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ABSTRACT

A CLASS OF SUPER INTEGRABLE KORTEWEG-DE

VRIES SYSTEMS

DA�G, HÜSEY�N

M.S., Department of Physics

Supervisor: Prof. Dr. Atalay Karasu

SEPTEMBER 2003, 54 pages.

In this thesis, we investigate the integrability of a class of multicomponent

super integrable Korteweg-de Vries (KdV) systems in (1 + 1) dimensions in the

context of recursion operator formalism. Integrability conditions are obtained

for the system with arbitrary number of components. In particular, from these

conditions we construct two new subclasses of multicomponent super integrable

KdV systems.

Keywords: integrability, KdV equation, recursion operator, super KdV equa-

tions.
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ÖZ

B�R SINIF SÜPER ENTEGRE ED�LEB�L�R

KORTEWEG-DE VRIES DENKLEM S�STEMLER�

DA�G, HÜSEY�N

Yüksek Lisans , Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Atalay Karasu

EYLÜL 2003, 54 sayfa.

Bu çal�³mada, (1 + 1) boyutta, bir tür çok bile³enli süper Korteweg-de Vries

(KdV) sistemlerinin entegre edilebilirli�gi simetri ad�m operatörü formalizmi ile

ara³t�r�ld�. Entegre edilebilme ko³ullar� key� say�lardaki bile³enli sistemler için

elde edildi. Entegre edilebilme ko³ullar�ndan, iki alt tür çok bile³enli süper entegre

edilebilir KdV sistemleri elde edildi.

Anahtar Kelimeler: entegre edilebilirlik, KdV denklemleri, süper KdV denklem-

leri, simetri ad�m operatörü.
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CHAPTER 1

INTRODUCTION

It is known that nonlinear evolution equations which are solved exactly pos-

sesses various surprising features such as in�nitely many symmetries and con-

served covariants, and they are integrable [1,2,4-7] . Such models arise in many

branches of physics such as classical and quantum �eld theories, particle physics,

relativity, statistical physics and quantum gravity. Also for integrable nonlinear

systems, there exists a remarkable property that they have soliton like solutions

to the equations of motions [8].

The theory of the nonlinear integrable equations or soliton equations started

in 1967 with the paper by Gardner, Greene, Kruskal and Miura [9] on exact

solution of the Korteweg-de Vries (KdV) equation. Historically, KdV equation
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was introduced as a mathematical description by Korteveg and de Vries in 1895

[11], to explain the well known observation of S. Russell [10] that travelling water

waves maintains their shapes for long distances. Being nonlinear and di�cult to

solve, this equation generates lots of interest [3]. As mentioned, Kruskal, Zabusky,

Gardner and Greene studied the KdV equation and reach the exiting result that

the solutions of the equation does maintain for a long time even they go through

a scattering, and Kruskal named those solutions as solitons. Besides being non-

linear, having the soliton like solutions, increased studies on KdV equation, and

it became the �rst nonlinear equation solved exactly.

After the exact solution of the KdV equation, the properties of nonlinear

equations are studied with great interest and integrability became an important

property to nonlinear evolution systems [1, 2, 4, 14]. So, studies on integrability

increased, and various attempts to �nd a universal de�nition to integrability had

started. On this direction various integrability tests are developed [2, 26, 27].

Some of those are: the method of Lax pair, the method of bi-Hamiltonian formu-

lation, Painlavé analysis, the method of prolongation structure and the method

of recursion operator. In this work, we will focus on the construction of recursion

operators and their related nonlinear systems.

All known integrable equations posses in�nite number of symmetries. Usually,
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symmetries of an integrable equation are related to one another by a certain dis-

tinguished operator which is called recursion operator. It was �rst presented in

its general form by Olver [27] in 1977.

The theories of super integrable systems have drawn a lot of attention in

the last two decades [6,8,12-20,22]. Super systems contain anticommuting �elds

(fermions) of Grasmann algebra and commuting �elds (bosons). The KdV equa-

tion is a completely integrable nonlinear evolution equation for a bosonic �eld.

The �rst super integrable KdV system was discovered by Kupershmidt [12, 13] in

1984. A di�erent system was later obteined by Manin and Radul [15] from their

super Kadomptsev-Petviashvili (KP) hierarchy. A supersymmetric fermionic ex-

tension of KdV has been given by Mathieu [19].

There are several extensions of the classical KdV equation, and their integra-

bility have been investigated in [20, 23, 24, 25]. More recently, O�guz et al [26]

have found a new class of multicomponent super KdV equations in the context

of Hamiltonian formalism.

In this work, motivated by the above works on super integrable KdV systems,

we consider a class of autonomous multicomponent super KdV system for inte-

grability classi�cation. For this purpose we proposed a recursion operator. From
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integrability conditions we construct two new multicomponent super KdV sys-

tems.

In chapter II, we brie�y review the topics on integrability and super KdV sys-

tems.

In chapter III we consider a class of super multicomponent KdV systems and

propose a recursion operator of degree 2. From integrability (compatibility) con-

ditions, we construct two new multicomponent super KdV systems.

In chapter IV, we present our conclusion and discuss some technical aspects

of our partial classi�cation.
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CHAPTER 2

BASIC DEFINITIONS AND INTEGRABILITY

2.1 Basic De�nitions

2.1.1 Evolution Equation

In this study we consider evolution (system of) equations of the form

ut = F [u], (2.1)

where F is a suitable C∞ vector �eld on some manifold M . It is assumed that the

space of smooth vector �elds on M is some space S of C∞ functions on the real

line vanishing rapidly at ±∞. Equation (2.1) gives the time evolution of some

variable u and called the evolution equation. Here F = F (u, ux, uxx, ...) depends

on u in a non-linear way.
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The Korteweg-de Vries equation which is also a subject to this study is an

illustrative example for an evolution equation. KdV equation �rst introduced by

Korteweg and de Vries in 1895 [11] to explain the solitary behavior of a plane

water wave. The famous form of this equation which we shall use throughout

this work is

ut = uxxx + 6uux, (2.2)

where the dynamical variable u can be thought as the height of the wave from

the surface, and the subscripts represent di�erentiation with respect to the cor-

responding variables.

2.1.2 Fréchet Derivative

De�nition 2.1 The Fréchet derivative of F at the point u in the direction of v

is de�ned as

F ∗(u)[v] = F ∗[v]
.
=

∂

∂ξ
F (u + ξv)

∣∣∣∣∣
ξ=0

. (2.3)

Than the Fréchet derivative operator which is a linear di�erentiable operator de-

noted by F ∗.

Example 2.1 For the KdV equation (2.2), the Fréchet derivative is

F ∗[v] = v3x + 6vux + 6uvx, (2.4)

6



and the operator form is

F ∗ = D3 + 6uD + 6ux, (2.5)

where D = d
dx

is the total derivative with respect to x.

2.1.3 Symmetry

De�nition 2.2 For an evolution equation, a function σ ∈ S is a symmetry if it

satis�es

σ∗[F ]− F ∗[σ] = 0. (2.6)

Example 2.2 For the KdV equation equation (2.2), ux is a symmetry and sat-

is�es equation (2.6), such that

σ = ux

σ∗ = D (2.7)

and

D(u3x + 6uux)− (D3 + 6uD + 6ux)ux = (u4x + 6u2
x + 6uuxx − (u4x + 6u2

x + 6uuxx)

= 0. .
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2.1.4 Conserved Covariant

De�nition 2.3 For an evolution equation, a function γ ∈ S∗ is a conserved co-

variant (conserved gradient, i.e. gradient of a conserved functional) if it satis�es

γ∗[F ] + (F ∗)†[γ] = 0. (2.8)

Here (γ∗)† = γ∗ and γ is a given functional I : S → R, de�ned as

γ
.
= I∗(u)[v] = 〈gradI, v〉 (2.9)

to satisfy equation (2.8), I must be conserved such as;

I∗[F ] = I∗[ut] = 〈gradI, F 〉 = 0. (2.10)

Example 2.3 For the KdV equation in the form equation (2.2) , the �rst con-

served covariant and the conserved functional are given as

γ(1) = u (2.11)

and

I(1) =
∫ ∞

−∞
u2x

2
dx. (2.12)

Here γ∗ = id and γ = gradI obviously.

Than equation (2.8) is satis�ed such as

γ∗[F ] + (F ∗)†[γ] = 1(u3x + 6uux) + (−D3 − 6Du + ux)u
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= u3x + 6uux − u3x − 6uux − 6uxu + 6uux (2.13)

= 0.

2.1.5 Recursion Operators

A recursion operator is a linear integro-di�erential operator which maps sym-

metries onto symmetries. The recursion operators were �rst presented in their

general form by Olver [27]. If we know a recursion operator for a system of

di�erential equations, we can generate in�nitely many symmetries by applying

recursion operator successively, starting with some symmetry σ(0). The resulting

hierarchy of symmetries is

σ(n+1) = Rσ(n) , n = 0, 1, 2, ... . (2.14)

Therefore, the existence of a recursion operator is strongly related to the inte-

grability properties of the equation, since an equation which admits a recursion

operator admits symmetries.

In order to be a recursion operator for a system, an operator need to satisfy

the following criteria, together with the Fréchet derivative of the system.

Theorem 2.1 Suppose u(t)−F [u] = 0 is a system of q di�erential equations. If
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R : S → S is a linear operator such that

F ∗.R−Dt.R = R.F ∗ −R.Dt (2.15)

on the solution manifold, where R : S → S is a linear di�erential operator, then

R is a recursion operator for the system.

The proof of the theorem is given in [27, 28]. In general, a recursion operator

of a system depends on independent variables (t, x), and the dependent variables

u and its derivatives.

For evolutionary system of equations given as ut − F (u), where F (u) ∈ S,

since we have

Dt.R = Rt + R.Dt (2.16)

criterion(2.15) implies that R = R and we get the following commutator relation

for recursion operators;

Rt = [F ∗, R]. (2.17)

The recursion operator for the equation ut = F [u] is also called the strong sym-

metry for the given equation.

Example 2.4 The KdV equation (2.2) possesses a recursion operator

R = D2 + 4u + 2uxD
−1 (2.18)
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and

Rt = 4ut + 2utxD
−1 F ∗ = D3 + 6uD + 6ux ,

then

Rt = 4u3x + 2u4xD
−1 + 24uux + 12u2

xD
−1 + 12uu2xD

−1

F ∗R = (D3 + 6uD + 6ux)(D
2 + 4u + 2uxD

−1)

= D5 + 10u3x + 18u2xD + 20uxD
2 + 10uD3 + 60uux

+24u2D + 12uu2xD
−1 + 12u2

xD
−1 + 2u4xD

−1

RF ∗ = (D2 + 4u + 2uxD
−1))(D3 + 6uD + 6ux)

= D5 + 10uD3 + 20uxD
2 + 6u3x + 18u2xD

+24u2D + 36uux

such that Rt − [F ∗, R] = 0. Here

D−1 =
∫ ∞

.dξ, (2.19)

with the property

D.D−1 = D−1.D = id (2.20)

so that it is inverse of D .

Example 2.5 Since R = D2 + 4u + 2uxD
−1 is a recursion operator for the KdV

equation (2.2), it must create new symmetries from a given symmetry. In previous
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sections we had shown that σ(1) = ux is a symmetry of the KdV system. If R is

operated on ux, we get

σ(2) = Rσ(1)

= (D2 + 4u + 2uxD
−1)(ux)

= u3x + 6uux

= ut.

Here, it is obvious that σ(2) = ut is a symmetry of the KdV equation.

2.1.6 Hereditary Operators

In previous Section, we have mentioned that by applying the recursion opera-

tor onto a starting symmetry of a given evolution equation, we can create in�nite

symmetry hierarchy. But it is not necessary to reach all the existing symmetries

of the hierarchy (commuting family of symmetries).

Fuchssteiner and Fokas [1] have shown that, a recursion operator, which can

create the in�nite hierarchy of a nonlinear evolution equation with all existing

members of the hierarchy is possible. Such recursion operators are called heredi-
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tary operators and a recursion operator is hereditary when,

R∗[Rv]w + R[R∗v]w (2.21)

is symmetric in v and w.

Example 2.6 For the KdV equation (2.2), the recursion operator R = D2+4u+

2uxD
−1 proves to be hereditary since

R∗[v] = 4v + 2vxD
−1

R∗R[v] = 4Rv + 2(Rv)xD
−1

and (4Rv + 2(Rv)xD
−1)w −R(4vw + 2vxD

−1w) is symmetric in v and w.

2.1.7 Hamiltonian Formalism

The Hamiltonian formalism is very important in the theory of integrability. In

particular, bi-Hamiltonian systems, that is systems that admit two Hamiltonian

representations on the same set of coordinates, are of great interest.

Furthermore, the existence of a commuting family of symmetries, is related to

the Hamiltonian formalism.

De�nition 2.4 An operator valued function θ is called a Hamiltonian operator,

if and only if it is skew-symmetric and it satis�es the Jacobi identity

{a, b, c}+ {b, c, a}+ {c, a, b} = 0, (2.22)
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where {} de�ned as {a, b, c} = {a, b, c}(u) = 〈b, θ′(u)[θ(u)a]c〉, and then the

Hamiltonian system will be

ut = θf, (2.23)

where θ is a Hamiltonian operator and f is a suitable gradient function (i.e.

f ∗ = (f ∗)†).

It is possible for an evolution equation to be a Hamiltonian system with two

hamiltonian operators θ1 and θ2, operating on two suitable gradient functions f1

and f2. Then the system can be written as

ut = θ1f1 = θ2f2 (2.24)

such systems are called bi-Hamiltonian systems.

For a bi-Hamiltonian system, if linear combination of the operators θ1, θ2

θ3 = θ1 + aθ2 (2.25)

is still a Hamiltonian operator, then θ1 and θ2 are said to be compatible, and the

system is called a compatible bi-Hamiltonian system.

If an evolution equation is a compatible bi-Hamiltonian system and θ1 is in-

vertible, then

R = θ2θ
−1
1 (2.26)
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is a hereditary operator for the system and creates all members of the in�nite

hierarchy.

Example 2.7 The KdV equation (2.2) (ut = u3x + 6uux) can be written in the

forms

ut = D(u2x + 3u2) (2.27)

ut = (D3 + 4uD + 2ux)u (2.28)

where

θ1 = D , θ2 = D3 + 4uD + 2ux (2.29)

f1 = u2x + 3u2 , f2 = u. (2.30)

are the compatible bi-Hamiltonian operators with (θ1+θ2) being Hamiltonian, and

the corresponding gradient functions.

Example 2.8 Since the given equation is a compatible bi-Hamiltonian system,

and the the operator

R = θ2θ
−1
1

R = (D3 + 4uD + 2ux)(D
−1)

= D2 + 4u + 2uxD
−1.

15



is a hereditary operator. Then all of the members of the KdV hierarchy can be

found by beginning with a suitable starting symmetry of the hierarchy.

2.1.8 The Lax Pair

For an evolution equation, one important property is to have Lax pair. Let us

consider a linear, hermitian operator L(t), satisfying an eigenvalue equation with

a suitable wave function ψ(t), such as

L(t)ψ = λψ, (2.31)

where λt = 0 .

Time evolution of the wave function is given by an operator P (t) which is

anti-symmetric and not necessarily hermitian

∂ψ

∂t
= Pψ. (2.32)

By taking the time derivative of the eigenvalue equation (2.31), and substitut-

ing equation (2.32), one can reach the commutator relation

∂L

∂t
= [P, L]. (2.33)

If the above relation is satis�ed with suitable operators L and P , than those

operators are called as a Lax pair. And if the commutator relation (2.33) yields

16



a given nonlinear evolution equation, then, the system will have a strong slue of

being solvable. Advanced discussions on this topic can be found in [2].

Example 2.9 For the KdV equation (2.2), the Lax pair that provides the equation

is given by

L = D2 + u (2.34)

P = 4D3 + 3uD + 3Du. (2.35)

2.2 Integrability

In this section, we will give a brief summary of integrability which is an impor-

tant topic when dealing with nonlinear systems of equations. It is a remarkable

property that non linear systems which are solved exactly possess in�nitely many

symmetries and conserved covariants (if the model is conserved), or they are inte-

grable [1, 2, 5, 8, 27]. It is not certain that is it possible for all integrable systems

to be solved exactly, but one can easily say that integrability is a strong clue for

the solvability of the nonlinear equation.

There does not exist a unique de�nition for an integrability of a nonlinear evo-

lution equation. However, since the integrable systems possess in�nitely many

symmetries, the following criterion introduced by Olver [27] is the most accept-
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able approach. In the rest of this study, we will use the following de�nition when

considering integrability.

De�nition 2.5 A system of equations is said to be integrable if it admits a non-

trivial recursion operator.

This means that for an evolution equation, if there exists a recursion operator

R satisfying the condition (2.17) such that Rt − [F ∗, R] = 0 the system is inte-

grable.

In previous sections it was shown that

R = D2 + 4u + 2uxD
−1

is a recursion operator for the KdV equation satisfying (2.17). So the KdV equa-

tion is an integrable system.

There also exists alternative criterions for integrability. Since we will mention

integrability in the point of view of the Lax pairs and bi-hamiltonian systems, it

will be better to give their approaches brie�y.

18



For an evolution equation, if there exists a Lax pair L and P , such that

the commutator relation Lt − [P, L] = 0 results the given evolutionary system

ut − F (u) = 0, then the system is integrable.

It is given that there exists a Lax pair satisfying the commutator relation

(2.17), which provides the KdV equation (2.2). So KdV equation is also inte-

grable when considering the Lax representation.

Finally, if an evolutionary system is a compatible bi-hamiltonian system, it is

obviously integrable. In previous sections it was shown that KdV equation (2.2)

is a compatible bi-hamiltonian system.

2.3 Super Integrable KdV Type Equations

After the rise of the quantum theories, studies to write super partners to

classical evolution equations had increased [12,15,16,19-25,29]. Since, u is the

classical parameter in evolution equations, it can be regarded as a commuting

(bosonic) �eld in super theories. And a fermionic (anti commuting) partner can

be written such that the evolution equation (2.1) will take the form
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ut

ξt


 = F




u

ξ


 . (2.36)

Here the bosonic parameter commutes while the fermionic parameter anti-commutes,

such that

uαuβ = uαuβ,

ξaξb = −ξbξa, (2.37)

and the evolution of the system is given by the operator F

F =




F
(0)
αβ F

(1)
αb

F
(2)
aβ F

(3)
ab


 (2.38)

with α, β, ... = 1, 2, ...,m are the bosonic labels and a, b, ... = 1, 2, ..., n are

fermionic labels.

The main way to get a super integrable system is the supersymmetrization

of the bosonic �eld. And starting from the classical evolution equation, one can

end up with a supersymmetric system [19-22,30]. But there also exist successful

attempts which result a super system just by introducing a super partner to the

bosonic component, which is not necessary to be supersymmetric [12-14]. Such

systems are called super systems.
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In the case of the KdV equations; the �rst supersymmetric integrable KdV

system was introduced by Manin- Radul [15], and the �rst super extension of the

KdV equation was introduced by Kupershmidt [12].

In the following sections, we will give the famous super KdV equation and

supersymmetrization of the classical KdV equation.

2.3.1 Super Integrable KdV System

Kupershmidt, in 1984, introduced a super integrable KdV system [12]. This

system is not supersymmetric but the integrability of the equation is provided by

a Lax pair. Since the system is not supersymmetric, some authors call it as the

Kuper-KdV equation. The super KdV system introduced by Kupershmidt is

ut = u3x + 6uux − 12ξξ2x ,

ξt = 4ξ3x + 6uξx + 3ξux , (2.39)

where u is the bosonic �eld and ξ is the fermionic �eld.

This system admits a Lax pair

L = D2 + u + ξD−1ξ

21



P = 4D3 + 3uD + 3Du (2.40)

which satisfy the commutation relation (2.33).

2.3.2 Supersymmetric Integrable KdV Systems

When studying the super spaces, supersymmetry is a powerful tool. Super-

symmetrization of the bosonic �eld could be used when constructing a super-

symmetric system. In the case of the KdV equation, the construction of the

supersymmetric KdV system is as follows.

We will formulate the fermionic extension of the KdV equation in a superspace

formalism. The variable x will be extended to a doublet (x, θ), where θ is an

anti-commuting (i.e. fermionic, Grasmanian) variable: θ2 = 0. So, the bosonic

(commuting) �eld u(x), will be replaced by a super�eld, such that

u(x) → Ψ(x, θ). (2.41)

Then the Taylor expansion of the super�eld Ψ in terms of component �elds

u(x) and ξ(x) is given as
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Ψ(x, θ) = ξ(x) + θu(x). (2.42)

Here ξ is the super partner of the commuting variable u, and Ψ(x, θ) is a fermionic

super�eld. It has the same character of the θ independent term in the expansion,

which is ξ here.

It is also possible to have a bosonic expansion of a super�eld, or to have a

bosonic super�eld such that

Ω(x, θ) = u(x) + θξ(x). (2.43)

The fermionic and bosonic extensions of the KdV equation is given in the fol-

lowing sections.

2.3.2.2 Fermionic Supersymmetrization of the KdV Equation

As mentioned before the superspace can be expanded as a fermionic super�eld

such that; Ψ(x, θ) = ξ(x) + θu(x). In superspace formalism, the fundamental

di�erential operator is the super derivative de�ned as

ds = θ∂x + ∂θ , (2.44)
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where ∂x, ∂θ denote the partial derivatives with respect to x, θ, and d2
s = D obvi-

ously.

The space supersymmetric invariance refers to invariance with respect to trans-

formations x → ηθ and θ → θ +η where η is the anticommuting constant param-

eter. The generator of the transformation is given by

Q = ∂θ − θ∂x, (2.45)

and for the fermionic super�eld, the supersymmetric transformation is

δΨ = ηQθ, (2.46)

which transforms in components

δu(x) = ηξx(x),

δξ(x) = ηu(x). (2.47)

If we consider the KdV equation given in (2.2), its super�eld expansion with

ξ = 0 is given as

Ψ(x, θ) = θu(x)

Ψt = θut (2.48)

= θu3x + θ(6uux)
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= d6
sΨ + 3d2

s(ΨdsΨ)

= d6
sΨ + 6dsΨd2

sΨ.

In general

Ψt = d6
sΨ + ad2

s(ΨdsΨ) + (6− 2a)dsΨd2
sΨ, (2.49)

where a is any constant.

After �nding the general form of Ψt, again doing the expansion Ψt = ξ + uθ

with ξ 6= 0, we get

Ψt = ξt + utθ (2.50)

= d6
s + ad2

s(ΨdsΨ) + (6− 2a)dsΨd2
sΨ.

After calculating the terms d6
s, ad2

s(ΨdsΨ) and (6− 2a)dsΨd2
sΨ, one can reach

the equation

ξt + utθ = aξux + aξxu

+(6− 2a)uξxξ3x (2.51)

+[u3x + aξξ2x + 2auux + (6− 2a)uux]θ.

This will result in a system (with a = 3, for the integrability) given by Mathieu

[19, 21, 22] such that

25



ut = u3x + 6uux + 3ξξ2x

ξt = ξ3x + 3uξx + 3uxξ. (2.52)

The integrability of the above system was given by the Lax pair

L = D2 + u + θξx (2.53)

P = 4D3 + 6uD + 3ux + 3θ(2ξxD + ξ2x).

There also exists bosonic expansion of the super�eld, which will be dealt in

the next Section.

2.3.2.2 Bosonic Supersymmetrization of the KdV Equation

One other way to extend u(x) into a super�eld is to expand it in terms bosonic

�eld such that

u(x) → Ω(x, θ) = u(x) + θξ(x),

and the KdV equation (2.2) can be expanded as

Ωt(x, θ) = Ω3x + 6ΩΩx

= d6
sΩ + 6Ωd2

sΩ (2.54)

ut + θξt = u3x + 6uux + θ(−ξ3x + 6uξx + 6ξux) ,
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which yields the system

ut = u3x + 6uux

ξt = ξ3x + 6uξx + 6ξux. (2.55)

This equation is called the trivial supersymmetric KdV equation, because the

commuting part of the system is the KdV equation itself and there is no coupling

from the anticommuting parameter.
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CHAPTER 3

MULTICOMPONENT SUPER INTEGRABLE KdV

TYPE EQUATIONS AND THEIR RECURSION

OPERATORS

In this chapter, we are concerned with the integrability of a class of multicom-

ponent super KdV systems admitting a recursion operator of order 2.

3.1 Integrability of Multicomponent Systems

In this thesis we aimed to study the integrability of a class of multicompo-

nent super KdV systems by introducing a suitable recursion operator. Systems

admitting a recursion operator are integrable in the existence of in�nitely many

symmetries sense because by de�nition, a recursion operator maps symmetries of
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a system to other symmetries.

The integrability criterion for evolutionary systems was given by equation

(2.17). In the case of multicomponent systems, this criterion will take the form

RAB = F ∗
ACRCA −RACF ∗

CA, (3.1)

where the Fréchet derivative of the system takes the matrix form

F ∗
AB =




F
∗(0)
αβ F

∗(1)
αb

F
∗(2)
aβ F

∗(3)
ab


 , (3.2)

and the recursion operator will be

RAB =




R
(0)
αβ R

(1)
αb

R
(2)
aβ R

(3)
ab


 , (3.3)

then the component form of the criterion (3.1) will be

Rαβ = F ∗
αγRγβ + F ∗

αdRdβ −RαγF
∗
γβ −RαdF

∗
dβ

Rαb = F ∗
αγRγb + F ∗

αdRdb −RαγF
∗
γb −RαdF

∗
db

Raβ = F ∗
aγRγβ + F ∗

adRdβ −RaγF
∗
γβ −RadF

∗
dβ (3.4)

Rab = F ∗
aγRγb + F ∗

adRdb −RaγF
∗
γb −RadF

∗
db.
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Motivated by the form of two-components super and supersymmetric KdV

equations, we consider the following multicomponent super KdV systems.

uα,t = bαβuβ,3x + 3Cαβγuβuγ,x + Kαabξaξb,2x,

ξa,t = Λabξb,3x + Laαbξbuα,x + Naαbξb,xuα, (3.5)

where bosonic indices α, β, γ, ... = 0, 1, ...,m and fermionic indices a, b, c, ... =

0, 1, ..., n. All the coe�cients are constant parameters, which will be determined

by the integrability conditions of the system.

We associate the integrability of these systems with the existence of a recursion

operator (3.3) with the components

R
(0)
αβ = bαβD2 + Cαβγ(2uγ + uγ,xD

−1)

+Fαβabξa,xD
−1ξbD

−1,

R
(1)
αb = L1

αbcξcD + L2
αbcξc,x + L3

αbcξc,2xD
−1

+PαbβcuβξcD
−1 + Sαbcβξc,xD

−1uβD−1

+Rαbβcuβ,xD
−1ξcD

−1,

R
(2)
aβ = Q1

aβcξc + Q2
aβcξc,xD

−1

+TaβαcuαD−1ξcD
−1, (3.6)
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R
(3)
ab = ΛabD

2 + Z1
abαuα + Z2

abαuαxD
−1

+Mabcdξc,xD
−1ξdD

−1 + QabαβuαD−1uβD−1,

where all coe�cients are constants. The components of the Fréchet derivative of

the system (3.5) is calculated as

F
∗(0)
αβ = bαβD3 + 3CαγβuγD + 3Cαβγuγ,x,

F
∗(1)
αb = −Kαbaξa,2x + KαabξaD

2,

F
∗(2)
aβ = LaβdξdD + Naβdξd,x, (3.7)

F
∗(3)
ab = ΛabD

3 + Laγbuγ,x + NaγbuγD.

The integrability criterion (3.1) gives the relation among the coe�cient terms

of system (3.5) and the recursion operator (3.6). We present computational de-

tails of the integrability criterion (3.1) in Appendix A.

Having obtained the necessary conditions of integrability and speci�ed the

numbers m and n, our basic aim is to identify integrable cases and to give a

complete description and classi�cation of integrable systems. This procedure is

based on the coe�cients of the higher order terms, which are bαβ and Λab (main

matrices) in our system [31]. In other words, system (3.5) can be reduced to a

system with main matrices in Jordan canonical form by a linear invertible change
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of dependent variables.

In this work we shall not give a complete classi�cation. Motivated by the

two components super and supersymmetric KdV systems. we construct two new

subclasses multicomponent super KdV systems. They correspond to Naβc =

2Laβc and Naβc = Laβc (from integrability conditions).

3.2 Multicomponent Super Integrable KdV System I

The multicomponent super KdV system (3.5) admits a recursion operator for

the case Naβc = 2Laβc and it is integrable. All of the equations in the appendix

A are satis�ed with the conditions

bαβ = δαβ , Λab = 4δab,

Cαµν = Cανµ , Kαmn = Kαnm,

L1
αmn = Kαmn , L2

αmn =
1

3
Kαmn,

Q1
aβc = Laβc , Q2

aβc =
2

3
Laβc,

Naβc = 2Laβc , Z1
acβ =

4

3
Laβc, (3.8)

Fαβab = Mabcd = Pαaβb = Rαaβb = Sαabβ = 0,

Taαβb = Qabαβ = L3
αab = Z2

abα = 0,

and the relations

CαβγCγµν = CαµγCγβν ,
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KαndLdβm = KαmdLdβn,

CαβγKγmn =
2

3
KαdnLdβm,

LaγnCδβµ =
2

3
LaβdLdµn,

LaβdLdµn = LaµdLdβn,

LaγbKγmn = LaγnKγbn. (3.9)

Then we get the �rst new subclass of integrable multicomponent super KdV

system as

uα,t = δαβuβ,3x + 3Cαβγuβuγ,x + Kαabξaξb,2x,

ξa,t = 4δabξb,3x + Laαbuα,xξb + 2Laαbξb,xuα, (3.10)

and the recursion operator for the above system is

R
(0)
αβ = δαβD2 + 2Cαβγuγ + Cαβγuγ,xD

−1,

R
(1)
αb = KαbcξcD +

1

3
Kαbcξc,x,

R
(2)
aβ = Laβcξc +

2

3
Laβcξc,xD

−1, (3.11)

R
(3)
ab = 4δabD

2 +
4

3
Laγbuγ.

This system can be considered as the multicomponent form of the super KdV

equation given by (2.39). Because the above system reduces to one of the known

two component super KdV systems (2.39) which contains of one bosonic and one

fermionic variables (m = 0, n = 0). The corresponding recursion operator for
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this system with suitable choice of coe�cients ( C000 = 2 , K000 = −12 , and

L000 = 3 ) is

R(0) = D2 + 4u + 2uxD
−1,

R(1) = −12ξD − 4ξx,

R(2) = 3ξ + 2ξxD
−1, (3.12)

R(3) = 4D2 + 4u,

where u0 = u and ξ0 = ξ.

Furthermore our system (3.10) reduces to the system of O�guz et al [26], when

Kαcd = Lcαd . In this case the constructed recursion operator (3.12) can be

written as a product of two Hamiltonian operators. These Hamiltonian operators

constitute a compatible pair and the recursion operator becomes hereditary.

3.3 Multicomponent Super Integrable KdV System II

The integrability conditions (Appendix A) yields the other possible subclass

Naβc = Laβc to system (3.5). All of the equations given in appendix A are satis�ed

with a recursion operator resulting from (3.6), when conditions

bαβ = δαβ , Λab = δab,
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Laβc = Naβc , Cαβγ = Cαγβ,

Kαab = Kαba , Mabcd = Madcb,

Rαbβc = Rαcβb , Pαbβc = Pαcβb,

Fαβcd = Fαβdc , Sαdcβ = −Fαβcd,

Taβαc = −Qacβα , L1
αmn =

2

3
Kαmn,

L2
αmn = L3

αmn = −1

3
Kαmn , Q1

aβd = Z1
adβ =

2

3
Laβd, (3.13)

Q2
aβd = Z2

adβ =
1

3
Laβd , Rαbµd = −2

9
KαbcLcµd,

Mabcd = −2

9
LaγbKγcd , Fαβcd = −1

9
KαcmLmβd = −Sαcdβ = Pαbβd,

Taµνb = −Qabµν = −1

3
LaγbCγµν +

1

9
LaµcLcνb,

and also the relations

LaβcLcγd = LaγcLcβd,

LaβcLbγd = LaβdLbγc,

KαcmLmγd = KαdmLmγc,

LaγdKγmn = LaγnKγmd,

CαβγCγµν = CανγCγµβ,

CαβγKγcd =
2

3
KαcmLmβd, (3.14)

LaγdCγβµ =
2

3
LaβcLcµd.

are satis�ed. Then the multicomponent KdV system will take the form
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uα,t = δαβuβ,3x + 3Cαβγuβuγ,x + Kαabξaξb,2x,

ξa,t = δabξb,3x + Laγc(ξc,xuγ + ξcuγ,x). (3.15)

For the above multicomponent system, integrability is guaranteed by the ex-

istence of a recursion operator which has components

R
(0)
αβ = δαβD2 + Cαβγ(2uγ + uγ,xD

−1)− 1

9
KαcmLmβdξc,xD

−1ξdD
−1,

R
(1)
αb =

2

3
KαbcξcD − 1

3
Kαbc(ξc,x + ξc,2xD

−1)

+KαbmLmβc(
1

9
ξc,xD

−1uβD−1 − 1

9
uβξcD

−1 − 2

9
uβ,xD

−1ξcD
−1),

R
(2)
aβ = Laβc(

2

3
ξc +

1

3
ξc,xD

−1)− 1

9
LaβmLmγcuγD

−1ξcD
−1,

R
(3)
ab = δabD

2 + Laγb(
2

3
uγ +

1

3
uγ,xD

−1)− 2

9
LaγbKγcdξc,xD

−1ξdD
−1

+
1

9
LaµcLcνbuµD

−1uνD
−1. (3.16)

The above system contains the two component supersymmetric KdV systems

(2.52). If we choose the coe�cients C000 = 2 , K000 = 3 and L000 = 3

where m = n = 0, we get a recursion operator to supersymmetric integrable

KdV system (2.52) with components

R(0) = D2 + 4u + 2uxD
−1 − ξxD

−1uD−1,

R(1) = −ξx + 2ξD − ξ2xD
−1 − uξD−1

−ξxD
−1uD−1 − 2uxD

−1ξD−1,

R(2) = ξxD
−1 + 2ξ − uD−1ξD−1, (3.17)
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R(3) = +D2 + 2u + uxD
−1 + uD−1uD−1 − 2ξxD

−1ξD−1.

The multicomponent system given in (3.15) also yields the trivial supersym-

metric system (2.55), with suitable coe�cients ( C000 = 2, K000 = 0 and

L000 = 3 ) satisfying the conditions (3.13) and (3.14). The components of the

recursion operator which provides the integrability of the trivial supersysmmetric

integrable KdV system (2.55) are

R(0) = D2 + 4u + 2uxD
−1, (3.18)

R(1) = 0, (3.19)

R(2) = 2ξxD
−1 + 4ξ, (3.20)

R(3) = D2 + 4u + 2uxD
−1. (3.21)
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CHAPTER 4

CONCLUSION

In this work, we have considered a class of multicomponent super KdV sys-

tems. We have investigated the integrability of these systems in terms of the

existence of a certain recursion operator.

We have given the necessary integrability conditions for arbitrary numbers m

and n . From these integrability conditions we have found two new subclasses of

multicomponent super KdV systems. One of them contains the two component

super KdV system (2.39) while the other contains two component supersymmet-

ric KdV systems (2.52) and (2.55).

As we mentioned in the previous chapter, the complete classi�cation of inte-

38



grable systems is based on the canonical form of the coe�cients of the higher

order terms of the systems. Moreover, the canonical form of the integrable sys-

tems is unique and well-de�ned. One of the interesting problems is to give a

complete classi�cation of our multicomponent super KdV systems. The other is

to investigate the Hamiltonian (and bi-Hamiltonian) structure of these systems.

These will be considered for future work.
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APPENDIX A

INTEGRABILITY CONDITIONS

The equations in this appendix are the integrability conditions of multicom-

ponent KdV system (3.4), with the recursion operator (3.6) which is introduced,

resulting from the integrability condition (3.1). For practical purposes, symmet-

ric part of an equation is denoted as {, }, where antisymmetrization is denoted

as [, ].

bαµCµβν − bγνCµβγ = 0 (A.1)

CαγβCγµν − CανβCγβµ = 0 (A.2)

2CαβγKγcd + 3bαµFµβdc −KαmdQ
1
mβc

−KαcmQ1
mβd − 2KαcmQ2

mβd + L1
αmcNmβd

−L3
αmdNmβc = 0 (A.3)
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CαβγKγcd + 3bαµFµβdc −KαcmQ2
mβd = 0 (A.4)

2bαµFµβcd − L2
αmcNmβd + FαβcmΛmd + {c, d} = 0 (A.5)

−bαµFµβdc + 2KαcmQ1
mβd + KαcmQ2

mβd

−L1
αmcLmβd − L1

αmcNmβd + FαβdbΛbc

−L2
αmdLmβc = 0 (A.6)

KαcmQ1
mβd − L1

αmcLmβd + [c, d] = 0 (A.7)

KαcmTmβµd − PαmµcNmβd + [c, d] = 0 (A.8)

2KαcmTmβµd + [c, d] = 0 (A.9)

3CαµγFγβdc −KαcmTmβµd − FαβcmLmµd = 0 (A.10)

3CαµγFγβdc −KαcmTmβµd − Fαβ cmLmµd = 0 (A.11)

3CαµγFγβcd −KαmcTmβµd − Fαβ mdNmµc = 0 (A.12)

bαγFγβcd − FαβmdΛmc = 0 (A.13)

FαβmdLmµc + FαβmdNmµc − 3CαµγFγβcd = 0 (A.14)

RαmµcNmβd + [c, d] = 0 (A.15)
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KαcmTmβµd − FαβmdLmµc = 0 (A.16)

Fαµcdbµβ − FαβcmΛmd = 0 (A.17)

3FαγcdCγµβ + SαmcβNmµd − FαβcmLmµd = 0 (A.18)

Fαβcm(Ncµd − Lcµd) = 0 (A.19)

L3
αmc(Nmµd − Lmµd) = 0 (A.20)

Pαmµc(Nmµd − Lmµd) = 0 (A.21)

Rαmµc(Nmµd − Lmµd) = 0 (A.22)

Sαmcµ(Nmµd − Lmµd) = 0 (A.23)

L1
αbcΛcd − bαµL

1
µbd − 3bαµL

2
µbd − 3bαµL

3
µbd

−2bαµKµbd = 0 (A.24)

L1
αbcLcµd + RαbµcΛcd − 3bαγPγbµd − bαγRγbµd

−3CαγµL
1
γbd − 2KαdmZ1

mbµ −KαdmZ2
mbµ

+L1
αmdLmµb + L1

αmdNmµb + CαγµKγbd = 0 (A.25)

L1
αbcNcµd + Sαbdβbβµ − bαγSγbdµ − 3CαµγL

1
γbd

−3CαµγL
2
γbd − 3bαγPγmµd + L2

αmdNmµb = 0 (A.26)

L2
αbcΛcd − bαµL

2
µbd − 3bαµL

3
µbd − bαµKµbd = 0 (A.27)
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L2
αbcLcµd + L2

αbcNcµd − Sαbdβbβµ −RαbµcΛcd

−6bαγPγbµd − 2bαγSγbdµ − 2bαγRγbµd − 3CαγµL
2
γbd

+L2
αmdLmµb − CαγµKγbd = 0 (A.28)

L2
αbcLcµd − 3bαγPγbµd − 3bαγRγbµd −KαdmZ1

mbµ

−2KαdmZ2
mbµ + L1

αcdLcµb = 0 (A.29)

L2
αbcNcµd − 3bαγPγbµd − 3bαγSγbdµ − 3CαγµL

2
γbd

−3CαγµL
3
γbd + KαmdZ1

mbµ − 2CαγµKγbd

+L3
αcdLcµb = 0 (A.30)

3bαµL
1
µbc + 3bαµL

2
µbc + bαµL

3
µbc −KαmcΛmb

−L3
αmcΛmb = 0 (A.31)

3bαµL
1
µbc + bαµL

2
µbc − 2bαµKµbc − L2

αmcΛmb = 0 (A.32)

bαµL
1
µbc + KαcmΛmb − bαµKµbc − L1

αcmΛmb = 0 (A.33)

bαµPµbβc + 3CαβµL
1
µbc + kαcmZ1

mbβ − 2CαβµKµcb

−L1
αmcNmβb − PαmβcΛmb = 0 (A.34)

L3
αbcΛcd − bαµL

3
µbd = 0 (A.35)
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L3
αbcLcµd + 2L3

αbcNcµd + RαbµcΛcd − 3bαγPγbµd

−3bαγSγbdµ − bαγRγbµd − 3CαγµL
3
γbd

+KαmdZ
2
mbµ = 0 (A.36)

2L3
αbcLcµd + L3

αbcNcµd + Sαbdβbβµ − 3bαγPγbµd

−bαγSγbdµ − 3bαγRγbµd = 0 (A.37)

L3
αbcLcµd + Pαbβdbβµ − bαγPγbµd

−3bαγRγbµd −KαdmZ2
mbµ = 0 (A.38)

L3
αbcNcµd + PαbµcΛcd − bαγSγbdµ

−bαγPγbµd − 3CαγµL
3
γbd = 0 (A.39)

3PαbβdCβµν + PαbµcLcνd + RαbµcLcνd

−3CαµγPγbνd − 3CαµγRγbνd − 3CαγνPγbµd

−2KαdmQmbνµ −KαdmQmbµν = 0 (A.40)

PαbβcKβmn − 2KαmdMdbnc + [m, c] = 0 (A.41)

PαbβcNcµd +
3

2
SαbdγCγβµ − 3CαµγPγbβd

−3CαµγSγbdβ + {β, µ} = 0 (A.42)
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SαbcβΛcd − bαµSµbdβ = 0 (A.43)

Rαbβdbβµ − bαβRβbµd = 0 (A.44)

SαbcβLcµd + SαbcβNcµd − 3CαγµSγbdβ = 0 (A.45)

SαbcβLcµd −KαdmQmbµβ = 0 (A.46)

SαbcβNcµd − 3CαγµSγbdβ + KαmdQmbµβ = 0 (A.47)

Sαbdβbβµ − SαmdµΛmb = 0 (A.48)

SαbmβKβcn −KαcdMdbmn + [m,n] = 0 (A.49)

SαbmβKβcn + [m,n] = 0 (A.50)

FαβcmKβbn + FαβcnKβbm + Sαbcβ(Kβmn + Kβnm) = 0 (A.51)

RαbβdKβmn −KαcnMcbmd = 0 (A.52)

RαbβdKβmn −KαmcMcbnd = 0 (A.53)

3RαbβdCβµν − 3CαµγRγbνd = 0 (A.54)
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RαbµcΛcd −RαmµdΛmb + Cαγµ(Kγbd −Kγdb) = 0 (A.55)

RαbβcLcµd −RαcβdLcµb = 0 (A.56)

Rαbβc(Lcµd −Ncµd) = 0 (A.57)

3CανµPµbβc + KαcmQmbβν − PαmβcLmνb + {β, ν} = 0 (A.58)

FαβcmKβbn + FαβcnKβbm + Sαbcβ(Kβmn + Kβnm)

−KαmdMdbcn = 0 (A.59)

Fαµcd(Kµmb −Kµbm) = 0 (A.60)

Sαbcβ(Kβmn −Kβnm) + FαβcmKβbn − FαβcnKβbm

2FαβcmKβbn − FαβcnKβbm + [m, d] = 0 (A.61)

L3
αmn(Lmνb −Nmνb) = 0 (A.62)

Pαmβn(Lmνb −Nmνb) = 0 (A.63)

Sαmnβ(Lmνb −Nmνb) = 0 (A.64)

Rαmβn(Lmνb −Nmνb) = 0 (A.65)
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3

2
SαbnγCγβµ − SαmnβLmµb + {µ, β} = 0 (A.66)

Q1
aβcΛcd − ΛacQ

1
cβd − 3ΛacQ

2
cβd + ΛacNcβd = 0 (A.67)

Q1
aβcLcµd − 3LaγdCγβµ − 3ΛacTcβµd

−LaµcQ
1
cβd + 3Q1

aγdCγβµ + Z2
acµNcβd = 0 (A.68)

Q1
aβcNcµd − TaβµcΛcd − 2NaγdCγβµ − 2ΛacTcβµd

−NaµcQ
1
cβd −NaµcQ

2
cβd + 3Q2

aγdCγβµ

+Z1
acµNcβd = 0 (A.69)

Q2
aβcΛcd − ΛacQ

2
cβd = 0 (A.70)

Q2
aβcNcµd + Q2

aβcLcµd −NaγdCγβµ − 3ΛacTcβµd

−LaµcQ
2
cβd = 0 (A.71)

Q2
aβcLcµd − LaγdCγβµ − 3ΛacTcβµd = 0 (A.72)

Q2
aβcNcµd + TaβµcΛcd − ΛacTcβµd −NaµcQ

2
cβd = 0 (A.73)

Taβγdbγµ − ΛacTcβµd = 0 (A.74)

3TaβγdCγµν − LaνcTcβµd −NaνcTcβµd = 0 (A.75)

49



Z2
adµ(Ldβc −Ndβc) = 0 (A.76)

TaβγdKγmn − LaγmFγβnd = 0 (A.77)

TaβµmΛmd − Taγµdbγβ = 0 (A.78)

TaβγdLdµm −NaγdTdβµm + {γ.µ} = 0 (A.79)

TaβγdLdµm − 3CaνγmCνβµ −QadγµNdβm = 0 (A.80)

Taβγd(Ldµm −Ndµm) = 0 (A.81)

Laµdbµβ −Q1
aµdbµβ + ΛacQ

1
cβd − ΛacLcβd = 0 (A.82)

2LaγdCγβµ + ΛacTcβµd + NaµcQ
1
cβd

−3Q1
cγdCγµβ − TaβµmΛmd − Z1

acµLcβd = 0 (A.83)

LaγcFγβmd + [c, d] = 0 (A.84)

Naγdbγβ −Q2
aγdbγβ + 3ΛacQ

1
cβd + ΛacQ

2
cβd

−2ΛacLcβd − ΛacNcβd = 0 (A.85)

NaγmFγβnd + [m, n] = 0 (A.86)
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Madmn(Ldβc −Ndβc) = 0 (A.87)

3ΛacQ
1
cβd + 3ΛacQ

2
cβd − ΛacLcβd − 2ΛacLcβd = 0 (A.88)

Qadµν(Ldβc −Ndβc) = 0 (A.89)

ManmcNnβd −ManmdNnβc = 0 (A.90)

Z1
abµbµν − ΛacZ

1
cbν − 3ΛacZ

2
cbν + ΛacLcbν = 0 (A.91)

3Z1
abγCγµν −Qabµγbγν −NaµcZ

1
cbν −NaµcZ

2
cbν

+Z1
acµLcνb + Z2

acµLcνb − 2ΛacQcbµν − 3ΛacQcbνµ

−LaνcZ
1
cbµ = 0 (A.92)

Z1
abµKµcd − LaγcL

2
γbd − LaγcL

3
γbd + 3ΛamMmbdc

−Q1
aγcKγbd = 0 (A.93)

Z2
abµbµν − ΛacZ

2
cbν = 0 (A.94)

3Z2
abγCγµν − 3ΛacQcbµν − LaµcZ

2
cbν + {µ, ν} = 0 (A.95)

3Z2
abγCγµν + Qabµγbγν −NaµcZ

2
cbν − 3ΛacQcbµν

−ΛacQcbµν = 0 (A.96)
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Z2
abµKµcd + MabcmΛmd −NaγcL

3
γbd

+3ΛamMmbdc − ΛamMmbcd = 0 (A.97)

Z2
abµKµcd − LaγcL

3
γbd + 3ΛamMmbdc = 0 (A.98)

ΛamMmbcd −MabmdΛmc = 0 (A.99)

Mabmc(Lmµd + Nmµd)−NaγcRγbµd − LaγcMmbcd = 0 (A.100)

MabmdLmµc − LaγcRγbµd = 0 (A.101)

Mabcm(Lmµd −Nmµd) = 0 (A.102)

MabcmNmµd −QabβγKγdc + Laγd(Pγbβc + Sγbcβ)

−NaγcPγbβd −NaβmMmbcd = 0 (A.103)

MabcmΛmd + 2ΛamMmbcd + NaγcL
2
γbd

+Q2
aγcKγbd + [c, d] = 0 (A.104)

MabcmΛmd + Q2
aγcKγbd −Q2

aγcKγdb

−MamcdΛmb = 0 (A.105)

Qabγνbγµ − ΛacQcbµν = 0 (A.106)
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3QabµνCµβγ −NaβcQcbγν − LaβcQcbγν = 0 (A.107)

QabµνKµcd − LaγcSγbdν = 0 (A.108)

Qabµνbνβ −QacµβΛcb = 0 (A.109)

QabµνKµcd −QabµνKµdc + [c, d] = 0 (A.110)

Qabµν(Kµcd −Kµdc)− TaγµcKγbd + TaγµdKγbc + [c, d] = 0 (A.111)

3QabµνCνβγ − 2QacµβLcγb + {β, γ} = 0 (A.112)

LaγcL
1
γbd + LaγcL

2
γbd −NaγdL

1
γbc

−ΛamMmbcd + Q2
aγdKγbc + MabdmΛmc = 0 (A.113)

LaγcL
1
γbd −Q1

aγcKγdb + [c, d] = 0 (A.114)

LaγcPγbβd + LaγcRγbβd + [c, d] = 0 (A.115)

NaγcSγbdβ + [c, d] = 0 (A.116)

3

2
QabµvCvβγ −NaµcQcbβγ + {µ, β, γ} = 0 (A.117)

3ΛacZ
1
cbβ + 3ΛacZ

2
cbβ − 2ΛacLcβb − ΛacNcβb = 0 (A.118)
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3ΛacZ
1
cbβ + ΛacZ

2
cbβ − 2ΛacNcβb − ΛacLcβb

+LaβcΛcb − Z2
acβΛcb = 0 (A.119)

ΛacZ
1
cbβ − ΛacNcβb − Z1

acβΛcb + NaβcΛcb = 0 (A.120)

ΛacQcbµν + NaµcZ
1
cbν − Z1

acνNcµb

−Qabµβbβν + {µ, ν} = 0 (A.121)

TaγβcKγbd − TaγβcKγdb = 0 (A.122)

2(LaγcPγbβd − LaγdPγbβc) + Qabµν(Kνcd −Kνdc)

−(TaγµcKγbd − TaγµdKγbc) + [c, d] = 0 (A.123)

Z2
acβ(Lcµd −Ncµd) = 0 (A.124)

Macmn(Lcµd −Ncµd) = 0 (A.125)

Qacγβ(Lcµd −Ncµd) = 0 (A.126)

MabmdNmµc −NaµmMmbcd = 0 (A.127)

TaγµcKγbd + TaγµdKγbc + Qabµν(Kνcd + Kνdc) = 0 (A.128)
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