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ABSTRACT 

DEVELOPMENT, IMPLEMENTATION, AND TESTING OF A 

TIGHTLY COUPLED INTEGRATED INS/GPS SYSTEM 

Öztürk, Alper 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Mübeccel Demirekler 

 

August 2003, 90 Pages 

 

 

This thesis describes the theoretical and practical stages through 

development to testing of an integrated navigation system, specifically composed 

of an Inertial Navigation System (INS), and Global Positioning System (GPS). 

Integrated navigation systems combine the best features of independent systems 

to bring out increased performance, improved reliability and system integrity. In an 

integrated INS/GPS system, INS output is used to calculate current navigation 

states; GPS output is used to supply external measurements, and a Kalman filter is 

used to provide the most probable corrections to the state estimate using both 

data.  



 iv

Among various INS/GPS integration strategies, our aim is to construct a 

tightly coupled integrated INS/GPS system. For this purpose, mathematical models 

of INS and GPS systems are derived and they are linearized to form system 

dynamics and system measurement models respectively. A Kalman filter is 

designed and implemented depending upon these models. Besides these, based 

on the given aided navigation system representation a quantitative measure for 

observability is defined using Gramians. Finally, the performance of the developed 

system is evaluated with real data recorded by the sensors. A comparison with a 

reference system and also with a loosely coupled system is done to show the 

superiority of the tightly coupled structure. Scenarios simulating various GPS data 

outages proved that the tightly coupled system outperformed the loosely coupled 

system from the aspects of accuracy, reliability and level of observability. 

 

 

Keywords: Inertial Navigation System (INS), Global Positioning System 
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ÖZ 

SIKICA BAĞLI BÜTÜNLEŞTİRİLMİŞ INS/GPS SİSTEMİNİN 

GELİŞTİRİLMESİ, GERÇEKLEŞTİRİLMESİ VE TEST EDİLMESİ 

Öztürk, Alper 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Mübeccel Demirekler 

 

Ağustos 2003, 90 Sayfa 

 

 

Bu tez çalışmasında, özgül olarak bir Ataletsel Seyir Sistemi (INS) ve 

Küresel Konumlama Sistemi’nden (GPS) meydana gelen, bütünleştirilmiş bir seyir 

sisteminin, geliştirilmesinden test edilmesine kadar olan teorik ve pratik aşamaları 

anlatılmıştır. Bütünleştirilmiş seyir sistemleri, bağımsız sistemlerin en iyi özelliklerini 

birleştirerek iyileştirilmiş performans, geliştirilmiş güvenilirlik ve sistem bütünlüğü 

ortaya çıkarır. Bütünleştirilmiş bir INS/GPS sisteminde, INS çıktıları güncel sistem 

durum değişkenlerini hesaplamak için; GPS çıktıları harici ölçümleri oluşturmak için 

ve Kalman filtre de bu iki bilgiyi kullanarak durum değişkenlerine en olası 

düzeltmeleri sağlamak için kullanılır. 
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Amacımız, varolan çeşitli INS/GPS bütünleştirme stratejileri arasından, 

sıkıca bağlı bütünleştirilmiş bir INS/GPS sistemi oluşturmaktır. Bu amaçla, sırasıyla 

sistem dinamiği ve sistem ölçüm modelini oluşturabilmek için, INS ve GPS 

sistemlerinin matematiksel modelleri çıkarılmış ve doğrusallaştırılmıştır. Bu 

modellere dayanan bir Kalman filtre tasarlanmış ve gerçekleştirilmiştir. Bunların 

yanı sıra, verilmiş olan destekli seyir sistemi gösterimine dayanan, 

gözlemlenebilirlik için nicel ölçütler, Gramian’lar kullanılarak tanımlanmıştır. Son 

olarak, algılayıcılar tarafından kaydedilen gerçek veriler kullanılarak sistemin 

değerlendirilmesi yapılmıştır. Referans bir sistemle karşılaştırmanın yanı sıra, 

sıkıca bağlı yapının üstünlüğünün gösterilmesi için gevşek bağlı bir sistemle de 

karşılaştırmalar yapılmıştır. GPS bilgi kesintilerini simüle eden çeşitli senaryolar, 

hassasiyet, güvenilebilirlik ve gözlemlenebilirlik seviyesi açılarından sıkıca bağlı 

sistemin, gevşek bağlı sistemin çok üstünde bir performansa ulaştığını göstermiştir. 

 

 

Anahtar Kelimeler: Ataletsel Seyir Sistemi (INS), Küresel Konumlama 

Sistemi (GPS), Bütünleştirilmiş Seyir, Sıkıca Bağlı, Gevşek Bağlı, 

Gözlemlenebilirlik. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Navigation is a very ancient skill or art which has become a complex 

science due to the developments in technology and increasing complexity of 

vehicle systems. This progress increased the need to be able to determine the 

position, velocity and orientation of a vehicle with a greater demand on accuracy. 

Higher accuracy demand, directed people to develop higher cost sensors and this 

as a result, revealed the concept of integrated navigation which makes use of 

lower cost systems to produce higher accuracy ones. 

The Global Positioning System (GPS) has been proven to be an accurate 

positioning sensor for a variety of applications (Daljit and Grewal, (1995)) and has 

made land navigation applications affordable and dependable. The quality of GPS 

position estimates is basically time-invariant and independent of location and 

weather. A drawback of GPS in general, is the requirement to maintain line of sight 

visibility to the satellites being tracked. Under signal masking conditions, the 

number of visible satellites can be significantly reduced, leading to a loss of 

navigation solution or decreasing strength in the estimation process and lower 

position accuracies. As a summary, these effects cause short term data gaps and 

high frequency faults in the GPS navigation output. 

Unlike GPS, Inertial Measurement Units (IMUs) are completely autonomous 

(self-contained) instruments that sense accelerations and rotation rates in three 

orthogonal axes. An Inertial Navigation System (INS), which contains an IMU as 
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one of its components, integrates the rotation rates to obtain orientation changes, 

and doubly integrates the accelerations to obtain velocity and position increments 

(Jekeli, 2000). Despite the advantage of self-containment, sensor inaccuracies 

such as gyro drifts and accelerometer biases cause a rapid degradation in inertial 

position quality. Higher quality inertial sensors provide higher accuracies for longer 

times but this brings even higher costs. So in general, measurements independent 

of the inertial equipment are incorporated into the navigation computations to 

improve accuracy. Among the several types of external measurements that can be 

employed, our emphasis is on the use of GPS information. 

The complementary characteristics of INS, self-containment and high 

accuracy in short-term navigation; and GPS, invariable characteristics over time 

and having bounded errors, is the reason for these two systems to be widely used 

as integrated navigation systems. The advantages of GPS/INS integrated systems, 

relative to “GPS-only” or “INS-only”, are reported to be a full position, velocity and 

attitude solution, improved accuracy and availability, smoother trajectories, greater 

integrity and reduced susceptibility to jamming and interference, as discussed in 

Hartman (1988) and Greenspan (1996). 

Kalman filtering exploits a powerful synergism between GPS and INS. 

Kalman filter is able to take advantage of these complementary characteristics to 

provide a common, integrated navigation implementation with performance 

superior to that of either subsystem. By using statistical information about the 

errors in both systems, it is able to combine a system with tens of meters position 

uncertainty with another system whose position uncertainty degrades at kilometers 

per hour and achieve bounded position uncertainties in the order of meters (Grewal 

and Weill (2001)). 

The level of integration used in a GPS/INS system can vary from 

application to application. Typically, three main levels of integration are defined, 

namely loosely coupled integration, tightly coupled integration and ultra-tight (or 

deep) integration. The latter approach is typically performed at the hardware level 

and has therefore been implemented by equipment manufacturers only. The other 

two strategies are used in approximately equal quantities in the literature, although 

recently the tight integration seems to be gaining popularity. Each approach has its 
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own advantages and disadvantages, but there has been little comparison between 

the two. 

1.2 Objectives 

This thesis addresses the issue of development, implementation, and 

testing of a tightly coupled integrated INS/GPS system which is intended to be 

used for land vehicles, pointing out mainly the positioning aspects. 

Development stage comprises understanding the working principles of the 

individual systems in detail; deriving the well known equations for these systems 

and adopting those equations for our specific case; designing a Kalman filter to 

optimally integrate both systems; and analyzing the observability concepts. 

Implementation stage is composed of building up hardware and software setups to 

use sensors in hand, recording real data from these sensors, and writing 

algorithms to produce results. Test stage includes fine-tuning the system by trial 

and error method; preparing the necessary documentation and plots; comparing 

the results of developed system with a reference system and as well as with a 

loosely coupled system. 

The objectives of this study are to investigate the following parameters of 

the integration of an INS with GPS: 

• Integrated System’s Reliability. By assessing the ability of a system to 

reject erroneous observations, the overall robustness of the system can 

be assessed. Comparing scenarios which use GPS-only or INS-only 

and GPS/INS systems will provide valuable insight into the benefit of 

using the integrated system. 

• System Positioning Accuracy During GPS Data Outages. Under 

operational conditions, GPS data outages occur with varying durations. 

The duration for which the integrated system can navigate through such 

data outages with satisfactory accuracy will determine the potential 

uses of the system. Data outages can vary in severity from complete 

data outages where no satellite signals are available, to partial data 

outages where sub-optimal or insufficient satellite visibility is available. 
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Simulation of complete and partial GPS data outages of varying 

duration is used to assess the performance of the integrated system. 

• Observability of Aided Navigation System. The concept of observability 

has a considerable effect in success of an integrated system. Although 

intuitive approaches are met in the literature, quantitative analyses are 

not done for specifically the tightly coupled integrated navigation 

system. The observability analysis carried out in this study will 

investigate these intuitive concepts by a quantitative approach. 

• Impact of Integration Strategy On Overall System Performance. While 

loosely and tightly coupled integrations are common in practice, the 

benefits of each approach in operational conditions are not well 

demonstrated. Consequently, each of the above parameters will be 

investigated using a loosely and tightly coupled integration strategy. 

1.3 Thesis Outline 

Chapter 2 provides the necessary background into navigation systems, 

specifically the Global Positioning System and the Inertial Navigation System. 

Equations governing the calculation of navigation states are derived for these 

systems. These equations are linearized to form the system error dynamic model 

and system measurement model. Finally using these models, a Kalman filter is 

designed to integrate INS and GPS outputs. 

Chapter 3 provides the background into the concept of observability, 

observability Gramian and observability measure. Using these concepts, a 

representation of the aided INS system is constituted. The observability of the 

tightly coupled system is mentioned. Finally, the computation method of the 

observability measure used in this study is given. 

Chapter 4 provides results for the navigation system developed. Findings of 

observability analysis, comparisons of tightly coupled integrated navigation system 

with a reference system and with a loosely coupled system are given in the 

direction of objectives listed in the previous section. 

Chapter 5 provides the summary for the overall study. 



 5

CHAPTER 2 

NAVIGATION SYSTEMS 

2.1 Introduction 

This chapter provides the necessary background information on navigation 

systems, specifically the “Global Positioning System (GPS)” and “Inertial 

Navigation System (INS)”. Furthermore, the chapter will provide, as a contribution, 

the inertial navigation and GPS equations and models needed for the integration of 

both systems. These equations will be linearized to develop error equations. Then, 

“Kalman Filter” algorithm and equations used to fuse GPS and INS measurements 

will be discussed. Finally, the overall navigation Kalman filter structure that is 

developed based on the GPS and INS models will be provided. This structure 

forms the basis of efforts for the implementation of the Kalman filter. 

2.2 Global Positioning System 

Global Positioning System (GPS) is a space-based radio navigation 

system. The system is developed and currently operated by the Navstar GPS Joint 

Program Office (JPO). GPS provides accurate position, velocity and time (PVT) 

information to an unlimited number of users. This information is available all around 

the world regardless of the weather conditions. GPS consists of three major 

system segments for operation: Space, Control and User. 



 6

2.2.1 System Operation 

The Space Segment consists of GPS satellites. The current constellation of 

the GPS system includes 31 satellites. 24 of these satellites are enough for 

nominal full operation. GPS satellites orbit around the earth in a path of 11 hour 

and 58 minutes and have an average orbit altitude of 20200 kilometers. They are 

oriented such that a user on the surface of the earth sees at least 4 of them 

simultaneously. Each satellite in the constellation broadcasts RF signals that are 

carrying information. This information includes a coded Navigation Data and a 

code signal used for ranging purposes. 

The Control Segment consists of a network of monitoring and control 

facilities which are used to manage the satellite constellation and update the 

satellite navigation data messages. The control of satellite station-keeping 

maneuvers, re-configuration of redundant satellite equipment, regularly updating 

the navigation messages transmitted by the satellites, and various other satellite 

health monitoring and maintenance activities are the major missions of the Control 

Segment. The monitor stations passively track all GPS satellites in view, collecting 

ranging data from each satellite. The Control Segment uses the ground antennas 

to periodically upload the ephemeris and clock data to each satellite for re-

transmission in the navigation message. 

The user segment consists of individual radio receivers capable of receiving 

RF signals broadcasted by GPS satellites. These receivers catch, decode and 

process these signals to calculate a PVT solution. The ranging codes broadcast by 

the satellites enable a GPS receiver to measure the transit time of the signals and 

thereby determine the range between each satellite and the receiver. The 

navigation data message enables a receiver to calculate the position of each 

satellite at the time the signals were transmitted. The receiver then uses this 

information to determine its own PVT. At least 4 satellites are necessary in order 

for the receiver to find the 3 unknown position elements and the receiver clock 

error. 
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2.2.2 Pseudo and Delta-Range Measurements 

GPS ranging signals (encoded in the received signal) that are transmitted 

by the satellites are used to measure the distance between the satellites and the 

receiver. These signals travel the line of sight path and when they come to the 

receiver, they are delayed by the amount of the range between the satellite and the 

user’s antenna. This range can be shown in distance units as the time delay 

multiplied by the speed of light, c. 

TcTTcR transmitreceive ∆=−= .).(  

This range is called pseudo-range because it cannot be measured exactly 

due to the errors resulting from receiver’s clock bias, atmospheric delays, satellite 

clock bias, multi-path effects etc. The pseudo-range between the user and the 

satellite can be written in terms of these factors as follows: 

noise random         
multipath to due error      
delayic tropospher         
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error bias clock receiver :            
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:
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Figure 2-1 GPS Ranging Signals 

The most important error on the pseudo-range is the receiver clock bias. 

The ranging procedure used in the GPS technology needs very accurate 

synchronization between the satellite and receiver clocks. GPS satellites use very 

accurate, stable and expensive atomic clocks but the receivers do not because it is 

economically infeasible. This problem is overcome by the following method: 

Besides the users unknown 3D coordinates, this error is removed by treating it as 

an additional unknown variable. We make use of one more additional satellite for 

this unknown variable so the total number of satellites needed for calculation 

increases to four. 

The measured Doppler of the carrier signal can be used to determine the 

relative velocity between the satellite and the user. These are termed pseudo-

range rate measurements and if they are integrated over regular time intervals we 

get what is called “delta-range”. The receiver uses Doppler measurements from at 

least 4 satellites to solve for the three dimensional velocity of the user and the 

receiver’s master oscillator frequency bias. Although this could be done by forming 

differences of pseudo-range based position estimates, frequency measurement is 

inherently much more accurate and has faster response in the presence of the 

user dynamics. 
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Delta-range measurements also carry some errors. The most relevant error 

is the receiver clock drift. A measured delta-range can be written as: 

noise random      
drift clock receiver to due bias :         

interval update tmeasuremen :         
interval nintegratio of start the atdelay  time signal :     

interval nintegratio of end the atdelay  time signal :        
range-delta :        

light of speed :  c         

:

...

noise

d

old

noisedold

b
t
T
T
DR

tbTcTcDR

ε

∆
∆
∆

ε+∆+∆+∆=

 

2.2.3 Ephemeris Data, Satellite Position Calculation 

Ephemeris data is transmitted by GPS satellites and carried by the 

‘navigation message’ part of the GPS signals. They include parameters to calculate 

satellite Earth Centered Earth Fixed (ECEF) frame positions with respect to time. 

Keplerian parameters describe the motion of the satellites in orbits and in the 

ephemeris data the values of these parameters are obtained via a least squares 

curve fit of the predicted ephemeris for the phase center of the satellite’s antenna. 

Each satellite has its own set of ephemeris data and the ephemeris data is 

normally valid and can be used for precise navigation for a period of four hours 

following issue of a new data set by the satellite. The satellites transmit new 

ephemeris data every two hours which are determined by the master control 

station of the GPS Control Segment. 

Ephemeris data is not enough for precise calculation, the calculated values 

should also be corrected for satellite clock-bias, ionospheric and tropospheric 

signal-propagation delays. Ephemeris data has also small errors causing 

corresponding errors in the computed position and velocity. 

Measuring the pseudo-ranges, delta-ranges, correcting them for the 

ionospheric, tropospheric and clock error delays and calculating the satellite 

positions from the ephemeris data, we can now construct the GPS measurement 

equations. 
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2.2.4 GPS Measurement Equation and GPS Measurement Model 

When a receiver has collected pseudo-range measurements, delta-range 

measurements, and navigation data from four (or more) satellites, it may calculate 

the navigation solution that is position, velocity, and time (PVT). Each navigation 

data message contains precise orbital (ephemeris) parameters for the transmitting 

satellite, enabling a receiver to calculate the position of each satellite at the time 

the signals were transmitted.  

The receiver solves a minimum of four simultaneous pseudo-range 

equations, with the receiver 3D position and clock offset as the four unknown 

variables. Each equation is an expression of the principle that the true range (the 

difference between the pseudo-range and the receiver clock offset) is equal to the 

distance between the known satellite position and the unknown receiver position. 

The observation equations in three dimensions for each satellite with known 

coordinates and unknown user coordinates can be expressed mathematically by 

2srbt RR −=δ−ρ . 

If there are k  satellites, then corresponding to each of them we can write 

isrsrsrbi iii
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These are simplified versions of the equations actually used by GPS 

receivers. A receiver also obtains corrections derived from the navigation 

messages, which it applies to the pseudo-ranges. These include corrections for the 

satellite clock offset, relativistic effects, and ionospheric signal propagation delays. 

The GPS measurement equation in 2.1 is non-linear and in order to develop 

a linear GPS measurement model we need to linearize it. Let the vector of ranges 

be [ ] )(21 RhX =ρρρ=ρ
T

k      L , a non-linear function )(Rh  of the four dimensional 

vector [ ]Tbrrr tzyx δ=       R  representing user position and receiver clock bias. We 

can express ρX  hence iρ  as a Taylor series expansion about a nominal value 

nomX  and nomρ . 
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∂
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∂
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rearranging, 

HOT+δ+δ+δ+δ≅ρ−ρ briririnomi tzhyhxh 321  ki  to  for 1=  
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=
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=
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=
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=
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These equations for 4=k  can be expressed in vector form as 
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We add a noise term on the right hand side of the equation 2.2 due to the 

uncertainty in the GPS receiver measurements and write it in symbolic form as  

tsmeasuremen receiver in noise :  ρ

ρρ +δ=δ

v
vRHX .

. 

This set of equations can be solved by linear least squares method. 

Assuming that iρ ’s are the pseudo-ranges that are corrupted by noise, then the 

least square estimate of the unknown position and clock bias vector R is: 

( ) ρ
−

δ⋅=δ XHHHR T1T . 

An iterative approach for the least square method can also be applied as 

follows. Start with an initial estimate for the nominal value and find the best 

estimate corresponding to this value. Then use this value as the next nominal point 

and find the next best estimate and go on like this until the estimate is smaller than 

a threshold value. 

For completeness, we can write delta-range equations. Delta-ranges are 

the time derivatives of the pseudo-ranges and can be shown as: 

[ ]
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Defining, 
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and linearizing the delta range equation about a nominal point, we can write 

the resulting equations in vector form as, 
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In complete form, the GPS measurement model is given in equation 2.3 

below: 
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 (2.3) 

2.3 Inertial Navigation Systems 

Navigation in basic words is traveling and finding the way from one place to 

another. These systems provide an operator or control system with the necessary 

information to effect some action in response to data provided by them. The main 

data produced is the position, velocity, attitude and time information. Another fact is 

that these systems work with respect to a reference system. Navigation systems 

are used for land, sea, airborne and space vehicles (Titterton and Weston (1997), 

Rogers (2000), Biezad (1999)). 
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Today, there are different kinds of navigation aids used throughout the 

world such as radio navigation systems GPS, LORAN, OMEGA; digital map 

systems, dead reckoning systems etc. The heart of all is a sensor to gather 

navigational information. Inertial navigation systems are the ones using inertial 

sensors for this purpose. The outgoing sections provide brief information on this 

subject matter. 

2.3.1 Inertial Navigation Principles 

An inertial navigation system utilizes data from force and inertial angular 

velocity sensors to determine necessary information. The main idea is based on 

the acceleration integrations. The first integration of the vehicle acceleration 

provides the velocity, and the second integration yields the vehicle position 

increments with respect to the initial point. In order to project the accelerations on 

the reference frame, angular velocities are integrated to give angular increments 

with respect to the initial attitude (Salychev (1998), Chatfield (1997)). As 

understood above, both positional and angular computations need the knowledge 

of initial values of position and orientation. 

There are two types of implementation of an inertial navigation system: 

Stable Platform or Gimbaled Systems and Strapdown systems. Although the 

principle is same, implementation differs for both. For the Gimbaled systems 

inertial sensors are placed on a stable platform that is mechanically isolated from 

the motion of the vehicle. For the Strapdown systems, the sensors are mounted 

directly on the body of the vehicle rigidly so that they are called “Strapdown”. This 

study is dedicated on the strapdown systems. 

Inertial Navigation System (INS) can indeed be thought of as a computer 

getting information from inertial sensors, doing mathematical computations and 

outputting results. The computations are really based on the Newton’s Second Law 

of motion. In Figure 2-2 below, basic calculation steps of a Strapdown INS is 

shown and details will be given in the proceeding sections. 
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Figure 2-2 A Strapdown Inertial Navigation System Block Diagram 

2.3.2 Inertial Sensors 

Inside an INS, an accelerometer is used to measure the body accelerations 

and a gyroscope (often used as “gyro”) is used to measure the angular velocity or 

directly the angle turned. An inertial measurement unit, or IMU, is a "clump" of six 

inertial sensors, three linear accelerometers and three rate gyros together with the 

supporting structure assembly and electronics. 

Gyroscopes are used in various applications in a variety of roles such as 

flight path stabilization, autopilot feedback, sensor or platform stabilization and 

navigation. The most basic and the original form of the gyroscope make use of the 

inertial properties of a wheel, or rotor, spinning at high speed. A spinning wheel 

tends to maintain the direction of its spin axis in space by virtue of its angular 

momentum vector, the product of its inertia and spin speed, so defines a reference 

direction (Titterton and Weston (1997)). This principle guides through the basic 

Mechanical Gyro. With development in technology, many types of gyroscope 

architectures are developed. Nuclear Magnetic Resonance Gyros, Vibrating Gyros, 
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Ring Laser Gyros, Fiber Optic Gyros, Solid State Gyros (MEMS) are some 

examples of current gyroscope technology. 

An accelerometer uses the inertia of a mass to measure the difference 

between the kinematic acceleration with respect to inertial space and the 

gravitational acceleration. There are several principles that can form the basis for 

the design of an accelerometer. At its most basic level, an accelerometer can be 

viewed as a classical second order mechanical system; that is a damped mass-

spring system under an applied force (Figure 2-3). When an accelerometer 

experiences acceleration, with a component parallel to its sensitive axis, the 

accelerometer's proof mass develops a corresponding inertial force ( amf ⋅= ). 

This force acts on and displaces the spring a distance kfx =  where k  is the 

spring constant. The sensor's output is related either to the spring's displacement 

or to the spring's internal force, both of which are proportional to the applied 

acceleration. Some other accelerometer technologies can be summarized as: 

Pendulous Accelerometer, Solid State Accelerometer, and Fiber Optic 

Accelerometer. 

 

Figure 2-3 The Basic Accelerometer 

The last thing to say about inertial sensors is that these sensors do not 

provide perfect measurements. They show different error characteristics according 

to their architecture and their grade. The errors in these sensors will be analyzed in 

section 2.3.6. 
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2.3.3 Reference Coordinate Frames 

As mentioned before, a fundamental property of a navigation system is that 

it works with respect to a reference system. An INS uses accelerometers and gyro 

measurements referenced to an inertial frame, but navigation outputs are needed 

in a system referenced to earth. According to chosen reference system, sensor 

readings must be converted. In general, each frame has an orthogonal, right 

handed axis set and is defined by specifying the location of the origin and the 

direction of the three axes (Titterton and Weston (1997), Chatfield (1997)). The 

basic reference frames used through out this study is mentioned below. 

2.3.3.1 Earth Centered Inertial Frame 

Earth Centered Inertial Frame (ECI) has its origin at the mass center of the 

earth and it is non-rotating with respect to the distant stars. ECI defines an 

absolute space to which Newton’s second law refers. So the inertial sensors 

measure specific forces with respect to these axes. In equations it is designated by 

a subscript i . The orientation of the inertial coordinate axes is arbitrary. For inertial 

navigation purposes, the axes directions have been chosen such that the ix  and 

iy  inertial axes lie in the equatorial plane and the iz  axis is coincident with the 

earth’s angular velocity vector. Because of the rotation of the earth, ix  and iy  

does not remain fixed with respect to zero meridian. 
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Figure 2-4 Earth Centered Inertial and Earth Centered Earth Fixed Frames 

2.3.3.2 Earth Centered Earth Fixed Frame 

Earth Centered Earth Fixed Frame (ECEF) has its origin at the mass center 

of the earth and it is non-rotating with respect to the earth. The ECEF frame rotates 

relative to the ECI frame at the rotation rate of the earth, ieω . In equations it is 

designated by a subscript e . ECEF frame axis directions are defined as follows: ex  

and ey  lies in the equatorial plane; ex  coincides with the zero meridian and ey  is 

90° east of the ex , and ez  axis is coincident with the earth’s angular velocity 

vector. 

2.3.3.3 Body Frame 

The body frame has its origin at the mass center of the vehicle to which 

navigation system is mounted. The body frame constitutes the vehicle axis known 

as roll, pitch and yaw. In equations it is designated by a subscript b . The axis 
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directions are defined as roll axis – forward along the longitudinal axis of the 

vehicle; pitch axis – directed 90° to the right, normal to the roll axis; and yaw axis – 

directed downward normal to the roll – pitch plane. The origin of the body frame 

does not, in general, coincide with the location of the navigation system. 

 

Figure 2-5 Body Frame 

2.3.3.4 Inertial Sensor Frame 

The inertial sensor frame is aligned with the three sensitive axes of the 

inertial measurement unit each is placed perpendicular to each other in a three 

axes system. The sensitive axis of each sensor describes an axis of the inertial 

sensor frame. The axis of the navigation system made up of this inertial 

measurement unit is described with this frame. 

2.3.4 Inertial Navigation Equations 

In this section, equations describing navigation states (position, velocity and 

attitude) for strapdown navigation system implementation referenced to Earth 

Centered Earth Fixed Frame (ECEF) are developed. In developing these 

equations, the objective is to form them in terms of sensed accelerations and turn 

rates. The resulting differential equations are nonlinear. 
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2.3.4.1 Notations and Basic Principles 

A skew symmetric matrix is a square matrix that satisfies the identity 

TAA −= . 

A skew symmetric matrix must have zeros on its diagonal. The general 33x  

skew symmetric matrix is of the form: 
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The cross product of two vectors can be written as a matrix – vector product 

using the skew symmetric forms as: 

vωvΩ ×=⋅ . 

One of the important matrices used in inertial navigation is “direction cosine 

matrix (DCM)”. These matrices relate a vector’s components in one coordinate 

frame to another frame. 

a
b
ab rCr =  

DCM Matrix, Cosine Direction:

frame-b in vector :
frame-a in vector :

b
a

b

a

C

r
r

 

A DCM satisfies 
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Here the superscript a  in a
baω  represents that this equation is expressed in 

a  - frame and this notation is used throughout the thesis. If a subscript is not used 

it means that the operation on that vector can be done in any frame, or a frame is 

not chosen. 

The similarity transformation a
b

a
ba

b
a

b
ba CWCW =  for a DCM is also true. 

Time derivative of a vector with respect to a reference frame is shown as 

idt
dR  

where the subscript i  on the derivation represents that this operation is 

done with respect to i  frame. If this frame is rotating with respect to another frame, 

from the Coriolis equation one may relate the time derivative of a vector in one 

frame to another frame as 

{ {
321
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the of rotationby 
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scoordinate  in
observer anby  seen

as  of derivative time
scoordinate  in

 of derivative time
b

ib

b

b

i

i dt
d

dt
d

r
rr

rωrr
×+=  

where ibω  is the turn rate of b  frame with respect to i  frame. 
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The equation 2.4 below is called the “Navigation Equation”. It says that total 

acceleration of a point in space is the sum of the total force acting on that point and 

the gravitational acceleration. 

gfR
+=

idt
d

2

2

 (2.4) 

Here R  and f  are any position and specific force vectors respectively and 

g  is the gravity vector. The choice of the reference frame is critical here. This 

equation can be solved in any one of the navigation frames. For our purposes we 

write this equation in earth frame (ECEF): 

ee
i

e

dt
d gfR

+=2

2

 (2.5) 

2.3.4.2 Velocity Equation 

In this system, one needs to calculate the vehicle’s speed with respect to 

earth in Earth axis:  

e

e
e dt

dR
V ≡  (2.6) 

scoordinate ECEF to respect  with of change of rate :

center searth' to respect  withvehicle of vector position :
vehicle the ofvelocity  relative earth :

e
e

e

e

e

dt
d

R
R
R
V

 

From the Coriolis equation, the rate of change of eV  may be expressed in 

terms of its rate of change in inertial coordinates as  

e
e
ie

i

e

e

e

dt
d

dt
d

Vω
VV

×−=  (2.7) 

where [ ]Te
ie

e
ie ω00=ω  is the turn rate of the earth with respect to the 

inertial frame expressed in earth frame and e
ieω  is constant. 
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In order to calculate the first term on the right of the equation 2.7, we do the 

following: 

e
e
ie

e

e

i

e

dt
d

dt
d

Rω
RR

×+=  

Differentiating this expression with respect to time in inertial frame gives: 
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d

dt
d
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Noting that:  

e
e
ie

e

e

i

e

dt
d

dt
d

Rω
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×+=  and 0ω =e
ie&  since earth is assumed to rotate at a 

constant speed, we can write 

[ ]ee
ie

e
iee
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Combining this equation with equation 2.5 and rearranging yields: 

[ ]ee
ie

e
ieee

e
iee

i

e

dt
d

RωωgVωf
V

××−+×−=  (2.8) 

We define: 

[ ]ee
ie

e
ieel Rωωgg ××−=  (2.9) 

Substituting equation 2.8 into 2.7 and using equation 2.9 yields: 

le
e
iee

e

e

dt
d

gVωf
V

+×−= 2  

Since accelerometers measure the specific force in the body frame, we 

write ef  in terms of bf  and then we end up with our differential equation for velocity 

of the inertial navigation system. 
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le
e
ieb

e
b

e

e

dt
d

gVωfC
V

+×−= 2  (2.10) 

e
bC  in equation 2.10 is a time dependant direction cosine matrix that 

converts the measured specific force vector from body frame to earth frame. This 

DCM is updated continuously since the body frame is always rotating with respect 

to the earth frame. e
bC  can be expressed as the multiplication of two DCMs which 

are body to navigation ( n
bC ) and navigation to earth frame ( e

nC ) direction cosine 

matrices. n
bC  includes terms of ϕ , ϑ , and ξ  that are respectively roll, pitch, and 

yaw angles and e
nC  includes terms of geodetic latitude φ , and longitude λ . These 

two DCMs are given as: 
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and n
b

e
n

e
b CCC ⋅= . 

2.3.4.3 Attitude Equation 

The attitude dynamics equation can be maintained as a direction cosine 

matrix differential equation. 

Derivative of the e
bC  DCM satisfies the relationship: 

b
eb

e
b

e
b ΩCC =&  (2.11) 

In equation 2.11, b
ebΩ  is the skew-symmetric matrix form of the vector b

ebω , 

body turn rate vector with respect to Earth frame expressed at body frame. Since 

this vector includes the Earth rate besides the measured body rates, it can be 
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written in terms of [ ]Tb
ib rqp=ω , the body turn rate vector that gyroscopes 

measure and b
ieω , the Earth rate expressed in body frame: 

b
ie

b
ib

b
eb ωωω −=  (2.12) 

Let b
ibΩ  and b

ieΩ  denote the skew symmetric matrix form of the vectors b
ibω  

and b
ieω  respectively and 
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Then substituting equation 2.12 into 2.11: 

( )bieb
ib

e
b

e
b ΩΩCC −=&  (2.13) 

We convert e
ieΩ  to b

ieΩ  using the similarity transformation  

e
b

e
ie

b
e

b
ie CΩCΩ =  (2.14) 

where e
ieΩ  is the skew-symmetric form of e

ieω .  

Then, substituting equation 2.14 into 2.13 we get equation 2.15  

e
b

e
ie

b
ib

e
b

e
b CΩΩCC −=& . (2.15) 

Our aim is to construct the differential equations of the inertial navigation 

system variables position, velocity and attitude. Of course, we tried to relate them 

to sensor readings b
ibω  and bf , body turn rate and specific force respectively. As a 

summary, the resulting non-linear differential equations are given by the equations 

2.6, 2.10, and 2.15 for position, velocity, and attitude respectively and for clarity 

they are repeated below. 

e
e

e

dt
d

V
R

=  
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le
e
ieb

e
b

e

e

dt
d

gVωfC
V

+×−= 2  

e
b

e
ie

b
ib

e
b

e
b CΩΩCC −=&  

2.3.4.4 Gravity Model 

The expression of the gravity vector is different in ECEF compared to the 

navigation frame because of the way the ECEF frame is defined. In equation 2.5, 

gravity mass attraction vector eg  is expressed in the Earth frame and in equation 

2.9, lg  is defined in terms of eg , e
ieω  and eR .  

The gravity model used for this study is taken from Britting (1971) where eg  

directly expresses the gravity components in ECEF as given below. 
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So, the gravitational acceleration vector lg  can be written as: 
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2

g , since Earth’s rotation has no contribution on z 

component of the gravitational acceleration. 

So that we have defined the position, velocity and attitude equations for an 

inertial navigation system. The INS equations can be summarized as in Figure 2-6 

below. 

 

Figure 2-6 Inertial Navigation Equations Summary 

2.3.5 INS Error Analysis 

The nonlinear differential equations given in 2.6, 2.10 and 2.15 are the 

minimal equations necessary to calculate approximate INS solutions of a vehicle. 

In this section, the nonlinear navigation state equations are linearized to obtain 

linear error model. We use perturbation methods to linearize the non-linear system 

of differential equations. The whole system given in Figure 2-6 can be considered 

as an “estimation” of the true values of the outputs eR  and eV , so the state. 

Therefore the computed quantities that correspond to all the signals indicated in 

Figure 2-6 except ibω  and bf , are named as “estimates”. Error equation is, by 
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definition, the difference between the estimated and the true values of a variable 

say x : 

xxx −=δ ˆ , 

where x̂  is the evaluated state vector and x  is the true state vector. 

When substitutions of the type above are made for dependant variables in 

the non-linear differential equations and products of error quantities are neglected, 

linear differential equations involving only the error quantities emerge (Britting, 

(1971)). 

2.3.5.1 Attitude Error Propagation 

Assume that the estimated earth axis is obtained from the true axis by 

rotations about the 3, 2, 1 axis by γβα ddd   ,,  amounts respectively. For small 

angles, the order of the rotation is not important and the relation between the 

estimated and the true Direction Cosine Matrix becomes: 

e
b

e
b

e
b

e
bδ ΨCCCC −=−= ˆ  

[ ] e
b

e
b CΨIC −=ˆ  (2.16) 

Here, Ψ  is the skew symmetric matrix formed from the vector 

[ ]Tδγδβδα=ψ . For small δα , δβ , δγ ; [ ]ΨI −  is a transformation from true 

earth axis to estimated earth axis. 

Linear differential equations governing the tilt error [ ]Tδγδβδα  angles 

can be derived as follows: 

From equation 2.16, 

Te
b

e
bCCIΨ ˆ−=  

Differentiating this equation with respect to time we get, 
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From equation 2.15, differential equation for DCM is: 
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Here the assumption that  0=e
ieΩ&  is used. Substituting these into equation 

2.17 and using the fact that transpose of a skew-symmetric matrix is equal to its 

negative: 
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Eliminating e
bĈ  using equation 2.16 and letting b

ib
b
ib

b
ib ΩΩΩ −=δ ˆ  yields: 
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Using the properties of skew symmetric matrices and ignoring the 

multiplication of the error terms one may represent equation 2.18 in vector form as: 
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2.3.5.2 Velocity Error Propagation 

The differential equation satisfying the earth relative velocity was given in 

equation 2.10 as: 
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and the relation between the estimated and the true values of eV  is: 

eee VVV −=δ ˆ  (2.20) 
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Taking derivatives of the both sides of equation 2.20 and using the 

differential equation satisfying the estimated value of eV  yields equation 2.21: 

eee VVV &&& −=δ ˆ  
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Using equation 2.16 for e
bĈ  and the below relations 
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we can write 

le
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Using ( ) ( ) abba ⋅−=⋅ skewskew  property of the skew symmetric matrices we 

end with the error equation for velocity in vector form as 
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In this equation ef
~  is the skew symmetric matrix form of ef , bfδ  is the 

accelerometer bias error and lgδ  is the error in the evaluation of the gravity vector. 

lgδ  is given by 
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By definition gravity mass attraction vector eg  is: 

gRggg ∆+⋅−=∆+= 3
0 / RGMe  
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where 0g  is the spherical central force acceleration, g∆  accounts for earth 

oblateness effects; GM  is the earth’s gravitational constant, and 2eR R= .  

The gravity perturbation may then be expressed as  

( ) ee RGGg δ⋅∆+=δ  

where G  and G∆  are the gravity gradient matrices corresponding to 0g  

and g∆  respectively. From Regan (1981) these are given by 

[ ]

[ ]TRR
e

T
RR

R
J

R
GM

R
GM

uuI
R

G

uuIG

5
2
3

3

2

23

3

−






−=∆

−−=

 

where Ru  is the unit vector in the direction of eR  and 2J  represents the 

oblate gravity potential second harmonic coefficient. 

So we can write lgδ  as: 

( ) e
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The error equation for position is simply derived from equation 2.6 as: 

ee VR δ=δ &  (2.23) 

With perturbation of inertial navigation equations, we have ended up with 

linear differential equations of the basic inertial navigation state errors. As a 

summary, equations 2.23, 2.22, and 2.19 repeated below are linear error 

differential equations for position, velocity and attitude respectively. 
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We can express these equations in vector form as given below: 
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2.3.6 Sensor Errors 

As mentioned before, all sensors are subject to errors which limit the 

accuracy of an inertial navigation system. Since these errors propagate through the 

other states of the system and create errors in the computed position, velocity, 

attitude etc, a vital part of the design and evaluation of integrated navigation 

systems is the ability to model and simulate errors associated with gyros and 

accelerometers (Grewal and Weill (2001), Rogers (2000)). 

The measurement errors associated with inertial sensors are dependent on 

the physical operational principle of the sensor itself. Sensors are often compared 

on the basis of some errors like bias, scale factor, random noise etc. The major 

sources of errors for gyroscopes are fixed bias, acceleration dependant bias, scale 

factor errors, cross-coupling error, and misalignment errors. The major sources of 

errors for accelerometers are fixed bias, random bias, scale factor errors, cross-

coupling error, and misalignment errors. 
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In general form, the output of an inertial sensor, an accelerometer or a 

gyroscope, can be written as: 

fff δ+=
~  

where f~  is the measured sensor output, and fδ  is the measurement 

uncertainty. 

The general error equation used for a gyroscope can be written as (Titterton 

and Weston (1997)): 
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and that of accelerometers as: 
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where zyx aaa ,,  are acting accelerations and zyx ωωω ,,  are the acting 

angular rates, b  is a three element vector representing the fixed biases which are 

present, gb is a 3x3 matrix representing the g dependant bias coefficients, fS  is a 

diagonal matrix representing the scale factor errors, M  is 3x3 skew symmetric 

matrix representing the mounting misalignment and cross-coupling terms and w  is 

the random bias error. 

In this study, reduced forms of the gyro and accelerometer error models 

which are only composed of the constant bias terms are used. In fact, using other 

components makes the system over-complex for a work of this kind which is a land 

navigation system. Inertial instrument errors can be modeled by random constants, 

random walk, random ramp or exponentially correlated random variables. For our 

purposes random walk model is used. 

The state variable differential equation for the random walk process is (Gelb 

(1974)) 
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form Discrete       -     
form Continuous      -                    

kkk wxx
wx

+=
=

+1

&
 (2.25) 

where w  and/or kw  are Gaussian white noise with 

[ ] )()()()( τ−δ=τ ttqtE ww  and [ ] ),( lkqE klk δ=ww . 

The random walk process results when uncorrelated signals are integrated 

and it varies randomly from one integration step to next (Gelb (1974), Chatfield 

(1997)). This model well suits the characteristics of the bias term for the inertial 

sensors. So using equation 2.25, the gyro and accelerometer bias errors can be 

defined in continuous time as 
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With the light of this knowledge, we augment our state vector with error 

models of the gyroscope and the accelerometer and rewrite, in short notation, the 

linearized error equation in equation 2.24 driven by white noise w  as: 
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2.4 Integrated Navigation Systems 

In the early stages, GPS system was not intended to be used as a sole 

meaning of a navigation aid with high accuracy. But after the removal of the 

Selective Availability (SA) from GPS signals, developments in the “Differential 

GPS” and “Carrier Phase Positioning” concepts, it became a popular and an 

economic way of navigation. GPS still has problems from the point of view of 

accuracy, availability and integrity. Signal interruption is the main handicap 

affecting the availability. Blockage of the GPS antenna by the terrain conditions or 

indoor use of GPS or high dynamics of the host vehicle causes signal interruption 

and delay of the navigation outputs that can have severe implications and may not 
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be tolerable for an accurate navigation system. Also low immunity of GPS signals 

to jamming signals in the environment places difficulties for navigation integrity. 

Another drawback of GPS is that it can not output vehicle attitude and acceleration. 

The performance of an INS is characterized by a time dependant drift in the 

accuracy of the navigation output estimates that it provides. The rate at which 

navigation errors grow over long periods of time is governed predominantly by the 

accuracy of the knowledge of the initial position and attitude, imperfections in the 

inertial sensors and the dynamics of the trajectory followed by the host vehicle. 

Use of more accurate inertial sensors can improve performance but causes higher 

system costs (Titterton and Weston (1997)). 

A recent approach to improve the INS accuracy is to employ some 

additional external information to correct navigation outputs. Basically, inertial 

navigation system outputs are compared with independent quantities derived from 

an external source (Titterton and Weston (1997)). A filter processes these outputs 

and estimates corrections of the navigation states. This is illustrated in Figure 2-7. 

 

Figure 2-7 A Basic Form of an Integrated INS 

 The complementary characteristics of GPS make it a very favorable 

candidate for integration with INS. How the filter is structured within the navigation 

system depends on the types of sensors and model employed. For aided inertial 

navigation systems, the inertial component can either be an Inertial Measurement 

Unit (IMU), which only provides the raw acceleration and rotation rate data, or an 
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Inertial Navigation System (INS) providing position, velocity and attitude 

information. The aiding source can either be considered as a sensor providing raw 

sensor information, or as navigation system providing the position, velocity and/or 

attitude information. The model is constructed to estimate the principle states, 

position, velocity and attitude, or position, velocity and attitude errors of the vehicle. 

2.4.1 Aided Inertial Navigation System Structures 

The integration structure can vary with the feedback structure used or with 

the integration level realized. These examples cover “loosely coupled” and “tightly 

coupled” integration architectures. The term tightly coupled is usually applied to 

systems using single filter to integrate sensor data, whereas loosely coupled 

systems may contain more than one filter, but there are many possible levels of 

coupling between the extremes.  

For either case, the observation delivered to the filter is the “observed error” 

of the inertial navigation solution, that is, the difference between the inertial 

navigation solution and the navigation solution provided by GPS. Since the 

observation is the observed error of the INS solution and since the filter is 

estimating the errors in the INS solution, the process model has to be in the form of 

an error model of the standard inertial navigation equations. Thus the inertial 

navigation equations are linearized to form error equations. Since the equations 

are linearized, the filter implementation takes on a linear form. 

2.4.1.1 Loosely Coupled Integration 

In the loosely coupled integration scheme, INS and GPS provide two 

independent sets of measurements of the vehicle state in the sense of independent 

navigators. INS is the main navigation aid and the measurements from the GPS 

are used to correct the INS errors. The filter operates on the difference of both 

navigation outputs. A direct feedback structure is used to online reset of INS errors 

as shown in Figure 2-8, but there is no feedback to the aiding sensor, GPS.  
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Figure 2-8 Loosely Coupled Integration Block Diagram 

The disadvantages of the loosely coupled integration structure are: 

• It is immune to the GPS position and velocity outputs. If GPS is not 

computing output (i.e. there are less than 4 satellites available) there is 

no aiding to the INS. 

• The detection of jamming on GPS signals is not possible since the filter 

operates on GPS navigation outputs only. 

• It can not help GPS to track satellites because there is no feedback to 

GPS. 

The advantage of the loosely coupled configuration is being highly modular 

in accuracy and cost and ease of development since it is simpler.  

2.4.1.2 Tightly Coupled Integration 

In the tightly coupled integration scheme, both inputs are treated as sensors 

not as navigation systems. A filter integrates all measurements and estimates both 

IMU and GPS errors. Also a feedback is provided to the aiding source GPS to 

correct for the receiver clock bias and clock drift. 
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INS processes measurements from IMU and constructs the vehicle states, 

position velocity and attitude, in ECEF frame. The accuracy of the INS 

computations is improved by updating its output using GPS raw measurements 

that are pseudo and delta-ranges. To form the residual inputs to the navigation 

filter, a reconstruction of the pseudo-range and delta-range is made using INS – 

derived vehicle ECEF position and velocity and satellite ECEF positions based 

upon pre-loaded almanac data and they are differenced with the measured pseudo 

and delta-ranges from the GPS receiver. The filter estimates both vehicle state 

errors and GPS clock bias and drift errors. Then these error estimates are inserted 

at appropriate locations in the system in such a way as to cancel the effect of the 

error. The corrected INS data are better estimates of the true system navigation 

states. The resulting filter is nonlinear both in dynamics and measurements. 

 

Figure 2-9 Tightly Coupled Integration Block Diagram 

The advantages of the tightly coupled integration structure are: 

• It is more robust and improves system integrity, 

• Has superior performance compared to loosely coupled integration, 

• Has more capability to reject jamming signals, 
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• Since raw measurements (pseudo and delta-range) are used, only one 

satellite can aid INS. GPS does not need to produce navigation outputs, 

• Feedback to the GPS receiver helps GPS tracking loops. 

The disadvantage of the tightly coupled integration is its being more 

expensive to implement and more difficult to develop. 

2.4.2 Kalman Filtering 

Kalman filter, from the point of view of this study, is a very famous algorithm 

for combining noisy sensor outputs to estimate the state of a system with uncertain 

dynamics. In more theoretical words, Kalman filter is a statistical recursive filter 

which provides an estimate of the states at time k given all observations up to time 

k. Kalman filter provides an optimal Minimal Mean Squared Error (MMSE) estimate 

of the states under certain conditions. 

Kalman filter algorithm is used extensively in integrated navigation systems. 

With the application of this algorithm, independent redundant sources of navigation 

information are combined with a reference navigation solution to obtain an optimal 

estimate of navigation states – position, velocity and attitude – and other variables 

that contribute to navigation solution error (Rogers (2000)). For our purposes, the 

independent redundant source is the GPS measurements and the reference 

solution is the Inertial Navigation System’s solution. 

A central idea in the Kalman filter is to model the system of interest as a 

linear dynamic system which is excited by white noise and also whose sensors 

have error characteristics of a white noise. By knowing something about the nature 

of the noise (its first order statistics), it is possible to construct an optimal estimate 

of the system state even though the sensors are inexact. This is the fundamental 

idea of estimation theory. Without knowing the errors themselves, knowledge of 

their statistics allow construction of useful estimators based solely on that 

information. 

A linear dynamic system driven by white noise can be stated in discrete 

time as follows: 
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)()()()1()()( kkkkkk wuBxFx ++−=  (2.28) 

where )(kx  is the state vector of interest at time k , )(kF  is a state 

transition matrix which relates the state vector from time 1−k  to time k , )(ku  is 

the controlled input vector while )(kB  relates the control vector to the states and 

)(kw  is the process noise injected into the system due to uncertainties in the 

transition matrix and control input. 

The observation vector of this system is given by: 

)()()()( kkkk vxHz +=  (2.29) 

where )(kH  is the observation model relating the state vector at time k  to 

the observation vector and )(kv  is the observation noise vector which is related to 

the uncertainty in the observation. 

Kalman filter puts some restrictions on this system that can be summarized 

as: 

• Both process noise )(kw  and the observation noise )(kv  are assumed 

to be zero mean, Gaussian, uncorrelated random sequences with 

covariances: 
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• It is assumed that the process and observation noises are uncorrelated: 

[ ] 0vwE =)()( ji  

• Initial estimates of the states and the state covariance matrix are 

known: 
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Through the proceeding sections, the algorithms which describe both the 

linear discrete and non-linear (extended) discrete Kalman filter will be given. The 

derivation of the algorithms which is out of our scope will not be given. The other 

forms of Kalman filter also will not be given here since our scope is the discrete 

and extended Kalman filter because of our INS and GPS models. 

2.4.2.1 Discrete Kalman Filter 

If the system process and measurement models are in the forms of 

equations 2.28 and 2.29, Kalman filter is designed in the discrete time. The design 

and development of filters in discrete time is a known and suitable situation for 

digital computers. The recursive nature of the Kalman filter let the designer to 

estimate the current value of the states without necessity to keep all the past 

measurements in the memory. In Table 2-1 below, the summary of the discrete 

Kalman filter equations are given (Gelb (1974)). 
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Table 2-1 Summary of Discrete Kalman Filter Equations 

System Model 

Measurement Model 

),(.~,11 kkkkkk N Q0wwxFx      += −−  

),(.~, kkkkkk N R0vvxHz        +=  

Initial Conditions 

Other Assumptions 

[ ] ( )( )[ ] 0000 ˆ)0(ˆ)0(,ˆ)0( Pxxxxxx =−−= TEE  

[ ] kjE jk  and  all for 0=vw  

State Estimate Extrapolation 

Error Covariance Extrapolation 

)(ˆ)(ˆ 11 +=− −− kkk xFx  

1111 )()( −−−− ++=− k
T

kkkk QFPFP  

State Estimate Update 

Error Covariance Estimate 

Kalman Gain Matrix 

[ ])(ˆ)(ˆ)(ˆ −−+−=+ kkkkkk xHzKxx  

[ ] )()( −−=+ kkkk PHKIP  

[ ] 1
)()(

−
+−−= k

T
kkk

T
kkk RHPHHPK  

Definitions )(ˆ −kx : state estimate at time k based on the 

measurements { }10 ,, −kzz K  

)(−kP : Covariance matrix of )(ˆ −kx  

)(ˆ +kx : state estimate at time k based on the 

measurements { }kzz ,,0 K  

)(+kP : Covariance matrix of )(ˆ +kx  

kK : Kalman gain matrix 
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2.4.2.2 Extended Kalman Filter 

In most real cases the process and/or observation models do not behave 

linearly and hence the linear Kalman filter described above cannot be 

implemented. To overcome this, the extended Kalman filter (EKF) is developed 

(Gelb (1974)). It provides the best MMSE estimate of the state and in principle it is 

a linear estimator which linearizes the process and observation models about the 

current estimated state.  

The main difference of the EKF is that the Kalman gain matrix of the EKF is 

a random function of the estimated state. The estimated states are used to build up 

the system matrix and the system matrix effects the Kalman gain matrix. 

The non-linear discrete time system is described as 

( ) )(),(),1()( kkkkk wuxfx +−=  

where ( )k,,⋅⋅f  is a non-linear state transition function at time k  which forms 

the current state from the previous state and the current control input. 

The non-linear observation model is represented as 

( ) )()()( kkk vxhz +=  

In Table 2-1 below, the summary of the discrete Kalman filter equations are 

given (Gelb (1974)). 
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Table 2-2 Summary of Discrete Extended Kalman Filter Equations 

System Model 

Measurement Model 

( ) ),(.~,,1 kkkkk Nk Q0wwxfx      += −  

( ) ),(.~, kkkkk N R0vvxhz        +=  

Initial Conditions 

Other Assumptions 

[ ] ( )( )[ ] 0000 ˆ)0(ˆ)0(,ˆ)0( Pxxxxxx =−−= TEE  

[ ] kjE jk  and  all for 0=vw  

State Estimate Extrapolation 

Error Covariance 

Extrapolation 

( )kkk ),(ˆ)(ˆ 1 +=−+ xfx  

k
T
kkkk QFPFP ++=−+ )()(1  

State Estimate Update 

Error Covariance Estimate 

Kalman Gain Matrix 
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2.4.2.3 Navigation Kalman Filter Implementation 

We see that Kalman filter is based on linear system models derived by 

white noise. So we can use our linearized INS error equations derived in section 

2.3.5 as the system dynamics model and GPS measurement equation derived in 

section 2.2.4 as the system measurement model. 
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The linearized INS error equation in 2.24 is combined with the sensor error 

model given in equation 2.26 to from the system dynamics model given by the 

equation 2.27 in which the system is derived by the white noise. The matrix 

equation is given in the short notation form where eR , eV  and Ψ  are the three 

dimensional position, velocity and attitude vectors respectively; bω  and ba  are the 

three dimensional gyroscope and accelerometer bias vectors, bt  and dt  are the 

clock bias and the clock drift states respectively. w  is the 17x1 system process 

noise composed of the position, velocity, attitude, gyro, accelerometer, clock drift 

and bias plant noises. 
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In general, the linearized form of the measurement equation is written as 

kkkk vxHzzz +δ=δ=−ˆ  (2.31) 

where kẑ  is the predicted value of the output z , and kv  is the 

measurement noise and is assumed to be white Gaussian and 
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GPS measurement equation given in equation 2.3 is also in the above form 

and can be written as below:  
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In this equation, ρδ  is the difference between the pseudo-ranges estimated 

in INS and measured by GPS; ∆ρδ  is the difference between the delta-ranges 

estimated in INS and measured by GPS; ρv  and ρ∆v  are the added pseudo and 

delta-range measurement noises respectively. 

Figure 2-10 summarizes the steps involved in the navigation Kalman filter 

implementation. The body-turn rates and body specific forces which are delivered 

by the Inertial Measurement Unit (IMU) are fed to the navigation equations in order 

to calculate the earth referenced acceleration, velocity and position. The position 

output of INS and satellite position calculated from the ephemeris data are used to 

calculate INS derived pseudo and delta-ranges. These are differenced with the 

measured pseudo and delta-range from the GPS receiver to construct the 

measurement residuals for the Kalman filter. The Kalman filter estimates the 

optimal errors for the states. The filter error estimates are then fed back to the 

appropriate points in the system in order to cancel the errors raised in the INS. The 

IMU output is corrected using the gyro and accelerometer bias filter estimates. The 

body to ECEF direction cosine matrix (DCM) is corrected using the body attitude 

error state. The ECEF position is corrected using the position error state. The earth 

relative velocity is corrected using the velocity error state. The receiver clock errors 

are compensated in the pseudo-range/delta-range reconstruction using the clock 

error states. 
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Figure 2-10 Navigation Kalman Filter Implementation 
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CHAPTER 3 

OBSERVABILITY ANALYSIS 

3.1 Introduction 

The concept of observability comprises solving the problem of 

reconstructing unmeasurable state variables from measurable signals in a finite 

time interval. Integration of INS with other navigation aids can be considered as a 

stochastic “observer design” problem. So understanding observability concepts 

plays an important role on the success of the integration. 

One of the main reasons for the observability analysis of a dynamic system 

is the need to determine the efficiency of Kalman filter designed to estimate the 

state of that system. The ability to estimate the state of a completely observable 

system depends only on the system driving noise and measurement noise. On the 

other hand, if the system is not observable, we cannot obtain an accurate estimate 

of the state even if the noise level is zero. In other words, the measure of 

observability sets a lower limit on the estimation error, and the lower the limit, the 

better is the chance to obtain an accurate estimate of the system states. 

In this thesis work, the observability of the aided INS is examined based on 

the idea taken from the recent work of Koyaz (2003). In that work, aided INS is 

investigated from control theory point of view. A quantitative observability measure 

is derived based on the theoretical knowledge on linear systems and observability 

Gramian. This observability measure is tested on ideal fictitious scenarios of inertial 

navigation system. 
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In this chapter, useful topics exposing the observability concepts are given 

first. The definitions of observability, observability Gramian and observability 

measure are put forward. Then the observability analysis of the aided INS is 

explained based on the given introduction. Finally, the computation method of the 

observability measure for this study is described. 

3.2 Observability Concepts 

For the observability of linear systems, the unforced system described by 

equation 3.1 is used. In this equation, )(tx  is the n – dimensional system state 

vector, )(ty  is the m – dimensional output vector, )(tA  and )(tC  are nn×  and 

nm×  matrices respectively. The driving forces have no effect on the system 

observability since if the system defined by ( )CA,  is not observable, then we 

cannot obtain an accurate estimate of the error state whatever the control vectors 

are. 

)()()(
)(),()()( 00

ttt
tttt

xCy
xxxAx

⋅=
=⋅=                &

 (3.1) 

The linear state equation 3.1 is said to be observable on [ ]ftt ,0  if any initial 

state 00 )( xx =t  can uniquely be determined by the corresponding response )(ty  

for [ ]fttt ,0∈ . If all states )(tx  corresponding to all )(ty  are observable, the system 

is completely observable. 

While the observability condition for a time invariant system is rather simple, 

the condition of a time varying system is quite cumbersome and involves the 

concept of “observability Gramian”. The matrix M  satisfying equation 3.2, where 

Φ  is the state transition matrix for the system in equation 3.1, is called the 

observability Gramian associated with time interval [ ]ftt ,0 . 
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The following statement relates observability to observability Gramian: The 

system given in equation 3.1 is completely observable on the interval [ ]ftt ,0 , if and 

only if ( )ftt ,0M  is positive definite, in other words it is nonsingular. 

Next is to define physically meaningful measures for the observability. The 

following equation can be used as the degree of observability of a system if 

( )ftt ,0M  is nonsingular (Koyaz (2003)). 

( ) 11
0 ,

−−≡ fo ttM M  (3.3) 

In equation 3.3, ( )ftt ,0M  is the observability Gramian. Since, the 

observability Gramian matrices are finite dimensional, without loss of generality, we 

can use any matrix norm to define the degree of observability. Among these 

norms, the Frobenious norm for any matrix Χ  is defined as:  

( )[ ] 2
1

ΧΧΧ ⋅= T
F tr . 

Using the definition above for the Frobenious norm, observability measure 

oM  can be written as (Koyaz (2003)): 

[ ] [ ] 2
1

11

11 1
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Depending on the definition of observability measure given above, if the 

system in equation 3.1 is not observable then 0=oM . Let a
oM  and b

oM  denote the 

observability measures for two different output structures. If b
o

a
o MM > , then we say 

that system model a  is more observable than model b . This simple remark 

summarizes the main approach in the observability analysis of the aided inertial 

navigation system (Koyaz (2003)). 
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3.3 Observability of the GPS/INS System 

In this section, we will emphasize on the aided inertial navigation system 

representation from control theory point of view. For this purpose, we will use our 

linearized INS and GPS models derived in CHAPTER 2 and rearrange them to 

construct our representation. Then the computation method of the observability 

measure in our study will be given in detail. 

3.3.1 Aided INS Representation 

As mentioned before inertial navigation system is a computational 

mechanism which receives input from gyroscopes and accelerometers and outputs 

navigation states that are position, velocity, and attitude. Due to the nature of the 

INS, these computations are not exact and exhibit errors growing with time 

because of sensor errors, initial state uncertainties, equation uncertainties as well 

as computation errors arising from computer round offs and real time 

implementation inadequacies. These errors make INS an unstable system. Despite 

of these errors, we have something to do because we have knowledge on how 

they propagate. We develop an error model of the INS so that we can dynamically 

know their propagation in time. One other thing is that, if we have information about 

these navigation states from an independent external source, we can use those 

measurements to bound the errors in INS. Since we have a model of the error in 

INS, an observer can estimate the unknown errors in the system. The input to the 

observer is the difference between the INS navigation outputs and the measured 

outputs from the external source. The error estimates of this observer are fed back 

to the system to cancel the errors in the INS and this approach as a result 

stabilizes INS. This representation can be summarized with Figure 3-1 below. 
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Figure 3-1 Aided Inertial Navigation System Representation 

The observer may be our extended Kalman filter explained in CHAPTER 2. 

The input to the observer may not be the whole navigation states since some of the 

states may not be measurable or the external aiding source can not measure all 

navigation states. If our system is completely observable, feeding the observer 

even not with all of the system states will be adequate and the unmeasured states 

can also be estimated. In contrast to this, if the system is not observable, the 

navigation error states can not be estimated by the observer. This fact indeed, 

designates the success of the Kalman filter designed for the integration of INS and 

GPS. 

INS error model derived in CHAPTER 2 and given by the equations 2.30 

and 2.32, can be put into the form: 

ss tt uBxAx δ+δ=δ )()(&  (3.5) 

where suδ  represents the sensor errors that are gyro and accelerometer 

biases for our case. The observer, Kalman filter, provides state error estimates to 

the system. A feedback loop can be generated and can be treated as the control 

input to the system. Then equation 3.5, attaching the observation equation, can be 

written in the form: 

INS 

Aiding 
System 

Feedback 

State 
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+
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In equation 3.6, cuδ  represents the control/calibration input and x̂δ  

represents the Kalman filter state error estimates. Throughout these analyses, the 

sensor errors suδ , and control/calibration input cuδ  will not be considered since 

they have no influence on the observability of the system. 

Having defined the observability measure and constructed the aided INS 

representation, we can discuss the observability of our tightly coupled integration 

structure. For our case, both of the matrices are time varying, the A  matrix has a 

constant size but size of the C  matrix is not fixed. Number of satellites in view, i.e. 

number of measured pseudo and delta-range pair, changes time to time. This 

causes a change in the size of the C  matrix. The number row of it may change 

from 2 to 24 (depends on the number of channels in the GPS receiver). Another 

case is that, the number of satellites in view may not be changing but the satellites 

that are used may be changing from time to time. For this case, the structure of the 

C  matrix does not change but the values of its elements change so C  matrix 

changes. Both of these cases change the observability of the system. As an 

intuitive consideration, the observability measure should increase as the number of 

satellites in view increases. Again intuitively, the change of satellites as the total 

number of them is fixed, should cause an immediate variation in the observability 

measure. 

A more theoretical explanation is that if the number of the columns in the C  

matrix increases, the norm of )()( tt CC′  product in ( )ftt ,0M  increases so ( )ftt ,0M  

increases, inverse of ( )ftt ,0M  decreases, inverse of norm of ( )ftt ,0M  that is our 

observability measure increases. For the case that the number of satellites is fixed 

but the constellation changes, the norm of )()( tt CC′  may increase or decrease 

depending on the values of the elements in the changing column. So observability 

measure may decrease or increase but surely it changes. 
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3.3.2 Computation of the Observability Measure 

For our study, computation of the observability measure is done completely 

numerically in a finite time interval. A suitable integration step is chosen and at 

each integration step, the state transition matrix is calculated first. Then 

observability measure is found using this state transition matrix. As a last step, 

observability measure is calculated using equation 3.4. 

Since our system is time varying, the state transition matrix Φ , and the 

observation matrix C  change dynamically with time. A  and C  matrices are 

computed according to equations 2.30 and 2.32 in CHAPTER 2 respectively. But 

the computation of Φ  is done numerically by Euler Integration algorithm as 
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The observability Gramian given in equation 3.2 is also computed in 

discrete steps by Euler Integration algorithm as shown in the equation below.  

( ) ( )
( ) 0M
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,
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As a last step, the observability measure is computed for each calculation 

step from ot  to ft .using equation 3.4. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

4.1 Introduction 

In this chapter, efforts to validate the designed integration architecture are 

given in detail. Experimental results are delivered to the reader in a way to 

compare the performance of the developed system to a reference system and as 

well as to a loosely coupled system. 

4.2 Experimental Setup 

All simulations are carried out offline but with real data. This in turn, leaded 

us to develop a system to collect data in real-time and then build an algorithm to 

process this data off-line. For this architecture, there exist problems in data 

synchronization between inertial measurement unit (IMU) and GPS data. To 

overcome this problem, a method is developed using the features of the current 

hardware setup. All these efforts are given briefly in this section dividing the 

situation into two sections as hardware and software organizations. 

4.2.1 Hardware Setup 

The hardware setup is composed of a vehicle, a special computer, a laptop 

computer, an inertial measurement unit, a GPS receiver and antenna, a reference 

navigation system and power supplies to feed these equipment. 



 56

A Land Rover jeep is the primary vehicle used for all testing. The tray in the 

rear houses the equipment used while data logging. Although a land vehicle, for 

which this thesis is developed, can maneuver under high speeds, our work is 

conducted at relatively low speeds not exceeding 50 km/h since, indeed the speed 

of the vehicle does not effect the performance of the system. 

The IMU used in this thesis is a Northrop Grumman’s LN-200 family of 

inertial equipment composed of 3 fiber optic gyros (FOGs) and 3 silicon 

accelerometers (SiAc’s). It provides vehicle angular rate and linear acceleration. It 

satisfies tactical missile and guided projectile guidance requirements and aircraft 

flight control systems. It can be called low cost looking at whole grades of IMU’s. A 

typical IMU of this grade exhibits several hundred kilometers of horizontal error in 

an INS run of 1 hour. Typical performance characteristics are given in Table 4-1 

below. It is operated on RS-485 Serial Data Bus (SDLC). The sampling rate of the 

unit is 400 Hz and this rate is taken as the base for the navigation algorithm. 

Table 4-1 Typical Characteristics of LN-200 IMU 

Performance - Gyro  

Bias Repeatability  1deg./hr to 10deg./hr 1[sigma]  

Random Walk  0.04 to 0.1deg.[sqr root]hr power spectral density (PSD) level  

Scale Factor Stability  100 ppm 1[sigma]  

Bias Variation  0.35deg./hr 1[sigma] with 100-second correlation time  

Performance - Accelerometer  

Bias Repeatability  200 [micron]g to 1 milli-g, 1[sigma]  

Scale Factor Stability  300 ppm 1sigma  

Bias Variation  50 micro-g 1sigma with 60-second correlation time  

White Noise  50 micro[sqr root]Hz PSD level  



 57

 

Figure 4-1 LN-200 Inertial Measurement Unit 

The GPS receiver used in this thesis is an Ashtech G12 Sensor, a G12 

GPS receiver enclosed in a box. It has 12 C/A code channels. It can output pseudo 

and delta-ranges what we call “raw data” at up to 10 Hz. It is operated on two 

independent standard RS-232 serial ports. But in normal operation, one of these 

serial ports is sufficient. It uses a standard L1 frequency antenna. The update rate 

that we use for raw data is 1 Hz and this is taken as the discrete Kalman filter 

measurement update frequency. 

 

Figure 4-2 Ashtech G12 Receiver Board and G12 Sensor 

The reference system used in this thesis is a Northrop Grumman’s LN-100 

family of inertial navigation system. It uses non-dithered Northrop Grumman Zero-

Lock™ Laser Gyro (ZLG™) and A-4 accelerometer technologies together with a 

sophisticated tightly coupled Kalman filter that can give enhanced position, 

velocity, attitude, and pointing performance, as well as improved GPS acquisition 

and anti-jam capabilities. A grade of this inertial navigation system exhibits 

approximately 0.8 nautical miles in an INS-only run of 1 hour. It has an embedded 
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5 channel GPS receiver capable of delivering raw data. It is operated on a 

standard 1553B Data Bus. 

 

Figure 4-3 Reference System – LN-100 Inertial Navigation System, Northrop 

Grumman 

A single board computer (SBC) that is in a small form factor is used to read 

primarily IMU and also GPS time data. SBS has a card in one of its expansion slots 

that can read SDLC data. This card is used to read IMU data. A standard serial 

communication port on the SBC is also used to read GPS time data. The clocks 

used to operate the IMU are supplied by the timers embedded in this SBC. 

GPS raw data is read by a separate laptop computer through a standard 

serial communication port. A second laptop is used to log the reference system’s 

data. It has a PCMCI card to communicate on the 1553B Data Bus. 

The utility is driven around ASELSAN’s plant. Some part of this track is 

populated with trees, buildings, store tanks that cause GPS signal blockage. The 

test area and the track are shown in Figure 4-4 below. 
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Figure 4-4 Test Area and Track 

4.2.2 Software Setup 

There exists 4 distinct pieces of software: 

• A real-time software running on the SBC to read and log IMU data 

and GPS time information. 

• A Windows platform to read and log GPS raw data running on a 

laptop computer. 

• A Windows platform to read and log reference system’s data 

running on another laptop computer. 

• Windows platforms to process the logged data on any separate PC. 
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Figure 4-5 Hardware and Software Setup Summary 

In SBC, IMU data is read in real time at 400Hz, which is the output rate of 

the IMU. On the other side, by the help of the serial port on the SBC, GPS time 

information is read from the first serial port of the GPS receiver. Time information 

obtained from GPS is sampled with 1 Hz frequency, so that each sample is 

repeated 400 times to reach the frequency of IMU. Corresponding to each IMU 

data sample, there exists a corresponding GPS time information but GPS data 

repeats itself 400 times until a new set of time data arrives at SBC. IMU turn rate 

and accelerometer outputs are logged to a file together with the corresponding 

GPS time information. 

GPS raw data, GPS time information and also some other useful 

information are recorded to a file at 1 Hz using the second serial port on the GPS 

receiver. For this purpose Laptop 1 is used The two serial ports on the GPS 

receiver work synchronously so that both GPS time information on these two ports 

belong to the same time. 
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Logging GPS time at both of these platforms makes it possible to 

synchronize the IMU and GPS data that is very important for navigation 

applications. We have GPS and IMU information recorded in two separate files and 

logged GPS time at both files; this is the key point in correctly merging these two 

files. At the recorded file on SBC, the sample where GPS time changed value is 

found and this GPS time value is noted. The same GPS time sample is found in 

the file recorded by Laptop 1. The simulation data is assumed to start at this 

sample and the rest of the data recorded before this sample is discarded on both 

files. So, by the help of this process two set of data in two separate files are 

synchronized. 

We have IMU data and GPS raw data on files. We move them to a PC 

where our algorithms are implemented and our simulations take place. The 

navigation algorithm and the Kalman filter are developed in MATLAB. A MATLAB 

script function reads IMU data file at 400 Hz and GPS raw data file at 1 Hz. With 

IMU data, navigation algorithm is run at 400 Hz. This navigation algorithm 

constitutes the INS output. A Kalman filter runs at 10 Hz to propagate the system 

model and covariances in time. Measurement update in the Kalman filter is 

realized at 1 Hz corresponding to the GPS measurement instants. The Kalman 

filter estimates of the system error states are fed back to the system after the 

measurement updates are done. 

Solving the differential equations governing the inertial navigation system 

needs the knowledge of initial position, velocity and attitude values. Especially the 

initial value of the attitude angles should be entered fairly accurate. Otherwise the 

accelerometers mounted on the body cannot accurately resolve the readings into 

earth axis and this causes errors on all of the navigation outputs. There are ways 

to calculate the initial attitude inside the INS (called initial alignment) but since we 

have a reference system of enough accuracy, we get these angles from our 

reference system. The initial velocities are taken as zero because data recording 

starts while the test vehicle is stationary. The initial value of position is taken from 

the self solution of GPS receiver. 
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4.3 Observability Results 

This section presents the results of the observability analysis that was 

mentioned in CHAPTER 3. The algorithm, which calculates the observability 

measure, is embedded inside the entire algorithm which produces the integrated 

output. The recorded real data is used to produce the results. 

4.3.1 Effect of Aiding Level on Observability 

This section establishes the results of observability measure for only 

pseudo-range aiding against pseudo-range plus delta-range aiding. The type of 

aiding measurement should have an effect on observability. We can treat pseudo 

and delta-range outputs of GPS receiver as independent measurements because 

they are calculated from different sources. But indeed, the error on these 

measurements may have some correlation because of the internal architecture of 

the GPS receiver. 

The plot given in Figure 4-6 is the result for dependency of observability on 

the measurement type. The duration of the simulation is about 320 seconds and 

the solid line designates observability of pseudo and delta-range aiding whereas 

the dashed line designates pseudo-range aiding. From the figure, it is seen that 

observability measure oM  increases with time which is an expected result. The 

oM  of the pseudo and delta-range aiding is always greater than the oM  of the 

pseudo-range only aiding during the simulation time although two curves are not 

clearly distinguishable from the figure. But, before 120 seconds although small, a 

difference is obvious and can easily be seen in Figure 4-6. 
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Figure 4-6 Observability measure for pseudo-range vs. pseudo and delta-range 

aided systems 

In Figure 4-7, the time interval from 0 – 120 seconds is enlarged to see the 

details. Although the observability measures increase with time for both systems, 

their characteristics differ in this interval. After 120 seconds, oM ’s of both systems 

get closer to each other and they behave similarly. It can be shown that the 

intervals where the rate of change of these curves increase correspond to time 

instants when the number of satellites in view increases. The opposite is also true; 

intervals where the rate of change of these curves decrease correspond to time 

instants when the number of satellites in view decreases. The observability 

measure is very small up to time 14. In that interval, the vehicle is stationary and 

then at time 14, the vehicle starts moving. At that instance, we see a sudden 

increase in oM . This tells us that the motion and maneuvers of the vehicle 

increase observability. In fact, this result was discovered in other recent studies but 

here, we see it more obviously. To support this fact, we can show that at time 50, 

the vehicle makes a 90 degree turn and this causes a sudden change in oM  of 
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especially the pseudo-range only aided system. Also we see that, reaction of the 

observability of the pseudo and delta-range aided system to the vehicle maneuvers 

is less. After time 120, the curves seem to be smoother. This means that as time 

increases, the change in number of satellites and vehicle maneuvers affect the 

observability measure less. 
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Figure 4-7 Enlarged view of 0-120 sec. interval 

4.3.2 Effect of Number of Satellites on Observability 

In CHAPTER 3, section 3.3.1, we stated that an increase in the number of 

pseudo and delta-range measurements, i.e. the number of visible satellites, should 

have a positive effect on the observability of the system. In order to prove this, the 

results of some simulations are presented in this section. The simulations are done 

with the same data used for the previous section. The results are shown for only 

pseudo and delta-range together aiding since the results of the two are very 
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similar. To see the effect of number of satellites on observability, we made four 

simulations. In the first simulation, all of the satellites in view are used to calculate 

the observability measure of the system. In other simulations, the number of 

satellites used in the INS – GPS integration algorithm is decreased to 2 step by 

step starting from 4 satellites. So, totally 4 simulations are established. In each 

simulation, the satellites that are used may change during the simulation but the 

number of them is fixed. By doing so, we also wish to see the effect of satellite 

change on observability while the number of satellites are kept fixed. 

In Figure 4-8, observability measures of simulations using all satellites, 4 

satellites, 3 satellites, and 2 satellites are seen in the figure from top to bottom 

respectively. As an expected result, the observability of the system that uses all of 

the satellites in view is far more than the others. Also, the increase in the 

observability measure as the number of satellites increase is gathered from the 

figure. We see sudden changes in observability measures of 2 and 3 satellites 

cases. These jumps correspond to time instants that one (or more) of the satellites 

used in the simulations change. We can show the sudden increase at time 152 of 

the 2 satellite case and increase at time 38 of 3 satellite case as an example for 

this. We also observe that, all of the satellite changes do not cause sudden 

variations in the observability measure. Change of some satellites cause smoother 

increase or decrease in the rate of change of the observability measure. One other 

thing is that, as the number of satellites increase, the effect of satellite change 

becomes less effective. 
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Figure 4-8 Result for the Effect of Number of Satellites on the Observability 

4.3.3 Observability Measure Comparison with a Loosely Coupled 

System 

In order to compare the observability measure of a tightly coupled system to 

a loosely coupled one, we made a simulation similar to previous ones but this time 

we used our real data to compute the observability measure of a loosely coupled 

system. This loosely coupled system is developed for the same sensors and use 

only GPS position measurement as an aiding. The result for the observability 

measure of this system is shown in Figure 4-9. We see that the observability 

measure oM  is very small (in the order of 10-3) compared to the tightly coupled 

system. This is expected because the results which are presented in Koyaz (2003) 

for only position aiding is similar to our results. In the figure, observability measure 

increases with time and the huge increases in oM  correspond to time instants of 
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vehicle’s sharp maneuvers. For this system, to reach the oM  level of the tightly 

coupled system will probably take very long time. 
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Figure 4-9 Observability Measure of the Loosely Coupled System 

4.3.4 Discussion on the Results of Observability Analysis 

Considering the simulation results and in the light of the theoretical 

knowledge, it is seen that: 

• Tightly coupled integration structure has a high level of observability. 

• Aiding level, i.e. using only pseudo-ranges or using pseudo and delta-

ranges together change the observability level. But the difference in the 

observability measure of these two levels is apparent only at the initial 

time interval. This time depends on various aspects in the system and in 
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the environment. From this time on, the observability of the two systems 

show nearly the same characteristics. 

• The number of satellites used changes the observability of the system. 

The increase in the number of satellites increases the observability. But 

addition of some satellites may have less or more effect on 

observability. 

• The tightly coupled system is still observable even when the number of 

satellites falls below 4. But the level of observability decreases. 

• The change in the satellite constellation as the number of satellites is 

fixed, causes a sudden change in observability. This may be an 

increase or a decrease depending on the satellite. 

• The accelerations and the maneuvers of the vehicle increase the 

observability. As this acceleration and maneuvers become sharper, the 

increase in the observability becomes more noticeable. 

• As time increases, the observability of the system increases and the 

effects of the situations given above become less effective. 

• A loosely coupled system using only GPS position outputs as a 

measurement, has a very low level of observability compared to the 

tightly coupled system. 

4.4 Tightly Coupled Integration Results 

4.4.1 Performance Results 

In this section, the results of the simulations which are done to evaluate the 

performance of the tightly coupled system are presented. The data sets used for 

these simulations are different from the sets used for the previous section, but all 

the test conditions are same for both of them.  

The time of simulation is about 650 seconds but to show the results, only 

350 seconds part of this data is used. In Figure 4-10 below, the vehicle position is 
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given for ECEF X and Y axes, but the starting point is assumed as the origin and 

displacements in meters from this point are written on both axes. As illustrated in 

this figure, the path starts at point 0m X, 0m Y and goes to direction pointed with 1 

and following the directions of the arrows, ends at the same point. In Figure 4-11, 

X, Y, and Z components of the real track position is plotted with respect to time. In 

Figure 4-12, number of satellites in view corresponding to this track is plotted with 

respect to time. 
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Figure 4-10 The Real Track and the Order of the Path 
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Figure 4-11 Vehicle 3-Dimensional Position Components with Respect to Time 
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Figure 4-12 Satellite Constellation History Used in the Simulations 
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In Figure 4-13, the horizontal position of the vehicle is given for GPS-only 

and INS-only navigation solutions. The INS output is represented with a solid line 

whereas GPS output is represented with light colored crosses. As time increases 

the error in the INS-only solution increases and the track of INS goes far away from 

the real track, as expected. At time 350, INS position error is about 1150 meters. 

GPS solution seems better than the INS-only solution but it has gaps and sudden 

jumps in the position. A detailed view of the GPS position output can be seen in 

Figure 4-14. At the portion -40 to -100m X and -40m Y, a data gap of about 25 

seconds occurs. Also we can see the high frequency faults occurred in the GPS 

output, for example at the portion -70m, and 80m Y. 

In Figure 4-15, the position output of GPS and tightly coupled system are 

given together. The fused output is represented with a solid line whereas GPS 

output is represented with light colored crosses. We see that the integrated system 

can successfully filter the GPS high and low frequency faults and can fill the data 

gaps of GPS. 
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Figure 4-13 INS-Only and GPS-Only Position Outputs 
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Figure 4-14 A Detailed View of the GPS Position Output 
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Figure 4-15 GPS and Tightly Coupled Integrated System’s Outputs 
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In Figure 4-16, the position output of the reference system and the tightly 

coupled system are given together. The fused output is represented with a solid 

line whereas reference system’s output is represented with light colored line. We 

see that the two outputs are very similar. At some portions, slight differences are 

observed. While evaluating these results, we should not forget that reference 

system does contain errors as well, but these comparisons certainly serve as a 

good starting point for confirming the performance of our integrated system. 
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Figure 4-16 Reference System and Tightly Coupled System’s Outputs 

In Figure 4-17, errors in position output of our system with respect to the 

reference system are given together with the filter error covariance estimates. Error 

covariance estimates are represented with dashed – dotted lines. The errors in the 

3 – dimensional position stay inside the bounds of the filter error covariance 

estimates for most of the time and this is an intended situation. The position error 

covariance goes down to a level under 2 meters. This performance is much better 

than the GPS position output which has a standard deviation of about 15 meters 
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and INS output which has an exponential error growth characteristics with time. In 

Figure 4-18, and Figure 4-19, the filter error covariance estimates of velocity and 

attitude are presented respectively. The integrated system also bounds the errors 

in the velocity and attitude outputs. We see that, velocity error stays in the bound of 

0.1 meters/second and attitude error stays in the bound of 0.25 degrees. The 

increases in the filter error covariance estimates of position and velocity that are 

seen in figures correspond to times that the number of satellites falls below 4. This 

result is consistent because at those times GPS measurements become week and 

INS outputs play more role in the filter output and filter informs this by increasing 

the error covariance. 
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Figure 4-17 Position Error and Filter Position Error Covariance Estimates 
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Figure 4-18 Filter Velocity Error Covariance Estimates 
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Figure 4-19 Filter Attitude Error Covariance Estimates 
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To simulate an environment where GPS signals are subject to serious 

blockage, we fed our system with less number of GPS measurements and 

presented the results in Figure 4-20, and Figure 4-21. In figures, solid line 

represents the integrated output and the light colored dashed line represents the 

real path. The time of simulation is about 250 seconds and first 60 seconds of this 

time is used for self – calibration of the system, i.e. all of the satellites are used to 

cancel the errors in the system. After time 60, which is marked with a circle on the 

path, the number of GPS satellites is decreased to 3 for Figure 4-20 and to 2 for 

Figure 4-21. We see that, even using only 3 satellites can give amazing 

performance. Integrated output follows the real track with a small error. Also for the 

2 satellites case, the performance is adequate, but the error has more tendency to 

increase because, the errors in the INS starts to dominate the system. We can 

explain this result with the observability analysis that we made in the previous 

section. We have experienced that observability measure of the tightly coupled 

system with 3 satellites is smaller than the all satellites case but it is still high 

enough. The difference in the observability measures of scenarios carried out with 

different number of satellites, shows its effect in the performance of the position 

outputs as we can see from the results of the simulations in this section. 



 77

-200 -150 -100 -50 0 50
-100

-50

0

50

100

X (m)

Y
 (m

)

Horizontal Position Profile

 
Figure 4-20 Integrated Position Output with 3 Satellites 
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Figure 4-21 Integrated Position Output with 2Satellites 
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In CHAPTER 2, we have stated that the integrated system’s ability to 

estimate sensor errors is an essential condition for self – calibration of the system. 

In order to show the effectiveness of the tightly coupled system in estimating the 

sensor errors, we present results of some simulations here. For the reason that, it 

is hard to know the real values of random gyro and accelerometer biases in an 

IMU, we injected external known biases to sensor readings and tried to estimate 

what we have injected. The extra biases are 2.5e-4 radians/second for gyros and 

0.25 meters/second2 for accelerometers. These biases are chosen to be 10 times 

the maximum expected biases in our IMU because what we read at the end will be 

the sum of the real IMU bias plus the extra bias. If real biases are small enough 

with respect to the extra biases, we should observe approximately the extra biases 

as the estimates of the IMU errors. In Figure 4-22, and Figure 4-23, the filter 

estimates of the gyro and accelerometer biases are presented. We see that, the 

convergence of the estimates to real values is fast except the Z gyro. In general, 

estimating the gyro bias in Z direction is difficult (Titterton (1997)), so the result is 

consistent. The estimation of biases in the X and Y gyro starts immediately and 

converges to a reasonable level by the time 50. That is really fast because the 

vehicle is stationary up to time 55. So we can conclude that the motion of the 

vehicle has less effect on the estimation of the gyro biases. For the biases in X and 

Y accelerometer, estimation begins by the time vehicle starts moving and they 

converge to reasonable levels immediately. So we can conclude that the motion 

i.e. the accelerations of the vehicle help the filter in estimating the accelerometer 

biases. For the accelerometer in the Z axis, the estimation starts immediately 

because there is already acceleration in that axis due to gravity that makes life 

easy. 
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Figure 4-22 Gyro Bias Estimates of the Filter 
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Figure 4-23 Accelerometer Bias Estimates of the Filter 
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4.4.2 Tightly Coupled and Loosely Coupled Integration Comparison 

In this section, a loosely coupled system that was developed for the same 

sensors is used for comparison. The input data to the tightly and loosely coupled 

systems are the same and it is the data that is used for the previous section. 

In Figure 4-24 below, horizontal position outputs of tightly coupled and 

loosely coupled systems are given together. The solid line represents the tightly 

coupled system and the line with crosses represents the loosely coupled system. 

For the parts of the track that the number of satellites is 4 or above 4, i.e. GPS 

produces position measurements, two curves are similar. Two circles marked on 

the figure point out the interval that no GPS position output is produced. In this 25 

seconds interval, loosely coupled system’s output swerves from the real track as 

seen in the figure. 
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Figure 4-24 Tightly Coupled and Loosely Coupled Systems’ Horizontal Position 

Outputs 
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To compare the performance of the two systems and to better see the 

difference, we have developed a scenario. In this scenario, a simulation of 350 

seconds is done in the following manner: 

• From the beginning to 60 seconds, we let both systems calibrate 

themselves, so we did not change the satellite constellation. 

• For the next 60 seconds, we decreased the number of satellites below 4 

so that GPS cannot produce position measurements but there are still 

pseudo and delta-range measurements available. 

• For the next 15 seconds, we brought the satellites back into their 

original constellation and let the systems calibrate themselves. 

• The scenario goes on like this with 60 seconds interruption and then 15 

seconds normal operations until time 350. 

The satellite constellation resulting from this scenario is shown in Figure 

4-25 below. 
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Figure 4-25 Satellite Constellation Summary Used in this Scenario 
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In Figure 4-26, the horizontal position outputs for the reference system, 

tightly coupled system and loosely coupled system are presented together. The 

reference system is represented with a dashed line, the tightly coupled system with 

circles and the loosely coupled system with crosses. We can see from the figure 

that the loosely coupled system cannot follow the true track when GPS position 

solutions are not available whereas tightly coupled system follows the track for 

most of the time. To summarize the result of this scenario and to better see the 

difference between two systems, we present the error – time plot of them with 

respect to reference system in Figure 4-27. In this figure, the horizontal position 

error in the loosely coupled system is represented with a dashed line and error in 

the tightly coupled system with a solid line. We observe that the error in the tightly 

coupled system is below 5 meters for most of the time while the error in the loosely 

coupled system is above 5 meters for most of the time. The errors in both systems 

have a tendency to increase with time but this tendency is more in the loosely 

coupled system. Since the observability of the loosely coupled system is less, 15 

seconds of measurement time is not sufficient to estimate and correct the errors in 

the system. The tightly coupled system makes use of its high level of observability 

and can estimate and correct the errors in the system in an interval of 15 seconds. 
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Figure 4-26 Horizontal Position Output for the Reference System, Tightly Coupled 

and Loosely Coupled Systems 
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Figure 4-27 Horizontal Position Errors for Tightly and Loosely Coupled Systems 

4.4.3 Discussion on the Results of Tightly Coupled Integration 

In this section, we presented the general performance of the developed 

tightly coupled integration architecture comparing it to a reference system and also 

to a loosely coupled system. In the light of simulations we can conclude that: 

• The designed tightly coupled Inertial/GPS navigation system provides 

accurate position velocity and attitude information. 

• It corrects the time dependant errors in the INS and high frequency 

errors in the GPS and provides superior performance compared to both. 

• The tightly coupled architecture decreases the dependency on GPS 

navigation solutions which is a problem in the loosely coupled 

architecture. 
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• The developed system provides accurate navigation solutions even 

when the durations that the number of satellites below 4 are long. 

• The system can effectively estimate and correct the sensor errors, gyro 

and accelerometer biases. 

• The system has a superior performance compared to a loosely coupled 

system on both aspects of observability and the accuracy of the 

navigation solutions. 
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CHAPTER 5 

CONTRIBUTIONS, CONCLUSIONS AND FUTURE 

WORK 

The contribution of this study is the assessment of the performance of a 

tactical-grade IMU integrated with a standard GPS receiver for high-accuracy 

navigation. In this regard, a comparison of two integration strategies is also 

performed to assess their relative performance. In particular, loosely coupled 

integration, and tightly coupled integration strategies are considered. Some new 

hardware and software is also developed as part of this work and were used to 

prepare the results which are presented in the previous chapter. 

The performance parameters used to assess the above system included 

position accuracy during complete and partial GPS data outages, observability of 

the system both in normal and adverse conditions, as well as the overall accuracy 

of the system. 

Determination of the accuracy level which can be achieved through a tightly 

coupled integration strategy using the sensors in hand is a great benefit on its own. 

In addition to this, seeing the limitations in accuracy that is caused by some system 

parameters is also important. 

The observability analysis made in this study for the tightly coupled 

integrated navigation system and comparison of the results with a loosely coupled 

system has never been touched on before in the literature. The quantitative and 



 87

qualitative results obtained from this analysis and comparing them with the intuitive 

a priory information about observability is also another contribution. 

Details of the major conclusions of this study are summarized below in 

terms of the objectives set out in CHAPTER 1. 

Integrated System’s Reliability 

• The integrated system shows better performance than GPS-only and 

INS-only in all cases. 

• The integrated system can successfully estimate the inertial sensor 

errors in INS. 

• The integrated system can successfully filter the high frequency faults 

and can accurately fill data gaps in GPS. 

System Positioning Accuracy During GPS Data Outages 

• For all simulated data outages, the tightly coupled integration strategy 

outperformed the loosely coupled integration strategy. 

• The loosely coupled system cannot provide accurate results for data 

outages longer than 20 seconds. 

• For complete data outages of long durations, the tightly coupled 

integrated system can provide accurate results with only 3 satellites. For 

2 satellites, this duration decreases by a small amount. 

• For discontinuous GPS data simulations, the tightly coupled system has 

higher power of estimation for longer durations compared to the loosely 

coupled system. 

Observability of Aided Navigation System 

• Delta-range measurement does not have significant effect in the system 

observability for long simulation times. 
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• For the tightly coupled integration, the observability of the system 

increases with an increase in number of satellites. 

• The tightly coupled system remains observable even when number of 

satellites is less than 4. 

• The observability of the tightly coupled system is much greater than the 

loosely coupled system. 

Impact of Integration Strategy On Overall System Performance 

• The tightly coupled integration strategy outperformed the loosely 

coupled integration approach, although in some circumstances these 

differences were not significant. 

• The tightly coupled system removes the dependency on GPS 

navigation solutions. 

• The tightly coupled system can reduce the filter error covariance 

estimates to a lower level compared to the loosely coupled system. 

There are many avenues that can be progressed from this thesis. The 

observability analysis made in this study examined the overall observability of a 

time varying system. The analysis can be expanded to studies concerning the 

observability of individual states of the system. This approach may help in deeper 

understanding of the nature of aided INS, so improvements in performance of 

some outputs can be obtained. Another useful field will be the implementation of 

fault detection algorithms to increase the integrity of the system. In this study, 

measurements from the GPS are directly used which can cause misoperation in a 

jamming environment. Addition of self-detection algorithm which can check 

integrity of pseudo and delta-range measurements are inevitable for military and 

critical civilian applications of integrated navigation systems. 
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