

DESIGN OF ADVANCED MOTION COMMAND GENERATORS
UTILIZING FPGA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ULAŞ YAMAN

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

JUNE 2010

Approval of the thesis:

DESIGN OF ADVANCED MOTION COMMAND GENERATORS

UTILIZING FPGA

submitted by ULAŞ YAMAN in partial fulfillment of the requirements for the degree of
Master of Science in Mechanical Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen _________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Suha Oral _________________
Head of Department, Mechanical Engineering

Assist. Prof. Dr. Melik Dölen _________________
Supervisor, Mechanical Engineering Dept., METU

Assist. Prof. Dr. A. Buğra Koku _________________
Co-Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Mehmet Çalışkan _________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. Melik Dölen _________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. A. Buğra Koku _________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. E. İlhan Konukseven _________________
Mechanical Engineering Dept., METU

Assoc. Prof. Dr. Veysel Gazi _________________
Electrical and Electronics Engineering Dept., TOBB-ETU

Date: _________________

 iii

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I also
declare that, as require by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last Name : Ulaş YAMAN

Signature :

 iv

ABSTRACT

DESIGN OF ADVANCED MOTION COMMAND GENERATORS
UTILIZING FPGA

Yaman, Ulaş

M.Sc., Department of Mechanical Engineering

Supervisor : Assist. Prof. Dr. Melik Dölen

Co-Supervisor : Assist. Prof. Dr. A. Buğra Koku

June 2010, 143 pages

In this study, universal motion command generator systems utilizing a Field

Programmable Gate Array (FPGA) and an interface board for Robotics and

Computer Numerical Control (CNC) applications have been developed. These

command generation systems can be classified into two main groups as

polynomial approximation and data compression based methods. In the former

type of command generation methods, the command trajectory is firstly divided

into segments according to the inflection points. Then, the segments are

approximated using various polynomial techniques. The sequence originating

from modeling error can be further included to the generated series. In the

second type, higher-order differences of a given trajectory (i.e. position) are

computed and the resulting data are compressed via lossless data compression

techniques. Besides conventional approaches, a novel compression algorithm is

also introduced in the study. This group of methods is capable of generating

trajectory data at variable rates in forward and reverse directions. The generation

of the commands is carried out according to the feed-rate (i.e. the speed along

the trajectory) set by the external logic dynamically. These command generation

techniques are implemented in MATLAB and then the best ones from each

 v

group are realized using FPGAs and their performances are assessed according

to the resources used in the FPGA chip, the speed of command generation, and

the memory size in Static Random Access Memory (SRAM) chip located on the

development board.

Keywords: Command Generation, Data Compression, FPGA, Polynomial

Approximation, Adjustable Feed-rate, Linear Interpolation

 vi

ÖZ

FPGA KULLANARAK İLERİ HAREKET KOMUT

ÜRETEÇLERİ TASARIMI

Yaman, Ulaş

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Melik Dölen

Ortak Tez Yöneticisi : Yrd. Doç. Dr. A. Buğra Koku

Haziran 2010, 143 sayfa

Bu çalışmada, Alan Programlanabilir Kapı Dizini (Field Programmable Gate

Array - FPGA) kullanan evrensel hareket komutu üreteçleri ve Robotik /

Bilgisayarlı Sayısal Denetim (“Computer Numerical Control” - CNC)

uygulamaları için bir arayüz kartı geliştirilmiştir. Geliştirilen komut üreteç

sistemleri, fonksiyon yaklaşıklama ve veri sıkışırtırma tabanlı olmak üzere iki

sınıfa ayrılabilir. Fonksiyon yaklaşıklama tabanlı komut üreteç

uygulamalarında, komut dizini öncelikli olarak bükülme noktalarından

bölümlere ayrılmıştır. Daha sonrasında bu bölümler farklı fonksiyon

yaklaşıklama yöntemleri kullanılarak ifade edilmiştir. Yaklaşıklamadan

kaynaklanan hata dizini kodlama sırasında saklanarak üretilen komutlara

beslenebilir. Diğer komut üretme yöntemlerinde ise, verilen hareket dizininin

yüksek dereceden farkı alındıktan sonra kayıpsız veri sıkıştırma teknikleri

kullanılarak sıkıştırılır. Bu çalışmada, geleneksel sıkıştırma tekniklerinin yanı

sıra yeni bir veri sıkıştırma yöntemi de sunulmuştur. Bu grupta önerilen

yöntemler, komutları ileri ve geri yönlerinde farklı hızlarda üretebilme yetilerine

sahiptirler. Komut üretim hızı sisteme dışarıdan dinamik olarak beslenmektedir.

 vii

Geliştirilen komut üretme teknikleri MATLAB kullanılarak bilgisayar

ortamında gerçekleştirilmiş ve her grupta en iyi sonucu veren yöntemler FPGA

kullanılarak gerçekleştirilmiştir. Bu yöntemler FPGA kırmığı üzerinde

kullandıkları kaynaklar, komut üretim hızı ve geliştirme kartında bulunan

Durağan Rastgele Erişimli Bellek’te (Static Random Access Memory - SRAM)

depolanan verinin büyüklüğüne göre değerlendirilmişlerdir.

Anahtar kelimeler: Komut Üretimi, Veri Sıkıştırma, Alan Programlanabilir

Kapı Dizini, Ayarlanabilir Üretim Hızı, Doğrusal Enterpolasyon

 iii

Alevlerin ucunda sönen hayatlara,

“Yaşamayı ciddiye alacaksın,

yani o derecede, öylesine ki,

mesela, kolların bağlı arkadan, sırtın duvarda,

yahut kocaman gözlüklerin,

beyaz gömleğinle bir laboratuvarda,

 insanlar için ölebileceksin,

hem de yüzünü bile görmediğin insanlar için,

hem de hiç kimse seni buna zorlamamışken,

hem de en güzel en gerçek şeyin

 yaşamak olduğunu bildiğin halde.”

Nazım Hikmet RAN

 iv

ACKNOWLEDGEMENTS

First of all I offer my heartily thanks to my supervisor Assist. Prof. Dr. Melik

Dölen and co-supervisor Assist. Prof. Dr. A. Buğra Koku, who have supported

me throughout the thesis with their unyielding patience and knowledge.

I would like to thank to the member of the SPARC research group for their

technical support throughout the thesis period. This period might have been so

painful without their support and advices.

Additionally, I would like to show gratitude to my colleagues at the department

for their sincere friendships especially during the writing process of the thesis

and the meal times.

I would like to thank TÜBİTAK for the scholarship (BİDEB 2228) and the

conference travel grant during my graduate study. My study was also a part of

TÜBİTAK project under the contract number 108E048.

Lastly, I am deeply in debt to my parents Şahhanım and Azimet Yaman for their

never-ending love and spiritual support at critical and opportune times.

 v

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. vi

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES .. x

LIST OF TABLES ... xv

LIST OF SYMBOLS .. xvii

CHAPTER

1. INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Scope of the Thesis ... 2

1.3 Organization .. 6

2. LITERATURE SURVEY .. 7

2.1 Differencing .. 7

2.2 Data Compression Techniques ... 8

2.2.1 Huffman Coding .. 9

2.2.2 Arithmetic Coding ... 11

 vi

2.2.3 Golomb Coding ... 13

2.3 FPGA Implementations of Data Compression Techniques 15

2.4 FPGA Implementations of Polynomial Approximation Methods 16

2.5 FPGA-Based Command Generation Systems 17

2.6 Feed-rate Control of CNC Machine Tools .. 18

2.7 Open Research Areas .. 19

3. FPGA INTERFACE .. 21

3.1 Introduction ... 21

3.2 Mother Board .. 23

3.3 Analog Input Card ... 26

3.4 Analog Output Card .. 32

3.5 Digital Input Card ... 36

3.6 Digital Output Card ... 40

3.7 Closure .. 43

4. COMMAND GENERATION METHOD UTILIZING SEGMENTATION

AND POLYNOMIAL APPROXIMATION ... 44

4.1 Segmentation ... 44

4.2 Polynomial Techniques ... 49

4.2.1 Chebyshev Polynomials .. 51

4.2.2 Legendre Polynomials ... 53

 vii

4.2.3 Bernstein Polynomials .. 54

4.3 Performance Evaluation .. 55

4.3.1 Single Segment Approximation with Error Sequence Storage ... 56

4.3.2 Segmentation and Approximation with Error Sequence Storage 58

4.3.3 Segmentation and Approximation with Error Sequence

Compression ... 59

4.4 FPGA Implementation .. 60

4.4.1 Hardwired Approach ... 61

4.4.1.1 Driver Module ... 65

4.4.1.2 Floating Point Operation Module .. 65

4.4.1.3 Splitter Module .. 66

4.4.1.4 RS-232 Module ... 66

4.4.2 Embedded Softcore Processor Approach 66

4.5 Closure .. 70

5. COMMAND GENERATION METHOD UTILIZING DIFFERENCING

AND COMPRESSION WITH VARIABLE FEED-RATE 71

5.1 Differencing .. 71

5.2 Proposed Data Compression Algorithm ... 74

5.2.1 Encoding Process .. 75

5.2.2 Decoding Process .. 77

5.3 Performance Evaluation .. 78

 viii

5.4 Command Generation with Variable Feed-rate Input 80

5.5 FPGA Implementations .. 84

5.5.1 Hardwired Approach ... 85

5.5.1.1 SRAM Controller .. 89

5.5.1.2 Memory Management Unit ... 91

5.5.1.3 Decoding Unit ... 93

5.5.1.4 Accumulators ... 95

5.5.1.5 Interpolator .. 97

5.5.1.6 RS-232 Controller ... 97

5.5.2 Embedded Softcore Processor Approach 98

5.6 Closure .. 101

6. CASE STUDY ON COMMAND GENERATION 102

6.1 Introduction ... 102

6.2 Sample Command Trajectory ... 103

6.3 Evaluation of Methods .. 108

6.4 FPGA Implementation .. 111

6.5 Closure .. 119

7. CONCLUSIONS AND FUTURE WORK .. 120

7.1 Conclusions ... 120

7.2 Future Work .. 122

 ix

REFERENCES ... 124

APPENDICES

A. LIST OF VERILOG / VHDL MODULES .. 128

B. NIOS II EDS 9.0 C CODES .. 131

C. MATLAB M-FILES .. 136

D. NC CODE OF PLASTIC INJECTION MOLD FOR A BOTTLE – CASE

STUDY .. 142

 x

LIST OF FIGURES

FIGURES

Figure 1-1 Flow Chart of the Proposed Method... 3

Figure 1-2 FPGA Based Motion Control System .. 5

Figure 2-1 Huffman Code for the Given Set of Characters 10

Figure 2-2 Huffman Decoding of a Data Stream Encoded in the Huffman Code

of Figure 2-1 ... 11

Figure 2-3 Probabilities and Ranges of Sample Characters for Arithmetic

Coding .. 12

Figure 2-4 Encoding of the message "Yaman" in Arithmetic Coding 13

Figure 2-5 Run Length Determination ... 13

Figure 2-6 Golomb Coding with a Group Size of 4 ... 14

Figure 2-7 Golomb Encoding ... 15

Figure 3-1 Schematic Design of the Mother Board ... 25

Figure 3-2 Main Board ... 26

Figure 3-3 FPGA Development Board and Its Interface 26

Figure 3-4 Block Diagram of Analog Input Card .. 27

Figure 3-5 Schematic Design of the Analog Input Card 29

 xi

Figure 3-6 Analog Input Card .. 30

Figure 3-7 Signals of the Analog Input Card ... 30

Figure 3-8 Output Signal of the Analog Input Card at 100 Hz 31

Figure 3-9 Output Signal of the Analog Input Card at 1 kHz 31

Figure 3-10 Output Signal of the Analog Input Card at 10 kHz 31

Figure 3-11 Block Diagram of Analog Output Card .. 32

Figure 3-12 Schematic Design of the Analog Output Card 34

Figure 3-13 Analog Output Card .. 35

Figure 3-14 Hardwired FPGA Implementation of the Sinusoidal Signal

Generator .. 35

Figure 3-15 Output Signal of the Analog Output Card at 100 Hz 35

Figure 3-16 Output Signal of the Analog Output Card at 1 kHz 36

Figure 3-17 Output Signal of the Analog Output Card at 4 kHz 36

Figure 3-18 Schematic Design of the Digital Input Card 37

Figure 3-19 Digital Input Card ... 38

Figure 3-20 Output Signal of the Digital Input Card at 1 kHz 38

Figure 3-21 Output Signal of the Digital Input Card at 10 kHz 39

Figure 3-22 Output Signal of the Digital Input Card at 100 kHz 39

Figure 3-23 Schematic Design of the Digital Output Card 41

Figure 3-24 Digital Output Card .. 41

 xii

Figure 3-25 Output Signal of the Digital Output Card at 300 kHz 42

Figure 3-26 Output Signal of the Digital Output Card for Various Duty

Cycles ... 42

Figure 4-1 A Sample Trajectory ... 45

Figure 4-2 Approximation without Segmentation .. 46

Figure 4-3 Approximation Error without Segmentation 46

Figure 4-4 Segmented Sample Trajectory .. 47

Figure 4-5 Approximated Segmented Trajectory ... 48

Figure 4-6 Approximation Error After Segmentation .. 48

Figure 4-7 First Five Chebyshev Polynomials ... 52

Figure 4-8 First Five Legendre Polynomials .. 53

Figure 4-9 First Five Bernstein Polynomials ... 54

Figure 4-10 Command Trajectories of a PUMA Manipulator 55

Figure 4-11 Performance of Polynomial Approximation Methods without

Segmentation .. 56

Figure 4-12 Number of Polynomial Coefficients for Different Error RMS

Values ... 57

Figure 4-13 Performance of Polynomial Approximation Methods with

Segmentation .. 59

Figure 4-14 Performance of Polynomial Approximation Methods with

Segmentation and Error Compression .. 60

Figure 4-15 Hardwired FPGA Implementation of the Method 63

 xiii

Figure 4-16 Floor Plan of the Synthesized Digital Circuitry for the Hardwired

Implementation ... 64

Figure 4-17 Softcore FPGA Implementation of the Method 67

Figure 4-18 Floor Plan of the Synthesized Digital Circuitry for the Softcore

Implementation ... 69

Figure 5-1 Effect of Order of Difference on Memory .. 72

Figure 5-2 Second Joint Trajectory of PUMA Manipulator and Its Differences

up to Third Order .. 73

Figure 5-3 Sample Encoding Process for ∆Y Method 76

Figure 5-4 Decoding Process of ∆Y Decompression Algorithm 77

Figure 5-5 Interpolated Data .. 82

Figure 5-6 Feed-rate Profile ... 83

Figure 5-7 Interpolated and Original Command Sequences 83

Figure 5-8 Command Representation Errors .. 84

Figure 5-9 Hardwired FPGA Implementation of the ∆Y Method 86

Figure 5-10 Floor Plan of the Synthesized Digital Circuitry for the 1st Arch 88

Figure 5-11 SRAM Controller ... 89

Figure 5-12 Compressed File Format ... 90

Figure 5-13 Memory Management Unit .. 91

Figure 5-14 State Diagram of Memory Management Unit 92

Figure 5-15 Decoding Unit ... 93

 xiv

Figure 5-16 State Diagram of Memory Unit .. 94

Figure 5-17 Accumulator Module .. 96

Figure 5-18 Integration Module ... 96

Figure 5-19 Interpolator Module .. 97

Figure 5-20 Implementation of the Method using Softcore Processor IP 99

Figure 5-21 Floor Plan of the Synthesized Digital Circuitry for the 2nd Arch . 100

Figure 6-1 Trajectories of the Mold ... 104

Figure 6-2 Trajectory in the X Axis ... 105

Figure 6-3 Trajectory in the Y Axis ... 105

Figure 6-4 Trajectory in the Z Axis .. 106

Figure 6-5 Velocity Profile in the X Axis .. 106

Figure 6-6 Velocity Profile in the Y Axis .. 107

Figure 6-7 Velocity Profile in the Z Axis ... 107

Figure 6-8 Hardwired FPGA Implementation of Command Generator for the X-

Axis .. 113

Figure 6-9 Integrator Module ... 114

Figure 6-10 Command Transmit Module ... 114

Figure 6-11 Incoming Clock Signal from the Controller 115

Figure 6-12 Hardwired FPGA Implementation of the Command Generator ... 117

Figure 6-13 The Chip Floor Plan of the Synthesized Circuit Design 118

 xv

LIST OF TABLES

TABLES

Table 3-1 Voltage Levels ... 29

Table 4-1 FPGA Resources used in Hardwired Approach 62

Table 4-2 FPGA Resources used in Softcore Approach 68

Table 5-1 Compression Ratios vs Order Difference [%] 74

Table 5-2 Compression Ratios for Various Orders .. 79

Table 5-3 Compression Ratios for Third Order Differences 80

Table 5-4 FPGA Resources used in Hardwired Approach 85

Table 5-5 Time for the Generation of Command Sequences 87

Table 5-6 FPGA Resources used in Softcore Approach 98

Table 6-1 Implementation Comparison of Proposed Command Generation

Methods .. 108

Table 6-2 Compression Ratios [%] vs Order of Differences for the Test Case 109

Table 6-3 Results of Huffman Compression Algorithm for Various Orders of

Difference [%] .. 110

Table 6-4 Results of Arithmetic Coding Algorithm for Various Orders of

Difference [%] .. 110

 xvi

Table 6-5 Results of the ∆Y Compression Algorithm for Various Orders of

Difference [%] .. 111

Table 6-6 FPGA Resources used in Hardwired Approach of the Case Study for

the First Axis .. 112

Table 6-7 FPGA Resources Used in Hardwired Approach of the Case Study for

all the Axes ... 116

Table A-1 List of Verilog / VHDL Modules Utilized in the Thesis 128

Table B-1 List of NIOS II C Files Utilized in the Thesis 131

Table B-2 NIOS II C file for the ∆Y Decompression Algorithm 132

Table C-1 List of MATLAB M-Files Utilized in the Thesis 136

Table C-2 M-file for the ∆Y Compression Algorithm 140

 xvii

LIST OF SYMBOLS

SYMBOLS

B Bernstein Polynomials

cmax maximum value of coefficients

cmin minimum value of coefficients

dmax maximum value of original data sequence (counts)

dmin minimum value of original data sequence (counts)

emax maximum value of error sequence (counts)

emin minimum value of error sequence (counts)

f feed-rate (mm/s)

fmax maximum feed-rate (mm/s)

L Legendre Polynomials

l binary length of encoded data (bits)

m group size of Golomb coding

N length of original data sequence

n order of finite difference

∇ finite difference

 xviii

n0 number of zero magnitude data

Nc number of coefficients

q motion-state sequence

r compression ratio

re compression of error sequence

T Chebyshev Polynomials

u decoded command

ABBREVIATIONS

ADC Analog-to-Digital Converter

ASM Algorithmic State Machine

BJT Bipolar Junction Transistor

BP Bernstein Polynomials

CAM Computer Aided Manufacturing

CD Clock Divisor

CLDATA Cutter Location Data

CMOS Complementary Metal Oxide Semiconductor

CNC Computer Numerical Control

CP Chebyshev Polynomials

 xix

CTM Command Transmit Module

DAC Digital-to-Analog Converter

DDFS Direct Digital Frequency Synthesizers

DM Driver Module

DSP Digital Signal Processor

DU Decoding Unit

FPGA Field Programmable Gate Array

FPOM Floating Point Operation Module

FSM Finite State Machine

GTL Gunning Transceiver Logic

GTLP Gunning Transceiver Logic Plus

HILS Hardware-in-the-Loop Simulator

I/O Input / Output

IP Intellectual Property

JSD Joint State Data

LED Ligth Emitting Diode

LP Legendre Polynomials

LVDS Low Voltage Differential Signaling

LVPECL Low Voltage Positive Emitter Coupled Logic

 xx

LZ Lempel Ziv

MMU Memory Management Unit

NC Numerical Control

PWM Pulse Width Modulation

PWMG Pulse Width Modulation Generator

RMS Root Mean Square

SDRAM Synchronous Dynamic Random Access Memory

SISO Serial Input Serial Output

SIPO Serial Input Serial Output

SM Splitter Module

SR Shift Register

SRAM Static Random Access Memory

SW Sine Wave

TTL Transistor-to-Transistor Logic

VHDL Very High Speed Integrated Circuit Hardware Description Language

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Modern servo-drive systems employ digital motion controllers (DSPs, micro-

controllers) to regulate precisely not only motor currents (electromagnetic torque)

but also motor’s angular velocity along with the position. If the drive system is

configured for (digital) motion control, the relevant reference signals (velocity or

position) must be generated by a central controller unit (host) depending on the

trajectory to be followed. These signals are eventually transferred to each motor

driver via a serial communication protocol (SERCOS, CAN, Profibus, TCP/IP,

RS-232, RS-485, etc.). This approach frequently pushes the communication

interface to its limits for high-end applications.

Industrial motion controller units utilize vector data tables to represent the

trajectory in terms of linear patches. These cards can then perform a linear

interpolation between the two consecutive entries in real-time to produce the

relevant reference signals for the position servo-control loop. For complex

trajectories the size of the vector table may exceed the available resources on the

system. The conventional machining approach does not meet the requirements of

high speed and high accurate machining in cases where the trajectories are

complicated.

 2

In today’s technology, memory devices with large capacity as well as multi-core

processors running at high clock frequencies are widely available in the market at

relatively low cost. Consequently, there is a potential for devising simple yet very

effective command generators for computer numerically controlled machinery

that benefit fully from the properties of these advanced devices [1].

The fundamental motivation of this study is to develop a direct command

generator system with variable feed-rate in forward and reverse directions for

servo motor drives where the commands could be produced directly in the drive

system without the need for intermittent data transfer from a host controller. This

FPGA based system, which could be directly embedded into a motor drive

system, is expected to generate the relevant commands by utilizing not only the

(dynamically adjusted) speed along the traced trajectory but also decompressed

data being produced in advance to represent trajectory to the desired accuracy.

1.2 Scope of the Thesis

The difficulties mentioned in the previous section are overcome by the proposed

method in this study. It is implemented into the conventional manufacturing

process as illustrated in Figure 1-1. The figure indicates that the method is

applicable for both Robotics and CNC Applications. Input to the system is Tool

Location Data (TLD) for CNC Applications and Joint State Data (JSD) for

Robotics Applications. After the encoder commands are formed according to the

incoming data from the previous operations, the encoding algorithm is applied

onto the commands structuring the encoded JSD or TLD. Encoding methods

applied within the context of this thesis are

• Lossless Data Compression of Higher Order Finite Differences of JSD /

TLD

o Huffman Compression Algorithm

o Arithmetic Coding

 3

F
ig

u
re

 1
-1

 F
lo

w
 C

ha
rt

 o
f

th
e

P
ro

po
se

d
M

et
ho

d

 4

o Proposed Compression (∆Y) Algorithm

• Polynomial Representation of Segmented JSD / TLD

o Chebyshev Polynomials

o Legendre Polynomials

o Bernstein Polynomials

The performances of these aforementioned encoding methods are comparatively

evaluated according to approximation error, memory requirement, computational

complexity, ease of decoding, etc. in MATLAB environment. The best methods

for each group are realized on the FPGA Development Board. Once the encoded

JSD / TLD is stored into the SRAM of the board, the decoding circuit in the

FPGA chip is ready to decode the data in real-time. Consequently, decoded

position, velocity, and acceleration commands can be fed to the (centralized or

distributed) joint-axis motion controller as the reference signals.

The arrangement of the proposed command generation method in the thesis with

the other units of the FPGA based motion control system is illustrated in Figure

1-2. This general motion control system is composed of three main units: FPGA

Based Command Generation System, FPGA Based Motion Controller System,

and Hardware-in-the-Loop Simulator (HILS). The last two units are not within the

scope of the thesis. Only the shaded area in Figure 1-2 is elaborated throughout

the thesis.

The generated reference commands (position, velocity, and acceleration) are

transferred to the second FPGA board in the system which is responsible for

motion control. The velocity and acceleration commands are also sent to the

motion control unit, since the control algorithm employed within the FPGA may

require these commands for precise control. Then the generated control inputs are

fed to the HILS unit through the developed FPGA Input / Output (I/O) Interface

Board. This board is also discussed in the thesis. After the manipulated input

vector is transferred to the HILS, the control process is simulated and the resulted

output vector is fed to the controller unit with the help sensors utilization.

 5

F
ig

u
re

 1
-2

 F
P

G
A

 B
as

ed
 M

ot
io

n
C

on
tr

ol
 S

ys
te

m

 6

1.3 Organization

The thesis is divided into seven chapters. The second chapter discusses the

literature on the relevant topics of the thesis such as differencing, data

compression algorithms, polynomial approximation techniques, FPGA

implementation of these methods, FPGA-based command generation systems, and

command generators with variable feed-rates. In the following chapter, a board

developed for FPGA interfacing with CNC and Robotics Applications is

investigated. This interface board consists of five modules namely mother board,

analog input card, analog output card, digital input card, and digital output card.

The fourth chapter elaborates the first group of command generation methods

utilizing segmentation and polynomial approximation in MATLAB. The

approximation method with Chebyshev Polynomials, which has the smallest

compression ratio, is employed on the FPGA Development Board using two

different approaches. In the first approach, the algorithm is implemented with a

softcore embedded processor in the FPGA chip and in the second approach the

algorithm is directly realized in the FPGA chip utilizing Very High Speed

Integrated Circuit Hardware Description Language (VHDL). In the fifth chapter

the second group of command generation methods utilizing differencing and

compression are explained and their performances are evaluated in MATLAB.

The most successful one of these compression algorithms, namely the proposed

compression method, is realized on the FPGA Development Board in two

different ways as done in the previous chapter. In this chapter, the concept of

command generation in forward and reverse direction with variable feed-rate is

also introduced and evaluated in detail. The method utilizes the command

compression algorithm proposed in this chapter. During implementation on the

FPGA chip some variations are also considered and compared with each other. In

the sixth chapter, the most successful command generation method is employed

on a test case and its performance is evaluated. The thesis is concluded by

summarizing the key results of this research. Possible future works are also

presented in the last chapter.

 7

CHAPTER 2

LITERATURE SURVEY

In this chapter of the thesis, the relevant literature topics are discussed in detailed

manner and open research areas are also highlighted for possible further study.

2.1 Differencing

The study on literature starts with a detailed investigation of differencing and its

application areas. With the help of this study, the necessity of differencing before

compression in command generation is elaborated.

Differencing is commonly used in different fields such as data (video, image,

speech, index, etc.) compression, and movement detection in tracking. The major

requirement in differencing is that the samples in the data must be coherent so that

each sample can easily be predicted according to the difference value and the

previous sample. Due to the ease of implementation, differencing without

compression schemes may be preferable in video literature [3].

It is very common to use differencing during the storage of files that do not have

big variations between the entries. For instance, if the average temperature of the

days in a year is necessary for graphical purposes, it is wise to store the difference

of temperatures between consecutive entries (i.e., d1, d2 – d1, …, d365 – d364) rather

than storing the absolute temperature value of each day (i.e., d1, d2, …, d365) [4].

 8

This approach decreases the memory usage since the difference between the two

consecutive data points is less than the absolute value of the former entry. There

may also be many zeros in the differenced format, which will further decrease the

memory size.

Differencing is also used in detection of movement of objects. Balch et al. [5]

developed a novel machine vision system that can easily follow hundreds of small

insects. In order to demonstrate the usability of their system, they analyzed the

behaviours of ant colonies in their study. In detection, they simply subtracted the

current image from the back ground image to find the movement.

2.2 Data Compression Techniques

In this part of the chapter, different data compression methods are explained and

their main application areas are explained. Although the digital communication

system performances and the mass storage density are improving rapidly, data

compression algorithms still continue to be an important part of many engineering

fields since it can eliminate the disadvantages of data storage and overcome the

limitations of transmission bandwidths via enabling devices to send the same

amount of data in fewer bits [6].

Two types of data compression techniques exist in the literature: lossless and

lossy. Lossless data compression, where the original data is extracted without any

loss after decompression, applications have increased over the past years due to

the need to improve the storage capacity and data transfer rate [7]. On the other

hand in lossy compression, original data can only be approximated after

decompression. Lossy compression is usually used in situations when the data do

not need to be stored perfectly. For instance, pictures can be restored using lossy

compression paradigms without much difference from the original picture. In

cases where data loss cannot be afforded lossless compression techniques must be

used. This is valid especially in text files, since loss of a character can lead to

much different situations [8].

 9

The most commonly used data compression techniques in the literature are

Huffman, Arithmetic, and Golomb Coding methods. These three paradigms are

discussed in a detailed manner in the following sub-sections.

2.2.1 Huffman Coding

Huffman Coding [9] algorithm is one of the most commonly used lossless data

compression method in the literature in various areas. The main concept of the

algorithm is that it maps an alphabet (of the same size) to a totally different form

composed of strings with variable size. The characteristic properties of these

symbols are that the ones having high probability have a smaller representation

than those occurring less in the file.

Huffman coding belongs to the group of variable length character encoding

methods, since in the resulting code the most common characters would be short

and the infrequent ones would be long. For the illustration, assume that it is

necessary to encode the characters U, L, A, S, Y, M, and N. If conventional

approach were used, only three bits per character were necessary for encoding.

Suppose that the relative frequency of these characters is as given in Figure 2-1.

In the figure, the characters and their frequencies in the sequence are displayed on

the left side. On the right side of the figure Huffman codes are displayed for each

character. Huffman tree is formed in between of the frequencies and the Huffman

codes. During constructing the tree, after the frequency data of the sequence is

determined, two elements with the lowest frequencies are selected as the leaf

nodes of the Huffman tree. Then the frequencies of these two elements are added

together and the resulting value becomes the frequency for the new node. This

approach continues until the Huffman tree is completed or until the last node

having a frequency of 100%. Huffman code of each character is found by leading

from the top of the tree to the corresponding character.

 10

Figure 2-1 Huffman Code for the Given Set of Characters

Conventional Huffman encoding is a non-deterministic one, since a data set can

be represented by more than one possible Huffman tree. While constructing the

Huffman tree in Figure 2-1, two additional rules described in [8] are applied in

order have a unique Huffman tree representation. The first extra rule is that the

characters with shorter Huffman codes are placed to the upper branches of the

nodes. For instance, in Figure 2-1 S and L are at the bottom part of the tree since

they have the longest Huffman codes. Secondly, characters with Huffman codes

of same length are placed according to their appearance order. In the figure S and

L have the same length of codes. Since S is assumed to be encountered first, it is

placed on the upper branch of the node. If these two extra rules are also applied

during encoding, it is guaranteed that the Huffman tree is unique for the given set

of characters. Due to the word-based memory units, it is difficult to implement

Huffman encoding schemes which have variable length of codes. Additional rules

described above should be used for fast and lossless recovery in FPGA

implementations [8].

A sample encoded data in the Huffman code of Figure 2-1 is decoded in Figure

2-2. It is important to start at the beginning of the data stream in order to decode

without any error. When the Huffman codes in Figure 2-1 are examined, it can be

 11

Figure 2-2 Huffman Decoding of a Data Stream Encoded in the Huffman Code of

Figure 2-1

observed that all of the codes end with a value of ‘0’ except the last Huffman code

which is comprised of only 1’s. During decoding every bit of the data stream is

examined and it is stored to a register until the value in the register matches with a

value in the dictionary. After comparing the value in the register with the

Huffman codes in the dictionary, original data is generated.

Due to the word-based memory units, it is difficult to implement Huffman

encoding schemes which have variable length of codes. Additional codes should

be used for fast and lossless recovery in FPGA implementations [8].

2.2.2 Arithmetic Coding

Arithmetic Coding [10] is another commonly used lossless data compression

method. According to Witten et al. [11], arithmetic coding is much better than

Huffman coding in many cases. Messages are represented by an interval of real

numbers between 0 and 1in arithmetic coding. If a long message is going to be

encoded, the interval in which the message lies becomes very small and the

number of bits representing that interval becomes increases. For the illustration,

assume that the letters used in a text are U, L, A, S, Y, M, and N. Their

probabilities are given in Figure 2-3. The range, which is [0, 1), is known by both

encoder and decoder of arithmetic coding algorithm. It is distributed according to

the probabilities of characters as given in Figure 2-3. There is no priority order of

range for the characters. It is randomly distributed over the total range. Assume

 12

Figure 2-3 Probabilities and Ranges of Sample Characters for Arithmetic Coding

that the message “Yaman” is going to be transmitted from the encoder. This

encoding process is shown in Figure 2-4. Since the first letter of the message is Y,

the encoder starts with narrowing the range to [0.9, 1). The next letter, A, narrows

down this range to first one-fifth of it, because the region [0, 0.2) is reserved for

A. Proceeding in this way, encoder arrives into the final range, [0.91024,

0.91032).

During decoding, all known about the message is the range [0.91024, 0.91032).

Decoder immediately understands that the message starts with the character Y,

since it lies in the range [0.9, 1) allocated for Y in Figure 2-3. This clears that the

second character is A, since it produces the range [0.9, 0.92), which encloses the

range of the original message, [0.91024, 0.91032). The decoder continues in this

way to identify the message. The decoder does not need to know the ends of the

range set by the encoder. Any number in the range [0.91024, 0.91032) can be

used. The main problem decoder faces is that it cannot detect the end of the

message. To overcome this drawback a special character may be used which is

known to encoder and decoder [11].

 13

Figure 2-4 Encoding of the message "Yaman" in Arithmetic Coding

2.2.3Golomb Coding

Golomb coding [12] is a lossless data compression paradigm found in the

literature. It is not as complex as other compression algorithms but its

performance is a bit lower than the previously described data compression

methods. The applications of Golomb coding are generally focused on video

compression systems such as H.264 video standard [13].

The term group size (m) is a very important parameter in Golomb coding. It has a

direct effect on the compression ratio. Selecting m as the power of two increases

the efficiency of coding [12]. After the value of m is determined, data set which is

to be compressed is divided into subsets of having zeros at the beginning and one

at the end. Run lengths of a sample data set are given in Figure 2-5.

Figure 2-5 Run Length Determination

 14

Before the encoding process, the codes should be formed. An example of Golomb

coding for a group size (m) of 4 is given in Figure 2-6. Codes are created

according to the run lengths which are grouped of size m and these groups are

named as Ak. Codes appearing on the right of Figure 2-6 have prefixes determined

according to their group and tails. Each prefix has (k - 1) number of ones followed

by a zero. Tails are the binary representation of integers starting from zero value

to (m - 1). It is important to note that the widths of the tails must be the same. For

instance, if the group size is selected as eight, the widths of the tails must be three

which is log2(m). The code for each run length is formed by adding the prefix and

the tail.

Figure 2-6 Golomb Coding with a Group Size of 4

 15

Encoded version of the data set given in Figure 2-5 can be seen in Figure 2-7.

When the resulting code in Figure 2-7 is examined, it can easily be observed that

the compression ratio is not that much when compared to other compression

algorithms.

Figure 2-7 Golomb Encoding

2.3 FPGA Implementations of Data Compression Techniques

Lossless data compression, where the original data is extracted without any loss

after decompression, applications have increased over the past years due to the

need to improve the storage capacity and data transfer rate [7]. There are many

examples for the hardware implementations of conventional data compression

techniques in the literature. Among these techniques, Huffman [14 - 15], Lempel-

Ziv (LZ) [16 - 17], and Golomb [18] compression algorithms are the most popular

ones for FPGA implementations.

Rigler et al. [14] implemented Huffman and LZ encoders on an FPGA

development board using VHDL in order to serve a basis for hardware

implementations of the popular compression program GZIP. Since this

implementation is planned to be work with GZIP compression program, while

forming the Huffman trees two additional rules are used to make sure that the trees

are deterministic. According to the results presented modified Huffman algorithm

uses less hardware resources than the LZ algorithm. De Araújo et al. [15]

employed a different approach for Huffman Algorithm. They implemented a

 16

microprogrammable controller on the FPGA to perform lossless data compression

utilizing Huffman method. They claimed that with this flexible architecture, other

compression algorithms such as Arithmetic- and Golomb coding algorithm can

easily be implemented.

Abd El Ghany et al. [16] realized the LZ encoding and decoding algorithm on the

FPGA. In order to increase the efficiency, they used systolic array approach which

resulted in a 40% decrease in the compression rate and 30% decrease in resource

usage. Cui [17] also implemented LZ compression algorithm on the FPGA by not

using the conventional dictionary approach. The dictionary is divided into smaller

units. By this approach, the look-up time is decreased and parallel operations

become performable.

Among conventional data compression techniques, hardware implementations of

different algorithms for compressing specific data structures are also present in the

literature. For instance, Yongming et al. [19] have realized the Linear

Approximation Distance Threshold algorithm on FPGA to compress the

Electrocardiograph signals. Similarly, Valencia and Plaza [20] developed an

FPGA-based data compression technique based on the concept of spectral

unmixing to compress hyperspectral data. The novel compression method

described in the study can be regarded as task-specific since it is developed to

compress the signed integer position command sequences. It may not yield better

results for text or image compression.

2.4 FPGA Implementations of Polynomial Approximation Methods

Polynomial approximation is not commonly used in command generation systems

due to the inevitable errors in approximations. In order to minimize these types of

errors, function approximation algorithms are applied to model the segmented

trajectory in a piecewise fashion. The aim of this segmentation is to decrease the

error resulting from approximation. In the literature, there exist various

 17

segmentation approaches. The most common one is uniform segmentation, in

which the widths of the segments are equal and the number of segments is limited

to powers of two. Since the segment widths cannot be customized according to

local function characteristics, a huge amount of segments are necessary to fulfill

the error requirement [21]. To overcome this problem, dynamic segmentation

depending on the inflection points of the trajectory is proposed in this study.

Selecting an appropriate function approximation technique is very important

especially in hardware implementations since errors resulting from the

approximation should be stored for lossless reconstruction [22]. Another

important aspect in approximation is the degree of polynomials used. When

memory resources are limited, higher degree polynomials are commonly applied

at the expense of increased computational complexity [23].

Hardware implementations of function approximation techniques are frequently

used in developing Direct Digital Frequency Synthesizers (DDFS) in the

literature. Ashrafi et al. [24] proposed an FPGA-based method that utilizes

Chebyshev polynomial series interpolation. The developed technique unifies the

results of ROM-less polynomial approximation methods for sinusoidal DDFS

implemented on FPGAs [25] [26].Among various approximation techniques,

Chebyshev polynomials are usually preferred for hardware implementation. This

is due to the fact that Chebyshev polynomials give better results for non-periodic

signals that are limited in range. In the study it is also turned out that the

performance of Chebyshev polynomials are superior to Legendre, and Bernstein –

Bezier polynomials.

2.5 FPGA-Based Command Generation Systems

Implementations of command generation methods on FPGA chips are not very

common in the literature due to high computational complexity involved in the

methods. Therefore, the techniques employed on FPGA have simplifications

 18

and/or include error compensation modules into the systems. For instance, Su et

al. [27] developed a motion command generation chip utilizing FPGA for point-

to-point motion applications. They implemented trapezoidal and S-curve motion

planning adopting the digital convolution method rather than the complex

polynomial type method. With this approach, the computational complexity is

significantly decreased. Furthermore, they developed a real-time output pulse

compensation algorithm to eliminate the error in the number of output pulses and

the results are found to be satisfactory.

Jeon and Kim [28] also used the digital convolution method and designed an

FPGA-based acceleration and deceleration circuit for industrial robots and CNC

machine tools. Likewise, the method developed by Su et al. [27], they did not use

the complex polynomial technique to generate velocity profiles of various

acceleration and deceleration characteristics that require extensive computations.

Since the current techniques are not satisfactory for generating velocity profiles

for industrial robots and CNC machine tools [29], they developed a new method

to compensate this deficiency. According to the experimental results given in the

paper, they were able to generate unsymmetrical velocity profiles that cannot be

generated by digital convolution techniques. Comparing the two works, former

one is superior over the latter method. The error in the output pulses is not

compensated in Jeon and Kim’s study [28] so that the errors are inevitable

between the command and response signals. On the other hand, the method

proposed in the paper generates commands without any error. Furthermore, it

generates position, velocity, and acceleration profiles at the same time.

2.6 Feed-rate Control of CNC Machine Tools

The precision in manufacturing continually improves. In the manufacturing

process, the quality of the product is dependent on the functions of CNC machine.

Feed-rate control of the machine tool is very important factor for a high-precision

CNC machine.

 19

There are various algorithms proposed on feed-rate control in order to increase the

surface quality of the product. For instance Cheng et al. [30] employed a predictor-

corrector algorithm to estimate the servo command at the next sampling time. In

another study of Cheng et al. [31] developed a new interpolator to produce servo

commands for real-time control of CNC machining. The main advantage of the

proposed interpolator is being capable of generating motion commands for servo

controllers at variable feed-rates. In a similar study of Xu et al. [32], they presented

variable interpolation schemes for planar implicit curves. They were also able to

interpolate in real-time to improve machining efficiency. In the proposed method,

the feed-rate is set by the operator according to geometrical state of the surface. In

other words, it is decreased when the tool is machining curved parts and increased

on planar surfaces.

2.7 Open Research Areas

During the literature survey, not only the current research efforts, but also

unexplored areas in the field have been surveyed. With the help of this study, the

scope of the thesis has been determined.

First of all, the tool location data are not directly generated in conventional

command generation systems (CAD/CAM + CNC processors). Instead, the

Numerical Control (NC) code, which represents the trajectory via an ensemble of

geometric entities (such as line, arc, helix, NURBS etc.), is parsed and interpreted

in real-time to produce the position of the tool accordingly. The reason for this

rather meandering approach is due to the fact that data storage and retrieval was

extremely costly in the past. With this limitation is greatly circumvented in

today’s technology, the tool location data may directly be processed to increase

the performance of real-time command generation systems. With this approach,

the use of post processors, (machine-depended) NC codes, and complex hardware

for real-time data interpolation may be eliminated.

 20

Secondly, the real-time data decompression techniques, which may further

alleviate the efficiency of this direct command data generation method, are not

fully explored in the literature. For instance, there is no FPGA implementation of

Arithmetic coding (regardless of the application area) since it is very difficult to

synthesize a digital circuitry that is realizing the algorithm via hardware

description languages such as Verilog and VHDL. According to the results

obtained in this thesis, the performance of Arithmetic coding is much better than

any other compression algorithms when applied to the context of command

generation. Thus, the FPGA implementation of Arithmetic coding in command

generation methods might be a remarkable contribution.

 21

CHAPTER 3

FPGA INTERFACE

3.1 Introduction

The FPGA Interface to be devised within the scope of the thesis is a board whose

port connections can be defined through software and is capable of connecting

various sensors and actuators (in any order) to the FPGA based motion control

system. The current version of the interface can be regarded as a prototype and it

is planned to finalize the interface as a product in the future.

When the devices and their outputs signal used in motion control applications are

considered, it is concluded that the interface (as in the data acquisition cards)

should have four main communication channels:

1) Analog Input: This card of the interface is responsible for the connection

of analog devices (sensors, drivers, converters, etc.) to the system. The

voltage ranges of these type of devices are

a. Unipolar 5V ∈ [0, 5] V

b. Bipolar 5V ∈ [-5, 5] V

c. Unipolar 10V ∈ [0, 5] V

d. Bipolar 10V ∈ [-10, 10] V

 22

2) Analog Output: This developed unit is to be used for electromechanical

systems and controlling motor drives. The output voltage ranges of this

card are the same with the Analog Input card.

3) Digital Input: Devices (switches, sensors, etc.) generating digital signals

are connected to the motion control system via this card. For generality,

the developed card should be compatible with the below digital logic

families:

a. TTL, LS-TTL

b. CMOS (ACT, HCT, 74C)

4) Digital Output: This interface is basically used to generate digital signals

in order to sustain digital communication with various devices. The

outputs of this card should be compatible with the logic families given

above.

The microcontrollers and Digital Signal Processors (DSPs) employed in the

motion control industry have internal Analog to Digital Converters (ADCs) and

Digital to Analog Converters (DACs) but the FPGA chips have neither of them.

Another issue that should be noted is that the most of the FPGA chips operate

with 3.3V CMOS/ACT logic families. Thus, in order to evaluate the

aforementioned signals there should be signal-converter circuits that can be

connected to the digital ports of the FPGA chip on the interface.

The interface shown in Figure 3-2 basically consists of a main board having eight

identical slots reserved for four types of daughter cards. The daughter cards are

Analog Input, Analog Output, Digital Input, and Digital Output Cards. These

boards are to be evaluated in the following subsections in a detailed manner.

When the literature is investigated, there exists no full device that can be utilized

with analog and digital peripheral devices having various voltage ranges. The

 23

most related works include the programmability of FPGA pins according to the

needs of the users and the voltage level converters.

Menon et al. [41] developed a programmable input/output unit composed of three

input and one output circuits. These four circuits are coupled to one of the FPGA

pins and enabling of these circuits is carried by the programmable bits. With this

unit a selected pin of the FPGA can accept TTL, GTL, GTLP, LVPECL, or LVDS

voltage levels as input and generate TTL, GTL, or GTLP compatible signals.

Goetting et al. [42] designed a similar system, but they implemented the structure

within the FPGA chip.

Chang [43] introduced the Application Specific FPGA phrase to the literature in

his study. These integrated circuits include at least two functional units, which can

be a digital to analog converter, a compressed image decoder, a random access

memory, etc. The main purpose of the FPGA chip used in this design is to

maintain the communication between the functional units and to connect them.

3.2 Mother Board

The main responsibility of the mother board is to host different types of daughter

cards and provide required voltages and signals to these boards. Schematic design

of the mother board shown in Figure 3-1 is drawn in Proteus 7 Professional [44].

As can be seen from the figure, the main board has three main functions: i) to

generate bipolar (reference) triangular waveform, ii) to produce reference

voltages, iii) to supply different voltage ranges to the daughter cards.

Bipolar triangular waveform generator output is used by the Analog Input Cards

(AIC) to compare the analog signals with the generated waveform. Triangular

waveform generated by the module can be seen in Figure 3-7. The circuit

implements the general triangular waveform generator described in [45]. The

generated signal should be exactly in between 0V and 3.3V for proper analog to

digital conversion. To eliminate the small deviations from the desired voltage

 24

levels the resistances (R5 and R6) used in the corresponding circuitry should

perfectly be matched. The frequency of the waveform is set by the resistance R6

and the capacitance C2 used in the design, which is about 40 kHz in this case.

On the other hand, the reference voltage generator outputs a constant voltage of

1.65V. This voltage is obtained from the resistance R2 which is serially connected

the resistance R1. The capacitance C1 is used to eliminate the noise. The

operational amplifier U1 is a voltage follower used not to let the board draw

current from the voltage divider. If the voltage follower is not used, during the

operation of the board reference voltage can oscillate.

Electrical modules on the upper of the figure are the indicators of available

voltage levels supplied by the power source. They also distribute these voltages to

the daughter cards. J1, J2, J3, and J4 are connected to 3.3V, 5V, VDD, and 15V

voltage supplies, respectively. The capacitances between C3 and C11 are placed

to eliminate the noise on the voltage resources. Light Emitting Diodes (LEDs) are

also used to indicate the availability of the voltage source on the board.

As can be seen from Figure 3-2, the main board is capable of holding only eight

daughter boards. The connectors placed on the left side of the board are used to

supply 3.3, 5, 12, and -12 voltages. On the other hand, the connectors on the right

side are used to connect peripheral devices to the system. FPGA pins are

connected to the headers on the middle of the connectors on the right side.

In Figure 3-3, Altera DE1 FPGA Development Board, designed interface board,

and the power supply are shown with their connections. According to the number

of pins used for one mother board, FPGA Development Board can support up to

four mother boards. This means that thirty-two daughter cards can be placed on

the main boards, so that with this set-up an eight axis system can easily be

controlled.

 25

Figure 3-1 Schematic Design of the Mother Board

 26

Figure 3-2 Main Board

Figure 3-3 FPGA Development Board and Its Interface

3.3 Analog Input Card

The main task of this card is to convert the signals of analog sensors used in the

motion control industry to digital signals utilizing Pulse Width Modulation

(PWM). According to the block diagram given in Figure 3-4, the input analog

signal is first amplified and biased according to the range selection done by the

user.

 27

Figure 3-4 Block Diagram of Analog Input Card

The modified input signal is then compared with the triangular waveform on the

mother board and the digital output is fed to the corresponding pin of the FPGA

chip for further computations.

The analog input card, whose circuit schematic is illustrated in Figure 3-5, is

compatible with various voltage ranges as discussed in Section 1. The conversion

of the voltage levels are carried out with a dipswitch and a two way jumper placed

on the card. With this approach the voltage range of the sensor is to be

determined. Voltage ranges are obtained according to the position of the switches

and the jumper are given in Table 3-1.

The most important part of the design is placed on the upper part of Figure 3-5.

The operational amplifier U1:A is used to modify the range of input signal. The

output voltage of U1: A can be defined as

 28

�� = �− ���� 	⁄ � �� �0 ≤ �� ≤ 5�� (3.1)

�� = �− ����� �� �0 ≤ �� ≤ 10�� (3.2)

�� = �− ����� �� �−5 ≤ �� ≤ 5�� (3.3)

 �� = �− �� 	⁄�� � �� �−10 ≤ �� ≤ 10�� (3.4)

Then the output signal of U1:A is shifted according to the polarity of the input

port signal by U1:B. For the unipolar cases, the resistance R3 is connected parallel

to the resistance and for bipolar cases it is not connected to the circuit.

After the modification of the voltage range is completed, the modified input signal

is compared with the triangular waveform generated from the mother board

utilizing a comparator chip (U2:A) and its output is fed to the FPGA chip for

further analysis of the signal. The vacant pins of the chip U2 are connected to

ground not to cause any problems.

The manufactured card in Figure 3-6 is tested by placing it on one of the slots

available on the mother board as shown in Figure 3-3. After all connections are

done, by using a function generator, analog signals having different frequencies

and magnitudes are fed to the designed analog input card to evaluate the

performance of it. In Figure 3-7, signals obtained using the analog input card are

shown. As described above, firstly the input analog signal (green) is scaled to

the[0, 3.3] voltage range (blue). Then this signal is compared with the triangular

waveform and a pulse sequence changing according to the amplitude of the input

signal is generated by the card. Hence, it will be possible for the FGPA to

determine the value of input signal by measuring the widths of the pulses.

 29

 Table 3-1 Voltage Levels

First Switch Second Switch Jumper Voltage Range

1 0 Unipolar [0, 5] V

1 1 Unipolar [0, 10] V

0 0 Bipolar [-5, 5] V

0 1 Bipolar [-10, 10] V

Figure 3-5 Schematic Design of the Analog Input Card

 30

Figure 3-6 Analog Input Card

Figure 3-7 Signals of the Analog Input Card

Analog signals having different frequencies (100 Hz, 1 kHz, 10 kHz) are fed to

the card and the resulting signals are shown in Figure 3-8, Figure 3-9, and Figure

3-10. It can be inferred from the results that at 40 kHz frequency pulse width

modulation is successfully performed. It should also be noted that the resolution

of this analog to digital converter is about 10 bits due to the 50 Mhz clock used on

the FPGA board.

Analog Input

Modified Analog Input

 31

Figure 3-8 Output Signal of the Analog Input Card at 100 Hz

Figure 3-9 Output Signal of the Analog Input Card at 1 kHz

Figure 3-10 Output Signal of the Analog Input Card at 10 kHz

 32

3.4 Analog Output Card

The main function of this card, whose schematic shown in Figure 3-12, is to

generate analog signals that are necessary to control motor drives and

electromagnetic devices. The voltage ranges of the output signals are modified in

a similar fashion described in the previous section. The positions of the switches

and the jumper are the same to obtain voltage ranges as given in Table 3-1.

The block diagram of the analog output card is given in Figure 3-11. Firstly, the

generated PWM signals from the FPGA development board are transferred to the

low-pass filter. According to the cut-off frequency of the filter, digital signals are

converted to their analog counterparts. Then these analog signals are amplified

and biased according to the voltage range selections of the user.

Figure 3-11 Block Diagram of Analog Output Card

As can be seen from Figure 3-12, the incoming PWM signal from the FPGA pin is

fed to an active low pass filter (R1 and C1) having a cut-off frequency of 5 kHz.

Then the signal is shifted according to the polarity selection by the jumper which

is placed on J5 and J6 by the help of U1:B. In the final part of the design another

operational amplifier (U1:C) is used to scale the output signal according to the

following expression:

 33

�� = �− �� 	⁄�� � �� � 0 ≤ �� ≤ 5�� (3.5)

�� = �− ����� �� �0 ≤ �� ≤ 10�� (3.6)

�� = �− ����� �� �−5 ≤ �� ≤ 5�� (3.7)

�� = �− ���� 	⁄ � �� �−10 ≤ �� ≤ 10�� (3.8)

In order to evaluate the performance of the manufactured card in Figure 3-13, a

universal sinusoidal signal generator is designed in Quartus II 9 Web Edition

software. Its schematic design is shown in Figure 3-14. There are three different

modules in the design, namely Clock Divisor (CD), Sine Wave (SW), and PWM

Generator (PWMG). SW module can be regarded as the core of this design, since

the other two modules are in communication with the SW module. It reads

discrete values of a quarter sine wave from a look-up table and sends these values

in an alternating manner to complete a full sine wave to the PWMG module. The

PWMG module simply generates the output PWM signal according to the

 incoming value from the SW module. The main task of the CD is to divide the

global clock according to the user inputs and pass it to the SW and PWMG

modules. With the switches available on the Altera DE1 Development Board, it is

possible to generate sinusoidal signals ranging between 90 Hz and 12 MHz. By

using this design, sinusoidal signals with frequencies of 100 Hz, 1 kHz, and 4 kHz

are generated and fed to the analog output card to observe the performance of it.

 34

Figure 3-12 Schematic Design of the Analog Output Card

When the results shown in Figure 3-15, Figure 3-16, and Figure 3-17 are

considered, it can be concluded that the card works properly at low and

intermediate frequencies. On the other hand, it is observed during the tests that at

frequencies higher than 4 kHz the magnitude and the frequency of the output

signal are deteriorated. This is due to the fact that there is a low pass filter whose

cut-off frequency is 5 kHz in the design. Thus, the cut-off frequency of the filter

should be determined according to the needs of the application.

Figure 3-14 Hardwired FPGA Implementation of the Sinusoidal Signal Generator

Figure 3-

35

Figure 3-13 Analog Output Card

wired FPGA Implementation of the Sinusoidal Signal Generator

-15 Output Signal of the Analog Output Card at 100 Hz

wired FPGA Implementation of the Sinusoidal Signal Generator

Analog Output Card at 100 Hz

 36

Figure 3-16 Output Signal of the Analog Output Card at 1 kHz

Figure 3-17 Output Signal of the Analog Output Card at 4 kHz

3.5 Digital Input Card

The digital input card, whose schematic drawing is provided in Figure 3-18, is

basically used to convert digital signals belonging to various logic families such

as TTL, LS-TTL, and CMOS to 3.3V CMOS based compatible inputs for FPGA

chips. The main components of the design are the two Bipolar Junction

Transistors (BJTs). Voltage level shifting is carried out with the help of these high

speed (600 MHz) transistors coded as 2N2369. Firstly the digital input is fed to

the base of the first transistor and the collector of this transistor is connected to the

 37

base of the second transistor. The emitters of the transistors are directly connected

to ground and collectors are fed from the 3.3V supply. With this design digital

inputs at various logic levels are properly converted to FPGA compatible range.

In the literature the circuit is known as the totem pole output circuit. In order to

evaluate the performance of the digital input card, square signals (TTL) at

different frequencies (1 kHz, 10 kHz, and 100 kHz) are fed to the manufactured

card shown in Figure 3-19 via function generator. According to the results given

in Figure 3-20, Figure 3-21, and Figure 3-22, at low and intermediate frequencies

there is no remarkable change in the form of output signal whose range is [0, 3.3]

V. On the other hand, as the frequency of the input digital signal increases, the

rise time of the output signal tends to increase. The fundamental reason of this

problem is that there exist undesirable capacitances at connection points and

between electrical routes. Although it seems that the performance of the card is

sufficient for many industrial applications, some improvement should be done on

the card to let it operate properly also at high frequencies.

Figure 3-18 Schematic Design of the Digital Input Card

 38

Figure 3-19 Digital Input Card

Figure 3-20 Output Signal of the Digital Input Card at 1 kHz

 39

Figure 3-21 Output Signal of the Digital Input Card at 10 kHz

Figure 3-22 Output Signal of the Digital Input Card at 100 kHz

 40

3.6 Digital Output Card

The digital output card, whose circuit schematic is shown in Figure 3-23, is

basically used to generate digital signals to maintain the communication between

the FPGA chip and other devices. The output signals of this card should be

compatible with the logic families mentioned in the previous section. The output

voltage range of this card is also changed with a jumper as in the other cards.

When the schematic design is considered, the applied method is similar to the one

in the digital input card. Two BJTs are used and this time the output voltage level

is connected to the collector legs of the transistors.

In order to test the digital output card in Figure 3-24, square signals at high

frequencies are generated utilizing the FPGA board and fed to the card. The

response of the digital output card to the square signal with a frequency of 300

kHz is shown in Figure 3-25. As the case in the evaluation of the digital input

card, the rise time of the output signal is much higher than the rise time of the

input signal. There is almost no difference between the fall times. For the

illustration of the effect of duty cycle on the rise time, signals at different duty

cycles are fed to the card and the results are shown in Figure 3-26. As can be

inferred from the figure, there occurs delays in the output signals due to the

capacitive effects. Although these delays are acceptable for many applications,

improvements should be made to decrease these types of delays.

 41

Figure 3-23 Schematic Design of the Digital Output Card

Figure 3-24 Digital Output Card

 42

Figure 3-25 Output Signal of the Digital Output Card at 300 kHz

Figure 3-26 Output Signal of the Digital Output Card for Various Duty Cycles

 43

3.7 Closure

In this chapter of the thesis, the developed FPGA interface is elaborated in a detail

manner. This interface can be used to connect various peripheral devices to FPGA

without any electronic concerns. When the overall design is considered, the

modifications on the interface are carried out by hand utilizing the auxiliary

switches and jumpers on the daughter cards. In the further designs of the interface,

it is planned to replace switches with fast analog switches that can transfer the

current in two ways. These analog switches may also be used to configure the

channels electronically.

 44

CHAPTER 4

COMMAND GENERATION METHOD UTILIZING SEGMENTATION

AND POLYNOMIAL APPROXIMATION

The first developed command generation method utilizes segmentation with

respect to the inflection points of the trajectory and then employs function

approximation paradigms [33] such as, Chebyshev, Legendre, Bernstein – Bezier,

etc. to represent the continuous trajectory efficiently. In this chapter, after the

importance of segmentation is discussed, some background information on

polynomials is given. According to the performance evaluation of polynomial

types in MATLAB, the most successful one is realized on the FPGA

Development Board via two different approaches, hardwired and embedded

softcore processor.

4.1 Segmentation

Segmentation is preferable when a complex trajectory is to be approximated since

a single polynomial (with extremely high order) might not be sufficient to

approximate the whole trajectory to the desired accuracy. When the trajectories

are segmented before approximation, the magnitude of errors decreases

remarkably. On the other hand, segmentation also brings additional

computational loads to the approximation methods. Hence, during the evaluation

 45

Figure 4-1 A Sample Trajectory

of methods, this extra effort should be also assessed. For illustration, a sample

trajectory given in Figure 4-1 is to be approximated with Chebyshev Polynomials

(CPs) with two different approaches. In the first approach, the trajectory is

directly approximated by ten CPs. In the second approach, it is first divided into

sections considering to the inflection points and thus each section is approximated

with the same number of CPs.

In MATLAB, the given trajectory is approximated and the resulting sequence in

Figure 4-2 is obtained. As can be seen from the figure, the approximated

trajectory has significant deviations if compared to the original one. Similarly, the

approximation error is demonstrated in Figure 4-3. When it is compared with the

original trajectory in Figure 4-1, one can easily perceive that at the inflection

points of the original trajectory, the magnitudes of the errors are much greater.

 46

Figure 4-2 Approximation without Segmentation

Figure 4-3 Approximation Error without Segmentation

 47

There are two possible ways to decrease the magnitude of errors at these points: i)

number of polynomials used for approximation can be increased, ii) the trajectory

can be divided into sections. When the hardware implementations are considered,

the former solution is not preferred due to the resulting computational burden.

Thus, the sample trajectory is divided into five segments according to the

inflection points shown in Figure 4-4. Each segment is approximated utilizing ten

CPs. As can be seen from Figure 4-5, the segmentation before approximation

gives much better results than the previous method. The error profile is plotted in

Figure 4-6 and it is compared to that of its counterpart. Note that the maximum

error in Figure 4-6 is about one-sixth of the maximum error in Figure 4-3. Hence,

the segmentation before approximation is most feasible approach to approximate

curves with C0 continuity.

Figure 4-4 Segmented Sample Trajectory

 48

Figure 4-5 Approximated Segmented Trajectory

Figure 4-6 Approximation Error After Segmentation

 49

4.2 Polynomial Techniques

In this proposed command generation method, various polynomial approximation

techniques are applied onto the segmented trajectory. Before evaluating the

different types of polynomials, some background information on such methods

will be given to maintain self-containment of this thesis.

Suppose that a command trajectory is to be approximated with an nth order

polynomial in the interval [xmin, xmax]:

���� = �� + ��� + ⋯ + � !�� !� + � � (4.1)

If there exists sufficient (m ≥ n) number of data points {(x0, y0), (x1, y1), (x2, y2),

..., (xm , ym)} on the trajectory, the unknown polynomial coefficients {a0, a1, …,

an} in (4.1) can be calculated to represent the trajectory. In cases where the

number of data points is equal or greater than the number of polynomial

coefficients, the remaining coefficients can be determined using the least squares.

That is, with these coefficients, (m+1) equations can be written:

" = # ∙ % (4.2)

% = &����⋮�
((4.3)

=
)*
*+1 �� ��	 ⋯ �� 1 �� ��	 ⋯ �� ⋮ ⋮ ⋮ ⋮ ⋮1 �, �,	 ⋯ �,

-.
./ (4.4)

 50

" = &����⋮�
((4.5)

Polynomial coefficients in (4.2) are determined using the pseudo-inverse method

described in [34]:

% = �#0# �!�#0" (4.2)

In polynomial approximation methods, the basis functions are the key factors to

approximate the functions more accurately. When (4.1) is considered, the

exponential functions {x1, x2, …, xn-1, xn} can be treated as the basis functions.

This natural selection of basis function does not result in a good representation

due to the fact that the employed basis functions are not mutually orthogonal. That

is,

1 �2�345 ≠ 0789:
78;<

 (4.7)

where i, j ∈ {0, 1, …, n} and i≠j. In approximations, it is a wise choice to use

orthogonal functional forms as the basis functions according to the characteristics

of the function to be approximated. On the other hand, these selected basis

functions should easily be calculated also converge to the solution with less error

[35].

In this polynomial approximation based command generation method, Chebyshev,

Legendre, and Bernstein polynomials are elaborated and most suitable one is used

in FPGA implementations. When the basis functions of these polynomials are

compared, Legendre and Chebyshev polynomials use cosine functions and

Bernstein polynomials use binomials.

 51

4.2.1 Chebyshev Polynomials

Chebyshev polynomials (CPs) are usually preferred for hardware implementation,

since the CPs approximate non-periodic signals within a limited range better than

other polynomial types. This feature is well suited for the commanded trajectories

encountered in motion control applications.

CPs, which are strictly defined over an interval x ∈ [-1, 1], are formed recursively

to yield a set of orthogonal polynomials. When a different interval is considered, a

change of variables is employed to be able to utilize the CPs. In approximation

theory, the CPs are regarded as important polynomials due to the fact that roots of

first-kind CPs are used as the nodes in polynomial interpolation. As a result, CPs

decreases the problem of Runge’s phenomenon and also makes an approximation

which is very close to the polynomials of the best approximation for a continuous

trajectory under the maximum norm. There is another reason why CPs are good

for approximation: When the series is truncated at some term, the error resulted

from this cut-off is very close to the first term after the cut-off. This makes the

computation of error easy. First five CPs (T0 – T4) are given in Figure 4-7, which

are formed according to the recurrence formula:

= >���� = 2�= ��� − = !����, =� = 1, =���� = �, A ≥ 1 (4.8)

Any trajectory can be approximated by

���� = C � = ���.E
 F� (4.9)

Figure

When the basis functions of CPs are compared to the basis functions of Fourier, it

can be inferred that there is a similarity between them. After employing change of

variables, the different basis functions are formed from the trigonometric

functions of Fourier via mapping

Then the following two series become equivalent:

Although the series

of 2G. Due to the equivalence of series, the exponential convergence of Fourier

series guarantees the convergence of Chebyshev series.

52

Figure 4-7 First Five Chebyshev Polynomials

When the basis functions of CPs are compared to the basis functions of Fourier, it

can be inferred that there is a similarity between them. After employing change of

variables, the different basis functions are formed from the trigonometric

nctions of Fourier via mapping H = IJK�L�.

= �H� = IJK�AL�
Then the following two series become equivalent:

M�H� = C �
E

 F� = �H�

M�IJK�L�� = C �
E

 F� IJK�AL�
Although the series M�H� is not periodic, M�IJK�L�� is periodic in

. Due to the equivalence of series, the exponential convergence of Fourier

series guarantees the convergence of Chebyshev series.

Polynomials

When the basis functions of CPs are compared to the basis functions of Fourier, it

can be inferred that there is a similarity between them. After employing change of

variables, the different basis functions are formed from the trigonometric

(4.10)

(4.11)

(4.12)

is periodic in L with a period

. Due to the equivalence of series, the exponential convergence of Fourier

4.2.2 Legendre Polynomials

For non-periodic trajectories, Legendre Polynomials (LPs) can be

CPs in the interval [

domains, the formulation of Legendre basis functions becomes simpler than that

of Chebyshev basis functions. The convergence characteristics of these two

different polynomial types are the same, but the maximum error of Legendre

series is worse than the maximum error of Chebyshev series. Another difference

between these polynomials is that the CPs oscillate uniformly over the interval but

the LPs are non-uniform and

counterparts [35]. Just like CPs, LPs can be defined as

These polynomials (L

in Figure 4-8.

�A + 1�N >���� =

Figure

53

Legendre Polynomials

periodic trajectories, Legendre Polynomials (LPs) can be

CPs in the interval [-1, 1]. If the computational domain is divided into sub

domains, the formulation of Legendre basis functions becomes simpler than that

of Chebyshev basis functions. The convergence characteristics of these two

polynomial types are the same, but the maximum error of Legendre

series is worse than the maximum error of Chebyshev series. Another difference

between these polynomials is that the CPs oscillate uniformly over the interval but

uniform and their magnitudes are small when compared to their

. Just like CPs, LPs can be defined as

���� = C � N ���.E
 F�

These polynomials (Ln) are calculated utilizing the recurrence formula and shown

� � = �2A + 1��N ��� − AN !���� , N� = 1, N���� =

Figure 4-8 First Five Legendre Polynomials

periodic trajectories, Legendre Polynomials (LPs) can be used instead of

1, 1]. If the computational domain is divided into sub

domains, the formulation of Legendre basis functions becomes simpler than that

of Chebyshev basis functions. The convergence characteristics of these two

polynomial types are the same, but the maximum error of Legendre

series is worse than the maximum error of Chebyshev series. Another difference

between these polynomials is that the CPs oscillate uniformly over the interval but

their magnitudes are small when compared to their

(4.13)

) are calculated utilizing the recurrence formula and shown

� �, A ≥ 1 (4.14)

4.2.3 Bernstein Polynomials

The main difference of Bernstein Polynomials (BPs) from Chebyshev and

Legendre polynomials is that the BPs are defined in the interval [0, 1]

[-1, 1] and always positive. One of the popular application areas of BPs is the

generation of Bezier curves in computer graphics. Bernstein basis polynomials are

formed using the expression:

O2, �
The Bernstein polynomials are plotted in

combinations of Bernstein basis functions given in the equation:

54

Bernstein Polynomials

The main difference of Bernstein Polynomials (BPs) from Chebyshev and

Legendre polynomials is that the BPs are defined in the interval [0, 1]

1, 1] and always positive. One of the popular application areas of BPs is the

generation of Bezier curves in computer graphics. Bernstein basis polynomials are

formed using the expression:

��� = �AP � �2�1 − �� !2 �P = 0,1, ⋯ , A�
Bernstein polynomials are plotted in Figure 4-9 and defined as the linear

combinations of Bernstein basis functions given in the equation:

���� = C � OQ, ���.
QF�

Figure 4-9 First Five Bernstein Polynomials

The main difference of Bernstein Polynomials (BPs) from Chebyshev and

Legendre polynomials is that the BPs are defined in the interval [0, 1] rather than

1, 1] and always positive. One of the popular application areas of BPs is the

generation of Bezier curves in computer graphics. Bernstein basis polynomials are

(4.15)

and defined as the linear

combinations of Bernstein basis functions given in the equation:

(4.16)

First Five Bernstein Polynomials

In order to decrease the computational complexity of Bernstein polynomials, (just

like other polynomial techniques) Bernstein polynomials can also be

recursive fashion:

OQ,

4.3 Performance Evaluation

Before implementing the proposed command generation method on FPGA,

polynomial approximation techniques are compared and the most suitable one for

command generation

carried out in MATLAB, which inclu

realizable on the FPGA

The proposed command generation method

polynomial approximation methods

generated for all six joints of a PUMA 560

Figure

55

In order to decrease the computational complexity of Bernstein polynomials, (just

like other polynomial techniques) Bernstein polynomials can also be

 ��� = �1 − ��OQ, !���� + �OQ!�, !����

Performance Evaluation

Before implementing the proposed command generation method on FPGA,

polynomial approximation techniques are compared and the most suitable one for

command generation is selected for FPGA implementation.

MATLAB, which includes special functions that

on the FPGA.

The proposed command generation method based on segmentation and different

polynomial approximation methods are applied on the command sequences

generated for all six joints of a PUMA 560 manipulator. Figure

Figure 4-10 Command Trajectories of a PUMA Manipulator

In order to decrease the computational complexity of Bernstein polynomials, (just

like other polynomial techniques) Bernstein polynomials can also be defined in a

� � (4.17)

Before implementing the proposed command generation method on FPGA,

polynomial approximation techniques are compared and the most suitable one for

 This evaluation is

des special functions that cannot be easily

based on segmentation and different

are applied on the command sequences

Figure 4-10 shows these

Command Trajectories of a PUMA Manipulator

 56

trajectories in encoder counts. It is assumed that the quadrature encoder at each

joint has the ability to generate 40000 (= 4 × 10000 counts/rev) counts in one

revolution.

The evaluation is carried out for three different variations of the method: i)

approximation, ii) segmentation and approximation, iii) segmentation,

approximation and error compression.

4.3.1 Single Segment Approximation with Error Sequence Storage

In this version of the command generation method, the trajectories are

approximated without any segmentation but with error sequence storage.

Chebyshev, Legendre, and Bernstein – Bezier polynomials based approximation

method is applied on the command trajectory of the first joint of PUMA 560

manipulator. Plot showing the effect of error root mean square (RMS) value on

the compression ratio is provided in Figure 4-11. The number of polynomial

Figure 4-11 Performance of Polynomial Approximation Methods without

Segmentation

coefficients used for approximations are also

methods cannot approximate the trajectory below certain

singularity problems

zero) occur in the

were not ill-conditioned with increasing order

approximation methods

number of coefficients involved

approximation errors

divided into sections from their inflection points

Figure 4-12 Number of Polynomial Coefficients for Different Error RMS Values

During the storage of polynomial coefficients, it is aimed to decrease the

computational complexity of the implementation on the FPGA chip. Thus, the

coefficients are first rounded to integers and error sequences are formed according

to these integer coefficients.

It is critical to notice that while

mentioned techniques

57

coefficients used for approximations are also illustrated in Figure

methods cannot approximate the trajectory below certain error values, since

singularity problems (i.e. the determinant of inverted matrix in (4.6) approaches to

occur in the pseudo-inverse technique. Even if the solution of the problem

conditioned with increasing order, the performance of the

approximation methods could not be regarded as acceptable in terms of

number of coefficients involved to reconstruct the original trajectory.

errors mostly lie outside the tolerable range, trajectories

divided into sections from their inflection points.

Number of Polynomial Coefficients for Different Error RMS Values

During the storage of polynomial coefficients, it is aimed to decrease the

computational complexity of the implementation on the FPGA chip. Thus, the

ients are first rounded to integers and error sequences are formed according

to these integer coefficients.

It is critical to notice that while calculating the compression ratios

mentioned techniques, all necessary parameters and error sequence

Figure 4-12. These

error values, since

rix in (4.6) approaches to

the solution of the problem

, the performance of the

in terms of the large

to reconstruct the original trajectory. Since the

, trajectories must be

Number of Polynomial Coefficients for Different Error RMS Values

During the storage of polynomial coefficients, it is aimed to decrease the

computational complexity of the implementation on the FPGA chip. Thus, the

ients are first rounded to integers and error sequences are formed according

the compression ratios for the above-

parameters and error sequence are taken into

 58

account. The following expression is used to calculate the compression ratio of

pure approximation methods:

R = STU8 MP� WXJY�I,Z7 − I,2 �XJY�2� + 1[\ + ST8 MP� WXJY�],Z7 −],2 �XJY�2� + 1[\
ST8 MP� WXJY�4,Z7 − 4,2 �XJY�2� + 1[\ (4.18)

where N is the length of the original data sequence; Nc is the number of

coefficients used in the approximation; cmax, dmax, emax, and cmin, dmin, emin

represents the maximum- and the minimum values of the coefficients, the original

data sequence, and the error sequence respectively.

4.3.2 Segmentation and Approximation with Error Sequence Storage

In this sub-section of the evaluation, the trajectories in Figure 4-10 are firstly

segmented according to the inflection points and then polynomial approximation

methods are employed on these segments. The results are given in Figure 4-13. In

the method, the most important parameter is the approximation error RMS value.

If it is selected to be small, the error in the approximation decreases but the

number of polynomials and coefficients increase tremendously. Therefore, a

proper RMS value should be selected minimum compression ratio. The formula

required to calculate the compression ratio is the same with the one given in

Section 4.3.1. As it is inferred from Figure 4-13 that the best performance is

achieved for all approximation methods when the error RMS value is four.

Relatively high compression ratios at the beginning of the plot are due to the

number of polynomials used to achieve corresponding RMS value. After the value

of four, compression ratio tends to rise for all polynomial types since the memory

required for storing the errors increases. Lastly, when the three approximation

 59

methods are considered, Chebyshev Polynomials outperform the Legendre and

Bernstein – Bezier polynomials for approximation.

Figure 4-13 Performance of Polynomial Approximation Methods with

Segmentation

4.3.3Segmentation and Approximation with Error Sequence Compression

As can be understood from the name of this sub-section, the main difference of

this variation of the method is that the errors resulting from the approximation are

compressed before storing. For the error compression, the data compression

technique proposed in Chapter 5 is used. The performance of this variation is

illustrated in Figure 4-14. As in the other variations, CPs outperform the other

polynomial types and it can easily be inferred from the figure that this variation is

the best of all variations of the command generation method based on polynomial

approximation paradigms. By employing CPs, the original trajectory can be

compressed to 23% of its original size. It should be noted that during the

compression of error sequence, its first order of difference is taken and

compressed.

 60

The compression ratio calculation is carried out with the same equation given in

Section 4.3.1 with an additional compression ratio parameter (re) for the error

sequence as

R = STU8 MP� WXJY�I,Z7 − I,2 �XJY�2� + 1[\ + R̂ ST8 MP� WXJY�],Z7 −],2 �XJY�2� + 1[\
ST8 MP� WXJY�4,Z7 − 4,2 �XJY�2� + 1[\ (4.19)

Figure 4-14 Performance of Polynomial Approximation Methods with

Segmentation and Error Compression

4.4 FPGA Implementation

After the elaboration of different polynomial techniques employed on the

trajectories of the PUMA manipulator (see Figure 4-10), it is turned out that the

Chebyshev polynomials give much better results than the Legendre and the

 61

Bernstein polynomials. Thus, the Chebyshev polynomials based command

generation method is realized utilizing the Altera DE 1 FPGA Development

Board (with Cyclone II FPGA) [36] via two different approaches. In the first

approach, the command generation method is directly written in VHDL utilizing

the schematic design property of software Quartus II 9.0 Web Edition. This

technique will be referred to as “Hardwired” approach. In the second technique,

(rather than writing directly in hardware description language) architecture is

implemented in NIOS II Embedded Development Environment [37], where a

softcore processor IP serving as an embedded microcontroller is deployed on the

FPGA. In the following two sub-sections, the differences between these

approaches will be discussed and their performances shall be evaluated using the

joint-state trajectories generated for the PUMA manipulator.

4.4.1 Hardwired Approach

In the first approach of FPGA implementations, the proposed command

generation method is realized by directly writing the algorithm in VHDL. During

writing, schematic design property of Quartus II 9.0 Web Edition is used. With

this property of the software, it is much easier to sustain and track the

communication between different modules performing specific tasks. Schematic

design generating the commands for the first joint of PUMA manipulator, whose

trajectories are given in Figure 4-10, is provided in Figure 4-15. In this design,

there are mainly four different modules and two memory units. The modules are

Driver Module (DM), Splitter Module (SM), RS-232 Module, Floating Point

Operation Module (FPOM). The first memory unit is used to store Chebyshev

polynomials. In this memory unit only hundred discrete values of first eight

Chebyshev polynomials are stocked. Thus, in this hardwired implementation there

is a restriction on the maximum width of the segments, which is hundred. If the

length of the segment is less than hundred, then a proper change of variables is

applied to the segment. On the other hand, in the second memory unit polynomial

coefficients and the widths of the segments are stored. These coefficients are

 62

passed to the FPOMs in a proper order for multiplication with the Chebyshev

polynomials. After the multiplications, the results are summed in other FPOMs

and sent to the RS-232 module in order to transfer the commands to the computer.

Table 4-1 represents the allocated resources in FPGA for the implementation of

the method with the hardwired approach. It can be inferred from the table that the

almost half of the logic elements are used for this method, which can be regarded

as high. The number of pins used is very low, since overall design does not have

any communications with peripheral devices. It just internally generates the

commands. It uses 37% of the multipliers due to the FPOMs embedded in the

design. For a better illustration of resource usage, Figure 4-16 can be viewed. It

can also be understood from the figure that about half of the resources are

consumed by the architecture. The most important thing of this implementation is

that it takes only 750 µs to generate 586 commands, which is fast for command

generation systems. In the following sub-sections, the four main modules used in

the design are explained in detail.

Table 4-1 FPGA Resources used in Hardwired Approach

Total Logic Elements 11098 (45%)

Total Combinational Functions 10885 (44%)

Dedicated Logic Registers 2644 (11%)

Total Registers 2644

Total Pins 4 (2%)

Total Memory Bits 26880 (4%)

Embedded Multipliers 9-bit Elements 49 (37%)

Total PLLs 0

63

F
ig

u
re

 4
-1

5
H

ar
dw

ir
ed

 F
P

G
A

 I
m

pl
em

en
ta

ti
on

 o
f

th
e

M
et

ho
d

 64

F
ig

u
re

 4
-1

6
F

lo
or

 P
la

n
of

 t
he

 S
yn

th
es

iz
ed

 D
ig

it
al

 C
ir

cu
it

ry
 f

or
 t

he
 H

ar
dw

ir
ed

 I
m

pl
em

en
ta

ti
on

 65

4.4.1.1 Driver Module

Driver Module can be regarded as the manager module of the design. It

communicates with all the modules and memory units to make the command

generator operate properly. As can be seen from Figure 4-15, the DM has two

inputs and four outputs. The first input is the global clock available on the FPGA

board, which is 50 Mhz in this design, and the second input is the trigger input

given by an external logic to the system to generate commands. Among outputs of

the DM, index is sent to the Look-up Table. With the index value, Look-up

Table outputs the values of CPs to the first set of FPOMs. fpuclock is

generated and transferred to the FPOMs to perform mathematical operations in

the desired order of the DM. Communication with the RS-232 Module is

sustained with the output sendclock. Since the DM knows exactly how many

cycles are necessary for mathematical operations, it outputs this clock

accordingly. sendselect output is given to the SM to split the 32-bit command

values into 8-bit values. With all these inputs and outputs the DM operates as the

main module of the design.

4.4.1.2 Floating Point Operation Module

There are fifteen FPOMs in the design. Eight of them perform multiplications, and

the rest sums the results of these multiplications. The original of this module was

developed by Usselmann [38]. This current version is simplified to respond only

to the needs of the design. The module, whose schematic is provided in Figure

4-15, has three inputs and an output. The first input clk is received from the DM

module and the other inputs are the 32-bit floating point data to be used in

mathematical operations. The only output out is the result of multiplication or

addition in this architecture. It is sent to the other FPOMs for further operations or

sent to the RS-232 module.

 66

4.4.1.3 Splitter Module

Splitter module, shown in Figure 4-15, is the simplest module used in the design.

It just takes the input sel as the clock and splits the incoming 32-bit wide

floating point data in32 into four 8-bit wide values. Finally sends these data to

the RS-232 module directly. The reason why there is need for such segmentation

is that the available RS-232 module can operate with 8-bit data values.

4.4.1.4 RS-232 Module

The RS-232 Module, developed by Usselmann [40], actually consists of two sub-

modules; sasc_brg and sasc_top as named in Figure 4-15. The module on

the left side is the baud rate generator. The baud rate is adjustable using the

divisor registers in the module according to the global input given as input to the

module. The module on the right side is responsible for the communication with

the PC and the incoming data.

4.4.2 Embedded Softcore Processor Approach

In the second approach, the command generation algorithm is written in C

programming language and the resulting are cross-compiled to run on a softcore

processor deployed on the FPGA. The “machine code” is then downloaded to this

processor. Note that the embedded softcore is designed in the NIOS II Embedded

Development Environment. Schematic design of this algorithmic state machine

(ASM) is shown in Figure 4-17. The softcore Intellectual Property (IP) has a

Synchronous Dynamic Random Access Memory (SDRAM) Unit additional to the

basic micro-processor units. SDRAM is used to store Chebyshev polynomials,

coefficients, and widths of the segments. Due to the usage of an external memory

unit, hardware resources used in the FPGA is less than the ones used in the first

Figure

approach as can be seen in

of the resources. This can also be verified from the chip plan given in

For the given trajectory,

SDRAM) of memory.

586 points is around 247 ms, which is much higher than

critical to note that the basis functions (i.e. Chebyshev polynomials) can be

generated in advance and it takes roughly 213 ms.

67

Figure 4-17 Softcore FPGA Implementation of the Method

approach as can be seen in Table 4-2. The processor occupies only about one

of the resources. This can also be verified from the chip plan given in

For the given trajectory, the implementation only uses 61 kB (

SDRAM) of memory. The time necessary for generating a command sequence of

points is around 247 ms, which is much higher than the first

critical to note that the basis functions (i.e. Chebyshev polynomials) can be

generated in advance and it takes roughly 213 ms.

core FPGA Implementation of the Method

. The processor occupies only about one-fifth

of the resources. This can also be verified from the chip plan given in Figure 4-18.

the implementation only uses 61 kB (0.007% of

necessary for generating a command sequence of

the first approach. It is

critical to note that the basis functions (i.e. Chebyshev polynomials) can be

 68

Table 4-2 FPGA Resources used in Softcore Approach

Total Logic Elements 3444 (18%)

Total Combinational Functions 3085 (16%)

Dedicated Logic Registers 1914 (10%)

Total Registers 1966

Total Pins 39 (12%)

Total Memory Bits 28992 (12%)

Embedded Multipliers 9-bit Elements 0

Total PLLs 1 (25%)

 69

F
ig

u
re

 4
-1

8
F

lo
or

 P
la

n
of

 t
he

 S
yn

th
es

iz
ed

 D
ig

it
al

 C
ir

cu
it

ry
 f

or
 t

he
 S

of
tc

or
e

Im
pl

em
en

ta
ti

on

 70

4.5 Closure

In this chapter, command generation method based on segmentation and

polynomial (Chebyshev, Legendre, and Bernstein) approximation was proposed.

The method was then implemented on the FPGA development board using two

different approaches. Pure polynomial approximation was not used for the

implementations, since during the elaboration of the method in MATLAB

environment it turned out that the segmentation of the trajectory was inevitable for

small magnitudes of errors. The two implementations have their own advantages

over the other. Hardwired approach is much faster than the softcore counterpart.

On the other hand, the hardware resources used by the embedded softcore is about

the half of resources occupied by the hardwired approach. To sum up, if there is

no restriction on the usage of hardware resources, it is better to implement

hardwired approach which is much faster than the other.

 71

CHAPTER 5

COMMAND GENERATION METHOD UTILIZING DIFFERENCING

AND COMPRESSION WITH VARIABLE FEED-RATE

The second developed command generation method consists of two phases:

differencing and compression. The main difference of this method from the first

one is that there is no approximation during command generation and as a result

there are no representation errors. In this chapter, after the need for differencing

(before compression) is explained, the proposed data compression technique will

be elaborated. In the following section, the performances of various data

compression methods are comparatively elaborated. According to the obtained

results, variable feed-rate input (i.e. time/velocity scalar) is incorporated to the

most successful method. Finally, the command generation algorithm is

implemented on the FPGA board using two different approaches: hardwired and

embedded softcore processor.

5.1 Differencing

Methods involving higher-order differences of time-sequences are applied to

decrease the memory required for storage [4]. Note that in the literature this

technique is referred to as differencing or relative encoding [3]. Rather than

storing directly the whole command trajectory, it is beneficial to store the

differentiated data a

of a sequence can be represented as

In these equations,

the order of difference increases, the memory needed for the storage of the

sequence decreases. In order to represent the relationship between the memory

requirement and the order of difference, several trajectories are formed and their

differences are taken up to 7

be seen from the figure, after the third

memory usage since the sign of each data point frequently changes in an

alternating fashion afte

considerably. Therefore, the best solution for data storage is achieved when the

order of difference is

Figure

72

data along with the necessary initial values. Higher

a sequence can be represented as

_` = `�a� − `�a − 1�,
_	` = _`�a� − _`�a − 1�,

_b` = _b!�`�a� − _b!�`�a − 1�.
In these equations, _b` represents the nth order difference and k is the index

difference increases, the memory needed for the storage of the

sequence decreases. In order to represent the relationship between the memory

requirement and the order of difference, several trajectories are formed and their

differences are taken up to 7th order [1]. This result is shown in

be seen from the figure, after the third-order difference, there is an increase in the

memory usage since the sign of each data point frequently changes in an

alternating fashion after the 4th order difference. Hence, the range of data broadens

considerably. Therefore, the best solution for data storage is achieved when the

order of difference is three or four for most of the motion control applications.

Figure 5-1 Effect of Order of Difference on Memory

Higher-order difference

(5.1)

(5.2)

(5.3)

and k is the index. As

difference increases, the memory needed for the storage of the

sequence decreases. In order to represent the relationship between the memory

requirement and the order of difference, several trajectories are formed and their

is shown in Figure 5-1. As can

order difference, there is an increase in the

memory usage since the sign of each data point frequently changes in an

order difference. Hence, the range of data broadens

considerably. Therefore, the best solution for data storage is achieved when the

for most of the motion control applications.

Effect of Order of Difference on Memory

Note that the original data can be extracted using the differenced data along with

the initial values. For

operation can be expressed as

When a = 1, an initial value

If the order of difference is greater than one,

increases. While calculating the compression ratios of

differencing, memory required for the initial values should also be considered.

Differencing without compression can also be used as an alternative command

generation method. For the illustration of this method, the second joint

trajectory of the PUMA manipulator (shown in

When the area underneath the trajectory and its differences are plotted in

5-2, it can be observed that the areas decrease remarkably. On the other hand, the

Figure 5-2 Second Joint Trajectory of PUMA

to Third Order

73

Note that the original data can be extracted using the differenced data along with

the initial values. For the first order differences, this integration

e expressed as

`�a� = `�a − 1� + _`�a�
, an initial value `�0� along with _`�1� is needed to calculate

If the order of difference is greater than one, number of necessary initial values

increases. While calculating the compression ratios of the

differencing, memory required for the initial values should also be considered.

Differencing without compression can also be used as an alternative command

generation method. For the illustration of this method, the second joint

ectory of the PUMA manipulator (shown in Figure 4-10

When the area underneath the trajectory and its differences are plotted in

, it can be observed that the areas decrease remarkably. On the other hand, the

Second Joint Trajectory of PUMA Manipulator and Its Differences up

Note that the original data can be extracted using the differenced data along with

first order differences, this integration (accumulation)

(5.4)

is needed to calculate `�1�.

number of necessary initial values

the methods utilizing

differencing, memory required for the initial values should also be considered.

Differencing without compression can also be used as an alternative command

generation method. For the illustration of this method, the second joint

10) is reconsidered.

When the area underneath the trajectory and its differences are plotted in Figure

, it can be observed that the areas decrease remarkably. On the other hand, the

Manipulator and Its Differences up

 74

compression ratios of differences do not change as remarkably as the areas

change. This is due to the reason that there must be constant bit widths for the

trajectory and the maximum value of the sequence determines this width. In Table

5-1, compression ratios are given up to sixth order of difference for all the

trajectories of the manipulator. It should be noted that in the calculation of

compression ratios, the necessary initial values for decoding are also considered.

Table 5-1 Compression Ratios vs Order Difference [%]

 Order of Difference

Joint Number 1 2 3 4 5 6

1 73.25 66.61 66.52 73.07 79.62 86.17

2 73.25 73.25 79.80 79.71 86.26 92.81

3 61.55 69.22 69.12 76.79 76.68 84.24

4 99.90 92.69 92.59 92.50 92.40 92.30

5 73.25 73.25 79.80 79.71 86.26 92.81

6 93.27 86.53 86.44 86.35 86.26 86.17

5.2 Proposed Data Compression Algorithm

Data compression algorithms described in the second chapter are universal

methods. That is, they can be utilized to compress any data type with diverse

statistical attributes including text, audio, image, video, etc. While this generality

feature can be regarded as an advantage, the implementation of such compression

paradigms on FPGA chips can be often times quite complex and could drain

considerable resources on a particular FPGA. On the other hand, the compression

 75

algorithm proposed in this thesis is specifically developed to deal with optical

position encoder commonly encountered in motion control applications. Since the

output of these sensors, which satisfy C0 (and frequently C1) continuity, can be

conveniently represented as (signed or unsigned) integers, one can exploit such

(temporal) sequences to come up with an efficient compression technique that is

easier to implement on a FPGA chip with modest resources. In the following

subsections, encoding and decoding algorithms of this method are to be explained

in detail.

5.2.1 Encoding Process

The basic idea behind this technique is that when the higher-order differences of a

reference trajectory (i.e position/location sequence) in a typical motion control

application is computed, the (integer) values in the resulting sets do decrease

considerably. Furthermore, since most motion control applications require

constant velocity along the traced trajectory, the majority of the differentiated data

is likely to be null (0) while the rest is composed of small integers in which the

probability of occurrence is inversely correlated with the magnitude. Considering

that a small integer number would require fewer bits, the difference data would

take up significantly less memory if compared to the original data set. Unlike

entropy-based (general) compression techniques (like Huffman coding), one can

directly encode the difference data in this technique without calculating the

probability density of the processed data owing to the fact that the special

requirements associated with the motion control applications (due to operational

concerns) tightly dictate the statistical distribution data beforehand.

Consequently, the proposed compression algorithm (to be referred to as the ∆∆∆∆Y

Method hereafter) is employed on the higher-order differences of the command

trajectory (usually position). Once the differenced data of the command sequence

is calculated according to the specified order, the resulting data is compressed

(a.k.a. “compacted”) utilizing the ∆Y algorithm. In Figure 5-3, a sample encoding

 76

process for the third-order difference is illustrated. Note that the compressed code

consists of three fields (Sign, Amplitude, and Length Fields) and initial value set.

The sign field includes sign bits: 0 and 1 represent positive- and negative numbers

respectively. Note that if the magnitude of data is zero, no sign bit is assigned for

this special case. Hence, the length of the sign field equals to the difference

between the number of data points (in the differenced set) and the number of zeros

in the data. Similarly, the amplitude field encodes the absolute values of the data

sequentially as binary numbers with variable length. To extract the differenced

data, another field (a.k.a “length field”), which yields the length of each value in

the amplitude field, needs to be formed. As can be seen from Figure 5-3, this field

contains sequences of 1’s and 0’s in an alternating manner. Once can detect the

length of a particular number in the amplitude field by simply counting the bits in

between two consecutive transitions (0-to-1 or 1-to-0) detected in the length field.

Lastly, the order of differencing, and the initial values are needed for lossless

decompression. The initial values, which are used to initialize integrator (or

accumulator) states, depend on the order of the difference. That is, the number of

integrators used in decoding is equal to the order of difference.

E
n
c
o
d
e
d

D
a
ta

Figure 5-3 Sample Encoding Process for ∆Y Method

 77

5.2.2 Decoding Process

Architecture implementing the decoding process of the ∆Y technique is illustrated

in Figure 5-4. Decoding starts out with the comparison of the consecutive bits in

the length field to detect the transitions in this field. After the length of a

particular binary data residing in the amplitude field (li) is determined through the

bit comparison module and the counter, the information is passed to the left-shift

register. Considering the length, the shift register extracts the amplitude of the

data from the corresponding field and transfers the data to the differenced data

module. After taking the sign value (utilizing another left shift register) from the

sign field, the differenced data module completes its task and sends the data to the

integration module. In the mean time, the initial values are transferred to the

integration module and the original data by accumulating the differenced data in a

sequential manner.

Figure 5-4 Decoding Process of ∆Y Decompression Algorithm

 78

It is critical to notice that as indicated in the first section of this chapter, the

presented technique generates the original data (i.e. position) by accumulating the

finite differences of that sequence in a successive fashion. For instance, when n

equals to 3, the third-order difference (i.e. jerk) is accumulated to obtain second-

order difference (i.e. acceleration/deceleration). The corresponding results are

iteratively accumulated until the position at a particular instant in time is

calculated. Hence, the discrete-time derivatives of the command sequence, which

are frequently required by modern motion controller topologies, are inherently

computed in this technique.

5.3 Performance Evaluation

In this section, Huffman, Arithmetic Coding, and the ∆Y compression algorithms

are applied on the trajectories of the PUMA 560 manipulator in MATLAB (see

Figure 4-10). After the finite differences of the command trajectory for the first

joint are computed for various orders, the data compression algorithms are

employed to compress the differentiated trajectory data. Resulting compression

ratios (in percent) are presented in Table 5-2. In the

table, n represents the order of finite difference. Note that while calculating the

compression ratios for the methods utilizing differencing, the memory required

for the initial values is also taken into consideration. As observed from Table 5-2,

if n > 1, the compression algorithms yield much better results owing to the fact

that the increments of encoder counts from one sampling step to another (i.e.

angular velocity) are still quite high as the robot performs a jerky motion

throughout the followed trajectory in this particular example. Another conclusion

to be drawn from the table is that the performance of the ∆Y algorithm is superior

to those of the others. With n = 3, the command sequence can be compressed to

about one-fourth of its original size. Notice that the results given in Table 5-2 are

also in good agreement with Figure 5-1. Up until the third order, the compression

ratio decreases and after that there is an increasing trend. This situation may be

 79

explained by the decline in the frequencies of the numbers in the sequence and the

expansion in the range of the data values.

Table 5-2 Compression Ratios for Various Orders

 Compression Ratio (%)

n Huffman Arithmetic Coding ∆∆∆∆Y Method

0 197.1 181.4 182.9

1 131.0 118.6 77.9

2 34.1 32.7 30.3

3 34.8 31.9 23.6

4 46.4 42.3 30.8

5 60.6 54.1 39.3

6 81.7 70.9 49.6

It is critical to notice that while calculating the compression ratios for the above-

mentioned techniques, all necessary parameters to extract the original command

sequence (including compressed code, initial values, dictionary tables, etc.) are

taken into account. The following expression is used to calculate the compression

ratio of the ∆Y technique:

R = c18 �∑ 2X2 + T − A − A�e! 2F� �f + SA8 WXJY�4,Z7 − 4,2 �XJY�2� + 1[\
ST8 MP� WXJY�4,Z7 − 4,2 �XJY�2� + 1[\

(5.5)

 80

where N is the length of the original data sequence; n is the order of finite

difference; l is the binary length of each data; n0 is the number of zero magnitude

data; dmax and dmin represents the maximum- and the minimum value of the

original data sequence respectively.

To be able to determine which compression algorithm is suitable for command

sequences, the aforementioned methods are applied to all trajectories generated

for the PUMA 560 manipulator after taking third-order finite differences of the

angular position data (in encoder counts). The results are shown in Table 5-3. It is

clearly seen from the table that the proposed method leads better results than the

contending techniques.

Table 5-3 Compression Ratios for Third Order Differences

Joint Number

1 2 3 4 5 6

M
et

h
od

 Huffman 34.8 43.9 36.0 37.0 46.0 41.3

Arithmetic 31.9 40.2 33.8 34.8 42.0 37.9

∆∆∆∆Y 23.6 24.2 24.1 22.2 24.7 25.3

5.4 Command Generation with Variable Feed-rate Input

A novel command generation scheme, where the programmed velocity along the

traversed trajectory can be changed dynamically, is elaborated in preceding

section. In CNC applications, the speed (i.e. feed-rate) through the course of

motion is generally modified by external input (like feed-rate override knob).

Under some extreme cases (such as the control scheme of an electro-discharge

 81

machine), it might be desirable to reverse the direction of motion as dictated by an

external source. Therefore, the proposed command generation method is to be

augmented to accommodate a variable feed-rate input.

With this property, the users will be able to change the rate of command

generation in both forward and reverse directions. During generation, when there

is a need for the intermediate command values, a linear interpolator should be

incorporated to the design. That is, this unit is to interpolate between the two

decoded command values based on the following expressions:

�Q = �Q!� + MQ �gJ4 M,Z7� (5.6a)

g ∶= i g − 1, �Q!� + MQ < 0g + 1, �Q!� + MQ > M,Z7 l (5.6b)

mQ = m,!� + �m, − m,!���QM,Z7 (5.7)

where u represents the decoded commands at the interval m ∈ {0, 1, …, N}; k is

the time index. Similarly, fk ∈ {–fmax,…-1, 0, 1, … fmax} indicates the current

value of the feed-rate input to the system while fmax ∈ Z
+
 denotes the maximum

feed-rate at which commands could be generated. Note that the variable (ak) in

(4.7) essentially serves as a time scaling factor.

In Figure 5-5, a sample interpolation is carried out with a feed-rate of (3/8)fmax.

That is, if the sampling time is selected as 0.008 s, then with the specified feed-

rate the new sampling time becomes 0.003 s. As can be seen from the figure that

before the 4th interpolated command is generated, the difference value is updated

and the next three commands are generated according to the new difference value.

 82

The shaded area underneath the 2nd original command can be regarded as the error

of the interpolation algorithm. After each original data point, extrapolation can

also be used rather than interpolation. In the extrapolation case, it is guaranteed to

Figure 5-5 Interpolated Data

generate the original command. On the other hand, duration of the representation

error of the extrapolation is always larger than the one of interpolation. Another

approach to eliminate the representation errors at least at the original command

points, the original data can be generated regardless of the sampling time.

The proposed command generation method with variable feed-rate is evaluated in

MATLAB before implementing it on an FPGA development board. The feed-rate

profile in Figure 5-6 is applied to the original command trajectory illustrated in

Figure 5-7. The feed-rate profile is formed such that all the commands are first

generated in the forward direction and then in the reverse direction with

continuously changing feed-rate. There occur some command representation

errors (as shown in Figure 5-8) at each original data points since the interpolation

algorithm (described in the previously) is not capable of generating commands at

these points. When Figure 5-7 and Figure 5-8 are considered together, it can

easily be inferred that the larger errors occur at the inflection points of the

trajectory.

 83

Figure 5-6 Feed-rate Profile

Figure 5-7 Interpolated and Original Command Sequences

 84

Figure 5-8 Command Representation Errors

5.5 FPGA Implementations

After the elaboration of different data compression techniques employed on the

trajectories of the PUMA manipulator, it is turned out that the ∆Y compression

method exhibits superior performance over the Huffman and the Arithmetic

compression techniques. Thus, the ∆Y method based command generation

paradigm is realized utilizing the Altera DE1 FPGA Development Board (with

Cyclone II FPGA) [36] via two different approaches. In the first approach, the

command generation method is directly written in VHDL utilizing the schematic

design property of software Quartus II 9.0 Web Edition. This technique will be

referred to as “hardwired” approach. In the second technique, (rather than writing

directly in hardware description language) architecture is implemented in NIOS II

Embedded Development Environment [37], where a softcore processor IP serving

as an embedded microcontroller is deployed on the FPGA. In the following two

sub-sections, the differences between these approaches will be discussed and their

 85

performances shall be evaluated using the joint-state trajectories (see Figure 4-10)

generated for the PUMA manipulator.

5.5.1 Hardwired Approach

In this approach, the proposed command generation algorithm is realized by a

finite state machine (FSM) which is directly designed through the use of VHDL.

During this phase, the schematic design property of Quartus II 9.0 Web Edition is

used. With this property of the software, it is much easier to sustain and keep

track of the communications among different modules performing specific tasks.

The schematic of the design is illustrated in Figure 5-9. In this design, there are

mainly six modules: SRAM Controller, Memory Management Unit (MMU),

Decoding Unit (DU), Accumulators, Interpolator, and RS-232 Module. Before

explaining each module, the allocated resources on FPGA while implementing the

method are represented in Table 5-4. As can be seen, only 9% of the total logic

Table 5-4 FPGA Resources used in Hardwired Approach

Total Logic Elements 1731 (9%)

Total Combinational Functions 1491 (8%)

Dedicated Logic Registers 911 (5%)

Total Registers 911

Total Pins 50 (16%)

Total Memory Bits 0

Embedded Multipliers 9-bit Elements 2 (4%)

Total PLLs 0

 86

F
ig

u
re

 5
-9

 H
ar

dw
ir

ed
 F

P
G

A
 I

m
pl

em
en

ta
ti

on
 o

f
th

e
∆

Y
 M

et
ho

d

 87

elements available on the FPGA chip are utilized in the design. Note that the FSM

is implemented to generate commands for a single manipulator joint controller.

Hence, one can implement 6 parallel FSMs to produce the commands for all joints

of the PUMA manipulator without exhausting the resources of the chip. The

number of pins used is a bit higher than ones in the implementation of the

polynomial approximation methods. The reason of this increase is that the FPGA

chip needs to be connected to the SRAM chip on the development board to store

compressed (joint state) commands. For a better illustration of resource allocation,

the floor plan of the “synthesized” digital circuitry on the chip is illustrated in

Figure 5-10. As can be seen, only a small portion at the center of the chip is

deployed to realize the corresponding architecture [38].

In order to evaluate the performance of the implementation in a detailed manner,

the method is applied for all the trajectories of the manipulator (Figure 4-10). The

results are given in Table 5-5. In the following sub-sections, the six main modules

used in the design are investigated in detail.

Table 5-5 Time for the Generation of Command Sequences

Joint Number Clock Cycles Time (ms)

1 14569 0.29

2 15609 0.31

3 14039 0.28

4 13865 0.27

5 16045 0.32

6 15434 0.30

 88

F
ig

u
re

 5
-1

0
F

lo
or

 P
la

n
of

 t
he

 S
yn

th
es

iz
ed

 D
ig

it
al

 C
ir

cu
it

ry
 f

or
 t

he
 1

st
 A

rc
hi

te
ct

ur
e

5.5.1.1 SRAM Controller

The main task of the SRAM controller is to

the MMU and the SRAM located on the FPGA Development Board. It sends out

the compressed data to the MMU (one by one in this case) according to the

address information emanating from the MMU. Schematic version of the modul

is shown in Figure

connected to the SRAM chip on the development board, which is organized as

256K words by 16 bits. The output

This output is responsible for sending the data on the specified address of the

memory. The inputs

module. The rest of the inputs are connected to the outputs of the MMU. The

address input to the module determines the value of output data to the MMU.

byteenable, chipselect

operation to be able to use the module.

writing operation during the decoding

use the memory efficiently, the compressed code is structured

5-12 for a generic command sequence.

89

SRAM Controller

The main task of the SRAM controller is to maintain the communication between

the MMU and the SRAM located on the FPGA Development Board. It sends out

the compressed data to the MMU (one by one in this case) according to the

address information emanating from the MMU. Schematic version of the modul

Figure 5-11. All of the outputs of the module except

connected to the SRAM chip on the development board, which is organized as

256K words by 16 bits. The output readdata is directly connected to the MMU.

This output is responsible for sending the data on the specified address of the

memory. The inputs clk and reset are the global clock and reset pins fed to the

Figure 5-11 SRAM Controller

module. The rest of the inputs are connected to the outputs of the MMU. The

input to the module determines the value of output data to the MMU.

chipselect, and read inputs are set to high during to

operation to be able to use the module. write input is set to low since there is no

writing operation during the decoding process of the compressed data.

use the memory efficiently, the compressed code is structured

generic command sequence. The first three words of

maintain the communication between

the MMU and the SRAM located on the FPGA Development Board. It sends out

the compressed data to the MMU (one by one in this case) according to the

address information emanating from the MMU. Schematic version of the module

. All of the outputs of the module except readdata are

connected to the SRAM chip on the development board, which is organized as

is directly connected to the MMU.

This output is responsible for sending the data on the specified address of the

are the global clock and reset pins fed to the

module. The rest of the inputs are connected to the outputs of the MMU. The

input to the module determines the value of output data to the MMU.

inputs are set to high during to

input is set to low since there is no

process of the compressed data. In order to

use the memory efficiently, the compressed code is structured as shown in Figure

The first three words of

 90

Figure 5-12 Compressed File Format

the compressed data can be regarded as the header. Initial 4 bits of the first word

indicate the order of finite difference (where a maximum of 15th order for the

differences can be represented). The rest of the first word and the second word (28

bits) are reserved for expressing the length of the command sequence. Finally, the

last word of the header is used to specify the number of words reserved for the

magnitude field, which indirectly determines the starting address of the sign field.

After the header part, the initial values section is located. They are stored in the

form of signed binary integers. The number of initial values necessary for

integration is set by the order of finite difference which is represented with the

first 4 bits of the data. After the information about the compressed data and initial

values are given, the amplitude field is then stored in the proceeding words. Since

the length of the header part and the number of initial values are known, the

starting address of the amplitude field is easily determined during decoding. Note

that the length and sign fields are located after the amplitude field. The starting

addresses of these two fields are calculated via the number of amplitude field

words stored in the third word of the compressed data. With the

format, the compressed sequences are generated without any error

5.5.1.2 Memory Management Unit

The MMU, whose schematic is shown in

of the design since it communicates with all modules except the RS

Controller. Input signals to this module are limited when the number of output

signals is considered. Input signals are only the data sent from the SRAM

Controller (data

ampdata_need) coming from the DU indicating that the unit is out of data, and

the pause input set by the interpolator. Output signals

compressed file, three fields transferred to the DU, the initial values sent to the

accumulators, and the necessary outputs connected to the SRAM Controller.

The basic operating principles of the MMU are described in

be seen, there are four states of this unit: i)

iii) Fetch First Set

91

words stored in the third word of the compressed data. With the

format, the compressed sequences are generated without any error

Memory Management Unit

The MMU, whose schematic is shown in Figure 5-13, can be regarded as the core

of the design since it communicates with all modules except the RS

Controller. Input signals to this module are limited when the number of output

onsidered. Input signals are only the data sent from the SRAM

data), acknowledgment signals (signdata_need

) coming from the DU indicating that the unit is out of data, and

input set by the interpolator. Output signals are header data for the

compressed file, three fields transferred to the DU, the initial values sent to the

accumulators, and the necessary outputs connected to the SRAM Controller.

Figure 5-13 Memory Management Unit

The basic operating principles of the MMU are described in Figure

, there are four states of this unit: i) Get Header, ii) Get Ini

Fetch First Set, iv) Send & Wait. After the system is reset, the unit starts

words stored in the third word of the compressed data. With the described data

format, the compressed sequences are generated without any error.

, can be regarded as the core

of the design since it communicates with all modules except the RS-232

Controller. Input signals to this module are limited when the number of output

onsidered. Input signals are only the data sent from the SRAM

signdata_need and

) coming from the DU indicating that the unit is out of data, and

are header data for the

compressed file, three fields transferred to the DU, the initial values sent to the

accumulators, and the necessary outputs connected to the SRAM Controller.

Figure 5-14. As can

Get Initial Conditions,

. After the system is reset, the unit starts

 92

acquiring header data (words) from the SRAM and sending them to the DU. In the

next state, the initial values are conveyed to the accumulators in a proper order. In

the following state, the first set of words from amplitude-, length-, and sign fields

are fetched from the SRAM and are sent to the DU to initiate the decoding

process promptly. In Send & Wait state, the words from each field are sent to the

DU. This state is only initiated when the incoming signals signdata_need and

ampdata_need are set. It should be noted that there is no signal indicating the

necessity for a data point from the length field. When a word from the amplitude

field is needed, the corresponding word from the length field is sent automatically

to the DU. This state lasts until all the commands are generated.

Figure 5-14 State Diagram of Memory Management Unit

5.5.1.3 Decoding Unit

DU is the module where the decoding algorithm is implemented. It communicates

with the MMU, the first accumulator module, and the integrator module. The

schematic design of this module is provided in

to this unit except the

output signals are the acknowledgement signals (

ampdata_need) which a

remaining two output signals are directly connected to the first accumulator. Thus,

the decoded command is transferred to the accumulator in signed integer format at

an additional clock indicating that a new co

The basic operating principles of the DU are depicted

that constitutes nine states starts when the header data from the MMU are

acquired. Then, the header data (constituting the order of difference, length of the

command sequence, and

stored for further use. In the second state, the first set of

different fields is saved. Second set received from the MMU is

93

Decoding Unit

DU is the module where the decoding algorithm is implemented. It communicates

with the MMU, the first accumulator module, and the integrator module. The

schematic design of this module is provided in Figure 5-15. All the input signals

to this unit except the clk and pause signals are fed from the MMU. Two of the

output signals are the acknowledgement signals (signdata_need

) which are described in the previous sub

remaining two output signals are directly connected to the first accumulator. Thus,

the decoded command is transferred to the accumulator in signed integer format at

an additional clock indicating that a new command is being submitted.

Figure 5-15 Decoding Unit

The basic operating principles of the DU are depicted in Figure

that constitutes nine states starts when the header data from the MMU are

acquired. Then, the header data (constituting the order of difference, length of the

command sequence, and the number of amplitude field words) are divided and

stored for further use. In the second state, the first set of

different fields is saved. Second set received from the MMU is

DU is the module where the decoding algorithm is implemented. It communicates

with the MMU, the first accumulator module, and the integrator module. The

. All the input signals

signals are fed from the MMU. Two of the

signdata_need and

re described in the previous sub-section. The

remaining two output signals are directly connected to the first accumulator. Thus,

the decoded command is transferred to the accumulator in signed integer format at

mmand is being submitted.

Figure 5-16. Decoding

that constitutes nine states starts when the header data from the MMU are

acquired. Then, the header data (constituting the order of difference, length of the

the number of amplitude field words) are divided and

stored for further use. In the second state, the first set of words from three

different fields is saved. Second set received from the MMU is

 94

Figure 5-16 State Diagram of Memory Unit

 95

stored in the third and fourth states. While decoding, the second set is necessary

since it may turn out that the corresponding command is distributed between two

consecutive words. The main task of this unit is executed in the Decode state of

which is associated with five other states. When there is a lack of data during

decoding, the finite-state “decoding” machine moves either on to Fetch Amplitude

or Fetch Sign states to obtain the required data. If the decoding is complete for a

given command, the data (in unsigned integer format) are processed in the Pre-

Output state. In case the corresponding command is stored in two different words,

Detect Pair state takes over for proper decomposition. Note that in Pre-Output

state, the decoded command is rolled into a single word and passed onto the

Output state. The conversion of unsigned to signed integer format is performed in

the Output state. For this purpose, the data from the sign field must be ready.

When sign data run out, the DU moves onto the third state and gets the necessary

data. After the decoded command is formed as signed integer, it is sent to the first

accumulator instance.

5.5.1.4 Accumulators

Accumulator (integrator) modules (Figure 5-17) are the simplest elements of this

design. It gets the input data, sums it with the previous value of the accumulator

and outputs the resulting value to the next accumulator. The number of

accumulators in the design depends on the order of difference. Note that the given

design in Figure 5-9 is hardwired and can decompress data differentiated up to the

third order. However, the general design should have 15 accumulator instances

(in compliance with the format specified in Section 5.5.1.1). A de-multiplexer unit

must be incorporated to the design to deselect the unused accumulator instances.

Notice that in the proposed design, the three accumulators yield the acceleration,

velocity, and position profiles of the commanded trajectory. This attribute is one

of the advantages of the proposed method. Since when a state-space controller is

embedded into the system, the velocity and acceleration profiles must be ready for

use.

Instead of using a series of accumulators in the design, only one integrator can be

used alternatively, whose schematic design is shown in

all the initial values are fed to this module at the beginning of decoding process.

Integration formula for the third order difference is employed within the module

and its result is sent to the interpolator module.

96

Figure 5-17 Accumulator Module

Instead of using a series of accumulators in the design, only one integrator can be

used alternatively, whose schematic design is shown in Figure

all the initial values are fed to this module at the beginning of decoding process.

Integration formula for the third order difference is employed within the module

and its result is sent to the interpolator module.

Figure 5-18 Integration Module

Instead of using a series of accumulators in the design, only one integrator can be

Figure 5-18. In this design

all the initial values are fed to this module at the beginning of decoding process.

Integration formula for the third order difference is employed within the module

5.5.1.5 Interpolator

The interpolator

computations described with the equations given in Section 4.4. While generating

the commands, it sends

stop their operations. When there is need for a new original command, it sets the

pause signal to low. Internal inputs to this module are data and its clock coming

from the last accumulator module, and the global clock used in the system.

External inputs are the ones give

generation and its direction. In order to overcome the delays between the

generated commands, it also employs a buffer inside.

5.5.1.6 RS-232 Controller

The RS-232 Controller used in this architecture is the same with the one used in

the implementation of the method based on Chebyshev polynomials

approximations in the previous chapter.

97

Interpolator

 used in the design, Figure 5-19, simply

computations described with the equations given in Section 4.4. While generating

the commands, it sends pause signals to the DU, MMU, and accumulators to

tions. When there is need for a new original command, it sets the

signal to low. Internal inputs to this module are data and its clock coming

from the last accumulator module, and the global clock used in the system.

External inputs are the ones given by the user and these are the

generation and its direction. In order to overcome the delays between the

generated commands, it also employs a buffer inside.

.

Figure 5-19 Interpolator Module

232 Controller

232 Controller used in this architecture is the same with the one used in

the implementation of the method based on Chebyshev polynomials

approximations in the previous chapter.

simply performs the

computations described with the equations given in Section 4.4. While generating

signals to the DU, MMU, and accumulators to

tions. When there is need for a new original command, it sets the

signal to low. Internal inputs to this module are data and its clock coming

from the last accumulator module, and the global clock used in the system.

n by the user and these are the feed-rate of

generation and its direction. In order to overcome the delays between the

232 Controller used in this architecture is the same with the one used in

the implementation of the method based on Chebyshev polynomials

 98

5.5.2 Embedded Softcore Processor Approach

In the second approach of the FPGA implementations, the command generation

algorithm is written in C programming language and the resulting are cross-

compiled to run on a softcore processor deployed on the FPGA as done in the

previous chapter. Then the resulted code is downloaded to the designed

processor. Schematic design of this algorithmic state machine (ASM) is shown in

Figure 5-20. The main difference of this design from the one designed in Chapter

4 is that there is a parallel input-output port in the softcore processor. With this

property, a variable feed-rate input can be supplied to the system externally. As

can be seen from Table 5-6, the hardware resources of this architecture is twice

those of the hardwired architecture. It is critical to note that a sequential ASM is

essentially implemented in this approach; there will not be a considerable increase

in the resources when other trajectories are also generated. The memory required

on the SDRAM will increase. The floor plan of the synthesized logic circuitry is

illustrated in Figure 5-21. With the help of the performance counter module of the

softcore processor, the time needed for decoding a sequence of 586 data points is

roughly 25 ms.

Table 5-6 FPGA Resources used in Softcore Approach

Total Logic Elements 3549 (19%)

Total Combinational Functions 3146 (17%)

Dedicated Logic Registers 1984 (11%)

Total Registers 2036

Total Pins 46 (15%)

Total Memory Bits 28992 (12%)

Embedded Multipliers 9-bit Elements 0

Total PLLs 1 (25%)

 99

F
ig

u
re

 5
-2

0
Im

pl
em

en
ta

ti
on

 o
f

th
e

M
et

ho
d

us
in

g
S

of
tc

or
e

P
ro

ce
ss

or
 I

P

 100

F
ig

u
re

 5
-2

1
F

lo
or

 P
la

n
of

 t
he

 S
yn

th
es

iz
ed

 D
ig

it
al

 C
ir

cu
it

ry
 f

or
 t

he
 2

nd
 A

rc
hi

te
ct

ur
e

 101

5.6 Closure

In this chapter, command generation method (a.k.a. ∆Y) based on differencing

and data compression techniques is proposed and implemented on the FPGA

development board using two different approaches. During the performance

evaluations, it is turned out that there is no sense in compressing the encoder

pulses without taking higher order differences of them and proposed data

compression technique is always more successful than the Huffman and

Arithmetic coding methods. Taking higher order differences of the trajectory

before compression is necessary. After differencing, the frequency of numbers in

the sequence increases, (entropy based) data compression makes sense. Note that

the novel compression method suggested in paper is not a universal. Its

advantages reveal when the command sequence consists of integers showing

acceleration and deceleration characteristics.

The hardwired FPGA implementation of the method outperforms the softcore

embedded processor approach. Time need to generate same amount of commands

for the softcore is about 100 times greater than the time needed by the hardwired

architecture.

When the command generation method proposed in this chapter compared with

the one proposed in the previous chapter, the former one is the most suitable one.

Since in this case, less hardware resources are used and time necessary to generate

commands is much lower than the method with polynomial approximation.

 102

CHAPTER 6

CASE STUDY ON COMMAND GENERATION

6.1 Introduction

Up to this chapter, two different command generation methods are proposed and

realized utilizing an FPGA development board (Altera DE1 with Cyclone II

FPGA): i) Command Generation via Segmentation and Polynomial

Approximation, ii) Command Generation via Differencing and Data

Compression. When these two methods are compared, it can be concluded that the

command generation method based on differencing and compression circumvents

the other technique in terms of speed, resource utilization, compression ratio, and

ease of implementation. Thus, during the case study, the performance of

differencing and compression based method will be investigated through a

detailed case study.

The chapter is organized as follows: the command sequences for a three-axis CNC

vertical machining center are introduced. These sequences represent the desired

cutting tool position when machining the injection mold of a bottle. After that, the

trajectories are compressed with three different compression algorithms

(Huffman, Arithmetic Coding, ∆Y) after taking higher order differences. Once the

compressed commands are generated, the FPGA implementation is carried out

after some modifications on previously described schematic design. The results of

the methods are compared and discussed at the final section of this chapter.

 103

6.2 Sample Command Trajectory

To test the efficiency of the command generation methods on a realistic case, the

manufacturing of a plastic injection mold for a bottle is taken into account.

Despite the fact that the mold consists of two complementary parts (male/female),

only the machining of the female (or negative) mold is considered in this work.

Before generating the commands for this specific machining task, the NC code,

which is given in the Appendix D, are obtained from the sample codes of

CncSimulator software [46]. It is critical to notice that an NC program is an

industry-standard means of defining the trajectory of a programmable (CNC)

machine system. Most CAD/CAM packages (after post-processing for a

particular machine tool) do generate the NC code directly to carry out a particular

machining task. From the functional point of view, the program describes the

trajectory in terms of continuous linear- and circular segments using special (G)

functions (such as G0, G1, G2/G2). That is, the code includes only the relevant

parameters to define the trajectories in a piecewise fashion. For instance, to

define a linear patch, only the destination (end-point) coordinates of this path

needs to be specified along with the speed on the trajectory. Similarly, the

destination/target coordinates as well as the radius of the curve may be sufficient

to define an arc on a specific plane. On the other hand, the reference commands

(position, velocity, acceleration) are to be supplied to the motion controller at each

sampling period. Hence, the NC code must be processed (or interpolated) to

generate the intermediate position data of the tool at equidistant time interval.

Utilizing the MATLAB script (trajectory_generation.m) developed by

Akıncı [1], the command trajectories for the three axes {x, y, z} of the CNC

machining centre are formed. These trajectories are shown in Figure 6-1 as a 3D

plot. The trajectories along fundamental axes are illustrated in Figure 6-2, Figure

6-3, and Figure 6-4. Despite the fact that a NC code (by design) guarantees the C0

continuity of the path, one needs to take into consideration not only the physical

limitations of the power generating systems (electrical motors, drivers) but also

the requirements of the tasks. The velocity and acceleration/deceleration profiles

along the given trajectory must be modified to account for these machine (or task)

related issues. Note that, while generating the trajectory data, no attempt is made

to maintain the C

velocity profiles can be seen in

some sharp changes in the velocity pr

from the figures, the simulated manufacturing process lasts for 926 seconds. Since

the sampling time is selected as 1 ms, 926000 commands are generated for each

axis. During the generation of motor commands, it is as

of an axis-motor corresponds to 10 mm of translation along a particular axis.

104

the requirements of the tasks. The velocity and acceleration/deceleration profiles

along the given trajectory must be modified to account for these machine (or task)

related issues. Note that, while generating the trajectory data, no attempt is made

intain the C1 continuity of the resulting trajectory for this test case. The

velocity profiles can be seen in Figure 6-5, Figure 6-6, and

some sharp changes in the velocity profile might be observed. As can be seen

from the figures, the simulated manufacturing process lasts for 926 seconds. Since

the sampling time is selected as 1 ms, 926000 commands are generated for each

axis. During the generation of motor commands, it is assumed that one revolution

motor corresponds to 10 mm of translation along a particular axis.

Figure 6-1 Trajectories of the Mold

the requirements of the tasks. The velocity and acceleration/deceleration profiles

along the given trajectory must be modified to account for these machine (or task)

related issues. Note that, while generating the trajectory data, no attempt is made

continuity of the resulting trajectory for this test case. The

, and Figure 6-7. Hence,

ofile might be observed. As can be seen

from the figures, the simulated manufacturing process lasts for 926 seconds. Since

the sampling time is selected as 1 ms, 926000 commands are generated for each

sumed that one revolution

motor corresponds to 10 mm of translation along a particular axis.

 105

Figure 6-2 Trajectory in the X Axis

Figure 6-3 Trajectory in the Y Axis

106

Figure 6-4 Trajectory in the Z Axis

Figure 6-5 Velocity Profile in the X Axis

107

Figure 6-6 Velocity Profile in the Y Axis

Figure 6-7 Velocity Profile in the Z Axis

 108

6.3 Evaluation of Methods

In the scope of the thesis, two different command generation algorithms are

introduced and implemented on the FPGA. To compare the methods (in terms of

utilization of resources, compression of command data, and the generation time),

the first trajectory in Figure 4-10 is reconsidered and the results are presented in

Table 6-1. It can be inferred from the table that the first method uses nine times

more FPGA resources than the second one. As stated in previous chapters, the

reason of high consumption of the resources is the FPOMs used in the design –

especially for multiplication of coefficients with polynomials. When the

compression ratios are considered, the first method is also worse than the second

approach. The first method cannot compress data as much; since for a reasonable

approximation error, the number of polynomials as well as their corresponding

coefficients should be kept high. This also causes the implemented design to

generate the same amount of commands in longer time duration.

Table 6-1 Implementation Comparison of Proposed Command Generation

Methods

FPGA Resources

[%]

Compression Ratios

[%]

Duration

[ms]

Segmentation and

Approximation [I]
45 39.76 0.75

Differencing and

Compression [II]
9 23.56 0.29

 109

The first method generates 586 commands in 750 µs whereas the second method

completes the generation process in 290 µs. Furthermore, there occur no

representation errors in the commands for the second approach.

It is proven that the second method outperforms the first method in different

aspects. Therefore, the trajectories presented in the previous article are encoded

according to the second method. Before realizing the decoding on the FPGA, the

trajectories are encoded with slight variations on the second method in MATLAB.

First, the method is evaluated with only differencing. No further compression is

employed on the differenced data. Table 6-2 represents the resulting compression

ratios for differences up to sixth-order for all three axes of the given trajectory.

The best performances are achieved for the first-order of difference regardless of

the selected axis. These results are not totally in agreement with the data presented

in Table 5-1 and Figure 5-1. Thus, a careful study on order of difference should be

carried out when evaluating the complete method with various compression

algorithms.

Table 6-2 Compression Ratios [%] vs Order of Differences for the Test Case

 Order of Difference

1 2 3 4 5 6

X Axis 50.00 55.56 55.56 61.11 66.67 72.22

Y Axis 50.00 55.00 55.00 60.00 65.00 70.00

Z Axis 61.11 61.11 61.11 66.67 72.22 77.78

In order to decide on the order of difference of the method for FPGA

implementation, a further study on the trajectories is carried out. The Huffman,

Arithmetic Coding, and the proposed compression (∆Y) algorithms are applied on

the trajectories of the three axes for an order up to the sixth. The results of

 110

compression algorithms for various orders are provided in Table 6-3, Table 6-4,

and Table 6-5. Surprisingly, the arithmetic coding seems to be far superior to

other compression algorithms regardless of the order and the trajectory.

Table 6-3 Results of Huffman Compression Algorithm for Various Orders of

Difference [%]

Axis
Order of Difference

1 2 3 4 5 6

X 25.62 5.58 5.59 5.64 5.56 5.72

Y 6.29 5.01 5.01 5.02 5.02 5.03

Z 25.04 5.57 5.60 5.62 5.67 5.70

Table 6-4 Results of Arithmetic Coding Algorithm for Various Orders of

Difference [%]

Axis
Order of Difference

1 2 3 4 5 6

X 25.36 0.13 0.23 0.36 0.46 0.59

Y 3.96 0.02 0.03 0.05 0.06 0.08

Z 24.72 0.13 0.25 0.36 0.49 0.08

 111

Table 6-5 Results of the ∆Y Compression Algorithm for Various Orders of

Difference [%]

Axis
Order of Difference

1 2 3 4 5 6

X 32.83 10.53 10.53 10.55 10.58 10.66

Y 13.69 10.01 10.01 10.02 10.03 10.04

Z 32.21 10.53 10.54 10.57 10.60 10.69

This is mainly due to the high sampling frequency (1 kHz). As the sampling

frequency decreases, the compression ratios of the algorithms approach to each

other. The reason behind this fact is that the number of different values increases.

Another conclusion to be drawn from the tables is that after the second order of

difference, there are not any remarkable changes in the compression ratios.

Since compressing the original data to one-tenth of its original size seems to be

adequate, the ∆Y compression algorithm is selected for the implementation on the

FPGA. Ease of implementation of the algorithm has a strong effect on this

selection.

6.4 FPGA Implementation

In the previous section of the chapter, it is concluded that the second or third-

order of differences before employing the proposed compression algorithm on the

trajectories are the optimum orders for the implementation on the FPGA. In

Chapter 5 implementation of the ∆Y compression algorithm based command

generation method is carried out via two different approaches, namely softcore

(processor) and hardwired approaches. When the results of the techniques are

 112

considered, it can be concluded that the hardwired approach is faster and expends

less resources than the softcore approach.

Before realizing the generator for all axes, a decoder for the trajectory of x-axis is

designed in Quartus II 9.0 (Web Edition) in order to compare the utilization of

resources with the design given in Chapter 5. In this new design shown in Figure

6-8, several modifications on the modules are done. First of all, the widths of the

registers in the modules are increased from 16 to 32 bits since it is not possible to

represent the magnitudes of the commands with 16 bits. This conversion of

registers affects the resource utilization in the FPGA. When the results given in

Table 6-6 and Table 5-4 are compared, it can be inferred that with the doubled

register sizes, the new design consumes more than twice the resources of the prior

Table 6-6 FPGA Resources used in Hardwired Approach of the Case Study for

the First Axis

Total Logic Elements 4475 (24%)

Total Combinational Functions 3997 (21%)

Dedicated Logic Registers 1549 (8%)

Total Registers 1549

Total Pins 99 (31%)

Total Memory Bits 0

Embedded Multipliers 9-bit Elements 4 (8%)

Total PLLs 0

113

S
R

A
M

 C
on

tr
ol

le
r

M
M

U

D
U

In

te
gr

at
or

C
T

M

In
te

rp
ol

at
or

F
ig

u
re

 6
-8

 H
ar

dw
ir

ed
 F

P
G

A
 I

m
pl

em
en

ta
ti

on
 o

f
C

om
m

an
d

G
en

er
at

or
 f

or
 t

he
 X

-A
xi

s

design. Another modification in the design with respect

that instead of accumulator modules, an Integrator Module (IM) is embedded to

the design. The main difference in this module (which

all of the initial values are directly transferred to this module at the beginning of

the decoding process. Position, velocity, and acceleration profiles are fed with a

data clock to the Command

according to the acknowlegment signal

the pause input. The transferred commands are also depended on the current

direction of decoding.

114

design. Another modification in the design with respect to the one in

that instead of accumulator modules, an Integrator Module (IM) is embedded to

the design. The main difference in this module (which shown in

all of the initial values are directly transferred to this module at the beginning of

the decoding process. Position, velocity, and acceleration profiles are fed with a

data clock to the Command Transmit Module (CTM) shown in

according to the acknowlegment signal ok1 coming from the CTM connected to

input. The transferred commands are also depended on the current

direction of decoding.

Figure 6-9 Integrator Module

Figure 6-10 Command Transmit Module

to the one in Figure 5-9 is

that instead of accumulator modules, an Integrator Module (IM) is embedded to

shown in Figure 6-9) is that

all of the initial values are directly transferred to this module at the beginning of

the decoding process. Position, velocity, and acceleration profiles are fed with a

Transmit Module (CTM) shown in Figure 6-10

coming from the CTM connected to

input. The transferred commands are also depended on the current

 115

Note that this module accepts all the commands from the three axes and sends

these signals according to the incoming signal from the controller unit, clk_in.

The incoming signal shown in Figure 6-11 is comprised of 9 consecutive clocks

(at 10 MHz). These pulse sets are periodically generated at the sampling

frequency of 1 kHz. At the rising edge of these clocks, the module sends

commands to the controller and at the falling edge, the controller receives them.

Figure 6-11 Incoming Clock Signal from the Controller

In the full design of the command generator for the case study, there should three

separate command generators as illustrated in Figure 6-12. Note that there are

three SRAM controllers in this design. However, the additional SRAM

controllers do not increase the resource usage significantly since they are

connected to the same pins of the FPGA chip. Another issue that should be noted

is that the CTM is also responsible for prevents the conflicts that may arise during

the communication of SRAM with the MMUs. The output of the CTM is

connected to the General Purpose Input Output (GPIO) pins of the FPGA

development board. Any controller can be connected to these GPIO pins to

receive reference commands for the trajectories. The hardware resources utilized

in this design is given in Table 6-7. When the table is compared in terms of the

resources used for only x-axis, it can easily be inferred that the complete design

 116

almost utilizes three times more resources than the previous one as expected. It is

critical to notice that it was stated in Chapter 5 that all six trajectories of the

manipulator can be generated using the FPGA development board. However, after

changing the size of the registers to 32 bits, it is now possible to generate only

four state trajectories.

Table 6-7 FPGA Resources Used in Hardwired Approach of the Case Study

for all the Axes

Total Logic Elements 13366(71%)

Total Combinational Functions 12062 (64%)

Dedicated Logic Registers 4568 (24%)

Total Registers 4568

Total Pins 231 (73%)

Total Memory Bits 0

Embedded Multipliers 9-bit Elements 12 (23%)

Total PLLs 0

Finally, the chip floor plan of the synthesized circuit design is given in Figure

6-13. It can be seen that most of the resources are occupied as shown in Table 6-7.

For a better illustration of the chip plan, two regions are zoomed. When the colors

in the legend are considered, it can be concluded that the most of the chip is

reserved for logic elements, connection of elements, and registers.

Figure 6-12 Hardwired FPGA Implementation of

First Axis

Second

Third Axis

117

Hardwired FPGA Implementation of the Command Generator

First Axis

 Axis

Axis

the Command Generator

 118

F
ig

u
re

 6
-1

3
T

he
 C

hi
p

F
lo

or
 P

la
n

of
 t

he
 S

yn
th

es
iz

ed
 C

ir
cu

it
 D

es
ig

n

 119

6.5 Closure

In this chapter, the most successful command generation method in the thesis,

which consists of differencing and the ∆Y data compression algorithm, is

employed to generate the trajectories of a CNC vertical machining center while

machining a plastic injection mold of a bottle. The selected method for FPGA

implementation is further investigated in MATLAB and the results are discussed.

During the performance comparison of data compression algorithms, it is turned

out that the Arithmetic coding algorithm outperforms its counterparts. The

Arithmetic coding is not selected since the algorithm is not very suitable for

parallel decoding. On the other hand, the ∆Y is specifically developed for parallel

decoding and its implementation on the FPGA is advantageous if compared to

other compression methods.

The complete design built for the generation of all trajectories of the mold used

71% of the resources on the FPGA chip. If the number of axis increases in the

system, the FPGA chip (Cyclone II) should be upgraded to (an advanced one like

Cyclone III) generate all command trajectories.

 120

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this study, two different advanced command generators utilizing FPGA for

computer controlled mechanisms have been developed. In both of the proposed

command generators after the encoding of the trajectories are completed, the size

of the original data is compressed to at least one-fourth of it.

The FPGA interface developed in the scope of the thesis can be regarded as the

most important unit of the command generator system, since without the interface

the system cannot be connected to the controller unit and the PC performing

encoding operations. Beside providing communication with various devices, the

interface is also used to convert digital signals to analog signals and vice versa.

During these conversions, the voltage ranges are scaled and shifted according to

the ranges set by the user.

Once the FPGA interface is introduced in the third chapter, the first command

generation method is elaborated in the following chapter. This first method is

basically an polynomial approximation algorithm. Since pure approximation does

not give good results (compression ratios) for the complex trajectories. The

method is modified such that the polynomial approximation is employed after

segmenting the trajectory according to its inflection points and the representation

 121

errors are stored after compressing them via proposed compression algorithm

(∆Y). Then after the FPGA implementations, it is turned out that the hardwired

approach uses more resources than the embedded softcore processor approach, but

the command generation time of the hardwired approach is much better than the

embedded softcore counterpart. Thus, the hardwired approach can be preferable

for the systems where a high profile FPGA chip (Cyclone III, Stratix IV, etc.) is

implemented.

The second FPGA based command generation method is composed of two parts:

differencing and compression. During the encoding process, the trajectories are

not directly compressed. This is due to the fact that the data values on the

trajectory are completely different and compressing them is meaningless. Thus,

taking higher order differences of the trajectories are inevitable if remarkable

compression ratios are required to be achieved. The optimum order of difference

is found to be three for almost all trajectories elaborated. For the second part of

the corresponding command generation method, Huffman, Arithmetic Coding,

and the ∆Y compression algorithms are employed and evaluated. The FPGA

implementations are carried out for the ∆Y method, since it is much easier to

implement and its performance is better than the other compression algorithms.

The hardwired implementation of this command generation method outperforms

the embedded softcore processor approach in utilization of resources and

command generation time.

Comparing the proposed command generation methods in the thesis, it has been

observed that differencing and the ∆Y compression algorithm based method has

presented the best compression ratio and the FPGA resource utilization. Hence,

the case study is carried out with this method. In the case study, the manufacturing

of a plastic injection mold for a bottle is taken into account. Although the mold

has two complementary parts, only the female part is considered. For a detailed

elaboration, the three compression algorithms are employed within the method to

the trajectories of manufacturing process. It is turned out that the Arithmetic

coding algorithm is much better than the other two algorithms, in contrast to the

results obtained in the previous chapter of the thesis. Despite the superior

 122

performance of Arithmetic coding, in FPGA implementations of the case study

the ∆Y compression algorithm is applied. The reason of this selection is that the

implementation of ∆Y method is much easier and its compression ratios are

acceptable when the available resources on the FPGA board are considered. The

∆Y method is also suitable for parallel decoding which increases the speed of

command generation.

To summarize, the proposed FPGA based command generation system is faster

than its counterparts and can be implemented to various control systems along

with the interface developed in the thesis.

7.2 Future Work

In addition to the scope of the thesis there exist still some contributions that can

be made on the topic. These can be classified as the improvements on the FPGA

interface, encoded data transfer to the FPGA development board, and

implementation of the Arithmetic coding algorithm on the FPGA.

For the FPGA interface part; instead of jumpers and switches used in daughter

cards, fast analog switches that can transfer current in two ways are planned to be

used. Furthermore, the configuration of channels (the selection of cards) may be

completely done electronically via analog switches, and multiplexers. By utilizing

the multilayer circuit printing technology and surface mountable electronical

devices the final version of the interface can be designed and manufactured.

Another topic on which contributions can be made is the encoded data transfer to

the decoder embedded on the FPGA development board. In the scope of the

thesis, this topic is not elaborated much. For the data transfer, serial port of the

computer is used. Design of a robust data transfer protocol is inevitable when the

limited memory resources of the FPGA board are considered. During the

command generation, the designed software should overwrite the old data

according to the current status of generation. If the direction of command

 123

generation is suddenly changed, then the designed software should restore the

previous data.

The last further contribution can be done by elaborating the Arithmetic coding

with various trajectories and sampling times, since in the case study it is turned

out that the Arithmetic coding can compress the trajectories of the plastic injection

mold for a bottle up to one-thousandth of their original size. In order to make a

strong decision on the validity of the performance of Arithmetic coding, various

trajectories should be studied. Implementation of the algorithm may also be a big

contribution, since there exists no full decoder implemented on an FPGA chip for

the Arithmetic coding algorithm.

 124

REFERENCES

[1] Akıncı, A. “Universal Command Generator for Robotics and CNC
Machinery,” Middle East Technical University Graduate School of Natural
and Applied Sciences, Master of Science Thesis, 2009.

[2] Yaman, U., Mutlu, B. R., Dolen, M., Koku, A. B., “Direct command
generation for electrical servo motor drives,” Proceedings of the 12th
International Conference on Electrical Machines and Systems, IEEJ
Industry Applications Society, Tokyo, pp. 1-6, November 2009.

[3] Sayood, K. “Introduction to Data Compression,” Elsevier Inc, 2006.

[4] Reghbati, H. K. “Special Feature An Overview of Data Compression
Techniques,” Computer, vol. 14, no. 4, pp. 71-75, 1981.

[5] Balch, T., Khan Z., Veloso, M., “Automatically Tracking and Analyzing the
Behavior of Live Insect Colonies,” Proceedings of AGENTS’01, Montreal,
pp. 521-528, 2001.

[6] Stearns, S. D. “Arithmetic Coding in Lossless Waveform Compression,”
IEEE Transactions on Information Theory, IT – 21, pp. 228-230, 1975.

[7] Dickson, K. “Cisco IOS Data Compression,” San Jose, CA, USA, 2000.

[8] Rigler, S., Bishop, W., Kennings, A. “FPGA-Based lossless data
compression using Huffman and LZ77 algorithms,” Canadian Conference
on Electrical and Computer Engineering, pp. 1235-1238, 2007.

[9] Huffman, D. “A Method for the Construction of Minimum-Redundancy
Codes,” Proceedings of the Institute of Radio Engineers, vol. 40, no. 9, pp.
1098-1101, September 1952.

[10] Rissanen, J. J., Langdon G. G., “Arithmetic Coding,” IBM J. Res. Develop.
vol. 23, pp. 149-162, 1979.

[11] Witten, I. H., Neal, R. M., Cleary, J. G., “Arithmetic coding for data
compression,” Communications of the ACM, vol. 30, pp. 520-540, 1987.

[12] S. W. Golomb, S. W., “Run Length Encodings,” IEEE Transactions on
Information Theory, vol. 12, pp. 399-401, 1966.

 125

[13] Ostermann, J., Bormans, J, List, P., Marpe, D., Narroschke, M., Pereirra, F.,
Stockhammer, T., and Wedi, T., “Video Coding with H.264/AVC: Tools,
Performance, and Complexity,” IEEE Circuits and System Magazine, vol. 4,
no. 1, pp. 7-28, 2004.

[14] Rigler, S., Bishop, W., and Kennings, A., “FPGA-Based lossless data
compression using Huffman and LZ77 algorithms,” Canadian Conference
on Electrical and Computer Engineering, pp. 1235-1238, 2007.

[15] De Araujo, T. M. U., Pinto, E. R., De Lima, J. A. G., and Batista, L. V., “An
FPGA implementation of a microprogrammable controller to perform
lossless data compression based on the Huffman algorithm,” 13th
IBERCHIP Workshop, 2007.

[16] Abd El ghany, M. A., Salama, A. E., and Khalil, A. H., “Design and
implementation of FPGA-based systolic array for LZ data compression,”
IEEE International Symposium on Circuits and Systems, pp.3691-3695,
2007.

[17] Cui, W., “New LZW data compression algorithm and its FPGA
implementation,” Picture Coding Symposium 2007, Lisbon (Portugal), Nov.
2007.

[18] H’ng, G. H., Salleh, M. F. M., and Halim, Z. A., “Golomb coding
implementation in FPGA,” Elektrika Journal of Electrical Engineering, pp.
36-40, 2008.

[19] Yongming, Y., Jungang, L., and Jianmin, W., “LADT arithmetic improved
and hardware implemented for FPGA - Based ECG data compression,”
Proceedings of 2nd IEEE Conference on Industrial Electronics and
Applications, pp.2230-2234, 2007.

[20] Valencia, D., and Plaza, A., “FPGA-Based hyperspectral data compression
using spectral unmixing and the pixel purity index algorithm,”
Computational Science, pp.881- 891, 2006.

[21] Lee, D., Luk, W., Villasenor, J., and Cheung, P., “Hierarchical
Segmentation Schemes for Function Evaluation,” Proceedings of IEEE
International Conference on Field-Programmable Technology, pp. 92-99,
2003.

[22] Lee, D., Cheung, C. C., Luk, W., and Villasenor, J. D., “Hardware
Implementation Trade-Offs of Polynomial Approximations and
Interpolations,” IEEE Transactions on Computers, vol.57, no.5, pp.686-701,
May 2008.

[23] Michard, R., Tisserand, A., and Veyrat-Charvillon, N., “Small FPGA
Polynomial Approximations with 3-bit Coefficients and Low-Precision

 126

Estimations of the Powers of X,” Proc. 16t h IEEE Int. Conf. On Application-
Specific Systems,Architecture and Processors, pp.334-339, 2005.

[24] Ashrafi, A., Adhami, R., Joiner, L., and Kaveh, P., “Arbitrary Waveform
DDFS utilizing Chebyshev Polynomials Interpolation,” IEEE Transactions
on Circuits and Systems I: Regular Paper, vol. 51, no. 8, pp. 1468-1475,
2004.

[25] Sodagar, A. M., and Lahiji, G. R., “A Pipeline ROM-Less Architecture for
Sine-Output Direct Digital Frequency Synthesizers Using the Second-Order
Parabolic Approximation,” IEEE Transactions on Circuits and Systems. II,
vol. 48, no. 9, pp. 850-857, 2001.

[26] Ashrafi, A., Pan, Z., Adhami, R., and Wells, B. E., “A Novel ROM-less
Direct Digital Frequency Synthesizer Based on Chebyshev Polynomial
Interpolation,” Proc. of the 36th Symposium on System Theory, pp. 393-
397, 2004.

[27] Su, K. H., Hu, C. K., and Cheng, M. Y., “Design and Implementation of an
FPGA-based Motion Command Generation Chip,” Proceedings of IEEE
International Conference on Systems, Man, and Cybernetics, 2006.

[28] Jeon, J. W., and Kim, Y. K., “FPGA based acceleration and deceleration
circuit for industrial robots and CNC machine tools,” Mechatronics, vol. 12,
pp. 635-642, 2002.

[29] Jeon, J. W., “An efficient acceleration for fast motion of industrial robots,”
Proceedings of IEEE 21st IECON, pp. 1336–41, 1995.

[30] Cheng, C. W., Tsai, M. C., and Maciejowski, J., “Feed-rate control for non-
uniform rational B-spline motion command generation,” Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, vol. 220, pp. 1855-1861, 2006.

[31] Cheng, C. W., Tsai, M. C., and Cheng, M. Y., “Real-time variable feed-rate
parametric interpolator for CNC machining,” 15th IFAC World Congress,
Barcelona, Spain, 2002.

[32] Xu, H. Y., Tam, H. Y., Zhou, Z., and Tse, P. W., “Variable feed-rate CNC
interpolation for planar implicit curves,” Advanced Manufacturing
Technology, vol. 18, pp. 794 - 800, 2001.

[33] Cody, W. J., “A survey of practical rational and polynomial approximation
of functions,” SIAM Rev., vol. 12, no. 3, pp. 400–423, 1970.

[34] Vanicek P., “Approximate Spectral Analysis by Least-squares Fit,”
Astrophysics and Space Science, pp.387–391, Volume 4, 1969.

 127

[35] Boyd, J. P., “Chebyshev and Fourier Spectral Methods,” Dover
Publications, Inc., 2000.

[36] Altera DE1 FPGA Development and Education Board User Manual, Altera
Co., v1.1, 2006.

[37] NIOS II Processor Reference Handbook, Altera Co., 2009.

[38] U. Yaman, M. Dolen, and A. B. Koku, “A Novel Command Generation
Method with Variable Feedrate utilizing FGPA for Motor Drives,”
Proceedings of 8th IEEE Workshop on Intelligent Solutions in Embedded
Systems, Crete, Greece, 8-9 July 2010.

[39] R. Usselmann, “Open Floating Point Unit Manual,”
http://www.opencores.org, last accessed date: 06/06/2010.

[40] R. Usselmann, “Simple Asynchronous Serial Comm. Device,”
http://www.opencores.org/cores/sasc/, last accessed date: 06/06/2010.

[41] Menon, S. M., Bobra, Y. K., Ghia, A. V., and Zaliznyak, “Programmable
Input/Output Circuit for FPGA for use in TTL, GTL, GTLP, LVPECL, and
LVDS Circuits,” US-Patent 6218858, 2001.

[42] Goetting, F. E., Frake, S. O., Kondapalli, V. M., and Young, S. P., “FPGA
with a Plurality of I/O Voltage Levels,” US-Patent 5877632, 1999.

[43] Chang, W. “Application Specific Field Programmable Gate Array,” US-
Patent 5687325, 1997.

[44] Proteus PCB Design Software, http://www.labcenter.co.uk/index.cfm, last
accessed date: 07/06/2010.

[45] Driscoll, F. F., Coughlin, R. F., “Operational Amplifiers and Linear
Integrated Circuits,” 5th Edition, Prentice Hall College Div, 1997.

[46] CncSimulator, http://www.cncsimulator.com, last accessed date:
13/06/2010.

 128

APPENDIX A

LIST OF VERILOG / VHDL MODULES

In this appendix, the Verilog / VHDL modules used in the study are listed. Brief

descriptions of each module along with the related sections of the thesis are also

presented.

Table A-1 List of Verilog / VHDL Modules Utilized in the Thesis

Name Mentioned in Description

clk_div Chapter 3.4 Modifies the global clock used in the design

according to the external input. If this

module is paused, then the circuit also stops

operating.

pwmgen Chapter 3.4 Generates PWM signals according to the

input vector.

sine_wave Chapter 3.4 Generates sine waves by reading the values

of quarter sine wave from the look-up table.

The frequency of the sine wave is set by

changing the global clock of the system.

 129

sine_package Chapter 3.4 It is look-up table holding the values of

quarter sine wave according to the pre-

defined resolution.

Driver Chapter 4.4 Coordinates the modules used in the

approximation architecture design with each

other for proper operation.

Split_32_8 Chapter 4.4 Splits the 32-bit input to four bytes and

sends these bytes to the serial

communication module.

LookUpReader Chapter 4.4 Reads the value of Chebyshev coefficients

from the previously formed look-up table.

chebyshev_coef Chapter 4.4 Holds the values of Chebyshev coefficients

in binary form.

fpu_cadmusmod Chapter 4.4 Performs mathematical floating point

operations [38].

sasc_brg Chapter 4.4 It is the baud-rate generator used for serial

communication [40].

sasc_top Chapter 4.4 It is the main controller of the serial

communication [40].

sram_ctrl Chapter 5.5 It is the SRAM Controller of Altera DE 1

Development Board [36].

decoder Chapter 5.5 Decodes the encoded commands according

to the ∆Y compression algorithm and

transmits the decoded commands to the first

accumulator.

 130

mmu Chapter 5.5 This is the Memory Management Unit of

∆Y decompression architecture. It receives

the necessary data from the SRAM

Controller and passes to other modules in

the architecture.

accumulator Chapter 5.5 Sums the incoming value with the previous

one and sends to the corresponding module.

interpolator Chapter 5.5 Interpolates between the two consecutive

command values according to the feed-rate

input.

integrator Chapter 6.4 Includes the accumulators according to the

order of difference in encoding.

command_xmit Chapter 6.4 Receives the commands for position,

velocity, and acceleration for all the axes

and transmits these commands to the control

unit of the system.

 131

APPENDIX B

NIOS II EDS 9.0 C CODES

In this appendix, the C files used in NIOS II Integrated Development

Environment are presented in Table B-1. The parts of the thesis they are used are

also mentioned. In Table B-2, NIOS II C file for the ∆Y decompression algorithm

is presented.

Table B-1 List of NIOS II C Files Utilized in the Thesis

Name Mentioned in Description

DYdecompression.c Chapter 5.5.2 Algorithmic state machine of the ∆Y

decompression algorithm

ChebyshevApp.c Chapter 4.4.2 Algorithmic state machine of the

Chebyshev approximation algorithm

 132

Table B-2 NIOS II C file for the ∆Y Decompression Algorithm

#include <stdio.h>

#define uint8 unsigned char

#define uint16 unsigned short

#define uint32 unsigned long

#define int8 char

#define int16 short

#define int32 long

#define SECTION1 1

int main(void)

{

 const int twos[16] = { 1, 2, 4, 8, ..., 16384, 32768};

 /*Field Declarations */

 uint8 sign[74] = {143, 128, 0, ..., 166, 1};

 uint8 amp[98] = {232, 67, 147, ..., 237, 0};

 uint8 term[98] = {240, 123, 28, ..., 238, 0};

 uint8 sign_ = 0;

 uint8 amp_ = 0;

 uint8 term_ = 0;

 uint32 original[586];

 float original_we[586];

 int32 l1 = 586; /*Length of the Sign Field */

 int32 l2 = 777; /*Length of Amplitude and Termination Fields*/

 int32 count = 0; /*Counts the length of the amplitude value.*/

 int32 i = 0; /*For Loop Counter */

 int32 i1 = 0;

 int32 j = 0; /*For Loop Counter */

 int32 k = 0;

 int32 k1 = 0;

 int32 r = 0; /*Remainder*/

 int32 r1 = 0;

 int32 l = 0; /*Original Data Counter*/

 int32 a = 0; /*Original Data Counter*/

 133

 for(i=0; i<586; i++)

 {

 original[i]=0;

 }

 i = l2 / 8;

 r = l2 % 8;

 term[i] = term[i] << (8-r);

 amp[i] = amp[i] << (8-r);

 i = l1 / 8;

 r = l1 % 8;

 sign[i] = sign[i] << (8-r);

 while (k < l2)

 {

 i = k / 8;

 r = k % 8;

 k1 = k;

 i1 = i;

 r1 = r;

 if (k == (l2-1))

 {

 if ((((term[i]<<r) & 128)==128))

 {

 term[i]=term[i] & (254<<(7-(r+1)));

 }

 if ((((term[i]<<r) & 128)==0))

 {

 term[i]=term[i] | (1<<(7-(r+1)));

 }

 }

 term_ = term[i] << r;

 if ((term_ & 128) == 128)

 {

 134

 count ++;

 if (((r != 7) & (((term_ <<1) & 128) == 0)) |

((r==7)&((term[i+1] & 128) == 0)))

 {

 for (j=0; j<count; j++)

 {

 amp_ = amp[i1] << r1;

 if ((amp_ & 128) == 128)

 {

 original[l] += twos[j];

 }

 k1--;

 i1 = k1 / 8;

 r1 = k1 % 8;

 }

 count = 0;

 l++;

 }

 }

 else

 {

 count ++;

 if (((r != 7) & (((term_ <<1) & 128) == 128)) |

((r==7)&((term[i+1] & 128) == 128)))

 {

 for (j=0; j<count; j++)

 {

 amp_ = amp[i1] << r1;

 if ((amp_ & 128) == 128)

 {

 original[l] += twos[j];

 }

 k1--;

 i1 = k1 / 8;

 r1 = k1 % 8;

 }

 count = 0;

 l++;

 135

 }

 }

 k++;

 }

 for (k=0; k<l1; k++)

 {

 i = k / 8;

 r = k % 8;

 sign_ = sign[i] << r;

 if ((sign_ & 128) == 0)

 {

 original[k]= original[k] ;

 }

 else

 {

 original[k]= - original[k] ;

 }

 }

 return 0;

}

 136

APPENDIX C

MATLAB M-FILES

In this appendix, the MATLAB scripts (m-files) used in the study are explained

briefly in Table C-1. Related sections of these files in the thesis are also noted. In

Table C-2, MATLAB M-file for the ∆Y compression algorithm is presented.

Table C-1 List of MATLAB M-Files Utilized in the Thesis

Name Mentioned in Description

above_err.m Chapter 4 Counts the number of data

values above the acceptable

error margin.

acc.m Chapter 5 Accumulates the sequence

according to the initial

values supplied to the

function.

bernstein.m Chapter 4 Generates Bernstein

polynomials with various

orders and lengths.

 137

bp_approx.m Chapter 4 Performs Bernstein

approximation on the given

trajectory.

bp_approx_errcomp.m Chapter 4 First performs Bernstein

approximation and then

compresses the

approximation errors.

chebypol.m Chapter 4 Generates Chebyshev

polynomials with various

orders and lengths.

compviadiff.m Chapter 5 Compares the compression

ratios of differencing the

input sequence for various

orders.

cp_approx.m Chapter 4 Performs Chebyshev

approximation on the given

trajectory.

cp_approx_errcomp.m Chapter 4 First performs Chebyshev

approximation and then

compresses the

approximation errors.

dacomp.m Chapter 5 Performs Arithmetic coding

algorithm on the given

sequence for the specified

order of difference and

outputs the compressed

code and memory

requirements.

 138

dhcomp.m Chapter 5 Performs Huffman

compression algorithm on

the given sequence for the

specified order of difference

and outputs the compressed

code and memory

requirements.

dycomp.m Chapter 5 Performs ∆Y compression

algorithm on the given

sequence for the specified

order of difference and

outputs the compressed.

dydcomp.m Chapter 5 Decompresses the encoded

data with ∆Y compression

algorithm and outputs the

original data sequence.

dydcompreverse.m Chapter 5 Decompresses the encoded

data with ∆Y compression

algorithm in reverse order

and outputs the original data

sequence.

gen_enc_pulses Chapter 6 Generates sequences of

encoder pulses from the tool

location data sequences.

legendre.m Chapter 4 Generates Legendre

polynomials with various

orders and lengths.

 139

lookupgen.m Chapter 4 & 5 Creates look-up file for

Chebyshev coefficients or

encoded data.

lp_approx.m Chapter 4 Performs Legendre

approximation on the given

trajectory.

lp_approx_errcomp.m Chapter 4 First performs Legendre

approximation and then

compresses the

approximation errors.

to16.m Chapter 5 & 6 Converts 8-bit data to 16-bit

data for SRAM

compatibility.

trajectory_generation.m Chapter 5 & 6 Generates command

trajectories from the NC

code according to the

sampling time.

vsint.m Chapter 5 & 6 Performs variable speed

interpolation on the given

trajectory.

 140

Table C-2 M-file for the ∆Y Compression Algorithm

%

% This function compresses a given time sequence

% using ∆Y compression technique.

% ($ REV 1.4, UY & MD, FEB-2010 $)

%

% Input arguments:

% q - time sequence (integer)

% n - order of differences {1,2,3, ...}

%

% Output argument:

% cdat - compressed data structure with following fields:

% amp: amplitude (bytes)

% len: length (bytes)

% sgn: sign (bytes)

% ic: initial conditions

% n: order of difference

% m: length of original sequence

%

function cdat = dycomp(q,n)

 if (nargin==1), n = 3; end

 m = length(q); q = q(:); y = diff(q,n);

%

% Calculate ICs

%

 ic = zeros(n,1,'int32'); ic(1) = q(1); q = q(1:n+1);

 if(n>1)

 for i = 2:n

 t = diff(q,i-1); ic(i) = t(1);

 end

 end

%

% Sign field

%

 141

 ns = 8*ceil((m-n)/8); s = [(y>=0); zeros(ns-m+n,1)];

 sf = zeros(ns/8,1,'uint8');

 for k = 1:ns/8

 i = 1 + 8*(k-1); j = i + 7;

 sf(k) = bin2dec(num2str(s(i:j)'));

 end

%

% Amplitude- and length fields

%

 as = []; ts = as; toggle = true; y = abs(y);

 for k = 1:(m-n)

 str = dec2bin(y(k)); L = length(str);

 if (toggle)

 ts = [ts num2str(ones(1,L),'%d')];

 else

 ts = [ts num2str(zeros(1,L),'%d')];

 end

 toggle = not(toggle); as = [as str];

 end

%

% Now, some padding...

%

 na = ceil(length(as)/8); L = 8*na-length(as);

 as = [as num2str(zeros(1,L),'%d')];

 if (toggle)

 ts = [ts num2str(ones(1,L),'%d')];

 else

 ts = [ts num2str(zeros(1,L),'%d')];

 end

 tf = zeros(na,1,'uint8'); af = zeros(na,1,'uint8');

 for k = 1:na

 i = 1 + 8*(k-1); j = i + 7;

 af(k) = bin2dec(as(i:j)); tf(k) = bin2dec(ts(i:j));

 end

 cdat = struct('amp',af,'len',tf,'sgn',sf,'ic',ic,'n',n,'m',m);

end

 142

APPENDIX D

NC CODE OF PLASTIC INJECTION MOLD FOR A BOTTLE – CASE

STUDY

G00 Z-20.01

G00 Y120

G00 X-9.449 Y120.5 T4 (dia 4mm)

G01 Z-20 F200 S150

G18 G03 X9.449 Z-20 I9.449 K0

G01 X9.5 Y120

G01 Y118.5

G18 G02 X-9.5 I-9.5 K0

G01 Y116.5

G18 G03 X9.5 Z-20 I9.5 K0

G01 Y114.5

G18 G02 X-9.5 I-9.5 K0

G01 Y112.5

G18 G03 X9.5 Z-20 I9.5 K0

G01 Y110.5

G18 G02 X-9.5 I-9.5 K0

G01 Y108.5

G18 G03 X9.5 Z-20 I9.5 K0

G01 Y106.5

G18 G02 X-9.5 I-9.5 K0

G01 Y104.5

G18 G03 X9.5 Z-20 I9.5 K0

G01 Y103.5

G01 X7.5 Y102.5

G18 G02 X-7.5 I-7.5 K0

G01 Y100.5

G18 G03 X7.5 Z-20 I7.5 K0

G01 Y98.5

G18 G02 X-7.5 I-7.5 K0

G01 Y96.5

G18 G03 X7.5 Z-20 I7.5 K0

G01 Y94.5

G18 G02 X-7.5 I-7.5 K0

G01 Y92.5

G18 G03 X7.5 Z-20 I7.5 K0

G01 Y90.5

G18 G02 X-7.5 I-7.5 K0

G01 Y88.5

G18 G03 X7.5 Z-20 I7.5 K0

G01 Y86.5

G18 G02 X-7.5 I-7.5 K0

G01 Y84.5

G18 G03 X7.5 Z-20 I7.5 K0

G01 Y82.5

G18 G02 X-7.5 I-7.5 K0

G01 Y80.5

G18 G03 X7.5 Z-20 I7.5 K0

G01 Y78.5

G18 G02 X-7.5 I-7.5 K0

G01 Y76.5

G18 G03 X7.5 Z-20 I7.5 K0

G01 Y74.5

G18 G02 X-7.5 I-7.5 K0

G01 Y73.487

G01 X-12.243 Y72.5

G18 G03 X12.243 Z-20 I12.243 K0

G01 X14.928 Y70.5

G18 G02 X-14.928 I-14.928 K0

G01 X-16.367 Y68.5

G18 G03 X16.367 Z-20 I16.367 K0

G01 X17.165 Y66.5

G18 G02 X-17.165 I-17.165 K0

G01 X-17.487 Y64.5

G18 G03 X17.487 Z-20 I17.487 K0

G01 X17.5 Y64

G01 Y62.5

G18 G02 X-17.5 I-17.5 K0

G01 Y60.5

 143

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y58.5

G18 G02 X-17.5 I-17.5 K0

G01 Y56.5

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y54.5

G18 G02 X-17.5 I-17.5 K0

G01 Y52.5

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y50.5

G18 G02 X-17.5 I-17.5 K0

G01 Y48.5

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y46.5

G18 G02 X-17.5 I-17.5 K0

G01 Y44.5

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y42.5

G18 G02 X-17.5 I-17.5 K0

G01 Y40.5

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y38.5

G18 G02 X-17.5 I-17.5 K0

G01 Y36.5

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y34.5

G18 G02 X-17.5 I-17.5 K0

G01 Y32.5

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y30.5

G18 G02 X-17.5 I-17.5 K0

G01 Y28.5

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y26.5

G18 G02 X-17.5 I-17.5 K0

G01 Y24.5

G18 G03 X17.5 Z-20 I17.5 K0

G01 Y22.5

G18 G02 X-17.5 I-17.5 K0

G01 Y20.5

G18 G03 X17.5 I17.5 K0

G01 Y18.5

G18 G02 X-17.5 I-17.5 K0

G01 Y16.5

G18 G03 X17.5 I17.5 K0

G01 Y14.5

G18 G02 X-17.5 I-17.5 K0

G01 Y12.5

G18 G03 X17.5 I17.5 K0

G01 Y10.5

G18 G02 X-17.5 I-17.5 K0

G01 Y10

G01 X-17.381 Y8.5

G18 G03 X17.381 I17.381 K0

G01 X16.832 Y6.5

G18 G02 X-16.832 I-16.832 K0

G01 X-15.746 Y4.5

G18 G03 X15.746 I15.746 K0

G01 X13.831 Y2.5

G18 G02 X-13.831 I-13.831 K0

G00 Z5

G00 X-17.5 Y10

G01 Z-20

G01 Y64

G18 G02 X-7.5 Y73.487 I9.5 J0

G01 Y102.5

G01 X-8.5

G18 G02 X-9.5 Y103.5 I0 J1

G01 Y120

G18 G02 X-7 Y122.5 I2.5 J0

G01 X0

G01 X7

G18 G02 X9.5 Y120 I0 J-2.5

G01 Y103.5

G18 G02 X8.5 Y102.5 I-1 J0

G01 X7.5

G01 Y73.487

G18 G02 X17.5 Y64 I0.5 J-9.487

G01 Y10

G18 G02 X8 Y0.5 I-9.5 J0

G01 X0

G01 X-8

G18 G02 X-17.5 Y10 I0 J9.5

G00 Z5

M30

