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ABSTRACT

TEXTURE DESCRIPTORS FOR CONTENT-BASED IMAGE RETRIEVAL

Çarkacıoğlu, Abdurrahman

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Fatoş Yarman-Vural

August 2003, 153 pages

Content Based Image Retrieval (CBIR) systems represent images in the database

by color, texture, and shape information. In this thesis, we concentrate on tex-

ture features and introduce a new generic texture descriptor, namely, Statistical

Analysis of Structural Information (SASI). Moreover, in order to increase the re-

trieval rates of a CBIR system, we propose a new method that can also adapt an

image retrieval system into a configurable one without changing the underlying

feature extraction mechanism and the similarity function.

SASI is based on statistics of clique autocorrelation coefficients, calculated

over structuring windows. SASI defines a set of clique windows to extract

and measure various structural properties of texture by using a spatial multi-

resolution method. Experimental results, performed on various image databases,

indicate that SASI is more successful then the Gabor Filter descriptors in cap-

turing small granularities and discontinuities such as sharp corners and abrupt

changes. Due to the flexibility in designing the clique windows, SASI reaches

higher average retrieval rates compared to Gabor Filter descriptors. However,

the price of this performance is increased computational complexity.
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Since, retrieving of similar images of a given query image is a subjective task,

it is desirable that retrieval mechanism should be configurable by the user. In the

proposed method, basically, original feature space of a content-based retrieval

system is nonlinearly transformed into a new space, where the distance between

the feature vectors is adjusted by learning. The transformation is realized by

Artificial Neural Network architecture. A cost function is defined for learning

and optimized by simulated annealing method. Experiments are done on the

texture image retrieval system, which use SASI and Gabor Filter features. The

results indicate that configured image retrieval system is significantly better than

the original system.

Keywords: Texture, Similarity, Feature, Descriptor, Clique, Autocorrelation,

Content-based retrieval.

iv



ÖZ

İÇERİK TABANLI GÖRÜNTÜ ERİŞİMİ İÇİN DOKU TANIMLAYICILARI

Çarkacıoğlu, Abdurrahman

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Fatoş Yarman-Vural

Ağustos 2003, 153 sayfa

İçerik-Tabanlı Görüntü Erişim (İTGE) sistemleri, veri tabanındaki görüntüleri

renk, doku ve şekil bilgileri ile temsil ederler. Bu tezde, biz doku öznitelikleri

üzerinde yoğunlaştık ve ismi Yapısal Bilginin İstatistiksel Analizi (YBİA) olan

yeni bir genel doku tanımlayıcısı duyurduk. Ayrıca, bir İTGE sisteminin erişim

oranlarının artırılması amacıyla, sistemim mevcut öznitelik çıkartma mekaniz-

masını ve benzerlik fonsiyonunu değiştirmeksizin, görüntü erişim sistemini ayar-

lanabilir duruma uyarlayan yeni bir yöntem önerdik.

YBİA, yapısal pencereler üzerinde hesaplanan otokorelasyon katsayılarının

istatistiklerine dayalıdır. YBİA dokudaki çeşitli yapısal bilgilerin, çoklu çözünür-

lük yöntemiyle çıkartılması ve ölçülmesi amacıyla bir küme çubuk penceresi

tanımlar. Farklı görüntü veri tabanları üzerinde yapılan deneysel sonuçlar, sert

köşeler ve ani değişiklikler gibi küçük toplulaşmaları ve kesiklilikleri tespit et-

mekte YBİA’nın Gabor filtrelerinden daha başarılı olduğunu göstermiştir. Çu-

buk pencerelerinin tasarımındaki esneklik, YBİA’nın Gabor filtrelerine göre daha

yüksek ortalama erişim oranlarına ulaşmasını sağlamaktadır. Fakat, böyle bir

performans artışının bedeli artan hesap karmaşıklığıdır.
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Verilen sorgu resmine benzer resimlere erişilmesi, subjektif bir iş olması se-

bebiyle, erişim mekanizmasının kullanıcı tarafından ayarlanılabilmesi istenir.

Önerdiğimiz yeni yöntemde, basit olarak, bir içerik-tabanlı görüntü sistemi-

nin öznitelik uzayı, öznitelik vektörlerinin birbirlerine uzaklıkları öğrenilerek

ayarlanılabildiği, yeni bir uzaya doğrusal olmayan bir biçimde dönüştürülmekte-

dir. Bu dönüşüm Yapay Sinir Ağları yapısı ile gerçekleştirilmektedir. Öğrenme

için bir paha fonksiyonu tanımlanmakta ve simule edilmiş tavlama yöntemiyle

eniyilenmektedir. Deneyler, YBİA ve Gabor filtreleri kullanan doku görüntü-

sü erişim sistemi üzerinde yapılmıştır. Sonuçlar ayarlanmış görüntü sisteminin

orijinal sistemden oldukça iyi olduğunu göstermiştir.

Anahtar Kelimeler: Doku, Benzerlik, Öznitelik, Tanımlayıcı, Çubuk, Otokore-

lasyon, İçerik-tabanlı erişim.
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CHAPTER 1

INTRODUCTION

This chapter gives a brief description on the background of this dissertation.

Also, organization of the thesis is given shortly.

1.1 Motivation

Although, it was possible to read every book written in the 18th century, nowa-

days such a trial may take 15,000 years [1]. As the human knowledge gets ex-

panding, no one individual can capture more than a small piece of the knowledge.

Due to the exponential rate of growth of knowledge, people have to specialize in

narrower fields. According to the Hawking [1], this is likely to be a major limi-

tation in the future. Moreover, he said that we have to become more intelligent

and better natured via changing and improving our DNA, which is out of the

scope of this dissertation.

In order to overcome the bottleneck of the rate of the growth of the informa-

tion vs. human capacity, computer science and technology offers a wide range

of opportunities. The advances in computation power, storage, scanning and

networking devices enable us to make available and to reach a great variety of

information sources.

Digitized information includes text, image, video, and/or audio datum. Now-
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adays, Internet is the most common way to share them. Tera bytes of informa-

tion within over 800 million web pages available to the Internet users [2, 3].

Information search and retrieval are not only essential parts of public informa-

tion sharing, but also fundamental transaction for professional information need

such as military, government, architecture, advertising, fashion, publishing, and

medical applications.

During the last two decades, search by using textual information has been

successfully analyzed by the researchers. Currently, over 1200 text search en-

gines are commercially available. On the other hand, image, video and audio

information retrieval are still being studied.

When searching visual or aural contents, the attachment of text labels to

the sources is inadequate, since not only because it is impractical, but also

subjective to human [4]. As a result there is a great interest in content-based

retrieval systems.

In recent years, very large image and video databases have grown rapidly.

For example, satellites send 1.5 Tera bytes of images to NASA every day [5].

Thousands of medical images, fingerprint images, military related images, and

even the personal images are stored in digital format throughout the world every

day. Although a few number of content-based image retrieval (CBIR) systems

exist, some of them are domain specific, while the others do not fully meet the

expectations of the users.

We mainly concentrate on CBIR systems, which query the image database

by example. In CBIR systems images are indexed and searched by their visual

contents such as color, texture, or shape. This dissertation is primarily focused

on texture descriptors for CBIR systems.

Most of the real life images contain various types of textures, which are very

complex due to the changes in scale, orientation, shape, contrast, etc. Due to

such complexities, a clear-cut, widely accepted definition of texture does not

exist. However, texture is one of the most important visual properties of an

image.

2



In recent years, textural information has been widely used as a visual primi-

tive in many CBIR systems [6, 7, 8, 9]. The potential areas include industrial and

biomedical surface inspection, ground classification and segmentation of satellite

or aerial imagery, document analysis, scene analysis, texture synthesis for com-

puter graphics and animation, biometric person authentication, content-based

image retrieval and image coding [10, 11, 12].

Current CBIR systems represent textures by low-level image features. Well-

known and widely used texture descriptors are based on Gabor filters. However,

due to digitalization of analog Gabor filters, it has some problems with the

textures that consist of small texels or sharp corners. Thus, texture feature

extraction is still an active research area.

1.2 Major Contributions of the Thesis

This thesis is devoted to texture. The primary focus is on content-based image

retrieval systems by texture. Our aim is to improve the retrieval rates of a

CBIR system using texture. There are two main contributions of the thesis

listed below:

• We introduce “Statistical Analysis of Structural Information” (SASI) as

a new texture descriptor. SASI is more generic then the available tex-

ture descriptors in the literature, covering both statistical and structural

textures. It has a great power in the design of the descriptor, which al-

lows the user to capture small variations in the texture. SASI is based on

the second-order statistics of autocorrelation coefficients calculated over

moving clique windows. In order to represent textures, varying size and

orientation clique windows are employed. Clique windows are the struc-

turing elements, which can be defined by a neighborhood system. The

order of the neighborhood system determines the structure of the clique

windows.

Due to flexibility in the definition of clique windows, SASI successfully

represents wide variety of textures. We experiment the retrieval rate of
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SASI on various texture database in the literature. We compare it to

Gabor descriptor and find that SASI always gives better retrieval rates.

• Retrieving the similar images is a subjective task. As a result, it is not

possible to create a CBIR system whose retrieval results are found to be

satisfiable by different person. Thus, we suggest a method to adapt an

image retrieval system into a configurable one. Basically, using Artificial

Neural Networks, original feature space of a content-based retrieval system

is nonlinearly transformed into a new space, where the distance between

the feature vectors is adjusted by learning. After defining a proper cost

function, learning is accomplished by the use of simulated annealing (SA).

Broadly speaking, SA searches the weights and the bias terms of the ANN

that maximize/minimize the cost function.

We test the method on two texture image retrieval systems, which use

SASI and Gabor Filter features, respectively. The results indicate that

configured image retrieval systems are significantly better than their orig-

inal counterparts.

1.3 Organization of the Thesis

The main contents of this thesis are listed as follows.

• A brief overview on content-based image retrieval is given in Chapter 2.

Also, the concept of similarity and similarity functions are presented.

• In Chapter 3, the definition of texture, existing texture analysis methods

and their brief comparisons are given.

• A new generic texture descriptor for image retrieval, namely SASI is in-

troduced along with the background definitions in Chapter 4.

• In Chapter 5, first, SASI is analyzed in detail and compared to Gabor

filter descriptors. Then, using various image databases, SASI and Gabor
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filter descriptor are tested on image retrieval problem. SASI is compared

to Gabor filter and it is shown that SASI gives the best retrieval rates for

each image database.

• In Chapter 6, we suggest a method to adapt an image retrieval system into

a configurable one.

• Chapter 7 concludes this thesis and presents suggestions for future work.

5



CHAPTER 2

BRIEF OVERVIEW ON IMAGE RETRIEVAL

Since 1970, both Database Management and Computer Vision community has

been working on image retrieval from different perspectives [9]. While the former

is interested in text-based image retrieval, the latter explores the content-based

image retrieval in which the image is represented by its salient features. In this

chapter, we summarize these two approaches by emphasizing the second one.

In text-based image retrieval (TBIR) systems, an operator, more specifi-

cally a human indexer, manually annotates each image in the collection by text.

In other words, images are described as a set of keywords or free text [13].

Then, such annotations are stored in a traditional Database Management Sys-

tem (DBMS) [14, 15].

Generally, images are retrieved from DBMS by using conventional queries

that are executed on exact or probabilistic match of the query text. Query

text can be either a single keyword or a description of an object depicted in

the image. The DBMS cannot retrieve the desired images, unless the images in

the database are correctly and sufficiently described. Retrieval performance is

directly related to congruence between the vocabularies of the operator(s) and

the user(s) of a TBIR system.

TBIR has two main problems. The first problem emerges due to the human

subjectivity on complex images. Since “a picture is worth a thousand words”, it

6



is not always possible to define or describe wide variety of images just by using

some textual information. Also, different people or the same person in different

situations describe or judge the same image differently, due to human perception

subjectivity. Figure 2.1 shows such subjectivity by example. Some people see a

young lady in Figure 2.1.a while the others see a hag. Again, some people see a

vase in Figure 2.1.b, while the others see two people looking at each other.

(a) (b)

Figure 2.1: Human perception subjectivity. (a) Can you see a hag or a young
lady? (b) Can you see a vase or two people looking at each other?

The second problem lies in the difficulty of manual indexing. As the number

of images gets larger, the total amount of time spent in manual image annotation

is also increased.

Although a number of surveys about TBIR exist in the literature [14, 15, 16,

17, 18], the most interesting remark was done by Berrut et al [16]. Their survey

found that despite the above difficulties and disadvantages, users of TBIR sys-

tems seemed generally satisfied with their system due to high expressive power

of the keyword indexing [19].

2.1 Content-Based Image Retrieval (CBIR)

The earliest use of the term content-based image retrieval in the literature seems

to have been by Kato [20]. In CBIR, images are indexed by their own visual
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contents such as color, texture, and shape. Visual contents are extracted from

the images as automatically as possible [18]. Thus, CBIR systems have two main

advantages over TBIR systems. First, they minimize the human effort. Second,

due to reduced people intervention, subjectivity is also reduced. This feature

makes CBIR systems more useful in many areas, such as search and browse large

image collections.

2.1.1 Applications of CBIR

Detailed applications for CBIR technology can be found in [21]. Some of them

are listed below:

• Web searching: A large number of digital images are accessed by the

Internet users. CBIR systems can help the users to effectively find what

they are looking for.

• Medical diagnosis: A large number of medical images have been stored

by hospitals. Thus, CBIR systems can be used to aid diagnosis by identi-

fying similar past cases.

• Journalism and advertising: Articles, photographs, videos of the news-

papers, journals or televisions are queried by using CBIR systems.

• Military: Databases of all images in military applications; such as re-

motely sensed data, weapons, aircrafts, automatic target recognition, etc.

• Intellectual property: Most of the companies have their own trademark

image. Whenever a new trademark image is to be registered, it must be

compared with existing marks to eliminate duplications.

• Crime prevention: After a serious crime, law enforcement agencies

search their archives for visual evidence. Such archives include photo-

graphs, fingerprints, tyre treads, shoeprints, and etc. of the past occasions.

Thus, a CBIR system may help those agencies in finding related evidence.
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2.1.2 Characteristics of Image Queries

CBIR systems can be evaluated according to the queries they handle. The

queries are classified into three levels [22, 19]. Queries of the level 1 consist

of primitive features such as color, texture, shape, or location of certain image

elements. Queries of the level 2 and level 3 are composed of logical and abstract

attributes, respectively. Logical features require some degree of logical inference

about the identity of the objects depicted in the image, whereas abstract at-

tributes involve a significant amount of high-level reasoning about the meaning

and purpose of the objects depicted. Example queries for each level are listed

below.

• Level 1

– “Retrieve images that look like (or similar) to ‘this’ image”

(This type of queries are also called query by example).

– “Retrieve images with blue rectangle at the top of the image”

– “Retrieve images that contain yellow squares”

• Level 2

– “Retrieve images of a woman”

– “Retrieve images of the Eiffel tower”

• Level 3

– “Retrieve images depicting suffering”

– “Retrieve images of Turkish folk dancing”

When interpreting and executing the queries of Level 1, CBIR systems uses

features, which are both objective and directly derivable from the images them-

selves. Unlike Level 2 and 3, there is no need to refer any external knowledge

base. Some researchers prefer to use the terms lower-level approaches for Level 1
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and higher-level approaches for Level 2 and 3 [23], while the others call Level 2

and 3 together as semantic image retrieval [21].

Most of the higher level queries require automatic object recognition and

classification, which are still among the unsolved problems in computer vision

and image understanding literature [24]. Moreover, the queries of Level 2 and

3 cannot be interpreted and executed, unless underlying primitive (low-level)

features are sufficient, effective, and accurate.

The major problem in CBIR systems is that the lack of a direct link between

the high-level human concepts of images and the low-level features used by the

CBIR systems. This fact is called the semantic gap problem.

The available CBIR systems, whether commercial or experimental, operate

at Level 1 [19]. More specifically, most of the CBIR researches, including this

dissertation, have been focused on “query by example”. In query by example,

the user does not have any particular target in mind, but selects an image or

draws a sketch and asks to retrieve similar images. Thus, the basic operation is

ordering a portion of image database with respect to a similarity metric [25].

The performance of a CBIR system is measured by precision, which is the

number of relevant images retrieved relative to the total number of retrieved

images and recall, which is the number of relevant images retrieved, relative to

the total number of relevant images in the database.

2.1.3 Image Segmentation

Image segmentation is one of the most important preliminary steps in CBIR

systems [26, 27, 28]. Performance of both the shape and layout features depends

on “good” segmentation [9].

Segmentation can be defined as the partitioning of an image into a number

of regions, which are homogeneous according to some criterion. The ultimate

goal of the segmentation is to identify the semantically meaningful components

in the image. Such components can be used for higher-order representation of

the image.
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Widely used image segmentation methods include thresholded methods [29],

feature space clustering [30], fuzzy clustering [31], edge-based methods [32], region

growing methods [33], morphological methods [34], graph theoretic methods [35],

and MRF based methods [36]. Unfortunately, there is not a generic method that

works well for all type of images [26].

2.1.4 A Typical CBIR System Operates on Level 1 (low-level)

A typical Level 1 CBIR system has two main tasks [37]. The first task is visual

content extraction or feature extraction. The second one is similarity measure-

ment.

Digitized images are stored in databases as 2-dimensional pixel intensities

without inherit meaning. Thus, extracting meaningful, useful, and accurate

information from those raw data is the main issue. This process is called feature

extraction. The extracted features, also called image signatures [37], can be

represented by [13] symbolic values, numeric values, linguistic values, attribute

relational graphs (ARG), and spatial relations. In this dissertation we focused

on numeric vector features, which represent the content of each image in the

database as a vector, called feature vector.

In contrast to TBIR systems, CBIR systems are focused on similarity match-

ing, not exactness. Although exactness is a precise concept, similarity matching

is an approximation based on the similarity function applied on a pair of signa-

tures of images [38].

2.1.4.1 Feature Extraction Methods

Visual features of images are extracted by using image processing, pattern recog-

nition, and computer vision methodologies [39, 40, 41]. The most common fea-

tures are based on color, texture, and shape properties of images. They are also

known as low-level image contents or low-level visual features [42, 43]. Veltkamp

and Tanese [44] analyze 56 CBIR system and found that 46 of them use any

kind of color features, 38 of them use texture features and 29 of them use shape
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features.

Color is an important attribute for human perception [45]. Also, it is the

most widely used visual features in image retrieval [9]. Colors are represented

as a point in 3-D color space. Widely used color spaces in CBIR are: RGB,

Munsell, CIE L∗a∗b∗, CIE L∗u∗v∗, HSV, and CMYK. The uniformity is the

most desirable property of a color space [46]. Uniformity means that two color

pairs that are equal in similarity distance in a color space are perceived as equal

by human viewers.

In a CBIR system, before analyzing an image, color resolution of the im-

age is reduced in order to decrease the computational complexity. This process

is called color quantization. Popular color quantization schemas are uniform

quantization, vector quantization, tree-structured vector quantization and prod-

uct quantization [47, 48].

Color descriptors include color moments [49], color histogram [50, 51], color

coherence vector [52], and color correlogram [53].

Color histogram is the most extensively used descriptor [19]. It describes the

distribution of each color in the color space of the image. Features extracted

from color histogram are invariant to image rotation, translation and viewing

axis [50].

Query by shape is the most important component of the CBIR systems. In

general shape descriptors for image retrieval can be divided into two categories,

boundary-based and region based. Boundary-based descriptors extract features

from the contour or border of the object shape and internal details are ignored.

On the other hand, the region-based methods consider internal details as well

as the boundary details [54]. Well known shape descriptors are aspect ratio,

circularity, moment invariants [55], active contour models or snakes [56], Fourier

descriptors [57], and perceptual shape descriptor [58].

In recent years, textural information has been widely used as a visual

primitive in many CBIR systems [6, 7, 8, 9]. This dissertation primarily fo-

cuses on texture descriptors for CBIR systems. Thus, the concept of texture is
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analyzed in detail in the following chapters.

The above features can be global or local. Global features extract visual

information from the whole image, whereas local ones concentrate on the regions

or objects of an image.

2.1.4.2 Similarity Measures

Finding a good similarity measure that match with human perception between

images based on the feature set is a challenging task. Also, how human judge

the similarity between images is an active research area [59, 4].

The retrieval result is a list of images ranked by their similarity with the query

image. Therefore, a typical CBIR system should calculate visual similarities

between a query image and images in the database. Given two images, Ix and

Iy, with their, x̄ and ȳ, there is a function that gives the distance between

their signatures, i.e. feature vectors. The similarity can be defined in terms of

distance function as follows:

An image x is more similar to y than another image z in the image database I,

when

D
(
x̄, ȳ

)
< D

(
x̄, z̄

)
, ∀Iz ∈ I , (2.1)

where D(. , .) is a distance function, x̄, ȳ, and z̄ are the feature vectors of image

Ix, Iy, and Iz respectively. However, the form of the distance function D(. , .)

depends on the form of the feature representation, in general it is assumed that

features are represented as an M dimensional vector, where xi represents the

ith feature value of the feature vector x̄.

Since similarity can be defined using distance function, the term distance

function and similarity function are used interchangeably throughout this dis-

sertation.

A distance function between two points can be classified as metric if it

satisfies the following axioms. Otherwise, the function is considered as non-

metric [60].
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Metric Axioms

A set X with elements, called points, is called a metric space if for
any two points a and b in X, there is a number D(a, b) ∈ R called
the distance from a to b such that

1. D(a, b) ≥ 0 (Non-negativity) ,

2. D(a, a) = 0 (Identity) ,

3. D(a, b) = D(b, a) (Symmetry) ,

4. D(a, b) ≤ D(a, c) + D(c, b) ∀c ∈ X (Triangle inequality) .

A similarity function does not need to satisfy the properties of distance metrics.

However, the metric distances have two main advantages [61]; computational

efficiency, and well-studied mathematical theory. Nevertheless, psychophysical

experiments show that human perception does not agree with the metric ax-

ioms [25].

Some of the popular distance functions can be summarized as follows [62,

63, 64]:

Minskowski Metrics or Lr − norms: It is a general class of distance metrics

and defined as follows:

Dr

(
x̄, ȳ

)
= r

√√√√
M∑

i=1

∣∣∣xi − yi

∣∣∣
r

. (2.2)

When L1 norm is used, it is called Manhattan/city block/taxi/absolute value

distance, as shown below.

D1

(
x̄, ȳ

)
=

M∑

i=1

∣∣∣xi − yi

∣∣∣ (2.3)

When L2 norm is used, it is called Euclidean distance.

D2

(
x̄, ȳ

)
=

√√√√
M∑

i=1

∣∣∣xi − yi

∣∣∣
2

(2.4)

For r = ∞, it is called Chebyshev distance.

D∞
(
x̄, ȳ

)
= max ∀i

∣∣∣xi − yi

∣∣∣ (2.5)
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Dot Product:

x̄¯ ȳ = x̄T ȳ = ||x̄|| ||ȳ|| cos
(
x̄, ȳ

)
(2.6)

Similarity Rule:

S
(
x̄, ȳ

)
=

x̄¯ ȳ

x̄¯ x̄ + ȳ ¯ ȳ − x̄¯ ȳ
(2.7)

Normalized Correlation:

ρ
(
x̄, ȳ

)
=

x̄¯ ȳ√(
x̄¯ x̄

) (
ȳ ¯ ȳ

) (2.8)

Camberra Distance:

D
(
x̄, ȳ

)
=

M∑

i=1

|xi − yi|
|xi + yi| (2.9)

Quadratic Form Distance:

D
(
x̄, ȳ

)
=

√(
x̄− ȳ

)T
A

(
x̄− ȳ

)
, (2.10)

where A = [aij] is a problem specific positive definite similarity matrix, and aij

denotes the similarity between feature i and j. Unlike the Minskowski distance,

Quadratic form considers similar feature pairs defined in the matrix A. It is

generally used for color histogram-based image retrieval.

Mahalanobis Distance: It may help a CBIR system, when features are cor-

related to each other. It is defined as,

D
(
x̄, ȳ

)
=

√(
x̄− ȳ

)T
C−1

(
x̄− ȳ

)
, (2.11)

where C is the covariance matrix of the feature vectors. If the features are inde-

pendent to each other, then Mahalanobis distance can be simplified as follows:

D
(
x̄, ȳ

)
=

√√√√√
M∑

i=1

(
xi − yi

)2

σi

, (2.12)
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where σi is the variance of the ith feature.

Bhattacharyya Distance: It can be useful, when underlying distributions

differ only by their second order statistics [65, 66].

D
(
x̄, ȳ

)
=

1

4
(x̄− ȳ)T (Cx + Cy)

−1 (x̄− ȳ) +
1

2
ln

|Cx+Cy

2
|√

|Cx||Cy|
, (2.13)

where Cx and Cy are the covariance matrices of x̄ and ȳ, respectively.

Kullback Leibler (KL) Divergence: KL is also known as relative entropy.

Since entropy is a measure of the uncertainty over the true content of a message,

KL measures how compact one feature distribution can be coded using the other

one as the codebook. It can be defined as:

D
(
x̄, ȳ

)
=

M∑

i=1

xi log
xi

yi

. (2.14)

Jeffrey Divergence: Unlike KL-divergence, Jeffrey Divergence is symmetric

and numerically more stable.

D
(
x̄, ȳ

)
=

M∑

i=1

xi log
xi

x̂i

+ yi log
yi

x̂i

, (2.15)

where

x̂i =
xi + yi

2
.

Histogram Intersection: It is defined as

D
(
x̄, ȳ

)
=

∑M
i=1 min

(
xi, yi

)

∑M
i=1 yi

. (2.16)

Many other distance functions exist in the literature. However, the success

of a particular distance depends on the data. Generally, given a feature space,

researchers try to find the best distance function by trial and error.

Some distance functions intuitively work on distributions of feature vectors,

such as Mahalanobis, Bhattacharyya, and Quadratic form distances, while the

others require feature vectors, e.g., Euclid, Normalized Correlation, Similarity

Rule etc.
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In most of the distance functions, if one of the feature elements has a rel-

atively large range comparing to the others, it can subdue the other feature

elements. In order to prevent such problems, normalization and/or weighting

is employed. In the normalization phase, mostly, feature values are divided by

their corresponding standard deviations. On the other hand, in the weighting

phase, effects of the feature attributes can be increased or decreased by changing

their corresponding weights.

2.1.5 Popular CBIR Systems

Several content-based image retrieval systems have been proposed and some of

them are available as commercial packages. In the following, some of the popular

ones are summarized:

QBIC: It is commercially available and developed by IBM. Color, shape

and texture features are used to represent the images. Multidimensional in-

dexes are created by the use of R trees. For more detailed information see

http://wwwqbic.almaden.ibm.com

Virage: It is another well-known commercial CBIR system developed by

Virage Inc. Virage is a module-based system that system developers can add

their own modules. For demonstration see http://www.virage.com

Photobook: It is an experimental system developed by a research group

at Massachusetts Institute of Technology. The initial version was designed to

assist the user in annotation. Search and retrievals are implemented by the use

of appearance, 2d shape and texture features. Textual annotations can, also, be

employed. Further information is available at the web site

http://vismod.www.media.mit.edu/~tminka/photobook

VisualSEEk: VisualSEEk was developed at Columbia University. System

retrieves images according to the spatial relationship of the regions. Further

information is available at http://www.ctr.columbia.edu/VisualSEEk

Netra: This experimental system is developed by Ma and Manjunath in the

UC Santa Barbara. It provides region-based searching, based on local image
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properties. These are color, texture, shape and spatial location information. A

Web demonstration is available at http://maya.ece.ucsb.edu/Netra.

A more detailed survey of available CBIR system can be found in [19]

and [44]. Roughly speaking today’s CBIR systems suffer from two main prob-

lems [67]. Firstly, user interfaces are too complicated for an average user. Sec-

ond problem is the unsatisfactory results and the long response time. Thus, the

techniques used in CBIR are still subject of substantial development.

2.2 Summary

In this chapter, we briefly survey the image retrieval techniques for large image

databases. In the classical text-based retrieval, each image in the database is

indexed with a set of relevant text phrases by a human indexer. Due to hu-

man perception subjectivity and laborious indexing task, TBIR systems cannot

answer the needs and expectations, especially, for large scale image collections.

In order to improve the quality of search and browse, intensive research efforts

have been carried out since 1990’s.

In CBIR, the images are automatically indexed by their own visual proper-

ties. CBIR systems can be categorized according to the query type that they can

handle. Thus, query types are analyzed and classified into three levels; level 1

(i.e. low-level), level 2 (i.e. logical), and level 3 (i.e. abstract). Low-level type

queries can be interpreted by using color, texture, and shape features of the im-

age. On the other hand, logical and abstract type queries require some degree

of reasoning and domain specific knowledge. Although the users’ higher-level

of queries remain unsolved, currently most of the CBIR systems are focused on

low-level ones.

In a typical content-based image retrieval system, the query pattern is query-

by-example, which searches the top N-closest images to a query image. Similar-

ity is expressed by mathematical distance function. Although various distance

functions are defined, none of them give satisfactory results for all type of fea-

ture.
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CHAPTER 3

TEXTURE

In this chapter, first the definitions of texture are discussed. Then, texture

analysis and various texture descriptors found in the literature are presented.

3.1 What is Texture ?

The word texture comes from the Latin word textura, which means textile fab-

ric [68]. Tree barks, water, bricks, clouds, leather, and soil are some real-life

examples as seen in Figure 3.1 . The concept of texture is intuitively obvious

for us, but it is hard to define. Although there is no formal definition, we de-

scribe texture as fine, coarse, grained, smooth, regular/irregular, directional, etc.

Nevertheless, these descriptions are imprecise and non-quantitative.

Roughly speaking, textures can be classified as regular or irregular. Regular

textures are composed of structurally repeated similar patterns (like brick wall)

whereas irregular ones like cloud or grass, cannot be constructed by regularly

arranged patterns.

Texture carries an important role in many areas of image processing, espe-

cially in classification, image segmentation, image retrieval, realism in computer

graphics and image encoding. It also provides depth and orientation of an object.

Although researchers have been studying on the subject since 1970, no one
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Sample textures: (a) tree bark, (b) water, (c) brick wall, (d) cloud,
(e) leather, and (f) soil.

gives a widely accepted mathematical definition of texture yet.

In the literature, many of the studies give a try for defining texture. Below

some partial definitions of texture are given.

• “The term texture generally refers to repetition of basic texture elements

called texels. The texel contains several pixels, whose placement could be

periodic, quasi-periodic or random. Natural textures are generally ran-

dom, whereas artificial textures are often deterministic or periodic. Tex-

ture may be coarse, fine, smooth, granulated, rippled, regular, irregular or

linear.” [39]

• “Texture is characterized not only by the gray value at a given pixel,

but also by the gray value ‘pattern’ in a neighborhood surrounding the

pixel.” [69]

• “We consider a texture to be stochastic, possibly periodic two dimensional

image field” [70]
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• “A region in an image has a constant texture if a set of local statistics or

other local properties of the picture function are constant, slowly varying

or approximately periodic” [71]

• “We may regard texture as what constitutes a macroscopic region. Its

structure is simply attributed to the repetitive patterns in which elements

or primitives are arranged according to a placement rule.” [72]

• “Texture is an apparently paradoxical notion. On the one hand, it is

commonly used in the early processing of visual information, especially for

practical classification purposes. On the other hand, no one has succeeded

in producing a commonly accepted definition of texture. The resolution

of this paradox, we feel, will depend on a richer, more developed model

for early visual information processing, a central aspect of which will be

representational systems at many different levels of abstraction. These

levels will most probably include actual intensities at the bottom and will

progress through edge and orientation descriptors to surface, and perhaps

volumetric descriptors. Given these multi–level structures, it seems clear

that they should be included in the definition of, and in the computation

of, texture descriptors.” [73]

• “Texture has been extremely refractory to precise definition.” [74]

Although there is no universally agreed definition, almost all researchers agree

on;

• while color is a point property, texture is a local-neighborhood prop-

erty [75, 76]

• a texture is a region that can be perceived as being spatially homogeneous

in some sense [68]

Scale is a crucial concept that must be considered, when dealing with textures,

because, the same texture at various scales may be perceived as different [77].
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Thus, there may be several levels of completely different textures in the same

image, but at different scales.

3.2 Texture Analysis

In general, three different types of texture analysis are considered. These are

classification, segmentation and synthesis.

Texture classification deals with the recognition of objects and/or image

regions using texture properties. In other words, given a texture image, finding

its class is a texture classification problem. The classes may be specified a priori

by an analyst or automatically detected during the classification process. While

the former is called supervised classification, the latter is called unsupervised

classification.

There is a tight relation between classification and similarity search. While

the former gives exact results, the latter provides a list of results ranked by the

similarity measure.

The objective of texture segmentation is to separate an image into regions

of distinct textural behavior to obtain a boundary map. Texture segmentation

is very useful for image understanding such as retrieving images with similar

texture from a database. Figure 3.2 shows a sample textured image and its

segmented version.

Figure 3.2: A textured image and its segmented version.
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Classification and segmentation share closely related objectives. Classifica-

tion can lead to segmentation and vice-versa. Broadly speaking, texture seg-

mentation can be viewed as a pixelwise texture classification with no a priori

knowledge of the number of texture components or the properties of each com-

ponent [68].

Texture synthesis directly related to realistic scene generation. The goal of

the texture synthesis can be summarized as follows: Given a texture sample,

synthesize a new texture that, when perceived by human, appears to be gen-

erated by the same underlying process [78]. Figure 3.3 shows a texture sample

and its synthesized version.

Figure 3.3: A texture sample and its synthesized version.

3.3 Texture Analysis in Grayscale or Color ?

It is shown that the retrieval performance resulting from the combination of

structure, color, and texture is superior than using them alone [79]. Thus, re-

cently, integrative color texture models based on Wavelets [80], Gabor filter [81],

co-occurrence [82], and auto covariance [83] have been proposed.

Although most of the real-life textures are colored as exemplified in Fig-

ure 3.4, large number of researches, including this dissertation, has been focused

on grayscale texture analysis [84], because of the fact that even for grayscale
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textures, existing descriptors are still not powerful to represent textural prop-

erties of an image. Generally, in order to analyze color texture, color signal

is divided into luminance and chrominance components. Textural features are

then extracted from the luminance part.

Figure 3.4: Four color texture samples.

3.4 The Importance of Texture in Content-Based Image

Retrieval

Due to the complexity of texture in real life, it is very hard to categorize them

using keywords alone. Also, texture images generally contain unique visual

patterns or spatial arrangements of pixels, so that describing textures, gray-

level or color alone, may not yield to classify similar ones [85]. For example,

without employing textural properties sky and sea cannot be distinguished from

each other, since they have similar colors.

Texture features such as contrast, uniformity, coarseness, roughness, regu-

larity, frequency, density and directionality provide significant information for

image interpretation and classification [86]. Such features can be used for, not

only separating regions in an image, but also identifying the content of an image.

Texture features have been successfully used to provide a meaningful tool

for searching image databases. Given a query image as a key, a CBIR system

should search the image database and retrieve the most similar N-images. Such

searching mechanism is called query-by-texture [85].

Assuming that an image is a mosaic of textures, some example queries can

be the followings:
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• “Identify all parking lots in the aerial image shown in Figure 3.5”

Hint: A parking lot with cars parked at regular intervals can be
interpreted as a texture when viewed from a distance.

Figure 3.5: A sample aerial image.

• “Forecast the tomorrow’s weather by analyzing the satellite image of the

Marmara area shown in Figure 3.6”

Hint: Clouds are textures.
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Figure 3.6: Satellite image of the Marmara area.

3.5 Feature Extraction Methods for Texture Analysis

Texture analysis methods extract textural information from an image. Like the

definition of texture, it is not easy to categorize texture analysis methods in the

literature. Since most of them use hybrid methods or slightly different versions

of the existing methods. Various taxonomy of the methods for texture analysis

is proposed [86, 39]. For the purpose of this dissertation, texture descriptors are

classified into three main categories, namely statistical, structural, and spectral.

3.5.1 Statistical Methods

Textures that are random in nature are well suited for statistical characteri-

zation. The main disadvantage of the statistical methods is the ignorance of

geometrical and structural information. Moreover, the features, directly ex-

tracted from gray values of an image, are sensitive to noise and monotonic shifts

in the grayscale [12].
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3.5.1.1 First-Order Statistical Methods

The first-order gray level statistics can be derived from the information provided

by the intensity histograms. It is also called Gray Level Distribution Moments.

Assume that, G is the number of gray levels and hi is the number of pixel in an

image with gray level i, then the normalized histogram Hi is defined as Hi = hi

N
.

Statistics computed from Hi include:

1. The mean gray level

µ =
G−1∑

i=0

iHi , (3.1)

where µ measures the average intensity in the image.

2. The gray level standard deviation

σ =

√√√√
G−1∑

i=0

(i− µ)2Hi , (3.2)

where σ measures the global contrast in the image.

3. The coefficient of variation

cv =
σ

µ
, (3.3)

where cv is a measure of relative dispersion.

4. The skewness

γ1 =
1

σ3

G−1∑

i=0

(i− µ)3Hi , (3.4)

where γ1 measures the symmetry of the histogram. A histogram is called

symmetric if it looks the same to the left and right of the mean values.

5. The kurtosis

γ2 =
1

σ4

G−1∑

i=0

(i− µ)4Hi − 3 , (3.5)

where γ2 is a measure of whether the histogram is peaked or flat relative

to a normal distribution.

6. The energy

e =
G−1∑

i=0

H2
i , (3.6)

where G−1 ≤ e ≤ 1. It measures the nonuniformity of the histogram.
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7. The entropy

s = −
G−1∑

i=0

Hi log Hi . (3.7)

Entropy measures the uniformity of the histogram.

The above measures, either alone or combination of them, can be used for rep-

resenting a texture. However, perceptually different textures may have the same

first-order statistics. Thus, first-order statistics on gray values of an image is

seldomly successful tool in CBIR systems.

3.5.1.2 Second-Order Statistical Methods

One of the most popular traditional statistical method is the gray level cooccur-

rence matrices (GLCM) introduced by Haralick [74]. The use of GLCM in tex-

ture analysis is also called, the spatial gray level dependence method (SGLDM).

The method relies on the idea that each pixel is correlated with its neighbors.

A GLCM, denoted as c, is defined with respect to given (row,column) displace-

ment h, and element cij, is the number of points having gray level j occurs in

position h, relative to a point having gray level i. Let Nh be the total num-

ber of pairs, then Cij ≈ cij/Nh denotes the elements of the normalized GLCM,

C [68]. GLCM can be viewed as a directional histogram, which considers relative

orientation of gray levels in an image.

Haralick defined 14 different texture features, each of which is extracted from

the GLCM. Some of them are given below [68, 87]:

1. Energy or Angular Second Moment is defined as

ε =
G−1∑

i=0

G−1∑

j=0

C2
ij , (3.8)

where G−2 ≤ ε ≤ 1. Energy is a measure of homogeneity in the image.

Homogeneous images do not have dominant gray-value transitions.

2. Entropy measures the randomness of an image from

S = −
G−1∑

i=0

G−1∑

j=0

Cij log Cij , (3.9)
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where 0 ≤ S ≤ log G2. High entropy means that the elements of the cooc-

currence matrix are almost equal. This is possible for random textures.

3. Contrast measures the local variations of gray levels in an image from

C =
G−1∑

i=0

G−1∑

j=0

(i− j)2Cij . (3.10)

In other words, it is a measure of coarseness of a texture.

4. Homogeneity is a measure of monotonicity and is calculated as

H = −
G−1∑

i=0

G−1∑

j=0

Cij

1 + |i− j| . (3.11)

5. Autocorrelation measures the gray level linear dependencies in the image

and is defined as

ρ =
G−1∑

i=0

G−1∑

j=0

(i− µx)(j − µy)Cij

σxσy

, (3.12)

where −1 ≤ ρ ≤ 1.

6. Diagonal Moment measures the difference in correlation for both high gray

levels and low gray levels and is calculated as

D =
G−1∑

i=0

G−1∑

j=0

|i− j|(i + j − µx − µy)Cij . (3.13)

There are two main disadvantages of using GLCM [86]. First, establishing

GLCM is computationally expensive. Secondly, it is difficult to select most rel-

evant features among a large number of feature sets computed from the GLCM

for a given displacement h.
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3.5.1.3 Higher-Order Statistical Methods

There are two main approaches in higher-order statistical methods; gray level

run length matrix and neighboring gray level dependence matrix.

Gray Level Run-Length Matrix (GLRLM)

A set of consecutive pixels with the same gray level is called a gray level run.

The number of pixels in a run is the run-length. In order to extract texture

features gray level run length matrix (GLRLM) are computed. Each element,

rij, of the GLRLM represents the number of runs of gray level i having length

j. Rij is the normalized rij. GLRLM can be computed for any direction. The

features derived from the GLRLM is tabulated in Table 3.1.

Table 3.1: The features derived from the GLRLM.

Short Runs Emphasis RF1 =
∑G−1

i=0

∑L
j=1

Rij

j2

Long Runs Emphasis RF2 =
∑G−1

i=0

∑L
j=1 j2Rij

Gray Level Nonuniformity RF3 =
∑G−1

i=0 [
∑L

j=1 Rij]
2

Run Length Nonuniformity RF4 =
∑L

j=1[
∑G−1

i=1 Rij]
2

Run Percentage RF5 = Nr

N

The features in Table 3.1 are the statistics of runs in an image and can

be used as a texture descriptor. However, they suffer from the sensitivity to

noise [88]. They are relatively better in representing binary textures [68].

Neighboring Gray Level Dependence Matrix (NGLDM)

Unlike gray level run length matrix method, neighboring gray level dependence

matrix approach considers all neighbors of a pixel. Given a distance d, each

element, qks, of a NGLDM represents the number of pixels with gray level k

having s neighbors with the same gray levels. Let, Qks is the normalized version
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of qks. Table 3.2 shows the features derived from the NGLDM.

Table 3.2: The features derived from the NGLDM.

Small Number Emphasis N1 =
∑G−1

k=0

∑S
s=0

Qks

1+s2

Large Number Emphasis N2 =
∑G−1

k=0

∑S
s=0 s2Qks

Number Nonuniformity N3 =
∑S

s=0[
∑G−1

k=0 Qks]
2

Second Moment N4 =
∑G−1

k=0

∑S
s=0 Q2

ks

Entropy N5 = −∑G−1
k=0

∑S
s=0 Qks log Qks

The features in Table 3.2 are, also, sensitive to noise. Therefore, like GLRLM

features, they are better in representing binary textures.

3.5.1.4 Tamura Features

Tamura defines six features including coarseness, contrast, directionality, line-

likeness, regularity, and roughness in 1978 [72]. These features are defined as

follows:

Coarseness:

It is a measure of the granularity of the texture. A moving window with size

2k × 2k (k = 0, 1, ..., 5) is defined for each pixel (x, y). Then, moving averages

Ak(x, y) can be computed as follows:

Ak(x, y) =
x+2k−1−1∑

i=x−2k−1

y+2k−1−1∑

j=y−2k−1

f(i, j)/22k , (3.14)

where f(i, j) is the intensity at pixel (i, j).

First, the differences between pairs of non-overlapping moving averages in

the horizontal and vertical directions for each pixel are computed as follows:

Ek,h(x, y) = |Ak(x + 2k−1, y)− Ak(x− 2k−1, y)| , (3.15)
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and

Ek,v(x, y) = |Ak(x, y + 2k−1)− Ak(x, y − 2k−1)|. (3.16)

Then, the value of k that maximizes E in either direction is used to set the best

size for each pixel,i.e.

Sbest(x, y) = 2k . (3.17)

The coarseness is the average value of the Sbest over the entire image and is

defined as follows:

C =
1

m× n

M∑

i=1

N∑

j=1

Sbest(i, j) . (3.18)

Contrast:

It measures the variations of gray levels in the image and can be defined as

Ct =
σ

α
1/4
4

, (3.19)

where α4 is the kurtosis and

α4 =
µ4

σ4
, (3.20)

where µ4 is the fourth moment about the mean.

Directionality:

In order to compute directionality, image is convoluted with 3 × 3 vertical and

horizontal edge masks. The angle of gradient vector at each pixel is defined as:

θ = tan−1(∆V /∆H) + π/2 , (3.21)

where ∆V and ∆H are measured using the following 3 × 3 moving window op-

erators: 


−1 0 1

−1 0 1

−1 0 1




,




1 1 1

0 0 0

−1 −1 −1




. (3.22)

After quantizing θs, histogram of θ (HD) is constructed. Strong peaks in

the histogram indicate that the image is highly directional. Then, directionality

measure can be defined as:

D =
np∑
p

∑

∀θ∈wp

(θ − θp)
2HD(θ) , (3.23)
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where D is a measure of directionality, p is a peak, wp is the set of bins, θp is

the bin that takes the peak value.

3.5.1.5 Markov Random Fields

Markov Random Field models have been applied to various image processing ap-

plications such as texture synthesis [70], classification [89], image segmentation,

restoration and compression. MRF model successfully represent the textures,

which consist of small primitives.

MRF is a probabilistic process in which all interactions are local; the proba-

bility that a cell is in a given state is determined by the probabilities for states

of neighboring cells.

The image is usually represented by an M ×N lattice denoted by

L = {(i, j)|1 ≤ i ≤ M, 1 ≤ i ≤ N} . (3.24)

f(i, j) is a random variable, which represents the gray level at location (i, j) on

lattice L. The Markovianity can be defined as:

P (f(i, j)|L) = P (f(i, j)|ηi,j) , (3.25)

where ηi,j is the neighboring set of pixel (i, j). Different forms of probability dis-

tributions yield different MRF models. Widely used models include the Gaussian

MRF (GMRF), and the simultaneous autoregressive (SAR) model [90].

The GMRF is a stationary, noncausal 2-D autoregressive process and de-

scribed by following equation:

f(i, j) =
∑

(k,l)∈ηi,j

βk,lf(k, l) + εi,j , (3.26)

where {εi,j} is a stationary Gaussian noise sequence with zero mean and βk,l are

the weights associated with each of the neighboring pixels.

If ε is an independent, identically distributed, zero mean and unit variance

noise, i.e. white noise, then the model is called simultaneous autoregressive

model (SAR).

33



Compared to other MRF models, SAR model uses fewer parameters. How-

ever, it is not rotation invariant. By changing the neighborhood set definition,

rotation-invariant SAR model can be defined [91].

In order to describe texture in different granularities and to enable multi-

scale texture analysis, the multi-resolution simultaneous autoregressive model

(RISAR) is proposed in [92]. An image is represented by a multi-resolution

Gaussian pyramid with lowpass filtering and sub-sampling, applied at several

successive levels. At each level, either SAR or RISAR model can be used. Al-

though it has a better performance than many other texture features, such as

Wold decomposition and wavelet transformation [93], the MRSAR cannot dis-

tinguish images, when the structured pattern is involved.

3.5.1.6 Fractals

A fractal texture is characterized by self-similarity. Given a bounded set A in

the Euclidean space, the set A is said to be self-similar, when A is the union of

N non-overlapped copies of itself, each of which has been scaled down by a ratio

of r. This self-similarity is quantified by its fractal dimension and defined as

D =
log N

log(1/r)
. (3.27)

The fractal dimension characterized the roughness of a texture image [94, 95].

The main problems for the method are both the difficulty in finding the fractal

dimension and the lack of self-similarity in most of the real-life textures. Another

problem is that visually different textures may have equal fractal dimensions [96].

Recently, Kaplan [97, 95] has defined extended fractal features for database

image retrieval, where the images are consisting of homogeneous textures. The

features are based on Brownian motion model characterized by Hurst param-

eter. They conclude that multi-scale Hurst parameters allow better texture

discrimination than the traditional methods.
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3.5.2 Structural Methods

Structural methods are based on the theory of formal languages [39, 98]. A

textured image is regarded as generation of repeated texture primitives, also

called texture elements, using a set of placement rules [99]. For example; in a

brick wall image, the primitive is a brick and the arrangements of bricks are

determined by the placement rule [68].

Structural analysis is used, when texture elements can be clearly identi-

fied [100]. Although some randomness can be employed in the placement rules,

structural methods and their variants work well on deterministic textures. How-

ever, real life textures are in general non-deterministic.

3.5.3 Spectral Methods

The most popular spectral feature extraction methods are Fourier, wavelet, and

Gabor filtering and Wold decomposition [101, 93, 102]. Spectral methods extract

features from the energy distribution in the frequency domain.

3.5.3.1 Fourier Transformation

Fourier transform based methods usually work on textures showing strong pe-

riodicity. Various number of features can be extracted from the Fourier power

spectrum. Liu and Jernigan introduced 28 texture features derived from normal-

ized Fourier transform coefficients [103] such as rings, wedges, inertia, entropy,

anisotropy, and etc.

A power spectrum of a texture image can be used for measuring the period-

icity and directionality information of the texture. For example, a fine texture

has high frequency components, while coarse one has low frequency compo-

nents. Figure 3.7 shows some texture images and their corresponding Fourier

spectrums. Methods based on Fourier transformation perform poorly in prac-

tice, due to its lack of spatial information.
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Figure 3.7: Texture images and their Fourier spectrums.

3.5.3.2 Wavelet Transform

Psycho-visual researches [104, 105] indicate that the human visual system pro-

cess images in a multi-scale manner. This approach motivates the use of multi-

scale or multi-resolution approaches for texture analysis. Wavelet transform

provides a formal approach to texture analysis [106, 107, 37]. Figure 3.8 shows

a sample texture and its corresponding wavelet transformation as a 2-D intensity

diagram.

Figure 3.8: A sample texture (a) and its one level wavelet decomposition (b).

The standard pyramidal wavelet decomposition (PWT), as shown in Fig-
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ure 3.9, is the process that repeats filtering iteratively for the low pass subim-

ages. PWT is suitable for signals consisting of components with information

concentrated in lower frequency channels.

Figure 3.9: Pyramid-structured wavelet transform decomposition of an image.

When high pass subimages are further decomposed, as shown in Figure 3.10,

the process is called uniform tree-structured (TWT) or wavelet packet decom-

position. TWT provides a rich range of possibilities for analysis. In texture

analysis, TWT features are more successful than that of PWT. This is basically

because of the fact that dominant frequencies of textured images do not only

lie in the lower resolution band, but perhaps in the middle band as well [108].

However, the TWT is sensitive to image size.

Figure 3.10: Uniform tree-structured wavelet transform decomposition of an
image.

Textural information can be extracted from the transformed coefficients. Ex-

tracted information includes mean, standard deviation, energy, moments, en-

tropy, etc.
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3.5.3.3 Gabor Filters

The human visual cortex has separate cells that respond to different frequencies

and orientations. The Gabor filter bank can localize the energy simultane-

ously both in spatial and frequency domains and Gabor functions model quite

well the visual cortex [109]. Moreover, psycho-physiological experiments with

Gabor filters for texture analysis show that Gabor filters perform remarkably

similar to the human visual system [104, 105]. Because of these reasons, Ga-

bor filter method is widely regarded as the state-of-the-art method in texture

analysis [110].

Among many other Gabor filter feature extraction methods, the successful

results are reported by Manjunath & Ma [93, 111]. For this reason, we follow

their approach in the rest of this section.

A two-dimensional Gabor function is the Gaussians modulation of complex

sinusoids. They can be defined as:

G(x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
exp[2πjWx] , (3.28)

where σx and σy are the standard deviations along X axis and Y axis, and W is

the modulation frequency. The real and imaginary part of the function can be

defined as follows:

Greal(x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
cos[2πWx] , (3.29)

and

Gimaginary(x, y) = j

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
sin[2πWx] . (3.30)

Figure 3.11 shows 3-D profiles of the real and imaginary components of a

Gabor function and Figure 3.12 depicts various Gabor filters as a 2-D intensity

diagram.
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Figure 3.11: Gabor function in 3-D. (a) The real component. (b) The imaginary
component.

Figure 3.12: Different Gabor filters with varying (σx, σy,W ).

A bank of Gabor filters can be generated by dilating and rotating the above

Gabor function:

Gmn = a−mG(x′, y′), a > 1, m, n = integer , (3.31)

x′ = a−m(x cos θ + y sin θ) , (3.32)

y′ = a−m(−x sin θ + y cos θ) , (3.33)

where θ = nπ/K, n = 0, 1, ..., K − 1 and m = 0, 1, ..., S − 1; K is the total

number of orientations and S is the total number of scales.

The variables in the above equations are defined as follows:

a = (Uh/Ul)
1

S−1 , (3.34)
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Wm,n = amUl , (3.35)

σx,m,n =
(a + 1)

√
2 ln 2

2πam(a− 1)Ul

, (3.36)

σy,m,n =
1

2π tan( π
2N

)

√
U2

h

2 ln 2
− ( 1

2πσx,m,n
)2

. (3.37)

Ul = 0.05 and Uh = 0.4 are the commonly used constants in the literature.

The scale factor a−m is meant to ensure the equal energy among different

filters. Distinctive discontinuities between texture patterns are detectable only

if Gabor filter parameters are suitably chosen [112]. In other words, in order

to extract meaningful information, “appropriate” subset of filters must be em-

ployed. Figure 3.13 shows the filters in the spatial domain. The figure contains

four scales (S = 4) and six orientations (K = 6).

Figure 3.13: Intensity plot of Gabor Filters (real part) in the spatial domain.

Given image I(x, y), its Gabor filtered output is defined as;

wmn(x, y) =
∫ ∫

I(x, y)G∗
mn(x− x1, y − y1)dx1dy1 . (3.38)

Basically, each Gabor filter captures the energy at a specific frequency and a

specific direction of an image. Figure 3.14 shows the Gabor filter responses of
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Figure 3.14: Horizontal Gabor filter responses (4 scale) of a given image.

an image. Second order statistics of the Gabor Filter responses of a given texture

is used as a texture feature. Thus, an image is represented by a vector f̄ [113].

f̄ =
[
µ00, σ00, µ01, σ01, ..., µ(S−1),(K−1), σ(S−1),(K−1)

]
, (3.39)

where

µmn =
∫ ∫

|wmn(x, y)| dxdy , (3.40)

σmn =

√∫ ∫
(|wmn(x, y)| − µmn)2 dxdy . (3.41)

3.5.3.4 Wold Decomposition

According to the Wold theory [114, 115], a regular, homogeneous, random, 2D

field y(m,n), (m,n) ∈ Z2 can be uniquely decomposed into three mutually

orthogonal components as follows:

y(m,n) = w(m,n) + d(m,n) , (3.42)

where field {d(m,n)} is deterministic and field {w(m,n)} is purely indetermin-

istic. The field {d(m,n)} can be further decomposed into

d(m, n) = v(m,n) + h(m,n) , (3.43)

41



where {h(m,n)} is harmonic field and {v(m,n)} is a generalized evanescent field.

The above defined three wold components, harmonic, evanescent, and indeter-

ministic correspond to periodicity, directionality, and randomness of texture

respectively [116]. These three types of texture feature is regarded as natural

texture discrimination feature [116]. Figure 3.15 shows an example of periodic,

directional and random texture.

(a) (b) (c)

Figure 3.15: Examples of (a) periodic, (b) directional, and (c) random real-life
textures.

In general, harmonic component h(m,n) can be detected by the use of Fourier

transformation, whereas evanescent component v(m,n) can be detected by the

use of a Hough transformation [115]. Perceptually structured textures usually

have dominant harmonic components, which appear as structured peaks in the

frequency domain. On the other hand, strong evanescent components correspond

to eminent directionality in patterns such that local inhomogeneities have only

a minor effect on these components.

3.6 Texture Representations in Current CBIR Systems

The statistical and spectral methods are commonly used representations in ex-

isting CBIR systems. In particular, Tamura features are used in QBIC [55] and

Photobook [8]. The Wold model is used in PhotoBook. Gabor features are used

in Netra. VisualSEEk use texture features that is based on Wavelet transform.

Recently, MPEG group have announced a set of descriptor explained in the

next section.
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3.6.1 Texture Descriptors in MPEG-7

MPEG-7 is an ISO/IEC standard developed by Moving Picture Experts Group

(MPEG), which aims to create a standard for describing content of multimedia

data [117].

MPEG-7 has introduced three texture descriptors: homogeneous texture, tex-

ture browsing, and edge histogram [118], which are summarized below.

3.6.1.1 Homogeneous Texture Descriptor

The homogeneous texture descriptor (HTD) provides a precise quantitative de-

scription of a texture that can be used for search and retrieval [118, 117]. In

order to obtain an image signature, first the image is filtered with a bank of

Gabor filters with five scale and six orientation. The first and second moments

of energy in the frequency bands are, then, used as the components of the de-

scriptor. The HTD feature vector is defined as follows:

HTD = [fdc, fsd, e1, e2, . . . , e30, d1, d2, . . . , d30] , (3.44)

where fdc and fsd are the mean intensity and the standard deviation of the

image, ei and di, (1 ≤ i ≤ 30) are the first and second order moments of the

energy in the frequency band i, respectively.

The values of the HTD are nonlinearly scaled and quantized into 8-bits.

Then, feature values are normalized with the standard deviation for a given

database. Texture similarity is measured with the L1 norm.

3.6.1.2 Texture Browsing

The texture browsing descriptor categorizes texture in terms of regularity (highly

regular, regular, slightly regular, irregular), coarseness (fine, medium, coarse,

very coarse), and directionality (0◦, 30◦, 60◦, 90◦, 120◦, 150◦) similar to a human

characterization. It can be used for browsing type of applications, but it may

not be appropriate for similarity ranking. One possible scheme for similarity

retrieval is the use of texture browsing descriptor to find a set of candidates and
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then use homogenous texture descriptor to get a similarity ranking among the

candidate images [118, 117].

Feature extraction of this descriptor proceeds similarly as the homogenous

texture descriptor. Images are filtered with a bank of 24 Gabor filters (6 orien-

tations, 4 scales). A 12-bit descriptor is computed from the filtered image. The

first 2-bit characterize texture’s regularity, next 6-bit (3 bits× 2) directionality

and the last 4-bit (2 bits× 2) coarseness.

3.6.1.3 Edge Histogram

The edge histogram descriptor represents the spatial distribution of five type of

edges, namely, four type of directional edge (i.e., horizontal, 45◦ diagonal, and

135◦ diagonal) and a non-directional edge (i.e., isotropic) are considered [118,

117, 119]. It is useful for image-to-image matching, where underlying texture is

not homogeneous.

In order to compute the edge histogram, first a given image is subdivided into

equal size 16 subimages. Then, each subimage is filtered with 2× 2 edge filters

(as shown in Figure 3.16) and a histogram with 5-bins are constructed. Bins

are nonuniformly quantized using 3 bits/bin. Finally, edge histogram descriptor

with size 240 (16 × 5 × 3 = 240) is constructed. Histograms are matched with

the L1 norm.

Figure 3.16: (a) Horizontal, (b) vertical, (c) 45◦ diagonal, (d) 135◦ diagonal, and
(e) Isotropic edge filters.
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3.7 Comparisons of Texture Representation

Although various studies about the comparisons of texture representations ex-

ist in the literature, none of them analyze the representations in a systematic

manner. We cannot find a study, which compare all of the existing texture

representations using a wide range of images. Most of the studies concentrate

on a few texture representations and also, in general, their experimental image

databases contains fewer images. Below, some well-known and widely referred

studies are given.

• Weszka et. al. in [88] compare the texture classification performance of

first-order statistical features, second-order statistical features and Fourier

power spectrum features. They reported that Fourier features have the

worst performance, whereas the others are comparable.

• Ohanian and Dubes in [120] compare MRF model, multichannel filter-

ing, fractal-based and co-occurrence features. They concluded that co-

occurrence matrix representation performed best in their test set. Al-

though numerous textural features are extracted from co-occurrence ma-

trix, these features are expensive to compute, and they are not efficient

for image classification and retrieval [121].

• Castelli in [121] states that experiments with some natural texture data-

bases had shown that the Wold model provides “better quality” retrieval

than MR-SAR or the Tamura’s features. Tamura features has the same

accuracy, but slower than SAR.

• Reed and Buf [122] provides a review of the texture segmentation and fea-

ture extraction techniques. The study includes Laws masks, co-occurrence

matrices, gray-level dependency matrix, fractal models, stochastic models,

Gabor power spectrum and global power spectrum. The authors concluded

that all the techniques have distinct application areas.
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• Four filtering methods of texture discrimination are compared by Chen

and Chen [123]. These methods include Fourier transform, spatial filter,

Gabor filter and wavelet transform. They find that wavelet and Gabor

features perform equally well. These two perform better than the other

two features.

• Ma and Manjunath in [124] compare various wavelet transform features,

namely, orthogonal wavelet transform (OWT), bi-orthogonal wavelet trans-

form (BWT), tree-structured decomposition using orthogonal filter bank

(TOF), tree-structure decomposition using bi-orthogonal filter bank (TBF),

and Gabor wavelet transform (GWT). They found that Gabor wavelet

transform based features was the best among the others. They, also, com-

pared Gabor filter features, pyramid structured wavelet transform features

(PWT), tree structured wavelet transform features (TWT), and multi-

resolution simultaneous autoregressive model features (MR-SAR) in [111]

and concluded that Gabor features give the best overall performance and

this is closely followed by MR-SAR features.

3.8 Discussions

Practically speaking, texture descriptors represent distinctive characteristics of

a texture, which are specific to the problem domain. Unfortunately, none of the

existing descriptors has been shown to give satisfactory results over a wide range

of textures.

The success of a texture descriptor heavily depends on the data type and the

application area. A major problem in representing texture is that the textures

in the real world are often quite complex, due to changes in orientation, scale

or other visual appearance such as brightness and contrast. Additionally, it is

difficult to include extremely large number of attributes of texture under a single

mathematical representation.

Statistical descriptors exploit the local correlation of image pixels, whereas

spectral descriptors capture global information about the energy on different
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scales. While statistical descriptors successfully analyze textures with weak

edges or random nature, spectral and structural descriptors are best suited for

periodic or almost periodic textures. In a given problem domain, various types

of textures may be mixed.

Although at present the most promising texture descriptor is obtained from

Gabor filter banks with varying size and orientation, selection of the parameters

for Gabor Filter descriptor depends on the characteristics of the textures in

the image database. Since the Gabor functions are not orthogonal, there is

a trade-off between redundancy and completeness in the design of the Gabor

Filter Banks. Otherwise, the implementation of a complete Gabor expansion

would entail a generally impractical number of filters. Also, in a digital world,

it is not always possible to cope with all sizes of analog Gabor Filters, which

may cause problems, especially, with the textures that consist of small texels or

sharp corners. Another limitation of the Gabor descriptor is the restriction of

the filtering area, which must fit in a rectangle, unless some pre-processing is

done.
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CHAPTER 4

A GENERIC TEXTURE DESCRIPTOR for

IMAGE RETRIEVAL:

Statistical Analysis of Structural Information

(SASI)

In this chapter, a generic texture descriptor for image retrieval is introduced.

The Statistical Analysis of Structural Information (SASI) descriptor is based

on second order statistics of clique autocorrelation coefficients, which are the

autocorrelation coefficients over a set of moving windows. The clique windows of

various size and shape, which are defined by a neighborhood system, are used as

a tool for describing the characteristics of textures in different granularity. The

order of the neighborhood system controls the structure of the clique windows.

Because of the flexibility in the definition of clique windows, SASI can cope

with a broad class of textures, which may consist of discontinuities or small

primitives.

4.1 Definitions

SASI is based on the concept of clique [125] and autocorrelation coefficient. In

the following, SASI descriptor is introduced along with the background defini-
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tions [126].

Definition 4.1.1 (Neighboring set of a pixel) . For a regular lattice L, the

neighboring set of a pixel ij with coordinate (i, j) is defined by the following

recurrence relation:

∀kl ∈ L, ij 6= kl ,

ηd
ij = ηd−1

ij ∪ arg min
kl/∈ηd−1

ij

D(ij, kl) ,

and

η1
ij = arg min D(ij, kl) ,

where

L = {(i, j)|i, j ∈ N , 1 ≤ i ≤ WidthL and 1 ≤ i ≤ HeightL},

D(ij, kl) denotes the distance function between pixel ij and kl,

d is the order of neighborhood system and d ∈ N .

The neighboring relationship has the following properties:

1. a pixel is not neighboring to itself: ij /∈ ηd
ij ,

2. the neighboring relationship is commutative: ij ∈ ηd
kl ⇔ kl ∈ ηd

ij .

Widely used first and second order neighborhood systems can be seen in Fig-

ure 4.1. A more general scheme is shown in Figure 4.2, where the labels from 1

to 5 indicate the order of the neighborhood system with respect to the Euclidean

distance.

Pixels near the edge of the lattice have fewer neighbors than the interior

pixels. This fact is compensated by assuming that the lattice has a periodic

or torus structure (as shown in Figure 4.3), which means that the left edge

is connected to the right edge and the upper edge is connected to the lower

edge [70, 126, 127, 128, 129].

49



(a) (b)

Figure 4.1: Neighbors of pixel ij in the (a) first-order and (b) second-order
neighborhood system.

Figure 4.2: Neighbors of pixel ij. The labels d = 1, . . . , 5 indicate the order of
neighborhood system.

Figure 4.3: A torus structure.
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Definition 4.1.2 (Base clique type) Given the neighborhood system ηd, base

clique type set P is defined as,

P =
{
p̄ = (k, l)− (i, j)|∀kl ∈ ηd

ij

}
.

Note that p̄ is a position vector between two locations (i, j) and (k, l) of a lattice

and called base clique type. Figure 4.4 indicates the base clique types for the

second order neighborhood system η2 , where |P | = 8.

Figure 4.4: Base clique types p̄, in η2 neighborhood. Shaded pixel is taken as a
seed pixel.

Definition 4.1.3 (Base clique test predicate) Bp̄(ij, kl) is a Boolean func-

tion, which tests the neighboring and relative orientation of pixel ij and kl with

respect to each other, given by:

Bp̄(ij, kl) =





True if (k, l)− (i, j) = p̄ and kl ∈ ηd
ij

False otherwise
,

where p̄ ∈ P .

Unlike neighboring relation, base clique test predicate is not commutative:

Bp̄(ij, kl) 6= Bp̄(kl, ij).
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Definition 4.1.4 (Clique chain) Given pixel ij as a seed, the clique chain

C p̄
L(ij) with length L is a set defined by,

∀p̄ ∈ P, C p̄
L(ij) = {ij, kl,mn, . . . , qr, st, uv |

Bp̄(ij, kl) ∧Bp̄(kl, mn) ∧ . . . ∧Bp̄(qr, st) ∧Bp̄(st, uv)},

where

total number of pixels in C p̄
L(ij) is L,

(ij, kl) and (st, uv) is the first and the last neighboring pair of pixels,
with the base clique type p̄, respectively.

While in η2, clique chains are lines of pixels with various directions, for higher

order neighborhood systems, they become dash lines of pixels. Since η2 = 8,

only 8 direction clique chains can be obtained, as shown in Figure 4.5. Note

that each C p̄
L(ij) is symmetric to C−p̄

L (ij).

Figure 4.5: Eight orientations of clique chain with length 7.

By definition, a clique chain defined in ηd1 can also be defined in ηd2 if

d2 > d1. Figure 4.6 shows additional clique chains that can be defined, as the

order of the neighborhood system is increased from η2 to η3.
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Figure 4.6: Clique chains defined in η3.

Definition 4.1.5 (Clique Window) Clique Window W
p̄,〈c̄〉
S,L (ab) with seed ab

is an S × L structuring element, which consists of S clique chains, defined as

W
p̄,〈c̄〉
S,L (ab) =

{
C p̄

L(ab) ∪ C p̄
L(cd) ∪ C p̄

L(ef) ∪ . . . ∪ C p̄
L(wx) ∪ C p̄

L(yz) |

Bc̄1(ab, cd) ∧Bc̄2(cd, ef) ∧ . . . ∧Bc̄S−1
(wx, yz)

}
,

where ab, cd, ef, . . . , wx, yz ∈ L , 〈c̄〉 is an ordered S−1 tuple of base clique

types such that 〈c̄〉 =〉c̄1, c̄2, . . . , c̄S−1〉 | c̄i ∈ P , for i = 1 . . . S − 1. Each element

of 〈c̄〉, denoted as c̄i, represents the base clique type of the ith and (i + 1)th

clique chain pair. It specifies how the clique chains, C p̄
L , are connected to each

other. Parameters p̄, 〈c̄〉, S, and L determine the structure of the clique window.

The clique window is called regular if

- c̄i = c̄j for all i, j = 1 . . . S − 1, and

- c̄i

|c̄i| 6=
p̄i

|p̄i| and c̄i

|c̄i| 6= − p̄i

|p̄i| .

Otherwise it is irregular.

Figure 4.7 illustrates some of the clique windows defined in η2. In contrast

to Figure 4.7(a)–(e), which are regular clique windows, Figure 4.7(f)–(i) are the
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Figure 4.7: Some of the regular and irregular clique windows defined in η2.
(a)–(e) are regular, but (f)–(i) are irregular.

examples of irregular clique windows. For a regular clique window W
p̄,〈c̄〉
S,L (ab),

the parameters S, L and p̄, 〈c̄〉 determine the size and orientation of the clique

window, respectively. On the other hand, most of the time, it is hard to talk

about the size and orientation of the irregular clique windows. This fact is

depicted in Figure 4.7(h). Thus, for the irregular clique windows, rather than

the size and orientation, the structure becomes the main issue.

In this study, we mainly concentrate on the regular clique windows. For the

sake of simplicity, W
p̄,〈c̄〉
S,L (ab) is abbreviated as W p̄,c̄

S,L(ab), since in regular clique

windows, all c̄is are equal to each other. Also due to the symmetric relations a

regular clique window W p̄,c̄
S,L(ab) has the same structure as W−p̄,c̄

S,L (ab) ,W p̄,−c̄
S,L (ab),

and W−p̄,−c̄
S,L (ab) as shown in Figure 4.8.

In η2, 12 different clique windows (ignoring the symmetric ones) can be

defined as shown in Figure 4.9. One can employ the higher order neighborhood
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Figure 4.8: Representation of some regular clique windows.

systems, in order to incorporate the characteristics of the images in the database.

Then, the clique windows can be defined based on the clique type set for a given

neighborhood system. For example, 26, 86 and 124 regular clique windows can

be defined in η3, η4, and η5 respectively. Note that a clique window defined in

ηd1 can also be defined in ηd2 if d2 ≥ d1.

Figure 4.9: Regular clique windows defined in η2.
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In this dissertation, only the regular clique windows are used for measuring

the texture similarity. For practical reasons, the definitions below are given for

regular clique windows. The generalization to irregular cases requires some extra

work.

Definition 4.1.6 (Clique autocorrelation coefficient) Clique autocorrela-

tion coefficient at lag vector v̄ = (vx, vy) of a given seed pixel ab for a regular

clique window W p̄,c̄
S,L(ab) is given by

r(v̄)W p̄,c̄
S,L(ab) =

∑

∀(i,j)∧(i+vx,j+vy)∈W
p̄,c̄
S,L

(ab)

(xi,j − x̄i,j)(xi+vx,j+vy − x̄i+vx,j+vy)

√√√√
∑

∀(i,j)∈W
p̄,c̄
S,L

(ab)

(xi,j − x̄i,j)
2

∑

∀(i+vx,j+vy)∈W
p̄,c̄
S,L

(ab)

(xi+vx,j+vy − x̄i+vx,j+vy)
2

, (4.1)

where

xi,j is the gray value of the image at position (i, j),

x̄i,j = 1
NW

p̄,c̄
S,L

(ab)

∑
∀(i,j)∈W

p̄,c̄
S,L

(ab) xi,j is the mean value of the gray levels,

NW
p̄,c̄
S,L

(ab) is the number of pixels in the clique window W p̄,c̄
S,L(ab).

Lag vector v̄ is a vector between two locations of a clique window. Note that,

autocorrelation coefficients of a clique window depend only on the length and

direction of the lag vector.

Clique autocorrelation coefficients can be considered as a short-term correl-

ogram over the clique window defined by the clique chain. They enable us to

capture stationary information at various scale and orientation within an image.

Since the autocorrelation coefficients at all lags bear redundant information,

as experimented later in Section 5.1, there is no need to use all of them for

the representation of a texture in a multidimensional space. Therefore, it is

reasonable to take the lag vector v̄ of a clique window W p̄,c̄
S,L(ab) as,

v̄ = n× p̄ = (n px, n py) ,
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where n is a lag multiplier and n ∈ N , 1 ≤ n ≤ L − 1. In other words, the lag

vector v̄ is taken as the same as the base clique type of the clique chains, which

make the clique window.

Definition 4.1.7 (Second order statistics of autocorrelation coefficients)

Mean value and standard deviation of clique autocorrelation coefficients with lag

vector v̄ of all clique windows W p̄,c̄
S,L(ab) is defined as

µp̄,c̄
S,L(v̄) =

1

NL

∑

∀(a,b)∈L
r(v̄)W p̄,c̄

S,L(ab) , (4.2)

and

σp̄,c̄
S,L(v̄) =

√√√√ 1

NL

∑

∀(a,b)∈L

(
r(v̄)W p̄,c̄

S,L(ab) − µp̄,c̄
S,L(v̄)

)2

, (4.3)

respectively, where

v̄ is the lag vector,

p̄ and c̄ are the base clique types,

S is the number of clique chain,

L is the clique chain length,

NL is the number of pixels in the lattice.

Definition 4.1.8 (SASI descriptor) For a given texture T , SASI descriptor

is defined as an N × 1 vector with the entries µp̄,c̄
S,L(v̄),σp̄,c̄

S,L(v̄) as

DT =
{
µp̄1,c̄1

S1,L1
(v̄1), µ

p̄2,c̄2
S2,L2

(v̄2), . . . , µ
p̄Q,c̄Q

SQ,LQ
(v̄Q),

σp̄1,c̄1
S1,L1

(v̄1), σ
p̄2,c̄2
S2,L2

(v̄2), . . . , σ
p̄Q,c̄Q

SQ,LQ
(v̄Q)

}
, (4.4)

where 2×Q (Q mean values + Q standard deviations) is the size of the feature

vector.

For each selected clique window W p̄i,c̄i
Si,Li

(ab) (where i = 1 . . . total number

of clique windows selected), total number of mean value and standard devia-

tions calculable are 2 × (Li − 1), since lag vector v̄ is defined as v̄ = n × p̄i
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where n ∈ N , 1 ≤ n ≤ Li − 1. Therefore, the maximum value of Q is
∑total number of clique windows selected

i=1 (Li − 1).

Definition 4.1.9 (Normalized SASI descriptor)

Given, DT = [f1, . . . , f2×Q], then normalized SASI descriptor, D′
T = [f ′1, . . . , f

′
2×Q],

is defined by normalizing the entries of DT as follows:

f ′i =
fi − µfi

σfi

, i = 1, 2, . . . , Q , (4.5)

where µfi
is the mean value and σfi

is the standard deviation of the features

over the entire database.

D′
T measures the structural information by using the second order statistics

of local autocorrelation coefficients for texture T . The size of the descriptor D′
T

depends on the image database. We use the distance metric defined below in

order to measure the mathematical similarity between the textures.

Definition 4.1.10 (SASI Distance) The mathematical similarity between the

textures T1 and T2 is measured by the following metric:

S
(
D′

T1
, D′

T2

)
=

D′
T1
¯D′

T2

D′
T1
¯D′

T1
+ D′

T2
¯D′

T2
−D′

T1
¯D′

T2

, (4.6)

where ¯ stands for dot product. This distance measure is also known as simi-

larity rule as defined in Section 2.1.4.2. Although many other distance functions

can be used, in our experiments done in Section 5.2.1.1, best results are obtained

with the similarity rule.

4.2 Algorithm of SASI

The pseudo-code of SASI is shown in Algorithm 1. The most crucial part of

the algorithm is the selection of the clique window sizes, S and L. A prelim-

inary analysis on database, as discussed in the next section, may help us to

determine them. Window sizes depend on the size of the texture primitives and

resolution of the images in the database. Basically, clique windows should be

small enough to capture small primitives and big enough to capture large pat-

terns or primitives in the images of the database. One can employ all possible
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Algorithm 1 Algorithm of SASI

Begin

Select neighborhood system ηd

Select the clique windows W p̄,c̄
S,L as a subset of all clique windows

Select the lag vectors used for each clique window

DT = φ

For each clique window W p̄,c̄
S,L

For each lag vector v̄

For each pixel (ab)

Define clique window W p̄,c̄
S,L(ab)

Calculate r(v̄)W p̄,c̄
S,L(ab) using Equation 4.1.

Next pixel (ab)

Calculate mean value µp̄,c̄
S,L(v̄) using Equation 4.2

Calculate standard deviation σp̄,c̄
S,L(v̄) using Equation 4.3

DT = DT ∪ {µp̄,c̄
S,L(v̄), σp̄,c̄

S,L(v̄)}
Next lag vector v̄

Next clique window W p̄,c̄
S,L

Construct normalized D′
T vector using Equation 4.5

end.
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size clique windows and related autocorrelation coefficients, but this time, the

computational power is wasted. Additionally, increasing the dimension of the

feature vector may not improve the representation capability of the descriptor.

This is a well-known phenomenon, called curse of dimensionality, in pattern

recognition.

4.3 Summary

In this chapter, a generic texture descriptor, namely, Statistical Analysis of

Structural Information (SASI) is introduced as a representation of texture. SASI

is based on statistics of clique autocorrelation coefficients, calculated over struc-

turing windows. SASI defines a set of clique windows to extract and mea-

sure various structural properties of texture by using a spatial multi-resolution

method.
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CHAPTER 5

PERFORMANCE EVALUATIONS of SASI

Two sets of experiments are done to show the power of SASI. First, SASI de-

scriptor is analyzed in detail and various properties of SASI is compared to

Gabor Filter descriptor. Latter, SASI and Gabor Filter descriptor are tested

on the image retrieval problem by using four different image databases, namely

Brodatz Album [130], CUReT [131], PhoTex [132], and VisTex [133]. The ex-

periments are, also, performed on a database generated by joining all the images

of these four databases.

Brodatz Album contains 112 pictures with size 512×512 and 256 gray values

after digitizing, showing a variety of textures, collected for artistic purposes [130].

It is a de facto standard set of images for texture retrieval problem. Images can

be seen in Appendix A, as thumbnails. Due to its popularity and comparable

studies exist in the literature [134, 111, 93]; a comparative analysis is provided

on the Brodatz Album in the following sections.

Columbia-Utrecht Reflectance and Texture Database (CUReT) are formed

by the researchers at Colombia University and Utrecht University [131]. It

contains 61 different pictures with various size and color. Thumbnails of the

images can be seen at http://www.cs.columbia.edu/CAVE/curet/html/samp-

le.htm. Before applying SASI and Gabor descriptors, each image is rescaled to

512× 512 and converted to gray scale. Final version of the images are depicted
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in Appendix B.

Jerry Wu from Heriot-Watt University at Edinburgh creates Photometric

Texture Database (PhoTex) [132]. 30 different pictures with size 512× 512 and

256 gray values exist in PhoTex. Images can be seen at Appendix C and further

information is available at http://www.cee.hw.ac.uk/texturelab/database/jwdb-

/thumbnails.htm.

Vision Texture Database (VisTex) is formed by the Vision and Modeling

group at the MIT Media Lab [133]. It contains 167 colored reference tex-

tured images with size 512 × 512. Images are grouped according to their con-

tents. Thumbnails of the images are shown in Appendix D. Further details can

be found at http://www-white.media.mit.edu/vismod/imagery/VisionTexture-

/vistex.html.

5.1 SASI in Detail

In this section, first, traditional correlogram method is examined to show the

redundancy in autocorrelation coefficients in the analysis of texture. Next, the

clique windows are employed in order to show the effect of the window sizes in

constructing the SASI descriptor. Then, SASI descriptor is compared to Gabor

Filter descriptor.

In order to analyze SASI in detail, five texture images are selected from

Brodatz Album, namely D001, D035, D052, and D004 as shown in Figure 5.1.

D001 contains sharp edges with large texels and high contrast. On the other

hand D035, D052, and D004 have coarse to fine textures with relatively low

contrasts.

5.1.1 Traditional Correlogram Analysis

Traditional correlogram is a special case of SASI, where the size and the shape

of the clique windows are chosen as the size and the shape of the image itself and

clique autocorrelation coefficient is calculated for all lag vectors. The resulting

series is called the autocorrelation series or correlogram.

62



D001 D035

D052 D004

Figure 5.1: Sample texture images from Brodatz Album.

(a) (b)

(c) (d)

Figure 5.2: The correlograms of texture (a) D001, (b) D035, (c) D052, and
(d) D004 as 2-d intensity diagrams.
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In the literature, correlogram is used to measure the coarseness of a tex-

ture [39, 135]. Basically, correlogram evaluates the linear spatial relationship

between the texture primitives that made up a texture.

Figure 5.2(a)–(d) shows the correlograms of texture D001, D035, D052, and

D004 from Brodatz Album, assuming that images are in torus structure, as

shown in Figure 4.3. In order to depict real valued correlograms, as shown in

Figure 5.2, real values are linearly mapped, between 0 to 255 gray values.

If the texture primitives are large as in D035, the autocorrelation function

decreases slowly with the increasing lag distance as depicted in Figure 5.2(b). On

the other hand, if the primitives are small, the autocorrelation function decreases

rapidly as shown in Figure 5.2(d). Moreover, if the primitives are periodically

occurred in the image, then correlogram is also periodic. For example, the

correlogram of D001 in Figure 5.2(a) shows that approximately at each 30 pixel

in X and Y direction texture primitives are repeated.

5.1.1.1 Redundancy in Correlogram

It is well known that correlogram bears redundant information [39, 136, 137].

This redundancy is partially observed by using Principal Component Analysis.

Principal Component Analysis is a mathematical procedure that transforms a

number of correlated variables into a (smaller) number of uncorrelated variables

called principal components, each of which is a particular linear combination of

the original variables.

When the rows of the correlogram, denoted as r(i, L), where i is the row

number and L = {−127, . . . , 127}, are chosen as variables as in Table 5.1, it can

be seen that few new variables or principal components are sufficient to capture

the information provided by the existing variables.

This fact is exemplified in the sample Brodatz textures, D001, D035, D052,

and D004 in Table 5.2, 5.3, 5.4, and 5.5, respectively. The principal components

are extracted in decreasing order of importance. The eigenvalues measure the

amount of the variation explained by each PC and reach the largest value for the
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Table 5.1: Principal component analysis of a correlogram.

Variable # Definition
Variable 1: r(−127, L),
Variable 2: r(−126, L),

. . . . . .
Variable 254: r(126, L),
Variable 255: r(127, L).

where L = {−127, . . . , 127}.

first PC and smaller for the subsequent ones. The other two measures, namely,

proportion and cumulative, are computed from eigenvalues. Proportion is the

normalized version of eigenvalues and is a measures of the importance of a PC.

Analyzing the Table 5.2, 5.3, and 5.4, we found that only 5 principal com-

ponents for texture D001, D035, and D052 are sufficient to capture almost all

the information provided by 255 variables. That means, cumulative importance

at principal component 5 is higher than 95%. Event though, D004 is a random-

like texture, 25 principal components can reach over 90% cumulative. In other

words, 25 principal components capture most of the information provided by

the whole variables.

Table 5.2: Principal component analysis of the correlogram of texture D001.

Eigenvalue Proportion Cumulative
Principal component 1 197.574 0.775 0.775
Principal component 2 30.713 0.120 0.895
Principal component 3 12.028 0.047 0.942
Principal component 4 7.029 0.028 0.970
Principal component 5 5.663 0.022 0.992
Principal component 6 0.499 0.002 0.994
Principal component 7 0.329 0.001 0.995
Principal component 8 0.319 0.001 0.997
. . . . . . . . . . . .
Principal component 255 0 1 1
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Table 5.3: Principal component analysis of the correlogram of texture D035.

Eigenvalue Proportion Cumulative
Principal component 1 89.536 0.351 0.351
Principal component 2 87.242 0.342 0.693
Principal component 3 35.998 0.141 0.834
Principal component 4 34.981 0.137 0.972
Principal component 5 0.861 0.003 0.975
Principal component 6 0.799 0.003 0.978
Principal component 7 0.783 0.003 0.981
Principal component 8 0.757 0.003 0.984
. . . . . . . . . . . .
Principal component 255 0 1 1

Table 5.4: Principal component analysis of the correlogram of texture D052.

Eigenvalue Proportion Cumulative
Principal component 1 229.865 0.901 0.901
Principal component 2 6.183 0.024 0.926
Principal component 3 5.703 0.022 0.948
Principal component 4 4.905 0.019 0.967
Principal component 5 1.438 0.006 0.973
Principal component 6 1.297 0.005 0.978
Principal component 7 1.071 0.004 0.982
Principal component 8 0.847 0.003 0.986
. . . . . . . . . . . .
Principal component 255 0 1 1

A similar analysis indicates that there is no need to calculate all lags of the

clique autocorrelation coefficient for determining the SASI descriptor. Thus, as

mentioned in Definition 4.1.6, lag vector v̄ of a clique autocorrelation r(v̄)W p̄,c̄
S,L(ab)

is taken as, v̄ = n× p̄, where n is a lag multiplier.

In the next section, the effect of window size parameters S and L on texture

representation will be explored in detail.
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Table 5.5: Principal component analysis of the correlogram of texture D004.

Eigenvalue Proportion Cumulative
Principal component 1 24.302 0.095 0.095
Principal component 2 21.274 0.083 0.179
Principal component 3 18.749 0.074 0.252
Principal component 4 18.073 0.071 0.323
Principal component 5 16.355 0.064 0.387
Principal component 6 13.538 0.053 0.440
Principal component 7 12.212 0.048 0.488
Principal component 8 10.784 0.042 0.531
Principal component 9 9.230 0.036 0.567
Principal component 10 9.191 0.036 0.603
Principal component 11 8.077 0.032 0.634
Principal component 12 7.697 0.030 0.665
Principal component 13 7.448 0.029 0.694
Principal component 14 6.741 0.026 0.720
Principal component 15 6.395 0.025 0.745
Principal component 16 5.320 0.021 0.766
Principal component 17 5.076 0.020 0.786
Principal component 18 4.894 0.019 0.805
Principal component 19 4.714 0.019 0.824
Principal component 20 4.333 0.017 0.841
Principal component 21 3.891 0.015 0.856
Principal component 22 3.410 0.013 0.869
Principal component 23 3.374 0.013 0.883
Principal component 24 2.657 0.010 0.893
Principal component 25 2.439 0.010 0.903
. . . . . . . . . . . .
Principal component 255 0 1 1

5.1.2 Selection of Clique Window Size in SASI Descriptor

In order to analyze clique window size, four regular clique windows, namely

W
(1,0),(0,1)
S=L ,W

(0,1),(1,0)
S=L , W

(1,1),(1,0)
S=L , and W

(−1,1),(1,0)
S=L are defined, as shown in Fig-

ure 5.3, which are horizontal, vertical, right and left diagonal clique windows,

respectively. For each clique window, possible lag vectors for the clique autocor-

relation coefficients are, also, shown.

For the notational simplicity, horizontal, vertical, right diagonal, left diagonal

clique windows will be represented as WH
S , W V

S , WRD
S , and WLD

S . Working with

these clique windows may help us to analyze the effects of the clique window
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Lag vector v̄ = n× p̄, where n ∈ N and 1 ≤ n ≤ L− 1

Figure 5.3: Horizontal, vertical, right, and left diagonal clique windows.

sizes and the clique autocorrelation lags on SASI.

Different properties or components of the texture are captured by the clique

autocorrelation coefficients at different lag vectors applied on the clique windows.

Figure 5.4(a)–(d) illustrates the relation between the clique window size versus

mean values and standard deviations of autocorrelation coefficients of textures

D001, D035, D052, and D004 in the Brodatz Album, respectively. Note that for

texture D001 the mean values and standard deviations of the autocorrelation

coefficients remain almost the same for larger values of clique window than the

size 25×25. Therefore, for this particular example, it is shown that using clique

window size larger than 25× 25 does not bring any critical information. Similar

analysis is done for the texture D035, D052 and D004 shown in Figure 5.4(b),(c),

and (d). In this case, the largest window sizes might be 17×17, 15×15, 19×19.

In Figure 5.4(a)–(d), the clique autocorrelation coefficients are calculated for

4 orientations of clique windows with the lag multiplier n = 1. Whereas in

Figure 5.5(a)–(d), directions of lag vectors are fixed, but varying lag multiplier

n is employed for textures D001, D035, D052, and D004. Due to the dominant

horizontal and vertical effects in texture D001 and dominant diagonal effects

in texture D035 and D052, related clique windows are selected to examine the

dominant features of both textures. It is hard to talk about dominant effect for

texture D004. For this particular texture, a clique window would give result in
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(a) (b)

(c) (d)

Figure 5.4: Window sizes vs. mean values and standard deviations for texture
(a) D001, (b) D035, (c) D052, and (d) D004.

the effect of that particular direction. To illustrate, for example, the horizontal

effect, WH
S is applied on D004. Figure 5.5(a)–(d) indicate that using clique

window size larger than 33×33 for texture D001, 25×25 for texture D035, 19×19

for texture D052, and 21× 21 for texture D004 brings very small information.

Note that, the mean value of the clique autocorrelation coefficients ap-

proaches to the autocorrelation coefficient of the entire texture, as the size of

the clique window gets larger.
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(a) (b)

(c) (d)

Figure 5.5: Window sizes vs. mean values and standard deviations for texture
(a) D001, (b) D035, (c) D052, and (d) D004 using vertical, right diagonal, left
diagonal, and horizontal clique windows, respectively.

The window sizes and the lag vectors of the autocorrelation coefficients for

each clique window are the critical parameters of SASI. Therefore, a preliminary

analysis on the images of the database is required to select these parameters

before the calculation of SASI descriptor. In our experiments, we find them by

trial and error.
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5.1.3 Gabor versus SASI descriptor

Gabor Filter descriptor, reported by Manjunath and Ma [111, 93] use a dictio-

nary, which contains four scales and six orientations. Each filter captures the

relevant texture primitives of the image. Second order statistics of the Gabor

Filter (4 scales × 6 orientation = 24 filter) responses of a given texture is used as

a texture descriptor. Thus, an image is represented by a vector f̄ of size 48 [93].

f̄ =
[
µ00, σ00, µ01, σ01, ..., µ(S−1),(K−1), σ(S−1),(K−1)

]
,

where the subscript S represents the scale (S = 0, . . . , 3) and K represents the

orientation (K = 0, . . . , 5). The distance between two images, namely T1 and

T2, is defined as

d(T1, T2) =
∑

S

∑

K

∣∣∣∣
µT1

SK − µT2
SK

α(µSK)

∣∣∣∣ +
∣∣∣∣
σT1

SK − σT2
SK

α(σSK)

∣∣∣∣ ,

where α(µSK) and α(σSK) are the standard deviations of respective features over

the entire database.

The algorithmic complexity of Gabor Filter descriptor is O(N×log2 N) when

filtering is implemented in frequency domain, whereas the complexity of SASI

is O(S × L × N) where S × L is a clique window size and N is the image size

and N = Width×Height of the image. If the size of the clique window is small

compared to the image size (S ×L < log2 N) than SASI descriptor requires less

computational power than that of Gabor Filter. However in our experiments,

we use clique windows of size 3 × 3, 5 × 5, and 7 × 7 for 128 × 128 images.

Therefore, for the databases used in this study, Gabor Filter is less expensive in

terms of the computational complexity.

As in Gabor Filter, SASI captures the components of texture with different

coarseness. As a result, coarse-to-fine components of the textures are represented

in large-to-small size clique windows. This fact is depicted in Figures 5.6, 5.7,

5.8, and 5.9, where various sizes of clique windows decompose the image into

various granularities.
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D001

Figure 5.6: SASI and Gabor Filters vertical analysis of texture D001 from Bro-
datz Album.

D035

Figure 5.7: SASI and Gabor Filters right diagonal analysis of texture D035 from
Brodatz Album.
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D052

Figure 5.8: SASI and Gabor Filters left diagonal analysis of texture D052 from
Brodatz Album.

D004

Figure 5.9: SASI and Gabor Filters horizontal analysis of texture D004 from
Brodatz Album.
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In order to depict the characteristics of both SASI and Gabor Filter descrip-

tors, four selected texture, namely D001, D035, D052, and D004 are used. Like

in the previous section, considering the structure of the textures, D001 is an-

alyzed by vertically oriented clique windows and Gabor Filters, whereas D035

and D052 is analyzed by diagonal clique windows and Gabor Filters, since these

effects are dominant in the selected textures. Also, the horizontal effects are

analyzed in D004.

Table 5.6 indicates the parameters of Gabor and SASI descriptors used in

the experiments. The outputs of the clique autocorrelation coefficients and the

Gabor Filter responses shown in Figures 5.6, 5.7, 5.8, and 5.9 are scaled to 0 to

255, where 255 (white) and 0 (black) correspond to the high and low responses,

respectively.

Table 5.6: Parameters of Gabor and SASI.

SASI clique window size Gabor filter parameters
3× 3 Lower frequency=0.05
7× 7 Higher frequency=0.4
15× 15 Scale=3, Orientation=4

The results of the filter responses and the clique autocorrelation coefficients

depicted in Figure 5.6, 5.7, 5.8, and 5.9 are not directly comparable. However,

by analyzing these figures, one can get an idea about how these two descriptors

work. Although there is no one to one mathematical correspondence between

SASI and Gabor descriptors. Window size of the SASI has some resemblance

to the Gabor filter parameter. Therefore, for each image, small to big clique

window versus narrow to wide Gabor filter is employed.

A comparison of SASI and Gabor Filter outputs in Figure 5.6 indicates that

while SASI captures the sharp edges, Gabor has a tendency to smooth them.

The Gaussian structure of the Gabor Filter naturally, bends the straight lines

while SASI captures them without any deformation.

It can be seen from Figure 5.7 and 5.8 that, Gabor Filter fails to capture

small texels because of the error in discrete approximation of Gabor function for
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small windows. The output of fine parameters of Gabor is almost white noise

(no pattern).

5.2 Image Retrieval

Textural information can be used in two main application domains: ’between–

image search’ and ’within–image search’. The first domain deals with searching

an image database and finding the most similar image to a given query image.

The latter deals with texture segmentation problem, searching a region within

an image and finding the most similar region to a given object or a region.

Although the proposed descriptor can be used in both domains, in this study, we

are mainly concentrated on between-image search problem since in this domain,

the performance of a descriptor can be easily evaluated in terms of the average

retrieval rates [134, 138, 111, 7, 93]. On the other hand, the concept of similarity

is quite subjective.

There are two popular methods for testing the performance of a texture

descriptor:

• Each image in the database is divided into sub-images,

• The images in the database are grouped by the user.

The first method enables us to identify each subimage without human subjec-

tive support, unless images are similar to each other, whereas the latter method

requires grouping criteria that may differ from user to user. Although human

support adds subjectivity to the performance measuring process, without this

support human visual system consistency of a descriptor cannot be fully mea-

sured. This is a dilemma of the performance measuring process.

5.2.1 Image Retrieval without Human Subjectivity

In our experiments, all of the images in Brodatz Album, CUReT, PhoTex and

VisTex databases are partitioned into 16 nonoverlapping regions, as shown in
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Figure 5.10. Hence, for Brodatz Album 112× 16 = 1792 subimages, for CUReT

61× 16 = 976 subimages, for PhoTex 30× 16 = 480 subimages, and for VisTex

67×16 = 2672 subimages are obtained, as shown in Table 5.7. Table 5.10 shows

the performance of the proposed descriptor for each image database measured

in terms of the average retrieval rate, which is defined as the average percentage

number of patterns belonging to the same image as the query pattern in top 15

matches (self matches are excluded) [111, 93, 134]. In another words, for each

subimage, its most similar 15 subimages are searched within the entire database

consists of subimages. In the ideal case, retrieved 15 closest and the query

subimage should come from the same original image. This type of performance

appraisal is widely used in between-image search applications.

Figure 5.10: Subimages of size 128× 128 in D001 with size 512× 512.

Table 5.7: Properties of the Brodatz, CUReT, PhoTex, and Vistex image
databases.

Brodatz CUReT PhoTex VisTex Mixture
database

Properties 512× 512 Various size, 512× 512 512× 512 Various size,
gray valued colored gray valued colored mixed

Preprocessing — Gray scaled, — Gray scaled Gray scaled,
rescaled rescaled

# of image 112 61 30 167 370
# of subimage 1792 976 480 2672 5920

Throughout the image retrieval experiments 3 × 3, 5 × 5, and 7 × 7 clique

76



Table 5.8: The clique window sizes and autocorrelation coefficients for Brodatz
Album, CUReT, PhoTex, and VisTex image databases.

Clique window size Lag Multiplier # of clique
autocorrelation coefficient

3× 3 n = 1, . . . , 2 2
5× 5 n = 1, . . . , 3 3
7× 7 n = 1, . . . , 5 5

Total=10

Table 5.9: Number of clique windows vs. feature size.

Neighborhood # of clique Feature
system windows size
η1 2 40
η2 12 240
η3 26 520
η4 86 1720
η5 124 2480

Table 5.10: Average retrieval rates of the Brodatz, CUReT, PhoTex, and Vistex
image databases.

Descriptor Brodatz CUReT PhoTex VisTex Mixture
database

GABOR 74.07% 78.61% 80.27% 46.19% 60.56%

SASI in η1 70.40% 83.82% 86.84% 47.86% 62.71%
in η2 75.47% 85.38% 90.75% 51.80% 66.71%
in η3 75.93% 85.68% 92.70% 52.54% 67.20%
in η4 75.31% 83.75% 92.27% 51.51% 66.10%
in η5 74.84% 82.21% 92.11% 50.65% 65.29%

windows are employed. Table 5.8 shows the autocorrelation coefficients and the

related window sizes, which are selected in the preliminary analysis of Brodatz,

CUReT, PhoTex and VisTex image databases, as explained in the previous

section. As it can be seen from the Table 5.8 for a given clique window type,

10 autocorrelation coefficient are calculated and the feature vector of size 20

( 10 mean value + 10 standard deviation) is formed.

In order to make a systematic analysis on the performance of SASI descriptor

all clique windows defined in η1, η2, η3, η4, and η5 are employed. Table 5.9
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shows the number of clique windows and corresponding feature vector size for

each neighborhood system.

After calculating the SASI descriptor, the ranking process is accomplished

by using Equation 4.6.

The average retrieval rates of Gabor and SASI descriptor are computed for

images in Brodatz, CUReT, PhoTex and VisTex databases, respectively and the

results are indicated in Table 5.10. Note that SASI descriptor achieves average

retrieval rate between 47-92% whereas Gabor Filter remains in the range of

46-80%. We, also, formed a large image database, called mixture database, by

combining all the subimages of the Brodatz, CUReT, PhoTex and VisTex. In

this experiment, for each subimage, its most similar 15 subimages are searched

within 5920 subimages. The average retrieval rate for SASI descriptor (in η3) is

67.20% whereas that of Gabor is 60.56%.

In SASI increasing the order of the neighborhood system larger than 3, de-

creases the average retrieval rate, due to curse of dimensionality. Thus, the

below experiments are done by using SASI with clique windows defined in η3.

Although we did not perform a systematic set of experiments to check the

consistency of SASI to the human visual system, during the experiments, we

observed that SASI retrieves images, which are quite consistent to our intuition.

In order to show these informal results, six examples, where 6 query texture and

their 30 closest textures in the Brodatz Album, are given in Appendix E. Also,

SASI is tested on satellite images as shown in Appendix F.

The retrieval rate for each image in the Brodatz album for Gabor and SASI

descriptor is shown in Table 5.11. Figure 5.11 indicates the percentage of re-

trieving the correct subimages as a function of number of retrieved subimages.

In Figure 5.11, horizontal axis represents the number of retrieved subimages and

vertical axis represents the percentage of the correct retrieved subimages. The

performance increases to 93% if the top 100 retrievals are considered instead of

15 retrieval considerations.
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Table 5.11: Retrieval rates for the 112 texture images in Brodatz Album.

Texture Gabor SASI Texture Gabor SASI Texture Gabor SASI
D001 99.17 100.00 D039 52.08 67.92 D077 100.00 100.00
D002 74.58 61.25 D040 70.42 75.42 D078 97.08 97.08
D003 91.67 82.08 D041 71.67 73.33 D079 96.67 100.00
D004 100.00 90.00 D042 33.75 50.00 D080 86.25 74.58
D005 68.75 58.33 D043 10.00 12.08 D081 100.00 97.92
D006 100.00 100.00 D044 12.92 15.42 D082 100.00 100.00
D007 51.25 49.58 D045 11.67 22.08 D083 99.58 100.00
D008 90.83 96.25 D046 89.17 95.42 D084 100.00 100.00
D009 95.42 92.50 D047 100.00 100.00 D085 100.00 100.00
D010 80.00 79.58 D048 72.92 97.08 D086 68.75 82.50
D011 100.00 100.00 D049 100.00 100.00 D087 94.58 100.00
D012 89.17 90.42 D050 76.25 80.42 D088 22.08 64.58
D013 62.92 52.08 D051 79.58 85.83 D089 34.58 63.33
D014 100.00 100.00 D052 67.08 100.00 D090 37.50 37.92
D015 65.00 65.00 D053 100.00 100.00 D091 34.58 22.50
D016 100.00 100.00 D054 48.75 53.75 D092 96.25 96.25
D017 100.00 100.00 D055 100.00 100.00 D093 87.50 75.42
D018 86.67 95.83 D056 100.00 100.00 D094 99.58 88.75
D019 86.67 99.58 D057 100.00 100.00 D095 100.00 99.58
D020 100.00 100.00 D058 15.42 15.42 D096 77.08 82.92
D021 100.00 100.00 D059 27.92 22.08 D097 34.17 26.25
D022 71.25 87.08 D060 64.17 42.92 D098 42.50 57.08
D023 55.83 44.17 D061 44.17 38.75 D099 37.08 40.83
D024 93.75 93.75 D062 71.67 65.00 D100 41.67 45.00
D025 97.92 81.25 D063 30.83 23.75 D101 57.50 98.75
D026 80.83 80.83 D064 99.17 100.00 D102 74.17 99.17
D027 53.33 34.17 D065 100.00 100.00 D103 66.67 75.83
D028 82.92 81.67 D066 90.00 95.83 D104 68.33 90.42
D029 97.92 100.00 D067 62.92 63.75 D105 67.50 50.00
D030 40.83 50.00 D068 98.33 100.00 D106 58.33 46.67
D031 24.58 39.58 D069 48.75 33.75 D107 52.92 35.83
D032 99.17 97.92 D070 50.00 81.25 D108 45.83 36.25
D033 90.42 82.08 D071 61.67 72.50 D109 79.58 94.58
D034 95.42 96.25 D072 57.92 54.17 D110 98.75 93.75
D035 80.42 80.42 D073 42.92 60.00 D111 60.83 82.08
D036 66.67 72.50 D074 89.17 79.17 D112 71.67 55.42
D037 99.17 100.00 D075 97.92 100.00
D038 85.83 81.67 D076 99.17 100.00 Average 74.07 75.93

5.2.1.1 The Effects of Various Distance Functions on Retrieval Rate

When ranking texture similarities, Gabor filter descriptor uses L1 norm distance

function and SASI descriptor utilize “similarity rule” as exemplified in the pre-
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Figure 5.11: Average retrieval rates as a function of number of retrieved subim-
ages for Brodatz Album.

vious section. In this section, we analyze the effects of the different distance

functions on the average retrieval rates for both SASI and Gabor filter.

Recall that, there are many metric and non-metric distance function as men-

tioned in Section 2.1.4.2. However, some of the functions work on “distributions”

rather than vectors. These functions include Quadratic Form Distance, Maha-

lanobis Distance, Bhattacharyya Distance, and Histogram Distance. Also, Kull-

back Leibler Divergence and Jeffrey Divergence can be applied on non-negative

feature vectors.

Since, both SASI and Gabor filter descriptors are based on feature vectors,

which may include nonnegative values, we analyze L1, L2, L∞, Similarity Rule,

Normalized Correlation and Camberra Distance functions.

Table 5.12 shows the average retrieval rates for each distance function. The

experiments are done as in the previous section. It is seen that, the worst

average retrieval is obtained on Camberra Distance and L∞, whereas the others

are almost compatible. However, the best results are shown on L1 and Similarity
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Table 5.12: Average retrieval rates of the Brodatz Album for different distance
functions.

Distance Gabor Filter SASI Descriptor
Function Descriptor η1 η2 η3 η4 η5

L1 73.96% 68.98% 73.83% 74.33% 73.71% 73.48%
L2 72.62% 69.70% 74.41% 74.79% 73.96% 73.50%
L∞ 62.33% 68.08% 70.80% 70.83% 67.97% 66.97%
Similarity R. 73.29% 70.40% 75.47% 75.93% 75.31% 74.84%
Normalized C. 71.09% 69.67% 75.44% 75.74% 74.93% 74.40%
Camberra Dst. 49.57% 50.45% 51.88% 53.50% 51.93% 50.29%

Rule for Gabor and SASI descriptor, respectively.

The curse of dimensionality effects are also shown in Table 5.12. For all

distance function, using the neighborhood system larger than η3 decrease the

average retrieval rate.

5.2.2 Image Retrieval with Human Help: Clustering

Brodatz, CUReT, PhoTex and VisTex image databases were never intended to

give a fully representative sample set of a broad class of textures for testing

the full performance of texture descriptors. As described earlier, during the

evaluation of the performance of a descriptor, the images in the database are

partitioned into n subimages. Then, for each subimage, its most similar n − 1

subimages are searched within the subimages in the database. In this case,

images can be considered as distinct classes, whereas the subimages correspond

to the entries of each class.

It is expected that the query and the retrieved most similar, i.e. closest,

n − 1 subimages are regions of the same image. This expectation is only valid

for an image database, where images of the database are visually different from

each other whereas the subimages are visually similar. However, the databases

used in the experiments are far from satisfying this expectation.

There are two major problems for measuring the performance of a descriptor.

Firstly, some images in the database are quite similar to each other, as shown
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D030 D031

Figure 5.12: Similar texture samples in the Brodatz Album.

in Figure 5.12. Secondly, splitting an image into subimages may sometimes

yield visually dissimilar textures, as depicted in Figure 5.13. These problems

prevent us to measure the consistency of a descriptor with the human visual

system. In order to avoid the above problems, subimages may be clustered

D043 D044

Figure 5.13: Sample textures with dissimilar subimages.

by the human support. However, in this case the measured performance of a

descriptor is human specific. Also, as the number of clusters is increased, the

human subjectivity is also increased.

Since it is hard to manually group the subimages, 112 textured images of

Brodatz Album are visually grouped into 32 different clusters, each of which

contains 1-8 similar texture [93, 134, 138]. In this study, we use the clustering

schema defined in [134] as shown in Table 5.13. After the grouping, each image

is partitioned into 16 subimages. Note that, this clustering process can eliminate
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Table 5.13: Texture clusters identified by human for Brodatz Album.

Cluster 1 D001,D006,D014,D020,D049
Cluster 2 D008,D056,D064,D065
Cluster 3 D034,D052,D103,D104
Cluster 4 D018,D046,D047
Cluster 5 D011,D016,D017
Cluster 6 D021,D055,D084
Cluster 7 D053,D077,D078,D079
Cluster 8 D005,D032,D033
Cluster 9 D023,D027,D028,D030,D054,D098,D031,D099
Cluster 10 D007,D058,D060
Cluster 11 D059,D061,D063
Cluster 12 D062,D088,D089
Cluster 13 D024,D080,D081,D105,D106
Cluster 14 D050,D051,D068,D070,D076
Cluster 15 D025,D026,D096
Cluster 16 D094,D095
Cluster 17 D069,D071,D072,D093
Cluster 18 D004,D029,D057,D092
Cluster 19 D039,D040,D041,D042
Cluster 20 D003,D010,D022,D035,D036,D087
Cluster 21 D048,D090,D091,D100
Cluster 22 D043,D044,D045
Cluster 23 D019,D082,D083,D085
Cluster 24 D066,D067,D074,D075
Cluster 25 D101,D102
Cluster 26 D002,D073,D111,D112
Cluster 27 D086
Cluster 28 D037,D038
Cluster 29 D009,D109,D110
Cluster 30 D107,D108
Cluster 31 D012,D013
Cluster 32 D015,D097

the problems of Brodatz Album mentioned above, to a certain extent.

This time, the query and retrieved most similar subimages are tested for

belonging to the same cluster. Since clusters contain different number of images

rather than average retrieval rates, weighted average retrieval rates, where the

weights are the number of images in each cluster, are considered. Figure 5.14

illustrates an evaluation based on 32 clusters. Weighted average retrieval rate of

SASI descriptor is higher than that of Gabor Filter descriptor. It is seen from

83



Figure 5.14 that, when clustering is employed, the most similar 8 subimages of

a given query subimage are in the same cluster at the rate of 90%.

Figure 5.14: Retrieval performance after clustering for Brodatz Album.

Table 5.14: Image groups in the Vistex database.

No Group Name Number of No Group Name Number of
Image Image

1 Bark 13 11 Misc. 4
2 Brick 9 12 Paintings 13
3 Building 11 13 Sand 7
4 Cloud 2 14 Stone 6
5 Fabric 20 15 Terrain 11
6 Flower 8 16 Tile 11
7 Food 12 17 Water 8
8 Grass 3 18 WheresWaldo 3
9 Leaves 17 19 Wood 3
10 Metal 6

As stated in earlier, images in the VisTex database were grouped according

to their contents by the researchers at the MIT Media Lab. In Table 5.14, 19

groups of images in the VisTex are shown. Same analysis defined in the previous

paragraph is applied on visually grouped images of VisTex. Figure 5.15 shows
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an evaluation based on 19 clusters, where the most similar 8 subimages of a

given query subimage are in the same cluster at the rate of 85%.

Figure 5.15: Retrieval performance after clustering for VisTex image database.

5.3 Summary

In this chapter, a structural texture descriptor, SASI, is introduced and com-

pared with widely used Gabor Filters. SASI represents a texture in a multidi-

mensional feature space based on the second order statistics of autocorrelation

coefficients over a set of moving clique windows.

The clique windows of various size and shape, which are defined by a neigh-

borhood system, are used as a tool for describing the characteristics of textures

in different granularity. The order of the neighborhood system controls the

structure of the clique windows. Because of the flexibility in the definition of

clique windows, SASI can cope with a broad class of textures, which may consist

of sharp corners or small primitives or texels.

The sizes of the clique windows and the lag vectors for the autocorrelation

coefficients are the parameters of SASI. Selection of these parameters requires
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domain dependent analysis.

During the experiments, it is observed that SASI descriptor captures the

structural property of the texture better than the Gabor filters for discontinuities

such as sharp corners and high contrast edges. This is basically because of the

flexibility in designing the clique window and the representation capacity of the

autocorrelation coefficient defined over the clique window.

The second order statistics of clique autocorrelation coefficients on a given

texture provides considerable information about the appearance of texture. This

fact is verified during the performance tests based on average retrieval rates on

four different sets of databases, namely Brodatz Album, CUReT, PhoTex, Vis-

Tex, and mixture database obtained by adding all the images in these databases.
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CHAPTER 6

LEARNING SIMILARITY SPACE

In this chapter, we propose a method to adapt a content-based image retrieval

system into a configurable one. Basically, original feature space of a content-

based retrieval system is nonlinearly transformed into a new space, where the

distance between the feature vectors is adjusted by learning. The transformation

is realized by Artificial Neural Network architecture. A cost function is defined

for learning and optimized by simulated annealing method.

6.1 Similarity Matching

Most of the available image retrieval systems are designed by using a fixed set

of features and a similarity metric that restricts the performance and human

preferences in a specific task. On the other hand, it is well known that the design

of a generic feature space, which is linearly separable, is almost impossible in

many practical problems.

Roughly glanced though the literature published recently, most of the works,

use signal and/or image processing feature extraction methods with or without

preprocessing step in order to represent a given image. It is expected that ex-

tracted features are computationally feasible, reduce the problem data without

discarding valuable information and represent the original image successfully.
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The effectiveness of the representation space is determined by how well pat-

terns, in our case images, from different classes can be separated [139, 140].

Nevertheless, there does not exist a single best representation for a given im-

age [9].

After having selected the right set of features, and having characterized an

image as a point in a multidimensional vector space, researchers make some

assumption about the metric of the space [139, 25]. Typically, feature space

is assumed to be Euclidean [25]. After selecting the metric of the space, a

distance function is defined, such as Euclidean, Mahalanobis or City Block, in

order to measure the distance between the feature vectors. As stated earlier

in Section 2.1.4.2, the smaller the distance, the more similar the images to the

query. Mathematically, it is expected that feature vectors of similar images are

close to each other and this closeness is measured by a distance function.

The similarity metric is critical for content-based image retrieval systems [25,

138]. Unfortunately, image similarity computed by existing mathematical met-

ric is not always consistent with the human perception. For example Euclidean

distance may not effectively preserve the perceptual similarity, due to subjec-

tivity of perceived similarity with respect to the related task and database [59].

Moreover, similarity measure based on the nearest neighbor criterion in the fea-

ture space is unsuitable in many cases [9]. This is particularly true when the

image features correspond to low-level image attributes such as texture, color or

shape.

Figure 6.1, shows some problematic examples of features from two different

classes [41]. In such cases, using Euclidean distance for the nearest neighbor

search might retrieve patterns without any perceptual relevance to the original

query [134].

In order to overcome the bottleneck of Euclidean metric discussed above,

some efforts have spent in the context of image retrieval [134]. Manjunath

and Ma [93] present a learning based approach to retrieve the similar image

patterns by using self-organizing maps to get coarse labeling, followed by fine-
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(a) (b) (c) (d) (e)

Figure 6.1: Possible problematic feature space in 2-d. Circles and squares are the
feature values of two different classes. (a) Features are inadequate to distinguish
the different classes. (b) Features are linearly separable. (c) Decision boundary
is curved. (d) Distinct subclasses exist in the data. (e) Feature space is too
complex.

tuning process using learning vector quantization. Santini and Jain [25] develop

a similarity measure based on fuzzy logic. Minka and Picard report a system,

which learns grouping of similar images from positive and negative examples

provided by the users during query sessions [59]. Guo, Zhang and Li [138]

define a new metric called distance-from-boundary by the use of Support Vector

Machines to measure image similarities. The basic idea is that a non-linear

boundary separates images from the dissimilar ones.

In this study, we mainly concentrate on texture based image retrieval sys-

tems, that query the image database by example, where the user does not have

any particular target in mind, but selects an image or draws a sketch and asks

to retrieve similar images. Thus, the basic operation is ordering a portion of

image database with respect to a similarity metric [141].

Most of the image retrieval systems are non-configurable in which the re-

trieval process does not depend on the content of the database. We propose a

new method, which enables us to make the system configurable without chang-

ing the underlying feature extraction mechanism. This task is achieved by the

nonlinear transformation of the feature vectors. The transform domain is called

“similarity space”, where associated distance between feature vectors is train-

able. As a transformation scheme Artificial Neural Network is employed. Simu-

lated annealing is used to optimize a predefined cost function. Experiments on

the Brodatz Album, indicate better performance in the similarity space com-
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pared to the original feature space.

6.2 The Transformation from Feature Space to Similarity

Space

We search a space called “similarity space”, where the selected distance measure

such as Euclidean distance, between patterns can be adjusted to distinguish pat-

terns from different classes and to assign visually similar patterns into the same

class. Therefore, in such a space between class variances should be large enough

whereas within class variances should be as small as possible. As expected,

mapping from the original feature space to similarity space is highly non-linear,

subjective and task dependent.

The nonlinear transformation is accomplished by the use of neural networks

as indicated in Figure 6.2.

Figure 6.2: A block diagram of the transformation.

A typical ANN architecture, which can be used for such transformation, is

shown in Figure 6.3. Since the outputs of ANN are bounded, i.e. between 0 to

1, similarity space is also bounded.

The number of input neuron is taken equal to the dimension of the original

feature space. On the other hand, determining the number of hidden neuron

and also output neuron (i.e. dimension of the similarity space) is not usually

straightforward. The goal is to use as few neurons as possible for each layer.

Note that reducing the number of output layer reveals to reducing the number

of dimensions in the similarity space. Also, if the number of output neuron is

chosen less than the number of input neuron, then the transformation works as
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Figure 6.3: The ANN architecture used for transformation.

a nonlinear dimension reduction system [140].

After selecting the number of hidden and output neurons, one can deter-

mine the similarity space algorithmically. This time standard backpropagation

algorithm can be used for the training since the input versus output is known.

Note that, Backpropagation algorithm minimizes the mean square error (MSE)

between the generalized and the actual outputs. However, the magnitude of the

error does not clearly indicate how successful the ANN is separating the classes

to be identified [142].

Due to aforementioned problems, training should be handled as an unsu-

pervised way. First, a cost function must be defined in order to measure the

goodness of the similarity space. Second, an algorithm that searches the optimal

parameters of the cost function should be employed.

6.3 ANN Training as a Global Optimization Problem

Although various unsupervised learning algorithms such as hill climbing, genetic

algorithms, and etc. are available to optimize the cost function, we cast the
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training of the ANN as a problem of global optimization and use the simulated

annealing method.

Mathematically speaking, given a set S of feasible solutions and real valued

cost function g : S → R, global optimization may be formulated as the search

for s ∈ S such that g(s) ≤ g(s′) ∀s′ ∈ S.

For neural networks, S is the space of connection weight vectors including

bias terms and g is the cost function. Simulated annealing requires the notion of

a neighborhood structure over S, where the neighborhood N(sc) of the current

solution sc ∈ S is the set of new solutions that can be generated from sc.

Typically, N(sc) consists of slight perturbations of sc, e.g. a weight vector can

be perturbed by adding a random vector in [−e, +e]d, where d is the number of

connection weights.

Simulated annealing described in Algorithm 2 is an iterative algorithm that

allows escape from local minima in the error surface by probabilistically accept-

ing disimprovements, or “up-hill moves”. Although downhill moves are allowed

anytime, uphill moves are more likely during the beginning of the process, when

the temperature is high, and they become less likely at the end as the tempera-

ture becomes lower.

6.4 Texture Image Retrieval

The nonlinear transformation schema proposed in the previous section can be

used for any image retrieval and search problem. However, in this study, we

suffice to apply the method to the texture image retrieval problem. Since the

scope of this dissertation is restricted to texture image retrieval. At this point

a cost function is needed to design an optimal transformation, which improves

separability of the similarity space. There are many ways of defining the cost

function depending on the nature of the problem and the characteristics of the

images in the database. One may define the cost function, which considers the

full ranking, i.e. for each query, the user can determine the order of retrieved

subimages. In this study we only cluster the similar textures as close as possible
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Algorithm 2 Pseudo code for simulated annealing algorithm.

Begin

sc ← random solution in S
T ← T0

Repeat I times

Repeat J times

Choose s′ ← a random element from N(sc)

∆ = g(s)− g(s′)

if ∆ ≤ 0 then

sc ← s′

else

sc ← s′ with probability e−(∆/T )

endif

T ← T × k, where 0 < k < 1

End.

and separate distinct classes as much as possible.

6.5 Cost Function

Let, Axy and Bxy represent the distances from a point x to point y, where the

points x and y are in the same class and different class respectively. Mathemat-

ically,

Axy =





D(x, y) if x and y are in the same class

Undefined Otherwise
, (6.1)

and

Bxy =





D(x, y) if x and y are not in the same class

Undefined Otherwise
, (6.2)

where D(x, y) is a distance function between x and y.

Our aim is to minimize A, while maximizing B for each point. Thus, a cost

function can be defined as follows:

g(w̄) = E(B − A) ≈ 1

N

∑

∀x,y

(Bxy − Axy) , (6.3)
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where N represents the number of points, and w̄ is a weight vector of the ANN.

In some cases, an unbalanced increase in B−A for one point, can significantly

increases the cost function with the price of disturbing the separability of the

rest of the classes. This situation may maximize the cost function, yet being

very poor in well separated clustering. In order overcome this problem, each Axy

and Bxy is scaled between 0 to 1 by the sigmoid function as shown in Figure 6.4.

Figure 6.4: Sigmoid function, where c=1.

Sgm(x) =
1

1 + e−cx
, (6.4)

where c is a constant, which depends on the images in the database and dimen-

sion of the similarity space. Cost function can be redefined as follows,

g(w̄) = E(Sgm(B)− Sgm(A)) ≈ 1

N

∑

∀x,y

(Sgm(Bxy)− Sgm(Axy)) . (6.5)

Due to the computational complexity, there is no need to calculate all Axy

and Bxy. Thus, for each point, its farthest nSameClass point in the same class

and nearest nDifferentClass point in the other classes can be calculated, instead
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of Axy and Bxy respectively. At the first glance, it can be argued that in order

to find farthest and nearest points, an algorithm must calculate all of the Axy

and Bxy. However, our numerical experiments show that, during the training,

there is no need to search nSameClass farthest and nDifferentClass nearest points

each time. Since, the training is done using simulated annealing, where the

weights are slightly perturbed, the outputs of the ANN are also slowly changed

during the iteration. Thus, for each point, its farthest nSameClass and nearest

nDifferentClass point can searched at some predefined interval.

It is well known that ANN has tendency to memorization rather than gen-

eralization when overtraining is occurred. A generalization performance of an

ANN is proportional to both the number of neurons and the size of the weights.

In other words, not only large number of neuron, but also large weights can de-

creases the generalization performance of an ANN [143, 144]. Moreover, Bartlet

in [144] states that generalization performance of an ANN depends on the size

of the weights rather than the number of the weights. Thus, another term, also

called weight decay, is added to cost function as below:

g(w̄) = E
(
Sgm(B)− Sgm(A)

)
− τ ||w̄|| ≈

1

N

∑

∀x,y

(
Sgm(Bxy)− Sgm(Axy)

)
− τ ||w̄|| , (6.6)

where ||w̄|| =
∑
∀i wi × wi , wi ∈ w̄ and τ is constant that penalize the cost

function. Algorithm 3 shows the pseudo-code for cost function computation.

6.6 Experiments

We redefine the problem defined in Section 5.2.1. Basically, each image in the

Brodatz Album are divided into 16 nonoverlapping subimage and totally 1792

subimages are obtained. In order to construct training and test image database,

for each image, we select 4 subimages randomly. As a result, we have two

image databases, namely training and test, which consist of 112× 4 = 448 and

112× 12 = 1344 subimages, respectively.
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Algorithm 3 Pseudo code for cost function computation.

Begin

Cost = 0

For each point x

At each K iteration

Begin

Calculate the all distances from the points in the same class to x

Sort them

Store nSameClass farthest point in array FARTHEST[x]

Calculate the all distances from the points in different class to x

Sort them

Store nDifferentClass nearest point in array NEAREST[x]

End

For each point y in FARTHEST[x]

Calculate the distance D from x to y

Cost = Cost + sgm(D)

For each point y in NEAREST[x]

Calculate the distance D from x to y

Cost = Cost− sgm(D)

Cost = Cost/(Number of point× nSameClass × nDifferentClass)− τ ||w̄||
End.
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In the training phase, for each subimage in the training image database, its

most similar 3 subimages are searched in the similarity space. It is expected

that, query and the retrieved subimages are the parts of the same image. The

effectiveness of the representation is measured by the average retrieval rate.

Hence, maximizing the cost function corresponds to find the weights of the

ANN that maximize the average retrieval rate. Also, due to the penalty term,

i.e. weight decay, in the cost function, small weights are preferable to large ones,

which prevents memorization.

Similarly, in the test phase, for each subimage in the test image database,

its most similar 12 subimages are searched in the similarity space.

We test both SASI and Gabor filter descriptor performance in the similarity

space. In other words, normalized SASI and Gabor filter feature vectors serve

as inputs to the ANN.

For Gabor filter descriptor, as explained in Section 5.1.3, second order statis-

tics of the Gabor Filter (4 scales * 6 orientation = 24 filter) responses of a given

texture are used as a texture descriptor. Thus, an image is represented by 48

real numbers. We construct an ANN, which has 48 input, 12 hidden, and 8

output neurons, which corresponds to reducing the 48 dimensional space into a

space of 8 dimension. The number of hidden and output neuron is chosen by

trial and error. Including the bias-terms, the number of weights to be searched

is 48× 12 + 12 + 12× 8 + 8 = 692.

For SASI descriptor, as stated in Section 5.2.1, the second order statistics

of the autocorrelation coefficients calculated on 3 × 3, 5 × 5, and 7 × 7 clique

windows defined in η2 are used. This time, an image is represented by 240 real

numbers, as seen in Table 5.9. The same ANN structure, defined above, is used.

The number of weights to be searched is 240× 12 + 12 + 12× 8 + 8 = 2996.

In order to avoid wasting computation time, we select T0 such that average

accepting uphill moves would be 0.8 at the beginning. Also I=1000, J=10000,

k=0.99, τ = 0.01, and nSameClass = nDifferentClass = 3 is selected. Scaling

parameter c is chosen as 16. The implementation of the neighborhood N(sc) of
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the current solution is done as follows:

wi = wi +
(
a random number in [−0.001, 0.001]× |wi|

)
, ∀wi ∈ w̄ . (6.7)

The last term, |wi|, enables to produce a new solution, even if the weights

are large, thus, the addition of random values between -0.001 to 0.001 to all wi

does not create a new solution.

The experiment was repeated 10 times. Table 6.1 and 6.2 summarizes the

training and test results, respectively. Considering the average retrieval rates

given in Table 6.2, it is clear that similarity space is more effectively repre-

sents the images comparing the normalized original feature space and due to

the dimension reduction, i.e. R240 → [0, 1]8 and R48 → [0, 1]8 for SASI and

Gabor filter descriptors, respectively. Approximately, 5% and 3% increases on

the average retrieval rates for Gabor filter and SASI descriptor are obtained,

respectively. Retrieving cost (space + computational time) is, also, saved.

Table 6.1: Training results on Brodatz Album using SASI and Gabor Filter
descriptor are shown. For each experiment, average retrieval rates are calculated.

Experiment # Gabor SASI in η2

Original Similarity Original Similarity
Space Space Space Space

1 73.07% 85.19% 73.96% 88.84%
2 74.26% 83.11% 75.22% 88.62%
3 72.10% 85.49% 73.96% 88.47%
4 71.28% 86.83% 73.51% 89.81%
5 70.83% 82.89% 72.99% 88.10%
6 69.27% 81.70% 73.66% 87.87%
7 74.26% 85.57% 75.15% 89.43%
8 73.07% 85.19% 73.14% 87.20%
9 69.72% 85.27% 74.55% 88.39%
10 71.65% 86.90% 74.11% 87.95%

Average 71.95% 84.81% 74.03% 88.47%

6.7 Summary

This study attacks the separability problem of feature space, designed for con-

tent-based image search and retrieval systems. The proposed method concen-
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Table 6.2: Test results on Brodatz Album using SASI and Gabor Filter descrip-
tor are shown.

Experiment # Gabor SASI in η2

Original Similarity Original Similarity
Space Space Space Space

1 73.92% 77.54% 74.47% 79.04%
2 72.50% 77.06% 73.89% 77.10%
3 72.64% 78.42% 74.36% 76.65%
4 72.48% 77.61% 74.30% 77.24%
5 72.59% 77.92% 74.42% 76.40%
6 72.44% 77.72% 74.41% 78.44%
7 72.37% 76.01% 73.74% 75.55%
8 72.36% 78.10% 74.59% 78.10%
9 72.51% 78.21% 73.90% 77.85%
10 72.55% 77.75% 73.71% 77.10%

Average 72.64% 77.63% 74.18% 77.35%

trates on the similarity metrics for texture descriptors. For this purpose, a

nonlinear transformation scheme maps the original image into similarity space,

where the patterns are better separated for distinct textures and closely clus-

tered for similar textures. The nonlinear transformation is optimal with respect

to a predefined cost function. Furthermore, it reduces the dimension of the

features, in similarity space. Results indicate that the similarity space is more

successful than the original space in retrieving the similar texture images.
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CHAPTER 7

CONCLUSIONS

In this thesis, we first introduce a generic texture descriptor for content-based

image retrieval, namely SASI, and compare it to one of the most popular and suc-

cessful descriptor, Gabor Filters. Secondly, in order to overcome the Euclidean

space limitations, we suggest a method to adapt an image retrieval system into

a configurable one and test this method using SASI and Gabor filter descriptors

on texture image retrieval problem.

SASI descriptor consists of second order statistics of autocorrelation coeffi-

cient at different lags over a set of clique windows. The concept of clique chain is

employed for constructing these structural windows. Clique windows are defined

by using a set of neighborhood systems. Changing the order of the neighborhood

system, various regular or irregular clique windows are generated. The size of

the clique windows and the lag vectors for the autocorrelation coefficients are the

parameters of SASI. Selection of these parameters requires domain dependent

analysis. The traditional correlogram is a special case of SASI, where only one

clique window is used with the size of the image itself and clique autocorrelation

coefficient is calculated for all lag vectors. Therefore, SASI can be considered as

a generalized correlogram, with varying size and neighborhood system.

SASI descriptors have some superiorities compared to Gabor filters. First of

all, the Gaussian structure of the Gabor filters, has the tendency to bend the
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straight lines and smoothes the sharp edges. On the other hand, the flexibility in

designing a large class of clique windows enables one to capture a great variety of

textures without any distortion. Secondly, while SASI descriptor can successfully

extract small texels, Gabor functions fail to detect them, due to the relatively

large error of the discrete filter approximation. As a result, SASI descriptor

captures the structural property of the texture better than the Gabor Filters.

This fact is verified during the performance tests based on average retrieval rates

applied on subimages and visually clustered images of Brodatz Album, CUReT,

PhoTex and VisTex databases. Finally, during the experiments it is observed

that SASI descriptor is more consistent to the Human Visual System compared

to the Gabor filters, in retrieving the similar images. This is quite reasonable

considering the fact that SASI does not restrict the textures to obey the laws of

Gaussian nature. On the other hand, the main disadvantage of SASI descriptor

is its high computational complexity, especially for large size clique windows

required for capturing large texels.

After feature extraction, the selection of similarity distance may be the most

crucial phase for content-based image retrieval systems. It is hard to find a

distance function that is quite consistent with the human perception. When the

retrieval rates are not sufficient, researchers generally try a new distance function

or search a new feature extraction method. In order to overcome these difficulties

we propose a method, which increases the retrieval rates without changing the

underlying feature extraction method and distance function. Basically, original

feature space of a content-based retrieval system is nonlinearly transformed into

a new space, where the distance between the feature vectors is adjusted by

learning. This issue is directly related to separability problem.

In particular, the proposed method concentrates on the similarity metrics

for texture descriptors. For this purpose, a nonlinear transformation scheme

maps the original image into similarity space, where the patterns are better

separated for distinct textures and closely clustered for similar textures. The

nonlinear transformation is optimal with respect to a predefined cost function.
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Furthermore, it reduces the dimension of the features, in similarity space. Re-

sults indicate that the similarity space is more successful than the original space

in retrieving the similar texture images.

The method is also independent from the nature of the problem and can be

applied to wide range of pattern recognition problems. By changing the cost

function, various types of problem can be handled. The dimension reduction in

the similarity space needs to be explored further.
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APPENDIX A

Brodatz Album

D001 D002 D003 D004

D005 D006 D007 D008

D009 D010 D011 D012

Figure A.1: Brodatz Album images shown as thumbnails, D001–D012.
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D013 D014 D015 D016

D017 D018 D019 D020

D021 D022 D023 D024

D025 D026 D027 D028

D029 D030 D031 D032

D033 D034 D035 D036

Figure A.2: Brodatz Album images shown as thumbnails, D013–D036.

116



D037 D038 D039 D040

D041 D042 D043 D044

D045 D046 D047 D048

D049 D050 D051 D052

D053 D054 D055 D056

D057 D058 D059 D060

Figure A.3: Brodatz Album images shown as thumbnails, D037–D060.
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D061 D062 D063 D064

D065 D066 D067 D068

D069 D070 D071 D072

D073 D074 D075 D076

D077 D078 D079 D080

D081 D082 D083 D084

Figure A.4: Brodatz Album images shown as thumbnails, D061–D084.
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D085 D086 D087 D088

D089 D090 D091 D092

D093 D094 D095 D096

D097 D098 D099 D100

D101 D102 D103 D104

D105 D106 D107 D108

Figure A.5: Brodatz Album images shown as thumbnails, D085–D108.
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D109 D110 D111 D112

Figure A.6: Brodatz Album images shown as thumbnails, D109–D112.
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APPENDIX B

CUReT Image Database

Felt Polyester Terrycloth Rough Plastic

Leather Sandpaper Velvet Pebbles

Frosted Glass Plaster a Plaster b Rough Paper

Figure B.1: CUReT image database thumbnails, 1–12.
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Artificial Grass Roof Shingle Aluminum Foil Cork

Rough Tile Rug a Rug b Styrofoam

Sponge Lambswool Lettuce Leaf Rabbit Fur

Quarry Tile Loofa Insulation Crumpled Paper

(2 zoomed) (11 zoomed) (12 zoomed) (14 zoomed)

Slate a Slate b Painted Spheres Limestone

Figure B.2: CUReT image database thumbnails, 13–36.
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Brick a Ribbed Paper Human Skin Straw

Brick b Corduroy Salt Crystals Linen

Concrete a Cotton Stones Brown Bread

Concrete b Concrete c Corn Husk White Bread

Soleirolia Plant Wood a Orange Peel Wood b

Peacock Feather Tree Bark Cracker a Cracker b

Figure B.3: CUReT image database thumbnails, 37–60.
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Moss

Figure B.4: CUReT image database thumbnails, 61.
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APPENDIX C

PhoTex Image Database

AN1 AN2 AN3 AN4

AN5 AN6 BN1 BN2

BN3 BN4 GR1 GR2

Figure C.1: PhoTex image database thumbnails, 1–12.
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GRD1 ND1 RKB1 RKD1

TL1 TL2 TL3 TL4

TL5 TL6 WD1 WPD1

WPD2 WPS1 WPS2 WPS3

WV2 WV3

Figure C.2: PhoTex image database thumbnails, 13–30.
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APPENDIX D

VisTex Image Database

Bark.0000 Bark.0001 Bark.0002 Bark.0003

Bark.0004 Bark.0005 Bark.0006 Bark.0007

Bark.0008 Bark.0009 Bark.0010 Bark.0011

Figure D.1: VisTex image database thumbnails, 1–12.
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Bark.0012 Brick.0000 Brick.0001 Brick.0002

Brick.0003 Brick.0004 Brick.0005 Brick.0006

Brick.0007 Brick.0008 Buildings.0000 Buildings.0001

Buildings.0002 Buildings.0003 Buildings.0004 Buildings.0005

Buildings.0006 Buildings.0007 Buildings.0008 Buildings.0009

Buildings.0010 Clouds.0000 Clouds.0001 Fabric.0000

Figure D.2: VisTex image database thumbnails, 13–36.
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Fabric.0001 Fabric.0002 Fabric.0003 Fabric.0004

Fabric.0005 Fabric.0006 Fabric.0007 Fabric.0008

Fabric.0009 Fabric.0010 Fabric.0011 Fabric.0012

Fabric.0013 Fabric.0014 Fabric.0015 Fabric.0016

Fabric.0017 Fabric.0018 Fabric.0019 Flowers.0000

Flowers.0001 Flowers.0002 Flowers.0003 Flowers.0004

Figure D.3: VisTex image database thumbnails, 37–60.
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Flowers.0005 Flowers.0006 Flowers.0007 Food.0000

Food.0001 Food.0002 Food.0003 Food.0004

Food.0005 Food.0006 Food.0007 Food.0008

Food.0009 Food.0010 Food.0011 Grass.0000

Grass.0001 Grass.0002 Leaves.0000 Leaves.0001

Leaves.0002 Leaves.0003 Leaves.0004 Leaves.0005

Figure D.4: VisTex image database thumbnails, 61–84.
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Leaves.0006 Leaves.0007 Leaves.0008 Leaves.0009

Leaves.0010 Leaves.0011 Leaves.0012 Leaves.0013

Leaves.0014 Leaves.0015 Leaves.0016 Metal.0000

Metal.0001 Metal.0002 Metal.0003 Metal.0004

Metal.0005 Misc.0000 Misc.0001 Misc.0002

Misc.0003 Paintings.1.0000 Paintings.1.0001 Paintings.11.0000

Figure D.5: VisTex image database thumbnails, 85–108.
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Paintings.11.0001 Paintings.11.0002 Paintings.11.0003 Paintings.11.0004

Paintings.21.0000 Paintings.21.0001 Paintings.31.0000 Paintings.31.0001

Paintings.41.0000 Paintings.41.0001 Sand.0000 Sand.0001

Sand.0002 Sand.0003 Sand.0004 Sand.0005

Sand.0006 Stone.0000 Stone.0001 Stone.0002

Stone.0003 Stone.0004 Stone.0005 Terrain.0000

Figure D.6: VisTex image database thumbnails, 109–132.
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Terrain.0001 Terrain.0002 Terrain.0003 Terrain.0004

Terrain.0005 Terrain.0006 Terrain.0007 Terrain.0008

Terrain.0009 Terrain.0010 Tile.0000 Tile.0001

Tile.0002 Tile.0003 Tile.0004 Tile.0005

Tile.0006 Tile.0007 Tile.0008 Tile.0009

Tile.0010 Water.0000 Water.0001 Water.0002

Figure D.7: VisTex image database thumbnails, 133–156.
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Water.0003 Water.0004 Water.0005 Water.0006

Water.0007 WheresWaldo.0000 WheresWaldo.0001 WheresWaldo.0002

Wood.0000 Wood.0001 Wood.0002

Figure D.8: VisTex image database thumbnails, 157–167.
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APPENDIX E

Image Retrieval Examples on Brodatz Album

In this chapter, we select six texture subimages, namely, D001 1, D004 1, D018 1,

D035 1, D052 1, and D101 1 from Brodatz Album and their most similar 30

subimages are retrieved by using both SASI and Gabor filter descriptor.
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Query Image: D001 1

SASI Gabor

Figure E.1: The most similar 30 images of a query image D001 1 are depicted.
Images are ordered by the distance from left to right, top to bottom (excluding
self matches).
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Query Image: D004 1

SASI Gabor

Figure E.2: The most similar 30 images of a given query D004 1.
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Query Image: D018 1

SASI Gabor

Figure E.3: The most similar 30 images of a given query D018 1.

138



Query Image: D035 1

SASI Gabor

Figure E.4: The most similar 30 images of a given query D035 1.
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Query Image: D052 1

SASI Gabor

Figure E.5: The most similar 30 images of a given query D052 1.
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Query Image: D101 1

SASI Gabor

Figure E.6: The most similar 30 images of a given query D101 1.
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APPENDIX F

Image Retrieval Examples on Satellite Images

In this chapter, we test SASI descriptor on satellite images. Basically, a satellite

image is partitioned into 64× 64 blocks of pixels. Then, for each block, a SASI

(in η3) texture feature vector is computed as explained in Section 5.2.1. Finally,

the most similar 9 images of a given query image are retrieved.
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F.1 A Satellite Image of Manhattan, New York, USA

Figure F.1: A one-meter resolution satellite image of Manhattan with size 2688×
2496. After partitioning the image into 64× 64 blocks of pixels, 1638 blocks are
obtained.
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Query Pattern

#1 #2 #3

#4 #5 #6

#7 #8 #9

Figure F.2: A sample query image and its most similar 9 images in the satellite
image of Manhattan.
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Query Pattern

#1 #2 #3

#4 #5 #6

#7 #8 #9

Figure F.3: A sample query image and its most similar 9 images in the satellite
image of Manhattan.
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F.2 A Satellite Image of Clevland, Ohio, USA

Figure F.4: A five-meter resolution satellite image of Clevland with size 1280×
960. After partitioning the image into 64 × 64 blocks of pixels, 300 blocks are
obtained.
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Query Pattern

#1 #2 #3

#4 #5 #6

#7 #8 #9

Figure F.5: A sample query image and its most similar 9 images in the satellite
image of Clevland.
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Query Pattern

#1 #2 #3

#4 #5 #6

#7 #8 #9

Figure F.6: A sample query image and its most similar 9 images in the satellite
image of Clevland.
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F.3 A Satellite Image of Baghdad, Iraq

Figure F.7: A 0.6-meter resolution satellite image of Baghdad with size 2176×
2176. After partitioning the image into 64× 64 blocks of pixels, 1156 blocks are
obtained.
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Query Pattern

#1 #2 #3

#4 #5 #6

#7 #8 #9

Figure F.8: A sample query image and its most similar 9 images in the satellite
image of Baghdad.
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Query Pattern

#1 #2 #3

#4 #5 #6

#7 #8 #9

Figure F.9: A sample query image and its most similar 9 images in the satellite
image of Baghdad.
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Yarman-Vural. SPIE Electronic Imaging 97, Machine Vision Applications

in Industrial Inspection, Vol. 3029, pp. 118–127, 1997, San Jose, USA.

- Texture Similarity Measures for Markov Random Fields Model. Abdur-
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