at both inventory position (j — d) and j in
period k + 1. Therefore, threshold level in period &k + 1 is greater than
to j. From the property of Ji(j — d) — Ji(j) given above, we know
that Jy11(j — d) — Je1(J) = vd + Gr1(j) — G (j + d) > K + vd.
Moreover from part (d) of induction , we know that sj; > sg. Unlike
the previous cases, this property does not mean much since there is
no relation between s, and j, no bound for s, can be obtained from
this property. Therefore statement Ji(j — d) — Jx(j) can be equal
to vd + Gi(j — d) — Gg(j) or vd + G(j) + K — Gx(j) = vd + K or
vd+ Gy (j) — Gr(j +d) depending on the order decision at (j —d) and j
in period k. In the first two conditions we know that Ji(j—d)—Jx(j) <
K +wvd, 80 Jg1(j— 1) — Jea1(J) > K +vd > Ji(j — d) — Jp(j) due to

the property given above.

If J(j — d) — Ji(j) = vd + Gi(j) — Gi(j + d), we have to show that

95



Vd+Gri1(J) = Grs1(f+d) > vd+Gp(j) —Gr(j+d) for all j < Spyy. By
parts (b) and (c) of induction, statement above holds for all j < Sy .
The problem arise when j = Sk, since j 4 d is out of the region that
we consider at the other parts of the induction. However, we know
that it is optimal to order when initial inventory position is equal to j
in this case (Jy11(J) = Gr41(j +d) + K) so j is smaller than threshold
level sj,; in this case, which means j cannot be equal to Si.; by

Lemma 2. Therefore problem does not actually exist. so in all three

case Jyi1(j —d) — Jy1(j3) > Tk (5 — d) — Ji(4).

For all cases, we proved that Jy1(j —d) — Jg11(j) > Jp(j —d) — Ji(j) where

J < Ski1.

b. Grra(j —d) = Gr42(j) 2 Gra1(J —d) = Grsa (j) where j < Sppr. Grpa(j —d) —
Gri2(j) is equal to G1(j —d) —G1(j) +Ef:0pr[Jk+1(j—d—r) — i1 (5 —1)).
Similarly, Gyy1(j—d) —Gry1(j) is equal to G (j—d) =Gy () +XE , pr[Ji (G —
d—r)—Ji(j —)]. Terms G1(j —d) — G1(j) cancel each other. Moreover,
Jes1(j—d—r)—Jkp1(j—r) is greater than or equal to Jx(j—d—r)—Jx(j—7)
for integer r where j < Syyq by part (a) of induction. Therefore, part (b)

is proved for n = k + 1.

¢. Sky2 > Sky1. Due part (b) of induction, term Giio(j — d) — Giia(j) is
always positive for all j < Si.1. So, it is clear that minimum of this period
is greater than or equal to the minimum of the previous period. Due to
convexity of Gy, left hand side of the equation (Gyy2(j — d) — Gri2(j)) is
greater than or equal to zero when Sy 1 < 7 < Sii9 and right hand side is
always non-positive in this region. Therefore statement in part (b) can be

extended from 7 < Siyq to 7 < Skys.

d. Sgi2 > Sky1. By definition sg,9 is the smallest point that satisfies G o(sky2)—
Grio(Skr2 +d) < K. Similarly, sy, is the smallest point that satisfies
Gri1(Sks1) — Gea1(sky1 + d) < K. Due to Lemma 2 above, sg19 < Skio

and we will investigate condition in two cases;
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Case 1: If sp49 < Skio: In this case, by part (b) of induction argument
is valid. Hence, Gg11(Sg+2) — Grr1(Sgr2 + d) is less than or equal to
Grio(Skr2) — Gria(Skr2 + d). Second statement is less than or equal
to K by definition of s;9, so first statement is also less than or equal
to K. Since, spyq is the smallest point that satisfies Gyy1(sgr1) —
Gri1(sks1+d) < K so all other values that satisfy the same inequality
is greater than s 1 by definition of s; 1 so that s, 9 > sgy1.

Case 2: If sg19 = Skyo: In this case, part (b) of induction argument is not
valid since sg o +d = Skio+d which is greater that Sj 5 so we cannot
compare Gy1(sk+2) = Grr1(Spr2+d) With Grpr(sp11) = Grsa (k41 +d).
However, we already know that Si,o > Ski1 again by part (c) of the
induction and by Lemma 2, we can conclude that sy o = Spio >

Sk41 = Sk41 SO Sgy2 > Spy1.

So, we proved that s;.o > sxy1 and conclude the induction argument. O
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