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NADİ SERHAN AYDIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

FINANCIAL MATHEMATICS

JUNE 2010



Approval of the thesis:

PRICING POWER DERIVATIVES: ELECTRICITY SWING OPTIONS
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ABSTRACT

PRICING POWER DERIVATIVES: ELECTRICITY SWING OPTIONS

Aydın, Nadi Serhan

M.S., Department of Financial Mathematics

Supervisor : Assist. Prof. Dr. Kasırga Yıldırak

June 2010, 85 pages

The Swing options are the natural outcomes of the increasing uncertainty in the power mar-

kets, which came along with the deregulation process triggered by the UK government’s ac-

tion in 1990 to privatize the national electricity supply industry. Since then, the ways of

handling the risks in the price generation process have been explored extensively. Producer-

consumers of the power market felt confident as they were naturally hedged against the price

fluctuations surrounding the large consumers. Companies with high power consumption lia-

bilities on their books demanded tailored financial products that would shelter them from the

upside risks while not preventing them from benefiting the low prices.

Furthermore, more effective risk management practices are strongly dependent upon the suc-

cessful parameterization of the underlying stochastic processes, which is also key to the ef-

fective pricing of derivatives traded in the market. In this thesis, we refer to the electricity

spot price model developed jointly by Hambly, Howison and Kluge ([13]), which incorpo-

rates jumps and still maintains the analytical tractability. We also derive the forward curve

dynamics implied by the spot price model and explore the effects on the forward curve dy-

namics of the spikes in spot price. As the main discussion of this thesis, the Grid Approach,
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which is a generalization of the Trinomial Forest Method, is applied to the electricity Swing

options. We investigate the effects of spikes on the per right values of the Swing options with

various number of exercise rights, as well as the sensitivities of the model-implied prices to

several parameters.

Keywords: Swing Options, Take-or-Pay Options, Electricity Price Modeling, Grid Approach,

Price Spikes
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ÖZ

ENERJİ TÜREVLERİNİN FİYATLANMASI: ELEKTRİK SWING OPSİYONLARI

Aydın, Nadi Serhan

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Kasırga Yıldırak

Haziran 2010, 85 sayfa

Swing opsiyonlar, Birleşik Krallık’ın ulusal elektrik dağıtım piyasasını özelleştirmeye yönelik

olarak 1990’da atmış olduğu adımla başlayan deregülasyon süreci sonucunda güç piyasasında

karşı karşıya kalınan artan piyasa belirsizliklerinin doğal bir sonucudur. O tarihten bu yana,

fiyatlama mekanizmalarındaki risklerin yönetilmesine yönelik yöntemler yoğun bir şekilde

araştırılmıştır. Enerji piyasasının üretici-tüketicileri, büyük tüketicilerin etrafını saran fiyat

dalgalanmaları karşısında, mevcut üretici pozisyonlarının kendilerine sağlamış olduğu doğal

korunma sayesinde kendilerini güvende hissetmektedirler. Buna karşın bilançolarında yüksek

enerji maliyetleri ile karşı karşıya olan tüketiciler, kendilerini yukarı yönlü fiyat risklerinden

korurken düşük fiyatlardan fayda sağlamalarını engellemeyecek şekilde tasarlanmış finansal

ürünlere ihtiyaç duymaktadırlar.

Bununla birlikte, daha etkin risk yönetim uygulamaları, temeldeki stokastik süreçlere ait

parametrelerin başarılı bir şekilde belirlenmesine önemli ölçüde bağlıdır ki, bu aynı zamanda

piyasada işlem gören türev ürünlerin etkin bir şekilde fiyatlanmasında da anahtar öneme

sahiptir. Bu tezde, elektrik piyasasındaki fiyat sıçramalarını öngören ve aynı zamanda analitik

kontrol edilebilirliğini sürdüren; Hambly, Howison ve Kluge’nin birlikte geliştirmiş olduğu

vi



elektrik spot fiyat modeli ([13]) kullanılıyor. Bununla birlikte, spot fiyat modelinin bir sonucu

olarak karşımıza çıkan ileriye dönük fiyat eğrisi dinamikleri modelden türetiliyor ve spot fiy-

atlarda meydana gelen sıçramaların gelecek fiyat dinamikleri üzerindeki etkisi araştırılıyor.

Çalışmanın ana tartışma konusu olarak, Trinomial Forest Metodu’nun genelleştirilmiş bir hali

olan Grid Yöntemi, Swing opsiyonlara uygulanıyor. Model tarafından üretilen opsiyon fiy-

atlarının çeşitli parametrelere olan duyarlılıkları konusunda yapılan analizin yanı sıra, fiyat

sıçramalarının kullanım hakkı başına Swing opsiyon değerleri üzerindeki etkisi bir çok kul-

lanım hakkı sayısı dikkate alınarak inceleniyor.

Anahtar Kelimeler: Swing Opsiyonlar, ‘Al ya da Öde’ Opsiyonları, Elektrik Fiyat Modelleme,

Grid Yöntemi, Fiyat Sıçramaları
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CHAPTER 1

INTRODUCTION

The deregulation of the electricity prices have brought along the question of how the risk of

increasing uncertainty in the price generation process would be handled. Producer-consumers

of the power market felt confident as they were naturally hedged against price fluctuations

surrounding the large consumers. Companies with high power consumption liabilities on

their balance sheet demanded tailored financial products that would protect them against the

upside risks while not preventing them from benefiting the low prices. On top of that, due to

the non-storability of the power, the deliveries had to be spread over a predetermined period

of time, the delivery period, causing additional exposures to the risk factors that the energy

markets entailed. Thus, the Swing options have come out as the natural outcomes of the

increasing uncertainty in the power markets.

On the other side, the distinguishing properties of the electricity markets (see Chapter 2)

have substantially led researchers to more complicated methods in their derivative pricing

algorithms. Strong multi-seasonality (i.e. intra-day, intra-week, intra-year) in power prices

implied that the seasonality should be extracted with great care. Their spiky nature has intro-

duced the jump components appearing in the stochastic spot price models and in the forward

curve dynamics implied by those, while their non-storability have led to the development of

the forwards with delivery periods, along with which the options on forwards have become

more challenging to value. Forward contracts with a delivery period, rather than a single

point in time for the delivery of the power, has provided the buyer with a constant stream of

energy, no matter the internal power use on the buyer’s side swung up or down during this

delivery period. In the longer delivery periods (e.g. one year), this posed a real problem for

the contract buyers as their actual need for energy changed from time to time and the amount

purchased had to be adjusted up or down accordingly. The growing need for this flexibility
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gave rise to what we called ‘Swing Options’ or ‘Swing Rights’ today. The pricing of these

strongly path-dependent options is based on the optimal exercise rule, where the holder is

assumed to maximize profit. However, in reality, they were engineered to serve the need to

adjust the purchased volume to match internal energy demands.

This master’s thesis is motivated mainly by the work done by Hambly, Howison and Kluge

(see [13]) and their effort to mathematically generalize the method introduced by Jaillet, Ronn

and Tompaidis in [15] for pricing the Swing options. They developed a model that incorpo-

rates jump structure into the stochastic properties of the spot price process as well as the valu-

ation processes of different type of options. Integration of jumps into the pricing algorithms is

an area of ongoing research in finance. The statistical tractabilities of the jump-driven models

comes up as a big challenge. Besides, there are clear evidences in the literature in which the

jump risk is left unpriced.

1.1 Former Studies

The pricing issues of the options on commodity forwards were first addressed in [3]. The

stochastic behavior of the commodity prices was examined by means of a mean-reverting

model in [24], however, the model excluded jumps. Lucia and Schwartz in [21] further ex-

tends this model to account for a deterministic seasonality. In [7], Clewlow and Strickland

incorporates both mean-reversion and jumps without a closed-form solution for the forward.

A model that captures the most important characteristics of electricity spot prices at the same

time is presented in [6]. Both the historical data and the observed forward curve are used for

calibration whereas the model assumes a common mean-reversion rate for both the diffusive

and the jump part.

The Swing options have recently gained popularity in the energy risk management literature

and the valuation issues have been frequently addressed by researchers. A quick survey re-

veals that potential methods range from (i) Monte Carlo approaches (as in [23]) which are

sometimes combined with least-squares regressions (as in [20]) to (ii) PDE-based methods

where finite differences tools are employed (as in [18]), (iii) multiple stopping problems (as

in [5]), and (iv) multiple tree/grid-based dynamic programming algorithms (as in [15] and

[13]). Most of them will be discussed during the next section in a general context.
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The Swing options give the holder a flexibility in both the delivery time and the delivered

volume. They, like other options, can be settled by either the physical exchange of goods

or cash netting against the spot price. However, since the spot electricity cannot be stored,

forward contracts are used as underlying in the hedging transactions. This requires that either

the spot price process is modeled effectively and the forward dynamics are derived from it,

or the forward curve dynamics are modeled directly. Focusing directly on the forward price

dynamics would unsurprisingly be a painful effort for us to extract a high quality curve of

forward price dynamics, particularly in cases there are not enough number of liquidly traded

forwards in the market. In literature, it is also discussed that focusing directly on the forward

curve models can result in a very complex non-Markovian dynamics for the spot price, making

it highly challenging to price the path-dependent options.

The intuition behind the valuation of the Swing options is the assumption that the holder

exercises rights in a way that maximizes the overall profit. However, one should also keep

in mind that the Swing options cannot always be used in a profit-maximizing way since the

holder may use them to swing up or down the purchased volume to optimize the flow of

internal processes.

For options with an early exercise problem, an analytical solution is yet to be found. In litera-

ture, numerical methods are mostly employed to tackle this problem. Dörr applies, in [10], the

Longstaff-Schwartz algorithm given in [20] to the Swing options. The Least-Squares Monte

Carlo method is used to calculate the conditional continuation values and the exercise decision

is made by comparing these values to the exercise payoffs. The pricing algorithm simultane-

ously uses as an input multiple cash flow matrices for each possible number of remaining

exercise rights. Keppo, in [16], treats the valuation problem as an optimal consumption prob-

lem and assumes a right continuous stochastic consumption process for the Swing option

holder, which satisfies the Markov property. The main result reported in their paper is a lower

bound for the value of a Swing option written on regular electricity derivatives.

1.1.1 Motivating Studies

The methods based on multiple trinomial trees (as mentioned by Jaillet, Ronn, Tompaidis

in [15]) seem to maintain their popularity. In this approach, a tree where trinomial refine-

ments are allowed to emanate from each node is built for the forward prices. Then, a number

3



of identical trees are used simultaneously to price the Swing option. However, a tree-way

branching is unlikely to suffice for an effective approximation of the distributions, particu-

larly the heavy-tailed ones. As an extension to this method, Hambly, Howison and Kluge, in

[13], uses multiple grid trees to capture a wide range of potential movements in the underly-

ing’s price. This method enjoys the ability of finer grids to provide better approximations to

the state price probabilities than the trinomial trees can do. This approach is also pursued in

this thesis.

1.1.2 Extensions

We extend the work of Jaillet, Ronn and Tompaidis by step-by-step generalizing it to the Grid

Approach explained by Hambly, Howison and Kluge in [13]. This generalization requires

the integration of the spike process into the valuation algorithm and the use of larger grids

with finer increments to better approximate the probability density functions of the individual

sub-processes that mainly drive the spot price process. We also derive a more general approx-

imation to the spike process density than the one given in ([13]). That is, we derive a Gamma

density approximation to the stationary distribution of the truncated spike process. Our use of

a heterogeneous grid for the truncated spike process in the Grid Approach allow us to more

precisely calculate the probabilities for the spike process values which are close to zero. This

approach leads to slightly lower values for Swing options than those reported in [13]. Our

results are supplemented by the numerical pricing function (swing.m) from which they were

generated.

1.2 The Aim of This Thesis

In summary, there are four main goals tracked by this thesis:

• Introducing a spot price model for electricity which incorporates jumps while maintain-

ing analytical tractability;

• Deriving the forward curve dynamics implied by the spot price model and examining

the extent to which the forward prices are sensitive to jumps in the spot price, i.e. the

spike sensitivity of forward prices;
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• Introducing the Grid Approach which is a generalization of the Trinomial Forest Method

to price the Swing options;

• Numerically pricing standard Swing options and analysing the sensitivity of the Swing

option value to changes in the spot price model parameters.

For these purposes, we employ a spot price model which is the exponential of the sum of (i)

an Ornstein-Uhlenbeck and (ii) an independent mean-reverting pure jump process, as well as

(iii) a deterministic seasonality function, and elaborate on a variety of issues including:

• The moment generating functions of the log-spot price process and the spike process at

maturity T,

• Approximations to the probability density functions of the log-spot price process and

the spike process at maturity T,

• Approximations to the distributions of the forward contracts with and without a delivery

period by means of the moment matching method,

• Utilization of the Grid Method to price path-dependent options with multiple exercise

rights (e.g. Swing contracts) which, in turn, uses approximations to the conditional

densities of the individual processes driving the spot price process.

1.3 Organization of The Thesis

As mentioned above, this thesis aims at pricing one of the most complicated options of the

energy markets, the Swing options. Hence, we need to set the preliminary stages first. In this

context, next chapter (Chapter 2) will summarize the most widely known characteristics of

the electricity markets which distinguish them from the other financial markets. Having laid

out the main criteria that a spot electricity model should be able to satisfy, this market-implied

characteristics will be the base for the mathematical setup of the spot price model, which is

given in Chapter 3. This chapter sketches a wide range of stochastic properties implied by the

combined spot price model which consists of two independent mean-reverting process and a

deterministic seasonality part. Analytical tractability of the model is maintained by means of

a set of approximations substituting the original jump process while efficiently retaining its
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distributional properties. The forward curve dynamics derived from the model will be applied

to the options on forwards through a moment matching interface. Chapter 4 introduces the

Trinomial Forest1 Approach and generalize it to the Grid Method. Chapter 5 summarizes and,

discusses future possible extensions to the thesis.

1 The term forest has a particular emphasis here since we use a option value forest rather than a single tree
and it is formed by a number of trees each of which corresponds to different number of remaining exercise rights.
Values in each tree has a direct mutual dependence on its neighbor subordinate which results in a forest where the
values in each tree at least indirectly affected by those in its subordinates.
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CHAPTER 2

ELECTRICITY MARKETS: STYLIZED FACTS

By its nature, the electricity is difficult to store and has to be available on demand. As a

consequence, unlike the other energy and non-energy commodities, it is not possible, under

normal operating conditions, to keep electricity in stock, ration it or have consumers queue

for it. Continuously varying demand and supply further exacerbates the situation. In more

technical terms, the transmission system operators are the results of the physical requirement

for a controlling agency to coordinate the power generator facilities to meet the expected

demand in the marketplace. In case there is a mismatch between supply and demand, the

generators will speed up or slow down. In spite of all these advanced technologies available

on the production side, still, the laws of physics rules the market. Below we discuss the major

issues that characterize the electricity markets.

2.1 Non-Storability

Unlike oil and liquid gas, which can be stored effectively, electricity is a flow variable. This

means that the current technological developments have yet to allow for the physical storage

of an amount of electricity which corresponds to the average daily consumption of a big

factory. Storage for the daily use of even a small country sounds impossible at this point.

Therefore, not only should the power be generated on a continuous basis, but also the supply

should match the demand again on a continuous basis. It brings along the need for a very

active synchronization between demand and supply together with a very effective reflection

of the current production costs in prices (see Section 2.2). This real-time balance between

demand and supply results in seasonal patterns in the spot price as the consumption habits

exhibit ordinary paths throughout daily, weekly and annual cycles (see Section 2.3), as well
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as bounded variations around the cost of production in the long-term. Moreover, this generate-

and-transfer production model requires the power to be delivered on a periodical basis, rather

than a lump sum delivery. Thus, the power derivative contracts should always include a

delivery period. To illustrate, the delivery periods of all EEX Base Load1 Futures observed

on the first day of the year 2010 for the German Power Market are shown in Figure 2.1.

Another characteristic that is usually promoted as being the result of the non-storability of

the electricity is the spiky nature of the power markets, which will be discussed in detail in

Section 2.4.

Figure 2.1: German Power Market - Baseload Futures

2.2 Mean-Reversion

As mentioned in the previous section, the active synchronization between the production and

the consumption yields a long-term balance for the underlying’s price which generally grav-

itates around the cost of production. Unlike oil markets, where the long-term prices are af-

fected considerably by the factors such as the convenience yield and the limited reserves, or

stock markets, where the prices are allowed to evolve freely, electricity markets trade power

contracts whose prices are expected to stay within some certain fair price boundaries through-

out the lifetime trajectory. One result of this fact, which should also be reflected in the model-

implied volatilities, is that the volatility decreases with increasing time horizon, i.e. there is

a long-term equilibrium which is much less volatile than the spot price. The speed of the

reversion depends heavily on how quickly the imbalances between supply and demand are

1 Base Load contracts characterize the type of load for the delivery of electricity or the procurement of
electricity with a constant output over 24 hours of each day of the delivery period. In contrast, Peak Load contracts
cover 12 hours from 08:00 am until 08:00 pm on every working day (Monday to Friday) during a delivery period.
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eliminated.

2.3 Cyclicality

Price cycles occur on different time scales like different times of the day, different days of the

week, different seasons of the year and are usually driven by the cyclical changes in demand.

The seasonality aspect can be considered as deterministic and therefore easily be extracted

from the stochastic part, as claimed in [10]. It is discussed in [18] and [21] that the model-

implied forward prices are dominated by the seasonality factor and the seasonality is one of

the most important aspects in the shape of the forward curve. Strong deterministic cycles

within the daily, weekly and yearly periods are also shown empirically in the power market

literature. All these suggest that the cyclicality must be modeled with utmost care, which will

lead to a more reliable analysis of the stochastic properties of the deseasonalized data and a

better estimation of the future seasonality.

2.4 Spikes

The electricity market consists of supply and demand sides which are both very inelastic in

nature. Neither can the power production facilities be turned on immediately at any time to

produce power nor the end-users2 are eager to save energy when the supply is at risk, ow-

ing to their long-term fixed price contracts. Hence, the exchange traded electricity prices are

highly sensitive to the dynamics between the supply and demand. In case of a power plant

disruption, a supply shortage threat can occur causing the prices to jump up suddenly before

they normalize again after the issue is resolved. These cases are called spikes. Positive spikes

can result from extreme political events and weather conditions as well. Not being observed

as frequent as positive ones, negative spikes can also occur at times there is a surplus in the

electricity supply, which cannot be reduced in a short period of time. As we mentioned pre-

viously in Section 2.1, the non-storability of electricity is perhaps the most prominent factor

that can easily lead to spikes in the electricity prices. Last but not the least, spikes and the

extreme volatility in the market crowds out the normality assumptions when modeling the

price dynamics. Figure 2.2 shows the quantiles of the fat-tailed NYMEX electricity futures
2 End-users do not purchase the electricity from exchange, rather from local or national retail power distribu-

tors at prices adjusted in longer periods.
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log-returns. Standard normal quantile plots show the cumulative probability value that the

observations up to a certain value represent when they’re sorted into ascending order. We ob-

serve that the empirical density (shown by markers) departs from the standard normal density

(shown by dotted line) in the tails, as the tails of the normal density disappears much faster

than those of the empirical density.
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Figure 2.2: NYMEX electricity futures log-return quantiles versus Standard Normal quantiles

2.5 Incompleteness

The occurrence of spikes in the electricity price can be translated into not only a fat-tailed dis-

tribution for the log-returns but also an incomplete market and a non-hedgeable jump risk. To-

gether with the inability to use the spot commodity in the hedging portfolio, the non-hedgeable

jump risk and, as a result, an incomplete market has far reaching implications for risk manage-

ment and pricing purposes. Section 3.5.1 examines the effects of the market incompleteness

on the spot price model and its stochastic properties in the context of risk-neutral pricing.

The next chapter introduces our basis model for the electricity spot price, as well as its

stochastic properties which will have direct effects on the values of various electricity-related

derivative contracts.
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CHAPTER 3

PROPERTIES OF THE HAMBLY-HOWISON-KLUGE MODEL

Hambly, Howison and Kluge, in their joint work given in [13], employs a spot price model

whose stochastic properties are driven by an Ornstein-Uhlenbeck (OU) process together with

an independent mean reverting pure jump process. The statistical tractability of the model

is controlled and maintained via explicitly derived moment generating functions and various

approximations to the probability density function of the log-spot price process at maturity.

It is then discussed how to calibrate the model under the risk-neutral measure, i.e. to the

observed forward curve, and present approximations to the distributions of the electricity

forward contracts with and without a delivery period, which are, in turn, used to value the call

and put options written on these forwards.

3.1 The Process at a First Glance

Following [13], we define the spot electricity price model as

S t = e ft+Xt+Yt

dXt = −αXtdt + σdWt (3.1)

dYt = −βYtdt + JtdNt,

where f is a deterministic seasonality function, Xt is a standard OU process with a mean-

reversion speed α and Yt is another mean-reverting process with a Poisson stochastic jump

part to incorporate spikes. The Poisson process Nt is characterized by the intensity parameter

λ, and J represents a random variable for the jump size with an average of µJ . The mean-

reversion speed of the spike process is determined by β. Finally, W, N, J are assumed to be

mutually independent i.i.d. processes.
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One major superiority of this model over the ones given in [7] and [1] is that it allows for

separate mean-reversion speeds for both the diffusive and spike parts. This is a plausible

assumption particularly for the energy markets since the large price discontinuities result from

extraordinary events, hence cannot be sustainable. As a result, the price should revert faster

(β) than the rate at which it reverts following gradual deviations spread over longer terms (α).

No-arbitrage rule guarantees us this will be the case. In remark below we give the solutions

to the individual processes Xt and Yt.

Remark 3.1.1 The solutions to processes Xt and Yt in (3.1) are given by

Xt = X0e−αt + σ

t∫
0

e−α(t−s)dWs and Yt = Y0e−βt +

Nt∑
i=1

e−β(t−τi)Jτi , (3.2)

respectively, where τi is the random occurence time of the ith jump.1

Proof. By taking

f (t, Xt) = Xteαt

and applying Itô formula to multiplication, we find

Xteαt = X0 +

t∫
0

eαsdXs +

t∫
0

αeαsXsds.

Applying stochastic dynamics of Xt yields

Xteαt = X0 +

t∫
0

eαs(−αXsds + σdWs) +

t∫
0

αeαsXsds

Xteαt = X0 +

t∫
0

eαsσdWs

Xt = X0e−αt +

t∫
0

e−α(t−s)σdWs

Then, the mean and the variance of the process Xt can be found as

E[Xt|X0] = X0e−αt

1 Note that we depart from the alternative case where τi is referred to as being the jump interarrival time, i.e.
the length of time between two consecutive jumps.
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V[Xt|X0 = x0] = E




t∫
0

e−α(t−s)σdWs


2

=

t∫
0

e−2α(t−s)σ2ds (by isometry)

=
σ2

2α
(1 − e−2αt).

Similarly,

f (t,Yt) = Yteβt

yields ( by Itô -Doeblin formula this time)

Yte−βt = Y0 +

t∫
0

βYseβsds +

t∫
0

eβs(−βYs)ds +
∑

0≤s≤t

eβsJs∆Ns.

Since Nt is a Poisson process where ∆Ns takes the value of one if and only if τi = s we can

arrange the equation to get

Yt = Y0e−βt +

Nt∑
i=1

e−β(t−τi)Jτi ,

which completes the proof. �

As one might expect, the OU process Xt is conditionally normally distributed, given an initial

condition X0 = x0. However, the distributional properties of the spike process Yt cannot

be concluded at this point. On the other hand, we intend to explore further the statistical

properties of Yt, which is equivalent to saying that we expect that the spikes will have a

significant effect on the spot price process S t, so on the values of various options including

the Swing options. Hence, a well-performing approximation to the density of Yt is needed.

Note that we also assume that the values ft, Xt and Yt are individually observable at any

time t. Figure 3.1 plots the simulated paths of the individual processes X and Y as well as

their composition, S . The calibrated parameters of the Nord Pool market given in [13] are

adopted whereas the seasonality function f is chosen arbitrarily. The next section is devoted

to the investigation of the stochastic properties of the spike process in detail by means of its

moment generating function, ΦY (θ, t). This is followed, in Section 3.3, by the derivation of

the moment generating function of the logarithm of the combined price process, S t. Then,

Section 3.4 introduces a useful truncation of the spike process, which is then used to produce

an explicit formula for the probability density function of the spike process, and evaluates its

performance in terms of the pointwise convergence of the moment generating functions.
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Figure 3.1: Sample paths (α = 7, β = 200, λ = 4, µJ = 0.4, T = 3, dt = 1/365, ft =

ln(100) + 0.5cos(2πt), r (risk-free rate) = 0 and X0 = Y0 = 0)

3.2 The Spike Process

Lemma 3.2.1 (Moment generating function of the spike process, Yt) Defining by ΦJ(θ) :=

E[exp(θJ)] the moment generating function of the jump size process, the spike process given

in (3.1) with Y0 = 0 has the moment generating function

ΦY (θ, t) := E[eθYt ] = e
λ

t∫
0

(ΦJ(θe−βs)−1)ds
. (3.3)

Furthermore, its mean and variance are given by

E[Yt] =
λ

β
E[J](1 − e−βt) and V[Yt] =

λ

2β
E[J2](1 − e−2βt),

respectively.

Proof. Let us first define the conditional moment generating function, given the first jump

occurred at time s, then use the mutual independence of the jump sizes and the jump times
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(i.e. Jτi , Jτ j and τi for all i , j). Then,

E[eθYt
∣∣∣τ1 = s] = E[e

θe−β(t−τ1) Jτ1 +θ
Nt∑
i=2

e−β(t−τi) Jτi
∣∣∣τ1 = s]

= E[eθe
−β(t−τ1) Jτ1

∣∣∣τ1 = s]E[e
θ

Nt∑
i=2

e−β(t−τi) Jτi
∣∣∣τ1 = s] (independence)

= E[eθe
−β(t−s) Js]E[e

θ
Nt∑
i=2

e−β(t−τi) Jτi
∣∣∣τ1 = s]

= E[eθe
−β(t−s) Js]E[e

θ
Nt−s∑
i=1

e−β(t−s−τi) Jτi
∣∣∣τ1 = s] (stationarity of Poisson)

= ΦJ(θe−β(t−s))ΦY (θ, t − s).

Using the property of the conditional expectation2, we write

ΦY (θ, t) = E[E[eθYt
∣∣∣τ1 = s]]

=

t∫
0

ΦJ(θe−β(t−s))ΦY (θ, t − s)λe−λsds (exponential PDF of τ)

=

t∫
0

ΦJ(θe−βu)ΦY (θ, u)λe−λ(t−u)du (change of variable, u := t − s, du := −ds).

Hence,

∂ΦY (θ, t)
∂t

= ΦJ(θe−βt)ΦY (θ, t)λ − λ

t∫
0

ΦJ(θe−βu)ΦY (θ, u)λe−λ(t−u)du

Φ
′

Y (θ, t) = ΦJ(θe−βt)ΦY (θ, t)λ − λΦY (θ, t) Φ
′

Y (θ, t)∂ΦY (θ,t)
∂t

Φ
′

Y (θ, t)
ΦY (θ, t)

= λ(ΦJ(θe−βt) − 1)

ln(ΦY (θ, t)) =

t∫
0

λ(ΦJ(θe−βs) − 1)ds

ΦY (θ, t) = e
λ

t∫
0

(ΦJ(θe−βs)−1)ds
.

2 Expectation of a conditional expectation is an unconditional expectation.
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Then, the expectation of the spike process can be found as

∂ΦY (θ, t)
∂θ

= ΦY (θ, t)λ

t∫
0

Φ
′

J(θe−βs)e−βsds

∂ΦY (θ, t)
∂θ

∣∣∣
θ=0 = ΦY (0, t)λ

t∫
0

Φ
′

J(0)e−βsds

E[Yt] = λ

t∫
0

E[J]e−βsds (ΦY (0, t) = 1)

=
λ

β
E[J](1 − e−βt).

Similarly, the second moment and the variance follow from

∂2ΦY (θ, t)
∂θ2 =

∂ΦY (θ, t)
∂θ

λ

t∫
0

Φ
′

J(θe−βs)e−βsds + ΦY (θ, t)λ

t∫
0

Φ
′′

J (θe−βs)e−2βsds

∂2ΦY (θ, t)
∂θ2

∣∣∣
θ=0 =

∂ΦY (θ, t)
∂θ

∣∣∣
θ=0

λ

β
E[J](1 − e−βt) + ΦY (0, t)

λ

2β
V[J](1 − e−2βt)

E[Yt
2] = E[Yt]2 +

λ

2β
E[J2](1 − e−2βt)

V[Yt] =
λ

2β
E[J2](1 − e−2βt).

�

As one might expect, the long-term mean and variance are inversely proportional to the mean-

reversion parameter β. At this point, the length of time that the price process will need to revert

to its long-term mean after a shock occurred is expected to be too small. Hence, we also want

to investigate the behavior of the moment generating function of the spike process for the

asymptotic values of β. Before we examine it in depth in Section 3.4, a preliminary example

assuming an exponential distribution, Exp( 1
µJ

), for the jump sizes is provided here.

Corollary 3.2.2 We assume J ∼ Exp(1/µJ) where µJ is the mean jump size. Then

ΦY (θ, t) =

(
1 − θµJe−βt

1 − θµJ

) λ
β

, θµJe−βs < 1. (3.4)
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Proof.

ΦJ(θe−βs) = E[eθe
−βs J] =

∞∫
0

eθe
−βs J 1

µJ
e−

J
µJ dJ

=
1

1 − θµJe−βs

∞∫
0

1
µJ

1−θµJe−βs

e
− J

µJ
1−θµJ e−βs dJ

=
1

1 − θµJe−βs , θµJe−βs < 1

and the integral in (3.3) turns into

ΦY (θ, t) = exp

λ
t∫

0

[
1

1 − θe−βsµJ
− 1

]
ds


= exp

λ
t∫

0

eβs

eβs − θµJ
ds

 exp

−λ
t∫

0

ds


= exp

(
λ

β
ln(eβs − θµJ)

∣∣∣t
0

)
e−λt

=

(
eβt − θµJ

1 − θµJ

) λ
β

e−λt

=

(
1 − θµJe−βt

1 − θµJ

) λ
β

eλte−λt

ΦY (θ, t) =

(
1 − θµJe−βt

1 − θµJ

) λ
β

, θµJe−βs < 1.

The mean and variance follow as

∂ΦY (θ, t)
∂θ

∣∣∣
θ=0 = E[Yt] =

λ

β
µJ(1 − e−βt) and V[Yt] =

λ

β
µJ

2(1 − e−2βt)

�

Before examining the case where β → ∞, we start with the stationary distribution of Yt as

t → ∞. Obviously, as t → ∞, ΦY (θ, t) in (3.5) converges to the moment generating function

of the Gamma distribution with parameters λ/β and 1/µJ , i.e.(
1

1 − θµJ

) λ
β

.

Intuitively, λ
β

th power of the exponential moment generating function implies that the value

of the spike process at time t is determined by the sum of a number of i.i.d. jump sizes -

exponential random variables in this case- which is equal to the average number of jumps,
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λ, adjusted by the jump reversion rate, β. To make this more clear, consider the continuous

case where the time t actually denotes the semi-closed interval (t − 1, t]. λ is the expected

number of jump occurrences during a unit of time which should be adjusted by β, the speed

of jump decay, to obtain the ‘effective’ number of jumps, each with an expected size of µJ

in the interval (t − 1, t]. This is equivalent to saying that the distributional properties of the

spike process Yt is asymptotically determined by the sum of λ/β exponentially distributed

jumps. Again, the convergence of the moment generating function of the spike process with

exponential jumps to that of a Gamma distribution (i.e. the sum of exponentially distributed

i.i.d. random variables) guarantees us that this is indeed the case.

To examine the case where β→ ∞, we expand (3.5) around θ = 0 so that it becomes

ΦYt (θ) ≈ ΦYt (0) + Φ
′

Yt
(0)θ +

1
2

Φ
′′

Yt
(0)θ2

≈ 1 + E(Yt)θ +
1
2

E(Yt
2)θ2

Using derived moments, we find

ΦYt (θ) ≈ 1 +
λ

β
µJ(1 − e−βt)θ +

1
2

λβµJ
2(1 − e−2βt) +

(
λ

β

)2

µJ
2
(
1 − e−βt

)2
 θ2

The exponential terms can be left out for the large values of β. Hence,

ΦYt (θ) ≈ 1 +
λ

β

(
µJθ +

1
2
µJ

2θ2
)

+
1
2

(
λ

β

)2

µJ
2θ2

This approximation can also be obtained by expanding (1 − θµJ)−λ/β, which is the moment

generating function of Gamma distribution with parameters λ/β and 1/µJ . Hence, Yt’s mo-

ment generating function again converges to that of Γ(λ/β, 1/µJ) for large values of β as well.

Above result encourages us in our efforts to develop a more tractable process which will

replace our original spike process. We will then be able to approximate its statistical charac-

teristics and express the density of the spike process in a more explicit way. In turn, this will

lead us to develop a more efficient pricing algorithm for the Swing options as a result of a

more explicit pricing formula.

3.3 The Combined Process (Revisited)

Note that although the processes Xt and Yt satisfy the Markov property individually, the com-

bined process S t does not. Therefore, throughout the analysis above, we assumed Xt, Yt and
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ft components of the spot price process S t are individually observable. Turning back to the

properties of the price process S t = exp( ft + Xt +Yt), we give the expectation of S t as a special

case in the proof of the following theorem.

Theorem 3.3.1 The logarithm of the spot price process S t defined in (3.1), with X0 and Y0

given, has the moment generating function

Φ lnS (θ, t) := E[eθ lnS t ] = e
θ ft+θX0e−αt+θ2 σ2

4α (1−e−2αt)+θY0e−βt+λ
t∫

0
(ΦJ(θe−βs)−1)ds

. (3.5)

Proof. The mutual independence between the Ornstein-Uhlenbeck process, Xt, and the spike

process, Yt, allows us to write,

E[eθ lnS t ] = e ft E[eθXt |X0]E[eθYt |Y0]

= e ft eθX0e−αt
eθY0e−βt

E[eθXt |X0 = 0]E[eθYt |Y0 = 0].

Notice that E[eθYt |Y0 = 0] follows from (3.3). Besides, the distributional properties of Xt

implies

E[eθXt |X0 = 0] =

∞∫
−∞

eθx 1

(πσ
2

α (1 − e−2αt))0.5
exp

− x2

σ2

α (1 − e−2αt)

 dx,

which can be solved easily as follows:

E[eθXt |X0 = 0] =

∞∫
−∞

1

(πσ
2

α (1 − e−2αt))0.5

exp

− (x2 − 2x( θσ
2

2α (1 − e−2αt)))
σ2

α (1 − e−2αt)

 dx

= exp

 ( θσ
2

2α (1 − e−2αt))2

σ2

α (1 − e−2αt)


∞∫
−∞

1

(πσ
2

α (1 − e−2αt))0.5

exp

− (x − θσ2

2α (1 − e−2αt))2

σ2

α (1 − e−2αt)

 dx

= exp
(
θ2σ

2

4α
(1 − e−2αt)

)
.

Recalling E[eθ lnS t ] above, we write

E[eθ lnS t ] = e ft eθX0e−αt
eθY0e−βt

E[eθXt |X0 = 0]E[eθYt |Y0 = 0]

= exp( ft + θX0e−αt + θ2σ
2

4α
(1 − e−2αt) + θY0e−βt

+λ

t∫
0

(ΦJ(θe−βs) − 1)ds),
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which completes the proof. Now, it is easy to find an expression for E[S t] by setting θ to 1:

E[S t] = exp( ft + X0e−αt +
σ2

4α
(1 − e−2αt) + Y0e−βt + λ

t∫
0

(ΦJ(e−βs) − 1)ds).

�

3.4 Approximating the Spike Process

Instead of using inversion methods to derive the probability density function of the spike

process from its moment generating function, we introduce a truncated spike process, Ỹ ,

from which an explicit formula for the density can be derived. The fact that for the high mean-

reversion rates, β, together with small jump intensities, λ, the value of the spike process, Yt,

is mostly determined by the last jump size (see Figure 3.1) allows us to define Ỹ as

Ỹt :=

 JNt e
−β(t−τNt ) , Nt > 0

0 , Nt = 0.
(3.6)

Assuming zero initial values for both Y and Ỹ , an explicit formula for the maturity density ỸT

will help us form a jump-integrated pricing grid for the combined process S to numerically

price a Swing option. Below we start with defining an easier form for the truncated process

using the reversibility property of the Poisson process and then derive a density formula for

it. Last but not the least, we make it more concrete again by considering an exponential

distribution for the jump sizes J. The following definition proves to be very helpful at this

point.

Definition 3.4.1 (Reversible process, see [27]) If the time-reversed process N∗ and the orig-

inal process N are statistically indistinguishable, we say that the process Nt is ‘time re-

versible’. More precisely, the reversibility means that

N∗ d
=== N

(Nτ1 ,Nτ2 , ...,Nτn) d
=== (Nt−τ1 ,Nt−τ2 , ...,Nt−τn)

for all τ1, τ2, ..., τn and, t, n (i.e. the shown sets of values of random variables have the same

joint distributions).

With the aid of this property, one can get more insight on the properties of a process. It often

allows for the derivation results simply and elegantly in cases where a direct approach might
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be quite complicated. Since this property is valid for the Poisson process as well, we can write

the truncated process in a simpler form as the Lemma 3.4.2 below suggests.

Lemma 3.4.2 The distribution of the process

Vt :=

 J1e−βτ1 , τ1 ≤ t

0 , τ1 > t

is identical to the distribution of Ỹt, i.e. Ỹt
d

=== Vt.

Proof. Intuitively, the reversibility of the process Nt means that an outside observer cannot

tell whether a film is running in the forward or the backward direction. It implies that if

N = {Nt; t ∈ R+} is a Poisson process, then N∗ = {−N−t; t ∈ R+} is also a Poisson process.

When there are jumps in the original process (i.e. Nt > 0), t − τNt corresponds to τ1, the first

jump, in the reversed process (i.e. τ1 ≤ t). These two are identically distributed. �

In the following lemma, we derive the moment generating function of the new truncated

process. It will then be shown that ΦỸ and ΦY converge rapidly where the difference term

depreciates as a function of 1/β for large values of β.

Lemma 3.4.3 (Moment generating function of the truncated spike process, Ỹt) With an initial

value of Ỹ0 = 0, the moment generating function of the process ΦỸ at time t is given by

ΦỸ (θ, t) := E[eθỸt ] = 1 + λ

t∫
0

(ΦJ(θe−βs) − 1)e−λsds,

and the moments are

E[Ỹt] =
λ

β + λ
E[J](1 − e−(β+λ)t), E[Ỹ2

t ] =
λ

2β + λ
E[J2](1 − e−(2β+λ)t).

Proof. By Lemma 3.4.2

ΦỸ (θ, t) := E[eθỸt ] = E[eθVt ]

Given that the first jump in the reversed process occurs at time s, we can write

E[eθVt ] = E[E[eθVt
∣∣∣τ1 = s]].

The value of the conditional expectation is therefore

E[eθVt
∣∣∣τ1 = s] = E[eθJe−βs

I{s≤t}]

= ΦJ(θe−βsI{s≤t}),
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where τ ∼ Exp(λ). Solving the unconditional expectation to obtain E[eθVt ] yields the follow-

ing:

ΦỸ (θ, t) = E[eθVt ] =

∞∫
0

ΦJ(θe−βsI{s≤t})λe−λsds

=

t∫
0

ΦJ(θe−βsI{s≤t})λe−λsds

+

∞∫
t

ΦJ(θe−βsI{s≤t})λe−λsds (ΦJ (θe−βs I{s≤t}) = 1 in (t,∞))

=

t∫
0

ΦJ(θe−βs)λe−λsds +

∞∫
t

λe−λsds

=

t∫
0

ΦJ(θe−βs)λe−λsds + e−λt,

and taking the e−λt term into the first integral results in

ΦỸ (θ, t) = E[eθVt ] = 1 +

t∫
0

ΦJ(θe−βs)λe−λs − λe−λsds

= 1 + λ

t∫
0

(ΦJ(θe−βs)e−λs − 1)e−λsds.

One can then calculate the moments as follows:

∂ΦỸ (θ, t)
∂θ

= λ

t∫
0

∂ΦJ(θe−βs)
∂θ

e−βse−λsds

∂ΦỸ (θ, t)
∂θ

∣∣∣
θ=0 = λ

t∫
0

∂ΦJ(θe−βs)
∂θ

∣∣∣
θ=0e−βse−λsds

E[Ỹt] = λ

t∫
0

E[J]e−(β+λ)sds

=
λ

β + λ
E[J](1 − e−(β+λ)t),
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and similarly,

∂2ΦỸ (θ, t)
∂θ2 = λ

t∫
0

∂2ΦJ(θe−βs)
∂θ2 e−2βse−λsds

∂2ΦỸ (θ, t)
∂θ2

∣∣∣
θ=0 = λ

t∫
0

∂2ΦJ(θe−βs)
∂θ2

∣∣∣
θ=0e−2βse−λsds

E[Ỹ2
t ] =

λ

2β + λ
E[J2](1 − e−(2β+λ)t).

�

Having defined the truncated spike process Ỹ in a simpler (reverse) form and derived its mo-

ment generating function, we can now find out whether there is a significant pointwise conver-

gence between ΦY (θ) and ΦỸ (θ) to justify our use of the truncated process in approximating

the probability density function of the original process (see Lemma 3.4.4 below). Hence, we

check the convergence for two different asymptotic cases, i.e. as λ→ 0 and as β→ ∞.

First, for fixed t, θ and β, consider the case where λ→ 0. Recall that (3.3) reads

ΦY (θ, t) = exp

λ
t∫

0

(ΦJ(θe−βs) − 1)ds

 .
Using the Maclaurin series expansion, this can be written as

ΦY (θ, t) = 1 + λ

t∫
0

(ΦJ(θe−βs) − 1)ds + O(λ2).

Also from Lemma 3.4.3 we have

ΦỸ (θ, t) = 1 + λ

t∫
0

(ΦJ(θe−βs) − 1)e−λsds.

Again applying the expansion rule to the term e−λs around λ = 0, we find

ΦỸ (θ, t) = 1 + λ

t∫
0

(ΦJ(θe−βs) − 1)(1 + O(λ))ds

= 1 + λ

t∫
0

(ΦJ(θe−βs) − 1)ds + O(λ2).

Thus, the convergence of the moment generating functions as λ → 0 is obvious. Now, let us

consider the case β → ∞ where λ, θ and t are fixed this time. For that, first note the common
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term f (s; θ, β) := ΦJ(θe−βs) − 1 in the moment generating functions of the both original and

approximated spike processes. We first start with examining the behavior of this common

term:

f (s; θ, β) = ΦJ(0) − 1 + Φ
′

J(0)θe−βs + O(θ2e−2βs)

= E[J]θe−βs + O(θ2e−2βs).

Above calculation implies that for large values of β, f (s; θ, β) quickly tends to 0 at very small

values of s. That is, the area under this function in the domain (0, t) is almost compeletely

determined by the area under the same function in the domain (0, ε(β)). More formally, by

taking ε(β) = 1√
β

t∫
0

(ΦJ(θe−βs) − 1)ds ≈

1√
β∫

0

(ΦJ(θe−βs) − 1)ds

≈ O(
1
√
β

).

By linearizing the exponential function in the equation of ΦY (θ, t) around zero, we have

ΦY (θ, t) ≈ 1 + λ

1√
β∫

0

(ΦJ(θe−βs) − 1)ds + O(
1
β

).

Furthermore, in this small domain (0, 1√
β
), one can express the term e−λs in the equation of

ΦỸ (θ, t) by unity using the big O notation as e−λs = 1 + O(λs), where the latter term is ignored

for small values of s in the interval (0, 1√
β
). Thus, its contribution to the integral is also

negligible, and so

ΦỸ (θ, t) ≈ 1 + λ

1√
β∫

0

ΦJ(θe−βs) − 1ds.

Thus we end up with

ΦY (θ, t) − ΦỸt
(θ) ≈ O(

1
β

). (3.7)

Clearly, (3.7) suggests that the process Ỹ is a good approximation to Y . An example of

the approximated and original moment generating function using the same parameters as in

Figure 3.1 and assuming an exponential distribution with parameter µJ for the jump sizes can

be seen in Figure 3.2.
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Figure 3.2: Convergence of moment generating functions (J ∼ Exp(1/µJ))

To finalize this section, we derive an explicit formula for the density of the truncated spike

process Ỹ which will substitute the density of the original process in our Swing option pricing

algorithm.

Lemma 3.4.4 (Distribution of the truncated-reversed spike process) Assume that the jump

size distribution has the density fJ . Then, the cumulative distribution function of the process

Ỹ is

FỸt
(x) = e−λtIx≥0 +

x∫
−∞

fỸt
(y)dy, t ≥ 0

with density

fỸt
(x) =

λ

β

1

|x|1−λ/β

∣∣∣∣∣∣∣∣∣
xeβt∫
x

fJ |y|−λ/βdy

∣∣∣∣∣∣∣∣∣ , x , 0.

Proof. Recall from Lemma 3.4.2 that the distribution of the truncated spike process, Ỹt, is

identical to Vt. Therefore, in our calculations so far, we’ve taken Vt as our new truncated

spike process. Let us first decompose Vt into two parts, i.e. defining Q := e−βτ the equation

Ỹt
d

=== Vt = Je−βτIτ≤t, τ ∼ Exp(λ)

reduces to

Ỹt
d

=== Vt = JQIτ≤t.
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Now, consider the fact that if the random variable (.) has a standard uniform distribution in

the domain [0, 1], then −ln(.)/λ has an exponential distribution with the intensity parameter

λ (and the duration parameter 1/λ). We can use this property to show that Q is the β
λ

th
power

of a uniformly distributed random variable. In fact, Qλ/β = e−λτ, and − ln(e−λτ)
λ = τ is, by

definition, exponentially distributed. Now, we know that Qλ/β is uniformly distributed in the

domain [0, 1]. Then using this property to determine the distribution function of Q, we can

write

P(Q ≤ q) = P(e−βτ ≤ q)

= P((e−λτ)
β
λ ≤ q)

= P(e−λτ ≤ q
λ
β )

= P(e−λτ ≤ q
λ
β ) = q

λ
β (uniform PDF)

FQ(q) = q
λ
β q ∈ [0, 1]

fQ(q) =
λ

β
q−(1− λβ )Iq∈[0,1],

where Iq∈[0,1] is the indicator function which results from the relationship

0 ≤ e−λτ ≤ 1

0 ≤ (e−λτ)
β
λ ≤ 1

0 ≤ q ≤ 1.

Now, we need to determine fQIτ≤t (q). It is obvious that Iτ≤t is equivalent to Iq∈[e−βt ,1] since

τ ≤ t ⇒ eτ ≤ et ⇒ eβτ ≤ eβt ⇒ e−βτ ≥ e−βt ⇒ q ≥ e−βt.

Then fQIτ≤t (q) can be written as

fQIτ≤t (q) =
λ

β
q−(1− λβ )Iq∈[e−βt ,1].

In deriving FQIτ≤t (q), one should be aware of the fact that the cumulative distribution function

should always sum up to one. That is, even if the probability density function is restricted to

a specific interval, i.e. q ∈ [e−βt, 1] in our case -which is a part of the interval [0, 1] where q

takes values-, the cumulative distribution function should also account for the interval which

is out of our interest3, i.e. q ∈ [0, e−βt). In cumulative distribution function terms, this means
3 It is out of interest since it implies t ≤ τ. In other words, no spikes occurred yet.
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that we should separately include the cumulative probability of q being smaller than e−βt,

given q ≥ 0. Then

FQIτ≤t (q) = P(q < e−βt)Iq≥0 +

q∫
−∞

fQIτ≤t (ξ)dξ

= P(e−βτ < e−βt)Iq≥0 +

q∫
−∞

λ

β
ξ−(1− λβ )Iξ∈[e−βt ,1]dξ

= P(τ > t)Iq≥0 +

q∫
−∞

λ

β
ξ−(1− λβ )Iξ∈[e−βt ,1]dξ

Since P(τ > t) = e−λt, we conclude that

FQIτ≤t (q) = e−λtIq≥0 +

q∫
−∞

λ

β
ξ−(1− λβ )Iξ∈[e−βt ,1]dξ,

which almost completes the proof.

For the remaining part of the proof, we refer to the multiplication theorem given in [12] to

derive fJQIτ≤t (q) and FJQIτ≤t (q), namely the probability density function and the cumulative

distribution function of the truncated spike process.

Interim Theorem 3.4.1 (The distribution of the product of two independent random vari-

ables) Let X, Y be two random variables.4 Assume that the probability density functions

of X and Y, namely f (x) and g(y), are defined on (a, b) and (c, d), respectively. Given that

0 < a < b < ∞ and 0 < c < d < ∞, the probability density function of the product of L = XY

is

h(l) =



l/c∫
a

g( l
x ) f (x) 1

x dx , ac < l < ad

l/c∫
l/d

g( l
x ) f (x) 1

x dx , ad < l < bc

b∫
l/d

g( l
x ) f (x) 1

x dx , bc < l < bd

if ad < bc,

h(l) =



l/c∫
a

g( l
x ) f (x) 1

x dx , ac < l < bc

b∫
a

g( l
x ) f (x) 1

x dx , bc < l < ad

b∫
l/d

g( l
x ) f (x) 1

x dx , ad < l < bd

4 Note that these variables are completely different than our individual processes included in the spot price
model.
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if ad > bc,

h(l) =


l/c∫
a

g( l
x ) f (x) 1

x dx , ac < l < ad

b∫
l/d

g( l
x ) f (x) 1

x dx , bc < l < bd

if ad = bc.

Proof of Interim Theorem. (Outline) Define K = X and L = XY . Let u, the forward

mapping, and w, the reverse mapping, be the mappings between A = {(x, y)|a < x < b, c <

y < d} and B = {(k, l)|a < k < b, ck < l < dk}. Then

u1(x, y) = x = k u2(x, y) = xy = lw1(k, l) = k = x w2(k, l) =
l
k

= y.

The Jacobian matrix and its determinant is given by

J =

∣∣∣∣∣∣∣∣∣
∂w1
∂k

∂w1
∂l

∂w2
∂k

∂w2
∂l

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 0

− l
k2

1
k

∣∣∣∣∣∣∣∣∣ =
1
k

Then, the joint PDF fK,L(k, l) can be found as

fK,L(k, l) = f (w1(k, l))g(w2(k, l))|J| |J| is the absolute value of the determinant

= f (k)g(
l
k

)
1
|k|
.

Integrating fK,L(k, l) w.r.t. k over appropriate intervals yields the result. �

The first case, ad < bc, of the above theorem matches our case where fJ( j) is defined on

(−∞,∞), whereas fQIτ≤t (q) is given to be in the interval [e−βt, 1]. Defining K = J and L =

QIτ≤t and the mappings

u1( j, qIτ≤t) = j = k u2( j, qIτ≤t) = jqIτ≤t = l

w1(k, l) = k = j w2(k, l) =
l
k

= qIτ≤t,

the determinant of the Jacobian matrix can similarly be found as J = 1/k. Then the joint

probability density function fK,L(k, l) is

fK,L(k, l) = fJ(w1(k, l)) fQIτ≤t (w2(k, l))|J|

= fJ(k) fQIτ≤t (
l
k

)
1
|k|
.

Since ac = ad = −∞ and bc = bd = ∞ in our case, l takes values only in the interval (ad, bc),

or (−∞,∞), which means that the joint probability density function can be integrated w.r.t. k
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only over the integral (−∞,∞). Thus,

fJQIτ≤t (x) = fL(x) =

∞∫
−∞

fJ(γ) fQIτ≤t

(
x
γ

)
1
|γ|

dγ.

Similarly,

FJQIτ≤t (x) = FL(x) = e−λtIx≥0 +

x∫
−∞

fJQIτ≤t (ξ)dξ.

Finally, we need to calculate fQIτ≤t (x/γ) inside the integral to make the density function more

meaningful. Using the density fQIτ≤t calculated above, it can be found as

fQIτ≤t (
x
γ

) =
λ

β
(

x
γ

)−(1− λβ )I x
γ∈[e

−βt ,1]

=
λ

β

1

x1− λβ
Iγ∈[x,xeβt]γ

1− λβ , x > 0

=
λ

β

1

|x|1−
λ
β

Iγ∈[x,xeβt]|γ|
1− λβ , x < 0.

Important note. γ and x in the last equation array are the integrators of the random variables

J, the jump size, and JQ, the multiplication of the two random variables, respectively. This

implies that x can be negative, but only if the jump size is negative since the variable Q is

defined in [0, 1]. This explains why we accordingly took the absolute value of γ, the jump

size integrator, as well as x, when x < 0 is the case. �

In the corollary below, we illustrate a special case for the density function, where the jump

sizes are again exponentially distributed.

Corollary 3.4.5 (Exponential jump size distribution) Assume that J ∼ Exp(1/µJ). Then

fỸt
(x) = fJQIτ≤t (x) is

fỸt
(x) =

λ

βµJ
λ/β

Γ(1 − λ/β, y/µJ) − Γ(1 − λ/β, yeβt/µJ)
y1−λ/β , y > 0. (3.8)

Proof. To show this, we know that the random variables J and JQ take positive values, as

J ∼ Exp(1/µJ). Referring to the equations fJQIτ≤t (x) and fQIτ≤t (
x
γ ) above, and substituting for
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the given terms yields

fJQIτ≤t (x) =

∞∫
−∞

1
µJ

e−
γ
µJ
λ

β

1

(x)1− λβ
Iγ∈[x,xeβt]γ

1− λβ
1
γ

dγ

=

xeβt∫
x

γ−
λ
β e−

γ
µJ

λ

βµJ(x)1− λβ
dγ

=

xeβt
µJ∫

x
µJ

γ̂−
λ
β µJ

− λβ e−γ̂
λ

β(x)1− λβ
dγ̂ γ̂ =

γ
µJ

and dγ̂ =
dγ
µJ

=

∞∫
x
µJ

γ̂−
λ
β µJ

− λβ e−γ̂
λ

β(x)1− λβ
dγ̂ −

∞∫
xeβt
µJ

γ̂−
λ
β µJ

− λβ e−γ̂
λ

β(x)1− λβ
dγ̂

=
λ

β(x)1− λβ
µJ
− λβ


∞∫

x
µJ

γ̂−
λ
β e−γ̂dγ̂ −

∞∫
xeβt
µJ

γ̂−
λ
β e−γ̂dγ̂

 .

The integrals in the last line are referred to as the upper incomplete gamma functions in the

literature and this special function is defined as

Γ(s, x) =

∞∫
x

γ̂s−1e−γ̂dγ̂.

Then, fJQIτ≤t (x) can be rewritten as

fJQIτ≤t (x) =
λ

βx1− λβ
µJ
− λβ

(
Γ(1 − λ/β, x/µJ) − Γ(1 − λ/β, xeβt/µJ)

)
.

�

In pricing the Swing options, this result will be represented by an approximation which fits

very well the exact density for typical market parameters. The results so far will be exploited

intensively in Section 3.5 as well as in Chapter 4 where the valuation issues of various energy

options are addressed.
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3.5 Forward Dynamics and the Options on Forwards with or without a Deliv-

ery Period

3.5.1 Risk-Neutral World and Option Pricing

No matter what type of risk attitudes different investors have, the forward prices should per-

fectly reflect today’s common expectations about the future, i.e. a risk-free return on the asset.

This implies the necessity of one or more probability measure(s) which is(are) risk-adjusted.

The existence, but not necessarily the uniqueness, of the risk-neutral measure makes us be-

lieve that the market conforms to no-arbitrage rule. If it is also unique, then the market is

complete, meaning that any payoff can be replicated using the traded assets. Assuming a sep-

arate spike process Yt for our spot price model is a result of the existence of a non-hedgeable

jump risk in the electricity markets, which cannot be hedged away through traditional hedg-

ing methods. Not only are the electricity markets incomplete due to spike risk, but also the

electricity itself is characterized by the difficulties in its storage. Hence, investors cannot hold

the electricity physically (no pun intended) as a hedging asset against contingent claims writ-

ten on it. This implies that one cannot simply assume that the discounted price process S̃ is

martingale under any risk-neutral measure Q in the set of possible risk-neutral measures. That

is, F(t,T ) = EQ[S T
∣∣∣Ft] is not necessarily of the simple shape er(T−t) any more.

However, derivatives traded in the market have to satisfy certain consistency conditions that

the spot commodity does necessarily not. Any other scenario could lead to arbitrage oppor-

tunities which can be exploited by setting up an appropriate derivatives portfolio. Financial

markets cannot continue to exist in the presence of risk-free excess returns. Hence, the ar-

bitrage opportunities should be eliminated and there should exist at least a set of equivalent

risk-neutral measures, Q, which may not be determined uniquely but still keep the market

arbitrage-free. The existence of Q is equivalent to the existence of a unique price for every

single derivative eligible for trade. Given there is a sufficiently large number of derivatives

traded in the market, the parameters of the spot price model can be calibrated to the observed

prices of these derivatives and they can be used to replicate various financial products tailored

to the needs of the energy investors.
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3.5.1.1 The Measure Q

As it is reasonable, we only consider a subset of equivalent measures which leave the structure

of the jump process unchanged, i.e. jumps will still be generated by a Poisson process and

an independent jump size distribution under the measure Q. This restriction imposed on the

set of possible risk-neutral measures might limit the range of the arbitrage free prices we will

obtain for certain derivatives. This limitation will be offset by the increased manageability of

the stochastic dynamics under the risk-neutral measure.

We define an equivalent measure, Q, by means of the Radon-Nikodyn derivative, L, such that

dQ = LT dP. The stochastic dynamics of the state price process, (Lt)t∈[0,T ], are given by the

equation

dLt

Lt−
= −λγtdt − θ(Xt, t)dWt + γtdNt, L0 = 1.

Here θ can be called as the market price of diffusion risk and γ as the market price of jump

risk (γ(t) + 1 > 0, ∀t ∈ [0,T ]). We divide the measure change process into two parts, namely,

(1) the change of measure for a Brownian motion with drift and (2) the change of measure

for a compound Poisson process. The latter can affect both the intensity and the distribution

of the jump sizes, however, we ignore this possibility and prefer to keep the model structure

unchanged.

The following theorem is useful to handle both (1) and (2) above.

Theorem 3.5.1 For the independent Brownian and compound Poisson processes, Wt and Ct,

respectively, the process

WQ
t = Wt +

t∫
0

θsds

is a Brownian motion, CQ
t =

Nt∑
i=1

Ĵi is a compound Poisson process under the probability

measure Q with the intensity λ̂ and i.i.d. jump sizes having the density f̂ ( j), and the processes

WQ
t and CQ

t are again independent.

Proof. See Theorem 11.6.9 in [25] for the proof of this theorem. �

Then, based on the Girsanov Theorem and the fact that Jt, Nt and Wt are mutually indepen-
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dent, the dynamics under Q measure can be written as

S t = e ft+Xt+Yt

dXt = (−αXt − θ(Xt, t)σ)dt + σdWQ
t

dYt = −βYt−dt + ĴtdNQ
t

It is obvious that the new intensity λ̂ for the jumps under the measure Q should be of the form

λ(1 + γt) implying that the market price of the jump risk is included in the new intensity. This

assures that the process is adjusted for the jump risk. In order to keep the model in a similar

shape, γt is defined as the increase in the number of jumps which is proportional to (λ̂− λ)/λ.

In accordance with our last statement, we set the market price of jump risk, γt, as

γt =
λ̂

λ
− 1.

We also define the market price of diffusion risk, θ, as

θ(x, t) =
α̂ − α

σ
x −

α̂

σ
µt

so that the dynamics of Xt and Yt become

dXt = α̂(µt − Xt)dt + σdWQ
t

dYt = −βYt−dt + ĴtdNQ
t ,

where NQ
t has the density λ̂.

Finally, we arrange Xt above to express µt, the time-varying long-term mean to which the spot

price process reverts, as an additional term in the seasonality part. To achieve this, consider

the solutions to two different OU processes: one with a long-term mean µt, Xµ
t , and the other

with a time-varying long-term mean of zero, X0
t . The difference between the solutions to these

two stochastic differential equations will definitely be the drift term

f̃t = α̂

t∫
0

e−α̂(t−s)µsds.

Note that f̃t is the solution of a first-order ordinary differential equation of the form

f̃
′

t + α̂ f̃t = α̂µt, f̃0 = 0

This implies that µt in the above stochastic process for Xt can be considered as a separate

seasonality function f̃t and added to our original seasonality function ft, turning it into f̂t,

which will be the sum
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f̂t = ft + f̃t.

And now the process Xt again has a long-term mean of zero with a shifted seasonality func-

tion f̂t. Expressing the long-term mean separately provides us with a model shape which is

similar to the one considered under the P measure. Hence, the fact that adding a deterministic

function to a OU process results in another OU process guarantees us that the shape of our

original model can still be left unchanged (i.e. a spot price model which is the exponential

of the sum of a deterministic seasonality function, a mean-reverting pure OU process and

another mean-reverting jump process).

3.5.1.2 New Dynamics under the Measure Q

The calculations in the previous section implies that the spot electricity price model under the

risk-neutral measure Q will look like

S t = e f̂t+Xt+Yt

dXt = −α̂Xtdt + σdWQ
t

dYt = −βYt−dt + ĴtdNQ
t .

Here NQ
t has the intensity λ̂ under Q. The parameters α̂, λ̂, the function f̂ as well as the

distribution of jump sizes, Ĵ, are all determined by the particular choice of the measure Q.

Only the parameters σ and β remain unchanged under the new risk-neutral measure. Note

that the drift of the process Yt under Q is likely to be different from the one under P. This is

simply because the Poisson processes Nt and NQ
t are not a martingales and they will contribute

to the common −βYt−dt term above with two different drift terms, i.e. λdt and λ̂dt.

For simplicity of notation, the same parameters will be used as the ones in the original model

given in (3.1). But, again note that they might differ from the parameters under P, the real-

world measure. Therefore, from now on, ft, α, Wt, Jt, Nt and λ will substitute in notation for

their risk-neutral counterparts f̂t, α̂, WQ
t , Ĵt, NQ

t and λ̂, and our model of interest will be

S t = e ft+Xt+Yt

dXt = −αXtdt + σdWt (3.9)

dYt = −βYt−dt + JtdNt.
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3.5.1.3 Calibration

It is strongly argued in [21] and [18] that the model-implied forward prices are dominated by

the seasonality effect and that the seasonal patterns are one of the most important aspects in

the shape of the forward curve. Hence, the modeling of the seasonality function with great

care would, in turn, bring two main advantages: (1) the rest of the model parameters could

be calibrated more effectively to the deseasonalized historical data and, (2) a more realistic

seasonality function which is consistent with and better reflect the forward price dynamics

could be extracted from the forward curve. The following lemma can be used to derive a risk-

adjusted seasonality curve using the calibrated model parameters and the observed forward

curve.

Lemma 3.5.2 (Seasonal function consistent with the forward curve) The risk-neutral season-

ality function is given by the equation

f (T ) = lnF[T ]
0 − X0e−αT −

σ2

4α
(1 − e−2αT ) − Y0e−βT − λ

T∫
0

(ΦJ(e−βs) − 1)ds, (3.10)

where F[T ]
0 is the forward price at time 0 which matures at time T .

Proof. Note that

F[T ]
0 = EQ[S T

∣∣∣F0] = EQ[S T ]

= EQ[eZT ]

= e
f (T )+X0e−αT +σ2

4α (1−e−2αT )+Y0e−βT +λ
T∫

0
(ΦJ(e−βs)−1)ds

.

Using Theorem 3.3.1, we have

lnF[T ]
0 = f (T ) + X0e−αT +

σ2

4α
(1 − e−2αT ) + Y0e−βT + λ

T∫
0

(ΦJ(e−βs) − 1)ds.

which completes the proof. �

What we have so far is an incomplete model, which implies the need for a set of liquid

derivatives traded in the market. Given that a continuous, observable forward curve, FT
0

for all T ∈ [0,T ∗], exists in the market, all parameters except the seasonality function, ft,

can be calibrated to historical data. Various interpolation methods can be used to obtain an
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optimal continuous forward curve. The calibration methodology we’ve just mentioned can be

achieved by following the steps below (some of them recursively):

1. ft is derived from the real-world measure (i.e. it is calibrated to the historical data)

2. Seasonality is extracted from the historical data

3. The mean-reversion rate α and the volatilityσ are calibrated to the seasonality-extracted

data set

4. Jumps are detected from this reduced data set

5. Steps (3) and (4) are performed recursively5

6. Having determined all parameters, risk-neutral seasonality function, ft (i.e. f̂t in more

precise terms), can be extracted from the observed forward curve, F[T ]
0 , for T ∈ [0,T ∗]

using (3.10).

3.5.2 Pricing Options on Forwards

Obviously, we can price an option at time t written on a forward contract using the stochastic

dynamics of the forward. The zero-cost6 forward price is determined by

F[T ]
t = EQ[S T

∣∣∣Ft].

These options are mostly puts or calls of vanilla type and their maturities are usually set equal

to those of the forwards on which they are written. Then, the payoff can be given by the

equation

(F[T ]
T − D)+ = (S T − D)+.

We denote by D the exercise price of the option. Analysing the stochastic dynamics of the

forward curve implied by the spot price model, we will be able to relate our pricing formula

to Black’s 1976 formula (see [3]) by approximating forward price distribution by means of

the moment matching method.
5 Here a recursive filtering is proposed because the early estimates of diffusion parameters α and σ would be

more affected by the unfiltered spikes than those estimated after the spike effects are thoroughly extracted from
the original data set. Once the spikes are filtered in the first round, the diffusion part is added to the reduced data
set using the estimation of α in the previous step. Then, the calibration proceeds with the re-estimation of these
diffusion parameters to obtain another reduced data set from which the spike process parameters are re-filtered,
and so on.

6 The price of the underlying at time T is expected to be equal to the forward price, thus making the expected
cost of the contract 0.
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3.5.2.1 Forward Dynamics

Using the relationship above and the expectation of S t given in the proof of Theorem 3.3.1

with initial conditions Xt and Yt, yields

F[T ]
t = E[e lnS T

∣∣∣Ft] = EQ[S T |Xt,Yt]

= exp
(

f (T ) + Xte−α(T−t) +
σ2

4α
(1 − e−2α(T−t)) + Yte−β(T−t)

)

exp

λ
T−t∫
0

(ΦJ(e−βs) − 1)ds

 . (3.11)

Lemma 3.5.3 (Dynamics of the forward) The stochastic dynamics of the forward price F[T ]
t

in (3.11) for a fixed maturity T is given by

dF[T ]
t

F[T ]
t

= −λ
(
ΦJ(e−β(T−t)) − 1

)
dt + σe−α(T−t)dWt +

(
eJte−β(T−t)

− 1
)

dNt. (3.12)

Proof. Let us denote the diffusion and the jump parts of (3.11) separately by

L[T ]
t = f (Xt, t) = exp

(
Xte−α(T−t) +

σ2

4α
(1 − e−2α(T−t))

)

Z[T ]
t = f (Θ[T ]

t ) = exp
(
Θ

[T ]
t

)
= exp

Yte−β(T−t) + λ

T−t∫
0

ΦJ(e−βs) − 1ds

 .
It is clear that Θ

[T ]
t has both Riemann and pure jump parts. Then, we can refer to the Itô-

Doeblin formula for semimartingales (see Theorem 11.5.1 of [25] for further detail).

Stochastic dynamics of Θ
[T ]
t can be written as

dΘ
[T ]
t = e−β(T−t)dYt + βYte−β(T−t) − λ(φJ(e−β(T−t)) − 1)dt.

Also using the stochastic dynamics of Yt, this can be further extended to

dΘ
[T ]
t = e−β(T−t)(−βYtdt + JsdNt) + βYte−β(T−t) − λ(φJ(e−β(T−t)) − 1)dt

= e−β(T−t)JtdNt − λ(φJ(e−β(T−t)) − 1)dt.

Note that it has a continuous (c) Riemann part

dΘ
[T ]
t,c = −λ(φJ(e−β(T−t)) − 1)dt,
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whose quadratic variation is simply d[Θ,Θ][T ]
t,c = 0. Next, observe that only if the process

Z = exp(Θ) has a jump at time s, using the explicit solution for Yt and denoting by s− the

moment before the jump occurs allow us to write

Z[T ]
s = e

Y0e−βT +
Ns∑
i=1

e−β(T−τi) Jτi +λ
T−s∫
0

ΦJ(e−βu)−1du

Z[T ]
s− = e

Y0e−βT +
Ns−1∑
i=1

e−β(T−τi) Jτi +λ
T−s∫
0

ΦJ(e−βu)−1du
,

which yields

Z[T ]
s = Z[T ]

s− exp
(
e−β(T−τNs )JτNs

)
.

Since τNs = s, we can write, Z[T ]
s = Z[T ]

s− exp
(
e−β(T−s)Js

)
. Therefore, the difference can be

expressed (i.e. whether there is a jump or not) by the equation

Z[T ]
s − Z[T ]

s− = Z[T ]
s−

[
exp

(
e−β(T−s)Js

)
− 1

]
∆Ns.

Note that ∆Ns is equal to one if a jump occurs and zero otherwise. According to the Itô

-Doeblin formula for semimartingales,

Z[T ]
t = f (Θ[T ]

t ) = f (Θ[T ]
0 ) +

t∫
0

−λ(φJ(e−β(T−s)) − 1)Zsds +
∑

0<s≤t

[Zs − Zs−]

= f (Θ[T ]
0 ) +

t∫
0

−λ(φJ(e−β(T−u)) − 1)Zsds

+

t∫
0

[
exp

(
e−β(T−s)Js

)
− 1

]
Z(s−)dNs.

Then, the stochastic dynamics of the process can be found as

dZ[T ]
t = Z[T ]

t −λ(φJ(e−β(T−t)) − 1)dt +
[
exp

(
e−β(T−t)Jt

)
− 1

]
Z[T ]

t dNt

dZ[T ]
t

Z[T ]
t

= −λ(φJ(e−β(T−t)) − 1)dt +
[
exp

(
e−β(T−t)Jt

)
− 1

]
dNt.

Similarly, applying the (standard) Itô formula to L[T ]
t = f (Xt, t), we obtain

L[T ]
t = f (Xt, t) = f (X0, 0) +

t∫
0

L[T ]
s (αXse−α(T−s) −

σ2

2
e−2α(T−s))ds

+

t∫
0

L[T ]
s e−α(T−s)(−αXsds + σdWs) +

1
2

t∫
0

L[T ]
s e−α(T−s)σ2ds,
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which further implies

dL[T ]
s

L[T ]
s

= σe−α(T−t)dWt.

Finally, writing dF[T ]
t in the form

dF[T ]
t = L[T ]

t Z[T ]
t

dZ[T ]
t

Z[T ]
t

+ Z[T ]
t L[T ]

t
dL[T ]

t

L[T ]
t

= F[T ]
t

dZ[T ]
t

Z[T ]
t

+
dL[T ]

t

L[T ]
t


yields the result in (3.12). �

Lemma 3.5.3 introduces us two additional terms:

Compensating Factor. The equality EQ[dF[T ]
t ] = 0 should hold by definition (forward prices

are martingale). This has an implication for the result above: the invisible drift of the differ-

ential Poisson part in (3.12) should be compensated by the visible drift in the equation. This

condition results from the fact that the Poisson process is not a martingale under neither of

the probability measures, P and Q.

Sensitivity. The effect of a jump in the underlying spot price can be investigated by calculating

the ratio of the percentage change in the forward price to the percentage change in the spot

price. This effect obviously remains very limited, particularly for the longer terms to maturity.

In mathematical terms, the ratio

(
F[T ]

t − F[T ]
t−

)
/F[T ]

t−

(S t − S t−) /S t−
=

(
F[T ]

t − F[T ]
t−

)
/F[T ]

t−(
F[t]

t − F[t]
t−

)
/F[t]

t−

=
eJte−β(T−t)

− 1
eJt − 1

is very small for larger values of T − t.

3.5.2.2 Pricing

As we’ve mentioned at the beginning of the previous section, the majority of options written

on forwards have the same exercise dates as the forwards on which they are written. Hence,

below we find an approximation to the distribution of F[T ]
T in terms of the currently observed
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forward prices F[T ]
t in the market. The solutions for both Xt and Yt imply

XT = Xte−α(T−t) +

T∫
t

e−α(T−s)σdWs

XT − Xte−α(T−t) =

T∫
t

e−α(T−s)σdWs (3.13)

YT = Yte−β(T−t) +

NT∑
i=1

e−β(T−τi)Jτi

YT − Yte−β(T−t) =

NT∑
i=1

e−β(T−τi)Jτi . (3.14)

Also, using (3.11) for t = T , we have

lnF[T ]
T = f (T ) + XT + YT

and for time t it is

lnF[T ]
t = f (T ) + Xte−α(T−t) +

σ2

4α
(1 − e−2α(T−t)) + Yte−β(T−t) + λ

T−t∫
0

(ΦJ(e−βs) − 1)ds.

The last two equations yield

lnF[T ]
T = lnF[T ]

t + XT − Xte−α(T−t) + YT − Yte−β(T−t) −
σ2

4α
(1 − e−2α(T−t))

−λ

T−t∫
0

(ΦJ(e−βs) − 1)ds.

Inserting (3.13) and (3.14) where necessary results in

lnF[T ]
T = lnF[T ]

t +

T∫
t

e−α(T−s)σdWs +

NT∑
i=1

e−β(T−τi)Jτi −
σ2

4α
(1 − e−2α(T−t))

−λ

T−t∫
0

(ΦJ(e−βs) − 1)ds. (3.15)

In a first approximation, we ignore the effects on the conditional distribution of the jump part
NT∑
i=1

e−β(T−τi)Jτi and assume F[T ]
T is log-normally distributed. Even in case there are jumps,

this still allows us to relate it to Black’s 1976 formula. What we trade off against excluding

the compound Poisson part is the loss of information due to the ignored heavy-tails in the

distribution of lnF[T ]
t that are likely to be caused by the spike risk. Ignoring spike risk will
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lead to underestimated premiums on the far out-of-the-money calls (call option prices rule

out the far probability of F[T ]
T exceeding D) and overestimated premiums on the far in-the-

money puts (put option prices rule out the far probability of D being exceeded by F[T ]
T ). This

situation is conceptually similar to, but just the reverse of, the volatility smirk observed in

equity markets which is generally known as resulting from the crashophobia7 state of mood

in these markets. Still, this approximation is expected to perform good with at-the-money

options.

Note that F[T ]
t is martingale for the maturity T (by definition) and we can match its first two

moments with those of Black’s 1976 model where dF = Fσ̂dW and FT = Ftexp(− 1
2 σ̂

2(T −

t) + σ̂(WT −Wt)).

For this purpose, we set

lnF[T ]
T ≈ lnF[T ]

t + ξ, ξ ∼ N
(
−

1
2
σ̃2(T − t), σ̃2(T − t)

)
,

which follows from the martingale property. And (3.15) implies

σ̃2(T − t) := V
[
[lnF[T ]

t

∣∣∣Ft]
]

= V


T∫

t

e−α(T−s)σdWs +

NT∑
i=1

e−β(T−τi)Jτi

 .
Using the moments derived in Sections 3.1 and 3.2, we find8

σ̃2(T − t) =
σ2

2α
(1 − e−2α(T−t)) +

λ

2β
E[J2](1 − e−2β(T−t)).

Matching σ̃2(T − t) to implied Black’s 1976 volatility σ̂2(T − t), we conclude that σ̃2(T − t)

is the the implied Black’s 1976 volatility which can be approximated by

σ̂2 ≈ σ̃2 =

σ2

2α (1 − e−2α(T−t)) + λ
2βE[J2](1 − e−2β(T−t))

T − t
. (3.16)

The term structure of the implied volatility is depicted in Figure 3.3 for different jump sizes.

As one can easily notice, the model-implied volatility is lower for the forwards with longer

maturities. This result is highly consistent with the mean-reverting behavior observed in the

electricity markets. The long-term equilibrium price is much less volatile than the prices

observed in the shorter term.

7 The investors put more premium on far out-of-the-money puts than far in-the-money puts against the prob-
ability of a crash in the market.

8 Note that mutual independence exists between W and J.
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Figure 3.3: Term structure of the implied volatility. Average jump sizes are 0, 0.4 and 0.8.

In the next part, our calculations will take into account the fact that the electricity is a flow

variable and cannot be stored effectively. Accordingly, we will assume a delivery period

[T1,T2] for the forward contracts on which the options are written.

3.5.3 Pricing Options on Forwards with a Delivery Period

When the power market is concerned, the problem of pricing the options on forward con-

tracts cannot be reduced to one where the option payoff is determined simply by the value

of the underlying security on a single day. To illustrate, consider the EEX (European En-

ergy Exchange). The total delivery volume on a baseload futures contract traded on the EEX

is specified in one-megawatt-per-hour terms, e.g. the seller of a monthly contract delivers

720 MWs during the specified delivery month, given the month has 30 days and the contract

covers 24 hours a day.

Now, let us denote by F[T1,T2]
t a forward power contract which has the delivery period [T1,T2].

This is similar to an Asian option9 in the Black-Scholes setting in that we have to deal with

9 An Asian option (or average value option) is a special type of option contract. For Asian options the payoff

is determined by the average underlying price over some preset period of time.
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the distribution of the integral
T∫

0

ϕtS tdt

rather than the underlying’s pure price process, S . A well known approach to this case is to ap-

proximate the distribution of the integral, which is the weighted sum of log-normal variables,

by a log-normal distribution using the moment matching method (see [26], [14] and [11]).

This method is similar to the one we utilized in Section 3.5.2 to derive an approximation to

Black’s 1976 implied volatility.

One method to express the strike price of a forward contract F[T1,T2]
t is to weight F[T ]

t s by a

function ϕ(T ) where T ∈ [T1,T2], i.e.

F[T1,T2]
t =

T2∫
T1

ϕ(T )F[T ]
t dT. (3.17)

Since there exists no closed form distribution function or characteristic function for the weighted

sum of log-normal variables, the literature in recent years witnessed an extended effort to ap-

proximate the distribution of this integral. The term moment matching conceptually means

that the mean and variance of the integral above is matched with the mean and variance of a

univariate log-normal variable F̃. One important motivation for using the moment matching

method is that it allows us to value the options whose values are determined by the under-

lying processes that are dependent on the path of a simple process. The valuation of the

options based on the approximated one dimensional asset distributions can be achieved by

using closed form formulas, e.g. Black and Scholes. Otherwise, pricing options on forwards

with a delivery period, as well as other path-dependent derivatives, based on such an inte-

gral would require more sophisticated numerical methods and much more time likely. As

mentioned above, Asian options are also in this group. Once we determine the parameters

of the approximate log-normal distribution, pricing options is nothing else than pricing in the

Black-Scholes or Black’s 1976 setting. One can use the following remark to relate the mean

and variance of a log-normal distribution to those of a normal distribution.

Remark 3.5.4 If the random variable Y is log-normally distributed with parameters µY , σY ,

then X = lnY is normally distributed where the mean µ and variance σ2 are given by

µ = lnµY − 0.5ln
1 +

σ2
Y

µ2
Y

 and σ2 = ln
1 +

σ2
Y

µ2
Y

 ,
respectively.

43



Now, think of a call option on a forward contract with a delivery period [T1,T2]. Assume

that this option expires on the first day of the delivery period, i.e. at time T1. The payoff at

maturity can be defined as
(
F[T1,T2]

T1
− D

)+
and the price of the option at time t is then

EQ
[
(F[T1,T2]

T1
− D)+

∣∣∣Ft
]
.

To be able to calculate this expectation, we need to approximate the distribution of the integral

given in (3.17) (i.e. the distribution of F[T1,T2]
T1

) by a log-normal variable F̃. For this purpose,

we need to match its mean and variance with those of the approximating variable F̃.

3.5.3.1 First Moment of F[T1,T2]
T1

Using the weighted average representation given in (3.17), the expectation EQ
[
F[T1,T2]

T1

∣∣∣Ft
]

can be written as

EQ
[
F[T1,T2]

T1

∣∣∣Ft
]

= EQ


T2∫

T1

ϕ(T )F[T ]
T1

dT
∣∣∣Ft


=

T2∫
T1

ϕ(T )EQ
[
F[T ]

T1

∣∣∣Ft
]

dT.

Now we need to determine EQ
[
F[T ]

T1

∣∣∣Ft
]
. By (3.11), we have

lnF[T ]
t = f (T ) + Xte−α(T−t) +

σ2

4α
(1 − e−2α(T−t)) + Yte−β(T−t) + λ

T−t∫
0

(ΦJ(e−βs) − 1)ds

which can be rewritten for t = T1 as

lnF[T ]
T1

= f (T ) + XT1e−α(T−T1) +
σ2

4α
(1 − e−2α(T−T1)) + YT1e−β(T−T1) + λ

T−T1∫
0

(ΦJ(e−βs) − 1)ds.

To write the latter in terms of the former, we first calculate Xte−α(T−T1)−Xte−α(T−t) by referring

to (3.2), i.e.

XT = XT1e−α(T−T1) + σ

T∫
T1

e−α(T−s)dWs

= Xt f e−α(T−t) + σ

T∫
t

e−α(T−s)dWs
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so that

XT1e−α(T−T1) − Xte−α(T−t) = e−α(T−T1)σ

T1∫
t

e−α(T1−s)dWs.

Similarly YT1e−β(T−T1) − Yte−β(T−t) can be calculated by using (3.2) again as

YT1e−β(T−T1) − Yte−β(T−t) =

NT1∑
i=Nt

Jτie
−β(T−τi).

Finally, by using these two results, we find

lnF[T ]
T1

= lnF[T ]
t + e−α(T−T1)σ

T1∫
t

e−α(T1−s)dWs + e−β(T−T1)
NT1∑
i=Nt

Jτie
−β(T1−τi)

−
σ2

4α
(e−2α(T−T1) − e−2α(T−t)) − λ

T1−t∫
0

(ΦJ(e−β(T−T1)e−βs) − 1)ds.

Then, turning back to the desired expectation EQ
[
F[T ]

T1

∣∣∣Ft
]

and using the mutual independence

of W and J, we conclude

EQ
[
F[T ]

T1

∣∣∣Ft
]

= F[T ]
t EQ

exp

e−α(T−T1)σ

T1∫
t

e−α(T1−s)dWs




EQ

exp

e−β(T−T1)
NT1∑
i=Nt

Jτie
−β(T1−τi)




exp
{
−(
σ2

4α
(e−2α(T−T1) − e−2α(T−t)))

}

exp

−(λ

T1−t∫
0

(ΦJ(e−β(T−T1)e−βs) − 1)ds)

 .
Note that the first expectation in the above expression is a moment generating function of

the form E[eθZ] = e
1
2σ

2
Zθ

2
, where Z is a normal random variable with zero mean and θ is

equal to one. The second expectation is the moment generating function of the process Yt

with θ = e−β(T−T1). The fourth term is also equal to ΦYt (e
−β(T−T1))−1. Arranging the equation

accordingly yields

EQ
[
F[T ]

T1

∣∣∣Ft
]

= F[T ]
t exp

{
σ2

4α
(e−2α(T−T1) − e−2α(T−t))

}
ΦYt (e

−β(T−T1))

exp
{
−(
σ2

4α
(e−2α(T−T1) − e−2α(T−t)))

}
ΦYt (e

−β(T−T1))
−1

= F[T ]
t .
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Then, the first moment of F[T1,T2]
T1

turns out to be

EQ
[
F[T1,T2]

T1

∣∣∣Ft
]

= EQ


T2∫

T1

ϕ(T )F[T ]
T1

dT
∣∣∣Ft


=

T2∫
T1

ϕ(T )EQ
[
F[T ]

T1

∣∣∣Ft
]

dT

=

T2∫
T1

ϕ(T )F[T ]
t dT.

Note that the same result would be reached directly using the martingale property of the

forward.

3.5.3.2 Second Moment of F[T1,T2]
T1

The second moment of F[T1,T2]
T1

can be expressed as the product of two individual forwards,

namely F[T ]
T1

and F[T ∗]
T1

for T and T ∗ in [T1,T2], i.e.

EQ
[(

F[T1,T2]
T1

)2
|Ft

]
= EQ




T2∫
T1

ϕ(T )F[T ]
T1

dT


2 ∣∣∣Ft


=

T2∫
T1

T2∫
T1

ϕ(T )ϕ(T ∗)EQ
[
F[T ]

T1
F[T ∗]

T1

∣∣∣Ft
]

dTdT ∗.

Again we need to calculate EQ
[
F[T ]

T1
F[T ∗]

T1

∣∣∣Ft
]
. Note that, by referring to (3.11) we have al-

ready calculated F[T ]
T1

in terms of F[T ]
t . Hence,

lnF[T ]
T1

+ lnF[T ∗]
T1

= lnF[T ]
t + lnF[T ∗]

t

+
(
e−α(T−T1) + e−α(T ∗−T1)

)
σ

T1∫
t

e−α(T1−s)dWs

+
(
e−β(T−T1) + e−β(T ∗−T1)

) NT1∑
i=Nt

Jτie
−β(T1−τi)

−
σ2

4α

(
1 + e−2α(T ∗−T )

) (
e−2α(T−T1) − e−2α(T−t)

)
−λ

T1−t∫
0

(ΦJ
(
e−β(T−T1)e−βs

)
− 1)ds

−λ

T1−t∫
0

(ΦJ
(
e−β(T ∗−T1)e−βs

)
− 1)ds.
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Similarly, using the mutual dependence of W and J, the expectation EQ
[
F[T ]

T1
F[T ∗]

T1

∣∣∣Ft
]

can be

found to be

EQ
[
F[T ]

T1
F[T ∗]

T1

∣∣∣Ft
]

= EQ
[
exp

{
ln

(
F[T ]

T1
F[T ∗]

T1

)} ∣∣∣Ft
]

= EQ
[
exp

{
lnF[T ]

T1
+ lnF[T ∗]

T1

} ∣∣∣Ft
]

= F[T ]
t F[T ∗]

t exp
{
σ2

4α

(
1 + e−α(T ∗−T )

)2 (
e−2α(T−T1) − e−2α(T−t)

)}
exp

{
−

(
σ2

4α

(
1 + e−2α(T ∗−T )

) (
e−2α(T−T1) − e−2α(T−t)

))}
ΦYt

(
e−β(T−T1) + e−β(T ∗−T1)

)
Φ−1

Yt

(
e−β(T−T1)

)
Φ−1

Yt

(
e−β(T ∗−T1)

)
.

3.5.3.3 Moment Matching

The weighting factor ϕ puts different weights on forwards F[T ]
t for the different values of T ∈

[T1,T2] depending on the time of the settlement. The parties can either settle the contract after

the delivery is complete, i.e. at T2, or the contract holder can make instantaneous payments

whenever the counterparty makes a delivery during the delivery period [T1,T2]. These two

cases differ in that the latter allows for the reinvestment of the proceedings at the risk-free

rate. In this case, the zero-cost strike implies

EQ


T2∫

T1

(F[T ]
T1
− D)er(T2−T )dT |Ft

 = 0,

which results in

D =

T2∫
T1

rer(T2−T )

er(T2−T1) − 1
EQ[F[T ]

T1

∣∣∣Ft]dT.

In this case, the weighting factor is obviously given by

ϕ(T ) =
rer(T2−T )

er(T2−T1) − 1
.

Alternatively, if the contract is settled at T2, the term er(T2−T ) has a value of 1. This leads to

ϕ(T ) = 1
T2−T1

. Considering these two potential weighting factors which may apply in different

settlement cases, we assume that the settlement is made at T2 and compare the density of the

forward F[T1,T2]
T1

to that of F̃[T1,T2]
T1

, the latter being a log-normal approximation to the real

density and obtained by matching the two moments calculated above. Figure 3.4 shows that

the approximated density exhibit slight differences from the simulated density, particularly

around the mean values. However, the option prices based on the approximate distribution

are still likely to perform well.
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Figure 3.4: Simulated density (106 paths) versus approximated density. Parameters: α = 7,
β = 200, λ = 4, µJ = 0.4, T1 = 1, T2 = 1.25

3.6 Summary

So far, we have introduced a model which satisfies the basic characteristics of the electricity

markets. Having obtained a useful approximation to the density of the spike process, we will

be able to derive conditional state probabilities in Chapter 4 for the individual process Yt as

well as Xt, which will form the basis of our Swing option pricing algorithm. We also examined

the shape of our model in the risk-neutral world setting and concluded that its shape can be

left unchanged under the risk-neutral measure. Since the risk-neutral measure is not uniquely

determined in an incomplete electricity market, one can opt for calibrating the parameters

in a real-world setting after extracting the real-world seasonality, and convert the model as

a whole to a risk-neutral one by obtaining a seasonality function which is consistent with

the forward curve and which makes the observed forward curve equal to the forward curve

implied by the real-world parameters. The model-implied Black’s 1976 volatility indicates

that jumps have a considerable effect on the implied volatilities of shorter-maturity options,

which can be translated into an extra jump premium on the prices of the forward options. The

moment matching algorithm also performs well with the options on forwards with a delivery

period. This type of options are more realistic in real-world settings because large volumes

of power cannot be stored and delivered in a few days. Chapter 4 is devoted to the efforts of

applying the stochastic properties derived in this chapter to the pricing methodology of the

Swing options, the options with multiple exercise opportunities for certain rights.
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CHAPTER 4

SWING OPTIONS AND THE GRID APPROACH

As being path-dependent and exotic in nature, the Swing options are of the particular interest

of the energy market participants due to the breath of fresh air they brought to the power

risk management practices. Being bundled with the forward contracts, they allow the holders

to better match their internal power demands. However, when their valuation is the case,

the holder is assumed to follow an optimal strategy which maximizes the expected profit,

no matter to what extent the Swing option helped hedge away the risks arising from the

fluctuations in the holder’s power demand. This is due to the fact that the internal power

demand as well as the extent to which the Swing option is utilized is uniquely determined

by the holder-specific factors and so, different prices for the same option may unsurprisingly

lead to the breach of the no-arbitrage rules. In the following section, we will discuss in

detail the reasons for the Swing options’ specialty in the marketplace. An intuitive example

is provided in the succeeding section to enhance the understanding. This will be followed by

the formalization of a standard mathematical setup for the Swing options. To finalize, the two

main discussions of this chapter, namely, the Trinomial Forest Approach and its extension to

the Grid Approach will be mentioned. As noted earlier at the very beginning of this work,

we will pursue the same method as Jaillet-Ronn-Tompaidis, in [15], except that its expansion

to the more complicated Grid Approach, mentioned by Hambly-Howison-Kluge in [13], will

also be discussed in detail. In an illustrative example, we will price a standard Swing option

numerically and further explore its parameter sensitivities.

Our main contribution to the work of Jaillet-Ronn-Tompaidis is a step-by-step generalization

of their method to a more comprehensive one. Towards this aim, we integrate the jumps

in electricity price into the valuation process and use two-dimensional refinements with a

larger set of scenarios for price evaluations. The main advantage of this approach is that it
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allows for a better approximation of the distributions with heavy tails. We also improve the

approximation to the spike process density, which is given in Hambly-Howison-Kluge, by

deriving a more general density function. Furthermore, we show that a heterogeneous grid

for the truncated spike process better captures the spike process values that are close to zero.

This approach leads to slightly lower values for the Swing options than those reported in [13].

Our MATLABR© code for the numerical pricing algorithm is provided in Appendix A.

4.1 What Makes Swing Options Special for Energy Markets

The amount of electricity generated is a flow variable, which means that -unlike a stock

variable- it can be measured over an interval of time. Hence, the parties of a forward contract

should specify a delivery period, over which the purchased amount of electricity is delivered.

Therefore, the pricing results of the options on forwards maturing at a specific point of time,

say T , can only be seen as an approximation to those with a short delivery period, like one day.

The Swing options are tailored to hedge against uncertainty in the internal demand and other

risks arising from the particular attributes in the underlying’s price during the delivery period.

From this point of view, results given in Section 3.5 can be seen as a ground for the better

understanding of what turns the Swing options into very useful tools which complement the

energy transactions in the marketplace.

As a result of the complex patterns in the energy consumption and the limited storability of the

electricity, the flexibility in delivery in terms of both the timing and the amount has been an

essential part of the electricity contracts. Swing, or take-or-pay, contracts provide their owner

with the flexibility-of-delivery options and permit the option holder to repeatedly exercise a

certain right to swing the amount of energy purchased. These rights may be subject to certain

conditions which impose some periodical limitations, such as the amount of energy which

can be swung up or down during the lifetime of the option.

On the other hand, in an electricity market where a mismatch between supply and demand can

suddenly occur, the Swing options match the need for hedging frequent, though not persisting,

price spikes which are in general followed by reversion to a long-term level.

A very helpful example in order for the reader to better perceive the raison d’être of these

options in the marketplace can be the situation of an agent who has a long position in an
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energy commodity, say oil. The position will be closed within 3 months. The agent is sup-

posedly aware of the downside risk exposure and is now seeking for ways of eliminating this

risk. The probability of considerable OECD production expansions on multiple days during

these 3 months is a far tail event. Nevertheless, the agent can marginally buy a strip of 90

European put options maturing in 90 consecutive days. However, this clearly brings an ex-

cessive protection. Alternatively, the agent can buy 5 identical American put options whose

exercise period covers these 3 months. However, the agent still pays more than he or she will

likely to recover. Why? Because, having the same exercise time, these identical American

options would benefit most only when they could be exercised at the same optimal exercise

time. However, the agent will either not be able to exercise options on the same day due to

demand constraints or desire to retain some of them further for potential unfavorable move-

ments in the price of oil. Thus, a Swing contract with 5 exercise rights where each right can

be exercised on any day during this 90-day period (and on a one-right-on-a-day basis) comes

out as a perfect hedging instrument.

4.2 A Quick Review of the Mathematical Setup

A standard Swing option with an initiation date, say t = 0, gives the owner N rights of

a certain type.1 These identical rights can be exercised on a number of potential dates,

{τ1, τ2, ..., τN} ∈ [T1,T2], and on a one-right-at-a-time basis. As time passes and the rights

are exercised, the owner of the option now has n ≤ N right(s) remaining. The supplier of the

option may claim a refraction period2, ∆tR, in case it is stated in the initial agreement between

parties. The option may also pose some constraints on the volume of energy to be swung up

or down at each potential exercise time τi, such as,[
lli, l

u
i

)
∪

(
ul

i, u
u
i

]
where lli ≤ lui ≤ 0 ≤ ul

i ≤ uu
i . From left to right, these refer to the lower and upper bounds

of the allowed down and up swings at each potential exercise date during the lifetime of the

contract. Additionally total volume constraints may apply:

L ≤
N∑

i=1

ωτi ≤ U.

1 Examples include: a number of call/put rights, a mixture of puts and call rights with equal/different strike
prices.

2 Refraction period here refers to the amount of time that the option holder should wait after the last exercise,
before exercising another right.
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A penalty function, ρ(V), can be set by the option holder against the breach of volume con-

straints. The swing rights are allowed to be exercised at a constant strike price, D3, deter-

mined at time 0. Alternatively, the parties can agree on a term structure for strike prices: Dt,

t ∈ {τ1, τ2, ..., τN}. A typical example of the non-constant strike price setup is at-the-money

forward strike where Dt is set to be the forward price, Ft
0.

In the following sections, we address the valuation issues of these complex options using a

discrete model. Note that our spot price process S t is a continuous stochastic process and such

a discretization can be made by observing it on discrete points in time. It is also worth noting

that, throughout following sections, we simplify the pricing problem by either extracting the

seasonality factor ft from the pricing process (Section 4.3) or simply ignoring seasonality, i.e.

ft = 0 (Section 4.4). In the former, it is equivalent to saying that the trinomial trees in the next

session are built based on the deseasonalized forward prices and the expected option payoffs

need to be readjusted simply by using the corresponding seasonality factor at time t.

4.3 The Trinomial Forest Method

The valuation of the Swing options in the trinomial forest4 setting is basically twofold. First,

we will elaborate on how to construct the tree of nodes that will be used to approximate the

distribution of the individual process X. Note that, for the sake of simplicity, we ignore the

spike process Y for now. Second, we will show how these trees can be shifted using a drift

term in order to make them arbitrage-free.

4.3.1 Tree Construction

Recall that the process Xt in the risk-neutral world is written as (see Subsection 3.5.1.1)

dXt = α̂(µ(t) − Xt)dt + σdWQ
t .

Given the term structure of the forward prices, F[i]
0 , and the seasonality factors, fi, where

i = 0, 1, ..., I and t = i∆t, a trinomial tree for Xt can be constructed by first considering a tree

3 We follow this method. In this case, recall how the zero-cost forward strike price is determined under the
risk-neutral measure based on the type of the settlement, namely, settlement at the last delivery date or instant
settlements spread over the delivery period [T1,T2].

4 A multi-layer tree extension of the traditional trinomial tree dynamic programming approach.
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for the process

dX̃t = −α̂X̃tdt + σdWQ
t

and then incorporating the drift terms for every time step so that the expected deseasonalized

spot prices, EQ[exp(Xi)], that are calculated numerically, match the deseasonalized forward

curve, F[i]
0 /e

fi , which was initially observed.

We begin with constructing a trinomial tree for X̃i, j, given X̃0,0 = 0. Note that the subindices i

and j, respectively, indicate the horizontal (time) and vertical (value) positions of the individ-

ual process X. Now, consider a recombining tree with three price branchings emanating from

each node. Starting from X̃0 = 0, the price may either go up or down, or move straight. In no-

tational terms, this corresponds to a move from node (0, 0) to one of the nodes (1, 1), (1, 0) and

(1,−1), or for the general case, from node (i, j) to node (i + 1,m). In a trinomial tree, m will

be in the set {−1, 0, 1}. Aside from the symmetric branching form (up/straight/down) which

will be the case for the initial vertical position j = 0, we also define two additional branching

scenarios (straight/up/upup and straight/down/downdown) for j = −1 and j = 1, respectively,

to make sure that the process is allowed to revert to its long-term mean 0. Obviously, the tree

will be symmetric around the initial value 0. We then assume vertical movements of the same

magnitude, i.e. ∆X̃ = σ
√
κ∆t, κ being a constant. Now, we need to calculate the probabilities

pi
j,m ≈ fX̃t+∆t |X̃t=x̃ j

(x̃m)∆x̃.

pi
j,m can be defined as the probability of going from node (i, j) to (i + 1,m). For the pairs

where these nodes are not connected between consecutive time steps i∆t and (i + 1)∆t, this

probability is simply set to zero.

Given the process X̃ is at node (i, 0), (i,−1) or (i, 1), we need to calculate the probabilities

pi
j,0, pi

j,−1 and pi
j,1 explicitly for each of the three possible branching scenarios defined above.

Having derived the stochastic dynamics of X̃, this can be carried out by exploiting three

equations, namely,

1∑
m=−1

pi
j,m = 1

1∑
m=−1

pi
j,m(X̃i+1,m − X̃i, j) = EQ[X̃i+1 − X̃i]

1∑
m=−1

pi
j,m(X̃i+1,m − X̃i, j)

2
− (EQ[X̃i+1 − X̃i])

2
= VQ[X̃i+1 − X̃i].
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It is important to note that depending on the different values of j at time t = i∆t, X̃i+1,m −

X̃i, j can have three different magnitudes for every single j value in the set {−1, 0, 1}, i.e.

{∆X̃, 0,−∆X̃} for j = 0, {0,−∆X̃,−2∆X̃} for j = 1 or {0,∆X̃, 2∆X̃} for j = −1. To proceed, we

will assume j = 0 at time i∆t. Solving the above equations by using the mean and variance of

X̃i+1 − X̃i, which are given by the equations

EQ[X̃i+1 − X̃i] = −α̂X̃t∆t = −α̂ jσ
√
κ∆t∆t

VQ[X̃i+1 − X̃i] = σ̃2∆t,

the probabilities of an upward move of one ∆X̃, a horizontal move and a downward move of

one ∆X̃ are found respectively as

pi
0,1 =

1
6

+
α j∆t(α j∆t − 1)

2

pi
0,0 =

2
3
− (α j∆t)2

pi
0,−1 =

1
6

+
α j∆t(α j∆t + 1)

2
.

pi
j,m’s for other values of j can be derived similarly. To be able to incorporate drift term, f̃i,

we define the probability that the node (i + 1,m) will be reached, Pi+1
m , simply as

Pi+1
m =

1∑
j=−1

Pi
j p

i
j,m, P0

0 = 1

where pi
j,m is the probability of reaching from node (i, j) to node (i + 1,m). Obviously, Pi

j’s

can simply be calculated by using pi
j,m’s as inputs to above equation.

In theoretical terms, the drift term f̃i, which was given by f̃t in Section 3.5.1, corresponds to

the difference between the solutions to two OU processes, one with a long-term mean of zero

and the other with a time-varying long-term mean of µ(t). This means that f̃ (i) in the solution

can be treated as a time-varying long-term mean, µ(t), in an OU stochastic differential equa-

tion. Hence, in practice, these shifts, f̃i, should be determined so that the following two coin-

cide: (i) the expectation of the deseasonalized spot price, EQ[exp(X̃i, j + f̃i)] = EQ[exp(Xi, j)],

and (ii) the deseasonalized forward curve, Fi
0/e

fi . Again, Fi
0 denotes the forward price at time

0 which matures at time i∆t. Solving for f̃i, we reach at

f̃i = ln(
Fi

e fi
) − ln(

∑
j

Pi
je

X̃i, j).

Thus, adjusting the node values at each time step using the drifts f̃i, we end up with a trinomial

tree for the deseasonalized price process exp(Xt).
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4.3.2 Pricing

Defining S i, j = exp( fi + Xi, j) one can use the relation

V(n, s, i, j) = max

 e−r∆tEQ[V(n, S i+1, i + 1)|S i, j = s],

e−r∆tEQ[V(n − 1, S i+1, i + 1)|S i, j = s] + (s − D)+

 (4.1)

to derive the value of a Swing option at time t = i∆t at any node (i, j) where V(n, S , I, J) =

(S I,J−D)+, 0 < n ≤ N and V(0, s, i, j) = 0. The conditional expectations can be approximated

in a discrete form by

EQ[V(n, S i+1, i + 1)|S i, j = s] ≈
∑

m

V(n, si+1,m, i + 1)pi
j,m.

The last two equations imply that the pricing algorithm should simultaneously deal with at

least two different trees at any time point, one with n and the other is (n − 1) exercise rights

remaining (See Figure 4.1 for an illustration). At this point, the following remark is useful in

that we should know the total number of trees that a candidate pricing algorithm will need to

handle. With slight modifications, the same approach can be applied in calculating the total

number of grid trees in the Grid Approach, which will be mentioned in Section 4.4.

Figure 4.1: A trinomial tree for the process X̃t
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Remark 4.3.1 Given that the Swing option holder can exercise a prespecified ‘basis amount’

multiplied by a set of nV consecutive volume multipliers at each exercise date (e.g. 1 x basis

amount or 2 x basis amount for nV = 2 and V = {1, 2}), the total number of trees necessary to

price a Swing option with N exercise rights is given by

N∑
n=0

(N − n)(nV − 1) + 1,

where N and n again denote the quantities of the initial exercise rights and the remaining

exercise rights, respectively.

To see this, assume that the holder is only allowed to swing up at each potential exercise date

τi according to the rule (
ul

i, u
u
i

]
, 0 ≤ ul

i ≤ uu
i .

Further assume that the writer specifies a certain set of multipliers {V1, V1 + 1, ..., V1 + nV − 1}

so that, at each exercise time, the holder can choose one from the set of possible exercise vol-

umes {V1 × basis amount, (V1 + 1) × basis amount, ..., (V1 + nV − 1) × basis amount}. This

implies a number of cumulative usage amounts after the holder exercises (N − n) rights (i.e.

n rights remaining), which can be expressed by the set

{(N − n)V1, (N − n)(V1 + 1), ..., (N − n)(V1 + nV − 1)} × basis amount.

This set has a total number of (N − n)(nV − 1) + 1 usage amounts, for each of which an

independent tree should be constructed. Given that the number of remaining rights range

between 0 and N, the required number of trees to value a Swing option is found as

N∑
n=0

(N − n)(nV − 1) + 1.

However, the Trinomial Forest Method mentioned so far cannot be used with our spot price

model without any modifications, since there are some drawbacks embedded in it which can

limit accuracy of the method. First, the refinement of the tree nodes in the spot direction is not

likely to have an improving effect on the results. Second, heavy-tailed conditional distribution

imposed by the jump structure cannot be captured using a three-point approximation.
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4.4 Generalization to the Grid Approach

Hence, we now generalize the method discussed in Section 4.3 to a grid tree approach where

the tips of the price tree branches emanating from the node (i, j) now has a two-dimensional

grid shape when viewed from above, rather than three points on a line, as in the Trinomial

Forest Method. The grid tree has nodes (i, j, k) where each grid in this tree has nodes ( j, k) at

time t = i∆t. We denote the spike process by the third dimension k and it adds an additional y

direction over which the jump values are spread, whereas the branching method in the trino-

mial trees allowed only for the potential refinements in the x direction. A useful visualization

is depicted in Figure 4.2.

{n-1 out of N exercise right(s) left}

x

t

y

X(0), Y(0)

t x (n.of periods)=1 23   .   .   .                                     T x (n.of periods)

2  3   .   .   .                                     T x (n.of periods)

{n out of N exercise right(s) left}

Figure 4.2: Grid Approach

Again assuming that the processes X and Y are individually observable, the valuation function
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(4.1) can be rewritten as

V(n, x, y, i, j, k) = max


e−r∆tEQ[V(n, Xi+1,Yi+1, i + 1)|Xi, j = x,Yi,k = y],

e−r∆tEQ[V(n − 1, Xi+1,Yi+1, i + 1)|Xi, j = x,Yi,k = y]

+(e f (t)+x+y − D)+


to derive the value of a Swing option at time t = i∆t at any node (i, j, k) where V(n, S , I, J,K) =

(S I,J,K − D)+, 0 < n ≤ N and V(0, s, i, j, k) = 0. Again, the conditional expectations can be

approximated in a discrete form by

EQ[V(n, Xi+1,Yi+1, i + 1)|Xi, j = x,Yi,k = y] ≈
∑
m,n

V(n, si+1,m,n, i + 1)pi
j,k,m,n.

pi
j,k,m,n is the probability of reaching the node (i + 1,m, n) at time t + ∆t = (i + 1)∆t given that

the process is at node (i, j, k) at time t = i∆t and this probability can be approximated by

pi
j,k,m,n ≈ fXt+∆t |Xt=x j(xm)∆x fYt+∆t |Yt=yk (yn)∆y

since Xt and Yt are independent. Below we discuss the conditional densities of these Markov

processes.

Conditional density fXt+∆t |Xt=x j(xm). Based on the first two moments of the OU process de-

rived in Section 3.1, Xt+∆t, given Xt = x j, is conditionally normally distributed:

N
(
x je−α∆t,

σ2

2α
(1 − e−2αt)

)
.

Conditional density fYt+∆t |Y0=0(yn). In order to derive an explicit approximation to the con-

ditional density of Yt we should first make a distributional assumption for the jump sizes, J.

Here we assume exponentially distributed jump sizes and recall the density we derived for the

truncated process Ỹt in Section 3.4 (see Corollary 3.4.5), which was given by

fỸt
(y) =

λ

βµJ
λ/β

Γ(1 − λ/β, y/µJ) − Γ(1 − λ/β, yeβt/µJ)
y1−λ/β , y > 0.

Note that if the value of λ/β is too small (i.e. the jumps appear very rarely but their effects

vanish very quickly), an upper incomplete gamma function in the form

Γ(1 − λ/β, a) =

∞∫
a

γ̂−
λ
β e−γ̂dγ̂
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can be approximated by

Γ(1 − λ/β, a) ≈

∞∫
a

γ̂0e−γ̂dγ̂ ≈ e−a.

Then, we have

gỸt
(y) =

λ

βµJ
λ/β

e−y/µJ − e−yeβt/µJ

y1−λ/β , y > 0.

The reason why we denoted the approximation by g rather than f is to distinguish it from

a normalized density function. To normalize g, we have to find a normalizing constant and

make sure that our density function sums up to 1 − e−λt, i.e. the cumulative density on the set

τ ∈ [0, t] (refer to Lemma 3.4.4). The value of g in the interval (0,∞) is calculated as
∞∫

0

gỸt
(y)dy =

∞∫
0

λ

βµJ
λ/β

e−y/µJ

y1−λ/β dy −

∞∫
0

λ

βµJ
λ/β

e−yeβt/µJ

y1−λ/β dy

=
λ

β
Γ

(
λ

β

) ∞∫
0

1

µJ
λ/βΓ

(
λ
β

)e−y/µJ yλ/β−1dy

−
λ

β
Γ

(
λ

β

)
e−λt

∞∫
0

1
µJ
eβt

λ/β
Γ
(
λ
β

) e−yeβt/µJ

y1−λ/β dy

=
λ

β
Γ

(
λ

β

) (
1 − e−λt

)
.

It turns out that the approximation g should be normalized by using a factor λ
βΓ

(
λ
β

)
to obtain

an approximation for fỸt
(y) which satisfies

P(τ ≥ t) +

∞∫
0

fỸt
(y)dy = e−λt + (1 − e−λt) = 1.

From that we conclude

fỸt
(y) ≈

1

µJ
λ/βΓ

(
λ
β

) e−y/µJ − e−yeβt/µJ

y1−λ/β , y > 0. (4.2)

As a result, it is obvious that the stationary distribution as t → ∞ is similar to Gamma distri-

bution, i.e

fỸt
(y) ≈

1

µJ
λ/βΓ

(
λ
β

)e−y/µJ yλ/β−1, y > 0. (4.3)

Numerical calculations carried out in the next section use the approximate density (4.2) for

the spike process at time t, given 0 initial conditions.5

5 A quick survey of the literature reveals that one can exploit (4.2) to approximate the conditional density of
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4.5 Numerical Algorithm

Throughout this section, we adopt the same parameter values as given in [13] to value Swing

options. These are the calibrated parameters of the Nord Pool market. It is also assumed

that the number of the consecutive volume multipliers (recall Remark 4.3.1), nV , is equal to

1 with V > 0, i.e. the Swing holder has an option with N up-swing (call) rights. Also, the

basis amount is taken to be one unit of the underlying. We first define a two-dimensional grid

whose increments in the both x and y directions are determined by the functions

dX = 2σ
√

T
1
nx
, X0 = 0

dYi = ε(1 + κ)i−1, i = 1, ..., ny, Y0 = 0 (4.4)

where T = T2−T1 and ε > 0. nx and ny denote the number of desired refinements in the x and

y directions, respectively. The constant κ is the rate at which the length of the intervals in the

y direction grows. Note that we use a heterogeneous grid for the spike process whereas we

prefer a homogeneous grid for the diffusive part. This is simply because approximating the

transition probabilities from the spike density at maturity given in (4.3) is highly challenging.

For low values of λ and high values of β, the density approaches to infinity for the spike

values close to zero while it depreciates very quickly and approaches to zero for the spike

values even slightly greater than zero. As a result, we use an adaptive grid which has small

increments (in y direction) for the small values of the spike process and large increments (in y

direction) for the larger values of the spike process. This allows us to adjust the sensitivity of

the approximation and cover a larger proportion of the cumulative density. On the other hand,

such an approach does not improve the results for the OU part, Xt, and an approximation to

the cumulative density of Xt with the homogeneous intervals in the x direction sums up to a

value greater than 0.99 in almost all cases.

At this point, note that there is trade-off between the algorithm complexity and goodness

of the cumulative conditional density approximation. Increasing the number of refinements

increases the algorithm complexity, but, in turn, performs better in cumulative density approx-

imation. Hence, an optimization is required. However, it is beyond the range of this work.

Y at each time step by the single equation
fỸ∆t

(
yn − yke−β∆t

)
.

This means, the conditional probability of the value yn at any time t + ∆t is approximated by the unconditional
probability of the difference yn−yke−β∆t at time ∆t, given the process has the value yk at time t. Although preferring
one method to the other appears to yield slightly different results, we opt to use (4.2) directly due to the difficulties
in assuring the positivity of the difference yn − yke−β∆t.
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Still, one can check the goodness of the approximation by simply computing the cumulative

conditional densities along each of the initial values included in the grid and make the grid

increments finer to reach a cumulative density value as close as possible to 1 without spoiling

the algorithm’s effectiveness.

Depending on the fact that the value of a Swing option with (i) N exercise rights and (ii)

a set of possible swing volumes allowed for each right will depend on the valuation of a

large number of identical grids, where each layer is dependent upon the subordinate layers6,

Remark 4.3.1 implies that a computer should apply a huge number of decision rules, which is

equal to  N∑
n=0

(N − n)(nV − 1) + 1

 (nT nxnynV + 1
)

where nT denotes the number of time periods in the Swing option’s lifetime. However, assum-

ing nV = 1, we enjoy a considerable reduction in the memory requirements since the number

of the decision nodes collapses to

(N + 1)
(
nT nxny + 1

)
. (4.5)

To illustrate, for a Swing option with parameters N = 100, nT = 365, nx = 100 and ny = 50,

the last two equations correspond to total number of decision nodes equal to 1.88 x 1010 (5151

grid trees) for nV = 2 and 0.02 x 1010 (101 grid trees) , nV = 1, respectively. We also keep

only two (instead of (N + 1)) grid trees with n and (n−1) number of remaining exercise rights

in memory at any time and recursively replace the lower grid tree with the upper one until

the grid tree with N exercise rights is reached. At each of nT nxny nodes of a particular grid

tree, the node value is determined according to the decision rule given in (4.2) (0.02 x 1010

times in total for the parameter values given above). Each additional refinement in spike

process direction, y, incorporated into our algorithm increases the complexity (measured by

the number of decision rules to be applied) by a multiplier

(N + 1) (nT nx) .

Our pricing function swing.m7 performs well8 and values 100 Swing Options with consecutive

number of exercise rights between 1 to 100 approximately in 40 minutes. Figure 4.3 depicts
6 Subordinate layers can be seen as a set of individual Swing options with consecutive number of exercise

rights ranging between N − 1 and 0.
7 See Appendix A for MATLAB R© routines. A more comprehensive version of the function is available upon

request from aydinserhan@gmail.com
8 Combined with a Core2Duo 2.33GHz processor.
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the cumulative (not per right) values of one-year Swing options with up to 100 exercise rights

for the average jump sizes 0.0 and 0.4. We observe that there is a considerable jump risk

premium on the cumulative option prices, which increases with the number of the exercise

rights. Furthermore, in either cases, the marginal cost of the exercise rights to the option

holder decreases as the number of rights increases. This is consistent with the nature of spikes

since the probability of witnessing a large number of extraordinary events in the market during

a single year is quite low. On the other hand, the additional rights still add some value to the

option. Figure 4.4 is very helpful in explaining Swing options’ raison d’être: A rational agent,

such as the one given in Section 4.1, would obviously have to overpay a certain amount if he

or she chose to replicate a Swing option using a strip of identical American options.
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Figure 4.3: Values of Swing options with different number of exercise rights (α = 7, β = 200,
λ = 4, µJ = 0.4, T = T2 − T1 = 1, dt = 1/365, f (t) = 0 and r (risk-free rate) = 0)

The amount of this overpayment in two separate cases, namely the scenarios where average

jump sizes are set to 0 and 0.4, could be best represented respectively by the area between two

dotted lines and the area between two continuous lines in Figure 4.5, which plots the per right

values of the options given in Figure 4.3. A reasonable explanation for these savings could be

the overlapping optimal exercise strategies of the identical American options in the strip. Also

note that the Swing options in a positive spike risk environment appear to be a much more

economical tools for protecting investors from unfavorable events when compared to a market

without jump risk (if any!). On the other hand, although the total jump risk premium on the

62



0 20 40 60 80 100
0

20

40

60

80

100

120

Number of Exercise Rights

V
al

ue

Swing Option Value

No Jumps
Average Jump Size: 0.4
Strip without Jump Risk
Strip with Jump Risk: 0.4

Figure 4.4: Economic justification of Swing options (α = 7, β = 200, λ = 4, µJ = 0.4,
T = T2 − T1 = 1, dt = 1/365, f (t) = 0 and r (risk-free rate) = 0)

cumulative Swing option value (Figure 4.3) increases as the number of call rights increases,

the largest contribution comes from the first exercise right. Also, it is once again clear in

the figure that the value of additional rights decreases with the cumulative number of exercise

rights. Again, this can be explained by the decreasing marginal utility of exercise rights which

is measured by the likelihood that an exercise right will be used against large spikes rather

than the uncertainty driven by the Brownian part. Conceptually, this is similar to a standard

basket CDS (Credit Default Swap) in that the credit swap buyers are protected against first n

defaults. Given the correlation between defaults is close to zero, investors always pay a larger

spread-per-default value as n gets smaller. Also, recalling our agent example in Section 4.1,

it is now more clear that why the hedger will rationally prefer an option with n exercise rights

to a bunch of n identical options of American or European type, each with a single right. If a

buyer goes for the latter option, she/he will be overpaying for a number of reasons that we’ve

already mentioned again in Section 4.1.

The effect of the correlation between extraordinary events should be examined separately. By

nature, our spike process given in (3.1) driven by Poisson increments assumes that the number

of jumps occurred in disjoint intervals are independent from each other. This is equivalent to

saying, the likelihood of witnessing an extraordinary event on one day is constant no matter
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Figure 4.5: (per Right) Values of Swing options with different number of exercise rights
(α = 7, β = 200, λ = 4, µJ = 0.4, T = T2 − T1 = 1, dt = 1/365, f (t) = 0 and r (risk-free rate)
= 0)

what happened in the market on the day before. A detailed examination of how to generate

spike trains with specified correlation coefficients is given in [22] and [4].

The spot price process S t given in (3.1) is obviously dominated by the process Xt whereas

the process Yt has only a limited effect when the occasional jumps with high mean-reversion

rates are considered (see also Figure 3.1). Hence, the long-term variance of the process Xt will

mainly determine the value of the model-implied long-term variance of S t and is expected to

have a direct relationship with the Swing option value. Unlike the Geometric Brownian Mo-

tion, where the variance of the process grows proportionally to the maturity, the OU process

has a long-term variance which is bounded from above by σ2

2α , which is inversely proportional

to the parameter α. The sensitivity results for a 60-day delivery period including up to 20

exercise rights, in Figure 4.6(a), confirms this reverse relationship between α and the Swing

option value. The faster the price anomalies disappear, the less likely that the price will ex-

hibit large deviations in the long-term and the lower the value of such an option will be. A

similar relationship can be observed, in Figure 4.6(b), between β and the Swing option value

as well, however, the effect on price converges to zero as the number of rights increases. This

can be explained by the same intuition behind the decreasing effect of the spike process itself

on the per right Swing option values given in Figure 4.5. As the magnitude of the expected os-
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Figure 4.6: Sensitivities: (per Right) Values of Swing options with the standard parameters
given in Figures 4.3 and 4.5 versus a ±20% change in the mean-reversion parameters α and
β.
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Figure 4.7: Sensitivities: (per Right) Values of Swing options with the standard parameters
given in Figures 4.3 and 4.5 versus a ±20% change in the jump parameters λ and µJ .

cillations in the spike process decreases by an increase in the value of β (recall Lemma 3.4.3),

so does the contribution of the spike process, which is characterized by only occasionally

observed jumps, on the Swing option value.

Results given in Figure 4.7(a) indicate that, given a 60-day delivery period and up to 20

exercise rights, a 20% increase (decrease) in the value of the jump frequency parameter λ

results in an average of 6% increase (decrease) in the per right values up to first 3 rights. In

panel (b) of the same figure, this turns into a 10% increase (decrease) on average when the

for average jump size parameter µJ is considered. It is worth noting that the average jump

size parameter has the largest effect among the other parameters on the value of a single-right
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Swing option.
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Figure 4.8: Sensitivities: (per Right) Values of Swing options with the standard parameters
given in Figures 4.3 and 4.5 versus a ±20% change in the volatility parameter σ. Graph (b)
plots the value of the Swing option assuming a spot process both with and without jumps.

However, the most consistent and significant change is caused by the volatility parameter

σ (see Figure 4.8(a)). Although, a 20% increase (decrease) in the value of the volatility

parameter σ causes an average of 15% increase (decrease) in the per right values up to first 3

rights, this ratio is strongly downward-biased due to the high per right values of the options

with a few exercise rights, owing to the spike risk premium. In greater number of exercise

rights, a 20% increase (decrease) in the value of the volatility parameter σ implies almost a

constant 20% increase (decrease) in the per right values.
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CHAPTER 5

SUMMARY AND OUTLOOK

5.1 Summary

In this thesis, the valuation issues of a variety of power market options have been investigated

with a special emphasis to the Swing options. We started with sketching the most promi-

nent attributes of the electricity markets that distinguish them from the other commodity and

non-commodity markets. Then, a spot price model which takes into account the most fun-

damental characteristics of the electricity markets, such as mean-reversion, seasonality and

spikes, is introduced and its analytical properties are explored. This is followed by the ap-

proximation of the distributions of the forwards with and without a delivery period by means

of the moment-matching method. Before valuing the standard type Swing options with var-

ious exercise rights numerically, an in-depth analysis of the Trinomial Forest Method has

been made in the light of a thorough examination of Jaillet-Ronn-Tompaidis ([15]). Next,

we’ve extended it by generalizing it to the Grid Approach explained in Hambly-Howison-

Kluge ([13]). This generalization has brought along two main challenges: (i) integration of

the spike process as a second dimension into the valuation algoritm, (ii) use of larger grids

with thinner increments to be able to efficiently approximate the cumulative density functions

of the individual processes Xt and Yt. The former challenge has also introduced two further

challenges: (i.1) derivation of an explicit density function for the spike process, (i.2) dealing

with the increasing complexity of the pricing algorithm by a factor (N + 1) (nT nx), a problem

which was exacerbated by (ii) as well.

Towards this aim, the first approach was realized by analysing (a) both processes (i.e. the

OU process and the spike process) with respect to the solutions to their stochastic differential
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equations, (b) the distributional properties of these solutions (i.e. forward prices) and (c) the

values of the options written on forwards. Furthermore, (d) an in-depth analysis of the Trino-

mial Forest Method is made and (e) the extended Jaillet-Ronn-Tompaidis ([15]) algorithm was

applied to Swing options with multiple up-swings (call option rights). We also contribute to

Hambly-Howison-Kluge ([13]) by deriving a Gamma density approximation to the stationary

distribution of the truncated spike process and using a heterogeneous grid to calculate transi-

tion probabilities in the Grid Approach. The results indicate that the price of a Swing option

with N up-swing rights is always lower than the total value of N identical American options,

whether the spot price process foresees spikes or not. However, taking the account of spikes

makes the Swing option almost a unique tool for the energy risk managers. A Swing option

with 100 exercise rights is as much as 70% cheaper than a bunch of 100 identical American

options. This ratio implies only 33% saving in a market model without jumps. Thus, the

raison d’être of the Swing options in the marketplace is economically clear. They serve the

energy spike risk management purposes in a highly efficient way. The success of our numer-

ical algorithm has been investigated with respect to the dependence of the valuation results

on process parameters like the mean-reversion speeds for both processes, the jump frequency

and magnitude parameters, and the volatility of the OU process. Our algorithm successfully

captures the sensitivities of the Swing option value to different model parameters in terms of

both the directions and the expected magnitudes. The decay in per right values (Figure 4.5)

with the increasing number of rights is successfully reflected in the spike parameter sensitivi-

ties. That is, the effect of a shift in either the jump frequency or average jump size on the per

right option values converges to zero as the number of up-swing rights increases.

5.2 Outlook

Based on the present work, three main issues could be addressed:

1. Implementation of a correlated jump structure

2. Integration of the penalty functions into the pricing algorithm

3. Finding a semi-analytic approximation formula for the Swing option value.
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The first issue is likely to have the most significant effect on the Swing option values and

should be examined separately. Our Poisson-driven spike process assumes that the number of

jumps occurred in the disjoint intervals are independent from each other. Hence, whether a

spike occurred on a certain day or not, our memoryless Poisson process treats the likelihoods

of witnessing or not witnessing an extraordinary event on the next day as equal. A detailed

examination of how to generate spike trains with specified correlation coefficients is given in

[22] and [4].

The second issue has already been mentioned shortly in the context of a standard Swing option

in Section 4.2. A penalty function can be specified at the initialization of the Swing contract

either by setting a per-unit penalty if the holder exercises a volume which corresponds to a

multiple of the basis amount which is not included in the set of multiples, V , (recall Remark

4.3.1) or by compromising on a one-time penalty to be paid at maturity if the total swung

volume exceeds a certain level.

The last issue should be addressed by finding an approximation that expresses the Swing op-

tion value in terms of a convex combination of upper and lower bounds, i.e. a set of Bermu-

dan1 and European options, respectively. Obviously, the solutions to options with an early

exercise problem (e.g. Bermudan, American) wouldn’t be fully analytic, so wouldn’t a possi-

ble solution to the Swing option value not.

1 Or American options, as in our case where the Swing option can be exercised at any date throughout the
delivery period.
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APPENDIX A

MATLAB R© ROUTINES

swing.m

Inputs: length of delivery period (T); number of exercise rights (N); exercise price (D); risk-free rate (r);
number of x, y refinements and number of periods (nofx, nofy, nofp); mean-reversion rates (alpha, beta); 
volatility (sigma); average jump size (muJ), jump frequency (lambda).

Outputs: Swing option value (value); transition probability matrix (trans)

The following function is designed to value a Swing option which gives the holder N call

rights. It can be run directly by transferring the code into a MATLAB R© editor, saving the

function as swing.m and setting its directory as default. Please note that high degrees of

refinement selected (i.e. nofx x nofy) can turn minutes into long hours. The function swing.m

can price both a single Swing option with N exercise rights (array=‘off’) and an array of N

Swing options with up to N exercise rights (array=‘on’).

function [value,trans]=swing(T,N,D,r,nofx,nofy,nofp,alpha,...

sigma,beta,mu_J,lambda,array)

if mu_J==0 nofy=1; piY=1; gridY=0;

else

gridY(1)=10ˆ(-10);

for i=2:nofy-1

dY(i-1)=(10ˆ(-10))*(1.6)ˆ(i-1);

gridY(i)=gridY(i-1)+dY(i-1);

end

dY=dY’;

gridY=gridY’;

pdfY=((1/(gamma(lambda/beta)*mu_Jˆ(lambda/beta)))*(exp(-(gridY)/...
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mu_J)-exp(-(gridY)*exp(beta*T)/mu_J)).*((gridY).ˆ(lambda/beta-1)));

prob=pdfY.*[gridY(1);dY];

gridY=[gridY;0];

piY=prob; piY(end+1,1)=1-sum(piY);

end

dt=1/nofp;

X0=0; Y0=0;

dX=2*sigma*sqrt(T)*(1/nofx);

gridX=[nofx/2:-1:-nofx/2+1]’*dX+X0;

for i=1:nofy

grid((i-1)*nofx+1:(i-1)*nofx+nofx,:)=[repmat(gridY(i),nofx,1),...

gridX,repmat(gridY(i),nofx,1)+gridX];

end

%Transition probabilities

gridXA=repmat(gridX,1,nofx); gridXB=gridXA’;

piX=normpdf(gridXB,gridXA*exp(-alpha*dt),sqrt((sigmaˆ2/(2*alpha))*...

(1-exp(-2*alpha*dt))))*dX;

piXYA=repmat(piX,nofy,nofy);

for i=1:nofy

piXYB(1:nofx*nofy,(i-1)*nofx+1:(i-1)*nofx+nofx)=piY(i);

end

trans=piXYA.*piXYB;

clc;

fprintf(’Transition matrix (%g x %g) is OK!...\n’,nofx*nofy,nofx*nofy);

%Swing Valuation

fprintf(’Swing valuation started...\n’);

layerdown=repmat(0,nofx*nofy,T*nofp);

pricedown=layerdown;

priceup(:,T*nofp)=max(exp(grid(:,3))-D,0);

for j=T*nofp-1:-1:1

priceup(:,j)=max(trans*priceup(:,j+1)*exp(-r*dt),(max(exp(grid...
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(:,3))-D,0)+trans*pricedown(:,j+1)*exp(-r*dt)));

end

priceup_initial=priceup;

switch array

case ’off’

clc;

fprintf(’aydinserhan@gmail.com’);

fprintf(’\n\nValuing Swing with %g rights. Progress: ’,N);

if N==1 price=priceup;

if mod(1*100/N,10)==0;

fprintf(’%g %% \n’,1*100/N);

end

else

for i=2:N

clear pricedown;

pricedown=priceup;

clear priceup;

priceup(:,T*nofp)=max(exp(grid(:,3))-D,0);

for j=T*nofp-1:-1:1

priceup(:,j)=max(trans*priceup(:,j+1)*exp(-r*dt),...

(max(exp(grid(:,3))-D,0)+trans*pricedown(:,j+1)*...

exp(-r*dt)));

end

if mod(i*100/N,10)==0;

fprintf(’%g %% ’,i*100/N);

end

if i==N

fprintf(’\n’);

end

end

price=priceup;

end

74



% Value Swing Option

piX0=normpdf(gridX,0,sqrt((sigmaˆ2/(2*alpha))*(1-exp(-2*...

alpha*dt))))*dX;

piXYA0=repmat(piX0,nofy,1);

for i=1:nofy piXYB0((i-1)*nofx+1:(i-1)*nofx+nofx,1)=piY(i); end

piXY0=piXYA0’.*piXYB0’;

value=piXY0*price(:,1);

case ’on’

instep=input(’Which step to initialize the algoritm?: ’)

for k=instep:N

if k==instep clc;

fprintf(’aydinserhan@gmail.com\n\nProgress: %g %%\n’,0);

fprintf(’Swing is being valued for %g right(s)’,k);

if k==1

price(k).p=priceup;

else

for i=1:k-1

clear pricedown;

pricedown=priceup;

clear priceup;

priceup(:,T*nofp)=max(exp(grid(:,3))-D,0);

for j=T*nofp-1:-1:1

priceup(:,j)=max(trans*priceup(:,j+1)*exp(-r*...

dt),(max(exp(grid(:,3))-D,0)+trans*pricedown...

(:,j+1)*exp(-r*dt)));

end

if mod(i*100/k,10)==0

fprintf(’%g %% ’,i*100/k);

end

if i==k

fprintf(’\n’);

end

end
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price(k).p=priceup;

end

else

fprintf(’Valuing Swing with %g exercise right(s)’,k);

clear pricedown;

pricedown=priceup;

clear priceup;

priceup(:,T*nofp)=max(exp(grid(:,3))-D,0);

for j=T*nofp-1:-1:1

priceup(:,j)=max(trans*priceup(:,j+1)*exp(-r*...

dt),(max(exp(grid(:,3))-D,0)+trans*pricedown...

(:,j+1)*exp(-r*dt)));

end

end

price(k).p=priceup;

% Value Swing Option

piX0=normpdf(gridX,0,sqrt((sigmaˆ2/(2*alpha))*(1-exp...

(-2*alpha*dt))))*dX;

piXYA0=repmat(piX0,nofy,1);

for i=1:nofy

piXYB0((i-1)*nofx+1:(i-1)*nofx+nofx,1)=piY(i);

end

piXY0=piXYA0’.*piXYB0’;

value(k)=piXY0*price(k).p(:,1);

if k<=N-1

clear price(k).p; clc;

fprintf(’Code by NSA\n\nProgress: %g %%\n’,k*100/N);

elseif k==N price=price(k).p; clc; fprintf(’100 %% OK!\n’);

end

end

hold on

xlabel(’Number of Exercise Right(s)’);

ylabel(’Value/Right(s)’);
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title(’PerRight Value of the Swing Option’);

plot([instep:1:N],value(instep:1:N)./[instep:1:N]);

hold off

end
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APPENDIX B

REVIEW OF PROBABILITY THEORY AND STATISTICS

B.1 Moment Generating Function

Definition B.1.1 Let X be a real random variable. Then the function

ΦX(θ) := E[eθX] =

∫
R

eθxdFX(x), θ ∈ R

is called the moment generating function of X.

ΦX is a non-negative function and its domain is defined asD(ΦX) := {u : ΦX(θ) < +∞}.

Theorem B.1.2 Two real random variables have the same moment generating function if and

only if they have the same distribution function.

Lemma B.1.3 Let X1, X2, ..., Xn be independent real random variables with the moment

generating functions ΦX1 , ΦX2 , ..., ΦXn . Then the moment generating function of the sum

Y :=
n∑

i=1
Xi is given by

ΦY (θ) =

n∏
i=1

ΦXi(θ). (B.1)

Proof. As X1, X2, ..., Xn are supposed to be independent, we can write

ΦY (θ) = E
[
eθY

]
= E

[
eθX1eθX2 ...eθXn

]
= E

[
eθX1

]
E

[
eθX2

]
...E

[
eθXn

]
=

n∏
i=1

ΦXi(θ)

�
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Obviously, if X1, X2, ..., Xn are also identical, by Theorem B.1.2, (B.1) reduces to

ΦY (θ) = [ΦX(θ)]n .

Remark B.1.4 (Existence of the Moment Generating Function) If the random variable X is

bounded, then the moment generating function ΦX(θ) exists for all values of θ. However,

ΦX(θ) exists at the point θ = 0 for any random variable X.

Lemma B.1.5 The moment generating function ΦX(θ) can be differentiated any arbitrary

times k at the point t = 0. Moreover, for k = 1, 2, ...., the kth derivative Φ
(k)
X (θ) at the point

θ = 0 will satisfy the following relation:

Φ
(k)
X (0) = E

[
Xk

]
.

Proof. (Outline) One can use the relation

Φ
(k)
X (0) =

∂kE
[
eθX

]
∂θk

∣∣∣
θ=0 = E

[
∂keθX

∂θk

∣∣∣
θ=0

]
= E

[
XkeθX

∣∣∣
θ=0

]
= E

[
Xk

]
,

however, a detailed proof can be found in [19]. �

B.2 Continuous Probability Distributions

B.2.1 Uniform Distribution

Definition B.2.1 It is said that a random variable X has a uniform distribution on the interval

(a, b) (−∞ < a < b < ∞) if X has a continuous distribution for which the p.d.f. f (x) is

specified as follows:

f (x) :=


1

b−a , a ≤ x ≤ b,

0 , otherwise.

Moreover, restricting a = 0 and b = 1, the resulting distribution is called a standard uniform

distribution.

The moments of X can be found using the p.d.f. above as

E[Xk] =

b∫
a

xk 1
b − a

dx =
bk+1 − ak+1

(k + 1)(b − a)
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Therefore,

E[X] =
b + a

2
and V[X] =

b3 − a3

3(b − a)
−

(b + a)2

4
=

(b − a)2

12
.

B.2.2 Gamma Distribution

Definition B.2.2 It is said that a random variable τn has a gamma distribution with param-

eters n and λ (n ≥ 1 and λ > 0) if τ has a continuous distribution for which the p.d.f. gn(t) is

specified as follows:

gn(t) :=


λn

Γ(n) t
n−1e−λt , t ≥ 0,

0 , t < 0.

If τ has a gamma distribution with parameters n and λ, using the fact that Γ(n) is defined by

the integral

Γ(n) =

∫ ∞

0
ua−1e−udu,

the moments of τ can be found using the p.d.f. above as

E[τk] =

∞∫
0

ukgn(u)du =
λn

Γ(n)

∞∫
0

un+k−1e−λudu

=
λn

Γ(n)
Γ(n + k)
λn+k =

Γ(n + k)
λkΓ(n)

=
n(n + 1)...(n + k − 1)

λk .

Therefore,

E[τ] =
n
λ

and V[τ] =
n(n + 1)
λ2 −

n2

λ2 =
n
λ2 .

The m.g.f. Φ of τ can be obtained similarly, as follows:

Φτ(θ) =

∞∫
0

eθugn(u)du =
λn

Γ(n)

∞∫
0

un−1e−(λ−θ)udu

=
λn

Γ(n)
Γ(n)

(λ − θ)n

=

 1
1 − θ

λ

n

,
θ

λ
< 1.

B.2.3 Exponential Distribution

Definition B.2.3 It is said that a random variable υ has an exponential distribution with

parameter λ (λ > 0) if υ has a continuous distribution for which the p.d.f f (t) is specified as
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follows:

f (t) :=

 λe−λt , t ≥ 0,

0 , t < 0.

Obviously, an exponential distribution with parameter λ is a special case of a gamma distri-

bution for n = 1. Therefore,

E[υ] =
1
λ

and V[υ] =
1
λ2 .

Similarly,

Φυ(θ) =
1

1 − θ
λ

,
θ

λ
< 1.

For the cumulative distribution function, we have

F(t) = P(υ ≤ t) =

t∫
0

λe−λudu = 1 − e−λt, t ≥ 0,

and hence

P(υ > t) = e−λt, t ≥ 0.

B.2.4 Related Distributions

Lemma B.2.4 (Uniform and Exponential Distributions) Let υ be a exponentially distributed

random variable with parameter λ. Then, the random variable X defined by

X := e−λυ

has a standard uniform distribution.

Proof. (Outline) The result follows from the probability integral transform method: If υ is

a continuous random variable with cumulative distribution F(t), then, the random variable X

defined by

X := F(υ)

has a standard uniform distribution. This implies that X := e−λυ is a standard uniformly

distributed random variable. �
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Lemma B.2.5 (Exponential and Gamma Distributions) Let υ1, υ2, ..., υn be a sequence of

independent exponential random variables, all with the same mean 1
λ . Then, for n ≥ 1, the

random variable τn defined by

τn =

n∑
i=1

υi

has the gamma density

gn(t) :=


λn

Γ(n) t
n−1e−λt , t ≥ 0,

0 , t < 0.

Proof. For n = 1, we have that τ1 = υ1 is exponential, i.e.

g1(t) = λe−λt, t ≥ 0.

Then, let us assume that gn(t) holds for some n and prove it for n + 1. That is, we want to

compute the density of τn+1 = τn + υn+1, given τn has the density gn(t). Since υ values are

independent, so τn and τn+1, gn+1(t) can be computed by the convolution

t∫
0

gn(u) f (t − u)du =

t∫
0

λn

Γ(n)
un−1e−λuλe−λ(t−u)du

=
λn+1e−λt

Γ(n)

t∫
0

un−1du

=
λn+1

Γ(n + 1)
tne−λt,

where f (t) is the density of υ values. This proves the lemma. �

The reader can refer to [9] and [19] for further aspects of the probability theory and statistics.
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APPENDIX C

JUMP PROCESSES

A fundamental pure jump process is the Poisson process, and this is presented in the following

section. All jumps of a Poisson process are of size one. A compound Poisson process is like

a Poisson process, except that the jumps are of random size.

C.1 Poisson Process

Definition C.1.1 Let the independent exponential random variables υi and τn in Lemma B.2.5

be the jump interarrival times and the time of the nth jump, respectively. The process Nt

defined by

Nt :=



0 , 0 ≤ t < τ1,

1 , τ1 ≤ t < τ2,

.

n , τn ≤ t < τn+1,

.

is called the Poisson process and it counts the number of the jumps of size one that occur at

or before time t. Nt is right-continuous and has the intensity λ (i.e. the average number of the

jumps of size one within a unit time length.).

Lemma C.1.2 (Distribution of Poisson Increments) The Poisson process Nt with intensity λ

has the distribution

P(Nt = n) =
(λt)n

Γ(n + 1)
e−λt, n = 0, 1, ...

Proof. We can prove this lemma simply by using the relation

P(Nt ≥ n) = P(τn ≤ t), n ≥ 1
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(i.e. we have Nt ≥ n if and only if there are at least n jumps by time t.). Also from Lemma

B.2.5, we know that τn has the gamma density

gn(t) =
λn

Γ(n)
tn−1e−λt, t ≥ 0.

Then,

P(Nt ≥ n) = P(τn ≤ t) =

t∫
0

λn

Γ(n)
un−1e−λudu.

Similarly,

P(Nt ≥ n + 1) = P(τn+1 ≤ t) =

t∫
0

λn+1

Γ(n + 1)
une−λudu.

Integrating by parts yields

P(Nt ≥ n + 1) = −
λn

Γ(n + 1)
tne−λt + P(Nt ≥ n)

This implies

P(Nt = n) = P(Nt ≥ n) − P(Nt ≥ n + 1) =
λn

Γ(n + 1)
tne−λt, k ≥ 1,

which completes the proof. �

Theorem C.1.3 Let Nt be a Poisson process with intensity λ > 0, and let 0 = t0 < t1 < ... < tk

be given. The increments

Nt1 − Nt0 , Nt2 − Nt1 , ..., Ntk − Ntk−1

are stationary and independent, and

P(Nt j+1 − Nt j = n) =
λn

Γ(n + 1)
(t j+1 − t j)ne−λ(t j+1−t j), n = 0, 1, ...

C.2 Compound Poisson Process

Definition C.2.1 Let Nt be a Poisson process with intensity λ, and let Jτ1 , Jτ2 , ... be a se-

quence of independent and identically distributed random variables with mean µJ = E[Ji].

We assume that Jτ1 , Jτ2 , ... are also independent of Nt. Then the process

Yt =

Nt∑
i=1

Jτi , t ≥ 0

is called the compound Poisson process.
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The jumps in Yt occur at the same times as the jumps in Nt. What distinguishes the compound

Poisson process Yt from the Poisson process Nt is that the jumps in Nt are always of size 1,

whereas the jumps in Yt are of random size with density fJ .

C.3 Stochastic Calculus for Jump Processes

Theorem C.3.1 (Itô-Doeblin Formula for one Jump Process) Let Xt be a jump process and

f (t, x) a function for which ft(t, x), fx(t, x) and fxx(t, x) are defined and continuous. Then

f (Xt) = f (X0) +

t∫
0

ft(u, Xu)dt +

t∫
0

fx(u, Xu)dXc
u +

1
2

t∫
0

fxx(u, Xu)dXc
udXc

u

+
∑

0≤u≤t

[
f (u, Xu) − f (u, Xu−)

]
.

The reader can refer to [25] for a complete coverage of continuous-time stochastic models

applied to the area of finance.
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