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ABSTRACT

A SEMISMOOTH NEWTON METHOD FOR
GENERALIZED SEMI-INFINITE PROGRAMMING PROBLEMS

TezelOzturan, Aysun
Ph.D., Department of Mathematics
Supervisor . Prof. Dr. Blent Kara$zen

Co-Supervisor : Prof. Dr. Oliver Stein

June 2010, 119 pages

Semi-infinite programming problems is a class of optimization problems in finite dimensional
variables which are subiject to infinitely many inequality constraints. If the infinite index of
inequality constraints depends on the decision variable, then the problem is called generalized
semi-infinite programming problen&SIP). If the infinite index set is fixed, then the problem

is called standard semi-infinite programming probleiH.

In this thesis, convergence of a semismooth Newton method for generalized semi-infinite pro-
gramming problems with convex lower level problems is investigated. In this method, using
nonlinear complementarity problem functions the upper and lower level Karush-Kuhn-Tucker
conditions of the optimization problem are reformulated as a semismooth system of equations.
A possible violation of strict complementary slackness causes nonsmoothness. In this study,
we show that the standard regularity condition for convergence of the semismooth Newton
method is satisfied under natural assumptions for semi-infinite programs. In fact, under the
Reduction Ansatz in the lower level problem and strong stability in the reduced upper level

problem this regularity condition is satisfied. In particular, we do not have to assume strict
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complementary slackness in the upper level. Furthermore, in this thesis we neither assume
strict complementary slackness in the upper nor in the lower level. In the case of violation
of strict complementary slackness in the lower level, the auxiliary functions of the locally
reduced problem are not necessarily twice continuousigréintiable. But still, we can show

that a standard regularity condition for quadratic convergence of the semismooth Newton
method holds under a natural assumption for semi-infinite programs. Numerical examples
from, among others, design centering and robust optimization illustrate the performance of

the method.

Keywords: Generalized semi-infinite optimization, semismooth Newton method, Nonlinear

Complementarity function, Clarke sulfi@irential regularity, Reduction Ansatz.
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GENELLESTIRILM IS YARI SONSUZ OPTMIZASYON
PROBLEMLER ICIN YARI D UZGUN NEWTON YONTEMI

TezelOzturan, Aysun
Doktora, Matematik BIUmi
Tez Yoneticisi : Prof. Dr. Bllent Karagzen
Ortak Tez Yoneticisi : Prof. Dr. Oliver Stein

Haziran 2010, 119 sayfa

Yari sonsuz programlama problemleri, sonlgig&eniizerinde sonsuz esitsizlik kisitlamalari
olan optimizasyon problemleridir. Esitsizlik kisittamalarinin sonsuz indéksdsi optimiza-
syonun yapildji dejiskene bgli ise problem genellestirilmis yari sonsuz optimizasyon prob-
lemi olarak adlandirlir. Sonsuz indek&rkesi sabit bir kme ise standart yari sonsuz opti-

mizasyon problemi olarak adlandirilir.

Bu tezde, genellestiriimis yari sonsuz optimizasyon problemlerinin konveks alt seviye prob-
lemi olanlar icin yari éizgin Newton ynteminin yakinsakd) incelenmistir. Bu $ntemde,
lineer olmayan tamlik fonksiyonlari kullanilarak optimizasyon problemiiéh ve alt se-

viye Karush Kuhn Tucker kosullari yaridgin esitliklere énustirular. Kati tamamlayici
gevseklik kosullarinin olasi ihlalit@gin olmamaya neden olur. Bu ¢alismada, yarzgin
Newton yonteminin yakinsakiji icin gerekli olan standarticenlilik kosulunun yari sonsuz
programlamanin dal varsayimlari altinda §&ndgini gosterdik. Aslinda, bu ikenlilik
kosulu alt seviye problemi icin indirgeme yaklasimi ve indirgeniisigseviye problemi icin

kuvvetli kararlilik kosullar altinda gganir. Ozellikle, iist seviye problemde kati tamamlayici
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gevseklik kosulunu varsaymak zorundajiie. Bu tezde, ayrica nést seviyede ne de alt
seviyede kati tamamlayici gevseklik kosullarini varsaymadik. Alt seviyede kati tamamlayici
gevseklik kosulunun ihlali durumunda, yerel indirgenmis problemin gecici fonksiyonlari iki
kere direkli olarak tirevlienebilir olmaz. Ama halen yariidgin Newton ynteminin ik-

inci dereceden yakinsak olmasi i¢in gerekli olan standazedlilik kosullarinin yari sonsuz
programlamanin dal varsayimlari altinda gercekld@gtii gosterebiliriz. Tasarim merkezle-
menin ve givenli en iyileme problemlerinin aralarinda offlusayisabrnekler metodun per-

formansini gstermektedir.

Anahtar Kelimeler: Genellestirilmis yari sonsuz optimizasyon problemleri, yangich New-
ton metodu, lineer olmayan tamlik problemi fonksiyonlari, Clarke in genellestirilimeginin

dizenliligi, Indirgeme Yaklasim.
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CHAPTER 1

INTRODUCTION

This dissertation presents a new numerical approach to solve generalized semi-infinite pro-
gramming problems. Semi-infinite programming is a subfield of continuous programming
which deals with finding extremum of a continuous function over a finite dimensional space
subject to infinitely many continuous inequality constraints. Furthermore, if the infinite in-
equality constraints depend on the finite decision variable, the problem is called generalized
semi-infinite programming, otherwise the problem is called standard semi-infinite program-
ming. The purpose of this chapter is to give the outline of the dissertation. We introduce
the problem addressed in this dissertation and provide a concise description of the approach
introduced in this work. In the following, we point out the main contributions and define the

outline of the dissertation.
A generalized semi-infinite optimization problem has the form,
GSIP: minimize f(x) subjectto xe M
with the feasible set
M = {xeR"g(xy) <0forallye Y(x) }

and

Y(¥) = {yeRTvj(xy) <0 (jeQ}
wherej e Q=1{1,...,q}.
In a GSIP, the possibly infinite index set(x) of the semi-infinite inequality constraint is

allowed to vary withx. As opposed to this, in a standa®tPthe index set is fixed, that is, we

haveY(x) = Y, and ifY is described by functional constraints, then the vector functidoes



not depend orx. If Y is a finite set, we arrive at the usual nonlinear programming problem.
Furthermore, we assume that the set valued mapgin®" — R™ is locally bounded, that
is, for eachx € R" there exists a neighborhoddl of x such that| J Y(X) is bounded irR™

xeU
and thaty(x) # 0 for all x e R".

In particular, the probler®SIPmay have finitely many inequality constraigg$x, y) < 0,y €

Yi(X),i € | which often arises in applications, along with finitely many equality constraints.
In order to abstain from technicalfiitulties in this thesis we examine the case of a sin-
gle semi-infinite constraint. The interested reader can be referred to [103] for more general
formulations. However, the slightly more general setting of finitely many generalized semi-
infinite constraintgi(x,y) < 0,y € Yi(X),i € | would lead to almost identical formulas as the

ones we develop in the sequel (wihieplaced byg;).

Semi-infinite programming has been studied and developed by researchers over the last thirty
years. There are many practical applications of semi-infinite programming problems. Cheby-
shev and reverse Chebyshev approximation, time minimal control, minimax problems, robust
optimization, design centering, optimal layout of an assembly line and disjunctive program-

ming are some applications of semi-infinite programming.

Since the problem formulation fdBSIP is a generalization oS8IP, in the first studies of
GSIP[34, 59], GSIPwas thought to be a slight generalization of standaifé After stud-

ies, it was seen that most of the known theoretical and computational approa@i€sdo

not generalize t&SIP. In [47], it is firstly recognized thaGSIPis actually harder thaSIP.

The feasible set 0ESIP may have topological properties that are neither known from stan-
dard semi-infinite nor from finitely constrained programing problem. In finitely constrained
programming and in standard semi-infinite programming problems the feasible set is closed.
This is not true foIGSIP. In [20], it is pointed out that the feasible set@8&IPis not definitely

a closed set and also may have a disjunctive property. These two topological properties are

not known from standar8IP.

Example 1.0.1 ([20]) “Re-entrant corner point”

“For x € R? consider the index set

Y(X) ={yeR|y> X1, Y= X}

2



and put dx, y) = —y. Then we obtain

M

{xeR?g(xy) <0 forall yeY(x)}
= {xeR?y>0 forall ye[maxxy, X), +o) }

= {xeR? maxxy, X)) >0}.

Figure 1.1 illustrates that M is the union of two closed halfplanes. Note that M is nonconvex,
although all defining functions are linear. More precisely, M exhibits a so-called re-entrant
corner point at the origin. These points are spurious points for stationary based optimality

conditions”

Figure 1.1: A re-entrant corner point [20].

Example 1.0.2 ([20]) “Local nonclosedness”
“For x € R? consider the index set
Y(X) ={y€eRly> X1, ¥y < X}

and put again ¢x,y) = —y. Now we obtain

M = {xeR?g(xy) <0 forall yeY(x)}
= {xeR?y>0forall ye[x, %]}
= {XeR? X1 < X,y>0 forally e [xg, X] }
U{xeR? x> x,y>0forallyc0}

= {(XeRY X3 <X, X1 >0} U {XeR? x> X}



Figure 1.2 illustrates M which is the union of an open with a closed halfplane although all

defining inequalities are nonstrict. We remark thgk)Y= 0 for x; > xo.”

A Do

T

Figure 1.2: Local nonclosedness [20].

In finitely constrained and semi-infinite programming problems the local nonclosedness as in
Example 1.0.2 can not occur. The re-entrant corner points as in Example 1.0.1 may occur
in finitely constrained programming. The re-entrant corner points are not stable in finitely
constrained programming but they are stabl&®BIP[20]. The local nonclosedness is also
stable inGSIP. The investigation of the semi-infinite programming shows tB&1Pis ac-

tually harder thar&IP. The numerical methods usually can not directly be generalized from
standardSIPto GSIP. There arise seriousfticulties when trying to generalize the exchange

or discretization methods from stand&tiPto GSIP. These dficulties are discussed and con-
vergence results are obtained under quite general assumpti@sIBm [112]. In this thesis

we justified a numerical approach f@&iSIP. Our method is based on the first order necessary
optimality conditions. In the following we explain the method and main contribution of the

thesis.

It was known that Reduction Ansatz hold at all local minimizers of stan8#edin [23], it is
recently shown that generically the Reduction Ansatz holds at all local minimiz&3$ bt
Hence, the feasible set is locally equal to the feasible set which is described by finitely many
certain implicitly defined constraints. Then the optimality conditions can be obtained by using
this reduced finitely constrained programming problem. A possible solution method is based
on optimality conditions of the locally reduced problem. In fact, many solution methods
for nonlinear programming problems are based on solving their Karush-Kuhn-Tucker (KKT)

system, that is, a necessary first order optimality condition. It is well-known that the com-
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plementarity conditions in the KKT system need special attention in any numerical approach.
One possibility for their treatment is a reformulation by nonlinear complementarity problem
functions (NCP functions), which reduces the problem to the solution of a certain system of
equations which is either nonsmooth or smooth but degenerate. For special NCP functions
these equations can be solved by so-called semismooth Newton methods where, in analogy
to the standard Newton method, their convergence depends on a regularity condition in the
solution point. Itis important to note that the nonsmoothness of the system of equations stems
from a possible lack of strict complementary slackness at a solution. Such KKT methods have
also been suggested for standard semi-infinite programming problems, where the KKT con-
ditions take a somewhat more complicated form [33]. In particular, they involve an upper and
a lower level problem. In the article [88] it was recently suggested to use NCP functions also
for a nonsmooth reformulation of the KKT conditions in standard semi-infinite programming,
and a regularity condition to guarantee convergence of a certain semismooth Newton method

was proposed.

It turns out, however, that strict complementarity is a part of the regularity condition from
[88], in the upper as well as in the lower level problem. A numerical method which searches
a point with these regularity conditions would not need to use NCP functions but, in fact,

already the standard Newton method would converge under these assumptions.

One of the aims of this thesis is to point out an important pitfall in the solution of KKT
systems for semi-infinite programs. A challenging problem which has not been solved yet in
numerical solution of semi-infinite programmingIP or GSIP) is finding the corresponding
active index set for a feasible point. The active index set can be computed by finding all
global maximizers of the lower level problem, hence we assume that the lower level problem
is convex. We note that generalized semi-infinite optimization has many relevant applications
with convex lower level problems. We present a regularity condition which does not assume
strict complementarity in the upper level problem, thus justifying the NCP function approach
for semi-infinite programs, and at the same time we transfer this approach from standard
to generalized semi-infinite programming. We note that this method will merely search for
KKT points of the optimization problem, whereas global optimality plays a crucial role in the
treatment of the so-called lower level problem. We also complete this analysis by considering
the case of strict complementarity violation in the lower level. For the convergence of a

semismooth Newton method, we give an appropriate new regularity condition, thus justifying



the NCP approach for semi-infinite programs in the absence of strict complementarity. In
the present case, the convergence analysis is essentially more complicated due to the lack of

differentiability of the auxiliary functions of the so-called reduced problem.
In summary, this thesis contains the results of our recent research papers

Tezel, A. and Stein, Ol'he semismooth approach for semi-infinite programming without strict

complementaritySIAM Journal on Optimizatior20(2), 1052-1072, (2009).

Stein, O. and Tezel, AThe semismooth approach for semi-infinite programming under the

Reduction Ansatzdournal of Global Optimizatiod1(2), 245-266, 2008.

In this thesis,

¢ the result about the semismooth approach in [88] for standard semi-infinite program-

ming is completed,

¢ the semismooth approach from standard to generalized semi-infinite programming prob-

lems is extended,

e a new regularity condition which does not assume strict complementarity in the upper

and lower level problems is presented,

e the convergence of a semismooth Newton method for generalized semi-infinite pro-
gramming problems is proved under the natural assumptions of semi-infinite program-

ming, and

e in order to illustrate the performance of the method numerical examples are given.

The thesis is organized as follows. Chapter 2 reviews basic facts from finite and semi-infinite
programming. In Section 2.1, we briefly introduce and give some notation of unconstrained
and constrained optimization. Section 2.2 deals with the introduction of semi-infinite opti-
mization. Examples and applications, a main and well-known regularity condition in semi-
infinite optimization, namely Reduction Ansatz, are given. Furthermore constraint qualifi-
cations in semi-infinite programming are mentioned. In Section 2.3, a very brief review of

numerical methods in solving semi-infinite optimization problems is presented.
In Chapter 3, after giving preliminaries about Newton method, application of the method in

6



finite and semi-infinite programming are reviewed. Chapter 4 treats the semismooth New-
ton approach. The use of the method in finitely constrained programming problems is re-
viewed. The semismooth optimality conditions for generalized semi-infinite programming

are obtained.

Chapter 5 includes our main result, convergence of semismooth Newton method for gener-
alized semi-infinite programming is established. As we have mentioned, in this thesis we
study convergence of a semismooth Newton method for generalized semi-infinite program-
ming problems with convex lower level problems. Nonlinear complementarity problem func-
tions (NCP) are used in order to reformulate the upper and lower level Karush-Kuhn-Tucker
conditions as a semismooth system of equations. We show that the standard regularity condi-
tion for convergence of the semismooth Newton method is satisfied under natural assumptions
for semi-infinite programs. We complete the result in [88] by showing convergence under the
case of strict complementarity violation in the upper level, and transfer the method to gener-
alized semi-infinite programming. We neither assume strict complementary slackness in the
upper nor in the lower level in our semismooth Newton approach. In this case, the auxiliary
functions of the locally reduced problem are not absolutel¢3n But still, it is possible

to show that the semi-smooth Newton method converggeadratically under the natural

assumptions of semi-infinite programming.

In Chapter 6, computational results of the method are reported. Numerical examples from,
among others, design centering and robust optimization illustrate the performance of the
method. Finally we formulate some conclusions and give possible directions of future re-
search. In Appendices, some auxiliary results about nonlinear complementarity (NCP) func-

tions and block matrices are given.



CHAPTER 2

BACKGROUND ON SEMI-INFINITE PROGRAMMING

2.1 Finitely Constrained Programming

In this section we recall some basic facts from finite optimization problem (finitely con-
strained programming). We also introduce constraint qualifications in finitely constrained
programming. The definitions and theorems in this section can be found in many references
about finitely constrained programming, in particular we refer the reader to [2, 13, 15, 27, 44,
45, 74, 77] and references therein for this section. An unconstrained optimization problem
have the form

P : minf(x)

XeR"
wheref is at least twice continuouslyfiierentiable. In the sequel the row vec@}l, e %)
of partial derivatives off evaluated ak will be denoted byD f(x). The gradient off is a
column vector denoted by f(x) = (Df(x))". The Hessian matrix of evaluated ak will be
denoted byD?f(X). The equation

Df(X)=0 (2.1)

is a standard necessary first order optimality condition [45]. The points satisfying (2.1) are
called critical points or stationary points The minimizers and saddle points also satisfy
equation (2.1). In order to define afBaient condition for optimality one needs to combine
(2.1) with a second order condition satisfieckaso-called second order optimality condition,

the Hessian matrix is a positive definite matrix,

d"D?f(x)d > 0 vd € R"\ {0} (2.2)

Theorem 2.1.1 ([2]) If X satisfies (2.1) and (2.2), thenis a strict local minimum of f.

8



In the special case thdtis convex (2.2) is not need to be explicitly stated.

Definition 2.1.2 ([77]) A function f: R" — R is called convex if
fox+ @1 -»)y) <vi(x)+@Q-v)f(y)

for all x,y € R" and for allv € [0, 1].

The following result shows that stationary, local optimality and global optimality are equiva-

lent in the convex case.

Theorem 2.1.3 ([45]) Suppose that f is a convex function and f is an at least twice continu-
ously dfferentiable function. Then the following statements are equivalent.

i) Xis a global minimum.

ii) X'is a local minimum.

iii) Xis a critical point, i.e. x satisfies (2.1).

Stepeest descent methods, Newton method, Quasi-Newton methods etc. are some basic meth-

ods to solve unconstrained optimization problems. For more information on these and other

methods we refer to [74, 77] and the references cited therein.
A finitely constrained optimization problem has the form
P: mXin f(X) subjecttogi(x) <0 (iel), hj(x)=0 (jeJ) (2.3)
with | ={1,...,r},J={1,..., s}. For problemP, the feasible setr is defined by
Mg = {xeR"g(x)<0@el), hj(x)=0( €I
We assume thatt, g, h; are at least twice continuouslyfférentiable.

There are many methods for solving constrained optimization problems which include se-
quential linear programming, sequential quadratic programming approach (SQP), penalty-,
barrier-, interior point-, multiplier methods. It is far beyond the scope of the thesis to give

details of these methods, we refer to [45, 74, 77] and the references cited therein for further

reading.



As in the case of unconstrained optimization, there exist stationary conditions for constrained
problems. The most popular ones #re Karush-Kuhn-Tucker optimality conditioaadthe

Fritz-John optimality conditions

Definition 2.1.4 ([2]) A pointX € Mg is said to satisfy Fritz-John optimality conditions if

there exist reak € R, u € R", 2 € R% all nonzero such that

wumélmwi(mjgsla,-vm(i) - o
k > 0,

pigi(x) = 0(el),

g > 0 (el

holds.

By requiringx # 0 in Fritz-John optimality condition, Karush-Kuhn-Tucker optimality con-

ditions (KKT) are obtained.

Definition 2.1.5 ([77]) A point X € Mg is said to satisfy Karush-Kuhn-Tucker optimality

conditions if there exist real € R", 2 € RS such that

VIR + L uVG@ + 3 A4V = 0,
i=1 j=1

wa(®) = 0Gel) (2.4)
wi = 0(@el).
holds.
The multiplicative condition in (2.4)
1igi(x) =0 (i €l), (2.5)

is known ascomplementarity condition& implies the Lagrange multipligr; can be strictly
positive only when the corresponding constrainis active. Conditions of this type play
a central role in constrained optimization, a reformulation of complementarity condition is

given in Section 4.2. By defining

L%, 2) = £+ g(x) + ATh(X), (2.6)
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the KKT condition (2.4) can be written as
VX-E()Z M, /l) = 0,

1igi(X) 0Gel),
u > 0(el).

Y

The function£ is called asghe Lagrangian functiorand the vectorg, A are called ashe
Lagrange multiplier vectors Let us consider a finitely constrained optimization problem

without inequality constraints, i.e.,
P: mxin f(xX) subjecttogi(x) <0 (iel).

The complementarity condition gives the following result.gifx) < 0, (2.5) requires that
ui = 0, henceVyL(X, 1) = 0 reduces td&/ f(X) = 0 (unconstrained case), andgi{x) = 0,
i.e., the inequality constraint is active @t(2.5) allowsy; to take on a nonnegative value, so

r
VxL(X, 1) = 0 becomes equivalent #f (X) + 3, 1 Vgi(X) = O, for somey; > 0.
i=1

The KKT conditions are known to be Sicient for global optimality in convex problems.

Definition 2.1.6 ([2]) A problem P (2.3) is called convex if f anglige | are convex and

hj, j € J are gfine, i.e., K(X) = bJTx+ cj forsome he R", ¢c; € R.

Theorem 2.1.7 ([2]) Let P given in (2.3) be a convex problem axdbe a KKT point of P.

Thenx is a global minimum of P.

The suficiency of KKT optimality conditions for global optimality in the convex case is stated
in Theorem 2.1.7. Some regularity conditions need to be made in order to obtain necessity of

KKT optimality conditions. We denote the active index set by

lo(®) ={i el gi(X) =0} (2.7)

i.e., the index set of active constraints xatWe briefly recall famous regularity conditions,
called constraint qualifications in finitely constrained programming, namely, the Mangasarian
Fromovitz Constraint Qualification (MFCQ), the Linear Independence constraint Qualifica-

tion (LICQ) and the Slater condition.

Definition 2.1.8 ([77]) The Linear Independence Constraint Qualification (LICQ) holds at a
pointx e M, if the gradientsvg;(X), i € lo(X) andVhj(X), j € J are linearly independent.

11



LICQ assures the following analytic stability result [110].

Lemma 2.1.9 ([110]) Let the feasible set Mbe compact in P given in (2.3). If LICQ holds
at for all x € Mg, then for any small €perturbationg;, ﬁj of the functions gh; the perturbed

feasible seMr = {x|i(x) <0( 1), F]j(X) =0(j € J) } is diffeomorphic to M.

Mangasarian Fromovitz Constraint Qualification (MFCQ) is another regularity condition and

it is stated in the following definition.

Definition 2.1.10 ([2]) The Mangasarian Fromovitz Constraint Qualification (MFCQ) holds

atapointx € Mg if Vhj(X), j € J are linearly independent and there exist a vector d satisfying

Dgi(xd > 0 (iel),
Dh;(X)d = 0 (j e J).

MFCQ is equivalent to the following structural stability [110].

Lemma 2.1.11 ([110]) Let the feasible set Mbe compact in P given in (2.3). Then for any
small C* perturbationg;, h; of the functions gh; the perturbed feasibe s#tr = { x| §i(x) <
0@ €I), F],-(x) = 0 (j € J) }is (Lipschitz)-homeomorphic to Mif and only if MFCQ is

satisfied for all xc Mg.

It can be easily shown that MFCQ hold»xae Mg with the vectord, then for anyr > 0 small

enough the pointg + rd are interior points oMg [110].

The following constraint qualification is defined only for convex problems.

Definition 2.1.12 ([13]) Let P given in (2.3) be a convex problem. The Slater condition is
said to be satisfied at a pointe Mg if Vhj(X), j € J are linearly independent and there exists
a point x such that

g(x) < 0(el)

hi( = 0 (jel).

The following result shows that under a constraint qualification, a local optimum is a KKT

point.

12



Theorem 2.1.13 ([2]) Let x is a local minimum of P given in (2.3). Further suppose that

MFCQ, LICQ or Slater condition is satisfied &f thenx is a KKT point of P.

By Theorem 2.1.7 and Theorem 2.1.13 we see that, under any of the regularity conditions,

being a stationary point is equivalent to global optimality for convex problems.

Let X be a KKT point with Lagrange multiplier vectorsu. The tangent space ®fg at X is

defined as follows:

T()_() ={pe Rn| Dgl()_()p =0,ie IO()_()’ Dhj()_()p = O’J € J}.

The tangent cone d¥ig at x is defined as follows:

C(X) = {p € R Dgi(X)p = 0i € 1o(X), Dgi(X)p < 0.i € I\ 1o(X), Dh;j(X)p = 0, j € J}.

Theorem 2.1.14 ([77]) Suppose thak is a local solution of P, and LICQ holds at Let
u, A be the corresponding Lagrange multipliers. Then, the Hessiag(K u, 1) is positive

semi-definite on {X).

Theorem 2.1.14 defines a necessary condition involving second derivativess # local
solution, then the curvature of the Lagrangian function along the directioBé&dnmust be
nonnegative. The existence of a local solution and corresponding Lagrange multipliers is
stated in Theorem 2.1.7 and Theorem 2.1.13. A more restrictive second order condition is
needed for sfliciency of being a strict local solution. The second order condition to enforce
being a strict local solution is that the Hessian of the Lagrangian fundliahx is positive

definite overT (X).

Definition 2.1.15 ([77]) The second order giciency condition (SOSC) holdsaif D2.L(X; i, )

is positive definite on (X).

Strict complementarity holds atif x; > 0, gj(x) = 0 oru; = 0, gi(X) < O.

Definition 2.1.16 ([2]) Strict complementary slackness (SCS) holdsiéf; > 0 (i € 1p(X)).

Definition 2.1.17 ([44]) The KKT pointx is called a nondegenerate local minimum of P if

LICQ, SOSC and SCS holdat
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It is known that a nondegenerate local optimuiis a strict local optimum oP [2]. The sta-
bility of both optimal solutiorx and corresponding Lagrange multipligzst under small data
perturbations hold for a nondegenerate local optimum point [44]. Moreover, a nondegenerate

local minimum is the unique, global optimum for a convex problem.

2.2 Semi-infinite Programming

In this section we recall some basic facts from semi-infinite programming. We give examples
and applications of semi-infinite programming and a basic and well-known regularity condi-
tion, namely Reduction Ansatz, is introduced. We also discuss about constraint qualifications

and bilevel structure of semi-infinite programming.

Semi-infinite programming problems is a class of optimization problems in finite dimensional
decision variables which are subject to infinitely many inequality constraints, as the name
semi-infiniteactually suggests. Theoretical and numerical treatmer8lBfcan be traced
back in the literature to papers from 1960’s [28, 33, 48, 51, 110, 111, 118, 126]. More than
a thousand papers have been publishe®téx Historically, SIP stems from applications in
approximation theory. It is originally related with Chebyshev approximation, see [36]. For an
excellent review, we refer to [33] and [82], for linear semi-infinite programming, we refer to
[18]. For surveys about theory and methods for standard semi-infinite optimization we refer
to [18, 33, 91], whereas introductions to generalized semi-infinite programming are given in
[103]. We refer the reader to [20] for a recent tutorial @8IP. For GSIP the topological
structure of feasible set is investigated in [99, 111, 119], the optimality conditions are studied

in[47,55, 97, 98, 107] and some solution methods are discussed in [4, 21, 105, 109, 112, 118].

Definition 2.2.1 ([103]) A standard semi-infinite problem has the form
SIP: minimize {x) subjectto x M

with the feasible set

M = {xeR"g(x,y)<OforallyeY}

and

Y = {yeRMvj(y) <0 (jeQ)}.

14



In the definition, we write a problem with only one semi-infinite constraint. This formula-
tion is suficient when one wishes to study the essential features of the problem. However,
in applications one usually deals with finitely many semi-infinite constraints. All involved
functionsf, g, vj, j € Q = {1,...,q}, are at least twice continuouslyfi#irentiable and are

assumed to be real-valued on their respective domains.

A simple example for a standard semi-infinite constraint is given in [103], the description of
the unit disc inR?,

D={xeRYx2+x3<1}
by means of infinitely manyfine-linear inequality constraints:

D={xeR?y'x<1forallye Y}

with
Y={yeR?|ylz=1}.

In fact, this describeb as the intersection of infinitely many halfplanes. In Figure 2.1, three

of these halfplanes are shown.

To A

Figure 2.1: The unit disc as intersection of infinitely many halfplanes [103].

As mentioned in [103], if one has a finite description of a set, one does not necessarily search
for a semi-infinite one. However, in applications one often only knows a semi-infinite de-

scription. In Subsection 2.2.1, a number of these examples will be given. We refer the reader
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to Figure 2.2 for an example of feasibility f& P. Here the infinite index séX is an inter-
val in R. If the decision variable is one-dimensional, then the restriction functigmas

two-dimensional arguments. The poimisandx, are feasible, whereag is infeasible.

On the other hand, in &SIP problem the infinite index set depends also on the decision
variables. We refer the reader to Figure 2.3 for feasibility under a general semi-infinite con-
straint. Here the restriction functiayis same as in Figure 2.%; is infeasible ands; becomes
feasible.
Definition 2.2.2 ([103]) A generalized semi-infinite optimization problem has the form,

GSIP: minimize {x) subjectto x M
with the feasible set

M = {xeR" g(xy) <0forally e Y(x) }

and

Y(¥) = {yeR"vj(xy) <0 (jeQ}

Here,Y(x) is allowed to vary withx. In aSIPthe index set is fixed, that is, we ha¥éx) = Y.

We assume that the set valued mappihg R" = R™ is locally bounded. The problem

| T

Figure 2.2: Feasibility under a standard semi-infinite constraint [103].
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Figure 2.3: Feasibility under a general semi-infinite constraint [103].

formulation of GSIPis certainly a generalization @IP, but it is not possible to generalize
most of the known theoretical and computational approache&dlto GSIP. We refer to

[103] for detailed information.

Definition 2.2.3 ([110]) A feasible poink € M is called a local minimizer of SIP if there is

somee > 0 such that

f(x)— f(xX) > 0forall xe M with ||[x-X]| <e.

The minimizerxis said to be global if this relation holds for aay- 0. For a feasible point

of SIPwe will denoteits set of active indicely

Yo(X) ={yeYlg(Xy) =0}

Lemma 2.2.4 ([110]) Let X € M be a local minimizer of SIP. Then, there cannot exist a

strictly feasible descent direction d., i.e., a vector &" such that

Df(X)d < 0, Dxg(x,y)d > 0 for all y € Yo(X).

2.2.1 Examples and applications

The examples and figures in this subsection are mainly taken from the book [103].
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SIPandGSIPproblems naturally arise in approximation theory, optimal control and numer-
ous engineering applications. There are a lot of real-life applications for standard and gen-
eral semi-infinite programming. Examples include Chebyshev approximation and reverse
Chebyshev approximation problems, minimax problems, robust optimization, design center-
ing [37, 75, 81], and further problems that are not covered by these problem classes, like
defect minimization for operator equations [33, 36, 103], disjunctive programming [101], the
optimal layout of an assembly line [54, 118], engineering design [80], or time minimal control
[55, 58, 118]. There are other real-world application$&t® such as the shape optimization

problem [8], gene-environment networks [121, 122] and optimal control [92].

Example 2.2.5 ([103]) Chebyshev Approximation

SIP is originally related with Chebyshev approximation. Given a continuous funétion

Z — R with nonempty compact domais c RM. The aim is to approximatE by simpler
functionsa(p, -) with parametepp € P c RN, In many applications minimizing the maximal
deviation is needed, i.e. the Chebyshev norm is used instead of the Euclidean norm (cf. Figure

2.4).

Ve
s —— min!

A/\ \
N ] '/NHF () = a(p, )|,z

Y

7 /A z

Figure 2.4: Chebyshev approximation [103].

The Chebyshev approximation is a nonsmooth problem of the following form
CA: rpelFr)IIF(-) —a(P, Mooz = min max|F(2) - a(p. 2)l
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It is possible to rewrit€C A by using the epigraph reformulation

emin, 4 suchthat maw(z)-a(p.g)l<q,

this problem can be written as follows

SIPca: min q suchthat |F(2 —a(p,2|<qg, VzeZ
(p,g)ePxR

S |Pza is a smooth optimization problem if all defining functions are smooth, whetéas
is intrinsically nonsmooth. The price to pay for smoothness is, of course, the presence of

infinitely many inequality constraints.
Example 2.2.6 ([103]) Reverse Chebyshev Approximation

A modification of Chebyshev approximation called as reverse Chebyshev approximation oc-
cur in some engineering applications, e.g., the construction of low pass filters in digital filter-
ing theory [55]. Consider the continuous functibn: Z(q) — R on a non-empty compact
domainz(g) ¢ RM with a parameteq € Q. Suppose that an approximating family of func-
tionsa(p,-) and a desired precisio®{p, g) are given. Parameter vectopsq will be found

such that the domaig(q) is as large as possible without exceeding the approximation error

e(p, g) (cf. Figure 2.5).

/ 1 ‘

N\

, SO TTTNIFO e s
/ ‘\_fg e(p,q)

i \,//W\_/ 7’;

Vol(Z(q)) — max!

Figure 2.5: Reverse Chebyshev approximation [103].

The Reverse Chebyshev approximation problem can be stated as follows:

RCA:  max  Vol(Z(qg)) suchthat [IF(-) —a(p, ez < &P, 9),
(P.O)ePXQ ’
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Here, Vol(Z(q)) is the M-dimensional volume oZ(g). The RCAproblem is a nonsmooth
optimization problem and it is possible to rewrite this problem by using general semi-infinite

constraints. The result is the followirgSIP.

GS|IPRkca: ( rT)]a'.DXQ Vol(Z(g)) suchthat + (F(2 —a(p,2) < ep,q),Yze Z(q).
pP,g)ePX
Example 2.2.7 ([103]) Minimax problems

For a non-empty and compact s¢tc R", a set-valued mappiny from R" to R™ and a

continuous real-valued functidd a problem of the type

MM : minmax G
erX er()é (X’ y)

is called a minimax problem. The Chebyshev and reverse Chebyshev approximation problems
from Example 2.2.5 and Example 2.2.6 are special cases of minimax problems as &ng as

is only assumed to be continuous. On the other han@, ig a smooth function, then the
epigraph reformulation d1M as a smootlSIPtakes a simpler form than in the situation of

Chebyshev approximation:

GSIPym : min z suchthat G(x,y) <zVye Y(x).
(%,2eXxXR

Possible applications include robust optimization problems (cf. Example 2.2.8) with parameter-
dependent objective functions, or the evaluation of formulas for directional derivatives of op-

timal value functions (cf. Section 4.2 in [103]).
Example 2.2.8 ([103]) Robust Optimization

Let the finitely constrained programming problem depend on an unknown pararae¥gx).

Then we have the following formulation:
P(y) : mﬂikn f(x,y) suchthat gi(x,y)<0 (€l),
XeRN

wherell| < co. A posteriori approach to solve this problem is based on finding a solution of
P(yo) whereyg is some nominal choice of parameters and analyze change of optimal value and
point fory ~ yp, apparently stability and sensitivity analysis is needed. A priori approach can
be used in constrast to this. Pessimistic way to deal with the constraint with some unknown

parameter vector is to use its worst case reformulation, which is that the constraint holds for
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all values of parameter set. Similarly if the objective function also depends on the unknown

parameter, then in the worst case the aim is to minimize the maximal objective value.

Let Y(X) be uncertainty set withi € Y(X).
RP: min max f(x,y) suchthat gi(x,y) <0 (i €I,y € Y(X)).

XeRN yeY(X)

The following GSIPis obtained:

f(x,y) <z (ye Y(X),
GSIRko: min z such that (x.y) (y € Y(x)
(x,2)eRMxR gi(xy) <0 (ye Y(X),iel).

We refer to [3] robust optimization models in economics. In Chapter 6 we will treat examples

from robust optimization numerically.
Example 2.2.9 ([103]) Design Centering

In a general design centering problem, some functional, e.g. volume, of a parametrized body
insribed in a second fixed body, is maximized. The parametrized body is usually called as

design,B(X) wherex is the parameter and the second fixed body is called as con@iner
DC : m]%x f(X) such thatB(x) c C.
XeRN

The containeC often has a complicated structure in applications and one wishes to find a
lower bound on its volume by inscribing a simpler boBfx). Problems of this type have
been studied extensively, see e.g. [37] or [81] and the references therel@ bealescribed

by the inequality constrairg(y) < 0. It is easy to see that the inclusion
B(x) c C={yeR™|c(y) <0}

is equivalent to the following general semi-infinite constraint
cy) <0 forall ye B(X).

So, the design centering problem is equivalent to the follov@SiP.

GSIPx : m]%xVOI(B(x)) such that c(y) <0 Vye B(X).
XeRN
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Figure 2.6: A disk with maximal area in a nonconvex container [104].

An example of a design centering problem is plotted in Figure 2.6. In this example the de-
sign B(X) is a disk inR?, parametrized by its midpoint and its radius. Find the dB¢x)

having maximal area it i.e., find the parameter vectare R® corresponding the maximal
area. A special design centering problem is called as maneuverability problem of a robot
in [19, 24, 33]. This problem leads to the one of the first formulations GS4P[35]. The
explanations for maneuverability problem of a robot are from [38]. A robot can be schemati-
cally represented as a connection of links. For example the robot in Figure 2.7 has two links.
Each link has a length and mass associated with it.

The optimization problem results from minimizing a certain performance index (time, energy

consumption, etc.) while ensuring that the robot can follow the resulting trajectory.
Minimize total travel time:
Model 1: joint velocity, acceleration and jerk constraints are imposed.

Model 2: torque constraints are imposed.

A change of variables that relates time to the parametee h(r) (r € [0, 1]) is considered.

For Model 2, minimizing total travel timeS|P)
l ’
min h(1) = f h (r)dr
0
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Figure 2.7: Three degrees of freedom robot [38].

such thath(0) = O,
h()>0, IFi)I<C (i=12,...,1) ¥re[0,1].

For practical purposes, the unknown functiofr) is approximated by a B-spline. AMPL
modeling language for codification of problem and NSIPS as a nonlinear semi-infinite pro-
gramming solver are used. Discretization methods [32, 90] are implemented in the solver. For

numerical results we refer to [38].

Another special design centering problem recently studied and also applied in industry is lap-
idary cutting problems [128, 129]. The lapidary cutting problem deals with the maximization

of the volume of a faceted coloured gemstone (the design), which is cut from an irregularly
shaped rough stone. There are several basis shapes for the design. In this application, only
convex designs are considered. The faceted gemstone is parameterized by its geometrical po-
sition and orientation within the rough stone as well as by some other shape parameters such
as height, radius or the length-width ratio. For container constraints, rough stone data is given
in the form of triangulated mesh rather than in functional constraint form. An approximate
smooth container representation satisfying convexity assumption is obtained from mesh data.
The lapidary cutting problem can be classified as a special case of a design centering problem,
which is formulated a&SIPand solved by an interior point method developed in [103, 106].

In Figure 2.8 an example of four views of the optimal faceted lapidaries inscribed into the

functional constraint approximation of the rough stone surface are showed [129].
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The last example of a recently revisited design centering problem we want to mention is
air pollution control [39]. We refer to [37, 75, 81] for design centering problems for further

reading. For simple numerical examples of design centering problems, see Chapter 6.

Figure 2.8: The optimal faceted lapidaries inscribed into the functional constraint
approximation of the rough stone surface [129].

2.2.2 The Reduction Ansatz

In finitely constrained programming problems it is well known that around a feasible point
x € R" there exists a neighborhodd(x) for which the feasible set can be described by
(usually at mosh) constraints which are active atlf X is a solution of the finitely constrained
programming problem locally, then it is also a solution of the problem locally at which all

inactive constraints atare dropped and conversely [91].

The feasible set of aBIPor GSIPnormally can not be locally represented by (usually finitely
many) active constraints only. However, under proper assumptions (Reduction Ansatz), for
x € R" there exist a neighborhood ofand a finite number of certain implicitly defined
inequality constraints such that the feasible set defined by these constraints coincides with
the feasible set o&IP or GSIP. Hence under Reduction Ansa&IP or GSIPcan be locally
reduced to a finitely constrained programming problem at least conceptually (local reduction)

for SIPwe refer the reader to [28].
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Reduction Ansatz was originally formulated for stand&ié under weaker regularity as-
sumptions [28, 126]. It was transferred &SIP in [34]. The main consequence of the
Reduction Ansatz is that the feasible 8&bf either standar&IP or GSIPcan locally be de-
scribed by finitely mang?-constraints, then standa®&iPor GSIPlocally looks like a smooth

finite programming problem. The Reduction Ansatz serves as a basic regularity condition for
numerical solution methods in semi-infinite programming. G&iPit is a recent result that

the Reduction Ansatz generically holds at all local minimizers [23]. Reduction Ansatz is a
common way to obtain optimality conditions and Newton-type methodSBrand GSIP.

We use Reduction Ansatz to obtain optimality conditions@3IP and for convergence of

our method. In this subsection, we use definitions as in our recent paper [108].

For a feasible poink of GSIPwe will denote itsset of active indicegpossibly infinite) by
Yo(¥) = {y € Y1 g(xy) = 0. Let L(XYy,y) = g(Xy) — y" V(X y), be theLagrangian

associated with the so-callémlver level problem Qx),
QX : mﬂgxg(x,y) subjectto vj(x,y) < 0, je Q. (2.8)
yeR™

wherey is the Lagrangian multiplier vector. The lower level problem is a finite, parametric
optimization problem, herg plays the role of am-dimensional parameter ands the deci-

sion variable. We refer to Section 4.3.1 for more information about lower level problem. On
the other hand, in the upper level problem minimizif) with x is the decision variable.
The setYy(X) coincides with the set of global maximizers of the lower level prob@(x) in

the casep(X) = 0 wherep(x) is the optimal value function of the family of the lower level

problems. For an illustration see Figure 2.9.

Figure 2.9: An illustration of two active indices [103].
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The pointsy™ e Yo(X) satisfy system of equations fQ¥(X):
_ qa _ L
Ve - L7 9k y) =0
YVi(ky)=0(eP jeQ).
The elements o¥p(x) for varying x has to be under control for both theoretical and numeri-
cal purposes and it is achieved by implicit function theorem. The Jacobian of the system with
respect tqg, y is nonsingular if linear independence constraint qualification, strict complemen-
tarity and second order ficiency condition (with anegative definitélessian) hold foQ(X),
this result is implied by [41]. In this cage € Yo(X) arenondegeneratglobal maximizers of

Q(X) in the sense of [43].

In the following we formulate first order optimality conditions as well as corresponding sec-
ond order optimality conditions of finitely constrained programming from Section 2.1 to a

parametric finitely constrained programming probléxx).

Suppose that the following conditions (Q 1)-(Q I11) hold at soyne Yp(X) in Q(X):

(Q-) Thelinear independence constraint qualification
(LNow {(Vyvj(x.y) | ] € Qo(x,y)} is alinearly independent family, (2.9)
whereQo(X,y) = {j € Q| vj(X,y) = O} is the set of lower level active indices at
ye Y(X).
Because of Q-1, we have the following lower level Karush-Kuhn-Tucker condi-

tions (See Sections 2.1 and 2.4): there exists a unique vector of Lagrange multi-

pliersy € RY such that
_ a _ _
Vyg(x.y) — j;lijij(X,)_/) =0

(KKT)ow vi(ey) <0 (2.10)
¥i20

Yivixy) =0, j€ Q.

(Q-11) Strict complementarity
foreachj € Q: y; > 0,vj(X,y) =0 oryj = 0,vj(x,y) <O.

(Q-1lI) Thesecond order gficiency condition

TV2L(XY,9)n <0 forallp e G 0}, where
(S0S Gorg {77 y LY. v)n n € Goy \ {0} } 2.11)

Gor = {n € RM[Dyj(X,¥)n =0, j € Qo(X,y)}
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q
with L(X,y,y) = a(x.y) — X vjVj(Xy), theLagrangianassociated witl@Q)(x).
=1

The conditions (Q-I) to (Q-lll) state thatis a nondegenerate global maximizer of the lower
level problem in the sense of JongémnmkefTwilt [43]. The Reduction Ansatis said to hold

atx € M if all elementsy € Yy(X) are nondegenerate for the lower level problem.

Suppose that Reduction Ansatz holdsxat M. Then we can reduc&SIP locally (in a
neighborhood ok) to a smooth finite optimization proble@SIReg, the so-called reduced

GSIPR, as given in the next theorem.

Theorem 2.2.10 ([28, 30, 33, 34, 36, 110, 118, 126pt the Reduction Ansatz be satisfied at
a feasible poink of GSIP. Then,

(a) The active index set is finiteg(X) = {y%, y2,...,yP}, and there exist neighborhoods;\df

x and \§; of y and unique ¢-functions
y : Uz — Vg , where y(X) = ¥/,
¥' : Ug — RY, wherey'(X) = ¥,

such that for every x Uy the value {(x) is the unique local maximizer of(§) in Vi with

corresponding Lagrange multiplier vectgh(x).

(b) The following finite reduction holdsx is a solution of GSIP, locally in a neighborhood

Ux of X, if and only ifx is a local solution of the so-called reduced problem
GSIReq : mLiJn f(x) subjectto ¢i(x) = g(x,y'(X) <0, foralli=1,2...,p.
XeUyx

(c) The functionsg; from part (b) are of class & and for all xe Ux their gradients satisfy

Dxpi(X) = DxL(% ¥ (), 7' (¥)). (2.12)

Proof. We refer to [28]. The functiong (x) andy'(X) in part (a) is a result of the well-known

Implicit Function Theorem.

Remark 2.2.11 ([108]) For standard SIP the formula in Theorem 2.2.10(c) simplifies to
Dxgi(X) = ng(x,yi(x)).
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Figure 2.10: Minimizing constraint function(x, -) under the Reduction Ansatz [79].

As explained in [79], in Theorem 2.2.10 for a given feasible paininfinitely many con-
straints are reduced to finitely many constraints by solving the lower level prab{ejnsee
Figure 2.10. In Figure 2.10¢ represents the small perturbationxgfi.e., x — X. Finitely
many local minima ofQ(X) lead to finitely many active inequality constraints for the upper
level problem. Solving the reduced problem is equivalent to solSifipr GSIPlocally. The

drawback of Theorem 2.2.10 is that the indices implicitly depend on the variable

2.2.3 Constraint qualifications
In the following we recall the Fritz John and the Karush-Kuhn-Tucker optimality conditions

in semi-infinite programming. Fot€ M recall that

Yo(X) = {y € Y(X) | g(x,y) = O}

is the active index set at Tet £L(X,Y,7) = g(Xy) — ¥y"V(X,y) be theLagrangianassociated

with thelower level problem (X).

(i) The Extended Linear Independence Constraint Qualifica{lBhlCQ) is said to hold at

X € M if the vectors
Dy L(XV,7), ( € Yo(X)) are linearly independent as a family ~ (2.13)
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(i) The Extended Mangasarian-Fromovitz Constraint Qualification (EMF®QIds atx, if

there is a vectod € R" such that
DWL(XY,7)d <0 forall ¥ e Yo(X. (2.14)
For standar@IP (i) and (ii) reduce to
(i*) Dxg(X, V), (¥ € Yo(X)) are linearly independent as a family.
(i*) Dyg(X, y)d <0 forall ¥y e Yo(X)
with Yo(X) = {y € YI g(X.y) = O}.
We will use these conditions in Subsection 5.1.1. It is well-known that ELICQ implies EM-

FCQ, i.e., ELICQ is a stronger constraint qualification.

Theorem 2.2.12 ([112])Let X € M. Suppose, at any € Yp(X) the MFCQ is satisfied for
Q(X). Then, the following holds: There existse Yo(X),¥' > 0,i = 1,..., p and multipliers
MO, M1, - - -, 4p = O such that

p
HV (R + ) Vi L(XY.Y) =0. (2.15)
i=1

Proof. For a short proof we refer to [97]. For stande®tP, we haveV,£L(X, ¥,y =
Vg(% ).

Theorem 2.2.13 ([108])Let X be a local minimizer of GSIP at which Reduction Ansatz and
MFCQ for reduced problem GSJ& is satisfied. Then there exist aep{0, .. ., n} and multi-
pliersz; > 0 and active indice§' € Yo(X), i € {1,2,..., p}, such that

P
V) + ) VLY. Y) = 0. (2.16)
i=1
For standar&IPwe have the following theorem for KKT conditions.

Theorem 2.2.14 ([42]) Let x be a local minimizer of SIP at which EMFCQ is satisfied. Then
there are a pe {0,...,n}, multipliers;; > 0 and active indice§ € Yo(X), i € {1,2,...,p},
such that )
VI + ) AVsg(KY) = 0. (2.17)
i=1
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We refer to [28, 126] for first order and second ordeffisient and necessary optimality

conditions for standar8IP.

2.3 A Review of Numerical Methods for Semi-infinite Programming

For a review of numerical methods for standard semi-infinite programming see [33, 91, 112].
Natural ways to solve a standa8IP problem are either replacing the infinite index ¥et
by a finite one or solving a sequence of finite subproblems, where the infinite indgxset

replaced by finite approximations.

A brief review of numerical methods used to so&#

e Discretization methods,
e Exchange methods,

¢ Methods based on local reduction.

The discretization, exchange methods and methods based on local reduction basically replace
SIP by (a sequence of) finitely constrained programming problems, i.e., problems with only
a finite number of constraints. These are solved by applying appropriate linear or nonlinear
programming algorithms, for which we refer to an extensive literature. Furthermore, these
methods are examples of superlinearly convergent methods to compute numerically a solu-
tion of SIP, under the additional smoothness of the constrg(ix,y), with respect toc. Only

the method based on local reduction can be extended&i&to GSIPwithout encountering

any dificulty. But there arise seriousfiiculties when trying to generalize the exchange or
discretization methods fror8IP to GSIP. These dficulties are discussed and convergence
results are derived under quite general assumptions&Pin [112]. Other numerical meth-

ods for special structure, in particular fgrinear in x are: Simplex-like methods, Cutting

plane methods, etc. [91].
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Discretization Method for SIP

Discretization method is an obvious numerical methodSt®. It's one of the earliest and
most frequently used methods for solviStP problems in engineering applications [33]. It

is based on a discretization of the infinite index set of inequality constraints. The infinite
index setY is approximated by a sequence of finite subgétssuch thatyy becomes denser

and denser irY ask goes to infinity in a discretization method (cf. Figure 2.11). Then the
SIP problem is approximated by a sequence of nonlinear programming problems. Thus,

instead ofSIPsolve
SIF: min  f(x) suchthat g(xy) <0,Vye Yk
XeRN

with YK c Y, |YX| <

Y

Figure 2.11: An example of a simple discretization.

Algorithm 2.3.1 ([110]) Conceptual discretization method

Step k: Given discretizationof Y

i) Compute a solution*of S | F¥

i) Terminate if X is approximately feasible.(i.e(x,y) < €, Yy € Y withe > 0)

Otherwise choose finer discretizatioh*¥ c Y

However, in a general discretization method, the suliget Y must be sfficiently dense

in Y whenk is suficiently large. This makes the algorithm computationally very expensive.

31



The time needed to verify feasibility and to solve this problem increases dramatically as the
cardinality of Y grows. For accuracy cardinality & must be increased but this results
an unbounded number of constraints, hence the problem can not be solved for toq large

standard nonlinear programming solvers workker 100.000.

For numerical implementation the generation of finite subset (a priori or by an implicit rule)
and the choice of nonlinear programming solvers are basic elements. A general convergence
result for discretization method was obtained [110] under a compactness assumption on the

feasible sets.
Exchange Method forSIP ([110])

This class can be indeed considered as a subclass of discretization methods since it basically
depends on the discretization methods. Given a discretization, the reduced prola#pisof
solved, and in a next iteration, discretization points become updated, until the algorithm ter-
minates according to some stopping criterion. In exchange method, there is an exchange of
contraints, in every step a number of new constraints are added and some of old constraints

may be deleted.

Algorithm 2.3.2 ([110]) Conceptual Exchange method
Step k: Given discretization®of Y ande > 0
i) Compute a solution*of S | F¥.

ii) Calculate local solutions§; i = 1,..., ik of Q(x¥) such that one of them, sa§ i a global

solution.
iii) Terminate if gx¥, y¥) < e with a solutionx ~ x¥. Otherwise put

Yk+l:qu{y:(’i :1,...,ik}

We observe that the substep ii) in Algorithm 2.3.2 is very costly as it requires a global search
for minima of Q(xX). One must avoid an execution of this step in the overall process as much

as possible. Substep ii) assumes that there are only finitely many minima of the lower level
problem, if it does not hold, another method, e.g., discretization, should be used. The conver-

gence theorem of the exchange method is presented in [110]. We refer to [29, 31, 33] for a
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detailed explanation of discretization and exchange methods.

Methods based on local reduction forSIP

These methods are based on the local reduction @tRésee, Reduction Ansatz Subsection

2.2.2).

Algorithm 2.3.3 ([33]) Conceptual reduction method

Step k: One is givennot necessarily feasible.

i) Determine all local maximaly. . .,y of Q(xX).

i) Apply m, steps of a finitely constrained programming algorithm to the reduced problem
min f(x)  such that X)) =g y(X)) <0 (1=1,2,...,10).

Let X, j = 1,..., my be the iterates.

iii) Set ¥+ = XM,

Substep i) is very costly as it requires a global search for maxin@(xf). In substep ii)

finite programming methods such as SQP methods could be used.

We want to emphasize that the numerical solution of a generalized semi-infinite programming
problem might be much morefticult than the solution of standa&IP. For GSIPnumerical

methods are basically based on the followings [20]:

¢ An explicit or implicit transformation o&GSIPinto aSIP.

¢ An generalization of methods f&Pto theGSIP.

In the following we present numerical methods proposed¥8tPin the literature. In [68] a
branch and bound approach was proposed38tPwhere upper level is concave and lower
level is linear, however these are very strong and restrictive assumptions. In [21] an algorithm
based on Newton-SQP approach (which works well in stan88P) was proposed to termi-

nal variational problems (give rise SIP) without numerical results. In [118] it was shown

that GSIPcan locally be transformed t8IP, but the transformation function and new index
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A transformation of GSIP into SIP replace SIP by (a sequence) of FP

GSIP > SIP 2 FP

— =~

replace GSIP by (a sequence) of FP

Figure 2.12: A possible scheme of numerical method$fér andGSIP.

set might be too expensive to determine explicitly for especially in the case of multidimen-
sional index sets [103]. In [112] thefdculty in generalizing discretization methods from
SIPto GSIPwas emphasized. A conceptual method based on discretization methods (well-
known methods foSIP) was proposed foGSIP and convergence is shownxtdependent

grid points are chosen such that they depend continuouskyioril12], but again it is dif-

ficult to implement this method for especially in the case of multidimensional index sets. In
[106], GSIPwith convex lower level problems was transformed to equivalent nonlinear pro-
grams, first numerical results f@&SIPwas obtained, this algorithm was implemented in [128]

to the gemstone cutting problem. In [17] a conceptual method for sol8ifakP via global
optimization by exact discontinuous penalties but it is also incapable of providing numeri-
cal procedure. In [67] a branch and bound framework and uses discretization coupled with
convexification for lower level problem and interval constrained reformulation for upper level

problem was proposed.

Since we give optimality conditions (both in classical and semismooth form) based on lo-
cal reduction, Newton and Semismooth Newton methods can be considered as a subclass of

methods based on local reduction.

It is far beyond the scope of the thesis to give details of these methods. We refer to [29, 31,

33, 91, 110] and the references cited therein for further reading.
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CHAPTER 3

SMOOTH NEWTON METHOD

3.1 Preliminaries on the Newton Method

Recall that Newton method,
241 = X~ (DF(Z))'F(Z) (3.1)
is a classical method for solving the nonlinear equation,

F(2 =0, (3.2)
whereF : R" — R" is a continuously dferentiable function and the initial poirg, is given.
The interpretation of (3.1) is that we modelat the current iterate with a linear function

M(2) := F(Z) + DF(Z)(z - Z) (3.3)

where the root oMy is the next iteratior?**1. Here, My is called thelocal linear model If
DF(Z) is nonsingular, theil(Z**) = 0 is equivalent to (3.1). The geometric interpretation
of (3.1) and (3.3) in case = 1 is sketched in Figure 3.1, the poit?! is the intersection of
z—axis with the tangent line to the graph Bfat the point £, F(Z)). We see that,1 is a

better approximation thazy for the rootz of the functionF.

It is well-known that if

e the equation (3.2) has a solutian —
e DF : Q c R" —» R™"js Lipschitz continuous, and
e DF(2) is nonsingular,
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(2 F(2)

Figure 3.1: An illustration of one iteration of Newton method.

then, if 7y is suficiently close taz, the iteration (3.1) locally convergesquadratically (see

Definition 4.1.9) taz.

For more information about Newton method we refer the reader to [9, 56, 57] and references

therein.

3.2 Newton Method for Finitely Constrained Programming

Newton method was applied to smooth form of KKT conditions in finitely constrained pro-
gramming [1, 71, 126]. The results of the present section is based on [110]. The KKT-
approach for solving a finitely constrained programming problem is based on the system of
Karush-Kuhn-Tucker conditions. Let us consider the following finitely constrained program-

ming problem (without equality constraints),
P: mxin f(x) subjecttogi(x) <0 (iel)

with | = {1,...,r}. Let the active index set (2.7) Bg(x) = {1,...,k}. At a local minimizer

xunder LICQ (see Definition 2.1.8), the following KKT-equations (compare KKT conditions

36



(2.4) in Section 2.1)

k _
Vi) + X pivgi¥ = 0
=1 (3.4)
gi(®) = 0 (jelo(X)
hold with the multiplier:; > 0, j € Io(X). Let Lagrangian be the function
k
L) =)+ Y p1jg5(x)
=1
LetG :=[gj (j € lo(X))]. Then KKT condition (3.4) can be written as
VxL(X, =0
xL(X, 1) (3.5)
G(x) = 0.

Rewriting one obtains the Jacobian of the system (3.5) at a solution:

V2L ) VTG(X)
VG(X) o |

I p) =

(3.5) represents a nonlinear systermefk equations in as many as unknowfg:;. Newton

method can be applied to solve (3.5).

It is well-known that the Newton method dsquadratically convergent locally if the Jacobian

is nonsingular at a solution (see [56],[63]). The well-known second ordicismt optimality
conditions for finitely constrained programming problems at a local minimizeply that

the Jacobianl(x, ) is nonsingular (cf. Example 12.30 in [13]). Under LICQ and SOSC
(see Definition 2.1.15) Jacobian is nonsingular by Lemma B.0.37 in Appendix B. We can
expect that in the general case (i.e., generically) this regularity condition is satisfied. By the

following theorem, it is shown that Newton method is generically applicable.

Let® := C*(R", R)1*™ denote the set of problem functioRs= (f, g1, ..., gm). The function
spaceC™(R", R):*M is assumed to be endowed with the so-called Withney topology. The
C" Whitney (or strong) topology is a topology assigned to the s@i¢kl, N) of mappings
from aC" manifold M to aC" manifold N havingr continuous derivatives. It gives a notion
of proximity of two C" mappings, and it allows us to speakrobustnes®f properties of a
mapping. A subset which is dense and ope®iis named as generic subset. The Newton

method is generically applicable as stated in the next theorem.

Theorem 3.2.1 ([44]) There is an open and dense sub®gt € # such that for all finite
programs Pe Py, LICQ holds at each feasible point x and at each solufxm) of (3.5) the

Jacobian Ix, u) is nonsingular.
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3.3 Newton Method for Semi-infinite Programming GSIP)

We recall the results in [112] in this section. In [112] smooth Newton method is applied
to the GSIP problem from Section 2.2. In [22] a Newton method is originally proposed
for the case of linear problems. A Newton method is proposed for nonlinear Chebyshev
approximation in [26] and later on [30] a Newton method is proposed for solving staBtfard

In this section, we recall the result in [112] about convergence of Newton meth@Sfiét
Newton method is classified under continuous methods (methods based on local reduction) in
[29]. In[117] both theoretical and numerical treatment of Newton method applied to standard

SIPis considered.

Applying Newton method to the necessary optimality conditions is a common method for
solving SIP[33, 91] . We need some theoretical considerations in order to derive optimality
conditions forSIP and GSIP. The Reduction approach is a common way to obtain optimal-
ity conditions and Newton-type methods 8P [33]. The idea here is to locally transform
SIP and GSIPinto finite parametric optimization problems. By Theorem 2.2.10, the prob-
lem GSIPis equivalent tadGSIReq(X) locally nearx, hereGSIR¢q(X) is a finitely constrained
programming problem. Hence, standard optimality conditions of finitely constrained pro-

gramming can be used to obtain optimality conditionsG&iP.

Under LICQ, at a local minimizex € M,y € Yo(X) whereYo(X) denotes the set of active in-
dices, the following KKT condition is fulfilled (compare KKT from Q-1 in Subsection 2.2.2),

i.e., there exists a multiplier vecter> 0,y € R such that
Yy ¥) - > ¥ivyi(x¥) =0 (3.6)
=1

Here, we letQo(X, ¥) = {L,...,q}, whereQo(X ¥) = {j € Q|vj(X ¥) = 0} is the set of lower
level active indices af € Y(X). Let xbe a local minimizer o6SIP. Under Reduction Ansatz
at x, supposeEMFCQ holds atx, then by Theorem 2.2.13, the following KKT condition is
fulfilled (compare with (4.34))

p
VIR + ) mVRL(KY.Y) = 0. (37
i=1

q :
whereL(x,y,y) = 9(X,y) — 2 ¥jvj(Xy), the Lagrangian function wheneé > 0.
j=1
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Recall from Subsection 2.2.2, (Q-IIl) that afBaient second order condition is given by:
n'VZL(X Y.y <0 forally € G \ {0}, where

G = (€ R™| Dyvj(}¥)n =0, j € Qo(X Y-
Assume that ELICQ (2.13) is fulfilled ate M, as well as the KKT condition (3.7) holds and

(3.8)

the second order condition,
ETMoé > 0 forall £€ T\ {0}, (3.9)

with the tangent spack = {¢ € R"| Dy L(X, ¥, ?)g =0,i=1,...,p}and

Mo = D*(%) +Zu.D L%, 7)+ZMDT)"(>_<)D2L(X Y./ )DY®  (310)

>

|
=1
CompareMg by V2L(X, V; /1, 7) stated in GSIP-Il in Subsection 5.1.1.

Mm

7j(RDxYj (X ¥) + DRvi(X ¥)Dv}(9).

I
iy

Then,xis a local minimizer ofGSIP. Under Reduction Ansatz in Theorem 2.2.10 (see Sub-
section 2.2.2), th€! functionsy'(x) andy'(x) are obtained. Considere M such that at any
point in Yo(X) the conditions (2.9), (3.8) are satisfied, also let (2.13) and (3.9) be fulfilled, i.e.,
first and second order conditions holds for both lower level problem and reduced upper level
reduced problem. Then, necessanilys,y,»' (i = 1,...,p) is a solution of the following
system of KKT equations dESIPand the lower level proble®(X) (compare with (4.35) in
Subsection 4.3.3):

V) + 3 VL Yy = O,
g 7t (3.11)
906Y) = 3 viley) =0 (=12....p

andfori=1,...,p ~
Via06y) - % 7T 0xY) =0
Vi(%y) =0 (j € Qo(X ¥))-
The system (3.11) consistsiif=n+ p + zpj (m+ q) equations with equally many unknowns
XxXeR" i eR, ¥y € R™ 5 € RY. Sincel,:the number of equations and unknowns is equal,

Newton-type methods can be used. Bt problems, since; does not depend ox in the

first equation of 3.11, the sum oveiD,v;(x, ') vanishes (appearing M.L(x Y, 7')).

The following lemma shows that, under these assumptions, the Jacobian of the system (3.11)
is nonsingular at the solution. This, in particular, implies that the Newton method applied to

(3.11) will locally convergeg-quadratically.

39



Lemma 3.3.1 ([112]) Let X € M be given such that at any poifite Yo(X), i = 1,..., p the
conditions LICQ (2.9) and second ordegfgtiency condition for lower level problem (3.8) are
satisfied and let ELICQ (2.13) and second order condition for reduced upper level problem

(3.9) be fulfilled. Then, the Jacobian of (3.11%ak, Y, %', i = 1,..., p, is nonsingular.

Proof. We refer to [112].

For SIPa globally convergent algorithm from finitely constrained programming to the locally
reduced problemSIP,.¢q is described in [33], Algorithm 7.4, which can directly be general-

ized toGSIP.
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CHAPTER 4

SEMISMOOTH NEWTON METHOD

4.1 Preliminaries on the Semismooth Newton Approach

For this section we refer the reader to our recent papers [108, 115]. For a locally Lipschitzian
vector valued functiorF : R" — R™ let F(x) denote Clarke’s generalized Jacobiarxat

[6]. Let us writeF in terms of component functions &$x) = (f1(x), f2(x),..., f™(x))". We
assume that ead (and, henceF) is Lipschitz near a given pointof interest. Rademacher’s
Theorem asserts thé&tis differentiable (i.e., each is differentiable) almost everywhere on
any neighbourhood ofin which F is Lipschitz. Let us denote the set of pointsfifat which

F fails to be diferentiable byr. We shall writeJF(y) for the usualifh x n) Jacobian matrix

of partial derivatives wheneveris a point at which the necessary partial derivatives exist.

Definition 4.1.1 ([6]) The generalized Jacobian of F at x, denoteddby(x), is the convex
hull of all (m x n) matrices Z obtained as the limit of a sequence of the forrfxJ Fwhere

X — xand x ¢ Qf

AF(X) := co{ilim JF(X) | % — X (i = o), % & Qe). (4.1)

If F is continuously dierentiable thed@F(x) = {JF(X)}.

4.1.1 Semismooth functions

Definition 4.1.2 ([87]) A locally Lipschitzian vector valued function:FR" — R™M is called

semismooth at ¥ R" if F is directionally djferentiable at x and if for all \€ dF(x + d) and
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d — Owe have

F’(x;d) = Vd+ o(|d])).

In Definition 4.1.2,]| || denotes Euclidean distance. Hfis continuously dterentiable at

X, then it is semismooth at. In some sense, semismoothness is equivalent to the uniform
convergence of directional derivatives in all directions [87]. Semismoothness was originally
introduced by Mflin for functionals [72]. In [87], the definition of semismooth functions

was extended t& : R" — R™. It was proved thaF is semismooth ax if and only if all its
component functions are semismooth. Scalar products and sums of semismooth functions are

still semismooth functions [72].

The importance of semismooth equations is that although the mapping is in general nons-
mooth, Newton method is still applicable and convemgesiperlinearlyto a regular solution.

The rate of convergence of the semismooth Newton method can be improved if an estimate of
higher order is available. This leads to the following definition of higher order semismooth-

ness.

Definition 4.1.3 ([87]) A locally Lipschitzian vector valued function:FR" — R™ is called
p-order semismooth or at x if F is semismooth at x and if for at ¥F(x + d)yand d— 0
we have

vd - F'(x d) = O(ld|IP*),
where0 < p < 1. In particular if p= 1, F is called 1-order semismooth.
1-order semismoothness is renamed as strongly semismoothness in [85]. In this thesis, we

also use strongly semismoothness for 1-order semismooth functions. For other definitions

and properties of semismoothness we refer to [87, 116].
Examples of Semismooth Functions ([116])
Example 1- The Euclidean Norm
The Euclidean nornf : R" — R, defined by
fO = IXlz = (x" )2
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is an important example of a strongly semismooth function that arises, e.g., as the nonsmooth
part of the Fischer Burmeister function which is defined in Example 2.
Obviously, f is Lipschitz continuous ofR", andC! onR" \ {0} with

_1x
21l

F'(x)

Therefore
T

of(x) = {—} for x # 0,

l1Xl2

af0) = {v" |v e R", |Ivll, < 1.
f is strongly semismooth at= 0, so it is strongly semismooth d@&f'.

Example 2- Fischer Burmeister and Min functions

Definition 4.1.4 ([60]) A scalar valued functiog : R? — R is called an NCP-function if

w(a,b)=0 ifandonlyif a>0, b>0 and ab=0.

~\_w:0 a

Figure 4.1: The zero set of an NCP function, iyga, b).

Here, NCP stands famonlinear complementarity problenAn important example of NCP-

function is theFischer-Burmeistefunction
vrs(@b) = Va2 +b2—-a-h. 4.2)

The Fischer Burmeister Function was introduced by Fischer [14]. Many modern algorithms

for finite dimensional NCPs are based on reformulations by means of the Fischer Burmeister

43



NCP function. This function is Lipschitz continuous and strongly semismooRrofurther,
weg is C onR?\ {0}, and {/ep)? is continuously dferentiable orR?. yg is the diference
of the strongly semismooth functidix||, and linear functiorh(x) = X; + Xo. Thereforey g

is Lipschitz continuous and strongly semismoothRf Another important example of an

NCP-function is themin function

Ymin(a, b) = —min{a, b}. (4.3)

Ymin IS also strongly semismooth @&?.

Figure 4.2: The graph of minus Fischer Burmeister function, +&rg.

We use both Fischer Burmeister NCP-function and min NCP function in this thesis. See

Appendix A for subdiferentials of the convex functiongg andy/min.
Example 3- Piecewise Oferentiable Functions

Piecewise continuously fierentiable functions are an important subclass of semismooth

functions.

Definition 4.1.5 ([100]) A function f: V — R™ defined on the open set & R" is called
PCk—function (piecewise €function),1 < k < oo, if f is continuous and if at every point
Xo € V there exist a neighborhood W V of x and a finite collection of &-functions

fl:W o> R™i=1..., N suchthat

f(x) € {f1(x),..., fN(X)} forall x e W.
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f is called a continuous selectiondf, ..., fN} onW. The class oPCK functions is closed
under composition, finite summation and multiplication. The functiinsR — R, f1(x) =
X, f : R? - R, fa(X) = max{xy, X2} and f3 : R?2 — R, fa(X) = min{xy, X»} are PC®—

functions.

Proposition 4.1.6 ([116]) Let f : V — R™ be a PG - function on the open set¥ R". Then

f is semismooth. If f is a P&function, then f is strongly semismooth.

We refer to [100, 116] for more information and properties of piecewifferdintiable func-

tions.

4.1.2 Semismooth Newton method

In analogy to the standard Newton method, the basic iteration of the semismooth Newton

approach for solving the equati®i(z) = 0 is [87]
2 = 2K~ (WNIF (4.4)
with WK e 9F (29).

To study convergence properties of the semismooth Newton method, the concept of CD reg-

ularity was introduced. Here, CD stands for the Clarke dtiédintial [85].

Let vector valued functior : R" — R" be semismooth. Theh is calledCD-regular at a

pointx, if all matrices indF(X) are nonsingular [85].

Proposition 4.1.7 ([87]) If all V € dF(x) are nonsingular, then there is a neighbourhood
N(x) of x and a constant C such that for anyeyN(x) and any Ve dF(y), V is nonsingular
and

V4 <c

Proof. If the conclusion is not true, then there is a sequefice x(k — ), Vi € dF(YX),
such that either al are singular ofV; Y| — oo (k — ). SinceF is locally Lipschitzian,

OF is bounded in a neighbourhood xfBy passing to a subsequence, we may assume that
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Vk = V(k - ). ThenV must be singular, a contradiction to the assumption of nonsingu-

larity of V € dF(X). This completes the proof. °

In the following we give the definition of convergence rate.

Definition 4.1.8 ([56, 77]) Suppose that the sequereg converges to the numbé&r We say

that this sequence converges linearly¢tdf there exists a number € [0, 1] such that

i Be1=gl
o 12— €]

The number is called the rate of convergence. If the above holds withk 0O, then the
sequence is said to convergesuperlinearly. The next definition is used to distinguish super-

linear rates of convergence.

Definition 4.1.9 ([56, 57]) We say that the sequence converges with order q fofldo & if

.z — €l .
lim ———= =y withu > 0.
A

In particular, convergence with order 2 is callgdjuadratic convergence. Thestands for
guotient, because the definition uses the quotient between two successive terms. In numerical
analysis, usually the term quadratic convergence is usegtdoiadratic convergence. There

is also a slightly weaker form of convergence, characterized by the Rdfor root). It is
concerned with the overall rate of decrease in the error, rather than the decrease over a single
step of the algorithm, see [77] fd®-quadratic convergence. However, most convergence

analyses of optimization algorithms are concerned wittonvergence.

Theorem 4.1.10 ([87]) Suppose thak is a solution of Fx) = 0, and F is semismooth and
CD-regular atx. Then the iteration method (4.4) is well defined &xid, the sequence gen-
erated by (4.4), converges tog-superlinearly in a neighborhood ot If in addition F is
p-order semismooth & then the convergence is of order p. In particular, if F is strongly

semismooth ax, then the convergence is g-quadratic.

Proof. By Proposition 4.1.7, (4.4) is well-defined in a neighbourhood &dr the first step
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k = 0. Now

-5 = e~ VR0 - 5]
o O e
< [VFHF(X) = F(X) - F (5 X< = x| (4.5)
+ VIO = 30 = B/ (6 X = X] |
= o~
This completes the proof. °

4.2 Semismooth Newton Method for Finitely Constrained Programming

In this section, a review of nonsmooth Newton method applied to the problem of finitely

constrained programming as in [85], and also the convergence properties are investigated.

Let us consider, the finitely constrained optimization problem (2.3) from Section 2.1, i.e.,
P: mxin f(x) subjecttogi(x) <0 (iel), hj(x)=0 (j €J), (4.6)

where f, g;, h; are continuously dierentiable functions with = {1,...,r}, J = {1,...,s}.
LetN =n+r+s Letg(X) = (91(X), ..., 9 (X)", andh(x) = (hy(X), ..., hs(x))T. As given in
Section 2.1, the KKT system for this problem is:

r s
Vf(X) + '21 ,ungj(X) + _Zl /lehj(X) =0
]= ]=

nz0, 9(x) <0,

1'g(x) =0,
h(x) = O.

4.7

We denotez” = (x",u",AT). The KKT system plays a central role in the theory and algo-
rithms for problems of nonlinear programming. In this section, we assigendh are

twice continuously dferentiable and?f, D?g andD?h are locally Lipschitzian.

Many iterative methods have been developed to solve KKT systems. We refer to [15] for a
comphrehensive treatment of these methods. In [85] an approach was developed to construct

generalized Newton method for solving these nonsmooth KKT equations.

(4.7) is reformulated by using nonlinear complementarity problem functions (NCP-functions)

given in Definition 4.1.4. By using NCP-functions, the system becomes
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ICEPWACICES RN
1= (2, ~909) (4.8)
h(x)
Two typical versions of KKT equations are used, by using the NCP-funcisher Burmeis-
ter functiongiven in (4.2) ananin functiongiven in (4.3), which are equivalent to (4.7). These
versions of KKT equations are strongly semismooth. As in Section 2.1, we denote the La-
grangian of (4.6) by
L(x, 1, ) = F(X) + 1" g(X) + 1"h(X)

and denote its gradient with respecixtby
VXL(X’ l’l9 /l)
By usingmin NCP-function, the KKT system becomes

ICEPWACICES RN

(@ = — min{u, -g(x)} (4.9)
h(x)
By usingFischer-BurmeisteNCP-function, the KKT system becomes
r S
V(X + _Zl,ungJ'(X) + Zl/lehj(X)
= =
VHE + 91002+ 9103 — 1
T2(2) = : ) (4.10)
Vi + G (X2 + 9r(X) — pr
h(x)

In Subsection 4.1.1, it is mentioned that Fischer-Burmeister NCP function and min NCP

function is strongly semismooth. Here a main result based on this is given.

Theorem 4.2.1 ([85]) Both T; and T, defined by (4.9) and (4.10) are strongly semismooth.

Proof. We refer to [85].

Now, we discuss about convergence of the nonsmooth version of Newton method (4.4), i.e.,
see Section 4.1, to solve the equatidn&) = 0 andT»(2) = 0. By Theorem 4.2.1 we see that

T, andT, are strongly semismooth functions.
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Hence, the key thing is to identify the conditions such that all elements in the generalized
Jacobians at the solution poiatof T; and T, are nonsingular. This is equivalent to the

condition bothT; andT, are CD-regular (see Section 4.1) at a KKT-paht

Definition 4.2.2 (implied by [85]) Suppose that'’z= (x",u",17) e RN. LetR={1,2,...,r},
1D =1{jljeRgj(x) =0}

lo() =1j € 1@ I =0}
11(2) ={j € 1(2) | uj > O,

and
G(2) :={d e R"| Dgj(x)d = 0 (j € 11(2)), Dh(x)d = 0}.

A point ze RN is said to satisfy the strong second-ordeff@iency condition for (4.6) if it
satisfies the first-order KKT condition (4.7) and f\d > Ofor alld € G(2) \ {0} and V =
V2L(x, u, ). We say that a KKT point z of (4.6) satisfies the linear independence condition if
{Vgij(¥) (j € 1(2), Vhj(x) (j € J)} are linearly independent.

A point ze RN is said to satisfy the Robinson condition if it satisfies both the linear indepence

condition and the strong second-ordeyfatiency condition.

Note that the strong second ordefistiency condition implies thatis a strict local minimum
of (4.6). We will reformulate and then use Robinson condition (Definition 4.2. 2p8IR¢q

in Section 5.1.

Theorem 4.2.3 ([85]) Suppose that € RN is a KKT point of (4.6) and satisfies the Robinson

condition. Then, both Tand T, are CD-regular atz.

Proof. LetW € dT1(2). Then,

\ Dgi,(X) Dgi,(x) Dgs(X) Dh(x)

Vg, (X 0 0 0 0

W=]| AoDg,(X) O -To 0 o | (4.11)
0 0 0 ~E; 0
vh(X) 0 0 0 0
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whereV = V2L(X 1, 4),11(2) € 11 € 1), 1o € (I0@ \ 11),J = R\ (I1 U lg), Ey is the identity
matrix of dimensionJ|, Ag andT’y are negative definite diagonal matrices of dimensigin
and diagonal elementy € [0, 1] andy; = 1 - 4;, respectively, fo € lo, the order ofj € R

is reordered to separatgandly andJ. Suppose that

d;
d>
W -0, (4.12)
d3
ds
whered; € R",dy € Rl d3 € Rl d4 € RV, Note that thejth element ofds is equal to 0

by (4.12) if1; = 0. Without loss of generality, we may assume that (0,1]. Then (4.12)

impliesdg = 0,
Vd; + Dgy,(X)d2 + Dg;,(X)d3 + Dh(X)ds = 0, (4.13)
Vi, (X)di =0, (4.14)
Vi, (X)d1 = Ag'Tods. (4.15)
and
Vh(X)d; = 0, (4.16)

Suppose thadl; satisfies (4.14). Thed; € G(Z). Multiplying (4.13) withd!, by (4.14) and
(4.15), we have
dIle + d;;rroA(;ldg, =0.

By the strong second-orderffigiency condition and positive definitenessF@ﬁ\al, di =0
andds = 0. Now, (4.13) yields
Dgi, (X)dz + Dh(X)ds = 0.

By the linear independence conditiah,= 0 andds = 0. Henced = 0. This shows thadV is

nonsingular. Thereford,; is CD-regular atz.

For anyz € RN, T, is differentiable az if and only if VZL(x, u, 1) exists ands® + gj(x)* > 0
for all j € R For these pointg,
Vil(xu,4) Dg(x) Dh(X)
VT2 =| AVg(X) r o | (4.17)
vh() 0 0
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whereA = diagd1, A2, ..., 4 LT = {yn, v2, ..., 7},

b= 9% (4.18)
12+ 9;(X)?
and
yi = 909 (4.19)
12+ 9;(X)?
for j € R. By (4.18) and (4.19), we have
(4 -1%+(y;+17°=1 (4.20)

By (4.17), (4.20) and the definition of the generalized Jacobidndaf W € 6T»(2), we have,

V. DgX) Dh(X)
W=| AVg(x) T o | (4.21)
Vh(x) O 0

whereV = V2L(X, i1, 1) and agaim = diag{1, A2, ..., 4 },T = {y1,72,...,y:}, and

(- 1P+ (yj+ 1P <L (4.22)
Suppose that
d;
W| d, |=0, (4.23)
d3

whered; e R",dy, € R". Usedzj to denote the componentsaf. Then, (4.23) implies

Vd; + Dg(X)dz + Dh(X)d3 = O, (4.24)
A;Vgj(X)di + yjdz, =0, (4.25)

for j e Rand
Vh(x)d; = 0, (4.26)

LetR :={j e R4; > 0,9 < 0},R :={j e R1; = 0)andRs := {j € Ry; = 0}. Then
11(2) € Rs. By (4.25) and (4.22)dp, = 01if j € Ry,

Vg; (X = 0 (4.27)
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if j € Rs, and

Vgj(X)d1 = vjdy;, (4.28)
wherevj = —yj/4j > 0if j € Ry. Multiplying (4.24) withd], by (4.27) and (4.28),

djVar + > vjds =0.
j€R

Sincel1(7) € Rs, by (4.27),d1 € G(2). Sincev; > 0 for j € Ry, by the strong second-order
suficiency conditiond; = 0 andd; = O for j € R;. Now, (4.24) yields

Z ng()_()szl =0.

j€Rs
NoticeRs C 1(2). By linear independence conditioty, = 0 for j € Rs. Henced = 0. This

shows thaW is nonsingular. Thereford;; is CD-regular az. This completes the proof. e

By Theorems 4.1.10, 4.2.1 and 4.2.3, we have the following theorem which shows that semi-
smooth Newton method ig-quadratically convergent if Robinson condition holds at the so-

lution point.

Theorem 4.2.4 ([85])Let T = T1 or T = T,. Consider the semismooth Newton method
(4.4). Suppose thatis a solution of (4.7) and satisfies Robinson condition. Then the iterative
method (4.4) is well-defined and}, the sequence generated by (4.4), converges @

quadratically in a neighbourhood @

Note that in [60] it is shown that, for finite optimization problems withdata, CD-regularity

of the Kojima formulation of the KKT system is equivalent to the strong stability of a KKT
point. From another point of view, in [85] it is shown that the Robinson condition (Definition
4.2.2) at the KKT point of &2 problem implies CD-regularity of the KKT system, in which
the complementarity conditions are reformulated usingntieor Fischer BurmeisteNCP
functions. In Subsection 5.1.1 we will show an analogous resulB®IP, involving weaker

smoothness assumptions.

We refer the reader to [85] some other semismooth KKT equations.

4.3 Semismooth Optimality Conditions in Semi-infinite Programming

In this subsection we recall the results obtained in our recent paper [108]. In [88], recently the

semismooth optimality conditions for stand&tP was suggested. In this section, we recall
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semismooth opimality conditions for stand&tPin Subsection 4.3.2 and we derive them for

GSIPin Subsection 4.3.3.

4.3.1 The bilevel structure of semi-infinite programming

As we stated in our recent paper [108], the theoretical and numerical treatm@®IBis
closely related to the bilevel structure of semi-infinite programming. In fact, under our as-

sumptions the semi-infinite constraint@SIPis equivalent to

X) = max g(x,y) < 0.
() = maxg(x.y)

The feasible se of GSIPis the lower level set of some optimal value function:

M = {xeR"¢(Xx) <0}

An example of feasible set defined by the optimal value function is illustrated in Figure 4.3.

The functiong is the optimal value function of the lower level problem defined in (2.8)

Figure 4.3: The feasible set defined by optimal value function [128].

Q(X) : mﬂ?xg(x,y) subjectto vj(x,y) < 0 (j € Q).
yeR™

In the upper level problem the aim is to minimizever M wherex is the decision variable,
however, in the lower level problemplays the role of am—dimensional parameter, agds

the decision variable.
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In semi-infinite programming the main numerical problem is the following: the lower level
problem has to be solved tgobal optimality even if we want to find a stationary point of

the upper level problem. In fact, standard nonlinear programming (NLP) solvers can only be
expected to produce lacal maximizeryioc of Q(X) which is not necessarily a global maxi-
mizerygion. Even ifg(X, yioc) < 0 holds,x might be infeasible sincg(X, Yioc) < 0 < ¢(X) =

9(X Ygiob) cannot be ruled out in general.

Since, in the following, we aim to use the approach from [88] and replace the lower level
problem by its KKT conditions, we must make sure that a solution of the KKT system is
a global maximizer. We emphasize that otherwise one might conipigasible pointgor

the semi-infinite problem, which is a major pitfall of the approach at hand. In particular, the

concept osubstationary pointfrom [88] may entail infeasibility.

A natural assumption under which a solution of the KKT conditions leads to a global maxi-
mizer is the convexity of the lower level problem, that is, for eachR" the functiong(x, -)
is concave, and the s¥{(x) is convex. We thus make the following assumption throughout

the remainder of the thesis.

Assumption 4.3.1 ([108, 115])For all x € R" the lower level problem () is convex.

In GSIPmany relevant applications have convex lower level problems [103] (see also Chap-
ter 6). On the other hand, in standard semi-infinite optimization this situation is rather rare.
For recent solution approaches to standaiRiwith nonconvex lower level problems, we refer

the reader to [16, 76].

In the remainder of the thesis, we will not use Assumption 4.3.1 explicitly, but develop the
theory in the more general setting without convex lower level problems. In particular we will
deal with finitely many lower level maximizers, instead of a unique one in the convex regular
case. However, the slightly more general setting of finitely many generalized semi-infinite
constraintgi(x,y) < 0, y € Y(X), i € |, each with a convex lower level problem, would lead

to almost identical formulas as the ones we develop in the sequeldwégblaced byg;).
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4.3.2 Semismooth optimality conditions forSIP

Let us first consider the standard semi-infinite case. As mentioned in Section 2.2 a standard

semi-infinite problem has the form
SIP: minimize f(x) subjectto xe M

with
M = {xeR"g(x,y)<Oforallye Y}

and
Y = {yeRMvi(y)<0 (jeQ}.

To formulate first and second order optimality conditions, we use the following notation. For
a continuously dterentiable functionf : R" — R, we denote the gradient in row form

by Df(x) = [3‘9—){1, %,...,%] and in column form by f(x) = DT f(x). For a continuously
differentiable functiofr : R" — R" we denote the Jacobian Bfatx € R" by DF(x) whereas

the transposed JacobianVi§(x). For a functiong : R" x R" — R we denote byw,g(X,y)

the gradient ofy at (x,y) with respect tax and byV£,g(x.y), V4,9(x.y) = DyVxg(x.y) and
V}Z,yg(x, y), the respectiva x n, nx r andr x r matrices of second order partial derivatives of

gat (x,y).

Recall that by Theorem 2.2.13 from Subsection 2.2.3, for a local minimizer under EMFCQ

(2.14), the following first order optimality condition holds,

p
VIR + ) AVsgXY) = 0. (4.29)
i=1

Next we complement the upper level first order condition from Theorem 2.2.13 by a lower
level first order condition. In fact, since the active indigéss Yo(X), i € P, are global
solutions ofQ(X), under some constraint qualification like Slater’'s condition

(see Definition 2.1.12) in the lower level problem (2.8), there exist vectors of Lagrange

multipliersy" € RY such that
L q _ . ,
(4.30)
7,20, vi¥) <0, #vi() =0 (P jeQ).
By (4.29) and (4.30), we arrive at the following equalities and inequalities:
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VIR + igplﬁivxg(x—, §) =0,

i >0, g(xy)=0 (ieP),
(4.31)

ViQ0Y) - X FT) =0 <)

With any NCP functiony (4.31) can be reformulated as the following system of equations:

VHR) + i=ﬁlﬁivxg(x—, ¥) =0,

Wi, -9% §) =0 < P),
(4.32)
Vg y) - % Y ¥vi) =0 (<R Q)

W7 Vi) =0 (P jeQ.

As observed in [88], the system of equations (4.32) is not directly equivalent to (4.31). The

system (4.32) allows the case that

=0, g(xy)<0.

However, if there is am + (m+ g + 1)p dimensional vector, say(u, Y, y), satisfying (4.32),
the variables indexed bywith i = 0 may be dropped. Thus, we get a solution of (4.31). Itis
easy to see that a solution of (4.31) satisfies (4.32). Hence, (4.31) and (4.&2)uaralent
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and finding the solution of (4.31) amounts to finding a zero of the fundtio®RN — RN

VE(X) + i%MVXQ(X, y)

(1, ~9(x yh)

%0(# [o}) —g(X, yp))
1 J 1 1
Vya(x y7) - Ely,- Vyvi(y?)

U(yi, —va(yh)
T = : , (4.33)

W (vg ~Va(y"h)

q
Vya(x, yP) - _ZlV?Vij (%)
J:

Yy, —a(yP)

Y(yg, —Va(y?))

whereN = n+(m+q+1)pwithz= (X", 1", y",y")T € R™(MaDP x ¢ R/ € RP,y € R™P

andy € R9P.

4.3.3 Semismooth optimality conditions forGSIP

In this subsection we derive semismooth optimality conditions for the folloW@&4P (see

Section 2.2) as in our recent paper [108].
GSIP: minimize f(x) subjectto xe M
with the feasible set
M = {xeR"g(xy) <0forallye Y(x) }

and
Y(¥) = {yeRMvj(xy)<0 (jeQ)}.

If X € M is a local minimizer ofGSIPat which the Reduction Ansatz holds, then, by Theo-

rem 2.2.10xis also a local minimizer of the locally reduced probl&8IR¢y4, and necessary
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optimality conditions forx in the reduced problem are also necessary optimality conditions
for X in the original problem. In particular, ¥ € M is a local minimizer ofGSIPat which
the Reduction Ansatz (see Subsection 2.2.2) and the Mangasarian-Fromovitz constraint qual-

ification hold, then there exist multipliers > 0,i € P = {1, ..., p}, such that
p —
VIR + ) aivei(R =0 (434)
i=1

Note that all constraints iGSIReq are active ak by construction, that is, we hayg(X) = 0

foralli € P.

Using¢i(X) = g(x, y), the fact that eaclf 7s a global maximizer of the lower level problem,

as well as the evaluation of (2.12)gtwe arrive at the system

VI® + 3 AVLRT.F) =0
fi20, g% ) =0 (P,
ViQ0y) - X FTK) =0 G <) (4.35)
7 20Y(%F) <0 (P Q).

Pvix§) =0 (ePjeq).

With any NCP functiony, along the same lines as in Subsection 4.3.2 the solution of (4.35)

is seen to be equivalent to finding a zero of the function
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VX + igpluivx.c(x,y‘, )

(1, —9(x yh)

'70(/1 [o}) —g(X, yp))
Iy _ w1 1
Vyg(x.y) - Ely,- V(% y7)

W(Yi’ _Vl(x’ yl))
T = : , (4.36)

W(Vé, _VQ(X’ yl))

q
Vya(x, yP) - _Zly?vyvj (X, yP)
j=

¢’(7]F_)’ _Vl(x9 yp))

'70(73’ _Vq(x’ yp))

withz= (X", u",y",yNT e RN, N =n+(m+q+1)p, xe R", u € RP, y e R™Pandy € RIP.

Again, T is strongly semismooth under our assumptions.

We emphasize that for a stand@tPthe termV,.L(x, y',7') in T is replaced by,g(x, y'), and
vj(x,yi) by vj(y‘), that is, the functiorm from (4.36) generalizes the functidhfrom (4.33)

from SIP to GSIP. Note that for standar&IP it is not necessary to assume the Reduction
Ansatz to derive the functiofi. However, the situation foGSIP is not essentially more
restrictive, since in Subsection 5.1.1 we will anyway assume the Reduction Ansatz at the
solution point for our convergence result and the Reduction Ansatz at local minimizers of

GSIPis a weak assumption [23].
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CHAPTER 5

SEMISMOOTH NEWTON APPROACH for SEMI-INFINITE
PROGRAMMING

In Section 4.2, a review of semismooth Newton method applied to finitely constrained pro-
gramming and the convergence of the method are given. In this section we will apply semi-

smooth Newton method to semi-infinite programming problems.

In Section 5.1, for the convergence of the semismooth Newton method we show that a stan-
dard regularity condition is needed and indeed it is satisfied under natural assumptions for
semi-infinite programming. Under the Reduction Ansatz (see Subsection 2.2.2) in the lower
level and strong stability in the reduced upper level problem, i.e., Robinson condition (see
Definition 4.2.2) this regularity condition is satisfied. We do not have to assume strict com-

plementary slackness in the upper level in this section.

As we have mentioned in Chapter 1, NCP functions were used to get a nonsmooth refor-
mulation of the KKT conditions in standai@lP in the article [88]. A regularity condition

was suggested to guarantee convergence of a specific semismooth Newton method. How-
ever, in [88] strict complementarity is a part of the regularity condition in the upper as well
as in the lower level problem. The standard Newton method would converge under these as-
sumptions. In Section 5.1, we complement the result in [88] by showing convergence under
the case strict complementarity violation in the upper level. We also transfer the method to

generalized semi-infinite programming.

In Section 5.2 we consider the case strict complementarity violated in the upper and in the
lower level. Now, in locally reduced problem, the auxiliary functions are therCAdtinc-

tions. But still, it is possible to show convergence of the semi-smooth Newton method under
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weak assumptions.

5.1 The Case with the Strict Complementarity in the Lower Level Problem

In this section we wish to apply the semismooth Newton approach from Section 4.1 to find a
zero of the functiorT from (4.36). In particular, we want to use Theorem 4.1.10 and, thus,

find a suficient condition for CD-regularity of in a solution pointz. -

As we mention in our recent paper [108], the part of this condition concerning the lower level
problem will be the Reduction Ansatz (see Subsection 2.2.2), while in the upper level prob-
lem we will assume the so-calldRlobinson conditiorfwhich is previously used for finitely
constrained programming, see Definition 4.2.2 ) . In fact, considerM and the locally
reduced problensSIReg Where, according to the definition @f we neglect the fact that all
constraintsy; (i € P) are active by their definition. LéRy(X) = {i € P|¢i(X) = 0} be the set of
active indices ak for the upper level problem. Recall from Theorem 2.2.10(c) that the auxil-
iary functionsy; (i € P), in the reduced proble@SIR¢q are twice continuously élierentiable,

so that it makes sense to impose a second order regularity conditi@sbh.g.

5.1.1 Convergence of the method
For convergence of our method, in the upper level we will assume Robinson condition. In the
following we give this condition [108].

The Robinson condition is said to holdyaif the following conditions (GSIP-I) and (GSIP-II)

are satisfied:

(GSIP-I) Thelinear independence constraint qualification

(LDasip {VxL(XY.¥) i € Po(X) } is a linearly independent family.

If X is a local minimizer, then there exists a unique vegiar RP of Lagrange

multipliers with

p
(KKTesip V(R + Y mVxL(X¥.¥) = 0,
i=1
fi =0, g(xY) <0 mg(xy) = 0(eP).
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(GSIP-II) Thestrong second order gliciency condition

TV2L(X V. 1, 0 forallée G 0} with
(SSOS%SIP{S 2L(X Y. f1. 7)€ > O for all£ € Gasp\ (O} wi }

Gasip = {d € R" DxL(X Y, ¥)d = 0 fori € P.(X)}.

with P, (X) = {i € Po(X)|i > 0}. Here,V2L(X,Y, i, y) stands for the Hessian of
P P

the Lagrangiarf(x) + Y, ui¢i(X) of GSIReg, that is, forv2f(X) + X i Vaei(X),
i=1 i=1

with

Viei(X) = ViL(X Y. 7)

_{ V2L [ DL ~Vyg(XY) ] [ V2L,
—Dxvgy (X, ¥) —Dyvg (%, ¥) 0 —Dxvg (X ¥)

whereDyvqy stands for the matrix with rowByv;, j € Q) = Qo(X. ). Dyvg, is

T -1

2

defined similarly.

Note that the Robinson condition doeet assume strict complementary slackness. In the
standardSIP case V4 L(X, ¥, ¥') reduces tdV,g(X, ¥), and in the Hessian of the Lagrangian

we obtain

PR T
V5. Y)
0

. _1 .
DL ~Vvg () ] { V2% ¥) J

VZ4i(X) = VZ(X ¥) —[ _
~Dvg () 0 0

where the term
. T
{ V2,0(% ) ]

DL ~Vvg () ] { V20(% ¥) ]
0

~Dvgy A 0 0

is called asshift termin [44].

Now consider a zera of T from (4.36). Then the KKT conditions mentioned in (Q-I) and
(GSIP-I) hold by definition ofT. The remaining conditions in the Reduction Ansatz and
the Robinson condition are algebraic conditions on the involved functions which can also be
imposed independently of the fact that we deal with lower level global maximizers and upper

level local minimizers. In this sense, we can make the following assumption:

Assumption 5.1.1 ([108]) The Reduction Ansatz and the Robinson condition hold at z.

Theorem 5.1.2 ([108]) Suppose that = (X", 1", y",y")" is a zero of T from (4.36) with the
choicesy = ygp Or ¥ = Ymin, and that Assumption 5.1.1 holdszatThen T is CD-regular at

z.
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Proof. Letz be a zero oflT at which Assumption 5.1.1 holds, and lgtdenote either one
of the two NCP functiongrg andymin. We only consider the case of two active indices,
that is,p = 2, the general case running along the same lines. We will distinguish two cases,

depending on whether upper level strict complementary slackness holds or not.
Case 1 Strict complementarity holds in the upper level problem.

We havey (i, —g(X, ¥)) = 0 and fii, —g(x, y)) # 0, so thaiy is differentiable at;, —g(X; y))
with gradient

(=1,0), i¢Po(X)

Dy(ui, —g(X.)) = { ,
(0,-1), i€ Po(X)

fori = 1,2 (see (A.3) in Appendix A).

The Reduction Ansatz in the lower level problem impl,k@‘j, -vj(%¥")) = 0and @T —vj(%,¥)) #
0, so thaiy is also diferentiable at;(ij_,—vj (x,¥)) with gradient

(-1,0), j¢ Qo(%Y)

Dy (v}, -vi(% ¥)) = { _ L
(O’ _1)7 J € QO(X7 )_,[)

fori = 1,2 andj € Q. Together this means thatis differentiable ag, and its Jacobian is the

matrix

B11 B Bz
DT@ =| 81 B, O (5.1)
B3 0 B3

with the following blocks:
2 —_—
D2f(X) + X V3L VyL1 VyxLo
i=1

B = 1Dxg(X YY) 01 0
2Dxg(X. ¥?) 0 62

with V2£; = V2L(X. Y. 7", etc.,

0, i¢ Po(X -1, i¢Po(X)
= 0(X) g = 0(X) ic1o
1, iePo(X) 0, i€Py(X
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Vi Ly V(Y
0 0

2V Ls  —i2VxV(X Y?)

Bz = 0 0 ,
A2Dy9(X, ¥?) 0
and with
g { 0 JeQY) i { -1 ¢ QoY)
L jeQxy) 0. jeQux¥)
[ V2L 0 o]
Byl = _ L
diag@')Dyv(x,y') 0 O
as well as

ViLi Wvky) ] i

-(Bi+1,i+l = { . _ .
diag@')Dyv(xy)  diag@))

Our aim is to show thaDT(2) is nonsingular under Assumption 5.1.1. The main idea of
the proof is to consider an appropriate Schur complement in the block nizfifx) (see

Appendix B).

Note that the matrice®,, and 833 are nonsingular under the Reduction Ansatz. In fact, by

the definitions ofx* andgs?, B2, is nonsingular if and only if the matrix

Vil V(X yh)
DyVQé(Z yh) 0
is nonsingular. Since under the Reduction Ansatz we haijg and 8 OS Qg at y?,
the latter matrix is nonsingular by Lemma B.0.37. Analogously the nonsingulariBgis

shown.

Consequently, according to Lemma B.0.35 the mddixz) is nonsingular if and only if the

Schur complement

-1

BZZ Bzz 0

B33

S = DT(®/ = B11- (812, B13)

0 B33 B3

B11 - B12B57821 — B13B33Ba1

is nonsingular. We will show that the latter is the case under the Robinson condition.
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The calculation 0181285%821 is next step. From the block structures®f> and B it is
clear that only the first and second block in the first block column of this matrix are nonzero,

and we only have to calculate

Vi Ly =Xyt ] BE%[ VixLa ] (5.2)
Dyg(X ) 0 diag)D,v(X. 1)
Now recall that the implicit functiong'(x) andy*(x) from Theorem 2.2.10 satisfy
Yy L% Y3, ¥H(X)
YO0 2l OO | _ o 5.3)

W (rg(x), —Va(x, Y (X))
Taking derivatives with respect toand evaluating at yields (by the usual Chain rule)
V2L V(YY) || DY)
diag')Dyv(x.y')  diag") Dy'(%)
+ Véxﬁl =0
diag@")Dxv(X y")
and, thus,

-1
’822

V)2/x~£l _ Dyl()_()
diag@")Dxv(X, y") Dy*(X)
Consequently, the matrix in (5.2) becomes
—1 V%, L1DYH(X) + 1 Vxv(X, YDy (X)
—A1Dyg(x, Y1) Dy (X)
With an analogous calculation ftBlngsl,Bgl we arrive at
viL VL1 Vila
S = | a1(Dxg(x¥") + Dyg(X Y)DY*(®) 61 O
12(Dxg(X¥?) + Dyg(XY)DYA(X) 0 6
with ,
ViL = D2f(X) + > i (V2L + V3, LDY (X) - Vu(X F)DY' (%))..
i=1

Using (5.10) it is not hard to see that
V(%) = VL + Vi LiDY(X) - V(% Y)DY' (%)
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holds fori = 1, 2, so that the matri)%ivl_ coincides withvVZL from condition (GSIP-II).

Next we show
Dxg(X ¥) + Dyg(X Y)DY (X) = DyLi (5.4)

fori = 1,2. In fact, fori = 1 we have

g
Dyg(x YIDY(®) = ) ¥1Dyvi(X¥)Dy (). (5.5)
j=1

The implicit functions from Theorem 2.2.10 particularly satisfy the identity
779 -vi(xy*(x) = 0 (j€ Q).

Taking derivatives with respect toyields

DYH0) Vi (% V() + Y109 (Dxvy (% Y1) + Dyvi(x, yA(¥)DY () = 0

for j € Q, where the first term vanishes afor j € Qo(X, y!) due tovj(x,y*) = 0, and for
j ¢ Qo(X.y") because of;(x) = 0 and, thusPy{(X) = 0. Evaluating the remaining terms at
ximplies

YD (X YNDYH(X) = —¥Dwvj(x¥Y) (j € Q). (5.6)
and a combination of (5.5) and (5.6) yields

J— q -] J—
Dyg(x ¥)DYH(X) = = > 7{Dxvi(X Y.
=1

This shows (5.4) for = 1, and analogously far= 2. As a consequence, the Schur comple-
ment simplifies further to

Vil VL1 VLo
S=| DLy 6 0
ADxLy O 62

By the definitions oft; andg;, i = 1, 2, S is nonsingular if and only if the matrix

Vi'— VL)
DxLry®) 0

is nonsingular. Under the Robinson condition the latter is true in view of Lemma B.0.37. This

completes the proof for Case 1.

66



Case 2 Strict complementarity is violated in the upper level problem.

In this case we have = g(X,y') = 0 for at least onée {1, 2}. Here we only consider the case
that strict complementarity is violated iat 1 with Po(X) = {1, 2}, the general case running

along the same lines.

In the present cas@, is not differentiable at sincey is not diferentiable at the origin. The
Clarke (in fact, convex) subfierentials [6, 95] ofyrg andymin are given in Lemma A.0.33
in the Appendix A. Moreover, the generalized Jacobiar@f, —g(x, y)) can be computed
by the Chain Rule Il and Proposition 2.3.6 from [6], noting that convex functions are regular.

In fact, its generalized Jacobian with respectquf, y*) is

{(4Dxg06 YY), 61, 11Dyg(x ¥ (~A1,61) € 3y(0,0)} (5.7)

This means that the elementsddf(z) can be parameterized by
{W(11, 61)| (=11, 61) € y(0,0)},

whereW(11, 61) is a matrix of exactly the form from (5.1) where the blo@&sg, 81, B13, etc.
are defined as previously. Consequently, proving CD-regularily atfzamounts to showing

nonsingularity of all matrice®V(11, 81) with (=11, 81) € dy(0, 0).

Choose anyAs, 61) with (=11, 61) € dy(0, 0). With the same arguments as in Case 1 we find

thatW(11, 61) is nonsingular if and only if the matrix

VL Vil VLo
S(11,61) = | 11DxL1 61 0
2Dy Lo 0 02
is nonsingular. The latter, however, is true by Theorem 4.2.3 i.e., by [85, Theorem 4.2] for

finitely constrained programming problems. This completes the proof. .

Remark 5.1.3 ([108]) In the special case of SIP, an explicit proof of Theorem 5.1.2 would
be shorter due to the simplifications tHag.£; is replaced bw,g(x, y), VyyLi by Vyyg(X, ),

andV,v(X, y) vanishes.

Remark 5.1.4 ([108]) Assumption 5.1.1 is a weak assumption in the following sense: the
Reduction Ansatz holds generically at all local minimizers of GSIP, and they are even non-

degenerate critical points of the locally reduced problem G&IPThat is, generically even
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upper level strict complementarity and the Robinson condition hold. While this fact has been
known for standard SIP for some time [102], it is a recent result for GSIP [23]. In view of

this genericity, one can expect Assumption 5.1.1 to be satisfied in practical applications.

Altogether, in Subsection 5.1.1 we have shown that under the weak Assumption 5.1.1, in view
of Theorem 4.1.10 and Theorem 5.1.2, the semismooth Newton method from (4.4) converges

g-quadratically.

5.2 The Case without the Strict Complementarity in the Lower Level Problem

Section 5.1 shows that the semismooth Newton method for semi-infinite programming can
actually handle nonsmoothness, since there the result from [88] is extended to the case of
violated strict complementarity in thepper levelproblem. Moreover, we transferred the

semismooth approach from standard to generalized semi-infinite programming.

This section completes this analysis by considering the case of strict complementarity vio-
lation in thelower level For the convergence of a semismooth Newton method we give an
appropriate new regularity condition thus justifying the NCP approach for semi-infinite pro-
grams in the absence of strict complementarity. In the present case, the convergence analysis
is essentially more complicated due to the lack dfedentiability of the auxiliary functions

of the so-called reduced problem (see Section 5.2.1.1). We refer the reader to our recent paper

[115] for this section.

5.2.1 Convergence of the method

In this section we wish to find a ficient condition for CD-regularity of the functioh from
(4.36) at a zera@, so that the semismooth Newton approach from Section 4.1 may be applied

to identify z.

The Reduction Ansatz without strict complementarity given in Subsubsection 5.2.1.1 is the
part of this condition concerning the lower level problem. In the upper level problem we will
assume a naturgkneralizatiorof the so-calledRobinson conditiof93, 108] for the reduced
problem (see Section 5.2.1.3). However, the auxiliary functigné € P), in the reduced

problem GSIR¢q are not twice continuously fierentiable (see Theorem 5.2.1(c)), so that
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we cannot state a standard second order regularity conditio@ $tR.y. Instead, first we

compute the generalized Hessiangofi € P, atx.

5.2.1.1 The Reduction Ansatz without strict complementarity

As stated in our paper [115], here we consider a feasible pa@ftGSIPand its set of active
indices

Yo(X) = {y € Y(X) | g(x,y) = O}

All defining functions of GSIP are at least twice continuouslyftéirentiable. Consider the

following conditions Q*-1) and @Q*-Il) aty € Yy(X) in Q(X):
(Q*-I) Thelinear independence constraint qualification

(LNow {Vyvj(x.y)|] € Qu(x,y)} is alinearly independent family,

whereQo(X,y) = {j € Q|vj(X,y) = 0} is the set of lower level active indices at
yeY(X).
Because ofQ*-1) we have the following lower level KKT conditions: there exists

a unique vector of Lagrange multiplieys= R% such that
_ a _ _
Vyg(%.¥) - Z 7V, (xy) =0

(KKT)owm vi(xy) <0 . (5.8)
¥j=0
Yivixy) =0, j€ Q.

(Q*-Il) Thestrong second order giciency condition

TV2 L (X y,7)n < 0 foralln € G- 0}, where
(ssos%@{” 2L 7 n€Gyg\ (0 } 59

Go == tm € RM Dyvj(x.y) = 0, j € Q5(X )}
: _ _ o ~ ~ ; B
with Q5 (X, Y) := {j € Qo(X.Y)|7j > O} and L(X,y,7) = g(X.y) — jgly1Vj(X’y)’

thelLagrangianassociated witlQ(X).

TheReduction Ansatz without strict complementaistgaid to hold ak € M if all elements of

Yo(X) satisfy the conditions@*-1) and (@Q*-II). It generalizes the standard Reduction Ansatz
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in [108] to the case of possibly violated strict complementary slackness. In the case of strict
complementary slackness, the Reduction Ansatz without strict complementarity coincides

with the standard Reduction Ansatz.

If the Reduction Ansatz without strict complementarity holds at samaeM, we can locally
reduceGSIPto GSIReq, the so-called reduced generalized semi-infinite problem. Note that,
as stated in [96], the Reduction Ansatz without strict complementarity iiaisat condition

for strongly stable lower level stationary points in the sense of Kojima [60].
Reduction Ansatz without strict complementarity was statedSiérin [52], for GSIP the

following theorem was stated.

Theorem 5.2.1 ([34]) Let the Reduction Ansatz without strict complementarity be satisfied at
a feasible poink of GSIP and all defining functions of GSIP are assumed to be at least twice

continuously dferentiable. Then,

(a) The active index set is finitep(X) = (Y1, V2, ..., yP}, and there exist neighborhoods;Of

x.and \G of y and Lipschitz continuous functions
y 1 Ug— Vi , where ¥(X) = ¥/,
¥ : Uz — RY, wherey/(X) = ¥/,

such that for every x Uy the value {(x) is the unique local maximizer of(§) in Vi with

corresponding Lagrange multiplier vectgh(x).

(b) The following finite reduction holdsx is a solution of GSIP, locally in a neighborhood

Ux of X, if and only ifX is a local solution of the so-called reduced problem
GSlReq: min f(x) subjectto ¢i(x) = gx,y(X) <0, foralli=1,2,...,p.
xeUx

(c) The functionsg; from part (b) are of class €and for all xe Uy their gradients satisfy

Dyi(X) = DxL(X Y (X), ¥ (X)) (5.10)

Remark 5.2.2 ([115]) For standard SIP the formula (5.10) simplifies to
Depi (%) = Dxg(%, ¥ (¥)).
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5.2.1.2 The generalized Hessian of the lower level optimal value function

The definitions are from our recent paper [115]. Let the Reduction Ansatz without strict
complementarity hold at € M, and lety € Yp(X). According to Theorem 5.2.1, in the case
of violated strict complementarity in the lower level, the functigf$ andy(:) are at least
Lipschitz continuous, so that alfp(X) = DxL(X, Y(X), ¥(X)) is at least Lipschitz continuous.
Moreover, due to a result in [52], the functig(ix) = g(x, y(x)) is not onlyC* with Lipschitz
continuous gradienDy(x), but it is even piecewis€?. The generalized Hessian forcan

thus be defined as the convex hull of the Hessians oG figeces.

To define the appropria@? pieces, recall that the Reduction Ansatz with strict complemen-

tarity basically means that the ‘KKT function’
VyL(X.Y, 7)]

V(%) (%, Y)
has a nonsingular Jacobian with respectytg) at (x,y,y). Here,vq,xy denotes the vector

of functionsv; with j € Qo(X, ). Since the inactive constraintg j € Q(X,Y), locally remain
inactive for continuity reasons, the corresponding multiphgrsanish identically. Thus, the

above function may as well be extended to

VyL(X,Y,7)
Vo) (% Y) |-
YY)
For our subsequent arguments it will be useful to rewrite this function as
VyL(X.Y,7)
G(xY.7;.p) = [ 7 _
diag@)v(x,y) — diag(B)y
with
(@}.8)) = (1,0), je€ Qo(xY),
(@,8)) = (0,1), j € Q..

If the Reduction Ansatz without strict complementarity holdg,ahe index sef is further

partitioned into the three sets

XY = (i€Qlvj(xy) =0,y =0}
QXY = {jeQlvj(xy) =0, yj>0}
Qxy) = {j€Qlvj(xy) <0, yj=0}.
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With go denoting the cardinality oQg(Z y), we may now consider the"2auxiliary KKT

systems
GxY.v;a.B) =0, (a,p) €A

with (a, 8) € A = A(Xy) if and only if

(@.8)) € {(1,0),(0.1)), jeQxY)
(@j,8) = (1,0) j € Qy(x.Y), (5.11)
(@j,8) = (0.1), j € Q5% ).

The results in the next lemma are well known even in a more general context [5]. To clarify
the connections to our subsequent arguments we state them for our setting and briefly sketch

the proofs.

Lemma 5.2.3 ([115]) Suppose that conditions (&) and (Q*-Il) are satisfied aty € Yy(X)
in Q(X), where all defining functions of GSIP are at least twice continuouglgrdntiable.

Then the following assertions hold:

(i) For each(a,pB) € A, the Jacobian

D(y,y)Q()Z V,via,B) =

ViL -V
diag@)Dyv -diag({3)
is nonsingular, where in the right hand side the obvious arguments have been dropped

for ease of notation.

(i) For each(e,B) € A, there exist locally definedCGunctions yx; @, 8) and y(x; «, 8)
which are the locally unique zeros 6f(x,y,v; a,8) around(x,y,y). The gradient of
e(X @, B) = 9(x Y(X; @, p)) is given byVe(x; . f) = VxL(X Y(X; @, f), ¥(X; @, p)), and
V(X a,B) = VxL(X, Y, y) does not depend d, B).

(iiiy For each(a,B) € A, the Hessian ap(x; a, 8) = g(x, y(X; a,8)) at X exists and is given

by ;
_ Vi L Vi L
D%p(X, @, B) = VoL - S(a, )

—Dyv —Dyv

with .
ViL -V | 0

S(a,B) = ) (5.12)
diag)Dyv —diag(B)) 0 -diag()
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(iv) The generalized Hessian gfat x is

.
Vi L

_va

Ve(X) = conv|{V2L — (a,B) € A},

Vi L
SWﬁ{ y]

_va

whereconvdenotes the convex hull.

Proof. Part (i) is well known (see, e.g., [52]). It also follows from the more general arguments
of the subsequent Lemma 5.2.6. Part (i) and the implicit function theorem yield the existence
of locally uniqueC? functionsy(x; e, 8) andy(x; a,8) with G(x, y(X; @, 8), y(X; @, 8)) = O.
Taking first derivatives of the latter equation leads to
FW%%@
Dy(X; . B)

Furthermore, standard techniques of parametric optimization [45] yielg(Rat, 8) is aC?

Vi, L

—Dyv

J — —(DyG) DG = -S(a.p) . (5.13)

function with
Vo(Xa,B) = VxL(X (X a,B), y(X a,B)) (5.14)
locally aroundx. Since the implicit functions satisfy(x; «,8) = y andy(X; @,8) = v, the

assertion of part (ii) follows.

Taking derivatives of (5.14) and plugging in (5.13) leads to the assertion of part (iii). Part (iv)
immediately follows from (iii) and the fact thgx) andy(x) are pieced together froggx; «, 8)

andy(x; a, B), respectively, withd, 8) € A[52]. .

Remark 5.2.4 ([115]) For standard SIP the formula in Lemma 5.2.3(iv) reduces to

(@.B) € At |,

T
V2 V2

Ve(X) = conv Vig—[ Xyg] S(a,ﬁ){ Xyg]
0 0

and S, 8) may as well be defined as
-1

S(a.p) =

ViL —Vyv
diag@)Dyv —diag(3)

5.2.1.3 A generalized Robinson condition for the upper level problem

In this subsection we derive a generalized Robinson condition for the upper level problem as
in our recent paper [115]. Lé&(X) = {i € P|¢i(X) = 0} be the set of active indices atfor

the upper level problem.
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An appropriategeneralized Robinson conditigmsaid to hold ak if the following conditions
(GSIP-I) and GS IP-11) are satisfied:

(GSIP-I) Thelinear independence constraint qualification

(LDasip {VxL(XY,7) i € Po(X) } is a linearly independent family.

If X is a local minimizer, then there exists a unique vegiar RP of Lagrange

multipliers with

p
(KKT)esip V() + ) mVxL(XY.Y) = 0
i=1
fi 20, g(x¥) <0, mg(xy) = 0 (eP).

(GSIP-II) The generalized strong second orderffatiency condition

TWe >0 forallé e G 0} and for allWgiven in (5.15
(GSSOS T p { E'WE £ e€Ggsip\ {0} g ( )}

with Ggsp 1= {d € R" Dy L(X ¥, 7')d = 0 fori € P{(X)}

with P§(X) := {i € Po(X) |xi > 0}. Here,

P
W e DEF(X) + ) fmdVei(X), (5.15)
i=1

wheredV;(X) is given by Lemma 5.2.3(iv). Note that, in view of the well known
calculus rules for Clarke sulftierentials (see [6]), the expression on the right-

hand side of (5.15) is an overestimate for generalized Hessian of the Lagrangian

p
f() + _leli‘/’i (X) of GSIReq.
i=

In the case of strict complementary slackness, the generalized Robinson condition obviously

coincides with the (standard) Robinson condition.

5.2.1.4 A stficient condition for CD-regularity

In this subsection we state afSadient condition for CD-regularity of generalized Jacobian

as in our paper [115]. Consider a zerof T from (4.36). The KKT conditions mentioned
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in (Q*-1) and GS IP"-I) then hold by definition off. The remaining conditions in the Re-
duction Ansatz without strict complementarity and in the generalized Robinson condition are
algebraic conditions on the involved functions which can also be imposed independently of
the fact that we deal with lower level global maximizers and upper level local minimizers. In

this sense, we can make the following assumption:

Assumption 5.2.5 ([115]) The Reduction Ansatz without strict complementarity and the gen-

eralized Robinson condition hold at

For proving the main result of the present article, we need the following lemmata, in which
H? will denote the nonnegative quadrant®3. Note that, according to Lemma A.0.33, the
generalized Jacobians at the origin of the convex NCP funcfippsindymin both are subsets

of —HZ \ {0}.

For the special casg = g the following result can be found in a stronger version in [12].
It is actually the counterpart of results in [60] for the approach by Kojima'’s function instead
of NCP functions. An elegant connection between Newton methods for both approaches is

presented in [83].

Lemma 5.2.6 ([115]) Suppose that conditions (&) and (Q*-ll) are satisfied aty € Yy(X)
in Q(x). Let the KKT system of (@) be described by

q
Vyg(xy) - El?’j Vyi(X,y)

H(X,Y,y) = Yy, _Yl(x’ y) =0

U(yg —Va(%.Y))
with some convex NCP functignwhich satisfies-0y(0,0) € H? \ {0}. Then the following

assertions hold:

(i) The generalized Jacobian &f at (X, y, y) with respect tdqy, y) satisfies

aﬂ(y,y)(iyﬁ_’) c {B(avﬁ)l (CY’ﬁ) € B}
with
V2L —Vyv J

B(a,B) =
(@) [diag(a)Dyv —diag3)

75



and(a,B) € B = B(x,y) if and only if
(aJ’ﬁJ) _al//(oa 0)7 J € Qg()z y),
(@j.8) = (1,0), jeQi(xy), (- (5.16)
(@,8)) = (0.1), j € Qg(X.Y).

m

(i) All elements 0bH(y,,)(X, Y, y) are nonsingular.

Proof. Due to the violated strict complementarity, exactly the components
Yy, —vi(x.y), J € Q8(>Z>7), of H are nondiferentiable atX y,y). Their generalized Ja-
cobians can be computed by Chain Rule Il and Proposition 2.3.6 from [6], noting that convex

functions are regular. In fact, the generalized Jacobian with respectyg (s

{(Dyj(xy). =B;)I (a}.8)) € =0w(0.0)}.

In view of (A.3) in Appendix A, the Jacobian gf(y;, -vj(x,y)) with j € Qj U Qf is

(aijvj(x,y), —ﬂj)
with
(10), jeQs(xy)

(0,1), jeQaxy)
This shows part (i). To see part (i), choose anyA) € B. We will show thatB(e,p) is

(@j,Bj) = {

nonsingular, entailing the assertion in view of part (i).

In the following, ap denotes the vector with entries, j € Qg(Z y), andVy the matrix with
columns-Vyvj(X,y), j € Q8(>?, y), etc. After rearranging its rows and columi{a, 8) is

nonsingular if and only if

viL \'A Vo Ve
—diag,)V] —diag@,) 0 0
—diag(o)Vy 0 —diag(Bo) 0
~diagc)Vy 0 0 —diagBc)

is nonsingular. Due ta. = 0,8, = 0, a, = eandg; = ¢, the all ones vector, the latter matrix
is nonsingular if and only if
viL V, Vo
-VvI 0 0
—diago)Vy 0 —diag(Bo)
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is nonsingular. Letr] be the subvector afo consisting of nonvanishing entries, if any, and
a8 the subvector of vanishing entries, if any. The matrszgsandvg are defined accordingly.
As 0 ¢ —-dy(0,0), the matrix—diagﬁg) is nonsingular. Along witmg = 0, and after an

elementary row transformation, we obtain that the above matrix is nonsingular if and only if
Vil A
Al 0 0
(V{)T 0 diage]) diagBy)
is nonsingular. Since the columns ¥f are linearly independent byQ(-1), and Vf,L is

negative definite on Key(l) by (Q*-I1), the block matrix

ViL V.
vlio

is nonsingular by Lemma B.0.37. We can thus take its Schur complement (see Definition

B.0.34) in the latter matrix and, in view of Lemma B.0.35, obtain that the above matrix is

[§

is nonsingular. The matrix dia@g)‘ldiag(Bg) is a diagonal matrix with nonnegative diagonal

nonsingular if and only if

T
+

V. ViL V
diag(ag)—ldiag(eg)—[ 0 y "
0

vIi 0

entries, due te-9y(0, 0) c H2. In the following we will show that

-1
W[V Vs
0 0

is positive definite, so that also the above matrix is positive definite, showing the nonsingular-

ity of B(a, B).

;
VL V.

vi 0

In fact, we may write

2 +
V2L V. Vg _—
w=| vl o of/|”
vi o0
vHT o0 o0

so that a combination of Lemma B.0.36 and Lemma B.0.37 (lha(é) denotes the inertia-

triple of A, that is, the number of negative, positive and vanishing eigenvalugs of
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respectively) yields

2 +
VL Ve VS s
InW) =In| vI 0o o]-In| "’
VI 0
V)T 0 0

= In(V32/-£|Ker((\/+,Vg)T)) + (Q+ + qa, g+ + qa, O) - (In(v)zl-ﬂl(er(vb) + (Q+, 0+, 0)),

whereq, denotes the number of columns\éf, etc. Asz,L is negative definite on Kev(1),

it is also negative definite on the smaller linear space K{er(‘(g)T), so that

IN(V{Lleryry) = (M-0.,0,0),

In(V)Z/'LlKer((V+,Vg)T)) (m-a, —q3,0,0).

We thus arrive at
In(W) = (0,q5.0),
showing the assertion of part (ii). °

The following is the central result on which the proof of the subsequent Theorem 5.2.8 is

based.

Lemma 5.2.7 ([115]) Suppose that conditions (&) and (Q-Il) hold aty € Yp(X) in Q(X),
and lety be some NCP function which satisfie8y(0,0) € H? \ {0}, whereH? denotes
nonnegative quadrant. Let(&, 8) denote the matrix from (5.12), and let the sets A and B be

defined by the conditions in (5.11) and (5.16), respectively. Then the inclusion

{S(a.B)[(a.B) € B} c conv( S(a.B)|(x.p) € A})

holds.

Proof. The assertion is trivial foQ)(x.y) = 0. Thus letQ}(x.y) # 0 and choose some
j€ Qg(f, y). Without loss of generality we assurges Q8(>?,37) andj = g. Since otherwise,

ie. ifg¢ Qg(Z y), eitherg € Qf(x,y) or g € Q§(x,y), in both cases the result is trivial.

Let (@,B) € B be given. For, 1) € —dy(0,0) we define the functions(o) andg(r) by
aj(o) = aj, Bj(r) = Bj for | < qandaqg(o) = o, By(r) = 7. To show the assertion, it is

suficient to prove it in the single componegtthat is,
S(a(0).B(r)) < conv( S(a(1),5(0)), S(«(0),5(1))}). (5.17)
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In fact, let @*.8Y) = («(1).8(0)) and ¢%8%) = ((0).5(1)). Then ¢5.585) = (1,0) and
(aé,ﬁg) = (0,1) are identical to the corresponding entriesAinrespectively. In the case
Qg(i,)?) = {q} this shows the assertion. Qg(xy) contains another index, we assume with-
out loss of generality that it i = g — 1, since otherwise by a change of rows and columns
we can make the indek = q — 1. Using (5.17) for theq — 1)-th entry of ¢, 8%) we ob-
tain thatS(e?, ) lies in the convex hull of two matriceS(e>1, &) and S(a'2, 812) with
(og".Bg") = (aq™Bq") = (1,0) and g7y, f7)) = (L.0), (eg’y.fy"y) = (0.1). Analo-
gously, S(e?, 52) lies in the convex hull of two matriceS(a>?, 8#1) and S(a??, >?) with
OFA7) = ) = 0.1) and 674,47%) = (10, @357 = @1, Combin-
ing these factsS(a,8) is an element of the convex hull of the four matric®@t, g1),
S(at?, p1?), S(a?t, 1) and S(e??,8%%). Continuing this argument for all elements of

Q3(x.y) yields the assertion.

To see (5.17) we define

b - —Vyvq
0
. _ ViL —VyVQ\(a) ]
diag(s, ..., aq_l)DyVQ\{q} —diag{1, ...,,Bq—l)
| 0
D = :
0 -diag@, ..., aq—l)]

Then we have L

C b D O
S(a(0).p(r)) = [ ] [ ]
b’ 0 -o

- -7
Since the conditions@*-I) and @Q*-1l) at y € Yy(X) do not change when the restriction
Vg(X y) < 0is removed from probler@(x) (recall thatyq = 0), the matrixC is nonsingular in
view of Lemma 5.2.6(ii). We may thus use Lemma B.0.38 to compute
c-D o] - [c—lbch—lo —c—le

S<“((’)’B(T)):[ o] TBCB-r| e g

In this formulation it is easy to see that (5.17) is equivalent to

ocb'™C1p

_ 0,1].
ob'™C1lb-1 € [0.1]

Since ¢, 7) € —dy(0,0) c H? \ {0}, the latter follows ifo’C~1b < 0.
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In order to show negativity db’ C~1b we interpret this number as a Schur complement. In
fact, thanks to the zero part in the vecbpithe same matrix manipulations as in the proof of

Lemma 5.2.6(ii) may be used to rewrtiéC~1b.

Definea = (a1, ..., @g-1,1)" andg = (B1, ..., Bq-1,0)". Letag stand again for the vector with
entriesaj, j € Qg(zy) N {jlaj > 0}, and note thafj = q is among these indices. Lef,~
denote the vector with entries, j € Qg(i,)_/) N {jlaj > O} \ {g}, let the matriced/; and\75
be defined accordingly, put= —Vyvq(x, y), and letV. stand again forVyvg:(x3)(X. Y)-

Then, using the mentioned matrix manipulations, one can show
T -1

v| [ V2L V. Vg v
b'c =|ol | VI o0 0 0
0) (V)T 0 diag@s)tdiagBy)) |0
so that
-b'C™lb =
ViL OV, Vg ViL OV, Vs
vI o 0 /| VI 0 0

(V)T 0 diagey)tdiagy)) \(VHT 0 diag;) tdiagBs)
In view of Lemma B.0.36 we obtain

In(-b"C™b) =
ViL OV, 14 ViL OV, V§
In( vI o 0 )-In( vI o0 0 )
(VH)T 0 diagey) tdiagss) VHT 0 diag;) tdiagt)

V2L V
and in the proof of Lemma 5.2.6(ii) we have seen that the Schur complem{nt%Tof +J
vV, O

in both matrices of the latter right hand side are positive definite. According to Lemma B.0.36
we arrive at

In(-b"C™*b) = (0,03.0) - (0,5,0) = (0,1,0)

which implies negativitiy ob" C~1b, and hence we prove our main assertion about inclusion.

Theorem 5.2.8 ([115]) Suppose that = (X7, ", ()T, GH)T,...,(°")", P)N)T is a zero of
T from (4.36) with the choiceg = yrg Or ¥ = Ynmin, and that Assumption 5.2.5 holdszat
Then T is CD-regular at.
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Proof. Letzbe a zero ofl at which Assumption 5.2.5 holds, and letdenote either one of

the two NCP functiong/rg andymin. We only consider the case of two active indices, that

is, p = 2, the general case running along the same lines. Recall that the case of satisfied
lower level strict complementarity is treated in [108]. The generalized Jacobibratfis a

subset of Cartesian product of generalized gradients of component functions as computed in

Lemma 5.2.6(i). In fact, the elements®f () are of the form
B11(4,0)  Bi1a1,60)  Bi3(4,6)
A6, 0%, 84 0% ) = | BB Baolal,Y) 0 (5.18)
B31(a?, %) 0 B33(a?, %)
with the following blocks:
2 _
DEf () + 3 mViL VL' VL
i=1
Bu(4.6) = A1Dxg* —61 0
/lszgz 0 —0>
with V2L = V2 £(x. ¥, ¥'), etc., and with {, 6) € © if and only if
(4,6) € -0y(0,0), iePYX),
(.6) = (L0)  iePyX),
(4,6) = (0,1), i € PS(X),

Ve Lt~ Vvt
0 0
f2Ve L —aVxV?
B13(1,0) = 0 0 ,
o V2L 00 ,
Baad.p) =| 7T (i=12),
diag@')Dy 0 O

as well as
5 i .
VyL' -V

- _ ] (i=12),
diag@')DyV  —diag@")

Bisvis(d,B) = [

with (!, 8) € B', whereB' = B(x,y) is chosen according to (5.16),= 1,2. Our aim is

to show CD-regularity off atz For this aim we will show nonsingularity of all matrices
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A1, 0,at, BL, a2, %) with (1,6) € O, (@',8) € B' (i = 1,2). The main idea of the proof is the
same as in [108], namely to consider an appropriate Schur complement in the block matrix

A, 0,at, 8L, 0%, B).

Choose arbitraryA,6) € © and @",8) € B', i = 1,2. For conciseness, let us wri, =
B12(1,6), Boy = Boy(at, 1), A = AL 6, at, 5L, a2 p?), and so on. Then, due to Lemma

5.2.6(ii), the matrice®$,, and B33 are nonsingular.

According to Lemma B.0.35 the matrid is nonsingular if and only if the Schur complement

B 0
R— 7 22
0 B33
-1
B O Bo1
= B11- (812, B13)
0 B33 B3

B11— B12857821 — B13B33B31

is nonsingular. We will show that the latter is the case under the generalized Robinson condi-

tion.

When we write down the terrﬁlzBE%Bm more explicitly, a matrix of the forns(a, 8) from

(5.12) reappears. In fact, the p#t}) 8,1 becomes
-1
[ vzl —v ]

diag@!)Dyv! —diag(3t) diag@)D,vt 0 0

VZLY 00 ]

_ vZrl 00
= S@@~ph| ;
-Dpv! 0 O
so thatB1,8,, 81 coincides with
—v2 rl — 1
/’t_lvxy-[: _IUIVXV Vz Ll 0 0
abgt o [sE@hpy|
0 0 -Dpv! 0 O
2 1) 2 pl
_ | Ve L — | Ve L
| 77 s@hgh| T | 00
-Dyt —Dyt
1 T 2 prl
=1 =-[V — | Ve L .
ol | s@ | 0 0
0 —Dyvt
0 00
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Rewriting 813853%831 analogously we arrive at

2 R
D>2<f(>_()+_2117il\(67,,3') ViLl VyL?
1=

R = 4Tt fY 9 0
A20(a?, ?) 0 -6
with
Z-Li T V2 Li
- \Y
A@LB) = V2L - YT | s@. g T | (i=12)
_DXVI —D)(VI
and
ay ZLi
- | v N v
[(a',p) = Dxg - ¥ s@.p) Y | (=12
0 Dy

Applying the crucial Lemma 5.2.7, in the following we will show
A@.B) € aVei(X) (i =1.2) (5.19)

and
r@,p) = DyL (i=1,2). (5.20)

In fact, let A = A(XY) (i = 1,2), be defined according to (5.11). Sineg,f) € B,
Lemma 5.2.7 yields

S(@,B) e conv( S(a,p) (a.B) € A)) (i = 1,2). (5.21)

2 .
S(a, B) [VXV£T]| (@,B) € Ai}]
—DyV

Together with Lemma 5.2.3 (iv), (5.21) implies

{Vi.!ji -

= V(R (i=12)

T

o V2 -Li
A@,B) € conv v

X

and thus (5.19).

Furthermore, (5.21) implies
-

- [{ . [vygi] [u] ” |
I'(e',B') € conv|{Dyg — S(a,B) J ’ (@,B)e A}] (i=12). (5.22)
0

— X

In view of (5.13), fori = 1,2 and any ¢, 8) € Al we may write
AV Ve, Li : o
Dygl —[ gg] Sp)| Dyg' + Dyg DY (X; @, B)

X

De(X; @, B),
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so that Lemma 5.2.3(ii) yields

r@.B) e conv({DxL'(X¥.¥)l (@.8) € A}) = {DxL),
that is, (5.20).
Under (5.19) and (5.20) we find

2
DIF(3) + X midVxpi(X) ViLl VL2
i=1
Re /Tlel:l _9_1 0
12Dy L2 0 -6,
so that there exists some matrix
2
W e DEF(X) + > iidVei(¥)
i=1
with
VYA A A

R=| uDyt -6 O
LDL2 0 -6

Under the generalized Robinson condition, the latter matrix can be seen to be nonsingular
with the same arguments as in Lemma 5.2.6 (ii) (compare also [85, Theorem 4.2]). So we
show thafT is CD-regular az wherezis a zero ofT. We get this result under the Reduction

Ansatz without strict complementarity and generalized Robinson condition at — .

Remark 5.2.9 ([115]) In the special case of SIP, an explicit proof of Theorem 5.2.8 would be
slightly shorter due to the simplifications tHa$.£; reduces tdv,g(x; y), VyyLi 10 Vyyg(X, ),

and Vyv(X, y) vanishes, & P.

In Theorem 5.2.8, we have shown that Assumption 5.2.5 implies CD-regularity of the semi-
smooth reformulation of the upper and lower KKT conditiongG8IP at a zero of this re-
formulation, where Assumption 5.2.5 neither needs strict complementarity in the upper nor
in the lower level problem. In view of Theorem 4.1.10, the semismooth Newton method
from (4.4) hence convergepquadratically (because of strong semismoothne3satfz, see
Section 4.3.3) to a zero. For preliminary numerical tests of the semismooth Newton method
for GSIP see Chapter 6 where sample problems with violated upper and lower level strict

complementarity are given.
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CHAPTER 6

NUMERICAL RESULTS

In this chapter we give some numerical results from design centering, robust optimization
and other examples in order to show performance of the semismooth Newton method. The

examples are mainly from our recent paper [108].

We consider also numerical examples, for which the strict complementarity is violated in the
upper or in the lower level or in both levels simultaneously. We use the generalized damped

semismooth Newton approach proposed in [88].

We want to solvel (2) = 0 where the system of nonlinear equations $P is defined in

4.33 and forGSIPit is defined in 4.36 withz € RN. Since this is a system of nonlinear
equations, we need to define a merit function which is a scalar valued function whose values
indicates whether a new candidate iterate is better or worse than the current iterate, in the
sense of making progress toward a rooT ofThe most widely used merit function is the sum

of squares, defined by (see [74], [77])
.
0(2 = ET(Z) T(2).
We use this as a merit function.
If yeg is used, them is C* with the following gradient
Vo) = W' T(2),

whereW e dT(2), is the generalized JacobianDfatz In the case ofmin, the merit function
is not continuously dferentiable. We usg¢rg whenever the gradient of the merit function is

needed in the algorithm.
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Algorithm 6.0.10 ([88])

Step 1. Let%e RN, o,p € (0,1), > 0, a> 2and k= 0.
Step 2. If TZ) = 0, stop. Otherwise, let‘tbe a solution of

T(Z) + W<d = 0, (6.1)
where W e 4T (Z9).

If (6.1) is not solvable, or if
ve2)"d< > —p||d4.
setd = —-Vo(Z)
Step 3. Find a minimum nonnegative integer, say,quch that
0(Z + p™d) < 6(Z) + op™ Vo) T d,
Letay = p™.

Step 4. Let'?! = Z + oyd€ and k= k + 1. Go to Step 2.

This algorithm is a standard damped Newton algorithm. It uses Newton direction as a search
directiondX if possible, if it is not possible to solve the linear system of equationfand if

a standard giicient decrease condition is not satisfied, it passes to steepest descent direction
for the merit function. As a globalization strategy it uses a standard Armijo rule line search
method in order to find step siag and update the current iterate by the step gjizand search
directiond¥. For the implementation of the algorithm, at iterates wherie differentiable,

we do not use the Jacobian matbX in the form as in the proof of Theorem 5.1.2, since the
iterates cannot be expected to be zero¥ ofThus we may not use the simplified gradients

of the NCP functions from (A.3), but the ones from (A.1), (A.2). Kafs this results in

replacingd;, 6;, a/'J 'J ieP jeQ by
a(X. ¥) i
PR b A E—— ) (6.2)
12+ g(X, )2 VHE + 9(X ¥)?
and e .
a’ij — .VJ-(X’ y‘)_ = + 1’ ,BIJ — : yj — -1 (63)
()2 + V(X ¥)? ()2 + V(X ¥)?
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whereas fogmin the gradients in (A.2) and (A.3) coincide.

At nonditferentiability points ofl we choose the elemeW from the generalized Jacobian of
T which corresponds to the midpoints of the sufatentials of the NCP functions. In view
of (5.7) and Lemma A.0.33 this means that fgrzg we uselt; = 1, 6 = -1, and forymi, we
used; =1/2, 6, = -1/2.

The Algorithm 6.0.10 is implemented inAvLas 7.3. Throughout the computational experi-
ments, the parameters used in the algorithnmpazed.5, a= 2.1, n = 108 ando = 0.1. The
algorithm is terminated whelfT (|| < 1076.

In the numerical examples we test batpg andynin as the NCP function. However, due to
the mentioned smoothness properties, in the merit function wegisér both cases. In the
Y¥min Case, we use the gradient of the merit function inhg case whenever the gradient is

needed.

Example 6.0.11In the following examples we solve standard semi-infinite optimization prob-

lems.

Problem 6.0.12 ([7])

We consider the followin&IP:

min f(x) = 1.21€% + €2 suchthatxe M = {x e R?| g(x,y) <0, y € Y},

where
g(x.y) =y— e+

and
Y={yeRIVy) =y -y<O0}.

In the yrg case, with the starting poinf = (0, 0) the semismooth Newton method obtains
the optimal value 2.2 witlkx = (-0.0953 0.0953) andy = 1 for the optimal point. We have
T = 2.8275 12 after 6 iterations within 0.032 seconds of CPU time. Inghg, case, the
optimal point and the optimal value are obtained in 8 iterations \i{&)|| = 1.4035 8 within

0.016 seconds of CPU time.
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Problem 6.0.13 ([7])
Let us consider the followin§IP:
min f(X) = X2 + x5+ x5 suchthatxe M = {xe R? g(x,y) <0,y €Y},

where

g(X,y) = X1 + %€ + & — 2sin(4))
and
Y={yeRIVY) =y’ -y<0}.

In theyeg case, with the starting poinf = (1, 1, 1) the semismooth Newton method obtains
the optimal value 5.33 witlx = (-0.213 -1.361, 1.854) andy = 1 for the optimal point. We
have||T(2)|| = 4.6578 1 after 12 iterations within 0.03 seconds of CPU time. Ingh, case,
the optimal point and the optimal value are obtained in 9 iterations |{¥itB)|| = 8.2055 '

within again 0.03 seconds of CPU time.

Problem 6.0.14 ([7])

We consider the followin&IP:
min f(X) = (X — 2% + 5%5 — X3 — 13F + (X1 — 14% + X5 + X3 — 29F

suchthak e M = {x € R?| g(x,y) <0, y€ Y},

where

g(x’ y) = X% + 2X2y2 + eX1+X2 _ ey

and
Y={yeRIVy)=y*-y<O0}

In the yeg case, with the starting poin® = (0.4,-1.1) the semismooth Newton method
obtains the optimal value 97.15 with= (0.719 —1.45) andy = 0 for the optimal point. We
have||T(2)|| = 1.1072 7 after 7 iterations within 0.06 seconds of CPU time. In #hg, case,
the optimal point and the optimal value are obtained in 6 iterations |i¥i(B)|| = 6.84527

within again 0.02 seconds of CPU time.
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Problem 6.0.15 ([33])

Let us consider the followin§IP:
min f(x) = —x¢ — (xo + 5)* suchthatxe M = {xe R? g(x,y) <0, y € Y},

where
g(x.y) = 2yx1 + X2 — Y?
and

Y={yeR|Vy)=y*-1<0}.

In the ygp case, with the starting poinf = (1, 1) the semismooth Newton method obtains
the optimal value -25 withx = (0,5.14161% andy = 0 for the optimal point. We have
T = 51416710 after 3 iterations within 0.015 seconds of CPU time. Ingh, case, the
optimal point and the optimal value are obtained in again 3 iterations|{Wif)|| = 6.47018

within again 0.016 seconds of CPU time.

In the following examples we solve generalized semi-infinite optimization problems as well
as standard semi-infinite optimization problems. The test problems in Examples 6.0.16 and

6.0.21 are taken from [103].

Example 6.0.16 ([103], [108])Design Centering (GSIP)

We consider the followingsSIPreformulation of a design centering problem:
[2%( Vol(B(x)) suchthat B(x) c G.

LetG = {y € R?|g(y) < O} with

—y1—y§
a(y) = |y1/4 + vy, - 3/4].
-y>—-1

We refer the reader to the Figure 6.1 for contai@erThe GSIPformulation of the general

design centering problem is as follows:
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Figure 6.1: The contaings, [103].

m]}%xVoI(B(x)) such that g(y) <0 for all y € B(X).
XeR"
We consider the following design centering problems.

Problem 6.0.17 ([103], [108])The disc with maximal area with free center and radius in-

scribed in G (GSIP)

The aim is to find the largest disc with free center and radius inscrib& M/e then have

n=3and
B(X) = {y € R?| (1 — x1)? + (Y2 — %2)? — X < 0}, VOI(B(X)) = m2.

In theyrg case, with the starting poinf = (0,0, 1) the semismooth Newton method obtains
the optimal value 1.8606 witk = (0.749 —-0.230 0.770) andy® = (-0.008 —0.091) y? =
(0.9350.516) y° = (0.749 —1) for the optimal point. We havgT (2)|| = 7.123910 after 4
iterations within 0.23 seconds of CPU time. In the,, case, the optimal point and the optimal
value are obtained in 4 iterations wiffi (7)|| = 3.3466 12 within 0.42 seconds of CPU time.

For the solution we refer the reader to the Figure 6.2.
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Figure 6.2: The maximal ball inscribed in the contai@e103].

Problem 6.0.18 ([103], [108]) The largest ellipse with free center and axis lengths inscribed
in G (GSIP)

Our aim here is to find the largest ellipse with free center and axis lengths inscriGed\a
haven = 4 and

B(X) = [y € R?| % + 29 1 < 0}, VOI(B(Y) = mXaa.

4

Y2

Figure 6.3: The maximal ellipse inscribed in the contai@ef103].

In the yrg case, with the starting poinf = (0,0, 1, 1) the semismooth Newton method ob-

tains the optimal value 3.484 with= (2.013 -0.5,2.217,0.5) andy* = (-0.167,-0.408), y* =
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(3.658 —0.165) y° = (2.013 —1) for the optimal point. We hawT (7)|| = 3.36031° after 6
iterations within 0.34 seconds of CPU time. In thai, case, the optimal point and the opti-
mal value are obtained in 6 iterations wifii(2)|| = 2.92691! within 0.57 seconds of CPU

time. For the solution we refer the reader to the Figure 6.3.

K
maxz suchthaz-y"x<OforallyeY, 3 x =1,x>0.
8 i=1

In fact, this is a linear semi-infinite programming problem.

Problem 6.0.19 The largest ellipsoid with free center and axis lengths inscribed in a con-

tainer (GSIP)

We consider another example of design centering probleR?irOur aim here is to find the
largest ellipsoid with free center and axis lengths inscribed in cont@né&¥e let container

be the simple polyhedraB = {y € R3|g(y) < 0} with

yi+Y2+ys—90
14-y;
y1 - 60
9y) = 9-2
y> — 60
—Ys3
y3 — 60

Heren = 6 and

B(X) ={ye R3] (yl;gl)z 4 ()&;é(z)z 4 (Ys;gs)z —-1<0}, Vol(B(X)) = %FX4X5X6-

The columns of the Tables 6.1 and 6.2 are labeled as follawstialp.center center of
ellipsoid for initial point,ov is the optimal value||T(Z)|| is the Euclidean norm of at the
last iteration pointiter is the number of iterations ar@PU time denotes the CPU time for
iterations in seconds. Bothg andymin are tested. For the solution we refer the reader to the

Figure 6.4. Table 6.1 contains numerical results.
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Figure 6.4: The maximal ellipsoid inscribed in the polyhedBn

YrB Ymin
initial p.center (20,20,20) (20,20,20)
ov 11890 11890
IT(2)Il 4.0134e-7 8.8400e-9
iter 7 7
CPU time 0.35 0.27

Table 6.1: The Maximal Ellipsoid in the Polyhedron.

Problem 6.0.20 The largest simple diamond inscribed in container (GSIP)

Our aim here is to find the largest simple diamond inscribed in cont&iifexst problem from
[128]). We let container be the simple polyhedron in Problem 6.0.19. For the simple diamond
shape we refer the reader to the Figure 6.5 and for the solution we refer to the Figure 6.6.

Table 6.2 contains numerical results.

wFB lﬁmin
ov 1.398 1.398
IT(Z)]| 9.8146e-7 4.2024e-9
iter 4 9
CPU time 0.52 0.98

Table 6.2: The Maximal Simple Diamond in the Polyhedron.
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Figure 6.5: A simple diamond as a design.

Figure 6.6: The maximal diamond inscribed in the polyhedron.

Example 6.0.21 ([103], [108])Robust Optimization

As explained in Example 2.2.8 in robust optimization problems the data are uncertain and
only known to belong to some uncertainty set which may be taken as infinite index set in

semi-infinite programming.

Let 1 Euro be invested in a portfolio comprisedkokhares. At the end of a given period the
return of share isy; > 0. The goal is to determine the amougto be invested in shatie

i =1,...,K, so as to maximize the end-of-period portfolio vay]e(.

Sincey is uncertain, the assumption thavaries in some non-empty compact et RK

leads us to the following semi-infinite programming problem:
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Problem 6.0.22 ([103], [108])(SIP)

Let the uncertainty set be in the form:

Y:{yeRK

SO 92},
i=1 Ui

wherey; is some nominal value of, o is scaling parameter ardneasures the risk aversion.

With the particular choices from [3]

yi:1.15+io'TO5 (i=12...,K),

005 [K(K+1)j ,
gj = oK 2 (|—1,2,...,K),

0 =15,

the optimal value is 1.15 for arig. The optimal policy in this situation is to invest equally in

all shares and; = 1/K, i = 1, ..., K. We use the starting poinf = (1,0,...,0)T in RK+1,

The columns of the Tables 6.3-6.7 are labeled as folldis the number of sharesy is

the optimal value||T(2)|| is the Euclidean norm of at the last iteration pointCPU time

is the CPU time for iterations in secondser is the number of iterations. Note that this
optimization problem is convex so that the computed KKT point is even a global maximizer.

We refer the reader to Table 6.3 and Table 6.4 for numerical results.

K ov [T@I CPU time iter
10 1.15 529288 0.36 11
50 1.15 574637 1.43 11
100 1.15 1767610 8.61 11
150 1.15 4£12110 2517 12

Table 6.3: Optimal Portfolio, Problem 6.0.22 wilfz .

In the next problem, we will consider an exampleG$IPin portfolio optimization.
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K ov |[T@I CPU time iter

10 1.15 320587 0.54 10
50 1.15 259661 1.39 11
100 1.15 7574810 558 11
150 1.15 1005612 15.35 12

Table 6.4: Optimal Portfolio, Problem 6.0.22 wiftyin.

Problem 6.0.23 ([103], [108])(GSIP)

Let the uncertainty sét depend orxin which the risk aversion of the decision maker depends

on the pointx. Replacing by ©(x), Y(X) is given in the form [103]:

K _
(vi —zyi)2 < ®(x)2},
o

Y(X) = {y e RN

i=1
with

K
1
o) =61 X — —=)?|.
() [ + Zl( ) J
In this case we have an example fygneralizedsemi-infinite programming problems. We
use the starting® = (1,0,...,0)" in RX*1, Since the optimization problem is not convex, we

have no guarantee that the computed KKT point is a global maximizer. We refer the reader to

Table 6.5 and Table 6.6 for numerical results.

K ov IT@II CPU time iter
10 0.7033 43798 0.28 5
50 0.9638 23920° 0.72 7
100 1.0259 H6067 2.87 7
150 1.0535 &42610 8.76 8

Table 6.5: Optimal Portfolio, Problem 6.0.23 wilfz .
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K ov IT@Il CPU time iter

10 0.7033 18731t 051 4
50 0.9638 ®578° 1.43 6
100 1.0259 491710 7.06 7
150 1.0535 ®54910 344 11

Table 6.6: Optimal Portfolio, Problem 6.0.23 wiftyin.

Example 6.0.24 Strict complementarity violated in the upper level or in the lower level or in

the both levels simultaneously.

It can be checked that in the problems in Example 6.0.16 and 6.0.21 strict complementarity
holds in the upper and lower level problems, so that we actually have a smooth system. Now,
for an illustration of the case that strict complementarity is violated in the upper level, we give

the following example.
Problem 6.0.25 ([108]) Strict complementarity violated in the upper level:

Let us consider the followin§IP:

min f(x) = (x¢ — 1)? + (x2 — 1)*> suchthaig(x,y) <0 VyeY,

where
a(x.y) = (Y1 — x1) + (Y2 — %)
and

Y={yeR?*|vi(y) =¥ ~1< 0, va(y) =y5 - 1< O},

The feasible set iM = {x € R?| x1 + X» > 2}, so that strict complementarity is violated at the
solutionx = (1, 1). In theyrp case with the starting poinf = (1, 2) the semismooth Newton
method obtains the optimal value 0 wixh= (1, 1) andy = (1, 1) for the optimal point. We
have||T(7)|| = 1.639119 after 7 iterations within 0.14 seconds of CPU time. Inghg, case,

the optimal point and the optimal value are obtained in 6 iterations |¥i(g)|| = 5.37651°
within 0.28 seconds of CPU time. This shows that the method also works well for this problem

where strict complementarity is violated in the upper level.
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Finally, we also test the method for problems with violated strict complementarity in the lower
level. At the corresponding norfeérentiability points the values ofij and/Bij are chosen
according to the same rule as explained abova;fandg; . The theoretical foundation of the

following examples is derived in Section 5.2.
Problem 6.0.26 ([7]) Strict complementarity violated in the lower level

We consider the followin&IP.
min f(x) = $x2+ 3x; + %5 suchthatxe M = {xe R? g(x.y) <0,y €Y},

where
g% y) = (1 - Xy?)? — xqy% — %5 + X
and

Y={yeRIVy) =y -y<0}.

In theyrp case, with the starting poinf = (0, 0) the semismooth Newton method obtains the
optimal value 0.1945 witlx = (—0.75,-0.618) andy = (1, 0) for the optimal point. We have
IT@I = 2.4356°10 after 4 iterations within 0.032 seconds of CPU time. In ¢he, case,

the optimal point and the optimal value are obtained in 7 iterations [\#i(g)|| = 2.2765 11

within again 0.015 seconds of CPU time. This shows that the method also works well for this

problem where strict complementarity is violated in the lower level.
Problem 6.0.27 ([110]) Strict complementarity violated in the lower level

Let us consider the followin§IP: (g(x,y) = cosy + 2 is taken instead of cgs
min f(X) = x; suchthatxe M ={xeR? g(xy) <0, yeY},

where

(X, y) = —x1(Cos/ + 2) — XpSiny + 1

and

Y={yeR[Wy) = (y-n)(y-3r/2) <0}
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In theyrp case, with the starting poinf = (0, 0) the semismooth Newton method obtains the
optimal value 1 withx = (1,0) andy =  for the optimal point. We havgT (Z)|| = 2.8077°
after 4 iterations within 0.047 seconds of CPU time. Ingh@ case, the optimal point and the
optimal value are obtained in 5 iterations wifR(Z)|| = 1.8448 within again 0.047 seconds

of CPU time.

Problem 6.0.28 ([84]) Strict complementarity violated in the lower level:

We consider the followinglIP:

min f(x) = (X1 — 2)*+ x5 suchthaig(x,y) <0 YyeY,

where

g(X,y) = X1C08/ + XoSiny — 1

and

Y ={yeR|vy) =y -y <O} IXl. < 1.

In this problem strict complementarity is violated at the global maximizer of lower level
problemx = (1, 0). In theyrg case with the starting poinf = (1, 1) the semismooth Newton
method obtains the optimal value 1 with= (1, 0) andy = O for the optimal point. We have
T = 4.4181x 1078 after 5 iterations within 0.03 seconds of CPU time. In ¢he, case,

the optimal point and the optimal value are obtained in 7 iterations|\ith)|| = 3.5023x10~’
within 0.02 seconds of CPU time.

Problem 6.0.29 Strict complementarity violated in the lower level;

Let us consider the followinGSIP.

min f(x) = X2 + x5 suchthatxe M = {x € [-1,0]|g(x,y) < 0, y € Y(X)},

where

g% y) = —(y1 — X1)* = (Y2 — X2)?
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and

Y(X) = {y € R?|vi(x,y) = y1 — X1 < 0, Va(X,y) = Y2 — X2 < O}.

The unique unconstrained minimum of the objective funckien (0, 0) is feasible and there-
fore optimal for this problem. Its active index set only contains the pain vith y = (0, 0),

and lower level strict complementarity is violated there. Inghg case with the starting point

x% = (1, 1) the semismooth Newton method obtains the optimal value 0xvith(0, 0) and

y = (0, 0) for the optimal point. We havdl (7)|| = 5.4022x 1013 after 2 iterations within 0.03
seconds of CPU time. In thiay,;, case, the optimal point and the optimal value are obtained

in 4 iterations with|T (2)]| = 3.5403x 10~ within 0.05 seconds of CPU time.
In the following example we tegtrg as the NCP function. The test problem 6.0.30 is taken

from [103].

Problem 6.0.30 ([103]) Strict complementarity violated in the lower level in Robust Opti-

mization:

In Example 6.0.21 let the uncertainty &€be in the form
Ys = {y € RN ||ldiage) ™ (y - Y)lls < ).

wherey; is some nominal value of, o is scaling parameter ardneasures the risk aversion.
With the particular choice of = 10, Y5 becomes a non-ellipsoidal set. Moreover, we have
violated strict complementarity in the lower level. We use the starting p8iat(1, 1,...,1)"

in RK*1 We refer the reader to Table 6.7 for numerical results.

K ov IT@I CPU time iter
10 1.1190 1B176x10°7 1.70 28
50 1.1155 &342x10° 1.72 25
100 1.1151 B327x107 14.24 44
150 1.1150 D689x 107 25.17 24

Table 6.7: Optimal Portfolio, Problem 6.0.30 wiifz .
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Problem 6.0.31 ([52], [108]) Strict complementarity violated in the lower level:
Another example for the case of violated strict complementarity in the lower level is given:
min f(X) = X2 + 3x5 + X3 such thatg(x,y) <O VyeY,

where
1
goey) = -5 - x1)? = (Y2 — X2)* — X3

and

Y={yeR?|va(Y) = —y1- Y2 < 0, Vo(y) = —y2 < 0, va(y) =y + Y5 — 1 < O}.

In they g case with the starting poin® = (1, 1, 1)" the semismooth Newton method obtains
the optimal value 0 withx = (0, 0, 0) andy = (0, 0) for the optimal point. We hav¢T (2)|| =
5.4371x 107° after 10 iterations within 0.16 seconds of CPU time. In ¢hg, case, the
optimal point and the optimal value are obtained in 16 iterations \Wi{&)|| = 2.3642x 107/
within 0.44 seconds of CPU time.

Problem 6.0.32 ([108]) Strict complementarity violated in the upper level and in the lower

level simultaneously :

For the case of violated strict complementarity simultaneously in the upper and lower level

problems, consider the following variation of Problem 6.0.31:
min f(X) = X2 + X5 + X3 such thatg(x,y) <O Vye Y,

where
1
goey) = -5 - x1)? = (Y2 — X2)* — X3

and

Y ={yeR?|vi(y) = —y1-¥2 < 0, Va(y) = —y2 < 0, va(y) = y5 + y5 — 1L < O}.

In theyrg case with the starting poin® = (1, 1, 1) the semismooth Newton method obtains

the optimal value 0 wittx = (0, 0, 0) andy = (0, 0) for the optimal point.
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We havel|T(2)|| = 2.0792x 1077 after 8 iterations within 0.17 seconds of CPU time. In the
Ymin Case, the optimal point and the optimal value are obtained in 5 iterationd| T\(@)j| =
0 within 0.29 seconds of CPU time. The method works also for this problem where strict

complementarity is violated simultaneously in the upper and lower level problems.

In all of the examples, ifyrg is replaced by/min, the performance of the method does not

change meaningly in both systems (4.33)$%P and (4.36) foIGSIP.

General advantages of the semismooth Newton method can be listed as follows, only a system
of linear equations needs to be solved at each iteration and the convergencg-gieadsatic

from good initial guess if (generalized) Jacobian is nonsingular. Disadvantages of the semi-
smooth Newton method can be listed as follows: it is not globally convergent, it requires
computation of (generalized) Jacobian at each iteration and each iteration requires the solu-

tion of a system of linear equations that may be singular or ill-conditioned.
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CHAPTER 7

CONCLUSION

In this thesis, we have developed and justified a numerical method, namely semismooth New-
ton method for solving generalized semi-infinite programming problems. The semismooth
Newton method is based on the reformulated Karush-Kuhn-Tucker (KKT) conditions of gen-
eralized semi-infinite programming. The complementarity conditions in the KKT system need
special attention in any numerical approach. One possibility for their treatment is a reformu-
lation by nonlinear complementarity problem functions (NCP functions). It was suggested
to use NCP functions for a nonsmooth reformulation of the KKT conditions in finitely con-
strained programming problems, also in standard semi-infinite programming problems [88].
But the result in [88] for standard semi-infinite programming problems was incomplete. In
this thesis we corrected and completed the result of semismooth Newton method for standard
semi-infinite programming problems and we also transferred the semismooth approach from

standard to generalized semi-infinite programming problems.

The study in this thesis can be basically divided into two parts. The first part of our study was

given in Section 5.1. Section 5.2 includes the second part of the study.

In the first part of this study, we completed the result in [88] by presenting a regularity condi-
tion which does not assume strict complementarity in the upper level problem, thus justifying
the NCP function approach for semi-infinite programs. We also pointed out that global op-
timality of lower level problem is needed in the solution of KKT systems for semi-infinite
programs. The first part of this study was published in our recent paper [108] and shows
that the semismooth Newton method for semi-infinite programming can actually handle non-
smoothness, since there the result from [88] was extended to the case of violated strict com-

plementarity in the upper level problem. Moreover, we transferred the semismooth approach
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from standard semi-infinite programming problems to generalized semi-infinite programming

problems.

The second part of the study completes the first part by considering the case of strict comple-
mentarity violation in the lower level. This result was published in our second paper [115].
There, we gave an appropriate new regularity condition for the convergence of a semismooth
Newton method, thus justifying the NCP approach for semi-infinite programs in the absence
of strict complementarity in both upper level and lower level problems. In the present case,
the convergence analysis was essentially more complicated due to the laffkei@diability

of the auxiliary functions of the so-called reduced problem.

Our main result in the second part was given in the Section 5.2.1ffiaisnt condition for
guadratic convergence of the semismooth Newton method for generalized semi-infinite pro-
gramming problems where strict complementarity neither has to be assumed in the upper nor

in the lower level problem.

As a future study, another globalization method (ex: trust-region interior method) can be
used and the problems faced while applying the method to gemstone cutting problem (ill-
conditioned of Jacobian) can be fixed (use of some scaling n@eoonditioner) and the

use of the method in genetic networks under uncertainty [121, 122, 123, 124, 125] can be

considered.
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APPENDIX A

NCP FUNCTIONS

Appendix A is based on our recent paper [108].

Both functionsyrg(a,b) = VaZ+b?2 — a— b andymin(a,b) = —min{a, b} are convex on
R?, and are dferentiable inR? except for the origin and the diagongh, b) € R?| a = b},

respectively. Ford, b) # O we have

a b
Pirelab) = ( VZ+ 2 b VZ+ 12 1) (A1)
and fora# b
(-1,0), a<b
D¢min(a, b) = . (A.2)
(0,-1), a>b

In their (identical) zero set, the only point of nofférentiability for either of the two functions

is the origin, and their gradients faa, @) # O coincide:

(-1,0), a=0
Dyrs(a,b) = Dymin(a,b) = { : (A.3)
(0,-1), b=0

At the origin we calculate subfiierentials of the convex functiongg andymi, as follows.
We denote the usualirectional derivativeof ¢ in the directiond at x by ¢/(X; d) and the
generalizeddirectional derivative ofy (in the sense of Clarke) in the directi@hat x by

¥O(x; d). For completeness, we give the proofs of the following well-known results.

Lemma A.0.33 ([108]) The following assertions hold:

(i) ¢pg(0;d) = y2,(0;d) = yea(d) for any de R?,
(i) ¥}in(0;d) = ¢2;,(0;d) = Ymin(d) for any de R?,
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(iii) OYrp(0)={seR2|(st+1)%+ (2 +1)? < 1},
(IV) 6’ﬁmin(0) = Con\A(_l’ O)T’ (O’ _1)T}'

Proof. Parts (i) and (ii) can easily be checked by calculation. In part (iii), by definition of the

Clarke subdterential for real-valued functions, we have

des(0) = {seR?y%0;d)>d" sforall d e R?

{3 R?d"8<|dl|, foralldeR? - (1,1)

{3¢R? max d'8<1}-(1,1)"
dedB(0,1)

wheres= s+(1,1)" anddB(0, 1) denotes the boundary of the unit ball. The Cauchy-Schwarz
inequalityd’s < ||d||.|I3, implies that maxss,1)d" 5 < (|32 for all 5 € R2. On the other
hand, withd = &/||32 € dB(0, 1), we find maxesso1)d’§ > d'& = |13, for all § € R?\ {0},

the cases= 0 being trivial. This shows
oyre(0) = (8€ R (|32 < 1) - (1,1)"
and completes the proof of part (iii).

To see part (iv), note that by definition of the Clarke stiisadential for vector-valued functions

we have
MWmin(0) = conv{lxigg)wmin(X)l x € Dy} = con¥(-1,0)", (0,-1)"}

whereDy, is set of diterentiability points offmin. .
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APPENDIX B

BLOCK MATRICES

Appendix B is based on our recent papers [108, 115].

Definition B.0.34 ([78]) Consider the quadratic block matrix
E F
A=
G H
where H is quadratic and nonsingular. Then the matrix

S=A/H=E-FHG

is called theSchur complemertf H in A.

Lemma B.0.35 ([78]) Let a block matrix A be given as in Definition B.0.34 and let H be
nonsingular. Then

de((A) = de((H) - de(A/H).

In particular, A is nonsingular if and only if A is nonsingular.

Lemma B.0.36 ([78]) Let a block matrix A be given as in Definition B.0.34 with E nonsin-

gular, and let A be symmetric. Then,
In(A) = In(E) + In(A/E),

where Ir{A) denotes thénertia-tripleof A, that is, the number of negative, positive and van-

ishing eigenvalues, respectively.

Lemma B.0.37 ([46]) For A € SN and Be RY*M we have

A

BT Omxm
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Here,SN denotes the set of symmetric matrice&MHN andRY*M denotes the set of matrices

in RN*M with rank K. The null space of a matri& is denoted by Ke#).

By Lemma B.0.37, we have th&{kergr) is nonsingular and the columns Bfare linearly

independent if and only if the matrix

A B
BT 0

is nonsingular.

Lemma B.0.38 ([78]) Let a block matrix A be given as in Definition B.0.34 with E nonsin-
gular. Let S= A/E := H — GE™1F be the Schur complement of E in A. Then,

Al E1+EFSIGE?! -ElFs?
-S1GE! s1
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