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ABSTRACT 

 

FINITE ELEMENT ANALYSIS OF 

CORNERING CHARACTERISTICS OF ROTATING TIRES 

 
Erşahin, Mehmet Akif 

Ph. D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Y. Samim Ünlüsoy 

 
September 2003, 157 pages 

 
 A finite element model is developed to obtain the cornering force 
characteristics for rotating pneumatic tires which combines accuracy together 
with substantially reduced computational effort.  
 
 For cord reinforced rubber sections such as the body plies and breaker 
belts, continuum elements with orthotropic material properties are used to 
improve solution times. Drastic reductions in computational effort are then 
obtained by replacing the continuum elements with truss elements which do not 
require orientation of element coordinate system to model textile body plies. 
With these simplifications, new model can be used produce a complete carpet 
plot of cornering force characteristics in substantially reduced solution times. 
 
 The finite element model is used to obtain the cornering force 
characteristics of a tire, simulating the experiments on a tire test rig where the tire 
rotates on a flywheel. Results from both models are compared with each other 
and with the experimental results. It is concluded that the model developed 
provides results at least as accurate as the previously published models with a 
clear superiority in stability of solution. 
 

Keywords: Pneumatic Tire, Cornering Force Characteristics, Cord Rubber 
Modeling, Finite Element Analysis 
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ÖZ 

 

OTOMOBİL LASTİKLERİNİN YANAL KUVVET 

KARAKTERİSTİKLERİNİN 

SONLU ELEMANLAR YÖNTEMİYLE ANALİZİ 

 

Erşahin, Mehmet Akif 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Y. Samim Ünlüsoy 

 
Eylül 2003, 157 sayfa 

 

Pnömatik otomobil lastiklerinin yanal kuvvet karakteristiklerini elde 
etmek amacına yönelik, hassas ve hızlı çözümler verecek bir sonlu elemanlar 
modeli geliştirilmiştir. 
 
 Otomobil lastiğinin çelik tel ve tekstil ipliklerle güçlendirilmiş kuşak ve 
gövde katları, ortotropik malzeme özellikleri taşıyan katı elemanlar kullanılarak 
modellenerek çözüm süreleri kısaltılmıştır. Tekstil gövde katları, daha sonra, 
koordinat sistemi transformasyonuna gerek kalmadan çözüm yapabilmek ve 
çözüm süresini önemli oranda azaltabilmek için eğilme rijitliği olmayan çubuk 
elemanlar kullanan bir model geliştirilmiştir. Gerçekleştirilen basitleştirmeler 
sonucu, yeni modelle tam bir yanal kuvvet karakteristikleri takımının 
hesaplanmasında önemli ölçüde zaman kazanmak mümkün olmaktadır. 
 
 Sonlu elemanlar modeli volan üzerinde dönen bir lastiğin yanal kuvvet 
karakteristiklerinin elde edilmesinde kullanılarak, lastik deney aygıtında yapılan 
testlerin simülasyonu yapılmıştır. Her iki modelden elde edilen sonuçlar birbirleri 
ile ve deneysel sonuçlarla karşılaştırılmıştır. Karşılaştırmalar sonucunda 
geliştirlen modelin, en az literatürde mevcut modeller kadar hassas sonuçlar 
verirken, çözüm stabilitesi yönünden ise hepsinden üstün olduğu sonucuna 
varılmıştır. 
 
Anahtar Kelimeler: Otomobil Lastiği, Yanal Kuvvet Karakteristikleri, İplik 
Kauçuk Modelleme, Sonlu Elemanlar Analizi 
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CHAPTER 1 

INTRODUCTION 

 

 

In this Chapter, a brief history of tires will be presented and construction, 

types, and nomenclature of pneumatic tires will be explained. The main idea, 

goals and contents of the study will also be introduced briefly. 

 

1.1 History of Tire 

 

Tires began originally as a durable material circling a fragile wheel such 

as a steel hoop on a spoked wooden wagon wheel. So when inventors came up 

with better tires, these were not similar to the pneumatic rubber tires we know 

today. They were treated more as an outer layer on a wheel rather than as an 

independent structure. 

 

Vulcanization discovered in 1839 by Charles Goodyear, made rubber a 

durable and elastic engineering material, good enough for tires for the first time. 

But the earliest air-filled tires did not include direct use of rubber. They were 

buggy tires invented by Robert William Thomson, a Scottish engineer who in 

1845 patented a riveted leather wrap bolted to the wheel rims, supported by an 

inflated rubber-coated canvas inner tube. That patent’s description of the function 

of a pneumatic tire still applies. It reads in part: "the application of elastic 

bearings around the tires of the wheels of carriages…a hollow belt composed of 

some air or water tight material…inflating it with air whereby the wheels will, in 

every part of their revolution, present a cushion of air to the ground." Not until 

the 1888 patent issued to John Boyd Dunlop, a British veterinary surgeon 
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however, did inflated rubber tires come into their own, at first for bicycles and 

tricycles (including that of Dunlop's nine-year old son, whose bumpy rides had 

inspired the invention). Carriages and wagons also used pneumatic fires, and 

when automobiles came along, the first ones fitted to them were so called 

clincher tires. These had "beads," or inner rims, made of rubber and formed with 

a barb to let a mechanical fastener hold them on. Soon after, other inventors 

brought forward the idea of using a wire cable to form the bead of the tire, with 

that bead nesting inside a flange on the outer rim of the wheel - the so called 

straight sided tire. At about the same time, tire treads began thickening and being 

patterned for better traction. 

 

In the 1930s, new, synthetic materials such as rayon replaced cotton in the 

tires' plies, greatly improving the strength of their cord reinforcement. Synthetic 

rubber for increased durability emerged in Germany in the late 1930s. Then 

tubeless tires a wartime project of B. F. Goodrich for which a patent was granted 

in 1952, melded all of the Pneumatic tire's features into the angle, durable unit 

today's drivers are familiar with.  

 

The concept of radial tires had been introduced in 1914, when two 

Englishmen named Gray and Sloper, of the Palmer Tyre Company, had received 

a patent for the idea. Gray and Sloper, had crossed cables around the perimeter of 

the tire radially, or straight out from the rim, to try to stiffen the tire sidewall 

Their tire was  never put into production (it seems to have had inherent design 

flaws, and in any case the technology for bonding steel to rubber was not yet 

developed), but the idea lingered, particularly at Michelin. By the late 1930s the 

company was using rubber-encapsulated steel cord to reinforce bias-ply tires for 

trucks, selling the tires under the name Metallic. During the German occupation 

in World War II, a Michelin engineer named Marius Mignol worked with 

existing steel technology to fashion what he called a "cold" tire because it 

reduced the heat generated by internal friction. He achieved this by placing steel 
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plies radially across the tire. Although Mignol's experimental tire was not 

roadworthy, it ran cooler and with less rolling resistance than conventional tires. 

It had no directional control or stability, however, until he fitted an additional 

layer of steel belts lengthwise along its circumference. In mock derision, his 

fellow engineers called the resulting network of steel, a cage á mouches, or flying 

cage, because it looked like wire screening. 

 

Michelin applied for a patent on die invention in 1946; it was granted in 

1951. After refining its components further and testing the market, Michelin 

introduced its "X" tire in two sizes at the Salon de I'Automobile in Paris in 

October 1949. The company's part ownership of the automaker Citroen allowed it 

to put the near tire turn production on the innovative front wheel drive 11-CV cu. 

Even Michelin's own engineers could hardly believe what they had stumbled 

onto. Their innovation at least doubled the tread life of conventional tires and 

premised improvement far beyond that. 

 

The radial's key advantage, they found, was that it could set its tread on 

the ground without the squirm and friction of a bias tire. The constraint of the 

steel belts, which would neither elongate nor compress, kept the tread from 

distorting and radial cording made the sidewalls more flexible increasing the 

tread's ability to conform to the road.The tire's reduced friction and squirm not 

only lessened wear but also produced fuel savings of more than 3 percent.  

 

In 1962, a Ford engineer named Jacques Bajer and his team put together 

an experimental piece of test equipment they called a tire-uniformity machine to 

retrieve dynamic data on what went on as a wheel rolled under pressure. Such 

machines have since become common place and refined. Bajer stressed the need 

to analyze tire, vehicle and road together rather than think of the tire alone. His 

persistence led to a string of Society of Automotive Engineers; publications 
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explaining numerical analyses of skid and rolling resistance, wet traction, 

nonuniformity among tires and the behavior of radial tires on American cars. 

 

1.2 Tire Construction 

 
A view of the elements of construction of a typical radial passenger car 

tire is shown in Figure 1.1.  

 

 
Figure 1.1 Section View of a Typical Radial Passenger Car Tire (Invention & 

Technology, 2001) 

 

The main parts of the pneumatic tire, their functions and construction are 

given below. 

 

The tread, usually attracts the most attention. The material used is referred 

to as tread compound, which varies from one tire design to the next. A winter 

tire, for example, has a compound that provides maximum traction in cold 
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weather. Racing tires, at the other extreme, use a compound designed for very 

high temperature ranges. The great majority of tires are built with an all season 

compound that delivers traction in the broad middle range of every day driving 

conditions. In addition, this compound must deliver good wear. The tread block 

provides traction at its leading and trailing edge. Within the block, sipes are often 

molded or cut to provide additional traction. Grooves are built into tread designs 

for channeling away water. Shoulder designs provide protection as well as 

additional traction during hard cornering. A detailed picture of the tread is given 

in Figure 1.2. 

 

 
Figure 1.2 Tread Pattern (Invention & Technology, 2001) 

 

Bead is the portion of the tire that helps keep it in contact with the rim of 

the wheel. It provides the air seal and is constructed of a heavy band of steel wire 
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called Bead Bundle. It is encased in the tire carcass around the inner 

circumference 

 

Carcass can be named as “tire’s load bearing frame work”. The carcass’s 

function is to maintain the shape of the tire and it must be strong enough to hold 

the air pressure of the tire and withstand external loads. 

 

Body plies are rubberized fabric and cords wrapped around the beads 

forming the carcass or body of the tire.The cords are usually made of rayon, 

nylon, and glass fiber for the body plies. The plies determine the strength of the 

tire structure.  

 

Layers of circumferential belts, commonly called breaker belts, are used 

to stiffen the tread and strengthen the plies; they lie between the tread and the 

inner plies. Steel cords used in breaker belts provide a stable foundation for better 

tread wear and traction, and also protect the casing against impacts and 

punctures. They provide circumferential rigidity to prevent elongation under the 

effect of centrifugal force, and thus ensure an almost constant tire diameter under 

all conditions. They also provide lateral rigidity. By restricting tread movement 

during contact with the road, the belt plies improve tread life. To make the steel 

plies, the metal wires must be firmly bonded into the rubber. Perfect bonding 

between these two highly dissimilar materials is difficult to achieve but essential. 

 

1.3 Tire Classification 

 

There are many construction and design variations in tires. But tires are 

mainly grouped according to the direction of cords used in the plies of carcass 

construction. There are two basic types, Cross Ply and Radial Ply. Cross ply tires 

are called Bias or Diagonal belted in United States. 
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1.3.1 Cross Ply Tires 
 

A cross-ply tire is one of the older designs, and it does not have breaker 

belts. The position of the cords in a bias-ply tire allows the body of the tire to flex 

easily. This design improves the cushioning action, which provides a smooth ride 

on rough roads. A bias-ply tire has the plies running at an angle from bead to 

bead. The cord angle is also reversed from ply to ply, forming a criss-cross 

pattern. The tread is bonded directly to the top ply.  Figure 1.3 shows the cross 

ply construction. 

 

 
Figure 1.3 Cross Ply Tire Construction 

 

A major disadvantage of a bias-ply tire is that the weakness of the plies 

and tread reduce traction at high speeds and increase rolling resistance. This 

makes the tire scrub or squirm, decreasing traction, operator control and 

accelerating tread wear. Since the tread is subjected to any flexing that occurs, 

the footprint, or contact patch, distorts. This distortion causes abrasion from the 

ground surface, which reduces the life of the tire. All of these factors significantly 

increase fuel consumption. The only way to increase the strength of bias-ply tires 

is to increase the number of plies and bead wires. Increasing number of plies 

increases tire mass. 
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When it is not carrying a load, the cross-ply tire presents a very rounded 

profile to the ground, with only a small elliptical area making contact. As load is 

applied, the tire flattens. The greater the load the more the shoulders flatten to the 

ground, while the tread in the middle tends to lift up. Grip is reduced overall. 

When subjected to a lateral force, the structure of the cross-ply tire cannot remain 

flat on the ground because of its rigid sidewalls. One of the shoulders is 

compacted against the ground while the other tends to lose contact with it. There 

is a strong drift effect. Due to the disadvantages explained, the cross-ply tire 

construction has become obselete for automobiles, even though it is still in use 

for commercial vehicles as a cheaper alternative. 

 

As a transiton product between cross ply tire and radial tire, belted cross 

ply tires, or namely Bias Belted Tires are introduced. The bias belted tire is a 

cross-ply tire with breaker belts added to increase tread stiffness. The belts and 

plies run at different angles. The belts do not run around to the sidewalls but lie 

only under the tread area. A bias belted tire provides a smooth ride, good traction, 

and offers some reduction in rolling resistance over a bias-ply tire. Figure 1.4 

shows carcass construction for a typical Bias Belted Tire. Bias belted tires have 

not been used except in the United States. 

 

 
Figure 1.4 Bias Belted Carcass Construction 
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1.3.2 Radial Ply Tires 
 

The radial tire is constructed in two parts. First, a single layer of rubber-

coated textile belts arch from one bead to the other to form the tire casing. 

Second, numerous rubber-coated steel coreded breaker belts are placed in the 

crown, under the tread, to form a strong stabilizing unit. Figure 1.5 shows the 

components and layer orientations for a radial tire. Figures 1.1 and 1.2 are also 

clear examples for radial tire construction. 

 

 
Figure 1.5 Construction of a Radial Tire 

 

Even without a load, the radial tire is almost flat on the ground. The 

contact area is already very wide. As load is applied this area grows longer 
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without losing any of its width. The tread blocks remain flat against the road 

surface and grip is maximized. When rolling, the flexibility of the sidewalls 

allows them to absorb a lot of the bumps. The sidewalls of the radial tire are 

highly flexible; they are going to stretch in proportion to the increase in force. 

The sidewalls act like a moving hinge between the wheel and the crown allowing 

the latter to remain flat against the ground. The path of the tire therefore remains 

constant even when subject to lateral loads. 

 

To increase a radial tire's strength, larger diameter steel cables are used in 

the breaker belts. These steel cables help reduce punctures, tears and flats. They 

also help distribute heat, resulting in a cooler running tire, improving fuel 

economy. The stabilizing steel belts and radial construction minimize tread 

distortion. As the sidewalls deflect, the belts hold the tread firmly on the ground, 

minimizing tread scrub and greatly increasing tread life.  

 

1.4 Tire Designation  

 

Sidewall of the tire gives the information about the tire construction, 

dimensions, load carrying capacity, speed rating, and manufacturer production 

codes. ISO Metric Tire Designation is shown in Figure 1.6. Although there are 

different type of tire designations, ISO Metric Designation is the most recent and 

common one for automobile tires. 

 

 
Figure 1.6 International Standarts Organisation Metric Tire Designation 
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In Fig. 1.6, 

 

185 : Nominal Section Width (measured in millimeters), 

55 : Aspect Ratio (ratio of the height of the tire’s cross section, to its width), 

R : Carcass construction (R for Radial), 

15 : Rim Diameter (measured in inches), 

92 : Load Rating (Service Description, from Load Index table), 

V : Speed Rating (Service Description, from Speed Symbol table). 

 

Aspect ratio of a tire is determined by dividing a tire's section height by 

its section width. It is often referred to as the profile of the tire. The aspect ratio 

affects steering stability. Generally, the shorter the sidewall, or the lower the 

aspect ratio, the less time it takes to transmit the steering input from the wheel to 

the tread. The result is quicker steering response. Aspect ratio also affects the 

tread contact patch. The lower aspect ratio increase response, steering feel, and 

stability, but degrade ride comfort. The lower aspect ratio responds to lateral 

force more effectively than a tire with a higher aspect ratio.  

 

To specify carcass construction, R is used for Radial, B is used for Bias 

Belted and D is used for cross ply (diagonal) tires. 

 

Load Rating is used to identify a given size tire with its load and inflation 

limits when used in a specific type of service. The load index of a tire and proper 

inflation pressure determines how much of a load the tire can carry safely. Speed 

ratings signify the safe top speed under perfect condition.. 
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1.5 Tire Dynamics 

 
In addition to supporting the vehicle and damping out road irregularities, 

the tires provide the longitudinal and lateral forces necessary to change the speed 

and direction of the vehicle. These forces are produced by the deformation of the 

tire where it contacts the road during acceleration, braking, and cornering. 

Society of Automotive Engineers (SAE) Tire Axis System is shown Figure 1.7. 

 

 
Figure 1.7 SAE Tire Axis System 

 

 

In the absence of side forces, a rolling tire travels straight ahead along the 

wheel plane.During a cornering maneuver, however, the tire contact patch “slips” 

laterally while rolling such that its motion is no longer in the direction of the 
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wheel plane. The angle between its direction of motion and the wheel plane is 

referred to as the slip angle. This lateral “slip” generates a lateral force, at the 

tire-ground interface. This force is called cornering force. Because the force acts 

slightly behind the center of the wheel, it produces an aligning moment, called 

self aligning moment in terminology, which tends to realign the wheel in the 

direction of rolling. The distance between the tire axis and line of action of the 

cornering force is called pneumatic trail. Slip angle mechanism and the deflected 

shape of the tire going under deformation are given in Figures 1.8 and 1.9. 

 

 
Figure 1.8 Deflected Tire During Cornering 

 

Slip angle is a function of tire steering angle, the longitudinal velocity 

vector, the lateral velocity vector, and the lateral velocity component due to yaw. 

On the other hand, cornering stiffnes depends on the tire construction. As stated 

earlier in this chapter, radial tires have better cornering stiffnes values. Also, tires 

called low profile, the ones with low aspect ratio have better cornering abilities 

than the others.  

 

It should be noted that the cornering ability of tires as presented in various 

sets of plots involving the slip angle, normal tire load and the cornering force are 

strongly affected by the construction of the tire. For example, radial cords in the 

 13



carcass plies results in soft tires providing good ride comfort. However, such a 

construction results in severely reduced directional control and stability. Thus, in 

radial ply tires, it is the presence of the breaker belts with cords (nowadays 

mostly steel) at around 20-25o to the circumference that makes up for this 

deficiency. Thus in radial ply tires the ride comfort and directional control and 

stability are provided by two different aspects of tire construction. 

 

 
Figure 1.9 Deflected Tire and Contact Patch During Cornering 
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1.6 Purpose and Scope of the Study 

 

Tire is one of the most important components affecting vehicle dynamics 

in more than one aspect. In particular, tire’s cornering characteristics have a key 

role in determining directional control and stability, in short vehicle handling. As 

the characteristics of a tire is a result of its complex construction, consisting of 

many dissimilar material properties, carcass construction, and breaker belt 

configuration, its modelling is an extremely difficult process. 

 

Until recently, experimental means were practically the only way to 

obtain tire cornering force characteristics. However, recently, the use of the Finite 

Element Analysis (FEA) has opened the possibilities of modeling and simulation 

of tires, for studying and improving many aspects of tire functions including the 

cornering behavior. 

 

Studies on the finite element models of the pneumatic tire have appeared 

just after the appreciation of the Finite Element Method and a great amount of 

work on tire modeling have been published. However, the FEA of the tire 

directed towards the cornering force characteristics appeared only at the last few 

years of the Milennium. One of the pioneering work in this subject is carried out 

in the Mechanical Engineering Department of the Middle East Technical 

University, Tönük 1998. 

 

This study is basically a continuation of the work of Tönük. The findings 

and the recommendations from his study forms the main set of goals for this 

study. As such, a completely new FE model is recreated by using efficient 

modeling techniques such that accurate, reliable and short solution times will 

allow study on tire cornering characteristics for a wide range of vertical loads and 

slip angles. Further, the study is extended to cover the analysis of the self 

aligning torque. 



 

 

 

CHAPTER 2 

LITERATURE SURVEY 

 

 

There exists a significant number of different tire models in literature; 

each can be classified according to the methodology used, scope of the study or 

tire parameter studied.  

 

Three main approaches are used to investigate tire behavior; analytical 

models, semi-analytical studies and Finite Element Method (FEM).  

 

Tire dynamics studies can also be categorized depending on the scope. 

The first category is concerned with the lateral forces generated in the contact 

patch. These models are relevant in the handling analysis of vehicles. The second 

category deals with the vertical and longitudinal forces generated in the tire, and 

these are used for ride and performance analysis of vehicles, respectively. The 

studies in third category are on analyzing noise, vibration and harshness.  

 

Existing work can also be classified as either steady state or transient 

dynamic response of the tire behavior analyzed. Rolling resistance, cornering 

force, cornering stiffness, stress and deformations under either steady state or 

transient conditions, are presented as the results of these studies. 

 

In this chapter, literature survey is limited to the application of the FEM 

to various aspects of the pneumatic tires. The Finite Element modeling and 

analysis of the pneumatic tires are examined in detail and their methodology, 

assumptions, modeling techniques, investigated parameters and results given in 
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detail. Although the scope of this study is to examine cornering behavior of the 

tires, some studies with different scopes but using similar modeling techniques 

are presented in literature survey, thus the literature survey of Finite Element tire 

models is not limited to cornering behavior tire models. Literature survey on 

cord-rubber modeling techniques is also performed and summarized. 

 

2.1 Finite Element Tire Models 
 

There are numerous finite element tire models in literature, each using 

different modeling techniques, assumptions and codes. It is possible to organize 

the present studies according to different aspects. FEA code, solver type, scope of 

the work can all be considered as a classification type.  

 

Most of the studies use a commercial FEA code. MARC, ABAQUS, 

PAM SHOCK, LS DYNA are the most common packages in tire FEA studies. 

Some authors developed and used their own code. 

 

Implicit FEA codes are used mostly for the static or quasi-static models 

where number of elements and solution time is not a primary concern. Explicit 

finite element codes differ from implicit codes in that they don’t require the 

frequent inversion of large stiffness matrices, thus reducing the number of 

calculations per time step and the storage space required. The compromise arises 

in that explicit codes need shorter time for each time step but needs more time 

steps in order to ensure numerical stability and hence accuracy. On the other 

hand, commercial implicit FEA packages have more choice in element types. 

Especially composite or layered elements work efficiently which are available in 

implicit packages. 

 

Another classification may depend on the method used for modeling cord 

reinforced rubber structure. Some authors used “reinforced concrete” approach, 
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while most of the current studies in literature use classical laminate (or 

composite) theory and Halpin-Tsai mixing rules. Some models use continuum 

elements to model the tread and shell elements to model sidewalls. Besides, some 

of the models use continuum elements to model all rubber volume and introduce 

shell elements for cord composite sections.  

 

Almost all studies agree on using hyperelastic material laws such as the 

Blatz-Ko and Mooney-Rivlin strain energy formulations to represent the highly 

non-linear behavior of the rubber. On the other hand, for small strains, linear 

elastic models are used and good correlations obtained with the experimental 

results of tire vertical and lateral forces. For certain vertical loads and tire 

inflation pressures, even though the tire geometry undergoes large deformations, 

local strains are in acceptable limits for linear elastic models; especially if the 

vertical or cornering stiffness are the main output parameters, which are mostly 

determined by the reinforcements. 

 

Recent studies on tire finite element models are summarized and given 

below. Material and structure modeling, scope, and results are given in some 

detail for each study.  

 

Tönük (1998) constructs a drum type tire testing machine and prepares a 

tire finite element model to study cornering force characteristics. Marc is used to 

perform implicit finite element analysis. A 155 R 13 radial tire with one textile 

body ply and two steel tread plies is used for a case study, and the results are 

published (Tönük, Ünlüsoy 2001). For rubber structure, both Mooney-Rivlin and 

linear elastic approximation with large displacement option are used. Because of 

the stiff reinforcement of the tire structure, strain of the rubber matrix of the tire 

rarely exceeded 20% strain, and Tönük concluded that linear elastic 

approximation yields close results with that of Mooney-Rivlin material model. 

Continuum elements are used to model the rubber matrix, and REBAR elements 
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used for textile and steel reinforcements. Rebar elements carry only tension and 

compression in the direction of reinforcement. Bending stiffness of the steel 

reinforcements is neglected in that way, which is a factor in vertical and lateral 

stiffness of the tire. A user subroutine is used to place and orient the rebar 

elements, which is accessed at the beginning of each step of the solution to align 

position and orientation of the rebar elements. Drum of the test machine is 

modeled with deformable continuum elements, which are also taken in to 

consideration during solution. Including a deformable drum increases the number 

of elements and solution time. More significant than the increasing number of 

elements, deformable to deformable contact definitions in MARC takes 

significantly longer solution time when compared with deformable to rigid 

contact definition. Static deflection test results for the tire are compared with the 

finite element model to tune model parameters. After the correlation is proved, 

cornering analysis is performed. Tire structure is fixed in all degrees of freedom 

at the rim interface, and not rotating. Instead, with an inverse kinematics 

algorithm, the drum is moved over the tire. The cross section of Tönük’s 

cornering force study is given in Figure 2.1.  

 

 
Figure 2.1 Cross Section of Tönük’s (1998) Finite Element Model Used for 

Cornering Force Study. 
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Tire is inflated to 180kPa and for some vertical load-slip angle 

configurations, test results compared with the finite element model. After half 

rotation of the tire, cornering force value reached a steady state. Test results are 

presented in carpet plot from, and finite element model results are placed on the 

carpet plot obtained from the test.  

 

Further comments of the authors on the limitations and possible 

improvement of the finite element model are given in Tönük and Ünlüsoy, 2001. 

The finite element cornering force values are available only up to a slip angle for 

a tire load and as the tire load increases, the maximum slip angle for which finite 

element model yields result decreases. Beyond this slip angle, before the 

cornering force reaches the steady value, the error accumulation starts to be 

significant. The accumulated error causes the model to become unstable so that 

cornering force does not settle to a steady state value and cornering force can be 

obtained for small slip angles. For low tire loads, since the contact patch 

deformation, which travels around the fixed tire is small, the error accumulation 

is slow and steady state cornering force values can be obtained. For larger slip 

angles with low vertical loads, the distance to be rolled by the tire increases, and 

at some slip angle, the error accumulation dominates the model results before the 

steady state is reached. With increasing vertical loads, the contact patch 

deformation increases which causes more rapid increase in accumulated error, 

hence allowing a shorter distance to be rolled before the accumulated error 

dominates. Therefore for larger vertical tire loads, the cornering force can only be 

obtained for small slip angles. The carpet plot showing cornering force 

characteristics of the 155 R 13 tire and obtained from the tire test setup of the 

author is given in Figure 2.2. The circles on the lines are finite element estimates. 

As a final word, Tönük’s finite element model show good agreement with the test 

results for medium slip angles and tire vertical loads. 
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Figure 2.2 Experimental and FEA Carpet Plot Tönük and Ünlüsoy (2001). 

 

Koishi, Kabe, and Shiratori (1998) developed a model using explicit finite 

element analysis code, PAM-SHOCK. This is an important study from various 

aspects. They modeled a 175 R 14 S tire. The rubber structure of the tire is 

modeled with solid elements. Carcass and steel belts are modeled with multi-

layered shell elements. This is one of the major contributions of this model. The 

properties of the rubber materials are represented by the Mooney-Rivlin material 

model. The properties of the fiber-reinforced rubber composites are represented 

by an orthotropic material model with linear elastic properties. The cross section 

of the tire modeled and placement of elements are shown in Figure 2.3. In the 

tread area, layered shell elements consist of three layers which are the textile 

reinforce carcass, and the two belts. In the sidewall area these elements consist of 

a single textile carcass ply. This cross section view of the tire and correlation of 

the test and FEA results give an important conclusion about the tire cornering 

force studies. A study of their model shows that the location of the carcass and 

steel belts are far from the locations they have to be. In case of a stress analysis, 
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this changes all the stress distribution. But, when the scope is stiffness of the tire, 

such a model gives reliable results. 

 

 

 
Figure 2.3 Cross section of Koishi (1998) Finite Element Tire Model 

 

Tire is inflated to a pressure of 200 kPa and a vertical load of 3.3 kN is 

applied on it. The tire is rotating on a flat surface at 10 km/h speed. A flat bed tire 

test setup is used to obtain experimental data. At this speed, it takes 0.8 seconds 

to make one complete rotation of the tire. The analysis is performed for 1.2 

seconds and tire rotated about 1.5 times. After 0.4 seconds, about 180 degree 

rotation of the tire, each cornering force values remained same for each slip 

angle. Time versus cornering force values for each slip angle is shown in Figure 

2.4. The results show good agreement with the test results. For 3 degrees slip 

angle, experimental measurement is 1550 N where finite element result is around 

1400 N. The difference is around 10%, which is a very good approximation for a 

highly nonlinear and complex structure like a tire. Authors examined the effects 

of the inflation pressure, rubber modulus, and effect of belt angle on cornering 
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force characteristics. They concluded that, cornering force increases linearly as 

slip angle increases up to 4 degrees, and increasing inflation pressure leads to 

higher cornering forces. Changing the belt angles from 20 degrees to 0 degree 

decreased the cornering force by 33%.  

 

 
Figure 2.4 Cornering Force versus Time for Koishi et al. (1998) model 

 

Another important conclusion is given on the rubber modulus. Increasing 

the rubber modulus to twice of the original value, increased the cornering force 

21% for 3 degrees slip angle, and less for smaller slip angles.  

 

Kabe and Koishi (2000) investigate cornering force characteristics of a 

235/45 R 17 Z tire with two different models, and compare the results, solution 

times and problems of each technique. They also tested the tire on MTS Flat-Test 

Tire Test System, which is previously used by Koishi et al (1998)  

 

They used and implicit code (ABAQUS/Standard) and an explicit code 

(ABAQUS/Explicit). They modeled rubber components by continuum elements 

and Mooney-Rivlin material model. Fiber reinforcements are modeled with 
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REBAR elements. Tire is inflated to 200 kPa pressure. The model is loaded with 

4 kN vertical load and rotated at 10 km/h speed. Slip angles up to 3 degrees 

examined. For the implicit model, a steady state transport analysis capability is 

formulated with a moving Lagrangian reference frame model and only contact 

region area is fine meshed. The rest of the tire is meshed considerably coarse. A 

total of 4464 elements and 5976 nodes are used. Cornering force value reached a 

steady state value after half rotation of the tire for 3 degrees slip angle and after 

almost a complete rotation for 1 degree slip angle.  

 

For the explicit model, a fine mesh is used for the entire structure (11160 

elements and 14940 nodes) because the entire tire will come to contact with the 

road surface as it rotates. The explicit analysis solution time is about 30 times of 

the implicit one. Buildup of cornering force and self aligning torque with solution 

time is given in Figure 2.5. Cornering force and self aligning torque curves at 

different slip angles given by authors are shown in Figure 2.6. Finite element 

model results are in good agreement with the experiments.  

 

 
Figure 2.5 Cornering Force and Self Aligning Torque (SAT) Results of Kabe 

(2000) 
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Figure 2.6 Cornering Force and Self Aligning Torque Results of Kabe (2000) 

 

Another important and successful study in literature is published by Pelc 

(2000). The importance of the study is related with the material model used and 

verified with the author’s own developed finite element code. He verified the 

orthotropic cord rubber structure model with tests and the finite element model. 

Then used this model in the finite element modeling of the test tire, and obtained 

very good correlation. An attempt to improve the pneumatic tire computational 

model was made in the paper, introducing a more reliable rubber-like material 

model and modifying the cord-rubber composite parameters. Rubber or other 

elastomer modeling requires special treatment, due to their physical non-linearity 

and incompressibility. There are two general approaches to the creation of 

numerical solutions to the problem: simultaneous approximation of both 

displacement and stress fields or approximation of displacements only, combined 

with the use of the appropriate strain energy density function to ensure 

approximate incompressibility. The first solution is less effective from the 

numerical perspective (the global stiffness matrix is not positive-definite). It 

seems to be the most appropriate to apply the other approach, having at disposal 

the finite element code in the displacement version. Author developed the 

following equations using Tsai Rule of Mixture.  
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Small strains are assumed in the derivation. Although some authors do not 

advice to use small strain assumption for the tire finite element studies, using 

Mooney-Rivlin material model for the rubber matrix which mainly goes under 

large deformation, and linear orthotropic properties for the steel and textile 

reinforced parts, gives accurate results. Reinforcement material properties 

overcome the rubber stiffness and determine the behavior of the section. So, 

small strain assumption is valid for most conditions. Most of the publications 

presented in this chapter use the same approach and finite element models 

showed good agreement with the experiments. 

 

 

The materials constants for cord-rubber composites are derived by Pelc 

as: 
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c
2 r

c

(1 2v )E E
(1 v )
+

=
−

       (2.2) 

 

E3=E2         (2.3) 

 

G12= Gr        (2.4) 
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12 13 0.5ν ν= =         (2.6) 

 

23 210.98ν ν= −        (2.7) 
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where Ec , Er are Young modulus of cord and rubber respectively, Gr 

0

shear 

modulus of the rubber, vc volume fraction of the cord in a ply, subscript 1 denote 

cord direction and plane (1, 2) indicates the plane of a ply. The other three 

Poisson ratios are obtained from the reciprocal role- the stiffness matrix should 

be symmetric. In this way, the layered cord-rubber composite is assumed to be 

linear orthotropic material. The imposition of the exact incompressibility 

conditions is impossible, because such a composite would not satisfy the stability 

requirement given as: 

 

12 21 23 32 31 13 12 23 311 2ν ν ν ν ν ν ν ν ν− − − − >     (2.8) 

 

The cord rubber model is tested and the results are compared with the 

finite element model. A truck tire is modeled, and the model validated with 

inflation analysis, comparing the displacement values obtain in finite element 

model and experimental measurement. 

 

Most of the studies summarized from the tire dynamics literature were all 

related with tire stiffness, vertical, lateral or cornering force characteristics of the 

tire. There some other tire studies, which model the tire in same detail with the 

other ones, but aiming to perform different analysis. 

 

Bai and Gall (2000), prepared a model using MARC. They studied 

dynamic characteristics and three dimensional vibration modes and natural 

frequencies of the tire. Effects of tire pressure, vertical load, deformation, 

velocity as well as suspension of the car which the tire is mounted are studied as 

parameters. They published mode shapes of the tire under different loading, 

inflation pressure and boundary conditions. Boundary conditions vary as the 

suspension geometry of the car varies. Figure 2.7 shows mode shapes of a tire 

with different boundary conditions. 
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Figure 2.7 Different Mode Shapes from Bai and Gall’s Study 

 

Ghoreishy, 2001, used COSMOS FEA program to analyze a 6.45-14 bias 

tire subjected to inflation and static contact loading. The main purpose of the 

study was prediction of the deformed shapes and stress components of the tire 

geometry. A three dimensional finite element model using continuum (solid) 

elements with Lagrangian formulation is prepared. For cord reinforced rubber 

parts, linear orthotropic material properties are used. While all other studies in 

literature are using shell elements for the steel and textile plies, Ghoreishy used 

continuum (solid) elements. Since he studied the stress distribution in the tire, 

modeling the geometry precisely is important. Continuum elements with 

calculated orthotropic material properties gave successive results when compared 

with the experiments. Textile elastic properties differ in tension and compression 

and thus different material constants should be used during the analysis of each 

case. However, owing to the lack of ability of considering of these two effects in 

the COSMOS/M software, they have not been taken into consideration for the 

model and effect of neglecting bilinear behavior of textile is investigated in the 

solution. A smooth tread pattern has been assumed in the model to avoid of 

excessive computational cost and efforts.  
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Figure 2.8 Tire Cross Section Modeled By Ghoreishy 

 

This is the only tire finite element model in literature using continuum 

elements for the entire structure. Figure 2.8 shows the tire cross section modeled. 

Many authors in the literature expressed analytically the elastic constants of 

orthotropic laminated layers dependent upon Young Modulus, Poisson’s ratios 

and shear modulus of the cord and rubber according to their volume fractions in 

composite. Some of the publications on cord rubber modeling are directly used 

for tire finite element analysis by the authors in later studies. Ghoreishy used 

Clark’s (1983) formulations for orthotropic cord-rubber properties. This study is 

a good proof of material property derivation and continuum element usage for 

textile and steel reinforced plies. 

 

Hauke, Hanley and Crolla (2001) prepared a model to investigate tire 

misuses. They defined the term “misuse simulation” , the tire impacting obstacles 

up to 140mm height at velocities up to 100 km/h. A 195/65 R 15 tire is modeled 

with PAMCRASH. Figure 2.9 shows the tire model and the obstacle. Mooney-

Rivlin material model is used for rubber matrix of the tire, and for 
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reinforcements, linear orthotropic material representation is chosen. Again, 

layered shell elements are used for the reinforced parts of the tire. Orthotropic 

material properties are calculated with volume fraction based classical laminate 

theory. The behavior of the air contained within the tire rim assembly is 

simulated by an Airbag function, which conserves the relationship between the 

internal pressure and the volume in accordance with the ideal gas law.  

 

Dynamic behavior of the tire is analyzed by loading tire against a surface, 

at 30 km/h velocity and traversing a 20mm step. The forces at the hub are plotted 

as a function of time. Change of air pressure in the tire with changing tire volume 

is rare in tire finite element models. 

 

 
Figure 2.9 Hauke et al. Model for Tire Misuse Study 

 

Darnell (2001) in his PhD thesis, propose a fast and accurate three 

dimensional tire model and validate for events which occur vehicle durability 

studies. He uses an implicit code to simulate tire vertical and lateral stiffness. 

Finite element representation of a tire sidewall for arbitrary, three-dimensional 

deformations is presented. This element contained no additional degree of 

freedom and guaranteed that no spurious forces were generated on the rim. A two 

dimensional large displacement inextensible beam formulation was developed. 
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This formulation allowed piece-wise constant curvature and pressure loading. It 

simulates the exact geometry. A Galilean orthotropic contact formulation suitable 

for analyzing the three dimensional behavior of a tire, where the carcass is 

composed of linear shell elements developed. Galilean transformation, which is 

used to solve the rolling contact problem, essentially rotates the computational 

mesh through the material tire so that the mesh stays relatively steady as the 

material tire rotates. This convective process occurs in the undeformed state and 

is axially symmetric. It then is mapped to the deformed state. This is a special 

case of an Arbitrary Lagrangian Eulerian (ALE) formulation where material 

tracking is somewhat simpler. This kinematic methodology is often called a 

moving Lagrangian reference frame. The mesh does not rotate with the tire, but it 

appears to slide over the step, with the tire passing through the mesh. For the case 

of steady state rolling motion, a steady state solution can be obtained. This differs 

from the standard Lagrangian formulations where the computational mesh is 

constantly deforming. For the steady case, the strain rate at a point is completely 

determined from the spatial derivative of strain at that point. Further, the strain of 

the computational mesh represents the strain of the coincident. The interface 

between the ground and the tire carcass is modeled with an isotropic Coulomb 

friction model on an orthotropic elastic foundation. This foundation represents 

the compliance of the tread blocks. Thus, there is a linear elastic response while 

sticking occurs. The Darnell model looks simple, but it is quite powerful. Figure 

2.10 shows a slice from the model. 
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Figure 2.10 A Slice view of Darnell’s Tire Finite Element Model 

 

A radial tire (size is not specified) tested on the UMTRI flat bed tire 

tester. Tire is inflated to 30 psi and pressed onto a flat surface until a vertical load 

of approximately 800 lbf was reached. The spindle height was then locked, and 

the test bed was moved laterally at approximately 0.05 in/sec, until the tire was 

observed to slide. The test bed motion was then reversed, and the test bed was 

moved until the tire slid in the opposite direction. In the model, the coefficient of 

friction between the tire and the test bed was adjusted so that slip occurred at the 

same force level as was measured in the experiments. The lateral response is 

observed to be soft. The model was run 0.047 m laterally and then 0.047 m back. 

The step size was 1mm. Then, on a Smithers flat bed tire tester, slip angle tests 

are performed to measure force and moment build up versus rolling distance for 

1degree, 3 degrees and 6 degrees slip angles and 500, 1000 and 1500 lbf normal 

forces. The lateral and vertical contact compliance of the model and the in-plane 

shear stiffness of the tread elements are adjusted such that the 18 measured force 

and moment curves best match the computed response. The tire model was 

incremented forward in 3 cm steps.  
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Both the force and moment data are relatively good fits, with deviations 

typically not more than 20%. The rates at which the aligning moment and force 

grow are matched well. Figure 2.11 shows rolled distance versus cornering force 

plot of Darnell’s test and FE results for 1 degree slip angle and different vertical 

loads. Figure 2.12 shows rolled distance versus cornering force plot of Darnell’s 

test and FE results for 6 degrees slip angle and different vertical loads 

 

When Figures 2.11 and 2.12 examined, it can be concluded that, as the 

slip angle increases, time or tire rotation required for cornering force to reach 

steady state decreases. On the other hand, for same slip angle, as the vertical load 

increases, time or rotation required for cornering force to reach steady state 

increases.  

 

 
Figure 2.11 Darnell’s Rolled Distance versus Cornering Force Plot for 1 Degree 

Slip Angle, Experimental and FE Data 
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Figure 2.12 Darnell’s Rolled Distance versus Cornering Force Plot for 6 Degrees 

Slip Angle, Experimental and FE Data 

 

Olatunbosun and Burke (2002) use MSC/NASTRAN to study dynamic 

motion of a rolling tire going over a bump. Their study is meant for simulation of 

the vibrations of a tire rather than the cornering behavior. A 195/65 R15 is used 

for comparison of test results with the FE model. They found out that, tire 

dynamics researchers started to use composite material theory widely in order to 

model tire material behavior especially for the elastic constants of cord rubber 

geometry. Their model is based on an orthotropic material, although it is 

recognized that the tire is made up of composite materials that exhibit anisotropy. 

They justify this on the basis that, in the radial tire, the material is symmetrical 

about two mutually perpendicular directions in the plane of the material, the 

direction of the reinforcing cords and the direction orthogonal to that. The only 

exception being in the tread area where the belt plies have steel cords oriented at 

an angle to the circumferential direction. It is observed that, the authors who did 

not choose to use rebar elements, used orthotropic material properties. The 

anisotropic shell element has been chosen for modeling the tire carcass because it 
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combines the ability to model composite, orthotropic material properties with 

more computational efficiency than the solid element equivalent. To rotate the 

tire, motion of the ground plane is forced. Two possible methods of modeling tire 

rotation are planned initially. The first option was applying a torque to the hub 

center, which due to the friction present at the tire-ground interface, causes the 

tire to rotate and move forward. This method simulates the driven wheel of a 

vehicle but wheel translation in the vertical plane is restrained vehicle. Other 

option was setting the wheel hub displacement and rotations to zero except the 

rotation degree of freedom about the wheel spin axis. By translating the ground 

plane, the tire is caused to rotate by contact friction at the tire/ground interface. A 

frictional coefficient of 0.8 was assumed. This results in free rotation of the tire, 

which is the duplication of the physical status of the tire test setup which the 

authors are using. 10, 20 and 30 km/h ground speed is analyses are performed. 

Radial and lateral forces on the hub is collected and plotted with respect to time. 

There is a good agreement between test and FE model results. It can be observed 

that, for physically rotating tires, the hub forces show small oscillations. Their 

results can be seen in Figure 2.13. 

 

 
Figure 2.13 Comparison of Test and FEA results for Tire Vertical Force by 

Olatunbosun and Burke [2002] 
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They also conclude that, the tire’s stiffness reduces once it begins to roll. 

They discovered by modal tests on the tire that, radial stiffness of the tire was 

approximately 30% less than the non-rotating one. This is an important 

conclusion about rotating tire analysis when comparing with the static analyses. 

 

Olatunbosun and Burke use the derivation in their previous publication 

(Olatunbosun Burke 1997) to calculate orthotropic material properties for cord-

rubber structure. In this publication, they reviewed different techniques used to 

define material properties and presented an alternative experimental/analytical 

technique. The new technique is applied in the development of a 

MSC/NASTRAN finite element tire model and the validity of the approach is 

assessed by examining displacement results under inflation pressure loading. It is 

shown that the model compares well with experimental measurements for a range 

of inflation pressures, indicating the usefulness of the technique. Authors stated 

that, cord plies give direction related stiffness, therefore resulting in anisotropic 

material characteristics. In order to overcome the problem of modeling tire 

material behavior, researchers have had to turn to composite theory and analysis. 

Perhaps the most well known set of equations relating the five engineering 

constants, four of which are independent, used to characterize an orthotropic ply 

were those developed during the 1960's known as the Halpin-Tsai equations. 

These equations are often used for calculating the elastic constants of rigid and 

compliant filamentary composites but can also be applied to a calendered ply of 

cord and rubber. Gough developed expressions specifically for the elastic 

constants of a calendered ply of cord and rubber. In this theory, the rubber matrix 

is assumed to be incompressible and twisted cord is treated as a unidirectional 

load-carrying member with no transverse properties. The results obtained for the 

elastic constants of the ply are independent of the shear modulus and Poisson's 

ratio of the cord. Closely examining the construction of a radial tire reveals that 

the cords, running parallel in radial and circumferential directions, clearly define 
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material symmetry axes. The composite can then be assumed to be orthotropic in 

nature. Their derivation is given and explained as follows: 

 

When a test sample with length L is stretched and amount of ∆L in the 

cord direction, the strain in this direction is given by; 

 

1
L

L
ε ∆

=         (2.9) 

 

where ε1 applies for both the cord and the rubber, and a similar expression can be 

derived for ε2, υ12 can be obtained from the ratio of these strains, as shown in 

equation  

 

1

2
12 ε

ε
ν −=         (2.10) 

 

It was noted by Akasaka (1972) that due to the cord modulus being 

several orders of magnitude greater than the rubber modulus, and the volumetric 

proportion of the cord being small compared to the overall composite, the major 

Poisson's ratio is approximately equal to that of the rubber. Further to this, 

Akasaka also discovered that for cord/rubber composites, the shear modulus is 

also approximately equal to that of the rubber. However, this does require the 

rubber shear modulus to be known. Zienkiewicz (1977) proposed an 

approximation involving only the Young's modulus and Poisson's ratio in the 

principal material directions, in the form; 
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≈  (2.11) 

 

Consideration of the relationship; 
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2
1221 E

E
  νν =         (2.12) 

 

allows equation (2.24) to be re-written in terms of the major Poisson's ratio 
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≈      (2.13) 

 

Olatunbosun and Burke used their material property derivation in 

dynamic cornering analysis with success.  

 
Chang (2002), in his Ph. D. thesis builds a finite element model of a 

passenger car radial-ply tire, P185/70/RI4, and tested on a drum type test 

machine to investigate tire transient dynamic responses. FEA tire model 

developed in his research adopted four different types of elements (solid, 

membrane, shell, and beam) incorporating over 18,000 nodes and 24 different 

material definitions, to describe the whole tire's construction in extreme detail. 

Full FEA tire/drum models and the virtual tire rotating test machine were built. 

The tire thus modeled will then be used to detect in-plane free vibration modes 

transmissibility and predict standing waves phenomena, of a rotating tire under 

various inflation pressures, loading conditions and obstacle effects. The tire in-

plane free vibration modes transmissibility was successfully detected using the 

virtual tire/drum rotating test machine created with PAM-SHOCK. The results of 

the simulations showed excellent agreement, quantitatively and qualitatively, 

with previous research standing waves phenomenon was also successfully 

simulated, predicted, and visualized for the first time. The simulations bypassed 

the practical difficulties of measuring actual tires, and are superior to the 

oversimplified analytical derivations. Different tire inflation pressures, loading 

conditions, and obstacle effects on the formation of standing waves were 

investigated. Six important simulation strategy and tire-model parameters used in 

this research were tested, verified, and shown to be in excellent agreement with 
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the experimental results from this research, the previous empirical data, and 

theoretical/analytical derivations of other investigators. 

 

It has been proved with all of studies in the literature that Mooney-Rivlin 

material formulation provides reasonably accurate results efficiently and 

successfully. Most tire industry applications use this material in their FEA tire 

models and thereby obtain acceptable results. Only two types of hyperelastic 

materials were available in PAM-SHOCK so far Mooney-Rivlin and Han-Smith 

formulations. The Mooney-Rivlin type only needs two parameters as the input 

data, but the Hart-Smith type needs four parameters; use of the latter type would 

unduly complicate the numerical procedures, and no research has ever shown that 

the Hart-Smith type often better results than the Mooney-Rivlin. The rule of 

thumb in FEA analysis states that using more and simpler elements will often get 

better results than using fewer and more complicated elements. In nonlinear crash 

analysis, experience shows that higher-order elements also give excellent results, 

but the computing time they require is longer by orders of magnitude. Therefore, 

only the simplest finite elements are used in the PAM-SHOCK programs because 

it is believed that fine meshes of simple elements give better results in highly 

distorting structures than coarse meshes with higher-order elements. The main 

reason is that the displacement and shape functions of complex elements we not 

detailed enough to model sharp deformations across an element. Experience with 

PAMSHOCK and other codes have confirmed this rule of thumb. 

 

Layered Membrane elements, which are very popular in current tire finite 

element modes, are used by Chang to model the carcass and layered shell 

elements to model breaker belts in the tire structure. One of the significant 

advantages of layered elements is specifying different material properties and 

different directions for each layer. Another advantage is the capability of 

modeling thick structures, up to a certain value which classical membrane 
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elements fail, to model the thickness because of thickness-element surface area 

ratio.  

 

Solid elements at tread and bead area, layered membrane elements at 

sidewalls and inner surfaces of tread and bead area can be seen in Figure 2.14. 

Membrane elements are numbered for better understanding the locations. 

 

 
Figure 2.14 Cross Section of Chang’s Finite Element Model. 

 

When the cross section in Figure 2.18 is examined, the idea of 

“approximate modeling the tire geometry for stiffness analysis” can be 

emphasized. Location of steel and textile belts in FE model is much different than 

the real tire geometry. This approximation of the geometry, of course, changes 

the stress distribution in the tire; but if the scope is tire stiffness modeling, the 

results are acceptable. 

 

To verify the traction friction coefficient versus rolling resistance 

coefficient, the drum type tire test setup is used and the results are introduced in 

to the finite element model. First an inflation analysis performed with finite 

element model and the results are compared with the test. A fixed vertical load of 
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4500 N is applied the tire, and tire is inflated to 138, 207 and 276 kPa pressures. 

Deflection of the tire axis is measured. Then, vertical load versus static deflection 

curves are studied for 2250, 4500 and 9000 N loads.  

 

As the result of the study, tire standing waves phenomenon was predicted 

and visualized. Three new approaches were developed to verify the tire standing 

waves phenomenon; they are from the point of view of the vehicle's vibration 

receptions from the tire axle, from the point of view of the tire energy loss, and 

from the point of view of the contact interface between the tire and the test drum. 

These three viewpoints will reveal the influence and information of the dynamic 

response of the vehicle operating as a unity, the tire itself, and the contact 

surfaces when the standing waves phenomenon occurs. The tire in-plane free 

vibration modes transmissibility at 84 Hz vertically and 45 Hz longitudinally 

were detected. The simulation results show excellent agreement with more than 

ten previous analytical and experimental studies 

 

 

Rao, Kumar, Bohara and Mouli (2002), published a study on tire 

cornering behavior using explicit finite element code supplied by ABAQUS. A 

145/70 R 12 tire is modeled with IDEAS mesh generator and exported to the 

finite element solver. Yeoh incompressible/nearly incompressible three term 

material model is used to represent the constitutive behavior of rubber parts, as 

this material model represents the behavior of rubber. Viscoelastic effects of 

rubber are ignored and stated that, at low and medium speeds, the effect is minor. 

Reduced integration formulation is chosen for solid elements to reduce 

computational time. Like most of other studies, tread pattern is not included in 

the model, as the effect of it on the cornering behavior is minor. Reinforcements 

are modeled by using REBAR elements. Road is modeled with a rigid surface. 

Rim is modeled with another rigid surface and total contact between the rim and 

the tire is assumed. That means the slip between the tire and the rim is restricted. 
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The model contains 2520 REBAR elements and 6240 solid elements. The 

analysis performed in two steps. First inflation and loading of the tire is 

simulated, and then cornering behavior of the tire is simulated for different slip 

angles. 

 

Tire is inflated to a pressure 180 kPa, and surface representing the road 

surface is pressed on it. Displacement of the road is used to control the normal 

load on the tire. For 2200, 3000, 3700 and 5400 N loads, tire is tested. For 

cornering simulation, rim center node is allowed to rotate freely about the 

rotation axis. Road is displaced in the longitudinal direction at the rated speed. 

Tire is rotated due to friction between the tire and the road. Friction coefficient 

between the tire and the road is used as 1.0. Direction of motion for the road is 

adjusted to obtain different slip angles. Slip angles up to 20 degrees is tested. 

Authors observe that, for 0 degree slip angle, cornering force did not remain zero. 

This is called “ply steer effect” of the rotating tires in the literature, and observed 

in other studies too. Ply Steer Effect is published by Pottinger (1976) as an effect 

of radial tires. They presented cornering force for different slip angles and 

vertical loads. The velocity of the tire for the study is not specified in the 

publication. A view of loaded tire finite element model is shown in Figure 2.15.  

 

 
Figure 2.15 Tire Model Prepared by Rao, Kumar et al. 
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Cornering force for each slip angle, as a function of rotation time is also 

given in the publication. Figure 2.16 shows the time versus cornering force plots 

for 3 and 5 degrees slip angles. Cornering force values are plotted in kN.  

 

 
Figure 2.16 Time versus Cornering Force Plots for 3 and 5 Degrees Slip Angles, 

by Rao et al 2002 

 

Authors also provided Self Aligning Torque versus rotation time plots of 

the tire for 0, 3, 5 and 20 degrees slip angles. Figure 2.17 shows change of Self 

Aligning Torque with tire rotation time for 0 and 3 degrees slip angles. Figure 

2.18 shows change of Self Aligning Torque for 5 and 20 degrees slip angles. 

 

 
Figure 2.17 Change of Self Aligning Torque with Time for 0 and 3 Degrees Slip 

Angles, by Rao et al 2002 
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Figure 2.18 Change of Self Aligning Torque with Time for 5 and 20 Degrees Slip 

Angles, by Rao et al 2002 

 

Figure 2.19 shows the change of cornering force with the changing slip 

angle for different vertical loads. 

 

 
Figure 2.19 Variation of Cornering Force with Changing Slip Angles, by Rao et 

al 2002 
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Figure 2.20 Variation of Self Aligning Torque with Changing Slip Angles, 

Published by Rao et al 2002 

 

Variations of self aligning torque with respect to slip angle at different 

vertical forces are presented by authors, given in Figure 2.20. It is observed that 

the sign of aligning torque changes at around 10 degrees slip angle. Authors 

concluded that, this change of sign indicates the complete loss of control over the 

cornering system at very high slip angle cornering.  

 

Rao et al improved the study more and published further data (2003). 

They performed braking simulation, compared cornering force characteristics for 

bald and grooved tire (a simplified tread pattern is added to the model) and added 

camber angle to the simulations as improvements. They added a plot showing a 

comparison for cornering force, between experimental data and finite element 

model for 4 degrees slip angle for various vertical loads. Figure 2.21 shows the 

comparison plot. With the increasing vertical force, difference between the 

experimental results and the finite element model results increases. The 

difference is around 25% for 3700N vertical load. 
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Figure 2.21 Comparison of Cornering Force for 4 Degrees Slip Angle, by Rao et 

al. 2003 

 

Authors concluded that, the results can be improved by using full 

integration elements, adding viscoelastic effects, and modeling actual tread 

pattern, all of which demands serious computational power. But, without them, 

tire model shows good agreement with the experimental results. 

 

2.2 Summary and Conclusions on Finite Element Tire Models in Literature 
 

Some significant and recent publications directly or indirectly relevant to 

this study, have been examined in detail and are summarized in this chapter. Key 

points from the studies are given below. 

 

• Most of the models in literature use Mooney-Rivlin material model for 

the rubber matrix. Some of the authors, in the hope of decreasing 

computational effort, compared the results from this material model with 

results from linear material models, and concluded that they got close 
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results for tire stiffness, in general. However, the convergence problems 

increase with the use of such linear models. 

 

• Some of the researchers used rebar elements in modeling the carcass and 

steel belt plies. Other authors modeled the carcass and steel belts with 

layered shell or membrane elements. Orthotropic material properties are 

used with success. Only one publication uses continuum (solid) elements 

for cord reinforced rubber layers, which studied stress and strain 

distribution on tire structure. This study also gave precise results. 

Authors calculated unidirectional cord-rubber properties and set the zero 

degree reinforcement material constants to layered elements. Layer’s 

orientations are set to obtain steel belts configuration. 

 

• Tire geometry is simplified and tread pattern is ignored for all cornering 

or vertical force studies. Some authors concluded that, tread pattern has 

minor effect on general stiffness of the tire. Also, textile and steel cords 

are mostly placed the locations in finite element model different than the 

real tire. Tire models still showed good agreement with the experimental 

results.  

 

• In all studies, cornering force values settled to a steady value after half 

rotation of the tire. The necessary angle to reach steady state cornering 

force value depends on the tire speed, slip angle and vertical loads. For 

low slip angles, up to 4 degrees, saturation of cornering force to a steady 

value takes almost more than one complete rotation of the tire. 

 

• Cornering force data published by the authors have deviations reaching 

15 to 25 percent compared with the experimental results. Due to 

complexity, lack of accurate data and high nonlinearity of the tire 

structure, this amount of error is concluded as reasonable. Academic 
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researchers all stated that, obtaining material properties from the 

manufacturers for the tested tires is very difficult as tire companies keep 

the material properties as commercial secrets. 

 

• All models require solution times which will give a complete set of 

cornering force characteristics in at least a month of study even with the 

fast developments in the computer hardware and software. It is obvious 

that the priority of development in tire simulation models will be the 

reduction of solution times rather than accuracy. Thus the models should 

be clear of all time consuming elements while retaining the essential 

characteristics of the actual construction. 

 



 

 

 

CHAPTER 3 

THEORY OF MATERIAL LAW 

 

 

In this chapter, basics of material laws, material models and composite 

theory are discussed. 

 

3.1 Constitutive Relations for Linear Elastic Materials 

j

 
Robert Hook in 1676 stated that, “The power of any springy body is the 

same proportion with the extension”. This statement announced the birth of 

elasticity theory. In mathematical terms, Hooke’s statement can be expressed as  

 

F= k u         (3.1) 

 

where F is the applied force (not the power, as Hook mistakenly suggested), u is 

the deformation of the elastic body subjected to the force F, and k is the spring 

constant. 

 

The generalized Hooke’s law, relating stresses to strains can be written as 

 

i ijCσ ε=    i, j = 1,…,6    (3.2) 

 

where σi are the stress components, Cij is the stiffness matrix, and εj are the strain 

components. The contracted notation is defined in comparison to the usual tensor 

notation for three-dimensional stresses and strains for situations in which the 
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stress and strain tensors are symmetric. The strains in contracted notation are 

defined as 
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where u, v and w are displacements in x, y, and z directions respectively. 

 

The stiffness matrix, Cij has 36 constants in Equation 3.2. However, less 

than 36 of the constants can be shown to be actually independent for elastic 

materials when the strain energy is considered. Elastic materials for which an 

elastic potential or strain energy density function exists have incremental work 

per unit volume of 

 

idW d iσ ε=         (3.4) 

 

When the stresses σj act through strains dεi. Because of the stress-strain 

relations, Equation (3.2), the incremental work becomes 

 

ij j idW C dε ε=         (3.5) 

 

Integrating (3.5), the work per unit volume becomes 

 

ij i j
1W C
2

ε ε=         (3.6) 

 

Hooke’s law, Equation 3.2, can be derived from Equation 3.6: 

 50



 

ij j
i

W C ε
ε

∂
=

∂
        (3.7) 

 
2

ij
i j

W C
ε ε
∂

=
∂ ∂

        (3.8) 

 

Similarly 
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        (3.9) 

 

Order of differentiation of W is immaterial, then, 

 

Cij=Cji         (3.10) 

 

Thus, the stiffness matrix is symmetric so only 21 of the constants are 

independent. In a similar manner, it can be shown that: 

 

ij i j
1W S
2

σ σ=         (3.11) 

 

where Sij

j

 is the compliance matrix defined by the inverse of the stress-

strain relations, the strain-stress relations: 

 

i ijSε σ=   i,j=1,…,6     (3.12) 

 

Reasoning similar to that in the preceding statement leads to the 

conclusion that 
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Sij=Sji         (3.13) 

 

The compliance matrix is symmetric and hence has only 21 independent 

constants. The stiffness and compliance components will be referred to as elastic 

constants. With the foregoing reduction from 36 to 21 independent constants, the 

stress-strain relations are 

 

1 111 12 13 14 15 16

2 221 22 23 24 25 26

3 331 32 33 34 35 36

41 42 43 44 45 464 4

51 52 53 54 55 565 5

61 62 63 64 65 666 6
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   
   
   
      











   (3.14) 

 

 

Equation 3.14 is the most general expression within the framework of 

linear elasticity. The relations in Equation (3.14) are referred to as characterizing 

anisotropic materials since there are no planes of symmetry for the material 

properties. An alternative name for such an anisotropic material is a triclinic 

material. If there is one plane of material property symmetry, the stress-strain 

relations reduce to: 

 

1 111 12 13 16
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   (3.15) 

 

Where the plane of symmetry is z=0. Such a material is termed 

monoclinic. There are 13 independent constants for monoclinic materials. If there 
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are two orthogonal planes of material property symmetry for a material, 

symmetry will exist relative to a third mutually orthogonal plane. The stress-

strain relations in coordinates aligned with principal material directions are 
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   (3.16) 

 

The material represented with Equation 3.16 is called orthotropic 

material. There is no interaction between normal stresses σ1, σ2, σ3 and shearing 

strains υ23, υ31, υ12, such as occurs in anisotropic materials. Similarly there is no 

interaction between shearing stresses and normal strains as wall as none between 

shearing stresses and shearing strains in different planes. There are only nine 

independent constants in the stiffness matrix. If at every point of a material, there 

is one plane in which the mechanical properties are equal in all directions, than 

the material is termed transversely isotropic. For example, if the 1-2 plane is the 

special plane of isotropy, then the 1 and 2 subscripts on the stiffnesses are 

interchangeable. The stress-strain relations then have only five independent 

constants and are 

 

 

11 12 13
1 1

12 22 11
2 2

13 23 33
3 3

44
4 4

55
5 5

11 12
6 6

C C C 0 0 0
C C C 0 0 0
C C C 0 0 0
0 0 0 C 0 0
0 0 0 0 C 0

(C C )0 0 0 0 0
2

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

               =           −       











  (3.17) 
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If there are an infinite number of planes of material symmetry, then the 

foregoing relations simplify to the isotropic material case with only two 

independent constants in the stiffness matrix: 

 

11 12 12

12 11 121 1

12 12 112 2

11 123 3

4 4
11 12

5 5

6 6
11 12

C C C 0 0 0
C C C 0 0 0
C C C 0 0 0

(C C )0 0 0 0 0
2

(C C )0 0 0 0 0
2

(C C )0 0 0 0 0
2

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε

 
 

   
   
   −     =   
   −   
   
     −

 
 











(3.18) 

 

 

3.2 Engineering Constants for Linear Elastic Materials  

 
 

Engineering constants are generalized Young’s moduli, Poisson’s ratios, 

and shear moduli for an elastic material. These constants are obtained with simple 

tests and with their obvious physical interpretation, have direct meaning about the 

material behavior. With known load or stresses, the components of the 

compliance matrix, Sij are determined more directly than those of the stiffness 

matrix, Cij. For an orthotropic material, the compliance matrix components in 

terms of the engineering constants are: 
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3121

1 2 3

3212

1 2 3

13 23

1 2 3
ij

23

31

12

1 0 0 0
E E E

1 0 0 0
E E E

1 0 0 0
E E E

S
10 0 0 0 0

G
10 0 0 0 0

G
10 0 0 0 0

G

νν

νν

ν ν

 − − 
 
 
− − 

 
 
− − 

   =   
 
 
 
 
 
 
 
  

   (3.19) 

 

Where 

 

E1, E2, E3 = Young’s moduli in 1, 2 and 3 directions, respectively. 

 υij = Poisson’s ratio for transverse strain in the j-direction when stressed 

in the i-direction , that is 

 

j
ij

i

ε
ν

ε
= −         (3.20) 

 

For σi=σ and all other stresses are zero. 

 

G23, G31, G12 = shear moduli in the 2-3, 3-1 and 1-2 planes, respectively 

 

For an orthotropic material, there are nine independent constants because 

 

Sij=Sji         (3.21) 

 

Since the compliance matrix is the inverse of the stiffness matrix, if the 

engineering constants are substituted in Equation 3.21: 
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ij ji

i jE E
ν ν

=  i,j = 1,2,3      (3.22) 

 

There are three reciprocal relations that must be satisfied for an 

orthotropic material. Only υ12, υ13 and υ23 need to be further considered since 

υ21, υ31 and υ32 can be expressed in terms of the first-mentioned Poisson’s ratios 

and the Young’s Moduli. Since the stiffness and compliance matrices are 

mutually inverse, it follows by matrix algebra that their components are related as 

follows for orthotropic materials. 

 
2

22 33 23
11

S S SC
S

−
=   13 23 12 33

12
S S S SC

S
−

=  

 
2

33 11 13
22

S S SC
S

−
=   12 23 13 22

13
S S S SC

S
−

=    (3.23) 

 
2

11 22 12
33

S S SC
S

−
=   12 13 23 11

23
S S S SC

S
−

=  

 

44
44

1C
S

=   55
55

1C
S

=   66
66

1C
S

=  

 

where  

 
2 2 2

11 22 33 11 23 22 13 33 12 12 23 13S S S S S S S S S S 2S S S= − − − +    (3.24) 

 

The stiffness matrix, Cij, for an orthotropic material in terms of the 

engineering constants is obtained by inversion of the compliance matrix, Sij, in 
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Equation 3.19 or by substitution in Equations 3.23 and 3.24. The nonzero 

stiffnesses in Equation 3.16 are: 

 

23 32
11

2 3

1C
E E
ν ν−

=  

 

21 31 23 12 32 13
12

2 3 1 3
C

E E E E
ν ν ν ν ν ν+ +

= =
∆ ∆

3.25)      (

 

13 21 32 13 12 23
13

2 3 1 2
C

E E E E
ν ν ν ν ν ν+ +

= =
∆ ∆

   

 

23 32
22

1 3

1C
E E
ν ν−

=
∆

 

 

32 12 31 23 21 13
23

1 3 1 2
C

E E E E
ν ν ν ν ν ν+ +

= =
∆ ∆

3.25 cont.)     (

 

12 21
33

1 2

1C
E E

ν ν−
=

∆
   

 

C44=G23  C55=G31  C66=G12 

 

where 

 

12 21 23 32 31 13 12 32 13

1 2 3

1
E E E

2ν ν ν ν ν ν ν ν ν− − − −
∆ =     (3.26) 

 

 

For isotropic materials, certain relations between the elastic constants 

must be satisfied.  
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EG
2(1 )ν

=
+

        (3.27) 

 

In order that E and G always be positive, a positive normal stress or shear 

stress times the respective normal strain or shear strain yield positive work, 

 

ν  > -1         (3.28) 

 

In the same manner, if an isotropic body is subjected to hydrostatic 

pressure, p, then the volumetric strain, the sum of the three normal or extensional 

strains is defined by 

 

x y z
p

E / 3(1 2 ) K
θ ε ε ε

ν
= + + = =

−
p      (3.29) 

 

Then, the bulk modulus, K is 

 

EK
3(1 2 )ν

=
−

        (3.30) 

 

Is positive only if E is positive and 

 

1
2

ν <          (3.31) 

 

If the bulk modulus were negative, a hydrostatic pressure would cause 

expansion of a cube of isotropic material. Thus, in isotropic materials, Poisson’s 

ratio is restricted to the range 
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11
2

ν− < <         (3.32) 

 

In order that shear or hydrostatic loading not produce negative strain 

energy. 

 

For orthotropic materials, the relations between elastic constants are more 

complex. The product of a stress component and the corresponding strain 

component represents work done by the stress. The sum of the work done by all 

stress components must be positive in order to avoid the creation of energy. 

 

E1, E2, E3, G23, G31, G12 > 0 (3.33) 

 

Similarly, under suitable constraints, deformation is possible in which 

only one extensional strain arises. Again, work is produced by the corresponding 

stress alone. Thus, since the work done is determined by the diagonal elements of 

the stiffness matrix, those elements must be positive, that is, 

 

C11, C22, C33, C44, C55, C66 > 0     (3.34) 

 

Using Equation 3.25, 

 

23 32

13 31

12 21

(1 ) 0
(1 ) 0
(1 ) 0

ν ν
ν ν
ν ν

− >

−

− >

>

0

       (3.35) 

and 

 

12 21 23 32 31 13 21 32 131 2ν ν ν ν ν ν ν ν ν∆ = − − − − >    (3.36) 

 

Since all the determinants must be positive for positive definiteness. Also 

from Equation 3.23, the positive definiteness leads to : 
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23 22 33

13 11 33

12 11 22

S S S

S S S

S S S

<

<

<

       (3.37) 

 

By using the condition of symmetry of the compliances,  

 

ij ji

i jE E
ν ν

=  i, j = 1,2,3      (3.38) 

 

The condition of Equation 3.35 and 3.38 can be written as; 

 
1 1
2 22 1

21 12
1 2

11
223 2

32 23
2 3

1 1
2 231

13 31
3 1

E E     
E E

E E     
E E

EE      
E E

ν ν

ν ν

ν ν

   
< <   

   

  
< <   

   

   
< <   

  

     (3.39) 

 

and Equation 3.36 can be expressed as 

 

2 2 2 31 2
21 32 13

2 3 1
12 32 13

EE E1
E E E 1

2 2

ν ν ν
ν ν ν

    
− − −    

    < <    (3.40) 

 

The preceding restrictions on engineering constants for orthotropic 

materials are used to examine experimental or derived data to see if they are 
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physically consistent within the frame work of the mathematical elasticity model. 

Those restrictions can also be used to solve the differential equations of a 

physical problem which the solution depends on the constants.  

 

3.3 Basics of Composite Materials 
 

Composite materials have different elastic behavior. Some composite 

materials have very simple forms of in-homogeneity. For example, laminated 

safety glass has three layers each of which is homogeneous and isotropic; thus, 

the in-homogeneity of the composite is a step function in the direction 

perpendicular to the plane of the glass. Fiber reinforced composites mainly shows 

transversely isotropic or orthotropic material behavior depending on the fiber 

construction. Figure 3.1 shows a fiber reinforced composite structure. The 

reinforcements are all in 0 degrees to Z direction, and material constants in XY 

plane shows isotropy. This composition is transversely isotropic.  

 

 
Figure 3.1 Unidirectional Fibers 
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Laminated composites consist of layers of at least two different materials 

that are bonded together. Lamination is used to combine the best aspects of the 

constituent layers in order to achieve a more useful material. Laminated fiber-

reinforced composites are a hybrid class of composites involving both fibrous 

composites and lamination techniques. Layers of fiber-reinforced material are 

built up with the fiber directions of each layer typically oriented in different 

directions to give different strength and stiffness in the various directions. Thus, 

the strength and stiffness of the laminated fiber-reinforced composite can be 

tailored to the specific design requirements of the structural element being built.  

 

A lamina is an arrangement of unidirectional fibers or woven fibers in a 

matrix. The fibers are the principal reinforcing or load-carrying agent. They are 

typically strong and stiff. The matrix can be elastomer, ceramic, or metallic. The 

function of the matrix is to support and protect the fibers and to provide a means 

of distributing load among and transmitting load between the fibers. Fibers 

generally exhibit linear elastic behavior, although reinforcing steel bars in 

concrete are more nearly elastic-perfectly plastic. Commonly, resinous matrix 

materials are Viscoelastic, if not viscoplastic. Fiber-reinforced composites are 

usually treated as linear elastic materials since the fibers provide the majority of 

the strength and stiffness. Refinement of that approximation requires 

consideration of some form of plasticity, viscoelasticity, or both (visco 

plasticity). Very little work has been done to implement those idealizations of 

composite material behavior in structural applications. (Tsai, 1988) 

 

A laminate is a stack of laminae with various orientations of principal 

material directions in the laminae. Generally the fiber orientation of the layers are 

not symmetric about the middle surface of the laminate. The layers of a laminate 

are usually bound together by the same matrix material that is used in the 

laminae. Laminates can be composed of plates of different materials or layers of 

fiber-reinforced laminae. A major purpose of lamination is to tailor the 
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directional dependence of strength and stiffness of a material to match the 

loading environment of the structural element. Laminates are uniquely suited to 

this objective since the principal material directions of each layer can be oriented 

according to need. 

3.4 Classical Laminate Theory 
 

 

Although the laminate is made up of multiple laminae, it is assumed that 

the individual laminae are perfectly bonded together so as to behave as a unitary, 

nonhomogeneous, anisotropic plate. Interfacial slip is not allowed and the 

interfacial bonds are not allowed to deform in shear, which means that 

displacements across lamina interfaces are assumed to be continuous. These 

assumptions mean that the deformation hypothesis from the classical 

homogeneous plate theory can be used for the laminated plate the laminate force-

deformation equations resulting from this deformation hypothesis are now 

derived following the procedure outlined by Whitney. Although Whitney has 

presented a general analysis including the equations of motion, only the static 

analysis will be considered. The basic assumptions relevant to the present static 

analysis are 

 

1 The plate consists of orthotropic laminae bonded together, with the 

principal material axes of the orthotropic laminae oriented along arbitrary 

directions with respect to the xy axes. 

 

2 The thickness of the plate, t, is much smaller than the lengths along the 

plate edges. 

 

3 The displacements u, v and w are small compared with the plate 

thickness. 
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4 The in-plane strains ∈x, ∈y and γxy are small compared with unity. 

 

5 Transverse shear strains γxz and γyz are negligible. 

 

6 Tangential displacements u and v are linear functions of the z 

coordinate. 

 

7 The transverse normal strain ∈z is negligible. 

 

8 Each ply obeys Hooke’s law. 

 

9 The plate thickness t is constant. 

 

Assumption 5 is a result of the assumed state of plane stress in each ply, 

whereas assumptions 5 and 6 together define the Kirchhoff deformation 

hypothesis that normals to the middle surface remain straight and normal during 

deformation. According to assumptions 6 and 7, the displacements can be 

expressed as  

 
0

1( , ) ( , )= +u u x y zF x y  

0
2( , ) ( , )= +v v x y zF x y       (3.55) 

  

 

Where u0 and v0 are the tangential displacements of the middle surface 

along the x and y directions, respectively. Due to assumption 7, the transverse 

displacement at the middle surface, w0(x,y), is the same as the transverse 

displacement of any point having the same x and y coordinates, so 

 
0 ( , ) ( , )=w x y w x y  .        (3.56) 
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In order to account for possible warping of the cross section of the 

laminate and resulting transverse shear deformations, it is necessary to use a so-

called higher order laminations theory. One such theory, which is based on the 

assumption that the displacements are nonlinear, functions of the z coordinate as 

follows: 

 
0 2( , ) ( , ) ( , ) ( , )ψ ζ φ= + + +x x xu u x y z x y z x y z x y3

3

 

0 2( , ) ( , ) ( , ) ( , )ψ ζ φ= + + +y y yv v x y z x y z x y z x y    (3.57) 

0 2
2( , ) ( , ) ( , )ψ ζ= + +zw w x y z x y z x y  

 

Substituting Equations (3.55) in the strain displacement equations for the 

transverse shear strains and using assumption 5,  

 

1( , ) 0γ ∂ ∂ ∂
= + = + =

∂ ∂ ∂xz
u w wF x y
z x x

 

         (3.58) 

2 ( , ) 0γ ∂ ∂ ∂
= + = + =

∂ ∂ ∂yz
v w wF x y
z y y

 

 

1( , ) ∂
= −

∂
wF x y
x

  2 ( , ) ∂
= −

∂
wF x y
y

   (3.59) 

 

Substituting Equations (3.55) and (3.59) in the strain displacement 

relations for the in plane strains,  

 

0 κ∂
∈ = =∈ +

∂x x
u z
x x  

κ∂
∈ = =∈ +

∂
o

y y
v z
x y        (3.60) 

0γ γ κ∂ ∂
= + = +

∂ ∂xy xy xy
u v z
y x
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where the strains on the middle surface are 

 
0

0 ∂
∈ =

∂x
u
x

 
0

0 ∂
∈ =

∂y
v
y

 
0 0

0γ ∂ ∂
= +

∂ ∂xy
u v
y x

   (3.61) 

 

and the curvatures of the middle surface are 

 
2

2κ ∂
= −

∂x
w

x
 

2

2κ ∂
= −

∂y
w

y
 

2

2κ ∂
= −

∂ ∂xy
w

x y
    (3.62) 

 

κ x  is a bending curvature associated with bending of the middle surface 

in the xz plane and  is a bending curvature associated with bending of the 

middle surface in the yz plane, 

κ y

κ xy is a twisting curvature associated with out-of-

plane twisting of the middle surface, which lies in the xy plane before 

deformation. 

 

Since Equations (3.60) give the strains at any distance z from the middle 

surface, the stresses along arbitrary xy axes in the kth lamina of a laminate may be 

found by substituting Equations (3.60) into the lamina stress-strain relationships 

as follows: 

 
0

11 12 16
0

12 22 26
0

16 26 66

σ κ
σ
τ κ

κ
     ∈ +
    = = ∈   

    ∈ +    

x x

y

xy xy xykk

Q Q Q z
Q Q Q z
Q Q Q z

+ 


x

y y     (3.63) 

 

where the subscript k refers to the kth lamina.  

 

The force per unit length, Nx, is given by 
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{ }
1

/ 2

/ 2
1

( )σ σ
−−

=

= = ∑∫ ∫
k

k

Nt z

x x x kt z
k

N dz 3.64) dz      (

 

and the moment per unit length, Mx, is given by 

 

{ }
1

/ 2

/ 2
1

( )σ σ
−−

=

= = ∑∫ ∫
k

k

Nt z

x x x kt z
k

M zdz zdz      (3.65) 

 

where   

t= laminate thickness 

( )σ x k = stress in the kth lamina 

zk-1= distance from middle surface to inner surface of the kth lamina  

zk= corresponding distance from middle surface to outer surface of the kth 

lamina 

 

Substituting the lamina stress-strain relationships from Equations. (3.62) 

to Equations. (3.64) and (3.65), respectively,  

 

{ }
1

0
11 12 16

1
( ) ( ) ( ) ( ) ( ) ( )k

k

N z o o
x k x x k y y k xy xyz

k
N Q z Q z Q zκ κ γ

−=

= ∈ + + ∈ + + +∑∫ dzκ

          (3.66) 

 

and 

 

{ }
1

0 0 0
11 12 16

1
( ) ( ) ( ) ( ) ( ) ( )k

k

N z

x k x x k y y k xy xyz
k

M Q z Q z Q zκ κ γ κ
−=

= ∈ + + ∈ + + +∑∫ zdz

          (3.67) 

 

Combining terms and rearranging Equations. (3.65) and (3.66), 

 
0 0 0

11 12 16 11 12 16γ κ κ= ∈ + ∈ + + + +x x y xy x yN A A A B B B κ xy     (3.68) 
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and 

 
0 0 0

11 12 16 11 12 16γ κ κ= ∈ + ∈ + + + +x x y xy x yM B B B D D D κ xy   (3.69) 

 

where the laminate extensional stiffnesses are given by 

 

/ 2

1/ 2
1

( ) ( ) ( )−−
=

= −∑∫
Nt

ij ij k ij k k kt
k

A Q dz Q z z 3.70)      (

 

The laminate coupling stiffnesses are given by 

 

/ 2 2 2
1/ 2

1

1( ) ( ) (
2 −−

=

= = ∑∫
Nt

ij ij k ij k k kt
k

)−B Q zdz Q z z     (3.71) 

 

and the laminate bending stiffnesses are given by 

 

/ 2 2
1/ 2

1

1( ) ( ) (
3

3 3 )−−
=

= = ∑∫
Nt

ij ij k ij k k kt
k

D Q z dz Q z z 3.72) −     (

 

where the subscripts i,j=1, 2, or 6. The other stress resultants can be written in 

similar form, and the complete set of equations can be expressed in matrix form 

as 

 
0

11 12 16 11 12 16
0

12 22 26 12 22 1126
0

16 26 66 16 26 66

11 12 16 11 12 16

12 22 26 12 22 26

16 26 66 16 26 66

γ
κ
κ
κ

 ∈   
     ∈    
     = =   

   
   
   
      

x x

y y

xy xy

x x

y y

xy xy

N A A A B B B
N A A A B B B
N A A A B B B
M B B B D D D
M B B B D D D
M B B B D D D









  (3.73) 
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or in partitioned form as 

 
0

κ

 ∈   
    =   

        

N A B

M B D



      (3.73) 

 

 

3.5 Cord Reinforced Composites 

m

 

Tsai (1998) gives the Rule-of-Mixture relation for fiber-reinforced matrix 

as: 

 

x f f mE v E v E= +        (3.74) 

 

where vf is the volume fraction of the fiber, vm is the volume fraction of the 

matrix, Ef is the Young’s modulus of the fiber and Em 

)

is the Young’s modulus of 

the matrix. For unidirectional fiber reinforced composites, the main concern is 

mostly the stiffness of the structure in fiber direction, Ex. Since the fiber stiffness 

is many times the matrix stiffness, the second term in Equation 3.74 is often 

being ignored. 

 

Pelc (2001) derived and used the following equations for cord rubber 

composites,   

 

1 c c r cE E v E (1 v= + −       (3.75) 

 

c
2 r

c

(1 2v )E E
(1 v )

+
=

−
       (3.76) 

 

E3=E2         (3.77) 
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G12= Gr        (3.78) 

 

G13=G23=3G12        (3.79) 

 

12 13 0.5ν ν= =         (3.80) 

 

23 210.98ν ν= −        (3.81) 

 

where c denotes cord and r denotes rubber. For multilayer structures like steel 

belts of the tire, each layer’s property can be calculated by selecting 

reinforcement direction as the principal direction. Then, this data can be used 

either separately or combined. 

 

 

 
Figure 3.2 Unidirectional Ply Configuration 

 

Halpin-Tsai equations take the form for the cord-rubber construction 

shown in Figure 3.2,  
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1 v (1 vc c r cE E E= + − )  

c
2

c

(1 2v )
1 v

rEE +
=

−
 

( )
( )

c
12

c

v
v

r c r c r

c r c r

G G G G G
G

G G G G
 + + −=

+ − −


)

     (3.87) 

12 c cv (1 vc rν ν ν= + −  

12 2
21

1

E
E

νν =  

 

where, , =Young’s modulus of cord and rubber, respectively; cE rE

 ,cG G oduli of cord and rubber, respectively; r =Shear m

 cν , rν =Poisson’s ratio of cord and rubber, respectively; and 

 v e fraction of cord c =Volum

 

The relation for  and 1E 12ν  are obtained from the law of mixtures.  and 

 are semiempirical. In order to employ the Halpin-Tsai equations, it is 

necessary to know cord properties  and 

2E

12G

cG cν  which are often difficult to obtain 

experimentally. 

 

Tangorra (1971) developed a set of expressions specifically tailored to the 

properties of cord reinforced rubber in the form 

 

1 v (1 vc c r cE E E= + − )  

( ) ( )
( )

c c c
2

c c

4 1 v v 1 v
3 v 4 1 v

r c r

c r

E E E
E

E E
 − + − =
+ −

 

(12 c1 vrG G= − )        (3.88) 

12 0.5ν =  
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12 2
21

1

E
E

νν =  

 

The incompressibility of the rubber matrix has been used, and the cord 

has been treated as a load carrying member with properties only in its lengthwise 

direction. This eliminates the need for detailed cord stiffness data. 

 

The following set of equations was developed by Akasaka and Hirano 

(1972) (as approximations to the Gough-Tangorra equations by noting that, for 

usual cord-rubber composites, the very high cord stiffness results in the cord 

providing essentially all of the E1 stiffness, while in the transverse direction the 

rubber modulus is so low that it dominates E2. These types of approximations 

lead to expressions 

 

 

1E =  vc cE

2E = 4
3

rE  

12G =         (3.89) rG

12 0.5ν =  

21ν =0 

 

Once the elastic constants of a single sheet are known, they may be used 

to generate the elastic constants of another type of construction often used for 

tires, and common in other products as well, whereby a series of laminate are 

bonded together in pairs to form an equi-angular, or bias, construction Any 

numbers of pairs of plies may be used, provided that they are bonded together 

with the same angle ±α . Such a construction is sometimes termed specially 

orthotropic. 
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By summing the properties of one, or more, pairs of such plies, the elastic 

constants, Ey, Gxy and νxy can be obtained in terms of E1, E2, G12, ν12 and ν21. As 

a specific example of this, the Gough-Tangorra Equations (3.88) may be used in 

such a formulation to directly express Ey, Gxy νxy and in terms of Ey, Gr, νc, etc. 

Such formulations are given below: 

 

( )
( )

( )

2
2 2

c c
4

c c
4

c c

v sin cos 2 1 v
v cos 4 1 v

v sin 4 1

c

y rc

r cr

r

E
E GE

EG G
G

α α
α

α ν

 
+ − 

 = + − −
+ −

  (3.90) 

 

2 2
c1 v sin cos 1xy c

r r

G E
G G

α α
 

= + − 
 

      (3.91) 

 

( )

( )

2 2
c c

4
c c

v sin cos 2 1 v

v sin 4 1

c

r
yx

c

r

E
G

E
G

α α
ν

α ν

+ −
=

+ −
      (3.92) 

 

The theory proposed by Clark (1983) is intended to provide an alternate 

approach to the Halpin-Tsai equations by using energy methods to formulate 

expressions for Ey, Gxy and yxν  directly, without requiring detailed cord 

properties such as Gc and cν , but in a form more accurate than the Gough-

Tangorra equations.  

 

When more than one ply is considered, the simple equations become more 

complex. Typically, steel cords in tread plies are in bias configuration as shown 

in Figure 3.3.  
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Figure 3.3 Bias Reinforcement Configuration 

 

 
Figure 3.4 Bias Configuration Parameters for Clark’s Derivation 
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Considering an element with extensible cords in bias configuration as it is 

in Figure 3.4 and where the cord OA does not change angle but simply changes 

length as it is in Figure 3.5. 

 

Let the length from O to A be l. then the length of sides OB and OC are 

 

cosdx dl α=    sindy dl α=  

' cos
cosx c

dx dl dl
x l l

αε ε
α

= = = = = cord strain 

' sin
siny c

dy dl dl
y l l

αε ε
α

= = = = = cord strain 

 

 

cosx l α=    siny l α=  

sindx l dα α= −    cosdy l dα α=  

 

and when l=constant, only the angle can change so that 

 

tanx
dx d
x

ε α α= = −    coty
dy d
y

ε α α= =   (3.93) 

 

 
Figure 3.5 Cord Changes in Length Only 
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The total strain in an actual cord-rubber element is a combination of cord 

rotation and cord strain. Now, the total strain in the element becomes the sum of 

the two: 

 

tan ,x cdε α α ε= − +    cot ,y cdε α α ε= +  

tan ,x c dε ε α− = − α    cot ,y c dε ε α α− =   (3.94) 

2tan ,x c

y c

ε ε α
ε ε

−
= −

−
 

 2 2tan tan ,x c y cε ε ε α ε− = − + α

2 .

 

 ( )21 tan tanx c yε ε α ε= + − α      (3.95) 

 

 Assuming that a value of yε  is specified and constructing Mohr’s circle 

for strain as shown in Figure 3.6. The offset d and the radius R are given by  

 

( ) ( )2 21 tan 1 tan
,

2 2
y cy xd

ε α ε αε ε − + ++
= =   (3.96) 

 

 
Figure 3.6 Mohr’s Circle 
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( ) ( ) ( )
2 2

2
1 tan 1 tan ( )

1 tan
2 2 2

ε α ε αε ε ε ε
α

− − +− −
= = = +y cy x y cR (3.97) 

 

Taking the state of strain of the element of Figure 3.4 to be represented by 

point Q of Figure 3.6: 

 

( ) ( )2 2
" "

1 tan 1 tan
,

2

ε α ε α
ε ε

+ + +
= = = y c

x y d    (3.98) 

 

where x” and y” are now at  to the x and y directions due to rotation of point Q 

from the original 

45

yε  direction and γ is diameter of the Mohr’s Circle, then 

 

( ) ( 21 tan
2 2

y cR
ε εγ )α

−
= = + .     (3.99) 

 

The total strain energy in the element of unit volume is now given by the 

strain energy stored in the cord. Only the tensile elongation of the cord is 

considered in computing its strain energy. Let V=strain energy, 

 

( ) 1
c

1 1 1 11 v v ,
2 2 2 2x x y y xy xy c cV σ ε σ ε γ τ σ ε−

c
  = + + − + 
  
 


 

 (3.100) 

  {Rubber}   {Cord} 

 

where vc is the volume fraction of cord. For the isotropic rubber, with equal 

extensional strains in the two directions x” and y”, the stresses must be equal: 

 

" " 0.5σε ε ε= = =x y E
 

2 6σ ε ε= =r rE G  (3.101) 
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Since Er=3Gr.  

 

Also τ =Grγ., then the strain energy becomes: 

 

( ) 12 2 2
c c

1 1 1 1.6 .6 .6 1 v v
2 2 2 2r r r cV G G G E cε ε γ − = + + − + 

 
ε (3.102) 

 

Since cord is in uniaxial tension, where σc+ c cE ε . Substituting 

Equation (3.98) for ε and Equation (3.99) for 
2
γ . The Equation 3.102 

becomes 

 

( ) ( ) ( )

( ) ( ){ }
( )

2 22 2 4 2 2

1 2
c c

22 2

1 tan 2 1 tan 1 tan
12

42 1

1 tan

y y c c
r

c c

r y c

G
V E

G

ε α ε ε α ε α

ε

ε ε α

−

  − + − + +     = −  
 
+ − + 

 

v v+  

  (3.103) 

 

Defining a variable c

y

ελ
ε

= ,  equation (3.93) becomes 

 

( ) ( ) ( )

( ) ( ){ }
( )

2 22 4 2 2

1 2 2
c c

22 2

1 tan 2 1 tan 1 tan
12

42 1

2 1 1 tan

α λ α λ α

v vλ ε

λ α

−

   − + − + +       = −   
  + − +    

r

c y

r

G
V E

G

+  

 (3.104) 
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For a given strain εy, the strain energy V must be minimized with respect 

to the variable λ, which represents the amount of cord extension associated with a 

given level of strain εy. Set 0V
λ

∂
=

∂
. 

 

( ) ( ){ }
( )( ){ }

( )

24 2

1
c c22

3 2 1 tan 2 1 tan2 1 v 2 v 0
2 2 1 1 tan

r

c
y

r

GV E
G

α λ α
λ

ε λ λ α

−

 − +   ∂
= −     ∂    − − +

 

+ =  

  (3.105) 

 

Solving for λ, 

 

( ) ( ) ( )

( ) ( )

2 12 4
c

2 12
r c c

2 1 tan 6 1 tan 1 v

8G 1 tan 1 v 2v

r r

c

G G

E

α α
λ

α

−

−

 + − − −  =
 + − +  

  (3.106) 

 

or 

 

( )( )( )

( ) ( )

12 2
c

2 12 c
c

tan 1 2 tan 1 1 v
v2 tan 1 1 v
2

cE
G

α α
λ

α

−

−

+ − −
=

 + − +  
 

.   (3.107) 

 

The quantity 

 

( )c cv 1 v
2

c

r

E
G

φ
−

=     (3.108) 

 

is a stiffening parameter indicating the degree of stiffening imposed by the cord 

structure. Using Equation 3.108, λ becomes 
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( )( )
( )

2 2

22

tan 1 2 tan 1

2 tan 1

α α
λ

α φ

+ −
=

+ +
     (3.109) 

 

 Equation 3.105 gives a minimum for V
λ

∂
∂

. Having the value of λ available 

allows Poisson’s ratio to be calculated since from Equation (3.95), for a given εy, 

 

( ){ }2 21 tan tanx yε λ α α= + − ε  

( ) ( )

( )( )

2 2 2

2

1 tan tan tan 1 tan

1 tan 1 1

x
xy

y

2εν λ α α α λ α
ε

α λ

= − = − + + = − +

= + − −

  (3.110) 

 

Also, the strain energy function V becomes from Equation (3.104) 

 

( ), ,α λ ε= yV V  

,y y
y

V E ε
ε

∂
=

∂
 

and  
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2 22 4 2 2
1 2

c c22 2
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or 

 
( ) ( ) ( ) ( ){ }
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2 22 4 2 2

c 2

22 2

3 1 tan 2 1 tan 1 tan1 v 2 .
12 1 1 tan
2
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r
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G

α λ α λ α
λ φ

λ α

 − − + + −
= + 

 + − +  

 

   (3.111) 
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 This may also written as 

 

( ) ( ) ( )
( )

2 2 2
c 2 .

2 4

1 1 2 tan1 v
4 2

1 2 tan
y

r

E
G

φ
λ λ λ λ α

λ
λ λ α

 + + − + −−  = +
 + − + 

 

 (3.112) 

 

When the same element considered in shear, there is no angle change 

which will give pure shear without cord extension. The Mohr’s circle for pure 

shear is centered on the origin as shown in Figures 3.7 and 3.8.  

 

 

 
Figure 3.7 Pure Shear Configuration 
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Figure 3.8 Mohr’s Circle  

 

 

The cord strains are  

 

  
1

sin 2
2c
γε α=  

        (3.113) 

  
2

sin 2
2c
γε α= −  

 

The strain energy stored is 

 

( ) ( )

( )

1 12 2
c c c

2
12 2

c c

1 1 11 v v 1 v v
2 2 2

1 11 v v sin 2 .
2 2 4

c
1
2

γ τ σ ε γ

γγ α

− −

−

= − + = − +

 
= − +  

 

xy xy c c r c c

r c

V G

G E

εE
 

( )
2

1 2 2
c

1 11 v sin 2
2 2 2

γγ φ α−  
= − + 

 
rV G   (3.114) 
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  xy
V G γ
γ

∂
=

∂
 

 

( ) 1 2
c1 v 1 sin 2

2
φ .α−  = − +  

xy rG G  (3.115) 

 

 

For the case where cords are not pre-stressed by some loading mechanism 

other than shear, the presence of shear stresses causes one set of cords go into 

compression while the other set goes into tension. In the extreme case, where a 

textile cord buckles completely under compressive loads, the contribution of the 

buckled cord to strain energy is zero. This reduces the cord contribution to the 

shear modulus by a factor of two, so that 

 

( )
2

1 2
c1 v 1 sin 2 .

4
φ α−  

= − + 
 

xy rG G  (3.116) 

 

This may be considered as a lower bound on shear modulus in a bias 

construction. 

 

Alternatively, to combine the properties of individual plies in to bias 

configuration, compliance or stiffness matrix combination method can be used. 

Longitudinal and transverse properties of the ply are again calculated by Halpin-

Tsai rule.  

 

Let subscripts L and T denote the longitudinal and the transverse 

properties of a single ply respectively. The compliance matrix in the fiber 

coordinate system can be written as : 
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0

1 0 0 0

1 0 0 0

1 0 0 0

10 0 0 0 0

10 0 0 0 0

10 0 0 0 0

LT LT

L L L

LT TT

L T T

LT TT

L T T

LT

LT

TT

E E E

E E E

E E E
S

G

G

G

ν ν

ν ν

ν ν

 − − 
 
 
− − 

 
 
− − 

 =
 
 
 
 
 
 
 
 


(3.117) 

   

0

in
os

 

For a given cord angle θ, transformation matrix can be written as  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( )

2 2

2 2

2 2

cos sin 0 2cos sin 0 0

sin cos 0 2cos sin 0 0
0 0 1 0 0

cos sin cos sin 0 cos sin 0 0
0 0 0 0 cos s
0 0 0 0 sin c

θ θ θ θ

θ θ θ θ

θ θ θ θ θ θ
θ θ
θ θ

 
 
 −
 
 =
 − − 
 
 − 

T

     

   (3.118) 

Because engineering shear strain is two times the tensor shear strain, 

, a Γ matrix is defined as below to convert tensor shear strains 

to engineering shear strains : 

ij ij(i j) 2 (i j)γ ε≠ = ≠

 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 
 
 
 

Γ =  
 
 
 
 

  (3.119) 
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Transformation matrix T can be written for positive and negative θ as T1

1T

2T

S

 and T2. 

S can be written for each ply as 

 
1 1

1 1 0S T S− −= Γ Γ   (3.120) 
 

1 1
2 2 0S T S− −= Γ Γ  (3.121) 

 

For a lower bound estimation of elastic properties, the compliances are combined.  

( )1 20.5totS S= +  (3.122a) 
 

Or, for an upper bound estimation of compliances, stiffness matrix can be 

combined  

( ) 11 1
1 20.5totS S S

−
− − = +    (3.122b) 

 

Elastic properties can be calculated from the compliance as 

0,0

1
1

tot

E
S

=   (3.123) 

1,1

2
1

tot

E
S

=   (3.124) 

2,2

3
1

tot

E
S

=   (3.125) 

( )
0,0

0,1
12

tot

tot

S

S
ν

−
=   (3.125) 

( )
0,0

0,2
13

tot

tot

S

S
ν

−
=   (3.126) 

( )
1,1

1,2
23

tot

tot

S

S
ν

−
=   (3.127) 
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3,3

12
1

tot

G
S

=   (3.128) 

4,4

13
1

tot

G
S

=   (3.129) 

5,5

23
1

tot

G
S

=   (3.130) 

 

3.6 Constitutive Law

1

s for Elastomer 
 

Rubber elasticity can be addressed through two different approaches. The 

first one is based on statistical models using molecular and structural 

considerations. Rubber is described as a network of flexible molecular chains that 

can deform and change conformation when subjected to a stress. The second 

approach makes no reference to molecular structure and assumes that the material 

is characterized by a purely mechanical constitutive relation. It is referred to as 

the continuum theory of rubber elasticity. The continuum theory includes several 

models; all are based on the strain energy density function W. Two categories of 

models can be distinguished. In the first category, W is written as a polynomial 

function of the principal strain invariants I1, I2 and I3 defined by:  

 
2 2 2

1 1 2 3
2 2 2 2 2 2

2 1 2 2 3 3
2 2 2

3 1 2 3

I

I

I

λ λ λ

λ λ λ λ λ λ

λ λ λ

= + +

= + +

=

  (3.131) 

 

where, λ1, λ2, λ3 are the three principal extension ratios along the three mutually 

perpendicular axes of strain for a pure homogenous strain. The extension ratio is 

defined as the ratio of the deformed length to the undeformed length. 

 

In the second category, W is assumed to be a separable function of the 

extension ratios λ1, λ2 and λ3. For both categories, the strain tensor is the 
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Lagrangian strain tensor ε and σ the stress tensor conjugate to this strain is the 

second Piola-Kirchhoff stress tensor. It relates to W as follows: 

 

Wσ
ε

∂
=

∂
 (3.132) 

 

And the constitutive relation tensor D is 

 
2

2
WD σ

ε ε
∂ ∂

= =
∂ ∂

 (3.133) 

 

For isotropic materials, the strain energy density function is a symmetrical 

function of I1, I2 and I3. Rivlin showed that all possible forms of W could be 

represented in terms of these three invariants. If the material is incompressible, 

I3=1, and W is a function of only I1 and I2. 

 

Oden proposed the following form of W: 

 

i j
ij 1 2

i 0 j 0
W C (I 3) (I 3)

∞ ∞

= =
= −∑∑ −   (3.134) 

 

where, Cij are material constants. 

 

Originally, Mooney proposed the particular form of Equation 3.60 with 

only linear terms in I1 and I2, which is often named as Mooney-Rivlin equation. 

Two terms Mooney-Rivlin equation is: 

 

10 1 01 2W C (I 3) C (I 3)= − + −  (3.135) 
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Gadala proposed a modified generalized Mooney-Rivlin model for 

compressible materials as 
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−i j
ij 1 2

i 0 j 0
W C (I 3) (I 3)

∞ ∞

= =

′ ′= −∑∑  (3.136) 

 

where I′1 and I′2 are m

)

odified invariants defined as: 

 

1 1 3

2 2 3

I I (I 1)
I I 2(I 1
′ = − −
′ = − −

 (3.137) 

 

Another proposed model depending on first and the third invariants: 

 

a / 2
1 3

1 2W (I 3) (I 1)
2 a

2a   and   is a material constant
1 2

µ

υ µ
υ

− = − + −  

=
−

 (3.138) 

 

Ogden expressed the strain energy density function as: 

 

j
3 m

bj
i

ji 1 j 1

c
W (

b
λ

= =
= −∑∑ 1)  (3.139) 

 

where bj and cj are material coefficients and m is adjusted for desired accuracy of 

the model. 

 

Yeoh proposed a model, which uses only the first invariant: 

 
2 3

10 1 20 1 30 1W C (I 3) C (I 3) C (I 3)= − + − + −  (3.140) 



 

 

 

CHAPTER 4 

TIRE FINITE ELEMENT MODEL 

 

 

In this chapter, development stages of tire finite element model are given. 

Parts of the tire, modeling details of cord reinforced rubber, and settings of 

MARC program parameters are explained in detail. 

 

Material properties for steel and textile reinforced rubber are analytically 

derived. Different approaches are used for derivations, and calculated material 

constants are compared with an FEA model. Classical continuum elements are 

compared with layered continuum elements and rebar elements. Selected material 

model is implemented to the tire finite element model. 

 

Tire sections are modeled in different ways for comparison. Marc 

program parameters are iterated for improving performance, convergence 

characteristics and solution time. Element size and solution increments are 

optimized for faster and stable solution.  

 

4.1 Tire Geometry and Properties 
 

A 155 R 13 78 S radial passenger car tire is modeled to verify proposed 

material and finite element modeling techniques. The tire is the one used by 

Tönük, 1998. Tönük performed tests on the physical tire and compared the results 

with finite element model. Tönük and Ünlüsoy (2001) published cornering force 

characteristics obtained with finite element model and compared with the 

experimental results. To compare the results of this study with the experiments 
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and compare the performance of the finite element tire model, the same tire is 

selected with previously published geometry and material properties by the 

authors. 

 

Figure 4.1 shows the simplified tire geometry. The red block represents 

the body ply, which is a rubber matrix reinforced with textile cords. Yellow and 

cyan blocks represent the steel plies. Reinforcements in steel plies are in 20 and -

20 degrees with the circumferential direction. Orientation and placement of the 

steel and textile reinforcements are shown in Figures 4.2 and 4.3. 

 

 

 

Figure 4.1 Simplified Tire Structure for Finite Element Model 
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Figure 4.2 Orientations and Placement of Reinforcements 

 

The reinforcements shown in Figure 4.2 are embedded in the layers 

shown in Figure 4.1 with same colors. 

 

 
Figure 4.3 Placements of Reinforcements 

 

For rubber, two different sets of material properties are used in the study 

for comparison. Linear elastic properties are used for initial model setup and 

program parameter adjustments. Mooney-Rivlin material properties used for the 

cornering characteristics studies. Tables 4.1 and 4.2 (Tönük, 1998) give Mooney-

Rivlin material model constants and linear elastic material properties for rubber 

 92



respectively. Different material properties are used for different parts of the tire 

model. Figure 4.4 shows the nomenclature for the tire parts. 

 

 
Figure 4.4 Material Classifications for Tire Sections. 

 

Table 4.1 Mooney-Rivlin Material Constants of Rubber (Tönük 1998) 

Tire Section C10 C01 

Bead Filler 14.14 MPa 21.26 MPa

Sidewall 171.8 kPa 830.3 kPa

Tread 806.1 kPa 1.805 MPa
 

For tread plies and body ply, orthotropic linear material properties are 

used for some of the models. For the model uses three dimensional truss elements 

for textile cords, body ply matrix is modeled with Mooney Rivlin model. 
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Table 4.2 Linear Elastic Material Properties of Rubber (Tönük 1998) 

Tire Section E [Mpa] MPa Density 

Bead Filler 16.15 0.45 1250 

Sidewall 3.74 0.45 1250 

Body Ply 3.74 0.45 1250 

Tread Plies 3.25 0.45 1250 

Tread 4.56 0.45 1250 

[kg/m3] 

 

Material and geometric properties of reinforcing materials are given in 

Table 4.3 (Tönük 1998). Ply angles are given relative to circumferential 

direction. 

 

Table 4.3 Properties of Reinforcing Materials (Tönük, 1998) 

Properties Steel Cords Textile  

E (Tension) 200 GPa 3.97 GPa 

E (Compression) 100 GPa 198.5 MPa 

ν 0.3 0.3 

Area of Fiber 0.126 mm2 0.126 mm2 

Distance btw Fibers 0.33 mm 1.05 mm 

Ply Angle ±20 Deg 90 Deg 

Ply Thickness 2 mm 2 mm 
 

4.2 Cord-Rubber Material Properties  
 

Different authors (Tsai, Pelc, Olatunbosun, Chamis, Hashin and Clark) 

published methods to model cord-rubber composite structures. Pelc (2000) and 

Olatunbosun (1997) used their derivations in the tire finite element models and 

obtained successful results. Ghoreishy (2001) used derivations of Clark (1983). 
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These four different approaches use Tsai Rule of Mixture for elastic 

constants in reinforcement direction. Authors presented slightly different 

formulations for elastic modulus in other directions, Poisson’s ratios and shear 

modulus. 

 

Using the material and geometric properties given in Tables 4.2 and 4.3, 

ply properties for 0 degree reinforcements are calculated.  

 

Unidirectional laminae properties are used to calculate oriented laminate 

properties. Both stiffness matrix combination and compliance matrix combination 

methods are applied to 0 degree orthotropic properties to obtain mixed properties 

for different angles. Unidirectional laminae and ±20 degrees oriented laminate, 

with the coordinate system used in calculations, are shown in Figure 4.5. 

 

 
Figure 4.5 Unidirectional Laminae and ±20 Degrees Oriented Laminate 
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For a better understanding of effect of ply angles, a set of “virtual test 

specimens” are prepared. Performance of classical continuum and layered 

continuum elements are tested. 

 

For the first model, classical laminate theory is used to combine the 

material properties of plies and resultant orthotropic material constants are 

assigned to the classical continuum elements. For the second model, the 

calculated cord-rubber mixture properties for zero degree orientation are assigned 

to each layer and layers are then oriented by setting layered continuum element’s 

properties. In other words, the software automatically calculated combined 

properties. All specimens gave close results. 

 

4.3 History of the Tire Finite Element Model 
 

After the cord-rubber composite modeling is decided, a finite element 

model is prepared by LS-DYNA. Figure 4.6 shows the cross section of the tire 

finite element model. 

 

 
Figure 4.6 Cross Section of Tire Finite Element Model 
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This cross section is revolved around the center of the tire. 5 Degrees 

increment is used to obtain proper aspect ratio for extra body ply elements, which 

are relatively thin. This set of elements are added to the model for parameter 

study, such as effect of extra tread ply or body ply on tire stiffness. Figure 4.7 

shows three dimensional tire finite element model. Some of the elements are 

removed for better display. For body ply and tread plies, layered continuum 

elements are used. Unidirectional material properties are assigned to the layered 

elements, and “Real Constants” for the elements are set to obtain cord 

orientation.  

 

 
Figure 4.7 Tire Finite Element Model with Layered Continuum Elements 

 

Another model, with the same geometry is created to compare the layered 

continuum elements and layered shell elements. Material properties are 

calculated for layered continuum and shell elements.  
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For shell representation of body ply and tread plies, the layered 

continuum elements of the previous model are converted to regular continuum 

elements with rubber material properties.  

 

For rubber parts of the both models, linear elastic material properties are 

used.  Figure 4.8 shows the finite element model with layered shell elements. 

 

 
Figure 4.8 Tire Finite Element Model with Layered Shell Elements  

 

Shell elements have 6 degrees of freedom, and continuum elements have 

3 degrees of freedom at each node. Elements having different number of degrees 

of freedom at the nodes are inconsistent. When they are used together, the nodal 

forces corresponding to displacement degrees of freedom are transmitted to the 

continuum elements. However, the nodal moments corresponding to the 

rotational degrees of freedom are not transmitted to the continuum elements. This 

causes higher stress outputs at the nodes, which different type of elements share.  

 

Tire is fixed in all degrees of freedom at the rim interface. 180 KPa 

pressure is applied to the tire inner surface. A flat rigid plate is modeled, and 
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inflated tire is pressed on to it. The rigid plate is given a total of 30 mm 

translation and reactions at the corners are collected. Figures 4.11 and 4.12 shows 

deflected tire (the model with layered shell elements). 

 

 
Figure 4.9 30 mm Deflected Tire 

 

 
Figure 4.10 Front View of the 30 mm Deflected Tire 

 
Figure 4.11 shows the total vertical reaction force versus plate vertical 

translation characteristics of the finite element model. Results of layered shell 

model are slightly higher than the continuum element model. As the deflection 
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increases, the difference also increases due to higher bending stiffness of the shell 

elements. 
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Figure 4.11 Deflection Vertical Force Characteristics of the Tire on a Flat 

Surface Obtained with Explicit Solver 

 

Vertical stiffness of the tire is used as a benchmark for the tire finite 

element models for most of the studies mentioned in Chapter 2. Some of the 

authors in the literature performed only inflation and vertical stiffness analysis. 

Figure 4.12 shows change of vertical stiffness with changing deflection. It is 

observed that the vertical stiffness of the tire is affected by the use of shell 

elements. 
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Figure 4.12 Change of Vertical Stiffness with Changing Vertical Deflection 
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This model is used for verification of material properties and element 

selection. Also, comparison of performance of layered shell elements and layered 

continuum elements. From the results, it can be observed that, shell elements 

result in stiffer models. The model with layered continuum elements is solved in 

3 hours on a Pentium III 800 MHz Processor, 256 MB of Ram equipped machine. 

On the other hand, the model with layered shell elements is solved on the same 

machine in 11 hours. This is due to more degrees of freedom of the shell 

elements, and using the shell elements with combination of continuum elements. 

 

4.4 Tire Finite Element Model for Cornering Analysis 
 

To study complete tire cornering force characteristics, MARC is used to 

build a new model. The same tire, 155 R 13 78 S with material properties given 

in Tables 4.1, 4.2 and 4.3 is modeled. Tire cross section is prepared with a 

previously prepared tire preprocessor, Korkmaz 2000.  

 

4.4.1 Material Properties for Cornering Analysis Model 
 

As stated earlier, two different sets of material properties are used for 

rubber. Elements are grouped into sets as Body Ply, Tread Plies, Tread, Sidewall 

and Bead Filler. For the first model, linear elastic properties are used for all parts 

of the tire. Material properties given in Table 4.2 with the corresponding names 

are given to the element sets. For the second model, Mooney Rivlin material 

properties are used with the constants given in Table 4. Figure 4.13 shows the 

element sets with different material properties. 
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Figure 4.13 Classifications of Elements on 10 Degrees Tire Sector 

 

Details and formulations about the element types chosen are given later in 

this chapter. 

 

4.4.2 Cord Rubber Modeling For Cornering Analysis Model 
 

For tread plies, unidirectional elastic properties of steel-rubber structure 

are calculated as explained in Section 4.2. Two different element types are 

examined for the initial studies. For the first model, layered continuum composite 

elements are used. Zero degree steel-rubber mixture properties are set to each 

layer, and layer orientations are set to 20 and -20 degrees. 

 

For the second model, reduced integration classical continuum elements 

are used. Material properties which combine +20 and -20 degrees oriented steel 

cords are assigned to the elements. 

 

Layered continuum elements have four integration points for each layer, 

and require longer solution time than the classical continuum elements. 
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Performances of both element types are compared for solution time point of view 

and results. 

 

For Body Ply elements, which the rubber is reinforced with textile, 

classical continuum elements are used for both of the models. 

 

4.4.3 Orientation of Element Coordinate Systems 
 

Orthotropic material properties for cord reinforced rubber parts, for Tread 

Plies and Body Ply, are defined relative to global coordinate system. Material 

constants are given relative to global X, Y and the Z axes. Each element’s edges 

make certain angles with the global axes. A user subroutine is developed to orient 

material properties for each element’s own coordinate system and set correct 

orientation for elements. 

 

First, elements of the tire cross section are grouped into subsets, 

depending on their angles with the vertical axis, and given a name. Then, using 

each element’s integration point’s coordinate, element’s orientation is calculated 

and orientation of the coordinate system is set. In Figure 4.14, orientation of the 

global coordinate system, and orientations of some of the body ply elements are 

shown. Figure 4.15 shows coordinate system for some of the tread plies elements. 

The planar sections shown in Figures 4.14 and 4.15 are cross sections taken at the 

elements center. Coordinate system icons are shown for some of the elements for 

better understanding and clarity of the picture. 

 

As the number of elements with oriented coordinate system increases, 

solution time increases considerably.  
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Figure 4.14 Orientation of Coordinate System For Some of the Body Ply 

Elements. 

 

 
Figure 4.15 Orientation of Coordinate System for Some of the Tread Plies 

Elements. 

4.4.4 Tire Rim Assembly and the Drum 
 

Two different tire models are prepared using different mesh densities. For 

the fine meshed one, half of the tire is divided into 5 degrees increment sectors, 

the other half is divided in to 10 degrees increment sectors. For a coarser model, 
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30 degrees increment, the portion first comes into contact with the drum, is 

divided in to 5 degrees sectors, the rest of the tire is divided in to 10 degrees 

sectors. The fine meshed model has 6590 nodes and 4536 elements. The coarse 

meshed model has 5126 nodes and 3526 elements. 

 

The rim, which the tire is mounted, is modeled as a rigid body. A rigid 

body in Marc is an analytical entity and is not included in the solution like 

deformable elements. When a rigid body is represented as an analytical surface, 

the normal is recalculated at every iteration based upon the current position. This 

leads to a more accurate solution. 

 

Tire is mounted on the rim as seen in Figure 4.16. Glue option, which 

glues the bodies in contact up to a specified separation force, is used for the 

contact of tire and the rim. Bead bundle in the tire structure is removed and not 

modeled. When the bead element is glued to the rigid rim, it cannot expand as the 

tire inflates, and this compensates neglecting of the bead bundle.  

 

 
Figure 4.16 Tire Mounted on the Rigid Rim 
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Displacement of the tire is fixed at the bead area by gluing to the rigid 

rim. Motion of the rim is controlled by two nodes at the rotation center. One of 

the nodes controls the translational degrees of freedom; the other is to control the 

rotational degrees of freedom. 

 

For the first studies, the control node of the rim is fixed in two horizontal 

degrees of freedom, and set free in vertical motion. The vertical load, which is a 

parameter of the cornering force study, is applied to this node. In this way, the 

tire-rim assembly is pressed on to the drum. Small fluctuations on the vertical 

loads due to tire rotation changed the vertical position of the tire. This also 

increased solution time due to more difficult convergence of the contact problem. 

This method is changed, and tire center is fixed in all degrees of translational 

freedom. The drum is given an initial displacement, and vertical force is adjusted 

by adjusting the vertical deflection of the tire. 

 

For the initial studies, slip angle is adjusted by rotating the tire in vertical 

axes. Later, instead of rotating the tire mesh, the drum is rotated to obtain desired 

slip angle. 

 

The drum is also modeled as a rigid body as the rim is modeled. After the 

tire is inflated to the rated pressure, drum is pressed on to the tire. When getting 

the desired vertical deflection, drum starts to rotate. The friction force between 

the drum and the tire rotates the tire-rim system. 

 

Figure 4.17 shows the fine meshed tire mounted on to the rim, with 

boundary conditions of the rim control nodes. The single arrows represent the 

translational degrees of freedom and double arrows represent the rotational 

degrees of freedom. There are two nodes at the center, since they are at the same 

location; they look like a single node in the figure. The translational degrees of 
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freedom arrows are on one of the nodes, and rotational degrees of freedom arrows 

are on the other node. 

 

During the inflation and drum vertical movement load cases, all rotational 

degrees of freedom at the rim center are fixed. Rotation about the tire axis is set 

free after the pressing of drum is completed. 

 

In Figure 4.18, fine meshed and coarse meshed tires are shown. The fine 

meshed tire gives smoother numerical results while the results of coarse meshed 

tire fluctuate. Comparison between different mesh densities are given in the next 

chapter. Tire rim and drum system is shown in Figure 4.19. 

 

 

 
Figure 4.17 Boundary Conditions Applied to Tire Center 
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Figure 4.18 Coarse and Fine Meshed Tire Models 

 

 

 
Figure 4.19 Tire-Rim Assembly And The Drum. 
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4.4.5 Friction Models and Parameters for Cornering Analysis 
 

Coulomb and Stick-Slip friction models are both examined to model 

friction between the tire and the drum. Although the Stick-Slip friction model 

simulates the real behavior of the tire rotating on the drum, almost no difference 

is observed when compared with the results of Coulomb friction model. Tönük 

(1998) stated that, the changes in the results between two friction models are 

minor. Stick Slip friction model increased the solution time and for the study, 

Coulomb friction model is used. Marc offers a special option using Coulomb 

model, Coulomb for Rolling, for rolling bodies in contact with rigid surfaces, is 

selected as the friction model option. 

 

Coulomb model is defined as (MARC, 2000 A) 

 

fr n tσ µσ≤ − ⋅         (4.1) 

 

where  

 

σn is the normal stress 

σfr is the tangential (friction) stress 

µ is the friction coefficient 

t is the unit tangential vector in the direction of the relative velocity 

 

t is defined as 

 

r

r

vt
v

=         (4.2) 

 

vr is the relative sliding velocity and given to the program as input. 
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For a given normal stress, the friction stress has a step function behavior 

based on the value of relative sliding velocity. To avoid the numerical difficulties 

based on the discontinuity of σfr, MARC uses the modified Coulomb friction 

model which is defined as: 

 

r
fr n

v2 arctan t
C

σ µσ
π

 ≤ − ⋅ 
 

      (4.3) 

 

C is the value of the relative velocity when sliding occurs. A large value 

of C results in a reduced value of the effective friction. A small value of C results 

in convergence problems. Figure 4.20 shows the effect of C graphically. 

 

 

 
Figure 4.20 Effect of Relative Sliding Velocity Parameter on Stick Slip 

Approximation (Marc 2000a) 

 

Different values are selected for relative sliding velocity, and 0.01 is used 

with success.  
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4.5 Summary of Tire Models in Literature and a New Approach 
 

The tire finite element models in literature are summarized in Chapter 2. 

For rubber parts of the tire, most authors used continuum elements. For tread 

plies and body plies different approaches are used. The tire models are 

constructed depending on the aim of the study. Authors who studied stress 

distribution on the tire geometry used different techniques than the authors who 

studied tire cornering force characteristics or tire ride comfort characteristics.  

 

Comparison of layered continuum elements and classical continuum 

elements from solution time point of view is given in the next chapter. 

 

For cornering force studies, authors either used rebar elements, or layered 

shell elements for breaker plies. For body plies, rebar elements, layered shell and 

layered membrane elements are used.  

 

Tire is an axisymmetric structure. For element with direction dependent 

material properties, it is necessary to set material properties for each individual 

element. Figures 4.14 and 4.15 show coordinate system for some selected 

elements.  

 

Using rebar elements for breaker plies, which do not have bending 

capability, neglects the bending stiffness of steel cords. With shell elements or 

continuum elements with orthotropic material properties it is possible to 

introduce bending stiffness for the steel cords. Rebar, shell and continuum 

elements are used to model steel reinforced rubber for different studies as given 

in Chapter 2. 

 

For body plies, textile reinforcement does not carry compression and 

bending. Rebar elements, if elastic modulus can be set different for tension and 

compression, models the behavior of textile cords as it is in reality. Shell 
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elements, which have additional rotational degrees of freedom, introduce slight 

and acceptable error, because the orthotropic material properties reduce bending 

stiffness of the element to a value close to rubber. Material exhibits mixture 

properties for tension and rubber like properties for bending. All alternative 

approaches used by different researchers give results with reasonable accuracy. 

 

As the tire rotates, element’s orientation changes, and should be updated 

for directions of the reinforcements. This introduces additional computational 

time for solution. For the increment that will be solved, the deformation of the 

element is not known. Positions and orientations of the elements are considered 

same with the previous solved increment. Besides the elements deformation, the 

rigid body motion of the rotating elements also introduces an error. At each 

increment, this error increases. As the deformation increases with increasing load 

or slip angle, the error accumulation also increases and causes instability for the 

model. Tönük and Ünlüsoy (2001) concluded for rebar elements that, for larger 

slip angles, amount of error dominates the model results before the steady state 

cornering value is reached. Rao et al (2003) stated that, their model with rebar 

elements has convergence problems at higher slip angles.  

 

Membrane elements, which are reduced forms of shell elements, do not 

carry bending; they have only translational degrees of freedom at their nodes. 

Orthotropic material properties can be assigned to the element to obtain 

directional material properties. Again, elements coordinate system should be 

oriented. Membrane elements are very unstable in nature (Marc 2000B). 

Membrane elements have no hourglass control. Koishi et al. (1998) tested the 

performance of membrane and shell elements. They conclude that, shell elements 

cause numerical instability as the tire rotates. 

 

Shell or layered shell elements are widely used by researchers. Using 

layered elements avoids calculating combined properties of plies each have 
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different directions for tread plies. On the other hand, layered elements introduce 

additional computational time. Shell elements have six degrees of freedom and 

using with continuum elements which have three degrees of freedom either 

increases solution time or causes some error. Again, for shells, orientation of each 

element should be set and updated as the tire rotates and deforms. 

 

In view of the above detailed considerations, to be able to reduce the 

computational effort considerably while avoiding error accumulation at the same 

time, a new modeling strategy is developed and proposed. For body plies, there is 

only one reinforcement in radial direction. Thus, instead of orienting the 

element’s coordinate system, an element, which acts like a textile fiber carrying 

tension without bending stiffness, can reduce the solution time considerably and 

decrease error accumulation. Although the error accumulation is not a problem 

for the model with all continuum elements, decreasing solution time gives 

flexibility to analyze tire cornering force characteristic for a wide range of slip 

angle to vertical force combinations. For this purpose, three dimensional truss 

elements are introduced to the model. The selected element has two nodes and 

three translational degrees of freedom per node. The element has large strain and 

large displacement capabilities and has no bending stiffness. It can be used in 

conjunction with continuum elements. Because the element is placed between 

two nodes and act in the direction as it is created or rotated, no orientation of 

coordinate system for each solution increment is necessary. This reduces the 

computational time drastically, and avoids error accumulation which results 

instability of solution. 

 

Figure 4.21 shows a rubber block reinforced with textile cords. When this 

block is modeled with a four-node element, rebar, shell or membrane and truss 

reinforced representations looks as it is in the figure. 
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Using the new approach, a new tire model is constructed. The body ply, 

which is previously modeled with orthotropic linear elastic material properties, is 

converted to incompressible, Mooney-Rivlin formulation material model. Cords 

are placed into inner surface of the element. To control the performance and 

solution time, coarse meshed with 10 degrees increment per sector, and a fine 

meshed with 5 degrees increment per sector model is prepared. Figure 4.22 

shows the reinforcements for the fine mesh. Figure 4.23 shows the partial view of 

the fine mesh. Coarse mesh model is given in Figure 4.24. Fine mesh model 

includes 8496 elements and 8784 nodes. Coarse mesh model includes 4248 

elements and 4392 nodes. 
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Figure 4.21 Textile Reinforced Rubber Block and Rebar, Shell/Membrane, Truss 

Representations. 
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Figure 4.22 Truss Elements used for Textile Cords in Fine Mesh Model 

 

 
Figure 4.23 Partial View of Fine Mesh Model 
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Figure 4.24 Partial View of Coarse Mesh Model 

 

Coarse mesh model is solved for different vertical load and slip angle 

combinations. The same load cases are also solved with fine meshed model. 

Solution time for half rotation of the tire dropped to 3 hours for coarse meshed 

model on a P4 2.6 GHz processor, 1GB Ram personal computer. For fine meshed 

model, on the same computer, half rotation is solved in 12 hours. This time is less 

than the solution time of coarse meshed continuum model which is 14 hours. 

 

Textile, by nature, does not carry compression. MARC does not have an 

option to specify different elastic modulus for tension and compression. The only 

way is using a subroutine to control the stress state of the elements after each 

solution increment and changing material elastic constant accordingly. But, the 

same problem as explained before is faced in this situation. Element’s status can 

be obtained for the last solved increment and new properties for the next 

increment can be given accordingly. The first increment which textile goes in to 
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compression cannot use elastic modulus which is chosen for compression case 

because the increment used to decide on material properties of that particular 

elements experience tension in the previous increment. As the tire inflates, textile 

goes into tension and for moderate loads even at road contact, remains in tension. 

Stress state of textile elements is closely observed during solution and neglecting 

the bilinear behavior of textile is examined.  

 

4.6 Summary of Element Types Selected For Tire Model 
 

Mainly two different tire models are prepared as stated earlier. One of the 

models uses linear elastic material law for both rubber and cord reinforced rubber 

parts of the tire. The other model uses Mooney Rivlin material model for rubber 

parts and linear elastic material model for cord reinforced parts. 

 

For linear elastic model, 8-noded isoparametric hexahedral elements are 

used. The selected element type uses reduced integration. The stiffness of the 

element is calculated using a single integration point located at the centroid of the 

element. For contact analysis, linear elements are preferred over higher order 

elements by all the authors in the literature. Instead of using higher order 

elements, linear elements with higher mesh density gives more accurate results 

and solution converges faster. The selected element type has hourglass control, 

avoiding numerical instability which is normally associated with reduced 

integration elements. 

 

For Tread Plies, 8-noded isoparametric composite brick elements are used 

as well as 8-noded isoparametric hexahedral elements. Composite brick elements 

use four integration points for each layer. This increases solution time. Figure 

4.25 shows the layer representation of a composite brick element. The main 

advantage of the composite element is assigning the unidirectional properties and 
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simply adjusting number of layers and layer orientations. This avoids calculating 

combined properties of layers for a single element. 

 

 
Figure 4.25 Layer Orientations for Composite Continuum Element 

 

For the model, which uses Mooney-Rivlin material formulation to 

simulate nonlinear incompressible rubber behavior, 8-noded, incompressible, 

reduced integration brick elements with Herrmann formulation are used. This 

element has hourglass control too. The element can be used in conjunction with 

compressible elements in the same model with success. 

 

The truss elements are two node simple linear elements and can be used in 

conjunction with all element types. They have large displacement capability. 

These elements have no bending capability. 
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CHAPTER 5 

CORNERING FORCE CHARACTERISTICS WITH THE FINITE 

ELEMENT MODEL 

 

 

Different tire models are prepared for the cornering study as explained in 

Chapter 4. These models are analyzed to obtain the cornering force 

characteristics. Their performances are compared in different aspects by using the 

experimental results by Tönük and Ünlüsoy (2001).  

 

The first classification of the tire models depends on rubber material 

properties. Rubber is modeled with linear elastic material constants and Mooney-

Rivlin parameters. Material nonlinearity increased total solution time by around 

20 percent. After solution time is reduced with changing solution options such as 

applying displacement rather than force to load the tire and parameters, linear 

elastic model is completely left out and the cornering force characteristics 

presented in this chapter are obtained with Mooney Rivlin material formulation.  

 

The second classification depends on the mesh density. Both the fine and 

coarse mesh models provided stable and reliable solutions. Without any 

convergence problem, both of the models can run for high slip angles and vertical 

load combinations.  

 

The third classification can be done according to element types used for 

tread plies. Layered continuum elements and reduced integration continuum 

elements are used to model orthotropic behavior of the steel reinforced rubber. 

With reduced integration elements, solution time reduces considerably. After 
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some trials, the model with layered continuum elements is left out and reduced 

integration continuum elements are used. 

 

The tire is tested on a drum and finite element model is run on a 

cylindrical surface with same dimensions.  

 

Cornering force versus solution increment or rolled distance values 

plotted in this chapter, are not filtered, and not averaged. Also, solution increment 

is used as 1 in the plots. So, these plots give an idea about the performance and 

accuracy of each modeling technique, as well as effect of slip angle and vertical 

force on solution characteristics. 

 

5.1 Static Vertical Stiffness Analysis  
 

All tire models are first tested for static vertical stiffness. The rim is kept 

fixed and the drum is pressed on to the tire. Forces on the rim are measured from 

the node at the center.  

 

For the model with continuum elements, the force deflection 

characteristic is given in Figure 5.1. For cornering tire models, pressing operation 

is performed in 5 increments. Figure 5.1 shows vertical force versus rim 

displacement plot obtained experimentally by Tönük (1998) and tire - drum finite 

element model. 

 

 It is observed that the FEM results indicate a stiffening static tire 

behavior. This is probably due to the values of Mooney-Rivlin parameters used in 

the solution.  
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Figure 5.1 Vertical Force versus Rim Displacement on Drum 

 

The 30 mm deflected tire on drum is shown in Figure 5.2.  

 

 
Figure 5.2 30 mm Deflected Tire on Drum 

 

 122



5.2 Cornering Force Characteristics on Drum 
 

5.2.1 Model with continuum elements 
 
For cornering analysis, the coarse tire model with Mooney-Rivlin material 

formulation for rubber matrix is used. Body ply and tread plies are modeled with 

reduced integration continuum elements. 

 

The tire is inflated in 5 increments to 180kPa pressure. Then, the drum is 

pressed on to the inflated tire. For low speed cornering characteristics, quasi 

static approach is chosen for solution speed. Effect of solution increment per 

rotational position of the tire, convergence criteria, relative force tolerance are 

optimized by trial and error to obtain fastest possible solution without loosing 

accuracy and stability of the model. 

 

For 2, 4, 6, 8, 10 degrees slip angles and 2000, 3000, 4000 Newton 

vertical loads, the model is run. Without any problem, the model converged and 

half rotation of the tire is completed approximately in 11 hours on a P4 2.6 GHz 

processor, 1GB ram, 60 GB hard disk equipped computer. This time is around 17 

hours for the same configuration with a 512Mb ram machine. For 2 degrees and 4 

degrees slip angles, the tire is rotated 360 degrees to obtain a steady state 

cornering force value 
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Figure 5.3 Cornering Force versus Solution Increments for 2kN Vertical Load 

 

Figure 5.3 shows increase in cornering force as the tire rotates for 2kN 

vertical load and 2, 4, 6, and 8 degrees slip angles. 250 solution increments 

correspond to 180 degrees rotation of the tire. From the plots, it can be concluded 

that, as the slip angle increases for a certain vertical load, cornering force value 

saturates to a steady state value faster. For 2 degrees slip angle, the saturation 

takes almost one complete rotation of the tire. For 6 degrees and above, it is faster 

and takes only half tire rotation or less.  

 

The same tendency is observed in all vertical load slip angle combinations 

for buildup of cornering force with tire rotation. As the slip angle increases, the 

required rotation to reach a steady state value increases. 

 

Deflected shapes of the tire under 3000N vertical force and 0, 2, 4, 6, 8, 

10 degrees slip angles are shown in Figure 5.4.  
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Figure 5.4 Steady State Deflected Shapes of the Tire under 3000 N vertical Load 

and 0, 2, 4, 6, 8, 10 Degrees Slip Angles 
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Data from experiments of Tönük (1998) is given in Chapter 2. To 

compare the finite element model results with the experimental data, two sets are 

presented in Figure 5.6.  
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Figure 5.5 Cornering Force Characteristics, 180 kPa. (Red dashed lines are 

Experimental Data Published by Tönük, 1998) 

 

It is observed that the characteristics from the model tend to saturate 

earlier and more than the experimental curves particularly at higher slip angles. 

This is partly due to the fact that at higher slip angles, the normal force tends to 

drop below the nominal tire load set for the particular test. No control or 

compensation is attempted in these cases and the nominal tire load value initially 

intented is used in plotting. Thus the saturation characteristics are sharper in the 

carpet plot than those of the actual calculations using the model. 
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5.2.1.1 Effect of Traction on Cornering Characteristics 
 

To obtain tire rotation, as explained previously, drum is pushed on to the 

tire and given an angular velocity. Tire, which is mounted on to the rim, rotates 

with the traction transmitted by the drum. The node which controls the rim’s 

motion is fixed in all translational degrees of freedom. The other node which 

controls the rotational degrees of freedom of the rim, is fixed in two axes, and set 

free in rotation axis of the tire. This is a duplication of the tire test setup, where 

the tire is rotating with traction transmitted from the drum. 

 

To observe traction free cornering force characteristics, the finite element 

model is modified. For 3000N vertical force, the rim is assigned an angular 

velocity, which is calculated according to deflected radius of the tire. Model is 

run for 4, 6, 8 degrees slip angles. Results are given in Figure 5.6 
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Figure 5.6 Cornering Force versus Slip Angle, Comparison for Traction and Free 

Rolling, 3000 N 
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For free rolling, cornering force values are slightly higher than traction 

rolling. This is expected and due to decreasing portion of the road adhesion used 
for cornering when traction is applied to the tire. It should be noted that in the 
literature this effect has not received much attention. 
 
 

5.2.2 Model with Truss Elements 
 

5.2.2.1 Cornering Force Characteristics 
 

The model, which uses truss elements to model textile, run for 2,4,6,8 and 

10 degrees slip angles and 2000, 3000 and 4000 N vertical loads. With decreasing 

solution time, fine mesh is used to perform cornering analysis. Coarse model also 

used for comparisons Figure 5.8 shows vertical force versus displacement plot on 

drum for 180kPa inflation pressure. 
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Figure 5.7 Vertical Force Versus Displacement for 180 kPa Inflation Pressure 

 

 128



When the change of vertical force with solution increment or tire rotation 

is investigated, it is observed that, for given initial vertical displacement, as the 

slip angle increases the vertical force on the tire drops. Since the contact patch 

moves laterally, the initial rim displacement does not keep the vertical force 

constant. As a result of this, for higher slip angles, cornering force saturates a 

steady state value for a vertical force less than initially set. Change of vertical 

force is more significant for 6 degrees slip angle and up. Figure 5.8 shows change 

of vertical force as well as cornering force buildup for 2 and 6 degrees slip angles 

for comparison. 250 solution increments correspond to 180 degrees rotation of 

the tire. 
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Figure 5.8 Change of Vertical Force and Cornering Force for 2 and 6 Degrees 

Slip Angles . 

 

For high slip angles, the model underestimates cornering force 

characteristics more. Reducing vertical force is one of the sources of this effect. 
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Cornering force values are obtained for smaller vertical forces than set values and 

plotted on graphs for set values, not corrected for the reduced values. 

 

Figure 5.9 shows cornering force versus solution increment plot for 

3000N vertical load and 2, 4, 6, 8 and 10 degrees slip angles, obtained with fine 

meshed model. When compared with Figure 5.8, due to fine mesh oscillations of 

plots are reduced. 
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Figure 5.9 Cornering Force versus Solution Increments for 3kN Vertical Load 

and 2, 4, 6, 8 and 10 Degrees Slip Angles 

 

Figure 5.10 shows top and front views of coarse meshed tire during 

cornering for 4000N vertical load and 6 degrees slip angle. 
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Figure 5.10 Top and Front Views of Cornering Tire, 4000N, 6 Degrees 

 

Cornering force characteristics for 2000, 3000, and 4000 Newton vertical 

load and 2, 4, 6, 8 degrees slip angles and experimental results published by 

Tönük (1998) are given in Figure 5.11 together. In Figure 5.12, both 

experimental and calculated values are plotted for one of the characteristics (4000 

N tire load) . 

 

The model convergence is trouble free and half rotation of the tire is 

completed approximately in 4 hours on a P4 2.6 GHz processor, 1GB ram, 60 GB 

hard disk equipped computer.  
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Figure 5.11 Cornering Force Characteristic Obtained by Truss Model (Red 

dashed lines are Experimental Data Published by Tönük, 1998) 

 

A comparison of Figures 5.5 and 5.11 readily indicates that in the case of 

the model with truss elements, in spite of the extensive gains in computing time, 

practically identical results have been obtained. 

 

When buildup and saturation of cornering force plots are compared with 

Figures 2.4, Koishi et al (1998), 2.5, Kabe et al (2000), 2.16, Rao et al (2002), 

given in Chapter 2, it can be concluded that the calculations from the model in 

the present study are more stable. This indicates that the model is superior to 

previous models in literature with respect to accumulation of errors during 

calculations. It should be noted also that the plots given in these publications 

indicate stable results only up to a few degrees of slip angles and even at slip 

angles as low as 3 degrees, convergence is not guaranteed. 
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Figure 5.12 Change of Cornering Force with Slip Angle for 3000N Vertical Load 

and 180kPa Inflation Pressure, Finite Element and Experimental Data by Tönük, 

1998 

 

 

5.2.2.2 Stress State of Textile Belts During Cornering 
 

Because of limitations of MARC, bilinear material behavior of textile 

could not be modeled as explained in Chapter 4. To see the amount of error 

introduced, stress state of textile belts are examined for different vertical load and 

slip angle combinations. Stresses on textile belts for different conditions in vector 

form are given in Figures 5.13 through 5.17. Lengths and directions of vectors 

indicate whether  the element is in tension or compression and the magnitude of 

the stress. Arrows pointing out shows tension while arrows pointing to the 

elements shows compression. Truss elements carry load only in longitudinal 

direction and no bending capability, so the stresses are in the direction of the 
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elements. The stresses shown in the figures are also color coded, red for the 

larger and blue for smaller stresses.  

 

 
Figure5. 13 Stress Distribution on Textile For 180kPa Inflation Pressure 

 

 

 
Figure5. 14 Stress Distribution on Textile around Contact Patch For 2000N 

Vertical Load, 180kPa Inflation Pressure 
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Figure5. 15 Stress Distribution on Textile around Contact Patch During Steady 

State Cornering for 2000N Vertical Load and 6 Degrees Slip Angle 

 

 

 

 

 
Figure5. 16 Stress Distribution on Textile around Contact Patch For 4000N 

Vertical Load, 180kPa Inflation Pressure 
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Figure5. 17 Stress Distribution on Textile around Contact Patch During Steady 

State Cornering for 4000N Vertical Load and 6 Degrees Slip Angle 

 

For medium loads, pre tensioned textile mostly keeps in tension. For high 

loads and high slip angles, textile goes in to compression for some locations near 

contact patch.  

 

  

5.2.2.3 Self Aligning Torque 
 

Because of the special behavior of the node, as explained in Chapter IV, 

holding rotational degree of freedom of the tire-rim assembly, it is preferred to 

record the moment on the rim as the self aligning torque. For 4000 N vertical 

load, self aligning torque versus slip angle plot is given in Figure 5.18. For 2000 

N vertical load, self aligning torque versus slip angle plot is given in Figure 5.19. 

 

Self aligning torque increases until medium slip angles and starts to drop 

as the slip angle increases for 4000 N vertical load. For 2000 N vertical load, self 

aligning torque is almost constant and for 2, 4 and 6 degrees slip angles. 
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Figure5. 18 Self Aligning Torque versus Slip Angle, 4000 N vertical load 
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Figure5. 19 Self Aligning Torque versus Slip Angle, 2000 N vertical load 
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5.3 Tire on the Road 
 

Tire cornering analysis is performed on a drum and for different slip angle 

vertical load combinations performance of the tire is compared. Tire under 

normal operating conditions rotates on a somewhat flat surface. To compare the 

cornering force characteristics obtained with the realistic operating conditions, 

the coarse tire model is run on a flat surface. Slip angle is set by applying road 

velocity in longitudinal and lateral directions. Tire models are also rotated for 3 

complete turns on flat surface to control stability of solution. 

 

Figure 5.20 shows top view of cornering tire on road surface for 4000 

vertical load and 4 degrees slip angle. Front view of the same instance is given in 

Figure 5.21. 

 

 
Figure5. 20 Tire Cornering on Road Surface, 180kPa, 4000N, 4 Degrees Slip 

Angle, Top View. 
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Figure5.21 Tire Cornering on Road Surface, 180 kPa, 4000 N, 4 Degrees Slip 

Angle, Front View. 

 

Figure 5.22 shows comparison of build up of cornering force on drum and 

flat surface. It can be concluded from Figure 5.22 that, cornering force builds up 

faster on flat surface and reaches a higher steady state value. Drum model gives 

lower estimate for cornering characteristics. 
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Figure5. 22 .Cornering Force versus Solution Increment Plot of Drum and Flat 

Surface, 4000N, 4 Degree Slip Angle, 180kPa Inflation Pressure 

 

 

5.3.1 A Case Study on the Road 
 

For a vertical load of 4000 N, road surface is moved to rotate the tire. 

First the road surface is moved in one direction to give the tire a slip angle. After 

half rotation of the tire, road surface is moved in opposite direction at the same 

speed and tire is made one complete rotation and direction of road movement 

changed to opposite direction again and tire made half rotation. Figure 5.23 

shows change of cornering force during the tire motion on the road surface. 
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Figure5. 23 Variation of Cornering Force as the Tire Rolls on the Road 

 

For maximum, zero and minimum values of the cornering force, 

(corresponding to points A, B and C on Figure 5.23) deflected shape of the tire is 

given in Figure 5.24. 

 

It is noted that the calculations give very clear cornering force variations 

with a minimum magnitude of oscillations leaving no doubt on the actual results. 

Actually the oscillations in this study are related to the mesh density rather than 

the stability of calculations and accumulation of errors. 

 

It can be concluded here that the proposed model can meet the 

requirements set at the beginning of the study. 
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Figure5. 24 .Deflected Shapes of the Tire on the Road for Points A, B and C of 

Figure 5.23 
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CHAPTER 6 

CONCLUSION 

 
The application of the Finite Element Modeling and Analysis to research 

related to pneumatic tires has been quite numerous, starting just after the maturity 

of the Finite Element Method as a general tool of analysis. There appeared a 

rather large number of publications in this subject. These applications, however, 

mainly covered static and dynamic variations of footprints, pressure distributions, 

stresses, and so on. The cornering force characteristics of pneumatic tires, on the 

other hand, have received attention only recently and the number of published 

studies in this particular area is still very small. One of the first of such studies 

was carried out in the Mechanical Engineering Department of the Middle East 

Technical University by Tönük, 1998. Tönük’s Ph. D. thesis which was later 

published, Tönük and Ünlüsoy 2001, has been the starting point of this study. 

The aims of this study, therefore, are based on the results and experiences of the 

previous study and are directed towards the development of a new model in 

accordance with the suggestions for future work. 

 

6.1 A new Tire Model 
 

The existing tire model examined and improvements are implemented. 

Other tire finite element models in the literature are surveyed and modeling 

techniques are compared. 

 

Drum, which the tire is in contact when rotating, is modeled as a rigid 

body. This reduces solution time considerably and increases accuracy. A rigid 

body in Marc is an analytical entity and is not included in the solution like 
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deformable elements. When a rigid body is represented as an analytical surface, 

the normal is recalculated at every iteration based upon the current position. This 

leads to a more accurate solution and faster convergence.  

 

Rebar elements, which used to model cord reinforced rubber has some 

limitations and deficiencies. Rebar elements do not carry bending and share the 

same connectivity with the rubber matrix. For the same location, two elements, 

one for rubber matrix and one for rebar exist. Rebars are oriented for each 

element, and the orientation should be updated at each solution increment which 

requires additional computational effort. The last solved increment is considered 

to orient rebar’s directions and positions. This introduces an error to the solution. 

As the deformation of the tire increases, the error accumulation increase, and for 

larger slip angles system becomes unstable before the steady state solution is 

obtained. To solve this problem, combined rubber cord properties are used. 

Calculated properties are assigned to continuum elements. Solution time is 

reduced and stability of the system is obtained. 

 

Tire models with different element types are compared for solution time 

point of view. Layered continuum elements avoid calculating combined 

properties of plies oriented in different angles but increases solution time. For 

tread plies and body ply, calculated orthotropic material properties are oriented 

with a user subroutine. For body plies, a new approach is proposed and this 

procedure is avoided by using truss elements in reinforcement directions. Doing 

this drastically reduced the solution time, and allowed using finer mesh to obtain 

solution in a reasonable time. Truss elements carry only tension or compression, 

and do not have bending capability. Stress state of the truss elements are closely 

observed, and for small to medium slip angles and vertical loads, it is noted that, 

textile pre-tensioned with pressure keeps in tension for all the time. For high slip 

angles, some of the reinforcements go under small compression. Avoiding 

orientation of directions of body plies drastically reduced the solution time. A 

 144



complete carpet plot of the cornering force characteristics can now be obtained 

on a standard PC configuration in about a week. 

 

6.2 Cornering Study with the New Tire Model 
 

The tire model converged easily and quickly for all slip angle vertical 

load combinations quite accurately. Tire cornering force characteristics are 

observed up to 10 degrees slip angle. Effect of traction on cornering 

characteristics is studied. The analysis is extended to the calculation of self-

aligning torque with changing slip angle during the cornering study. 

 

Results of the cornering force analysis are compared with the 

experimentally obtained data, and concluded that the accuracy of simulation from 

the proposed tire model is better than that stated in the published studies so far. 

 

The proposed model can be successfully applied to a specific tire and 

used to study for cornering characteristics for all range of slip angles and tire 

loads. Even with a coarse mesh, tire rotates more than two complete revolutions 

after steady state cornering is reached giving an idea of the stability of solution 

and the amount of error accumulation. 

 

6.3 Recommendations for Future Study 
 

Generic material properties are used to study the sample tire. Each tire in 

the market has been built up of with different processes and materials, which 

directly affects the performance. Rubber is not a standard material and properties 

heavily depend on the process.  

 

Composite theory has many assumptions and sometimes depends on the 

material properties used. Researchers in composite industry, correlate their 

calculations for specific applications with tests. Some of the authors obtained 
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cord reinforced rubber properties by tests for use in tire models. For industrial 

applications, calculated properties of the cord-reinforced rubber should be 

correlated with tests. 

 



 

 

APPENDIX  

PROGRAM PARAMETERS 

 

Load Case "Inflate"   
Load Case Type Static 
Non Positive Definite On 
Proceed When Not Converged Off 
Iterative Procedure Full Newton-Raphson 
Cont. of Initial Stress to Stifness Full 
Maximum Number of Recycles 10 
Stepping Procedure Fixed 
Number of Steps 5 
Convergence Testing Relative 
Convergence Criteria Residual Force 
Relative Force Tolerance 0.1 
Load Case "Press Drum"   
Load Case Type Static 
Non Positive Definite On 
Proceed When Not Converged Off 
Iterative Procedure Full Newton-Raphson 
Cont. of Initial Stress to Stifness Full 
Maximum Number of Recycles 10 
Stepping Procedure Fixed 
Number of Steps 10 
Convergence Testing Relative 
Convergence Criteria Residual Force 
Relative Force Tolerance 0.1 
Load Case "Press Drum"   
Load Case Type Static 
Non Positive Definite On 
Proceed When Not Converged Off 
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Iterative Procedure Full Newton-Raphson 
Cont. of Initial Stress to Stifness Full 
Maximum Number of Recycles 20 
Stepping Procedure Fixed 
Number of Steps 250 to 750 
Convergence Testing Absolute 
Convergence Criteria Residual Force 
Max. Absolute Residual Force 20N 
Contact Parameters   
Friction Type Coulomb for Rolling 
Method Nodal Force 
Relative Sliding Velocity 0.01 
Increment Splitting Allowed 
Seperation Criteria Force 
Seperation Force 1 N 
Distance Tolerance 0 
Distance Tolerance Bias 0 
"Tire" Contact Body Type Deformable 
"Drum" Contact Body Type Rigid 
"Drum" Rigid Body Control Velocity 
"Rim" Contact Body Type Rigid 
"Rim" Rigid Body Control Load 
Distance Tolerance Bias 0 
Analysis Options   
Large Displacement On 
Follower Force On 
Elasticity Procedure Large Strain-Total Lagrange 
Solver Direct Profile 
Analysis Dimension 3D 
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