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ABSTRACT 

 
 

VISUAL TRACKING WITH 
GROUP MOTION APPROACH 

 
 
 

Arslan, Ali Erkin 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mübeccel Demirekler 

 

September 2003, 72 pages 

 

 

An algorithm for tracking single visual targets is developed in this study. 

Feature detection is the necessary and appropriate image processing technique for 

this algorithm. The main point of this approach is to use the data supplied by the 

feature detection as the observation from a group of targets having similar motion 

dynamics. Therefore a single visual target is regarded as a group of multiple targets.  

Accurate data association and state estimation under clutter are desired for this 

application similar to other multi-target tracking applications. The group tracking 

approach is used with the well-known probabilistic data association technique to 

cope with data association and estimation problems. The applicability of this 

method particularly for visual tracking and for other cases is also discussed. 

 
Keywords: visual tracking, video tracking, feature tracking, multi-target tracking, 

group tracking, probabilistic data association, Kalman filtering. 
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ÖZ 

 
 

GRUP HAREKETİ YAKLAŞIMI İLE 
GÖRSEL İZLEME 

 
 
 

Arslan, Ali Erkin 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mübeccel Demirekler 

 

Eylül 2003, 72 sayfa 

 

 

Bu çalışmada görsel hedefler için bir izleme algoritması geliştirilmiştir. 

Öznitelik bulma işlemi bu algoritmada gereken piksel işleme tekniğidir. Bu 

uygulamadaki temel yaklaşım öznitelik bulma işlemi ile elde edilen verileri, yakın 

dinamiklere sahip hedef grubuna ait ölçümler olarak değerlendirmektir. Bu nedenle 

görsel hedef pek çok hedeften oluşan bir grup olarak değerlendirilmektedir. Gürültü 

altında hassas veri eşleştirmesi ve durum kestirmesi diğer çoklu hedef izleme 

uygulamalarında olduğu gibi burada da önemlidir. Grup izleme yaklaşımı, 

olasılıksal veri ilişkilendirme tekniği ile beraber kestirme ve ilişkilendirme 

sorununa karşı kullanılmıştır. Metodun görsel ve diğer uygulamalar için uygunluğu 

da tartışılmıştır.  

 
Anahtar Kelimeler: görsel izleme, video izleme, belirti izleme, çoklu hedef 

izleme, grup izleme, olasılıksal veri ilişkilendirme, Kalman filtreleme. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
Applications of tracking are so wide that the term differs in meaning depending on 

in which area it is used. A search for the word “tracking” on the web usually results 

in many radar tracking applications. This area is where tracking techniques found 

applications and flourished. Video tracking is mostly and historically used for 

tracking IR video and it has also applications with day video. Video tracking 

systems are used in military, for guidance, navigation, passive range estimation and 

target discrimination. In security area, it is used for fire control, person tracking and 

traffic surveillance. In industry, robotics and automation are the areas for video 

tracking. Tracking applications mostly include methods from signal processing, 

estimation and control disciplines. This chapter gives the definitions of tracking and 

video tracking. An introduction to the basic problems and to the topics where the 

research is focused is also made in this chapter.   

The goal of the thesis is to develop a single target tracking method for visual 

targets. Using visual features of the target can result in accurate tracking where the 

formation of the target will be known during the tracking. Therefore these visual 

features are used in this study. However, using multiple features required to develop 

a multiple target tracking approach. Considering the dependency of features to the 

tracked target, a group tracking approach is developed. The novel part of this work 

is using PDA based approach to track visual features having group motion. The 

group model is developed considering the dynamics of visual features and tracking 

with PDA based association is preferred to increase accuracy for the individual 

features in the group.  
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1.1. Introduction to Video Tracking 

Tracking is estimation of current and future states of sources by classifying the 

current sensor data considering the source(s) it originates from. This definition is 

general and different sensors and sources result in different tracking applications. 

In automatic video tracking, examples for sources can be air and ground 

vehicles. The sensor may be IR or day light sensitive imager. Definition of video 

tracking can be made as the estimation of location of visual objects within the 

sensor field of view using image and data processing. Video tracking is generally 

used to maintain a stable sensor-to-target line of sight automatically in the presence 

of target and platform motion [1]. Therefore a closed-loop system is present in most 

video tracking systems as seen in Figure 1.  

 

 

 

 

 

 

 

 

 

Figure 1- Components of a generic video tracker  including the feedback loop. 

Pixel processing for target detection requires high computation power. The 

output of this step, the measurement information, is input to the tracker. The 

structure of this information determines the tracker’s technique. In other words, 
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information structure directs how data processing for track to measurement 

association and state estimation is made in the tracker.  

In 1970s and 1980s innovative hardware designs were required to cope with the 

limited signal processing power of the available hardware. After mid-1980s better 

A/D converters, powerful digital signal processors (DSP) and application specific 

integrated circuits (ASIC) turned the design focus toward software [1]. Today, 

inevitable use of high performance re-configurable hardware (FPGAs) for signal 

processing together with DSPs determines the new course of video trackers [2,3]. 

Detection and estimation theory plays more role in the design process parallel to the 

increase in computation power.  

Detection phase of a video tracker is based on well-known pixel processing 

techniques. Thresholding using target statistics, 2-D correlation, edge and corner 

feature detection are some fundamental tools for measurement gathering from raw 

pixel data [1,3,4,5,6,13,14].  

When measurements are available, suitable information processing technique 

should be used to deal with them. This is the tracking and data association side of 

the tracker. “It was recognized as far back as 1964 [7], that in target tracking there 

can be an uncertainty associated with the measurements in addition to their 

inaccuracy, which is usually modeled by additive noise” [8]. This uncertainty is 

related to the origin of the measurements. They may not originate from targets of 

interest or wrong associations of targets to measurements are possible. 

Although the approaches for tracking will be explained in the following 

chapters, it may be appropriate to mention the names of mostly used and known 

ones here. When we are dealing with a single target tracking problem, 

measurements may be target originated or false alarms caused by clutter. If the 

target has a constant dynamic model the problem can be solved using optimal 

Bayesian approaches or with sub-optimal probabilistic data association filter (PDA) 

[9].  When the target model switches in time multi-model PDA can be used in 

tracking [9]. If tracking of multiple-targets is required, joint probabilistic data 

association filter (JPDA) and multiple hypothesis tracking (MHT) are the 

fundamental Bayesian techniques. If there are multiple targets having dependent 
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motion such as a convoy of vehicles, it turns into group tracking where this 

dependency can be used effectively [10,11].  

After this brief introduction it can be said that a good tracker is the one that 

converts the raw data into information efficiently and use this information with the 

most appropriate information processing technique so that state estimation of the 

target(s) is found satisfying the accuracy and latency requirements of the system. 

1.2. Thesis Overview 

This thesis is devoted to tracking a single visual target using multiple features. 

The method developed uses a group motion model and PDA based data association. 

It should also be stated that this tracking method is developed for video tracking 

applications. Although multiple features are being tracked with the developed 

algorithm the aim is to track single visual targets. The background information and 

the developed method are explained in the following chapters. 

In Chapter 2 fundamental pixel processing techniques are explained with an 

emphasis on feature tracking. Features are patches from visual targets that can 

easily be tracked. The selection criteria of features and use of this information in the 

later steps of tracking is discussed in this chapter. 

Chapter 3 is an overview of tracking algorithms and statistical tools used in 

tracking. The selection of the best approach considering the application 

requirements will be pointed. In this chapter PDA, JPDA and group tracking 

approaches, which are related to the algorithm proposed in this thesis, is covered. 

In Chapter 4, a visual target tracking approach is developed using visual 

features of the target. The approach is basically a multi-feature tracker with group 

motion assumption. The constraints, requirements and application of this approach 

are also argued.  

Chapter 5 covers implementation of the developed algorithm with simulations 

for some video sequences and artificial data. 

Chapter 6 is on the conclusion, summary and possible future work after this 

study.  
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CHAPTER 2 
 
 

PIXEL PROCESSING FOR VISUAL TRACKING 
 
 
 

2.1. Introduction 

In visual tracking problems, the first phase is processing of pixel data to get 

valuable information for the position of the targets. Alternative methods for 

detection of targets in the image plane have different complexity and advantages. 

The well-known centroid and correlation techniques are most popular ones that 

satisfy real time performance and used in most video tracking applications [1,5]. 

Computer vision is used to extract relevant information from an image or sequence 

of images, and to represent this information in a way so that higher level reasoning 

processes can interpret it. For computer vision applications corner detection and 

optical flow are mostly used where corner detection is preferred for structure from 

motion studies and optical flow, which can also be considered as an alternative 

method, is used for motion estimation for video compression [21]. 

The aim of this chapter is to present the corner feature detection method that the 

tracker developed in this study uses. The image processing techniques mentioned 

above will briefly be described for comprehensiveness. As stated before, the way 

the measurements gathered, affects the tracking phase. Therefore the advantages 

and properties of the measurement information generated by feature detection will 

also be discussed in this chapter. 

2.2. Techniques for Target Detection from Video 

In this section centroid, correlation, optical flow and feature correspondence 

will be discussed. Feature detection and related topics will be explained in detail in 

the following sections.  
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We begin with centroid trackers, which can be separated into two types. The 

binary centroid tracker calculates center of mass for a segmented image. 

Segmentation is classifying each pixel as target related or not. If a pixel is target 

related 1 is assigned and 0 is used to denote background pixels. On the other hand, 

intensity centroid trackers keep the intensity value of the target pixels for centroid 

calculations. Let the index i be used to denote the pixels in a target cluster of n 

pixels, where i=1,…,N. If pixel i of this cluster has intensity Ii, then the nth 

coordinate of the centroid of the cluster is defined as 

∑

∑

=

==
N

i
i

N

i
in

n

I

Ix

x
i

centroid

1

1                                                                                               (2.1) 

where 
inx is the n-th coordinate of point i.  

Histogram analysis for segmentation of target from background is important for 

centroid calculation accuracy. Details of this technique will not be discussed but it 

should be added that centroid trackers can be implemented with a relatively simple 

hardware successfully. More details of centroid method can be found in references 

[1,22]. 

Correlation technique can be used for template matching so that previously 

defined target template can be found in a search area of current scan using a match 

criterion. This criterion can be found by summing of squared differences of the 

corresponding pixels of the template and candidate patch. A better alternative may 

be using the correlation coefficient as 

2
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where I and J are template and candidate image patches with N pixels. The index i 

is used to denote the pixels in the patches where i=1,…,N. Details on correlation 

method can be found in [1,22,23]. Correlation technique is computationally more 

expensive then the centroid and can be efficient if the target signature is stable and 
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target size is not relatively too small so that a reliable target signature is present for 

template generation. 

Optical flow is one of the traditional ways used for the problem of computing 

motion and then structure. “Optical flow” is used to mean motion of iso-brightness 

contours in the image. The moving of this equal brightness pattern that represents 

the object can be described with a constraint equation as follows. 

First assuming the image brightness varies smoothly and has no spatial 

discontinuity, consider a patch of image (brightness pattern) that has displaced a 

distance ),( yx δδ  in a time interval tδ . Assuming the brightness level of patch 

remain constant then, 

),,(),,( ttyyxxEtyxE δδδ +++=                                                                   (2.3) 

where ),,( tyxE  is the intensity in the image at point (x,y) at time t. Using Taylor 

series approximation of equation 2.3 we can write 

e
t
Et

y
Ey

x
ExtyxEtyxE +

∂
∂

+
∂
∂

+
∂
∂

+≅ δδδ),,(),,(                                            (2.4) 

where e contains higher order terms, which are negligible when yx δδ , and tδ are 

small. Therefore, 
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E
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x

δ
δ

δ
δ                                                                                (2.5) 

defining image plane velocities ),( yx vv as  

t
xvx δ
δ

= , 
t
yvy δ
δ

=                                                                                          (2.6) 

results to the final well-known  “Image Brightness Constraint Equation” 

 0=
∂
∂

+
∂
∂

+
∂
∂

t
Ev

y
Ev

x
E

yx                                                                               (2.7) 

This equation contains two unknown velocity components and is not sufficient 

uniquely to specify optical flow. Additional constraints below are commonly used: 

� Optical Flow is smooth and neighboring points have similar velocities. 

� Optical flow is constant over an entire segment of image plane. 

� Optical flow is a result of restricted motion such as planar motion. 
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Even when the above constraints are satisfied optical flow suffers from a 

drawback known as aperture problem: the motion of image points can only be 

determined normal to the image intensity contour while tangential components are 

unobservable. There are some methods to cope with this problem but in general 

optical flow has been found to be too error prone for use in structure from motion 

algorithms. It is also a computationally expensive method.  

 

 

 

 

 

 

 

Figure 2- Illustration of the aperture problem: The displacement estimation (the dashed 
arrow) in second aperture is normal to the intensity contour (line) whereas true 
displacement is the solid arrow. In aperture 1, corner has gradient in the two perpendicular 
dimensions and true motion is estimated using this property.  

It is also possible to track objects by selecting their particular, reliable features 

and finding their correspondence in successive frames. These features can be edges, 

corners or textures, which can reliably be identified in successive frames. Two 

criteria for selecting good features can be: 

� Features should be distinct and clearly defined. 

� Features should be temporarily stable, i.e. over successive frames the 

same feature should look similar. 

Edges are one dimensional features with only the motion normal to the direction 

of edge can reliably be recovered. Two-dimensional features are appealing because 

they are not affected from aperture problem [13,14]. Optical flow and feature 

correspondence can be compared as [23]: 

� Optical flow is noise sensitive due to its dependence on spatio-temporal 

gradients.   

Aperture 
1 

Aperture 
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� Optical  flow requires that the motion is smooth and small (This is not 

possible when inter scan period of imager is high). 

� Optical flow requires that the motion vary continuously over the image. 

For feature correspondence: 

� Correspondence between features and frames must be established and 

maintained between successive frames. 

� Rigid motion of the object is usually assumed, i.e.  static world assumption. 

� Stable and accurate algorithms for feature detection are difficult to 

implement considering the poor localization accuracy of many feature 

detectors.   

Before going in details it is important to understand the distinction between 

detecting and tracking features. Detection is finding regions satisfying feature 

definition whereas tracking features requires prior appearance of the feature and an 

estimate of the current position. Temporal instability of the features is an unwanted 

situation for efficient tracking therefore only stable features should be used in 

tracking. In addition to small random displacements of features, occlusions, 

lightning changes, noise in the camera and digitizer and camera motion can cause 

feature instability. Next section is on feature detection methods. 

2.3. Corner Feature Detection  

Corners are distinctive points that are well localized in both directions. They are 

reliable features and do not have aperture problem. There are some different corner 

detection approaches where most of these are similar to each other and implicitly or 

explicitly they search for high curvature on edges [13,14]. Only the corner detection 

technique, used in this study, will be explained in detail. The method explained here 

is based on the method Lucas, Kanade and Tomasi developed [24,25,26].  

A patch, which has well defined peak in its auto-correlation function, can be 

classified as a corner. That is, since we are looking for distinctive points we expect 

that when a corner patch or a distinctive region is compared with its neighbor region 

using sum of squared differences, we must get a high value. If we compute the 

change in intensity as the sum of squared differences in the direction h for a patch 

W centered in x=(u,v): 
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using the Taylor series expansion truncated to the linear term, 
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Equation 2.9 gives the change in intensity around x, where  
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If ||h|| = 1 then  

21 )( λλ << xhE                                                                                                (2.11) 

where 1λ  and 2λ  are the eigenvalues of C. So for any orientation h the minimum 

change in intensity will be 1λ . Therefore we evaluate a patch k as a good feature if 

the smallest eigenvalue of the related matrix Ck is above a determined threshold. 

The corner detection technique described above implies that a minimum of the 

smallest eigenvalues of the patches should be determined to accept patches as 

corners. This value may be problem dependent but a robust approach can be 

generated for general use. Next section will cover the approach developed to detect 

features in our tracking algorithm. 

2.4. The Use of Corner Features  

Corner features on the image can be generated from true corner like structures, 

such as the ones generated from vehicles. Another possibility is that non-physical 

corners can be present on the image plane because of the projection of different real 
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world edges. These will be unstable and non-informative. They can be considered 

with the other spurious background corner measurements. Other than spurious 

features, some real world corners will also flicker during the track because of sensor 

noise or clutter. The important point is to find reliable target originated features for 

the quality of track. Reliability is related with temporal stability of the features.  

In this study, it is assumed that the tracking is started with selection of a 

window, that contains the target in the current frame, by the operator. This window 

will be named as target window and we assume that this window contains mainly 

target related features. Figure 4 is an example for target window selected by the 

operator, in the frame given by Figure 3. 

 

Figure 3- Example  for an initial frame. 

 

Figure 4- An example for the target window selected by operator to start tracking. 
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Feature detection is carried on this interest region. Applying corner detection 

method explained in the previous chapter, we can find the small eigenvalues of all 

patches in the target window. Denoting each patch with its center pixel i and the 

smallest eigenvalue of the patch with i
1λ , we can get an eigenvalue map (eigenmap) 

of this patch as seen in Figure 5.  

 

 

Figure 5- Eigenvalue map, showing the smallest eigenvalues of corresponding C matrices 
for each patch in the target window. 

In this figure, intensity value of any pixel i is i
1λ  to visualize the eigenvalues of 

the patches in a gray scale image. The dark regions represent the locations (centers) 

of the patches where 1λ  of the patch is small compared with the ones of other 

patches. Bright regions are for the patches where corresponding 1λ values and 

therefore cornerness property of the patch is higher than the others. The terms small 

and high are fuzzy. If we don’t have a certain threshold value at hand to compare 

with the eigenvalues of features, we can still manage to find target features we 

require for the rest of tracking. This is what we used for our tracking algorithm and 

will be explained in detail now. 

First we can define some constraints for features to simplify both detection and 

tracking phases. The feature patch size, fpatchsize, is the first parameter to 

determine. This determines the selected dimension of feature patches in each 

direction and it should be determined based on the size of the target we are tracking. 

If the target is relatively small as 50x50, using a patch size of 20x20 will result in 
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detection of too few features for example. For such size of targets, patch size of 5x5 

is reasonable.  

We can also constraint the maximum number of detected features, fn, per search 

area. This limitation on the number of features is necessary for the feasibility of the 

tracking algorithm described in Chapter 4.  

A distinction constraint, fspan, is also useful. This parameter determines the 

minimum allowable distance between neighboring detected features in each 

coordinate. It is used for keeping target features unique. It can be understood easily 

if Figure 5 is investigated. It is seen that patches with high cornerness (brighter 

pixels) are cumulated on some regions in the map. If a patch has a high cornerness, 

a second patch centered one pixel next to this patch will share some pixels with the 

first one and therefore will also have high cornerness. If we use these two features 

in the tracking, the same corner region will be represented by two features. This 

does not give any additional information but increases ambiguity for the tracker.  

In other words, resolved and unique features are required for the tracker and this 

can be satisfied by searching for local peaks in the map and discarding their 

neighbors using the discrimination (separation) value, fspan. So fspan is the span of 

the region to be discarded during the rest of feature detection around the detected 

patch, which has a local peak considering the smaller eigenvalues of patches.  

Figure 6 shows the effect of fspan value in feature detection for the eigenvalue 

map in Figure 5. Setting fspan as 0 means that there is no constraint on distinction 

and any neighboring features can be accepted. Similarly setting fspan to 1 will 

avoid patches P(x+1,y), P(x-1,y), P(x,y+1), P(x,y-1), P(x+1,y+1), P(x+1,y-1),    

P(x-1,y-1), P(x-1,y+1) to be accepted as feature if patch P(x,y) (centered at (x,y) ) is 

accepted once during the feature detection phase of current frame. See how 

neighboring features are accepted if fspan is 0 and the features become unique when 

distinction value fspan is increased. 
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Figure 6- Illustration for the effect of distinction constraint: a-) fspan=0, b-) fspan=1, c-) 
fspan =3; White points are the centers of the selected feature patches (all other parameters 
are kept fixed  for a, b and c). 

Then, we can find the features in the first target window using the constraints fn, 

fspan and fminthre, the minimum thereshold value for the smaller eigenvalue of a 

patch to be accepted as feature. Figure 8 is the flowchart representation of feature 

detection process. 

Since fminthre is a predefined threshold, it is set to a low value at the initial 

frame, because there is no information about the eigenvalues of patches so far. The 

process starts by finding the patch having maximum smaller eigenvalue, 1λ . If 1λ  is 

higher then fminthre threshold, this patch is saved as the first detected feature. This 

feature and the patches in fspan neighborhood are removed from candidate list. This 

process is repeated until the number of saved features are equal to fn or the 1λ  of the 

patches left are below fminthre. The minimum of 1λ values of the selected features 

is saved as fmineig, to use in next frames. When eigenmap of the next frame is 

available fn is increased with a factor to allow for more features to be detected so 

that target features tracked are kept detected even when the target is disturbed by 

spurious features with high cornerness during the track. If this is not the case, 

however, increasing maximum allowable number of features constraint, fn, may 

result in accepting new features with low 1λ . Therefore also fminthre value is 

updated with the fmineig found from the initial frame. In the first frame fminthre is 

a low, predetermined eigenvalue threshold and updating it with fmineig is used for 

a b c
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discarding detection of spurious features with low 1λ  after fn, maximum number of 

features,  is increased in subsequent frames.  

 

Figure 7- Detected features from the initial target window with parameters fn=2/400 (2 
features per 400 pixels), fspan=3 pixels, and  fpatchsize=5x5. Note that most detections are 
target originated. 

Figure 7 shows the patches (features) detected in the initial target window in 

Figure 4 with the parameters used in Figure 6-c. A lorry is given as an example 

here, which is also used to illustrate the tracking algorithm explained in Chapter 4.  
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Figure 8- Flowchart illustration of the feature detection method.  

 

 

Get eigenvalue map of target window. 

Sort pathches using their 1λ values. 

Take the patch with highest λ1. 

Is  selected λ1 higher than threshold fminthre?

Label current patch as feature detection. 
Take λ1 of this patch as minimum of detected 
patch eigenvalues, fmineig. 
Remove this and neighboring patches from the 
list using distinction parameter, fspan. 
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the rest of track. 

Start 



 

 

17

2.5. Summary 

In this chapter some video and image processing techniques are briefly 

mentioned. The emphasize of the chapter was on the corner feature detection. Since 

corners do not have aperture problem and are reliable they are already widely used 

for “motion from structure” and “computer vision” areas. A corner feature detection 

strategy is described which will be the pixel processing block of the tracker 

developed in Chapter 4. 
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CHAPTER 3 
 
 

INFORMATION PROCESSING APPROACHES IN 

TRACKING 
 
 
 

3.1. Introduction 

This chapter is dedicated to information processing techniques in target 

tracking. Previous chapter investigated the information gathering from raw image 

(pixel) data. Other sensor types such as radar and sonar is not discussed in that 

chapter. But this chapter is more general and the tools and approaches explained 

here are applicable for different types of tracking problems. After measurement 

information is supplied to tracking unit, the treatment of it shows parallelism in 

many applications.  

A universal tracking method that can be used in every situation is not possible. 

If there is only one target in the region of interest, the measurements taken can 

either be target or clutter originated. If there are multiple targets, measurement 

origin ambiguity increases because this time there is an additional uncertainty about 

which target the measurement is related to. Methods mainly differ from each other 

depending on how they resolve this ambiguity and how much accuracy is required. 

Gating and validation of measurements is necessary for all applications, which will 

be discussed here. Similarly, related topics, such as association problem and clutter 

modeling are also explained in this chapter. Use of standard filter, advanced ways 

for tracking single and multiple targets in clutter, centroid and formation tracking 

for groups of targets are the topics that are covered with examples. 
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3.2. Validation Region and Association Problem 

To avoid searching for the signal in the entire measurement space, a multi-

dimensional gate should be defined. There is a certain detection probability of a 

signal originated from the target in this gate. This gate is also named as validation 

or association region. 

If the true measurement conditioned on the past is normally distributed with its 

probability density function given by 
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with the probability determined by γ . The term in 3.2 is chi square distributed with 

degree of freedom equal to zn , the dimension of z. Therefore as a design criteria, 

the probability of true measurement being in the validation region must be decided 

first. γ  increases if this probability is increased and implies that more region is 

covered to increase the probability of finding target originated measurement in the 

validation region.  

The volume of validation region is related to S  and γ  as given below 

2/1)1()1(Vol +=+ kSck
zn γ                                                                                   (3.3) 

where 
znc is the volume of the unit hypersphere of nz dimension. 

Validation region simplifies the association problem resulted from measurement 

origin uncertainty. This simplification in association logic is a trade off because by 

determining a validation gate, target originated measurements outside the gate are 

ignored. 

3.3. Clutter Model and Detection Probability 

Before discussing the tracking algorithms a brief explanation on clutter 

modeling is informative. A detection occurs in a cell of the sensor if the output of 

the cell is above a certain threshold. Detection can sometimes happen when there is 
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no target due to sensor noise, background noise or an unknown energy source. Such 

detections can be denoted as false alarms or clutter. To model this situation we can 

make the assumption that events of detection in each cell are independent of each 

other and the probability of a false alarm, pFA, is constant for each cell. Then the 

probability mass function of the number of false alarms in the N cells having a 

volume V is given by the binomial (Bernoulli) distribution 
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The density of the false alarms is  
[ ]

V
Np

V
nE FAFA ==λ .                                                                                            (3.5) 

If 
1<<FAp  

and N is large enough so that FANp  is of the order of 1 or larger, 3.4 is approximated 

by a Poisson distribution [15]. This approximation is 
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Npem

m
FANp

FA
FA−=µ                                                                                  (3.6) 

Since pFA is a very small quantity in most cases, this approximation is 

reasonable. The independency assumption of false alarms with a space and time 

independent constant pFA is accepted for most of the tracking algorithms. Similar to 

false alarm probability, detection probability in each cell, denoted by pD, is assumed 

to be independent, non-unity and equal for each cell. These assumptions are again 

trade offs but help to derive simple formulations for most of the Bayesian tracking 

algorithms.  

3.4. Assignment Problem  

The assignment problem became more relevant to tracking problems recently. 

Therefore study on this subject increased and new techniques are developed as a 

result. For comprehensiveness, a brief explanation and overview of assignment 

problem is given in this section.  
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Assume that there is an association conflict between tracks and measurements as 

given in Figure 9. For example, in this figure O5 may be observation (measurement) 

of target 1,2 or 3. It can be a false alarm, either.     

 

  

 

 

 

 

 

 

 

Figure 9- An association conflict situation. Oi is the ith observation, Pi is the initial 
prediction for the ith  target before current scan (frame) observations. 

The general assignment problem is modeled as a discrete optimization problem 

as follows: 

 Given the matrix elements aij,  

 Find { }ijxX =  such that ∑∑
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where { }1,0∈ijx . 

Considering the definition and constraints above, an assignment matrix for 

Figure 9 can be generated as: 
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         N/F1  N/F2  N/F3  N/F4  N/F5     T1    T2    T3                  
O1      a11        -         -         -         -       a16       -       - 
O2       -         a22       -         -         -       a26       -       - 
O3       -         -         a33       -         -       a36      a37     - 
O4       -         -          -        a44       -        -         -       - 
O5       -         -          -         -        a55     a56     a57     a53 
ND1    0         0         0        0         0      a66       -       -  
ND2    0         0         0        0         0        -       a77     - 
ND3    0         0         0        0         0        -        -      a88 
 
where rows are for the observations and columns are for targets. Both of them are 

extended. The extension in columns is to account for false alarms and the extension 

in rows are to account for undetected targets. N/Fi represents new or false alarm for 

the ith observation and NDi is to account for no detection of target i. Ti is the ith 

target, Oi is the ith observation and “-“ represents impossible assignments. For 

example considering Figure 9, first observation O1 can be a false alarm or can be 

originated from target 1. Therefore in any assignment X, either  x11 or x16 can be 1 

and all others are 0 for the first row. a16 is the cost of relating observation 1 to target 

1. This value can be found considering the statistical distance of observation 1 to 

target 1 and the detection probability of target 1. a11 is the cost of observation 1 

being a false alarm. Similarly a66 is the cost for miss of target 1. The inclusion of 

detection and false alarm costs in the assignment matrix give a way to find the best 

assignment with an integer programming method. It is also possible to find best m 

assignments with a proper partitioning of assignment alternatives [19,20]. This can 

be used in situations where ignoring less likely assignment alternatives is required. 

An earlier assignment algorithm, the Hungarian method, is a primal-dual 

method that uses the dual assignment problem and preferred to simplex method for 

assignment problems. It is only applicable to square assignment matrices. Munkres 

algorithm, Jonker-Volgenant relaxation techniques and auction methods are some 

efficient alternatives that are preferred today [17]. Advanced multi-dimensional 

assignment algorithms are also used for associating observations to targets over 

multiple-scans [18]. 
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3.5. Single Target in Clutter 

This and following section explains some tracking methods for different 

tracking problems. The aim is to build an insight for the specific tracking problem 

in this thesis and the tracking method proposed. Particularly, in this section, 

tracking approaches for one target in clutter case will be investigated.  

To handle the tracking problem for single target in clutter, there are some well-

known techniques. First, assuming that the state equation of the target is known and 

a measurement equation relating measurements to state variables with an additive 

noise is present, a linear Gaussian system equation can be modeled as 

)()()()1( kkxkFkx υ+=+                                                                               (3.7) 

)()()()( kwkxkHkz +=                                                                                   (3.8) 

3.7 is the state model and 3.8 is the measurement model. Assuming mean and 

covariance of initial state is known, at each new scan (sampling), a validation gate 

region is set up around the predicted measurement positions. There may be more 

than one measurement in this region and the usual assumption is that at most one of 

them is target originated and others are false alarms. Below we present some 

tracking methods applicable to the model and assumptions described so far.  

Non-Bayesian techniques are the neighboring and track-split approaches. The 

Nearest Neighbor Standard Filter (NNSF) method selects statistically nearest 

measurement to the predicted measurement. If Strongest Neighbor Standard Filter 

(SNSF) is used, the measurement with the strongest attribute is selected. As an 

example this attribute is the signal intensity for radar and sonar applications. Update 

of the target state for the Kalman Filter is done with this selected measurement as if 

it were the correct one. These approaches resolve the association ambiguity and 

lower the probability of using incorrect measurement. But when the incorrect 

measurement is used, this action is irreversible causing in an “overconfidence” 

which can lead to loss of target even in a moderate clutter density. 

Another approach is to split the track if there are more than one measurement at 

the validation region and applying standard Kalman Filtering to each generated 

branch. The number of branches increases exponentially and the unlikely ones 

should be pruned using a statistical test to keep number of splits manageable. 
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Denote k
iθ  as the ith branch which has a sequence of measurements to the current 

time k. A likelihood function defined for this branch is 

[ ] [ ]∏
=

−==Λ
k

j

k
i

jk
i

k
i Zjzpkzzp

1

1 ,|)()|)(),....,1()( θθθ                                      (3.9) 

where z(1)…z(k) are the measurements selected by the branch, and jZ  is used to 

refer all the measurements up to time j.  

This likelihood value is used to keep or prune decisions depending on how well 

the measurements fit the target model. Its power is limited against false tracks and 

computation and memory requirements are high because of the exponentially 

growing number of branches. 

An alternative approach can be a Bayesian one. The probabilistic data 

association filter (PDAF) is a Bayesian technique in which the past information at 

current time k is summarized with  
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Using this information a validation gate is generated and every measurement in 

validation gate region generates hypothesis. Each hypothesis is a possible 

association event. Only one of these events is true but the probabilities of each 

event can be calculated. Denote association (event, hypothesis) for ith measurement 

with )(kiθ  and its probability with )(kiβ . Let kZ  be all the measurements up to 

time k and Z (k) be the latest set of data. Then 
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where c is the normalization term. Using Poisson clutter and some derivations 3.11 

becomes 
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where 
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and )(kiν  is the innovation for ith event, S(k) is the innovation covariance, PG is a 

normalization factor for validation region, PD is detection probability and λ is the 

spatial density for Poisson clutter model and m(k) is the number of measurements at 

scan k. 

Define  
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as the state estimate assuming ith measurement is correct. The state estimate is 

updated with all the validated measurements weighted by their probabilities of 

having originated from the target,  
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Covariance update is done similarly but includes an extra positive semi definite 

term accounting for measurement uncertainty. PDA algorithm is powerful in clutter 

and almost simple as standard Kalman Filter. Therefore it is a popular tracking 

algorithm for single target in clutter. 

A more accurate but complex tracker is possible if decomposition of the state 

estimate in 3.16 is done using all compositions of measurements from the initial to 

the current time rather than only the latest set of measurements. This is the optimal 

approach but computation and memory requirements are too high to implement 

practically. Sub-optimal methods can be generated by using pruning strategies. 

3.6. Multiple Targets in Clutter 

When there are multiple targets, measurement uncertainty increases. Even when 

the measurement in a validation region is target originated, it is uncertain that to 

which target it belongs if it is in the intersection of validation regions of multiple 

targets. The associations of measurements to targets should be done simultaneously 
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to avoid associating one measurement to more than one target so that feasible 

hypothesis can be generated.   

Joint PDA, (JPDA) is an extended version of PDA, developed for multiple 

targets. This approach uses the latest set of measurements for state update of targets 

as in PDA. Using all the measurements from initial to present time to update targets 

generates the optimal algorithm, Multiple Hypothesis Tracker (MHT).   

In JPDA, each feasible joint association event is considered as hypothesis for 

the present time. A joint association event is feasible if at most one measurement is 

associated to a target and at most one target is associated to a measurement. Let 

)(kiθ  denote ith hypothesis (joint association event), )(kjtθ denote the event that 

measurement j originates from target t, )(kjtβ  denote the probability of )(kjtθ . 

Note that )(kjtβ  is the sum of probabilities of hypotheses in which, measurement j 

is associated to track t. That is, 
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 To make the individual state update of a target t, )(kjtβ  values are used as 

weightings similar to PDA where j varies from 1 to number of measurements at 

present time k. A limitation of JPDA is that the number of targets is known and 

constant during the tracking. 

A more complex alternative, MHT, considers the associations of sequences of 

measurements up to present. By using them, MHT evaluates all the association 

hypothesis. The exponentially growing complexity requires unlimited computation 

and memory sources. To cope with this problem clustering, pruning of low 

probability hypothesis and tracks, and merging of similar tracks is inevitable. There 

are also some parallel processing approaches developed for MHT as well [16,17]. 

New tracks can also be initiated during tracking with MHT. 

The details of the techniques explained so far can be found in comprehensive 

references [8,9,11,12]. Next section will be on group tracking. Group tracking 

problem can be solved by considering group centroid as a single target in clutter. It 

is also possible to handle the problem with a multiple-target approach where each 
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group member is a target. The association logic can possibly be made by nearest 

neighborhood or some possible associations can be considered in the tracker by 

hypothesis generation as in JPDA and MHT. Therefore the cases and approaches 

explained so far are strongly related to the group tracking explained in next section. 

3.7. Group Tracking 

3.7.1. Introduction 

This section discusses the approaches for group tracking. It is mostly based on 

the past studies explained in Chapter 11 of [11]. A group can be defined as a set of 

targets traveling in the same direction with the distances between group members 

being less then the distances between other groups or targets. The conceptual 

advantages of group tracking, when compared to standard methods having 

individual tracks on all targets, can be seen as follows. First, fewer track files are 

required for group tracking because a single group track replaces the individual 

target tracks. Air to ground tracking situations, where the tracking of convoys 

containing many vehicles all traveling together are good examples where this point 

is important. Another point is the use of group tracking provides stability and 

additional smoothing where miscorrelation is inevitable for closely spaced targets.  

 

3.7.2. Issues in Group Tracking 

Group tracking also requires the same phases of more conventional trackers, 

initialization, confirmation and deletion. Similarly, filtering, prediction and gating 

methods are also required. Despite the apparent simplicity of the group tracking 

concept, it conceals difficulties unique to this approach.  

One difficulty is on recognizing the change in the group size due to splitting or 

merging of groups. A related problem is to estimate the number of targets in the 

group. Missing observations due to non-unity detection probability can lead to 

instability in the estimates of number of targets in the group, group position centroid 

and group velocity. Keeping individual positions is an alternative approach used 

with estimated group velocity to increase accuracy.  

Next subsections outline two basic approaches and their important differences. 

These are the centroid and formation group tracking approaches. 
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3.7.3. Centroid Group Tracking 

In this method centroid of the target is tracked. Therefore measurement centroid 

is used for track update. Gating on the predicted centroid may be done considering a 

dispersion factor. Frazier and Scott [11] define a generalized residual covariance as 

T
GDG HPHRSS ++=

^
                                                                                      3.1 

The covariance defined here includes additional term, DS
^

 for the estimate of the 

dispersion of the group. GR  is the group measurement covariance and  THPH  

represents the standard contribution due to target dynamics, and is defined by one-

step prediction covariance matrix  )|1( kkP +  and the measurement matrix H . 

Details for choices and calculations of GR  and DS^  can be found in [11]. Using GS  

for gating, the measurements are checked to see if one or more satisfy gating test. A 

feasible approach may be selecting the best measurement (closest to predicted 

group centroid) as seed and form the group measurement as: 

� Any measurement that is added to the group observation should satisfy 

distance criteria with respect to its nearest neighbor or group centroid 

� The maximum number of observations in a group may be limited. 

 

 

 

 

 

 

 

 

 

 

Figure 10- Illustration of centroid group tracking. 
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Once a group measurement is correlated with a group track, the measured group 

centroid is combined with the group track predicted position in a standard Kalman 

filter update step to form the filtered and the new predicted position estimates.  

 

3.7.4. Formation Group Tracking 

Formation group tracking is an approach such that accounting for individual 

targets is maintained within a group tracking structure. Main advantage of this is 

minimization of the adverse effects of false and missing measurements. This is 

illustrated by an example given in Figure 11. Assume that observations correspond 

to true positions for simplicity. Tij refers to the ith
 target at scan j. Cj is the measured 

centroid calculated with available measurements, and Cjtrue is the true centroid of 

the group for scan j. This figure illustrates the situation where targets 3 and 4 in 

second scan and targets 1 and 2 in the third scan are not detected by the sensor 

during the track, because they enter into a masked region. Masked region may be an 

unknown object, a cloud when tracking planes for example. It is seen that, if group 

centroid is calculated with available measurements as in centroid group tracking 

method, it will be very erratic. This results in erratic velocity estimation also. 

However formation group tracking keeps individual target position estimates and 

use them in centroid calculation to handle this problem.  

 
Figure 11- Example for erratic centroid calculation during target mask. 
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Figure 12- Illustration of formation group track update method 

In Figure 12 how predictions are used for undetected targets is shown. Oij refers 

observation of the ith
 target at scan j and Pij refers to the prediction of ith

 target at 

scan j. Group centroid, C1, calculation at scan 1 is done using observations O11, O21, 

O31, and O41, where second scan group centroid, C2, is calculated using observations 

O12, O22 and predictions P32, P42. It is important to note that no position smoothing 

is applied to individual targets when their observations are available at the present 

scan although their predictions are maintained. Observations are assumed to be the 

best current estimates of the target state and these estimates are used for group 

centroid and velocity estimation. Therefore formations are represented by groups of 

target position estimates, which are computed directly by unsmoothed 

measurements and the group velocity. Since the tracking is based on group centroid 

and group velocity, accuracy for individual targets is ignored. But centroid is still a 

smoothed value because all the detected targets and the predicted positions for 

undetected ones are included in its calculation.  Although this method seems 

relatively simple in principle, a complex logic is still required to handle ambiguities. 

A nearest neighbor approach is preferably applied to associate new measurements 

with the current tracks. 
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3.7.5. Comparison and Possible Extensions 

Blackman, [11], notes that “Although the applications seem apparent, the 

development or reporting of methods for group tracking has lagged that of other 

techniques” (1986). He adds that; “despite the potential advantages of the group 

tracking approach, the practical problems such as recognizing groups, 

incorporating new members to the group and splitting and merging groups have 

apparently discouraged the widespread use of group tracking”(1999). The centroid 

method is simpler and resembles to single target Nearest Neighborhood (NN) 

tracking approach. Formation tracking also uses centroid velocity and position 

therefore resembles to single target case, either. However the estimation of centroid 

is improved by using predicted positions of undetected members. A more advanced 

way of tracking is possible keeping the global displacement of targets with a 

complex association and update scheme. [10] describes a group model and shows 

how an MHT based algorithm can be implemented. Our approach is a PDA/JPDA 

like method which is better than MHT considering computation and memory 

resources and more accurate than NN like association with formation tracking. 

Furthermore, the applicability of group tracking approach for visual objects using 

their features increased motivation for this method. 

3.8. Summary and Comments 

This chapter covered basic techniques for evaluation of sensor information for 

tracking. They are based on statistical tools and linear estimation filters but differ in 

the depth they use the information. Techniques depending on hypothesis generation 

are more accurate but exponential growth of hypothesis for optimal tracking is 

inevitable. Pruning the hypothesis by considering their likelihood or summarizing 

history to single information are some ways to confront this problem. Real time 

constraints and sharing processor sources for raw data processing especially in 

image applications makes the problem more severe. Simple association logic and 

filtering are therefore practical solutions for most cases. 
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CHAPTER 4 
 
 
TRACKING VISUAL TARGETS BY THEIR FEATURES 

 USING GROUP MOTION AND PDA APPROACH 
 
 
 

4.1. Introduction 

This chapter starts with a discussion on treating visual targets as multi-targets 

having group motion. Then an appropriate tracking algorithm for multi-targets 

having group motion will be described. As stated before, the aim of this study is 

tracking single visual targets. Therefore application of the method on single visual 

targets with multi-features will be made clear after the end of this chapter. Tracking 

simulation results of the algorithm with artificial and real image data and comments 

on results are in the following chapter. 

4.2. Visual Targets as Multi-Targets with Group Motion 

Tracking visual objects using frame sequences requires using both image 

processing techniques and tracking algorithms together. The structure of the latter 

mostly depends on the former. In Chapter 2, some pixel processing choices for 

visual target tracking are explained and how good features can be used in tracking is 

discussed. 

Some basic assumptions can be made for visual targets. These assumptions 

effect the selection and application of the tracking algorithm. First of all, a visual 

target can be assumed quite rigid. That is, its projection on the image plane slightly 

changes in succeeding frames. In other words its formation is quite stable 

considering scanning frequency. This assumption is proper for tracking vehicles 

using imagers at 25 Hz or even lower frame frequency. This constraint can be 

named as rigidity constraint. [12] describes a feature tracking method with a 
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projective camera model and rigid object assumption for collision prediction. 

Another proper assumption is on the stability of features in subsequent frames. [13] 

gives stability results of corner features depending on the detection methods.   

Corner feature detection can reveal stable object related features at subsequent 

frames. Since the visual target object will most likely have multiple corner like 

features, each having dependency to the main dynamic of the target, application of 

group tracking techniques becomes reasonable.      

4.3. Group Model For The Visual Target 

In Chapter 3 group tracking approach is explained. Considering this explanation 

it can be said that, application of any group tracking algorithm requires that the 

targets obey to a group motion model. In this section a group motion model will be 

described based on the features of the visual targets. However, the model developed 

in this study is not unique to the current problem and can be used as a general group 

motion model for any other problem. 

Considering the visual tracking problem, group motion and group dynamics will 

be used to refer main motion and main dynamics of the visual object, respectively. 

Each feature used in the model will be named as member of the group. These 

members form the tracks in the algorithm. First let the group (object) dynamic be 

modeled with a white noise acceleration model. Noting that it is possible to use 

lower or higher order models depending on the target structure, the group motion 

equation becomes: 

1kk wvmm ++ +Γ+= kk F1                                                                                 (4.1) 

where mk is the state vector at scan k, vk is the zero mean Gaussian state noise 

modeling the acceleration of the object and wk is the rigidity noise vector which 

holds the additional noise components of position of each member. Each component 

of wk is independent of the others so that each member has an additional 

independent displacement in each direction. This models the formation change of 

the visual target.   

Let Nt be the number of members (features) tracked. Then mk vector has 

components 
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where component  

[ ]Tnn kmkmk
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 holds the nth member’s position in x and y coordinates of image frame; component  

[ ]Tyx kgkg )()(=g(k)  

is the position of a reference point of the visual object; component  
T

yx kgkgk 




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is the velocity variable of the visual target that all the group members are assumed 

to have. 

[ ]Tyx kvkv )()(=kv   

has zero mean Gaussian random variables vx and vy to model the acceleration of the 

object in x and y directions as random noise. vx and vy  are independent of each 

other and of the components of wk. 

[ ]TxxNt kwkwkwkwkw 12124321 00)(...)()()()(=kw  

has components  

[ ]Tnn kwkwk
yx

)()()( =nw , 

modeling independent displacements of members in each direction and they are 

zero mean Gaussian random variables independent of each other and of components 

of vk. 

Since our model is a white noise acceleration model, 
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modeling measurement noise of the ith member in each direction with zero mean 

Gaussian random variables independent of each other and of components of vk, and 

wk. 

Then equation 4.2 can be written more explicitly as 
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As stated before, 4.1 models the dynamics of the target with a state variable 

containing positions of each member, the reference point and velocity components 

of the group. The unique part of the dynamic for each member is the rigidity noise 

w which reflects the very reasonable situation that the formation of the group 

changes frame by frame since the target or the projection of the target on the image 

plane is not perfectly rigid. 

 Equation 4.2 shows the case where all measurements of each member being 

tracked are observed with a measurement noise vector n. In the following sections 

this point will be discussed in detail by explaining the partial observations of 

members (components of z). 

4.4. Group Tracking With PDA using Visual Target’s Features 

4.4.1. Approach  

In Chapter 3 group tracking and data association approaches are discussed with 

their advantages. It is apparent that if tracking of targets having common dynamics 

is required, this property should be used in tracking. In our problem of single visual 

object tracking, if feature detection is applied to image frame, then the tracking 

algorithm is fed by observations having group motion. It is also clear that this kind 

of rich data directs to more accurate and advanced trackers. 
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In Chapter 3 the major problem of association ambiguity is discussed which is 

also present in our problem. Considering this problem, our approach will result in 

more accurate tracking than the centroid and formation group tracking approaches. 

As stated before, centroid group tracking lacks individual target (member) position 

estimates and although formation group tracking keeps individual member positions 

during the tracking, a simple nearest-neighbor type association is applied. The 

accuracy of tracking can be increased with hypothesis generation and data 

association. This is the improvement proposed in this study. The use of multiple 

hypothesis tracking is also possible if the increased computational complexity can 

be handled [10]. Data association will be used after each scan in our algorithm. 

Therefore there will be only one state estimate and covariance summarizing all the 

history, which is the characteristic of PDA and JPDA algorithms. Following 

sections explain the algorithm in more detail. 

 

4.4.2. Generation of Feasible Hypothesis 

Using the general approach and notation used for modeling multiple 

hypothesis conditions, we can formulate our problem as follows. First, we assume 

that currently we have a state estimate and state covariance matrix. With the 

measurement from current scan we can generate a validation matrix Ω as follows:  

[ ]jtω=Ω     { }1,0∈jtω ,          j=1,…,NO;   t=0,1,…,NT 

Binary elements of the validation matrix indicate whether measurement j is in the 

validation gate of member t. NO is the number of current measurements 

(observations) and NT is the number of features being tracked. t=0 is used to denote 

false alarms. Here is an example: 

1014
0113
1112
1011

210
j

t

=Ω  

This example describes the case given in Figure 13 where Oi stands for ith 

observation and  Pi is used to denote the prediction of the ith target. 
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Figure 13- An example case for measurements and member predictions with validation 
gates. 

Note that observation O2 can originate from target (member) 1, target 2 or it may 

even be a false detection. Feasible partitioning of measurements to group members 

can be made with two assumptions. Firstly, measurement can be a false alarm or 

can only originate from a single group member being tracked. Second assumption 

states that there cannot be more than one measurement originating from a currently 

tracked member. These assumptions for feasible events restrict validation matrix to 

have only one nonzero element in each row and column except for the first column 

because any number of measurement can be false. Name any feasible association 

event as hypothesis, θi. 

Let { }iθ  denote the set of hypothesis where i=1,2…,Nθ; and let Nθ be the number 

of hypothesis at current scan. Any hypothesis θi is represented by its event matrix  









=Ω )()(

^^

ijti θωθ , 

which is a binary matrix derived from Ω  by considering the choices related with 

decisions of this hypothesis. 

The following is an example of )(
^

iθΩ : 

O1
O2

O3

O4

P1

P2

Validation Gates 
for Targets 1 and 2
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where )(
^

ijt θω =1 for (j,t) pairs of (1,0),(2,2),(3,1),(4,0) for this example. 

We can also define new indicators for convenience. 

These are the measurement association indicator,  

∑
=

∆
=

TN

t
ijtij

1

^
)()( θωθτ , 

and number of false measurements in event θi. 

[ ]∑
=

∆
−=

oN

j
iji

1

)(1)( θτθφ  

Note that 0)( =ij θτ  if no target is associated to the measurement j. 

 

4.4.3. Estimation under Partial Observation 

Depending on the hypothesis θi, some members of measurement set Z(k) at scan 

k are assigned as the components of the measurement vector z, which is defined in 

4.2. This means that even though equation 4.2 defines the measurement vector z 

with NT components from the formulation, it is obvious that NT is frame and 

hypothesis dependent. Some targets may not be observed. Therefore for every 

hypothesis we define a measurement vector zi. H matrix should also be modified to 

Hi matrix accordingly. 

For example if we are tracking 4 features of visual target we can have at most 4 

measurements for each of these feature tracks in measurement vector as  
[ ]4z321 zzz=z   

Let the current hypothesis θi has an event matrix as 
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In this feasible hypothesis, feature track 2 and 4 are associated with 

measurements 1 and 2, respectively. Other feature tracks are undetected (in most of 

tracking problems detection probabilities of tracks are non-unity) at the current scan 

and measurement 3 is a false alarm. So we define zi as 

[ ]42 zzi

∆
=z .  

This means that according to hypothesis θi the measurement vector has 

components for tracks 2 and 4. So the H matrix relating the measurements to system 

should also contain the rows for the tracks 2 and 4. Removing rows 1 and 2 for 

track 1 and rows 5 and 6 for track 3 from H matrix, we get, 
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The modifications applied to z and H with the hypothesis can be explained as 

follows: 

Given the hypothesis θi, denote δθi as the target detection indicator vector for this 

hypothesis. The size of this binary valued vector is NT. δθi(n) is 1 if n-th member 

being tracked is associated with a measurement and 0 otherwise for n=1,..,NT. zi is 

formed first by assigning the appropriate measurements to members using Ω(θi) and 

marking nth pair of z, z(2n) and z((2n)-1)  for removal if δθi(n)=0. Similarly row 2n 

and (2n –1) of H will be marked for removal if δθi(n)=0. Remove is done in pairs 

because each track is represented with two components, one for x and one for y 

coordinates. Removing all the components marked will result in zi and Hi.  

These hypotheses dependent modifications effect hypothesis dependent updates. 

Because of the Markov property of the process, Kalman filter requires only state 

estimate and state covariance of the previous step for next step calculations. Thus, 

state update is made by the modified measurement equation. This is, switching to 
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another measurement model and setting a new Kalman Filter any time measurement 

vector structure changes. By this switching we always use the appropriate model for 

the current Markov system and we are still making the best one step estimate in 

MMSE sense.  

 

4.4.4. Evaluation of Hypothesis Probabilities 

Using the validation matrix we are able to generate hypothesis each of which is 

a candidate for the measurement origin uncertainty. If we can use a metric to 

evaluate the probability of each hypothesis we will be able to make estimation on 

the current state of group members, )|(^ kkm .   

Let  
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be the state estimate assuming ith hypothesis is correct. Then, 
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 (4.3) 

here, Zk={Z(i)} for i=0,1,...,k; is all the measurements up to  current scan k. 

The second term in equation 4.3 is the conditional hypothesis probability, and 

we apply the Bayes’ formula for this term: 

{ } { }1),(),(|)(|)()( −
∆

== k
oi

k
ii ZkNkZkPZkPk θθβ          

[ ] { })(,|)(),(),(|)()/1( 11 kNZkPZkNkkZpc o
k

i
k

oi
−−= θθ  

[ ] { })(|)(),(),(|)()/1( 1 kNkPZkNkkZpc oi
k

oi θθ −=                                                   (4.4) 

here the first term c is the normalization coefficient and  1−kZ  is irrelevant 

(unnecessary) information for the third term. Therefore it is omitted at the last line. 

The second term of 4.4 is the likelihood function of measurements.  

The likelihood function of measurements is: 

[ ] [ ]1)(1 ),(|)(),(),(|)( −−− = k
i

k
oi ZkkVZkNkkZp i θθ θφ

izp                                           (4.5) 
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The measurements unassociated with a member (target) are assumed uniformly 

distributed in the surveillance volume V. This uniform distribution implies a 
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likelihood V-1, as a product term in equation 4.5. Since total number of unassociated 

measurements is )( iθφ  we get the first term in equation 4.5. Likelihood of all the 

other measurements associated with targets is the second term in 4.5, which should 

be evaluated in a coupled manner because as stated with 4.1 and 4.2 there is one 

motion dynamic causing each measurement to be dependent to the others. This is 

calculated using the joint distribution of the detected tracks. This distribution is 

Gaussian, having mean and covariance calculated with Kalman Filter equations 

modified as described in previous subsection. Mean vector in 4.6 is the prediction 

of the filter and covariance is the innovation covariance found by this filter. Note 

that in JPDA, each measurement associated target has its own marginal distribution.      

The last term in equation 4.4 is the prior probability of a joint association event. 

A hypothesis θi, implicitly hold the target detection indicator vector, δθi, and number 

of unassociated measurements, )( iθφ . Then,  

{ } { })(|)(),(),()(|)( kNkPkNkP oiiioi θφθδθθ =  

                       { } { })(|)(),()(),(),(|)( kNPkNkP oiioiii θφθδθφθδθ=                         (4.7) 

Now we will use some combinatorics. First, the number of permutations of NO 

measurements taken as NO- )( iθφ , gives the number of possible measurement to 

member track associations for the set of detected tracks. This is the number of 

different associations for detected tracks, )(
)()(

kN
kN

o

io
P θφ− . If we assume each of these 

equally likely, we get  
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θφ
θφθδθ θφ == −

−                                            (4.8) 

The last term in 4.7 is straightforward assuming δθi and )( iθφ  are independent; 
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tt
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t
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iPPkNP θφµθφθδ θδ∏ −−=                                         (4.9) 

PD is feature detection probability and )(( iF θφµ  is the probability mass function for 

the number of false measurements.  

 

4.4.5. State Estimation 

Now we have hypothesis probabilities for each feasible hypothesis and the state 

estimate is made by weighting estimates of each hypothesis as given below: 
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where the innovation for θi is, 
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^
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^

−kkz i is the modified version of prediction vector )1|(
^

−kkz  where the 

unassociated measurements are removed depending on the hypothesis as described 

in the section 4.4.3. The hypothesis gain Wi  is: 
1)()()1|()( −−= kSkHkkPkW i

T
ii                                                                         (4.11) 

Similar to the case for )1|(
^

−kkz i , )1()()1|()()( ++−= kRkHkkPkHkS i
T

iii  is the 

modified (reduced) version of the generic innovation covariance matrix )(kS , given 

by 4.17. 

Combining 4.10 and 4.11 in 4.3 we get 
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 and the covariance update is,  





















−








−= k

T

ZkkmkmkkmkmEkkP |)|()()|()()|(
^^  

∑
= 



















−








−=

θ

βθ
N

i
i

k
i

T

kZkkkmkmkkmkmE
1

^^
)(),(|)|()()|()(  

TT
ii

N

i
ii

N

i
i kkmkkmkkmkkmkkkPk )|()|())|()|()(()|()(

^^^^

00

−+= ∑∑
==

θθ

ββ                        (4.13) 

After state update is completed hypothesis independent next scan prediction 

equations can be calculated as in a standard filter: 
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)()()|()()|1( kQkFkkPkFkkP T +=+                                                                  (4.16) 

)1()1()|1()1()1( +++++=+ kRkHkkPkHkS T                                                     (4.17) 

where 
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and U and M are covariance matrices for v  and w  respectively. 

One cycle of the developed filter is explained above. This derivations describe 

how the state estimation and Joint Probabilistic Data association can be made for 

the group of targets.    

4.5. Summary 

This chapter first defined a group model for features of visual object. Then 

necessary derivations for state prediction and update are carried to develop a tracker 

which uses all neigborhod approach  as  the PDA filter, for measurement to target 

(member) association. Both this group tracking approach and its application to 

single visual target tracking can be seen as the unique sides of our method. History 

is also summarized to reduce computational complexity and memory requirements. 

Next chapter will be on implementation and simulations of the developed tracker.   
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CHAPTER 5 
 
 

IMPLEMENTATION AND SIMULATIONS 
 
 
 

5.1. Implementation Issues 

A few notes for the implementation of the algorithm may help to comment on 

the simulation results given in the following sections. The corner detection method 

explained in Chapter 2 is used for feature detection. In initialization phase it is used 

to classify features originating from visual target and during the tracking phase it 

generates the measurement information required by the tracker.  

 
5.1.1. Initialization 

Since no model for the object is present in the initialization, a model for the 

target dynamic should be approximated to start the tracking phase. Group motion 

assumption can be used to detect the global motion of the target features during 

initialization. The initial target window selected by the operator is the only available 

data we have initially. But we already have the maximum velocity and acceleration 

constraint for the targets. This is given by the requirements defining the target limits 

that the tracker is expected to track and used for gate determination for the 

subsequent frame in initialization phase.  

After the corners are detected for the initial target window, we get many target 

related features with some spurious ones. This is an assumption and valid if the 

target window is properly selected by the operator. Figure 7 of Chapter 2 reveals the 

target and clutter features for an example initial target window. Target window for 

second frame depends on the maximum target speed constraint we have, and it is 

wide because target can be moving in any direction. After we get detections from 

the second frame, with the use of motion information we can find an estimate for 

the group motion. Relative displacements of all initial frame to second frame 
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feature associations are calculated. If the displacement value of any association is 

not within the range determined by maximum target velocity constraint then it is 

considered as impossible association. Feature matching is applied to only possible 

associations. Feature matching is made using the correlation equation (2.2) of 

Chapter 2. After correlation factor (resemblance values) for these associations are 

calculated, the ones with low correlations are discarded. Therefore the associations 

left satisfy both displacement and resemblance constraint.  

After these filtering steps, we have possible individual feature to feature 

associations and each association has a displacement attribute with it. Figure 14 

shows an example where symbols “+” and “x” are used for first and second frame 

features respectively. Associations are identified by the lines. If a target is present 

we expect the displacement attributes (line length in figure) have similar values for 

most of these possible associations. Then a histogram of displacements should have 

a peak around the group motion displacement. We use the fact that even if there can 

be unfiltered spurious features within the possible associations, these should have 

random displacements so that the peak is only related to group motion. Using this 

peak displacement of the histogram, we can have an estimate on the group motion 

velocity. Figure 15 shows the associations left after a group displacement estimate. 

Note that the association on the bottom left is discarded and the appropriate 

association is selected for the upper left. The features with associations on the 

second frame can be taken as members of the tracker. (they are the (x) signs which 

are connected to (+) signs in Figure 15).  

More accurate estimation can be possible using more frames for initialization 

and using polynomial fitting methods. But if the number of frames before a model 

is set is high, search region is increased in every direction during the initialization. 

Early but less accurate initialization can possibly be compensated by the 

convergence of the tracker to true state variables. 
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Figure 14- Possible associations using feature matching and initial constraints. (Second 
frame detections (“x”) are superposed on initial frame)  

      

 
Figure 15- Group motion determination using displacement values of possible associations 
where some associations are discarded considering the estimated group motion. 
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5.1.2. Member Deletion And Addition 

The derivations for the tracking method developed in Chapter 4 are theoretical 

and depends on some assumptions such as random clutter and detection with a 

certain probability. Similar to other tracking problems as radar tracking, random 

clutter is an assumption where clutter is sometimes persistent. Similarly, detection 

of a tracked member is not random and members sometimes disappear up to the end 

of track or a target related feature may suddenly appear at the middle of the 

tracking. Member deletion and addition is therefore important and necessary for 

track continuation. Thus, the core of the algorithm depends on the derivations of 

previous chapter with additional logic described herein. 

 Track deletion is possible with simple logic or with use of a score function 

having Bayesian information. Score function is not simple here because there are 

multiple members and a hard decision is not present to be used in score calculation. 

Then using a simple logic is favored. If there is no measurement in the individual 

validation gate of a member for a certain number of consecutive frames (scans), the 

track for that member is removed from the model. (Group model equations are 

modified by removing related components of the matrices in equations of previous 

chapter after member deletion.) 

A member is generated from the observed features at the current frame, which 

are not involved in any individual validation gate of the members and can generate 

an association with the features of previous two frames without violating the group 

velocity estimate of the tracker. This is similar to the initialization logic explained 

in previous section. Figure 16 shows two consecutive frames and reveals how an 

obvious stable corner (up left) is inserted to tracker within tracking. Addition of a 

stable corner improves accuracy and life of tracking. Deletion of an unstable corner 

prevents the tracker from disturbances, similarly. This is the way how the tracking 

will survive in real world conditions. 
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Figure 16- Member addition during track. A stable feature is added to the tracker (circled) 
during the track. 

5.2. Simulation Results for Artificial Data Sequences 

In this section, tracking results for artificial sequences are given. Artificially 

generated measurements are directly sent to the tracker without any need for image 

processing. The aim is to test the tracker with a totally known set of data. Since the 

true state vector of the system is known, true error of the tracker state estimate can 

be calculated easily. Also the artificial data is generated with known detection and 

false alarm probabilities, system and measurement noise variances. Therefore we 

have the chance to see the effects of tuning of the tracker parameters. 

 

5.2.1. Artificial Data Simulation for 4 Member Tracking 

Sequences for a group of 4 members is generated for different detection and 

false alarm probabilities to apply the tracking algorithm developed. In Figure 17 (a), 

the true trajectory of the 4 members of the group is seen for 50 scans. Figure 17 (b) 

shows the same trajectory but hiding the unobservable member states for Pd=0.6. 

The tracker error for different Pd values will be investigated first. Then the effect of 

false alarm rate will be presented by simulation. During the analysis, estimated and 

true values of a (any) member will be plotted and some snapshots from the tracking 
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process will be given to visually analyze where the true and estimated target 

positions are, together with measurements and target window. 

 

 

Figure 17- (a) Trajectory of the tracked 4 group members for 50 scans; (b) member 

detections for Pd=0.6.  

Figure 18,19,20, and 21 are snapshots from a tracking process at frames 5, 20,35 

and 50. Pd=1 and Pfa=0.001 for this sequence. The motion of the track gate, 

according to trajectory can be recognized easily from these figures. Figure 22,23,24 

and 25 shows the track gates for these frames to visualize measurements, estimates 

and true values of members during track. Figure 26 is the comparison plot for 

reference point estimate and centroid of the estimated positions of the tracked group 

members for this case. Figure 27 shows the estimation performance with a plot of 

true and estimated position of member 1 (only x coordinate).  

Figure 28 is the same plot as the previous one but for this case the input 

sequence has parameters Pd=0.6 and Pfa=0.001, and the tracker parameters are set 

to Pd=0.6 and Pfa=0.001. Compared with the previous plot the performance 

decrease can be seen when detection probability is decreased. Another case for 

performance decrease is the effect of an increase in false alarm probability. This is 

shown in Figure 29 where Pfa is 0.0025 this time. 

We can also analyze mismatched tracker performances. A mismatch can be 

generated by increasing the tracker’s rigidity variance value, Figure 30. This will 

deteriorate the tracking performance because this time, trust of the tracker to the 

target originated measurement will decrease and false alarms will become to be 
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considered as true detections. The true rigidity deviation of member displacements 

is 0.5 pixel where we let the tracker suppose it as 3. 

Gating can also result in over confidence and therefore track loss as explained in 

Chapter 3. Figure 31 is an example where individual gatings of targets are set to 

include target originated measurements with 95 percent probability. Compare this 

with the result for 99 percent probability in Figure 27.  

All these trials reveals that we can first determine the worst case detection and 

false alarm probabilities first considering feature stability and clutter density of 

environment where the tracker is supposed to be used. Using artificially generated 

data with these parameters we can get accuracy and durability results for different 

gating size possibilities. This approach may help the initial tuning of the tracker for 

true image sequences. 

 

 
 

Figure 18- Position of track gate in Frame 5 
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Figure 19- Position of track gate in Frame 20 

 

 
 

Figure 20- Position of track gate in Frame 35 
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Figure 21- Position of track gate in Frame 50 

 
 
Figure 22-Track gate details for frame 5. ( +Æ estimated member position, xÆtrue 
member position)  Pd=1, Pfa=0 .001 for sequence and tracker parameters are: Pd=0.95, 
Pfa=0.001. 
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Figure 23- Track gate details for frame 20 

 

Figure 24- Track gate details for frame 35 
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Figure 25- Track gate details for frame 50 
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Figure 26- Comparison of the reference point estimate and centroid of the estimated 
positions from a sequence with Pd=1 and Pfa=0.001, tracked by a tracker having parameters 
Pd=0.95, Pfa=0.001. 
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Figure 27- Comparison of true and estimated x coordinate position of member 1 from a 
sequence with Pd=1 and Pfa=0.001, tracked by a tracker having parameters Pd=0.95, 
Pfa=0.001 
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Figure 28- Comparison of true and estimated x coordinate position of member 1 from a 
sequence with Pd=0.6 and Pfa=0.001, tracked by a tracker having parameters Pd=0.60, 
Pfa=0.001. 
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Figure 29- Comparison of true and estimated x coordinate position of member 1 from a 
sequence with Pd=0.6 and Pfa=0.0025, tracked by a tracker having parameters Pd=0.6, 
Pfa=0.0025. 
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Figure 30-A mismatch and loss of track case where true rigidity noise deviation is 0.5 pixel 
for each member but the tracker assumes 3, for  the case Pd=0.6 and Pfa=0.001 
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Figure 31- Loss of track due to narrow gating (overconfidence)(all parameters are same 
with Figure 27 except that the confidence percentage is decreased from 99 to 95) 

5.3. Simulation Results for Image Data Sequence  

5.3.1. Small Lorry Sequence 

A real sequence of a small lorry will be used for the simulation of the developed 

tracker. Table 1 shows different tracker settings for some trials with this sequence. 

Since we have no observable state variables, member position estimates during 

various frames is given for the trials, to visually analyze how the estimated 

positions of member features are consistent during the tracking.  

The eigenvalue maps and the detected features are also shown to see how 

tracker is fed by information. The quality (stability) of target features and clutter 

density is understood using these figures. Then, effect of detection and false alarm 

probability settings is investigated with trials 2 and 3. It is seen that for this 

sequence of data, changing detection and false alarm probability parameters do not 

effect the tracking too much. This is possible if there is not too much competition 

between hypothesis. This implies that successful information on member positions 

is available from feature detection process and spurious features are low in number.  

In trial 4, fspan parameter is decreased to allow more neighbor features to be 

detected and it is seen that this affects the stability of some tracked features when 

compared with previous trials. The reason is the increased ambiguity because we 
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allowed detections which are close to each other, some of which may be clutter  

(Figure 46).  

Member addition is also observed in all trials (see Figure 37). If we compare 

frame 14 and 26 of trial 1 (Figure 37 and Figure 38) we see that smoothing effect of 

group tracking help for the survival of the upper feature, which is disturbed by 

background clutter. Below are related figures for comparison and analysis. 

 

 Pd Pfa fspan 

TRIAL 1 0.5 0.005 4 

TRIAL 2 0.9 0.005 4 

TRIAL 3 0.5 0.03 4 

TRIAL 4 0.5 0.03 3 

 

Table 1- Parameter values for different trials. 

 

Figure 32- First frame for trial 1. Initial position of target vehicle. 
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Figure 33- Last (38-th) frame for  trial 1. (Compare motion of vehicle with its initial 
position at frame 1 to get a feeling on the speed and background characteristics.) 

 

Figure 34- Eigenmaps for frames 1,14,26 and 38 for trial 1. Given to visualize how regions 
with high cornerness (brighter regions) are distributed in the track window during the track.   

frame 1 frame 14 

frame 26 frame 38 
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Figure 35- Corresponding detections for trial 1 using eigenmaps in previous figure. 
Illustrates how stable target corners and how spurious detections (clutter) are present during 
different scans (frames) of the track.  

- 

Figure 36- Member  feature  position estimates  (“+”) for frame 1 of trial 1.  

frame 1 

frame 38 

frame 14 

frame 26 
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Figure 37- Member  feature  position estimates (“+”) for frame 14 of trial 1. When 
compared with the feature estimate at frame 1 it is seen that the feature at the upper right of 
vehicle is disturbed by the corner at the background. It is also seen that a feature addition is 
occurred at the middle right of the vehicle. 

 

Figure 38- Member  feature  position estimates (“+”) for frame 26 of trial 1. Considering 
frame 14, the feature disturbed by background clutter (upper right) is survived and it 
represents target related feature now. This survival is because of the smoothing effect of the 
group motion. Dependency of each target feature to the other prevents the distortion of 
features. However this time the feature at the upper left of the vehicle is effected by the 
high contrast background, if you compare its original position with respect to vehicle at 
frame 14. But in frame 38 it is observed that this feature recovered its original location.    
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Figure 39- Member  feature  position estimates (“+”) for frame 38 of trial 1. Illustrates 
final positions of member feature estimates after 38 frames.  

 

Figure 40- Member  feature  position estimates (“+”) for frame 1 of trial 2. This figure is 
given for comparison with trial 1.  
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Figure 41- Member  feature  position estimates (“+”) for frame 14 of trial 2. This figure is 
given for comparison with trial 1.  

 

 

Figure 42- Member  feature  position estimates (“+”) for frame 26 of trial 2. This figure is 
given for comparison with trial 1.  
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Figure 43- Member feature position estimates (“+”) for frame 38 of trial 2. This figure is 
given for comparison with trial 1.  

 

 

Figure 44- Member feature position estimates (“+”) for frame 38 of trial 3. This figure is 
given for comparison with trial 1 and 2.  
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Figure 45- Feature detections for trial 4. This figure is given to illustrate how detections are 
effected when the fspan value, determining the minimum separation allowed between 
detected corners, is decreased. 

 
Figure 46- Member updates (“+”) for frame 14 of trial 4. This figure illustrates that 

with decreasing fspan value, we increased ambiguity because we allowed 

detections, which are close to each other, some of which may be clutter. Therefore 

compared with frame 14 of previous trials, the feature at upper right is heavily 

affected by background clutter.  

frame 14frame 1
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CHAPTER 6 
 
 

CONCLUSION 
 
 
 

6.1. Conclusion 

In this study, a group tracker is designed for tracking single visual targets. The 

applicability of the approach is not unique to visual targets with features and 

method can be used for applications where target dynamics can be modeled as a 

group motion. In other words, if the dynamics of multiple targets are strongly 

coupled with each other, group model used with this technique is more proper than 

using individual models and filters for targets. Figure 47 shows how multiple target 

tracking algorithms can be classified considering where our algorithm stands. 

The important feature of our method is the use of PDA like (all neighborhoods) 

state estimation to increase accuracy of estimation considering the NN alternatives 

used by traditional group tracking methods. Different from the other group trackers, 

centroid of group members is not used in this method because accurate tracking of 

all members is performed. This leads to an important consequence on applicability 

of this technique. That is, differing from other group tracking approaches, the 

members of the group should not necessarily be closely spaced. Another important 

point is that, it is developed directly for visual targets unlike radar and sonar 

tracking based algorithms adapted to visual tracking applications. Also using a 

group tracking approach for single target tracking is a distinctive property of our 

method.  

Since the group member dynamics is estimated in this method, particularly 

disappeared members can be tolerated with the smoothing effect of the group 

tracker. Long term loss of members causes deletion of that member track from 

tracker to keep the track accuracy and similarly, new features are accepted during 

the track for continuity of the tracking process.   
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Computational and memory requirements are closely related to number of 

members being tracked and therefore some parameters are defined and used in 

feature detection phase of the tracker. They also affect the stability of selected 

features for tracking. 

It should also be stated that Gaussian distribution assumption both for clutter 

and system noise is an approximation. Furthermore, in visual tracking, parameters 

such as detection and false alarm should be tuned considering the possible 

application environment of the tracker and type of the sensor (air or ground targets, 

IR or day TV, et cetera). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47- Classification of multiple target tracking algorithms.  

6.2. Future Work 

Some improvements are possible for our approach. Criteria for addition and 

removal of features can be improved. Secondly, the output of this tracker can feed a 

higher level reasoning block. Member addition and removal can also be improved 
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by the aid of this reasoning block. Improvements on initialization phase are also 

possible to increase accuracy.  

New pixel processing strategies to increase feature stability is also possible. 

Feature matching is used in only initialization phase but it can also be included in 

the tracking phase as an additional attribute. 

 Background motion due to imager platform is ignored in this work. For the case 

of background motion, additional image processing methods can be developed or 

platform motion measurements can be used to modify the state equations.     

As stated before independent false alarm (clutter) and feature detection 

probabilities are assumptions. However, persistent clutter is inevitable for visual 

targets in many applications. Considering these facts, dynamic parameter tuning 

may be investigated.  

Order of the group model can be increased depending on the target dynamics or 

switching multiple model approaches may be used with this method.  
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