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ABSTRACT

DEVELOPMENT OF AN INCOMPRESSIBLE, LAMINAR FLOW SOLVER BASE ON
LEAST SQUARES SPECTRAL ELEMENT METHOD WITH P-TYPE ADAPTIVE
REFINEMENT CAPABILITIES

Ozcelikkale, Altug
M.S., Department of Mechanical Engineering

Supervisor : Asst. Prof. Dr. Clneyt Sert

June 2010, 104 pages

The aim of this thesis is to develop a flow solver that has thityabo obtain an accurate
numerical solution fast andiiently with minimum user intervention. In this study, a two
dimensional viscous, laminar, incompressible flow sohasdal on Least-Squares Spectral
Element Method (LSSEM) is developed. The LSSEM flow solverwark on hp-type non-
conforming grids and can perform p-type adaptive refinem8atveral benchmark problems
are solved in order to validate the solver and successfultsegre obtained. In particular, it is
demonstrated that p-type adaptive refinement on hp-typeanforming grids can be used to
improve the quality of the solution. Moreover, it is foundtimass conservation performance
of LSSEM can be enhanced by using p-type adaptive refinentieriegies while keeping

computational costs reasonable.

Keywords: Least-Squares, Spectral Element Method, NanfdEming Grid, Adaptive Re-

finement, Mass Conservation



0z

P-TIPI UYUMLU SIKLASTIRMA YETENEKLER INE SAHIP, EN KUCUK KARELER
SPEKTRAL ELEMAN METODU TABANLI BIR SIKISTIRILAMAYAN, LAM INER
AKIS COZUCUSUNUN GELISTIRILMES]

Ozcelikkale, Altug
Yiksek Lisans, Makina Muhendisligi Bolimi

Tez Yoneticisi : Yar. Dog¢. Dr. Clneyt Sert

Haziran 2010, 104 sayfa

Bu tezin amaci sayisal ¢ozumu dogru, hizli ve verimigekilde, en az kullanici miidahalesi
ile elde etme yetenegine sahip bir akis ¢coziclUsistymhektir. Bu calismada, iki boyutlu
viskoz, laminer, sikistirilamayan akislar icin En KikcKareler Spektral Eleman Metoduna
(LSSEM) dayali bir akis ¢cozicust gelistiriimistiiSSEM akis ¢ozicusu hp-tipi uyusmaz
aglar Uzerinde calisabilmekte ve p-tipi uyumlu sjkiasa yapabilmektedir. Coziciyl dog-
rulamak icin cesitli test problemleri cozilmiisvasarili sonuglar elde edilmistizel olarak,
hp-tipi uyumsuz aglar Uzerinde p-tipi uyumlu siklagtanin ¢ozumun niteligini gelistirmek
icin kullanilabilecegi gosterilmistir. Buna ek ol&ra@-tipi uyumlu siklastirma stratejilerinin
hesaplama maliyetlerini makul diizeyde tutarken, LSSEMiitle korunumu performansini

iyilestirdigi bulunmustur.

Anahtar Kelimeler: En Kuguk Kareler, Spektral Elemantbthi, Uyusmaz Ag, Uyumlu

Siklastirma, Kitle Korunumu
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Use of computational approaches to solve flow problems arehi@g more common in non-
engineering disciplines such as biology or medicine. Thiiegtion areas of numerical flow
solution techniques in these disciplines can be furthexredé¢d by enabling people who have
little or no knowledge in numerical methods use such tealesgo solve their problems with
ease and success. Such an idea can be realized by the desetapirmumerical softwares
that have the ability to obtain an accurate solution fast effidiently with minimum user
intervention. In this context, adaptive grid (mesh) refieat{AMR) strategies come forward
as a way of automating the solution procedure. This thesi& wonstitutes the initial steps
of the development of a robust biological flow solver thatl wittain an accurate solution

automatically using AMR strategies.

This study focuses on numerical solution of viscous, lamiimecompressible flows since
flows concerning a wide range of applications including laaticle aerodynamics and hu-
man cardiovascular system are within the viscous incorsjiriesflow regime. Additionally,
many low speed flow applications like blood flow in artery ilweolaminar flow. The most
common numerical methods used in the solution of viscousnmeessible flows are the fi-
nite difference, finite volume and the finigpectral element methods. In finiteffdrence
method (FDM) [1], the derivatives in the governingfdrential equations are approximated
by discrete dferencing formulas. While FDM can result in very accurateisohs, see eg.
[2, 3], its application is limited to simple geometries. Inifé volume method (FVM) [4],

the problem domain is partitioned into small regions cafieite volumes. The governing



equations are integrated over each finite volume analijtibglthe virtue of Gauss’ Theorem
and diferencing formulas are applied to the resulting flux balampeatons. FVMs can be
applied to arbitrarily complex geometries. While FVMs asgially low-order accurate, they
are widely used in commercial flow solver packages and arkeapguccessfully to practical

engineering problems.

Alternatives to FVMs are the finite and spectral element waghFEM, SEM respectively)
that share common aspects in principle. Like FVM, both FEM &EM employ the dis-
cretization of the problem domain into a computational gochposed of small regions called
elements The approximate solution is represented by linear or higleropolynomial func-
tions over each element. The problem is solved by making ppeoaimate solution satisfy
a variational boundary value problem derived from the gover equations. In FEM, the ap-
proximate solution is represented by low order linear polgials. On the contrary, in SEM,
the approximate solution is represented by higher ordgmpohials (expansions). The main
difference between the FEM and SEM is the way the quality of theiealis improved. In
FEM, convergence to a grid-independent solution is achidyeusing smaller elements i.e.
geometric (h-type) refinement of the computational grid.tl@nother hand, in SEM, the poly-
nomial order utilized over each element can also be incceagiéhout dividing the elements,
through a process referred as p-type refinement. As a r&il, can employ both h- and p-
type refinements to improve the quality of the solution. Betfinement strategies enrich the
approximate solution by introducing additional degreefr@gdoms to solve. However, it is
known that for problems with smooth solutions, the errothie &pproximate solution decays
much faster with p-type refinement when compared to h-tyfireiment [5]. Therefore the
same accuracy can be obtained with SEM by using less numlsgoées of freedom than

FEM. In this study, a flow solver based on SEM is developed.

In FEM and SEM, the governing filerential equations can be transformed into variational
boundary value problems byftiérent methods. One option for this purpose is the Galerkin
method that corresponds to principle of minimum potentrargy in the case of solid me-
chanics [6]. Galerkin method has received great interest fFEM community in solid me-
chanics problems andftlision problems in fluid mechanics and heat transfer. Howexer
tension of Galerkin method to fluid dynamics problems witm@xtion encounters some
difficulties such as the necessity to us@etent orders of approximations for the velocity and

pressure unknowns or instabilities in solution that ari$ermvconvective transport is impor-



tant [7]. In solution of fluid dynamics problems, an alteivatto Galerkin method is the
least-squares methdtiat presents a general and robust way to handle flow probiétihgut
encountering such fliculties [8]. The solver developed in this study uses a spkeetement
method based on least-squares variational formulatign,raferred akeast-squares spectral

element metho(LSSEM).

The present study concerns with the use of LSSEM on hp-tymecoaforming grids [9].

In hp-type non-conforming grids an element may be adjacemidre than one element at
the same edge (h-type non-conforming) and the order of appadion (expansion) may
vary across elements (p-type non-conforming). hp-type-cwrforming grids are suitable
for AMR since the regions of the problem domain that requighér grid resolution can be
refined either by h-type or p-type refinement locally withaeffecting other regions of the
domain. Clever use of both h- and p-type refinements to olamioptimal computational

grid that solves the problem accurately with least amourtdoofiputational resources is not

straightforward and is a subject of continuing research.

Next section summarizes the literature that is relatedaathrent study.

1.2 Related Work

Least-squares (LS) method has been used as a way of findutgaslto overdetermined lin-
ear systems of equations since Gauss’ and Legendre’s piogeeorks in early 19. century
[10]. The application of least-squares method to partigiedential equations was introduced
by Bramble and Schatz [11]. In that work, a least-squaresditation and associated error
estimates were presented for the solution of boundary vatablems governed by even-
degree high order elliptic partial fiierential equations. This advance has been practically
important since such partial fierential equations are encountered in engineering prablem
such as momentum, heat and magiudion, and Euler-Bernoulli Beam Theory. At that time,
applications of least-squares method in developing finément methods were still limited
since least-squares method required higher regularithempproximate solution than clas-
sical Galerkin method did. This regularity requirementuitssin impractical finite element
base that are continuous and also have continuous firsalpdgtiivatives across element in-

terfaces [12]. Later, it was shown by Lynn and Arya [13] thed high regularity requirement
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of least-squares method can be circumvented by transfgrthim governing set of tieren-
tial equations into an equivalent set of first ordefetiential equations. Following this idea,
Zienkiewicz et al. [14] introduced a finite element methoddzhon least-squares method
to solve plane-elasticity and elastic beam problems. Irfdhewing years the approach of
equivalent set of first order equations became the commariigeao develop LSFEM and

LSSEM in the least-squares community.

Among the variational methods, Galerkin method has beemthst prominent one in devel-
oping FEM for problems of solid and fluid mechanics. The papty of Galerkin method
can be attributed to the fact that an arbitrary boundaryevphoblem without a known equiv-
alent variational form can still be formulated in Galerkiretimod and the Galerkin method
has the best approximating properties in energy norm férasibint equations that are ob-
served in solid mechanics andidision problems[8, 15]. The applications of Galerkin FEM
on such problems also result in linear system of equatiotis syimmetric cofficient matri-
ces which can be solvedteiently [16]. However, favorable properties of Galerkintime
are lost when it is applied to non-self adjoint equationshsag the Navier-Stokes equations
that arise in incompressible flow problems. In particulaaeé®in method does not have the
best approximating property for this type of problems [8Jdditionally, solution of incom-
pressible Navier-Stokes equations with FEM based on a Balerixed (velocity-pressure)
method requires the use oftidirent approximation orders for velocity and pressure tigfyat
the mathematical stability constraint: LadyzhenskayaiBaa-Brezzi (LBB) condition [17]
in order to avoid spurious pressure solutions [18]. It abgults in linear systems with non-
symmetric coficient matrices and zero-diagonal terms correspondingdsspre unknown

hindering the stability of temporal solution procedureg][1

Least-squares method iffered by Jiang [8] as a better alternative to Galerkin metbothie
solution of fluid dynamics problems. Its major advantagesr dhre Galerkin method can be

listed as follows:

e In FEM and SEM based on least-squares method, the same apptimx (expansion)
order can be used for all approximated unknowns withoutatiiog the LBB stability
condition. This feature of least-squares method enabkeslésired order of accuracy

for all unknowns and also simplifies the implementation wasksiderably [20].
e Application of LSFEM and LSSEM, even on problems governecbg-self-adjoint

4



partial diferential equations, results in linear system of equatiaitis symmetric and
positive-definite matrices. Thereforefieient iterative linear system solvers such as
preconditioned conjugate gradient method can be used T2ig.convenience does not
arise in the case of Galerkin and finite volume methods whesalting matrices are

mostly non-symmetric and also are not positive-definite.

e The governing equations of fluid flow and heat transfer hatferéint characteristics
for different flow regimes. The equations are elliptic for slow visc@iow and hyper-
bolic for convection dominated problems. Thed@atent characteristics require special
treatment in the case of Galerkin and finite volume methods.irfStance, upwinding
schemes are found necessary to account for the directiorfasfration travel in con-
vection dominated flow. Without upwinding schemes, bothhoés return unstable
results, therefore are useless. In the case of least-squeathiod, no special treatments
such as upwinding as well as artificial dissipation, staggeyrid or operator splitting
are necessary. In other words, least-squares method fwesenified approach to fluid
flow and heat transfer problems [8]. In fact, that point expahe great interest the
least-squares method has received recently from reseanibeking on computational

fluid dynamics e.g. [22-25].

As mentioned before, the practical application of LSFEM BB&SEM requires a set of first
order diferential equations. For the incompressible Navier-Stgkeblems, dferent sets
of first order equations that are equivalent to the higheeomtoblem can be derived by
introducing diferent auxiliary variables. The most commonly used auyiliariables are
the vorticity vectorw, velocity gradient tensoVU and viscous (deviatoric) stress tensor
The use of these additional variables result in the firseorehuation sets referred as the
velocity-pressure-vorticity Y — p — w), velocity-pressure-velocity gradient (- p — VU),
and velocity-pressure-stredd ¢ p — r) formulations respectively. These three formulations
involve different number of unknowns and havedtelient boundary conditions. They also
exhibit different convergence performances for the iterative linesiesy solution [26]. A
comparative study of the formulations was performed by @ind Tsang [26]. In that study,
CPU times and memory required by the formulations were coetpand it was observed
that theU — p — w formulation is a promising candidate for wide-range usessiit results

in the least memory use. It was also reported that p — o formulation may be useful

for non-Newtonian, viscoelastic fluids or turbulence peoh$ where stress variables are of
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interest. However it has the disadvantage of too many additivariables to solve. Following
this discussion, the present study usesUhe p — w formulation in reducing the governing

equations into an equivalent set of first ordefatiential equations.

A significant portion of the work on least-squares methoddess devoted to developing LS-
FEM for the solution of incompressible Stokes and Naviek8$ equations. The aspects of
mathematical framework such as error estimates upon hecgerce, optimality of the meth-
ods and well-posed boundary conditions were investigdt®dJ0—22, 27—-30]. The reference
books of Jiang [8] and Bochev and Gunzburger [31] can seraesasnmary of the work done
on those subjects. In the recent years, the focus of researthis area has shifted to de-
velopment of p-type FEM [21, 32, 33] and SEM [23, 24] basedienl¢ast-squares method.
SEM studies were conducted using both hierarchical bagiarestons [12, 34, 35] and nodal
basis expansions [12, 23, 36—42]. Additionally, Leastasgs spectral collocation schemes
are also introduced recently [25, 43-46]. While &atfient name: “collocation scheme” is
given to the methods in these studies, it can be shown thaEMS#hd LSSEM are equivalent
to weighted least-squares collocation schemes when thgrals arising from the variational
formulation are evaluated by numerical quadrature. In¢h&e quadrature points turn out to

the collocation points [8].

It can be observed that LSFEM comes with many advantageauigrés. However, it also
has some disadvantages against the Galerkin method. Namebducing the additional
dependent variables to obtain the equivalent set of firstroeduations increases the use of
computational resources i.e. CPU time and memory. NeJvedbéehe &ort to solve for the
additional unknowns may not be totally in vain since the addal unknown, for instance

vorticity, may be a quantity of physical interest.

Another disadvantage of the least-squares method is tHaEMSis known to result in so-
lutions with severe mass conservation violations esgdgciat the problems with inflows
and outflows [47, 30]. For LSSEM, the situation is improvedusg of high order expan-
sions but the mass conservation problem still persists [B8Fontrary to the least-squares
method, Galerkin mixed method is not associated with anysroasservation problems. The
reason for the lack of mass conservation can be understoadrbparing the way the con-
tinuity (divergence-free) constraint is imposed in Gailerkixed and least-squares methods.

In Galerkin mixed method, the continuity equation is in@ddn the variational formulation



as a constraint imposed by the method of Lagrange multiplidgrere pressure is the Lagrange
multiplier [19]. Therefore, the continuity equation is erded exactly in the Galerkin mixed
method. On the other hand, in least-squares method, thégiytresidual is minimized
in a least-squares sense along with the residuals of otlatiegs. Therefore the continuity
equation is not enforced exactly in the least-squares rdi8Bh Recognizing the cause of the
problem some methods and remedies to improve the mass eatiseproperties of LSFEM

and LSSEM were presented in the literature.

First of all, arestricted LSFEMwhere the continuity equation is enforced by the method of
Lagrange multipliers was suggested [47] to circumvent thesiwonservation problem. While
this method results in good mass conservation it also destie two favorable features of
LSFEM i.e. symmetry and positive-definiteness of thefigcient matrix. Furthermore, it

requires the solution of an extra linear system to determiieagrange multipliers [30].

Another approach suggested to improve mass conservatigtoviacrease thienportanceof

the continuity equation among the other equations by uswgighting factor (greater than
unity) in continuity contribution to squared sum of residuaThis approach results in the
weighted LSFENBO, 48]. The mass conservation can be enhanced by inceetsweight-
ing factor appropriately. However, such an improvement assnconservation is achieved at
the expense of momentum conservation. Moreover, the wegffdctor increases the con-
dition number of the resulting céicient matrix hindering the convergence of iterative and

accuracy of direct solution methods [38].

It was also reported that least-squares method, while bgudor mass conservation proper-
ties, conserves momentum better than the Galerkin mixedade®Additionally, it was noted
that mass conservation performance of LSSEM gets bettbeaxpansion order is increased
[38]. Both of these statements are valid. Neverthelessillibbe shown in the present study
(in section 4.3) that mass conservation is still an impdnaoblem of LSSEM since itféects

the formation of flow features such as recirculation regioeisind bldf bodies.

Decoupling the solution of velocity and pressure fieldsdlgioa consistent splitting scheme
was also found to befkective in recovering good mass conservation properties [dGuch
an approach, first, the velocity field is solved by applicatad least-squares method to an
advection-difusion equation and a divergence-curl system success®Padgsure is obtained

by substituting the solved velocity field in a Poisson equaéind solving it by either Galerkin



or least-squares method. This approach may be preferatble twiginal least-squares method
for the cases where the derivations of well-posed initial laoundary conditions are straight-

forward.

Least-squares penalty formulations were also reportedie good mass conservation prop-
erties [42, 45]. In penalty methods, pressure is elimindteth the governing equations
and the continuity equation is imposed in regularized fdmough a penalty parameter [19].
Success of such methods depends on the proper selectioa afljirstable penalty parame-
ter. Moreover the solution procedureffars from high condition numbers of the d¢beient
matrix if a penalty parameter that is too large is selectadthé studies of Prabhakar and
Reddy [42] an iterative penalty method is employed to keeptnalty parameter small and

the condition number of the ciggient matrix manageable.

Apart from these studies, a new first order formulation ferittcompressible Navier-Stokes
equations was introduced to use with the original leastsszgimethod [49, 50]. The new
formulation involves a new variable that is the combinatdmpressure gradient and convec-
tive accelerationr = Vp + Re(U - VU) whereReis the Reynolds number. While the new
formulation results in good mass conservation, applicadiboundary conditions associated

with r is quite involved and requires further study [49].

Most recently, it has been shown that use of few and large exiesnwith high expansion
orders in LSSEM results in good mass conservation. Thislidsaalso been verified in the
present study. Nevertheless, the use of high expansiomsoudéformly across the solution

domain is computationally prohibitive for practical prebis and should be avoided.

Another interest of this study is the hp-type non-confoigngmids. In practice, hp-type non-
conforming grids are obtained by constructing an undeglyirtype non-conforming grid and
use of a high order method like SEM with varying orders of egi@an over elements. One
popular class of h-type non-conforming grids are non-canfiog Cartesian Grids (NCG). In
NCGs, the computational grid is obtained by recursive suisidn of the domain into square
(in 2D) or cubic (in 3D) regions. The level of subdivision magry across dferent regions of
the domain, resulting in a h-type non-conforming grid sinoe. NCGs are popular in recent
AMR studies since theyfter an elegant way to discretize domains with complex-moving
boundaries[51]. Moreover, NCG has a flexible grid structuhéch allows for dficient im-

plementation of AMR [52]. In other words, the practical aspaf using NCG is the ease of



grid generation and adaptation. There is a great amount € wo h-type adaptive refine-
ment on NCGs with low order methods like FVM or FDM. See eg., [58] One focus of
studies is on thémmersed boundary methods (IBMhere the computational grid does not
conform to the boundaries of immersed bodies. Tifecss of the boundaries are simulated by
addition of singular body forces in the formulation. Thea tisual FVM or FDM is applied
[55, 56]. Since the grid is not required to conform with coexpboundaries, grid generation
and adaptation is straightforward. However, IBMs are ndtable for high order methods
like SEM. Use of relatively large elements in SEM rendersahpplication of boundary con-
ditions complicated and existence of singular forces imidation hinders the exponential
convergence properties of SEM. Another approach for thetisSEEGs is the cut-cell method
[51] where the grid conforms with the boundaries of immerbedies. For this purpose,
the NCG generated across the domain is modified to form a ooirfig unstructured grid
near the boundaries. The presence of unstructured gridlmatgs the grid generation and

adaptation. Nevertheless, the cut-cell method can be ugkdhigh order methods.

Studies on hp-type non-conforming grids based on NCGs #&mvedy limited. Studies to
devise a universal hp-type adaptive refinement strategypéeas of particular importance in
that context. Through the series of related studies by Devritzoet al. [9], Oden et al. [57]
and Rachowicz et al. [58], the constrained approximatiothote which is also used in the
present study, was introduced to construct the solution bp-type non-conforming grid
[9]. Secondly, several error estimates to drive hp-typeptda refinement were proposed
and compared by solving model problems on simple domainsast concluded that error
estimates based on element residudlerca good compromise between accuracy and com-
putation cost [57]. Finally, an hp-type adaptive refinem&nategy that aims to minimize
the error with a fixed number of degrees of freedom was prapol$evas observed that the
hp-type adaptive refinement strategy can lead to expoheatizs of convergence even for
problems where the solution has large gradients and the iddma geometric singularities
[58]. Another study was by Henderson [59] where an erromet based on the expansion
codficients of an high order expansion of the SEM solution was gseg to drive h-type
adaptive refinement on an hp-type non-conforming grid caagoof elements with fixed

expansion orderg = 7 in specific).

Adaptive refinement studies with least-squares methodagiee 1One important study is by

Jiang and Carey [60] which proposed an error estimate baséehst-squares functional to



drive h-type adaptive refinement with LSFEM. More recentiytie work of Cai et al. [61],
LSFEM is used together with a grid deformation method (atferred as r-type adaptive
refinement) where a FEM grid composed of fixed number of elésrismeformed to capture
the interfaces and boundaries. The error estimation instiiaty was also based on elemental

residuals.

1.3 The Present Study

In this study, a two-dimensional incompressible flow solvased on least-squares spectral
element method (LSSEM) is developed. the focus of the staidyisolutions with LSSEM

using p-type adaptive refinement on hp-type non-conforrgimds when available.

As stated in Section 1.2, the adaptive refinement studideiliterature focus on h-type adap-
tive refinement on non-conforming Cartesian grids with lowes methods. p-type adaptive
refinement studies are limited. In particular, adaptivenesfient studies in least-squares lit-
erature are restricted to h-type refinement [60] and r-tgfi@ement [61] with LSFEM. The

adaptive refinement studies presented in this thesis iesgivtype adaptive refinement with

LSSEM and aims to address this gap in the least-squarestliter

The survey of the related work reveals that the poor masseceation properties of least-
squares method and the ways to improve it have receivedigtesdst recently. The remedies
proposed in the literature involve modification of the amaileast-squares formulation and
they cause some favorable features of the formulation toste Recently it was shown that
good mass conservation can be achieved by the originaldgastres formulation using few
and large elements with very high expansion ordgrs<(20) [46]. Implementing such an
approach on a conforming grid results in excessive and wssacy refinement. Therefore
it is computationally impractical. In the present studyisitshown that mass conservation
performance of LSSEM can be enhanced by using p-type adéamfinement strategies up
to the same accuracy as the uniform refinement while keemngpatational costs practical.

For additional discussion on this subject, one can refeetdién 4.3.
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1.4 Thesis Outline

Chapter 1 introduces the motivation of the thesis, the edlatork, the present study, and
the outline of the thesis. Chapter 2 presents the goverrgogt®ns solved in this study,
and overviews the theory of the least-squares method anéadbesquares spectral element
method. Chapter 3 illustrates the features and implemientatghlights of the LSSEM flow
solver developed in this study. In Chapter 4, the LSSEM flolvegds validated by solving
of several test problems and comparing the results withitdi@ature. Chapter 5 summarizes

the findings of the thesis and presents ideas for future work.
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CHAPTER 2

MATHEMATICAL FORMULATION AND NUMERICAL
METHOD

This chapter presents the governing equations of the lanmcampressible flows solved
in this study, the formulation of least-squares method aeddast-squares spectral element

method.

2.1 Governing Equations

Conservation of momentum in viscous flows is governed by thgéd-Stokes equations. By
incompressible and Newtonian fluid assumptions, the N&&tiekes equations can be written
in terms of velocity field and pressure as the unknowns (digervariables). Navier-Stokes
equations are solved together with conservation of masgifeoty) equation to determine
the dependent variables. Then for the viscous, incomnlesow of a Newtonian fluid, the

governing equation set is as follows:

V-u=0 (Continuity) (2.1a)

‘;_Lt’ +Uu-vu + lvp —wWau="f (Momentum) (2.1b)
P

whereu is the velocity field,p is pressuref is the body forcep is density and’ is kinematic
viscosity. u and p are the dependent variables that are functions of both spa@bles and

time. f, p andv are assumed to be constant.
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2.1.1 Velocity-Pressure-Vorticity Formulation

Egn. set (2.1) is referred as thamitive variable formof the governing equations. It involves
second order derivatives in the viscouffukion term. As stated in section 1.2, direct appli-
cation of least-squares method to eqn. set (2.1) is impaddtL3]. Therefore the governing
equations are reformulated into an equivalent set of fidgodiferential equations by intro-
ducing an auxiliary unknown. It this study, vorticity vectw = V x u is used for this purpose.

By using the vector identity:
V2u=-Vx(Vxu) + V(V-u) (2.2)

and the conservation of mass, eqn. (2.1a), also referrdtbds/ergence-free constrainthe

governing equations become:

V-u=0 (Continuity) (2.3a)
ou 1
it +U-Vu+ -Vp+ywWxw=f1 (Momentum) (2.3b)
P
w-Vxu=0 (\Vorticity Definition) (2.3¢c)

Egn. set (2.3) is known as the “velocity-pressure-vorticitu — p — w) formulation of the
Navier-Stokes equations. Other equivalent sets of firstrasgstems based on velocity gradi-
ent, viscous stress tensor and stream function are aldalaiesi26, 48]. As stated in section
1.2, velocity-pressure-vorticity formulation is selattdue to it's widespread use in least-
squares community, low memory requirements in implemamtaind the fact that vorticity
is an physical quantity of interest that should be calcdlaiesome point in solution. It can
be noted that egn. set (2.3) involves only first order dakigat Therefore, the application of
least-squares method to Eqn. set (2.3) can be realized bigaieC°-continuous finite and

spectral element bases [12].

2.1.2 Time Stepping Method for Time Dependent Problems

It should be noted that the solution of Egn. set (2.3) depemdsime as well as spatial
variables. SEM and FEM solutions for time-dependent problean be obtained in two

alternative ways:

1. Space-Time Coupled Formulation: Both temporal and apadriations of the un-

knowns are approximated by SEM (or FEM). In this approache tappears as an addi-
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tional dimension in the spectral element formulation. Ratance if a two-dimensional
problem is to be solved by a space-time coupled SEM fornaratiree-dimensional

spectral elements are used to construct the approximatéosol

2. Space-Time Decoupled Formulation: The temporal andadpadriations of the un-
knowns are assumed to be separable. The most common praiticgpace-time de-
coupled formulations is to approximate the spatial vasiatdof the unknowns using
SEM or FEM while the time dependence is approximated by fitifference formulas.
[19].

Several space-time coupled LSSEM formulations are regarntéhe literature [32, 33, 62].
The advantage of these formulations is the high accuradynie. tHowever space-time cou-
pled formulations are not commonly used in practical ajppilins since their application to
three-dimensional problems are computationally prokiif62]. Therefore, in this study
a space-time decoupled formulation is used. For time stgppi-family time integration
scheme [19] is selected for it's simplicity. In this studigtgoverning equations are first
discretized in time using the time integration scheme. L®S& applied to the resulting

semi-discrete equations.

In a-family time integration scheme, the integral of a functii{t) over a time intervalt(t +

At) is approximated as:
fHAt f(t)dt = At [(1 - a)f(t) + af(t + At)] (2.4)
t
= At [(1— @) fy + afyya] (2.5)

whereq is a parameter between 0 and 1. The subscriptsdn + 1 are the time step indices

that correspond to timesandt + At.

In the way to obtain a time stepping method for the governopgagions, it is assumed that the
solution of the eqgn. set (2.3) is known at timerhen eqgn. (2.3b) is integrated over the time
interval ¢, t + At). Note that the other equations in the eqgn. set (2.3) neeldeimttegrated in

time since they do not involve any time dependence.

t+AL ou t+AL 1 t+AL
f —dt+f (u-Vu + —Vp+vV><w)dt:f f dt (2.6)
t ot t p t

———

Unt+1—Un

The first term on the right hand side of eqn. (2.6) can be iategrexactly by the Fundamental

Law of Calculus. The rest of the integrals are approximatii thie o-family time integration
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scheme, eqn. (2.5). At that point, the subscript 1 is dropped from the unknowns to be
solved for brevity. The subscriptis kept to indicate that the associated variables are known
from the solution of previous time step. Then eqn. (2.6) bezs

u-—Up
At

+ (1—01)(un-Vun + :—LVpn + via)n)+
P
a(u-Vu + }Vp+vV><a)):(1—a)fn+af (2.7)
P

where all terms have been divided Ay for convenience. Since body foréds assumed to
be constant, right hand side of eqn. (2.7) reduces te-"@f, + af = f”. The terms with
subscriptn are known from the previous time step. Therefore they can dethto the right

hand side. Then egn. (2.7) becomes:

1
£+a(u-Vu+—Vp+viw):f* (2.8)
At P

where

1
f*=f+@—(1—a)(un-wn+ —Vpn+VV><wn) (2.9)
At p

It should be noted that all terms constituting the new rigirtdhside vectof* are constants or

known from the previous time step.

2.1.3 Linearization of Non-linear Convective Terms

An additional approximation to the governing equationseafrom the fact that the convec-
tive acceleration term - Vu in the Navier-Stokes equations is nonlinear with respetié¢o
velocity field. This non-linearity can be eliminated by wsian iterative procedure based on
the Newton’s method [63]. Newton’s method involves a firstesrvariational approximation

to the non-linear term with:
TR TS SETLIR TL I TL S TS T T (2.10)

where superscripk is the non-linear iteration indexuk are known from the previous non-
linear iteration.uk*! are calculated in the current non-linear iteration andtiultesd as known
values in the next nonlinear iteration. Substituting e¢h1@) in egn. (2.8) and rearranging
the terms:

u 1
E+a(uk-Vu+u-Vuk+—Vp+vV><a)):f* (2.11)
P
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where

u 1
f*=f + A—z +auk-vuk - @-a)|un-Vu, + = Vpp + viwn) (2.12)
P

Again, the superscrigt + 1 is dropped from the unknowns for simplicity. The momentum
equation (2.11) can be written together with the contineiqy. (2.3a) and the definition of

vorticity (2.3c) to obtain the final form of governing equoats:

V-u=0 (Continuity) (2.13a)
1

% +a (uk VU + u-VuK + ZVp+ vV xw) = f* (Momentum)  (2.13b)
P

w-Vxu=0 (Vorticity Def.)  (2.13c)

where

f*=f + Z—'; + auk.vuk - (1—a)(un-Vun + %Vpn + viwn)
Both time stepping method and the non-linear convectivaseesult in iterative solution of
the governing equations. At each time step, an iterativetisol is performed to solve the non-
linear system of equations. The inner iterations can beiteted when the some measure
of the change in the velocity magnitude or the individuabegly components is less than a
tolerance. In this study, the relative change in the Eualideorm of the x-velocity unknown
vectori is used as the non-linear error measure:

~Mk+l Mk
(IO —T"|2
W < Enonlinear (2.14)

Common values fognoniinear is from 10 to 1076 for which non-linear convergence is usually
achieved in less than 5 iterations. Nevertheless, the lacbmaergence rate depends on the

problem solved.

In this study, the governing equations are solved for twuoeatisional problems based on

Cartesian coordinateg,y). For this case eqn. (2.13) reduces to:

% + Z—\;:O (2.15a)
§u+a(uk%+ %+u%—f+v%+%%+vg—i)zf; (2.15b)
Aitv+a(ukg—:/(+vkg—\;+ %—V:+v%+%g—5—vi—i)=f; (2.15c)

w—g—\)/(+g—;:O (2.15d)

16



where

i 1 o auk au ouy 19 dw
fr = fe + Ktun+a(u"—x +vk—) - (1—a/)(un—)? + Vnﬁ_; + /—)a—r))? + v Gyn)

(2.16a)
( kavk+vkavk) ~ (l—a)( navn ovn  10pn awn)

ox "y T ooy TV ox
(2.16b)

Here,uis the x-component of the velocity vector (x-velocity) and the y-component of the
velocity vector (y-velocity). p is the pressure and is the z-component of vorticity vector.
For two-dimensional flows, vorticity vector is in z-diremti. So the subscript is dropped.
Subscriptsx andy denote the x- and y-components of the other vector quastifin. set

(2.15) are solved for the four dependent variables, p andw.

Egn. set (2.15) is the final form of the governing equationiss found convenient in im-
plementation to keep the governing equations in dimenkimnan. In the next section, the

least-squares method is applied to the egn. set (2.15).

2.2 Least Squares Method

In this section the mathematical formulation of least-sgsanethod is derived from varia-

tional principles.

2.2.1 Definitions

The derivation of least-squares formulation is illustdatsing the following model boundary

value problem (BVP):

Lu=f onQ (2.17a)

Bu=g o0noQ (2.17b)

where
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Q . Problem domain

0Q : Boundary of the problem domain
L A1%torder, linear partial dierential operator
u : A scalar valued unknown function
f : Right hand side (RHS) function
B Analgebraic boundary operator
g . Boundary function
The problem domain and the boundary are composed of poiat$x, Xo, - - - , Xng,} Where

Nsq is the number of spatial dimensions. The unknown and the R¢¢®ware functions of
X. In this problem, the dierential operator involves first order derivatives only.efidfore,
the boundary operator imposes boundary conditions thabievthe unknown itself and not
it's derivatives i.e. only essential boundary conditioBs¢ating that the boundary operator is
algebraic signifies this point. The BVP (2.17) is assumedetavbll-posed and therefore has

a unique solution.

The discussion starts with the assumption that the RHSifumdtis square-integrable af.

In other words,f is a member of the space of square-integrable functior@:drf(Q).

The space of real valued square-integrable functions inelbfs:

f u2dQ < oo} (2.18)
Q

L2(Q) is an inner product space. Therefore the orientation ofrtvemnberay, ve L2(Q) can

LZ(Q):{U:Q—>R

be measured by the inner product:

(U, V) 2q) = f uv aQ (2.19)
Q

and a measure of the size of a member is provided by the inodugrinduced norm:

1/2
ull 20 = ( L u dQ) (2.20)

When it comes to the unknown functiorit is observed thall must be square-integrable even
when operated by the first order lineaffdrential operator/. It can be shown that is a
member of a subspace bf(Q): H1(Q) which is one of the Hilbert spaces [64H1(Q) is
defined as:

HY(Q) = {UG L2(Q) ‘3—: el?(Q),i=12---, Nsd} (2.21)
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This space is also an inner product space equipped with lloevfog inner product and norm:

Nsd
ou ov
(U Vi) = (U, V) 2(q) + (— —) (2.22a)
i; 9% 0% 12
Nag 1/2
ou
_ 2 2
[ [||u||L2(Q) + Zl: ||6—)q||L2(Q)] (2.22b)
1=

When a solution to the BVP (2.17) is to be found using a vaneti method like the Galerkin
or least-squares methods, the solution is sought amongehgoers of these function spaces.
Both L2(Q) andH(Q) are infinite dimensional spaces. In finite element and splesiement

applications, approximate solution is sought in finite disienal subspaces 6f*(Q).
The solution of the BVP (2.17), can be decomposed into two components:
U= Up+ Up (2.23)

whereu, is the part of the solution that satisfies the homogeneouadaoy conditions i.e.
Bu, = 0. On the other handyy, is the part that satisfies the original non-homogeneous
boundary conditions in the boundary equation (2.17b). ptosedure is referred as thiing

of the solution15]. Lifting is used for convenience in deriving the vaitatal formulations
and applying boundary conditions in implementation. It bamoted that a suitablg can be
found by the mere knowledge of the boundary conditions. &foee, it is actually a known
function. Thenu, is the new unknown of the problem. It is a member of the sulesjodic

H1(Q) that satisfies the homogeneous boundary conditibi3é2) = {UE HQ |Bu = O}.

When an approximate solutian &part from the exact solution, is substituted into théedi

ential equation (2.17a),r@sidual Rthat is a non-zero function an arises:
R=LU-f#00onQ (2.24)
This residual function is of interest in the variational hreads.

Finally, the concepts dlinctionalandvariation of a functiorare introduced briefly. A func-

tional is a function whose argument is also a function [19}. iRstance in:

du du
F(x, u, &) =X+ 2u—, i (2.25)

F is a functional of the functiomu and it’s derivative%’(, which are treated as independent

variables.u and%’( themselves are functions &f
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Another concept is the variation of a function. The variatad functionu, denoted byu, is
an admissible change frooto another functiom+ éu for the fixed values of the independent
variablex [19]. The change is admissible in a way thatyis prescribed as some values of
X, for instance through a boundary conditién,must be zero at these valuesxadinceu can

not be varied thereju is otherwise arbitrary.

First variation of a functional is analogous to théeliential of a function. It is the change in

the value of the functional with respect to variations is ftinction arguments:

oF(x,u, &) = —ou+ ax (2.26)

du, oF a_Fé(du)
ou a(%l()

In egn. (2.26) there is no term involving variation since it is kept constant through this
process.

An extremum (local minimum or maximum) of a functiancan be found by setting it's
differentialdu to zero and solving for independent variable Similarly, an extremum of a
functional can be found by setting it's variational to zenaol golving for it's function argument

u.

For additional information in calculus of variations, oranaefer to Reddy [19].
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2.2.2 Least-Squares Formulation

Least squares formulation is obtained by applying the {egsares method to the BVP (2.17).
Given an arbitrary functiome H(Q), the residual is given by egn. (2.24):
R=Lu-f=+0 (2.24)

An integral functionalZ can be defined by having the square of the residual and ititegra
overQ:

ou du ou
— S P R2dQ 2.27
=1 Xy’ 0xo” astd) jg; ( )

The functional? is referred as théeast-squares functionallt can also be defined as the

square of thé.>-norm of the residual function. i.€. = ||R||f2(g).

In least-squares method, the solutiothat makes the least-squares functional a minimum
is sought. This is achieved by having the first variation & kbast-squares functional and

requiring it to be zero fou.

6 = 5f R? dQ =0 (2.28)
Q

6f(£u—f)2d§2= 0

Q

= fé(Lu—f)de: 0
Q

The last step in egn (2.28) is possible since variation atehiation operations are inter-

changeable. Performing the variation operation,
2 f(lju— f)(6Lu)dQ =0 (2.29)
Q

The variation and diierentiation operations are also interchangeable. Bh€n) = L(6u).

Denoting the variation afi by v for convenience,
f(llu— fyLvdQ = 0 (2.30)
Q

It should be noted that, whilee H1(Q), ve H3(Q) c HY(Q). Since the solution is specified
at the boundary through the boundary condition (2.1718, v#iriation is zero there. It is
desirable to seek the solution in the same space as it'siearial herefore the solution can

be lifted using eqn. (2.23) Substituting egn. (2.23) int@( and rearranging the terms,

f LvLuydQ = f Lv(f — Lup) dQ (2.31)
Q Q
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Then the least-squares formulation for the BVP (2.17) castaied as:

Find un e H3(€) such that
vaLuh daQ = fjjv(f — Lup) dQ (2.32)
Q Q

For allve H3(Q)

After finding up, U is obtained by eqgn. (2.23).

Since Hcl)(Q) is infinite dimensional, problem (2.32) requires simu#tans solution of in-
finitely many equations. In the spectral element mett{<) is replaced by a finite dimen-

sional subspace, sdtyé’hp(Q).Then the approximate solutiouﬂp is sought in that space.

2.2.3 Extension to Problems with Multiple Equations and Unkiowns

The least-squares formulation in the previous sectionriset® for a BVP with a single equa-
tion and unknown. However the governing equations intreduo section 2.1 involves mul-
tiple equations and unknowns. In particular, there are éguiations: the continuity equation,
two components of momentum equation and definition of vityfiand four unknowns: the

x-velocity u, y-velocity v, pressurep and vorticityw. For this case, the least-squares formu-

lation can be derived in a similar manner.

If the governing equations (2.15) are written in operatotrindorm:

ol ol
1 Juk 04 il Ak @0 K] *
At + Cl’( ox +u x + Vk(')y) @ ay p OX av ay v — fX
il il i) ad 0 *
age +(Y(6y + U 6X+Vk ) 03y Vg P fy
ol ol
W ~9x 0 1 w w
S~ Y=
£ u f
(2.33)

Here L is anNegnx Ny differential matrix operator, the unknown vectorand the right-hand-

side vectorf, areNy x 1 vectors wheréeqn is the number of equations aht, is the number

of unknowns (or dependent variables).

The vector valued.? andH?! spaces are defined by the Cartesian product of corresponding

scalar spaces i.€.2(Q) = (L2(Q))M andHY(Q) = (H1(Q))N.
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Defining the residual aR = Lu - f, the least-squares functional becomes:
I= f RTRdQ (2.34)
Q

The least-squares formulation for a BVP with multiple eguad and unknowns can be ob-
tained by carrying out the procedure outlined in the previsaction. The resulting least-

squares formulation is:

Find up e H3(Q) such that
f (Lv)" LupdQ = f (LV)T (f = Lup) dQ (2.35)
Q Q

For allv e H}(Q)
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2.3 Least-Squares Spectral Element Method

Spectral element method (SEM) is an approximate solutiohnigue which uses a combi-
nation of the sub-domain division approach of finite elenmeathods (FEM) and high order
approximation of spectral methods (SM)[65]. As in FEM, tleerdin is divided into several
sub-domains (elements). While FEM utilizes lineaf @rder) polynomial approximations
of unknowns over each element, SEM follows the approach oB8Mapproximates the un-
knowns using high-order expansion bases over each elertre8tM, high-order expansion
bases are in the form of either the Fourier series or orthalgaolynomial expansions. In the
case of SEM, use of Fourier series is restricted to the pnableith periodic solutions. Poly-
nomial expansions are found more suitable otherwise. Bighidy, a polynomial spectral

element due to Patera [65] is employed.

Spectral element methods havefelient names based on the underlying variational formu-
lation. The least-squares spectral element method (LSS&kBsically a spectral element

method based on the least-squares formulation introdurcselcition 2.2.

Numerical solution with LSSEM is performed in the followisteps:

Domain Decomposition

Approximation of the Unknowns

Calculation of the Elemental System of Equations

Assembly of Global System of Equations from Elemental Syste

Solution of the Global System of Equations

2.3.1 Domain Decomposition

In both FEM and SEM, first, the problem domain is divided intb-slomains, referred ade-
ments Domain decomposition is arffigient way of handling complex domains and arbitrary

boundary conditions [8]. Figure 2.1 illustrates the dondgsomposition process.

The idea of domain decomposition emerges from the fact thattagral over a domain can

be written as a summation of non-overlapping sub-domaissa fesult, integrals that appear
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Figure 2.1: Domain decomposition from global domg&ino element€®

in the variational formulations such as eqn. (2.31) can bgemras follows:

L(...)dgzLl(...)ldghrLz(...)ZdQZJF...+Le(...)edge (2.36)

In general practice, two-dimensional domains are decostipgo triangular or quadrilateral
elements or a combination of both. While, triangular elets@novide better flexibility in de-
composing the domain their use in spectral element studédénaited when compared to the
guadrilateral elements. The problems with the triangulements are mainly the necessity
to use impractical coordinate transformations and thelpmof finding basis expansions
on triangular domains with good approximation propertiest &lso allow for ficient im-
plementation [66]. The drawbacks of triangular elementsl teo be eliminated in recent
studies [66—68] Nevertheless, quadrilateral elementstilf@ssociated with moreflcient
implementation due to tensor product basis functions. imgtudy, the problem domain is

decomposed into quadrilateral elements.

Before presenting the approximation of unknowns over teenehts, a word about the ele-
mental coordinates is necessary. The®nt implementation of FEMSEM depends on han-
dling of the arbitrary coordinates of elements in a standgaathner. For this purpose, every
element is transformed onto a corresponding standard atesine elemental operations are
performed on the standard element. Figure 2.2 shows amaaybifuadrilateral element on the
right and the corresponding standard element on the lef.sténdard element is associated
with coordinates, n where—1 < &, 7 < 1. The coordinates of the physical domain= (X, y)
can be defined as a function of standard domain coordinategd, ) = (X(£, 1), Y(&,17)). As

a result, transformation from an arbitrary element to tl@dard element and vice versa are
available. The details of the standard element and codsdirensformations are presented in

section 3.2.1.
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Standart Element An Arbitrary Element
Figure 2.2: An arbitrary quadrilateral element and theesponding standard element

2.3.2 Approximation of the Unknowns

After the domain decomposition, unknowns are approximbietasis expansions over each

element.

An approximate solution of a single unknown over an elengemépresented by®, can be

written as;:

NSOF_l

W)~ ) = ) Ti(x); (2:37)

i—0
where U are the expansion cfigients that are to be found. They are also referred as the

elemental degrees of freedom (DOFg)(x) are the basis functions amf - is the number
of elemental degrees of freeddbmWhen the basis functios;(x) is given as a function of
physical domain coordinates, it is implied that the basiscfions are actually defined on

the standard element and transformed on the elemleythe coordinate transformation=

X(€,m).
.
Eqn. (2.37) can be written in vector form by defining the vexta® = (08, as,--- ,OeNeo -1)
DOF
.
anda(x) = (¢o(x). #1(x). - . éng . -1(x)) as:

we(x) = 087 ¢(x) (2.38)

1 The array indexing in the text follows the convention af-Cprogramming language where dummy indices
start from 0.
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The unknown vectou = (u,v, p,w)" introduced in egn. (2.33) involves multiple dependent
variables. As stated in section 1.2, least-squares metitmasafor the use of equal order
approximations for all of the unknowns of the problem. Tlam each unknown in can be

approximated by the same basis expansion. In matrix natatio

0ex) = U p(x) (2.39)
where
0g Vi Po g $o(X)
- as e ps ws X
qe=| 1 P1 1 and  $() = ¢1F )
ltli'l%o'fl veNSOF_l pﬁlgOF_l &)eNgOF_l— ¢NBOF_1(X)
(2.40)

In egn. (2.40Ng stands for the number of elemental degrees of freedoms pendent

variable.

The expansion presented in egn. (2.37) camloelal or nodal depending on the choice of

basis functions.

Restricting the attention to one-dimensional problemstlfiertime being, in modal expan-
sions, the basis functions are polynomials with increasirder. This type of expansions
are also calledhierarchical expansionsince a modal expansion of ordprcontains all the
basis functions of a modal expansion of orgeer 1 plus an additional polynomial of order
p. Modal expansions are constructed by using an orthogohalf @alynomials as the basis
functions. Examples to such orthogonal sets of polynonaiedshe Chebyshev and Legendre

polynomials that are the special cases of the family of Jgoalgnomials [15].

In nodal expansions, the basis functions are polynomialseocdame order. A nodal expansion
of order p is constructed by selecting a set pf+ 1 points {gi}ipzo which is known as the
collocation grid Thenp + 1 polynomial functionsl_i(g)ip:0 of order p can be defined by

requiring that
1 ifi=]j o
Li()) = dij = ij=12---,p+1 (2.41)
0 ifi#]
Eqn. (2.41) is referred as tteardinality (kronecker deltaproperty of the basis expansion.

The resulting basis functions are essentially the Lagramtgepolating polynomials passing
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through the points of the collocation grid. For instancg¢) is the Lagrange interpolating

polynomial that is 1 at thé" collocation point and 0 at all other collocation points.

It is due to the cardinality property that the expansionfliccients (¢ in nodal expansions
are same as the unknown values evaluated at the points otattin grid. So the one-

dimensional nodal expansion of the unknow(r) takes the form:

p
u@) = > uLi(®) (2.42)
i=0

wherey; is the value of the unknown evaluated at the corresponditigoation point: u; =

u(éi).

Up to now, only one-dimensional basis functions are dismis$-or two-dimensional prob-
lems, the set of basis functions can be constructed by tlseitgmoducts of the sets of one-

dimensional basis functions defined toandn separately.

In this study, the unknowns are approximated by nodal expass The one-dimensional
basis functions are the Lagrange interpolating polynasritzit pass through the points of the
Gauss-Lobatto-Legendre (GLL) grid. The points of the GLqug-‘i}ipzo are the roots of the
polynomial (1-£)(1+¢) P'p(g), £ €[-1, 1] wherePy(¢) is the Legendre polynomial of order
Then the one-dimensional Lagrange interpolating polyabwii orderp that passes through

thei™ point of the GLL grid{gi}ip=0 can be given as:

(1- 9L+ &PyE) .
SRR s R 249

Li(€) =

Following the tensor product approach, the basis functawaslefined as the product of one-

dimensional Lagrange interpolation polynomials:

0<i<pe
0<j<py
Pk(X(€,m) = Li(€) Lj(m), (2.44)
0 <k<Njo—-1

NSOF = (p§ + l)(pr] + l)

It can be noted that the two-dimensional basis functionguves the cardinality property of
the Lagrange interpolating polynomials. Therefore theneletal DOFs can be associated
with physical locations on the element calleddesor nodal points In this study, the nodal

points are essentially the set of points formed by the tepsmiuct of one-dimensional GLL
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Figure 2.3: One-dimensional Lagrange interpolation poigials and the resulting two-
dimensional basis function

grids of appropriate orders. Then the elemental DOFs catdntified as the unknown values

evaluated at the nodal points. In that case, the approxiswdikion is represented by:

NSOF_l
W)= > uge(x)  OR  u(X) = UT$(x) (2.45)
k=0
where
ué = (U Vi Powi)’  and UE, = (uﬁ)n, k=0,1,---,N&oe, N=0,1,---,N,

Uk, Vk, Pk» andwy are the unknown values evaluated at nodal pkiritigure 2.3a illustrates a
pair of Lagrange interpolating polynomials(¢) andL (). Figure 2.3b presents the resulting
two-dimensional basis function. The basis function is 1atak and O at all other nodes.

Nodek is the node that has the coordinatgsi;).

2.3.3 Calculation of the Elemental System of Equations

The integral in the least-squares formulation (2.35) cawiien over each element as:

f L& L) dae = f L) (f)dQe (2.46)
Qe Qe

If the elemental unknowns®, their variations/® and the force vectdi® are approximated by

the nodal basis expansions in egn. (2.40), egn. 2.46 becomes

veT( L' Lo dQe) ue = Ve | £o" (E®dae (2.47)
Qe Qe
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where

L =|L(g0). L)+, Ldng,.1)] (Negnx NE) (2.48)
Ue = (U5 ] - e 1) (NS x 1) (2.49)
Ve = ((6u9g . (U] .- (U ) (NEx 1) (2.50)
E® = ((F)0 . (1) o . (e 1) (NS x 1) (2.51)

NG = NuxNg ¢ is thetotal number of elemental DOFhat is the number of elemental DOFs
used to approximate all of the dependent variabld$is referred as thelemental solution
vector It can be noted that the elemental variation vestbiis present in both sides of the

equation (2.47). Therefore it can be discarded. The regudtet of equations:

KeU®=F® (2.52)

where
Ke = fg ) Lo" LpdQ® (NE x N©) (2.53)
Fe= N L' (E®) dO° (NE x 1) (2.54)

K€ andF*€ are known as thelemental sfiness matrixandelemental force vectaespectively.

2.3.4 Assembly of Global System of Equations from Element&ystems

The next step is the summation of elemental integrals astridited in eqn. (2.36). The
integral summation is implemented by ditect stffness summationperation where the a
global system is assembled from elemental system of equsatiBince approximate solution
is continuous across element interfaces the elementabwrishat a common interface of two
elements correspond to the same global unknown. Assodiatied in elemental systems are

summed together and enter the global system as single terms.

The global system of equations is:

KU =F (2.55)

whereK is theglobal stifness matrixU is theglobal solution vectoandF is theglobal force

vector.
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2.3.5 Solution of the Global System of Equations

The global system of equations (2.55) can be solved by bethtive methods [8] and direct
methods [44]. In the case of LSSEM, the globaffatss matrix is symmetric and positive
definite. This feature allows for use dfieient iterative linear system solvers such as precon-

ditioned conjugate gradient method.

The assembly of the elemental systems into a global systamtisecessarily performed
physically. The system can be solved by a Jacobi preconditiconjugate gradient method
through an element-by-element (EBE) procedure where titwagjcodficient matrix is never

constructed [60]. In the so-calledatrix-free method21], the memory requirements are
further reduced by not keeping the elemental systems in #@ary, instead recalculating
them at each linear solver iteration. Such an approach iscesdly required when solving

large three-dimensional problems where forming the glslgatem or keeping the elemental

systems in memory require excessive resources.

The design of the solver presented in this study is currédotysed on solving two-dimensional
problems. For two-dimensional problems, keeping the eteahsystems in memory through
the linear solution process is still feasible. Since theneletal systems are calculated only
once for the linear solution, such an approach is espedifiilgient as far as computation
time is concerned. Therefore In this study, the global systé equations are solved using
a Jacobi-preconditioned conjugate gradient method in Eamdent-by-element (EBE) proce-
dure where all elemental systems are present in memory atthe time. The approach to
keep the elemental systems in the memory is also motivatestdtiz condensation that is

introduced in section 3.2.4.

31



CHAPTER 3

LSSEM FLOW SOLVER

3.1 Introduction

Atwo-dimensional incompressible flow solver based on tegstares spectral element method
is developed in this study. The solver, referred 8SEM flow solverhas the following fea-

tures:
e Solves time-dependent, incompressible flow problems geeby the Navier-Stokes
equations for Newtonian fluids.

e Works on computational grids with both geometry based fl@tyand expansion based

(p-type) non-conforming interfaces between elements.

e Performs p-type adaptive refinement through the transauatien.

Implementation highlights are:

e Written in C++ programming language [69] with an object-oriented apgnoac
e Has a file input and output interface.

e Gordon-Hall transfinite interpolation [70]is used to emegpectral elements with curved

edges.

e Uses constrained approximation method [71, 72] in constg@n approximate solu-

tion that is continuous across non-conforming elementfates.

e Performs elemental boundary-interior decomposition d@aticscondensation [15] to

reduce the CPU time and memory requirements.
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e p-type adaptive refinement procedures are based on twmatiter error estimates:
Error estimate based on elemental least-squares funcf@d]d&s) and error estimate

based on spectral expansion fimgents [59] Espectra)-

Implementation highlights are described in the followiegtson.

3.2 Implementation Highlights

3.2.1 Elemental Operations

In both FEM and SEM, the problem domain is decomposed intonehts of arbitrary shapes
(certainly with some limitations) over which certain opéyas are performed. An example
to the elemental operations is the evaluation of integtads tonstitute the components of
the elemental system introduced in section 2.3. A robusteémentation that can handle the
unique geometries and other arbitrary aspects of elemeatstandard manner can be realized
through the concept aftandard (master) elemenin particular, the elemental operations on
arbitrary elements are transfered onto and performed argmonding standard elements.
Most of the element attributes like node coordinates andateres of basis functions are
defined on standard elements. They are calculated for anpigdlements using appropriate

coordinate transformations.

A standard element and an arbitrary element that can be gl the LSSEM flow solver
are illustrated in figure 3.1. The standard element,reptedebyQS;, corresponding to an

arbitrary elemeng is defined in two-dimensions as a square domain:
0% ={EmeR*-1< £ <1, -1<n <1 (3.1)

(&, ) are the standard domain coordinates. The standard ele@méihe associated arbitrary
elemente are presented in figure 3.1. The convention adopted in thdygbor the ordering
of the corners and edges of a standard quadrilateral eladmastfollows: The first corner of
the element, identified as corner 0, is locateday) = (-1, —1). The remaining corners are
numbered in the order they are encountered during a coaluek-wise (CCW) travel around
the element. The first edge, edge 0, is identified as the edgeée corner 0 and corner 1.
the rest of the faces are, again, numbered in the order tleegrarountered during a CCW

travel around the element. An elemental operation like tladuation of an integral over the
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Figure 3.1: Standard and Arbitrary Quadrilateral Elements

arbitrary element can be transformed onto the standardeglieas follows:

| = fg f(xy) dxdy= fg , En iy (3.2)

Here, the integrand (x,y) is transformed into a new functiofi*(£, ) through appropriate
coordinate transformations. Thefldirential area element on the arbitrary element is also
transformed onto the standard element by using the Jacobtha coordinate transformation

from standard domain to arbitrary domajdi.is the determinant of the Jacobian matrix.

In this study, the coordinate transformation from stand#ohain to arbitrary domain is de-
fined by using a bilinear mapping. For straight sided arbitelements, the bilinear mapping

takes the form:

ay oy
0 on

X=X, n) = Xo(l ) ) + x1(1+§)(1_ ) + xz(1+§)(l+ ) + Xg(l_é:)(l + 1)
2 2 2 2

(3.3)

V= VET) = yO(1—5)2(1— n) erl(l+€)2(l— ) er2(1+§)2(1+ n) +y3(1—g)2(1+ 7
(3.4)

and the Jacobian of the transformation is:
X 9

J= axy) lag ar,‘ (3.5)

S A
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The Jacobian matrix can be evaluated bifedentiating the expressions in egns. (3.3) and

(3.4) accordingly.

For elements with curved edges, the bilinear mapping caxteaded by Gordon-Hall trans-

finite interpolation introduced by Gordon and Hall [70], as:

=) = (00 - x5 | 150+ () - e ) 5

20— %55 5 (%0 - 025 15 36
v=en = (PO - w5t 5T+ [y - et

(PO - 1255 52 + [ - 3 55 37)

wherexd andy? are the parametric representations of the boundary cueged in term of
one of the standard domain coordinates. It can be notedhéatandard domain coordinates
vary in ¢ only along edges 0 and 2 and, fnonly along edges 1 and 3. The independent
parameters to represent the boundary curve are selectedlaggy. In practice the functions
x4 andy? are not available explicitly. Instead, the boundary cumveepresented by line
segments. In that case, the line segmented geometry ipatdged by the one-dimensional
Lagrange interpolating polynomials. The order of integboin may be same as orfidirent
than the expansion order of the element. Once the geometwailable in terms of Lagrange

interpolating polynomials, eqns (3.6) and (3.7) can beuated.

After the integral (3.2) is transformed onto the standaehent, it is must be integrated
numerically. For this purpose, Gauss-Legendre numericatiigature rules are employed. In
Gauss-Legendre quadrature, the integral is evaluatedelsutim of integrand’s values at some
particular points called thquadrature pointsthat are multiplied by corresponding weights.

For a one-dimensional integral:

1 q
l=[ﬁ@%=éwmo (3.8)

g is the order of numerical quadrature. There are severalrgtiad rules that correspond to
different sets of quadrature points and weights. In this stidyQauss-Lobatto-Legendre
(GLL) quadrature rule is used. In GLL quadrature, the qumdeepoints{gk}ﬂzo are theq+ 1
roots of the equation: (2 &)(1+ &) P;](g), £ e[-1, 1] wherePq(¢) is the Legendre polynomial

of orderq. It is possible to select the weights such that the intedral molynomial of order
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29— 1 can be evaluated exactly. The weights that satisfy thisireapent are available in the

literature [15].

For a two-dimensional integral like the integral in egn.2j3he numerical quadrature can
be extended by the tensor product approach outlined inose2tB. Then the integral can be

written as:

U

1 1 Qs
| e piden - fn | e dedr= Y Y ui Een) (39

=-1J¢=-1 =0 k=0

where the determinant of Jacobian is lumped ifita It can be noted that the integrarfitt
involves multiplication of the approximate solution exgs®ns with the first derivatives of
the approximate solutions as well as the determinant ofoJacoTherefore the integrand is a
polynomial of order greater tham2 1 in both space dimensions. As a result, GLL quadrature
does not evaluate the integral exactly. However it can basttbat the error in numerical
integration is in the same order of magnitude as the erronterpolation of the unknowns

and therefore is not significant [15].

When the set of collocation points used to construct the dragg interpolating functions
in section 2.3 is compared with the set of quadrature poiriteduced here, it is seen that
they involve the same points. In other words, the quadrgtarets coincide with the nodal
points. The motivation in selecting the GLL grid as the setafocation points is due to
clustered nature of the GLL grid which results in Lagrangerpolating polynomials with
good approximation properties. In specific, the Lagrangerpolating polynomials defined
on a GLL grid are free of unbounded oscillations that emeggtha approximation order is
increased i.e. the Runge phenomenon [73]. The motivatibmbeselecting the quadrature
points same as the nodal points is to improve ttieiency of implementation. In particular,
the computational complexity of the elemental system dafimn is reduced t@(p*) from

O(p®) by employing coincident nodal and quadrature points.

3.2.2 Elemental Node Ordering

As stated in Section 2.3, the approximate solution is defmest each element as a basis
expansion and the expansion flagents are referred as the elemental degrees of freedom
(DOFs).
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Figure 3.2: Elemental node ordering

In Section 2.3, the approximate solution over an elementwvaten as:

NSOF_l
W)= > ugeix)  OR  u(x) = UTH(x) (3.10)
k=0
where
U = (U Vi Pow)’ and U, = (uﬁ)n, k=01 ,N8ge. N=0.1,-- Ny

Uk, Vk,» Pk» andwy are the unknown values evaluated at nodal pkirlt can observed that an
ordering of the elemental DOFs or the nodal points is assumedn. (3.10). While this
ordering can be arbitrary, an ordering that assigns thesnoddhe elemental boundary and
the nodes at the interior of the element to separate groypefierred in this study. Because
this type of ordering, referred dmundary-interior decompositiofiL5] is advantageous in
implementing icient linear system solution algorithms such as static epgation that will
be discussed in section 3.2.4. In boundary-interior de@sitipn approach, the corner nodes
are numbered first, followed by the edge nodes. The intewdes are numbered last. For
illustration one can consider the quadrilateral elemeas@nted in figure 3.2. The solution
over the element is represented by expansion order 4 in lpatbesdimensions. That is,
P: = p, = 4. Then it is composed dfif,- = (p: + 1)(p, + 1) = 25 elemental DOFs to
calculate. These 25 elemental DOFs are the unknown valsdgated at 25 nodal points
ordered as presented in figure 3.2. First the corner nodesiarbered starting from the node

at corner 0. After all corner nodes are numbered, the edgesrer@ numbered beginning from
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edge 0. Across each edge, the edge nodes are numbered irdénghmy are encountered
during a CCW travel around the element. Finally when all edgées are also numbered,
the interior nodes are numbered. The numbering of interales among themselves is not
important. In this case, the interior nodes are numberedin-major ordering following

the collocation point ordering of the underlying GLL grid¥he nodes and the associated

elemental DOFs can be grouped as follows:

0- 3: Corner Node
Boundary Nodes

4 - 15 : Edge Node

16-24: Interior Nodes

It should be noted that the ordering achieved by the bourid&gyior decomposition has
a direct dfect on the elemental solution vectdf of the elemental system. The elemental
solution vector is obtained by concatenating the rows/6fn a single row vector in the order
of elemental DOF numbering. Then the elemental solutioriovezan be decomposed into

boundary and interior solution vectotdy andU? respectively as:

;
ue UE = (W, pw)g WV, pw)i .-, (U,V, p,w)l,
Ue:[ b] where  ° ( 0 is) (3.11)

U|e U|e = ((ua Va pa U-))-]I_—G ) (u7 V7 pv w)-jl_-7 s T (ua Va pa w)-2r4)

The decomposition into boundary and interior componenp®ssible also for the elemental

stiffness matrix and elemental force vector as will be discusseddtion 3.2.4.

3.2.3 Constrained Approximation Method

Use of a hp-type non-conforming grid with LSSEM leads to typoeis of non-conformities
in element interfaces. h-type non-conforming interfacesuo where an element becomes
neighbor to more than one element at a single edge. Thatisntirfacing elements are ge-
ometrically non-conforming. h-type non-conformities areesult of using a non-conforming
Cartesian grid. Another type of non-conformity is the peymn-conformity that arises due
to the use of high order expansions on individual elememtg-type non-conforming inter-
faces two elements are geometrically conforming at thecadjaedges but they usefidirent
orders of expansions to approximate the unknowns on thagesed he solver developed in
this study handles both types of non-conformities bydbmestrained approximation method

[9, 71].
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In constrained approximation method, one of the interfaeidges are declared astiveand

the nodal unknowns on active edge are used in global assgmdugss. The nodal unknowns
on the other gassivg edge(s) are not a part of global solution. When they are et éor
elemental operations, they are interpolated from the unksan theactiveedge. Degree of
the interpolation is the same as the expansion order useldeactive edge. In this study,
activeness of edges at an h-type non-conformity are deeidearding tdong rulewhere the
edge which is longer is made active. Similarly, activendgsiges at a p-type non-conformity,
are decided according tainimum rulewhere the edge with lower expansion order is set as
active. For the details of constrained approximation meitiooe can refer to Sert and Beskok

[74].

Figure 3.3 shows a simple hp-type non-conforming grid. Ohthe elements, labeled as
g, is chosen to illustrate the constrained approximationhiaet The numbers encapsulated
by squares are the edge labels. The element employs expamsierp = 4 in both space
dimensions. It is adjacent to elements of polynomial orgets 3,6,4 and 7 on edges 0, 1,

2 and 3 respectively. It can be observed that edge 0 featyreg@e non-conforming inter-
face while edges 1 and 3 feature h-type non-conformingfates. Edge 2 is a conforming
interface. When the minimum and long rules are applied, @biserved that edge 0 of the
element is passive singe= 4 > 3. Similarly edge 3 is passive regardless of the expansion
order since it is adjacent to an element with longer edge l&\duge 1 also features an h-type

non-conformity, it is not passive since this time, the elehegs the element with longer edge.

The constrained approximation procedure on the passivese@glges 0 and 3) of element
eis illustrated in figure 3.4. The procedure involves thermbéation of unknowns at con-
strained nodes, shown by squares, from the basis functiottsecactive edge of the adjacent
element. It can be noted that the basis functions reducestoatresponding one-dimensional
Lagrange interpolants across the edges. Since the expamslers of the elements adjacent
to elemente at edges 0 and 3 aggy = 3 andps = 7, the approximate solutions over the
active edges are represented by linear combinationp @f1 = 4 andpz + 1 = 8 Lagrange
interpolants respectively. The local coordinates of th&va@dges are represented $gpnd

n. The Lagrange interpolants pass through the 4-point andir@-iGLL grids defined on
those local coordinates. Only(¢) on edge 0 and.3(n) on edge 3 are shown in figure 3.4

for simplicity. The local coordinates of the passive edgesrapresented bgand n. For
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B Constained Node @ Active Node

Figure 3.4: Constrained approximation at edges 0 and 3 ofariee

constrained approximation, the Lagrange interpolantseeaduated at the local coordinates
of the constrained nodes. For instance, the value of theamkrat the mid-point node of
edge 0 is calculated by a linear combination of Lagrangepotants: Lo(£2), L1(£2), La(£2)
andLs(&,). For h-type non-conformities an additional step is needée local coordinate of
passive edge 3] must be mapped to the upper half of the local coordinateeéttiive edge

of the larger element;§. This mapping is performed as follows:
n=— (3.12)
Then the Lagrange interpolants are evaluated at the comdspn™ coordinates.

Figure 3.5 illustrates the elemembefore and after the constrained approximation. The ele-
mental node numbering of the element without regard to cain&td approximation was pre-
sented in figure 3.2 and is repeated in figure 3.5a. This stéte @lement can be regarded as
theunconstrained statsince the nodes that to be passive are still present in the mathber-
ing. A new elemental node numbering involving the activea®dnly is provided in figure
3.5b. This state can be referred asctbastrained statéor obvious reasons. At this point, the

necessity of constrained approximation should be recegniZhe unconstrained state repre-
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Figure 3.5: Elemental node numbering before and after cainsd approximation

sents the state of the element when it is considered regardfét’s surroundings. Therefore,
the unconstrained state is suitable for the isolated eleaheperations like calculation of the
elemental system. In particular, the unconstrained stabe accordance with the underly-
ing quadrature grid. However the unknown values only awvaatiodes are available from
the global solution. Therefore, the aim of the constrainggreximation is to represent the

unknowns at the constrained nodes in terms of the unknowthe atctive nodes.

As an example of constrained approximation, one can consideapproximation of one of
the dependent variables, say x-velocity, at constrainetksiofor instance node 14 on edge
3 and node 6 on edge 0 (See figure 3.5a), in terms of x-velpati@ctive nodes along the
corresponding edges as provided in figure 3.5b. The valugseof-velocity at constrained

nodes have bars over them, following the general convention

Ui, = Uglo(ry) + ug,La(my) + - - - + US,Le(73) + UsL7(77) (3.13)

g = U Lo(£3) + USL1(£3) + UELe(&3) + USL7(&3) (3.14)

It can be seen in egn. (3.13) that the unknown values on tine hignd side are available
from the global solution and the basis function values casava¢uated. So the unknowns at
any constrained node on edge 3 can be calculated from theléage of unknowns at the
constrained state. When it comes to the edge O, it is obsehatdhe right hand side of

eqgn. (3.14) involves an unknown value at a constrained ofdéhat is not present in the

42



constrained state. This constrained node is a hanging imatleated byH in figure 3.5b and

it is a result of occurrence of h-type and p-type non-confogrinterfaces at edges of the
element connecting to the same corner. In this case itigpseskible to apply the constrained
approximation by interpolating the value at the hangingenfsxdm the unknowns on edge 3

first and then using it in egn. (3.14).

Upy = UgLo(mg) + ug,La(g) + - - - + uS,Le(mp) + USL7(175) (3.15)

The unconstrained and constrained states invol¥kerdnt number of elemental DOFs:
I\_IgOF = 25 andNj, = 27. Since the elemental node numberings are alfferdnt, two
elemental solution vectors are introduced® that is the unconstrained elemental solution
vector andU® that is the constrained elemental solution vector. Thetcaingd approxima-
tion of the unknowns at individual constrained nodes canxbeneled to elemental solution
vectors by assembling the equations of the form of eqns3)3(3.14), and (3.15) into a el-
emental conformity matrixC® and representing the transformation from the constraitetd s
to unconstrained state as follows:

Ue = ceue (3.16)
As stated before, the elemental system is calculated usegriconstrained state of the ele-

ment. Since, the globals system of equations is solved éocdnstrained unknown vectbr,

the elemental system must be modified before assemblintpigiobal system:
KeUs=F® =  [C°TKeC®|U®=C"TF® (3.17)

After the modification above in eqn. (3.17), the solutiontdd tinear system of equations is

straightforward.

3.2.4 Static Condensation

The boundary-interior decomposition introduced in secBa2.2 serves as a convention for
elemental node ordering. It is also consistent with the flaat the boundary DOFs of an
element are in interaction with the boundary DOFs of theasurding elements while the
interior DOFs of the element are isolated from the DOFs oftimeounding elements. Based
on this observation, the elemental and global system oftemqsacan be decomposed into
two sets of equations that are decoupled from one anotheughra process called static

condensation [15].
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It was stated in section 3.2.2 that the boundary-interimod®osition approach enables de-
composition of the elemental solution vector into boundamy interior DOF components as

illustrated by eqgn. (3.11). The same approach can be rddiwehe whole elemental system

g e
ue) |Fe

where subscripb stands for the boundary DOF contributiomstands for the interior DOF

as follows:
Kg K¢
KE™ K¢

contributions ana stands for the coupling between elemental boundary andanteOFs.

The solution ofUf andU? can be decoupled by pre-multiplying egn. (3.18) by the foitg

matrix:
| Keke!
(3.19)
o |
to arrive at:
KE-KEKEIKE™ 0 |fug] [FE-KEKEIF?
. = (3.20)
K¢ Ke|\ug Fe

Eqgn. (3.20) can now be decomposed into two sets of equafidresfirst set is for the solution

of elemental boundary DOFs that is to be solved first:
[ - kexe2keT| g = (Fe - keke 1) (3.21)

After the solution of egn. (3.21), a second set of equatioasalved for the elemental interior

DOFs:

Keue = (Fe - keTug) (3.22)

where Ug is substituted to right hand side from the previously soletmental boundary

solution vector.

Static condensation essentially decomposes a system afi@qwf larger size into two sys-
tems of equations of smaller size. For illustration, thejioal elemental system of corre-
sponding to the element illustrated in figure 3.5b is of $ife= Ny x NJ - = 4 x 27 = 108.
Of all 27 DOFs 18 of them are boundary DOFs and 9 of them are@antBOFs leading to
linear systems of equations of siki = 4 x 18 = 72 andN?, = 4 x 9 = 36 respectively.
Here,Ng, is the number of elemental boundary unknowns hifids the number of elemen-
tal interior unknowns. Since the computation time increaspidly with the system size,

(matrix-vector multiplication time is usually proportiahto N2 ) decomposing it into smaller
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Figure 3.6: Comparison of CPU time and memory uses with atitbwi static condensation

systems decreases the time spent for the linear systeniogol@tatic condensation also re-
duces the memory requirements since only one of the smghtgras are kept in the memory

at a time.

The above discussion is complemented with numerical exyertis. Comparison of computa-
tional resources required to solve a benchmark problemavithwithout static condensation
are presented in figure 3.6. The benchmark problem is thedimensional lid-driven cavity
problem that will be introduced in section 4.2. The problersalved with a steady-state
LSSEM solver on grids with increasing resolution. Grid tason is increased by both h-
type and p-type refinements. The number of unknown degrefrearfoms is reported as a
measure of computational load. CPU times and memory useariofus runs with static con-
densation and without static condensation are illustramtdéidures 3.6a and 3.6b respectively.
It is observed that static condensation results in lowasesfor both the CPU time and the
memory use. The ratio of the computational resources reddiar solution without and with
static condensation increases as the computational lcaebises, making static condensation

an attractive approach for large-scale computations.

As stated in section 2.3.5, the LSSEM flow solver solves thesali system of equations with
an EBE procedure where elemental systems of all elementprasent in the memory at
the same time. An alternative is the matrix-free method wtibe elemental systems are
not kept in the memory, instead recalculated at each linggesiteration. The matrix-free
method is definitely more memory saving. However it is prationly if the calculation

cost of the elemental system is small enough to enable rdadt at each linear solver
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iteration. When the steps to perform static condensatieregamined, it is seen that static
condensation involves CPU intensive tasks such as thesioveof the symmetric, positive-
definite matrixK? to arrive at the final system to be solved. As a result, statiziensation
is associated with great computational costs for the caticul of the elemental system. This
aspect hinders the use of the static condensation with xrfate method and motivates the
approach of keeping the elemental systems in the memorydhrthe linear system solution.
It is important to note that for two-dimensional problemse tmhemory requirement is not
a major issue and CPU time dominates the performance coasaes. However memory
requirements become excessive for three-dimensionalegnsb Therefore the matrix-free
method, without static condensation, may be the only ogtiothe solution of 3-dimensional

problems with the EBE procedure.

3.2.5 Adaptive Refinement Criterion

In this study, two alternative posteriori error estimates @onsidered to drive the adaptive
refinement procedures. Namely, the error estimate baseshetigquares functional, referred

asgs, and the error estimate based on spectraffanents, referred agspectrar

It can be observed from eqn. (2.34) in chapter 2 that leasareg functional provides a
measure of residuals of the governing equations. Theréfoa@ be used as an error indicator.
An error estimate based on least-squares functional wakgetpby Jiang and Carey [60] to

drive h-type refinement. The error estimate proposed instoaly is:

. J°
where
~ e 1 e 1 T e
g=g°=-r°== | RTRdQ (3.24)
2" T2 e

The 1/2 factor is due to dferent definitions of the least-squares functiona¥. is the ele-
mental least-squares functional. It Jiang and Carey’s ek the elemental least-squares
functional is normalized by the element area. It should bedithat error estimate (3.23)
is proportional to the square of the magnitude of the residtialso is not normalized with
respect to the magnitude of the unknowns over each elememtrefiore use of this error
estimate provides a measure of the true error (in fact, tharsgof the true error) while the

relative error is of interest in engineering applications.
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In the present study, the error estimate (3.23) is modificfdlimvs to provide a measure of
the residual, but not it's square and to account for the ntageiof the unknowns over each

element.
~ VI® IRClIL2(qe)
8s = =

_— -0 3.25
U®llH1qey  NUClH1(Qe) (3.29)

whereR® and i® are the elemental residual and approximate solution vectespectively.

The elemental - and H--norms are defined by egns. (2.20) and (2.22).

Error estimate is a valid measure of the error since it carhbws that the F-norm of the

error||ellyyq) = llu — Ullyy ) approaches zero #R||, 2(q) approaches zero [60].

The error estimate (3.25) is practical to calculate onceetbmental system (2.52) and the

approximate solution is available:

Vre 1
8s = = T — UeTKeUe—zueTFe+f fTfdQe (3.26)
U8l qey  [IUCIHL Qe Qe

The second error estimate used in this study is based orrapewtficients of the approx-
imate solution’s Legendre expansion. This error estimaf@aoposed by Henderson [59] to
drive h-type adaptive refinement on a non-conforming Cemegrid composed of high order
elements. The error estimate is based on the fact that neufiigynomial expansions can
be used to represent the approximate solution over eaclerters stated in chapter 2 the
present study employs a nodal expansion where the basisdiusi@re Lagrange interpolating
polynomials. The approximate solution can also be writtea hierarchical expansion where
the basis functions are, for instance, Legendre polyn@miafavorable property of the hier-
archical expansion is that, when the polynomial ondés suficiently high (o > 5 in practice
[59]) the expansion cdicient associated with the Legendre polynomial of the higbeger
can be used as a measure of the approximation error in tredgsmnsion. The approximate

solution of one of the unknowns, let it lbe can be written over each element as:

Npor—1 Ngor—1
k=0 k=0
P P PP
- ZZUﬁ Li(L;(y) = Zzaijpi(X)Pj(Y) (3.28)
i=0 j=0 i=0 j=0
Nodal Expansion Hierarchical Expansion

L is the one-dimensional Lagrange interpolating polynomwiarderp andP; is the Legendre

polynomial of orden. The expansion cdicientsaj, anday;, i = 0,1,---, p are associated
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with the Legendre polynomials of highest order. An equinbixpansion cdécientd, can
be obtained by lumping these expansionfiorents:

p-1

8y = lappl + ) laipl + lai (3.29)
i=0

The error estimate is defined by a suitable normalizatiomefaguivalent expansion dae

cient with respect to the magnitude of the unknown over tameht.

éu _ ap
spectral —

_ 3.30
I€llhz(e) (3:30)

The spectral expansion diieientsa;; can be calculated from the approximate solution by
using a transformation from the nodal expansion to the tibieal expansion. Each basis
function of the nodal expansion can be written in terms oftthsis functions of the hierar-
chical expansion:

NSOF_l

o) = > ban() (3.31)

1=0

or in vector notation,

®(x) = B¥(x) (3.32)

Also representing the nodal and hierarchical expansiongdtor notation and substituting
eqgn. (3.32),
wex) = uTd(Xx) =a'¥(x) (3.33)

= u*"BY(x) =a Y(x) (3.34)
Then the spectral expansion ¢oeient vectora can be obtained as:
a=B"u® (3.35)

In practice the components of the transformation mdigare made available in a data file
and read in the beginning of the program execution. Caliomaif the error estimate (3.30)

is straightforward once the spectral expansionfocients are available.

The adaptive refinement strategy adopted in this study isep khe elemental errors between
prescribed error bounds. Therefore p-type adaptive refiners performed to obtain and
maintain the following condition

Emin < € < Emax (3.36)
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whereenin is the error lower bound anghax is the error upper bound. Typical values for
the error bounds are between 2Gnd 102. While the error bounds may give an idea of
the order of magnitude of the accuracy desired, they aretselén this study by numerical
experimentation. The p-type adaptive refinement is perarisotropically, i.e. by chang-
ing the expansion orders in both space dimensions by the semnentgecrements. The

expansion order incremgdecrement is 2 unless otherwise is specified.

There are several filerences between the two error estimates. First ofglis™a measure

of the error in the overall solution in regard to how well thepeoximate solution satisfies
the governing equations. In contragspectra Measures the error in one of the dependent
variables ¢, v, p, w) in regard to how well the approximate solution interpdatige exact so-
lution. Therefore it is complemented by a superscript tacait the dependent variable it

is associated with. In this stud sp”ectra,, that is associated with the x-velocity is used. The
error estimates associated with other dependent varialéealso reported for comparison.
Another diference is that, ags approaches zero, it can be understood that the approximate
solution reaches to the exact solution that satisfies thergong equations exactly. This is
not the case witlespectrar AS Espectrai@pproaches zero, it should be understood that the solu-
tion approaches to a grid-independent solution upon p4tgfieement. The grid independent
solution is not necessarily the exact solution. Finadlycan be applied to solutions with low
and high order elements. Howev@pectral requires the use of high order elements. The per-
formance of the error estimates are compared though vabenshmark solutions in chapter

4
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CHAPTER 4

VALIDATION OF LSSEM FLOW SOLVER

4.1 Kovasznay Flow

In SEM solutions of smooth problems, the error associated thie numerical solution de-
creases exponentially as the expansion order is incred$edresulting convergence pattern
is referred aspectral (exponential) convergenfs]. It is common practice to investigate
SEm flow solvers’ accuracy and the numerical stability witkpect to expansion order to
verify the spectral convergence characteristics. Seenstance [15, 34]. In this section, the
spectral convergence characteristics of the LSSEM flowesdbr various grid configurations

are illustrated by solving the Kovasznay flow.

Kovasznay flow, presented by Kovasznay [75], is a laminamprimpressible flow problem
whose steady-state solution is available in analyticahfolhe availability of the exact so-
lution makes it possible to measure the true error assacith the numerical solution and

investigate the convergence properties of the solver.

The exact solution is:

u=1-ecos(2ry) (4.1a)
V= % e™sin(2ry) (4.1b)
p=po+ %(1—e2“) (4.1¢)
w= (%2 - 271) esin(2ry) (4.1d)

1/2 . . L .
whered = 1/2y - [(1/4v2) + 4712] / , V being the kinematic viscosity. Note that the pressure

is specified only up to a constant reference presggreWhile the problem can be solved
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on an arbitrary domain for any Reynolds number, The solstiarthis study are performed
on a rectangular domain=.5,1] x [1,1.5] for Re= 1/v = 40'. The streamlines and the
x-velocity contours within the specified region are presédnh figures 4.1a and 4.1b. The

flow field involves a wake pattern similar to a flow behind amgrof cylinders.

In order to study the convergence properties of the sohautisns on conforming, p-type

non-conforming and h-type non-conforming grids are penf as follows:

1. Conforming Grid: In this study, grid 1, illustrated in figu4.1c is used. This grid
has 8 elements. Same expansion orgeis used for all elements and in both space

dimensions, resulting in conforming element interfaces.

2. p-type Non-conforming Grid: Again, grid 1 is used. Howetlds time, expansion
orders of elements are altered such that elements 1, 4, 6 hade7expansion orders
p while elements 2, 3, 5 and 8 have expansion orgier2. Same expansion order is

used in both space dimensions. This setup results in p-typeanforming interfaces.

3. h-type Non-conforming Grid: In this study, grid 2, illwsted in figure 4.1d is used.
Here, 2 h-type non-conforming interfaces lying in y-difentare present. Elements on
the left half of the domain have expansion ordpiia both space dimensions. The two
large elements on the right hand side also have expansi@m prith the x-direction.

p + 4 is used in y-direction to compensate for the large elemeatis that direction.

For all the grids described above, a series of solutions er@ined for various expansion
orders by starting witlp = 6 and incrementing by 2 untp = 14. The steady-state solutions
are obtained by marching in time starting from a stagnant fleld. A time interval of 30
seconds is found adequate to reach the steady state withactiuracy of spatial resolution
for all expansion orders. Exact values of the velocity figklspecified at the boundaries. The

reference pressure is set as zero at the origia Q, y = 0).

In this study the trends of errors with respect to increagrgansion order is investigated.
However, for non-conforming grids, the expansion orderegirom one element to other. So

the expansion order of an individual element is not a reprtatige value for the expansion

L In this study, the dimensional form of governing equatioresused. For physical interpretation, the results
presented here can be followed by appropriate Sl units.rstamce, velocity components have the anyjis and
pressure has the urfita. The focus of this study is on validating the numerical perfance of the flow solver.
Therefore the units are omitted whenever they are founteiraat.

51



15

2.4
2.2

[N

18
16
1.4

>0.5 1.2

0.8
0.6
0.4
0.2

-0.2
-0.4

o

%3
(a) Streamlines (b) x-velocity contours

4 8 4
6

3 7 3

2 6 2
5

Element Element
5

1 1

(c) Grid 1 (d) Grid 2

Figure 4.1: Kovasznay flow. Exact solution and the componati grids used in this study.
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Figure 4.2: Kovasznay flow. The convergence trends for gamifay, p-type non-conforming
and h-type non-conforming grids for Kovasznay flow

order of the whole grid. Instead, the number of degrees efifsen used to approximate each
of the dependent variableBlpor can be used as a measure of expansion order. Noting that

Npor « p?, VNpor is used as a representative value for the expansion order.

In figure 4.2 presents a semi-log plot of maximum-norm emot-velocity, |ju — {|., against
vNpor is presented. Similar trends are also observed for othexrdigmt variables but are
not presented here for brevity. The results are consistéhtthe fact that an exponential
decay is represented by a linear trend on a semi-log plot.siraght line patterns in figure
4.2 indicate that spectral convergence is achieved fohedetgrid configurations regardless

of the presence of p- and h-type non-conformities.

The exact solution of the Kovasznay flow can also be used &stimate the accuracy of the
posteriori error estimates used in LSSEM flow solver. Taklecémpares the local (elemen-
tal) error estimates based on the least-squares functi@pand spectral expansion dte

cients, Epectral With the local relative true errog of the solution. The local relative true
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Table 4.1: Kovaznay flow. Comparison of local posterioroemstimates and relative true
errors. The average of the relative true erref§’is also provided for comparison with error
estimate based on least-squares functi@pal All values are the maxima of the quantities
across the domain.

Posteriori Error Estimates

p Noor 8s é:pectral é\s/,pectral éSpectraI é(;)pectral
4 153 30-10°° 29.10° 3.2.107? 11-107? 11-1072
6 325 76-10° 25.10° 8.4.10% 29-10* 46-10*
8 561 98.107 31-107 10-10° 43.10° 6.7-10°
10 861 38.10°¢ 2.0.10° 8.0-10°8 27-10°8 5.8.10°%
Relative True Errors

p Noor el el €l e €e

4 153 28.107? 15.1072 2.0.107? 2.8.107 48.102
6 325 48.10* 1.2.10* 29.10* 6.4-10* 8.7-10*
8 561 63-10° 1.3-10° 3.3-10° 97-10° 1.1-10°
10 861 59.10°¢8 7.8-10° 2.7-10°8 93.10°8 11-107

error e of each of the dependent variables is calculated by:

lu =Tl
b T R (4.2)

1l 0,

whereu is the dependent variable a1 o, is the elemental Hnorm. &, &spectralanderel
are calculated for each of the elements and their maximuoesadre presented in table 4.1
for comparison. It is observed that for both kind of erroiireates, the diferences between
the relative true errors and corresponding error estimatesvithin an order of magnitude.
Moreover the dierence decreases as the expansion order is increased. tiiéhdstimates
differ from the true errors by an order of magnitude, they follber $ame trend as the true
errors as the expansion order is increased. Thereforey as this smooth problem is con-
cerned, bothes and €pectral Can be used as qualitative error estimates for p-type a@apti
refinement. Finally it is worth to mention that the distrilownt of the error estimates and the
relative true errors across the domain are almost uniforra.a4esult, an p-type adaptive

refinement procedure would result in uniform refinement.
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4.2 2D Lid Driven Cavity Flow

A popular incompressible flow problem used to test flow sal&the shear driven flow inside
a 2-dimensional square cavity. In this study, lid drivenitsaproblem is solved for various
Reynolds numbers to illustrate the use of h-type non-comifag grids and p-type adaptive

refinement procedures with the LSSEM flow solver.

The problem setup and the main flow features are illustraiédure 4.3. The flow is induced
by an infinite lid pulled towards right at the top of the cavit§s the flow reaches steady-
state, a large central vortex forms in the middle of the gavithe stationary walls near the
lower corners form local triangular wedge regions whereesemall corner vortices driven
by the central vortex are formed. The size and the numbereofdiner vortices change with
the Reynolds number based on the cavity dimension. In thdysthree dierent Reynolds

numbers are of interesRe=100, 1000 and 5000.

It is important to observe that the boundary conditions gmésd in the problem setup make
the x-velocity discontinuous at the top corners resultim@ singular (non-smooth) solution
for the velocity field. These corner singularities destriog favorable convergence charac-
teristics of the high order methods and it is desirable tmiekte the corner singularities
completely or confine theirfiects into small regions in SEM studies. It is possible tosudbt
the singular solutions at the corners from the overall smhuand solve the remaining smooth
solution numerically by spectral methods [76]. Botella &ayret [76] follows this approach
to present highly accurate results for tRe=1000 flow. Another approach to avoid corner
singularities is to solve a regularized version of the peoblwhere the velocity boundary
condition across the top boundary is smoothed by using @ $teéecontinuous variation of
velocity near corners [77]. However the singularities canbe smoothed extensively without
changing the physical nature of the problem by this way. éndtrrent study, thefiects of
the singularities are restricted to small regions in théniti of the corners by utilizing the

ability of LSSEM flow solver to work on h-type non-conformiggids.

The computational grid used in this study is an h-type nofaramng Cartesian grid com-
posed ofNE = 334 square elements. The computational grid is illustratddyure 4.4. The
grid resolution is increased near the boundaries to regblwdoundary layers. The lower

corners are further refined to capture corner vortices plypp€&he upper corners are refined
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even further to confine thefects of the singularities to few small elements in the vigioif

corners.

The steady-state solution is obtained by time marching. Sdietion is declared to have

reached steady-state when:
IVt = V&2

104 4.3
Ve (4-3)

whereV! is the velocity magnitude vector at the current time &P is the velocity mag-
nitude vector 5 seconds before. With this approach, stetadg solutions folRe=100 and
1000 are obtained from an initially stagnant flow field befoee25 andt = 100 seconds re-
spectively. Since the final steady state solution is fi@icéed from the size of the time steps,
large time steps such a$ = 1.0 and 05 seconds are used respectively. Similarly steady state
solution forRe=5000 is obtained by starting from the steady stée1000 solution, using

At = 0.5 second and integrating over a time intervat ef 125 seconds.

While the focus of this study is on the more challengig=5000 problem, the solutions for
Re=100 and 1000 are also presented for completeness RERE00 and 1000 problems are
solved using elements with expansion ordprs: 4 in both space dimensions. For visual
validation, the streamlines of the resulting numericalisohs are presented in figure 4.5. At
Re = 100, the central vortex isftset from the center of the cavity towards the downstream
and the lid. There is a single small corner vortex at each l@meer, the one near the right
corner being greater in size. Aeis increased to 1000, the central vortex moves closer to
the center of the cavity and the corner vortices become@reasize. Two additional corner
vortices in the vicinity of the lower corners form thoughdbevortices can be observed only

in high resolution benchmark solutions such as the work afrkret al. [3].

For quantitative validation of the solutions, it is foundcassary to compare the results of
the present study with the benchmark results availabledriitbrature. The previous works
chosen for comparison are as follows: Ghia et al. [2] perfmmulti-grid finite diference
solutions on a 256256 grid for a range of Reynolds numbers between 100 and 1Q@06r
Botella and Peyret [76] obtained highly-accurRte=100 and 1000 solution using Chebyshev
pseudospectral method upon singularity subtraction. Merently, Erturk et al. [3] presented
finite difference solutions for Reynolds numbers betwReal000 and 21000 using stream
function-vorticity formulation on very fine grids (48201 to 60%601). Figures 4.6a and

4.6b present the x-velocity and y-velocity profiles takemfrthe vertical and horizontal cen-
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Figure 4.5: Lid driven cavity problem. Streamlines of=R€0 and 1000 solutions

terline of the domain respectively together with the datailable in [2], [76] and [3]. It is
observed that for botRe=100 and 1000, x- and y-velocity profiles are in very good agree
ment with the literature. The h-type nonconforming Caetesjrid withp=4" order elements

results in satisfactory results for this range of Reynoldsber.

As Reis increased further it becomes challenging to resolve the features accurately.
When the problem is solved f&te=5000 with the aforementioned grid composed 6fat-
der elements, discrepancy with respect to literature igmiesl in some regions of velocity
profiles. Therefore a grid study is conducted to improve #selts. The problem is solved on
four grids: First grid is the previously used grid that INE=334 elements with expansion
ordersp=4. Another grid is obtained by uniform p-type refinement dftfgrid. This grid has
NE=334 elements with expansion ordgrs8. Two additional grids are obtained by starting
the solution with the first grid and solving the problem witllype adaptive refinement pro-
cedures. One adaptive refinement procedure uses the etirnatesbased on least-squares
functional while the other uses the error estimate basegectial coéficients for x-velocity.

Table 4.2 summarizes the specifications of the computdtarids.

Figure 4.7 illustrates the streamlines of the solution iolet by the finest grid (Grid (4)).
It is observed that as Reynolds number is increased from 1®®@DO00 the central vortex
moves even closer to the center of the cavity. The secondf sairoer vortices becomes
more pronounced and a new vortex near the upstream of therligsf The contour plots of

x-velocity, y-velocity, pressure, and vorticity are alsegented in figures 4.8, 4.9, 4.10, and
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Table 4.2: Lid driven cavity flow. Specifications of the gridsed in solution o0Re=5000
problem. For adaptive solutions the given expansion orgaefer to the initial grid. The
error lower bounds are kept small such that there is not aagseaing in the adaptive grids.

Grid no NE p Error Estimate Error Upper Bouné{ay) (Pmins Pmax)

1 334 4 Nonadaptive - -
2 334 4 6s 104 (4,10)
3 334 4 € pectral 1073 (4,10)
4 334 8 Nonadaptive - -

4.11 respectively.

x- and y-velocity profiles are presented together with theilte of Ghia et al. [2] and Er-
turk et al. [3] in figures 4.12 and 4.13 respectively. Whenegahtrends are considered, all
of the solutions agree well with the literature. However siodution of grid (1), that is the
non-adaptive grid withp=4, is associated with significantly lower x-velocity magulies at
the cusp region near the upper boundary layer when compathd tther solutions and liter-
ature. This solution also estimates the minimum x-velogiggnitude and location flierent
than the other solutions. When y-velocity profiles are exeuiit is again observed that the
solution with grid (1) deviates from the other solutions d&®thchmark data near maximum
and minimum y-velocity regions. On the other hand, x- ancelpeity profiles obtained by
grids (2), (3) and (4) agree well with the literature, espigiwith the benchmark solution of
Erturk et al. [3]. It is worth to mention that velocity profitkata forRe=5000 is scarce in the
literature and the recent results of Erturk et al. [3] candmesaered as the most accurate due

to the very fine grid (602601) utilized.

The vortex center coordinates and the vorticity values atexocenters are also compared
with the literature in table 4.3. It is seen that the resultthe past studies ffier from each
other. Therefore, there is not any precise values for vareaxer coordinates and vorticity
at vortex centers. All four grids used in the present stugtwe the vortices properly and
present values for vortex centers that are close to or witlémange of results of past studies.
Vorticity values at vortex centers get closer to the rangeesiilts of past studies with p-type
adaptive and uniform refinement. All together, the solugiwith the grids (2), (3) and (4) can

be considered as accurate solutions of lid driven cavity 8olRe=5000.

Finally, the distribution of the error estimate values ie #teady-state solution obtained by
grid (1) and the adaptive grids, grid (2) and grid (3), anesilfated in figures 4.14 and 4.15

respectively. It is observed in figure 4.14a that the regiwhsred;s is greater thazmnay =
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Figure 4.9: Lid driven cavity problem. y-velocity contowsRe=5000 solution.
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Table 4.3: Lid driven cavity flow: Re 5000 Solution. Vortexhter coordinates and vorticity
values at vortex centers

Top Left Central

(X7 y)C We (X» y)C We
Present Study, Grid 1 (0.0755, 0.9064) 1.6256 (0.51616B653 -1.8667
Present Study, Grid 2 (0.0629, 0.9118) 2.1876 (0.514757p3 -1.9815
Present Study, Grid 3 (0.0636, 0.9087) 2.0480 (0.515152p3 -1.9626
Present Study, Grid 4 (0.0633, 0.9092) 2.0570 (0.515152p3 -1.9640
Ghia etal. [2] (0.0625, 0.9102) -2.0884 (0.5117,0.5352) 8602
Erturk et al. [3] (0.0633, 0.9100) 2.0628 (0.5150, 0.5350) 1.9266
Barragy and Carey [78] (0.0635, 0.9092) - (0.5151, 0.5359) -
Sahin and Owens [79] (0.0621, 0.9108) - (0.5134,0.5376) 9392
Bruneau and Saad [77] - - (0.5147,0.5352) 1.9322

(a) Top left and central vortices

Bottom Left-1 Bottom Left-2

(% Y)c We (% Y)c We
Present Study, Grid 1 (0.0701, 0.1433) 1.5191 (0.006482.00 -0.0070
Present Study, Grid 2 (0.0724,0.1368) 1.4255 (0.0066 8500 -0.0088
Present Study, Grid 3 (0.0734,0.1358) 1.4840 (0.0079,@pP0 -0.0102
Present Study, Grid 4 (0.0730, 0.1367) 1.5008 (0.007830pP0 -0.0102
Ghia et al. [2] (0.0703, 0.1367) -1.5306 (0.0117,0.0078) 0188
Erturk et al. [3] (0.0733,0.1367) 1.5026 (0.0083,0.0083) 0.0123

Barragy and Carey [78]

Sahin and Owens [79]
Bruneau and Saad [77]

(0.0725, 0.1370) -
(0.0720, 0.1382) -

(0.0079, 0.0079)

(b) Bottom Left Vortices

Bottom Right-1

Bottom Right-2

(X ¥)e We (X, ¥)e We
Present Study, Grid 1 (0.8030, 0.0717) 2.9788 (0.97524801 -0.0216
Present Study, Grid 2 (0.8019, 0.0725) 2.7645 (0.9788,/@P1 -0.0299
Present Study, Grid 3 (0.8057,0.0734) 2.7156 (0.97878BmP1 -0.0338
Present Study, Grid 4 (0.8045, 0.0728) 2.7359 (0.97888BY1 -0.0336
Ghiaetal. [2] (0.8086, 0.0742) -2.6635 (0.9805,0.0195) 0309
Erturk et al. [3] (0.8050, 0.0733) 2.7245 (0.9783,0.0183) 0.0341
Barragy and Carey [78] (0.8041, 0.0725) - (0.9786, 0.0188) -
Sahin and Owens [79] (0.8081, 0.0741) - -
Bruneau and Saad [77] (0.8057,0.0732) 2.7245 - -

(c) Bottom Right Vortices
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104 are concentrated near the center and the corners excemvibe left corner. On the
contrary, the regions immediately near the walls and tharkcassociated withsthat are less
than 10“. Therefore the regions that are expected to be refined irthtan with grid (2) are
the center and the corners. This observation is verifiedamdfinement patterns presented in
figure 4.15a. When figure 4.14b is examined it is seene@bg&;alis greater thaBmay = 1073
almost everywhere in the domain. Therefore it may be thotigditthe grid should be refined
uniformly by the adaptive refinement procedure base@gggct:ar However, since multiple
refinement levels are possible, the actual level of refinénmey vary from one region to
another. Figure 4.15b shows thaffdrent regions are indeed refined byfelient levels. In
particular, the regions near the wall boundary at the tolpt i@rner and the region between
the center and the bottom right corner have the highest sigrarrders i.e.p = 10. In
contrast to grid refinement based &y the central region is refined by only one or two levels.
The boundary layer regions near the walls that are not refingdd (2) are also refined. Since
both grids (2) and (3) are associated with very good agreewi¢m the literature, declaring
one’s superiority over the other is not possible. It can biedehat the error estimates result
in comparable results while refiningffiirent regions. Therefore, the it can be suggested that
the adaptive refinement procedure can be improved by enmgjdyath error estimates so that

only the intersection of the regions refined by the indivicestimates is refined.
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4.3 Flow Past a Cylinder in a Channel

In this section the problem of interest is the laminar flow ichannel where flow is partially
blocked by a large circular cylindrical obstacle. This pewb and its variants are encountered
frequently in the mass conservation studies of least squaremulation [47, 30, 39, 38, 49,
42, 46]. In this study, theffectiveness of p-type adaptive refinement procedures on diss m

conservation of LSSEM are investigated.

It is known that LSFEM and LSSEM are associated with poor ncasservation especially
in the case of problems with inflow and outflow [47]. Severaheelies proposed to im-
prove the mass conservation properties of least-squardwdsewere reviewed in Chapter
1. Those remedies generally involve the modification of thgimal formulation and they
are associated with some drawbacks such as the loss of lfidequeoperties of the céi-
cient matrix i.e. symmetry and the positive definitenesd,[#reased condition number
leading to poor performance with iterative solvers [30{raduction of additional adjustable
parameters [39, 42], or additional equations and comgétabundary conditions [49] in the
formulation. Recently it has been shown that good mass ceattsen can be achieved by the
original least-squares formulation using few and largenelats with very high expansion or-
ders p « 20) [46]. Implementing such an approach on a conforming igr&dilts in excessive
and unnecessary refinement. Therefore it is computatioimajpractical. in this study, it is
shown that the same accuracy in mass conservation can tevedhiith relative ease using

LSSEM flow solver’s p-type adaptive refinement capabilities

The problem setup is illustrated in figure 4.16 is solved omr@angular channel section:
[-11, 14]x[-1,1] (L = 25, H = 2) where a cylinder with diamet& = 1 is positioned at the
origin. No slip boundary conditions are applied at the ugret lower channel walls and the
surface of the cylinder. A uniform inflom = 1,v = 0 is prescribed ax = —11 and a fully
developed outflow boundary condition where tangential ciglos and pressurg are set to
zero is enforced at the downstream boundary. The viscas#gdigned such that the resulting

Reynolds number based on cylinder diameter is 40 for whi¢bady, laminar solution exists.

The problem is solved on a geometrically conforming grid posed ofNE = 32 elements

as illustrated in figure 4.17. The solution is started fronstagnant flow field. The steady
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Figure 4.17: Flow past a cylinder in a channel: Computatignd. NE = 32

state solution is obtained by marching in time through a timerval of 40 seconds using a
time step ofAt = 1.0 seconds. Such a time interval is foundisient to have the steadiness
criterion given by eqgn.(4.3) satisfied. The elements nesacytinder have curved edges to rep-
resent the cylinder geometry accurately. The cylinder gaopis provided as line-segmented
data from which the coordinates of the nodal points on tteedledges are interpolated using
an 8" degree Lagrange interpolation. Coordinates of the resteohbdes and the Jacobians
of the elements with curved edges are calculated using @Gerddl trans-finite interpolation

[70] as presented in Chapter 3.

A total of 10 solutions are obtained by employing p-type didlegefinement procedure with
different error estimates and refinement criteria. Each saligiassociated with a grid whose
specifications are presented in table 4.4. The grids (1) 2naré obtained by employing the
expansion orderp = 6 andp = 18 respectively in all elements and all space dimensions. No
adaptive refinement is applied for those cases. The gridgegfby label “a” are the results of
adaptive refinement procedures using the error estimatsl fwasthe least-squares functional.
Grids (al) through (a4) are obtained by imposinfjedlent error upper bounds on this error
estimate. Similarly the grids referred by label “b” are daeuse of error estimate based on
the spectral cdicients for x-velocity. Again, 4 grids, (bl) through (b4)easbtained by
imposing diferent error upper bounds on this error estimate. It is ingmbrto note that the

adaptive grids described here are the final grids observite dime of steady-state solution.
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Table 4.4: Flow past a cylinder in a channel: Specificatiodnthe grids used in the p-type
adaptive refinement study

Grid no NE p Error Estimate Error Upper Boundday) (Pmin» Pmax)

1 32 6 Nonadaptive -

2 32 18 Nonadaptive - -
al 32 6 8s 1072 (6,18)
a2 32 6 8s 1073 (6,18)
a3 32 6 Es 10 (6,18)
a4 32 6 €s 10°° (6,18)
bl 32 6 é:pectral 1072 (6,18)
b2 32 6 é:pectral 1073 (6,18)
b3 32 6 é:pectral 104 (6,18)
b4 32 6 é:pectral 10° (6,18)

All adaptive refinement procedures start from the initiatiggrid (1). Grids evolve to their

final states by refinements made once in every 2 time step.

Contour plots of x-velocity, y-velocity, pressure and i@ty are presented in figure 4.18.
The main flow features are the developing boundary layerBaérupstream of the cylinder
and the maximum velocity region at= 0 where high velocity and vorticity gradients are
observed. Thefeect of mass conservation on the aspects of the recirculatina behind the
cylinder is of particular interest. Figure 4.19 illustraitithe streamlines near the cylinder for
the solutions obtained with the non-adaptive grid, grid &bd one of the adaptive grids, grid
a4, for which very good mass conservation is achieved. Tigtheof the vortex at the cylinder
wake should extend beyond= 1 for a mass conserving solution [45]. It is observed that thi
length is underestimated by the non-adaptive grid solutmmsiderably. On the other hand,
the recirculation zone expands well beyond 1 up tox = 1.35 for the mass conserving grid
(4a) solution. It is seen that mass conservation has signifigfects on the flow features of

this problem. Furthermore, the non-adaptive grid shows pwss conservation performance.

The dfects of p-type regular and adaptive grid refinement on masseceation can be ob-
served clearly in table 4.5 where the mass flow ratesfegrdint vertical sections across the
channel are reported. First of all, as seen before, the eoars-adaptive grid, grid (1) results
in the poor mass conservation in the upstream since almibsifilae mass has been lost as the
flow reaches the cylinder. On the other hand, the fine nontaeagrid, grid (2) is associated

with very good mass conservation. This result is in accardamith the results of Kattelans
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Figure 4.18: Flow Past a Cylinder In a Channel: Contour ptétdependent variables. The
contours are based on the solution with grid (a4) for whicty ywod mass conservation is
achieved.
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Table 4.5: Flow past a cylinder in a channel: Mass flow rat®satross several cross sections

m
Grid x=-11 x=-5 x=0 Xx=7 x=14
1 2.000 1.549 1.203 1.238 1.238
al 2.000 1.600 1.208 1.243 1.243
a2 2.000 1.917 1.832 1.841 1.843
a3 2.000 1.990 1.976 1.983 1.984
a4 2.000 1.993 1.986 1.987 1.993
b1 2.000 1.619 1.307 1.345 1.346
b2 2.000 1.968 1.954 1.961 1.963
b3 2.000 1.983 1.982 1.982 1.974
b4 2.000 1.988 1.986 1.983 1.984
2 2.000 1.994 1.987 1.994 1.994

and Heinrichs [46] who reports that use of few, large, higtheorelements result improves
the mass conservation properties of the least-squaredsetonsiderably. However, it can
be argued that some regions of the grid (2) are over-res@sedr as mass conservation is
concerned. This idea follows form the observation thatyvib&ation of mass conservation at
the downstream of the cylinder is negligible when compaceith¢ violation in the upstream
even for the coarse non-adaptive grid. So the regions atdlwasiream may not require re-
finement as much as the regions at the upstream to obtain geoallonass conservation. In
other words, an adaptive refinement procedure aimed to veprass conservation should be
able to distinguish between the upstream and downstreaomeedrhis is, in fact, the case for
both sets of adaptive grid solutions introduced in thisgtldhe refinement patterns obtained

by the adaptive refinement procedures are discussed ldt@s isection.

Another important observation from table 4.5 is that ad@pgrid refinement definitely im-
proves the mass conservation for both error estimates ard fevels of error upper bounds.
The extend of improvement increases as the error upper dsumdde smaller. In particular,
the mass conservation accuracy of adaptive grid solutionsecovery close (up to 2. decimal
digit) to the accuracy of the fine non-adaptive grid for empper boundgmay = 1074 and

Emax = 10_5

Figures 4.20a and 4.20b present the x-velocity profilesditosex = 0 between the cylinder
and lower channel wall for the adaptive grid solutions baseé andé";pectral respectively.
The spectrahp least-squares penalty solution of Prabhakar and Reddyhih is associ-

ated with very good mass conservation properties is alssepted as a reference. It is seen
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that the shape of the profile and the maximum value of the geitgl is directly related to
the mass conservation performance. The profile correspgridi the coarse non-adaptive
grid solution underestimates the maximum value of the waig} significantly. In contrary,
the adaptive solutions withmay = 107 andemax = 107° are in excellent agreement with
Prabhakar and Reddy [42]'s results. Even grid (b2) withx = 10°° agrees well with the
reference. Since the majority of the mass loss occurs in plsgream of the cylinder, it is
informative to examine the variation of centerline x-vatpevith distance inx. Figures 4.21a
and 4.21b illustrate the centerline x-velocity plottediagadistancex in the upstream of the
cylinder. By physical intuition, it is expected that the tafine x-velocity should increase
with x as the boundary layers at the upper and lower channel walldajeand restrict the
area of core flow. However the opposite is observed for theisols with coarse non-adaptive
grid and adaptive grids with large error upper bounds irtifigasevere mass loss. The ex-

pected increase in centerline x-velocity is observed withrest of the adaptive solutions.

Up to this point, it has been observed that adaptive-refimémpecedures based @&y and

é’;pectral result in comparable mass conservation enhancement ovaotrse non-adaptive
grid solution. In particular, solutions withmaxy = 10 andemax = 107° conserve mass
as good as the fine non-adaptive grid solution. However, itheofan adaptive refinement
strategy is to refine the regions of the grid that require éigiesolution selectively. In this
problem, the regions that require higher resolution aretified from table 4.5 as the up-
stream of the cylinder, especially the regions close tortflevw boundary and the vicinity of
the cylinder. Downstream of the cylinder away from the mdation region does not expe-
rience any significant mass flow rate change.The successapfiag refinement procedures
employed in this study can be discussed based on this oliservd he adaptive grids that
result from diferent error upper bounds feg Nandégpectral are illustrated in figures 4.22 and

4.23 respectively.

The adaptive refinement procedure basedorefines only the elements that are adjacent to
the inflow boundary for high error upper bounghgyx = 1072). The reason of this refinement
is most likely due to corner singularities induced by umifoinflow boundary conditions
rather than the mass conservation violation. As the errpeupound is decreased to£0
the rest of the upstream and the vicinity of the cylinder afeéned as well while leaving the

far downstream unrefined as expected. At this level of emiterion, the emphasis is on the
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Figure 4.20: Flow past a cylinder in a channel: x-velocitpfipes atx = O between the
cylinder and lower channel wall for adaptive grid solutions
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Figure 4.21: Flow past a cylinder in a channel: Centerlinebocity (u;) profiles along the
upstream of the cylinder
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whole upstream of the domain and the expansion orders thaoh the maximum allowable
expansion orderpmax = 18. The vicinity of the cylinder is refined less when comparethe
upstream. When the error upper bound is decreasedtbstne interesting changes in the
refinement pattern are observed. The upstream of the cylavagy from the inflow boundary
are less emphasized than the previous level of error aiterin fact, even though the error
criterion is made stricter, the expansion orders of the efgmat this region are less than
those in the case ef,ax = 10°3. Instead, the vicinity of the cylinder and recirculatiomezo
undergo several levels of refinement. It can be argued tleatdhrsening in the upstream
for emax = 107 may result in inferior mass conservation performance whampared to
emax= 1073. However, this is not the case as seen from table 4.5. GrjdBally conserves
mass better than grid (a2) at all of the cross-sections tegan the table. Therefore it can
be concluded that the mass conservation is improved by theplay of refinements in the
upstream and in the vicinity of the cylinder rather than efiients made in individual regions.
The solution withemax = 1074 captures this coupling more accurately than the solutidgh wi
emax = 1073, As the error upper bound is decreased furthesqtg, = 10°°, the upstream
and the vicinity of the cylinder are refined up pgax = 18 while the refinement levels in the
downstream are lower. The refinements based,ap= 107° results in little improvement in

mass conservation over the solution withax = 107%.

The adaptive refinement procedures basedggglct;al result in refinement patterns similar to
the case ofs. The major diference is thae;';)ectralemphasizes both the upstream near the
inflow boundary and the vicinity of the cylinder for refinemi@wen in the case of high error
upper bounds. In other words, the interplay of vicinity of ttylinder and the upstream is
captured well for all levels of error criterion. This obsation is justified by the mass flow
rates reported in table 4.5 where grids (b1) and (b2) resudtgnificantly higher mass flow
rates than grids (al) and (a2). As in the casegftfie far downstream is refined less than
other regions. As a side note, it can be argued that the deficief the mass conservation in
this problem is caused by the unphysical corner singuaritiduced by the uniform inflow
boundary condition rather than poor mass conservationeptieg of LSSEM. Nevertheless,
the problem was also solved with a fully developed parabioflow boundary condition and
similar amounts of mass loss were observed in that versigcheoproblem. In this study,
the results for uniform inflow boundary condition are presdno stay consistent with the

literature [42].
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Table 4.6: Flow past a cylinder in a channel: The number ofekegf freedoms per dependent
variable Npor) and wall clock times of the solutions. The mass flow rate at 0 is also
provided for comparison.

Grid Npor Wall Clock Time (s) Mx=0)

1 1272 28 1.203
al 1448 51 1.208
a2 4784 722 1.832
a3 4810 579 1.976
a4 8220 1351 1.986
bl 2026 165 1.307
b2 3016 231 1.954
b3 4872 569 1.982
b4 6730 1133 1.986
2 10728 3306 1.987

The practical advantages of p-type adaptive refinementwvitarm p-type refinement can be
seen by examining the number of degree of freedoms per depewdriable Npor) used in
the solutions and the wall clock solution times presentedlie 4.6. Even the adaptive grid
solutions with the lowest error upper bounds, (a4) and @4)completed in less than half the
time of the solution with fine non-adaptive grid, grid (2). I&mns with higher error upper
bounds present a better compromise between mass conser@aturacy and wall clock time.
Especially the the adaptive refinement procedures thattedsin grids (a3), (b2), and (b3)
come forward by being more than five times faster than fineadaptive grid solution while

offering comparable mass conservation accuracy.
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4.4 Unsteady Flow Past Cylinder

The problem of interest in this section is the unsteady flost pecircular cylinder. It solved
to demonstrate the time dependent solution and adaptiveenaéint capabilities of LSSEM

flow solver.

Flow past a cylinder exhibits flerent flow features for élierent Reynolds numbers. For slow
flows (Re < 50) steady recirculation zones are observed behind thedgylias illustrated in
section 4.3. When some critical Reynolds number is exce@@eéd~ 50 [80]), the wake
region begins to exhibit unsteady flow features that finallyhees into a periodic steady state
where vortices of alternating directions are shed from tapzottom of the cylinder towards

the downstream. This vortex structure is known asvibie Karman Vortex Street

Figure 4.24 illustrates the problem setup. In order to desmethe ffect of boundaries, the
solution is performed on a large computational domain bedngly the rectangular region:
[-6,20] x [-6, 6] that corresponds tb= H = 6 andL = 20. A cylinder of unit diameter
(D = 1) is positioned at the origin. It is assumed that the cylirstarts motion in a large
bulk of fluid towards—x-direction at timet = 0s. The computational domain represents a
control volume moving together with the cylinder. Therefamiform inflow boundary con-
dition with inflow velocity of 1 is specified at the upstreamubdary. The upper and lower
boundaries have the velocity components specified asl andv = 0 which is consistent
with the fact that the flow remains stagnantisiently away from the cylinder. At the down-
stream boundary, a constant pressure boundary conditibrpw O is specified. While other
outflow boundary conditions such as specification of preseaty at midpoint of the bound-
ary [8] or unsteady convective type of boundary conditiofiere a combination of pressure
and velocity gradients is specified [62] are also possiblewéVer, it is observed that con-
stant pressure boundary condition and specification ofspresat midpoint result in similar
solutions. The constant pressure boundary condition cabgerved in flows discharging to
atmosphere at the outflow boundary. The initial conditiowslive uniform flow in x-direction
with up = 1,vp = 0 except at region whene > 0 andy > 0. In this region, a uniform flow
with a lower velocity is specifiediy = 0.3,Vp = 0. This artificial disturbance is used to have

the onset of unsteady periodic vortex shedding earlier lintism.
The solutions are performed on a h-type conforming grid aused ofNE = 174 elements
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Figure 4.24: Unsteady flow past cylinder. Problem setup.

Table 4.7: Unsteady flow past a cylinder. Specifications efctmputational grids

Grid no NE p Error Estimate &min, Emax) (Pmin» Pmax)
1 174 4 Non-adaptive - -
2 174 4 & hectral (10%,1073) (2.8)

as illustrated in Figure 4.25a. Grid is kept finer near thénddr and along the downstream
where the vortex street is expected to be observed. Thamwuare first performed on a
non-adaptive grid, referred asid (1), where elements have expansion ordets 4 in both
space dimensions. Solutions are also obtained on an aelayptil; referred agrid (2), where

& ecrraliS Used as the error estimate Withy, emax) = (1074, 1073) and Emin, Pmax) = (2,8)
with 2 increments. The solution begins fram= 0 and integrated up untll = 200 - 250
seconds to make sure that periodic unsteady solution isdegtloped. For solutions with
adaptive grid, the solutions of non-adaptive grid at100 andt = 150 seconds are provided
as the initial guesses to reduce the turn around time of thelations. The specifications
of the grids are summarized in table 4.7. For time dependaftigms, arw-family time
stepping scheme was introduced in Chapter 2. It is desital@enploy either one of Crank-
Nicholson ¢ = 0.5) or Galerkin schemesy(= 2/3) that are both second order accurate
in time. However, numerical experiments conducted in thisl\s reveal that use of those
schemes in solution of this problem leads to temporal iilgiab. The velocity field be-

comes unbounded during long time integration. It is fourat first order accurate implicit

Euler schemed = 1.0), on the other hand, results in stable periodic solutidmer&fore, the
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solutions presented in this study are obtained by implialeEscheme.

The instantaneous contours of flow variable$ at190 s are presented in figure 4.26 It can
be observed from the vorticity contours that the vorticesdsfrom the top and bottom of
the cylinder have alternating directions and a decayingngth as flow moves towards the
downstream. The time history of the y-velocity or vorticay a point along the horizontal
centerline of the domain can be used to judge the periodifithe solution. Figure 4.27a
presents such a time history plot at € 2.3,y = 0). It is seen that the velocity field has

reached to a well-developed steady periodic solutioh$y.80 s.

When the time history of the pressure at£ 2.3,y = 0) is examined, it is observed that
the periodic solution of pressure is contaminated by initéemt jumps. This is obviously
is not desirable. It can be argued that this unrealistic \Wiehaf the pressure field may
be caused by the constant pressure boundary condition dbtinestream boundary, that is,
the pressure field is overdetermined by the boundary comditiHowever, same pressure
jumps are observed even when the problem is solved with aymeespecified only at the
midpoint of the downstream boundary. Secondly, the illdwell temporal evolution of the
pressure field is also reported in the literature. In padigUPontaza [39] also observed a
similar problem and argued that the temporal pressurelatoils are caused by the poor
velocity-pressure coupling in the least-squares fornaratA remedy which improves the
velocity-pressure coupling numerically by regularizihg tontinuity equation with pressure
perturbations was also suggested [39]. While this appraaohplemented in LSSEM flow
solver, the preliminary studies are inconclusive and @8si¢ is a subject of further study. It
is seen in figure 4.27c that the jumps in the pressure fieldailects the vorticity field but up

to small extend and the y-velocity is continuous regardiéske pressure field.

Despite the intermittent jumps in the pressure field, it damws that the results obtained in
this study compare well with the literature based on some fitmirics. One measure for this
purpose is the dimensionless Strouhal number based ordeyldiameter that is calculated
from the shedding frequency (or period) as follows:

_ Characteristic Flow Time fD D (4.4)
"~ Period of the Oscillation U,  TUw '

where f is the vortex shedding frequencyis the vortex shedding perio@ is the cylinder
diameter, and, is the free stream velocity. The amplitude of the y-veloosgillations at a

specific point can also be used as a measure of the qualitg sbilation.
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Table 4.8 presents the Strouhal numbers and maximum valuéheofy-velocity at
(x = 2.0,y = 0) for solutions obtained by grids (1) and (2) with variousdi steps in com-
parison to available data in the literature. First of alisibbserved that the results improve
by decrease in time step and increase in grid resolutiougfivadaptive refinement indepen-
dently. To illustrate this point, the non-adaptive grididgt, with At = 0.1 s, overestimates
the vortex shedding period and underestimates the amelivfidhe y-velocity oscillations
considerably. the adaptive grid with the same time steplteesuflow metrics closer to the
common results in the literature. When the time step is dse regardless of the spatial
grid resolution, the estimated vortex shedding period eksas and drops below the values
reported in the literature. On the other hand, the amplitofdde y-velocity approaches to
value reported by Pontaza and Reddy [62]. It is seen thatdheecgence upon decrease of
time step is not achieved for time steps reported in table #tBs lack of convergence can
be explained by the fact that, the implicit Euler scheme iy @inst order accurate in time.
Therefore it may be necessary to solve the problem for eweerlime steps to achieve con-
vergence with respect to time steps. It is worth to mentiait the results reported by the
references in table 4.8 were obtained by higher order attirae stepping schemes. In
particular, a third order backwardftirencing scheme [39], a third order Adams-Bashforth
scheme [81] a second order Crank-Nicholson scheme [82] uszé with time steps similar
to these used in the present study. The results of PontazBextdy [62] were obtained by a
space time coupled LSSEM where time was also discretizetitw/drder spectral elements.
The second possible explanation for the lack of convergéméiee present study is the ex-
istence of the pressure jumps that become more pronouncte: disne step is decreased.
Regardless, it is seen that the vortex shedding periodemexs in this study are within 5 %

of the values reported in the literature which isfigient for most engineering applications.

It is worth to mention that the time dependent formulatiaim.g(2.8), presented in Chapter 2
results in deteriorating numerical results as the timeistdpcreased below certain values. In
particular, it has not been possible to obtain stable anddbediflow fields with time steps less
thanAt = 0.1 s with the original formulation. The results presentechivie 4.8 forAt < 0.1 s
could be obtained by scaling the momentum equation, egd), (& At based on the work of

Pontaza [39] as follows:
1 .
U+ aAt u-Vu+—Vp+vV><w):Atf (4.5)
P
Then the momentum equation is included in the least-sqdanesional in the form of eqn.
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Table 4.8: Unsteady flow past a cylinder. Strouhal numbedsaamnplitude of y-velocity at
x=2my=0

Grid At T SH Vmax(X = 2,y = 0)
0.1 640 0.1563 ®B4

Grid 1 0.05 605 0.1563 o4
0.02 590 0.1695 o7
0.05 584 0.1712 o7
0.1 610 0.1639 02

Grid 2 0.05 595 0.1681 ®1
0.02 580 0.1724 ®1

Williamson [83] 609 0.1643

Sherwin and Karniadakis [81] .@0 0.1667

Pontaza and Reddy [62] .Gb 0.1653 ®5

Pontaza [39] ®0 0.1667

Rajani et al. [82] 638 0.1569

(4.5). The scaling of the momentum equation eliminatesetra £; which grows fast as time
step is decreased with respect to other terms in the leaareas| functional. The condition-
ing of the linear system is also improved, leading to fastezdr system solution with the

preconditioned conjugate gradient solver.

Another aim of this study is to investigate the applicatibp-bype adaptive refinement proce-
dures to time dependent problems. The past three sectiateddeith steady state solutions
where the adaptivity of the grid across time steps was notdfqular concern. Here, the
periodicity of the vortex shedding structure enables ongtidy the time response of adap-
tive grid. In this study, only the error estimate based orcspkexpansion cdicients with

a single set of error upper and lower bounds is consideredirigplicity. Figure 4.25 illus-
trates the instantaneous computational grid-atl95 s as a representation of distribution of
grid resolution across the domain. The expansion ordenmsdbfidual elements are shown in
figure 4.25a and the detailed grid is shown in figure 4.25ks diserved that the adaptive re-
finement procedure refines the elements that are immedraalythe cylinder and in the near
wake region. The upstream away from the cylinder is actuaiiyefined to expansion order
p = 2. The elements near the upper and lower boundaries are edheefined or refined up
to p = 6. Therefore the overall distribution of grid resolutiorc@ncentrated near the cylinder

and it's wake region where the vortices are shed.

Figure 4.28 illustrates the time evolution of the streaesiand the grid resolution across one

vortex shedding period. At= 190 s, a vortex starts to emerge from the bottom of the cytinde
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As it moves towards the downstream and dissipate, anothie@xvemerges from the top of
the cylinder. Att = 196 s, another vortex emerges from the bottom of the cyliaddrefore,
completing the periodic behavior. It is important to notaettat each time the computational
grid evolves such that the vortex edges where high velocéyglignts are present, are resolved
with elements with highest expansion order available, jp.e. 8. The other regions are kept
at a lower expansion order. The refinement-unrefinemenpracti the computational grid
follows the same period as the vortex shedding. This ob8ervauggests that the adaptive

grid refinement captures the periodic unsteady nature dfdhe

91



aEat R SN

>0

>0

(@t=190s

+
i
I

7
I

+
i

+
LW\ ———
I

=

=
I -

1 O
me e
i

Tt

T
-
71

1

1
i i

IEm

L L W O W
I
IRy Ay .

T

(=}
I

>0

=191s

(b)t

Tt
i

L
T
"

1
|

i
T

I

T
A\
1

i
1

i

-

1

\\\\\\\\\\\\\\\
e e
IEm

LU L B VO W WA

IRy Ay .

1

=192s

(©t

>0

()

d)t=193s

Figure 4.28: Unsteady flow past a cylinder. Time evolutiorihef streamlines and the grid

resolution

92



7

i

1
HI

1
7
f

%\\ i

Tt
AY I
L 8
F i
I e
I
IS

Y

Immm——

i i i

=L

SRS -
T
1

Em=mt mm———
i i

immmn

>0

(e)t=194s

—
-

i

HFH

f
}

7
7

i i
777

EEEE!

L s
8 1
mmme am e ——

T e e s

1+
71

+

A

NN/ AEEEEy ]

>0

>0

(Ht=195s

ARt [FRRN

>0

O

>0

(9)t=196s

Figure 4.28: (Cont.) Unsteady flow past a cylinder. Time &tioh of the streamlines and the

grid resolution

93



CHAPTER 5

CONCLUSION

In this study an two-dimensional incompressible flow sobased on least-squares spectral
element method (LSSEM) was developed. The LSSEM flow solaarwork on hp-type

non-conforming computational grids and it can perform petadaptive refinement.

Several test problems were solved to validate the LSSEM flavwes and successful results
were obtained. In particular it was shown that LSSEM flow eplexhibits the favorable
exponential convergence characteristics of spectraletémethods upon p-type refinement
even in the presence of h-type and p-type nonconformittegas also observed that both the
least-squares functional based error estinagtarid the spectral expansion ¢ogents based
error estimatespectral follow the trends of the change in relative true error witlpamsion

order and therefore can be used as qualitative error estnfiait p-type adaptive refinement.

It was also shown that problems with singular solutions tie lid driven cavity flow can
be solved accurately by LSSEM flow solver on an hp-type narfarming grid. Obtaining
an accurate solution becomes challenging as Reynolds nmumdyeases. In that case, the
accuracy of the solution were improved by p-type adaptifieeesent capabilities of LSSEM

flow solver.

The studies regarding the steady channel flow past a cylhegtealed that the mass conserva-
tion performance of LSSEM can be enhanced by using p-typeti@daefinement strategies
up to the same accuracy as the uniform refinement while kgeygmputational costs practi-
cal. This is the first use of p-type adaptive refinement initeedture as a way to improve the
mass conservation properties of LSSEM to the best of agttkodwledge. While both error

estimates result in grid adaptations that capture the megiequiring refinement correctly,
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&spectraimay be preferable tgssince it shows better compromise between mass conservation
accuracy and computational cost. Regardless, this stunlyssthat the poor mass conser-
vation properties of LSSEM may not be an issue when the solu§ obtained by p-type

adaptive refinement strategies.

The last test problem featured an unsteady flow past a circylander where the periodic

vortex shedding action was captured correctly and thee@l#bw metrics agreed with the
literature within an accuracy of 5%. The low order accuratyhe time stepping scheme
and the lack of velocity-pressure coupling in the leastasesi method were identified as the
obstacles to obtaining more accurate solutions. It wasralsed that the adaptive refinement
procedure based Ofpectral followed the same period as the vortex shedding, resolwag r
gions with high velocity gradients at each time step. As altedbe adaptive grid clearly

captured the unsteady periodic nature of the flow.

The following lines of research can be suggested as a futark o the present study:

e The LSSEM flow solver currently works on computational grilat is composed of
quadrilateral elements only. Allowing triangular spektements will enable use of
cut-cell method with non-conforming Cartesian grids. Sadhture will provide great

flexibility in solving problems with complex immersed bowamis.

e The LSSEM flow solver currently has the ability to work on hygpd non-conforming
grids and perform p-type adaptive refinement. If LSSEM floweiois coupled with
a non-conforming Cartesian grid generator, hp-type adapéfinement strategies can

be realized.

e |t is observed that the current time stepping scheme, ibiticler method, may be
improved to increase the accuracy in time. Problems inhe¢oeleast-squares formu-
lation like the poor velocity-pressure coupling must alsssblved to avoid ill-behaved
pressure fields in time dependent solutions. For this pergugh order multi-step time
integration schemes based on backwalftedéncing formulas can be employed. The
regularized continuity equation approach of Pontaza [3®] be éfective in mitigating

the ill behavior of the pressure field.

e LSSEM flow solver currently solves the linear system of eiguat using an element-

by-element approach that holds all element systems in merit@mory requirements
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can be reduced by implementing a matrix-free element-begreht solution procedure
[21]. CPU time performance can be improved by using CPU [adizdtion and recent

advances in GPU parallel computing hardware and software.
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