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ABSTRACT 
 
 
 
 

STOCHASTIC INVENTORY MODELLING 

 

 

 

Özkan, Erhun 

M.Sc., Department of Industrial Engineering 

Supervisor         : Assoc. Prof. Dr. Yasemin Serin 
 

Co-supervisor    : Prof. Dr. ir. Geert-Jan van Houtum 
 

 

June 2010, 163 pages 

 
In this master thesis study, new inventory control mechanisms are developed for the 

repairables in Nedtrain. There is a multi-item, multi echelon system with a continuous 

review and one for one replenishment policy and there are different demand supply 

options in each control mechanism.  There is an aggregate mean waiting time constraint 

in each local warehouse and the objective is to minimize the total system cost. The base 

stock levels in each warehouse are determined with an approximation method. Then 

different demand supply options are compared with each other. 
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ÖZ 
 
 
 
 

STOKASTİK ENVANTER MODELLEMESİ 

 

 

Özkan, Erhun 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi              : Doç. Dr. Yasemin Serin 
 

Ortak Tez Yöneticisi    : Prof. Dr. Geert-Jan van Houtum 
 

 

Haziran 2010, 163 sayfa 

 
Bu tezde, Nedtrain’deki tamir edilebilir parçalar için yeni envanter kontrol 

mekanizmaları geliştirildi. Sürekli takip edilen ve teker teker ikmal edilen,  çok parçalı, 

çok kademeli bir sistem incelenmiştir ve her bir kontrol mekanizmasında farklı bir talep 

karşılama seçeneği vardır. Her bir yerel envanter noktasında, talepler için bir bekleme 

süresi kısıtı vardır; ve amaç, toplam sistem maliyetini minimize etmektir. Yerel ve 

merkezi depodaki en iyi “base stock” (S-1,S)  politikasını bulmaya yönelik bir sezgisel 

yöntem önerilip benzerleri ile karşılaştırılmıştır. 

 
Anahtar Kelimeler: Envanter kontrol mekanizması, stok seviyesi, yanal ve direk nakliyat 
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CHAPTER 1 

 

INTRODUCTION AND RESEARCH ASSIGNMENT 

 

1.1         Introduction 

This master thesis project has been conducted in Nedtrain, which deals with the 

maintenance of rolling stock1 (trains). Nedtrain gives great importance to achieve high 

service levels, because any delay in the maintenance of the rolling stocks affects the 

transportation of the whole Netherlands. Thus, Nedtrain has a very critical responsibility 

which concerns not only themselves but also a whole country. This fact is the main 

motivation behind this master thesis project. 

In this study, control mechanism of the repairables is considered. There are thousands of 

different repairables used in the network of Nedtrain, which makes the control of them 

complicated and important; any improvement in the control of these parts will provide 

great benefit to the company.  

In the control of repairables, there are different supply options used by Nedtrain. These 

are regular replenishments, lateral transshipments, and direct shipments. In this study, 

the effect of each supply option is analyzed. Four different models are constructed to 

minimize the total system costs subject to a target service level.  

 

 

                                                           
1 Nedtrain uses the word ‘Rolling Stock’ for the word ‘Train’. Thus instead of the word ‘Train’, ‘Rolling 

Stock’ will be used in this report 
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1.2         Company Description 

Nedtrain is the company which is responsible for the maintenance of the rolling stock in 

the Netherlands. Although Nedtrain is founded officially in the early 90s, its origin 

extends to 19th century when the first railroad in the Netherlands was founded. In 1938; 

NS (“Nederlandse Spoorwegen”), parent company of Nedtrain, is founded by the merger 

of the two largest Dutch railway companies; in the early 90s, NS has been privatized and 

Nedtrain has been separated within NS as the company responsible for the maintenance 

operations of the rolling stock in the Netherlands. Currently, Nedtrain is one of the first 

class rolling stock maintenance companies in Europe. Approximately, 3500 employees 

work in the company and its annual revenue is around € 450 million in 2007. 

1.3         Train Series and Parts Used in Nedtrain 

There are fifteen different types of rolling stocks and approximately 3.000 rolling stock 

segments in Nedtrain. On the average a rolling stock has 4 segments, so Nedtrain has 

approximately 750 rolling stocks, currently.  

Nedtrain uses three different parts in its network. These are consumables, repairables, 

and main parts. 

• Consumables are the cheapest parts in the network. After used for a specific 

distance or time period, these parts are discarded. They are purchased and owned 

by Nedtrain and supplied by external suppliers. 

• Repairables can be repaired and used in the supply chain for long times. They 

have two criticality classes (critical and non-critical). A repairable can contain 

consumables in its structure. These parts are repaired by the external suppliers or 

the repair facility of the repairables (CBT). They are purchased and owned by 

Nedtrain.  

• Main parts, which are also repairables, are the largest parts in the network. They 

differ from repairables in terms of cost, technical importance (criticality), 

uniqueness, and ownership (they are owned by the clients of the Nedtrain) as 

well as in terms of their maintenance planning. A main part can contain both 
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repairables and consumables in its structure. When these type of parts break 

down, they are repaired at overhaul point which is in Haarlem (RB) or CBT. 

1.4         Current Maintenance Operations 

There are three different types of maintenance with respect to parts in Nedtrain:  

• Use based maintenance: In this type of maintenance activity, a part is replaced 

after it is used for a specific time period or distance. This type of maintenance is 

planned preventive maintenance. 

• Condition based maintenance: This type of maintenance activity is preventive 

maintenance with planned inspection and conditional replacement, in which a 

part is replaced after its performance falls below a specific level. 

• Failure based maintenance: These are unplanned corrective maintenance 

activities, in which a part is replaced or repaired when it breaks down. 

There are four different types of maintenance actions in Nedtrain: 

• First line service: Every rolling stock is inspected, repaired and cleaned on a 

daily basis.  Depending on the results of the inspection, condition and failure 

based maintenance can take place.  

• Short cyclical periodic maintenance: These types of maintenance actions have 

longer interval periods and concerns planned preventive and corrective 

maintenance actions for repairables and consumables.  

• Failures: When parts fail during the usage of the rolling stock, the criticality of 

the part is considered. If the part is critical, an extra arrival is done to the 

appropriate service location; otherwise the part is replaced or repaired in the next 

compulsory service. 

• Long term maintenance (Overhaul): Maintenance of repairables and main 

parts is done by long term maintenance. It is a use based maintenance activity. 

RB and CBT are the overhaul points in the supply chain of Nedtrain. 
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1.5         Logistics Structure of Nedtrain 

There are more than 30 locations of Nedtrain. The headquarters is in Utrecht. There are 

different facilities of Nedtrain around the Netherlands. Maintenance operations are done 

in three different locations. These are: Service points (SB), local maintenance points 

(OB), and RB. In addition to these maintenance locations; a central stock distribution 

center (RDC), CBT and external suppliers exist in the supply chain of Nedtrain. The 

supply chain of Nedtrain can be seen in Figure 1.1.  

 

Figure 1.1: Supply Chain of Nedtrain 

As it can be seen from Figure 1.1, there are four layers in the supply chain. 

Service points (SB) form the lowest level. There are approximately 30 SB-s around the 

Netherlands. In these service locations, daily maintenance activities are done. At the end 

of each day, rolling stocks are cleaned and inspected in SB-s. However, only lower level 

maintenance operations can be done in these locations that are mostly unplanned 

(corrective). Only repairable and consumable parts are used in the maintenance activities 

of SB-s. The components are supplied by maintenance points (OB) mostly. However, in 
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some cases the components are supplied directly from the central stock distribution 

center (RDC).  

Nedtrain has Maintenance points (OB) in Onnen, Zwolle, Maastricht, Amsterdam, 

Watergraafsmeer, Leidschendam and Rotterdam. Each rolling stock should go to an OB 

for maintenance at specific time periods or after a specific distance is travelled. Every 

rolling stock series has its own maintenance period or distance. These type of services 

are planned maintenance activities in theory, because the amount of distance will be 

travelled can be estimated in terms of time or the visits of the rolling stocks can be 

scheduled by implementing fixed time period intervals. However, in practice, 

maintenance activities in the OB-s may become unplanned because of several reasons, 

which will be mentioned later. Both preventive and corrective maintenance actions are 

done in the OB-s. There is also a stock point which keeps main, repairable and 

consumable parts in each OB. These stock points are controlled centrally by the RDC.  

RDC is a central stock point which supplies the stock points in OB-s and it supplies 

some of the SB-s directly. The stocks kept at the OB-s and RDC are controlled centrally 

in RDC by Xelus software. RDC is supplied by CBT, external suppliers and the 

component factory in Haarlem. RDC keeps the stocks of main, repairable and 

consumable parts.  

The Overhaul point (RB) is the maintenance location in which refurbishment and 

overhauling of main parts are done. Each main part visits the RB, which is in Haarlem, 

every five to fifteen years and all of the components of the main parts are replaced with 

overhauled components. Maintenance done at RB is called long-cyclical maintenance 

and this type of maintenance is a planned operation because all components are replaced 

regardless of their condition. There is also a component factory in Haarlem which 

supplies approximately 80% of the main parts to the network. 

CBT, which is in Tilburg, is the factory in which most of the repairables (approximately 

75%) and a small amount of main parts (approximately 20%) are repaired. CBT supplies 

the repaired parts to RDC, and RDC distributes the parts to OB-s or SB-s.  
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There are also external suppliers in the network, which supply some of the repairables 

(25%) and all of the consumables parts. External suppliers also supply components to 

CBT. 

Nedtrain initiated an applied research and development program in cooperation with 

several universities including Eindhoven University of Technology. The main question 

for this research and development program is given as:  

“How to obtain and maintain the best combination of rolling stock, maintenance 

operations and supply chain, within the context of railway operations, to enable the 

customers to deliver competitive high quality services to their passengers?” 

Nedtrain determined the management of repairables as a research area which has a large 

potential for improvement, and thus repairables will be considered in this master thesis 

project. 

1.6         Repairables 

As mentioned before, repairables can be repaired and used in the supply chain for long 

times. They have two criticality classes, critical and non-critical. Only failure of a 

critical repairable makes the rolling stock down. Repairables are repaired at the external 

suppliers or CBT. They are purchased and owned by Nedtrain.  

There are 9356 different parts existing in the supply chain of Nedtrain (all of these parts 

cannot be considered as stock keeping units, because there is not any demand for some 

of them for years). 39% of repairables are considered critical, and 60% of them are 

considered as non-critical. The criticality level of the remaining 1% is not determined 

yet.  

Repairables have a wide price range (€ 0,05 - € 265.300). The price distribution of the 

repairables for each criticality level can be seen in Table 1.1 below: 
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Table 1.1: Distribution of repairables with respect to price and criticality 

Price range (€) 
Critical 

(%) 
Non-critical 

(%) 
Unknown criticality 

level (%) General 
price < 5  2,3 3,9 23,8 3,5 

5< price ≤ 10 0,1 0,7 1,6 0,5 
10 < price ≤ 100 21,3 37,2 31,1 31,0 

100< price ≤ 1000 55,6 46,9 18,0 49,9 
1000< price ≤ 10.000 18,5 10,5 24,6 13,8 

10.000 < price ≤ 100.000 2,0 0,8 0,8 1,3 
price > 100.000 0,2 0,0 0,0 0,1 

100 (%) 100 (%) 100 (%)  100 (%) 
    

As it can be seen, critical repairables have larger shares on higher price levels than non-

critical ones. 

Demands for the repairables are classified into planned and unplanned demand. Note 

that in planned demands, a part is replaced after a specific time period or distance.  

However, in practice this distinction does not work because of several factors. For 

instance; if the part fails earlier, the schedule of planned maintenance may be changed; 

or the arrival date of the rolling stocks to the maintenance locations can be changed at 

the last moment which changes the entire planned demand schedule.  

When the planned and unplanned demands are aggregated, it is expected that the 

predictability of the demand increases, which can provide better forecast performance. 

Below, in Table 1.2 the change in the coefficient of variation (COV) can be seen when 

the planned and unplanned demand are aggregated. Note that ‘% of improved COV’ 

column shows the improvement of the COV of aggregated demands with respect to the 

minimum of the COV of planned and unplanned demand. 
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Table 1.2: Improvement in coefficient of variance when planned and unplanned 

demands aggregated 

Location 
% of improved 

COV 
% Average 

decrease in COV 
% of products which has both 

planned and unplanned demand 

RDC 82,76 8,91 5,89 

OB1 82,35 8,50 14,86 

OB2 68,08 1,68 19,94 

OB3 71,19 3,32 20,65 

OB4 76,67 7,70 21,05 

OB5 70,83 5,11 15,85 

OB6 74,26 5,26 12,16 

OB7 80,00 11,59 8,06 

Average 75,77 6,51 14,81 
 

As it can be seen in Table 1.2; in general, 15% of the repairables have planned and 

unplanned demands and when they are aggregated, 76% of the time, coefficient of 

variance decreases, which increases predictability. 

Nedtrain uses various forecasting methods in the control process of repairables. 

Currently forecasting for planned and unplanned demand is done separately. For the 

planned demand; software packages ‘R5’ and Proplan are used and these forecasts 

change over time, there is no frozen horizon. For the unplanned demands, the software 

package “Xelus system” is used. Currently, the Xelus system chooses the forecasting 

process automatically among five different forecasting methods (moving average, single 

exponential smoothing, double exponential smoothing, weighted average, and Croston’s 

method) with respect to sigma ratio. 

Repairables are stored in the OB-s and RDC. When a demand comes to an OB, the 

repairable is replaced by a ready for use one kept in stock; and the broken one is sent to 

either CBT or external suppliers. The stock kept in the OB-s is replenished by RDC 

which acts as a central stock point in the supply chain of repairables and it is supplied by 

CBT and external suppliers. All these inventory points are controlled centrally by the 

Xelus system. OB-s are replenished by a (s, Q) inventory controlling policy and CBT 

supplies the RDC with respect to a min-max policy. These min-max levels are calculated 

for the stocks kept in the whole network (in RDC and OB-s). The purpose of CBT is to 
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keep the stocks between the min-max levels. However, current stock levels are outside 

the min-max stock levels for almost 76% of all the repairables (45% of time current 

stock is higher than max level, and 31% of time it is lower than min level). Hence the 

control process does not work properly and this situation results in a lot of extra, and 

probably unnecessary coordination efforts between the repairable planners and the CBT. 

Another problem occurs in the implementation of the control mechanism. According to a 

recent study done by Gordian (which is a consultancy company) in Nedtrain, employees 

do not implement the decisions of the Xelus in 80% of the time, which makes the control 

of repairables more complicated. 

Currently, two different service levels are considered in the control of repairables. These 

are the network service level and local availability levels. Network service level is fill 

rate of repairables in the whole network; the fill rate is calculated by considering the 

total inventory kept in the whole network (RDC and all OB-s). Local availability is the 

availability of repairables in each OB. Network service level and local availability level 

are calculated as 98% and 93%, respectively in April 2009. Note that target network 

service level of Nedtrain is 99% for all products. Inventory turnover rate for the 

repairables is approximately 1.2 currently.  

Some interesting situations are recognized in the control of repairables. Firstly, it is 

assumed that the demand of all repairables have a Normal distribution. However, 

generally most of the repairables have very low demand rates which cannot be modeled 

by a Normal distribution. To check this assumption, 127 different repairables (which are 

selected randomly from a random OB) are examined to understand their distribution. 

Firstly, the repairables are classified into their demand rate during one month (whether is 

this value is smaller than 10 or not; note that less than 3% of the demand has average 

demand more than or equal to 10). Then Anderson - Darling Normality test and 

Goodness of fit test for Poisson distribution are done to each of the selected repairables 

to understand their distribution. In addition to these tests, Kolmogorov - Smirnov Test 

for exponential distribution is done to understand whether the inter-arrival times 

between demands are exponentially distributed (In some cases Goodness of fit test for 

Poisson distribution cannot be done because enough demand classes cannot be formed, 
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in these cases Kolmogorov - Smirnov Test for exponential distribution is used.). Results 

can be seen in Table 1.3, below:  

Table 1.3: Distribution of demands of different types of repairables 

Average demand < 10 Average Demand ≥ 10 

Demand Type Poisson Normal None Lack of data Poisson Normal None 

Planned  2 0 21 37 0 0 16 

Unplanned  33 1 12 14 0 10 11 

Total 35 1 33 51 0 10 27 
 

‘Lack of data’ column shows the demands which cannot be tested even by Kolmogorov 

- Smirnov Test. Since this type of repairables have very low demand (one or two in the 

observed period which is three years), it is impossible to test them. However, this type of 

parts is generally considered to have Poisson distribution in the literature.  

According to the results when average demand per month is smaller than 10; 29% of the 

repairables have Poisson distributed and 42% of the repairables have very low demand 

in the last three years. If the repairables which have very low demand are assumed to 

have Poisson distributed, then 71% of the parts will have Poisson distribution when the 

average demand per month is smaller than 10. 

For the unplanned demands, 55% of the demand has a Poisson distribution and 23% of 

the demand has very low demand. If the repairables which have very low demand are 

assumed to have Poisson distributed, then 78% of the parts will have Poisson 

distribution when the average demand per month is smaller than 10. For the planned 

demands, 35% of the demand does have neither Poisson nor Normal distribution but 

62% of the demand has very low demand. 

When average demand per month is more than or equal to ten, 27% of the repairables 

have normal distribution and the remaining ones do not fit to neither Normal nor Poisson 

distribution. In general, most of the repairables does not fit to Normal distribution, and 

the Poisson distribution can be a better alternative.  
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As mentioned earlier, repairables have a very wide price range (€ 0,05 - € 265.300). In 

the literature; special stochastic inventory control policies are implemented for 

expensive spare parts which have low demand rates. This kind of control policies can be 

a good research topic in Nedtrain. Moreover, Xelus system can implement advanced 

optimization techniques like METRIC, which is used in the control of spare parts which 

are expensive and have low demand rates. 

Another interesting point is that although lateral transshipments are implemented when 

needed, inventory calculations are not done with respect to this factor. However, Xelus 

system is sophisticated planning software and it has an ability to consider pooling 

between stock points. However, it is not known how it deals with pooling. 

1.7         Scope 

The repairables considered in this thesis are the critical ones. Both planned and 

unplanned demands are considered in this study.  

Almost all of the repairables can be purchased from suppliers and approximately only 

1% of them are in the initial phase2 with respect to their life cycle. Thus the repairables 

considered in this study are in the normal phase3 with respect to the life cycle of spare 

parts. 

The scope of this master thesis study is determined as the control mechanism of the 

repairables. Inputs for the control mechanism will be forecasted demand values. With 

respect to the target service levels; inventory levels, inventory holding and transportation 

cost values will be the outputs of the study.  

Expected waiting time is used as the service level. There are two types of approaches 

which use expected waiting time for stock keeping units (SKU-s) as the service level in 

the literature: system and item approach. A system approach considers the aggregate 

service level for the repairables but item approach considers the target service level for 

                                                           
2
 In the initial phase, a product appears on the market with components that have never been produced 

before. These components should be kept in stock as service parts, but historic demand figures are not 
available thus the basic problem is to estimate the quantities to be put in stock (see Fortuin [7]). 
3
 In the normal phase, sales of the product have settled at a certain level. Demand for service parts can be 

predicted (see Fortuin [7]). 
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each SKU separately. It is possible to find studies which compare system approach and 

item approach in the literature of spare parts. Rustenburg et al. [25], Wong et al. [33], 

Wong et al. [34], Van Houtum et al. [13], and Kranenburg and van Houtum [17] 

compared system approach and item approach and they all found that system approach 

significantly outperforms the item approach. The reason of this result is that in the 

system approach, low service levels of expensive products are compensated by high 

service levels of cheap products. Because of this situation, system approach will be used 

in the service level constraint in each of the models 

Below in Figure 1.2, the environment of the control system of the repairables in 

Nedtrain can be seen.  

 

Figure 1.2: Control system of repairables in Nedtrain 

An improvement in the control mechanism of repairables is believed to provide great 

benefits to Nedtrain. For instance, current value of the repairables kept in the stock is 

approximately € 18.7 million. If the inventory holding rate is assumed as 20% per year, 

then yearly inventory holding costs for the repairables becomes € 3.74 million which is a 

significant amount for Nedtrain (approximately % 0.83 of the total yearly revenue).  

Moreover; Nedtrain gives great importance to provide the best service to its customers, 

thus higher service levels will always support this goal. 

However due to time restriction, following areas will be excluded from this study: 

• Maintenance operations on CBT and SB-s  

• Repair time for the broken parts in CBT 
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1.8         Problem Statement and Research Question 

Currently, Nedtrain assumes normal distribution for the demand of every repairable and 

uses (s, Q) policy to control the inventory. This situation may cause poor performance; 

because repairables have different criticality levels, prices from each other and as shown 

before, Poisson distribution is more suitable to the repairables than the Normal 

distribution. Moreover; demand is distinguished as planned and unplanned demand, and 

forecasting is done separately for each type, but this situation decreases the predictability 

of the demand.  

Also the inventory levels are mostly out of the min-max range which brings unnecessary 

coordination efforts between RDC and CBT. Lastly; current planning software, Xelus 

systems, has options like METRIC4 or lateral transshipments that can be effectively used 

in the control process of repairables. Hence, the problem statement of the present study 

can be stated as 

“In this study, the inventory control alternatives for repairables of Nedtrain will be 

evaluated in terms of the total costs under an appropriate service level constraint.” 

With respect to the problem statement, the research question is identified as: 

“How can the inventory of the repairables be controlled with a specific service level 

target while minimizing total costs?” 

For this research question, several sub questions are identified. These are: 

• How can the repairables be classified? 

• What is the optimal control policy for each class of the repairables? 

• How can the results of these models be implemented? 

Then the main project objectives are defined as: 

• Delivering knowledge about repairables to Nedtrain 

                                                           
4
 METRIC is a multi-echelon technique for recoverable item control developed by Sherbrooke in 1968 

(see Sherbrooke [27]). 
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• Providing a control mechanism tool which minimizes total cost of the system 

with respect to a target service level  

In following chapters; firstly, the models constructed to deal with the research question, 

which evaluate different alternatives to improve the inventory control policy of 

Nedtrain, are described. Then, a review of the related literature is given. Then, solution 

procedures for the models are explained and validated. Afterwards, the numerical results 

and analyses are given and implementation issues of the findings are described; and 

lastly, conclusion and recommendation to Nedtrain for future research are given. 
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CHAPTER 2 

 

MODELS 

 

In this chapter, the models that are used to answer the research questions are described. 

Although Nedtrain also uses lateral5 and direct6 shipments in the maintenance of 

repairables, the control mechanism for the repairables is designed considering only 

normal replenishments. Moreover, Nedtrain has no insights about the effect of lateral 

and direct shipments. In order to analyze the effect of lateral and direct shipments, four 

different models are constructed using different control alternatives. These models are: 

1. Model 1: A basic multi item, two echelon inventory control model with regular 

shipments only 

2. Model 2: A multi item, two echelon model which also allows lateral 

transshipments between OB’s in addition to regular shipments 

3. Model 3: A multi item, two echelon model which also allows direct shipments 

from RDC or CBT to OB’s in addition to regular shipments 

4. Model 4: A multi item, two echelon model which allows both lateral and direct 

shipments in addition to regular shipments 

The purpose of considering different models is to show Nedtrain the effects of different 

supply options by comparing them with the current policy.  

                                                           
5
 Lateral transshipments occur between OB-s. For instance; when a demand comes to OB 1 and if the OB 

1 does not have any stock on hand and if OB 2 has the demanded part in its stock, then the part is sent 
from OB 2 to OB 1 by a lateral transshipment. 
6
 There are two types of direct shipments in the network of Nedtrain: Direct shipment from RDC to OB 

and from CBT to OB. A direct shipment occurs when a demand comes to an OB and if the OB does not 
have any stock on hand. In this case; if RDC has the demanded part in its stock, then the part is sent from 
RDC to OB by a direct shipment; otherwise an emergent repair is done in CBT and the ready-for-use part 
is sent from CBT to OB by a direct shipment.  
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The model descriptions consist of multiple components (demands, demand fulfillment, 

reorder policy, service levels, costs, assumptions etc). Several components are the same 

for all models. It will be explicitly denoted when a certain component only holds for 

specific models. 

In the rest of the chapter; first repairables, their demand structure, and demand 

fulfillment process will be explained. Then; service levels and the model constraints will 

be given. Then; costs observed in the network and the objective function of the models 

will be described. Then assumptions made for the models will be mentioned. Lastly, the 

models will be formulated.  

2.1       Repairables 

There are 9356 different types of repairables in the supply chain of Nedtrain. There has 

not been any demand for some of these repairables within the last three years and these 

parts will be excluded from this study.  

Repairables are classified in two criticality levels as critical and non-critical. This study 

considers only critical repairables. It is assumed that all are equally critical and failure of 

any repairable makes the rolling stock down. Only after its replacement the rolling stock 

is up again. Each critical repairable is a Stock- Keeping Unit (SKU). The set of SKU-s is 

denoted by �.  

2.2       Demands 

Several tests are done to understand the distribution of the demands of repairables and it 

is seen that Poisson processes are more suitable than Normal distribution for the 

repairables. Thus it is assumed that the demands occur according to Poisson processes. It 

is also assumed that for each SKU, the demand rate is stationary. The reason of this 

assumption is that the failure rates of the considered repairables are very low and the 

downtime of the rolling stocks are short in general, thus the decrease in demand rate is 

small, and thus it is reasonable to assume  constant demand rates.  
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2.3 Network 

Nedtrain has a multi-echelon structure in the control of repairables, as given in Figure 

2.1. 

 

Figure 2.1: Echelon structure of Nedtrain for repairables 

Seven OB-s (local warehouses) are in the lowest level of the supply chain of repairables. 

The set of OB-s is denoted by  ����. Demands are assumed to come directly to the OB-s. 

For each SKU � at each OB �, demands occur according to a Poisson process with a 

constant rate  ���  ≥ 0 for � ∈ �, � ∈ ����. 

Apart from the OB-s, there is a central warehouse, RDC; denoted by OB 0. Then �, the 

set of all warehouses, is  � = �0� ∪ ����. OB-s are replenished by the RDC. 

In the highest level, there are CBT and External Suppliers; which repair the broken 

repairables. It is assumed that failed parts are repaired and returned after an exponential 

repair lead time. 

2.4 Demand Fulfillment Process 

Demand fulfillment process is different for each of the four models. 

In Model 1; an incoming demand to an OB is fulfilled by the OB, if there is available 

ready-for-use part in stock as given in Figure 2.2. If the demanded part is not in stock, 
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then it is backordered in the OB. Similarly, when an OB gives an order to RDC, RDC 

fulfills the order by its stock directly; if there is not any stock in RDC, then the demand 

is backordered in RDC. Thus in this model, backorders are allowed in both the OB-s and 

the RDC. 

In Model 2; an incoming demand is fulfilled by the OB, if there is available ready-for-

use part in stock. If the demanded part is not in stock, then other OB-s are checked. If 

any of the other OB-s has the demanded part in its stock, then a lateral transshipment is 

done from this OB to the one which cannot fulfill the demand, and the OB which sends 

the repairable gives an order to RDC (see Figure 2.2). An OB first checks the closest OB 

to itself for such a lateral transshipment requirement.  If the closest one is also out of 

stock, then the second closest OB is checked and so on. However, if none of the OB-s 

has the demanded part, then the part is backordered in the OB where the demand 

initially came. Similarly, when an OB gives an order to RDC, RDC fulfills the order 

from its stock directly; if there is not any stock, and then the demand is backordered in 

RDC.  

In Model 3; an incoming demand is fulfilled by the OB, if there is available ready-for-

use part in stock. If the demanded part is not in the stock, then RDC makes a direct 

shipment to the OB, if it has the demanded part in its stock as given in Figure 2.2. If 

RDC is out of stock either, then CBT makes an emergent repair on the broken part and 

sends it urgently to the OB. Because of this demand fulfillment procedure, there is not 

any backorder in the OB-s, but backorder exists in RDC. 

In Model 4; an incoming demand is fulfilled by the OB, if there is available ready-for-

use part in stock. If the demanded part is not in the stock, then RDC makes a direct 

shipment to the OB directly, if it has the demanded part in its stock. If RDC does not 

have the demanded part in stock either, then other local warehouses are checked (with 

‘the closest OB first’ order); and if the part is available in one of the other OB-s, then a 

lateral transshipment is done. If the demanded part is available neither in an OB nor in 

RDC, then CBT makes an emergent repair on the broken part and sends it urgently to the 

OB where the demand comes (see Figure 2.2). Because of this demand fulfillment 

procedure, there is not any backorder in the OB-s, but backorder exists in RDC. 
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Figure 2.2: Nedtrain supply network with respect to each model 

When an order is given by an OB to RDC, the orders for each SKU are aggregated and 

replenished together after a deterministic time period. Thus transportation time between 

OB-s and RDC for each SKU is same and denoted as  !"# for each SKU and OB. 

For the direct shipments from RDC to OB-s, transportation time between OB � and 

RDC is denoted as   �$%&  for every SKU �. For the lateral transshipments, transportation 

time for a lateral transshipment from OB , to OB - is denoted as  �,)�*+  for every SKU �.  
For the direct shipment from CBT to OB-s, transportation time for an emergent supply 

of CBT to the OB � is denoted as   �&'(  for every SKU � where � ∈ �, � ∈ ����. Note that 

the transportation times depend only to the distance travelled, so they do not depend on 

SKU-s. 

Lastly, replenishment lead time (repair + transportation) of RDC by CBT is assumed to 

be exponentially distributed and its mean is /� for each SKU � where � ∈ �. Detailed 

information about the transportation times can be seen in Appendix A. 

2.5 Reorder Policy 

Since Nedtrain aggregates its orders and replenishes them together to each OB 

periodically, it is more suitable to implement a one for one replenishment policy in the 
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control of repairables because batching the SKU demands at OB’s does not bring any 

benefit in terms of the order or transportation cost of in the long term. Also Nedtrain has 

the ability to check its stock levels at each day. Hence, a continuous review base stock 

(S, S-1) policy is considered for each SKU in this study.  

2.6 Service Levels 

Nedtrain uses availability as the service level. Although availability is suitable as service 

level measure in Model 1, in Model 2, 3 and 4, lateral or direct shipment options are 

considered and expected waiting time per repairable is used as the service level measure 

rather than availability, because these alternatives decrease the expected waiting time for 

demanded repairable; availability is now distributed and does not make much sense. 

Let  
�� denote the expected waiting time for SKU � at OB � (used in all models) 

for � ∈ �, � ∈ ����. Additionally, 
�� denotes the fraction of the demand for SKU � met 

by the stock in the OB � directly,  ��� denotes the fraction of the demand for SKU � at 

OB � met by direct shipments from RDC,  K�,�,) denotes the fraction of the demand 

coming for SKU � at OB - met by lateral transshipments from OB ,; and  ��� denotes the 

fraction of the demand for SKU � at OB � met by direct shipments from CBT where � ∈�, �, ,, - ∈ ���� , - ≠ ,. Note that;  
�� will be used in Model 2, 3, and 4;  ��� and  ��� 

will be used in Model 3 and 4; and  K�,�,) will be used in Model 2 and 4. 

The expected waiting time, 
��, is computed differently in Model 1, 2, 3 and 4 as 

follows: 

In Model 1: 

 
�� = ��H��� ���          ∀ � ∈ �, � ∈ ���� 

where, ��H��� denotes the expected backorder level for SKU � at OB � where � ∈ �, � ∈����. 

In Model 2: 
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�� =  
��. 0 + Z [ K�,�,) .  �,)�*+\)∈BCDE,)]� + ^1 −  
�� − Z  K�,�,))∈BCDE
a . H
��       ∀ � ∈ �,

∀  � ∈ ����  
where   H
��   denotes the average waiting time for a backorder for SKU � at OB � 

where � ∈ �, � ∈ ����. 

In Model 3: 

 
�� =  
��. 0 + ���.    �$%& +  ���.    �&'(    ∀  � ∈ �, � ∈ ����    
In Model 4: 

 
�� =  
��. 0 + ���.    �$%& + Z [ K�,�,) .  �,)�*+\)∈BCDE,)]� +  ���.    �&'(         ∀  � ∈ �, � ∈ ���� 

The service level constraint represented by the aggregate waiting time will be ∑ = cde∑ cded∈f . 
��F�∈g ≤   
�+*!#"+       ∀  � ∈ ���� 

2.7 Costs 

Costs in the control of repairables are inventory holding cost and transportation cost as 

shown in Figure 2.3.  Only the maintenance of broken repairables is studied here, the 

purchase cost is excluded. Backorder or waiting costs are also ignored because expected 

waiting time is constrained. 
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Figure 2.3: Cost components in the network of repairables 

2.7.1 Transportation Costs 

Transportation costs include the costs of normal (regular) supplies, direct shipment costs 

from RDC or CBT to the OB-s and lateral transshipment costs. However; since Nedtrain 

makes the regular supplies every day no matter what the amount of the orders is, cost of 

the regular supplies is fixed and independent of the order size. For that reason, costs of 

regular replenishments are excluded, thus transportation cost in Model 1 is assumed 0. 

More information about transportation costs can be seen in Appendix A. 

For SKU �; direct shipment cost from RDC to OB � is denoted as  1�$%&; direct shipment 

cost from CBT to OB � is denoted as  1�&'(; and lateral transshipment cost from OB , to 

OB - is denoted as 1�,)�*+ where � ∈ �, �, ,, - ∈ ���� , - ≠ ,. 

  1�$%& = 2$%&3�. [478*#" + 497"�\ +  �$%& . 45!�6"!      ∀ � ∈ �, � ∈ ���� 

1�,)�*+ = 2)3�. [478*#" + 497"�\ +  �) . 45!�6"!      ∀ � ∈ �, , ∈ ���� , - ∈ ����  - ≠ ,     
1�&'( =   1�$%& . 	      ∀ � ∈ �, � ∈ ���� 

where 

2$%&3�: Distance between RDC and OB, � ∈ ���� (km). 
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2)3�: Distance between OB, , ∈ ���� and OB, - ∈ ���� (km) 

 �$%&: Time between OB, � ∈ ���� and RDC (hours) 

 �): Time between OB, , ∈ ���� and OB, - ∈ ���� (hours) 

45!�6"!: Wage rate of a driver per hour  

478*#": Cost for renting a truck per km  

497"�: Cost of fuel consumption per km by the truck  

	: uplift factor  

An uplift factor is used to calculate the direct shipments from CBT to an OB. Since CBT 

and RDC are both in Tilburg, the cost of direct shipment from RDC to an OB should be 

very close to the cost of direct shipment from CBT to an OB. However for a direct 

shipment from CBT to an OB; in addition to the shipment cost of the repairable from 

CBT to the OB, there is some cost for the emergent shipment of the broken repairable 

from the OB to CBT and quick repair of the broken part. 

Hence, total transportation cost denoted as  1��(  for SKU � at OB � for � ∈ �, � ∈ ���� is: 

For Model 2: 

1��( = Z  1�,)�*+ . ���. K�,�,))∈BCDE,�])           ∀ � ∈ �, � ∈ ����  
For Model 3: 

1��( =   1�$%& . ���.  ��� +   1�&'( . ���.  ���         ∀ � ∈ �, � ∈ ���� 

For Model 4: 

1��( =   1�$%& . ���.  ��� +   1�&'( . ���.  ��� + Z  1�,)�*+ . ���. K�,�,))∈BCDE,�])   ∀ � ∈ �, � ∈ ���� 
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2.7.2 Inventory Holding Costs 

Inventory holding costs reflect the opportunity costs of the money invested. The most 

obvious holding cost components are the cost of equipment, materials, and labor to 

operate the space; insurance expenses; security costs; interest on the money invested in 

the inventory and space, and other direct expenses.  

Let 1��M  denote the inventory holding cost for SKU � at warehouse � for � ∈ �, � ∈ �. 

Then inventory holding cost for each of the four models is 

1��M = ℎ. ;�. G��      ∀ � ∈ �, � ∈ �     
ℎ: Annual holding cost rate per SKU (It is assumed 20% in this study) 

;�: Price of SKU, � ∈ � (€) 

G��: Base stock level of SKU � at warehouse � for � ∈ �, � ∈ � 

2.8 Assumptions 

The assumptions done so far are: 

1. Demands directly come to the OB-s according to a Poisson process for each 

SKU � at OB �. 

2. Demand rates for each SKU � at OB �  are assumed to be stationary. 

3. CBT is assumed to make the repair of all repairables. Thus External Suppliers 

are excluded from the study. 

4. Repair lead time of each SKU � is independent and has exponential distribution, 

and mean repair lead time is same for each SKU �. 
5. Fixed order costs are assumed zero. 

6. Repairables do not have any condemnation. 

7. A one-for-one replenishment policy is used for the all OB-s. 

8. All repairables are equally critical, failure of any repairable makes the rolling 

stock down, and the replacement of the repairables make the rolling stock up 

again. 
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9. Transportation times and costs are same for each SKU �  
for � ∈ �, � ∈ ����. 

2.9 Model Formulation 

All four models determine the base stock levels of the OB-s to minimize the total system 

costs under a waiting time constraint. Each model considers a different set of 

transshipment possibilities. 

2.9.1 Model 1 

In Model 1; only normal replenishments are considered.  

Input parameters: 

���: Average demand rate of SKU � at OB � for � ∈ �, � ∈ ���� 

 !"#: Regular transportation time between RDC and OB-s 

/�: Mean replenishment lead time of RDC by CBT for all SKU �  
ℎ: Annual holding cost rate per SKU �  
;�: Price of SKU � (€) 
Outputs:  

G��: Base stock level of SKU � at warehouse � for � ∈ �, � ∈ � 


��: Expected waiting time of SKU � in OB � for � ∈ �, � ∈ ���� 

Model 1: 

min    Z Z 1��M�∈B�∈g   
such that 
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Z k ���∑ ����∈g . 
��l�∈g ≤   
�+*!#"+       ∀  � ∈ ����      
  G�� ≥ 0 m�2 �� nonp     ∀ � ∈ �, � ∈ �              

where 

1��M = ℎ. ;�. G��      ∀ � ∈ �, � ∈ � 

 
�� = ��H��� ���      ∀ � ∈ �, � ∈ ���� 

2.9.2 Model 2 

In Model 2; regular replenishments and lateral transshipments are considered.  

Input parameters: 

���: Average demand rate of SKU � at OB � for � ∈ �, � ∈ ���� 

 !"#: Regular transportation time between RDC and OB-s 

/�: Mean replenishment lead time of RDC by CBT for all SKU �  
 �,)�*+: Lateral transshipment time between OB , and OB - for all SKU � 
ℎ: Annual holding cost rate per SKU �  
;�: Price of SKU � for � ∈ � (€) 

1�,)�*+: Average lateral transshipment cost between OB , and OB - for all SKU � 
Outputs:  

G��: Base stock level of SKU � at warehouse � for � ∈ �, � ∈ � 


��: Expected waiting time of SKU � in OB � for � ∈ �, � ∈ ���� 
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Model 2: 

min    Z ^Z 1��M�∈B + Z 1��(�∈BCDE
a�∈g   

such that 

Z k ���∑ ����∈g . 
��l�∈g ≤   
�+*!#"+       ∀  � ∈ ����      
   G�� ≥ 0 m�2 �� nonp     ∀ � ∈ �, � ∈ �              

where 

 
�� =  
��. 0 + Z [ K�,�,) .  �,)�*+\)∈BCDE,)]� + ^1 −  
�� − Z  K�,�,))∈BCDE
a . H
��      ∀ � ∈ �,

∀ � ∈ ���� 

1��M = ℎ. ;�. G��   ∀ � ∈ �, � ∈ �     
1��( = Z  1�,)�*+ . ���. K�,�,))∈BCDE,�])           ∀ � ∈ �, � ∈ ���� 

2.9.3 Model 3 

In Model 3; regular replenishments and direct shipments are considered. 

Input parameters: 

���: Average demand rate of SKU � at OB � for � ∈ �, � ∈ ���� 

 !"#: Regular transportation time between RDC and OB-s 

/�: Mean replenishment lead time of RDC by CBT for all SKU �  
 �$%&: Average direct shipment time between RDC and OB � for all SKU � 
 �&'(: Average direct shipment lead time between CBT and OB � for all SKU � 
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ℎ: Annual holding cost rate per SKU �  
;�: Price of SKU � for � ∈ � (€) 

1�$%&: Average direct shipment cost of an OB � by RDC for all SKU � 
1�&'(: Average direct shipment cost of an OB � by CBT for all SKU � 
Outputs:  

G��: Base stock level of SKU � at warehouse � for � ∈ �, � ∈ � 


��: Expected waiting time of SKU � in OB � for � ∈ �, � ∈ ���� 

Model 3: 

min    Z ^Z 1��M�∈B + Z 1��(�∈BCDE
a�∈g   

such that 

Z k ���∑ ����∈g . 
��l�∈g ≤   
�+*!#"+       ∀  � ∈ ����      
   G�� ≥ 0 m�2 �� nonp     ∀ � ∈ �, � ∈ �           

where 

 
�� =  
��. 0 + ���.    �$%& +  ���.    �&'(       ∀  � ∈ �, � ∈ ����         
1��M = ℎ. ;�. G��       ∀ � ∈ �, � ∈ �     

1��( =   1�$%& . ���.  ��� +   1�&'( . ���.  ���         ∀ � ∈ �, � ∈ ���� 

2.9.4 Model 4 

In Model 4; regular replenishments, lateral and direct shipments are considered.  
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Input parameters: 

���: Average demand rate of SKU � at OB � for � ∈ �, � ∈ ���� 

 !"#: Regular transportation time between RDC and OB-s 

/�: Mean replenishment lead time of RDC by CBT for all SKU �  
 �,)�*+: Lateral transshipment time between OB , and OB - for all SKU � 
 �$%&: Average direct shipment time between RDC and OB � for all SKU � 
 �&'(: Average direct shipment lead time between CBT and OB � for all SKU � 
ℎ: Annual holding cost rate per SKU �  
;�: Price of SKU � for � ∈ � (€) 

1�,)�*+: Average lateral transshipment cost between OB , and OB - for all SKU � 
1�$%&: Average direct shipment cost of an OB � by RDC for all SKU � 
1�&'(: Average direct shipment cost of an OB � by CBT for all SKU � 
Outputs:  

G��: Base stock level of SKU � at warehouse � for � ∈ �, � ∈ � 


��: Expected waiting time of SKU � in OB � for � ∈ �, � ∈ ���� 

Model 4: 

min    Z ^Z 1��M�∈B + Z 1��(�∈BCDE
a�∈g   

such that 

Z k ���∑ ����∈g . 
��l�∈g ≤   
�+*!#"+       ∀  � ∈ ����      
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   G�� ≥ 0 m�2 �� nonp     ∀ � ∈ �, � ∈ �               
where 

 
�� =  
��. 0 + ���.    �$%& + Z [ K�,�,) .  �,)�*+\)∈BCDE,)]� +  ���.    �&'(    ∀  � ∈ �, � ∈ ����   
1��M = ℎ. ;�. G��     ∀ � ∈ �, � ∈ � 

1��( =   1�$%& . ���.  ��� +   1�&'( . ���.  ��� + Z  1�,)�*+ . ���. K�,�,))∈BCDE,�])   ∀ � ∈ �, � ∈ ���� 

 

2.10 Literature Review 

This part briefly explains the literature related to the four models.  

2.10.1 Model 1 

This model deals with a two echelon, multi item system with a continuous review and 

one for one replenishment policy. Sherbrooke [28] developed a multi echelon model for 

recoverable item control (METRIC) for the systems with continuous review base stock 

policy. This method is capable of calculating expected backorder level for each of the 

local warehouses with respect to given base stock values. At some point, Sherbrooke 

replaced the real stochastic lead time with its mean, which makes METRIC an 

approximate evaluation method. Graves [11] developed exact and approximate 

evaluation procedures for multi echelon systems with continuous review base stock 

policy. In the approximation method, Graves fits the first two moments of the demands 

with negative binomial distribution. Rustenburg [25] et al. generalized Graves’ exact and 

approximate evaluation method for two echelon, multi indenture systems. Wong et al. 

[34] presented four different heuristics to optimize the base stock levels with respect to a 

target waiting time constraint in a two echelon spare parts system. They used these 

heuristic methods with METRIC and Graves’ exact and approximate evaluation 

methods. In Model 1; a greedy algorithm, which is one of the heuristic methods 

presented by Wong et al. [35] is used with the METRIC of Sherbrooke. The reason why 
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METRIC is used in Model 1 is that this method fits perfectly to the demand structure of 

repairables (Poisson demands) and to the echelon structure of Nedtrain (a multi echelon 

model). The reason why METRIC is used instead of Graves’ Approximation Method is 

that the software that Nedtrain uses in the control of repairables has the ability to use 

METRIC method, which will make the implementation process much easier.  

2.10.2 Model 2 

This model uses lateral transshipments between local warehouses and has two echelon, 

multi item system with a continuous review and one for one replenishment policy. Wong 

et al. [33] considered lateral transshipments in a single echelon, multi item system with a 

continuous review base stock policy. They assumed that the central warehouse has an 

ample capacity which makes the system single echelon. They also used emergent 

shipments from the central warehouse when all of the local warehouses are out of stock. 

They used Markov process description in their solution procedure. Wong et al. [34] 

considered the same system with Wong et al. [33] but they used different solution 

methods. Kranenburg and van Houtum [17] considered lateral transshipments in a single 

echelon, multi item system with a continuous review base stock policy. Like Wong et al. 

[33], they assumed that the central warehouse has an ample capacity and used emergent 

shipments from the central warehouse when all of the local warehouses are out of stock; 

but different from Wong et al. [33], they also considered partial pooling7 in addition to 

full pooling. They developed an approximate evaluation method by assuming that the 

overflow demands occur according to Poisson process. They minimized the total 

inventory and transportation costs with respect to a target waiting time constraint and 

used a greedy heuristic to determine the base stock levels. In Model 2, approximate 

evaluation method of Kranenburg and van Houtum [17] is integrated to a two echelon 

system and unlike Kranenburg and van Houtum [17], emergent shipments from an 

ample plant is not used in this model. Axsäter [3] also considered the system of Model 2. 

But the difference between Axsäter [3] and our model is that we use pre-defined lateral 

                                                           
7
 In the partial pooling case, only some of the local warehouses share their inventory for lateral 

transshipments. 
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orders unlike Axsäter [3], which uses a random order; and unlike our system Axsäter [3] 

uses lateral transshipments also for meeting backordered demands. 

2.10.3 Model 3  

Model 3 deals with a two echelon, multi item system with a continuous review and one 

for one replenishment policy. When a local warehouse is out of stock and if the central 

warehouse has stock on hand, then a direct shipment is done from the central warehouse 

to the local warehouse; and if even the central warehouse has not stock on hand, then a 

direct shipment is done from the repair facility, which has ample repair capacity, to the 

local warehouse.  

Muckstadt and Thomas [21] is the only study in the literature which considers exactly 

the same system of Model 3. They used an approximate evaluation method to calculate 

the service levels and total cost values for given base stock levels. In addition to this 

method, a new approximate evaluation method is developed for Model 3. 

2.10.4 Model 4  

Model 4 considers the same system with Model 3 with one significant difference that a 

lateral transshipment is done between the local warehouses when the local warehouse 

and central warehouse is out of stock. Thus, before making a direct shipment from the 

repair facility, lateral transshipment is done, if it is possible. 

There is not any study which deals with the same system considered in Model 4. 

However, Alfredsson and Verrijdt [2] considered the closest system to Model 4. The 

difference between their model and Model 4  is that if a local warehouse is out of stock, 

Model 4 first checks the central warehouse for a direct shipment, then it checks the other 

local warehouses for lateral transshipment, and lastly it makes a direct shipment from 

the repair facility; but in Alfredsson and Verrijdt [2], it first checks the other local 

warehouses for lateral transshipment, then it checks the central warehouse for a direct 

shipment, and lastly it makes a direct shipment from the repair facility. In the solution 

procedure of Alfredsson and Verrijdt [2], they aggregate the local warehouses and 

calculate the fraction of demand satisfied by a direct delivery from central warehouse 
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and plant, then they calculate the fraction of demand satisfied by each local warehouse 

directly from stock and lateral transshipments. However, because of the above 

difference, the solution procedure of Alfredsson and Verrijdt [2] cannot be implemented 

in Model 4. Thus a new solution procedure is developed. 
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CHAPTER 3 

 

SOLUTION PROCEDURES 

 

In this chapter, the solution procedures to obtain the solutions of the models described in 

Chapter 2 and their validation process is explained. The solution methods employed here 

are approximate procedures that do not necessarily compute the optimal solutions.  They 

consist of two parts. The first part calculates the expected waiting time and total cost 

values for each SKU � at OB � for given base stock levels. The second part, a greedy 

procedure, finds feasible base stock levels with respect to the target waiting time 

constraint by minimizing the total cost of the system. This part does not necessarily find 

the optimal solution. Such an approximate solution method is preferred rather than 

seeking the optimal solution, because it is computationally much more efficient.  

3.1 Solution Procedure for Model 1 

As mentioned before; in Model 1, the METRIC approximation of Sherbrooke is used 

with a greedy algorithm to minimize the total inventory cost with respect to a target 

waiting time constraint. The METRIC and the greedy algorithm are described below: 

3.1.1 METRIC 

METRIC means ‘Multi Echelon Technique for Recoverable Item Control’. This method 

first considers the central warehouse (RDC) and calculates the expected delay in RDC 

and with respect to this value, it considers the local warehouses (OB-s), and calculates 

the expected waiting time for each OB. 

For the central warehouse (RDC): 
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Let 

• ��� denote the total demand rate coming to the RDC for  SKU � where � ∈ � 

• �L�� denote the inventory level of SKU � in RDC 

• ������ denote the expected on hand inventory level of SKU � in RDC 

• ��H��� denote the expected backorder level of SKU � in RDC 

• ��
��� denote the expected delay of SKU � in RDC  

Since base stock policy is used in the OB-s, then    ��� = ∑ ����∈BCDE .  

By Palm’s theorem (see Silver et al. [29]), 

q��L�� = r� = ����. /��sdt3u. n3cdt.(t�G�� − r�!                                      �1� 

Then;  

������ = Z r. q��L�� = r�sdt
uw>  ;  ��H��� = Z r. q��L�� = r�3>

uw3y                 �2� 

or equivalently, 

��H��� =  ������ − ���L��� = ������ − �G�� − ���. /��                     �3�                           

Then by the Little’s law, 

��
��� = ��H��� ���⁄                                                   �4�. 

Because of FCFS policy in CBT and Poisson demand, ��
��� is same for all OB-s. 

For the local warehouses (OB-s): 

Let: 

• L/�� denote the replenishment lead time for SKU � at OB � for � ∈ �, � ∈ ����  

• �L�� denote the inventory level of SKU � at OB � 

• ������ denote the expected on hand inventory level of SKU � at OB � 

• ��H��� denote the expected backorder level of SKU � at OB � 
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Then 

  L/�� =  !"# + ��
���                                                       �5� 

In this point, it is assumed that the replenishment lead time for SKU � at OB � is 

independent of other SKU-s, and its mean is  L/��. Then by using Palm’s theorem, 

q��L�� = r� = ����. L/���sde3u. n3cde.�(de�G�� − r�!                                  �6� 

������ = Z r. q��L�� = r�sde
uw>                                               �7� 

��H��� = ������ − �G�� − ���. L/���                                       �8� 

Then by the Little’s law, for SKU � at OB � 


�� =  ��H��� ���⁄                                                     �9�. 

Consequently, METRIC finds the expected waiting time, 
��, for each SKU � at OB � 

for given base stock levels where � ∈ �, � ∈ ����. 

This method is not needed to be validated in this study because it has been already 

validated in the literature (See Graves [11], Wong et al. [35]). 

3.1.2 Greedy Algorithm for Model 1 

This heuristic method is developed to determine the feasible base stock levels feasible. It 

is the same greedy algorithm that is used in Wong et al. [35]. The algorithm is used to 

find a feasible solution with a cost as low as possible. The basic idea of this heuristic is 

to add units of stock in an iterative way. It starts with 0 base stock levels and at each 

iteration, one unit of an SKU � is added in a warehouse � such that the largest decrease 

in distance to the set of feasible solutions per extra unit of additional cost is gained. The 

procedure is terminated when a feasible solution is obtained. 

For the algorithmic description, following notation is introduced. Let G denote |�| × |�| 
matrix consisting of all current  G�� where � ∈ �, � ∈ �; O�G� denotes the total cost of the 
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solution G; P*Q denotes |�| × |�| matrix having entries zero except for the cell (a,b) that 

has a value of 1; and  
��G� denotes the aggregate mean waiting time over all SKU �, at 

OB � for the current solution G. 

The procedure starts with setting all base stock levels to zero for all SKU-s and 

warehouses (G = 0). For each solution  G, the distance to the set of feasible solutions is 

defined as ∑ [  
�[G\ − 
�+*!#"+\��∈BCDE where  �r�� = �mr�0, r� . At each iteration; 

the ratio 

p�� = ∆
�� ∆O��⁄                                                            �10� 

is calculated where 

∆
�� = Z �[  
�[G\ − 
�+*!#"+\� − [  
�[G +  P��\ − 
�+*!#"+\���∈BCDE
          �11� 

∆O�� = O[G +  P��\ − O[G\                                                 �12� 

for each combination of  � ∈ �, � ∈ �. 

Note that, in Model 1, the total cost will increase at each iteration as base stocks increase 

because only the inventory holding cost is considered. Thus p�� is always greater than or 

equal to 0. 

∆
�∗�∗ where �∗ ∈ �, �∗ ∈ ���� are only dependent on the base stock level of G�∗�∗  and  G�∗�. These values are not subject to change if a base stock level of another 

SKU or the same SKU in different OB is increased. Similarly, ∆
�∗� are only dependent 

to the base stock level of  G�∗�∗ where �∗ ∈ �, �∗ ∈ �; these values are not subject to 

change if a base stock level for another SKU is increased. Computation time can be 

saved if only the results that change are updated. A formal description of the greedy 

procedure is given next. 

Greedy Procedure for Model 1 

Step 1: Set the initial solution  G = 0; calculate  
��0� for all warehouses 
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Step 2: For all combinations  � ∈ � and � ∈ �: Calculate  ∆
�� ,  ∆O�� , and p��. 

Step 3: Let  �∗ and �∗ be defined as  p�∗�∗ = max   p��. Set   G = G + P�∗�∗. If 
�[G\ ≤
�+*!#"+ for all  � ∈ ���� , end; otherwise go to Step 2. 

3.2 Solution Procedure for Model 2 

As mentioned before, in Model 2, approximation method of Kranenburg and van 

Houtum [17]  is integrated to a two echelon system  and a greedy algorithm is developed 

to minimize the total inventory and transportation cost with respect to a target waiting 

time constraint. The approximate evaluation method and the greedy algorithm are 

described below. 

3.2.1 Approximate Evaluation Method for Model 2 

This method consists of two main steps. In the first step, for given base stock levels, 

expected waiting time in the central warehouse (RDC) is calculated and replenishment 

lead times for each of the OB-s are calculated. In the second step, fill rate of each local 

warehouse and the fraction of demands supplied by lateral transshipment between the 

local warehouses are calculated by an iterative procedure, then service level and cost 

values can be calculated. 

Calculating the expected delay of RDC: 

This step is the same with the procedure used to find the expected delay of RDC in 

METRIC. 

Because of the base stock policy used in the OB-s,  ��� = ∑ ����∈BCDE .  

By Palm’s theorem (see Silver et al. [29]), 

q��L�� = r� = ����. /��sdt3u. n3cdt.(t�G�� − r�!                                            �13� 

������ = Z r. q��L�� = r�sdt
uw>  ;  ��H��� = Z r. q��L�� = r�3>

uw3y                     �14� 



39 

 

or equivalently, 

      ��H��� =  ������ − ���L��� = ������ − �G�� − ���. /��                           �15� 

Then by the Little’s law, 

   ��
��� = ��H��� ���⁄                                                      �16� 

Because of FCFS policy in CBT and Poisson demand, ��
��� is same for all OB-s.  

Calculating fill rates and the fraction of demands supplied by lateral transshipments: 

Some additional variables are defined in this step. These are: 

����: Total demand rate including the lateral demands coming for SKU � at OB � when 

there is positive stock in OB � 

�R��): Lateral demand rate coming from OB - to OB , for SKU � when there is positive 

stock in the OB , for � ∈ �,   �, ,, - ∈ ���� , - ≠ , 

<� = =<>���, <?���, … , <�|BCDE|3>����F: The pre-specified order of the OB-s for asking 

lateral transshipment. For instance in a network containing three local warehouses, <> = �2,3�; this means that when local warehouse 1 is out of stock, it will first check 

local warehouse 2 and then local warehouse 3 for lateral transshipment (See Appendix 

B). 

	��= Demand rate coming for SKU � at OB � when there is no on-hand stock at OB � 

Then for each SKU � at OB �, the mean replenishment lead time is 

  L/�� =  !"# + ��
���                                                      �17� 

In this point, it is assumed that the replenishment lead time for SKU � at OB � is 

exponentially distributed and its mean is  L/��. Then the total demand rates for SKU � at 

OB � and lateral demand rates for SKU � from OB � to the other OB-s respectively are 
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���� = ��� + Z �R�u�
|BCDE|

uw>,u]�                                                       �18� 

�R������� = �1 − 
���. ���                                                       �19� 

�R������� = [1 − 
��������\. �R���������          1 < r ≤ |����| − 1                    �20� 

From the equations above, it is seen that ���� is dependent to 
�� (See Appendix C, for a 

simple example about the (18)-(20)). In order to use a Markov process to calculate  
��, 

it is assumed that total demand rate coming for SKU � at OB � have a Poisson process, 

which also means that the overflow demands arrive according to a Poisson process.  

When there is not any on-hand stock for SKU � at OB �, then the demand rate coming 

for SKU � at OB � is 

	�� = ���. � �1 − 
�u�|BCDE|
uw>,u]�                                                    �21� 

Equation (21) states that an OB has backorder, if all of the OB-s are out of stock. 

Otherwise, even if an OB does not have any stock on hand, lateral transshipment can be 

done from other OB-s. It is assumed that the demand coming to OB �, when the OB has 

backorder, is a Poisson process, and the event that there is positive stock for SKU � at 

every OB � is independent of each other. Let the replenishment rate of a single SKU � at 

OB � by RDC be 

 0�� = 1  L/��⁄                                                                 �22�  

Then if ���� and 	�� are known, ����� �,  > 0� is a Continuous Time Markov Chain 

(CTMC) with a rate diagram given in Figure 3.1. Let ���� � be the number of SKU-s in 

replenishment for SKU � at OB � at time  . Since backorder exists in each OB �, number 

of states is infinite.  
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Figure 3.1: Rate diagram of the Markov process describing the number of SKU-s in 

replenishment in Model 2 

If ���� and 	�� is known, then 
�� can be calculated. Let �u denote the steady state 

probabilities for the CTMC shown in Figure 3.1, where   0 ≤ r ≤ +∞ and r is integer 

(Calculation of �u can be seen in Appendix D). Then, 


�� = Z �u
sde3>
uw�                                                            �23� 

If all 
�� values are known, then all ���� values can be calculated from (18)-(20) and all 	�� can be calculated from (21). Thus, an iterative procedure is used to find the ����, 	�� 

and 
�� for all SKU � at OB � for � ∈ �, � ∈ ����. 

Iterative algorithm for Model 2 

Let � =103�. For each SKU �: 
Step 1: Assume no lateral transshipment exists between all of the OB-s and  	�� = 0 for 

each OB �. Then   ���� = ���; and calculate 
�� for each OB � by using (23). 

Step 2: Using 
��, calculate the   ���� and 	�� for one OB by using (18)-(21). Then 

calculate  
�� for the same OB. 

Step 3: Repeat Step 2 for each OB �. 

�G�� + 1�. 0�� 

  G�� 1 0   G��+1 

���� ���� ���� 	�� 	�� 

0�� 2. 0�� G��. 0�� �G�� + 2�. 0�� 
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Step 4: Repeat Step 2 and Step 3 until   ���� does not change more than � for each OB � 

where � ∈ ����. 

The variables ����, 	�� and 
�� converge in all cases considered in this study. Figure 3.2 

3.3, and 3.4 show the convergence of ���>, 	�> and 
�> for a setting (see instance 1 in 

Table 3.1 to find the details of the setting). 

 

Figure 3.2: ���> at each iteration in a setting in Model 2 

 

Figure 3.3: 	�> at each iteration in a setting in Model 2 
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Figure 3.4: 
�> at each iteration in a setting in Model 2 

As can be seen in Figure 3.2 and 3.3, the initial value of ����, is equal to  ���, direct 

demand for that OB, because it is assumed that initially no lateral transshipment exists 

for each OB � and the initial value of 	�� is 0. Note that ��� is the minimum and 

maximum value for ���� and 	�� respectively. In this case the corresponding 
�� for each 

OB � becomes the largest. In the following iteration,  ���� increases because 
�� is 

greater than 0, which makes the lateral demand rate coming from the other OB-s greater 

than 0, and 	�� becomes greater than 0 because of (21). As  ���� and 	�� increase 
�� 

decreases for every OB �. Then,  ���� and 	�� will again increase (see iteration number 2 

in Figure 3.2 and 3.3), because fillrate of the other OB-s decreases, which increases the 

lateral demand rates coming to each OB � and decreases the lateral supplies done by the 

other OB-s . Afterwards, 
�� for each OB � will decrease (see iteration number 2 in 

Figure 3.4). Hence, at each iteration  ���� and 	�� will increase and 
�� will decrease for 

each OB �. Since  ���� and 	�� are increasing and bounded by the total and direct 

demand rate coming to the system for SKU � respectively and 
�� is decreasing and 

always nonnegative, the algorithm converges.  

When the algorithm stops; K�,�,) , the fraction of the demand coming for SKU � at OB - 
met by lateral transshipments from OB , for � ∈ �, �, ,, - ∈ ���� , - ≠ ,, can be 

calculated as 
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 K�,�,) = 
�). �R��)���      ∀  � ∈ �, - ∈ ���� , , ∈ ���� - ≠ ,                         �24� 

Let I
�� denote the average waiting time of an order for SKU � at OB �, and J�� denote 

the average demand rate for SKU � at OB � where � ∈ �, � ∈ ����. Then  I
�� can be 

calculated by using Little’s Law, 

I
�� = ��H��� J��⁄                                                          �25� 

where 

J�� = ^ Z �u
sde3>
uw� a . ���� + ^ Z �u

+∞
uwsde

a . 	��                               �26� 

Then, H
��, the expected backorder waiting time of SKU � at OB � is 

H
�� = I
��∑ �u+∞uwsde                                                    �27� 

Detailed calculation of ��H��� and J�� can be seen in Appendix E. 

Consequently, the approximate evaluation method used in Model 2, calculates the 

fillrates ( 
�� ) and fraction of demand met by lateral transshipments ( K�,�,) ) for each 

SKU � at each OB � for � ∈ �, �, ,, - ∈ ���� , - ≠ ,. 

3.2.2 Numerical Experiments for the Approximate Evaluation Method of Model 2 

In order to validate the approximate evaluation method used in Model 2, the model is 

simulated using ARENA Software. The results obtained from the simulation runs are 

considered as the exact values. The values obtained from the algorithm are compared 

with the exact values. 

To test the performance of approximation algorithm, 44 different instances are formed. 

In each instance, there are 4 local warehouses. The mean replenishment lead time of the 

central warehouse, /�, is assumed 15 days and the transportation time between the 

central warehouse and the local warehouses,  !"#, is assumed 3 days which are the 
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values used by Alfredson and Verrijt [2]. Pre-specified lateral demand orders are 

determined as  <> = �2,3,4�,  <? = �3,4,1�,  <� = �4,1,2�, and  <� = �1,2,3�. Moreover, 

20 of the instances are symmetrical that consist of identical local warehouses (same 

demand rate, transportation times and base stock levels); and the remaining 24 instances 

are asymmetric. Remaining parameters used in the calculations are  

  �,)�*+ = 0,3 2m��, 1�,)�*+ = € 125, ;� = € 5.000, ℎ = 20%      ∀ �, - ∈ ���� , - ≠ �    
Five different quantities of Model 2 are approximated and compared with the simulation. 

These are 


��: Fillrate of SKU � at OB � for � ∈ �, � ∈ ���� 

K�,�,): Fraction of the demand coming for SKU � at OB - met by lateral transshipments 

from OB , for � ∈ �, �, ,, - ∈ ���� , - ≠ , 


��: Expected waiting time for SKU � at OB � 

H
��: Expected backorder waiting time for SKU � at OB � 

and total yearly cost value (€) of the system. 

Table 3.1 shows the results of the symmetric instances. 
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Table 3.1: Comparison of the approximations with the exact values of the symmetric instances of Model 2 

    

���   �,�,¡¢���   �,�,¡£���   �,�,¡¤��� ¥�� (days) ¦¥�� (days) Total Yearly Cost (€) 

Inst. ��� G�� G�� Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

1 0,01 1 1 0,93 0,93 0,06 0,06 0,01 0,00 0,00 0,00 0,03 0,02 8,32 0,00 5.121 5.123 

2 2 1 0,96 0,96 0,03 0,04 0,00 0,00 0,00 0,00 0,01 0,01 6,97 0,00 6.067 6.067 

3 0,04 1 1 0,55 0,52 0,19 0,25 0,09 0,12 0,05 0,06 1,10 0,16 8,46 0,69 7.398 8.115 

4 2 1 0,70 0,68 0,16 0,22 0,06 0,07 0,03 0,02 0,45 0,09 7,18 0,13 7.820 8.248 

5 1 2 0,90 0,91 0,08 0,08 0,01 0,01 0,00 0,00 0,04 0,03 6,36 0,00 9.692 9.630 

6 2 2 0,95 0,96 0,04 0,04 0,01 0,00 0,00 0,00 0,02 0,01 5,66 0,00 10.360 10.292 

7 0,08 1 1 0,20 0,15 0,13 0,13 0,10 0,11 0,07 0,09 4,69 2,72 9,19 5,08 9.339 9.840 

8 2 1 0,30 0,23 0,16 0,18 0,10 0,14 0,07 0,10 3,02 1,17 7,91 2,94 10.783 12.084 

9 2 2 0,72 0,73 0,16 0,20 0,06 0,05 0,02 0,01 0,33 0,08 5,85 0,08 13.507 13.862 

10 2 3 0,92 0,93 0,06 0,06 0,01 0,00 0,00 0,00 0,03 0,02 4,69 0,00 15.134 14.951 

11 3 1 0,42 0,34 0,18 0,22 0,10 0,15 0,06 0,10 1,83 0,42 6,87 1,41 11.853 13.854 

12 6 1 0,68 0,66 0,18 0,23 0,06 0,08 0,03 0,03 0,32 0,10 4,54 0,09 13.902 14.801 

13 0,16 1 1 0,03 0,02 0,03 0,02 0,03 0,02 0,02 0,02 10,06 9,68 11,23 10,56 7.234 6.851 

14 2 1 0,04 0,03 0,04 0,03 0,03 0,03 0,03 0,03 8,58 8,07 10,03 9,08 9.024 8.452 

15 2 2 0,20 0,14 0,13 0,12 0,09 0,11 0,07 0,09 3,62 2,22 7,00 3,95 18.470 19.317 

16 3 1 0,07 0,04 0,05 0,04 0,05 0,04 0,04 0,04 7,16 6,50 8,93 7,63 11.013 10.262 

17 3 2 0,27 0,20 0,15 0,16 0,10 0,13 0,07 0,10 2,71 1,27 6,34 2,76 20.229 22.289 

18 6 1 0,19 0,11 0,12 0,10 0,08 0,09 0,06 0,08 3,52 2,40 6,29 3,66 17.585 17.540 

19 6 2 0,53 0,49 0,17 0,25 0,09 0,13 0,05 0,07 0,92 0,16 4,84 0,41 22.829 26.955 

20   6 3 0,80 0,84 0,12 0,14 0,04 0,02 0,01 0,00 0,16 0,05 3,96 0,01 23.099 22.761 
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Table 3.2 shows the parameter settings and Table 3.3, 3.4 and 3.5 show the results of the 

asymmetric instances.  

Table 3.2: Parameter settings used in the asymmetric instances 

Instance §�¢ §�£ §�¤ §�¨ ©�ª«¬
 ­�® ­�¢ ­�£ ­�¤ ­�¨ 

1 0,01 0,02 0,03 0,04 3 1 1 1 1 1 

2 2 1 1 1 1 

3 2 1 1 2 2 

4 0,04 0,08 0,12 0,16 3 1 1 1 1 1 

5 2 1 1 1 1 

6 2 1 1 2 2 

7 3 1 1 2 2 

8 0,08 0,12 0,16 0,2 3 1 1 1 1 1 

9 2 1 1 1 1 

10 2 1 1 2 2 

11 3 2 2 2 2 

12 3 2 2 3 3 

13 6 3 3 3 3 

14 6 3 3 4 4 

15 6 1 2 3 4 §�¢ ©¢ª«¬
 ©£ª«¬

 ©¤ª«¬
 ©ª̈«¬

 ­�® ­�¢ ­�£ ­�¤ ­�¨ 

16 0,02 1 2 3 4 1 1 1 1 1 

17 1 2 2 2 2 

18 2 1 1 1 1 

19 0,1 1 2 3 4 2 1 1 1 1 

20 1 2 2 2 2 

21 2 2 2 2 2 

22 0,16 1 2 3 4 2 1 1 1 1 

23 1 2 2 2 2 

24 2 2 2 2 2 
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Table 3.3: Comparison of the approximations with the exact values of the asymmetric instances of Model 2 

��¢  ��£ ��¤ ��¨   �,¢,£   �,¢,¤   �,¢,¨   �,£,¢   �,£,¤ 

Inst. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

1 0,79 0,79 0,79 0,79 0,74 0,73 0,69 0,66 0,13 0,17 0,04 0,03 0,01 0,01 0,02 0,01 0,13 0,15 

2 0,89 0,90 0,88 0,89 0,85 0,84 0,81 0,79 0,08 0,09 0,02 0,01 0,00 0,00 0,01 0,00 0,09 0,10 

3 0,94 0,94 0,90 0,89 0,98 0,99 0,97 0,98 0,05 0,05 0,01 0,01 0,00 0,00 0,00 0,00 0,10 0,11 

4 0,16 0,12 0,14 0,10 0,11 0,08 0,09 0,06 0,10 0,09 0,06 0,06 0,04 0,04 0,09 0,10 0,08 0,07 

5 0,23 0,16 0,21 0,14 0,18 0,12 0,14 0,10 0,13 0,12 0,07 0,09 0,04 0,06 0,09 0,11 0,11 0,10 

6 0,33 0,24 0,29 0,22 0,43 0,37 0,39 0,34 0,14 0,17 0,16 0,22 0,07 0,13 0,05 0,08 0,25 0,29 

7 0,44 0,35 0,39 0,32 0,54 0,51 0,50 0,47 0,15 0,21 0,15 0,23 0,06 0,10 0,04 0,06 0,27 0,34 

8 0,07 0,06 0,06 0,04 0,04 0,03 0,03 0,02 0,05 0,04 0,03 0,03 0,02 0,02 0,06 0,05 0,04 0,03 

9 0,10 0,07 0,08 0,06 0,06 0,04 0,05 0,03 0,06 0,05 0,04 0,04 0,03 0,03 0,06 0,06 0,05 0,04 

10 0,14 0,09 0,12 0,07 0,20 0,14 0,18 0,12 0,08 0,07 0,12 0,12 0,07 0,09 0,05 0,06 0,15 0,13 

11 0,41 0,33 0,41 0,34 0,38 0,31 0,33 0,27 0,18 0,22 0,09 0,14 0,05 0,08 0,08 0,11 0,16 0,21 

12 0,54 0,50 0,51 0,49 0,60 0,60 0,56 0,56 0,17 0,24 0,11 0,15 0,05 0,06 0,04 0,05 0,23 0,31 

13 0,90 0,95 0,91 0,94 0,87 0,90 0,82 0,84 0,07 0,05 0,02 0,00 0,00 0,00 0,01 0,00 0,06 0,05 

14 0,94 0,97 0,92 0,94 0,95 0,97 0,92 0,94 0,04 0,03 0,01 0,00 0,00 0,00 0,00 0,00 0,06 0,06 

15 0,58 0,57 0,73 0,74 0,82 0,85 0,88 0,93 0,26 0,32 0,10 0,10 0,03 0,02 0,01 0,00 0,18 0,22 

16 0,85 0,85 0,84 0,84 0,82 0,82 0,80 0,80 0,10 0,13 0,03 0,02 0,01 0,00 0,01 0,01 0,11 0,13 

17 0,99 0,99 0,98 0,99 0,98 0,99 0,98 0,98 0,01 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,01 

18 0,93 0,94 0,92 0,92 0,90 0,90 0,88 0,88 0,05 0,06 0,01 0,00 0,00 0,00 0,00 0,00 0,06 0,07 

19 0,23 0,16 0,21 0,15 0,19 0,13 0,18 0,12 0,12 0,12 0,08 0,10 0,05 0,08 0,08 0,10 0,12 0,11 

20 0,50 0,47 0,49 0,46 0,47 0,44 0,45 0,41 0,19 0,24 0,09 0,13 0,05 0,07 0,06 0,08 0,18 0,24 

21 0,61 0,61 0,60 0,59 0,57 0,57 0,55 0,54 0,17 0,23 0,07 0,09 0,03 0,04 0,05 0,05 0,17 0,23 

22 0,06 0,04 0,05 0,04 0,05 0,03 0,04 0,03 0,04 0,03 0,03 0,03 0,03 0,02 0,04 0,04 0,04 0,03 

23 0,19 0,14 0,17 0,12 0,16 0,11 0,15 0,10 0,12 0,11 0,08 0,09 0,06 0,07 0,08 0,09 0,11 0,10 

24 0,25 0,18 0,23 0,17 0,22 0,15 0,20 0,14 0,14 0,14 0,09 0,11 0,06 0,08 0,08 0,11 0,13 0,13 
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Table 3.4: Comparison of the approximations with the exact values of the asymmetric instances of Model 2 

 

  �,£,¨   �,¤,¢   �,¤,£   �,¤,¨   �,¨,¢   �,¨,£   �,¨,¤ ¥�¢ (days) 

Instance Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

1 0,04 0,04 0,06 0,07 0,02 0,02 0,14 0,18 0,20 0,26 0,06 0,06 0,02 0,01 0,28 0,06 

2 0,02 0,01 0,03 0,03 0,01 0,00 0,10 0,13 0,15 0,19 0,03 0,02 0,01 0,00 0,08 0,03 

3 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,01 0,02 0,02 0,00 0,00 0,00 0,00 0,02 0,02 

4 0,05 0,05 0,11 0,11 0,07 0,08 0,06 0,05 0,14 0,12 0,09 0,09 0,05 0,06 5,36 2,54 

5 0,06 0,07 0,12 0,13 0,08 0,10 0,09 0,08 0,16 0,14 0,10 0,11 0,06 0,08 3,93 1,49 

6 0,11 0,17 0,08 0,10 0,04 0,07 0,16 0,21 0,14 0,16 0,08 0,11 0,10 0,15 2,40 0,49 

7 0,10 0,16 0,06 0,09 0,04 0,06 0,16 0,23 0,14 0,18 0,07 0,11 0,08 0,12 1,51 0,23 

8 0,02 0,02 0,06 0,05 0,04 0,04 0,03 0,02 0,07 0,06 0,04 0,04 0,03 0,03 7,88 6,14 

9 0,03 0,03 0,08 0,07 0,05 0,05 0,04 0,03 0,09 0,07 0,06 0,05 0,04 0,04 6,52 4,75 

10 0,09 0,10 0,06 0,07 0,04 0,05 0,11 0,11 0,09 0,08 0,06 0,06 0,09 0,11 5,14 3,22 

11 0,08 0,12 0,13 0,17 0,07 0,11 0,14 0,19 0,22 0,24 0,12 0,16 0,06 0,10 1,59 0,33 

12 0,09 0,11 0,07 0,09 0,04 0,04 0,16 0,22 0,17 0,22 0,08 0,11 0,06 0,07 0,86 0,15 

13 0,02 0,01 0,03 0,02 0,01 0,00 0,08 0,09 0,14 0,16 0,03 0,01 0,01 0,00 0,06 0,02 

14 0,01 0,00 0,01 0,00 0,00 0,00 0,04 0,03 0,06 0,05 0,01 0,00 0,00 0,00 0,03 0,01 

15 0,05 0,03 0,01 0,01 0,01 0,00 0,13 0,13 0,04 0,04 0,03 0,02 0,02 0,01 0,34 0,13 

16 0,03 0,02 0,04 0,03 0,01 0,00 0,12 0,15 0,14 0,17 0,03 0,03 0,01 0,00 0,12 0,05 

17 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,01 0,02 0,02 0,00 0,00 0,00 0,00 0,00 0,00 

18 0,01 0,01 0,02 0,01 0,00 0,00 0,08 0,09 0,10 0,11 0,01 0,01 0,00 0,00 0,03 0,02 

19 0,08 0,09 0,11 0,12 0,07 0,09 0,11 0,10 0,15 0,14 0,10 0,11 0,06 0,08 3,72 2,15 

20 0,09 0,13 0,11 0,15 0,06 0,08 0,18 0,23 0,22 0,27 0,11 0,14 0,06 0,07 1,09 0,20 

21 0,08 0,09 0,10 0,12 0,05 0,05 0,18 0,23 0,21 0,28 0,09 0,11 0,04 0,04 0,64 0,12 

22 0,03 0,02 0,05 0,04 0,04 0,03 0,03 0,03 0,05 0,04 0,04 0,03 0,03 0,03 7,07 6,46 

23 0,08 0,08 0,10 0,11 0,07 0,09 0,10 0,09 0,13 0,12 0,09 0,10 0,06 0,08 3,78 2,53 

24 0,08 0,10 0,11 0,13 0,08 0,10 0,12 0,12 0,16 0,16 0,10 0,12 0,07 0,09 2,86 1,56 
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Table 3.5: Comparison of the approximations with the exact values of the asymmetric instances of Model 2 

 

¥�£ (days) ¥�¤ (days) ¥�¨ (days) ¦¥�¢ (days) ¦¥�£ (days) ¦¥�¤ (days) ¦¥�¨ (days) Total Yearly Cost (€) 

Instance Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

1 0,29 0,06 0,30 0,08 0,31 0,10 8,07 0,05 8,61 0,10 8,58 0,09 8,15 0,07 6.088 6.243 

2 0,09 0,03 0,10 0,05 0,11 0,06 6,80 0,01 7,37 0,01 7,14 0,01 6,77 0,01 6.682 6.744 

3 0,03 0,03 0,01 0,00 0,01 0,01 8,78 0,00 8,08 0,00 5,20 0,00 4,91 0,00 8.200 8.185 

4 5,98 4,20 6,48 5,31 6,90 6,07 8,33 3,65 9,28 6,08 10,05 7,70 10,69 8,82 9.535 9.369 

5 4,35 2,53 4,69 3,26 4,96 3,77 7,30 2,46 8,08 4,27 8,71 5,53 9,20 6,41 11.384 11.635 

6 2,62 0,77 1,88 0,55 2,01 0,66 7,79 1,38 8,48 2,49 6,09 1,75 6,49 2,15 14.008 16.008 

7 1,64 0,30 1,16 0,21 1,23 0,24 7,03 0,60 7,60 1,10 5,42 0,81 5,73 0,96 14.712 17.124 

8 8,61 7,71 9,23 8,78 9,75 9,56 9,46 7,11 10,33 8,92 11,08 10,17 11,71 11,07 8.211 7.738 

9 7,10 6,05 7,58 6,97 8,01 7,64 8,42 5,77 9,15 7,36 9,78 8,47 10,32 9,29 10.146 9.541 

10 5,57 4,16 4,08 2,82 4,39 3,32 8,61 4,95 9,33 6,43 6,83 4,35 7,36 5,13 14.343 14.476 

11 1,73 0,43 1,84 0,52 1,93 0,58 5,38 0,89 5,86 1,35 6,24 1,71 6,54 1,94 19.990 23.074 

12 0,92 0,16 0,72 0,12 0,76 0,14 5,68 0,29 5,99 0,41 4,74 0,36 4,93 0,39 20.932 23.453 

13 0,06 0,02 0,07 0,03 0,09 0,05 3,70 0,00 3,98 0,00 3,99 0,00 3,90 0,00 21.232 20.774 

14 0,03 0,02 0,02 0,01 0,03 0,02 4,01 0,00 3,84 0,00 3,15 0,00 3,13 0,00 21.666 21.175 

15 0,22 0,08 0,16 0,04 0,12 0,02 6,87 0,02 4,78 0,01 3,70 0,01 3,11 0,02 20.671 20.697 

16 0,13 0,05 0,14 0,05 0,15 0,06 7,40 0,02 8,05 0,02 8,55 0,02 8,85 0,02 5.589 5.634 

17 0,00 0,00 0,01 0,00 0,01 0,01 6,88 0,00 7,12 0,00 7,72 0,00 7,50 0,00 9.064 9.049 

18 0,04 0,02 0,05 0,03 0,05 0,04 5,75 0,00 6,68 0,00 7,22 0,00 7,59 0,00 6.319 6.329 

19 4,08 2,44 4,45 2,73 4,78 3,02 7,09 3,76 7,79 4,28 8,48 4,80 9,14 5,33 11.177 11.706 

20 1,20 0,22 1,28 0,23 1,35 0,24 5,78 0,78 6,34 0,87 6,75 0,94 7,16 1,00 15.403 17.405 

21 0,70 0,12 0,75 0,13 0,79 0,14 5,17 0,28 5,71 0,31 6,11 0,34 6,47 0,35 15.649 17.133 

22 7,75 7,17 8,42 7,91 9,12 8,65 8,43 7,37 9,24 8,19 10,05 9,02 10,87 9,88 9.363 8.739 

23 4,12 2,82 4,45 3,12 4,78 3,42 6,58 4,08 7,17 4,55 7,75 5,04 8,34 5,54 16.882 17.150 

24 3,13 1,75 3,40 1,95 3,65 2,15 5,90 2,95 6,47 3,34 7,02 3,73 7,55 4,12 18.882 20.048 
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According to the results, it is seen that the approximate evaluation method 

underestimates the 
�� values in each instance, because it underestimates the H
�� 

values. Average absolute percentage deviation in the total yearly cost are 5.71% and 

5.24% for the symmetric and asymmetric cases respectively. 

The computation time for the approximate evaluation method is quite short. Average 

computation time of one instance for the approximate evaluation method is smaller than 

3 milliseconds in a Intel Dual Core 3GHz computer. 

3.2.3 Greedy Algorithm for Model 2 

This heuristic method is developed to determine any feasible  base stock levels for the 

aggregate waiting time constraint for Model 2. The idea is the same with that in Model 1 

with some minor differences. The current procedure does not stop after a feasible 

solution is found but continues and computes p�� is differently. The reason of these 

differences will be explained later. 

The procedure starts with setting all base stock levels to zero, G = 0 for all SKU-s and 

warehouses. For each  G, the distance to the set of feasible solutions is defined as ∑ [  
�[G\ − 
�+*!#"+\��∈BCDE where �r�� = �mr�0, r� . At each iteration the ratio 

p�� = ¯∆
��∆O��                         �° ∆O�� > 0∆
��. ∆O��              �° ∆O�� ≤ 0 ±                                        �28� 

is calculated where 

∆
�� = Z �[  
�[G\ − 
�+*!#"+\� − [  
�[G +  P��\ − 
�+*!#"+\���∈BCDE
          �29� 

∆O�� = O[G +  P��\ − O[G\                                                 �30� 

for all � ∈ � and � ∈ �. 

The total cost may increase or decrease at each iteration because the total inventory cost 

always increases but total transportation cost may decrease when the base stock level 
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increases. For that reason, p�� in (28) is defined to consider also the situations in which 

the base stock level is increased and the total cost decreases.  

∆
�∗�∗, change in the waiting time value of SKU �∗ at OB �∗, for �∗ ∈ �, �∗ ∈ � is only 

dependent on the base stock level of G�∗�∗ . These values are not subject to change if a 

base stock level of another SKU increases. Computation time can be saved if only the 

results that change are updated. A formal description of the greedy procedure is given 

next. 

Greedy Procedure for Model 2 

Step 1: Set the initial solution  G = 0; calculate  
��0� for all warehouses 

Step 2: For all combinations  � ∈ � and � ∈ �, calculate  ∆
�� ,  ∆O�� , and p��. 

Step 3: If ����∆O��� is greater than 0, let  �∗ and �∗ be defined as  p�∗�∗ = max   p��; 

otherwise let  �∗ and �∗ be defined as  p�∗�∗ = min   p��.  Set   G = G + P�∗�∗. If 
�[G\ ≤
�+*!#"+ for all  � ∈ ���� , go to Step 4; otherwise go to Step 2. 

Step 4: For all combinations  � ∈ �, � ∈ �: Calculate   ∆O��. 

Step 5: Let  �∗ and �∗ be defined as  ∆O�∗�∗ = min   ∆O�∗�∗ . If ∆O�∗�∗ < 0, then set  G =G + P�∗�∗ and go to Step 4; otherwise end. 

In some cases although the target waiting time values are met by every OB �, increasing 

the base stock level may decrease the total cost because this can decrease the lateral 

transshipment rates between OB-s, which in turn decreases total transportation costs. 

Thus, the greedy algorithm used in Model 2, checks the possible decrease in the total 

cost once the target waiting time values are met by every OB �. 

3.3 Solution Procedure for Model 3 

Two different methods are analyzed In Model 3: The approximate evaluation method of 

Muckstadt and Thomas [21], and a new approximate evaluation method. Both of them 

calculate the service levels and transportation costs for given base stock levels. Then a 

greedy algorithm is developed to minimize the total inventory and transportation cost 
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with respect to a target waiting time constraint. The approximate evaluation methods and 

the greedy algorithm are described below. 

3.3.1 The approximate evaluation method of Muckstadt and Thomas 

This method first considers the central warehouse (RDC) and calculates the expected 

delay and fillrate of RDC, and then it calculates the fillrates of the OB-s. 

Calculating the expected delay of RDC: 

This step is the same with the procedure used to find the expected delay of RDC in 

METRIC. 

Because of the base stock policy used in the OB-s,  ��� = ∑ ����∈BCDE .  

By Palm’s theorem (see Silver et al. [29]), 

q��L�� = r� = ����. /��sdt3u. n3cdt.(t�G�� − r�!                                          �31� 

������ = Z r. q��L�� = r�sdt
uw>  ;  ��H��� = Z r. q��L�� = r�3>

uw3y                     �32� 

or equivalently, 

      ��H��� =  ������ − ���L��� = ������ − �G�� − ���. /��                           �33� 

Then by the Little’s law, 

   ��
��� = ��H��� ���⁄                                                     �34� 

Because of FCFS policy in CBT and Poisson demand, ��
��� is same for all OB-s.  

Let �u denote the steady state probabilities for the �/³/∞  queue in RDC, where   0 ≤r < +∞ and r is integer and representing the number of parts in replenishment. Then, 

�u = k 1r!l . ����. /��u. n3�cdt.(t�       0 ≤ r < +∞                                 �35� 
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�� = Z �u
sdt3>
uw�                                                                  �36� 

Calculating the fill rates of the OB-s: 

When demand comes and if the OB-s are out of stock, then direct shipments are done 

from RDC or CBT to the OB-s; and because of this demand fulfillment process, there is 

not any backorder in any OB �. Then for each SKU � at OB �, the mean replenishment 

lead time is 

 L/�� =  !"# + ��
���                                                           �37� 

At this point, it is assumed that the replenishment lead time for SKU � at OB � is 

exponentially distributed and its mean is  L/��. Then 
�� can be calculated by using the 

Erlang Loss Probability for each SKU � at OB �. Let L�4, ;� denotes this probability, 

where 4 represents the number of servers and ; the offered load. Then  

L�4, ;� =
;� 4!´

∑ ;u r!´�uw�                                                          �38� 


�� = 1 − L[G��, � ���.  L/���\                                             �39� 

Finally, ��� which denotes the fraction of demand for SKU � met by direct shipment 

from RDC to OB �  and  ��� which denotes the fraction of demand for SKU � met by 

direct shipment from CBT to OB � for � ∈ �, � ∈ ����, are 

��� = 
��. �1 − 
���                                                       �40� 

 ��� = �1 − 
���. �1 − 
���                                               �41� 

3.3.2 A New Approximate Evaluation Method for Model 3 

Like Muckstadt and Thomas [21], this method calculates the service levels and cost for 

given base stock levels. It finds the expected delay in RDC, ��
���, and fill rates of 

each OB �, 
��, iteratively. 
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Calculating the expected delay of RDC: 

When the inventory amount in RDC is greater than 0, because of the base stock policy 

used in the OB-s,   ��� = ∑ ����∈BCDE . However when the inventory amount in RDC is 

lower than or equal to 0; the probability that OB � requests a replenishment order from 

RDC is  
��. Because, with �1 − 
��� probability, the OB � will be out of stock and 

there will be a direct shipment from CBT to the OB. Thus, ���. 
�� is the demand rate to 

RDC for each OB �, when RDC is out of stock. Let ���S  denotes the demand rate 

coming to RDC for SKU �, when the inventory amount in RDC is lower than or equal to 

0 where � ∈ �, � ∈ ����. Then, 

���S = Z ���. 
���∈BCDE
                                                     �42� 

In (42), the events that there is positive stock for SKU � at every OB � for all � ∈ ���� 

are assumed to be independent. Let the replenishment rate of RDC by CBT for each 

SKU � be 

0� = 1  /�⁄                                                               �43� 

and GT� be  

GT� = Z G���∈BCDE
        ∀ � ∈ �                                           �44� 

Because of the direct shipments from CBT to the OB-s, the inventory amount in RDC 

will be between −GT� and  G��. There can be backorder in RDC, only when there is on-

hand stock in at least one OB, thus −GT� is the minimum inventory amount or maximum 

number of backorders that can occur in RDC. 

If all 
�� are known and the demand coming to RDC for SKU �, when the inventory 

amount in RDC is lower than or equal to 0, is a Poisson process; then ���� �, the stock 

level for SKU � at RDC at time  , is a Continuous Time Markov Chain (CTMC) with a 

rate diagram given in Figure 3.5. 
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Figure 3.5: Rate diagram of the Markov process describing the stock level in RDC in 

Model 3 

Let �u denote the steady state probabilities for the continuous time Markov chain shown 

in Figure 3.5, where   0 ≤ r ≤ +∞ and r is integer. Then the steady state probabilities 

can be calculated as 

�u = µ� G�� − r + 1�. 0����S . �u3>        − GT� < r ≤ 0   
� G�� − r + 1�. 0� ��� . �u3>       0 < r ≤  G��                          �45�± 

Then 


�� = Z �u
sdt

uw>                                                                   �46� 

��H��� = Z �−r�. �u
3>

uw3sTd                                                      �47� 

Let  J�� be the average demand rate coming to RDC for each SKU �. Then, 

J�� = ^ Z �u
�

uw3sTd�> a . ���S + ^Z �u
sdt

uw> a .  ���                                 �48�  
Note that (48) is an approximation because ���S  is dependent to �u. Then, expected delay 

at RDC can be calculated by the Little’s law. 

  G�� 1 0 -1 

0� �G�� − 1�. 0� �G�� + 1�. 0� �G�� + 2�. 0� 

   ��� 

−GT� 

   ���    ��� ���S  ���S  ���S  

�G�� + GT��. 0� G��. 0� 
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   ��
��� = ��H��� J��⁄                                                     �49� 

Because of FCFS policy in CBT and Poisson demand, ��
��� is same for all OB-s. 

Calculating the fill rates: 

For each SKU � at OB �, the mean replenishment lead time is 

 L/�� =  !"# + ��
���                                                    �50� 

In this point, it is assumed that the replenishment lead time for SKU � at OB � is 

exponentially distributed and its mean is  L/��. Because of the direct shipments, there is 

not any backorder in each OB �. Then 
�� can be calculated by Erlang Loss Probability 

for each SKU � at OB �.  


�� = 1 − L[G��, � ���.  L/���\                                        �51� 

Thus 
�� is dependent to  ��
���, and vice versa. Then, an iterative solution procedure 

is used to find the ��
��� and 
�� for every SKU � at every OB � for � ∈ �, � ∈ ����. 

Iterative algorithm for Model 3 

Let � =103�. For each SKU �: 
Step 1: Assume no delay occurs in RDC, which means ��
��� = 0. Then L/�� =  !"#, 

and calculate 
�� for every OB �. 

Step 2: Using 
��, calculate the  ��
���. Then calculate 
�� for every OB �. 
Step 3: Repeat Step 2 until  ��
��� does not change more than �. 

The variables ��
��� and 
�� converge in all cases considered in this study. Figure 3.6 

and 3.7 show convergence of ��
��� and 
�� for a setting. 
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Figure 3.6: ��
��� at each iteration in instance 1 of Model 3 

 

Figure 3.7: 
�� at each iteration in instance 1 of Model 3 

As it can be seen from Figure 3.6, the initial value of  ��
���  is 0. In this case the 

corresponding 
��  becomes the largest because the lower the expected delay in RDC, 

the lower the lead times and the higher the fillrate of each OB. In the following iteration, ��
��� becomes the largest, because 
��  of each OB is the largest and the higher the 

fillrate values of the OB-s, the higher the number of replenishment orders from RDC and 

the higher the delay for these orders in RDC. Afterwards, 
�� become the lowest as seen 

in iteration number 1 in Figure 3.7, because ��
��� is the largest. Then, ��
��� 

becomes the second lowest and greater than 0 as seen in iteration number 2 in Figure 

3.6. Note that in order ��
��� to be 0, each 
�� value should be 0, but that is not the 
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case. Then; 
�� becomes the second largest foe each OB, because the current ��
��� is 

the second lowest as seen in iteration number 2 in Figure 3.7. Hence; at each odd 

numbered iteration, ��
��� and 
�� will increase and decrease respectively, at each even 

numbered iteration, ��
��� and 
�� will decrease and increase respectively; and at each 

iteration, the difference between two consecutive ��
��� and 
��  values will decrease. 

Thus, sooner or later these values converge.  

The algorithm is robust with respect to the initial value of ��
���. For all possible initial 

values of  ��
���, it converges to the same value. However, the choice of the initial 

value of ��
��� affects the number of iterations done, which affects the computation 

time. Generally, the closer the initial value is to the converged value, the shorter the 

computation time. However; in our cases, the change in the computation time was 

insignificant.  

After convergence, ��� which denotes the fraction of demand for SKU � met by direct 

shipment from RDC to OB �  and  ��� which denotes the fraction of demand for SKU � 
met by direct shipment from CBT to OB � for � ∈ �, � ∈ ����, are 

��� = 
��. �1 − 
���                                                      �52� 

 ��� = �1 − 
���. �1 − 
���                                              �53� 

Consequently, the new approximate evaluation method used in Model 3, calculates the 

fillrates ( 
�� ); the fraction of demand for SKU � met by direct shipment from RDC to 

OB � (��� ); and the fraction of demand for SKU � met by direct shipment from CBT to 

OB � ( ��� ) for each SKU � at each OB � for � ∈ �, � ∈ ����. 

3.3.3 Numerical Experiments for the Approximate Evaluation Methods of Model 3 

In order to validate the approximate evaluation methods used in Model 3, the model is 

simulated using ARENA Software. The results obtained from the simulation runs are 

considered as the exact values. The values obtained from the algorithms are compared 

with the exact values. 
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To test the performance of the two approximation algorithms, same instances used to 

test Model 2 are used. Five different quantities of Model 3 are approximated and 

compared with the simulation. These are 

��
���: Expected delay in RDC SKU � 

��: Fillrate of SKU � at RDC 


��: Fillrate of SKU � at OB � for � ∈ �, � ∈ ���� 

���: Fraction of demand for SKU � met by direct shipment done from RDC to OB � 

���: Fraction of demand for SKU � met by direct shipment done from CBT to OB �  

Table 3.6 shows the results of the symmetric instances of Model 3. 
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Table 3.6: Comparison of the approximations with the exact values of the symmetric instances of Model 3 

¶�¥�®� ��® ���  ·��  ¸�� 

Inst. ��� G�� G�� Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. 

1 0,01 1 1 3,27 3,53 3,72 0,59 0,55 0,55 0,94 0,94 0,94 0,00 0,03 0,03 0,06 0,03 0,03 

2 2 1 0,56 0,64 0,67 0,90 0,88 0,88 0,97 0,96 0,96 0,02 0,03 0,03 0,02 0,00 0,00 

3 0,04 1 1 7,41 7,61 9,32 0,18 0,14 0,09 0,71 0,70 0,67 0,00 0,04 0,03 0,29 0,26 0,30 

4 2 1 3,44 3,81 4,99 0,46 0,36 0,31 0,79 0,79 0,76 0,02 0,08 0,07 0,19 0,14 0,17 

5 1 2 8,87 8,99 9,32 0,11 0,10 0,09 0,92 0,93 0,92 0,00 0,01 0,01 0,08 0,06 0,07 

6 2 2 4,63 4,82 4,99 0,33 0,32 0,31 0,96 0,96 0,96 0,00 0,01 0,01 0,04 0,02 0,03 

7 0,08 1 1 9,13 9,03 11,90 0,07 0,05 0,01 0,51 0,51 0,46 0,00 0,02 0,00 0,49 0,47 0,54 

8 2 1 5,55 5,69 8,92 0,21 0,14 0,05 0,59 0,59 0,51 0,01 0,06 0,02 0,39 0,35 0,46 

9 2 2 7,75 7,89 8,92 0,08 0,08 0,05 0,83 0,83 0,81 0,00 0,01 0,01 0,17 0,16 0,18 

10 2 3 8,57 8,63 8,92 0,05 0,06 0,05 0,94 0,95 0,94 0,00 0,00 0,00 0,06 0,05 0,05 

11 3 1 3,32 3,62 6,25 0,38 0,26 0,14 0,66 0,65 0,57 0,03 0,09 0,06 0,30 0,26 0,36 

12 6 1 0,57 0,75 1,31 0,82 0,71 0,65 0,78 0,77 0,74 0,12 0,16 0,17 0,10 0,07 0,09 

13 0,16 1 1 10,24 9,82 13,44 0,02 0,02 0,00 0,32 0,33 0,28 0,00 0,01 0,00 0,68 0,66 0,72 

14 2 1 7,14 6,87 11,88 0,07 0,05 0,00 0,38 0,39 0,30 0,01 0,03 0,00 0,61 0,58 0,70 

15 2 2 9,71 9,65 11,88 0,01 0,01 0,00 0,59 0,60 0,54 0,00 0,01 0,00 0,41 0,40 0,46 

16 3 1 5,09 4,97 10,32 0,16 0,09 0,00 0,44 0,44 0,32 0,01 0,05 0,00 0,55 0,51 0,68 

17 3 2 7,77 7,77 10,32 0,03 0,03 0,00 0,64 0,65 0,58 0,00 0,01 0,00 0,36 0,34 0,42 

18 6 1 1,84 2,02 5,84 0,49 0,29 0,08 0,56 0,55 0,41 0,08 0,13 0,05 0,36 0,31 0,54 

19 6 2 3,62 3,92 5,84 0,21 0,18 0,08 0,78 0,77 0,71 0,01 0,04 0,02 0,22 0,19 0,27 

20 6 3 4,79 5,03 5,84 0,12 0,12 0,08 0,89 0,90 0,88 0,00 0,01 0,01 0,11 0,09 0,11 
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Figure 3.8 – 3.11 show the 
��,  
��, ���, and  ��� of the two approximate methods and of 

the simulation for the symmetric instances. Note that the instances of the exact results 

are ranked from smallest.  

 

Figure 3.8: 
�� in the symmetric instances in Model 3 

 

Figure 3.9: 
�� in the symmetric instances in Model 3 
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Figure 3.10: ��� in the symmetric instances in Model 3 

 

Figure 3.11:  ��� in the symmetric instances in Model 3 

According to the results; the new approximate evaluation method performs better than 

the method of Muckstadt and Thomas in every variable except  ���.   

The new approximate evaluation method and the method of Muckstadt and Thomas 

underestimate  
�� in 85%, and 100% of the instances respectively. The average absolute 

percentage deviations for 
�� of these methods are 20% and 53% respectively. However, 

these values become 0,82% and 8,62% for 
�� respectively. Thus the new approximate 

evaluation method estimates  
�� quite accurately. However, the method of Muckstadt 

and Thomas underestimate 
�� in 85% of the instances.  
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Another interesting point is that the new approximate evaluation method overestimates ��� and underestimates  ��� in every instance. In (52) and (53), the events that there is 

positive stock for SKU � at RDC and OB � are assumed independent, although these 

events are dependent. ��� and  ��� calculated by (52) and (53) with the exact  
�� and 
�� 

and compared with the exact values to see the reason of the deviation. Figure 3.12 and 

3.13 show this comparison. Note that the instances of the exact results are ranked from 

the smallest to the largest. 

 

Figure 3.12: Comparison of the exact ��� with the ones calculated by (52) and (53) with 

the exact  
�� and 
�� in Model 3 

 

Figure 3.13: Comparison of the exact   ��� with the ones calculated by (52) and (53) with 

the exact  
�� and 
�� in Model 3 
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As it can be seen from Figure 3.12 and 3.13, (52) overestimates ��� and (53) 

underestimates  ���. Exact ��� is equal to the probability that there is positive stock for 

SKU � at RDC given that OB � is out of stock for SKU �. However in (52), ��� is 

calculated by just multiplying the probability that there is positive stock for SKU � at 

RDC with the probability that OB � is out of stock for SKU �. Intuitively, it is seen that 

when there is positive stock in RDC, there is more likely positive stock in an OB either, 

because OB-s are replenished by the RDC. Thus, when there is positive stock in RDC, it 

is less likely that an OB is out of stock. However, (52) does not consider this situation 

and as a result it overestimates the ���. Underestimation of ��� by (53) can be explained 

in a similar way. 

Table 3.7, 3.8 and 3.9 show the results of the asymmetric instances of Model 3. 

Parameters settings used in the asymmetric instances can be seen in Table 3.2. 
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Table 3.7: Comparison of the approximations with the exact values of the asymmetric instances of Model 3 

 

¶�¥�®� ��® ��¢  ��£ ��¤ 

Inst. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. 

1 5,77 6,16 7,23 0,32 0,26 0,22 0,92 0,92 0,91 0,85 0,85 0,83 0,79 0,78 0,77 

2 2,02 2,36 2,81 0,66 0,58 0,56 0,95 0,95 0,95 0,91 0,90 0,90 0,87 0,86 0,85 

3 2,53 2,69 2,81 0,59 0,56 0,56 0,95 0,95 0,95 0,90 0,90 0,90 0,98 0,99 0,99 

4 9,34 9,18 12,51 0,06 0,04 0,00 0,66 0,67 0,62 0,50 0,51 0,45 0,40 0,41 0,35 

5 5,88 5,96 10,05 0,17 0,10 0,02 0,73 0,74 0,66 0,58 0,58 0,49 0,49 0,48 0,39 

6 7,61 7,69 10,05 0,07 0,06 0,02 0,70 0,70 0,66 0,54 0,54 0,49 0,73 0,74 0,68 

7 5,26 5,50 7,70 0,17 0,14 0,06 0,75 0,75 0,70 0,61 0,60 0,54 0,79 0,80 0,73 

8 9,98 9,64 13,21 0,03 0,02 0,00 0,49 0,50 0,44 0,39 0,40 0,34 0,33 0,33 0,28 

9 6,79 6,61 11,43 0,10 0,06 0,00 0,55 0,57 0,46 0,46 0,46 0,37 0,39 0,39 0,30 

10 8,44 8,38 11,43 0,03 0,03 0,00 0,52 0,52 0,46 0,42 0,42 0,37 0,62 0,63 0,55 

11 7,22 7,31 9,66 0,05 0,05 0,01 0,83 0,84 0,80 0,74 0,75 0,69 0,66 0,66 0,60 

12 8,11 8,19 9,66 0,03 0,03 0,01 0,82 0,83 0,80 0,72 0,72 0,69 0,81 0,82 0,79 

13 3,92 4,19 4,79 0,21 0,19 0,16 0,98 0,98 0,98 0,95 0,95 0,95 0,91 0,92 0,90 

14 4,32 4,51 4,79 0,18 0,17 0,16 0,97 0,98 0,98 0,94 0,95 0,95 0,96 0,97 0,97 

15 3,62 3,89 4,79 0,24 0,21 0,16 0,66 0,64 0,62 0,84 0,84 0,82 0,91 0,92 0,90 

16 5,28 5,62 6,26 0,37 0,32 0,30 0,89 0,88 0,87 0,87 0,87 0,86 0,86 0,85 0,84 

17 6,13 6,21 6,26 0,32 0,30 0,30 0,99 0,99 0,99 0,99 0,99 0,99 0,98 0,99 0,99 

18 1,60 1,85 2,05 0,72 0,67 0,66 0,95 0,95 0,94 0,93 0,93 0,93 0,92 0,91 0,91 

19 6,28 6,25 10,05 0,14 0,09 0,02 0,58 0,58 0,48 0,55 0,55 0,45 0,52 0,52 0,43 

20 11,49 11,47 12,51 0,01 0,01 0,00 0,74 0,74 0,72 0,72 0,72 0,70 0,70 0,70 0,68 

21 8,62 8,68 10,05 0,04 0,04 0,02 0,80 0,81 0,78 0,78 0,78 0,75 0,76 0,76 0,73 

22 7,28 6,98 11,88 0,06 0,04 0,00 0,43 0,44 0,33 0,40 0,41 0,31 0,38 0,39 0,30 

23 12,15 12,05 13,44 0,00 0,00 0,00 0,58 0,59 0,55 0,56 0,56 0,53 0,54 0,54 0,51 

24 9,82 9,73 11,88 0,01 0,01 0,00 0,64 0,65 0,59 0,62 0,62 0,57 0,59 0,59 0,54 
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Table 3.8: Comparison of the approximations with the exact values of the asymmetric instances of Model 3 

 

��¤ ·�¢ ·�£ ·�¤ ·�¨ 

Inst. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. 

1 0,74 0,73 0,71 0,00 0,02 0,02 0,00 0,04 0,04 0,00 0,06 0,05 0,01 0,07 0,06 

2 0,84 0,82 0,81 0,01 0,03 0,03 0,02 0,06 0,06 0,03 0,08 0,08 0,04 0,10 0,11 

3 0,97 0,98 0,98 0,01 0,03 0,03 0,02 0,06 0,06 0,00 0,01 0,01 0,00 0,01 0,01 

4 0,34 0,34 0,29 0,00 0,01 0,00 0,00 0,02 0,00 0,00 0,02 0,00 0,00 0,02 0,00 

5 0,42 0,41 0,32 0,00 0,03 0,01 0,01 0,04 0,01 0,01 0,05 0,01 0,02 0,06 0,01 

6 0,65 0,65 0,59 0,00 0,02 0,01 0,00 0,03 0,01 0,00 0,02 0,01 0,00 0,02 0,01 

7 0,72 0,72 0,65 0,01 0,03 0,02 0,01 0,05 0,03 0,00 0,03 0,02 0,00 0,04 0,02 

8 0,28 0,28 0,24 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,01 0,00 

9 0,34 0,34 0,26 0,00 0,03 0,00 0,01 0,03 0,00 0,01 0,04 0,00 0,01 0,04 0,00 

10 0,56 0,56 0,48 0,00 0,01 0,00 0,00 0,02 0,00 0,00 0,01 0,00 0,00 0,01 0,00 

11 0,59 0,59 0,52 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,02 0,00 0,00 0,02 0,00 

12 0,75 0,75 0,71 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,01 0,00 

13 0,87 0,88 0,86 0,00 0,00 0,00 0,00 0,01 0,01 0,00 0,02 0,02 0,00 0,02 0,02 

14 0,94 0,95 0,95 0,00 0,00 0,00 0,00 0,01 0,01 0,00 0,00 0,00 0,00 0,01 0,01 

15 0,95 0,96 0,95 0,03 0,08 0,06 0,00 0,03 0,03 0,00 0,02 0,02 0,00 0,01 0,01 

16 0,84 0,84 0,83 0,00 0,04 0,04 0,00 0,04 0,04 0,00 0,05 0,05 0,01 0,05 0,05 

17 0,98 0,98 0,98 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,01 

18 0,90 0,90 0,89 0,01 0,04 0,04 0,01 0,05 0,05 0,02 0,06 0,06 0,03 0,07 0,07 

19 0,49 0,49 0,42 0,00 0,04 0,01 0,01 0,04 0,01 0,01 0,04 0,01 0,01 0,05 0,01 

20 0,68 0,68 0,66 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

21 0,74 0,74 0,71 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,01 0,00 0,00 0,01 0,01 

22 0,35 0,36 0,28 0,00 0,02 0,00 0,00 0,03 0,00 0,00 0,03 0,00 0,01 0,03 0,00 

23 0,52 0,52 0,49 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

24 0,57 0,57 0,52 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 
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Table 3.9: Comparison of the approximations with the exact values of the asymmetric instances of Model 3 

 

 ¸�¢  ¸�£  ¸�¤  ¸�¨ 

Inst. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. 

1 0,08 0,06 0,07 0,15 0,11 0,13 0,20 0,16 0,18 0,25 0,20 0,23 

2 0,04 0,02 0,02 0,08 0,04 0,05 0,10 0,06 0,07 0,13 0,07 0,08 

3 0,04 0,02 0,02 0,08 0,04 0,05 0,02 0,01 0,01 0,02 0,01 0,01 

4 0,34 0,32 0,38 0,50 0,48 0,55 0,59 0,57 0,65 0,66 0,64 0,71 

5 0,27 0,24 0,34 0,41 0,37 0,50 0,50 0,47 0,60 0,56 0,53 0,66 

6 0,30 0,28 0,34 0,45 0,43 0,50 0,27 0,25 0,32 0,35 0,33 0,41 

7 0,24 0,22 0,28 0,38 0,35 0,43 0,21 0,18 0,25 0,28 0,24 0,33 

8 0,51 0,49 0,56 0,61 0,59 0,66 0,67 0,66 0,72 0,72 0,70 0,76 

9 0,44 0,41 0,53 0,54 0,50 0,63 0,60 0,57 0,70 0,65 0,62 0,74 

10 0,48 0,46 0,53 0,58 0,56 0,63 0,38 0,36 0,45 0,44 0,43 0,52 

11 0,17 0,15 0,20 0,26 0,24 0,31 0,34 0,32 0,40 0,41 0,39 0,47 

12 0,18 0,17 0,20 0,28 0,27 0,31 0,19 0,17 0,21 0,25 0,24 0,28 

13 0,02 0,01 0,02 0,05 0,04 0,05 0,09 0,07 0,08 0,13 0,10 0,12 

14 0,03 0,02 0,02 0,06 0,04 0,05 0,04 0,02 0,02 0,06 0,04 0,04 

15 0,31 0,28 0,32 0,15 0,12 0,16 0,08 0,06 0,08 0,05 0,03 0,04 

16 0,11 0,08 0,09 0,13 0,09 0,10 0,14 0,10 0,11 0,15 0,11 0,12 

17 0,01 0,01 0,01 0,01 0,01 0,01 0,02 0,01 0,01 0,02 0,01 0,01 

18 0,04 0,02 0,02 0,05 0,02 0,03 0,06 0,03 0,03 0,07 0,03 0,04 

19 0,42 0,38 0,52 0,45 0,41 0,54 0,47 0,44 0,56 0,50 0,46 0,57 

20 0,26 0,25 0,28 0,28 0,28 0,30 0,30 0,30 0,32 0,32 0,32 0,34 

21 0,20 0,18 0,22 0,22 0,21 0,24 0,24 0,23 0,27 0,26 0,25 0,29 

22 0,57 0,54 0,67 0,59 0,56 0,69 0,62 0,59 0,70 0,64 0,61 0,72 

23 0,42 0,41 0,45 0,44 0,44 0,47 0,46 0,46 0,49 0,48 0,48 0,51 

24 0,36 0,35 0,41 0,38 0,38 0,43 0,41 0,40 0,46 0,43 0,43 0,48 



69 

 

Like in the symmetric cases, the new approximate evaluation method performs better 

than the method of Muckstadt and Thomas in every variable except  ��� in the 

asymmetric instances.   

The new approximate evaluation method and the method of Muckstadt and Thomas 

underestimate  
�� in 75%, and 100% of the instances respectively. The average absolute 

percentage deviations for 
�� of these methods are 23% and 59% respectively. However, 

these values become 0,80% and 7,21% for 
�� respectively. Thus the new approximate 

evaluation method estimates  
�� quite accurately. However, the method of Muckstadt 

and Thomas underestimate 
�� in 89% of the instances.  

Like in the symmetric instances, the new approximate evaluation method overestimates ��� and underestimates  ��� in every asymmetric instance with the same reason 

mentioned before. In the asymmetric instances, ��� and  ��� calculated by (52) and (53) 

with the exact  
�� and 
�� are greater and lower than the exact values respectively.  

The computation time for the approximate evaluation methods are quite short. Average 

computation time of one instance for the method of Muckstadt and Thomas and the new 

approximate evaluation method is smaller than 1 and 4 milliseconds respectively in a 

Intel Dual Core 3GHz computer. 

3.3.3.1         Cost and Service Level Validation 

Total cost values and the expected waiting time values are calculated to analyze the 

accuracy of the approximation methods.  Following parameter setting is used in the 

computations: 

   �$%& = 0,3 2m��,    �&'( = 2,1 2m��,   ;� = € 5.000,   ℎ = 20%,    1�$%& = € 125 

1�&'( = € 375          ∀ � ∈ ����       
Table 3.10 shows the total yearly cost and aggregate waiting time values for all OB-s for 

the simulation and the other two methods for the symmetric instances.  
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Table 3.10: Total yearly cost and aggregate waiting time values for all OB-s for the 

symmetric instances of Model 3 

 

Total yearly cost values (€) ¥�� (days)  

Instances Exact Appr. E. M. M. & T. Exact Appr. E. M. M. & T. 

1 5.318 5.212 5.219 0,12 0,07 0,07 

2 6.126 6.080 6.080 0,04 0,02 0,02 

3 11.390 10.919 11.791 0,61 0,55 0,64 

4 10.213 9.556 10.215 0,40 0,31 0,37 

5 10.679 10.473 10.547 0,16 0,14 0,15 

6 10.890 10.620 10.649 0,09 0,05 0,06 

7 26.519 25.791 28.688 1,03 0,99 1,13 

8 23.434 22.322 26.704 0,83 0,76 0,98 

9 17.559 17.011 18.010 0,36 0,33 0,38 

10 16.633 16.267 16.403 0,13 0,11 0,11 

11 20.812 19.514 23.853 0,65 0,56 0,78 

12 16.223 15.327 16.359 0,25 0,19 0,24 

13 64.478 63.262 68.465 1,43 1,39 1,52 

14 59.876 57.992 67.655 1,29 1,24 1,48 

15 45.713 45.075 49.921 0,86 0,84 0,96 

16 55.603 53.205 66.471 1,16 1,09 1,42 

17 42.211 41.253 47.731 0,75 0,72 0,88 

18 43.858 41.352 58.459 0,78 0,70 1,14 

19 33.142 31.437 38.238 0,46 0,40 0,57 

20 27.506 26.216 28.044 0,23 0,19 0,24 

 

Average absolute percentage deviations in the total yearly cost values for the new 

approximate evaluation method and the method of Muckstadt and Thomas are 3,5% and 

8,1% respectively. Another interesting point is that the new approximate evaluation 

method underestimates the total cost and waiting time values. This result is predictable 

because the new method estimates   
�� accurately, but it overestimates ��� and 

underestimates  ���. Since it is more costly and time consuming to make direct shipment 

from the CBT, the new approximate evaluation method underestimates the expected 

waiting time and the total cost values. 

Table 3.11 shows the total yearly cost and aggregate waiting time values for each OB for 

the simulation and the other two methods for the asymmetric instances.  
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Average absolute percentage deviations in the total yearly cost values for the new 

approximate evaluation method and the method of Muckstadt and Thomas are 3,1% and 

7% respectively. Again, it is seen that the new approximate evaluation method 

underestimates the total cost and waiting time values because it estimates   
�� 

accurately, but it overestimates ��� and underestimates  ���.  
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Table 3.11: Total yearly cost and aggregate waiting time values for each OB for the asymmetric instances of Model 3 

Total Yearly Cost (€) ¥�¢ (days) ¥�£ (days) ¥�¤ (days) ¥�¨ (days) 

Inst. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. Exact Appr. M. & T. 

1 7.747 7.393 7.678 0,17 0,14 0,16 0,32 0,25 0,29 0,43 0,35 0,40 0,53 0,44 0,49 

2 7.520 7.148 7.257 0,09 0,05 0,06 0,16 0,10 0,11 0,23 0,15 0,16 0,28 0,19 0,21 

3 8.495 8.323 8.333 0,09 0,06 0,06 0,17 0,11 0,11 0,03 0,01 0,01 0,05 0,02 0,02 

4 36.474 35.661 39.394 0,71 0,67 0,80 1,05 1,00 1,16 1,25 1,21 1,36 1,38 1,34 1,49 

5 32.781 31.561 37.929 0,57 0,51 0,71 0,87 0,80 1,06 1,06 0,99 1,26 1,19 1,13 1,40 

6 26.746 25.940 29.591 0,63 0,60 0,71 0,95 0,92 1,06 0,57 0,53 0,67 0,74 0,70 0,86 

7 24.071 22.966 26.962 0,51 0,47 0,60 0,80 0,75 0,92 0,44 0,38 0,53 0,58 0,52 0,70 

8 55.054 53.994 58.755 1,08 1,04 1,19 1,28 1,24 1,39 1,41 1,38 1,52 1,51 1,48 1,60 

9 50.766 49.085 57.821 0,93 0,87 1,12 1,13 1,07 1,33 1,27 1,21 1,46 1,36 1,31 1,56 

10 43.163 42.168 48.158 1,01 0,97 1,12 1,21 1,18 1,33 0,80 0,76 0,94 0,93 0,90 1,08 

11 35.619 34.761 40.070 0,35 0,32 0,42 0,55 0,51 0,65 0,71 0,68 0,84 0,85 0,82 0,99 

12 30.351 29.754 32.797 0,38 0,36 0,42 0,59 0,57 0,65 0,39 0,37 0,45 0,51 0,50 0,60 

13 24.559 23.385 24.406 0,05 0,03 0,04 0,11 0,08 0,10 0,19 0,15 0,18 0,27 0,22 0,26 

14 23.606 22.593 22.875 0,05 0,04 0,04 0,12 0,09 0,10 0,07 0,05 0,05 0,12 0,09 0,10 

15 25.212 23.894 25.653 0,65 0,61 0,70 0,32 0,27 0,33 0,18 0,13 0,18 0,11 0,07 0,10 

16 6.458 6.198 6.303 0,24 0,18 0,20 0,27 0,20 0,22 0,30 0,22 0,24 0,32 0,25 0,27 

17 9.179 9.113 9.114 0,03 0,01 0,01 0,03 0,02 0,02 0,04 0,02 0,02 0,04 0,03 0,03 

18 6.699 6.482 6.507 0,09 0,05 0,05 0,12 0,06 0,07 0,14 0,08 0,08 0,16 0,09 0,10 

19 31.230 29.857 36.058 0,87 0,81 1,09 0,94 0,87 1,13 1,00 0,93 1,17 1,04 0,98 1,21 

20 25.022 24.704 25.941 0,55 0,54 0,59 0,59 0,58 0,63 0,64 0,62 0,67 0,68 0,67 0,71 

21 22.687 22.104 23.979 0,42 0,39 0,47 0,47 0,44 0,51 0,51 0,48 0,56 0,55 0,53 0,60 

22 59.052 57.078 66.949 1,19 1,13 1,41 1,25 1,19 1,45 1,30 1,24 1,48 1,34 1,29 1,51 

23 48.545 48.145 50.798 0,88 0,87 0,94 0,93 0,92 0,98 0,97 0,96 1,02 1,01 1,01 1,06 

24 44.768 44.056 48.871 0,75 0,73 0,86 0,81 0,79 0,91 0,86 0,84 0,96 0,91 0,89 1,00 
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3.3.4 Greedy Algorithm for Model 3 

This heuristic method is developed to determine feasible base stock levels for the 

aggregate waiting time constraint for Model 3. The idea is the same with that in Model 2 

with some minor differences. The current procedure computes distance to the set of 

feasible solutions and p�� differently. Both the new approximate evaluation method and 

the one of Muckstadt and Thomas can be used with this greedy algorithm. 

The proposed procedure starts with setting all base stock levels to zero, G = 0 for all 

SKU-s and warehouses. At each iteration the ratio 

p�� = ¹º
»∆
��∆O��                         �° ∆O�� > 0, ∆
�� > 0∆
��. ∆O��              �° ∆O�� ≤ 0, ∆
�� > 0∅                                                  �°  ∆
�� ≤ 0

±                                �54� 

is calculated where 

∆
�� = µ Z �[  
�[G\ − 
�+*!#"+\� − [  
�[G + P��\ − 
�+*!#"+\���∈BCDE
  � = 0

[  
�[G\ − 
�+*!#"+\� − [  
�[G + P��\ − 
�+*!#"+\�         � ∈ ����    ±    �55� 

∆O�� = O[G +  P��\ − O[G\                                                  �56� 

for all � ∈ � and � ∈ �. 

The total cost may increase or decrease at each iteration because the total inventory cost 

always increases but total transportation cost may decrease when the base stock level 

increases. Moreover; since increasing a base stock level will increase the fill rate of the 

corresponding OB, ��
��� will also increase. Then, ∆
�� can be smaller than or equal 

to 0. For that reason, p�� is defined as in (54). 

∆
�∗�∗, change in the waiting time value of SKU �∗ at OB �∗, where �∗ ∈ �, �∗ ∈ � are 

only dependent on the base stock level of G�∗�∗. These values are not subject to change if 

a base stock level of another SKU increases. Computation time can be saved if only the 
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results that change are updated. A formal description of the greedy procedure is given 

next. 

Greedy Procedure for Model 3 

Step 1: Set the initial solution  G = 0; calculate  
��0� for all warehouses 

Step 2: For all combinations  � ∈ � and � ∈ �, calculate  ∆
�� ,  ∆O�� , and p��. 

Step 3: If ����∆O��� is greater than 0, let  �∗ and �∗ be defined as  p�∗�∗ = max   p��; 

otherwise let  �∗ and �∗ be defined as  p�∗�∗ = min   p��.  Set   G = G + P�∗�∗. If 
�[G\ ≤
�+*!#"+ for all  � ∈ ���� , go to Step 4; otherwise go to Step 2. 

Step 4: For all combinations  � ∈ �, � ∈ �: Calculate   ∆O��. 

Step 5: Let  �∗ and �∗ be defined as  ∆O�∗�∗ = min   ∆O�∗�∗ . If ∆O�∗�∗ < 0, then set  G =G + P�∗�∗ and go to Step 4; otherwise end. 

In some cases although the target waiting time values are met by every OB �, increasing 

the base stock level may decrease the total cost because this can decrease the lateral 

transshipment rates between OB-s, which in turn decreases total transportation costs. 

Thus, the greedy algorithm used in Model 3, checks the possible decrease in the total 

cost once the target waiting time values are met by every OB �. 

3.4 Solution Procedure for Model 4 

Since there is not any study in the literature which considers the system of Model 4, a 

new approximate evaluation method, which calculates the service levels and 

transportation cost for given base stock levels, is developed. The greedy algorithm of 

Model 3 is also used in Model 4 to minimize the total inventory and transportation cost 

with respect to a target waiting time constraint. The approximate evaluation method and 

the greedy algorithm are described below. 
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3.4.1 New Approximate Evaluation Method for Model 4 

This method calculates the service levels and cost for given base stock levels.. There are 

two iterative solution procedures in this method. The first iteration calculates the ��
��� 

and 
�� iteratively with  
�� of each OB �; and the second iteration calculates   
�� 

iteratively with  ���� for every SKU � at every OB � where � ∈ �, � ∈ ����. The second 

iteration takes place within the first iteration as seen Figure 3.14.  

 

Figure 3.14: Iterations used in the approximate evaluation method of Model 4 

Calculating ¶�¥�®� and ��®: 

When the inventory amount in RDC is greater than 0, because of the base stock policy 

used in the OB-s,   ��� = ∑ ����∈BCDE . However when the inventory amount in RDC is 

lower than or equal to 0; the probability that OB � requests a replenishment order from 

RDC is equal to the probability that there is at least one stock in any OB � where � ∈ ����. Because there are three possibilities that can happen when a demand comes to 

an OB � and the inventory amount in RDC is lower than or equal to 0: 

1. If the OB has stock on hand, it will supply the demand by its stock and will give 

a replenishment order to RDC. 

2. If the OB has not stock on hand, it will check the other OB-s because RDC does 

not have stock on hand. If any other OB has stock on hand, there will be a lateral 

transshipment to meet the demand, and the OB which sends the part for lateral 

transshipment will give a replenishment order to RDC. 

  
�� 

Iteration 1 

��
��� and 
�� 

Iteration 2 

���� 



76 

 

3. If none of the OB-s has stock on-hand, there will be a direct shipment from CBT. 

Let ���S  denotes the demand rate coming to RDC for SKU �, when the inventory amount 

in RDC is lower than or equal to 0, 

���S = ½1 − � �1 − 
���|BCDE|
�w> ¾ . ���                                            �57� 

In (57), the events that there is positive stock of SKU � at OB � for all � ∈ ���� is 

assumed independent. Let the replenishment rate of RDC by CBT for each SKU � be 

0� = 1  /�⁄                                                                 �58 � 

and GT� be  

GT� = Z G���∈BCDE
        ∀   � ∈ �                                              �59� 

Because of the direct shipments from CBT to the OB-s, the inventory amount in RDC 

will be between −GT� and  G��. There can be backorder in RDC, only when there is on-

hand stock in at least one OB, thus −GT� is the minimum inventory amount or maximum 

number of backorders that can occur in RDC. 

If all 
�� are known and the demand coming to RDC for SKU �, when the inventory 

amount in RDC is lower than or equal to 0, is a Poisson process; then ���� �, the stock 

level for SKU � at RDC at time  , is a Continuous Time Markov Chain (CTMC) with a 

rate diagram given in Figure 3.15. 
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Figure 3.15: Rate diagram of the Markov process describing the stock level in RDC in 

Model 4 

Let �u denotes the steady state probabilities for the continuous time Markov chain 

shown in Figure 3.15 where −GT� ≤ r ≤  G�� and r is integer. Then the steady state 

probabilities can be calculated as 

�u = µ� G�� − r + 1�. 0����S . �u3>        − GT� < r ≤ 0   
� G�� − r + 1�. 0� ��� . �u3>       0 < r ≤  G��                             �60�± 

Then 


�� = Z �u
sdt

uw>                                                                       �61� 

��H��� = Z �−r�. �u
3>

uw3sTd                                                         �62� 

Let  J�� be the average demand rate coming to RDC for each SKU �. Then, 

J�� = ^ Z �u
�

uw3sTd�> a . ���S + ^Z �u
sdt

uw> a .  ���                                      �63� 

Note that (63) is an approximation because ���S  is dependent to �u. Then, by the Little’s 

law, 

  G�� 1 0 -1 

0� �G�� − 1�. 0� �G�� + 1�. 0� �G�� + 2�. 0� 

   ��� 

−GT� 

   ���    ��� ���S  ���S  ���S  

�G�� + GT��. 0� G��. 0� 
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   ��
��� =  ��H��� J��⁄                                                         �64� 

Because of FCFS policy in CBT and Poisson demand, ��
��� is same for all OB-s. 

Calculating ��� and the total demand rate: 

Define 

����: Total demand rate including the lateral demands coming for SKU � at OB � when 

there is positive stock in OB � 

�R��): Lateral demand rate coming from OB - to OB , for SKU � when there is positive 

stock in the OB , for � ∈ �,   �, ,, - ∈ ���� , - ≠ , 

<� = =<>���, <?���, … , <�|BCDE|3>����F: The pre-specified order of the OB-s for asking 

lateral transshipment.  

For each SKU � at OB �, the mean replenishment lead time is 

 L/�� =  !"# + ��
���                                                          �65� 

At this point, it is assumed that the replenishment lead time for SKU � at OB � is 

exponentially distributed and its mean is  L/��. Then the total demand rates for SKU � at 

OB � and lateral demand rates for SKU � from OB � to the other OB-s respectively are 

���� = ��� + Z �R�u�
|BCDE|

uw>,u]�                                                     �66� 

�R������� = �1 − 
���. �1 − 
���. ���                                           �67� 

�R������� = [1 − 
��������\. �R���������          1 < r ≤ |����| − 1                  �68� 

From the equations above, it is seen that ���� is dependent on 
��. Moreover, if  ���� is 

known and since it is assumed that total demand rate coming for SKU � at OB � have a 

Poisson process, which also means that the overflow demands arrive according to a 
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Poisson process, then 
�� can be calculated by Erlang Loss Probability for each SKU � at 

OB �. 

 
�� = 1 − L =G��, [����.  L/��\F                                               �69� 

Using the information above, the iterations of Model 4 are described below. 

Iteration 2 

Let � =103�. For each SKU �: 
Step 1: Assume no lateral transshipment exists between all of the OB-s. Then   ���� =���; and calculate 
�� for each OB � by using (23). 

Step 2: Using 
��, calculate  ���� for one OB by using (66)-(68). Then calculate  
�� for 

the same OB. 

Step 3: Repeat Step 2 for each OB �. 

Step 4: Repeat Step 2 and Step 3 until   ���� does not change more than � for each OB � 

where � ∈ ����. 

The variables ����and 
�� converge in all cases considered in this study. The same 

convergence argument in the iterations of Model 2 is also valid here. 

Iteration 1 

Let � =103�. For each SKU �: 
Step 1: Assume ��
��� = 0 and 
�� = 1 . Then, calculate 
�� for every OB � by 

iteration 2 for � ∈ ����. 

Step 2: Using 
��, calculate ��
��� and 
��. Then calculate 
�� for every OB � by 

iteration 2. 

Step 3: Repeat Step 2 until  ��
��� does not change more than � .  
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The variables ��
���, 
�� and 
�� converge in all cases considered in this study. Figure 

3.16, 3.17, and 3.18 show convergence of ��
���, 
�� and 
�� for a setting. 

 

Figure 3.16: ��
��� at each iteration in instance 1 of Model 4 

 

Figure 3.17: 
�� at each iteration in instance 1 of Model 4 
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Figure 3.18: 
�� at each iteration in instance 1 of Model 4 

As it can be seen from the Figure 3.16 and 3.17, the initial values of  ��
��� and 
�� are 

0 and 1 respectively. In this case the corresponding 
��  become the largest because the 

lower the expected delay in RDC, the lower the lead times of each OB; and the higher 

the 
�� value, the lower lateral demand coming to each OB. In the following iteration ��
��� and 
�� values becomes the largest and lowest respectively because the higher 

the fillrate values of the OB-s, the higher the number of replenishment orders from RDC 

and the higher the delay and number of backorders in RDC. Afterwards, 
�� values 

become the lowest as seen in iteration number 1 in Figure 3.18, because the ��
��� and 
�� values are the largest and lowest respectively. Then; ��
��� and 
�� values becomes 

the second lowest and largest respectively; ��
��� becomes greater than 0 and  
�� 

becomes lower than 1 as seen in iteration number 2 in Figure 3.16 and 3.17. Then; 
�� 

values become the second largest, because the current ��
��� and 
�� values are the 

second lowest and highest respectively  as seen in iteration number 2 in Figure 3.18. 

Hence; at each odd numbered iteration, ��
���, 
�� and 
�� will increase, decrease and 

decrease respectively, at each even numbered iteration, ��
���, 
�� and 
�� will 

decrease, increase and increase respectively; and at each iteration, the difference 

between two consecutive ��
���, 
�� and 
��  values will decrease. Thus sooner or later 

these values will converge.  

Iteration 1 is robust with respect to the initial value of ��
��� and  
��. For all possible 

initial values of ��
��� and  
��, iteration 1 converges to the same values. However, the 
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initial values of ��
��� and   
�� affect the number of iterations done, which in turn 

affects the computation time. When the initial value of  
�� is 1, number of iterations are 

minimized because in this situation, there will be no lateral demand in the system, then 

the number of iterations done in the first run of iteration 2 will be minimum. For the 

initial value of ��
���; generally the more the initial value is far from the exact value, 

the longer the computation time. However; in our cases, this increase was insignificant. 

After convergence, ���, K�,�,), and  ��� can be calculated as: 

��� = 
��. �1 − 
���      ∀  � ∈ �, � ∈ ����                                        �70� 

 K�,�,) = 
�). �R��)���        ∀  � ∈ �, - ∈ ���� , , ∈ ���� - ≠ ,                             �71� 

 ��� = ��1 − 
���         ∀  � ∈ �, � ∈ �|B|
�w�                                       �72� 

Note that for every SKU �,  ��� values for each OB � are equal to each other as it can be 

seen in (72), because direct shipments from CBT is done if there is not stock in all of the 

warehouses.  

Consequently, the new approximate evaluation method used in Model 4 calculates the 

fillrates ( 
�� ); the fraction of demand for SKU � met by direct shipment from RDC to 

OB � (��� ); fraction of demand met by lateral transshipments ( K�,�,)); and the fraction 

of demand for SKU � met by direct shipment from CBT to OB � ( ��� ) for each SKU � 
at each OB � for � ∈ �, �, -, , ∈ ���� , - ≠ ,. 

3.4.2 Numerical Experiments for the Approximate Evaluation Method of Model 4 

In order to validate the approximate evaluation method used in Model 4, the model is 

simulated using ARENA Software. The results obtained from the simulation runs are 

considered as the exact values. The values obtained from the algorithm are compared 

with the exact values. 
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To test the approximation algorithm of Model 4, same instances used to test Model 2 are 

used. Pre-specified lateral demand orders are determined as:  <> = �2,3,4�,  <? =�3,4,1�,  <� = �4,1,2�, and  <� = �1,2,3�. Six different quantities of Model 4 are 

approximated and compared with the simulation. These are 

��
���: Expected delay in RDC SKU � 

��: Fillrate of SKU � at RDC 


��: Fillrate of SKU � at OB � for � ∈ �, � ∈ ���� 

���: Fraction of demand for SKU � met by direct shipment done from RDC to OB � 

K�,�,): Fraction of demands comes to OB - met by lateral transshipments from OB , 

for � ∈ �, �, -, , ∈ ���� , - ≠ , 

���: Fraction of demand for SKU � met by direct shipment done from CBT to OB �  

Table 3.12 shows the results of the symmetric instances of Model 4. 
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Table 3.12: Comparison of the approximations with the exact values of the symmetric instances of Model 4 

    

¶�¥�®� ��® ���  ·��  ¸��   �,�,¡¢���   �,�,¡£���   �,�,¡¤��� 

Inst. ��� G�� G�� Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

1 0,01 1 1 3,73 3,72 0,55 0,55 0,93 0,94 0,00 0,04 0,00 0,00 0,06 0,03 0,01 0,00 0,00 0,00 

2 2 1 0,69 0,67 0,88 0,88 0,96 0,96 0,02 0,03 0,00 0,00 0,02 0,00 0,00 0,00 0,00 0,00 

3 0,04 1 1 8,76 8,83 0,11 0,10 0,58 0,56 0,00 0,04 0,10 0,03 0,19 0,22 0,09 0,10 0,04 0,04 

4 2 1 4,67 4,75 0,33 0,31 0,71 0,72 0,02 0,09 0,05 0,00 0,14 0,14 0,06 0,04 0,02 0,01 

5 1 2 9,31 9,31 0,09 0,09 0,90 0,91 0,00 0,01 0,00 0,00 0,08 0,07 0,01 0,01 0,00 0,00 

6 2 2 5,00 4,99 0,31 0,31 0,95 0,96 0,00 0,01 0,00 0,00 0,04 0,03 0,01 0,00 0,00 0,00 

7 0,08 1 1 10,33 10,05 0,03 0,03 0,30 0,27 0,00 0,02 0,34 0,28 0,17 0,19 0,11 0,14 0,07 0,10 

8 2 1 7,12 7,06 0,10 0,08 0,40 0,36 0,01 0,05 0,25 0,15 0,18 0,21 0,11 0,13 0,06 0,09 

9 2 2 8,70 8,81 0,05 0,05 0,73 0,74 0,00 0,01 0,04 0,00 0,15 0,18 0,06 0,05 0,02 0,01 

10 2 3 8,92 8,92 0,05 0,05 0,92 0,94 0,00 0,00 0,00 0,00 0,06 0,06 0,01 0,00 0,00 0,00 

11 3 1 4,81 4,95 0,22 0,18 0,50 0,47 0,02 0,10 0,17 0,07 0,17 0,20 0,09 0,11 0,05 0,06 

12 6 1 1,10 1,15 0,70 0,66 0,72 0,73 0,11 0,18 0,04 0,00 0,07 0,07 0,04 0,02 0,02 0,00 

13 0,16 1 1 10,98 10,40 0,01 0,01 0,14 0,12 0,00 0,01 0,61 0,58 0,10 0,11 0,08 0,09 0,07 0,08 

14 2 1 8,29 7,72 0,02 0,03 0,17 0,16 0,00 0,02 0,54 0,49 0,12 0,13 0,09 0,11 0,07 0,09 

15 2 2 10,65 10,51 0,00 0,00 0,35 0,30 0,00 0,00 0,28 0,23 0,18 0,21 0,12 0,15 0,07 0,10 

16 3 1 6,36 5,97 0,06 0,06 0,22 0,20 0,01 0,04 0,47 0,40 0,13 0,15 0,10 0,12 0,07 0,10 

17 3 2 8,95 8,91 0,01 0,01 0,41 0,36 0,00 0,01 0,23 0,17 0,19 0,23 0,11 0,15 0,07 0,09 

18 6 1 2,92 3,05 0,28 0,20 0,37 0,32 0,06 0,13 0,28 0,17 0,14 0,18 0,09 0,12 0,06 0,08 

19 6 2 4,88 5,24 0,12 0,10 0,61 0,58 0,00 0,04 0,10 0,03 0,17 0,22 0,08 0,09 0,04 0,04 

20   6 3 5,66 5,79 0,09 0,08 0,81 0,84 0,00 0,01 0,02 0,00 0,12 0,12 0,04 0,02 0,01 0,00 
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Figure 3.19, 3.20, and 3.21 show the  
��, ���, and  ��� of the approximate method and 

of the simulation for the symmetric instances. Note that the instances of the exact results 

are ranked from smallest to largest. Figure 3.20 and 3.21 show the ��� and  ��� 

calculated by the (70) and (72) with the exact  
�� and 
�� values. 

 

Figure 3.19: 
�� in the symmetric instances in Model 4 

 

Figure 3.20: ��� in the symmetric instances in Model 4 

 

 

 

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1 2 3 4 5 6 7 8 9 1011121314151617181920

Exact

Appr. Ev.

0,00

0,05

0,10

0,15

0,20

0,25

1 2 3 4 5 6 7 8 9 1011121314151617181920

Exact

Equation

Appr. Ev.



86 

 

 

Figure 3.21:  ��� in the symmetric instances in Model 4 

According to these results, it can be said that the new approximate evaluation method 

estimates the 
�� values quite accurately. The average absolute percentage deviation for 
�� is 5.5%.  However, the new approximate evaluation method overestimates ��� and 

underestimates ��� in every instance. In (70) and (72), the events that there is positive 

stock for SKU � at RDC and OB � are assumed independent although these events are 

dependent. To see that the deviation is not due to approximation, ��� and  ��� calculated 

by (70) and (72) with the exact  
�� and 
�� are compared with the exact values. Figure 

3.20 and 3.21 show these results in the series named ‘Equation’. As it can be seen from 

these figures, (70) overestimates ���  and (72) underestimates  ��� in every symmetric 

instance. Exact ��� is equal to the probability that there is positive stock for SKU � at 

RDC given that OB � is out of stock for SKU �. However in (70), ��� is calculated by 

just multiplying the probability that there is positive stock for SKU � at RDC with the 

probability that OB � is out of stock for SKU �. Intuitively, it is seen that when there is 

positive stock in RDC, there is more likely positive stock in an OB either, because OB-s 

are replenished by the RDC. Thus, when there is positive stock in RDC, it is less likely 

that an OB is out of stock. However, (70) does not consider this situation and as a result 

it overestimates the ���. Underestimation of ��� by (70) can be explained in a similar 

way. 

Table 3.13, 3.14 and 3.15 show the results of the asymmetric instances of Model 4. 

Parameters settings used in the asymmetric instances can be seen in Table 3.2.
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Table 3.13: Comparison of the approximations with the exact values of the asymmetric instances of Model 4 

¶�¥�®� ��® ��¢  ��£ ��¤ ��¨ ·�¢ ·�£ ·�¤ 

Inst. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

1 7,07 7,12 0,23 0,22 0,79 0,82 0,79 0,81 0,75 0,75 0,69 0,68 0,00 0,04 0,00 0,04 0,00 0,06 

2 2,80 2,77 0,56 0,56 0,90 0,93 0,88 0,89 0,85 0,85 0,81 0,80 0,01 0,04 0,02 0,06 0,02 0,08 

3 2,82 2,81 0,56 0,56 0,94 0,94 0,90 0,89 0,98 0,99 0,97 0,98 0,01 0,03 0,02 0,06 0,00 0,01 

4 10,63 10,21 0,02 0,02 0,24 0,21 0,25 0,22 0,23 0,21 0,21 0,19 0,00 0,02 0,00 0,01 0,00 0,02 

5 7,63 7,38 0,06 0,06 0,32 0,28 0,33 0,29 0,31 0,28 0,28 0,25 0,00 0,04 0,01 0,04 0,01 0,04 

6 8,93 8,93 0,03 0,03 0,40 0,33 0,36 0,32 0,53 0,50 0,50 0,47 0,00 0,02 0,00 0,02 0,00 0,02 

7 6,68 6,86 0,09 0,08 0,49 0,44 0,45 0,41 0,62 0,61 0,59 0,57 0,01 0,04 0,01 0,05 0,00 0,03 

8 10,90 10,36 0,01 0,01 0,16 0,14 0,16 0,15 0,16 0,14 0,15 0,14 0,00 0,01 0,00 0,01 0,00 0,01 

9 8,15 7,65 0,03 0,03 0,21 0,19 0,21 0,19 0,21 0,19 0,18 0,17 0,00 0,03 0,00 0,03 0,00 0,03 

10 9,59 9,35 0,01 0,01 0,24 0,20 0,23 0,19 0,36 0,33 0,36 0,33 0,00 0,01 0,00 0,01 0,00 0,01 

11 8,62 8,69 0,02 0,02 0,50 0,45 0,51 0,47 0,48 0,44 0,43 0,39 0,00 0,01 0,00 0,01 0,00 0,01 

12 9,16 9,32 0,01 0,01 0,59 0,55 0,56 0,53 0,66 0,65 0,62 0,60 0,00 0,01 0,00 0,01 0,00 0,00 

13 4,72 4,77 0,16 0,16 0,91 0,96 0,91 0,94 0,88 0,90 0,83 0,84 0,00 0,01 0,00 0,01 0,00 0,02 

14 4,77 4,78 0,16 0,16 0,94 0,97 0,92 0,94 0,95 0,97 0,92 0,94 0,00 0,00 0,00 0,01 0,00 0,01 

15 4,57 4,72 0,17 0,16 0,59 0,58 0,74 0,76 0,84 0,87 0,89 0,93 0,02 0,07 0,00 0,04 0,00 0,02 

16 6,20 6,21 0,31 0,30 0,85 0,86 0,84 0,84 0,82 0,83 0,81 0,81 0,00 0,04 0,00 0,05 0,00 0,05 

17 6,27 6,26 0,30 0,30 0,99 0,99 0,98 0,99 0,98 0,99 0,98 0,98 0,00 0,00 0,00 0,00 0,00 0,00 

18 2,06 2,03 0,66 0,66 0,94 0,94 0,92 0,92 0,90 0,91 0,89 0,89 0,01 0,04 0,01 0,05 0,02 0,06 

19 7,76 7,47 0,06 0,05 0,35 0,32 0,33 0,30 0,31 0,28 0,29 0,26 0,00 0,04 0,00 0,04 0,01 0,04 

20 12,16 12,17 0,00 0,00 0,56 0,52 0,54 0,51 0,52 0,49 0,50 0,47 0,00 0,00 0,00 0,00 0,00 0,00 

21 9,63 9,74 0,02 0,02 0,65 0,64 0,64 0,63 0,62 0,60 0,59 0,57 0,00 0,01 0,00 0,01 0,00 0,01 

22 8,45 7,83 0,02 0,03 0,21 0,19 0,19 0,17 0,17 0,16 0,16 0,15 0,00 0,02 0,00 0,02 0,00 0,02 

23 12,68 12,52 0,00 0,00 0,33 0,28 0,31 0,27 0,30 0,26 0,28 0,25 0,00 0,00 0,00 0,00 0,00 0,00 

24 10,74 10,59 0,00 0,00 0,39 0,34 0,37 0,33 0,35 0,31 0,34 0,29 0,00 0,00 0,00 0,00 0,00 0,00 
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Table 3.14: Comparison of the approximations with the exact values of the asymmetric instances of Model 4 

 

·�¨   �,¢,£   �,¢,¤   �,¢,¨   �,£,¢   �,£,¤   �,£,¨   �,¤,¢   �,¤,£ 

Inst. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

1 0,00 0,07 0,13 0,11 0,04 0,02 0,01 0,00 0,02 0,01 0,12 0,11 0,04 0,03 0,06 0,05 0,02 0,01 

2 0,03 0,11 0,07 0,03 0,02 0,00 0,00 0,00 0,01 0,00 0,07 0,04 0,02 0,01 0,03 0,01 0,01 0,00 

3 0,00 0,01 0,04 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,08 0,05 0,00 0,00 0,00 0,00 0,00 0,00 

4 0,00 0,02 0,15 0,17 0,10 0,13 0,07 0,09 0,08 0,10 0,14 0,16 0,10 0,12 0,11 0,13 0,08 0,11 

5 0,01 0,04 0,16 0,20 0,10 0,13 0,06 0,09 0,07 0,10 0,16 0,19 0,10 0,12 0,12 0,15 0,08 0,11 

6 0,00 0,02 0,16 0,20 0,17 0,22 0,08 0,10 0,04 0,06 0,28 0,33 0,12 0,15 0,06 0,09 0,04 0,05 

7 0,00 0,03 0,16 0,21 0,15 0,19 0,06 0,07 0,03 0,04 0,28 0,33 0,10 0,12 0,05 0,07 0,03 0,04 

8 0,00 0,01 0,12 0,12 0,09 0,10 0,07 0,08 0,07 0,09 0,11 0,12 0,09 0,10 0,09 0,11 0,07 0,09 

9 0,00 0,03 0,13 0,15 0,10 0,12 0,07 0,09 0,07 0,10 0,13 0,15 0,09 0,11 0,10 0,12 0,08 0,10 

10 0,00 0,01 0,13 0,15 0,18 0,21 0,10 0,14 0,05 0,07 0,24 0,26 0,14 0,17 0,07 0,09 0,05 0,07 

11 0,00 0,01 0,19 0,25 0,10 0,13 0,05 0,06 0,06 0,08 0,18 0,23 0,09 0,11 0,12 0,15 0,06 0,09 

12 0,00 0,00 0,17 0,24 0,11 0,13 0,04 0,04 0,03 0,04 0,24 0,30 0,08 0,10 0,06 0,08 0,03 0,03 

13 0,00 0,03 0,07 0,04 0,01 0,00 0,00 0,00 0,01 0,00 0,06 0,04 0,01 0,00 0,03 0,01 0,01 0,00 

14 0,00 0,01 0,04 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,06 0,05 0,01 0,00 0,01 0,00 0,00 0,00 

15 0,00 0,01 0,24 0,27 0,09 0,07 0,03 0,01 0,00 0,00 0,17 0,18 0,05 0,03 0,01 0,00 0,01 0,00 

16 0,01 0,06 0,10 0,08 0,03 0,01 0,01 0,00 0,01 0,00 0,11 0,09 0,03 0,02 0,04 0,02 0,01 0,00 

17 0,00 0,01 0,01 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,00 

18 0,03 0,07 0,04 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,05 0,02 0,01 0,00 0,01 0,00 0,00 0,00 

19 0,01 0,04 0,16 0,19 0,10 0,13 0,06 0,08 0,08 0,11 0,16 0,19 0,10 0,12 0,12 0,16 0,08 0,10 

20 0,00 0,00 0,19 0,24 0,09 0,11 0,04 0,06 0,05 0,07 0,19 0,24 0,09 0,12 0,11 0,14 0,05 0,07 

21 0,00 0,01 0,17 0,22 0,07 0,08 0,03 0,03 0,04 0,04 0,17 0,22 0,07 0,08 0,09 0,11 0,04 0,04 

22 0,00 0,02 0,12 0,14 0,09 0,11 0,06 0,08 0,08 0,11 0,12 0,13 0,08 0,10 0,11 0,13 0,08 0,10 

23 0,00 0,00 0,17 0,20 0,11 0,14 0,06 0,09 0,08 0,12 0,17 0,19 0,11 0,13 0,13 0,16 0,08 0,11 

24 0,00 0,00 0,18 0,22 0,10 0,14 0,06 0,09 0,08 0,11 0,18 0,21 0,11 0,13 0,13 0,17 0,08 0,11 
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Table 3.15: Comparison of the approximations with the exact values of the asymmetric 

instances of Model 4 

  �,¤,¨   �,¨,¢   �,¨,£   �,¨,¤  ¸�� 

Inst. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

1 0,14 0,13 0,19 0,20 0,06 0,04 0,02 0,01 0,03 0,00 

2 0,08 0,05 0,11 0,08 0,03 0,01 0,01 0,00 0,01 0,00 

3 0,02 0,01 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,00 

4 0,13 0,15 0,16 0,17 0,11 0,14 0,08 0,10 0,44 0,39 

5 0,15 0,17 0,18 0,20 0,12 0,15 0,07 0,10 0,34 0,26 

6 0,18 0,23 0,13 0,17 0,08 0,11 0,09 0,12 0,19 0,12 

7 0,16 0,20 0,13 0,18 0,07 0,09 0,07 0,08 0,13 0,05 

8 0,11 0,12 0,12 0,12 0,09 0,11 0,07 0,09 0,57 0,53 

9 0,12 0,14 0,13 0,15 0,10 0,12 0,11 0,10 0,48 0,43 

10 0,18 0,21 0,11 0,13 0,08 0,10 0,11 0,14 0,34 0,29 

11 0,17 0,21 0,22 0,27 0,12 0,15 0,06 0,08 0,17 0,10 

12 0,16 0,21 0,16 0,22 0,08 0,09 0,05 0,05 0,09 0,03 

13 0,08 0,07 0,13 0,13 0,03 0,01 0,01 0,00 0,01 0,00 

14 0,04 0,03 0,06 0,05 0,01 0,00 0,00 0,00 0,00 0,00 

15 0,12 0,10 0,03 0,03 0,03 0,02 0,02 0,00 0,02 0,00 

16 0,12 0,10 0,13 0,11 0,03 0,02 0,01 0,00 0,01 0,00 

17 0,02 0,01 0,02 0,01 0,00 0,00 0,00 0,00 0,00 0,00 

18 0,06 0,03 0,07 0,04 0,01 0,00 0,00 0,00 0,00 0,00 

19 0,16 0,18 0,19 0,22 0,11 0,14 0,07 0,09 0,33 0,24 

20 0,19 0,24 0,22 0,28 0,11 0,13 0,05 0,06 0,12 0,06 

21 0,18 0,22 0,21 0,27 0,09 0,09 0,04 0,03 0,08 0,02 

22 0,11 0,12 0,14 0,15 0,10 0,12 0,07 0,09 0,53 0,47 

23 0,17 0,18 0,19 0,21 0,12 0,15 0,08 0,10 0,33 0,29 

24 0,18 0,20 0,21 0,24 0,12 0,15 0,07 0,10 0,26 0,21 

 

According to these results, it can be said that the new approximate evaluation method 

estimates the 
�� values quite accurately. The average absolute percentage deviation for 
�� is 6,2%.  Like in the symmetric cases, the new approximate evaluation method 

overestimates the ��� and underestimates the ��� in every instance. The reason is the 

same with that in the symmetric cases. ��� and  ��� calculated by (70) and (72) with the 

exact  
�� and 
�� are compared with the exact values and it is seen that (70) 

overestimates ���  and (72) underestimates  ��� in every asymmetric instance.  
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The computation time of the new approximate evaluation method is quite short. Average 

computation time of one instance for the new approximate evaluation method is smaller 

than 7 milliseconds in a Intel Dual Core 3GHz computer. 

3.4.2.1      Cost and Service Level Validation 

Following parameters are used in the cost and service level validation of Model 4: 

   �$%& = 0,3 2m��,   �,)�*+ = 0,3 2m��,   �&'( = 2,1 2m��, ;� = € 5.000 

 ℎ = 20%,  1�$%& = € 125,    1�,)�*+ = € 125,   1�&'( = € 375          ∀ �, - ∈ ���� , - ≠ �       
Table 3.16 shows the total yearly cost and aggregate waiting time values for all OB-s for 

the simulation and the new approximate evaluation method for the symmetric instances.  

Table 3.16: Total yearly cost and aggregate waiting time values for all OB-s for the 

symmetric instances of Model 4 

Total yearly cost values (€) ¥�� (days)  

Instance Exact Appr. Exact Appr. 

1 5.126 5.118 0,02 0,02 

2 6.067 6.065 0,01 0,01 

3 9.550 8.672 0,31 0,19 

4 8.769 8.116 0,17 0,09 

5 9.733 9.622 0,03 0,03 

6 10..371 10.285 0,02 0,01 

7 25.214 23.841 0,83 0,72 

8 22.026 19.771 0,63 0,47 

9 14.983 13.896 0,15 0,09 

10 15.195 14.944 0,03 0,02 

11 19.317 16.697 0,46 0,28 

12 15.162 14.023 0,15 0,08 

13 66.049 64.598 1,36 1,31 

14 61.663 58.933 1,22 1,13 

15 45.517 44.004 0,70 0,63 

16 57.277 53.575 1,08 0,95 

17 41.590 39.422 0,59 0,49 

18 44..785 39.580 0,69 0,51 

19 31.343 27.727 0,30 0,17 

20 24.601 22.603 0,09 0,05 
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Average absolute percentage deviation from the exact results in the total yearly cost 

value for the new approximate evaluation method is 5,87%. The new approximate 

evaluation method underestimates the total cost and waiting time values, because it 

overestimates of ��� and underestimates of  ��� and it is more costly and time consuming 

to make direct shipment from CBT. 

Table 3.17 shows the total yearly cost and aggregate waiting time values for each OB for 

the simulation and the new approximate evaluation method for the asymmetric 

instances.  

Table 3.17: Total yearly cost and aggregate waiting time values for each OB for the 

asymmetric instances of Model 4  

Total Yearly Cost (€) ¥�¢ (days) ¥�£ (days) ¥�¤ (days) ¥�¨ (days) 

Inst. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

1 6.428 6.213 0,11 0,06 0,11 0,06 0,12 0,08 0,14 0,10 

2 6.777 6.697 0,05 0,02 0,05 0,03 0,06 0,05 0,07 0,06 

3 8.206 8.180 0,02 0,02 0,03 0,03 0,01 0,00 0,01 0,01 

4 35.016 33.582 1,01 0,93 1,01 0,93 1,02 0,93 1,02 0,94 

5 31.300 28.813 0,82 0,68 0,82 0,68 0,83 0,68 0,84 0,69 

6 24.600 22.603 0,52 0,41 0,53 0,42 0,48 0,36 0,49 0,37 

7 21.825 19.392 0,39 0,26 0,40 0,27 0,35 0,21 0,36 0,22 

8 55.510 54.078 1,27 1,21 1,27 1,21 1,27 1,21 1,28 1,22 

9 51.138 48.605 1,10 1,01 1,10 1,01 1,11 1,01 1,12 1,01 

10 42.981 41.164 0,84 0,76 0,85 0,76 0,81 0,72 0,81 0,72 

11 32.964 30.525 0,45 0,34 0,45 0,33 0,46 0,34 0,47 0,36 

12 27.309 24.910 0,28 0,19 0,29 0,19 0,26 0,16 0,27 0,17 

13 21.721 20.692 0,04 0,01 0,04 0,02 0,05 0,03 0,07 0,05 

14 21.791 21.155 0,02 0,01 0,03 0,02 0,02 0,01 0,03 0,02 

15 22.242 20.459 0,16 0,13 0,12 0,07 0,09 0,04 0,07 0,02 

16 5.705 5.606 0,06 0,04 0,07 0,05 0,07 0,05 0,08 0,06 

17 9.064 9.048 0,00 0,00 0,00 0,00 0,01 0,00 0,01 0,01 

18 6.343 6.311 0,02 0,02 0,03 0,02 0,03 0,03 0,04 0,03 

19 30.376 27.780 0,78 0,64 0,79 0,64 0,80 0,65 0,80 0,66 

20 21.933 20.429 0,35 0,26 0,35 0,26 0,36 0,26 0,37 0,27 

21 19.684 17.927 0,24 0,15 0,25 0,15 0,25 0,16 0,26 0,17 

22 60.654 57.715 1,19 1,09 1,19 1,09 1,20 1,10 1,20 1,10 

23 48.259 47.344 0,79 0,74 0,79 0,74 0,80 0,74 0,80 0,75 

24 44.052 42.418 0,66 0,58 0,67 0,59 0,67 0,59 0,68 0,60 
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Average absolute percentage deviation in the total yearly cost value for the new 

approximate evaluation method with the exact results is 4,87%. Again, it is seen that the 

new approximate evaluation method underestimates the total cost and waiting time 

values because the new method overestimates ��� and underestimates  ���.  

The greedy algorithm used in Model 4 is also used in Model 3.  
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CHAPTER 4 

 

RESULTS AND SENSITIVITY ANALYSIS 

 

In this chapter, the results of the experiments are given. Note that the real service levels 

and total cost values observed in Nedtrain are not compared with the results of the 

models. This has two main reasons: Firstly, according to a recent study; employees did 

not implement the decisions of the Xelus in 80% of the time. Thus, the real cost and 

service level values are not the results of Xelus. Secondly, even if the control policy 

proposed by Xelus is simulated, there is not enough information about the parameters 

and the policies used by Xelus. Thus the designed models are compared with each other. 

In this chapter, firstly, preparation of the test beds is explained. Then, the main results of 

each model are given and analyzed. Afterwards a short summary of the results and 

sensitivity analysis is given. Lastly, additional experiments which analyze the 

aggregation of planned and unplanned demands is given.  

4.1 Preparation of the Test Beds 

Several test beds are formed to evaluate the models. Due to repairable classes and 

sensitivity analysis with respect to different parameters, the models were run 268 times 

in total.  

Initially, test beds are formed for the critical repairables which have only unplanned 

demand because approximately 71% of all critical repairables have only unplanned 

demand. For the critical repairables which have both planned and unplanned demand 

and form the 25% of the all critical repairables, different test beds are formed. Before the 

test beds are determined, repairables are classified with respect to two main criteria: 
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1. Price of the repairables: Four different price ranges are determined as seen in 

Table 4.1. 

Table 4.1: Determined price ranges for the repairables 

Price Range Name of the range 
(€ 0, € 100] A 

(€ 100, € 1.000] B 
(€ 1.000, € 10.000] C 

(€ 10.000, + ∞) D 
 

2. Number of OB-s that demand comes for the repairables: Among the critical 

repairables which have only unplanned demand, 72 % of them have demand 

which comes to only one OB, thus they are stocked at one OB only. For this type 

of critical repairables, only Model 1 and 3 are examined. However for the 

remaining 28% of them, which have demand coming to more than one OB, all of 

the models are examined. 

With respect to these two criteria, 7 different test beds are formed. The first three is 

solved using Model 1-2-3-4 and the last four is solved using Model 1-3. In addition to 

these test beds, additional 12 different test beds are formed from the critical repairables 

which have both planned and unplanned demand. Thus in total 19 different test beds are 

formed as seen in Table 4.2. 

The target waiting time value is determined as 2 hours for the test beds 1-2-3 and 4 

hours for the test beds 4-5-6-7 (see Appendix F for more detailed information). 
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Table 4.2: Test Beds 

 
Demand Type 

Test Bed 
Number 

Price 
Range 

Sample 
Size 

Models 
run 

O
nl

y 
U

np
la

nn
ed

 
D

em
an

d 

Demand comes 
to more than 

one OB 

1 A 30 1-2-3-4 
2 B 30 1-2-3-4 
3 C 30 1-2-3-4 

Demand comes 
to just one OB 

4 A 30 1-3 
5 B 30 1-3 
6 C 30 1-3 
7 D 10 1-3 

B
ot

h 
P

la
nn

ed
 a

nd
 U

np
la

nn
ed

 
de

m
an

d 

Unplanned 
Demand 

8 A 30 1-2-3-4 
9 B 30 1-2-3-4 

10 C 30 1-2-3-4 
11 D 8 1-2-3-4 

Planned 
Demand 

12 A 30 1-2-3-4 
13 B 30 1-2-3-4 
14 C 30 1-2-3-4 
15 D 8 1-2-3-4 

Aggregated 
Demand 

16 A 30 1-2-3-4 
17 B 30 1-2-3-4 
18 C 30 1-2-3-4 
19 D 8 1-2-3-4 

 

All of the test beds have sample size of 30, except test beds 7-11-15-19. The reason for 

the smaller sample size of these test beds is that they contain repairables which are in the 

price range ‘D’ (their price is higher than € 10.000), and total number of this type of 

items are less than 30. Then all of the repairables which are in this price level are chosen 

for these test beds. There is not any test bed in the price range D for the ‘demands 

coming to more than one OB since there is not any repairable which fits to the criteria of 

this test bed. 

4.2 Results 

In this part, the results of each model for the test beds 1 to 7 are analyzed. Note that in 

Model 3, the new approximate evaluation method is used instead of the method of 

Muckstadt and Thomas with the greedy algorithm, because it gives more accurate 

results. 
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4.2.1 Results of Test Beds 1-2-3 

These test beds contain critical repairables which have both only unplanned demand and 

demand coming to more than one OB. The results can be seen in Table 4.3. 

Table 4.3: Total costs of the models for test beds 1-2-3 (€ / year) 

Test Bed Price Range Model 1 Model 2 Model 3 Model 4 

1 A 1.320 2.494 2.056 1.963 

2 B 8.079 10.360 10.113 9.304 

3 C 46.377 46.141 41.150 38.359 
 

In price ranges A and B, Model 1 gives the lowest cost. Thus it is not profitable to 

implement lateral or direct shipments in these price ranges. This is because the average 

cost of one lateral transshipment between two OB-s is €140, the average cost of one 

direct shipment from RDC to an OB is € 125; and average cost of one direct shipment 

from CBT to an OB is € 375. However, keeping one additional repairable in stock in 

price range A is lower than € 20 and in price range B is between € 20 and € 200. Since 

the models do not prefer lateral or direct shipments, this means that the increase in the 

service level in case of lateral or direct shipments does not compensate the additional 

cost which they bring. 

In price range C, Model 4 gives the lowest cost. Total cost given by Model 4 is 17% 

lower than Model 1. In this price range, keeping one additional repairable in stock is 

between € 200 and € 2000. However, the average cost of one lateral transshipment 

between two OB-s is €140, cost of direct shipment from RDC to an OB is € 125 and the 

cost of one direct shipment from CBT to an OB is € 375 on the average. This result 

shows that making direct and lateral transshipments compensate the transportation cost 

which they bring in this price range.  

Hence, in the price ranges A and B, lateral or direct shipments are not useful; but in the 

price range C, implementing these supply options decreases the total cost. Another 

interesting fact is seen when the results of Model 2 and 3 are examined. In the price 
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range C, either lateral or direct shipments decrease the total cost but using them 

simultaneously decreases the total cost the most.  

In the validation of the models, it is seen that Model 3 and 4 underestimate the total 

yearly cost by 3,5% and 5,87% on the average respectively. In the price range C, where 

Model 3 and 4 are profitable than Model 1, it is seen that these models give 11% and 

17,3% lower total yearly cost than Model 1 respectively. Thus, the fact that these models 

underestimate the total cost is probably insignificant in the price range C. 

It is also seen in the validation process that Model 2, 3 and 4 underestimate the waiting 

time values. Table 4.4 shows the aggregate mean waiting time for all OB-s for each 

model in the test beds 1-2-3. 

Table 4.4: Aggregate mean waiting time (hrs) for all OB-s for each model in the test 

beds 1-2-3. 

Price Range Model 1 Model 2 Model 3 Model 4 Target 
A 1,95 1,01 0,02 0,02 2 
B 1,96 1,24 0,34 0,16 2 
C 1,86 1,64 1,77 1,14 2 

 

According to the Table 4.4, the aggregate mean waiting times of the OB-s in Model 2, 3, 

and 4 are much lower than the target waiting time value, 2 hours. Thus, the fact that 

these models underestimate the waiting time values may be insignificant. 

Below in Table 4.5, the sum of the base stock levels for all items in the RDC and OB-s 

at each model of test beds 1-2-3 can be seen: 

Table 4.5: Total base stock levels of the test beds 1-2-3 in RDC and OB-s 

Price Model 1 Model 2 Model 3 Model 4 

R. RDC OB-s Total RDC OB-s Total RDC OB-s Total RDC OB-s Total 

A 57 66 123 119 101 220 58 114 172 43 118 161 

B 51 72 123 76 67 143 48 74 122 27 82 109 

C 46 62 108 52 51 103 31 47 78 23 47 70 
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Model 4 keeps the lowest stock in the price range B and C. The reason is that 

implementing lateral and direct shipments at the same time uses the inventory more 

efficiently. However, Model 3 and 4 keep more stock then Model 1 in the price range A; 

Model 2 keeps more stock than Model 1 in the price range A and B. It may be expected 

that the total stock kept by Model 2, 3 and 4 should be lower than that kept by Model 1, 

because faster supply options, lateral or direct shipments, are used in these models. In 

Model 2, the reason of high stock levels is that the greedy algorithm used in this model 

decreases the high lateral transshipment costs by increasing the stock; because the higher 

the stock levels, the lower the lateral transshipment rates 

In Model 3 and 4, the reason of high stock levels in the price range A is the greedy 

algorithm. As it is mentioned before, after the greedy algorithm meets the target waiting 

time constraint, it checks whether adding new items to stock decreases the total cost of 

the system; if does, the algorithm increases the stock. In the price range A, Model 3 and 

4 increase the stock in order to decrease the high lateral or direct shipment costs after the 

target waiting time constraint is met. For instance, if the greedy algorithm stops when it 

meets the target waiting time constraint in price range A, then the total stock kept in 

RDC and OB-s become 47 and 37 respectively for Model 3, and 37 and 33 respectively 

for Model 4 which are lower than the stock levels kept in the RDC and OB-s by Model 

1, which is 57 and 66 respectively. However, in this case the total cost of the Model 3 

and 4 becomes € 14.063 and € 19.545 respectively, which is much higher than the total 

costs given if the greedy algorithm does not stop although the target waiting time 

constraint is met (total cost for Model 3 and 4 in this situation are € 2.056 and € 1.963 

respectively). 

An interesting result can be seen in Table 4.6, which shows the percentage of stocks kept 

in the OB-s and RDC for each of the models in the test beds 1-2-3.  
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Table 4.6: Percentage of stock kept in the network of Nedtrain in the test beds 1-2-3 

Price Model 1 Model 2 Model 3 Model 4 

R. RDC OB-s Total RDC OB-s Total RDC OB Total RDC OB-s Total 

A 46% 54% 100% 54% 46% 100% 34% 66% 100% 27% 73% 100% 

B 41% 59% 100% 53% 47% 100% 39% 61% 100% 25% 75% 100% 

C 43% 57% 100% 50% 50% 100% 40% 60% 100% 33% 67% 100% 

 

From Table 4.6, it is seen that when lateral transshipments are implemented, the 

percentage of the stocks kept in OB-s is the lowest. This is because the lateral 

transshipments pool the stock of all OB’s; they use total stock more efficiently.  

However; in Model 3, where direct shipments from RDC and CBT to OB-s 

implemented, percentage of the stock kept in RDC becomes lower than Model 1. This is 

because the direct shipments decrease the lead time from CBT to OB-s and RDC to OB-

s which decreases the necessity of the buffer stock kept in the RDC. Another interesting 

result is seen in Model 4 where lateral and direct shipments are implemented at the same 

time. In this case; although percentage of the stock kept in RDC is expected between 

corresponding values of Model 2 and Model 3, it is the lowest in Model 4. 

One of the assumptions done for Model 3 and 4 is that CBT can always make direct 

shipment to OB-s, independent of the demand rate which is supplied by the direct 

shipment from CBT. However, this assumption may not be realistic because the higher 

the fraction of the demands supplied by direct shipment from CBT, the more difficult for 

CBT to make emergent repairs and send them to OB-s. Below, in Table 4.7; percentage 

of demand supplied by different options can be seen for Model 3 and 4 in the test beds 

1-2-3. Percentage of demands supplied by the stock of OB directly is denoted by β, 

supplied by direct shipment from RDC  is denoted by θ, supplied by lateral 

transshipment from other OB-s  is denoted by α, and supplied by direct shipment from 

CBT  is denoted by γ. 
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Table 4.7: Percentage of demands supplied by different options in Model 3 and 4 in the 

test beds 1-2-3 

Price 
Range 

Model 3 Model 4 
β  θ  γ Total  β θ α γ Total 

A 99,69% 0,27% 0,04% 100% 99,53% 0,30% 0,16% 0,00% 100% 

B 94,61% 4,66% 0,73% 100% 94,31% 2,90% 2,67% 0,12% 100% 

C 85,26% 8,98% 5,76% 100% 81,58% 9,59% 6,77% 2,07% 100% 
 

Percentage of demands supplied by direct shipment from CBT has its maximum value at 

price range C, which is 5,76% and 2,07% respectively for Model 3 and 4. The reason is 

that direct shipment is preferred to decrease stock levels in this price range, but in the 

price range A and B, Model 3 and 4 keeps high stock to decrease the lateral or direct 

shipments, since they are costly compared to inventory costs. Another interesting fact is 

that Model 4 makes direct shipments from CBT to OB-s less than Model 3 in each price 

range. The reason of this situation is lateral transshipments, which increases the 

efficiency of using the total stock in RDC and OB-s. 

4.2.2 Results of Test Beds 4-5-6-7 

These test beds contain critical repairables which have both only unplanned demand and 

demand coming to only one OB. For these test beds, the results can be seen in Table 4.8. 

Table 4.8: Total costs of the models for test beds 4-5-6-7 (€ / year) 

Test Bed Price Range Model 1 Model 3 

4 A 531 782 

5 B 3.263 3.806 

6 C 25.561 19.741 

7 D 52.304 49.915 
 

Model 1 gives lower cost than Model 3 in the price ranges A and B. Thus it is not 

profitable to implement direct shipments in these price ranges. However, in the price 

ranges C and D; Model 3 gives lower cost than Model 1. In the price range C, total cost 

given by Model 3 is 22.8 % lower than Model 1 and in the price range D, this difference 

is 4.6 %. This means that increase in the service level in case of direct shipments, 
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compensates the additional cost which they bring in the price range C and D. So it is 

rational to implement direct shipments in these price ranges. 

In the validation of the models, it is seen that Model 3 underestimates the total yearly 

cost 3,5% on the average. In the price range C and D, where implementing Model 3 is 

profitable than Model 1, it is seen that this model gives 4,5% and 22,8% lower total 

yearly cost than Model 1 respectively. Thus, the fact that Model 3 underestimates the 

total cost is probably insignificant in the price range C and D. 

It is also seen during validation that Model 3 underestimates the waiting time. Table 4.9 

shows the aggregate mean waiting time for all OB-s for each model in the test beds 4-5-

6-7. 

Table 4.9: Aggregate mean waiting time for all OB-s for each model in the test beds 4-5-

6-7 (hrs). 

Price Range Model 1 Model 3 Target 
A 3,45 0,10 4 
B 3,23 0,42 4 
C 2,90 2,82 4 
D 1,18 1,09 4 

 
Aggregate mean waiting time values of the OB-s in Model 3 is much lower than the 

target waiting time, which is 4 hours. Thus, the fact that this model underestimates the 

waiting time values may be insignificant. 

In Table 4.10, summation of the base stock levels for all items in the RDC and OB-s in 

the test beds 4-5-6-7 can be seen: 

Table 4.10: Total base stock levels of the test beds 4-5-6-7 in RDC and OB-s 

Model 1 Model 3 

Price Range RDC OB-s Total RDC OB-s Total 

A 12 32 44 5 50 55 

B 14 36 50 10 39 49 

C 18 32 50 11 25 36 

D 3 10 13 3 9 12 
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Model 3 keeps more stock than Model 1 in the price range A; because it decreases the 

high direct shipment costs by increasing the stock. However in the price range C, Model 

3 keeps much lower stock than Model 1, because direct shipments decrease the necessity 

to inventory. 

Table 4.11 shows the percentage of stocks kept in the OB-s and RDC for each of the 

models in the test beds 4-5-6-7. 

Table 4.11: Percentage of stock kept in the network of Nedtrain in the test beds 4-5-6-7 

Price 
Range 

Model 1 Model 3 

RDC (%) OB-s (%) Total (%) RDC (%) OB-s (%) Total (%) 

A 27% 73% 100% 9% 91% 100% 

B 28% 72% 100% 20% 80% 100% 

C 36% 64% 100% 31% 69% 100% 

D 27% 73% 100% 9% 91% 100% 
 

Again; when direct shipments from RDC and CBT to OB-s implemented, percentage of 

the stock kept in RDC becomes the lowest in general; because direct shipments decrease 

the lead time from CBT and RDC to OB-s, which decreases the necessity of the buffer 

stock, kept in the RDC.   

In Table 4.12; the percentage of demands supplied by the stock of OB directly (β), 

supplied by direct shipment from RDC (θ), and supplied by direct shipment from CBT 

(γ) in Model 3 in the test beds 4-5-6-7 can be seen: 

Table 4.12: Percentage of demands supplied by OB-s, RDC, and CBT in Model 3 in the 

test beds 4-5-6-7 

Price Range β θ γ Total  

A 99,54% 0,07% 0,39% 100% 

B 97,45% 0,99% 1,56% 100% 

C 85,99% 3,11% 10,90% 100% 

D 93,97% 1,79% 4,23% 100% 
 

Percentage of demands supplied by direct shipment from CBT is higher at price ranges 

C and D. The reason is that direct shipment is preferred to decrease stock levels in these 
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price ranges; but in the price range A and B, Model 3 keeps high stock to decrease the 

direct shipments, since they are costly compared to inventory costs. 

4.3      Summary of the Results and the Sensitivity Analysis 

The models which give the lowest costs at each price range can be seen in Table 4.13: 

Table 4.13: The best models of each test bed in the normal case 

Demands 
come to: 

Test Bed 
Number 

Price 
Range 

Models 
run 

The Best 
Model 

 
More than one 
OB 

1 A 1-2-3-4 Model 1 
2 B 1-2-3-4 Model 1 
3 C 1-2-3-4 Model 4 

 
Only one OB 

4 A 1-3 Model 1 
5 B 1-3 Model 1 
6 C 1-3 Model 3 
7 D 1-3 Model 3 

 

From the results of the test beds 1-2-3; it is seen that Model 1 is the best option for the 

repairables within the price range A and B, and Model 4 is the best option for the 

repairables within the price range C. This result shows that implementing direct and 

lateral transshipments becomes rational when the inventory holding costs of the 

repairables are high. From the results of the test beds 4-5-6-7; it is seen that Model 1 is 

the best option for the repairables within the price range A and B, and Model 3 is the 

best option for the repairables within the price range C and D. Again, it is seen that 

implementing direct shipments in the high price ranges decreases the total cost.   

In the sensitivity analysis, six different parameters are analyzed. The following points 

are observed: 

1. Lateral and direct shipment costs: When these costs decrease (increase), 

Model 2, 3 and 4 become more attractive (unattractive). However, in the price 

range A, Model 1 gives the best results at every cost setting. 

 

2. Target waiting time values: When the target waiting time decreases, 

performance of Model 2, 3 and 4 increases in general. Benefit of increasing the 
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stocks decreases when the target waiting time values decrease; lateral or direct 

shipments become more preferable in this situation. 

 

3. Replenishment lead time of RDC by CBT: When the lead time between CBT 

and RDC decreases, total cost of the models decrease. However, the shorter the 

lead time, the lower the improvement in the performance of Model 3 and 4 with 

respect to the other models, because the relative importance of the direct 

shipments decreases in this situation.  

 

4. Transportation time between RDC and OB-s: When the transportation time 

between RDC and OB-s decreases, decrease in the total cost of Model 2, 3 and 4 

is lower than the one of Model 1. The reason of this situation is that the relative 

importance of the lateral and direct shipments decreases in this situation. 

 

5. Uplift factor: The higher the uplift factor8, the higher the total cost of Model 3 

and 4; and the higher the direct shipment rates, the higher the effect of uplift 

factor. However, in general Model 3 and 4 are not affected by the uplift factor 

value significantly in our experiments. 

 

6. Demand rates: Model 2, 3 and 4 are more stable to the change in the demand 

rates in terms of keeping the waiting time value below target, because these 

models can use lateral or direct shipments to fulfill the extra demand, but 

naturally this process will increase the total cost. 

Implementing lateral or direct shipments has some advantages and disadvantages. The 

first advantage of these supply options occurs when the target waiting time decreases. 

The lower the target waiting time value, the better the performance of Model 2, 3 and 4. 

Since Nedtrain gives great importance to increase its service level, a better performance 

in high service levels is important. The second advantage occurs when the demand 

changes. Model 2, 3 and 4 are more stable than Model 1when the demand changes. 

                                                           
8 Uplift factor is a parameter used to calculate the costs of direct shipments from CBT to OB-s. 
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When the real demand is higher than the estimated demand9, the increase in the expected 

waiting time value in Model 2, 3 and 4 is lower than the one in Model 1. Since Nedtrain 

always gives great importance to achieve high service levels, stability with respect to 

service level is important. Lastly, Model 3 and 4 are not significantly affected by the 

changes in uplift factor. This result is desired because generally it is difficult to estimate 

the emergent repair costs done in CBT. Thus, even if the cost parameters are not 

estimated well, the results of Model 3 and 4 are still robust. 

Despite the above advantages, implementing lateral or direct shipments has also some 

disadvantages. The first one occurs when the transportation time decreases. The shorter 

the transportation time, the lower the improvement in the performance of Model 2, 3 and 

4. Another disadvantage occurs in Model 3 and 4 when the lead time between CBT and 

RDC decreases.  The shorter the lead time, the lower the improvement in the 

performance of Model 3 and 4. More detailed information about the sensitivity analysis 

can be found in Appendix F. 

4.4       Planned & Unplanned Demand Aggregation 

Nedtrain distinguishes between planned and unplanned demand. 25% of all critical 

repairables have both planned and unplanned demand. In the initial studies, it is seen 

that the aggregation of these two demand types decreases the coefficient of variation 

which increases predictability. Thus, the effect of aggregation of the planned and 

unplanned demand is analyzed in this part. For this analysis, test beds 8-19 are formed. 

Test beds 8-11 contain unplanned demands, test beds 12-15 contain planned demands, 

and test beds 16-19 contain aggregated planned and unplanned demands for each price 

range. 

Table 4.14 - 4.17 show the total costs of unplanned demand and planned demand, sum 

of the costs of unplanned and planned demand, total cost of the aggregation of these 

demand types and percentage decrease in the total cost when the two demand types are 

aggregated. The ‘Total’ rows in the tables show the sum of the costs of each price range. 

                                                           
9
 Estimated demand is the one used as input to the models 
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Table 4.14: Total yearly costs of unplanned, planned and aggregation of these demands 

for Model 1 (€ / year) 

Price 
Range 

Unplanned Planned Unplanned + 
Planned 

Aggregated % 
Decrease 

A 1.200 837 2.036 1.563 23,3% 

B 7.906 7.584 15.491 11.698 24,5% 

C 46.710 24.819 71.529 53.038 25,9% 

D 52.996 47.142 100.138 66.442 33,6% 

Total 108.812 80.382 189.194 132.740 29,8% 

 

Table 4.15: Total yearly costs of unplanned, planned and aggregation of these demands 

for Model 2 (€ / year) 

Price 
Range Unplanned Planned 

Unplanned + 
Planned Aggregated 

% 
Decrease 

A 2.344 1.527 3.871 3.234 16,5% 

B 10.472 9.518 19.990 15.845 20,7% 

C 49.860 24.294 74.154 55.530 25,1% 

D 49.885 47.212 97.098 59.693 38,5% 

Total 112.562 82.552 195.113 134.301 31,2% 
 

Table 4.16: Total yearly costs of unplanned, planned and aggregation of these demands 

for Model 3 (€ / year) 

Price 
Range Unplanned Planned 

Unplanned + 
Planned Aggregated 

% 
Decrease 

A 1.998 1.637 3.635 2.946 18.9% 

B 10.657 10.275 20.931 17.015 18.7% 

C 44.925 21.729 66.654 54.719 17.9% 

D 38.599 29.920 68.519 48.456 29.3% 

Total 96.177 63.561 159.739 123.136 22.9% 
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Table 4.17: Total yearly costs of unplanned, planned and aggregation of these demands 

for Model 4 (€ / year) 

Price 
Range Unplanned Planned 

Unplanned + 
Planned Aggregated 

% 
Decrease 

A 1.912 1.594 3.505 2.833 19,2% 

B 10.044 10.081 20.125 16.373 18,6% 

C 46.212 21.235 67.446 52.766 21,8% 

D 38.639 29.920 68.559 48.181 29,7% 

Total 96.806 62.829 159.635 120.152 24,7% 
 

In each of the Models total costs decreases when the planned and unplanned demand 

aggregated, because aggregation increases the predictability which decreases the total 

cost. The percentage decrease in the total costs for the models, when the planned and 

unplanned demands are aggregated, are 29,8%, 31,2%, 22,9%, and 24,7% respectively. 

Moreover, in the price range A and B, Model 1 gives the lowest costs; in the price range 

C and D, Model 3 and 4 gives the lowest costs. These results support the former results 

given by the test beds 1 to 7 in the previous analysis.  

 

 

 

 

 

 

 

 

 



108 

 

 

CHAPTER 5 

 

IMPLEMENTATION ASPECTS 

 

In this chapter, information about the implementation of the designed models is given. 

Since Nedtrain uses Xelus Software in the control of repairables, integration should be 

done between Xelus and the designed models.  

In the design of the models, two significant assumptions are done. The first one assumes 

an exponential and independent lead time for the repair process in CBT. However, CBT 

makes its repairs with respect to a min-max policy currently. Thus in case of 

implementation of the designed Models, CBT should be aware of this assumption. 

Secondly, it is assumed that one-for-one replenishment policy is used in the OB-s and 

RDC. However; Nedtrain uses batch sizes for the repairables. Thus Nedtrain should be 

aware of this situation.  

In the implementation phase, a prototype control mechanism tool is designed for each 

model in Excel Software. These tools use the demand rates, transportation and lead-time 

parameters, and cost parameters as inputs; and give the total cost values, service levels, 

and base stock levels as the outputs with respect to a target service level. The prototype 

tools are written in the visual basic language in Excel Software; however, any other 

programming language can also be used. 

In order to calculate the demand rates, moving average forecasting method is used 

considering the demand of the last three years. However, Nedtrain can use any other 

appropriate forecasting method in the calculation of the demand rates. Since demand 

rates are input of the control mechanism tools, Nedtrain should update this parameter at 

predetermined time intervals (For instance; every one year, two year etc.). The control 
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mechanism tools should be run at the beginning of each period and the base stock levels 

in the OB-s and RDC should be arranged with respect to the results given by the models. 

If the number of SKU-s that Nedtrain have is higher than the results that the control 

mechanism tool give, than the excess SKU-s can be distributed to the warehouses 

considering demand rates or any other factors which are important to Nedtrain. 

However, if the number of SKU-s that Nedtrain has, is lower than the results that the 

control mechanism tool give, than the difference should be purchased. 

The designed control mechanism tools are computationally efficient. They spend 

approximately four seconds for the computation of the described test beds. This means 

that the designed algorithms can be used for data which have larger sample size easily. 

Moreover, the designed tools can be redesigned even faster by the software experts. 

5.1 Stakeholders 

In this part the direct and indirect stakeholders are described when the designed models 

are implemented. Direct stakeholders are LLC, CBT and purchasing department; and the 

indirect stakeholders are OB-s. 

• LLC: This department is responsible for the control of repairables and Xelus. 

They will be dealing with the integration and implementation of the designed 

models in Nedtrain. Thus they are the main stakeholder in this case. 

• CBT: This department is responsible for the repair process of the repairables. If 

the designed models are implemented, the repair policy of CBT will change, thus 

they will be affected directly, which makes them a direct stakeholder. 

• Purchasing Department: Implementing the designed models will affect the 

purchasing decisions, which makes this department as a direct stakeholder. 

• OB-s: Implementing designed models will affect the stock levels and the stock 

replenishment policy in the OB-s. Since these stock points do not have any 

control in the determination of base stock levels they can be considered as 

indirect stakeholders. 
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CHAPTER 6 

 

CONCLUSION AND RECOMMENDATIONS 

 

This chapter contains final conclusions about the master thesis project and the 

recommendations for future research. 

6.1 Conclusions 

In this master thesis project, main focus is given to the control of repairables in Nedtrain. 

Initially, demand structure of the repairables is examined and it is found that the 

demands are generally low and they fit Poisson distribution the best. Then, the price 

values of the repairables are examined and it is found that the most of the repairables are 

more expensive than € 100. With respect to these findings, it is decided to use stochastic 

inventory models which use Poisson distributed demand. Afterwards, Model 1, which 

uses METRIC, a well known multi echelon technique for repairable item control is 

designed, because it perfectly fits with the demand distribution of the repairables and 

echelon structure of Nedtrain. Then three additional models are suggested to see the 

effects of lateral and direct shipments. Model 2 considers the lateral transshipments 

between the OB-s, Model 3 considers the direct shipments from RDC to OB-s and CBT 

to OB-s, and Model 4 considers both the lateral and direct shipments. These are 

optimization models which minimize the total inventory and transportation costs with 

respect to a target waiting time constraint. 

In Model 2, the method developed by Kranenburg and van Houtum [17] is integrated to 

the network of Nedtrain; in Model 3 and 4, new solution methods are developed. 

Simulation is used to validate the solution procedures of Model 2, 3 and 4. After the 

simulation, it is seen that solution procedures designed for Model 2, 3 and 4 work 
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efficiently. Then three different greedy algorithms are developed for these solution 

procedures to determine the optimal base stock levels. Afterwards, the models are solved 

with different test beds and sensitivity analysis is done with respect to several 

parameters. The results show that implementing lateral or direct shipments can decrease 

the total cost values for the expensive repairables. Meanwhile, the designed models are 

run for the planned and unplanned demand, and aggregation of them separately; and it is 

found that aggregating the planned and unplanned demand decreases the total cost. 

Lastly, some suggestions are given for the implementation aspects of the results. 

During the analysis, the main goal was to find answers to the research questions that can 

be acceptable and implementable by Nedtrain. These questions and their brief answers 

are given below. 

How can the repairables be classified? 

In the initial analysis; firstly, demand structure of the repairables are examined. It is 

found that the demand of the repairables has similar characteristics with respect to 

demand distribution, thus a classification with respect to demand is not necessary. 

Secondly, the prices of the repairables are examined and it is seen that repairables have a 

very wide price range. Then four different classes are determined so that that the 

different control mechanisms may be good for different price ranges; and this 

expectation is proved to be true when the models were run. According to the results; for 

the cheap repairables implementing only regular shipments is the best; whereas for the 

expensive repairables, implementing lateral and direct shipments simultaneously is the 

best. 

What is the optimal control policy for each class of the repairables? 

Several test beds are formed and run by each of the designed models. According to the 

results, Model 1 is the best option for the repairables which are cheaper than € 1.000; 

Model 4 is the best option for the repairables which are more expensive than € 1.000 and 

have demand coming to more than one OB; and Model 3 is the best option for the 

repairables which are more expensive than € 1.000 and have demand coming to only one 

OB.  This means that direct or lateral transshipments are beneficial supply option for the 



112 

 

expensive repairables. Lastly, sensitivity analysis proved that these results can change 

when the parameter values change. Thus, any change in the value of a parameter can 

change the optimal control policy, which should be taken into account. 

How can the results of these models be implemented? 

For each model, a prototype control mechanism tool is designed with the visual basic 

language in Excel Software. However; since Nedtrain uses Xelus Software in the control 

of repairables, integration should be done between Xelus and the control mechanism 

tools. Moreover, the repair policy of CBT should be reconsidered such that it will be 

suitable for the exponential repair lead-time assumption, and one for one replenishment 

policy should be implemented in the network of Nedtrain. 

In summary, all of the research questions are answered in this master thesis. The 

objective is to propose Nedtrain efficient control mechanisms for repairables, and give 

some clues about possible future research areas. 

6.2 Recommendations for Future Research 

In this part, suggestions for the future research projects for Nedtrain are given.  

As mentioned before, Nedtrain uses Xelus in the control of repairables as well as main 

parts and consumables. However; Xelus is like black box, because there is not much 

information about how it works. Thus examining the working structure of Xelus can be a 

possible future research topic for Nedtrain. By this research, a reliable comparison can 

be done with the proposed models and Xelus. 

CBT uses a min-max policy to supply RDC. A possible future research topic can be 

analyzing the min-max policy that CBT uses. Remember that in this master thesis 

project, an exponential lead time is assumed for the repair process in CBT.  The reason 

of this assumption is to make the network system of Nedtrain simpler so that one control 

mechanism can be used for repairables in the whole network of Nedtrain (OB-s, RDC 

and CBT). However; currently, there are two control mechanisms used for the 

repairables. These are the control mechanism for the OB-s and RDC, and the control 

mechanism that CBT uses. In my opinion in the situation of Nedtrain, optimizing two 
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different control mechanisms at the same time is more difficult than optimizing only one 

control mechanism; because even if each of the control mechanisms optimized 

separately; since they are dependent, the overall solution may not be the optimal one. 

Moreover; as far as I know, there is not any research in the literature which considers a 

min-max system for the supply of a two echelon network. So, there is not any scientific 

proof for the min-max policy. Thus, more research should be done to analyze this policy. 

The necessity of RDC can be reanalyzed. Since CBT and RDC are in the same city, it 

may not be logical to keep a central stock in the same location of CBT. Supplying the 

OB-s directly by the CBT may be economically more beneficial. Moreover, this process 

will make the echelon structure of Nedtrain simpler, which will make the system more 

controllable. There are also control mechanism tools in the literature which can deal 

with this kind of systems efficiently (For example, see Kranenburg and van Houtum 

[17]). 

The designed models can be implemented for the main parts.  Since main parts are the 

most expensive parts in the network of Nedtrain and they are repairable either, 

implementing lateral or direct shipments can be advantageous for them. 

Another possible research area can be analyzing the Grave’s Approximate evaluation 

method (Graves [11]) over repairables. In the literature, it is shown that this method 

gives better results than METRIC, thus this method can be beneficial to Nedtrain in the 

control of repairables.  

In this study, direct shipments from CBT and RDC to OB-s are implemented at the same 

time. A possible research area is to analyze the direct shipments from CBT to OB-s and 

RDC to OB-s separately. 

In the lateral transshipment case, full pooling, in which every local warehouse shares its 

stock with the others, is considered. In the literature, there is also a partial pooling, in 

which only some of the local warehouses share their stock for lateral transshipment. 

Naturally, the coordination efforts between the local warehouses in partial pooling will 

be less than the full pooling. Moreover, Kranenburg and van Houtum [17] proved that 

partial pooling is sufficient to obtain the full pooling benefits. Thus partial pooling can 
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be considered in Model 2 and 4 in the future research. Note that there is not any study in 

the literature which considers partial pooling in a two echelon system. 

In the lateral transshipment case, a local warehouse always sends repairables by lateral 

transshipments independent of its stock level. A possible research area is to analyze the 

situation where lateral transshipment is allowed until a pre-determined inventory level. 

In this case; if the inventory level is below a certain point, then the local warehouse will 

not share its stock for lateral transshipments. There is not any study in the literature 

which considers this case in a multi-item, multi-echelon system. 

In Model 4, it is assumed that when a local warehouse is out of stock, if first tries to 

make a direct shipment from RDC, then it tries to make a lateral transshipment from the 

other local warehouses. Another possible research area can be analyzing the situation 

when a local warehouse first tries to make a lateral transshipment, then a direct 

shipment. Alfredsson and Verrijdt [2] considers this situation. 
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APPENDIX A 

 

TRANSPORTATION TIMES AND COSTS 

 

Replenishment time of each OB by RDC,  !"#, is 2 days; and repair lead time of a 

repairable in CBT, /�, is 20 days.  

The locations of the RDC, CBT and the OB-s are in Table 7.1: 

Table 7.1: Locations of the RDC, CBT and the OB-s 

 Location  Location 

CBT Tilburgh OB4 Rotterdam 

RDC Tilburgh OB5 Amsterdam 

OB1 Zwolle OB6 Maastricht 

OB2 Onnen OB7 Watergraafsmeer 

OB3 Leidschendam   

 

Distance matrix between these locations can be seen in Table 7.2: 

Table 7.2: Distances between OB-s and RDC (km) 

km OB1 OB2 OB3 OB4 OB5 OB6 OB7 

RDC 154 251 106 86 116 126 114 

OB1 - 99 151 148 119 236 107 

OB2 - - 235 244 194 332 182 

OB3 - - - 23 53 231 56 

OB4 - - - - 74 209 77 

OB5 - - - - - 228 5,5 

OB6 - - - - - - 210 
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Since CBT is in the same city with RDC, distances between CBT and OB-s are equal to 

the ones between RDC and OB-s.  

Total transportation time, which is denoted by  �) where ,, - ∈ �, between RDC and OB-

s are calculated by the formula: 

  �) = 2�)90 + 2      ∀ ,, - ∈ � , � ∈ � 

• Average travelling speed of the vehicle is assumed as 90 ,� ℎ¿Àp´ , which is the 

lowest travelling speed in a highway in the Netherlands. 

• 2�) denotes the distance between ∀ ,, - ∈ � 

• The additional 2 hours time is the summation of order processing time (1hour), 

and loading/unloading time for the repairable (1hour) 

Total lateral or direct shipment time between RDC and OB-s are in Table 7.3: 

Table 7.3: Lateral or direct shipment time between RDC and OB-s (hours) 

hour OB1 OB2 OB3 OB4 OB5 OB6 OB7 

RDC 3,71 4,79 3,18 2,96 3,29 3,40 3,27 
OB1 - 3,10 3,68 3,64 3,32 4,62 3,19 
OB2 - 4,61 4,71 4,16 5,69 4,02 
OB3 - 2,26 2,59 4,57 2,62 
OB4 - 2,82 4,32 2,86 
OB5 - 4,53 2,06 
OB6 - 4,33 

 

Note that, since CBT is in the same city with RDC, direct shipment time between CBT 

and OB-s should be equal to the ones between RDC and OB-s. However, since there is 

the delivery of broken repairable from the OB to CBT and the emergent repair time of 

the broken repairable in CBT, total direct shipment of a repairable from CBT to OB � is: 

 �&'( = 2. Á  �) 12´  ℎ¿Àp�Â + 1.5 2m��    ∀ ,, - ∈ � , � ∈ � 
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Emergent repair time of the broken repairable in CBT is assumed 1.5 days and one day 

is assumed 12 hours. Direct shipment time between CBT and OB-s are in Table 7.4: 

Table 7.4: Direct shipment time between CBT and OB-s (days) 

 OB1 OB2 OB3 OB4 OB5 OB6 OB7 

days 2,12 2,30 2,03 1,99 2,05 2,07 2,04 
 

Transportation cost per repairable for a lateral transshipment between the OB-s and a 

direct shipment between the RDC and the OB-s is denoted by 1�) where ,, - ∈ � and 

calculated by the formula: 

1�) = [478*#" + 497"�\. 2�) + 2�)IÃnpmon G;nn2 . 45!�6"!      ∀ ,, - ∈ � , � ∈ � 

• 478*#" = 0.30 € ,�´  

• 497"� = 0.06 € ,�´  

• 45!�6"! = 50 € ℎp´   

• Average speed of the truck = 90 ,� ℎ¿Àp´  

Cost of lateral or direct shipments between RDC and OB-s can be seen in Table 7.5: 

Table 7.5: Cost of lateral or direct shipments between RDC and OB-s (€) 

km OB1 OB2 OB3 OB4 OB5 OB6 OB7 

RDC 141,00 229,80 97,05 78,74 106,20 115,36 104,37 
OB1 - 90,64 138,25 135,50 108,95 216,07 97,96 
OB2 - 215,16 223,40 177,62 303,96 166,63 
OB3 - 21,06 48,52 211,49 51,27 
OB4 - 67,75 191,35 70,50 
OB5 - 208,75 5,04 
OB6 - 192,27 

 

An uplift factor, which is equal to 3, is used to calculate the direct shipment cost 

between CBT and the OB-s. Hence; 



122 

 

1�&'( =   1�$%& . 	      ∀ � ∈ � 

In the sensitivity analyses, two additional transportation cost situation is considered: 

High cost situation and low cost situation. In the calculation of the high cost situation, 

costs of the employees who will participate in the lateral or direct shipment ordering 

process (€ 200) and the costs of the employees who will make the loading & unloading 

of the repairables to/from the trucks (€ 100) are added to the cost values mentioned in 

the normal case. However, in the low cost case, the cost values are determined as 25% of 

the normal cost values. Table 7.6 and 7.7 shows the lateral or direct shipment costs 

between RDC and OB-s in the high and low cost situation. 

Table 7.6: Cost of lateral and direct shipments between RDC and OB-s in the high cost 

case (€) 

km OB1 OB2 OB3 OB4 OB5 OB6 OB7 

RDC 441,00 529,80 397,05 378,74 406,20 415,36 404,37 
OB1 - 390,64 438,25 435,50 408,95 516,07 397,96 
OB2 - 515,16 523,40 477,62 603,96 466,63 
OB3 - 321,06 348,52 511,49 351,27 
OB4 - 367,75 491,35 370,50 
OB5 - 508,75 305,04 
OB6 - 492,27 

 

Table 7.7: Cost of lateral and direct shipments between RDC and OB-s in the low cost 

case (€) 

km OB1 OB2 OB3 OB4 OB5 OB6 OB7 

RDC 35,25 57,45 24,26 19,68 26,55 28,84 26,09 
OB1 - 22,66 34,56 33,88 27,24 54,02 24,49 
OB2 - 53,79 55,85 44,40 75,99 41,66 
OB3 - 5,26 12,13 52,87 12,82 
OB4 - 16,94 47,84 17,62 
OB5 - 52,19 1,26 
OB6 - 48,07 
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APPENDIX B 

 

PRE-SPECIFIED ORDER FOR LATERAL TRANSHIPMENTS 

 

In Model 2 and 4, the pre-specified order of the OB-s for asking lateral transshipment is 

determined with respect to the distances between OB-s. This means that when an OB is 

out of stock, it first checks the OB which is closest to it, then checks the second closest 

one… However, this order can be rearranged with respect to any other criteria. Table 7.8 

shows the <� vector for each OB � of Model 2 and 4. 

Table 7.8: σ� vector for each OB � 

OB  ¡��¢� ¡��£� ¡��¤� ¡��¨� ¡��Å� ¡��Æ� 

1 2 7 5 4 3 6 

2 1 7 5 3 4 6 

3 4 5 7 1 6 2 

4 3 5 7 1 6 2 

5 7 3 4 1 2 6 

6 4 7 5 3 1 2 

7 5 3 4 1 2 6 
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APPENDIX C 

 

A SIMPLE EXAMPLE FOR THE EQUATIONS (18), (19), AND (20) 

OF CHAPTER 3 

 

In this part a simple example is given about the equations (18), (19), and (20) of chapter 

4.  Let’s consider a network with three local warehouses and let  <> = �2,3�,  <? = �1,3� 

and  <� = �2,1�. Then for an SKU �: 
�R�>? = �1 − 
�>�. ��>                 �R�>� = �1 − 
�?��1 − 
�>�. ��> 

�R�?> = �1 − 
�?�. ��?                 �R�?� = �1 − 
�>��1 − 
�?�. ��? 

�R��? = �1 − 
���. ���                  �R��> = �1 − 
�?��1 − 
���. ��� 

and; 

���> = ��> + �R�?> + �R��> 

���? = ��? + �R�>? + �R��? 

���� = ��� + �R�>� + �R�?� 
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APPENDIX D 

 

EXACT CALCULATION OF FILLRATES AND AVERAGE 

BACKORDER WAITING TIME 

 

D.1 Exact Calculation of Fillrates  

In this part, calculation of  
�� from the Markov process of Model 2 will be shown; when ���� and  	�� values are known. Figure 7.1, below, is the same of Figure 3.1. 

 

Figure 7.1: Rate diagram of the Markov process describing the number of SKU-s in 

replenishment in Model 2 

Let �u denotes the steady state probabilities for the continuous time Markov chain 

shown in Figure 7.1, where   0 ≤ r ≤ +∞ and x is integer. Then,  


�� = Z �u
sde3>
uw�                                                            �8.1� 

where, 

�G�� + 1�. 0�� 

  G�� 1 0   G��+1 

���� ���� ���� 	�� 	�� 

0�� 2. 0�� G��. 0�� �G�� + 2�. 0�� 
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�u = µ   >u!  . =Ç�deÈde Fu  . ��                           ∀  0 < r ≤ G��
  >u!  . Ç�de[Éde\.Êde[��Éde\Ède�  . ��           ∀  G�� < r < +∞±              �8.2) 

Let   Ë> = �� �� 0��Ì  and   Ë? = 	�� 0��Ì . Then, 

��. ¯Z k 1r! .   Ë1ulsde
uw� + Z k 1r! .   Ë1sde .   Ë2u3sdel�∞

uwsde�> Í = 1               �8.3� 

Let    I = Î  Ë1   Ë2´ Ïsde
 .Then; 

��. ¯Z k 1r! .   Ë1ulsde
uw� + Z k 1r! . I.   Ë2ul�∞

uwsde�> Í = 1                    �8.4� 

��. ¯Z k 1r! .   Ë1ulsde
uw� + I. ^n   Ë2 − Z   Ë2ur!

sde
uw� aÍ = 1                   �8.5� 

�� can be calculated exactly by (8.5), and 
�� can be calculated exactly by (8.1) and 

(8.2). However, due to the numerical problems encountered,  
�� is calculated 

approximately. In this case, �u values are calculated until  �u�> ≤ 103�. ��; then 
�� is 

calculated by (8.1). 

D.2 Exact Calculation of Average Backorder Waiting Time 

In this part, calculation of  BWÒ� of SKU � at OB � from the Markov process of Model 2 

will be shown. Let, 

• �u denote the steady state probabilities for the continuous time Markov chain 

shown in Figure 3.1 or 7.1; where   0 ≤ r ≤ +∞ and r is integer 

• I
�� denote the average waiting time of an order for SKU � at OB � 

• ��H��� denote the expected backorder rate for SKU � at OB � 
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• J�� denote the average demand rate for SKU � at OB �. 

Then by Little’s Law: 

I
�� = ��H���J��                                                            �8.6� 

where, 

��H��� = Z �r − G���. �u
∞

uwsde�>                                            �8.7� 

��H��� can be calculated exactly as below. 

��H��� = Z �r − G���. 1r! .   Ë1sde .   Ë2u3sde . ��
∞

uwsde�> = Z �r − G���. 1r! . I.   Ë2u. ��
∞

uwsde�>  

��H��� = I. ��. ^ Z r. 1r! .   Ë2u.∞
uwsde�> − G��. Z 1r! .   Ë2u∞

uwsde�> a 

��H��� = I. ��. ½;?. nÓÔ − Z r.   Ë2ur!
sde
uw� − G��. ^nÓÔ − Z   Ë2ur!

sde
uw� a¾ 

where, 

J�� = ^ Z �u
sde3>
uw� a . ���� + ^ Z �u

+∞
uwsde

a . 	��                        �8.8� 

Note that equation 9.5 is an approximate formula because ���� and 	�� are dependent to �u. Then, J�� can be calculated as below. 

J�� = ��. ½^ Z   Ë1ur!
sde3>
uw� a . ���� + ^  Ë1sdeG��! + Z 1r! . I.   Ë2u∞

uwsde�> a . 	��   ¾     
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J�� = ��. ¯^ Z   Ë1ur!
sde3>
uw� a . ���� + ½  Ë1sdeG��! + I. ^nÓÔ − Z   Ë2ur!

sde
uw� a¾ . 	��Í     

However, due to the numerical problems encountered,  ��H��� and J�� are calculated 

approximately. In this case, �u values are calculated until  �u�> ≤ 103�. ��; then ��H��� 

and J�� are calculated by using equation (8.7) and (8.8) respectively. 

Then, H
��, which is average backorder waiting time for SKU � at OB � can be 

calculated by (8.10). 

I
�� = ^ Z �u
sde3>
uw� a . 0 + ^ Z �u

+∞
uwsde

a . H
��                              �8.9� 

H
�� = I
��∑ �u+∞uwsde =  I
��1 − 
��                                             �8.10� 

Equation (8.9) and (8.10) use the fact that the orders, which come when there is stock on 

hand, will not wait. Thus, H
�� can be calculated by dividing I
�� to the probability 

that there is not any on-hand stock.  
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APPENDIX E 

 

DETAILED SENSITIVITY ANALYSIS 

 

The purpose of making sensitivity analyses is to understand the effect of input 

parameters to each model. The parameters that are analyzed are: 

1. Lateral and direct shipment costs 

2. Target waiting time values 

3. Replenishment lead time of RDC by CBT 

4. Transportation time between RDC and OB-s 

5. Uplift factor (used in Model 3 and 4 to calculate the cost of direct shipment from 

CBT to OB-s) 

6. Demand rates 

Test beds from 1 to 7 are used in these analyses. 

E.1  Lateral and Direct Shipment Costs 

In the normal case, lateral transshipment costs between the OB-s and the direct shipment 

costs from RDC to OB-s are calculated by considering the truck renting cost, fuel cost, 

and the wage rate of the driver; and the direct shipment cost from CBT to OB-s is 

calculated by multiplying the direct shipment costs from RDC to OB-s by an uplift 

factor.  

To understand the behavior of Model 2, 3 and 4 with respect to different transshipment 

costs, two additional cost scenarios are considered (see Appendix A). In the high cost 

scenario, costs of the employees who will participate in the lateral or direct shipment 

ordering process and the costs of the employees who will make the loading & unloading 
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of the repairables to/from the trucks are added to the cost values mentioned in the 

normal case. In reality, these new cost factors are not expected to occur because the 

order processing and loading & unloading of the repairables are a part of the daily jobs 

of the related employees. However, considering these additional cost factors will 

represent the worst case cost scenario for the lateral and direct shipments in which 

almost all possible cost factors will be considered.  

In the low cost scenario, the cost values are determined as 25% of the normal cost 

values. The reason of considering this situation is to understand the behavior of the 

related models when the lateral and direct shipment costs are much lower than the 

normal case. 

Figure 7.2, 7.3 and 7.4 show the total yearly cost values for each of the models and price 

range with respect to different cost situations for the test beds 1-2-3 (Note that Model 1 

is independent of the lateral and direct shipment costs). 

 

Figure 7.2: Cost values with respect to different cost situations for price range A 
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Figure 7.3: Cost values with respect to different cost situations for price range B 

 

Figure 7.4: Cost values with respect to different cost situations for price range C 
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decrease, total cost value increases. The reason of this situation is the greedy algorithm 

used in Model 4. This algorithm finds only feasible solutions; it does not find the 

optimal or an extreme point. Thus the greedy algorithm does not need to find a lower 

total cost value, when the cost parameters decrease. This situation is also valid for the 

greedy algorithms of the other models. 

5.000

7.000

9.000

11.000

13.000

15.000

Low Normal High

T
o

ta
l 

y
e

a
rl

y
 c

o
st

 (
€

/y
e

a
r)

Cost situation

Model 1

Model 2

Model 3

Model 4

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

Low Normal High

T
o

ta
l 

y
e

a
rl

y
 c

o
st

 (
€

/y
e

a
r)

Cost situation

Model 1

Model 2

Model 3

Model 4



132 

 

In the high cost situation, Model 1 gives the lowest total cost values in each price range. 

Thus it is not logical to implement lateral or direct shipments in the high cost situations. 

However, in the low cost situation, lateral or direct shipments become more attractive. 

Figure 7.5, 7.6, 7.7 and 7.8 show the total yearly cost values for each of the models and 

price range with respect to different cost situations for the test beds 4-5-6-7. 

 

Figure 7.5: Cost values with respect to different cost situations for price range A 

 

Figure 7.6: Cost values with respect to different cost situations for price range B 
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Figure 7.7: Cost values with respect to different cost situations for price range C 

 

Figure 7.8: Cost values with respect to different cost situations for price range D 
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In the low cost situation; Model 1 gives the lowest cost values only in the price range A. 

In the other price ranges Model 3 is a better alternative. In the price range C, in the low 

cost situation, the percentage cost difference between Model 3 and 1 is -36.1% which is 

a very significant value. 

In conclusion; Model 2, 3 and 4 becomes more (less) attractive when the cost of lateral 

or direct shipment costs decrease (increase). However, using Model 1 is rational for the 

price range A in all cost cases. 

E.2  Target Waiting Time Values 

In the test beds 1-2-3, for the normal case, target waiting time is determined as 2 hours, 

because this value provides 93% average fill rate for the OB-s in Model 1, which is the 

target fill rate used by Nedtrain for each OB. Other than this, 1 and 3 hours target 

waiting time values are also used in the sensitivity analysis which give 96% and 90% 

average fill rate for the OB-s in Model 1 respectively as it can be seen in Table 7.9. 

Hence, the behavior of each model can be examined in different target waiting time 

situations. 

Table 7.9: Fill rate values of Model 1 with respect to different target waiting time values 

for test beds 1-2-3 

Test Bed Price Range 1 hour 2 hours 3 hours 

1 A 0,96 0,93 0,91 

2 B 0,96 0,93 0,91 

3 C 0,96 0,93 0,90 
 

In the test beds 4-5-6-7, for the normal case, target waiting time is determined as 4 

hours, because this value provides 93% average fill rate for the OB-s in Model 1. Other 

than this value, 2 and 8 hours target waiting time values are used in the sensitivity 

analysis which give 96% and 90% average fill rate for the OB-s in Model 1  as it can be 

seen in Table 7.10).  
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Table 7.10: Fill rate values of Model 1 with respect to different target waiting time 

values for test beds 4-5-6-7 

Test Bed Price Range 2 hours 4 hours 8 hours 

4 A 0,95 0,94 0,91 

5 B 0,97 0,94 0,92 

6 C 0,97 0,95 0,90 

7 D 0,97 0,97 0,97 
 

Figure 7.9, 7.10 and 7.11 show the total yearly cost values for each model and price 

range with respect to different target waiting time values for the test beds 1-2-3. 

 

Figure 7.9: Cost values with respect to different target values for price range A 

 

Figure 7.10: Cost values with respect to different target values for price range B 
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Figure 7.11: Cost values with respect to different target values for price range C 

In Model 1 and 4, when the target waiting time decreases (increases), total cost generally 

increases (decreases).  

In Model 2, in the price range B, total yearly cost increases when the target waiting time 

value is increased to 3 hours in price range B.  This result seems irrational, however the 

reason of the high cost level in 3 hours target waiting time is that the greedy algorithm 

used in Model 2 does not stop when the target waiting time constraint is met, it 

continues to add items to stock because increasing the stock decreases the high lateral 

transshipment costs (When the target is met, total yearly cost value is € 12.325, and 

when the greedy algorithm stops total cost value becomes € 10.728). Thus 3 hours target 

waiting time is not the only factor which determines total yearly cost in the price range 

B for Model 2. Same situation exists in price range C either, however this time the 

reason is the fact that the greedy algorithm finds only feasible points; it does not need to 

find the optimal or an extreme point. Thus the greedy algorithm does not need to find a 

higher total cost value, when the target waiting time value decreases. 

In Model 3; in the price range C, when the target waiting time decreases (increases), 

total cost increases (decreases). However, in the price range A, total yearly cost does not 

change when the target waiting time decreases; and in the price range B, total yearly cost 

increases, when the target waiting time increases.  Since greedy algorithm used in Model 

3 does not stop when the target waiting time constraint is met, it continues to add items 

to stock because increasing the stock decreases the high direct shipment costs. In the 

price range A, when the 1 hour target waiting time constraint is met total yearly cost 

30.000

35.000

40.000

45.000

50.000

55.000

60.000

1 hr Normal (2 

hr)

3 hr

T
o

ta
l 

y
e

a
rl

y
 c

o
st

 (
€

/y
e

a
r)

Target waiting time

Model 1

Model 2

Model 3

Model 4



137 

 

value is € 8.689, and when the greedy algorithm stops total cost value becomes € 2.056; 

and in the price range B, when the 3 hours target is met total yearly cost value is € 

19.714, and when the greedy algorithm stops total cost value becomes € 10.116. Note 

that when the target is met total cost values are very high, because at that time the 

models use direct shipments a lot. 

When the target waiting time decreases, the performance of Model 2, 3 and 4 increases 

with respect to Model 1. For instance, in price range A and B; when the target waiting 

time values decrease; the cost difference between Model 2-3 and Model 1 decreases. In 

the price range C, when the target is 1 hour, Model 2-3-4 gives much lower cost values 

relative to Model 1. 

Figure 7.12, 7.13, 7.14 and 7.15 show the total yearly cost values for each model and 

price range with respect to different target waiting time values for the test beds 4-5-6-7. 

 

Figure 7.12: Cost values with respect to different target values for price range A 
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Figure 7.13: Cost values with respect to different target values for price range B 

 

Figure 7.14: Cost values with respect to different target values for price range C 

 

Figure 7.15: Cost values with respect to different target values for price range D 
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In Model 1; when the target waiting time decreases (increases), total cost increases 

(decreases); because the stock levels increase when the target decreases.  

In Model 3; when the target waiting time decreases (increases), total cost increases 

(decreases) only in the price range C. In the price range D, when the target waiting time 

is 2 hours, total cost value decreases in this case. The reason of this situation is the 

greedy algorithm. This algorithm finds only feasible solutions; it does not find the 

optimal or an extreme point. Thus the greedy algorithm does not need to find a higher 

total cost value, when the target waiting time value decreases. In the price range A and 

B, total cost value is not affected by the target waiting time value in Model 3. Since 

greedy algorithm used in Model 3 does not stop when the target waiting time constraint 

is met, it continues to add items to stock because increasing the stock decreases the high 

direct shipment costs. 

In Table 7.11; total cost values for Model 3 in the price ranges A and B in the test beds 

4-5, when the target waiting time is met and the greedy algorithm stops, can be seen. 

Table 7.11: Total yearly cost values of Model 3 when the target is met and greedy 

algorithm stops for the test beds 4-5 

Price 
Range 

When target is met When Greed A. stops 

Normal (4 hr) 2 hr 8 hr Normal (4 hr) 2 hr 8 hr 

A 4.587 2.353 7.193 782 782 782 

B 6.139 4.659 9.971 3.806 3.806 3.806 
 

As it can be seen from Table 7.11; greedy algorithm continues to add items to stock 

although the target is met, because increasing stock decreases the total cost in these price 

ranges. Thus target waiting time is not the only factor which determines total yearly cost 

in Model 3, in the price ranges A and B. 

In conclusion; for the test beds from 1 to 7, when the target waiting time value 

decreases, the relative performance of Model 2, 3, and 4 generally increases with respect 

to Model 1. One last remark can be said about Model 2, 3 and 4. These models are not 

affected significantly by the target waiting time values in the price ranges where they are 

dominated by Model 1. The reason of this fact is that these models make overstocking to 
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decrease the high lateral and direct shipment costs in these price ranges, although they 

already meet the target waiting time constraint. 

E.3  Replenishment Lead Time of RDC by CBT 

Mean replenishment lead time of RDC by CBT is 20 days. In the sensitivity analysis, 

two additional mean replenishment lead time values are used: 15 and 10 days. The 

reason of choosing these values is to understand the behavior of the total inventory and 

transportation costs, if Nedtrain decreases this lead time. 

Figure 7.16, 7.17 and 7.18 show the total yearly cost values of each model for each price 

range with respect to different lead time values for the test beds 1-2-3. 

 

Figure 7.16:  Total cost values of the models with respect to different lead time values 

for price range A 
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Figure 7.17: Total cost values of the models with respect to different lead time values for 

price range B 

 

Figure 7.18: Total cost values of the models with respect to different lead time values for 

price range C 

In each of the models; when the lead time decreases, total cost decreases. There is only 

one exception occurs in Model 4, in the price range C. In this situation, when the lead 

time decreases to 15 days, total cost value increases. The reason of this situation is the 

greedy algorithm. This algorithm finds only feasible solutions; it does not find the 

optimal or an extreme point. Thus the greedy algorithm does not need to find a lower 

total cost value, when the lead time between CBT and RDC decreases. 

In Table 7.12, percentage difference between the 15 and 10 days lead time cases and 

normal lead time case for each of the models in each of the price ranges in the test beds 

1-2-3 can be seen. 
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Table 7.12: Percentage difference between the 15 and 10 days lead time cases and 

normal lead time case for the test beds 1-2-3 

Price 
Range 

Model 1 Model 2 Model 3 Model 4 

10 days 15 days 10 days 15 days 10 days 15 days 10 days 15 days 

A -16,5% -8,0% -15,6% -7,2% -10,4% -5,0% -11,3% -4,9% 

B -17,6% -9,7% -15,4% -6,7% -9,2% -5,0% -8,9% -4,9% 

C -15,0% -6,5% -22,1% -11,6% -10,8% -5,0% -9,7% 21,5% 
 

From Table 7.12, it can be concluded that Model 3 and 4 is affected the least by the 

change in lead time parameter. This result is logical because; direct shipments are used 

as another option for the lead time between CBT and RDC, thus they decrease the effect 

of this long lead time. This means that the shorter the lead time between CBT and RDC, 

the lower the improvement in the performance of Model 3 and 4 with respect to the 

other models. 

Figure 7.19, 7.20, 7.21 and 7.22 show the total yearly cost values of Model 1 and 3 for 

each price range with respect to different lead time values for the test beds 4-5-6-7. 

 

Figure 7.19: Total cost values of the models with respect to different lead time values for 

price range A 
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Figure 7.20: Total cost values of the models with respect to different lead time values for 

price range B 

 

Figure 7.21: Total cost values of the models with respect to different lead time values for 

price range C 
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Figure 7.22: Total cost values of the models with respect to different lead time values for 

price range D 

In each of the models; when the lead time decreases, total cost decreases except for 

Model 1 in the price range D. When the lead time from CBT to RDC is decreased to 15 

or 10 days; in the price range A and B, Model 1 gives the lowest cost values. However, 

in the price range C and D, Model 3 gives the best results.   

In Table 7.13, percentage difference between the 15 and 10 days lead time cases and 

normal lead time case for each of the models in each of the price ranges in the test beds 

4-5-6-7 can be seen: 

Table 7.13: Percentage difference between the 15 and 10 days lead time cases and 

normal lead time case for the test beds 4-5-6-7 

Price 
Range 

Model 1 Model 3 

10 days 15 days 10 days 15 days 

A -23,0% -13,3% -11,7% -4,9% 

B -25,5% -16,2% -11,8% -5,7% 

C -15,7% -8,0% -11,5% -3,3% 

D -6,5% -6,5% -10,9% -4,1% 
 

From Table 7.13, again it can be seen that Model 3 is affected less than Model 1 by the 

change in lead time parameter. This means that the shorter the lead time between CBT 

and RDC, the lower the improvement in the performance of Model 3 with respect to the 

Model 1. 
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In conclusion; when the lead time between CBT and RDC decreases, total cost values of 

the models generally decrease. However, the shorter the lead time, the lower the 

improvement in the performance of Model 3 and 4 with respect to the other models.  

E.4  Transportation Time between RDC and OB-s 

Transportation time between the RDC and OB-s is assumed 2 days. In the sensitivity 

analysis, one additional transportation time value is used which 1 day. The reason of 

choosing this value is to understand the behavior of the total inventory and 

transportation costs, if Nedtrain decreases the transportation time between the RDC and 

OB-s. 

Figure 7.23, 7.24 and 7.25 show the total yearly cost values of each model for each price 

range with respect to different transportation time values for the test beds 1-2-3. 

 

Figure 7.23: Cost values of the models with respect to different transportation time 

values for price range A 
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Figure 7.24: Cost values of the models with respect to different transportation time 

values for price range B 

 

Figure 7.25: Cost values of the models with respect to different transportation time 

values for price range C 
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does not need to find a lower total cost value, when the transportation time between the 

RDC and OB-s decreases. In Table 7.14, percentage difference between the 1 day 

transportation time case and normal case for each of the models in each of the price 

ranges in the test beds 1-2-3 can be seen. 
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Table 7.14: Percentage difference between 1 day transportation time case and normal 

case in the test beds 1-2-3 

Price R. Model 1 Model 2 Model 3 Model 4 

A -7,1% 65,5% -4,9% -3,7% 

B -13,0% 11,2% -2,8% -3,1% 

C -4,6% 0,2% -1,8% -1,9% 
 

When the transportation time decreases, the improvement in Model 1 is larger than the 

other Models; because, when the transportation time decreases, the necessity to lateral or 

direct transshipments decrease. Figure 7.26, 7.27, 7.28 and 7.29 shows the total yearly 

cost values of each model for each price range with respect to different transportation 

time values for the test beds 4-5-6-7. 

 

Figure 7.26: Cost values of the models with respect to different transportation time 

values for price range A 
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Figure 7.27: Cost values of the models with respect to different transportation time 

values for price range B 

 

Figure 7.28: Cost values of the models with respect to different transportation time 

values for price range C 
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Figure 7.29: Cost values of the models with respect to different transportation time 

values for price range D 

Again when the transportation time decreases from 2 days to 1 day, total cost decreases. 

The only exception occurs in the price range D for Model 1.  

In Table 7.15, percentage difference between the 1 day transportation time case and 

normal case for each of the model in each of the price ranges in the test beds 4-5-6-7 can 

be seen. 

Table 7.15: Percentage difference between the 1 day transportation time case and normal 

case in the test beds 4-5-6-7 

Price R. Model 1 Model 3 

A -4,0% -2,2% 

B -13,9% -2,9% 

C -2,2% -1,7% 

D 0,0% 0,0% 
 

When the transportation time decreases, the improvement in Model 1 is larger than 

Model 3; because, when the transportation time decreases, the necessity to direct 

shipments decrease.  

In conclusion; when the transportation time between RDC and OB-s decreases, 

performance of Model 2, 3 and 4 with respect to Model 1 decreases. However, Model 3 

and 4 are still a better alternative than Model 1 in the price ranges C and D in each of the 

transportation time cases. 
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E.5  Uplift Factor 

This parameter is used in Model 3 and 4 to calculate the cost of direct shipments from 

CBT to OB-s. In a direct shipment from CBT to an OB, there is the delivery of broken 

part from OB to CBT, emergent repair of the broken part in CBT, and the delivery of 

ready-for-use part from CBT to the OB. Because of these three processes, uplift factor is 

considered as ‘3’. This means that one direct shipment from CBT to an OB is three times 

the cost of fast delivery of a part between the CBT and the corresponding OB. In this 

case, it is assumed that the emergent repair of the broken part has the same cost value 

with the delivery of a part between the CBT and the corresponding OB.  

In the sensitivity analysis, two additional uplift factor values are considered: 4 and 2. 

The first case reflects the situation in which the cost of the emergent repair of the broken 

part is twice the cost value of the delivery of a part between the CBT and an OB; and the 

second case reflects the situation in which the emergent repair of the broken part does 

not have a cost at all. Thus, the effect of different cost values of the emergent repair of 

the broken part in CBT will be considered in this part. 

Figure 7.30, 7.31 and 7.32 show the total yearly cost values of each model for each price 

range with respect to different uplift factor values for the test beds 1-2-3 (Note that 

Model 1 and 2 are independent of the uplift factor values). 

 

Figure 7.30: Cost values of the models with respect to different uplift factor values for 

the price range A 
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Figure 7.31: Cost values of the models with respect to different uplift factor values for 

the price range B 

 

Figure 7.32: Cost values of the models with respect to different uplift factor values for 

the price range C 

The higher the uplift factor, the higher the cost value of Model 3 and 4. The only 

exception occurs in the price range C for Model 4. In this situation, total cost of the 

Model 4 increases, although the uplift factor decreases. The reason of this situation is the 

greedy algorithm. This algorithm finds only feasible solutions; it does not find the 

optimal or an extreme point. Thus the greedy algorithm does not need to find a lower 

total cost value, when the uplift factor decreases. 

In Table 7.16, percentage difference between the uplift factor 2 - 4 and normal case (3) 

for Model 3 and 4 in each of the price ranges in the test beds 1-2-3 can be seen: 
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Table 7.16: Percentage difference between the uplift factor 2 - 4 and normal case (3) in 

the test beds 1-2-3 

Price Model 3 Model 4 

Range Uplift f. = 2 Uplift f. = 4 Uplift f. = 2 Uplift f. = 4 

A -2,1% 1,6% -0,7% 0,0% 

B -5,1% 1,0% -1,1% 0,6% 

C -5,1% 5,2% 25,1% 2,2% 
 

It is seen that the change in the uplift factor does not affect the total cost values much. 

This means that Model 3 and 4 is not affected by the uplift factor value significantly. 

Note that the maximum percentage difference occurs at price range C, in which direct 

shipments used the most. This means that the higher the direct shipment rates, the higher 

the effect of uplift factor. 

Figure 7.33, 7.34, 7.35 and 7.36 show the total yearly cost values of Model 1 and 3 for 

each price range with respect to different uplift factor values for the test beds 4-5-6-7.  

 

Figure 7.33: Cost values of the models with respect to different uplift factor values for 

the price range A 
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Figure 7.34: Cost values of the models with respect to different uplift factor values for 

the price range B 

 

Figure 7.35: Cost values of the models with respect to different uplift factor values for 

the price range C 

2.000

2.500

3.000

3.500

4.000

4.500

2 Normal (3) 4

T
o

ta
l 

y
e

a
rl

y
 c

o
st

 (
€

/y
e

a
r)

Uplift factor

Model 1

Model 3

10.000

15.000

20.000

25.000

30.000

2 Normal (3) 4

T
o

ta
l 

y
e

a
rl

y
 c

o
st

 (
€

/y
e

a
r)

Uplift factor

Model 1

Model 3



154 

 

 

Figure 7.36: Cost values of the models with respect to different uplift factor values for 

the price range D 

Again it is seen that the higher the uplift factor, the higher the cost value of Model 3 and 

the sequence of the models with respect to cost is not affected by the uplift factor values. 

In price range A and B, Model 1 gives the best result; and in the price range C and D 

Model 3 gives the best results in each of the cases. 

In Table 7.17, percentage difference between the uplift factor 2 - 4 and normal case (3) 

for Model 3 in each of the price ranges in the test beds 4-5-6-7 can be seen. 

Table 7.17: Percentage difference between the uplift factor 2 - 4 and normal case (3) in 

the test beds 4-5-6-7 

Price 
Range 

Uplift Factor 

Uplift f. = 2 Uplift f. = 4 

A -4,9% 4,1% 

B -5,3% 3,9% 

C -5,0% 5,6% 

D -0,1% 0,1% 
 

Again it is seen that the change in the uplift factor does not affect the total cost values 

much. This means that Model 3 is not affected by the uplift factor value significantly. 

Note that the maximum percentage difference occurs at price range C, in which direct 

shipments used the most. This means that the higher the direct shipment rates, the higher 

the effect of uplift factor. 
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In conclusion, it is seen that the higher the uplift factor, the higher the cost value of 

Model 3 and 4; and the higher the direct shipment rates, the higher the effect of uplift 

factor. However, in general Model 3 and 4 is not affected by the uplift factor values 

significantly. 

E.6 Demand Rates 

In the demand estimations, moving average forecasting method with the demand data of 

the last three years is used. However; in real life, it is almost impossible to estimate the 

demand rates with 100% accuracy. Because of this fact, three additional demand rate 

values are used in this part: 80%, 120%, and 150% of the estimated demand rates. The 

reason for choosing these values is to examine the waiting time and total cost values 

when the real demand rates are higher or lower than the estimated demand rates. 

Unlike the sensitivity analysis done with the previous parameters, optimization is not 

used in this part. The stock levels found by the initial demand rates are used as input for 

the additional demand rate values, and the behavior of the waiting time and total cost 

values are examined. 

Figure 7.37 to 7.42 show the change in the aggregate mean waiting time values for all 

SKU � at all OB � and the change in total cost values for each model for each price 

range with respect to different demand rates for the test beds 1-2-3. 

 

Figure 7.37: Change in aggregate mean waiting time value with respect to different 

demand rates in price range A 
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Figure 7.38: Change in total cost value with respect to different demand rates in price 

range A 

 

Figure 7.39: Change in aggregate mean waiting time value with respect to different 

demand rates in price range B 
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Figure 7.40: Change in total cost with respect to different demand rates in price range B 

 

Figure 7.41: Change in aggregate mean waiting time value with respect to different 

demand rates in price range C 

 

Figure 7.42: Change in total cost with respect to different demand rates in price range C 
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From the Figures 7.37 to 7.42, it is seen that change in the aggregate mean waiting time 

value is lower in Model 2, 3 and 4 than Model 1. Thus it can be concluded that the 

Model 2, 3 and 4 are more stable to the demand changes than Model 1 in terms of the 

waiting time value. The reason of this situation is that Model 2, 3 and 4 increases 

(decreases) the lateral or direct shipments when the demand rate increases (decreases), 

so lateral or direct shipments are the key factors in the stability of Model 2, 3 and 4 

when the demand rate changes.  

In the price range A and B; when the demand rate increases 20%, aggregate mean 

waiting time value in Model 1, which gives the lowest cost values in these price ranges, 

exceeds the target waiting time value. However; in the price range C, even when the 

demand rate increases 50%, aggregate mean waiting time value in Model 4, which gives 

the lowest cost values in this price range, does not exceed the target waiting time value.  

Since Model 2, 3 and 4 increase or decrease lateral or direct shipments, when the 

demand rate changes; total cost values of these models change at the same time (Note 

that when demand rate changes, that total cost values of Model 1 does not change; 

because the only cost factor in this model is the inventory costs.). 

Table 7.18 shows the percentage change in the total cost values in Model 2, 3 and 4 for 

each of the demand rates with respect to the normal demand case for test beds 1-2-3. 

Table 7.18: Percentage change in the total cost values in Model 2, 3 and 4 for each of the 

demand rates with respect to the normal demand case in the test beds 1-2-3 

Price  Model 2 Model 3 Model 4 

Range -20% 20% 50% -20% 20% 50% -20% 20% 50% 

A -1,7% 2,6% 10% -4,6% 10,8% 77,6% -5,8% 12,7% 84,8% 

B -3% 3,8% 11,5% -6,2% 8,6% 28,7% -7,7% 11,3% 38,0% 

C -2,1% 2,7% 8,1% -7,6% 10,0% 29,7% -7,5% 9,8% 29,8% 
 

From Table 7.18, it is seen that the greatest cost increase for Model 3 and 4 occurs at 

price range A. This is rational because normally Model 3 and 4 make overstocking to 

prevent direct shipments in this price range; and when the demand rate increases, in 

order to supply the extra demands, Model 3 and 4 use more lateral or direct. Since these 
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supply options are costly in this price range with respect to inventory costs, increase in 

the total cost becomes high in this situation. However; in the price range C, Model 3 

almost meets the target waiting time constraint when the demand increases 20% with a 

10% increase in total cost and Model 4 meets the target waiting time constraint when the 

demand increases 20% with a 9.8% increase in total cost.  

Figure 7.43 to 7.50 shows the change in the aggregate mean waiting time values for all 

SKU � at all OB � and the change in total cost values for Model 1 and 3 for each price 

range with respect to different demand rates for the test beds 4-5-6-7: 

 

Figure 7.43: Change in aggregate mean waiting time value with respect to different 

demand rates in price range A 

 

Figure 7.44: Change in total cost value with respect to different demand rates in price 

range A 
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Figure 7.45: Change in aggregate mean waiting time value with respect to different 

demand rates in price range B 

 

Figure 7.46: Change in total cost value with respect to different demand rates in price 

range B 
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Figure 7.47: Change in aggregate mean waiting time value with respect to different 

demand rates in price range C 

 

Figure 7.48: Change in total cost value with respect to different demand rates in price 

range C 
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Figure 7.49: Change in aggregate mean waiting time value with respect to different 

demand rates in price range D 

 

Figure 7.50: Change in total cost value with respect to different demand rates in price 

range D 
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gives the lowest cost values in this price range, does not exceed the target waiting time 

value. Moreover total cost values of Model 3 are still lower than the one of Model 1 in 

these cases. This means that when the demand rate increases even 50%, Model 3 keeps 

the waiting time value below the target and still gives the lowest cost value in the price 

ranges C and D. 

In conclusion, Model 2, 3 and 4 are more stable to the change in the demand rates in 

terms of the aggregate mean waiting time value and the reason of this situation is that 

these models can use lateral or direct shipments to fulfill the extra demand; but naturally 

this process will increase the cost values, because lateral or direct shipment rates will 

increase. 


