
1



A SEMISMOOTH NEWTON METHOD FOR
GENERALIZED SEMI-INFINITE PROGRAMMING PROBLEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AYSUN TEZEL ÖZTURAN
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ABSTRACT

A SEMISMOOTH NEWTON METHOD FOR
GENERALIZED SEMI-INFINITE PROGRAMMING PROBLEMS

TezelÖzturan, Aysun

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. B̈ulent Karas̈ozen

Co-Supervisor : Prof. Dr. Oliver Stein

June 2010, 119 pages

Semi-infinite programming problems is a class of optimization problems in finite dimensional

variables which are subject to infinitely many inequality constraints. If the infinite index of

inequality constraints depends on the decision variable, then the problem is called generalized

semi-infinite programming problem (GSIP). If the infinite index set is fixed, then the problem

is called standard semi-infinite programming problem (SIP).

In this thesis, convergence of a semismooth Newton method for generalized semi-infinite pro-

gramming problems with convex lower level problems is investigated. In this method, using

nonlinear complementarity problem functions the upper and lower level Karush-Kuhn-Tucker

conditions of the optimization problem are reformulated as a semismooth system of equations.

A possible violation of strict complementary slackness causes nonsmoothness. In this study,

we show that the standard regularity condition for convergence of the semismooth Newton

method is satisfied under natural assumptions for semi-infinite programs. In fact, under the

Reduction Ansatz in the lower level problem and strong stability in the reduced upper level

problem this regularity condition is satisfied. In particular, we do not have to assume strict
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complementary slackness in the upper level. Furthermore, in this thesis we neither assume

strict complementary slackness in the upper nor in the lower level. In the case of violation

of strict complementary slackness in the lower level, the auxiliary functions of the locally

reduced problem are not necessarily twice continuously differentiable. But still, we can show

that a standard regularity condition for quadratic convergence of the semismooth Newton

method holds under a natural assumption for semi-infinite programs. Numerical examples

from, among others, design centering and robust optimization illustrate the performance of

the method.

Keywords: Generalized semi-infinite optimization, semismooth Newton method, Nonlinear

Complementarity function, Clarke subdifferential regularity, Reduction Ansatz.
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ÖZ

GENELLEŞṪIRİLM İŞ YARI SONSUZ OPṪIMİZASYON
PROBLEMLEṘI İÇİN YARI D ÜZGÜN NEWTON YÖNTEMİ

TezelÖzturan, Aysun

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. B̈ulent Karas̈ozen

Ortak Tez Ÿoneticisi : Prof. Dr. Oliver Stein

Haziran 2010, 119 sayfa

Yarı sonsuz programlama problemleri, sonlu değişkenüzerinde sonsuz eşitsizlik kısıtlamaları

olan optimizasyon problemleridir. Eşitsizlik kısıtlamalarının sonsuz indeks kümesi optimiza-

syonun yapıldı̆gı dĕgişkene băglı ise problem genelleştirilmiş yarı sonsuz optimizasyon prob-

lemi olarak adlandırılır. Sonsuz indeks kümesi sabit bir k̈ume ise standart yarı sonsuz opti-

mizasyon problemi olarak adlandırılır.

Bu tezde, genelleştirilmiş yarı sonsuz optimizasyon problemlerinin konveks alt seviye prob-

lemi olanlar için yarı d̈uzg̈un Newton ÿonteminin yakınsaklı̆gı incelenmiştir. Bu ÿontemde,

lineer olmayan tamlık fonksiyonları kullanılarak optimizasyon problemininüst ve alt se-

viye Karush Kuhn Tucker koşulları yarı düzg̈un eşitliklere d̈onüşẗurülür. Kati tamamlayıcı

gevşeklik koşullarının olası ihlali d̈uzg̈un olmamaya neden olur. Bu çalışmada, yarı düzg̈un

Newton ÿonteminin yakınsaklı̆gı için gerekli olan standart düzenlilik koşulunun yarı sonsuz

programlamanın dŏgal varsayımları altında sağlandı̆gını g̈osterdik. Aslında, bu d̈uzenlilik

koşulu alt seviye problemi için indirgeme yaklaşımı ve indirgenmişüst seviye problemi için

kuvvetli kararlılık koşulları altında sağlanır.Özellikle,üst seviye problemde kati tamamlayıcı
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gevşeklik koşulunu varsaymak zorunda değiliz. Bu tezde, ayrıca nëust seviyede ne de alt

seviyede kati tamamlayıcı gevşeklik koşullarını varsaymadık. Alt seviyede kati tamamlayıcı

gevşeklik koşulunun ihlali durumunda, yerel indirgenmiş problemin geçici fonksiyonları iki

kere s̈urekli olarak ẗurevlenebilir olmaz. Ama halen yarı düzg̈un Newton ÿonteminin ik-

inci dereceden yakınsak olması için gerekli olan standart düzenlilik koşullarının yarı sonsuz

programlamanın dŏgal varsayımları altında gerçekleştiğini gösterebiliriz. Tasarım merkezle-

menin ve g̈uvenli en iyileme problemlerinin aralarında olduğu sayısal̈ornekler metodun per-

formansını g̈ostermektedir.

Anahtar Kelimeler: Genelleştirilmiş yarı sonsuz optimizasyon problemleri, yarı düzg̈un New-

ton metodu, lineer olmayan tamlık problemi fonksiyonları, Clarke ın genelleştirilmiş türevinin

düzenliliği, İndirgeme Yaklaşımı.
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CHAPTER 1

INTRODUCTION

This dissertation presents a new numerical approach to solve generalized semi-infinite pro-

gramming problems. Semi-infinite programming is a subfield of continuous programming

which deals with finding extremum of a continuous function over a finite dimensional space

subject to infinitely many continuous inequality constraints. Furthermore, if the infinite in-

equality constraints depend on the finite decision variable, the problem is called generalized

semi-infinite programming, otherwise the problem is called standard semi-infinite program-

ming. The purpose of this chapter is to give the outline of the dissertation. We introduce

the problem addressed in this dissertation and provide a concise description of the approach

introduced in this work. In the following, we point out the main contributions and define the

outline of the dissertation.

A generalized semi-infinite optimization problem has the form,

GS IP: minimize f (x) subject to x ∈ M

with the feasible set

M = { x ∈ Rn| g(x, y) ≤ 0 for all y ∈ Y(x) }

and

Y(x) = { y ∈ Rm| v j(x, y) ≤ 0 ( j ∈ Q) }.

where j ∈ Q = {1, ...,q}.

In a GSIP, the possibly infinite index setY(x) of the semi-infinite inequality constraint is

allowed to vary withx. As opposed to this, in a standardSIPthe index set is fixed, that is, we

haveY(x) ≡ Y, and ifY is described by functional constraints, then the vector functionv does
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not depend onx. If Y is a finite set, we arrive at the usual nonlinear programming problem.

Furthermore, we assume that the set valued mappingY : Rn ⇒ Rm is locally bounded, that

is, for each ¯x ∈ Rn there exists a neighborhoodU of x̄ such that
⋃
x∈U

Y(x) is bounded inRm

and thatY(x) , ∅ for all x ∈ Rn.

In particular, the problemGSIPmay have finitely many inequality constraintsgi(x, y) ≤ 0, y ∈

Yi(x), i ∈ I which often arises in applications, along with finitely many equality constraints.

In order to abstain from technical difficulties in this thesis we examine the case of a sin-

gle semi-infinite constraint. The interested reader can be referred to [103] for more general

formulations. However, the slightly more general setting of finitely many generalized semi-

infinite constraintsgi(x, y) ≤ 0, y ∈ Yi(x), i ∈ I would lead to almost identical formulas as the

ones we develop in the sequel (withg replaced bygi).

Semi-infinite programming has been studied and developed by researchers over the last thirty

years. There are many practical applications of semi-infinite programming problems. Cheby-

shev and reverse Chebyshev approximation, time minimal control, minimax problems, robust

optimization, design centering, optimal layout of an assembly line and disjunctive program-

ming are some applications of semi-infinite programming.

Since the problem formulation forGSIP is a generalization ofSIP, in the first studies of

GSIP [34, 59], GSIPwas thought to be a slight generalization of standardSIP. After stud-

ies, it was seen that most of the known theoretical and computational approaches toSIP do

not generalize toGSIP. In [47], it is firstly recognized thatGSIPis actually harder thanSIP.

The feasible set ofGSIP may have topological properties that are neither known from stan-

dard semi-infinite nor from finitely constrained programing problem. In finitely constrained

programming and in standard semi-infinite programming problems the feasible set is closed.

This is not true forGSIP. In [20], it is pointed out that the feasible set ofGSIPis not definitely

a closed set and also may have a disjunctive property. These two topological properties are

not known from standardSIP.

Example 1.0.1 ([20]) “Re-entrant corner point”

“For x ∈ R2 consider the index set

Y(x) = { y ∈ R| y ≥ x1, y ≥ x2}
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and put g(x, y) = −y. Then we obtain

M = { x ∈ R2| g(x, y) ≤ 0 for all y ∈ Y(x) }

= { x ∈ R2| y ≥ 0 for all y ∈ [max(x1, x2),+∞) }

= { x ∈ R2| max(x1, x2) ≥ 0 }.

Figure 1.1 illustrates that M is the union of two closed halfplanes. Note that M is nonconvex,

although all defining functions are linear. More precisely, M exhibits a so-called re-entrant

corner point at the origin. These points are spurious points for stationary based optimality

conditions.”

Figure 1.1: A re-entrant corner point [20].

Example 1.0.2 ([20]) “Local nonclosedness”

“For x ∈ R2 consider the index set

Y(x) = { y ∈ R| y ≥ x1, y ≤ x2}

and put again g(x, y) = −y. Now we obtain

M = { x ∈ R2| g(x, y) ≤ 0 for all y ∈ Y(x) }

= { x ∈ R2| y ≥ 0 for all y ∈ [x1, x2] }

= { x ∈ R2| x1 ≤ x2, y ≥ 0 for all y ∈ [x1, x2] }

∪ { x ∈ R2| x1 > x2, y ≥ 0 for all y ∈ ∅ }

= { x ∈ R2| x1 ≤ x2, x1 ≥ 0} ∪ { x ∈ R2| x1 > x2 }.
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Figure 1.2 illustrates M which is the union of an open with a closed halfplane although all

defining inequalities are nonstrict. We remark that Y(x) = ∅ for x1 > x2.”

Figure 1.2: Local nonclosedness [20].

In finitely constrained and semi-infinite programming problems the local nonclosedness as in

Example 1.0.2 can not occur. The re-entrant corner points as in Example 1.0.1 may occur

in finitely constrained programming. The re-entrant corner points are not stable in finitely

constrained programming but they are stable inGSIP [20]. The local nonclosedness is also

stable inGSIP. The investigation of the semi-infinite programming shows thatGSIP is ac-

tually harder thanSIP. The numerical methods usually can not directly be generalized from

standardSIP to GSIP. There arise serious difficulties when trying to generalize the exchange

or discretization methods from standardSIPto GSIP. These difficulties are discussed and con-

vergence results are obtained under quite general assumptions onGSIPin [112]. In this thesis

we justified a numerical approach forGSIP. Our method is based on the first order necessary

optimality conditions. In the following we explain the method and main contribution of the

thesis.

It was known that Reduction Ansatz hold at all local minimizers of standardSIP. In [23], it is

recently shown that generically the Reduction Ansatz holds at all local minimizers ofGSIP.

Hence, the feasible set is locally equal to the feasible set which is described by finitely many

certain implicitly defined constraints. Then the optimality conditions can be obtained by using

this reduced finitely constrained programming problem. A possible solution method is based

on optimality conditions of the locally reduced problem. In fact, many solution methods

for nonlinear programming problems are based on solving their Karush-Kuhn-Tucker (KKT)

system, that is, a necessary first order optimality condition. It is well-known that the com-

4



plementarity conditions in the KKT system need special attention in any numerical approach.

One possibility for their treatment is a reformulation by nonlinear complementarity problem

functions (NCP functions), which reduces the problem to the solution of a certain system of

equations which is either nonsmooth or smooth but degenerate. For special NCP functions

these equations can be solved by so-called semismooth Newton methods where, in analogy

to the standard Newton method, their convergence depends on a regularity condition in the

solution point. It is important to note that the nonsmoothness of the system of equations stems

from a possible lack of strict complementary slackness at a solution. Such KKT methods have

also been suggested for standard semi-infinite programming problems, where the KKT con-

ditions take a somewhat more complicated form [33]. In particular, they involve an upper and

a lower level problem. In the article [88] it was recently suggested to use NCP functions also

for a nonsmooth reformulation of the KKT conditions in standard semi-infinite programming,

and a regularity condition to guarantee convergence of a certain semismooth Newton method

was proposed.

It turns out, however, that strict complementarity is a part of the regularity condition from

[88], in the upper as well as in the lower level problem. A numerical method which searches

a point with these regularity conditions would not need to use NCP functions but, in fact,

already the standard Newton method would converge under these assumptions.

One of the aims of this thesis is to point out an important pitfall in the solution of KKT

systems for semi-infinite programs. A challenging problem which has not been solved yet in

numerical solution of semi-infinite programming (SIPor GSIP) is finding the corresponding

active index set for a feasible point. The active index set can be computed by finding all

global maximizers of the lower level problem, hence we assume that the lower level problem

is convex. We note that generalized semi-infinite optimization has many relevant applications

with convex lower level problems. We present a regularity condition which does not assume

strict complementarity in the upper level problem, thus justifying the NCP function approach

for semi-infinite programs, and at the same time we transfer this approach from standard

to generalized semi-infinite programming. We note that this method will merely search for

KKT points of the optimization problem, whereas global optimality plays a crucial role in the

treatment of the so-called lower level problem. We also complete this analysis by considering

the case of strict complementarity violation in the lower level. For the convergence of a

semismooth Newton method, we give an appropriate new regularity condition, thus justifying
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the NCP approach for semi-infinite programs in the absence of strict complementarity. In

the present case, the convergence analysis is essentially more complicated due to the lack of

differentiability of the auxiliary functions of the so-called reduced problem.

In summary, this thesis contains the results of our recent research papers

Tezel, A. and Stein, O.The semismooth approach for semi-infinite programming without strict

complementarity, SIAM Journal on Optimization,20(2), 1052-1072, (2009).

Stein, O. and Tezel, A.The semismooth approach for semi-infinite programming under the

Reduction Ansatz, Journal of Global Optimization,41(2), 245-266, 2008.

In this thesis,

• the result about the semismooth approach in [88] for standard semi-infinite program-

ming is completed,

• the semismooth approach from standard to generalized semi-infinite programming prob-

lems is extended,

• a new regularity condition which does not assume strict complementarity in the upper

and lower level problems is presented,

• the convergence of a semismooth Newton method for generalized semi-infinite pro-

gramming problems is proved under the natural assumptions of semi-infinite program-

ming, and

• in order to illustrate the performance of the method numerical examples are given.

The thesis is organized as follows. Chapter 2 reviews basic facts from finite and semi-infinite

programming. In Section 2.1, we briefly introduce and give some notation of unconstrained

and constrained optimization. Section 2.2 deals with the introduction of semi-infinite opti-

mization. Examples and applications, a main and well-known regularity condition in semi-

infinite optimization, namely Reduction Ansatz, are given. Furthermore constraint qualifi-

cations in semi-infinite programming are mentioned. In Section 2.3, a very brief review of

numerical methods in solving semi-infinite optimization problems is presented.

In Chapter 3, after giving preliminaries about Newton method, application of the method in
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finite and semi-infinite programming are reviewed. Chapter 4 treats the semismooth New-

ton approach. The use of the method in finitely constrained programming problems is re-

viewed. The semismooth optimality conditions for generalized semi-infinite programming

are obtained.

Chapter 5 includes our main result, convergence of semismooth Newton method for gener-

alized semi-infinite programming is established. As we have mentioned, in this thesis we

study convergence of a semismooth Newton method for generalized semi-infinite program-

ming problems with convex lower level problems. Nonlinear complementarity problem func-

tions (NCP) are used in order to reformulate the upper and lower level Karush-Kuhn-Tucker

conditions as a semismooth system of equations. We show that the standard regularity condi-

tion for convergence of the semismooth Newton method is satisfied under natural assumptions

for semi-infinite programs. We complete the result in [88] by showing convergence under the

case of strict complementarity violation in the upper level, and transfer the method to gener-

alized semi-infinite programming. We neither assume strict complementary slackness in the

upper nor in the lower level in our semismooth Newton approach. In this case, the auxiliary

functions of the locally reduced problem are not absolutely inC2. But still, it is possible

to show that the semi-smooth Newton method convergesq-quadratically under the natural

assumptions of semi-infinite programming.

In Chapter 6, computational results of the method are reported. Numerical examples from,

among others, design centering and robust optimization illustrate the performance of the

method. Finally we formulate some conclusions and give possible directions of future re-

search. In Appendices, some auxiliary results about nonlinear complementarity (NCP) func-

tions and block matrices are given.
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CHAPTER 2

BACKGROUND ON SEMI-INFINITE PROGRAMMING

2.1 Finitely Constrained Programming

In this section we recall some basic facts from finite optimization problem (finitely con-

strained programming). We also introduce constraint qualifications in finitely constrained

programming. The definitions and theorems in this section can be found in many references

about finitely constrained programming, in particular we refer the reader to [2, 13, 15, 27, 44,

45, 74, 77] and references therein for this section. An unconstrained optimization problem

have the form

P : min
x∈Rn

f (x)

wheref is at least twice continuously differentiable. In the sequel the row vector
(
∂ f
∂x1
, . . . ,

∂ f
∂xn

)
of partial derivatives off evaluated atx will be denoted byD f (x). The gradient off is a

column vector denoted by∇ f (x) = (D f (x))T . The Hessian matrix off evaluated atx will be

denoted byD2 f (x). The equation

D f (x̄) = 0 (2.1)

is a standard necessary first order optimality condition [45]. The points satisfying (2.1) are

called critical points or stationary points. The minimizers and saddle points also satisfy

equation (2.1). In order to define a sufficient condition for optimality one needs to combine

(2.1) with a second order condition satisfied at ¯x, so-called second order optimality condition,

the Hessian matrix is a positive definite matrix,

dTD2 f (x̄)d > 0 ∀d ∈ Rn \ {0} (2.2)

Theorem 2.1.1 ([2]) If x̄ satisfies (2.1) and (2.2), then̄x is a strict local minimum of f .

8



In the special case thatf is convex (2.2) is not need to be explicitly stated.

Definition 2.1.2 ([77]) A function f : Rn→ R is called convex if

f (νx+ (1− ν)y) ≤ ν f (x) + (1− ν) f (y)

for all x, y ∈ Rn and for allν ∈ [0,1].

The following result shows that stationary, local optimality and global optimality are equiva-

lent in the convex case.

Theorem 2.1.3 ([45]) Suppose that f is a convex function and f is an at least twice continu-

ously differentiable function. Then the following statements are equivalent.

i) x̄ is a global minimum.

ii) x̄ is a local minimum.

iii) x̄ is a critical point, i.e.,x̄ satisfies (2.1).

Stepeest descent methods, Newton method, Quasi-Newton methods etc. are some basic meth-

ods to solve unconstrained optimization problems. For more information on these and other

methods we refer to [74, 77] and the references cited therein.

A finitely constrained optimization problem has the form

P : min
x

f (x) subject to gi(x) ≤ 0 (i ∈ I ), h j(x) = 0 ( j ∈ J) (2.3)

with I = {1, . . . , r}, J = {1, . . . , s}. For problemP, the feasible setMF is defined by

MF = {x ∈ Rn| gi(x) ≤ 0 (i ∈ I ), h j(x) = 0 ( j ∈ J)}.

We assume thatf ,gi ,h j are at least twice continuously differentiable.

There are many methods for solving constrained optimization problems which include se-

quential linear programming, sequential quadratic programming approach (SQP), penalty-,

barrier-, interior point-, multiplier methods. It is far beyond the scope of the thesis to give

details of these methods, we refer to [45, 74, 77] and the references cited therein for further

reading.
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As in the case of unconstrained optimization, there exist stationary conditions for constrained

problems. The most popular ones arethe Karush-Kuhn-Tucker optimality conditionsandthe

Fritz-John optimality conditions.

Definition 2.1.4 ([2]) A point x̄ ∈ MF is said to satisfy Fritz-John optimality conditions if

there exist realκ ∈ R, µ ∈ Rr , λ ∈ Rs all nonzero such that

κ∇ f (x̄) +
r∑

i=1
µi∇gi(x̄) +

s∑
j=1
λ j∇h j(x̄) = 0,

κ ≥ 0,

µigi(x̄) = 0 (i ∈ I ),

µi ≥ 0 (i ∈ I ).

holds.

By requiringκ , 0 in Fritz-John optimality condition, Karush-Kuhn-Tucker optimality con-

ditions (KKT) are obtained.

Definition 2.1.5 ([77]) A point x̄ ∈ MF is said to satisfy Karush-Kuhn-Tucker optimality

conditions if there exist realµ ∈ Rr , λ ∈ Rs such that

∇ f (x̄) +
r∑

i=1
µi∇gi(x̄) +

s∑
j=1
λ j∇h j(x̄) = 0,

µigi(x̄) = 0 (i ∈ I ),

µi ≥ 0 (i ∈ I ).

(2.4)

holds.

The multiplicative condition in (2.4)

µigi(x̄) = 0 (i ∈ I ), (2.5)

is known ascomplementarity conditions, it implies the Lagrange multiplierµi can be strictly

positive only when the corresponding constraintgi is active. Conditions of this type play

a central role in constrained optimization, a reformulation of complementarity condition is

given in Section 4.2. By defining

L(x, µ, λ) = f (x) + µTg(x) + λTh(x), (2.6)
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the KKT condition (2.4) can be written as

∇xL(x̄, µ, λ) = 0,

µigi(x̄) = 0 (i ∈ I ),

µi ≥ 0 (i ∈ I ).

The functionL is called asthe Lagrangian functionand the vectorsµ, λ are called asthe

Lagrange multiplier vectors. Let us consider a finitely constrained optimization problem

without inequality constraints, i.e.,

P : min
x

f (x) subject to gi(x) ≤ 0 (i ∈ I ).

The complementarity condition gives the following result. Ifgi(x̄) < 0, (2.5) requires that

µi = 0, hence∇xL(x̄, µ) = 0 reduces to∇ f (x̄) = 0 (unconstrained case), and ifgi(x̄) = 0,

i.e., the inequality constraint is active at ¯x, (2.5) allowsµi to take on a nonnegative value, so

∇xL(x̄, µ) = 0 becomes equivalent to∇ f (x̄) +
r∑

i=1
µi∇gi(x̄) = 0, for someµi ≥ 0.

The KKT conditions are known to be sufficient for global optimality in convex problems.

Definition 2.1.6 ([2]) A problem P (2.3) is called convex if f and gi , i ∈ I are convex and

h j , j ∈ J are affine, i.e., hj(x) = bT
j x+ c j for some bj ∈ Rn, c j ∈ R.

Theorem 2.1.7 ([2]) Let P given in (2.3) be a convex problem andx̄ be a KKT point of P.

Thenx̄ is a global minimum of P.

The sufficiency of KKT optimality conditions for global optimality in the convex case is stated

in Theorem 2.1.7. Some regularity conditions need to be made in order to obtain necessity of

KKT optimality conditions. We denote the active index set by

I0(x̄) = {i ∈ I | gi(x̄) = 0} (2.7)

i.e., the index set of active constraints, at ¯x. We briefly recall famous regularity conditions,

called constraint qualifications in finitely constrained programming, namely, the Mangasarian

Fromovitz Constraint Qualification (MFCQ), the Linear Independence constraint Qualifica-

tion (LICQ) and the Slater condition.

Definition 2.1.8 ([77]) The Linear Independence Constraint Qualification (LICQ) holds at a

point x̄ ∈ M, if the gradients∇gi(x̄), i ∈ I0(x̄) and∇h j(x̄), j ∈ J are linearly independent.
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LICQ assures the following analytic stability result [110].

Lemma 2.1.9 ([110]) Let the feasible set MF be compact in P given in (2.3). If LICQ holds

at for all x ∈ MF , then for any small C1 perturbationg̃i , h̃ j of the functions gi ,h j the perturbed

feasible setM̃F = {x | g̃i(x) ≤ 0 (i ∈ I ), h̃ j(x) = 0 ( j ∈ J) } is diffeomorphic to MF .

Mangasarian Fromovitz Constraint Qualification (MFCQ) is another regularity condition and

it is stated in the following definition.

Definition 2.1.10 ([2]) The Mangasarian Fromovitz Constraint Qualification (MFCQ) holds

at a pointx̄ ∈ MF if ∇h j(x̄), j ∈ J are linearly independent and there exist a vector d satisfying

Dgi(x̄)d > 0 (i ∈ I ),

Dh j(x̄)d = 0 ( j ∈ J).

MFCQ is equivalent to the following structural stability [110].

Lemma 2.1.11 ([110])Let the feasible set MF be compact in P given in (2.3). Then for any

small C1 perturbationg̃i , h̃ j of the functions gi ,h j the perturbed feasibe set̃MF = { x | g̃i(x) ≤

0 (i ∈ I ), h̃ j(x) = 0 ( j ∈ J) } is (Lipschitz)-homeomorphic to MF if and only if MFCQ is

satisfied for all x∈ MF .

It can be easily shown that MFCQ hold at ¯x ∈ MF with the vectord, then for anyτ > 0 small

enough the points ¯x+ τd are interior points ofMF [110].

The following constraint qualification is defined only for convex problems.

Definition 2.1.12 ([13]) Let P given in (2.3) be a convex problem. The Slater condition is

said to be satisfied at a point̄x ∈ MF if ∇h j(x̄), j ∈ J are linearly independent and there exists

a point x such that

gi(x) < 0 (i ∈ I ),

h j(x) = 0 ( j ∈ J).

The following result shows that under a constraint qualification, a local optimum is a KKT

point.
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Theorem 2.1.13 ([2]) Let x̄ is a local minimum of P given in (2.3). Further suppose that

MFCQ, LICQ or Slater condition is satisfied at̄x, thenx̄ is a KKT point of P.

By Theorem 2.1.7 and Theorem 2.1.13 we see that, under any of the regularity conditions,

being a stationary point is equivalent to global optimality for convex problems.

Let x̄ be a KKT point with Lagrange multiplier vectorsλ, µ. The tangent space ofMF at x̄ is

defined as follows:

T(x̄) = {ρ ∈ Rn| Dgi(x̄)ρ = 0, i ∈ I0(x̄),Dh j(x̄)ρ = 0, j ∈ J}.

The tangent cone ofMF at x̄ is defined as follows:

C(x̄) = {ρ ∈ Rn| Dgi(x̄)ρ = 0, i ∈ I0(x̄),Dgi(x̄)ρ ≤ 0, i ∈ I \ I0(x̄),Dh j(x̄)ρ = 0, j ∈ J}.

Theorem 2.1.14 ([77])Suppose that̄x is a local solution of P, and LICQ holds at̄x. Let

µ, λ be the corresponding Lagrange multipliers. Then, the Hessian D2
xL(x̄, µ, λ) is positive

semi-definite on T(x̄).

Theorem 2.1.14 defines a necessary condition involving second derivatives. If ¯x is a local

solution, then the curvature of the Lagrangian function along the directions inC(x̄) must be

nonnegative. The existence of a local solution and corresponding Lagrange multipliers is

stated in Theorem 2.1.7 and Theorem 2.1.13. A more restrictive second order condition is

needed for sufficiency of being a strict local solution. The second order condition to enforce

being a strict local solution is that the Hessian of the Lagrangian functionL at x̄ is positive

definite overT(x̄).

Definition 2.1.15 ([77]) The second order sufficiency condition (SOSC) holds atx̄ if D2
xL(x̄, µ, λ)

is positive definite on C(x̄).

Strict complementarity holds at ¯x if µ̄i > 0,gi(x̄) = 0 or µ̄i = 0,gi(x̄) < 0.

Definition 2.1.16 ([2]) Strict complementary slackness (SCS) holds atx̄ if µi > 0 (i ∈ I0(x̄)).

Definition 2.1.17 ([44]) The KKT pointx̄ is called a nondegenerate local minimum of P if

LICQ, SOSC and SCS hold atx̄.
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It is known that a nondegenerate local optimum ¯x is a strict local optimum ofP [2]. The sta-

bility of both optimal solution ¯x and corresponding Lagrange multipliersµ, λ under small data

perturbations hold for a nondegenerate local optimum point [44]. Moreover, a nondegenerate

local minimum is the unique, global optimum for a convex problem.

2.2 Semi-infinite Programming

In this section we recall some basic facts from semi-infinite programming. We give examples

and applications of semi-infinite programming and a basic and well-known regularity condi-

tion, namely Reduction Ansatz, is introduced. We also discuss about constraint qualifications

and bilevel structure of semi-infinite programming.

Semi-infinite programming problems is a class of optimization problems in finite dimensional

decision variables which are subject to infinitely many inequality constraints, as the name

semi-infiniteactually suggests. Theoretical and numerical treatment ofSIP can be traced

back in the literature to papers from 1960’s [28, 33, 48, 51, 110, 111, 118, 126]. More than

a thousand papers have been published forSIP. Historically,SIPstems from applications in

approximation theory. It is originally related with Chebyshev approximation, see [36]. For an

excellent review, we refer to [33] and [82], for linear semi-infinite programming, we refer to

[18]. For surveys about theory and methods for standard semi-infinite optimization we refer

to [18, 33, 91], whereas introductions to generalized semi-infinite programming are given in

[103]. We refer the reader to [20] for a recent tutorial forGSIP. For GSIP the topological

structure of feasible set is investigated in [99, 111, 119], the optimality conditions are studied

in [47, 55, 97, 98, 107] and some solution methods are discussed in [4, 21, 105, 109, 112, 118].

Definition 2.2.1 ([103]) A standard semi-infinite problem has the form

S IP : minimize f(x) subject to x∈ M

with the feasible set

M = { x ∈ Rn| g(x, y) ≤ 0 for all y ∈ Y }

and

Y = { y ∈ Rm| v j(y) ≤ 0 ( j ∈ Q) }.
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In the definition, we write a problem with only one semi-infinite constraint. This formula-

tion is sufficient when one wishes to study the essential features of the problem. However,

in applications one usually deals with finitely many semi-infinite constraints. All involved

functions f , g, v j , j ∈ Q = {1, ...,q}, are at least twice continuously differentiable and are

assumed to be real-valued on their respective domains.

A simple example for a standard semi-infinite constraint is given in [103], the description of

the unit disc inR2,

D = { x ∈ R2| x2
1 + x2

2 ≤ 1 }

by means of infinitely many affine-linear inequality constraints:

D = { x ∈ R2| yT x ≤ 1 for all y ∈ Y}

with

Y = { y ∈ R2| ||y||2 = 1 }.

In fact, this describesD as the intersection of infinitely many halfplanes. In Figure 2.1, three

of these halfplanes are shown.

Figure 2.1: The unit disc as intersection of infinitely many halfplanes [103].

As mentioned in [103], if one has a finite description of a set, one does not necessarily search

for a semi-infinite one. However, in applications one often only knows a semi-infinite de-

scription. In Subsection 2.2.1, a number of these examples will be given. We refer the reader
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to Figure 2.2 for an example of feasibility forSIP. Here the infinite index setY is an inter-

val in R. If the decision variablex is one-dimensional, then the restriction functiong has

two-dimensional arguments. The pointsx1 andx2 are feasible, whereasx3 is infeasible.

On the other hand, in aGSIP problem the infinite index set depends also on the decision

variables. We refer the reader to Figure 2.3 for feasibility under a general semi-infinite con-

straint. Here the restriction functiong is same as in Figure 2.2,x2 is infeasible andx3 becomes

feasible.

Definition 2.2.2 ([103]) A generalized semi-infinite optimization problem has the form,

GS IP: minimize f(x) subject to x∈ M

with the feasible set

M = { x ∈ Rn| g(x, y) ≤ 0 for all y ∈ Y(x) }

and

Y(x) = { y ∈ Rm| v j(x, y) ≤ 0 ( j ∈ Q) }.

Here,Y(x) is allowed to vary withx. In aSIPthe index set is fixed, that is, we haveY(x) ≡ Y.

We assume that the set valued mappingY : Rn ⇒ Rm is locally bounded. The problem

Figure 2.2: Feasibility under a standard semi-infinite constraint [103].
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Figure 2.3: Feasibility under a general semi-infinite constraint [103].

formulation ofGSIP is certainly a generalization ofSIP, but it is not possible to generalize

most of the known theoretical and computational approaches ofSIP to GSIP. We refer to

[103] for detailed information.

Definition 2.2.3 ([110]) A feasible point̄x ∈ M is called a local minimizer of SIP if there is

someε > 0 such that

f (x) − f (x̄) ≥ 0 for all x ∈ M with ‖x− x̄‖ < ε.

The minimizer ¯x is said to be global if this relation holds for anyε > 0. For a feasible point ¯x

of SIPwe will denoteits set of active indicesby

Y0(x̄) = { y ∈ Y | g(x̄, y) = 0 }

Lemma 2.2.4 ([110]) Let x̄ ∈ M be a local minimizer of SIP. Then, there cannot exist a

strictly feasible descent direction d., i.e., a vector d∈ Rn such that

D f (x̄)d < 0, Dxg(x̄, y)d > 0 for all y ∈ Y0(x̄).

2.2.1 Examples and applications

The examples and figures in this subsection are mainly taken from the book [103].
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SIPandGSIPproblems naturally arise in approximation theory, optimal control and numer-

ous engineering applications. There are a lot of real-life applications for standard and gen-

eral semi-infinite programming. Examples include Chebyshev approximation and reverse

Chebyshev approximation problems, minimax problems, robust optimization, design center-

ing [37, 75, 81], and further problems that are not covered by these problem classes, like

defect minimization for operator equations [33, 36, 103], disjunctive programming [101], the

optimal layout of an assembly line [54, 118], engineering design [80], or time minimal control

[55, 58, 118]. There are other real-world applications ofSIPsuch as the shape optimization

problem [8], gene-environment networks [121, 122] and optimal control [92].

Example 2.2.5 ([103])Chebyshev Approximation

SIP is originally related with Chebyshev approximation. Given a continuous functionF :

Z → R with nonempty compact domainZ ⊂ RM. The aim is to approximateF by simpler

functionsa(p, ·) with parameterp ∈ P ⊂ RN. In many applications minimizing the maximal

deviation is needed, i.e. the Chebyshev norm is used instead of the Euclidean norm (cf. Figure

2.4).

Figure 2.4: Chebyshev approximation [103].

The Chebyshev approximation is a nonsmooth problem of the following form

CA : min
p∈P
‖F(·) − a(p, ·)‖∞,Z = min

p∈P
max
z∈Z
|F(z) − a(p, z)|.
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It is possible to rewriteCAby using the epigraph reformulation

min
(p,q)∈P×R

q such that max
z∈Z
|F(z) − a(p, z)| ≤ q,

this problem can be written as follows

S IPCA : min
(p,q)∈P×R

q such that |F(z) − a(p, z)| ≤ q, ∀z ∈ Z.

S IPCA is a smooth optimization problem if all defining functions are smooth, whereasCA

is intrinsically nonsmooth. The price to pay for smoothness is, of course, the presence of

infinitely many inequality constraints.

Example 2.2.6 ([103])Reverse Chebyshev Approximation

A modification of Chebyshev approximation called as reverse Chebyshev approximation oc-

cur in some engineering applications, e.g., the construction of low pass filters in digital filter-

ing theory [55]. Consider the continuous functionF : Z(q) → R on a non-empty compact

domainZ(q) ⊂ RM with a parameterq ∈ Q. Suppose that an approximating family of func-

tions a(p, ·) and a desired precisione(p,q) are given. Parameter vectorsp,q will be found

such that the domainZ(q) is as large as possible without exceeding the approximation error

e(p,q) (cf. Figure 2.5).

Figure 2.5: Reverse Chebyshev approximation [103].

The Reverse Chebyshev approximation problem can be stated as follows:

RCA: max
(p,q)∈P×Q

Vol(Z(q)) such that ‖F(·) − a(p, ·)‖∞,Z ≤ e(p,q),
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Here,Vol(Z(q)) is the M-dimensional volume ofZ(q). The RCAproblem is a nonsmooth

optimization problem and it is possible to rewrite this problem by using general semi-infinite

constraints. The result is the followingGSIP:

GS IPRCA : max
(p,q)∈P×Q

Vol(Z(q)) such that ± (F(z) − a(p, z)) ≤ e(p,q),∀z ∈ Z(q).

Example 2.2.7 ([103])Minimax problems

For a non-empty and compact setX ⊂ Rn, a set-valued mappingY from Rn to Rm and a

continuous real-valued functionG a problem of the type

MM : min
x∈X

max
y∈Y(x)

G(x, y)

is called a minimax problem. The Chebyshev and reverse Chebyshev approximation problems

from Example 2.2.5 and Example 2.2.6 are special cases of minimax problems as long asG

is only assumed to be continuous. On the other hand, ifG is a smooth function, then the

epigraph reformulation ofMM as a smoothGSIPtakes a simpler form than in the situation of

Chebyshev approximation:

GS IPMM : min
(x,z)∈X×R

z such that G(x, y) ≤ z,∀y ∈ Y(x).

Possible applications include robust optimization problems (cf. Example 2.2.8) with parameter-

dependent objective functions, or the evaluation of formulas for directional derivatives of op-

timal value functions (cf. Section 4.2 in [103]).

Example 2.2.8 ([103])Robust Optimization

Let the finitely constrained programming problem depend on an unknown parametery ∈ Y(x).

Then we have the following formulation:

P(y) : min
x∈Rn

f (x, y) such that gi(x, y) ≤ 0 (i ∈ I ),

where|I | < ∞. A posteriori approach to solve this problem is based on finding a solution of

P(y0) wherey0 is some nominal choice of parameters and analyze change of optimal value and

point fory ≈ y0, apparently stability and sensitivity analysis is needed. A priori approach can

be used in constrast to this. Pessimistic way to deal with the constraint with some unknown

parameter vector is to use its worst case reformulation, which is that the constraint holds for
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all values of parameter set. Similarly if the objective function also depends on the unknown

parameter, then in the worst case the aim is to minimize the maximal objective value.

Let Y(x) be uncertainty set withy ∈ Y(x).

RP : min
x∈Rn

max
y∈Y(x)

f (x, y) such that gi(x, y) ≤ 0 (i ∈ I , y ∈ Y(x)).

The followingGSIPis obtained:

GS IPRO : min
(x,z)∈Rn×R

z such that
f (x, y) ≤ z (y ∈ Y(x)),

gi(x, y) ≤ 0 (y ∈ Y(x), i ∈ I ).

We refer to [3] robust optimization models in economics. In Chapter 6 we will treat examples

from robust optimization numerically.

Example 2.2.9 ([103])Design Centering

In a general design centering problem, some functional, e.g. volume, of a parametrized body

insribed in a second fixed body, is maximized. The parametrized body is usually called as

design,B(x) wherex is the parameter and the second fixed body is called as containerC.

DC : max
x∈Rn

f (x) such thatB(x) ⊂ C.

The containerC often has a complicated structure in applications and one wishes to find a

lower bound on its volume by inscribing a simpler bodyB(x). Problems of this type have

been studied extensively, see e.g. [37] or [81] and the references therein. LetC be described

by the inequality constraintc(y) ≤ 0. It is easy to see that the inclusion

B(x) ⊂ C = {y ∈ Rm | c(y) ≤ 0}

is equivalent to the following general semi-infinite constraint

c(y) ≤ 0 for all y ∈ B(x).

So, the design centering problem is equivalent to the followingGSIP:

GS IPDC : max
x∈Rn

Vol(B(x)) such that c(y) ≤ 0 ∀ y ∈ B(x).
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Figure 2.6: A disk with maximal area in a nonconvex container [104].

An example of a design centering problem is plotted in Figure 2.6. In this example the de-

sign B(x) is a disk inR2, parametrized by its midpoint and its radius. Find the discB(x)

having maximal area inC, i.e., find the parameter vectorx ∈ R3 corresponding the maximal

area. A special design centering problem is called as maneuverability problem of a robot

in [19, 24, 33]. This problem leads to the one of the first formulations of aGSIP[35]. The

explanations for maneuverability problem of a robot are from [38]. A robot can be schemati-

cally represented as a connection of links. For example the robot in Figure 2.7 has two links.

Each link has a length and mass associated with it.

The optimization problem results from minimizing a certain performance index (time, energy

consumption, etc.) while ensuring that the robot can follow the resulting trajectory.

Minimize total travel time:

Model 1: joint velocity, acceleration and jerk constraints are imposed.

Model 2: torque constraints are imposed.

A change of variables that relates time to the parameterτ: t = h(τ) (τ ∈ [0,1]) is considered.

For Model 2, minimizing total travel time (SIP)

min h(1) =
∫ 1

0
h
′

(τ)dτ

22



Figure 2.7: Three degrees of freedom robot [38].

such thath(0) = 0,

h
′

(τ) > 0, |Fi(τ)| ≤ Ci (i = 1,2, . . . , l) ∀τ ∈ [0,1].

For practical purposes, the unknown functionh
′

(τ) is approximated by a B-spline. AMPL

modeling language for codification of problem and NSIPS as a nonlinear semi-infinite pro-

gramming solver are used. Discretization methods [32, 90] are implemented in the solver. For

numerical results we refer to [38].

Another special design centering problem recently studied and also applied in industry is lap-

idary cutting problems [128, 129]. The lapidary cutting problem deals with the maximization

of the volume of a faceted coloured gemstone (the design), which is cut from an irregularly

shaped rough stone. There are several basis shapes for the design. In this application, only

convex designs are considered. The faceted gemstone is parameterized by its geometrical po-

sition and orientation within the rough stone as well as by some other shape parameters such

as height, radius or the length-width ratio. For container constraints, rough stone data is given

in the form of triangulated mesh rather than in functional constraint form. An approximate

smooth container representation satisfying convexity assumption is obtained from mesh data.

The lapidary cutting problem can be classified as a special case of a design centering problem,

which is formulated asGSIPand solved by an interior point method developed in [103, 106].

In Figure 2.8 an example of four views of the optimal faceted lapidaries inscribed into the

functional constraint approximation of the rough stone surface are showed [129].
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The last example of a recently revisited design centering problem we want to mention is

air pollution control [39]. We refer to [37, 75, 81] for design centering problems for further

reading. For simple numerical examples of design centering problems, see Chapter 6.

Figure 2.8: The optimal faceted lapidaries inscribed into the functional constraint
approximation of the rough stone surface [129].

2.2.2 The Reduction Ansatz

In finitely constrained programming problems it is well known that around a feasible point

x̄ ∈ Rn there exists a neighborhoodN(x̄) for which the feasible set can be described by

(usually at mostn) constraints which are active at ¯x. If x̄ is a solution of the finitely constrained

programming problem locally, then it is also a solution of the problem locally at which all

inactive constraints at ¯x are dropped and conversely [91].

The feasible set of anSIPor GSIPnormally can not be locally represented by (usually finitely

many) active constraints only. However, under proper assumptions (Reduction Ansatz), for

x̄ ∈ Rn there exist a neighborhood of ¯x and a finite number of certain implicitly defined

inequality constraints such that the feasible set defined by these constraints coincides with

the feasible set ofSIPor GSIP. Hence under Reduction Ansatz,SIPor GSIPcan be locally

reduced to a finitely constrained programming problem at least conceptually (local reduction)

for SIPwe refer the reader to [28].
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Reduction Ansatz was originally formulated for standardSIP under weaker regularity as-

sumptions [28, 126]. It was transferred toGSIP in [34]. The main consequence of the

Reduction Ansatz is that the feasible setM of either standardSIPor GSIPcan locally be de-

scribed by finitely manyC2-constraints, then standardSIPor GSIPlocally looks like a smooth

finite programming problem. The Reduction Ansatz serves as a basic regularity condition for

numerical solution methods in semi-infinite programming. ForGSIPit is a recent result that

the Reduction Ansatz generically holds at all local minimizers [23]. Reduction Ansatz is a

common way to obtain optimality conditions and Newton-type methods forSIP andGSIP.

We use Reduction Ansatz to obtain optimality conditions forGSIPand for convergence of

our method. In this subsection, we use definitions as in our recent paper [108].

For a feasible point ¯x of GSIPwe will denote itsset of active indices(possibly infinite) by

Y0(x̄) = {y ∈ Y(x̄) | g(x̄, y) = 0}. Let L(x̄, y, γ) = g(x̄, y) − γTv(x̄, y), be theLagrangian

associated with the so-calledlower level problem Q(x̄),

Q(x) : max
y∈Rm

g(x, y) subject to v j(x, y) ≤ 0, j ∈ Q. (2.8)

whereγ is the Lagrangian multiplier vector. The lower level problem is a finite, parametric

optimization problem, herex plays the role of ann-dimensional parameter andy is the deci-

sion variable. We refer to Section 4.3.1 for more information about lower level problem. On

the other hand, in the upper level problem minimizingf (x) with x is the decision variable.

The setY0(x̄) coincides with the set of global maximizers of the lower level problemQ(x̄) in

the caseϕ(x̄) = 0 whereϕ(x) is the optimal value function of the family of the lower level

problems. For an illustration see Figure 2.9.

Figure 2.9: An illustration of two active indices [103].
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The points ¯yi ∈ Y0(x̄) satisfy system of equations forQ(x̄):

∇yg(x̄, ȳi) −
q∑

j=1
γ̄i

j∇yv j(x̄, ȳi) = 0,

γ̄i
jv j(x̄, ȳi) = 0 (i ∈ P, j ∈ Q).

The elements ofY0(x) for varying x has to be under control for both theoretical and numeri-

cal purposes and it is achieved by implicit function theorem. The Jacobian of the system with

respect toy, γ is nonsingular if linear independence constraint qualification, strict complemen-

tarity and second order sufficiency condition (with anegative definiteHessian) hold forQ(x̄),

this result is implied by [41]. In this case ¯yi ∈ Y0(x̄) arenondegenerateglobal maximizers of

Q(x̄) in the sense of [43].

In the following we formulate first order optimality conditions as well as corresponding sec-

ond order optimality conditions of finitely constrained programming from Section 2.1 to a

parametric finitely constrained programming problemQ(x̄).

Suppose that the following conditions (Q I)-(Q III) hold at some ¯y ∈ Y0(x̄) in Q(x̄):

(Q-I) The linear independence constraint qualification:

(LI )Q(x̄) {∇yv j(x̄, ȳ) | j ∈ Q0(x̄, ȳ)} is a linearly independent family, (2.9)

whereQ0(x̄, ȳ) = { j ∈ Q | v j(x̄, ȳ) = 0} is the set of lower level active indices at

ȳ ∈ Y(x̄).

Because of Q-I, we have the following lower level Karush-Kuhn-Tucker condi-

tions (See Sections 2.1 and 2.4): there exists a unique vector of Lagrange multi-

pliers γ̄ ∈ Rq such that

(KKT)Q(x̄)



∇yg(x̄, ȳ) −
q∑

j=1
γ̄ j∇yv j(x̄, ȳ) = 0

v j(x̄, ȳ) ≤ 0

γ̄ j ≥ 0

γ̄ jv j(x̄, ȳ) = 0, j ∈ Q.


(2.10)

(Q-II) Strict complementarity:

for eachj ∈ Q: γ̄ j > 0, v j(x̄, ȳ) = 0 or γ̄ j = 0, v j(x̄, ȳ) < 0.

(Q-III) Thesecond order sufficiency condition:

(S OSC)Q(x̄)

 ηT∇2
yL(x̄, ȳ, γ̄)η < 0 for all η ∈ GQ(x̄) \ {0},where

GQ(x̄) = {η ∈ Rm | Dyv j(x̄, ȳ)η = 0, j ∈ Q0(x̄, ȳ)}

 (2.11)
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with L(x̄, y, γ) = g(x̄, y) −
q∑

j=1
γ jv j(x̄, y), theLagrangianassociated withQ(x̄).

The conditions (Q-I) to (Q-III) state that ¯y is a nondegenerate global maximizer of the lower

level problem in the sense of Jongen/Jonker/Twilt [43]. The Reduction Ansatzis said to hold

at x̄ ∈ M if all elements ¯y ∈ Y0(x̄) are nondegenerate for the lower level problem.

Suppose that Reduction Ansatz holds at ¯x ∈ M. Then we can reduceGSIP locally (in a

neighborhood of ¯x) to a smooth finite optimization problemGSIPred, the so-called reduced

GSIP, as given in the next theorem.

Theorem 2.2.10 ([28, 30, 33, 34, 36, 110, 118, 126])Let the Reduction Ansatz be satisfied at

a feasible point̄x of GSIP. Then,

(a) The active index set is finite, Y0(x̄) = {ȳ1, ȳ2, . . . , ȳp}, and there exist neighborhoods Ux̄ of

x̄ and V̄yi of ȳi and unique C1−functions

yi : U x̄→ Vȳi , where yi(x̄) = ȳi ,

γi : U x̄→ Rq, whereγi(x̄) = γ̄i ,

such that for every x∈ U x̄ the value yi(x) is the unique local maximizer of Q(x) in Vȳi with

corresponding Lagrange multiplier vectorγi(x).

(b) The following finite reduction holds:̄x is a solution of GSIP, locally in a neighborhood

U x̄ of x̄, if and only ifx̄ is a local solution of the so-called reduced problem

GSIPred : min
x∈U x̄

f (x) subject to ϕi(x) = g(x, yi(x)) ≤ 0, for all i = 1,2, . . . , p.

(c) The functionsϕi from part (b) are of class C2, and for all x∈ U x̄ their gradients satisfy

Dxϕi(x) = DxL(x, yi(x), γi(x)). (2.12)

Proof. We refer to [28]. The functionsyi(x) andγi(x) in part (a) is a result of the well-known

Implicit Function Theorem.

Remark 2.2.11 ([108]) For standard SIP the formula in Theorem 2.2.10(c) simplifies to

Dxϕi(x) = Dxg(x, yi(x)).
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Figure 2.10: Minimizing constraint function,g(x̄, ·) under the Reduction Ansatz [79].

As explained in [79], in Theorem 2.2.10 for a given feasible point ¯x, infinitely many con-

straints are reduced to finitely many constraints by solving the lower level problemQ(x̄); see

Figure 2.10. In Figure 2.10, ˜x represents the small perturbation of ¯x, i.e., x̄ → x̃. Finitely

many local minima ofQ(x̄) lead to finitely many active inequality constraints for the upper

level problem. Solving the reduced problem is equivalent to solvingSIPor GSIPlocally. The

drawback of Theorem 2.2.10 is that the indices implicitly depend on the variablex.

2.2.3 Constraint qualifications

In the following we recall the Fritz John and the Karush-Kuhn-Tucker optimality conditions

in semi-infinite programming. For ¯x ∈ M recall that

Y0(x̄) = {y ∈ Y(x̄) | g(x̄, y) = 0}

is the active index set at ¯x. LetL(x̄, y, γ) = g(x̄, y) − γTv(x̄, y) be theLagrangianassociated

with the lower level problem Q(x̄).

(i) The Extended Linear Independence Constraint Qualification(ELICQ) is said to hold at

x̄ ∈ M if the vectors

DxL(x̄, ȳi , γ̄i), (ȳi ∈ Y0(x̄)) are linearly independent as a family. (2.13)

28



(ii) The Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ)holds at ¯x, if

there is a vectord ∈ Rn such that

DxL(x̄, ȳi , γ̄i)d < 0 for all ȳi ∈ Y0(x̄). (2.14)

For standardSIP(i) and (ii) reduce to

(i∗) Dxg(x̄, ȳi), (ȳi ∈ Y0(x̄)) are linearly independent as a family.

(ii ∗) Dxg(x̄, ȳi)d < 0 for all ȳi ∈ Y0(x̄)

with Y0(x̄) = {y ∈ Y| g(x̄, y) = 0}.

We will use these conditions in Subsection 5.1.1. It is well-known that ELICQ implies EM-

FCQ, i.e., ELICQ is a stronger constraint qualification.

Theorem 2.2.12 ([112])Let x̄ ∈ M. Suppose, at anȳy ∈ Y0(x̄) the MFCQ is satisfied for

Q(x̄). Then, the following holds: There existsȳi ∈ Y0(x̄), γ̄i ≥ 0, i = 1, . . . , p and multipliers

µ̄0, µ̄1, . . . , µ̄p ≥ 0 such that

µ̄0∇ f (x̄) +
p∑

i=1

µ̄i∇xL(x̄, ȳi , γ̄i) = 0. (2.15)

Proof. For a short proof we refer to [97]. For standardSIP, we have∇xL(x̄, ȳi , γ̄i) =

∇xg(x̄, ȳi).

Theorem 2.2.13 ([108])Let x̄ be a local minimizer of GSIP at which Reduction Ansatz and

MFCQ for reduced problem GSIPred is satisfied. Then there exist a p∈ {0, . . . ,n} and multi-

pliers µ̄i ≥ 0 and active indices̄yi ∈ Y0(x̄), i ∈ {1,2, . . . , p}, such that

∇ f (x̄) +
p∑

i=1

µ̄i∇xL(x̄, ȳi , γ̄i) = 0. (2.16)

For standardSIPwe have the following theorem for KKT conditions.

Theorem 2.2.14 ([42])Let x̄ be a local minimizer of SIP at which EMFCQ is satisfied. Then

there are a p∈ {0, . . . ,n}, multipliers µ̄i ≥ 0 and active indices̄yi ∈ Y0(x̄), i ∈ {1,2, . . . , p},

such that

∇ f (x̄) +
p∑

i=1

µ̄i∇xg(x̄, ȳi) = 0. (2.17)
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We refer to [28, 126] for first order and second order sufficient and necessary optimality

conditions for standardSIP.

2.3 A Review of Numerical Methods for Semi-infinite Programming

For a review of numerical methods for standard semi-infinite programming see [33, 91, 112].

Natural ways to solve a standardSIP problem are either replacing the infinite index setY

by a finite one or solving a sequence of finite subproblems, where the infinite index setY is

replaced by finite approximations.

A brief review of numerical methods used to solveSIP

• Discretization methods,

• Exchange methods,

• Methods based on local reduction.

The discretization, exchange methods and methods based on local reduction basically replace

SIPby (a sequence of) finitely constrained programming problems, i.e., problems with only

a finite number of constraints. These are solved by applying appropriate linear or nonlinear

programming algorithms, for which we refer to an extensive literature. Furthermore, these

methods are examples of superlinearly convergent methods to compute numerically a solu-

tion of SIP, under the additional smoothness of the constraint,g(x, y), with respect tox. Only

the method based on local reduction can be extended fromSIPto GSIPwithout encountering

any difficulty. But there arise serious difficulties when trying to generalize the exchange or

discretization methods fromSIP to GSIP. These difficulties are discussed and convergence

results are derived under quite general assumptions forGSIPin [112]. Other numerical meth-

ods for special structure, in particular forg linear in x are: Simplex-like methods, Cutting

plane methods, etc. [91].
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Discretization Method for SIP

Discretization method is an obvious numerical method forSIP. It’s one of the earliest and

most frequently used methods for solvingSIPproblems in engineering applications [33]. It

is based on a discretization of the infinite index set of inequality constraints. The infinite

index setY is approximated by a sequence of finite subsets{Yk} such thatYk becomes denser

and denser inY ask goes to infinity in a discretization method (cf. Figure 2.11). Then the

SIP problem is approximated by a sequence of nonlinear programming problems. Thus,

instead ofSIPsolve

S IPk : min
x∈Rn

f (x) such that g(x, y) ≤ 0,∀y ∈ Yk

with Yk ⊂ Y, |Yk| < ∞

Y
Y k

Figure 2.11: An example of a simple discretization.

Algorithm 2.3.1 ([110]) Conceptual discretization method

Step k: Given discretization Yk of Y

i) Compute a solution xk of S IPk

ii) Terminate if xk is approximately feasible.(i.e. g(xk, y) ≤ ε,∀y ∈ Y withε > 0)

Otherwise choose finer discretization Yk+1 ⊂ Y

However, in a general discretization method, the subsetYk ⊂ Y must be sufficiently dense

in Y whenk is sufficiently large. This makes the algorithm computationally very expensive.
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The time needed to verify feasibility and to solve this problem increases dramatically as the

cardinality of Yk grows. For accuracy cardinality ofYk must be increased but this results

an unbounded number of constraints, hence the problem can not be solved for too largek,

standard nonlinear programming solvers work fork < 100.000.

For numerical implementation the generation of finite subset (a priori or by an implicit rule)

and the choice of nonlinear programming solvers are basic elements. A general convergence

result for discretization method was obtained [110] under a compactness assumption on the

feasible sets.

Exchange Method forSIP ([110])

This class can be indeed considered as a subclass of discretization methods since it basically

depends on the discretization methods. Given a discretization, the reduced problem ofSIP is

solved, and in a next iteration, discretization points become updated, until the algorithm ter-

minates according to some stopping criterion. In exchange method, there is an exchange of

contraints, in every step a number of new constraints are added and some of old constraints

may be deleted.

Algorithm 2.3.2 ([110]) Conceptual Exchange method

Step k: Given discretization Yk of Y andε > 0

i) Compute a solution xk of S IPk.

ii) Calculate local solutions yki , i = 1, . . . , ik of Q(xk) such that one of them, say yk
1 is a global

solution.

iii) Terminate if g(xk, yk
1) ≤ ε with a solutionx̄ ≈ xk. Otherwise put

Yk+1 = Yk ∪ {yk
i , i = 1, . . . , ik}

We observe that the substep ii) in Algorithm 2.3.2 is very costly as it requires a global search

for minima ofQ(xk). One must avoid an execution of this step in the overall process as much

as possible. Substep ii) assumes that there are only finitely many minima of the lower level

problem, if it does not hold, another method, e.g., discretization, should be used. The conver-

gence theorem of the exchange method is presented in [110]. We refer to [29, 31, 33] for a
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detailed explanation of discretization and exchange methods.

Methods based on local reduction forSIP

These methods are based on the local reduction of theSIP(see, Reduction Ansatz Subsection

2.2.2).

Algorithm 2.3.3 ([33]) Conceptual reduction method

Step k: One is given xk not necessarily feasible.

i) Determine all local maxima y1, . . . , yrk of Q(xk).

ii) Apply mk steps of a finitely constrained programming algorithm to the reduced problem

min
x∈Rn

f (x) such that gl(x) = g(x, yl(x)) ≤ 0 (l = 1,2, . . . , rk).

Let xk, j , j = 1, . . . ,mk be the iterates.

iii) Set xk+1 = xk,mk.

Substep i) is very costly as it requires a global search for maxima ofQ(xk). In substep ii)

finite programming methods such as SQP methods could be used.

We want to emphasize that the numerical solution of a generalized semi-infinite programming

problem might be much more difficult than the solution of standardSIP. ForGSIPnumerical

methods are basically based on the followings [20]:

• An explicit or implicit transformation ofGSIPinto aSIP.

• An generalization of methods forSIPto theGSIP.

In the following we present numerical methods proposed forGSIPin the literature. In [68] a

branch and bound approach was proposed forGSIPwhere upper level is concave and lower

level is linear, however these are very strong and restrictive assumptions. In [21] an algorithm

based on Newton-SQP approach (which works well in standardSIP) was proposed to termi-

nal variational problems (give rise toGSIP) without numerical results. In [118] it was shown

thatGSIPcan locally be transformed toSIP, but the transformation function and new index
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Figure 2.12: A possible scheme of numerical methods forSIP andGSIP.

set might be too expensive to determine explicitly for especially in the case of multidimen-

sional index sets [103]. In [112] the difficulty in generalizing discretization methods from

SIP to GSIPwas emphasized. A conceptual method based on discretization methods (well-

known methods forSIP) was proposed forGSIPand convergence is shown ifx-dependent

grid points are chosen such that they depend continuously onx in [112], but again it is dif-

ficult to implement this method for especially in the case of multidimensional index sets. In

[106], GSIPwith convex lower level problems was transformed to equivalent nonlinear pro-

grams, first numerical results forGSIPwas obtained, this algorithm was implemented in [128]

to the gemstone cutting problem. In [17] a conceptual method for solvingGSIPvia global

optimization by exact discontinuous penalties but it is also incapable of providing numeri-

cal procedure. In [67] a branch and bound framework and uses discretization coupled with

convexification for lower level problem and interval constrained reformulation for upper level

problem was proposed.

Since we give optimality conditions (both in classical and semismooth form) based on lo-

cal reduction, Newton and Semismooth Newton methods can be considered as a subclass of

methods based on local reduction.

It is far beyond the scope of the thesis to give details of these methods. We refer to [29, 31,

33, 91, 110] and the references cited therein for further reading.
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CHAPTER 3

SMOOTH NEWTON METHOD

3.1 Preliminaries on the Newton Method

Recall that Newton method,

zk+1 = zk − (DF(zk))−1F(zk) (3.1)

is a classical method for solving the nonlinear equation,

F(z) = 0, (3.2)

whereF : Rn→ Rn is a continuously differentiable function and the initial point,z0, is given.

The interpretation of (3.1) is that we modelF at the current iteratezk with a linear function

Mk(z) := F(zk) + DF(zk)(z− zk) (3.3)

where the root ofMk is the next iterationzk+1. Here,Mk is called thelocal linear model. If

DF(zk) is nonsingular, thenMk(zk+1) = 0 is equivalent to (3.1). The geometric interpretation

of (3.1) and (3.3) in casen = 1 is sketched in Figure 3.1, the pointzk+1 is the intersection of

z−axis with the tangent line to the graph ofF at the point (zk, F(zk)). We see thatzk+1 is a

better approximation thanzk for the rootz̄ of the functionF.

It is well-known that if

• the equation (3.2) has a solution ¯z,

• DF : Ω ⊂ Rn→ Rn×n is Lipschitz continuous, and

• DF(z̄) is nonsingular,
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F
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Figure 3.1: An illustration of one iteration of Newton method.

then, if z0 is sufficiently close to ¯z, the iteration (3.1) locally convergesq-quadratically (see

Definition 4.1.9) to ¯z.

For more information about Newton method we refer the reader to [9, 56, 57] and references

therein.

3.2 Newton Method for Finitely Constrained Programming

Newton method was applied to smooth form of KKT conditions in finitely constrained pro-

gramming [1, 71, 126]. The results of the present section is based on [110]. The KKT-

approach for solving a finitely constrained programming problem is based on the system of

Karush-Kuhn-Tucker conditions. Let us consider the following finitely constrained program-

ming problem (without equality constraints),

P : min
x

f (x) subject to gi(x) ≤ 0 (i ∈ I )

with I = {1, . . . , r}. Let the active index set (2.7) beI0(x̄) = {1, . . . , k}. At a local minimizer

x̄ under LICQ (see Definition 2.1.8), the following KKT-equations (compare KKT conditions

36



(2.4) in Section 2.1)

∇ f (x̄) +
k∑

j=1
µ̄ j∇g j(x̄) = 0

g j(x̄) = 0 ( j ∈ I0(x̄))

(3.4)

hold with the multipliers ¯µ j ≥ 0, j ∈ I0(x̄). Let Lagrangian be the function

L(x, µ) = f (x) +
k∑

j=1

µ jg j(x)

Let G := [g j ( j ∈ I0(x̄))]. Then KKT condition (3.4) can be written as

∇xL(x̄, µ) = 0

G(x̄) = 0.
(3.5)

Rewriting one obtains the Jacobian of the system (3.5) at a solution:

J(x̄, µ̄) =

 ∇2
xL(x̄, µ̄) ∇TG(x̄)

∇G(x̄) 0

 .
(3.5) represents a nonlinear system ofn+ k equations in as many as unknownsxi , µ j . Newton

method can be applied to solve (3.5).

It is well-known that the Newton method isq-quadratically convergent locally if the Jacobian

is nonsingular at a solution (see [56],[63]). The well-known second order sufficient optimality

conditions for finitely constrained programming problems at a local minimizer ¯x imply that

the JacobianJ(x̄, µ̄) is nonsingular (cf. Example 12.30 in [13]). Under LICQ and SOSC

(see Definition 2.1.15) Jacobian is nonsingular by Lemma B.0.37 in Appendix B. We can

expect that in the general case (i.e., generically) this regularity condition is satisfied. By the

following theorem, it is shown that Newton method is generically applicable.

LetP := C∞(Rn,R)1+m denote the set of problem functionsP = ( f ,g1, . . . ,gm). The function

spaceC∞(Rn,R)1+m is assumed to be endowed with the so-called Withney topology. The

Cr Whitney (or strong) topology is a topology assigned to the spaceCr (M,N) of mappings

from aCr manifold M to aCr manifoldN havingr continuous derivatives. It gives a notion

of proximity of two Cr mappings, and it allows us to speak ofrobustnessof properties of a

mapping. A subset which is dense and open inP is named as generic subset. The Newton

method is generically applicable as stated in the next theorem.

Theorem 3.2.1 ([44]) There is an open and dense subsetP0 ⊆ P such that for all finite

programs P∈ P0, LICQ holds at each feasible point x and at each solution(x̄, µ̄) of (3.5) the

Jacobian J(x̄, µ̄) is nonsingular.
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3.3 Newton Method for Semi-infinite Programming (GSIP)

We recall the results in [112] in this section. In [112] smooth Newton method is applied

to the GSIP problem from Section 2.2. In [22] a Newton method is originally proposed

for the case of linear problems. A Newton method is proposed for nonlinear Chebyshev

approximation in [26] and later on [30] a Newton method is proposed for solving standardSIP.

In this section, we recall the result in [112] about convergence of Newton method forGSIP.

Newton method is classified under continuous methods (methods based on local reduction) in

[29]. In [117] both theoretical and numerical treatment of Newton method applied to standard

SIP is considered.

Applying Newton method to the necessary optimality conditions is a common method for

solvingSIP [33, 91] . We need some theoretical considerations in order to derive optimality

conditions forSIPandGSIP. The Reduction approach is a common way to obtain optimal-

ity conditions and Newton-type methods forSIP [33]. The idea here is to locally transform

SIP andGSIP into finite parametric optimization problems. By Theorem 2.2.10, the prob-

lem GSIPis equivalent toGSIPred(x̄) locally near ¯x, hereGSIPred(x̄) is a finitely constrained

programming problem. Hence, standard optimality conditions of finitely constrained pro-

gramming can be used to obtain optimality conditions forGSIP.

Under LICQ, at a local minimizer ¯x ∈ M, ȳi ∈ Y0(x̄) whereY0(x̄) denotes the set of active in-

dices, the following KKT condition is fulfilled (compare KKT from Q-I in Subsection 2.2.2),

i.e., there exists a multiplier vector ¯γ ≥ 0, γ̄ ∈ Rq̄ such that

∇yg(x̄, ȳi) −
q̄∑

j=1

γ̄i
j∇yv j(x̄, ȳ

i) = 0 (3.6)

Here, we letQ0(x̄, ȳi) = {1, . . . , q̄}, whereQ0(x̄, ȳi) = { j ∈ Q | v j(x̄, ȳi) = 0} is the set of lower

level active indices at ¯yi ∈ Y(x̄). Let x̄ be a local minimizer ofGSIP. Under Reduction Ansatz

at x̄, supposeEMFCQ holds at ¯x, then by Theorem 2.2.13, the following KKT condition is

fulfilled (compare with (4.34))

∇ f (x̄) +
p∑

i=1

µ̄i∇xL(x̄, ȳi , γ̄i) = 0. (3.7)

whereL(x̄, y, γ) = g(x̄, y) −
q̄∑

j=1
γ jv j(x̄, y), the Lagrangian function where ¯γi > 0.
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Recall from Subsection 2.2.2, (Q-III) that a sufficient second order condition is given by:

ηT∇2
yL(x̄, ȳi , γ̄i)η < 0 for all η ∈ GQ(x̄) \ {0},where

GQ(x̄) = {η ∈ Rm | Dyv j(x̄, ȳi)η = 0, j ∈ Q0(x̄, ȳi)}.
(3.8)

Assume that ELICQ (2.13) is fulfilled at ¯x ∈ M, as well as the KKT condition (3.7) holds and

the second order condition,

ξT M̄0ξ > 0 for all ξ ∈ T \ {0}, (3.9)

with the tangent spaceT = {ξ ∈ Rn | DxL(x̄, ȳi , γ̄i)ξ = 0, i = 1, . . . , p} and

M̄0 := D2 f (x̄) +
p∑

i=1

µ̄iD
2
xL(x̄, ȳi , γ̄i) +

p∑
i=1

µ̄iD
Tyi(x̄)D2

yL(x̄, ȳi , γ̄i)Dyi(x̄) (3.10)

−

p∑
i=1

µ̄i

q̄∑
j=1

(
DTγi

j(x̄)Dxv j(x̄, ȳ
i) + DT

x v j(x̄, ȳ
i)Dγi

j(x̄)
)
.

CompareM̄0 by∇2
xL(x̄, ȳ, µ̄, γ̄) stated in GSIP-II in Subsection 5.1.1.

Then, x̄ is a local minimizer ofGSIP. Under Reduction Ansatz in Theorem 2.2.10 (see Sub-

section 2.2.2), theC1 functionsyi(x) andγi(x) are obtained. Consider ¯x ∈ M such that at any

point inY0(x̄) the conditions (2.9), (3.8) are satisfied, also let (2.13) and (3.9) be fulfilled, i.e.,

first and second order conditions holds for both lower level problem and reduced upper level

reduced problem. Then, necessarily ¯x, µ̄, ȳi , γ̄i (i = 1, . . . , p) is a solution of the following

system of KKT equations ofGSIPand the lower level problemQ(x̄) (compare with (4.35) in

Subsection 4.3.3):

∇ f (x) +
p∑

i=1
µi∇xL(x, yi , γi) = 0,

g(x, yi) −
q̄∑

j=1
γi

jv j(x, yi) = 0 (i = 1,2, . . . , p)
(3.11)

and fori = 1, . . . , p

∇yg(x, yi) −
q̄∑

j=1
γi

j∇yv j(x, yi) = 0,

v j(x, yi) = 0 ( j ∈ Q0(x̄, ȳi)).

The system (3.11) consists ofK = n+ p+
p∑

i=1
(m+ q̄) equations with equally many unknowns

x ∈ Rn, µi ∈ R, yi ∈ Rm, γi ∈ Rq̄. Since, the number of equations and unknowns is equal,

Newton-type methods can be used. ForSIPproblems, sincev j does not depend onx, in the

first equation of 3.11, the sum overγi
i Dxv j(x, yi) vanishes (appearing in∇xL(x, yi , γi)).

The following lemma shows that, under these assumptions, the Jacobian of the system (3.11)

is nonsingular at the solution. This, in particular, implies that the Newton method applied to

(3.11) will locally convergeq-quadratically.
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Lemma 3.3.1 ([112]) Let x̄ ∈ M be given such that at any point̄yi ∈ Y0(x̄), i = 1, . . . , p the

conditions LICQ (2.9) and second order sufficiency condition for lower level problem (3.8) are

satisfied and let ELICQ (2.13) and second order condition for reduced upper level problem

(3.9) be fulfilled. Then, the Jacobian of (3.11) atx̄, µ̄, ȳi , γ̄i , i = 1, . . . , p, is nonsingular.

Proof. We refer to [112].

ForSIPa globally convergent algorithm from finitely constrained programming to the locally

reduced problemsSIPred is described in [33], Algorithm 7.4, which can directly be general-

ized toGSIP.
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CHAPTER 4

SEMISMOOTH NEWTON METHOD

4.1 Preliminaries on the Semismooth Newton Approach

For this section we refer the reader to our recent papers [108, 115]. For a locally Lipschitzian

vector valued functionF : Rn → Rm let ∂F(x) denote Clarke’s generalized Jacobian atx

[6]. Let us writeF in terms of component functions asF(x) = ( f 1(x), f 2(x), . . . , f m(x))T . We

assume that eachf i (and, hence,F) is Lipschitz near a given pointx of interest. Rademacher’s

Theorem asserts thatF is differentiable (i.e., eachf i is differentiable) almost everywhere on

any neighbourhood ofx in whichF is Lipschitz. Let us denote the set of points inRn at which

F fails to be differentiable byΩF . We shall writeJF(y) for the usual (m× n) Jacobian matrix

of partial derivatives whenevery is a point at which the necessary partial derivatives exist.

Definition 4.1.1 ([6]) The generalized Jacobian of F at x, denoted by∂F(x), is the convex

hull of all (m× n) matrices Z obtained as the limit of a sequence of the form JF(xi), where

xi → x and xi < ΩF

∂F(x) := co{ lim
i→∞

JF(xi) | xi → x (i → ∞), xi < ΩF}. (4.1)

If F is continuously differentiable then∂F(x) = {JF(x)}.

4.1.1 Semismooth functions

Definition 4.1.2 ([87]) A locally Lipschitzian vector valued function F: Rn → Rm is called

semismooth at x∈ Rn if F is directionally differentiable at x and if for all V∈ ∂F(x+ d) and
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d→ 0 we have

F′(x; d) = Vd+ o(‖d‖).

In Definition 4.1.2,‖ ‖ denotes Euclidean distance. IfF is continuously differentiable at

x, then it is semismooth atx. In some sense, semismoothness is equivalent to the uniform

convergence of directional derivatives in all directions [87]. Semismoothness was originally

introduced by Mifflin for functionals [72]. In [87], the definition of semismooth functions

was extended toF : Rn → Rm. It was proved thatF is semismooth atx if and only if all its

component functions are semismooth. Scalar products and sums of semismooth functions are

still semismooth functions [72].

The importance of semismooth equations is that although the mapping is in general nons-

mooth, Newton method is still applicable and convergesq-superlinearlyto a regular solution.

The rate of convergence of the semismooth Newton method can be improved if an estimate of

higher order is available. This leads to the following definition of higher order semismooth-

ness.

Definition 4.1.3 ([87]) A locally Lipschitzian vector valued function F: Rn → Rm is called

p-order semismooth or at x if F is semismooth at x and if for all V∈ ∂F(x + d) and d→ 0

we have

Vd− F′(x; d) = O(‖d‖p+1),

where0 < p ≤ 1. In particular if p = 1, F is called 1-order semismooth.

1-order semismoothness is renamed as strongly semismoothness in [85]. In this thesis, we

also use strongly semismoothness for 1-order semismooth functions. For other definitions

and properties of semismoothness we refer to [87, 116].

Examples of Semismooth Functions ([116])

Example 1- The Euclidean Norm

The Euclidean normf : Rn→ R, defined by

f (x) = ‖x‖2 = (xT x)1/2
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is an important example of a strongly semismooth function that arises, e.g., as the nonsmooth

part of the Fischer Burmeister function which is defined in Example 2.

Obviously, f is Lipschitz continuous onRn, andC1 onRn \ {0} with

f ′(x) =
1
2

xT

‖x‖2
.

Therefore

∂ f (x) =

{
xT

‖x‖2

}
for x , 0,

∂ f (0) = {νT | ν ∈ Rn, ‖ν‖2 ≤ 1}.

f is strongly semismooth atx = 0, so it is strongly semismooth onRn.

Example 2- Fischer Burmeister and Min functions

Definition 4.1.4 ([60]) A scalar valued functionψ : R2→ R is called an NCP-function if

ψ(a,b) = 0 if and only if a≥ 0, b ≥ 0 and ab= 0.

b

ay=0

Figure 4.1: The zero set of an NCP function, i.e.,ψ(a,b).

Here, NCP stands fornonlinear complementarity problem. An important example of NCP-

function is theFischer-Burmeisterfunction

ψFB(a,b) =
√

a2 + b2 − a− b. (4.2)

The Fischer Burmeister Function was introduced by Fischer [14]. Many modern algorithms

for finite dimensional NCPs are based on reformulations by means of the Fischer Burmeister
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NCP function. This function is Lipschitz continuous and strongly semismooth onR2. Further,

ψFB is C1 on R2 \ {0}, and (ψFB)2 is continuously differentiable onR2. ψFB is the difference

of the strongly semismooth function‖x‖2 and linear functionh(x) = x1 + x2. Therefore,ψFB

is Lipschitz continuous and strongly semismooth onR2. Another important example of an

NCP-function is themin function

ψmin(a,b) = −min{a,b}. (4.3)

ψmin is also strongly semismooth onR2.

Figure 4.2: The graph of minus Fischer Burmeister function, i.e.,−ψFB.

We use both Fischer Burmeister NCP-function and min NCP function in this thesis. See

Appendix A for subdifferentials of the convex functionsψFB andψmin.

Example 3- Piecewise Differentiable Functions

Piecewise continuously differentiable functions are an important subclass of semismooth

functions.

Definition 4.1.5 ([100]) A function f : V → Rm defined on the open set V⊂ Rn is called

PCk−function (piecewise Ck function),1 ≤ k ≤ ∞, if f is continuous and if at every point

x0 ∈ V there exist a neighborhood W⊂ V of x0 and a finite collection of Ck−functions

f i : W→ Rm, i = 1, . . . ,N such that

f (x) ∈ { f 1(x), . . . , f N(x)} for all x ∈W.
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f is called a continuous selection of{ f 1, . . . , f N} on W. The class ofPCk functions is closed

under composition, finite summation and multiplication. The functionsf1 : R → R, f1(x) =

|x|, f2 : R2 → R, f2(x) = max{x1, x2} and f3 : R2 → R, f3(x) = min{x1, x2} are PC∞−

functions.

Proposition 4.1.6 ([116]) Let f : V → Rm be a PC1− function on the open set V⊂ Rn. Then

f is semismooth. If f is a PC2−function, then f is strongly semismooth.

We refer to [100, 116] for more information and properties of piecewise differentiable func-

tions.

4.1.2 Semismooth Newton method

In analogy to the standard Newton method, the basic iteration of the semismooth Newton

approach for solving the equationF(z) = 0 is [87]

zk+1 = zk − (Wk)−1F(zk) (4.4)

with Wk ∈ ∂F(zk).

To study convergence properties of the semismooth Newton method, the concept of CD reg-

ularity was introduced. Here, CD stands for the Clarke subdifferential [85].

Let vector valued functionF : Rn → Rn be semismooth. ThenF is calledCD-regular at a

point x̄, if all matrices in∂F(x̄) are nonsingular [85].

Proposition 4.1.7 ([87]) If all V ∈ ∂F(x) are nonsingular, then there is a neighbourhood

N(x) of x and a constant C such that for any y∈ N(x) and any V∈ ∂F(y), V is nonsingular

and ∥∥∥V−1
∥∥∥ ≤ C.

Proof. If the conclusion is not true, then there is a sequenceyk → x (k → ∞), Vk ∈ ∂F(yk),

such that either allVk are singular or
∥∥∥V−1

k

∥∥∥ → ∞ (k → ∞). SinceF is locally Lipschitzian,

∂F is bounded in a neighbourhood ofx. By passing to a subsequence, we may assume that
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Vk → V (k → ∞). ThenV must be singular, a contradiction to the assumption of nonsingu-

larity of V ∈ ∂F(x). This completes the proof. •

In the following we give the definition of convergence rate.

Definition 4.1.8 ([56, 77]) Suppose that the sequence{zk} converges to the numberξ. We say

that this sequence converges linearly toξ, if there exists a numberµ ∈ [0,1] such that

lim
k→∞

|zk+1 − ξ|

|zk − ξ|
= µ.

The numberµ is called the rate of convergence. If the above holds withµ = 0, then the

sequence is said to convergeq-superlinearly. The next definition is used to distinguish super-

linear rates of convergence.

Definition 4.1.9 ([56, 57]) We say that the sequence converges with order q for q> 1 to ξ if

lim
k→∞

|zk+1 − ξ|

|zk − ξ|q
= µ with µ > 0.

In particular, convergence with order 2 is calledq-quadratic convergence. Theq stands for

quotient, because the definition uses the quotient between two successive terms. In numerical

analysis, usually the term quadratic convergence is used forq-quadratic convergence. There

is also a slightly weaker form of convergence, characterized by the prefixR (for root). It is

concerned with the overall rate of decrease in the error, rather than the decrease over a single

step of the algorithm, see [77] forR-quadratic convergence. However, most convergence

analyses of optimization algorithms are concerned withq-convergence.

Theorem 4.1.10 ([87])Suppose that̄x is a solution of F(x) = 0, and F is semismooth and

CD-regular at x̄. Then the iteration method (4.4) is well defined and{xk}, the sequence gen-

erated by (4.4), converges tōx q-superlinearly in a neighborhood of̄x. If in addition F is

p-order semismooth at̄x, then the convergence is of order1+ p. In particular, if F is strongly

semismooth at̄x, then the convergence is q-quadratic.

Proof. By Proposition 4.1.7, (4.4) is well-defined in a neighbourhood of ¯x for the first step
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k = 0. Now ∥∥∥xk+1 − x̄
∥∥∥ =

∥∥∥xk − V−1
k F(xk) − x̄

∥∥∥
=

∥∥∥xk − x̄− V−1
k F(xk)

∥∥∥
≤

∥∥∥V−1
k [F(xk) − F(x̄) − F′(x̄; xk − x̄)]

∥∥∥
+

∥∥∥V−1
k [Vk(xk − x̄) − F′(x̄; xk − x̄)]

∥∥∥
= o(

∥∥∥xk − x̄
∥∥∥).

(4.5)

This completes the proof. •

4.2 Semismooth Newton Method for Finitely Constrained Programming

In this section, a review of nonsmooth Newton method applied to the problem of finitely

constrained programming as in [85], and also the convergence properties are investigated.

Let us consider, the finitely constrained optimization problem (2.3) from Section 2.1, i.e.,

P : min
x

f (x) subject to gi(x) ≤ 0 (i ∈ I ), h j(x) = 0 ( j ∈ J), (4.6)

where f ,gi ,h j are continuously differentiable functions withI = {1, . . . , r}, J = {1, . . . , s}.

Let N = n+ r + s. Let g(x) = (g1(x), . . . ,gr (x))T , andh(x) = (h1(x), . . . ,hs(x))T . As given in

Section 2.1, the KKT system for this problem is:

∇ f (x) +
r∑

j=1
µ j∇g j(x) +

s∑
j=1

λ j∇h j(x) = 0

µ ≥ 0, g(x) ≤ 0,

µTg(x) = 0,

h(x) = 0.

(4.7)

We denotezT = (xT , µT , λT). The KKT system plays a central role in the theory and algo-

rithms for problems of nonlinear programming. In this section, we assumef ,g andh are

twice continuously differentiable andD2 f ,D2g andD2h are locally Lipschitzian.

Many iterative methods have been developed to solve KKT systems. We refer to [15] for a

comphrehensive treatment of these methods. In [85] an approach was developed to construct

generalized Newton method for solving these nonsmooth KKT equations.

(4.7) is reformulated by using nonlinear complementarity problem functions (NCP-functions)

given in Definition 4.1.4. By using NCP-functions, the system becomes
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T(z) =


∇ f (x) +

r∑
j=1
µ j∇g j(x) +

s∑
j=1
λ j∇h j(x)

ψ(µ,−g(x))

h(x)

 (4.8)

Two typical versions of KKT equations are used, by using the NCP-functionsFisher Burmeis-

ter functiongiven in (4.2) andmin functiongiven in (4.3), which are equivalent to (4.7). These

versions of KKT equations are strongly semismooth. As in Section 2.1, we denote the La-

grangian of (4.6) by

L(x, µ, λ) = f (x) + µTg(x) + λTh(x)

and denote its gradient with respect tox by

∇xL(x, µ, λ).

By usingminNCP-function, the KKT system becomes

T1(z) =


∇ f (x) +

r∑
j=1
µ j∇g j(x) +

s∑
j=1
λ j∇h j(x)

−min{µ,−g(x)}

h(x)

 . (4.9)

By usingFischer-BurmeisterNCP-function, the KKT system becomes

T2(z) =



∇ f (x) +
r∑

j=1
µ j∇g j(x) +

s∑
j=1
λ j∇h j(x)√

µ2
1 + g1(x)2 + g1(x) − µ1

...√
µ2

r + gr (x)2 + gr (x) − µr

h(x)


. (4.10)

In Subsection 4.1.1, it is mentioned that Fischer-Burmeister NCP function and min NCP

function is strongly semismooth. Here a main result based on this is given.

Theorem 4.2.1 ([85]) Both T1 and T2 defined by (4.9) and (4.10) are strongly semismooth.

Proof. We refer to [85].

Now, we discuss about convergence of the nonsmooth version of Newton method (4.4), i.e.,

see Section 4.1, to solve the equationsT1(z) = 0 andT2(z) = 0. By Theorem 4.2.1 we see that

T1 andT2 are strongly semismooth functions.
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Hence, the key thing is to identify the conditions such that all elements in the generalized

Jacobians at the solution point ¯z of T1 and T2 are nonsingular. This is equivalent to the

condition bothT1 andT2 are CD-regular (see Section 4.1) at a KKT-pointz∗.

Definition 4.2.2 (implied by [85]) Suppose that zT = (xT , µT , λT) ∈ RN. Let R= {1,2, . . . , r},

I (z) = { j | j ∈ R,g j(x) = 0},

I0(z) = { j ∈ I (z) | µ j = 0},

I1(z) = { j ∈ I (z) | µ j > 0},

and

G(z) := {d ∈ Rn | Dg j(x)d = 0 ( j ∈ I1(z)), Dh(x)d = 0}.

A point z∈ RN is said to satisfy the strong second-order sufficiency condition for (4.6) if it

satisfies the first-order KKT condition (4.7) and if dTVd > 0 for all d ∈ G(z) \ {0} and V =

∇2
xL(x, µ, λ). We say that a KKT point z of (4.6) satisfies the linear independence condition if

{∇g j(x) ( j ∈ I (z)),∇h j(x) ( j ∈ J)} are linearly independent.

A point z∈ RN is said to satisfy the Robinson condition if it satisfies both the linear indepence

condition and the strong second-order sufficiency condition.

Note that the strong second order sufficiency condition implies thatx is a strict local minimum

of (4.6). We will reformulate and then use Robinson condition (Definition 4.2.2) forGSIPred

in Section 5.1.

Theorem 4.2.3 ([85]) Suppose that̄z ∈ RN is a KKT point of (4.6) and satisfies the Robinson

condition. Then, both T1 and T2 are CD-regular atz̄.

Proof. Let W ∈ ∂T1(z̄). Then,

W =



V DgI1(x̄) DgI0(x̄) DgJ(x̄) Dh(x̄)

∇gI1(x̄) 0 0 0 0

Λ0DgI0(x̄) 0 −Γ0 0 0

0 0 0 −EJ 0

∇h(x̄) 0 0 0 0


, (4.11)
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whereV = ∇2
xL(x̄, µ̄, λ̄), I1(z̄) ⊆ I1 ⊆ I (z̄), I0 ⊆ (I0(z̄) \ I1), J = R\ (I1 ∪ I0),EJ is the identity

matrix of dimension|J| ,Λ0 andΓ0 are negative definite diagonal matrices of dimension|I0|

and diagonal elementsλ j ∈ [0,1] andγ j = 1− λ j , respectively, forj ∈ I0, the order ofj ∈ R

is reordered to separateI1 andI0 andJ. Suppose that

W



d1

d2

d3

d4


= 0, (4.12)

whered1 ∈ Rn,d2 ∈ R|I1|,d3 ∈ R|I0|,d4 ∈ R|J|. Note that thejth element ofd3 is equal to 0

by (4.12) ifλ j = 0. Without loss of generality, we may assume thatλ j ∈ (0,1]. Then (4.12)

impliesd4 = 0,

Vd1 + DgI1(x̄)d2 + DgI0(x̄)d3 + Dh(x̄)d5 = 0, (4.13)

∇gI1(x̄)d1 = 0, (4.14)

∇gI0(x̄)d1 = Λ
−1
0 Γ0d3. (4.15)

and

∇h(x̄)d1 = 0, (4.16)

Suppose thatd1 satisfies (4.14). Thend1 ∈ G(z̄). Multiplying (4.13) withdT
1 , by (4.14) and

(4.15), we have

dT
1 Vd1 + dT

3Γ0Λ
−1
0 d3 = 0.

By the strong second-order sufficiency condition and positive definiteness ofΓ0Λ
−1
0 ,d1 = 0

andd3 = 0. Now, (4.13) yields

DgI1(x̄)d2 + Dh(x̄)d5 = 0.

By the linear independence condition,d2 = 0 andd5 = 0. Hence,d = 0. This shows thatW is

nonsingular. Therefore,T1 is CD-regular at ¯z.

For anyz ∈ RN, T2 is differentiable atz if and only if ∇2
xL(x, µ, λ) exists andµ2

j + g j(x)2 > 0

for all j ∈ R. For these pointsz,

∇T2(z) =


∇2

xL(x, µ, λ) Dg(x) Dh(x)

Λ∇g(x) Γ 0

∇h(x) 0 0

 , (4.17)
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whereΛ = diag{λ1, λ2, . . . , λr },Γ = {γ1, γ2, . . . , γr },

λ j =
g j(x)√

µ2
j + g j(x)2

+ 1 (4.18)

and

γ j =
g j(x)√

µ2
j + g j(x)2

− 1 (4.19)

for j ∈ R. By (4.18) and (4.19), we have

(λ j − 1)2 + (γ j + 1)2 = 1. (4.20)

By (4.17), (4.20) and the definition of the generalized Jacobian ofT2, if W ∈ ∂T2(z̄), we have,

W =


V Dg(x̄) Dh(x̄)

Λ∇g(x̄) Γ 0

∇h(x̄) 0 0

 . (4.21)

whereV = ∇2
xL(x̄, µ̄, λ̄) and againΛ = diag{λ1, λ2, . . . , λr },Γ = {γ1, γ2, . . . , γr }, and

(λ j − 1)2 + (γ j + 1)2 ≤ 1. (4.22)

Suppose that

W


d1

d2

d3

 = 0, (4.23)

whered1 ∈ Rn,d2 ∈ Rr . Used2 j to denote the components ofd2. Then, (4.23) implies

Vd1 + Dg(x̄)d2 + Dh(x̄)d3 = 0, (4.24)

λ j∇g j(x̄)d1 + γ jd2 j = 0, (4.25)

for j ∈ Rand

∇h(x̄)d1 = 0, (4.26)

Let R1 := { j ∈ R, λ j > 0, γ j < 0},R2 := { j ∈ R, λ j = 0} andR3 := { j ∈ R, γ j = 0}. Then

I1(z̄) ⊆ R3. By (4.25) and (4.22),d2 j = 0 if j ∈ R2,

∇g j(x̄)d1 = 0 (4.27)
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if j ∈ R3, and

∇g j(x̄)d1 = υ jd2 j , (4.28)

whereυ j = −γ j/λ j > 0 if j ∈ R1. Multiplying (4.24) withdT
1 , by (4.27) and (4.28),

dT
1 Vd1 +

∑
j∈R1

υ jd
2
2 j
= 0.

SinceI1(z̄) ⊆ R3, by (4.27),d1 ∈ G(z̄). Sinceυ j > 0 for j ∈ R1, by the strong second-order

sufficiency condition,d1 = 0 andd2 j = 0 for j ∈ R1. Now, (4.24) yields∑
j∈R3

Dg j(x̄)Td2 j = 0.

NoticeR3 ⊆ I (z̄). By linear independence condition,d2 j = 0 for j ∈ R3. Hence,d = 0. This

shows thatW is nonsingular. Therefore,T2 is CD-regular at ¯z. This completes the proof. •

By Theorems 4.1.10, 4.2.1 and 4.2.3, we have the following theorem which shows that semi-

smooth Newton method isq-quadratically convergent if Robinson condition holds at the so-

lution point.

Theorem 4.2.4 ([85]) Let T = T1 or T = T2. Consider the semismooth Newton method

(4.4). Suppose that̄z is a solution of (4.7) and satisfies Robinson condition. Then the iterative

method (4.4) is well-defined and{zk}, the sequence generated by (4.4), converges toz̄ q-

quadratically in a neighbourhood of̄z.

Note that in [60] it is shown that, for finite optimization problems withC2 data, CD-regularity

of the Kojima formulation of the KKT system is equivalent to the strong stability of a KKT

point. From another point of view, in [85] it is shown that the Robinson condition (Definition

4.2.2) at the KKT point of aC2 problem implies CD-regularity of the KKT system, in which

the complementarity conditions are reformulated using themin or Fischer BurmeisterNCP

functions. In Subsection 5.1.1 we will show an analogous result forGSIP, involving weaker

smoothness assumptions.

We refer the reader to [85] some other semismooth KKT equations.

4.3 Semismooth Optimality Conditions in Semi-infinite Programming

In this subsection we recall the results obtained in our recent paper [108]. In [88], recently the

semismooth optimality conditions for standardSIPwas suggested. In this section, we recall
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semismooth opimality conditions for standardSIPin Subsection 4.3.2 and we derive them for

GSIPin Subsection 4.3.3.

4.3.1 The bilevel structure of semi-infinite programming

As we stated in our recent paper [108], the theoretical and numerical treatment ofGSIP is

closely related to the bilevel structure of semi-infinite programming. In fact, under our as-

sumptions the semi-infinite constraint inGSIPis equivalent to

ϕ(x) = max
y∈Y(x)

g(x, y) ≤ 0.

The feasible setM of GSIPis the lower level set of some optimal value function:

M = { x ∈ Rn| ϕ(x) ≤ 0 }.

An example of feasible set defined by the optimal value function is illustrated in Figure 4.3.

The functionϕ is the optimal value function of the lower level problem defined in (2.8)

Figure 4.3: The feasible set defined by optimal value function [128].

Q(x) : max
y∈Rm

g(x, y) subject to v j(x, y) ≤ 0 ( j ∈ Q).

In the upper level problem the aim is to minimizef over M wherex is the decision variable,

however, in the lower level problemx plays the role of ann−dimensional parameter, andy is

the decision variable.
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In semi-infinite programming the main numerical problem is the following: the lower level

problem has to be solved toglobal optimality, even if we want to find a stationary point of

the upper level problem. In fact, standard nonlinear programming (NLP) solvers can only be

expected to produce alocal maximizeryloc of Q(x̄) which is not necessarily a global maxi-

mizeryglob . Even if g(x̄, yloc) ≤ 0 holds,x̄ might be infeasible sinceg(x̄, yloc) ≤ 0 < ϕ(x̄) =

g(x̄, yglob) cannot be ruled out in general.

Since, in the following, we aim to use the approach from [88] and replace the lower level

problem by its KKT conditions, we must make sure that a solution of the KKT system is

a global maximizer. We emphasize that otherwise one might computeinfeasible pointsfor

the semi-infinite problem, which is a major pitfall of the approach at hand. In particular, the

concept ofsubstationary pointsfrom [88] may entail infeasibility.

A natural assumption under which a solution of the KKT conditions leads to a global maxi-

mizer is the convexity of the lower level problem, that is, for eachx ∈ Rn the functiong(x, ·)

is concave, and the setY(x) is convex. We thus make the following assumption throughout

the remainder of the thesis.

Assumption 4.3.1 ([108, 115])For all x ∈ Rn the lower level problem Q(x) is convex.

In GSIPmany relevant applications have convex lower level problems [103] (see also Chap-

ter 6). On the other hand, in standard semi-infinite optimization this situation is rather rare.

For recent solution approaches to standardSIPwith nonconvex lower level problems, we refer

the reader to [16, 76].

In the remainder of the thesis, we will not use Assumption 4.3.1 explicitly, but develop the

theory in the more general setting without convex lower level problems. In particular we will

deal with finitely many lower level maximizers, instead of a unique one in the convex regular

case. However, the slightly more general setting of finitely many generalized semi-infinite

constraintsgi(x, y) ≤ 0, y ∈ Y(x), i ∈ I , each with a convex lower level problem, would lead

to almost identical formulas as the ones we develop in the sequel (withg replaced bygi).
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4.3.2 Semismooth optimality conditions forSIP

Let us first consider the standard semi-infinite case. As mentioned in Section 2.2 a standard

semi-infinite problem has the form

S IP : minimize f (x) subject to x ∈ M

with

M = { x ∈ Rn| g(x, y) ≤ 0 for all y ∈ Y }

and

Y = { y ∈ Rm| v j(y) ≤ 0 ( j ∈ Q) }.

To formulate first and second order optimality conditions, we use the following notation. For

a continuously differentiable functionf : Rn → R, we denote the gradient in row form

by D f (x) =
[
∂ f
∂x1
,
∂ f
∂x2
, . . . ,

∂ f
∂xn

]
and in column form by∇ f (x) = DT f (x). For a continuously

differentiable functionF : Rn→ Rr we denote the Jacobian ofF at x ∈ Rn by DF(x) whereas

the transposed Jacobian is∇F(x). For a functiong : Rn × Rr → R we denote by∇xg(x, y)

the gradient ofg at (x, y) with respect tox and by∇2
xxg(x, y), ∇2

xyg(x, y) = Dy∇xg(x, y) and

∇2
yyg(x, y), the respectiven× n, n× r andr × r matrices of second order partial derivatives of

g at (x, y).

Recall that by Theorem 2.2.13 from Subsection 2.2.3, for a local minimizer under EMFCQ

(2.14), the following first order optimality condition holds,

∇ f (x̄) +
p∑

i=1

µ̄i∇xg(x̄, ȳi) = 0. (4.29)

Next we complement the upper level first order condition from Theorem 2.2.13 by a lower

level first order condition. In fact, since the active indices ¯yi ∈ Y0(x̄), i ∈ P, are global

solutions ofQ(x̄), under some constraint qualification like Slater’s condition

(see Definition 2.1.12) in the lower level problem (2.8), there exist vectors of Lagrange

multipliers γ̄i ∈ Rq such that

∇yg(x̄, ȳi) −
q∑

j=1
γ̄i

j∇yv j(ȳi) = 0 (i ∈ P),

γ̄i
j ≥ 0, v j(ȳi) ≤ 0, γ̄i

jv j(ȳi) = 0 (i ∈ P, j ∈ Q).

(4.30)

By (4.29) and (4.30), we arrive at the following equalities and inequalities:
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∇ f (x̄) +
p∑

i=1
µ̄i∇xg(x̄, ȳi) = 0,

µ̄i ≥ 0, g(x̄, ȳi) = 0 (i ∈ P),

∇yg(x̄, ȳi) −
q∑

j=1
γ̄i

j∇yv j(ȳi) = 0 (i ∈ P),

γ̄i
j ≥ 0, v j(ȳi) ≤ 0, γ̄i

jv j(ȳi) = 0 (i ∈ P, j ∈ Q).

(4.31)

With any NCP functionψ (4.31) can be reformulated as the following system of equations:

∇ f (x̄) +
p∑

i=1
µ̄i∇xg(x̄, ȳi) = 0,

ψ(µ̄i ,−g(x̄, ȳi)) = 0 (i ∈ P),

∇yg(x̄, ȳi) −
q∑

j=1
γ̄i

j∇yv j(ȳi) = 0 (i ∈ P, j ∈ Q),

ψ(γ̄i
j ,−v j(ȳi)) = 0 (i ∈ P, j ∈ Q).

(4.32)

As observed in [88], the system of equations (4.32) is not directly equivalent to (4.31). The

system (4.32) allows the case that

µ̄i = 0, g(x̄, ȳi) < 0.

However, if there is ann+ (m+ q+ 1)p dimensional vector, say ( ¯x, µ̄, ȳ, γ̄), satisfying (4.32),

the variables indexed byi with µ̄i = 0 may be dropped. Thus, we get a solution of (4.31). It is

easy to see that a solution of (4.31) satisfies (4.32). Hence, (4.31) and (4.32) areequivalent,
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and finding the solution of (4.31) amounts to finding a zero of the functionT : RN → RN

T(z) =



∇ f (x) +
p∑

i=1
µi∇xg(x, yi)

ψ(µ1,−g(x, y1))
...

ψ(µp,−g(x, yp))

∇yg(x, y1) −
q∑

j=1
γ1

j∇yv j(y1)

ψ(γ1
1,−v1(y1))
...

ψ(γ1
q,−vq(y1))
...

∇yg(x, yp) −
q∑

j=1
γ

p
j ∇yv j(yp)

ψ(γp
1,−v1(yp))

...

ψ(γp
q,−vq(yp))



, (4.33)

whereN = n+ (m+q+1)p with z= (xT , µT , yT , γT)T ∈ Rn+(m+q+1)p, x ∈ Rn, µ ∈ Rp, y ∈ Rmp

andγ ∈ Rqp.

4.3.3 Semismooth optimality conditions forGSIP

In this subsection we derive semismooth optimality conditions for the followingGSIP (see

Section 2.2) as in our recent paper [108].

GS IP: minimize f (x) subject to x ∈ M

with the feasible set

M = { x ∈ Rn| g(x, y) ≤ 0 for all y ∈ Y(x) }

and

Y(x) = { y ∈ Rm| v j(x, y) ≤ 0 ( j ∈ Q) }.

If x̄ ∈ M is a local minimizer ofGSIPat which the Reduction Ansatz holds, then, by Theo-

rem 2.2.10, ¯x is also a local minimizer of the locally reduced problemGSIPred , and necessary
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optimality conditions for ¯x in the reduced problem are also necessary optimality conditions

for x̄ in the original problem. In particular, if ¯x ∈ M is a local minimizer ofGSIPat which

the Reduction Ansatz (see Subsection 2.2.2) and the Mangasarian-Fromovitz constraint qual-

ification hold, then there exist multipliers ¯µi ≥ 0, i ∈ P = {1, ..., p}, such that

∇ f (x̄) +
p∑

i=1

µ̄i∇ϕi(x̄) = 0. (4.34)

Note that all constraints inGSIPred are active at ¯x by construction, that is, we haveϕi(x̄) = 0

for all i ∈ P.

Usingϕi(x̄) = g(x̄, ȳi), the fact that each ¯yi is a global maximizer of the lower level problem,

as well as the evaluation of (2.12) at ¯x, we arrive at the system

∇ f (x̄) +
p∑

i=1
µ̄i∇xL(x̄, ȳi , γ̄i) = 0,

µ̄i ≥ 0, g(x̄, ȳi) = 0 (i ∈ P),

∇yg(x̄, ȳi) −
q∑

j=1
γ̄i

j∇yv j(x̄, ȳi) = 0 (i ∈ P),

γ̄i
j ≥ 0, v j(x̄, ȳi) ≤ 0 (i ∈ P, j ∈ Q),

γ̄i
jv j(x̄, ȳi) = 0 (i ∈ P, j ∈ Q).

(4.35)

With any NCP functionψ, along the same lines as in Subsection 4.3.2 the solution of (4.35)

is seen to be equivalent to finding a zero of the function
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T(z) =



∇ f (x) +
p∑

i=1
µi∇xL(x, yi , γi)

ψ(µ1,−g(x, y1))
...

ψ(µp,−g(x, yp))

∇yg(x, y1) −
q∑

j=1
γ1

j∇yv j(x, y1)

ψ(γ1
1,−v1(x, y1))

...

ψ(γ1
q,−vq(x, y1))

...

∇yg(x, yp) −
q∑

j=1
γ

p
j ∇yv j(x, yp)

ψ(γp
1,−v1(x, yp))

...

ψ(γp
q,−vq(x, yp))



, (4.36)

with z= (xT , µT , yT , γT)T ∈ RN, N = n+ (m+ q+ 1)p, x ∈ Rn, µ ∈ Rp, y ∈ Rmp andγ ∈ Rqp.

Again,T is strongly semismooth under our assumptions.

We emphasize that for a standardSIPthe term∇xL(x, yi , γi) in T is replaced by∇xg(x, yi), and

v j(x, yi) by v j(yi), that is, the functionT from (4.36) generalizes the functionT from (4.33)

from SIP to GSIP. Note that for standardSIP it is not necessary to assume the Reduction

Ansatz to derive the functionT. However, the situation forGSIP is not essentially more

restrictive, since in Subsection 5.1.1 we will anyway assume the Reduction Ansatz at the

solution point for our convergence result and the Reduction Ansatz at local minimizers of

GSIPis a weak assumption [23].
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CHAPTER 5

SEMISMOOTH NEWTON APPROACH for SEMI-INFINITE

PROGRAMMING

In Section 4.2, a review of semismooth Newton method applied to finitely constrained pro-

gramming and the convergence of the method are given. In this section we will apply semi-

smooth Newton method to semi-infinite programming problems.

In Section 5.1, for the convergence of the semismooth Newton method we show that a stan-

dard regularity condition is needed and indeed it is satisfied under natural assumptions for

semi-infinite programming. Under the Reduction Ansatz (see Subsection 2.2.2) in the lower

level and strong stability in the reduced upper level problem, i.e., Robinson condition (see

Definition 4.2.2) this regularity condition is satisfied. We do not have to assume strict com-

plementary slackness in the upper level in this section.

As we have mentioned in Chapter 1, NCP functions were used to get a nonsmooth refor-

mulation of the KKT conditions in standardSIP in the article [88]. A regularity condition

was suggested to guarantee convergence of a specific semismooth Newton method. How-

ever, in [88] strict complementarity is a part of the regularity condition in the upper as well

as in the lower level problem. The standard Newton method would converge under these as-

sumptions. In Section 5.1, we complement the result in [88] by showing convergence under

the case strict complementarity violation in the upper level. We also transfer the method to

generalized semi-infinite programming.

In Section 5.2 we consider the case strict complementarity violated in the upper and in the

lower level. Now, in locally reduced problem, the auxiliary functions are then notC2 func-

tions. But still, it is possible to show convergence of the semi-smooth Newton method under
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weak assumptions.

5.1 The Case with the Strict Complementarity in the Lower Level Problem

In this section we wish to apply the semismooth Newton approach from Section 4.1 to find a

zero of the functionT from (4.36). In particular, we want to use Theorem 4.1.10 and, thus,

find a sufficient condition for CD-regularity ofT in a solution point ¯z.

As we mention in our recent paper [108], the part of this condition concerning the lower level

problem will be the Reduction Ansatz (see Subsection 2.2.2), while in the upper level prob-

lem we will assume the so-calledRobinson condition(which is previously used for finitely

constrained programming, see Definition 4.2.2 ) . In fact, consider ¯x ∈ M and the locally

reduced problemGSIPred where, according to the definition ofT, we neglect the fact that all

constraintsϕi (i ∈ P) are active by their definition. LetP0(x̄) = {i ∈ P |ϕi(x̄) = 0} be the set of

active indices at ¯x for the upper level problem. Recall from Theorem 2.2.10(c) that the auxil-

iary functionsϕi (i ∈ P), in the reduced problemGSIPred are twice continuously differentiable,

so that it makes sense to impose a second order regularity condition onGSIPred.

5.1.1 Convergence of the method

For convergence of our method, in the upper level we will assume Robinson condition. In the

following we give this condition [108].

The Robinson condition is said to hold at ¯x if the following conditions (GSIP-I) and (GSIP-II)

are satisfied:

(GSIP-I) The linear independence constraint qualification:

(LI )GS IP {∇xL(x̄, ȳi , γ̄i) | i ∈ P0(x̄) } is a linearly independent family.

If x̄ is a local minimizer, then there exists a unique vector ¯µ ∈ Rp of Lagrange

multipliers with

(KKT)GS IP ∇ f (x̄) +
p∑

i=1

µ̄i∇xL(x̄, ȳi , γ̄i) = 0,

µ̄i ≥ 0, g(x̄, ȳi) ≤ 0, µ̄ig(x̄, ȳi) = 0 (i ∈ P).

61



(GSIP-II) Thestrong second order sufficiency condition:

(S S OSC)GS IP

 ξT∇2
xL(x̄, ȳ, µ̄, γ̄)ξ > 0 for all ξ ∈ GGS IP\ {0} with

GGS IP= {d ∈ Rn| DxL(x̄, ȳi , γ̄i)d = 0 for i ∈ P+(x̄)}.


with P+(x̄) = {i ∈ P0(x̄) | µ̄i > 0}. Here,∇2

xL(x̄, ȳ, µ̄, γ̄) stands for the Hessian of

the Lagrangianf (x) +
p∑

i=1
µiϕi(x) of GSIPred, that is, for∇2

x f (x̄) +
p∑

i=1
µ̄i∇

2
xϕi(x̄),

with

∇2
xϕi(x̄) = ∇2

xL(x̄, ȳi , γ̄i)

−

 ∇2
yxLi

−DxvQi
0
(x̄, ȳi)


T  D2

yLi −∇yvQi
0
(x̄, ȳi)

−DyvQi
0
(x̄, ȳi) 0


−1  ∇2

yxLi

−DxvQi
0
(x̄, ȳi)

 ,
whereDxvQi

0
stands for the matrix with rowsDxv j , j ∈ Qi

0 = Q0(x̄, ȳi). DyvQi
0

is

defined similarly.

Note that the Robinson condition doesnot assume strict complementary slackness. In the

standardSIPcase,∇xL(x̄, ȳi , γ̄i) reduces to∇xg(x̄, ȳi), and in the Hessian of the Lagrangian

we obtain

∇2
xϕi(x̄) = ∇2

xg(x̄, ȳi) −

 ∇2
yxg(x̄, ȳi)

0


T  D2

yLi −∇vQi
0
(ȳi)

−DvQi
0
(ȳi) 0


−1  ∇2

yxg(x̄, ȳi)

0

 .
where the term ∇2

yxg(x̄, ȳi)

0


T  D2

yLi −∇vQi
0
(ȳi)

−DvQi
0
(ȳi) 0


−1  ∇2

yxg(x̄, ȳi)

0


is called asshift termin [44].

Now consider a zeroz of T from (4.36). Then the KKT conditions mentioned in (Q-I) and

(GSIP-I) hold by definition ofT. The remaining conditions in the Reduction Ansatz and

the Robinson condition are algebraic conditions on the involved functions which can also be

imposed independently of the fact that we deal with lower level global maximizers and upper

level local minimizers. In this sense, we can make the following assumption:

Assumption 5.1.1 ([108])The Reduction Ansatz and the Robinson condition hold at z.

Theorem 5.1.2 ([108])Suppose that̄z= (x̄T , µ̄T , ȳT , γ̄T)T is a zero of T from (4.36) with the

choicesψ = ψFB or ψ = ψmin, and that Assumption 5.1.1 holds atz̄. Then T is CD-regular at

z̄.
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Proof. Let z̄ be a zero ofT at which Assumption 5.1.1 holds, and letψ denote either one

of the two NCP functionsψFB andψmin. We only consider the case of two active indices,

that is,p = 2, the general case running along the same lines. We will distinguish two cases,

depending on whether upper level strict complementary slackness holds or not.

Case 1: Strict complementarity holds in the upper level problem.

We haveψ(µ̄i ,−g(x̄, ȳi)) = 0 and (µ̄i ,−g(x̄, ȳi)) , 0, so thatψ is differentiable at (¯µi ,−g(x̄, ȳi))

with gradient

Dψ(µ̄i ,−g(x̄, ȳi)) =

 (−1,0), i < P0(x̄)

(0,−1), i ∈ P0(x̄)

for i = 1,2 (see (A.3) in Appendix A).

The Reduction Ansatz in the lower level problem impliesψ(γ̄i
j ,−v j(x̄, ȳi)) = 0 and (γ̄i

j ,−v j(x̄, ȳi)) ,

0, so thatψ is also differentiable at (¯γi
j ,−v j(x̄, ȳi)) with gradient

Dψ(γ̄i
j ,−v j(x̄, ȳ

i)) =

 (−1,0), j < Q0(x̄, ȳi)

(0,−1), j ∈ Q0(x̄, ȳi)

for i = 1,2 and j ∈ Q. Together this means thatT is differentiable at ¯z, and its Jacobian is the

matrix

DT(z̄) =


B11 B12 B13

B21 B22 0

B31 0 B33

 (5.1)

with the following blocks:

B11 =


D2

x f (x̄) +
2∑

i=1
µ̄i∇

2
xLi ∇xL1 ∇xL2

λ1Dxg(x̄, ȳ1) θ1 0

λ2Dxg(x̄, ȳ2) 0 θ2


with ∇2

xLi = ∇
2
xL(x̄, ȳi , γ̄i), etc.,

λi =

 0, i < P0(x̄)

1, i ∈ P0(x̄)
, θi =

 −1, i < P0(x̄)

0, i ∈ P0(x̄)
, i = 1,2,
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B12 =


µ̄1∇

2
xyL1 −µ̄1∇xv(x̄, ȳ1)

λ1Dyg(x̄, ȳ1) 0

0 0

 ,

B13 =


µ̄2∇

2
xyL2 −µ̄2∇xv(x̄, ȳ2)

0 0

λ2Dyg(x̄, ȳ2) 0

 ,
and with

αi
j =

 0, j < Q0(x̄, ȳi)

1, j ∈ Q0(x̄, ȳi)
, βi

j =

 −1, j < Q0(x̄, ȳi)

0, j ∈ Q0(x̄, ȳi)
,

Bi+1,1 =

 ∇2
yxLi 0 0

diag(αi)Dxv(x̄, ȳi) 0 0


as well as

Bi+1,i+1 =

 ∇2
yLi −∇yv(x̄, ȳi)

diag(αi)Dyv(x̄, ȳi) diag(βi)

 , i = 1,2.

Our aim is to show thatDT(z̄) is nonsingular under Assumption 5.1.1. The main idea of

the proof is to consider an appropriate Schur complement in the block matrixDT(z̄) (see

Appendix B).

Note that the matricesB22 andB33 are nonsingular under the Reduction Ansatz. In fact, by

the definitions ofα1 andβ1, B22 is nonsingular if and only if the matrix ∇2
yL1 ∇yvQ1

0
(x̄, ȳ1)

DyvQ1
0
(x̄, ȳ1) 0


is nonsingular. Since under the Reduction Ansatz we have (LI )Q(x̄) and (S OSC)Q(x̄) at ȳ1,

the latter matrix is nonsingular by Lemma B.0.37. Analogously the nonsingularity ofB33 is

shown.

Consequently, according to Lemma B.0.35 the matrixDT(z̄) is nonsingular if and only if the

Schur complement

S = DT(z̄)/

 B22 0

0 B33

 = B11− (B12, B13)

 B22 0

0 B33


−1  B21

B31


= B11− B12B

−1
22B21− B13B

−1
33B31

is nonsingular. We will show that the latter is the case under the Robinson condition.
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The calculation ofB12B
−1
22B21 is next step. From the block structures ofB12 andB21 it is

clear that only the first and second block in the first block column of this matrix are nonzero,

and we only have to calculate µ̄1∇
2
xyL1 −µ̄1∇xv(x̄, ȳ1)

λ1Dyg(x̄, ȳ1) 0

B−1
22

 ∇2
yxL1

diag(α1)Dxv(x̄, ȳ1)

 . (5.2)

Now recall that the implicit functionsy1(x) andγ1(x) from Theorem 2.2.10 satisfy

∇yL(x, y1(x), γ1(x))

ψ(γ1
1(x),−v1(x, y1(x)))

...

ψ(γ1
q(x),−vq(x, y1(x)))


≡ 0. (5.3)

Taking derivatives with respect tox and evaluating at ¯x yields (by the usual Chain rule) ∇2
yL1 −∇yv(x̄, ȳ1)

diag(α1)Dyv(x̄, ȳ1) diag(β1)


 Dy1(x̄)

Dγ1(x̄)


+

 ∇2
yxL1

diag(α1)Dxv(x̄, ȳ1)

 = 0

and, thus,

B−1
22

 ∇2
yxL1

diag(α1)Dxv(x̄, ȳ1)

 = −
 Dy1(x̄)

Dγ1(x̄)

 .
Consequently, the matrix in (5.2) becomes −µ̄1∇

2
xyL1Dy1(x̄) + µ̄1∇xv(x̄, ȳ1)Dγ1(x̄)

−λ1Dyg(x̄, ȳ1)Dy1(x̄)

 .
With an analogous calculation forB13B

−1
33B31 we arrive at

S =


∇̃2

xL ∇xL1 ∇xL2

λ1

(
Dxg(x̄, ȳ1) + Dyg(x̄, ȳ1)Dy1(x̄)

)
θ1 0

λ2

(
Dxg(x̄, ȳ2) + Dyg(x̄, ȳ2)Dy2(x̄)

)
0 θ2


with

∇̃2
xL = D2

x f (x̄) +
2∑

i=1

µ̄i

(
∇2

xLi + ∇
2
xyLiDyi(x̄) − ∇xv(x̄, ȳi)Dγi(x̄)

)
.

Using (5.10) it is not hard to see that

∇2ϕi(x̄) = ∇2
xLi + ∇

2
xyLiDyi(x̄) − ∇xv(x̄, ȳi)Dγi(x̄)
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holds fori = 1,2, so that the matrix̃∇2
xL coincides with∇2

xL from condition (GSIP-II).

Next we show

Dxg(x̄, ȳi) + Dyg(x̄, ȳi)Dyi(x̄) = DxLi (5.4)

for i = 1,2. In fact, fori = 1 we have

Dyg(x̄, ȳ1)Dy1(x̄) =
q∑

j=1

γ̄1
j Dyv j(x̄, ȳ

1)Dy1(x̄). (5.5)

The implicit functions from Theorem 2.2.10 particularly satisfy the identity

γ1
j (x) · v j(x, y

1(x)) ≡ 0 ( j ∈ Q).

Taking derivatives with respect tox yields

Dγ1
j (x) v j(x, y

1(x)) + γ1
j (x)

(
Dxv j(x, y

1(x)) + Dyv j(x, y
1(x))Dy1(x)

)
≡ 0

for j ∈ Q, where the first term vanishes at ¯x for j ∈ Q0(x̄, ȳ1) due tov j(x̄, ȳ1) = 0, and for

j < Q0(x̄, ȳ1) because ofγ1
j (x) ≡ 0 and, thus,Dγ1

j (x̄) = 0. Evaluating the remaining terms at

x̄ implies

γ̄1
j Dyv j(x̄, ȳ

1)Dy1(x̄) = −γ̄1
j Dxv j(x̄, ȳ

1) ( j ∈ Q), (5.6)

and a combination of (5.5) and (5.6) yields

Dyg(x̄, ȳ1)Dy1(x̄) = −
q∑

j=1

γ̄1
j Dxv j(x̄, ȳ

1).

This shows (5.4) fori = 1, and analogously fori = 2. As a consequence, the Schur comple-

ment simplifies further to

S =


∇2

xL ∇xL1 ∇xL2

λ1DxL1 θ1 0

λ2DxL2 0 θ2

 .

By the definitions ofλi andθi , i = 1,2, S is nonsingular if and only if the matrix ∇2
xL ∇xLP0(x̄)

DxLP0(x̄) 0


is nonsingular. Under the Robinson condition the latter is true in view of Lemma B.0.37. This

completes the proof for Case 1.
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Case 2: Strict complementarity is violated in the upper level problem.

In this case we have ¯µi = g(x̄, ȳi) = 0 for at least onei ∈ {1,2}. Here we only consider the case

that strict complementarity is violated ati = 1 with P0(x̄) = {1,2}, the general case running

along the same lines.

In the present case,T is not differentiable at ¯z sinceψ is not differentiable at the origin. The

Clarke (in fact, convex) subdifferentials [6, 95] ofψFB andψmin are given in Lemma A.0.33

in the Appendix A. Moreover, the generalized Jacobian ofψ(µ1,−g(x, y1)) can be computed

by the Chain Rule II and Proposition 2.3.6 from [6], noting that convex functions are regular.

In fact, its generalized Jacobian with respect to (x, µ1, y1) is{(
λ1Dxg(x, y1), θ1 , λ1Dyg(x, y1)

)
| (−λ1, θ1) ∈ ∂ψ(0,0)

}
. (5.7)

This means that the elements of∂T(z̄) can be parameterized by

{W(λ1, θ1)| (−λ1, θ1) ∈ ∂ψ(0,0)},

whereW(λ1, θ1) is a matrix of exactly the form from (5.1) where the blocksB11,B12,B13, etc.

are defined as previously. Consequently, proving CD-regularity ofT at z̄amounts to showing

nonsingularity of all matricesW(λ1, θ1) with (−λ1, θ1) ∈ ∂ψ(0,0).

Choose any (λ1, θ1) with (−λ1, θ1) ∈ ∂ψ(0,0). With the same arguments as in Case 1 we find

thatW(λ1, θ1) is nonsingular if and only if the matrix

S(λ1, θ1) =


∇2

xL ∇xL1 ∇xL2

λ1DxL1 θ1 0

λ2DxL2 0 θ2


is nonsingular. The latter, however, is true by Theorem 4.2.3 i.e., by [85, Theorem 4.2] for

finitely constrained programming problems. This completes the proof. •

Remark 5.1.3 ([108]) In the special case of SIP, an explicit proof of Theorem 5.1.2 would

be shorter due to the simplifications that∇xLi is replaced by∇xg(x̄, ȳi), ∇xyLi by∇xyg(x̄, ȳi),

and∇xv(x̄, ȳi) vanishes.

Remark 5.1.4 ([108]) Assumption 5.1.1 is a weak assumption in the following sense: the

Reduction Ansatz holds generically at all local minimizers of GSIP, and they are even non-

degenerate critical points of the locally reduced problem GSIPred. That is, generically even
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upper level strict complementarity and the Robinson condition hold. While this fact has been

known for standard SIP for some time [102], it is a recent result for GSIP [23]. In view of

this genericity, one can expect Assumption 5.1.1 to be satisfied in practical applications.

Altogether, in Subsection 5.1.1 we have shown that under the weak Assumption 5.1.1, in view

of Theorem 4.1.10 and Theorem 5.1.2, the semismooth Newton method from (4.4) converges

q-quadratically.

5.2 The Case without the Strict Complementarity in the Lower Level Problem

Section 5.1 shows that the semismooth Newton method for semi-infinite programming can

actually handle nonsmoothness, since there the result from [88] is extended to the case of

violated strict complementarity in theupper levelproblem. Moreover, we transferred the

semismooth approach from standard to generalized semi-infinite programming.

This section completes this analysis by considering the case of strict complementarity vio-

lation in thelower level. For the convergence of a semismooth Newton method we give an

appropriate new regularity condition thus justifying the NCP approach for semi-infinite pro-

grams in the absence of strict complementarity. In the present case, the convergence analysis

is essentially more complicated due to the lack of differentiability of the auxiliary functions

of the so-called reduced problem (see Section 5.2.1.1). We refer the reader to our recent paper

[115] for this section.

5.2.1 Convergence of the method

In this section we wish to find a sufficient condition for CD-regularity of the functionT from

(4.36) at a zero ¯z, so that the semismooth Newton approach from Section 4.1 may be applied

to identify z̄.

The Reduction Ansatz without strict complementarity given in Subsubsection 5.2.1.1 is the

part of this condition concerning the lower level problem. In the upper level problem we will

assume a naturalgeneralizationof the so-calledRobinson condition[93, 108] for the reduced

problem (see Section 5.2.1.3). However, the auxiliary functionsϕi (i ∈ P), in the reduced

problemGSIPred are not twice continuously differentiable (see Theorem 5.2.1(c)), so that
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we cannot state a standard second order regularity condition forGSIPred. Instead, first we

compute the generalized Hessians ofϕi , i ∈ P, at x̄.

5.2.1.1 The Reduction Ansatz without strict complementarity

As stated in our paper [115], here we consider a feasible point ¯x of GSIPand its set of active

indices

Y0(x̄) = {y ∈ Y(x̄) | g(x̄, y) = 0}.

All defining functions ofGSIPare at least twice continuously differentiable. Consider the

following conditions (Q+-I) and (Q+-II) at ȳ ∈ Y0(x̄) in Q(x̄):

(Q+-I) The linear independence constraint qualification:

(LI )Q(x̄) {∇yv j(x̄, ȳ) | j ∈ Q0(x̄, ȳ)} is a linearly independent family,

whereQ0(x̄, ȳ) = { j ∈ Q | v j(x̄, ȳ) = 0} is the set of lower level active indices at

ȳ ∈ Y(x̄).

Because of (Q+-I) we have the following lower level KKT conditions: there exists

a unique vector of Lagrange multipliers ¯γ ∈ Rq such that

(KKT)Q(x̄)



∇yg(x̄, ȳ) −
q∑

j=1
γ̄ j∇yv j(x̄, ȳ) = 0

v j(x̄, ȳ) ≤ 0

γ̄ j ≥ 0

γ̄ jv j(x̄, ȳ) = 0, j ∈ Q.


. (5.8)

(Q+-II) Thestrong second order sufficiency condition:

(S S OSC)Q(x̄)

 ηT∇2
yL(x̄, ȳ, γ̄)η < 0 for all η ∈ G+Q(x̄) \ {0},where

G+Q(x̄) := {η ∈ Rm| Dyv j(x̄, ȳ)η = 0, j ∈ Q+0 (x̄, ȳ)}

 (5.9)

with Q+0 (x̄, ȳ) := { j ∈ Q0(x̄, ȳ) | γ̄ j > 0} andL(x̄, y, γ) := g(x̄, y) −
q∑

j=1
γ jv j(x̄, y),

theLagrangianassociated withQ(x̄).

TheReduction Ansatz without strict complementarityis said to hold at ¯x ∈ M if all elements of

Y0(x̄) satisfy the conditions (Q+-I) and (Q+-II). It generalizes the standard Reduction Ansatz
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in [108] to the case of possibly violated strict complementary slackness. In the case of strict

complementary slackness, the Reduction Ansatz without strict complementarity coincides

with the standard Reduction Ansatz.

If the Reduction Ansatz without strict complementarity holds at some ¯x ∈ M, we can locally

reduceGSIPto GSIPred, the so-called reduced generalized semi-infinite problem. Note that,

as stated in [96], the Reduction Ansatz without strict complementarity is a sufficient condition

for strongly stable lower level stationary points in the sense of Kojima [60].

Reduction Ansatz without strict complementarity was stated forSIP in [52], for GSIP the

following theorem was stated.

Theorem 5.2.1 ([34]) Let the Reduction Ansatz without strict complementarity be satisfied at

a feasible point̄x of GSIP and all defining functions of GSIP are assumed to be at least twice

continuously differentiable. Then,

(a) The active index set is finite, Y0(x̄) = {ȳ1, ȳ2, . . . , ȳp}, and there exist neighborhoods Ux̄ of

x̄ and V̄yi of ȳi and Lipschitz continuous functions

yi : U x̄→ Vȳi , where yi(x̄) = ȳi ,

γi : U x̄→ Rq, whereγi(x̄) = γ̄i ,

such that for every x∈ U x̄ the value yi(x) is the unique local maximizer of Q(x) in Vȳi with

corresponding Lagrange multiplier vectorγi(x).

(b) The following finite reduction holds:̄x is a solution of GSIP, locally in a neighborhood

U x̄ of x̄, if and only ifx̄ is a local solution of the so-called reduced problem

GSIPred : min
x∈U x̄

f (x) subject to ϕi(x) = g(x, yi(x)) ≤ 0, for all i = 1,2, . . . , p.

(c) The functionsϕi from part (b) are of class C1 and for all x∈ U x̄ their gradients satisfy

Dϕi(x) = DxL(x, yi(x), γi(x)). (5.10)

Remark 5.2.2 ([115]) For standard SIP the formula (5.10) simplifies to

Dϕi(x) = Dxg(x, yi(x)).
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5.2.1.2 The generalized Hessian of the lower level optimal value function

The definitions are from our recent paper [115]. Let the Reduction Ansatz without strict

complementarity hold at ¯x ∈ M, and letȳ ∈ Y0(x̄). According to Theorem 5.2.1, in the case

of violated strict complementarity in the lower level, the functionsy(·) andγ(·) are at least

Lipschitz continuous, so that alsoDϕ(x) = DxL(x, y(x), γ(x)) is at least Lipschitz continuous.

Moreover, due to a result in [52], the functionϕ(x) = g(x, y(x)) is not onlyC1 with Lipschitz

continuous gradientDϕ(x), but it is even piecewiseC2. The generalized Hessian forϕ can

thus be defined as the convex hull of the Hessians on theC2 pieces.

To define the appropriateC2 pieces, recall that the Reduction Ansatz with strict complemen-

tarity basically means that the ‘KKT function’∇yL(x, y, γ)

vQ0(x̄,ȳ)(x, y)


has a nonsingular Jacobian with respect to (y, γ) at (x̄, ȳ, γ̄). Here,vQ0(x̄,ȳ) denotes the vector

of functionsv j with j ∈ Q0(x̄, ȳ). Since the inactive constraintsv j , j ∈ Qc
0(x̄, ȳ), locally remain

inactive for continuity reasons, the corresponding multipliersγ j vanish identically. Thus, the

above function may as well be extended to
∇yL(x, y, γ)

vQ0(x̄,ȳ)(x, y)

−γQc
0(x̄,ȳ)

 .
For our subsequent arguments it will be useful to rewrite this function as

G(x, y, γ;α, β) =

 ∇yL(x, y, γ)

diag(α)v(x, y) − diag(β)γ


with

(α j , β j) = (1,0), j ∈ Q0(x̄, ȳ),

(α j , β j) = (0,1), j ∈ Qc
0(x̄, ȳ).

If the Reduction Ansatz without strict complementarity holds at ¯x, the index setQ is further

partitioned into the three sets

Q0
0(x̄, ȳ) = { j ∈ Q| v j(x̄, ȳ) = 0, γ̄ j = 0},

Q+0 (x̄, ȳ) = { j ∈ Q| v j(x̄, ȳ) = 0, γ̄ j > 0},

Qc
0(x̄, ȳ) = { j ∈ Q| v j(x̄, ȳ) < 0, γ̄ j = 0}.
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With q0 denoting the cardinality ofQ0
0(x̄, ȳ), we may now consider the 2q0 auxiliary KKT

systems

G(x, y, γ;α, β) = 0, (α, β) ∈ A,

with (α, β) ∈ A = A(x̄, ȳ) if and only if

(α j , β j) ∈ {(1,0), (0,1)}, j ∈ Q0
0(x̄, ȳ),

(α j , β j) = (1,0), j ∈ Q+0 (x̄, ȳ),

(α j , β j) = (0,1), j ∈ Qc
0(x̄, ȳ).

 (5.11)

The results in the next lemma are well known even in a more general context [5]. To clarify

the connections to our subsequent arguments we state them for our setting and briefly sketch

the proofs.

Lemma 5.2.3 ([115]) Suppose that conditions (Q+-I) and (Q+-II) are satisfied at̄y ∈ Y0(x̄)

in Q(x̄), where all defining functions of GSIP are at least twice continuously differentiable.

Then the following assertions hold:

(i) For each(α, β) ∈ A, the Jacobian

D(y,γ)G(x̄, ȳ, γ̄;α, β) =

 ∇2
yL −∇yv

diag(α)Dyv −diag(β)


is nonsingular, where in the right hand side the obvious arguments have been dropped

for ease of notation.

(ii) For each(α, β) ∈ A, there exist locally defined C1 functions y(x;α, β) and γ(x;α, β)

which are the locally unique zeros ofG(x, y, γ;α, β) around (x̄, ȳ, γ̄). The gradient of

ϕ(x;α, β) = g(x, y(x;α, β)) is given by∇ϕ(x;α, β) = ∇xL(x, y(x;α, β), γ(x;α, β)), and

∇ϕ(x̄;α, β) = ∇xL(x̄, ȳ, γ̄) does not depend on(α, β).

(iii) For each(α, β) ∈ A, the Hessian ofϕ(x;α, β) = g(x, y(x;α, β)) at x̄ exists and is given

by

D2ϕ(x̄;α, β) = ∇2
xL −

∇2
xyL

−Dxv


T

S(α, β)

∇2
xyL

−Dxv


with

S(α, β) =

 ∇2
yL −∇yv

diag(α)Dyv −diag(β))


−1 I 0

0 −diag(α)

 . (5.12)
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(iv) The generalized Hessian ofϕ at x̄ is

∂∇ϕ(x̄) = conv


∇2

xL −

∇2
xyL

−Dxv


T

S(α, β)

∇2
xyL

−Dxv


∣∣∣∣∣∣ (α, β) ∈ A


 ,

whereconvdenotes the convex hull.

Proof. Part (i) is well known (see, e.g., [52]). It also follows from the more general arguments

of the subsequent Lemma 5.2.6. Part (i) and the implicit function theorem yield the existence

of locally uniqueC1 functionsy(x;α, β) andγ(x;α, β) with G(x, y(x;α, β), γ(x;α, β)) ≡ 0.

Taking first derivatives of the latter equation leads toDy(x̄;α, β)

Dγ(x̄;α, β)

 = − (
D(y,γ)G

)−1
DxG = −S(α, β)

∇2
xyL

−Dxv

 . (5.13)

Furthermore, standard techniques of parametric optimization [45] yield thatϕ(x;α, β) is aC2

function with

∇ϕ(x;α, β) = ∇xL(x, y(x;α, β), γ(x;α, β)) (5.14)

locally around ¯x. Since the implicit functions satisfyy(x̄;α, β) = ȳ andγ(x̄;α, β) = γ̄, the

assertion of part (ii) follows.

Taking derivatives of (5.14) and plugging in (5.13) leads to the assertion of part (iii). Part (iv)

immediately follows from (iii) and the fact thaty(x) andγ(x) are pieced together fromy(x;α, β)

andγ(x;α, β), respectively, with (α, β) ∈ A [52]. •

Remark 5.2.4 ([115]) For standard SIP the formula in Lemma 5.2.3(iv) reduces to

∂∇ϕ(x̄) = conv


∇2

xg−

∇2
xyg

0


T

S(α, β)

∇2
xyg

0


∣∣∣∣∣∣ (α, β) ∈ A


 ,

and S(α, β) may as well be defined as

S(α, β) =

 ∇2
yL −∇yv

diag(α)Dyv −diag(β)


−1

.

5.2.1.3 A generalized Robinson condition for the upper level problem

In this subsection we derive a generalized Robinson condition for the upper level problem as

in our recent paper [115]. LetP0(x̄) = {i ∈ P |ϕi(x̄) = 0} be the set of active indices at ¯x for

the upper level problem.
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An appropriategeneralized Robinson conditionis said to hold at ¯x if the following conditions

(GS IP+-I) and (GS IP+-II) are satisfied:

(GS IP+-I) The linear independence constraint qualification:

(LI )GS IP {∇xL(x̄, ȳi , γ̄i) | i ∈ P0(x̄) } is a linearly independent family.

If x̄ is a local minimizer, then there exists a unique vector ¯µ ∈ Rp of Lagrange

multipliers with

(KKT)GS IP ∇ f (x̄) +
p∑

i=1

µ̄i∇xL(x̄, ȳi , γ̄i) = 0

µ̄i ≥ 0, g(x̄, ȳi) ≤ 0, µ̄ig(x̄, ȳi) = 0 (i ∈ P).

(GS IP+-II) The generalized strong second order sufficiency condition:

(GS S OSC)GS IP

 ξTWξ > 0 for all ξ ∈ GGS IP\ {0} and for allWgiven in (5.15)

with GGS IP := {d ∈ Rn| DxL(x̄, ȳi , γ̄i)d = 0 for i ∈ P+0 (x̄)}


with P+0 (x̄) := {i ∈ P0(x̄) | µ̄i > 0}. Here,

W ∈ D2
x f (x̄) +

p∑
i=1

µ̄i∂∇ϕi(x̄), (5.15)

where∂∇ϕi(x̄) is given by Lemma 5.2.3(iv). Note that, in view of the well known

calculus rules for Clarke subdifferentials (see [6]), the expression on the right-

hand side of (5.15) is an overestimate for generalized Hessian of the Lagrangian

f (x) +
p∑

i=1
µiϕi(x) of GSIPred.

In the case of strict complementary slackness, the generalized Robinson condition obviously

coincides with the (standard) Robinson condition.

5.2.1.4 A sufficient condition for CD-regularity

In this subsection we state a sufficient condition for CD-regularity of generalized Jacobian

as in our paper [115]. Consider a zero ¯z of T from (4.36). The KKT conditions mentioned
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in (Q+-I) and (GS IP+-I) then hold by definition ofT. The remaining conditions in the Re-

duction Ansatz without strict complementarity and in the generalized Robinson condition are

algebraic conditions on the involved functions which can also be imposed independently of

the fact that we deal with lower level global maximizers and upper level local minimizers. In

this sense, we can make the following assumption:

Assumption 5.2.5 ([115])The Reduction Ansatz without strict complementarity and the gen-

eralized Robinson condition hold atz̄.

For proving the main result of the present article, we need the following lemmata, in which

H2 will denote the nonnegative quadrant inR2. Note that, according to Lemma A.0.33, the

generalized Jacobians at the origin of the convex NCP functionsψFB andψmin both are subsets

of −H2 \ {0}.

For the special caseψ = ψFB the following result can be found in a stronger version in [12].

It is actually the counterpart of results in [60] for the approach by Kojima’s function instead

of NCP functions. An elegant connection between Newton methods for both approaches is

presented in [83].

Lemma 5.2.6 ([115]) Suppose that conditions (Q+-I) and (Q+-II) are satisfied at̄y ∈ Y0(x̄)

in Q(x̄). Let the KKT system of Q(x) be described by

H(x, y, γ) =



∇yg(x, y) −
q∑

j=1
γ j∇yv j(x, y)

ψ(γ1,−v1(x, y))
...

ψ(γq,−vq(x, y))


= 0

with some convex NCP functionψ which satisfies−∂ψ(0,0) ∈ H2 \ {0}. Then the following

assertions hold:

(i) The generalized Jacobian ofH at (x̄, ȳ, γ̄) with respect to(y, γ) satisfies

∂H(y,γ)(x̄, ȳ, γ̄) ⊆ {B(α, β)| (α, β) ∈ B}

with

B(α, β) =

 ∇2
yL −∇yv

diag(α)Dyv −diag(β)
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and(α, β) ∈ B = B(x̄, ȳ) if and only if

(α j , β j) ∈ −∂ψ(0,0), j ∈ Q0
0(x̄, ȳ),

(α j , β j) = (1,0), j ∈ Q+0 (x̄, ȳ),

(α j , β j) = (0,1), j ∈ Qc
0(x̄, ȳ).

 . (5.16)

(ii) All elements of∂H(y,γ)(x̄, ȳ, γ̄) are nonsingular.

Proof. Due to the violated strict complementarity, exactly the components

ψ(γ j ,−v j(x, y)), j ∈ Q0
0(x̄, ȳ), of H are nondifferentiable at ( ¯x, ȳ, γ̄). Their generalized Ja-

cobians can be computed by Chain Rule II and Proposition 2.3.6 from [6], noting that convex

functions are regular. In fact, the generalized Jacobian with respect to (y, γ j) is{(
α jDyv j(x, y) , −β j

)
| (α j , β j) ∈ −∂ψ(0,0)

}
.

In view of (A.3) in Appendix A, the Jacobian ofψ(γ j ,−v j(x, y)) with j ∈ Q+0 ∪ Qc
0 is(

α jDyv j(x, y) , −β j

)
with

(α j , β j) =

 (1,0), j ∈ Q+0 (x̄, ȳ)

(0,1), j ∈ Qc
0(x̄, ȳ)

This shows part (i). To see part (ii), choose any (α, β) ∈ B. We will show thatB(α, β) is

nonsingular, entailing the assertion in view of part (i).

In the following,α0 denotes the vector with entriesα j , j ∈ Q0
0(x̄, ȳ), andV0 the matrix with

columns−∇yv j(x̄, ȳ), j ∈ Q0
0(x̄, ȳ), etc. After rearranging its rows and columns,B(α, β) is

nonsingular if and only if

∇2
yL V+ V0 Vc

−diag(α+)VT
+ −diag(β+) 0 0

−diag(α0)VT
0 0 −diag(β0) 0

−diag(αc)VT
c 0 0 −diag(βc)


is nonsingular. Due toαc = 0, β+ = 0,α+ = eandβc = e, the all ones vector, the latter matrix

is nonsingular if and only if 
∇2

yL V+ V0

−VT
+ 0 0

−diag(α0)VT
0 0 −diag(β0)
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is nonsingular. Letα+0 be the subvector ofα0 consisting of nonvanishing entries, if any, and

α0
0 the subvector of vanishing entries, if any. The matricesV+0 andV0

0 are defined accordingly.

As 0 < −∂ψ(0,0), the matrix−diag(β0
0) is nonsingular. Along withα0

0 = 0, and after an

elementary row transformation, we obtain that the above matrix is nonsingular if and only if


∇2

yL V+ V+0

VT
+ 0 0

(V+0 )T 0 diag(α+0 )−1diag(β+0 )


is nonsingular. Since the columns ofV+ are linearly independent by (Q+-I), and∇2

yL is

negative definite on Ker(VT
+ ) by (Q+-II), the block matrix

∇2
yL V+

VT
+ 0


is nonsingular by Lemma B.0.37. We can thus take its Schur complement (see Definition

B.0.34) in the latter matrix and, in view of Lemma B.0.35, obtain that the above matrix is

nonsingular if and only if

diag(α+0 )−1diag(β+0 ) −

V+00

T ∇2

yL V+

VT
+ 0


−1 V+00


is nonsingular. The matrix diag(α+0 )−1diag(β+0 ) is a diagonal matrix with nonnegative diagonal

entries, due to−∂ψ(0,0) ⊂ H2. In the following we will show that

W = −

V+00

T ∇2

yL V+

VT
+ 0


−1 V+00


is positive definite, so that also the above matrix is positive definite, showing the nonsingular-

ity of B(α, β).

In fact, we may write

W =


∇2

yL V+ V+0

VT
+ 0 0

(V+0 )T 0 0

 /
∇2

yL V+

VT
+ 0

 ,
so that a combination of Lemma B.0.36 and Lemma B.0.37 (here,In(A) denotes the inertia-

triple of A, that is, the number of negative, positive and vanishing eigenvalues ofA,
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respectively) yields

In(W) = In


∇2

yL V+ V+0

VT
+ 0 0

(V+0 )T 0 0

 − In

∇2
yL V+

VT
+ 0


= In(∇2

yL|Ker((V+,V+0 )T )) + (q+ + q+0 ,q+ + q+0 ,0) − (In(∇2
yL|Ker(VT

+ )) + (q+,q+,0)),

whereq+ denotes the number of columns ofV+, etc. As∇2
yL is negative definite on Ker(VT

+ ),

it is also negative definite on the smaller linear space Ker((V+,V+0 )T), so that

In(∇2
yL|Ker(VT

+ )) = (m− q+,0,0),

In(∇2
yL|Ker((V+,V+0 )T )) = (m− q+ − q+0 ,0,0).

We thus arrive at

In(W) = (0,q+0 ,0),

showing the assertion of part (ii). •

The following is the central result on which the proof of the subsequent Theorem 5.2.8 is

based.

Lemma 5.2.7 ([115]) Suppose that conditions (Q+-I) and (Q+-II) hold at ȳ ∈ Y0(x̄) in Q(x̄),

and letψ be some NCP function which satisfies−∂ψ(0,0) ∈ H2 \ {0}, whereH2 denotes

nonnegative quadrant. Let S(α, β) denote the matrix from (5.12), and let the sets A and B be

defined by the conditions in (5.11) and (5.16), respectively. Then the inclusion

{ S(α, β) | (α, β) ∈ B } ⊂ conv({ S(α, β) | (α, β) ∈ A })

holds.

Proof. The assertion is trivial forQ0
0(x̄, ȳ) = ∅. Thus letQ0

0(x̄, ȳ) , ∅ and choose some

j ∈ Q0
0(x̄, ȳ). Without loss of generality we assumeq ∈ Q0

0(x̄, ȳ) and j = q. Since otherwise,

i.e., if q < Q0
0(x̄, ȳ), eitherq ∈ Q+0 (x̄, ȳ) or q ∈ Qc

0(x̄, ȳ), in both cases the result is trivial.

Let (α, β) ∈ B be given. For (σ, τ) ∈ −∂ψ(0,0) we define the functionsα(σ) andβ(τ) by

α j(σ) ≡ α j , β j(τ) ≡ β j for j < q andαq(σ) = σ, βq(τ) = τ. To show the assertion, it is

sufficient to prove it in the single componentq, that is,

S(α(σ), β(τ) ) ⊂ conv({S(α(1), β(0)), S(α(0), β(1)) }). (5.17)
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In fact, let (α1, β1) = (α(1), β(0)) and (α2, β2) = (α(0), β(1)). Then (α1
q, β

1
q) = (1,0) and

(α2
q, β

2
q) = (0,1) are identical to the corresponding entries inA, respectively. In the case

Q0
0(x̄, ȳ) = {q} this shows the assertion. IfQ0

0(x̄, ȳ) contains another index, we assume with-

out loss of generality that it isj = q − 1, since otherwise by a change of rows and columns

we can make the indexj = q − 1. Using (5.17) for the (q − 1)-th entry of (α1, β1) we ob-

tain thatS(α1, β1) lies in the convex hull of two matricesS(α1,1, β1,1) andS(α1,2, β1,2) with

(α1,1
q , β1,1

q ) = (α1,2
q , β1,2

q ) = (1,0) and (α1,1
q−1, β

1,1
q−1) = (1,0), (α1,2

q−1, β
1,2
q−1) = (0,1). Analo-

gously,S(α2, β2) lies in the convex hull of two matricesS(α2,1, β2,1) andS(α2,2, β2,2) with

(α2,1
q , β2,1

q ) = (α2,2
q , β2,2

q ) = (0,1) and (α2,1
q−1, β

2,1
q−1) = (1,0), (α2,2

q−1, β
2,2
q−1) = (0,1). Combin-

ing these facts,S(α, β) is an element of the convex hull of the four matricesS(α1,1, β1,1),

S(α1,2, β1,2), S(α2,1, β2,1) and S(α2,2, β2,2). Continuing this argument for all elements of

Q0
0(x̄, ȳ) yields the assertion.

To see (5.17) we define

b =

−∇yvq

0

 ,
C =

 ∇2
yL −∇yvQ\{q}

diag(α1, ..., αq−1)DyvQ\{q} −diag(β1, ..., βq−1)

 ,
D =

I 0

0 −diag(α1, ..., αq−1)

 .
Then we have

S(α(σ), β(τ) ) =

 C b

−σbT −τ


−1 D 0

0 −σ

 .
Since the conditions (Q+-I) and (Q+-II) at ȳ ∈ Y0(x̄) do not change when the restriction

vq(x, y) ≤ 0 is removed from problemQ(x) (recall thatγ̄q = 0), the matrixC is nonsingular in

view of Lemma 5.2.6(ii). We may thus use Lemma B.0.38 to compute

S(α(σ), β(τ) ) =

C−1D 0

0 0

 + σ

σbTC−1b− τ

C−1bbTC−1D −C−1b

−bTC−1D 1

 .
In this formulation it is easy to see that (5.17) is equivalent to

σbTC−1b

σbTC−1b− τ
∈ [0,1].

Since (σ, τ) ∈ −∂ψ(0,0) ⊂ H2 \ {0}, the latter follows ifbTC−1b < 0.
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In order to show negativity ofbTC−1b we interpret this number as a Schur complement. In

fact, thanks to the zero part in the vectorb, the same matrix manipulations as in the proof of

Lemma 5.2.6(ii) may be used to rewritebTC−1b.

Defineᾱ = (α1, ..., αq−1,1)T andβ̄ = (β1, ..., βq−1,0)T . Let ᾱ+0 stand again for the vector with

entriesᾱ j , j ∈ Q0
0(x̄, ȳ) ∩ { j| ᾱ j > 0}, and note thatj = q is among these indices. Let ˜α+0

denote the vector with entries ¯α j , j ∈ Q0
0(x̄, ȳ) ∩ { j| ᾱ j > 0} \ {q}, let the matricesV+0 andṼ+0

be defined accordingly, putv = −∇yvq(x̄, ȳ), and letV+ stand again for−∇yvQ+0 (x̄,ȳ)(x̄, ȳ).

Then, using the mentioned matrix manipulations, one can show

bTC−1b =


v

0

0


T 
∇2

yL V+ Ṽ+0

VT
+ 0 0

(Ṽ+0 )T 0 diag(α̃+0 )−1diag(̃β+0 )


−1 

v

0

0


so that

−bTC−1b =
∇2

yL V+ V+0

VT
+ 0 0

(V+0 )T 0 diag(α+0 )−1diag(β+0 )

 /

∇2

yL V+ Ṽ+0

VT
+ 0 0

(Ṽ+0 )T 0 diag(α̃+0 )−1diag(̃β+0 )

 .
In view of Lemma B.0.36 we obtain

In(−bTC−1b) =

In(


∇2

yL V+ V+0

VT
+ 0 0

(V+0 )T 0 diag(α+0 )−1diag(β+0 )

) − In(


∇2

yL V+ Ṽ+0

VT
+ 0 0

(Ṽ+0 )T 0 diag(α̃+0 )−1diag(̃β+0 )

),

and in the proof of Lemma 5.2.6(ii) we have seen that the Schur complements of

∇2
yL V+

VT
+ 0


in both matrices of the latter right hand side are positive definite. According to Lemma B.0.36

we arrive at

In(−bTC−1b) = (0,q+0 ,0)− (0, q̃+0 ,0) = (0,1,0)

which implies negativitiy ofbTC−1b, and hence we prove our main assertion about inclusion.

•

Theorem 5.2.8 ([115])Suppose that̄z = (x̄T , µ̄T , (ȳ1)T , (γ̄1)T , . . . , (ȳp)T , (γ̄p)T)T is a zero of

T from (4.36) with the choicesψ = ψFB or ψ = ψmin, and that Assumption 5.2.5 holds atz̄.

Then T is CD-regular at̄z.
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Proof. Let z̄ be a zero ofT at which Assumption 5.2.5 holds, and letψ denote either one of

the two NCP functionsψFB andψmin. We only consider the case of two active indices, that

is, p = 2, the general case running along the same lines. Recall that the case of satisfied

lower level strict complementarity is treated in [108]. The generalized Jacobian ofT at z̄ is a

subset of Cartesian product of generalized gradients of component functions as computed in

Lemma 5.2.6(i). In fact, the elements of∂T(z̄) are of the form

A(λ, θ, α1, β1, α2, β2) =


B11(λ, θ) B12(λ, θ) B13(λ, θ)

B21(α1, β1) B22(α1, β1) 0

B31(α2, β2) 0 B33(α2, β2)

 (5.18)

with the following blocks:

B11(λ, θ) =


D2

x f (x̄) +
2∑

i=1
µ̄i∇

2
xL

i ∇xL
1 ∇xL

2

λ1Dxg1 −θ1 0

λ2Dxg2 0 −θ2


with ∇2

xL
i = ∇2

xL(x̄, ȳi , γ̄i), etc., and with (λ, θ) ∈ Θ if and only if

(λi , θi) ∈ −∂ψ(0,0), i ∈ P0
0(x̄),

(λi , θi) = (1,0), i ∈ P+0 (x̄),

(λi , θi) = (0,1), i ∈ Pc
0(x̄),

B12(λ, θ) =


µ̄1∇

2
xyL

1 −µ̄1∇xv1

λ1Dyg1 0

0 0

 ,

B13(λ, θ) =


µ̄2∇

2
xyL

2 −µ̄2∇xv2

0 0

λ2Dyg2 0

 ,

Bi+1,1(αi , βi) =

 ∇2
yxL

i 0 0

diag(αi)Dxvi 0 0

 (i = 1,2),

as well as

Bi+1,i+1(αi , βi) =

 ∇2
yL

i −∇yvi

diag(αi)Dyvi −diag(βi)

 (i = 1,2),

with (αi , βi) ∈ Bi , whereBi = B(x̄, ȳi) is chosen according to (5.16),i = 1,2. Our aim is

to show CD-regularity ofT at z̄. For this aim we will show nonsingularity of all matrices
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A(λ, θ, α1, β1, α2, β2) with (λ, θ) ∈ Θ, (αi , βi) ∈ Bi (i = 1,2). The main idea of the proof is the

same as in [108], namely to consider an appropriate Schur complement in the block matrix

A(λ, θ, α1, β1, α2, β2).

Choose arbitrary (̄λ, θ̄) ∈ Θ and (ᾱi , β̄i) ∈ Bi , i = 1,2. For conciseness, let us writeB12 =

B12(λ̄, θ̄), B22 = B22(ᾱ1, β̄1), A = A(λ̄, θ̄, ᾱ1, β̄1, ᾱ2, β̄2), and so on. Then, due to Lemma

5.2.6(ii), the matricesB22 andB33 are nonsingular.

According to Lemma B.0.35 the matrixA is nonsingular if and only if the Schur complement

R = A/

 B22 0

0 B33


= B11− (B12, B13)

 B22 0

0 B33


−1  B21

B31


= B11− B12B

−1
22B21− B13B

−1
33B31

is nonsingular. We will show that the latter is the case under the generalized Robinson condi-

tion.

When we write down the termB12B
−1
22B21 more explicitly, a matrix of the formS(α, β) from

(5.12) reappears. In fact, the partB−1
22B21 becomes ∇2

yL
1 −∇yv1

diag(ᾱ1)Dyv1 −diag(̄β1)


−1  ∇2

yxL
1 0 0

diag(ᾱ1)Dxv1 0 0


= S(ᾱ1, β̄1)

 ∇2
yxL

1 0 0

−Dxv1 0 0

 ,
so thatB12B

−1
22B21 coincides with

µ̄1∇
2
xyL

1 −µ̄1∇xv1

λ̄1Dyg1 0

0 0

 S(ᾱ1, β̄1)

 ∇2
yxL

1 0 0

−Dxv1 0 0



=



µ̄1

∇2
yxL

1

−Dxv1


T

S(ᾱ1, β̄1)

∇2
yxL

1

−Dxv1

 0 0

λ̄1

∇yg1

0


T

S(ᾱ1, β̄1)

∇2
yxL

1

−Dxv1

 0 0

0 0 0


.
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RewritingB13B
−1
33B31 analogously we arrive at

R =


D2

x f (x̄) +
2∑

i=1
µ̄iΛ(ᾱi , β̄i) ∇xL

1 ∇xL
2

λ̄1Γ(ᾱ1, β̄1) −θ̄1 0

λ̄2Γ(ᾱ2, β̄2) 0 −θ̄2


with

Λ(ᾱi , β̄i) = ∇2
xL

i −

 ∇2
yxL

i

−Dxvi


T

S(ᾱi , β̄i)

 ∇2
yxL

i

−Dxvi

 (i = 1,2)

and

Γ(ᾱi , β̄i) = Dxg
i −

 ∇ygi

0


T

S(ᾱi , β̄i)

 ∇2
yxL

i

−Dxvi

 (i = 1,2).

Applying the crucial Lemma 5.2.7, in the following we will show

Λ(ᾱi , β̄i) ∈ ∂∇ϕi(x̄) (i = 1,2) (5.19)

and

Γ(ᾱi , β̄i) = DxL
i (i = 1,2). (5.20)

In fact, let Ai = A(x̄, ȳi) (i = 1,2), be defined according to (5.11). Since ( ¯αi , β̄i) ∈ Bi ,

Lemma 5.2.7 yields

S(ᾱi , β̄i) ∈ conv({ S(α, β)| (α, β) ∈ Ai }) (i = 1,2). (5.21)

Together with Lemma 5.2.3 (iv), (5.21) implies

Λ(ᾱi , β̄i) ∈ conv


∇2

xL
i −

∇2
xyL

i

−Dxvi


T

S(α, β)

∇2
xyLi

−Dxvi


∣∣∣∣∣∣ (α, β) ∈ Ai




= ∂∇ϕi(x̄) (i = 1,2),

and thus (5.19).

Furthermore, (5.21) implies

Γ(ᾱi , β̄i) ∈ conv


Dxg

i −

∇ygi

0


T

S(α, β)

∇2
xyLi

−Dxvi


∣∣∣∣∣∣ (α, β) ∈ Ai


 (i = 1,2). (5.22)

In view of (5.13), fori = 1,2 and any (α, β) ∈ Ai we may write

Dxg
i −

∇ygi

0


T

S(α, β)

∇2
xyLi

−Dxvi

 = Dxg
i + Dyg

iDyi(x̄;α, β)

= Dϕ(x̄;α, β),
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so that Lemma 5.2.3(ii) yields

Γ(ᾱi , β̄i) ∈ conv
(
{DxL

i(x̄, ȳi , γ̄i)| (α, β) ∈ Ai}
)
= {DxL

i},

that is, (5.20).

Under (5.19) and (5.20) we find

R ∈


D2

x f (x̄) +
2∑

i=1
µ̄i∂∇xϕi(x̄) ∇xL

1 ∇xL
2

λ̄1DxL
1 −θ̄1 0

λ̄2DxL
2 0 −θ̄2


so that there exists some matrix

W ∈ D2
x f (x̄) +

2∑
i=1

µ̄i∂∇ϕi(x̄)

with

R =


W ∇xL

1 ∇xL
2

λ̄1DxL
1 −θ̄1 0

λ̄2DxL
2 0 −θ̄2

 .

Under the generalized Robinson condition, the latter matrix can be seen to be nonsingular

with the same arguments as in Lemma 5.2.6 (ii) (compare also [85, Theorem 4.2]). So we

show thatT is CD-regular at ¯z wherez̄ is a zero ofT. We get this result under the Reduction

Ansatz without strict complementarity and generalized Robinson condition at ¯z. •

Remark 5.2.9 ([115]) In the special case of SIP, an explicit proof of Theorem 5.2.8 would be

slightly shorter due to the simplifications that∇xLi reduces to∇xg(x̄, ȳi),∇xyLi to∇xyg(x̄, ȳi),

and∇xv(x̄, ȳi) vanishes, i∈ P.

In Theorem 5.2.8, we have shown that Assumption 5.2.5 implies CD-regularity of the semi-

smooth reformulation of the upper and lower KKT conditions ofGSIPat a zero of this re-

formulation, where Assumption 5.2.5 neither needs strict complementarity in the upper nor

in the lower level problem. In view of Theorem 4.1.10, the semismooth Newton method

from (4.4) hence convergesq-quadratically (because of strong semismoothness ofT at z̄, see

Section 4.3.3) to a zero. For preliminary numerical tests of the semismooth Newton method

for GSIPsee Chapter 6 where sample problems with violated upper and lower level strict

complementarity are given.
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CHAPTER 6

NUMERICAL RESULTS

In this chapter we give some numerical results from design centering, robust optimization

and other examples in order to show performance of the semismooth Newton method. The

examples are mainly from our recent paper [108].

We consider also numerical examples, for which the strict complementarity is violated in the

upper or in the lower level or in both levels simultaneously. We use the generalized damped

semismooth Newton approach proposed in [88].

We want to solveT(z) = 0 where the system of nonlinear equations forSIP is defined in

4.33 and forGSIP it is defined in 4.36 withz ∈ RN. Since this is a system of nonlinear

equations, we need to define a merit function which is a scalar valued function whose values

indicates whether a new candidate iterate is better or worse than the current iterate, in the

sense of making progress toward a root ofT. The most widely used merit function is the sum

of squares, defined by (see [74], [77])

θ(z) =
1
2

T(z)TT(z).

We use this as a merit function.

If ψFB is used, thenθ is C1 with the following gradient

∇θ(z) =WTT(z),

whereW ∈ ∂T(z), is the generalized Jacobian ofT atz. In the case ofψmin, the merit function

is not continuously differentiable. We useψFB whenever the gradient of the merit function is

needed in the algorithm.
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Algorithm 6.0.10 ([88])

Step 1. Let z0 ∈ RN, σ, ρ ∈ (0,1), η > 0, a > 2 and k= 0.

Step 2. If T(zk) = 0, stop. Otherwise, let dk be a solution of

T(zk) +Wkd = 0, (6.1)

where Wk ∈ ∂T(zk).

If (6.1) is not solvable, or if

∇θ(zk)Tdk > −η
∥∥∥dk

∥∥∥a
,

set dk = −∇θ(zk)

Step 3. Find a minimum nonnegative integer, say, mk, such that

θ(zk + ρmkdk) ≤ θ(zk) + σρmk∇θ(zk)Tdk,

Letαk = ρ
mk.

Step 4. Let zk+1 = zk + αkdk and k= k+ 1. Go to Step 2.

This algorithm is a standard damped Newton algorithm. It uses Newton direction as a search

directiondk if possible, if it is not possible to solve the linear system of equation fordk and if

a standard sufficient decrease condition is not satisfied, it passes to steepest descent direction

for the merit function. As a globalization strategy it uses a standard Armijo rule line search

method in order to find step sizeαk and update the current iterate by the step sizeαk and search

directiondk. For the implementation of the algorithm, at iterates whereT is differentiable,

we do not use the Jacobian matrixDT in the form as in the proof of Theorem 5.1.2, since the

iterates cannot be expected to be zeros ofT. Thus we may not use the simplified gradients

of the NCP functions from (A.3), but the ones from (A.1), (A.2). ForψFB this results in

replacingλi , θi , α
i
j , β

i
j , i ∈ P, j ∈ Q, by

λi =
g(x̄, ȳi)√

µ̄2
i + g(x̄, ȳi)2

+ 1, θi =
µ̄i√

µ̄2
i + g(x̄, ȳi)2

− 1, (6.2)

and

αi
j =

v j(x̄, ȳi)√
(γ̄i

j)
2 + v j(x̄, ȳi)2

+ 1, βi
j =

γ̄i
j√

(γ̄i
j)

2 + v j(x̄, ȳi)2
− 1. (6.3)
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whereas forψmin the gradients in (A.2) and (A.3) coincide.

At nondifferentiability points ofT we choose the elementW from the generalized Jacobian of

T which corresponds to the midpoints of the subdifferentials of the NCP functions. In view

of (5.7) and Lemma A.0.33 this means that forψFB we useλi = 1, θi = −1, and forψmin we

useλi = 1/2, θi = −1/2.

The Algorithm 6.0.10 is implemented in M 7.3. Throughout the computational experi-

ments, the parameters used in the algorithm areρ = 0.5, a = 2.1, η = 10−8 andσ = 0.1. The

algorithm is terminated when||T(zk)|| < 10−6.

In the numerical examples we test bothψFB andψmin as the NCP function. However, due to

the mentioned smoothness properties, in the merit function we useψFB for both cases. In the

ψmin case, we use the gradient of the merit function in theψFB case whenever the gradient is

needed.

Example 6.0.11 In the following examples we solve standard semi-infinite optimization prob-

lems.

Problem 6.0.12 ([7])

We consider the followingSIP:

min f (x) = 1.21ex1 + ex2 such thatx ∈ M = {x ∈ R2| g(x, y) ≤ 0, y ∈ Y},

where

g(x, y) = y− ex1+x2

and

Y = {y ∈ R | v(y) = y2 − y ≤ 0}.

In theψFB case, with the starting pointx0 = (0,0) the semismooth Newton method obtains

the optimal value 2.2 with ¯x = (−0.0953,0.0953) and ¯y = 1 for the optimal point. We have

||T(z̄)|| = 2.8275−12 after 6 iterations within 0.032 seconds of CPU time. In theψmin case, the

optimal point and the optimal value are obtained in 8 iterations with||T(z̄)|| = 1.4035−8 within

0.016 seconds of CPU time.
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Problem 6.0.13 ([7])

Let us consider the followingSIP:

min f (x) = x2
1 + x2

2 + x2
3 such thatx ∈ M = {x ∈ R2| g(x, y) ≤ 0, y ∈ Y},

where

g(x, y) = x1 + x2ex3y + e2y − 2sin(4y)

and

Y = {y ∈ R | v(y) = y2 − y ≤ 0}.

In theψFB case, with the starting pointx0 = (1,1,1) the semismooth Newton method obtains

the optimal value 5.33 with ¯x = (−0.213,−1.361,1.854) and ¯y = 1 for the optimal point. We

have||T(z̄)|| = 4.6578−11 after 12 iterations within 0.03 seconds of CPU time. In theψmin case,

the optimal point and the optimal value are obtained in 9 iterations with||T(z̄)|| = 8.2055−7

within again 0.03 seconds of CPU time.

Problem 6.0.14 ([7])

We consider the followingSIP:

min f (x) = (x1 − 2x2 + 5x2
2 − x3

2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2

such thatx ∈ M = {x ∈ R2| g(x, y) ≤ 0, y ∈ Y},

where

g(x, y) = x2
1 + 2x2y2 + ex1+x2 − ey

and

Y = {y ∈ R | v(y) = y2 − y ≤ 0}.

In the ψFB case, with the starting pointx0 = (0.4,−1.1) the semismooth Newton method

obtains the optimal value 97.15 with ¯x = (0.719,−1.45) andȳ = 0 for the optimal point. We

have||T(z̄)|| = 1.1072−7 after 7 iterations within 0.06 seconds of CPU time. In theψmin case,

the optimal point and the optimal value are obtained in 6 iterations with||T(z̄)|| = 6.8452−7

within again 0.02 seconds of CPU time.
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Problem 6.0.15 ([33])

Let us consider the followingSIP:

min f (x) = −x2
1 − (x2 + 5)2 such thatx ∈ M = {x ∈ R2| g(x, y) ≤ 0, y ∈ Y},

where

g(x, y) = 2yx1 + x2 − y2

and

Y = {y ∈ R | v(y) = y2 − 1 ≤ 0}.

In theψFB case, with the starting pointx0 = (1,1) the semismooth Newton method obtains

the optimal value -25 with ¯x = (0,5.1416−10) and ȳ = 0 for the optimal point. We have

||T(z̄)|| = 5.1416−10 after 3 iterations within 0.015 seconds of CPU time. In theψmin case, the

optimal point and the optimal value are obtained in again 3 iterations with||T(z̄)|| = 6.4701−8

within again 0.016 seconds of CPU time.

In the following examples we solve generalized semi-infinite optimization problems as well

as standard semi-infinite optimization problems. The test problems in Examples 6.0.16 and

6.0.21 are taken from [103].

Example 6.0.16 ([103], [108])Design Centering (GSIP)

We consider the followingGSIPreformulation of a design centering problem:

max
x∈Rn

Vol(B(x)) such that B(x) ⊂ G.

Let G = {y ∈ R2 |g(y) ≤ 0} with

g(y) =


−y1 − y2

2

y1/4+ y2 − 3/4

−y2 − 1

 .
We refer the reader to the Figure 6.1 for containerG. TheGSIPformulation of the general

design centering problem is as follows:
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Figure 6.1: The containerG, [103].

max
x∈Rn

Vol(B(x)) such that g(y) ≤ 0 for all y ∈ B(x).

We consider the following design centering problems.

Problem 6.0.17 ([103], [108])The disc with maximal area with free center and radius in-

scribed in G (GSIP)

The aim is to find the largest disc with free center and radius inscribed inG. We then have

n = 3 and

B(x) = {y ∈ R2 | (y1 − x1)2 + (y2 − x2)2 − x2
3 ≤ 0}, Vol(B(x)) = πx2

3.

In theψFB case, with the starting pointx0 = (0,0,1) the semismooth Newton method obtains

the optimal value 1.8606 with ¯x = (0.749,−0.230,0.770) and ¯y1 = (−0.008,−0.091), ȳ2 =

(0.935,0.516), ȳ3 = (0.749,−1) for the optimal point. We have||T(z̄)|| = 7.1239−10 after 4

iterations within 0.23 seconds of CPU time. In theψmin case, the optimal point and the optimal

value are obtained in 4 iterations with||T(z̄)|| = 3.3466−13 within 0.42 seconds of CPU time.

For the solution we refer the reader to the Figure 6.2.
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Figure 6.2: The maximal ball inscribed in the containerG, [103].

Problem 6.0.18 ([103], [108])The largest ellipse with free center and axis lengths inscribed

in G (GSIP)

Our aim here is to find the largest ellipse with free center and axis lengths inscribed inG. We

haven = 4 and

B(x) = {y ∈ R2 |
(y1−x1)2

x2
3
+

(y2−x2)2

x2
4
− 1 ≤ 0}, Vol(B(x)) = πx3x4.

Figure 6.3: The maximal ellipse inscribed in the containerG, [103].

In theψFB case, with the starting pointx0 = (0,0,1,1) the semismooth Newton method ob-

tains the optimal value 3.484 with ¯x = (2.013,−0.5,2.217,0.5) andȳ1 = (−0.167,−0.408), ȳ2 =
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(3.658,−0.165), ȳ3 = (2.013,−1) for the optimal point. We have||T(z̄)|| = 3.3603−10 after 6

iterations within 0.34 seconds of CPU time. In theψmin case, the optimal point and the opti-

mal value are obtained in 6 iterations with||T(z̄)|| = 2.9269−11 within 0.57 seconds of CPU

time. For the solution we refer the reader to the Figure 6.3.

max
x,z

z such thatz− yT x ≤ 0 for all y ∈ Y,
K∑

i=1
xi = 1, x ≥ 0.

In fact, this is a linear semi-infinite programming problem.

Problem 6.0.19 The largest ellipsoid with free center and axis lengths inscribed in a con-

tainer (GSIP)

We consider another example of design centering problem inR3. Our aim here is to find the

largest ellipsoid with free center and axis lengths inscribed in containerG. We let container

be the simple polyhedronG = {y ∈ R3 |g(y) ≤ 0} with

g(y) =



y1 + y2 + y3 − 90

14− y1

y1 − 60

9− y2

y2 − 60

−y3

y3 − 60



.

Heren = 6 and

B(x) = {y ∈ R3 |
(y1−x1)2

x2
4
+

(y2−x2)2

x2
5
+

(y3−x3)2

x2
6
− 1 ≤ 0}, Vol(B(x)) = 4

3πx4x5x6.

The columns of the Tables 6.1 and 6.2 are labeled as follows:initialp.center center of

ellipsoid for initial point,ov is the optimal value,||T(z̄)|| is the Euclidean norm ofT at the

last iteration point,iter is the number of iterations andCPU time denotes the CPU time for

iterations in seconds. BothψFB andψmin are tested. For the solution we refer the reader to the

Figure 6.4. Table 6.1 contains numerical results.
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Figure 6.4: The maximal ellipsoid inscribed in the polyhedronG.

ψFB ψmin

initial p.center (20,20,20) (20,20,20)
ov 11890 11890
||T(z̄)|| 4.0134e-7 8.8400e-9
iter 7 7
CPU time 0.35 0.27

Table 6.1: The Maximal Ellipsoid in the Polyhedron.

Problem 6.0.20 The largest simple diamond inscribed in container (GSIP)

Our aim here is to find the largest simple diamond inscribed in containerG (test problem from

[128]). We let container be the simple polyhedron in Problem 6.0.19. For the simple diamond

shape we refer the reader to the Figure 6.5 and for the solution we refer to the Figure 6.6.

Table 6.2 contains numerical results.

ψFB ψmin

ov 1.398 1.398
||T(z̄)|| 9.8146e-7 4.2024e-9
iter 4 9
CPU time 0.52 0.98

Table 6.2: The Maximal Simple Diamond in the Polyhedron.
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Figure 6.5: A simple diamond as a design.

Figure 6.6: The maximal diamond inscribed in the polyhedron.

Example 6.0.21 ([103], [108])Robust Optimization

As explained in Example 2.2.8 in robust optimization problems the data are uncertain and

only known to belong to some uncertainty set which may be taken as infinite index set in

semi-infinite programming.

Let 1 Euro be invested in a portfolio comprised ofK shares. At the end of a given period the

return of sharei is yi > 0. The goal is to determine the amountxi to be invested in sharei,

i = 1, ...,K, so as to maximize the end-of-period portfolio valueyT x.

Sincey is uncertain, the assumption thaty varies in some non-empty compact setY ⊂ RK

leads us to the following semi-infinite programming problem:
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Problem 6.0.22 ([103], [108])(SIP)

Let the uncertainty setY be in the form:

Y =

y ∈ RK

∣∣∣∣∣∣∣
K∑

i=1

(yi − ȳi)2

σ2
i

≤ θ2

 ,
whereȳi is some nominal value ofyi ,σi is scaling parameter andθ measures the risk aversion.

With the particular choices from [3]

ȳi = 1.15+ i
0.05
K

(i = 1,2, . . . ,K),

σi =
0.05
θK

√
K(K + 1)i

2
(i = 1,2, . . . ,K),

θ = 1.5,

the optimal value is 1.15 for anyK. The optimal policy in this situation is to invest equally in

all shares andxi = 1/K, i = 1, ...,K. We use the starting pointx0 = (1,0, . . . ,0)T in RK+1.

The columns of the Tables 6.3-6.7 are labeled as follows:K is the number of shares,ov is

the optimal value,||T(z̄)|| is the Euclidean norm ofT at the last iteration point,CPU time

is the CPU time for iterations in seconds,iter is the number of iterations. Note that this

optimization problem is convex so that the computed KKT point is even a global maximizer.

We refer the reader to Table 6.3 and Table 6.4 for numerical results.

K ov ||T(z̄)|| CPU time iter

10 1.15 5.2928−8 0.36 11
50 1.15 5.7463−7 1.43 11
100 1.15 1.7676−10 8.61 11
150 1.15 4.2121−10 25.17 12

Table 6.3: Optimal Portfolio, Problem 6.0.22 withψFB.

In the next problem, we will consider an example ofGSIPin portfolio optimization.
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K ov ||T(z̄)|| CPU time iter

10 1.15 3.2058−7 0.54 10
50 1.15 2.5966−13 1.39 11
100 1.15 7.5748−10 5.58 11
150 1.15 1.0056−12 15.35 12

Table 6.4: Optimal Portfolio, Problem 6.0.22 withψmin.

Problem 6.0.23 ([103], [108])(GSIP)

Let the uncertainty setY depend onx in which the risk aversion of the decision maker depends

on the pointx. Replacingθ byΘ(x), Y(x) is given in the form [103]:

Y(x) =

y ∈ RK

∣∣∣∣∣∣∣
K∑

i=1

(yi − ȳi)2

σ2
i

≤ Θ(x)2

 ,
with

Θ(x) = θ

1+ K∑
i=1

(xi −
1
N

)2

 .
In this case we have an example forgeneralizedsemi-infinite programming problems. We

use the startingx0 = (1,0, . . . ,0)T in RK+1. Since the optimization problem is not convex, we

have no guarantee that the computed KKT point is a global maximizer. We refer the reader to

Table 6.5 and Table 6.6 for numerical results.

K ov ||T(z̄)|| CPU time iter

10 0.7033 4.2379−8 0.28 5
50 0.9638 2.3920−9 0.72 7
100 1.0259 4.0606−7 2.87 7
150 1.0535 8.7426−10 8.76 8

Table 6.5: Optimal Portfolio, Problem 6.0.23 withψFB.
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K ov ||T(z̄)|| CPU time iter

10 0.7033 1.8731−11 0.51 4
50 0.9638 9.2578−9 1.43 6
100 1.0259 4.2917−10 7.06 7
150 1.0535 9.9549−10 34.4 11

Table 6.6: Optimal Portfolio, Problem 6.0.23 withψmin.

Example 6.0.24Strict complementarity violated in the upper level or in the lower level or in

the both levels simultaneously.

It can be checked that in the problems in Example 6.0.16 and 6.0.21 strict complementarity

holds in the upper and lower level problems, so that we actually have a smooth system. Now,

for an illustration of the case that strict complementarity is violated in the upper level, we give

the following example.

Problem 6.0.25 ([108])Strict complementarity violated in the upper level:

Let us consider the followingSIP:

min f (x) = (x1 − 1)2 + (x2 − 1)2 such thatg(x, y) ≤ 0 ∀ y ∈ Y,

where

g(x, y) = (y1 − x1) + (y2 − x2)

and

Y = {y ∈ R2 | v1(y) = y2
1 − 1 ≤ 0, v2(y) = y2

2 − 1 ≤ 0}.

The feasible set isM = {x ∈ R2| x1 + x2 ≥ 2}, so that strict complementarity is violated at the

solutionx̄ = (1,1). In theψFB case with the starting pointx0 = (1,2) the semismooth Newton

method obtains the optimal value 0 with ¯x = (1,1) andȳ = (1,1) for the optimal point. We

have||T(z̄)|| = 1.6391−10 after 7 iterations within 0.14 seconds of CPU time. In theψmin case,

the optimal point and the optimal value are obtained in 6 iterations with||T(z̄)|| = 5.3765−10

within 0.28 seconds of CPU time. This shows that the method also works well for this problem

where strict complementarity is violated in the upper level.
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Finally, we also test the method for problems with violated strict complementarity in the lower

level. At the corresponding nondifferentiability points the values ofαi
j andβi

j are chosen

according to the same rule as explained above forλi andθi . The theoretical foundation of the

following examples is derived in Section 5.2.

Problem 6.0.26 ([7]) Strict complementarity violated in the lower level

We consider the followingSIP:

min f (x) = 1
3x2

1 +
1
2x1 + x2

2 such thatx ∈ M = {x ∈ R2| g(x, y) ≤ 0, y ∈ Y},

where

g(x, y) = (1− x2
1y2)2 − x1y2 − x2

2 + x2

and

Y = {y ∈ R | v(y) = y2 − y ≤ 0}.

In theψFB case, with the starting pointx0 = (0,0) the semismooth Newton method obtains the

optimal value 0.1945 with ¯x = (−0.75,−0.618) and ¯y = (1,0) for the optimal point. We have

||T(z̄)|| = 2.4356−10 after 4 iterations within 0.032 seconds of CPU time. In theψmin case,

the optimal point and the optimal value are obtained in 7 iterations with||T(z̄)|| = 2.2765−11

within again 0.015 seconds of CPU time. This shows that the method also works well for this

problem where strict complementarity is violated in the lower level.

Problem 6.0.27 ([110])Strict complementarity violated in the lower level

Let us consider the followingSIP: (g(x, y) = cosy+ 2 is taken instead of cosy).

min f (x) = x1 such thatx ∈ M = {x ∈ R2| g(x, y) ≤ 0, y ∈ Y},

where

g(x, y) = −x1(cosy+ 2)− x2siny+ 1

and

Y = {y ∈ R | v(y) = (y− π)(y− 3π/2) ≤ 0}.
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In theψFB case, with the starting pointx0 = (0,0) the semismooth Newton method obtains the

optimal value 1 with ¯x = (1,0) andȳ = π for the optimal point. We have||T(z̄)|| = 2.8077−9

after 4 iterations within 0.047 seconds of CPU time. In theψmin case, the optimal point and the

optimal value are obtained in 5 iterations with||T(z̄)|| = 1.844−8 within again 0.047 seconds

of CPU time.

Problem 6.0.28 ([84]) Strict complementarity violated in the lower level:

We consider the followingSIP:

min f (x) = (x1 − 2)2 + x2
2 such thatg(x, y) ≤ 0 ∀ y ∈ Y,

where

g(x, y) = x1cosy+ x2siny− 1

and

Y = {y ∈ R | v(y) = y2 − πy ≤ 0}, ‖x‖∞ ≤ 1.

In this problem strict complementarity is violated at the global maximizer of lower level

problemx̄ = (1,0). In theψFB case with the starting pointx0 = (1,1) the semismooth Newton

method obtains the optimal value 1 with ¯x = (1,0) andȳ = 0 for the optimal point. We have

||T(z̄)|| = 4.4181× 10−8 after 5 iterations within 0.03 seconds of CPU time. In theψmin case,

the optimal point and the optimal value are obtained in 7 iterations with||T(z̄)|| = 3.5023×10−7

within 0.02 seconds of CPU time.

Problem 6.0.29 Strict complementarity violated in the lower level:

Let us consider the followingGSIP:

min f (x) = x2
1 + x2

2 such thatx ∈ M = {x ∈ [−1,0] | g(x, y) ≤ 0, y ∈ Y(x)},

where

g(x, y) = −(y1 − x1)2 − (y2 − x2)2
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and

Y(x) = {y ∈ R2 | v1(x, y) = y1 − x1 ≤ 0, v2(x, y) = y2 − x2 ≤ 0}.

The unique unconstrained minimum of the objective function ¯x = (0,0) is feasible and there-

fore optimal for this problem. Its active index set only contains the point ( ¯x, ȳ) with ȳ = (0,0),

and lower level strict complementarity is violated there. In theψFB case with the starting point

x0 = (1,1) the semismooth Newton method obtains the optimal value 0 with ¯x = (0,0) and

ȳ = (0,0) for the optimal point. We have||T(z̄)|| = 5.4022×10−13 after 2 iterations within 0.03

seconds of CPU time. In theψmin case, the optimal point and the optimal value are obtained

in 4 iterations with||T(z̄)|| = 3.5403× 10−8 within 0.05 seconds of CPU time.

In the following example we testψFB as the NCP function. The test problem 6.0.30 is taken

from [103].

Problem 6.0.30 ([103])Strict complementarity violated in the lower level in Robust Opti-

mization:

In Example 6.0.21 let the uncertainty setY be in the form

Yδ = {y ∈ RN | ||diag(σ)−1(y− ȳ)||δ ≤ θ},

whereȳi is some nominal value ofyi ,σi is scaling parameter andθ measures the risk aversion.

With the particular choice ofδ = 10, Yδ becomes a non-ellipsoidal set. Moreover, we have

violated strict complementarity in the lower level. We use the starting pointx0 = (1,1, . . . ,1)T

in RK+1. We refer the reader to Table 6.7 for numerical results.

K ov ||T(z̄)|| CPU time iter

10 1.1190 1.5176× 10−7 1.70 28
50 1.1155 8.9342× 10−9 1.72 25
100 1.1151 1.3327× 10−7 14.24 44
150 1.1150 9.0689× 10−7 25.17 24

Table 6.7: Optimal Portfolio, Problem 6.0.30 withψFB.
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Problem 6.0.31 ([52], [108])Strict complementarity violated in the lower level:

Another example for the case of violated strict complementarity in the lower level is given:

min f (x) = x2
1 + 3x2

2 + x3 such thatg(x, y) ≤ 0 ∀ y ∈ Y,

where

g(x, y) = −
1
2

(y1 − x1)2 − (y2 − x2)2 − x3

and

Y = {y ∈ R2 | v1(y) = −y1 − y2 ≤ 0, v2(y) = −y2 ≤ 0, v3(y) = y2
1 + y2

2 − 1 ≤ 0}.

In theψFB case with the starting pointx0 = (1,1,1)T the semismooth Newton method obtains

the optimal value 0 with ¯x = (0,0,0) andȳ = (0,0) for the optimal point. We have||T(z̄)|| =

5.4371× 10−9 after 10 iterations within 0.16 seconds of CPU time. In theψmin case, the

optimal point and the optimal value are obtained in 16 iterations with||T(z̄)|| = 2.3642×10−17

within 0.44 seconds of CPU time.

Problem 6.0.32 ([108])Strict complementarity violated in the upper level and in the lower

level simultaneously :

For the case of violated strict complementarity simultaneously in the upper and lower level

problems, consider the following variation of Problem 6.0.31:

min f (x) = x2
1 + x2

2 + x2
3 such thatg(x, y) ≤ 0 ∀ y ∈ Y,

where

g(x, y) = −
1
2

(y1 − x1)2 − (y2 − x2)2 − x3

and

Y = {y ∈ R2 | v1(y) = −y1 − y2 ≤ 0, v2(y) = −y2 ≤ 0, v3(y) = y2
1 + y2

2 − 1 ≤ 0}.

In theψFB case with the starting pointx0 = (1,1,1) the semismooth Newton method obtains

the optimal value 0 with ¯x = (0,0,0) andȳ = (0,0) for the optimal point.
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We have||T(z̄)|| = 2.0792× 10−7 after 8 iterations within 0.17 seconds of CPU time. In the

ψmin case, the optimal point and the optimal value are obtained in 5 iterations with||T(z̄)|| =

0 within 0.29 seconds of CPU time. The method works also for this problem where strict

complementarity is violated simultaneously in the upper and lower level problems.

In all of the examples, ifψFB is replaced byψmin, the performance of the method does not

change meaningly in both systems (4.33) forSIPand (4.36) forGSIP.

General advantages of the semismooth Newton method can be listed as follows, only a system

of linear equations needs to be solved at each iteration and the convergence rate isq-quadratic

from good initial guess if (generalized) Jacobian is nonsingular. Disadvantages of the semi-

smooth Newton method can be listed as follows: it is not globally convergent, it requires

computation of (generalized) Jacobian at each iteration and each iteration requires the solu-

tion of a system of linear equations that may be singular or ill-conditioned.
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CHAPTER 7

CONCLUSION

In this thesis, we have developed and justified a numerical method, namely semismooth New-

ton method for solving generalized semi-infinite programming problems. The semismooth

Newton method is based on the reformulated Karush-Kuhn-Tucker (KKT) conditions of gen-

eralized semi-infinite programming. The complementarity conditions in the KKT system need

special attention in any numerical approach. One possibility for their treatment is a reformu-

lation by nonlinear complementarity problem functions (NCP functions). It was suggested

to use NCP functions for a nonsmooth reformulation of the KKT conditions in finitely con-

strained programming problems, also in standard semi-infinite programming problems [88].

But the result in [88] for standard semi-infinite programming problems was incomplete. In

this thesis we corrected and completed the result of semismooth Newton method for standard

semi-infinite programming problems and we also transferred the semismooth approach from

standard to generalized semi-infinite programming problems.

The study in this thesis can be basically divided into two parts. The first part of our study was

given in Section 5.1. Section 5.2 includes the second part of the study.

In the first part of this study, we completed the result in [88] by presenting a regularity condi-

tion which does not assume strict complementarity in the upper level problem, thus justifying

the NCP function approach for semi-infinite programs. We also pointed out that global op-

timality of lower level problem is needed in the solution of KKT systems for semi-infinite

programs. The first part of this study was published in our recent paper [108] and shows

that the semismooth Newton method for semi-infinite programming can actually handle non-

smoothness, since there the result from [88] was extended to the case of violated strict com-

plementarity in the upper level problem. Moreover, we transferred the semismooth approach
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from standard semi-infinite programming problems to generalized semi-infinite programming

problems.

The second part of the study completes the first part by considering the case of strict comple-

mentarity violation in the lower level. This result was published in our second paper [115].

There, we gave an appropriate new regularity condition for the convergence of a semismooth

Newton method, thus justifying the NCP approach for semi-infinite programs in the absence

of strict complementarity in both upper level and lower level problems. In the present case,

the convergence analysis was essentially more complicated due to the lack of differentiability

of the auxiliary functions of the so-called reduced problem.

Our main result in the second part was given in the Section 5.2.1, a sufficient condition for

quadratic convergence of the semismooth Newton method for generalized semi-infinite pro-

gramming problems where strict complementarity neither has to be assumed in the upper nor

in the lower level problem.

As a future study, another globalization method (ex: trust-region interior method) can be

used and the problems faced while applying the method to gemstone cutting problem (ill-

conditioned of Jacobian) can be fixed (use of some scaling matrix/preconditioner) and the

use of the method in genetic networks under uncertainty [121, 122, 123, 124, 125] can be

considered.
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[79] Özöğür-Akyüz, S.A Mathematical contribution of statistical learning and continuous
optimization using infinite and semi-infinite programming, to computational statistics,
PhD Thesis, Institute of Applied Mathematics, METU, (2008).

[80] Polak, E.Semi-infinite optimization in engineering design, Beckmann M., Krelle W.,
eds., Lecture notes in economics and mathematical systems,215, 237-248, (1981).

[81] Polak, E.An implementable algorithm for the optimal design centering, tolerancing and
tuning problem, Journal of Optimization Theory and Applications,37, 45-67, (1982).

[82] Polak, E.On the mathematical foundation of nondifferentiable optimization in engineer-
ing design, SIAM Rev.,29(1), 21-89, (1997).

[83] Ponomarenko, A.Lösungsmethoden für Variationsungleichungen, Doctoral Thesis,
Humboldt-Universiẗat zu Berlin, (2003).

[84] Price, C.J. and Coope, I.D.Numerical experiments in semi-infinite programming, Com-
putational Optimization and Applications,6, 169-189, (1996).

[85] Qi, L. and Jiang, H.Semismooth KKT equations and convergence analysis of Newton
and Quasi-Newton methods for solving these equations, Math. of Op.Research,22, 301-
325, (1997).

109



[86] Qi, L. and Martinez, J.M.Inexact Newton methods for solving nonsmooth equations,
J.Comput. Appl. Math.,60, 127-145, (1995).

[87] Qi, L. and Sun, J.A Nonsmooth version of Newton’s method, Math. Programming,58,
353-367, (1993).

[88] Qi, L., Wu, S.-Y. and Zhou, G.Semismooth Newton methods for solving semi-infinite
problems, Journal of Global Optimization,27, 215-232, (2003).

[89] Qi, L. Convergence analysis of some algorithms for solving nonsmooth equations, Math.
Oper. Res.,18, 227-244, (1993).

[90] Reemtsen, R.Discretization methods for the solution of semi-infinite programming prob-
lems, Journal of Optimization Theory and Applications,71(1), 85-103, (1991).

[91] Reemtsen, R. and G̈orner, S.Numerical methods for semi-infinite programming: a
survey, in: R. Reemtsen, J.-J. Rückmann (eds.): Semi-Infinite Programming, Kluwer,
Boston, 195-275, (1998).

[92] Reemtsen, R. and R̈uckmann, J.-J.Semi-Infinite Programming, Springer, (1998).

[93] Robinson, S. M.Generalized Equations and their solutions, Part II, Applications to
nonlinear programming, Math. Programming Stud.,19, 200-221, (1982).

[94] Robinson, S.M.Newton’s Method for a class of nonsmooth functions, Industrial Engi-
neering Working Paper, University of Wisconsin, (1998).

[95] Rockafellar, R. T.Convex Analysis, Princeton University Press, New Jersey, (1970).

[96] Rückmann, J.-J.On existence and uniqueness of stationary points in semi-infinite opti-
mization, Math. Programming,86, 387-415, (1999).

[97] Rückmann, J.-J. and Shapiro A.On first order optimality conditions in generalized semi-
infinite programming, J. optim. theory Appl.,101(3), 677-691, (1999).

[98] Rückmann, J.-J. and Shapiro A.Second order optimality conditions in generalized semi-
infinite programming, Set-Valued Analysis,9, 169-186, (2001).

[99] Rückmann, J.-J. and Stein, O.On linear and linearized generalized semi-infinite opti-
mization problems, Annals of Op. Res.,11, 191-208, (2001).

[100] Scholtes, S.Introduction to piecewise differentiable equations, Habilitationsschrift, In-
stitut für Statistik und Mathematische Wirtschaftstheorie, Universitat Karlsruhe, Karl-
sruhe, Germany, (1994).

[101] Sherali, H.D.Disjunctive programming, in: Encyclopedia of Optimization, Kluwer,
Dordrecht, 466-470, (2000).

[102] Stein, O.On Parametric Semi-infinite Optimization, PhD Thesis, University of Trier,
Department of Mathematics, (1997).

[103] Stein, O.Bi-Level Strategies in Semi-infinite Programming, Kluwer, (2003).

[104] Stein, O.A semi-infinite approach to design centering, Optimization with Multivalued
Mappings, Springer, 209-228, (2006).

110



[105] Stein, O. and Still, G.On generalized semi-infinite optimization and bilevel optimiza-
tion, European Journal of Operational Research,142, 444-462, (2002).

[106] Stein, O. and Still, G.Solving semi-infinite optimization problems with interior point
techniques, SIAM J.Control Optim.,42(3), 769-788, (2003).

[107] Stein, O. and Still, G.On optimality conditions for generalized semi-infinite program-
ming problems, J.of Optim. Theory and Appl.,104(2), 443-458, (2000).

[108] Stein, O. and Tezel, A.The Semismooth Approach for semi-infinite programming under
the Reduction Ansatz, Journal of Global Optimization,41, 245-266, (2008).

[109] Still, G. Discretization in semi-infinite programming: The rate of convergence, Math.
Program.,91, 53-69, (2001).

[110] Still, G. Semi-infinite programming: An introduction, preliminary version, Techni-
cal report, University of Twente Department of Applied Mathematics, Enschede, The
Netherlands, (2004).

[111] Still, G. Generalized semi-infinite programming: theory and methods, European J. of
Op. Res.,119, 301-313, (1999).

[112] Still, G. Generalized semi-infinite programming: numerical aspects, Optimization,49,
223-242, (2001).

[113] Sun, D. and Han, J.Newton and Quasi-Newton methods for a class of nonsmooth
equations and related topics, SIAM J. Optim.,7, 463-480, (1997).

[114] Sun, D. and Qi, L.On NCP-Functions, Comp. Optim. and Appl.,13, 201-220, (1999).

[115] Tezel, A. and Stein O.The semismooth approach for semi-infinite programming without
strict complementarity, SIAM J. Optim.,20(2), 1052-1072, (2009).

[116] Ulbrich, M. Nonsmooth Newton-like Methods for Variational Inequalities and Con-
strained Optimization Problems in Function Spaces, Habilitation Thesis, Technical Uni-
versity of Munich, (2002).

[117] Watson, G.A.Lagrangian Methods for semi-infinite programming Problems, Infinite
programming, Proc. Int. Symp., Cambridge UK, 90-107, (1984).

[118] Weber, G.-W.Generalized Semi-infinite Optimization and Related Topics, Heldermann
Verlag, (2003).

[119] Weber, G.-W.Generalized semi-infinite optimization: on some foundations, J. of
Comp. Tech.,4, 41-61, (1999).
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APPENDIX A

NCP FUNCTIONS

Appendix A is based on our recent paper [108].

Both functionsψFB(a,b) =
√

a2 + b2 − a − b andψmin(a,b) = −min{a,b} are convex on

R2, and are differentiable inR2 except for the origin and the diagonal{(a,b) ∈ R2| a = b},

respectively. For (a,b) , 0 we have

DψFB(a,b) =

(
a

√
a2 + b2

− 1,
b

√
a2 + b2

− 1

)
(A.1)

and fora , b

Dψmin(a,b) =

 (−1,0), a < b

(0,−1), a > b
. (A.2)

In their (identical) zero set, the only point of nondifferentiability for either of the two functions

is the origin, and their gradients for (a,b) , 0 coincide:

DψFB(a,b) = Dψmin(a,b) =

 (−1,0), a = 0

(0,−1), b = 0
. (A.3)

At the origin we calculate subdifferentials of the convex functionsψFB andψmin as follows.

We denote the usualdirectional derivativeof ψ in the directiond at x̄ by ψ′(x̄; d) and the

generalizeddirectional derivative ofψ (in the sense of Clarke) in the directiond at x̄ by

ψ0(x̄; d). For completeness, we give the proofs of the following well-known results.

Lemma A.0.33 ([108]) The following assertions hold:

(i) ψ′FB(0;d) = ψ0
FB(0;d) = ψFB(d) for any d∈ R2,

(ii) ψ′min(0;d) = ψ0
min(0;d) = ψmin(d) for any d∈ R2,
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(iii) ∂ψFB(0) = {s ∈ R2 | (s1 + 1)2 + (s2 + 1)2 ≤ 1},

(iv) ∂ψmin(0) = conv{(−1,0)T , (0,−1)T}.

Proof. Parts (i) and (ii) can easily be checked by calculation. In part (iii), by definition of the

Clarke subdifferential for real-valued functions, we have

∂ψFB(0) = {s ∈ R2| ψ0(0;d) ≥ dT s for all d ∈ R2}

= {s̃ ∈ R2| dT s̃≤ ||d||2, for all d ∈ R2} − (1,1)T

= {s̃ ∈ R2| max
d∈∂B(0,1)

dT s̃≤ 1} − (1,1)T

wheres̃= s+ (1,1)T and∂B(0,1) denotes the boundary of the unit ball. The Cauchy-Schwarz

inequalitydT s̃ ≤ ||d||2||s̃||2 implies that maxd∈∂B(0,1) dT s̃ ≤ ||s̃||2 for all s̃ ∈ R2. On the other

hand, withd̄ = s̃/||s̃||2 ∈ ∂B(0,1), we find maxd∈∂B(0,1) dT s̃ ≥ d̄T s̃ = ||s̃||2 for all s̃ ∈ R2 \ {0},

the case ˜s= 0 being trivial. This shows

∂ψFB(0) = {s̃ ∈ R2| ||s̃||2 ≤ 1} − (1,1)T

and completes the proof of part (iii).

To see part (iv), note that by definition of the Clarke subdifferential for vector-valued functions

we have

∂ψmin(0) = conv{lim
x→0
∇ψmin(x) | x ∈ Dψ} = conv{(−1,0)T , (0,−1)T}

whereDψ is set of differentiability points ofψmin. •
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APPENDIX B

BLOCK MATRICES

Appendix B is based on our recent papers [108, 115].

Definition B.0.34 ([78]) Consider the quadratic block matrix

A =

 E F

G H


where H is quadratic and nonsingular. Then the matrix

S = A/H = E − FH−1G

is called theSchur complementof H in A.

Lemma B.0.35 ([78]) Let a block matrix A be given as in Definition B.0.34 and let H be

nonsingular. Then

det(A) = det(H) · det(A/H).

In particular, A is nonsingular if and only if A/H is nonsingular.

Lemma B.0.36 ([78]) Let a block matrix A be given as in Definition B.0.34 with E nonsin-

gular, and let A be symmetric. Then,

In(A) = In(E) + In(A/E),

where In(A) denotes theinertia-tripleof A, that is, the number of negative, positive and van-

ishing eigenvalues, respectively.

Lemma B.0.37 ([46]) For A ∈ SN and B∈ RN×M
K we have

In

 A B

BT 0M×M

 = In(A|Ker(BT )) + (K,K,M − K). (B.1)
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Here,SN denotes the set of symmetric matrices inRN×N andRN×M
K denotes the set of matrices

in RN×M with rankK. The null space of a matrixA is denoted by Ker(A).

By Lemma B.0.37, we have thatA|Ker(BT ) is nonsingular and the columns ofB are linearly

independent if and only if the matrix  A B

BT 0


is nonsingular.

Lemma B.0.38 ([78]) Let a block matrix A be given as in Definition B.0.34 with E nonsin-

gular. Let S= A/E := H −GE−1F be the Schur complement of E in A. Then,

A−1 =

 E−1 + E−1FS−1GE−1 −E−1FS−1

−S−1GE−1 S−1

 .
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