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ABSTRACT

A CLASS OF SUPER INTEGRABLE KORTEWEG-DE

VRIES SYSTEMS

DAG, HUSEYIN
M.S., Department of Physics

Supervisor: Prof. Dr. Atalay Karasu

SEPTEMBER 2003, 54 pages.

In this thesis, we investigate the integrability of a class of multicomponent
super integrable Korteweg-de Vries (KdV) systems in (1 4 1) dimensions in the
context of recursion operator formalism. Integrability conditions are obtained
for the system with arbitrary number of components. In particular, from these
conditions we construct two new subclasses of multicomponent super integrable

KdV systems.

Keywords: integrability, KdV equation, recursion operator, super KdV equa-

tions.
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OZ

BIR SINIF SUPER ENTEGRE EDILEBILIR

KORTEWEG-DE VRIES DENKLEM SISTEMLERI

DAG, HUSEYIN
Yiiksek Lisans , Fizik Boliimii

Tez Yoneticisi: Prof. Dr. Atalay Karasu

EYLUL 2003, 54 sayfa.

Bu ¢aligmada, (1 + 1) boyutta, bir tiir ¢ok bilegenli siiper Korteweg-de Vries
(KdV) sistemlerinin entegre edilebilirligi simetri adim operatérii formalizmi ile
aragtirildi. Entegre edilebilme kogullar1 keyfi sayilardaki bilegenli sistemler icin
elde edildi. Entegre edilebilme kogullarindan, iki alt tiir ¢ok bilegenli siiper entegre

edilebilir KdV sistemleri elde edildi.

Anahtar Kelimeler: entegre edilebilirlik, KdV denklemleri, siiper KdV denklem-

leri, simetri adim operatorii.
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CHAPTER 1

INTRODUCTION

It is known that nonlinear evolution equations which are solved exactly pos-
sesses various surprising features such as infinitely many symmetries and con-
served covariants, and they are integrable [1,2,4-7] . Such models arise in many
branches of physics such as classical and quantum field theories, particle physics,
relativity, statistical physics and quantum gravity. Also for integrable nonlinear
systems, there exists a remarkable property that they have soliton like solutions

to the equations of motions [8].

The theory of the nonlinear integrable equations or soliton equations started
in 1967 with the paper by Gardner, Greene, Kruskal and Miura [9] on exact

solution of the Korteweg-de Vries (KdV) equation. Historically, KdV equation



was introduced as a mathematical description by Korteveg and de Vries in 1895
[11], to explain the well known observation of S. Russell [10] that travelling water
waves maintains their shapes for long distances. Being nonlinear and difficult to
solve, this equation generates lots of interest [3]. As mentioned, Kruskal, Zabusky,
Gardner and Greene studied the KdV equation and reach the exiting result that
the solutions of the equation does maintain for a long time even they go through
a scattering, and Kruskal named those solutions as solitons. Besides being non-
linear, having the soliton like solutions, increased studies on KdV equation, and

it became the first nonlinear equation solved exactly.

After the exact solution of the KdV equation, the properties of nonlinear
equations are studied with great interest and integrability became an important
property to nonlinear evolution systems |1, 2, 4, 14]. So, studies on integrability
increased, and various attempts to find a universal definition to integrability had
started. On this direction various integrability tests are developed |2, 26, 27|.
Some of those are: the method of Lax pair, the method of bi-Hamiltonian formu-
lation, Painlavé analysis, the method of prolongation structure and the method
of recursion operator. In this work, we will focus on the construction of recursion

operators and their related nonlinear systems.

All known integrable equations posses infinite number of symmetries. Usually,



symmetries of an integrable equation are related to one another by a certain dis-
tinguished operator which is called recursion operator. It was first presented in

its general form by Olver [27] in 1977.

The theories of super integrable systems have drawn a lot of attention in
the last two decades [6,8,12-20,22|. Super systems contain anticommuting fields
(fermions) of Grasmann algebra and commuting fields (bosons). The KdV equa-
tion is a completely integrable nonlinear evolution equation for a bosonic field.
The first super integrable KdV system was discovered by Kupershmidt [12, 13] in
1984. A different system was later obteined by Manin and Radul [15] from their
super Kadomptsev-Petviashvili (KP) hierarchy. A supersymmetric fermionic ex-

tension of KAV has been given by Mathieu [19].

There are several extensions of the classical KdV equation, and their integra-
bility have been investigated in |20, 23, 24, 25]. More recently, Oguz et al [26|
have found a new class of multicomponent super KdV equations in the context

of Hamiltonian formalism.

In this work, motivated by the above works on super integrable KdV systems,
we consider a class of autonomous multicomponent super KdV system for inte-

grability classification. For this purpose we proposed a recursion operator. From



integrability conditions we construct two new multicomponent super KdV sys-

tems.

In chapter II, we briefly review the topics on integrability and super KdV sys-

tems.

In chapter IIT we consider a class of super multicomponent KdV systems and
propose a recursion operator of degree 2. From integrability (compatibility) con-

ditions, we construct two new multicomponent super KdV systems.

In chapter IV, we present our conclusion and discuss some technical aspects

of our partial classification.



CHAPTER 2

BASIC DEFINITIONS AND INTEGRABILITY

2.1 Basic Definitions
2.1.1 Evolution Equation

In this study we consider evolution (system of) equations of the form

up = Flul, (2.1)

where F'is a suitable C'*° vector field on some manifold M. It is assumed that the
space of smooth vector fields on M is some space S of C'*° functions on the real
line vanishing rapidly at +oo. Equation (2.1) gives the time evolution of some
variable u and called the evolution equation. Here F' = F(u, Uy, Uy, ...) depends

on u in a non-linear way.



The Korteweg-de Vries equation which is also a subject to this study is an
illustrative example for an evolution equation. KdV equation first introduced by
Korteweg and de Vries in 1895 [11] to explain the solitary behavior of a plane
water wave. The famous form of this equation which we shall use throughout

this work is

U = Ugpy + OUUL, (2.2)

where the dynamical variable v can be thought as the height of the wave from
the surface, and the subscripts represent differentiation with respect to the cor-

responding variables.

2.1.2 Fréchet Derivative

Definition 2.1 The Fréchet derivative of F' at the point u in the direction of v

s defined as

F*(u)[v] = F*[v] = aagF(u—l—fv) . (2.3)
=

Than the Fréchet derivative operator which is a linear differentiable operator de-

noted by F*.

Example 2.1 For the KdV equation (2.2), the Fréchet derivative is

F*[v] = vsp + 6vu, + 6uv,, (2.4)



and the operator form is

F* = D? + 6uD + 6u,, (2.5)

where D = % 18 the total derivative with respect to .

2.1.3 Symmetry

Definition 2.2 For an evolution equation, a function o € S is a symmetry if it

satisfies

o*[F] — F*lo] = 0. (2.6)

Example 2.2 For the KdV equation equation (2.2), u, is a symmetry and sat-

isfies equation (2.6), such that

o*=D (2.7)

and

D(usg + 6uuy) — (D3 4+ 6uD + 6ug)u, = (Uge + 6u2 + 6Utlye — (Use + 6U2 + GUtly,)

=0.



2.1.4 Conserved Covariant

Definition 2.3 For an evolution equation, a function v € S* is a conserved co-

variant (conserved gradient, i.e. gradient of a conserved functional) if it satisfies
VIFI+ (F) ] = 0. (2.8)
Here ()1 = ~* and v is a given functional I : S — R, defined as
v = I*(u)[v] = (gradl,v) (2.9)
to satisfy equation (2.8), I must be conserved such as;
I'[F] = I'[uy] = (gradl, F) = 0. (2.10)

Example 2.3 For the KdV equation in the form equation (2.2) , the first con-

served covariant and the conserved functional are given as

A =y (2.11)
and
o= [ Y24 (2.12)
o 2

Here v* =id and v = gradl obviously.

Than equation (2.8) is satisfied such as

VIE] 4+ (F)'] = 1(uge + 6un,) + (—D* — 6Du + u,)u



= ugy + 6uu, — us, — 6uu, — 6uyu + 6uu,  (2.13)

2.1.5 Recursion Operators

A recursion operator is a linear integro-differential operator which maps sym-
metries onto symmetries. The recursion operators were first presented in their
general form by Olver [27]. If we know a recursion operator for a system of
differential equations, we can generate infinitely many symmetries by applying
recursion operator successively, starting with some symmetry o©. The resulting

hierarchy of symmetries is

o) — Ron) . n=01,2.. . (2.14)

Therefore, the existence of a recursion operator is strongly related to the inte-
grability properties of the equation, since an equation which admits a recursion

operator admits symmetries.

In order to be a recursion operator for a system, an operator need to satisfy

the following criteria, together with the Fréchet derivative of the system.

Theorem 2.1 Suppose u(t) — Flu] = 0 is a system of q differential equations. If



R : S — S is a linear operator such that
F*.R— D,.R=R.F* - R.D, (2.15)

on the solution manifold, where R : S — S is a linear differential operator, then

R s a recursion operator for the system.

The proof of the theorem is given in [27, 28]. In general, a recursion operator
of a system depends on independent variables (¢, x), and the dependent variables

u and its derivatives.

For evolutionary system of equations given as u; — F'(u), where F(u) € S,
since we have

Di.R=R,+ R.D, (2.16)

criterion(2.15) implies that R = R and we get the following commutator relation
for recursion operators;

Ry = [F*,R). (2.17)

The recursion operator for the equation u; = F[u] is also called the strong sym-

metry for the given equation.

Example 2.4 The KdV equation (2.2) possesses a recursion operator

R = D*+4u+2u,D™* (2.18)

10



and
Rt = 4U’t -+ 2'Ll,txD71 = D3 -+ 6uD -+ 671/1 s
then
R, = 4dug, + 2ug D71 4 24uu, + 1202 D7 + 12uug, D71
F*R = (D?+6uD + 6u,)(D* + 4u + 2u, D)
= D+ 10us, + 18ug, D + 20u, D* + 10uD? + 60uu,
+24u* D + 12uug, D' + 1202 D~ + 2uy, D!
RF* = (D*+4u+2u,D ")) (D? + 6uD + 6u,)
= D’ +10uD? + 20u, D* 4 6us, + 18ug, D

+24u? D + 36uu,
such that Ry — [F*, R] = 0. Here
Dl = / e, (2.19)

with the property

D.D'=D"'D=id (2.20)

so that it is inverse of D .

Example 2.5 Since R = D? +4u + 2u, D! is a recursion operator for the KdV

equation (2.2), it must create new symmetries from a given symmetry. In previous

11



sections we had shown that o) = g is a symmetry of the KAV system. If R is

operated on u,, we get

@ — RO
= (D* +4u + 2u, D) (u,)
= Ugy + Ouuy

= Ug.

Here, it is obvious that 0@ = v, is a symmetry of the KdV equation.

2.1.6 Hereditary Operators

In previous Section, we have mentioned that by applying the recursion opera-
tor onto a starting symmetry of a given evolution equation, we can create infinite
symmetry hierarchy. But it is not necessary to reach all the existing symmetries

of the hierarchy (commuting family of symmetries).

Fuchssteiner and Fokas [1] have shown that, a recursion operator, which can
create the infinite hierarchy of a nonlinear evolution equation with all existing

members of the hierarchy is possible. Such recursion operators are called heredi-

12



tary operators and a recursion operator is hereditary when,
R*[Rv|w + R[R"v|w (2.21)

is symmetric in v and w.

Example 2.6 For the KdV equation (2.2), the recursion operator R = D?+4u+

2u, Dt proves to be hereditary since
R*[v] = 4v+2v,D7!
R*R[v] = 4Rv+2(Rv),D™*

and (4Rv + 2(Rv), D™ )w — R(4vw + 2v, D~ w) is symmetric in v and w.
2.1.7 Hamiltonian Formalism

The Hamiltonian formalism is very important in the theory of integrability. In
particular, bi-Hamiltonian systems, that is systems that admit two Hamiltonian

representations on the same set of coordinates, are of great interest.

Furthermore, the existence of a commuting family of symmetries, is related to

the Hamiltonian formalism.

Definition 2.4 An operator valued function 0 is called a Hamiltonian operator,

if and only if it is skew-symmetric and it satisfies the Jacobi identity

{a,b,c} +{b,c,a} + {c,a,b} =0, (2.22)

13



where {} defined as {a,b,c} = {a,b,c}(u) = (b,0'(u)[f(u)alc), and then the
Hamiltonian system will be

u, = 0f, (2.23)

where 0 is a Hamiltonian operator and f is a suitable gradient function (i.e.

It is possible for an evolution equation to be a Hamiltonian system with two
hamiltonian operators 6; and 6, operating on two suitable gradient functions f;

and fo. Then the system can be written as

ug = 01f1 = 0o fs (2-24)

such systems are called bi-Hamiltonian systems.

For a bi-Hamiltonian system, if linear combination of the operators 61, 0
93 = 91 + (192 (2.25)

is still a Hamiltonian operator, then #; and 6, are said to be compatible, and the

system is called a compatible bi-Hamiltonian system.

If an evolution equation is a compatible bi-Hamiltonian system and 6, is in-
vertible, then

R = 0,0;" (2.26)

14



is a hereditary operator for the system and creates all members of the infinite

hierarchy.

Example 2.7 The KdV equation (2.2) (us = ug, + 6uu,) can be written in the

forms
uy = D(ug, + 3u?) (2.27)
u, = (D +4uD + 2u,)u (2.28)

where
00 = D , 6y=D+4uD +2u, (2.29)
fi = up+3u* , fo=u (2.30)

are the compatible bi-Hamiltonian operators with (01+60) being Hamiltonian, and

the corresponding gradient functions.

Example 2.8 Since the given equation is a compatible bi-Hamiltonian system,
and the the operator

R = 0,07!

R = (D?+4uD +2u,)(D™)

= D?’+4u+2u,D "

15



1s a hereditary operator. Then all of the members of the KdV hierarchy can be

found by beginning with a suitable starting symmetry of the hierarchy.

2.1.8 The Lax Pair

For an evolution equation, one important property is to have Lax pair. Let us
consider a linear, hermitian operator L(t), satisfying an eigenvalue equation with

a suitable wave function v (t), such as

Lt = X, (2.31)

where \; =0 .

Time evolution of the wave function is given by an operator P(t) which is

anti-symmetric and not necessarily hermitian

o
5 = P (2.32)

By taking the time derivative of the eigenvalue equation (2.31), and substitut-

ing equation (2.32), one can reach the commutator relation

%:mu. (2.33)

If the above relation is satisfied with suitable operators L and P, than those

operators are called as a Lax pair. And if the commutator relation (2.33) yields

16



a given nonlinear evolution equation, then, the system will have a strong slue of

being solvable. Advanced discussions on this topic can be found in [2].

Example 2.9 For the KdV equation (2.2), the Laz pair that provides the equation

s given by

L = D*+u (2.34)

P = 4D’ +3uD + 3Du. (2.35)

2.2 Integrability

In this section, we will give a brief summary of integrability which is an impor-
tant topic when dealing with nonlinear systems of equations. It is a remarkable
property that non linear systems which are solved exactly possess infinitely many
symmetries and conserved covariants (if the model is conserved), or they are inte-
grable [1, 2, 5, 8, 27|. It is not certain that is it possible for all integrable systems
to be solved exactly, but one can easily say that integrability is a strong clue for

the solvability of the nonlinear equation.

There does not exist a unique definition for an integrability of a nonlinear evo-

lution equation. However, since the integrable systems possess infinitely many

symmetries, the following criterion introduced by Olver [27] is the most accept-

17



able approach. In the rest of this study, we will use the following definition when

considering integrability.

Definition 2.5 A system of equations is said to be integrable if it admits a non-

trivial recursion operator.

This means that for an evolution equation, if there exists a recursion operator
R satisfying the condition (2.17) such that R, — [F™*, R] = 0 the system is inte-

grable.

In previous sections it was shown that

R=D?+4u+ 2u,D™!
is a recursion operator for the KdV equation satisfying (2.17). So the KdV equa-

tion is an integrable system.

There also exists alternative criterions for integrability. Since we will mention

integrability in the point of view of the Lax pairs and bi-hamiltonian systems, it

will be better to give their approaches briefly.

18



For an evolution equation, if there exists a Lax pair L and P, such that
the commutator relation L, — [P, L] = 0 results the given evolutionary system

u; — F'(u) = 0, then the system is integrable.

It is given that there exists a Lax pair satisfying the commutator relation
(2.17), which provides the KdV equation (2.2). So KdV equation is also inte-

grable when considering the Lax representation.

Finally, if an evolutionary system is a compatible bi-hamiltonian system, it is
obviously integrable. In previous sections it was shown that KdV equation (2.2)

is a compatible bi-hamiltonian system.

2.3 Super Integrable KdV Type Equations

After the rise of the quantum theories, studies to write super partners to
classical evolution equations had increased [12,15,16,19-25,29]. Since, u is the
classical parameter in evolution equations, it can be regarded as a commuting
(bosonic) field in super theories. And a fermionic (anti commuting) partner can

be written such that the evolution equation (2.1) will take the form

19



—F . (2.36)
&t 3

Here the bosonic parameter commutes while the fermionic parameter anti-commutes,

such that

UqUg = UUg,

fagb = _&)fav (237)

and the evolution of the system is given by the operator F

«Q ab

F = (2.38)
2 3
F2 FO

©0) (1)
F,5 F,
a, a
with o, 3,... = 1,2,...,m are the bosonic labels and a,b,... = 1,2,...,n are

fermionic labels.

The main way to get a super integrable system is the supersymmetrization
of the bosonic field. And starting from the classical evolution equation, one can
end up with a supersymmetric system [19-22,30]. But there also exist successful
attempts which result a super system just by introducing a super partner to the
bosonic component, which is not necessary to be supersymmetric [12-14|. Such

systems are called super systems.

20



In the case of the KdV equations; the first supersymmetric integrable KdV
system was introduced by Manin- Radul [15], and the first super extension of the

KdV equation was introduced by Kupershmidt [12].

In the following sections, we will give the famous super KdV equation and

supersymmetrization of the classical KdV equation.

2.3.1 Super Integrable KdV System

Kupershmidt, in 1984, introduced a super integrable KdV system [12]. This
system is not supersymmetric but the integrability of the equation is provided by
a Lax pair. Since the system is not supersymmetric, some authors call it as the

Kuper-KdV equation. The super KdV system introduced by Kupershmidt is

U — U3y + 6U’U/$ — 12££2x y

& = 4y + 6ué, + 3Eu, (2.39)

where u is the bosonic field and ¢ is the fermionic field.

This system admits a Lax pair

L = D*4u+&D7E

21



P = 4D?+3uD + 3Du (2.40)

which satisfy the commutation relation (2.33).

2.3.2  Supersymmetric Integrable KdV Systems

When studying the super spaces, supersymmetry is a powerful tool. Super-
symmetrization of the bosonic field could be used when constructing a super-
symmetric system. In the case of the KdV equation, the construction of the

supersymmetric KdV system is as follows.
We will formulate the fermionic extension of the KdV equation in a superspace
formalism. The variable = will be extended to a doublet (x,6), where 6 is an

anti-commuting (i.e. fermionic, Grasmanian) variable: #* = 0. So, the bosonic

(commuting) field u(x), will be replaced by a superfield, such that

u(z) —  U(x,0). (2.41)

Then the Taylor expansion of the superfield ¥ in terms of component fields

u(z) and &(x) is given as

22



U(x,0) =&(x) + Ou(x). (2.42)

Here ¢ is the super partner of the commuting variable u, and W(z, ) is a fermionic
superfield. It has the same character of the # independent term in the expansion,

which is ¢ here.

It is also possible to have a bosonic expansion of a superfield, or to have a

bosonic superfield such that

Qz,0) = u(x) + 65(x). (2.43)

The fermionic and bosonic extensions of the KdV equation is given in the fol-

lowing sections.

2.3.2.2  Fermionic Supersymmetrization of the KdV Equation

As mentioned before the superspace can be expanded as a fermionic superfield
such that; ¥(z,0) = () + Ou(z). In superspace formalism, the fundamental

differential operator is the super derivative defined as

ds = 00x + Oy , (2.44)

23



where 0., 9y denote the partial derivatives with respect to x,6, and d*> = D obvi-

ously.

The space supersymmetric invariance refers to invariance with respect to trans-
formations © — nf# and 8 — 6 +n where 7 is the anticommuting constant param-

eter. The generator of the transformation is given by

Q = 8 — 00, (2.45)

and for the fermionic superfield, the supersymmetric transformation is

50 = nQe, (2.46)

which transforms in components

ou(r) = né.(z),

¥(x) = nu(x). (2.47)

If we consider the KdV equation given in (2.2), its superfield expansion with

¢ =0is given as

U(zr,0) = 6Ou(x)
U, = Oy (2.48)

= Ous, + 0(6uu,)

24



= dU + 3d%(Vd, V)

= d°V + 6d,Vd>0.

In general

U, = d°V + ad?(Vd,¥) + (6 — 2a)d,Vd> ¥, (2.49)

where a is any constant.

After finding the general form of ¥;, again doing the expansion ¥, = & + uf

with £ # 0, we get

\Ijt == gt + Ute (250)

= d°+ad?(Vd,¥) + (6 — 2a)d,Vd> V.

After calculating the terms d°, ad?(Vd,V¥) and (6 — 2a)d,Vd*¥, one can reach

the equation

S +uwlb = aluy + a&yu

+luze + alor + 2auu, + (6 — 2a)uu,lo.

This will result in a system (with a = 3, for the integrability) given by Mathieu

[19, 21, 22] such that

25



Uy = Usy + 6uu, + 38,

& = Eso+ 3uby 4 3uxé. (2.52)

The integrability of the above system was given by the Lax pair

L = D*+u+0¢, (2.53)

P = 4D%+6uD + 3u, + 30(26,.D + &,).

There also exists bosonic expansion of the superfield, which will be dealt in

the next Section.

2.3.2.2 Bosonic Supersymmetrization of the KdV Equation

One other way to extend u(x) into a superfield is to expand it in terms bosonic

field such that

u(x) — Qz,0) = u(z) + 6¢(x),

and the KdV equation (2.2) can be expanded as

Qu(2,0) = Qa, + 600,
= d%Q + 6Qd2Q (2.54)

u + 08 = usy + 6uu, + 0(—Es, + 6u, + 68uy,)

26



which yields the system

U = Uze + O6uU,

This equation is called the trivial supersymmetric KdV equation, because the
commuting part of the system is the KdV equation itself and there is no coupling

from the anticommuting parameter.
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CHAPTER 3

MULTICOMPONENT SUPER INTEGRABLE KdV
TYPE EQUATIONS AND THEIR RECURSION

OPERATORS

In this chapter, we are concerned with the integrability of a class of multicom-

ponent super KdV systems admitting a recursion operator of order 2.

3.1 Integrability of Multicomponent Systems

In this thesis we aimed to study the integrability of a class of multicompo-
nent super KdV systems by introducing a suitable recursion operator. Systems
admitting a recursion operator are integrable in the existence of infinitely many

symmetries sense because by definition, a recursion operator maps symmetries of
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a system to other symmetries.

The integrability criterion for evolutionary systems was given by equation

(2.17). In the case of multicomponent systems, this criterion will take the form

RAB = FZCRCA — RACFé'A> (31)

where the Fréchet derivative of the system takes the matrix form

F*(O) F*(l)

" 1] ab

FAB = ) (3 2)
F*ﬁ(2) F*b(3)

a

and the recursion operator will be

© RO
R R

ab

Rap = : (3.3)
2 3
G

then the component form of the criterion (3.1) will be

Rap = Fo Ryp+ FoyRap — Roy Flg — RaaFyg
Ry = Fc;/RWb + F;deb — RawF;kb — RadF;b
Rag = F;WR'Yﬁ -+ F;deg — Ra,yF,:ﬂ — RadF;g (34)
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Motivated by the form of two-components super and supersymmetric KdV

equations, we consider the following multicomponent super KdV systems.

Uat = baﬁuﬁ,&c + 30&67“5“7@ + Kaabgagb,%v;
ga,t = Aabgb,i}x + Laabfbua,z + Naabgb,xuay (35)
where bosonic indices «, 3,7,... = 0,1,...,m and fermionic indices a,b,c,... =

0,1,...,n. All the coefficients are constant parameters, which will be determined

by the integrability conditions of the system.

We associate the integrability of these systems with the existence of a recursion

operator (3.3) with the components

Rﬁfg = bagD? + Cop, (2uy + u, ,D71)
+FpapbanD DT,

Ry = LineD + Liebe + LipeCoa D™
+ Pobgettgée D™ + Sapegben D ugD ™
+Rappetig DD,

2 _
Rgﬁ) - zlzﬁcgc + Qzﬁcgqu !

+TaﬂacuaD71£CD717 (36)
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RY = AwD?+ ZY e + 22 e D"

+Mabcd£c,:vD71§dD71 + Qaba,@ua‘DiluﬂDia

where all coefficients are constants. The components of the Fréchet derivative of

the system (3.5) is calculated as

F*g]) = baﬁDS + 3004’YﬁuVD + Boaﬁ’yu’y,:w
F*Igl) = _Kabafa,Qx + KoéabgaD2,
Fi = Lopa€aD + Nupabas. (3.7)

F*b(g) = Aang + La,ybu%m + NafybU,YD.

The integrability criterion (3.1) gives the relation among the coefficient terms
of system (3.5) and the recursion operator (3.6). We present computational de-

tails of the integrability criterion (3.1) in Appendix A.

Having obtained the necessary conditions of integrability and specified the
numbers m and n, our basic aim is to identify integrable cases and to give a
complete description and classification of integrable systems. This procedure is
based on the coefficients of the higher order terms, which are b,s and A, (main
matrices) in our system [31]. In other words, system (3.5) can be reduced to a

system with main matrices in Jordan canonical form by a linear invertible change
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of dependent variables.

In this work we shall not give a complete classification. Motivated by the
two components super and supersymmetric KdV systems. we construct two new
subclasses multicomponent super KdV systems. They correspond to Nyg. =

2L4p. and Ngg. = Lap. (from integrability conditions).

3.2 Multicomponent Super Integrable KdV System I

The multicomponent super KdV system (3.5) admits a recursion operator for
the case Nog. = 2L,3. and it is integrable. All of the equations in the appendix

A are satisfied with the conditions

baﬁ = 6048 , Aab = 45ab7
Ca,uu = Cal/,u ) Komn = Kanma
1
L(lymn = Kamn ) Limn - *Kamna
3
2
Q;ﬂc = Laﬁc ) Zﬁc = gLaﬁcv
1 4
Noge = 2Laac , Zge = gLa/J‘c, (3.8)

Fa,ﬁab - Mabcd = Paa,@b = Raa,@b - Saab,ﬁ = 07
Taa,@b = Qabaﬂ = Liab = Zsba = 0’
and the relations

CapyCruwr = CapyCopy,
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Kcmde,Bm - Kamdeﬁn )

2
Ca,@’yK’ymn = g Kadn Ld,@m )
2
La’ynCzSﬂu = gLaﬂde;ma
La,@deun = La,udeﬁrm
La'be'ymn = LawnKvbn- (39)

Then we get the first new subclass of integrable multicomponent super KdV

system as

Uat = 6aﬁuﬂ,3m + 3Oaﬂwu,6u7,z + Kcmbéaé'bﬂz;

ga,t = 45ab§b,3x + Laabua,xfb + 2Laab£b,zua7 (310)
and the recursion operator for the above system is

Rg][g = JagD? + 2Capyuy + Caﬁvu%rDilj

1
Rélb) = KachCD + gKabcgc,:m
(2) 2 -1
Raﬁ - Laﬁcfc + gLaﬁcgc,xD > (311)
®3) 2 4
Rab = 45abD + gLGWbUV'

This system can be considered as the multicomponent form of the super KdV
equation given by (2.39). Because the above system reduces to one of the known
two component super KdV systems (2.39) which contains of one bosonic and one

fermionic variables (m = 0,n = 0). The corresponding recursion operator for
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this system with suitable choice of coefficients ( Cooo = 2, Kooo = —12 , and

LOOO = 3) is

RO = D? 4 4u+2u,D7?,
RM = —12¢D — 4¢,,
R® = 3¢42¢,D7, (3.12)

RO = 4D? 4 4u,

where uy = u and &, = &.

Furthermore our system (3.10) reduces to the system of Oguz et al |26], when
Koea = Leaa - In this case the constructed recursion operator (3.12) can be
written as a product of two Hamiltonian operators. These Hamiltonian operators

constitute a compatible pair and the recursion operator becomes hereditary.

3.3  Multicomponent Super Integrable KdV System II

The integrability conditions (Appendix A) yields the other possible subclass
Nage = Lage to system (3.5). All of the equations given in appendix A are satisfied

with a recursion operator resulting from (3.6), when conditions

baﬁ = 6&6 ) Aab = 5ab;
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La,Bc - Na,@c )

Kaab = Kaba )

Rabﬁc = Racﬂb ’

Faﬂcd = Faﬂdc ;

aﬂac = Qacﬁa s

12, =L, =LK
amn amn _g amn )
2 2 1
Qaﬁd - Zadﬁ = ngZﬁd )
2
Mabcd = _§La'befycd )
a/u/b Qab,uu
and also the relations

Laﬁch'yd
LaﬁcLb'yd
KacmLm'yd
La’ydK'ymn
Caﬁvcwv
Oaﬁvacd
Ladewﬁu

are satisfied. Then the multicomponent KdV system will take the form

3

Caﬂ’}’ — Yays

Mabcd = Madcb7
Pabﬁc = L acBb

Sadcﬂ = _Faﬂcd7

2
Ll = *Kamn7

amn 3

2
aﬁd Z;dﬁ = gLa,@d,

2

Rabud - _§Kabchud7

1
Faﬁcd =

1 1

La'ybC'y,uV + § La,uchVba

= LayeLega,
= LogaLliye,
= KadmLmre
= Loy yma,

= Caw/ Owﬁ’

2
- 7KacmLm ’
3 ol

2

g L(ZBCLC,LLd‘
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(3.13)

_§KacmLmﬁd = T RPacdB — Pozbﬂcb

(3.14)



Uat = 5aﬁuﬁ,3a: + 30&,87“6'“7,1: + Koeabgagb,%zv

éa,t = 5ab£b,3$ + Lavc(ﬁc,zuv + gcu%x)‘ (315)

For the above multicomponent system, integrability is guaranteed by the ex-

istence of a recursion operator which has components

1
R(Oﬁ) = 6045D2 + OOéﬁ’Y<2u’Y + u%:vD_l) - §KacmLmﬁd§c,mD_1€dD_lv

2 1

Rfylb) = gKabcch - gKabc(gc,m + 50,2mD_1)

1 1 2
—’—Kamemﬁc(ggc’mDilu/gDil — §UQ£CD71 — §Uﬁ7$D71£CD71),

2 1 _ 1 _ _
RY) = Lupe( 56 + 3€eaD™") = g Lagm Limyeti D7D,
®3) 2 2 1 -1 2 -1 -1
Rab = 5abD + Lawb(gu’y =+ gu'y,xD ) - §La'be'ycd£c,xD de
1
+§LauchubuuD_1uuD_1~ (316)

The above system contains the two component supersymmetric KdV systems
(2.52). If we choose the coefficients Cppp = 2, Koo = 3 and Loy = 3
where m = n = 0, we get a recursion operator to supersymmetric integrable
KdV system (2.52) with components

RO® = D?44u+2u,D7' — ¢, D 'uD,
RY = —¢ 42D — &, D' —uED™?
—&D'uD™t — 2u, D7¢D

R® = D' 42 —uD %D, (3.17)
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R® = 4D?+2u+u,D"' +uD 'uD"' — 26, DD,

The multicomponent system given in (3.15) also yields the trivial supersym-
metric system (2.55), with suitable coefficients ( Copp = 2, Ko = 0 and
Looo = 3 ) satisfying the conditions (3.13) and (3.14). The components of the
recursion operator which provides the integrability of the trivial supersysmmetric

integrable KdV system (2.55) are

R9 = D? 4 du+ 2u,D7", (3.18)
RY = 0, (3.19)
R® = 26, D7 4 4¢, (3.20)
R® = D*+44u+2u,D". (3.21)
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CHAPTER 4

CONCLUSION

In this work, we have considered a class of multicomponent super KdV sys-
tems. We have investigated the integrability of these systems in terms of the

existence of a certain recursion operator.

We have given the necessary integrability conditions for arbitrary numbers m
and n . From these integrability conditions we have found two new subclasses of
multicomponent super KdV systems. One of them contains the two component
super KdV system (2.39) while the other contains two component supersymmet-

ric KdV systems (2.52) and (2.55).

As we mentioned in the previous chapter, the complete classification of inte-
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grable systems is based on the canonical form of the coefficients of the higher
order terms of the systems. Moreover, the canonical form of the integrable sys-
tems is unique and well-defined. One of the interesting problems is to give a
complete classification of our multicomponent super KdV systems. The other is
to investigate the Hamiltonian (and bi-Hamiltonian) structure of these systems.

These will be considered for future work.
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APPENDIX A

INTEGRABILITY CONDITIONS

The equations in this appendix are the integrability conditions of multicom-
ponent KdV system (3.4), with the recursion operator (3.6) which is introduced,
resulting from the integrability condition (3.1). For practical purposes, symmet-
ric part of an equation is denoted as {, }, where antisymmetrization is denoted

as [, ].

bapCupy — by Cpgy =0 (A1)

CarsCruw — CarpChpy =0 (A.2)

2004/37[{7061 + 3bauFquc - Kamqulngc
_Kach}nﬁd - 2Kacm@$nﬁd + LimCNmﬁd

I3

amd

Nyse = 0 (A.3)
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Coapy Krea + 3bayFusac — KaemQapg = 0 (A.4)

Qbaprﬂcd — L2 Nm/gd + Fa,@cmAmd + {C, d} =0 (A5)

amc

_bauFquc + 2Kachqlnﬁd + Kachgnﬁd

—L. Luga — L e Nonga + Fapappe

amc amc

—L2 iLmpe =0 (A.6)
Kach}nﬁd - L(lxmchﬁd + [07 d] =0 (A7)
Koacmeﬁud - PamucNmﬁd + [C, d] =0 (AS)
2Kacmeﬁud + [C, d] =0 (A9)
3Ca,u,7F75dc - Kacmeﬁ,u,d - Fa,@cmLmud =0 (AlO)
3Cozu'yF'yﬁdc - Koacmeﬁud - Faﬁ cmLmud =0 (All)
SCau'vaﬁcd - Kocchmﬁud - Faﬁ mdep,c =0 (A12)
ba'yF"/,@cd — Fa,@mdAmc =0 (A13)
FogmaLimpe + FapmdNmpe — 3CauyFypea = 0 (A.14)
Ram,ucNmﬁd + [C, d] =0 (A15)

43



KoemTmppa — FapmaLimpe = 0
Fopedbus — FopemAma =0
3F 0rycdCrpp + SamesNmpud — FopemLmpa = 0
Fogem(Newa — Lepa) =0
L2 e(Nua — Lyna) = 0
Pam#C(Nmud - Lmud) =0
RamMC(Nmud - Lmud) =0

Samcu(Nm,ud - Lm,ud) =0

1
Labc

Aoy — bauL;bd — BbWLibd — 3bauLzbd

—2bau K ppq = 0

Ll Lc,ud + Rab,ucAcd - 3bafoyb#d - ba'yRyb,ud

abe

- I(ozdmZ2

mbp

mbu
+Li¥md[’m#b + Ltlmmde,ub + Coz'y,uK'ybd =0

Ll Ncud + Sabdﬂbﬁu - ba’yS’ybdu - 3Ca,u’YLA1/bd

abe

—3Cayr L2 g = 3bar Pympa + L2 aNimgw = 0

amd

2
Labc

Aca = bayp Ly — 3bap Loy — bap ke = 0
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(A.16)
(A.17)
(A.18)
(A.19)
(A.20)
(A.21)
(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)



L2 Lcud + Lichcud - Sabdﬂbﬁu - RabucAcd

abe
_GbowP yopd — Qbawsvbdu - Qbowabud - 3CawLibd

+LimdLmub - Ooz’yuK’ybd =0 (A28)

L2 Lc,ud — 3ba'yp’yb,ud — 3boc'yR'ybud _ adm 71

abc mbu

. 2Kadm ZZ

mbpu

+ L} aLewy =0 (A.29)

L2, Neja — 3bary Pyvua — 3barSysap — 3Carulyg

abe

mbp

— 200, K pa

L2 gLy = 0 (A.30)

3bapLtpe + 3bapLpe + bap Ly, — KameAmb

pbe pbe ube
—L2 Ay =0 (A.31)
BbapLype + bapLipe — 200 Kppe — L2 Amp = 0 (A.32)
bapLippe + KaemAmb = bapEKuve = LAy = 0 (A.33)

ba#Pubﬂc + ?’OaﬂuL;llbc + kacme%@b,@ - QCaﬁuKmb

L., Nusy — PompeNnp = 0 (A.34)

amc

L3

abc

Aea = bayLiyg =0 (A.35)
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LZbchud + 2LibCNcud + RoabucAcd - 3bo¢’yP'ybud

_3ba757bdu - bavvaud - 3Ca7uL§bd

+KamaZpy, =0

2Ly Lepd + L2y Newa + Sapasbsu — 3bary Popud

abe

_bavsvbdu - Sbavvaud =0

LibcLC/Ld + Pabﬁdbﬁu - ba,yp,ybud

_gbawR'ybud - Kadm22

mbu

=0

LzchCud + PabucAcd - ba.ysybdu

_bowp youd 3OOC’YML§bd =0

3Pabﬁdcﬂ,uu + Pab,uchud + Rab,uchud
_BCa;ryP'ybud - 3Ca,u'yR'ybud - Bcawfpfybud

_QKadembuu - Kademb/u/ =0
PabﬂcKﬁmn - 2Kamdebnc + [ma C] =0

3
PabBchud + QSabdwa“ - ?)Ca,u'yp'ybﬁd

_BCa,u'yS'ybdﬁ + {Bu :u} =0
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(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)



Sabc,BAcd - ba,uSubd,B =0 (A43)

Rovgabsy — bapRappa = 0 (A.44)
SabesLiepd + SavesNepd — 3CaryuSybds = 0 (A.45)
SabepLepd — KadmQmbus = 0 (A.46)
SabesNepd — 3CaruSybas + KamdQmpus = 0 (A.47)
Sabdsbsu — SamdpAmp = 0 (A.48)
SeobmpEsen — KacaMapmn + [m,n] =0 (A.49)
Suomis K sem + [, m] = 0 (A.50)

Faﬁchﬁbn + FaﬁcnK,Bbm + Sabc,@<K,an + Kﬁnm) =0 (A51)

RabﬁdKﬁmn - Kachcbmd =0 (A52)
RabﬁdKﬂmn - KamcMcbnd =0 (A53)
3Rabﬁdcﬂuu - SCa,LL'nyybyd =0 (A54)
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Rab,ucAcd - Ram,udAmb + Ca'yu(K'ybd - K’ydb) =0

RabBchud - Rocc,@chub =0

Rabﬁc<Lcud - Nc,ud) =0

BCauprbﬁc + Kachmb,@u - Pamﬂchub + {BJ V} =0

Faﬁchﬁbn + FaﬁcnKﬁbm + Sabcﬁ(Kﬁmn + Kﬁnm)

- amdebcn =0

Faucd(KMmb - Kubm) =0

Sabcﬁ(Kﬁmn - Kﬁnm) + Faﬂchﬂbn - Fa[o’cnKﬁbm

2Faﬁchﬁbn - FaﬁcnKﬁbm + [ma d] =0
Limn(Lmub - Nmub) =0
Pamﬁn(Lmub - le/b) =0

Samnﬁ(Lmub - Nmub) =0

Ramﬂn<Lmub - Nmub) =0
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(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)



3

28,
2 by Crou — SamngLmus + {m, 8} =0

afctrc acw cf3d 3 :
Q achﬁd achﬁd

aﬁc L Y YO
Q Lc d La d 31 &acj C /J’d

apc Cﬁd 3 ary C acph

aﬁc Cy,d aﬁ C*2Ci Y Y
H d Na dC ﬂ)u ac ﬂ
C lu‘d

auc Cﬁd ]Va C ’yﬂlu
1% cfBd 3 a'ydC

1
+ZgeyNepa =0

Qapelea —
Betled Aac@?ﬁdzo

Q2 N 2
afct ¥ epd + Qa cLC -
Betepd N, dewﬁu - 3AacTcmtd

- LaucQzﬁd =0

2[3 [ [ A T
aBctcud a dC —
Q ~yd“YyBu 3 act cBud 0

aBctYeud B d
aBuctic aclc
Q + Tuppeled — NacToppa — NaweQogq = 0

To8~vab~y —
gydby — NacTepua = 0

afBvyd v
Y 7% aved cBud Nal/c cBud
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(A.66)

(A.67)

(A.68)

(A.69)

(A.70)

(A.71)

(A.72)

(A.73)

(A.74)

(A.75)



724, (Lage — Nape) = 0

Taﬁ'ydK'ymn - La’ymF'y,Bnd =0

Ta,@,umAmd - Ta*y,udb'yﬁ - 0

Ta,@vdeum - Navdeﬁum + {’Ylu} =0

Taﬁ'ydeum - Bcau’ymcuﬁu - Qad’y,uNdﬂm =0

Taﬁ'yd(Ld,LLm - Nd,um) =0

Lapabus — Qayuabus + MacQeipg — NacLesa = 0

2La'ydC'yﬂu + AacTcﬁud + Nauchlz,@d

_SQifydCWLﬂ - Taﬁ,umAmd - Z;cuLCﬁd = O

LoyeFypma + [c,d] =0

Na’ydb’yﬂ - Q(Zrydb’yﬂ + 3Aachﬁd + Aach@d

_2Aachﬁd - Aachﬁd =0

NoymFypna + [m,n] =0

20

(A.76)

(A.77)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)

(A.83)

(A.84)

(A.85)

(A.86)



Madmn(Ld,Bc - Ndﬁc) - 0

3AacQ(1;ﬁd + 3AacQzﬁd - AachBd - 2Aachﬂd =0

Qaduu(Ldﬁc - Ndﬁc) =0

Manchnﬁd - ManmdNnﬂc =0

ZY by — Moo Z)

abu™”pv cbv

— 3N, 73

cbv

+ AachbV =0

BZ;,WCW,, - Qabuvb'w —N. CWCchbV — N, aNCZCQbI/
+ZalcuLCVb + chMLcub - 2Aachb/u/ - 3Aachbuu

—LaveZ gy, =0

C

Z;prMCd - LCWCL'bed - Lachf)/bd + 3AamMmbdc

~Qp e b = 0

Z% by — Moo 22
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