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ABSTRACT 

 
 

DESIGN OF ADVANCED MOTION COMMAND GENERATORS 
UTILIZING FPGA 

 

 

Yaman, Ulaş 

M.Sc., Department of Mechanical Engineering 

Supervisor : Assist. Prof. Dr. Melik Dölen 

Co-Supervisor : Assist. Prof. Dr. A. Buğra Koku 

 

June 2010, 143 pages 

 

In this study, universal motion command generator systems utilizing a Field 

Programmable Gate Array (FPGA) and an interface board for Robotics and 

Computer Numerical Control (CNC) applications have been developed. These 

command generation systems can be classified into two main groups as 

polynomial approximation and data compression based methods. In the former 

type of command generation methods, the command trajectory is firstly divided 

into segments according to the inflection points. Then, the segments are 

approximated using various polynomial techniques. The sequence originating 

from modeling error can be further included to the generated series. In the 

second type, higher-order differences of a given trajectory (i.e. position) are 

computed and the resulting data are compressed via lossless data compression 

techniques. Besides conventional approaches, a novel compression algorithm is 

also introduced in the study. This group of methods is capable of generating 

trajectory data at variable rates in forward and reverse directions. The generation 

of the commands is carried out according to the feed-rate (i.e. the speed along 

the trajectory) set by the external logic dynamically. These command generation 

techniques are implemented in MATLAB and then the best ones from each 
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group are realized using FPGAs and their performances are assessed according 

to the resources used in the FPGA chip, the speed of command generation, and 

the memory size in Static Random Access Memory (SRAM) chip located on the 

development board.  

 

Keywords: Command Generation, Data Compression, FPGA, Polynomial 

Approximation, Adjustable Feed-rate, Linear Interpolation 
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ÖZ 

 

 

FPGA KULLANARAK İLERİ HAREKET KOMUT  

ÜRETEÇLERİ TASARIMI  

Yaman, Ulaş 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi : Yrd. Doç. Dr. Melik Dölen 

Ortak Tez Yöneticisi : Yrd. Doç. Dr. A. Buğra Koku 

 

Haziran 2010, 143 sayfa 

 

Bu çalışmada, Alan Programlanabilir Kapı Dizini (Field Programmable Gate 

Array - FPGA) kullanan evrensel hareket komutu üreteçleri ve Robotik / 

Bilgisayarlı Sayısal Denetim (“Computer Numerical Control” - CNC) 

uygulamaları için bir arayüz kartı geliştirilmiştir. Geliştirilen komut üreteç 

sistemleri, fonksiyon yaklaşıklama ve veri sıkışırtırma tabanlı olmak üzere iki 

sınıfa ayrılabilir.  Fonksiyon yaklaşıklama tabanlı komut üreteç 

uygulamalarında, komut dizini öncelikli olarak bükülme noktalarından 

bölümlere ayrılmıştır. Daha sonrasında bu bölümler farklı fonksiyon 

yaklaşıklama yöntemleri kullanılarak ifade edilmiştir. Yaklaşıklamadan 

kaynaklanan hata dizini kodlama sırasında saklanarak üretilen komutlara 

beslenebilir. Diğer komut üretme yöntemlerinde ise, verilen hareket dizininin 

yüksek dereceden farkı alındıktan sonra kayıpsız veri sıkıştırma teknikleri 

kullanılarak sıkıştırılır. Bu çalışmada, geleneksel sıkıştırma tekniklerinin yanı 

sıra yeni bir veri sıkıştırma yöntemi de sunulmuştur. Bu grupta önerilen 

yöntemler, komutları ileri ve geri yönlerinde farklı hızlarda üretebilme yetilerine 

sahiptirler. Komut üretim hızı sisteme dışarıdan dinamik olarak beslenmektedir. 
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Geliştirilen komut üretme teknikleri MATLAB kullanılarak bilgisayar 

ortamında gerçekleştirilmiş ve her grupta en iyi sonucu veren yöntemler FPGA 

kullanılarak gerçekleştirilmiştir. Bu yöntemler FPGA kırmığı üzerinde 

kullandıkları kaynaklar, komut üretim hızı ve geliştirme kartında bulunan 

Durağan Rastgele Erişimli Bellek’te (Static Random Access Memory - SRAM) 

depolanan verinin büyüklüğüne göre değerlendirilmişlerdir. 

  

Anahtar kelimeler: Komut Üretimi, Veri Sıkıştırma, Alan Programlanabilir 

Kapı Dizini, Ayarlanabilir Üretim Hızı, Doğrusal Enterpolasyon 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Motivation 

Modern servo-drive systems employ digital motion controllers (DSPs, micro-

controllers) to regulate precisely not only motor currents (electromagnetic torque) 

but also motor’s angular velocity along with the position. If the drive system is 

configured for (digital) motion control, the relevant reference signals (velocity or 

position) must be generated by a central controller unit (host) depending on the 

trajectory to be followed. These signals are eventually transferred to each motor 

driver via a serial communication protocol (SERCOS, CAN, Profibus, TCP/IP, 

RS-232, RS-485, etc.). This approach frequently pushes the communication 

interface to its limits for high-end applications.   

Industrial motion controller units utilize vector data tables to represent the 

trajectory in terms of linear patches. These cards can then perform a linear 

interpolation between the two consecutive entries in real-time to produce the 

relevant reference signals for the position servo-control loop. For complex 

trajectories the size of the vector table may exceed the available resources on the 

system. The conventional machining approach does not meet the requirements of 

high speed and high accurate machining in cases where the trajectories are 

complicated.  
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In today’s technology, memory devices with large capacity as well as multi-core 

processors running at high clock frequencies are widely available in the market at 

relatively low cost. Consequently, there is a potential for devising simple yet very 

effective command generators for computer numerically controlled machinery 

that benefit fully from the properties of these advanced devices [1].  

The fundamental motivation of this study is to develop a direct command 

generator system with variable feed-rate in forward and reverse directions for 

servo motor drives where the commands could be produced directly in the drive 

system without the need for intermittent data transfer from a host controller. This 

FPGA based system, which could be directly embedded into a motor drive 

system, is expected to generate the relevant commands by utilizing not only the 

(dynamically adjusted) speed along the traced trajectory but also decompressed 

data being produced in advance to represent trajectory to the desired accuracy.  

1.2 Scope of the Thesis 

The difficulties mentioned in the previous section are overcome by the proposed 

method in this study. It is implemented into the conventional manufacturing 

process as illustrated in Figure 1-1. The figure indicates that the method is 

applicable for both Robotics and CNC Applications. Input to the system is Tool 

Location Data (TLD) for CNC Applications and Joint State Data (JSD) for 

Robotics Applications. After the encoder commands are formed according to the 

incoming data from the previous operations, the encoding algorithm is applied 

onto the commands structuring the encoded JSD or TLD. Encoding methods 

applied within the context of this thesis are  

• Lossless Data Compression of Higher Order Finite Differences of JSD / 

TLD 

o Huffman Compression Algorithm 

o Arithmetic Coding 
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o Proposed Compression (∆Y) Algorithm 

• Polynomial Representation of Segmented JSD / TLD 

o Chebyshev Polynomials 

o Legendre Polynomials 

o Bernstein Polynomials 

The performances of these aforementioned encoding methods are comparatively 

evaluated according to approximation error, memory requirement, computational 

complexity, ease of decoding, etc. in MATLAB environment. The best methods 

for each group are realized on the FPGA Development Board. Once the encoded 

JSD / TLD is stored into the SRAM of the board, the decoding circuit in the 

FPGA chip is ready to decode the data in real-time. Consequently, decoded 

position, velocity, and acceleration commands can be fed to the (centralized or 

distributed) joint-axis motion controller as the reference signals.  

The arrangement of the proposed command generation method in the thesis with 

the other units of the FPGA based motion control system is illustrated in Figure 

1-2. This general motion control system is composed of three main units: FPGA 

Based Command Generation System, FPGA Based Motion Controller System, 

and Hardware-in-the-Loop Simulator (HILS). The last two units are not within the 

scope of the thesis. Only the shaded area in Figure 1-2 is elaborated throughout 

the thesis.  

The generated reference commands (position, velocity, and acceleration) are 

transferred to the second FPGA board in the system which is responsible for 

motion control. The velocity and acceleration commands are also sent to the 

motion control unit, since the control algorithm employed within the FPGA may 

require these commands for precise control. Then the generated control inputs are 

fed to the HILS unit through the developed FPGA Input / Output (I/O) Interface 

Board. This board is also discussed in the thesis. After the manipulated input 

vector is transferred to the HILS, the control process is simulated and the resulted 

output vector is fed to the controller unit with the help sensors utilization. 
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1.3 Organization 

The thesis is divided into seven chapters. The second chapter discusses the 

literature on the relevant topics of the thesis such as differencing, data 

compression algorithms, polynomial approximation techniques, FPGA 

implementation of these methods, FPGA-based command generation systems, and 

command generators with variable feed-rates. In the following chapter, a board 

developed for FPGA interfacing with CNC and Robotics Applications is 

investigated. This interface board consists of five modules namely mother board, 

analog input card, analog output card, digital input card, and digital output card. 

The fourth chapter elaborates the first group of command generation methods 

utilizing segmentation and polynomial approximation in MATLAB. The 

approximation method with Chebyshev Polynomials, which has the smallest 

compression ratio, is employed on the FPGA Development Board using two 

different approaches. In the first approach, the algorithm is implemented with a 

softcore embedded processor in the FPGA chip and in the second approach the 

algorithm is directly realized in the FPGA chip utilizing Very High Speed 

Integrated Circuit Hardware Description Language (VHDL). In the fifth chapter 

the second group of command generation methods utilizing differencing and 

compression are explained and their performances are evaluated in MATLAB. 

The most successful one of these compression algorithms, namely the proposed 

compression method, is realized on the FPGA Development Board in two 

different ways as done in the previous chapter. In this chapter, the concept of 

command generation in forward and reverse direction with variable feed-rate is 

also introduced and evaluated in detail. The method utilizes the command 

compression algorithm proposed in this chapter. During implementation on the 

FPGA chip some variations are also considered and compared with each other. In 

the sixth chapter, the most successful command generation method is employed 

on a test case and its performance is evaluated. The thesis is concluded by 

summarizing the key results of this research. Possible future works are also 

presented in the last chapter. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

In this chapter of the thesis, the relevant literature topics are discussed in detailed 

manner and open research areas are also highlighted for possible further study. 

2.1 Differencing 

The study on literature starts with a detailed investigation of differencing and its 

application areas. With the help of this study, the necessity of differencing before 

compression in command generation is elaborated. 

Differencing is commonly used in different fields such as data (video, image, 

speech, index, etc.) compression, and movement detection in tracking. The major 

requirement in differencing is that the samples in the data must be coherent so that 

each sample can easily be predicted according to the difference value and the 

previous sample. Due to the ease of implementation, differencing without 

compression schemes may be preferable in video literature [3].   

It is very common to use differencing during the storage of files that do not have 

big variations between the entries. For instance, if the average temperature of the 

days in a year is necessary for graphical purposes, it is wise to store the difference 

of temperatures between consecutive entries (i.e., d1, d2 – d1, …, d365 – d364) rather 

than storing the absolute temperature value of each day (i.e., d1, d2, …, d365) [4]. 
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This approach decreases the memory usage since the difference between the two 

consecutive data points is less than the absolute value of the former entry. There 

may also be many zeros in the differenced format, which will further decrease the 

memory size. 

Differencing is also used in detection of movement of objects. Balch et al. [5] 

developed a novel machine vision system that can easily follow hundreds of small 

insects. In order to demonstrate the usability of their system, they analyzed the 

behaviours of ant colonies in their study. In detection, they simply subtracted the 

current image from the back ground image to find the movement. 

2.2 Data Compression Techniques 

In this part of the chapter, different data compression methods are explained and 

their main application areas are explained. Although the digital communication 

system performances and the mass storage density are improving rapidly, data 

compression algorithms still continue to be an important part of many engineering 

fields since it can eliminate the disadvantages of data storage and overcome the 

limitations of transmission bandwidths via enabling devices to send the same 

amount of data in fewer bits [6]. 

Two types of data compression techniques exist in the literature: lossless and 

lossy. Lossless data compression, where the original data is extracted without any 

loss after decompression, applications have increased over the past years due to 

the need to improve the storage capacity and data transfer rate [7]. On the other 

hand in lossy compression, original data can only be approximated after 

decompression. Lossy compression is usually used in situations when the data do 

not need to be stored perfectly. For instance, pictures can be restored using lossy 

compression paradigms without much difference from the original picture. In 

cases where data loss cannot be afforded lossless compression techniques must be 

used. This is valid especially in text files, since loss of a character can lead to 

much different situations [8]. 
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The most commonly used data compression techniques in the literature are 

Huffman, Arithmetic, and Golomb Coding methods. These three paradigms are 

discussed in a detailed manner in the following sub-sections. 

2.2.1 Huffman Coding 

Huffman Coding [9] algorithm is one of the most commonly used lossless data 

compression method in the literature in various areas. The main concept of the 

algorithm is that it maps an alphabet (of the same size) to a totally different form 

composed of strings with variable size. The characteristic properties of these 

symbols are that the ones having high probability have a smaller representation 

than those occurring less in the file.   

Huffman coding belongs to the group of variable length character encoding 

methods, since in the resulting code the most common characters would be short 

and the infrequent ones would be long. For the illustration, assume that it is 

necessary to encode the characters U, L, A, S, Y, M, and N. If conventional 

approach were used, only three bits per character were necessary for encoding. 

Suppose that the relative frequency of these characters is as given in Figure 2-1. 

In the figure, the characters and their frequencies in the sequence are displayed on 

the left side. On the right side of the figure Huffman codes are displayed for each 

character. Huffman tree is formed in between of the frequencies and the Huffman 

codes. During constructing the tree, after the frequency data of the sequence is 

determined, two elements with the lowest frequencies are selected as the leaf 

nodes of the Huffman tree. Then the frequencies of these two elements are added 

together and the resulting value becomes the frequency for the new node. This 

approach continues until the Huffman tree is completed or until the last node 

having a frequency of 100%. Huffman code of each character is found by leading 

from the top of the tree to the corresponding character.   
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Figure 2-1 Huffman Code for the Given Set of Characters 

Conventional Huffman encoding is a non-deterministic one, since a data set can 

be represented by more than one possible Huffman tree. While constructing the 

Huffman tree in Figure 2-1, two additional rules described in [8] are applied in 

order have a unique Huffman tree representation. The first extra rule is that the 

characters with shorter Huffman codes are placed to the upper branches of the 

nodes. For instance, in Figure 2-1 S and L are at the bottom part of the tree since 

they have the longest Huffman codes. Secondly, characters with Huffman codes 

of same length are placed according to their appearance order. In the figure S and 

L have the same length of codes. Since S is assumed to be encountered first, it is 

placed on the upper branch of the node. If these two extra rules are also applied 

during encoding, it is guaranteed that the Huffman tree is unique for the given set 

of characters. Due to the word-based memory units, it is difficult to implement 

Huffman encoding schemes which have variable length of codes. Additional rules 

described above should be used for fast and lossless recovery in FPGA 

implementations [8].   

A sample encoded data in the Huffman code of Figure 2-1 is decoded in Figure 

2-2. It is important to start at the beginning of the data stream in order to decode 

without any error. When the Huffman codes in Figure 2-1 are examined, it can be 
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Figure 2-2 Huffman Decoding of a Data Stream Encoded in the Huffman Code of 

Figure 2-1 

observed that all of the codes end with a value of ‘0’ except the last Huffman code 

which is comprised of only 1’s. During decoding every bit of the data stream is  

examined and it is stored to a register until the value in the register matches with a 

value in the dictionary. After comparing the value in the register with the 

Huffman codes in the dictionary, original data is generated.  

Due to the word-based memory units, it is difficult to implement Huffman 

encoding schemes which have variable length of codes. Additional codes should 

be used for fast and lossless recovery in FPGA implementations [8].   

2.2.2 Arithmetic Coding 

Arithmetic Coding [10]  is another commonly used lossless data compression 

method. According to Witten et al. [11], arithmetic coding is much better than 

Huffman coding in many cases. Messages are represented by an interval of real 

numbers between 0 and 1in arithmetic coding. If a long message is going to be 

encoded, the interval in which the message lies becomes very small and the 

number of bits representing that interval becomes increases. For the illustration, 

assume that the letters used in a text are U, L, A, S, Y, M, and N. Their 

probabilities are given in Figure 2-3. The range, which is [0, 1), is known by both 

encoder and decoder of arithmetic coding algorithm. It is distributed according to 

the probabilities of characters as given in Figure 2-3. There is no priority order of 

range for the characters. It is randomly distributed over the total range. Assume  
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Figure 2-3 Probabilities and Ranges of Sample Characters for Arithmetic Coding 

that the message “Yaman” is going to be transmitted from the encoder. This  

encoding process is shown in Figure 2-4. Since the first letter of the message is Y, 

the encoder starts with narrowing the range to [0.9, 1).  The next letter, A, narrows 

down this range to first one-fifth of it, because the region [0, 0.2) is reserved for 

A. Proceeding in this way, encoder arrives into the final range, [0.91024, 

0.91032).  

During decoding, all known about the message is the range [0.91024, 0.91032). 

Decoder immediately understands that the message starts with the character Y, 

since it lies in the range [0.9, 1) allocated for Y in Figure 2-3. This clears that the 

second character is A, since it produces the range [0.9, 0.92), which encloses the 

range of the original message, [0.91024, 0.91032). The decoder continues in this 

way to identify the message. The decoder does not need to know the ends of the 

range set by the encoder. Any number in the range [0.91024, 0.91032) can be 

used. The main problem decoder faces is that it cannot detect the end of the 

message. To overcome this drawback a special character may be used which is 

known to encoder and decoder [11].   
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Figure 2-4 Encoding of the message "Yaman" in Arithmetic Coding 

2.2.3Golomb Coding 

Golomb coding [12] is a lossless data compression paradigm found in the 

literature. It is not as complex as other compression algorithms but its 

performance is a bit lower than the previously described data compression 

methods. The applications of Golomb coding are generally focused on video 

compression systems such as H.264 video standard [13].  

The term group size (m) is a very important parameter in Golomb coding. It has a 

direct effect on the compression ratio. Selecting m as the power of two increases 

the efficiency of coding [12]. After the value of m is determined, data set which is 

to be compressed is divided into subsets of having zeros at the beginning and one 

at the end. Run lengths of a sample data set are given in Figure 2-5.  

 

Figure 2-5 Run Length Determination 
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Before the encoding process, the codes should be formed. An example of Golomb 

coding for a group size (m) of 4 is given in Figure 2-6. Codes are created 

according to the run lengths which are grouped of size m and these groups are  

named as Ak. Codes appearing on the right of Figure 2-6 have prefixes determined 

according to their group and tails. Each prefix has (k - 1) number of ones followed 

by a zero. Tails are the binary representation of integers starting from zero value 

to (m - 1). It is important to note that the widths of the tails must be the same. For 

instance, if the group size is selected as eight, the widths of the tails must be three 

which is log2(m). The code for each run length is formed by adding the prefix and 

the tail.  

 

 

 

Figure 2-6 Golomb Coding with a Group Size of 4 
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Encoded version of the data set given in Figure 2-5 can be seen in Figure 2-7. 

When the resulting code in Figure 2-7 is examined, it can easily be observed that 

the compression ratio is not that much when compared to other compression 

algorithms. 

 

 

Figure 2-7 Golomb Encoding 

2.3 FPGA Implementations of Data Compression Techniques 

Lossless data compression, where the original data is extracted without any loss 

after decompression, applications have increased over the past years due to the 

need to improve the storage capacity and data transfer rate [7]. There are many 

examples for the hardware implementations of conventional data compression 

techniques in the literature. Among these techniques, Huffman [14 - 15], Lempel-

Ziv (LZ) [16 - 17], and Golomb [18] compression algorithms are the most popular 

ones for FPGA implementations.  

Rigler et al. [14] implemented Huffman and LZ encoders on an FPGA 

development board using VHDL in order to serve a basis for hardware 

implementations of the popular compression program GZIP. Since this 

implementation is planned to be work with GZIP compression program, while 

forming the Huffman trees two additional rules are used to make sure that the trees 

are deterministic. According to the results presented modified Huffman algorithm 

uses less hardware resources than the LZ algorithm. De Araújo et al. [15] 

employed a different approach for Huffman Algorithm. They implemented a 
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microprogrammable controller on the FPGA to perform lossless data compression 

utilizing Huffman method. They claimed that with this flexible architecture, other 

compression algorithms such as Arithmetic- and Golomb coding algorithm can 

easily be implemented. 

Abd El Ghany et al. [16] realized the LZ encoding and decoding algorithm on the 

FPGA. In order to increase the efficiency, they used systolic array approach which 

resulted in a 40% decrease in the compression rate and 30% decrease in resource 

usage. Cui [17] also implemented LZ compression algorithm on the FPGA by not 

using the conventional dictionary approach. The dictionary is divided into smaller 

units. By this approach, the look-up time is decreased and parallel operations 

become performable.   

Among conventional data compression techniques, hardware implementations of 

different algorithms for compressing specific data structures are also present in the 

literature. For instance, Yongming et al. [19] have realized the Linear 

Approximation Distance Threshold algorithm on FPGA to compress the 

Electrocardiograph signals. Similarly, Valencia and Plaza [20] developed an 

FPGA-based data compression technique based on the concept of spectral 

unmixing to compress hyperspectral data. The novel compression method 

described in the study can be regarded as task-specific since it is developed to 

compress the signed integer position command sequences. It may not yield better 

results for text or image compression.               

2.4 FPGA Implementations of Polynomial Approximation Methods 

Polynomial approximation is not commonly used in command generation systems 

due to the inevitable errors in approximations. In order to minimize these types of 

errors, function approximation algorithms are applied to model the segmented 

trajectory in a piecewise fashion. The aim of this segmentation is to decrease the 

error resulting from approximation. In the literature, there exist various 
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segmentation approaches. The most common one is uniform segmentation, in 

which the widths of the segments are equal and the number of segments is limited 

to powers of two. Since the segment widths cannot be customized according to 

local function characteristics, a huge amount of segments are necessary to fulfill 

the error requirement [21]. To overcome this problem, dynamic segmentation 

depending on the inflection points of the trajectory is proposed in this study. 

Selecting an appropriate function approximation technique is very important 

especially in hardware implementations since errors resulting from the 

approximation should be stored for lossless reconstruction [22]. Another 

important aspect in approximation is the degree of polynomials used. When 

memory resources are limited, higher degree polynomials are commonly applied 

at the expense of increased computational complexity [23]. 

Hardware implementations of function approximation techniques are frequently 

used in developing Direct Digital Frequency Synthesizers (DDFS) in the 

literature. Ashrafi et al. [24] proposed an FPGA-based method that utilizes 

Chebyshev polynomial series interpolation. The developed technique unifies the 

results of ROM-less polynomial approximation methods for sinusoidal DDFS 

implemented on FPGAs [25] [26].Among various approximation techniques, 

Chebyshev polynomials are usually preferred for hardware implementation. This 

is due to the fact that Chebyshev polynomials give better results for non-periodic 

signals that are limited in range. In the study it is also turned out that the 

performance of Chebyshev polynomials are superior to Legendre, and Bernstein – 

Bezier polynomials. 

2.5 FPGA-Based Command Generation Systems 

Implementations of command generation methods on FPGA chips are not very 

common in the literature due to high computational complexity involved in the 

methods. Therefore, the techniques employed on FPGA have simplifications 
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and/or include error compensation modules into the systems.  For instance, Su et 

al. [27] developed a motion command generation chip utilizing FPGA for point-

to-point motion applications. They implemented trapezoidal and S-curve motion 

planning adopting the digital convolution method rather than the complex 

polynomial type method. With this approach, the computational complexity is 

significantly decreased. Furthermore, they developed a real-time output pulse 

compensation algorithm to eliminate the error in the number of output pulses and 

the results are found to be satisfactory.  

Jeon and Kim [28] also used the digital convolution method and designed an 

FPGA-based acceleration and deceleration circuit for industrial robots and CNC 

machine tools. Likewise, the method developed by Su et al. [27], they did not use 

the complex polynomial technique to generate velocity profiles of various 

acceleration and deceleration characteristics that require extensive computations. 

Since the current techniques are not satisfactory for generating velocity profiles 

for industrial robots and CNC machine tools [29], they developed a new method 

to compensate this deficiency. According to the experimental results given in the 

paper, they were able to generate unsymmetrical velocity profiles that cannot be 

generated by digital convolution techniques. Comparing the two works, former 

one is superior over the latter method. The error in the output pulses is not 

compensated in Jeon and Kim’s study [28] so that the errors are inevitable 

between the command and response signals. On the other hand, the method 

proposed in the paper generates commands without any error. Furthermore, it 

generates position, velocity, and acceleration profiles at the same time.  

2.6 Feed-rate Control of CNC Machine Tools  

The precision in manufacturing continually improves. In the manufacturing 

process, the quality of the product is dependent on the functions of CNC machine. 

Feed-rate control of the machine tool is very important factor for a high-precision 

CNC machine.  
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There are various algorithms proposed on feed-rate control in order to increase the 

surface quality of the product. For instance Cheng et al. [30] employed a predictor-

corrector algorithm to estimate the servo command at the next sampling time. In 

another study of Cheng et al. [31] developed a new interpolator to produce servo 

commands for real-time control of CNC machining. The main advantage of the 

proposed interpolator is being capable of generating motion commands for servo 

controllers at variable feed-rates. In a similar study of Xu et al. [32], they presented 

variable interpolation schemes for planar implicit curves. They were also able to 

interpolate in real-time to improve machining efficiency. In the proposed method, 

the feed-rate is set by the operator according to geometrical state of the surface. In 

other words, it is decreased when the tool is machining curved parts and increased 

on planar surfaces. 

2.7 Open Research Areas 

During the literature survey, not only the current research efforts, but also 

unexplored areas in the field have been surveyed. With the help of this study, the 

scope of the thesis has been determined. 

First of all, the tool location data are not directly generated in conventional 

command generation systems (CAD/CAM + CNC processors). Instead, the 

Numerical Control (NC) code, which represents the trajectory via an ensemble of 

geometric entities (such as line, arc, helix, NURBS etc.), is parsed and interpreted 

in real-time to produce the position of the tool accordingly. The reason for this 

rather meandering approach is due to the fact that data storage and retrieval was 

extremely costly in the past. With this limitation is greatly circumvented in 

today’s technology, the tool location data may directly be processed to increase 

the performance of real-time command generation systems. With this approach, 

the use of post processors, (machine-depended) NC codes, and complex hardware 

for real-time data interpolation may be eliminated.   



 20

Secondly, the real-time data decompression techniques, which may further 

alleviate the efficiency of this direct command data generation method, are not 

fully explored in the literature. For instance, there is no FPGA implementation of 

Arithmetic coding (regardless of the application area) since it is very difficult to 

synthesize a digital circuitry that is realizing the algorithm via hardware 

description languages such as Verilog and VHDL. According to the results 

obtained in this thesis, the performance of Arithmetic coding is much better than 

any other compression algorithms when applied to the context of command 

generation. Thus, the FPGA implementation of Arithmetic coding in command 

generation methods might be a remarkable contribution. 
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CHAPTER 3 

 

 

FPGA INTERFACE  

 

 

3.1 Introduction 

The FPGA Interface to be devised within the scope of the thesis is a board whose 

port connections can be defined through software and is capable of connecting 

various sensors and actuators (in any order) to the FPGA based motion control 

system. The current version of the interface can be regarded as a prototype and it 

is planned to finalize the interface as a product in the future. 

When the devices and their outputs signal used in motion control applications are 

considered, it is concluded that the interface (as in the data acquisition cards) 

should have four main communication channels: 

1) Analog Input: This card of the interface is responsible for the connection 

of analog devices (sensors, drivers, converters, etc.) to the system. The 

voltage ranges of these type of devices are 

a. Unipolar 5V ∈ [0, 5] V 

b. Bipolar 5V ∈ [-5, 5] V 

c. Unipolar 10V ∈ [0, 5] V 

d. Bipolar 10V ∈ [-10, 10] V 
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2) Analog Output: This developed unit is to be used for electromechanical 

systems and controlling motor drives. The output voltage ranges of this 

card are the same with the Analog Input card. 

3) Digital Input: Devices (switches, sensors, etc.) generating digital signals 

are connected to the motion control system via this card. For generality, 

the developed card should be compatible with the below digital logic 

families: 

a. TTL, LS-TTL 

b. CMOS (ACT, HCT, 74C) 

4) Digital Output: This interface is basically used to generate digital signals 

in order to sustain digital communication with various devices. The 

outputs of this card should be compatible with the logic families given 

above.  

The microcontrollers and Digital Signal Processors (DSPs) employed in the 

motion control industry have internal Analog to Digital Converters (ADCs) and 

Digital to Analog Converters (DACs) but the FPGA chips have neither of them. 

Another issue that should be noted is that the most of the FPGA chips operate 

with 3.3V CMOS/ACT logic families. Thus, in order to evaluate the 

aforementioned signals there should be signal-converter circuits that can be 

connected to the digital ports of the FPGA chip on the interface. 

The interface shown in Figure 3-2 basically consists of a main board having eight 

identical slots reserved for four types of daughter cards. The daughter cards are 

Analog Input, Analog Output, Digital Input, and Digital Output Cards. These 

boards are to be evaluated in the following subsections in a detailed manner. 

When the literature is investigated, there exists no full device that can be utilized 

with analog and digital peripheral devices having various voltage ranges. The 
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most related works include the programmability of FPGA pins according to the 

needs of the users and the voltage level converters. 

Menon et al. [41] developed a programmable input/output unit composed of three 

input and one output circuits. These four circuits are coupled to one of the FPGA 

pins and enabling of these circuits is carried by the programmable bits. With this 

unit a selected pin of the FPGA can accept TTL, GTL, GTLP, LVPECL, or LVDS 

voltage levels as input and generate TTL, GTL, or GTLP compatible signals. 

Goetting et al. [42] designed a similar system, but they implemented the structure 

within the FPGA chip.  

Chang [43] introduced the Application Specific FPGA phrase to the literature in 

his study. These integrated circuits include at least two functional units, which can 

be a digital to analog converter, a compressed image decoder, a random access 

memory, etc. The main purpose of the FPGA chip used in this design is to 

maintain the communication between the functional units and to connect them.  

3.2 Mother Board 

The main responsibility of the mother board is to host different types of daughter 

cards and provide required voltages and signals to these boards. Schematic design 

of the mother board shown in Figure 3-1 is drawn in Proteus 7 Professional [44]. 

As can be seen from the figure, the main board has three main functions: i) to 

generate bipolar (reference) triangular waveform, ii) to produce reference 

voltages, iii) to supply different voltage ranges to the daughter cards. 

Bipolar triangular waveform generator output is used by the Analog Input Cards 

(AIC) to compare the analog signals with the generated waveform. Triangular 

waveform generated by the module can be seen in Figure 3-7. The circuit 

implements the general triangular waveform generator described in [45]. The 

generated signal should be exactly in between 0V and 3.3V for proper analog to 

digital conversion. To eliminate the small deviations from the desired voltage 
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levels the resistances (R5 and R6) used in the corresponding circuitry should 

perfectly be matched. The frequency of the waveform is set by the resistance R6 

and the capacitance C2 used in the design, which is about 40 kHz in this case. 

On the other hand, the reference voltage generator outputs a constant voltage of 

1.65V. This voltage is obtained from the resistance R2 which is serially connected 

the resistance R1. The capacitance C1 is used to eliminate the noise. The 

operational amplifier U1 is a voltage follower used not to let the board draw 

current from the voltage divider. If the voltage follower is not used, during the 

operation of the board reference voltage can oscillate. 

Electrical modules on the upper of the figure are the indicators of available 

voltage levels supplied by the power source. They also distribute these voltages to 

the daughter cards. J1, J2, J3, and J4 are connected to 3.3V, 5V, VDD, and 15V 

voltage supplies, respectively. The capacitances between C3 and C11 are placed 

to eliminate the noise on the voltage resources. Light Emitting Diodes (LEDs) are 

also used to indicate the availability of the voltage source on the board. 

As can be seen from Figure 3-2, the main board is capable of holding only eight 

daughter boards. The connectors placed on the left side of the board are used to 

supply 3.3, 5, 12, and -12 voltages. On the other hand, the connectors on the right 

side are used to connect peripheral devices to the system. FPGA pins are 

connected to the headers on the middle of the connectors on the right side. 

In Figure 3-3, Altera DE1 FPGA Development Board, designed interface board, 

and the power supply are shown with their connections. According to the number 

of pins used for one mother board, FPGA Development Board can support up to 

four mother boards. This means that thirty-two daughter cards can be placed on 

the main boards, so that with this set-up an eight axis system can easily be 

controlled. 
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Figure 3-1 Schematic Design of the Mother Board 
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Figure 3-2 Main Board 

Figure 3-3 FPGA Development Board and Its Interface 

3.3 Analog Input Card 

The main task of this card is to convert the signals of analog sensors used in the 

motion control industry to digital signals utilizing Pulse Width Modulation 

(PWM). According to the block diagram given in Figure 3-4, the input analog 

signal is first amplified and biased according to the range selection done by the  

user. 
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Figure 3-4 Block Diagram of Analog Input Card 

The modified input signal is then compared with the triangular waveform on the 

mother board and the digital output is fed to the corresponding pin of the FPGA 

chip for further computations. 

The analog input card, whose circuit schematic is illustrated in Figure 3-5, is 

compatible with various voltage ranges as discussed in Section 1. The conversion 

of the voltage levels are carried out with a dipswitch and a two way jumper placed 

on the card. With this approach the voltage range of the sensor is to be 

determined. Voltage ranges are obtained according to the position of the switches 

and the jumper are given in Table 3-1. 

The most important part of the design is placed on the upper part of Figure 3-5. 

The operational amplifier U1:A is used to modify the range of input signal. The 

output voltage of U1: A can be defined as 
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�� = �− ���� 	⁄ � ��            �0 ≤ �� ≤ 5�� (3.1) 

�� = �− ����� ��              �0 ≤ �� ≤ 10�� (3.2) 

�� = �− ����� ��            �−5 ≤ �� ≤ 5�� (3.3) 

  �� = �− �� 	⁄�� � ��       �−10 ≤ �� ≤ 10�� (3.4) 

 

Then the output signal of U1:A is shifted according to the polarity of the input 

port signal by U1:B. For the unipolar cases, the resistance R3 is connected parallel 

to the resistance and for bipolar cases it is not connected to the circuit. 

After the modification of the voltage range is completed, the modified input signal 

is compared with the triangular waveform generated from the mother board 

utilizing a comparator chip (U2:A) and its output is fed to the FPGA chip for 

further analysis of the signal. The vacant pins of the chip U2 are connected to 

ground not to cause any problems. 

The manufactured card in Figure 3-6 is tested by placing it on one of the slots 

available on the mother board as shown in Figure 3-3. After all connections are 

done, by using a function generator, analog signals having different frequencies 

and magnitudes are fed to the designed analog input card to evaluate the 

performance of it. In Figure 3-7, signals obtained using the analog input card are 

shown. As described above, firstly the input analog signal (green) is scaled to 

the[0, 3.3] voltage range (blue). Then this signal is compared with the triangular  

waveform and a pulse sequence changing according to the amplitude of the input 

signal is generated by the card. Hence, it will be possible for the FGPA to 

determine the value of input signal by measuring the widths of the pulses. 
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 Table 3-1 Voltage Levels 

First Switch Second Switch Jumper Voltage Range 

1 0 Unipolar [0, 5] V 

1 1 Unipolar [0, 10] V 

0 0 Bipolar [-5, 5] V 

0 1 Bipolar [-10, 10] V 

 

 

 

Figure 3-5 Schematic Design of the Analog Input Card 
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Figure 3-6 Analog Input Card 

 

Figure 3-7 Signals of the Analog Input Card 

Analog signals having different frequencies (100 Hz, 1 kHz, 10 kHz) are fed to 

the card and the resulting signals are shown in Figure 3-8, Figure 3-9, and Figure 

3-10. It can be inferred from the results that at 40 kHz frequency pulse width 

modulation is successfully performed. It should also be noted that the resolution 

of this analog to digital converter is about 10 bits due to the 50 Mhz clock used on 

the FPGA board. 

Analog Input 

Modified Analog Input 
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Figure 3-8 Output Signal of the Analog Input Card at 100 Hz 

 

 

Figure 3-9 Output Signal of the Analog Input Card at 1 kHz 

 

 

Figure 3-10 Output Signal of the Analog Input Card at 10 kHz 
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3.4 Analog Output Card 

The main function of this card, whose schematic shown in Figure 3-12, is to 

generate analog signals that are necessary to control motor drives and 

electromagnetic devices. The voltage ranges of the output signals are modified in 

a similar fashion described in the previous section. The positions of the switches 

and the jumper are the same to obtain voltage ranges as given in Table 3-1.  

The block diagram of the analog output card is given in Figure 3-11. Firstly, the 

generated PWM signals from the FPGA development board are transferred to the 

low-pass filter. According to the cut-off frequency of the filter, digital signals are 

converted to their analog counterparts. Then these analog signals are amplified 

and biased according to the voltage range selections of the user. 

 

 

Figure 3-11 Block Diagram of Analog Output Card 

 

As can be seen from Figure 3-12, the incoming PWM signal from the FPGA pin is 

fed to an active low pass filter (R1 and C1) having a cut-off frequency of 5 kHz. 

Then the signal is shifted according to the polarity selection by the jumper which 

is placed on J5 and J6 by the help of U1:B. In the final part of the design another 

operational amplifier (U1:C) is used to scale the output signal according to the 

following expression: 
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�� = �− �� 	⁄�� � ��             � 0 ≤ �� ≤ 5�� (3.5) 

�� = �− ����� ��            �0 ≤ �� ≤ 10�� (3.6) 

�� = �− ����� ��            �−5 ≤ �� ≤ 5�� (3.7) 

�� = �− ���� 	⁄ � ��      �−10 ≤ �� ≤ 10�� (3.8) 

 

In order to evaluate the performance of the manufactured card in Figure 3-13, a 

universal sinusoidal signal generator is designed in Quartus II 9 Web Edition 

software. Its schematic design is shown in Figure 3-14. There are three different 

modules in the design, namely Clock Divisor (CD), Sine Wave (SW), and PWM 

Generator (PWMG). SW module can be regarded as the core of this design, since 

the other two modules are in communication with the SW module. It reads 

discrete values of a quarter sine wave from a look-up table and sends these values 

in an alternating manner to complete a full sine wave to the PWMG module. The 

PWMG module simply generates the output PWM signal according to the 

 incoming value from the SW module. The main task of the CD is to divide the 

global clock according to the user inputs and pass it to the SW and PWMG 

modules. With the switches available on the Altera DE1 Development Board, it is 

possible to generate sinusoidal signals ranging between 90 Hz and 12 MHz. By  

using this design, sinusoidal signals with frequencies of 100 Hz, 1 kHz, and 4 kHz 

are generated and fed to the analog output card to observe the performance of it. 
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Figure 3-12 Schematic Design of the Analog Output Card 

 

When the results shown in Figure 3-15, Figure 3-16, and Figure 3-17 are 

considered, it can be concluded that the card works properly at low and 

intermediate frequencies. On the other hand, it is observed during the tests that at 

frequencies higher than 4 kHz the magnitude and the frequency of the output 

signal are deteriorated. This is due to the fact that there is a low pass filter whose 

cut-off frequency is 5 kHz in the design. Thus, the cut-off frequency of the filter 

should be determined according to the needs of the application. 

 



 

Figure 3-14 Hardwired FPGA Implementation of the Sinusoidal Signal Generator

Figure 3-
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Figure 3-13 Analog Output Card 

wired FPGA Implementation of the Sinusoidal Signal Generator

-15 Output Signal of the Analog Output Card at 100 Hz

 

wired FPGA Implementation of the Sinusoidal Signal Generator 

 

Analog Output Card at 100 Hz 



 36

 

Figure 3-16 Output Signal of the Analog Output Card at 1 kHz 

 

Figure 3-17 Output Signal of the Analog Output Card at 4 kHz 

3.5 Digital Input Card 

The digital input card, whose schematic drawing is provided in Figure 3-18, is 

basically used to convert digital signals belonging to various logic families such 

as TTL, LS-TTL, and CMOS to 3.3V CMOS based compatible inputs for FPGA 

chips. The main components of the design are the two Bipolar Junction 

Transistors (BJTs). Voltage level shifting is carried out with the help of these high 

speed (600 MHz)  transistors coded as 2N2369. Firstly the digital input is fed to 

the base of the first transistor and the collector of this transistor is connected to the 
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base of the second transistor. The emitters of the transistors are directly connected 

to ground and collectors are fed from the 3.3V supply. With this design digital 

inputs at various logic levels are properly converted to FPGA compatible range. 

In the literature the circuit is known as the totem pole output circuit. In order to 

evaluate the performance of the digital input card, square signals (TTL) at 

different frequencies (1 kHz, 10 kHz, and 100 kHz) are fed to the manufactured 

card shown in Figure 3-19 via function generator. According to the results given 

in Figure 3-20, Figure 3-21, and Figure 3-22, at low and intermediate frequencies 

there is no remarkable change in the form of output signal whose range is [0, 3.3] 

V. On the other hand, as the frequency of the input digital signal increases, the 

rise time of the output signal tends to increase. The fundamental reason of this 

problem is that there exist undesirable capacitances at connection points and 

between electrical routes. Although it seems that the performance of the card is 

sufficient for many industrial applications, some improvement should be done on 

the card to let it operate properly also at high frequencies. 

 

Figure 3-18 Schematic Design of the Digital Input Card 
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Figure 3-19 Digital Input Card 

 

 

 

 

Figure 3-20 Output Signal of the Digital Input Card at 1 kHz 
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Figure 3-21 Output Signal of the Digital Input Card at 10 kHz 

 

 

Figure 3-22 Output Signal of the Digital Input Card at 100 kHz 
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3.6 Digital Output Card 

The digital output card, whose circuit schematic is shown in Figure 3-23, is 

basically used to generate digital signals to maintain the communication between 

the FPGA chip and other devices. The output signals of this card should be 

compatible with the logic families mentioned in the previous section. The output 

voltage range of this card is also changed with a jumper as in the other cards. 

When the schematic design is considered, the applied method is similar to the one 

in the digital input card. Two BJTs are used and this time the output voltage level 

is connected to the collector legs of the transistors.   

In order to test the digital output card in Figure 3-24, square signals at high 

frequencies are generated utilizing the FPGA board and fed to the card. The 

response of the digital output card to the square signal with a frequency of 300 

kHz is shown in Figure 3-25. As the case in the evaluation of the digital input  

card, the rise time of the output signal is much higher than the rise time of the 

input signal. There is almost no difference between the fall times. For the 

illustration of the effect of duty cycle on the rise time, signals at different duty 

cycles are fed to the card and the results are shown in Figure 3-26. As can be 

inferred from the figure, there occurs delays in the output signals due to the 

capacitive effects. Although these delays are acceptable for many applications, 

improvements should be made to decrease these types of delays. 



 41

Figure 3-23 Schematic Design of the Digital Output Card 

 

 

 

Figure 3-24 Digital Output Card 
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Figure 3-25 Output Signal of the Digital Output Card at 300 kHz 

Figure 3-26 Output Signal of the Digital Output Card for Various Duty Cycles 
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3.7 Closure 

In this chapter of the thesis, the developed FPGA interface is elaborated in a detail 

manner. This interface can be used to connect various peripheral devices to FPGA 

without any electronic concerns. When the overall design is considered, the 

modifications on the interface are carried out by hand utilizing the auxiliary 

switches and jumpers on the daughter cards. In the further designs of the interface, 

it is planned to replace switches with fast analog switches that can transfer the 

current in two ways. These analog switches may also be used to configure the 

channels electronically. 
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CHAPTER 4 

 

 

COMMAND GENERATION METHOD UTILIZING SEGMENTATION 

AND POLYNOMIAL APPROXIMATION 

 

 

 

The first developed command generation method utilizes segmentation with 

respect to the inflection points of the trajectory and then employs function 

approximation paradigms [33] such as, Chebyshev, Legendre, Bernstein – Bezier, 

etc. to represent the continuous trajectory efficiently. In this chapter, after the 

importance of segmentation is discussed, some background information on 

polynomials is given. According to the performance evaluation of polynomial 

types in MATLAB, the most successful one is realized on the FPGA 

Development Board via two different approaches, hardwired and embedded 

softcore processor. 

4.1 Segmentation 

Segmentation is preferable when a complex trajectory is to be approximated since 

a single polynomial (with extremely high order) might not be sufficient to 

approximate the whole trajectory to the desired accuracy. When the trajectories 

are segmented before approximation, the magnitude of errors decreases 

remarkably.  On the other hand, segmentation also brings additional 

computational loads to the approximation methods.  Hence, during the evaluation  
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Figure 4-1 A Sample Trajectory 

 

of methods, this extra effort should be also assessed. For illustration, a sample 

trajectory given in Figure 4-1 is to be approximated with Chebyshev Polynomials 

(CPs) with two different approaches. In the first approach, the trajectory is 

directly approximated by ten CPs. In the second approach, it is first divided into 

sections considering to the inflection points and thus each section is approximated 

with the same number of CPs. 

In MATLAB, the given trajectory is approximated and the resulting sequence in 

Figure 4-2 is obtained. As can be seen from the figure, the approximated 

trajectory has significant deviations if compared to the original one.  Similarly, the 

approximation error is demonstrated in Figure 4-3.  When it is compared with the 

original trajectory in Figure 4-1, one can easily perceive that at the inflection 

points of the original trajectory, the magnitudes of the errors are much greater.  
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Figure 4-2 Approximation without Segmentation 

 

 

 

 

Figure 4-3 Approximation Error without Segmentation 
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There are two possible ways to decrease the magnitude of errors at these points: i) 

number of polynomials used for approximation can be increased, ii) the trajectory 

can be divided into sections. When the hardware implementations are considered, 

the former solution is not preferred due to the resulting computational burden. 

Thus, the sample trajectory is divided into five segments according to the 

inflection points shown in Figure 4-4. Each segment is approximated utilizing ten 

CPs. As can be seen from Figure 4-5, the segmentation before approximation 

gives much better results than the previous method. The error profile is plotted in 

Figure 4-6 and it is compared to that of its counterpart. Note that the maximum 

error in Figure 4-6 is about one-sixth of the maximum error in Figure 4-3. Hence, 

the segmentation before approximation is most feasible approach to approximate 

curves with C0 continuity. 

 

 

 

 

Figure 4-4 Segmented Sample Trajectory 
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Figure 4-5 Approximated Segmented Trajectory 

 

 

Figure 4-6 Approximation Error After Segmentation 
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4.2 Polynomial Techniques 

In this proposed command generation method, various polynomial approximation 

techniques are applied onto the segmented trajectory. Before evaluating the 

different types of polynomials, some background information on such methods 

will be given to maintain self-containment of this thesis. 

Suppose that a command trajectory is to be approximated with an nth order 

polynomial in the interval [xmin, xmax]: 

���� = �� + ��� + ⋯ + � !�� !� + � �    (4.1)

If there exists sufficient (m ≥ n) number of data points {(x0, y0), (x1, y1), (x2, y2), 

..., (xm , ym)} on the trajectory, the unknown polynomial coefficients {a0, a1, …, 

an} in (4.1) can be calculated to represent the trajectory. In cases where the 

number of data points is equal or greater than the number of polynomial 

coefficients, the remaining coefficients can be determined using the least squares. 

That is, with these coefficients, (m+1) equations can be written: 

" = # ∙ %   (4.2)

% = &����⋮� 
(  (4.3)

# =
)*
*+1 �� ��	 ⋯ �� 1 �� ��	 ⋯ �� ⋮ ⋮ ⋮ ⋮ ⋮1 �, �,	 ⋯ �, 

 
-.
./  (4.4)
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" = &����⋮� 
( (4.5)

Polynomial coefficients in (4.2) are determined using the pseudo-inverse method 

described in [34]: 

% = �#0#  �!�#0" (4.2)

In polynomial approximation methods, the basis functions are the key factors to 

approximate the functions more accurately. When (4.1) is considered, the 

exponential functions {x1, x2, …, xn-1, xn} can be treated as the basis functions. 

This natural selection of basis function does not result in a good representation 

due to the fact that the employed basis functions are not mutually orthogonal. That 

is, 

1 �2�345 ≠ 0789:
78;<

 (4.7)

where i, j ∈ {0, 1, …, n} and i≠j. In approximations, it is a wise choice to use 

orthogonal functional forms as the basis functions according to the characteristics 

of the function to be approximated. On the other hand, these selected basis 

functions should easily be calculated also converge to the solution with less error 

[35]. 

In this polynomial approximation based command generation method, Chebyshev, 

Legendre, and Bernstein polynomials are elaborated and most suitable one is used 

in FPGA implementations. When the basis functions of these polynomials are 

compared, Legendre and Chebyshev polynomials use cosine functions and 

Bernstein polynomials use binomials. 
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4.2.1 Chebyshev Polynomials 

Chebyshev polynomials (CPs) are usually preferred for hardware implementation, 

since the CPs approximate non-periodic signals within a limited range better than 

other polynomial types. This feature is well suited for the commanded trajectories 

encountered in motion control applications.  

CPs, which are strictly defined over an interval x ∈ [-1, 1], are formed recursively 

to yield a set of orthogonal polynomials. When a different interval is considered, a 

change of variables is employed to be able to utilize the CPs. In approximation 

theory, the CPs are regarded as important polynomials due to the fact that roots of 

first-kind CPs are used as the nodes in polynomial interpolation. As a result, CPs 

decreases the problem of Runge’s phenomenon and also makes an approximation 

which is very close to the polynomials of the best approximation for a continuous 

trajectory under the maximum norm. There is another reason why CPs are good 

for approximation: When the series is truncated at some term, the error resulted 

from this cut-off is very close to the first term after the cut-off. This makes the 

computation of error easy. First five CPs (T0 – T4) are given in Figure 4-7, which 

are formed according to the recurrence formula: 

 

 

= >���� = 2�= ��� − = !����, =� = 1,      =���� = �, A ≥ 1 (4.8) 

 

Any trajectory can be approximated by  

���� = C � = ���.E
 F�  (4.9)

 



 

Figure 

When the basis functions of CPs are compared to the basis functions of Fourier, it 

can be inferred that there is a similarity between them. After employing change of 

variables, the different basis functions are formed from the trigonometric 

functions of Fourier via mapping 

Then the following two series become equivalent:

Although the series 

of 2G. Due to the equivalence of series, the exponential convergence of Fourier 

series guarantees the convergence of Chebyshev series.

52

Figure 4-7 First Five Chebyshev Polynomials

When the basis functions of CPs are compared to the basis functions of Fourier, it 

can be inferred that there is a similarity between them. After employing change of 

variables, the different basis functions are formed from the trigonometric 

nctions of Fourier via mapping H = IJK�L�.  

= �H� = IJK�AL�  
Then the following two series become equivalent: 

M�H� = C � 
E

 F� = �H�  

M�IJK�L�� = C � 
E

 F� IJK�AL�   
Although the series M�H� is not periodic, M�IJK�L�� is periodic in 

. Due to the equivalence of series, the exponential convergence of Fourier 

series guarantees the convergence of Chebyshev series. 

 

Polynomials 

When the basis functions of CPs are compared to the basis functions of Fourier, it 

can be inferred that there is a similarity between them. After employing change of 

variables, the different basis functions are formed from the trigonometric 

(4.10)

(4.11) 

(4.12)

is periodic in L with a period 

. Due to the equivalence of series, the exponential convergence of Fourier 



 

4.2.2 Legendre Polynomials

For non-periodic trajectories, Legendre Polynomials (LPs) can be 

CPs in the interval [

domains, the formulation of Legendre basis functions becomes simpler than that 

of Chebyshev basis functions. The convergence characteristics of these two 

different polynomial types are the same, but the maximum error of Legendre 

series is worse than the maximum error of Chebyshev series. Another difference 

between these polynomials is that the CPs oscillate uniformly over the interval but 

the LPs are non-uniform and

counterparts [35]. Just like CPs, LPs can be defined as

These polynomials (L

in Figure 4-8. 

�A + 1�N >���� =

 

Figure 
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Legendre Polynomials 

periodic trajectories, Legendre Polynomials (LPs) can be 

CPs in the interval [-1, 1]. If the computational domain is divided into sub 

domains, the formulation of Legendre basis functions becomes simpler than that 

of Chebyshev basis functions. The convergence characteristics of these two 

polynomial types are the same, but the maximum error of Legendre 

series is worse than the maximum error of Chebyshev series. Another difference 

between these polynomials is that the CPs oscillate uniformly over the interval but 

uniform and their magnitudes are small when compared to their 

. Just like CPs, LPs can be defined as 

���� = C � N ���.E
 F�    

These polynomials (Ln) are calculated utilizing the recurrence formula and shown 

� � = �2A + 1��N ��� − AN !���� , N� = 1, N���� =

Figure 4-8 First Five Legendre Polynomials 

periodic trajectories, Legendre Polynomials (LPs) can be used instead of 

1, 1]. If the computational domain is divided into sub 

domains, the formulation of Legendre basis functions becomes simpler than that 

of Chebyshev basis functions. The convergence characteristics of these two 

polynomial types are the same, but the maximum error of Legendre 

series is worse than the maximum error of Chebyshev series. Another difference 

between these polynomials is that the CPs oscillate uniformly over the interval but 

their magnitudes are small when compared to their 

(4.13)

) are calculated utilizing the recurrence formula and shown 

� �, A ≥ 1 (4.14)

 

 



 

4.2.3 Bernstein Polynomials

The main difference of Bernstein Polynomials (BPs) from Chebyshev and 

Legendre polynomials is that the BPs are defined in the interval [0, 1] 

[-1, 1] and always positive. One of the popular application areas of BPs is the 

generation of Bezier curves in computer graphics. Bernstein basis polynomials are 

formed using the expression:

O2, �
The Bernstein polynomials are plotted in 

combinations of Bernstein basis functions given in the equation:
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Bernstein Polynomials 

The main difference of Bernstein Polynomials (BPs) from Chebyshev and 

Legendre polynomials is that the BPs are defined in the interval [0, 1] 

1, 1] and always positive. One of the popular application areas of BPs is the 

generation of Bezier curves in computer graphics. Bernstein basis polynomials are 

formed using the expression: 

��� = �AP � �2�1 − �� !2    �P = 0,1, ⋯ , A�  
Bernstein polynomials are plotted in Figure 4-9 and defined as the linear 

combinations of Bernstein basis functions given in the equation:

���� = C � OQ, ���. 
QF�  

 

Figure 4-9 First Five Bernstein Polynomials

The main difference of Bernstein Polynomials (BPs) from Chebyshev and 

Legendre polynomials is that the BPs are defined in the interval [0, 1] rather than 

1, 1] and always positive. One of the popular application areas of BPs is the 

generation of Bezier curves in computer graphics. Bernstein basis polynomials are 

(4.15)

and defined as the linear 

combinations of Bernstein basis functions given in the equation: 

(4.16) 

 

First Five Bernstein Polynomials 



 

In order to decrease the computational complexity of Bernstein polynomials, (just 

like other polynomial techniques) Bernstein polynomials can also be 

recursive fashion: 

OQ, 

4.3 Performance Evaluation

Before implementing the proposed command generation method on FPGA, 

polynomial approximation techniques are compared and the most suitable one for 

command generation 

carried out in MATLAB, which inclu

realizable on the FPGA

The proposed command generation method

polynomial approximation methods 

generated for all six joints of a PUMA 560

Figure 
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In order to decrease the computational complexity of Bernstein polynomials, (just 

like other polynomial techniques) Bernstein polynomials can also be 

 

 ��� = �1 − ��OQ, !���� + �OQ!�, !���� 

Performance Evaluation 

Before implementing the proposed command generation method on FPGA, 

polynomial approximation techniques are compared and the most suitable one for 

command generation is selected for FPGA implementation. 

MATLAB, which includes special functions that 

on the FPGA.  

The proposed command generation method based on segmentation and different 

polynomial approximation methods are applied on the command sequences 

generated for all six joints of a PUMA 560 manipulator. Figure 

Figure 4-10 Command Trajectories of a PUMA Manipulator

In order to decrease the computational complexity of Bernstein polynomials, (just 

like other polynomial techniques) Bernstein polynomials can also be defined in a 

� � (4.17)

Before implementing the proposed command generation method on FPGA, 

polynomial approximation techniques are compared and the most suitable one for 

 This evaluation is 

des special functions that cannot be easily 

based on segmentation and different 

are applied on the command sequences 

Figure 4-10 shows these  

Command Trajectories of a PUMA Manipulator 
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trajectories in encoder counts. It is assumed that the quadrature encoder at each 

joint has the ability to generate 40000 (= 4 × 10000 counts/rev) counts in one 

revolution. 

The evaluation is carried out for three different variations of the method: i) 

approximation, ii) segmentation and approximation, iii) segmentation, 

approximation and error compression. 

4.3.1 Single Segment Approximation with Error Sequence Storage 

In this version of the command generation method, the trajectories are 

approximated without any segmentation but with error sequence storage. 

Chebyshev, Legendre, and Bernstein – Bezier polynomials based approximation 

method is applied on the command trajectory of the first joint of PUMA 560 

manipulator. Plot showing the effect of error root mean square (RMS) value on 

the compression ratio is provided in Figure 4-11. The number of polynomial  

 

Figure 4-11 Performance of Polynomial Approximation Methods without 

Segmentation 

 



 

coefficients used for approximations are also 

methods cannot approximate the trajectory below certain 

singularity problems 

zero) occur in the 

were not ill-conditioned with increasing order

approximation methods 

number of coefficients involved

approximation errors

divided into sections from their inflection points

 

Figure 4-12 Number of Polynomial Coefficients for Different Error RMS Values

During the storage of polynomial coefficients, it is aimed to decrease the 

computational complexity of the implementation on the FPGA chip. Thus, the 

coefficients are first rounded to integers and error sequences are formed according 

to these integer coefficients.

It is critical to notice that while

mentioned techniques
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coefficients used for approximations are also illustrated in Figure 

methods cannot approximate the trajectory below certain error values, since 

singularity problems (i.e. the determinant of inverted matrix in (4.6) approaches to 

occur in the pseudo-inverse technique. Even if the solution of the problem 

conditioned with increasing order, the performance of the 

approximation methods could not be regarded as acceptable in terms of

number of coefficients involved to reconstruct the original trajectory. 

errors mostly lie outside the tolerable range, trajectories 

divided into sections from their inflection points.  

Number of Polynomial Coefficients for Different Error RMS Values

During the storage of polynomial coefficients, it is aimed to decrease the 

computational complexity of the implementation on the FPGA chip. Thus, the 

ients are first rounded to integers and error sequences are formed according 

to these integer coefficients. 

It is critical to notice that while calculating the compression ratios 

mentioned techniques, all necessary parameters and error sequence 

Figure 4-12. These 

error values, since 

rix in (4.6) approaches to 

the solution of the problem 

, the performance of the 

in terms of the large 

to reconstruct the original trajectory. Since the 

, trajectories must be 

Number of Polynomial Coefficients for Different Error RMS Values 

During the storage of polynomial coefficients, it is aimed to decrease the 

computational complexity of the implementation on the FPGA chip. Thus, the 

ients are first rounded to integers and error sequences are formed according 

the compression ratios for the above-

parameters and error sequence are taken into 
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account. The following expression is used to calculate the compression ratio of 

pure approximation methods: 

 

R = STU8 MP� WXJY�I,Z7 − I,2 �XJY�2� + 1[\ + ST8 MP� WXJY�],Z7 − ],2 �XJY�2� + 1[\
ST8 MP� WXJY�4,Z7 − 4,2 �XJY�2� + 1[\  (4.18)

 

where N is the length of the original data sequence; Nc is the number of 

coefficients used in the approximation; cmax, dmax, emax, and cmin, dmin, emin 

represents the maximum- and the minimum values of the coefficients, the original 

data sequence,  and the error sequence respectively. 

4.3.2 Segmentation and Approximation with Error Sequence Storage 

In this sub-section of the evaluation, the trajectories in Figure 4-10 are firstly 

segmented according to the inflection points and then polynomial approximation 

methods are employed on these segments. The results are given in Figure 4-13. In 

the method, the most important parameter is the approximation error RMS value. 

If it is selected to be small, the error in the approximation decreases but the 

number of polynomials and coefficients increase tremendously. Therefore, a 

proper RMS value should be selected minimum compression ratio. The formula 

required to calculate the compression ratio is the same with the one given in 

Section 4.3.1. As it is inferred from Figure 4-13 that the best performance is 

achieved for all approximation methods when the error RMS value is four. 

Relatively high compression ratios at the beginning of the plot are due to the 

number of polynomials used to achieve corresponding RMS value. After the value 

of four, compression ratio tends to rise for all polynomial types since the memory 

required for storing the errors increases. Lastly, when the three approximation 
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methods are considered, Chebyshev Polynomials outperform the Legendre and 

Bernstein – Bezier polynomials for approximation. 

Figure 4-13 Performance of Polynomial Approximation Methods with 

Segmentation 

4.3.3Segmentation and Approximation with Error Sequence Compression 

As can be understood from the name of this sub-section, the main difference of 

this variation of the method is that the errors resulting from the approximation are 

compressed before storing. For the error compression, the data compression 

technique proposed in Chapter 5 is used. The performance of this variation is 

illustrated in Figure 4-14. As in the other variations, CPs outperform the other 

polynomial types and it can easily be inferred from the figure that this variation is 

the best of all variations of the command generation method based on polynomial 

approximation paradigms. By employing CPs, the original trajectory can be 

compressed to 23% of its original size. It should be noted that during the 

compression of error sequence, its first order of difference is taken and 

compressed.  
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The compression ratio calculation is carried out with the same equation given in 

Section 4.3.1 with an additional compression ratio parameter (re) for the error 

sequence as 

 

R = STU8 MP� WXJY�I,Z7 − I,2 �XJY�2� + 1[\ + R̂ ST8 MP� WXJY�],Z7 − ],2 �XJY�2� + 1[\
ST8 MP� WXJY�4,Z7 − 4,2 �XJY�2� + 1[\  (4.19)

 

Figure 4-14 Performance of Polynomial Approximation Methods with 

Segmentation and Error Compression 

4.4 FPGA Implementation 

After the elaboration of different polynomial techniques employed on the 

trajectories of the PUMA manipulator (see Figure 4-10), it is turned out that the 

Chebyshev polynomials give much better results than the Legendre and the 
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Bernstein polynomials. Thus, the Chebyshev polynomials based command 

generation method is realized utilizing the Altera DE 1 FPGA Development 

Board (with Cyclone II FPGA) [36] via two different approaches. In the first 

approach, the command generation method is directly written in VHDL utilizing 

the schematic design property of software Quartus II 9.0 Web Edition. This 

technique will be referred to as “Hardwired” approach. In the second technique, 

(rather than writing directly in hardware description language) architecture is 

implemented in NIOS II Embedded Development Environment [37], where a 

softcore processor IP serving as an embedded microcontroller is deployed on the 

FPGA. In the following two sub-sections, the differences between these 

approaches will be discussed and their performances shall be evaluated using the 

joint-state trajectories generated for the PUMA manipulator. 

4.4.1 Hardwired Approach  

In the first approach of FPGA implementations, the proposed command 

generation method is realized by directly writing the algorithm in VHDL. During 

writing, schematic design property of Quartus II 9.0 Web Edition is used. With 

this property of the software, it is much easier to sustain and track the 

communication between different modules performing specific tasks. Schematic 

design generating the commands for the first joint of PUMA manipulator, whose 

trajectories are given in Figure 4-10, is provided in Figure 4-15. In this design, 

there are mainly four different modules and two memory units. The modules are 

Driver Module (DM), Splitter Module (SM), RS-232 Module, Floating Point 

Operation Module (FPOM). The first memory unit is used to store Chebyshev 

polynomials. In this memory unit only hundred discrete values of first eight 

Chebyshev polynomials are stocked. Thus, in this hardwired implementation there 

is a restriction on the maximum width of the segments, which is hundred. If the 

length of the segment is less than hundred, then a proper change of variables is 

applied to the segment. On the other hand, in the second memory unit polynomial 

coefficients and the widths of the segments are stored. These coefficients are 
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passed to the FPOMs in a proper order for multiplication with the Chebyshev 

polynomials. After the multiplications, the results are summed in other FPOMs 

and sent to the RS-232 module in order to transfer the commands to the computer. 

Table 4-1 represents the allocated resources in FPGA for the implementation of 

the method with the hardwired approach. It can be inferred from the table that the 

almost half of the logic elements are used for this method, which can be regarded 

as high. The number of pins used is very low, since overall design does not have 

any communications with peripheral devices. It just internally generates the 

commands. It uses 37% of the multipliers due to the FPOMs embedded in the 

design. For a better illustration of resource usage, Figure 4-16 can be viewed. It 

can also be understood from the figure that about half of the resources are 

consumed by the architecture. The most important thing of this implementation is 

that it takes only 750 µs to generate 586 commands, which is fast for command 

generation systems. In the following sub-sections, the four main modules used in 

the design are explained in detail. 

Table 4-1   FPGA Resources used in Hardwired Approach 

Total Logic Elements 11098 (45%) 

Total Combinational Functions 10885 (44%) 

Dedicated Logic Registers 2644 (11%) 

Total Registers 2644 

Total Pins 4 (2%) 

Total Memory Bits 26880 (4%) 

Embedded Multipliers 9-bit Elements 49 (37%) 

Total PLLs 0 
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4.4.1.1 Driver Module 

Driver Module can be regarded as the manager module of the design. It 

communicates with all the modules and memory units to make the command 

generator operate properly. As can be seen from Figure 4-15, the DM has two 

inputs and four outputs. The first input is the global clock available on the FPGA 

board, which is 50 Mhz in this design, and the second input is the trigger input 

given by an external logic to the system to generate commands. Among outputs of 

the DM, index is sent to the Look-up Table. With the index value, Look-up 

Table outputs the values of CPs to the first set of FPOMs. fpuclock is 

generated and transferred to the FPOMs to perform mathematical operations in 

the desired order of the DM. Communication with the RS-232 Module is 

sustained with the output sendclock. Since the DM knows exactly how many 

cycles are necessary for mathematical operations, it outputs this clock 

accordingly. sendselect output is given to the SM to split the 32-bit command 

values into 8-bit values. With all these inputs and outputs the DM operates as the 

main module of the design. 

4.4.1.2 Floating Point Operation Module 

There are fifteen FPOMs in the design. Eight of them perform multiplications, and 

the rest sums the results of these multiplications. The original of this module was 

developed by Usselmann [38]. This current version is simplified to respond only 

to the needs of the design. The module, whose schematic is provided in Figure 

4-15, has three inputs and an output. The first input clk is received from the DM 

module and the other inputs are the 32-bit floating point data to be used in 

mathematical operations. The only output out is the result of multiplication or 

addition in this architecture. It is sent to the other FPOMs for further operations or 

sent to the RS-232 module. 
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4.4.1.3 Splitter Module 

Splitter module, shown in Figure 4-15, is the simplest module used in the design. 

It just takes the input sel as the clock and splits the incoming 32-bit wide 

floating point data in32 into four 8-bit wide values. Finally sends these data to 

the RS-232 module directly. The reason why there is need for such segmentation 

is that the available RS-232 module can operate with 8-bit data values. 

4.4.1.4 RS-232 Module 

The RS-232 Module, developed by Usselmann [40], actually consists of two sub-

modules; sasc_brg and sasc_top as named in Figure 4-15. The module on 

the left side is the baud rate generator. The baud rate is adjustable using the 

divisor registers in the module according to the global input given as input to the 

module. The module on the right side is responsible for the communication with 

the PC and the incoming data. 

4.4.2 Embedded Softcore Processor Approach 

In the second approach, the command generation algorithm is written in C 

programming language and the resulting are cross-compiled to run on a softcore 

processor deployed on the FPGA.  The “machine code” is then downloaded to this 

processor. Note that the embedded softcore is designed in the NIOS II Embedded 

Development Environment. Schematic design of this algorithmic state machine 

(ASM) is shown in Figure 4-17. The softcore Intellectual Property (IP) has a 

Synchronous Dynamic Random Access Memory (SDRAM) Unit additional to the 

basic micro-processor units. SDRAM is used to store Chebyshev polynomials, 

coefficients, and widths of the segments. Due to the usage of an external memory 

unit, hardware resources used in the FPGA is less than the ones used in the first  
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of the resources. This can also be verified from the chip plan given in 

For the given trajectory, 

SDRAM) of memory. 

586 points is around 247 ms, which is much higher than

critical to note that the basis functions (i.e. Chebyshev polynomials) can be 

generated in advance and it takes roughly 213 ms.
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Figure 4-17 Softcore FPGA Implementation of the Method

approach as can be seen in Table 4-2. The processor occupies only about one

of the resources. This can also be verified from the chip plan given in 

For the given trajectory, the implementation only uses 61 kB (

SDRAM) of memory. The time necessary for generating a command sequence of 

points is around 247 ms, which is much higher than the first 

critical to note that the basis functions (i.e. Chebyshev polynomials) can be 

generated in advance and it takes roughly 213 ms. 

 

 

core FPGA Implementation of the Method 

. The processor occupies only about one-fifth 

of the resources. This can also be verified from the chip plan given in Figure 4-18. 

the implementation only uses 61 kB (0.007% of 

necessary for generating a command sequence of 

the first approach. It is 

critical to note that the basis functions (i.e. Chebyshev polynomials) can be 
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Table 4-2   FPGA Resources used in Softcore Approach 

Total Logic Elements 3444 (18%) 

Total Combinational Functions 3085 (16%) 

Dedicated Logic Registers 1914 (10%) 

Total Registers 1966 

Total Pins 39 (12%) 

Total Memory Bits 28992 (12%) 

Embedded Multipliers 9-bit Elements 0 

Total PLLs 1 (25%) 
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4.5 Closure 

In this chapter, command generation method based on segmentation and 

polynomial (Chebyshev, Legendre, and Bernstein) approximation was proposed. 

The method was then implemented on the FPGA development board using two 

different approaches. Pure polynomial approximation was not used for the 

implementations, since during the elaboration of the method in MATLAB 

environment it turned out that the segmentation of the trajectory was inevitable for 

small magnitudes of errors. The two implementations have their own advantages 

over the other. Hardwired approach is much faster than the softcore counterpart. 

On the other hand, the hardware resources used by the embedded softcore is about 

the half of resources occupied by the hardwired approach. To sum up, if there is 

no restriction on the usage of hardware resources, it is better to implement 

hardwired approach which is much faster than the other. 
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CHAPTER 5 

 

 

COMMAND GENERATION METHOD UTILIZING DIFFERENCING 

AND COMPRESSION WITH VARIABLE FEED-RATE 

 

 

 

The second developed command generation method consists of two phases: 

differencing and compression. The main difference of this method from the first 

one is that there is no approximation during command generation and as a result 

there are no representation errors. In this chapter, after the need for differencing 

(before compression) is explained, the proposed data compression technique will 

be elaborated. In the following section, the performances of various data 

compression methods are comparatively elaborated. According to the obtained 

results, variable feed-rate input (i.e. time/velocity scalar) is incorporated to the 

most successful method. Finally, the command generation algorithm is 

implemented on the FPGA board using two different approaches: hardwired and 

embedded softcore processor. 

5.1 Differencing 

Methods involving higher-order differences of time-sequences are applied to 

decrease the memory required for storage [4]. Note that in the literature this 

technique is referred to as differencing or relative encoding [3]. Rather than 

storing directly the whole command trajectory, it is beneficial to store the 
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of a sequence can be represented as

In these equations,

the order of difference increases, the memory needed for the storage of the 

sequence decreases. In order to represent the relationship between the memory 

requirement and the order of difference, several trajectories are formed and their 

differences are taken up to 7

be seen from the figure, after the third

memory usage since the sign of each data point frequently changes in an 

alternating fashion afte

considerably. Therefore, the best solution for data storage is achieved when the 

order of difference is 
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data along with the necessary initial values. Higher

a sequence can be represented as 

_` = `�a� − `�a − 1�,   
_	` = _`�a� − _`�a − 1�,  

_b` = _b!�`�a� − _b!�`�a − 1�.   
In these equations, _b` represents the nth order difference and k is the index

difference increases, the memory needed for the storage of the 

sequence decreases. In order to represent the relationship between the memory 

requirement and the order of difference, several trajectories are formed and their 

differences are taken up to 7th order [1]. This result is shown in 

be seen from the figure, after the third-order difference, there is an increase in the 

memory usage since the sign of each data point frequently changes in an 

alternating fashion after the 4th order difference. Hence, the range of data broadens 

considerably. Therefore, the best solution for data storage is achieved when the 

order of difference is three or four for most of the motion control applications.

Figure 5-1 Effect of Order of Difference on Memory

Higher-order difference 

(5.1)

(5.2)

(5.3)

and k is the index. As 

difference increases, the memory needed for the storage of the 

sequence decreases. In order to represent the relationship between the memory 

requirement and the order of difference, several trajectories are formed and their 

is shown in Figure 5-1. As can 

order difference, there is an increase in the 

memory usage since the sign of each data point frequently changes in an 

order difference. Hence, the range of data broadens 

considerably. Therefore, the best solution for data storage is achieved when the 

for most of the motion control applications. 
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Note that the original data can be extracted using the differenced data along with 

the initial values. For 

operation can be expressed as

When a = 1, an initial value 

If the order of difference is greater than one, 

increases. While calculating the compression ratios of 

differencing, memory required for the initial values should also be considered.

Differencing without compression can also be used as an alternative command 

generation method. For the illustration of this method, the second joint 

trajectory of the PUMA manipulator (shown in 

When the area underneath the trajectory and its differences are plotted in 

5-2, it can be observed that the areas decrease remarkably. On the other hand, the 

Figure 5-2 Second Joint Trajectory of PUMA 

to Third Order 
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Note that the original data can be extracted using the differenced data along with 

the initial values. For the first order differences, this integration 

e expressed as 

`�a� = `�a − 1� + _`�a�   
, an initial value `�0� along with _`�1� is needed to calculate 

If the order of difference is greater than one, number of necessary initial values 

increases. While calculating the compression ratios of the 

differencing, memory required for the initial values should also be considered.

Differencing without compression can also be used as an alternative command 

generation method. For the illustration of this method, the second joint 

ectory of the PUMA manipulator (shown in Figure 4-10

When the area underneath the trajectory and its differences are plotted in 

, it can be observed that the areas decrease remarkably. On the other hand, the 

Second Joint Trajectory of PUMA Manipulator and Its Differences up 

Note that the original data can be extracted using the differenced data along with 

first order differences, this integration (accumulation) 

(5.4)

is needed to calculate `�1�. 

number of necessary initial values 

the methods utilizing 

differencing, memory required for the initial values should also be considered. 

Differencing without compression can also be used as an alternative command 

generation method. For the illustration of this method, the second joint  

10) is reconsidered. 

When the area underneath the trajectory and its differences are plotted in Figure 

, it can be observed that the areas decrease remarkably. On the other hand, the  

Manipulator and Its Differences up 
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compression ratios of differences do not change as remarkably as the areas 

change. This is due to the reason that there must be constant bit widths for the 

trajectory and the maximum value of the sequence determines this width. In Table 

5-1, compression ratios are given up to sixth order of difference for all the 

trajectories of the manipulator. It should be noted that in the calculation of 

compression ratios, the necessary initial values for decoding are also considered. 

Table 5-1 Compression Ratios vs Order Difference [%] 

 Order of Difference 

Joint Number 1 2 3 4 5 6 

1 73.25 66.61 66.52 73.07 79.62 86.17 

2 73.25 73.25 79.80 79.71 86.26 92.81 

3 61.55 69.22 69.12 76.79 76.68 84.24 

4 99.90 92.69 92.59 92.50 92.40 92.30 

5 73.25 73.25 79.80 79.71 86.26 92.81 

6 93.27 86.53 86.44 86.35 86.26 86.17 

       

5.2 Proposed Data Compression Algorithm 

Data compression algorithms described in the second chapter are universal 

methods. That is, they can be utilized to compress any data type with diverse 

statistical attributes including text, audio, image, video, etc.  While this generality 

feature can be regarded as an advantage, the implementation of such compression 

paradigms on FPGA chips can be often times quite complex and could drain 

considerable resources on a particular FPGA. On the other hand, the compression 
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algorithm proposed in this thesis is specifically developed to deal with optical 

position encoder commonly encountered in motion control applications. Since the 

output of these sensors, which satisfy C0 (and frequently C1) continuity, can be 

conveniently represented as (signed or unsigned) integers, one can exploit such 

(temporal) sequences to come up with an efficient compression technique that is 

easier to implement on a FPGA chip with modest resources. In the following 

subsections, encoding and decoding algorithms of this method are to be explained 

in detail. 

5.2.1 Encoding Process 

The basic idea behind this technique is that when the higher-order differences of a 

reference trajectory (i.e position/location sequence) in a typical motion control 

application is computed, the (integer) values in the resulting sets do decrease 

considerably. Furthermore, since most motion control applications require 

constant velocity along the traced trajectory, the majority of the differentiated data 

is likely to be null (0) while the rest is composed of small integers in which the 

probability of occurrence is inversely correlated with the magnitude. Considering 

that a small integer number would require fewer bits, the difference data would 

take up significantly less memory if compared to the original data set.  Unlike 

entropy-based (general) compression techniques (like Huffman coding), one can 

directly encode the difference data in this technique without calculating the 

probability density of the processed data owing to the fact that the special 

requirements associated with the motion control applications (due to operational 

concerns) tightly dictate the statistical distribution data beforehand.  

Consequently, the proposed compression algorithm (to be referred to as the ∆∆∆∆Y 

Method hereafter) is employed on the higher-order differences of the command 

trajectory (usually position). Once the differenced data of the command sequence 

is calculated according to the specified order, the resulting data is compressed 

(a.k.a. “compacted”) utilizing the ∆Y algorithm.  In Figure 5-3, a sample encoding 
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process for the third-order difference is illustrated. Note that the compressed code 

consists of three fields (Sign, Amplitude, and Length Fields) and initial value set. 

The sign field includes sign bits: 0 and 1 represent positive- and negative numbers 

respectively. Note that if the magnitude of data is zero, no sign bit is assigned for 

this special case.  Hence, the length of the sign field equals to the difference 

between the number of data points (in the differenced set) and the number of zeros 

in the data. Similarly, the amplitude field encodes the absolute values of the data 

sequentially as binary numbers with variable length. To extract the differenced 

data, another field (a.k.a “length field”), which yields the length of each value in 

the amplitude field, needs to be formed. As can be seen from Figure 5-3, this field 

contains sequences of 1’s and 0’s in an alternating manner. Once can detect the 

length of a particular number in the amplitude field by simply counting the bits in 

between two consecutive transitions (0-to-1 or 1-to-0) detected in the length field.  

Lastly, the order of differencing, and the initial values are needed for lossless 

decompression. The initial values, which are used to initialize integrator (or 

accumulator) states, depend on the order of the difference. That is, the number of 

integrators used in decoding is equal to the order of difference. 
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Figure 5-3 Sample Encoding Process for ∆Y Method 
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5.2.2 Decoding Process 

Architecture implementing the decoding process of the ∆Y technique is illustrated 

in Figure 5-4. Decoding starts out with the comparison of the consecutive bits in 

the length field to detect the transitions in this field.  After the length of a 

particular binary data residing in the amplitude field (li) is determined through the 

bit comparison module and the counter, the information is passed to the left-shift 

register. Considering the length, the shift register extracts the amplitude of the 

data from the corresponding field and transfers the data to the differenced data 

module. After taking the sign value (utilizing another left shift register) from the 

sign field, the differenced data module completes its task and sends the data to the 

integration module. In the mean time, the initial values are transferred to the 

integration module and the original data by accumulating the differenced data in a 

sequential manner.  

 

 

 

Figure 5-4 Decoding Process of ∆Y Decompression Algorithm 
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It is critical to notice that as indicated in the first section of this chapter, the 

presented technique generates the original data (i.e. position) by accumulating the 

finite differences of that sequence in a successive fashion. For instance, when n 

equals to 3, the third-order difference (i.e. jerk) is accumulated to obtain second-

order difference (i.e. acceleration/deceleration). The corresponding results are 

iteratively accumulated until the position at a particular instant in time is 

calculated. Hence, the discrete-time derivatives of the command sequence, which 

are frequently required by modern motion controller topologies, are inherently 

computed in this technique.        

5.3 Performance Evaluation 

In this section, Huffman, Arithmetic Coding, and the ∆Y compression algorithms 

are applied on the trajectories of the PUMA 560 manipulator in MATLAB (see 

Figure 4-10). After the finite differences of the command trajectory for the first 

joint are computed for various orders, the data compression algorithms are 

employed to compress the differentiated trajectory data. Resulting compression 

ratios (in percent) are presented in Table 5-2. In the  

table, n represents the order of finite difference. Note that while calculating the 

compression ratios for the methods utilizing differencing, the memory required 

for the initial values is also taken into consideration. As observed from Table 5-2, 

if n > 1, the compression algorithms yield much better results owing to the fact 

that the increments of encoder counts from one sampling step to another (i.e. 

angular velocity) are still quite high as the robot performs a jerky motion 

throughout the followed trajectory in this particular example. Another conclusion 

to be drawn from the table is that the performance of the ∆Y algorithm is superior 

to those of the others. With n = 3, the command sequence can be compressed to 

about one-fourth of its original size.  Notice that the results given in Table 5-2 are 

also in good agreement with Figure 5-1. Up until the third order, the compression 

ratio decreases and after that there is an increasing trend. This situation may be 
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explained by the decline in the frequencies of the numbers in the sequence and the 

expansion in the range of the data values. 

Table 5-2 Compression Ratios for Various Orders 

 Compression Ratio (%) 

n Huffman Arithmetic Coding ∆∆∆∆Y Method 

0 197.1 181.4 182.9 

1 131.0 118.6 77.9 

2 34.1 32.7 30.3 

3 34.8 31.9 23.6 

4 46.4 42.3 30.8 

5 60.6 54.1 39.3 

6 81.7 70.9 49.6 

 

It is critical to notice that while calculating the compression ratios for the above-

mentioned techniques, all necessary parameters to extract the original command 

sequence (including compressed code, initial values, dictionary tables, etc.) are 

taken into account. The following expression is used to calculate the compression 

ratio of the ∆Y technique: 

R = c18 �∑ 2X2 + T − A − A�e! 2F� �f + SA8 WXJY�4,Z7 − 4,2 �XJY�2� + 1[\
ST8 MP� WXJY�4,Z7 − 4,2 �XJY�2� + 1[\  

(5.5)
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where N is the length of the original data sequence; n is the order of finite 

difference; l is the binary length of each data; n0 is the number of zero magnitude 

data; dmax and dmin represents the maximum- and the minimum value of the 

original data sequence respectively. 

To be able to determine which compression algorithm is suitable for command 

sequences, the aforementioned methods are applied to all trajectories generated 

for the PUMA 560 manipulator after taking third-order finite differences of the 

angular position data (in encoder counts). The results are shown in Table 5-3.  It is 

clearly seen from the table that the proposed method leads better results than the 

contending techniques.  

Table 5-3 Compression Ratios for Third Order Differences 

 
Joint Number 

1 2 3 4 5 6 

M
et

h
od

 Huffman 34.8 43.9 36.0 37.0 46.0 41.3 

Arithmetic  31.9 40.2 33.8 34.8 42.0 37.9 

∆∆∆∆Y 23.6 24.2 24.1 22.2 24.7 25.3 

        

5.4 Command Generation with Variable Feed-rate Input 

A novel command generation scheme, where the programmed velocity along the 

traversed trajectory can be changed dynamically, is elaborated in preceding 

section. In CNC applications, the speed (i.e. feed-rate) through the course of 

motion is generally modified by external input (like feed-rate override knob). 

Under some extreme cases (such as the control scheme of an electro-discharge 
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machine), it might be desirable to reverse the direction of motion as dictated by an 

external source. Therefore, the proposed command generation method is to be 

augmented to accommodate a variable feed-rate input.  

With this property, the users will be able to change the rate of command 

generation in both forward and reverse directions. During generation, when there 

is a need for the intermediate command values, a linear interpolator should be 

incorporated to the design. That is, this unit is to interpolate between the two 

decoded command values based on the following expressions:   

 

�Q = �Q!� + MQ  �gJ4 M,Z7� (5.6a)

g ∶= i g − 1,          �Q!� + MQ < 0g + 1,     �Q!� + MQ > M,Z7 l  (5.6b)

mQ = m,!� + �m, − m,!���QM,Z7    (5.7)

 

where u represents the decoded commands at the interval m ∈ {0, 1, …, N}; k is 

the time index. Similarly,  fk ∈ {–fmax,…-1, 0, 1, …  fmax} indicates the current 

value of the feed-rate input to the system while fmax ∈ Z
+
 denotes the maximum 

feed-rate  at which commands could be generated. Note that the variable (ak) in 

(4.7) essentially serves as a time scaling factor.   

In Figure 5-5, a sample interpolation is carried out with a feed-rate of (3/8)fmax. 

That is, if the sampling time is selected as 0.008 s, then with the specified feed-

rate the new sampling time becomes 0.003 s. As can be seen from the figure that 

before the 4th interpolated command is generated, the difference value is updated 

and the next three commands are generated according to the new difference value. 
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The shaded area underneath the 2nd original command can be regarded as the error 

of the interpolation algorithm. After each original data point, extrapolation can 

also be used rather than interpolation. In the extrapolation case, it is guaranteed to 

 

Figure 5-5 Interpolated Data 

generate the original command. On the other hand, duration of the representation 

error of the extrapolation is always larger than the one of interpolation. Another 

approach to eliminate the representation errors at least at the original command 

points, the original data can be generated regardless of the sampling time. 

The proposed command generation method with variable feed-rate is evaluated in 

MATLAB before implementing it on an FPGA development board. The feed-rate 

profile in Figure 5-6 is applied to the original command trajectory illustrated in 

Figure 5-7. The feed-rate profile is formed such that all the commands are first 

generated in the forward direction and then in the reverse direction with 

continuously changing feed-rate. There occur some command representation 

errors (as shown in Figure 5-8) at each original data points since the interpolation 

algorithm (described in the previously) is not capable of generating commands at 

these points. When Figure 5-7 and Figure 5-8 are considered together, it can 

easily be inferred that the larger errors occur at the inflection points of the 

trajectory. 
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Figure 5-6 Feed-rate Profile 

 

 

Figure 5-7 Interpolated and Original Command Sequences 
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Figure 5-8 Command Representation Errors 

5.5 FPGA Implementations 

After the elaboration of different data compression techniques employed on the 

trajectories of the PUMA manipulator, it is turned out that the ∆Y compression 

method exhibits superior performance over the Huffman and the Arithmetic 

compression techniques. Thus, the ∆Y method based command generation 

paradigm is realized utilizing the Altera DE1 FPGA Development Board (with 

Cyclone II FPGA) [36] via two different approaches. In the first approach, the 

command generation method is directly written in VHDL utilizing the schematic 

design property of software Quartus II 9.0 Web Edition. This technique will be 

referred to as “hardwired” approach. In the second technique, (rather than writing 

directly in hardware description language) architecture is implemented in NIOS II 

Embedded Development Environment [37], where a softcore processor IP serving 

as an embedded microcontroller is deployed on the FPGA. In the following two 

sub-sections, the differences between these approaches will be discussed and their 
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performances shall be evaluated using the joint-state trajectories (see Figure 4-10) 

generated for the PUMA manipulator. 

5.5.1 Hardwired Approach 

In this approach, the proposed command generation algorithm is realized by a 

finite state machine (FSM) which is directly designed through the use of VHDL. 

During this phase, the schematic design property of Quartus II 9.0 Web Edition is 

used. With this property of the software, it is much easier to sustain and keep 

track of the communications among different modules performing specific tasks. 

The schematic of the design is illustrated in Figure 5-9. In this design, there are 

mainly six modules: SRAM Controller, Memory Management Unit (MMU), 

Decoding Unit (DU), Accumulators, Interpolator, and RS-232 Module. Before 

explaining each module, the allocated resources on FPGA while implementing the 

method are represented in Table 5-4. As can be seen, only 9% of the total logic 

  

Table 5-4   FPGA Resources used in Hardwired Approach 

Total Logic Elements 1731 (9%) 

Total Combinational Functions 1491 (8%) 

Dedicated Logic Registers 911 (5%) 

Total Registers 911 

Total Pins 50 (16%) 

Total Memory Bits 0 

Embedded Multipliers 9-bit Elements 2 (4%) 

Total PLLs 0 
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elements available on the FPGA chip are utilized in the design. Note that the FSM 

is implemented to generate commands for a single manipulator joint controller. 

Hence, one can implement 6 parallel FSMs to produce the commands for all joints 

of the PUMA manipulator without exhausting the resources of the chip. The 

number of pins used is a bit higher than ones in the implementation of the 

polynomial approximation methods. The reason of this increase is that the FPGA 

chip needs to be connected to the SRAM chip on the development board to store 

compressed (joint state) commands. For a better illustration of resource allocation, 

the floor plan of the “synthesized” digital circuitry on the chip is illustrated in 

Figure 5-10. As can be seen, only a small portion at the center of the chip is 

deployed to realize the corresponding architecture [38].  

In order to evaluate the performance of the implementation in a detailed manner, 

the method is applied for all the trajectories of the manipulator (Figure 4-10). The 

results are given in Table 5-5. In the following sub-sections, the six main modules 

used in the design are investigated in detail. 

Table 5-5 Time for the Generation of Command Sequences 

Joint Number Clock Cycles Time (ms) 

1 14569 0.29 

2 15609 0.31 

3 14039 0.28 

4 13865 0.27 

5 16045 0.32 

6 15434 0.30 
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5.5.1.1 SRAM Controller

The main task of the SRAM controller is to 

the MMU and the SRAM located on the FPGA Development Board. It sends out 

the compressed data to the MMU (one by one in this case) according to the 

address information emanating from the MMU. Schematic version of the modul

is shown in Figure 

connected to the SRAM chip on the development board, which is organized as 

256K words by 16 bits. The output 

This output is responsible for sending the data on the specified address of the 

memory. The inputs 

 

module. The rest of the inputs are connected to the outputs of the MMU. The 

address input to the module determines the value of output data to the MMU. 

byteenable, chipselect

operation to be able to use the module. 

writing operation during the decoding

use the memory efficiently, the compressed code is structured 

5-12 for a generic command sequence.
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SRAM Controller 

The main task of the SRAM controller is to maintain the communication between 

the MMU and the SRAM located on the FPGA Development Board. It sends out 

the compressed data to the MMU (one by one in this case) according to the 

address information emanating from the MMU. Schematic version of the modul

Figure 5-11. All of the outputs of the module except 

connected to the SRAM chip on the development board, which is organized as 

256K words by 16 bits. The output readdata is directly connected to the MMU. 

This output is responsible for sending the data on the specified address of the 

memory. The inputs clk and reset are the global clock and reset pins fed to the 

 

Figure 5-11 SRAM Controller 

module. The rest of the inputs are connected to the outputs of the MMU. The 

input to the module determines the value of output data to the MMU. 

chipselect, and read inputs are set to high during to 

operation to be able to use the module. write input is set to low since there is no 

writing operation during the decoding process of the compressed data.

use the memory efficiently, the compressed code is structured 

generic command sequence. The first three words of 

maintain the communication between 

the MMU and the SRAM located on the FPGA Development Board. It sends out 

the compressed data to the MMU (one by one in this case) according to the 

address information emanating from the MMU. Schematic version of the module 

. All of the outputs of the module except readdata are 

connected to the SRAM chip on the development board, which is organized as 

is directly connected to the MMU. 

This output is responsible for sending the data on the specified address of the 

are the global clock and reset pins fed to the  

module. The rest of the inputs are connected to the outputs of the MMU. The 

input to the module determines the value of output data to the MMU. 

inputs are set to high during to 

input is set to low since there is no 

process of the compressed data. In order to 

use the memory efficiently, the compressed code is structured as shown in Figure 

The first three words of  
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Figure 5-12 Compressed File Format 

the compressed data can be regarded as the header. Initial 4 bits of the first word 

indicate the order of finite difference (where a maximum of 15th order for the 

differences can be represented). The rest of the first word and the second word (28 

bits) are reserved for expressing the length of the command sequence. Finally, the 

last word of the header is used to specify the number of words reserved for the 

magnitude field, which indirectly determines the starting address of the sign field. 

After the header part, the initial values section is located. They are stored in the 

form of signed binary integers. The number of initial values necessary for 

integration is set by the order of finite difference which is represented with the 

first 4 bits of the data. After the information about the compressed data and initial 

values are given, the amplitude field is then stored in the proceeding words. Since 

the length of the header part and the number of initial values are known, the 

starting address of the amplitude field is easily determined during decoding. Note 

that the length and sign fields are located after the amplitude field. The starting 

addresses of these two fields are calculated via the number of amplitude field 



 

words stored in the third word of the compressed data. With the

format, the compressed sequences are generated without any error

5.5.1.2 Memory Management Unit

The MMU, whose schematic is shown in 

of the design since it communicates with all modules except the RS

Controller. Input signals to this module are limited when the number of output 

signals is considered. Input signals are only the data sent from the SRAM 

Controller (data

ampdata_need) coming from the DU indicating that the unit is out of data, and 

the pause input set by the interpolator. Output signals

compressed file, three fields transferred to the DU, the initial values sent to the 

accumulators, and the necessary outputs connected to the SRAM Controller.

The basic operating principles of the MMU are described in 

be seen, there are four states of this unit: i) 

iii) Fetch First Set
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words stored in the third word of the compressed data. With the

format, the compressed sequences are generated without any error

Memory Management Unit 

The MMU, whose schematic is shown in Figure 5-13, can be regarded as the core 

of the design since it communicates with all modules except the RS

Controller. Input signals to this module are limited when the number of output 

onsidered. Input signals are only the data sent from the SRAM 

data), acknowledgment signals (signdata_need

) coming from the DU indicating that the unit is out of data, and 

input set by the interpolator. Output signals are header data for the 

compressed file, three fields transferred to the DU, the initial values sent to the 

accumulators, and the necessary outputs connected to the SRAM Controller.

 

Figure 5-13 Memory Management Unit 

The basic operating principles of the MMU are described in Figure 

, there are four states of this unit: i) Get Header, ii) Get Ini

Fetch First Set, iv) Send & Wait. After the system is reset, the unit starts 

words stored in the third word of the compressed data. With the described data 

format, the compressed sequences are generated without any error. 

, can be regarded as the core 

of the design since it communicates with all modules except the RS-232 

Controller. Input signals to this module are limited when the number of output 

onsidered. Input signals are only the data sent from the SRAM 

signdata_need and 

) coming from the DU indicating that the unit is out of data, and 

are header data for the 

compressed file, three fields transferred to the DU, the initial values sent to the 

accumulators, and the necessary outputs connected to the SRAM Controller. 

Figure 5-14. As can 

Get Initial Conditions, 

. After the system is reset, the unit starts 
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acquiring header data (words) from the SRAM and sending them to the DU. In the 

next state, the initial values are conveyed to the accumulators in a proper order. In 

the following state, the first set of words from amplitude-, length-, and sign fields 

are fetched from the SRAM and are sent to the DU to initiate the decoding 

process promptly. In Send & Wait state, the words from each field are sent to the 

DU. This state is only initiated when the incoming signals signdata_need and 

ampdata_need are set.  It should be noted that there is no signal indicating the 

necessity for a data point from the length field. When a word from the amplitude 

field is needed, the corresponding word from the length field is sent automatically 

to the DU. This state lasts until all the commands are generated. 

 

 

 

Figure 5-14 State Diagram of Memory Management Unit 



 

5.5.1.3 Decoding Unit

DU is the module where the decoding algorithm is implemented. It communicates 

with the MMU, the first accumulator module, and the integrator module. The 

schematic design of this module is provided in 

to this unit except the 

output signals are the acknowledgement signals (

ampdata_need) which a

remaining two output signals are directly connected to the first accumulator. Thus, 

the decoded command is transferred to the accumulator in signed integer format at 

an additional clock indicating that a new co

 

 

The basic operating principles of the DU are depicted 

that constitutes nine states starts when the header data from the MMU are 

acquired. Then, the header data (constituting the order of difference, length of the 

command sequence, and 

stored for further use. In the second state, the first set of

different fields is saved. Second set received from the MMU is 
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Decoding Unit 

DU is the module where the decoding algorithm is implemented. It communicates 

with the MMU, the first accumulator module, and the integrator module. The 

schematic design of this module is provided in Figure 5-15. All the input signals 

to this unit except the clk and pause signals are fed from the MMU. Two of the 

output signals are the acknowledgement signals (signdata_need

) which are described in the previous sub

remaining two output signals are directly connected to the first accumulator. Thus, 

the decoded command is transferred to the accumulator in signed integer format at 

an additional clock indicating that a new command is being submitted.

 

Figure 5-15 Decoding Unit 

The basic operating principles of the DU are depicted in Figure 

that constitutes nine states starts when the header data from the MMU are 

acquired. Then, the header data (constituting the order of difference, length of the 

command sequence, and the number of amplitude field words) are divided and 

stored for further use. In the second state, the first set of 

different fields is saved. Second set received from the MMU is 

DU is the module where the decoding algorithm is implemented. It communicates 

with the MMU, the first accumulator module, and the integrator module. The 

. All the input signals 

signals are fed from the MMU. Two of the 

signdata_need and 

re described in the previous sub-section. The 

remaining two output signals are directly connected to the first accumulator. Thus, 

the decoded command is transferred to the accumulator in signed integer format at 

mmand is being submitted. 

Figure 5-16. Decoding 

that constitutes nine states starts when the header data from the MMU are 

acquired. Then, the header data (constituting the order of difference, length of the 

the number of amplitude field words) are divided and 

stored for further use. In the second state, the first set of words from three 

different fields is saved. Second set received from the MMU is  
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Figure 5-16 State Diagram of Memory Unit 
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stored in the third and fourth states.  While decoding, the second set is necessary 

since it may turn out that the corresponding command is distributed between two 

consecutive words. The main task of this unit is executed in the Decode state of 

which is associated with five other states. When there is a lack of data during 

decoding, the finite-state “decoding” machine moves either on to Fetch Amplitude 

or Fetch Sign states to obtain the required data. If the decoding is complete for a 

given command, the data (in unsigned integer format) are processed in the Pre-

Output state. In case the corresponding command is stored in two different words, 

Detect Pair state takes over for proper decomposition. Note that in Pre-Output 

state, the decoded command is rolled into a single word and passed onto the 

Output state. The conversion of unsigned to signed integer format is performed in 

the Output state. For this purpose, the data from the sign field must be ready. 

When sign data run out, the DU moves onto the third state and gets the necessary 

data. After the decoded command is formed as signed integer, it is sent to the first 

accumulator instance. 

5.5.1.4 Accumulators 

Accumulator (integrator) modules (Figure 5-17) are the simplest elements of this 

design. It gets the input data, sums it with the previous value of the accumulator 

and outputs the resulting value to the next accumulator. The number of 

accumulators in the design depends on the order of difference. Note that the given 

design in Figure 5-9 is hardwired and can decompress data differentiated up to the 

third order.  However, the general design should have 15 accumulator instances 

(in compliance with the format specified in Section 5.5.1.1). A de-multiplexer unit 

must be incorporated to the design to deselect the unused accumulator instances. 

Notice that in the proposed design, the three accumulators yield the acceleration, 

velocity, and position profiles of the commanded trajectory.  This attribute is one 

of the advantages of the proposed method. Since when a state-space controller is 

embedded into the system, the velocity and acceleration profiles must be ready for 

use. 



 

 

Instead of using a series of accumulators in the design, only one integrator can be 

used alternatively, whose schematic design is shown in 

all the initial values are fed to this module at the beginning of decoding process. 

Integration formula for the third order difference is employed within the module 

and its result is sent to the interpolator module.
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Figure 5-17 Accumulator Module 

Instead of using a series of accumulators in the design, only one integrator can be 

used alternatively, whose schematic design is shown in Figure 

all the initial values are fed to this module at the beginning of decoding process. 

Integration formula for the third order difference is employed within the module 

and its result is sent to the interpolator module. 

 

Figure 5-18 Integration Module 

Instead of using a series of accumulators in the design, only one integrator can be 

Figure 5-18. In this design 

all the initial values are fed to this module at the beginning of decoding process. 

Integration formula for the third order difference is employed within the module 

 



 

5.5.1.5 Interpolator

The interpolator 

computations described with the equations given in Section 4.4. While generating 

the commands, it sends 

stop their operations. When there is need for a new original command, it sets the 

pause signal to low. Internal inputs to this module are data and its clock coming 

from the last accumulator module, and the global clock used in the system. 

External inputs are the ones give

generation and its direction. In order to overcome the delays between the 

generated commands, it also employs a buffer inside.

 

5.5.1.6 RS-232 Controller

The RS-232 Controller used in this architecture is the same with the one used in 

the implementation of the method based on Chebyshev polynomials 

approximations in the previous chapter.

97

Interpolator 

 used in the design, Figure 5-19, simply 

computations described with the equations given in Section 4.4. While generating 

the commands, it sends pause signals to the DU, MMU, and accumulators to 

tions. When there is need for a new original command, it sets the 

signal to low. Internal inputs to this module are data and its clock coming 

from the last accumulator module, and the global clock used in the system. 

External inputs are the ones given by the user and these are the 

generation and its direction. In order to overcome the delays between the 

generated commands, it also employs a buffer inside. 

.  

Figure 5-19 Interpolator Module 

232 Controller 

232 Controller used in this architecture is the same with the one used in 

the implementation of the method based on Chebyshev polynomials 

approximations in the previous chapter. 

simply performs the 

computations described with the equations given in Section 4.4. While generating 

signals to the DU, MMU, and accumulators to 

tions. When there is need for a new original command, it sets the 

signal to low. Internal inputs to this module are data and its clock coming 

from the last accumulator module, and the global clock used in the system. 

n by the user and these are the feed-rate of 

generation and its direction. In order to overcome the delays between the 

232 Controller used in this architecture is the same with the one used in 

the implementation of the method based on Chebyshev polynomials 
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5.5.2 Embedded Softcore Processor Approach 

In the second approach of the FPGA implementations, the command generation 

algorithm is written in C programming language and the resulting are cross-

compiled to run on a softcore processor deployed on the FPGA as done in the 

previous chapter.  Then the resulted code is downloaded to the designed 

processor. Schematic design of this algorithmic state machine (ASM) is shown in 

Figure 5-20. The main difference of this design from the one designed in Chapter 

4 is that there is a parallel input-output port in the softcore processor. With this 

property, a variable feed-rate input can be supplied to the system externally. As 

can be seen from Table 5-6, the hardware resources of this architecture is twice 

those of the hardwired architecture. It is critical to note that a sequential ASM is 

essentially implemented in this approach; there will not be a considerable increase 

in the resources when other trajectories are also generated. The memory required 

on the SDRAM will increase. The floor plan of the synthesized logic circuitry is 

illustrated in Figure 5-21. With the help of the performance counter module of the 

softcore processor, the time needed for decoding a sequence of 586 data points is 

roughly 25 ms. 

Table 5-6   FPGA Resources used in Softcore Approach 

Total Logic Elements 3549 (19%) 

Total Combinational Functions 3146 (17%) 

Dedicated Logic Registers 1984 (11%) 

Total Registers 2036 

Total Pins 46 (15%) 

Total Memory Bits 28992 (12%) 

Embedded Multipliers 9-bit Elements 0 

Total PLLs 1 (25%) 
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5.6 Closure  

In this chapter, command generation method (a.k.a. ∆Y) based on differencing 

and data compression techniques is proposed and implemented on the FPGA 

development board using two different approaches. During the performance 

evaluations, it is turned out that there is no sense in compressing the encoder 

pulses without taking higher order differences of them and proposed data 

compression technique is always more successful than the Huffman and 

Arithmetic coding methods. Taking higher order differences of the trajectory 

before compression is necessary. After differencing, the frequency of numbers in 

the sequence increases, (entropy based) data compression makes sense. Note that 

the novel compression method suggested in paper is not a universal. Its 

advantages reveal when the command sequence consists of integers showing 

acceleration and deceleration characteristics. 

The hardwired FPGA implementation of the method outperforms the softcore 

embedded processor approach. Time need to generate same amount of commands 

for the softcore is about 100 times greater than the time needed by the hardwired 

architecture. 

When the command generation method proposed in this chapter compared with 

the one proposed in the previous chapter, the former one is the most suitable one. 

Since in this case, less hardware resources are used and time necessary to generate 

commands is much lower than the method with polynomial approximation. 
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CHAPTER 6 

 

 

CASE STUDY ON COMMAND GENERATION 

 

 

6.1 Introduction 

Up to this chapter, two different command generation methods are proposed and 

realized utilizing an FPGA development board (Altera DE1 with Cyclone II 

FPGA): i) Command Generation via Segmentation and Polynomial 

Approximation, ii) Command Generation via Differencing and  Data 

Compression. When these two methods are compared, it can be concluded that the 

command generation method based on differencing and compression circumvents 

the other technique in terms of speed, resource utilization, compression ratio, and 

ease of implementation. Thus, during the case study, the performance of 

differencing and compression based method will be investigated through a 

detailed case study.  

The chapter is organized as follows: the command sequences for a three-axis CNC 

vertical machining center are introduced. These sequences represent the desired 

cutting tool position when machining the injection mold of a bottle. After that, the 

trajectories are compressed with three different compression algorithms 

(Huffman, Arithmetic Coding, ∆Y) after taking higher order differences. Once the 

compressed commands are generated, the FPGA implementation is carried out 

after some modifications on previously described schematic design. The results of 

the methods are compared and discussed at the final section of this chapter. 
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6.2 Sample Command Trajectory 

To test the efficiency of the command generation methods on a realistic case, the 

manufacturing of a plastic injection mold for a bottle is taken into account. 

Despite the fact that the mold consists of two complementary parts (male/female), 

only the machining of the female (or negative) mold is considered in this work.   

Before generating the commands for this specific machining task, the NC code, 

which is given in the Appendix D, are obtained from the sample codes of 

CncSimulator software [46]. It is critical to notice that an NC program is an 

industry-standard means of defining the trajectory of a programmable (CNC) 

machine system.  Most CAD/CAM packages (after post-processing for a 

particular machine tool) do generate the NC code directly to carry out a particular 

machining task.  From the functional point of view, the program describes the 

trajectory in terms of continuous linear- and circular segments using special (G) 

functions (such as G0, G1, G2/G2). That is, the code includes only the relevant 

parameters to define the trajectories in a piecewise fashion.  For instance, to 

define a linear patch, only the destination (end-point) coordinates of this path 

needs to be specified along with the speed on the trajectory. Similarly, the 

destination/target coordinates as well as the radius of the curve may be sufficient 

to define an arc on a specific plane. On the other hand, the reference commands 

(position, velocity, acceleration) are to be supplied to the motion controller at each 

sampling period. Hence, the NC code must be processed (or interpolated) to 

generate the intermediate position data of the tool at equidistant time interval.  

Utilizing the MATLAB script (trajectory_generation.m) developed by 

Akıncı [1], the command trajectories for the three axes {x, y, z} of the CNC 

machining centre are formed. These trajectories are shown in Figure 6-1 as a 3D 

plot. The trajectories along fundamental axes are illustrated in Figure 6-2, Figure 

6-3, and Figure 6-4.  Despite the fact that a NC code (by design) guarantees the C0 

continuity of the path, one needs to take into consideration not only the physical 

limitations of the power generating systems (electrical motors, drivers) but also 



 

the requirements of the tasks.  The velocity and acceleration/deceleration profiles 

along the given trajectory must be modified to account for these machine (or task) 

related issues. Note that, while generating the trajectory data, no attempt is made 

to maintain the C

velocity profiles can be seen in 

some sharp changes in the velocity pr

from the figures, the simulated manufacturing process lasts for 926 seconds. Since 

the sampling time is selected as 1 ms, 926000 commands are generated for each 

axis. During the generation of motor commands, it is as

of an axis-motor corresponds to 10 mm of translation along a particular axis. 
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the requirements of the tasks.  The velocity and acceleration/deceleration profiles 

along the given trajectory must be modified to account for these machine (or task) 

related issues. Note that, while generating the trajectory data, no attempt is made 

intain the C1 continuity of the resulting trajectory for this test case. The 

velocity profiles can be seen in Figure 6-5, Figure 6-6, and 

some sharp changes in the velocity profile might be observed. As can be seen 

from the figures, the simulated manufacturing process lasts for 926 seconds. Since 

the sampling time is selected as 1 ms, 926000 commands are generated for each 

axis. During the generation of motor commands, it is assumed that one revolution 

motor corresponds to 10 mm of translation along a particular axis. 

Figure 6-1 Trajectories of the Mold 

the requirements of the tasks.  The velocity and acceleration/deceleration profiles 

along the given trajectory must be modified to account for these machine (or task) 

related issues. Note that, while generating the trajectory data, no attempt is made 

continuity of the resulting trajectory for this test case. The 

, and Figure 6-7. Hence, 

ofile might be observed. As can be seen 

from the figures, the simulated manufacturing process lasts for 926 seconds. Since 

the sampling time is selected as 1 ms, 926000 commands are generated for each 

sumed that one revolution 

motor corresponds to 10 mm of translation along a particular axis.  
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Figure 6-2 Trajectory in the X Axis 

 

 

Figure 6-3 Trajectory in the Y Axis 
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Figure 6-4 Trajectory in the Z Axis 

 

 

 

Figure 6-5 Velocity Profile in the X Axis  
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Figure 6-6 Velocity Profile in the Y Axis 

Figure 6-7 Velocity Profile in the Z Axis 
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6.3 Evaluation of Methods 

In the scope of the thesis, two different command generation algorithms are 

introduced and implemented on the FPGA. To compare the methods (in terms of 

utilization of resources, compression of command data, and the generation time), 

the first trajectory in Figure 4-10 is reconsidered and the results are presented in 

Table 6-1. It can be inferred from the table that the first method uses nine times 

more FPGA resources than the second one. As stated in previous chapters, the 

reason of high consumption of the resources is the FPOMs used in the design – 

especially for multiplication of coefficients with polynomials. When the 

compression ratios are considered, the first method is also worse than the second 

approach. The first method cannot compress data as much; since for a reasonable 

approximation error, the number of polynomials as well as their corresponding 

coefficients should be kept high. This also causes the implemented design to 

generate the same amount of commands in longer time duration.  

Table 6-1 Implementation Comparison of Proposed Command Generation 

Methods 

 
FPGA Resources 

[%] 

Compression Ratios 

[%] 

Duration 

[ms] 

Segmentation and 

Approximation [I] 
45 39.76 0.75 

Differencing and 

Compression [II] 
9 23.56 0.29 
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The first method generates 586 commands in 750 µs whereas the second method 

completes the generation process in 290 µs. Furthermore, there occur no 

representation errors in the commands for the second approach.   

It is proven that the second method outperforms the first method in different 

aspects. Therefore, the trajectories presented in the previous article are encoded 

according to the second method. Before realizing the decoding on the FPGA, the 

trajectories are encoded with slight variations on the second method in MATLAB. 

First, the method is evaluated with only differencing. No further compression is 

employed on the differenced data.  Table 6-2 represents the resulting compression 

ratios for differences up to sixth-order for all three axes of the given trajectory. 

The best performances are achieved for the first-order of difference regardless of 

the selected axis. These results are not totally in agreement with the data presented 

in Table 5-1 and Figure 5-1. Thus, a careful study on order of difference should be 

carried out when evaluating the complete method with various compression 

algorithms.  

Table 6-2 Compression Ratios [%] vs Order of Differences for the Test Case 

 Order of Difference 

1 2 3 4 5 6 

X Axis 50.00 55.56 55.56 61.11 66.67 72.22 

Y Axis  50.00 55.00 55.00 60.00 65.00 70.00 

Z Axis 61.11 61.11 61.11 66.67 72.22 77.78 

In order to decide on the order of difference of the method for FPGA 

implementation, a further study on the trajectories is carried out.  The Huffman, 

Arithmetic Coding, and the proposed compression (∆Y) algorithms are applied on 

the trajectories of the three axes for an order up to the sixth. The results of 
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compression algorithms for various orders are provided in Table 6-3, Table 6-4, 

and Table 6-5. Surprisingly, the arithmetic coding seems to be far superior to 

other compression algorithms regardless of the order and the trajectory.  

 

Table 6-3 Results of Huffman Compression Algorithm for Various Orders of 

Difference [%] 

Axis 
Order of Difference 

1 2 3 4 5 6 

X 25.62 5.58 5.59 5.64 5.56 5.72 

Y  6.29 5.01 5.01 5.02 5.02 5.03 

Z  25.04 5.57 5.60 5.62 5.67 5.70 

   

 

 
   

Table 6-4 Results of Arithmetic Coding Algorithm for Various Orders of 

Difference [%] 

Axis 
Order of Difference 

1 2 3 4 5 6 

X 25.36 0.13 0.23 0.36 0.46 0.59 

Y  3.96 0.02 0.03 0.05 0.06 0.08 

Z  24.72 0.13 0.25 0.36 0.49 0.08 
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Table 6-5 Results of the ∆Y Compression Algorithm for Various Orders of 

Difference [%] 

Axis 
Order of Difference 

1 2 3 4 5 6 

X 32.83 10.53 10.53 10.55 10.58 10.66 

Y  13.69 10.01 10.01 10.02 10.03 10.04 

Z  32.21 10.53 10.54 10.57 10.60 10.69 

 

This is mainly due to the high sampling frequency (1 kHz). As the sampling 

frequency decreases, the compression ratios of the algorithms approach to each 

other. The reason behind this fact is that the number of different values increases. 

Another conclusion to be drawn from the tables is that after the second order of 

difference, there are not any remarkable changes in the compression ratios. 

Since compressing the original data to one-tenth of its original size seems to be 

adequate, the ∆Y compression algorithm is selected for the implementation on the 

FPGA. Ease of implementation of the algorithm has a strong effect on this 

selection. 

6.4 FPGA Implementation 

In the previous section of the chapter, it is concluded that the second or third-

order of differences before employing the proposed compression algorithm on the 

trajectories are the optimum orders for the implementation on the FPGA. In 

Chapter 5 implementation of the ∆Y compression algorithm based command 

generation method is carried out via two different approaches, namely softcore 

(processor) and hardwired approaches. When the results of the techniques are 
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considered, it can be concluded that the hardwired approach is faster and expends 

less resources than the softcore approach.  

Before realizing the generator for all axes, a decoder for the trajectory of x-axis is 

designed in Quartus II 9.0 (Web Edition) in order to compare the utilization of 

resources with the design given in Chapter 5. In this new design shown in Figure 

6-8, several modifications on the modules are done. First of all, the widths of the  

registers in the modules are increased from 16 to 32 bits since it is not possible to 

represent the magnitudes of the commands with 16 bits. This conversion of 

registers affects the resource utilization in the FPGA. When the results given in 

Table 6-6 and Table 5-4 are compared, it can be inferred that with the doubled 

register sizes, the new design consumes more than twice the resources of the prior  

 

Table 6-6   FPGA Resources used in Hardwired Approach of the Case Study for 

the First Axis 

Total Logic Elements 4475 (24%) 

Total Combinational Functions 3997 (21%) 

Dedicated Logic Registers 1549 (8%) 

Total Registers 1549 

Total Pins 99 (31%) 

Total Memory Bits 0 

Embedded Multipliers 9-bit Elements 4 (8%) 

Total PLLs 0 
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design. Another modification in the design with respect 

that instead of accumulator modules, an Integrator Module (IM) is embedded to 

the design. The main difference in this module (which 

all of the initial values are directly transferred to this module at the beginning of 

the decoding process. Position, velocity, and acceleration profiles are fed with a 

data clock to the Command

according to the acknowlegment signal 

the pause input. The transferred commands are also depended on the current 

direction of decoding.
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the design. The main difference in this module (which shown in 

all of the initial values are directly transferred to this module at the beginning of 

the decoding process. Position, velocity, and acceleration profiles are fed with a 

data clock to the Command Transmit Module (CTM) shown in 

according to the acknowlegment signal ok1 coming from the CTM connected to 

input. The transferred commands are also depended on the current 

direction of decoding. 

 

Figure 6-9 Integrator Module 

 

Figure 6-10 Command Transmit Module 

to the one in Figure 5-9 is 

that instead of accumulator modules, an Integrator Module (IM) is embedded to 

shown in Figure 6-9) is that 

all of the initial values are directly transferred to this module at the beginning of 

the decoding process. Position, velocity, and acceleration profiles are fed with a 

Transmit Module (CTM) shown in Figure 6-10 

coming from the CTM connected to 

input. The transferred commands are also depended on the current 
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Note that this module accepts all the commands from the three axes and sends 

these signals according to the incoming signal from the controller unit, clk_in. 

The incoming signal shown in Figure 6-11 is comprised of 9 consecutive clocks 

(at 10 MHz). These pulse sets are periodically generated at the sampling 

frequency of 1 kHz. At the rising edge of these clocks, the module sends 

commands to the controller and at the falling edge, the controller receives them. 

 

 

 

Figure 6-11 Incoming Clock Signal from the Controller 

 

In the full design of the command generator for the case study, there should three 

separate command generators as illustrated in Figure 6-12. Note that there are 

three SRAM controllers in this design.  However, the additional SRAM 

controllers do not increase the resource usage significantly since they are 

connected to the same pins of the FPGA chip.  Another issue that should be noted 

is that the CTM is also responsible for prevents the conflicts that may arise during 

the communication of SRAM with the MMUs.  The output of the CTM is 

connected to the General Purpose Input Output (GPIO) pins of the FPGA 

development board. Any controller can be connected to these GPIO pins to 

receive reference commands for the trajectories. The hardware resources utilized 

in this design is given in Table 6-7. When the table is compared in terms of the 

resources used for only x-axis, it can easily be inferred that the complete design 
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almost utilizes three times more resources than the previous one as expected.  It is 

critical to notice that it was stated in Chapter 5 that all six trajectories of the 

manipulator can be generated using the FPGA development board. However, after 

changing the size of the registers to 32 bits, it is now possible to generate only 

four state trajectories.  

Table 6-7   FPGA Resources Used in Hardwired Approach of the Case Study 

for all the Axes 

Total Logic Elements 13366(71%) 

Total Combinational Functions 12062 (64%) 

Dedicated Logic Registers 4568 (24%) 

Total Registers 4568 

Total Pins 231 (73%) 

Total Memory Bits 0 

Embedded Multipliers 9-bit Elements 12 (23%) 

Total PLLs 0 

 

 

Finally, the chip floor plan of the synthesized circuit design is given in Figure 

6-13. It can be seen that most of the resources are occupied as shown in Table 6-7. 

For a better illustration of the chip plan, two regions are zoomed. When the colors 

in the legend are considered, it can be concluded that the most of the chip is 

reserved for logic elements, connection of elements, and registers. 

 

 



 

 

Figure 6-12 Hardwired FPGA Implementation of
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Hardwired FPGA Implementation of the Command Generator
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6.5 Closure 

In this chapter, the most successful command generation method in the thesis, 

which consists of differencing and the ∆Y data compression algorithm, is 

employed to generate the trajectories of a CNC vertical machining center while 

machining a plastic injection mold of a bottle. The selected method for FPGA 

implementation is further investigated in MATLAB and the results are discussed. 

During the performance comparison of data compression algorithms, it is turned 

out that the Arithmetic coding algorithm outperforms its counterparts. The 

Arithmetic coding is not selected since the algorithm is not very suitable for 

parallel decoding.  On the other hand, the ∆Y is specifically developed for parallel 

decoding and its implementation on the FPGA is advantageous if compared to 

other compression methods. 

The complete design built for the generation of all trajectories of the mold used 

71% of the resources on the FPGA chip. If the number of axis increases in the 

system, the FPGA chip (Cyclone II) should be upgraded to (an advanced one like 

Cyclone III) generate all command trajectories. 
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CHAPTER 7 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

7.1 Conclusions 

In this study, two different advanced command generators utilizing FPGA for 

computer controlled mechanisms have been developed. In both of the proposed 

command generators after the encoding of the trajectories are completed, the size 

of the original data is compressed to at least one-fourth of it. 

The FPGA interface developed in the scope of the thesis can be regarded as the 

most important unit of the command generator system, since without the interface 

the system cannot be connected to the controller unit and the PC performing 

encoding operations. Beside providing communication with various devices, the 

interface is also used to convert digital signals to analog signals and vice versa. 

During these conversions, the voltage ranges are scaled and shifted according to 

the ranges set by the user.  

Once the FPGA interface is introduced in the third chapter, the first command 

generation method is elaborated in the following chapter. This first method is 

basically an polynomial approximation algorithm. Since pure approximation does 

not give good results (compression ratios) for the complex trajectories. The 

method is modified such that the polynomial approximation is employed after 

segmenting the trajectory according to its inflection points and the representation 
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errors are stored after compressing them via proposed compression algorithm 

(∆Y). Then after the FPGA implementations, it is turned out that the hardwired 

approach uses more resources than the embedded softcore processor approach, but 

the command generation time of the hardwired approach is much better than the 

embedded softcore counterpart. Thus, the hardwired approach can be preferable 

for the systems where a high profile FPGA chip (Cyclone III, Stratix IV, etc.) is 

implemented. 

The second FPGA based command generation method is composed of two parts: 

differencing and compression. During the encoding process, the trajectories are 

not directly compressed. This is due to the fact that the data values on the 

trajectory are completely different and compressing them is meaningless. Thus, 

taking higher order differences of the trajectories are inevitable if remarkable 

compression ratios are required to be achieved. The optimum order of difference 

is found to be three for almost all trajectories elaborated. For the second part of 

the corresponding command generation method, Huffman, Arithmetic Coding, 

and the ∆Y compression algorithms are employed and evaluated. The FPGA 

implementations are carried out for the ∆Y method, since it is much easier to 

implement and its performance is better than the other compression algorithms. 

The hardwired implementation of this command generation method outperforms 

the embedded softcore processor approach in utilization of resources and 

command generation time. 

Comparing the proposed command generation methods in the thesis, it has been 

observed that differencing and the ∆Y compression algorithm based method has 

presented the best compression ratio and the FPGA resource utilization. Hence, 

the case study is carried out with this method. In the case study, the manufacturing 

of a plastic injection mold for a bottle is taken into account. Although the mold 

has two complementary parts, only the female part is considered. For a detailed 

elaboration, the three compression algorithms are employed within the method to 

the trajectories of manufacturing process. It is turned out that the Arithmetic 

coding algorithm is much better than the other two algorithms, in contrast to the 

results obtained in the previous chapter of the thesis. Despite the superior 
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performance of Arithmetic coding, in FPGA implementations of the case study 

the ∆Y compression algorithm is applied. The reason of this selection is that the 

implementation of ∆Y method is much easier and its compression ratios are 

acceptable when the available resources on the FPGA board are considered. The 

∆Y method is also suitable for parallel decoding which increases the speed of 

command generation. 

To summarize, the proposed FPGA based command generation system is faster 

than its counterparts and can be implemented to various control systems along 

with the interface developed in the thesis. 

7.2 Future Work 

In addition to the scope of the thesis there exist still some contributions that can 

be made on the topic. These can be classified as the improvements on the FPGA 

interface, encoded data transfer to the FPGA development board, and 

implementation of the Arithmetic coding algorithm on the FPGA. 

For the FPGA interface part; instead of jumpers and switches used in daughter 

cards, fast analog switches that can transfer current in two ways are planned to be 

used. Furthermore, the configuration of channels (the selection of cards) may be 

completely done electronically via analog switches, and multiplexers. By utilizing 

the multilayer circuit printing technology and surface mountable electronical 

devices the final version of the interface can be designed and manufactured. 

Another topic on which contributions can be made is the encoded data transfer to 

the decoder embedded on the FPGA development board. In the scope of the 

thesis, this topic is not elaborated much. For the data transfer, serial port of the 

computer is used. Design of a robust data transfer protocol is inevitable when the 

limited memory resources of the FPGA board are considered. During the 

command generation, the designed software should overwrite the old data 

according to the current status of generation. If the direction of command 
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generation is suddenly changed, then the designed software should restore the 

previous data. 

The last further contribution can be done by elaborating the Arithmetic coding 

with various trajectories and sampling times, since in the case study it is turned 

out that the Arithmetic coding can compress the trajectories of the plastic injection 

mold for a bottle up to one-thousandth of their original size. In order to make a 

strong decision on the validity of the performance of Arithmetic coding, various 

trajectories should be studied. Implementation of the algorithm may also be a big 

contribution, since there exists no full decoder implemented on an FPGA chip for 

the Arithmetic coding algorithm. 
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APPENDIX A 

 

 

LIST OF VERILOG / VHDL MODULES 

 

 

 

In this appendix, the Verilog / VHDL modules used in the study are listed. Brief 

descriptions of each module along with the related sections of the thesis are also 

presented.  

 

Table A-1   List of Verilog / VHDL Modules Utilized in the Thesis  

Name Mentioned in Description 

clk_div Chapter 3.4 Modifies the global clock used in the design 

according to the external input. If this 

module is paused, then the circuit also stops 

operating. 

pwmgen Chapter 3.4 Generates PWM signals according to the 

input vector. 

sine_wave Chapter 3.4 Generates sine waves by reading the values 

of quarter sine wave from the look-up table. 

The frequency of the sine wave is set by 

changing the global clock of the system. 
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sine_package Chapter 3.4 It is look-up table holding the values of 

quarter sine wave according to the pre-

defined resolution. 

Driver Chapter 4.4 Coordinates the modules used in the 

approximation architecture design with each 

other for proper operation. 

Split_32_8 Chapter 4.4 Splits the 32-bit input to four bytes and 

sends these bytes to the serial 

communication module. 

LookUpReader Chapter 4.4 Reads the value of Chebyshev coefficients 

from the previously formed look-up table. 

chebyshev_coef Chapter 4.4 Holds the values of Chebyshev coefficients 

in binary form. 

fpu_cadmusmod Chapter 4.4 Performs mathematical floating point 

operations [38]. 

sasc_brg Chapter 4.4 It is the baud-rate generator used for serial 

communication [40]. 

sasc_top Chapter 4.4 It is the main controller of the serial 

communication [40]. 

sram_ctrl Chapter 5.5 It is the SRAM Controller of Altera DE 1 

Development Board [36].  

decoder Chapter 5.5 Decodes the encoded commands according 

to the ∆Y compression algorithm and 

transmits the decoded commands to the first 

accumulator. 
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mmu Chapter 5.5 This is the Memory Management Unit of 

∆Y decompression architecture. It receives 

the necessary data from the SRAM 

Controller and passes to other modules in 

the architecture. 

accumulator Chapter 5.5 Sums the incoming value with the previous 

one and sends to the corresponding module. 

interpolator Chapter 5.5 Interpolates between the two consecutive 

command values according to the feed-rate 

input. 

integrator Chapter 6.4 Includes the accumulators according to the 

order of difference in encoding. 

command_xmit Chapter 6.4 Receives the commands for position, 

velocity, and acceleration for all the axes 

and transmits these commands to the control 

unit of the system. 
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APPENDIX B 

 

 

NIOS II EDS 9.0 C CODES 

 

 

 

In this appendix, the C files used in NIOS II Integrated Development 

Environment are presented in Table B-1. The parts of the thesis they are used are 

also mentioned. In Table B-2, NIOS II C file for the ∆Y decompression algorithm 

is presented. 

 

Table B-1   List of NIOS II C Files Utilized in the Thesis 

Name Mentioned in Description 

DYdecompression.c Chapter 5.5.2 Algorithmic state machine of the ∆Y 

decompression algorithm 

ChebyshevApp.c Chapter 4.4.2 Algorithmic state machine of the 

Chebyshev approximation algorithm 
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Table B-2   NIOS II C file for the ∆Y Decompression Algorithm 

#include <stdio.h> 

#define uint8 unsigned char 

#define uint16 unsigned short 

#define uint32 unsigned long 

#define int8 char 

#define int16 short 

#define int32 long 

#define SECTION1 1   

int main(void) 

{ 

    const int twos[16] = { 1, 2, 4, 8, ..., 16384, 32768}; 

    /*Field Declarations */ 

    uint8 sign[74] = {143, 128, 0, ..., 166, 1}; 

    uint8 amp[98] = {232, 67, 147, ..., 237, 0}; 

    uint8 term[98] = {240, 123, 28, ..., 238, 0}; 

    uint8 sign_ = 0; 

    uint8 amp_ = 0; 

    uint8 term_ = 0; 

    uint32 original[586]; 

    float original_we[586]; 

    int32 l1 = 586; /*Length of the Sign Field */ 

    int32 l2 = 777; /*Length of Amplitude and Termination Fields*/ 

    int32 count = 0; /*Counts the length of the amplitude value.*/ 

    int32 i = 0;    /*For Loop Counter */ 

    int32 i1 = 0; 

    int32 j = 0;   /*For Loop Counter */ 

    int32 k = 0;                     

    int32 k1 = 0; 

    int32 r = 0;  /*Remainder*/ 

    int32 r1 = 0; 

    int32 l = 0;  /*Original Data Counter*/ 

    int32 a = 0;  /*Original Data Counter*/ 
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    for(i=0; i<586; i++) 

    { 

        original[i]=0; 

    } 

    i = l2 / 8; 

    r = l2 % 8; 

    term[i] = term[i] << (8-r); 

    amp[i] = amp[i] << (8-r); 

    i = l1 / 8; 

    r = l1 % 8; 

    sign[i] = sign[i] << (8-r); 

 

    while (k < l2)                   

    { 

        i = k / 8; 

        r = k % 8; 

        k1 = k; 

        i1 = i; 

        r1 = r; 

 

        if (k == (l2-1)) 

        { 

            if ((((term[i]<<r) & 128)==128)) 

            {    

                term[i]=term[i] & (254<<(7-(r+1))); 

            } 

            if ((((term[i]<<r) & 128)==0)) 

            {    

                term[i]=term[i] | (1<<(7-(r+1))); 

            } 

        } 

         

        term_ = term[i] << r; 

 

        if ((term_ & 128) == 128) 

        { 
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            count ++; 

            if (((r != 7) & (((term_ <<1) & 128) == 0)) | 

((r==7)&((term[i+1] & 128) == 0))) 

            { 

                for (j=0; j<count; j++) 

                { 

                    amp_ = amp[i1] << r1;    

                    if ((amp_ &  128) == 128) 

                    { 

                        original[l] += twos[j]; 

                    } 

                    k1--; 

                    i1 = k1 / 8; 

                    r1 = k1 % 8; 

                } 

                count = 0; 

                l++; 

            } 

        } 

        else 

        { 

            count ++; 

            if (((r != 7) & (((term_ <<1) & 128) == 128)) | 

((r==7)&((term[i+1] & 128) == 128))) 

            { 

                for (j=0; j<count; j++) 

                { 

                    amp_ = amp[i1] << r1;    

                    if ((amp_ &  128) == 128) 

                    { 

                        original[l] += twos[j]; 

                    } 

                    k1--; 

                    i1 = k1 / 8; 

                    r1 = k1 % 8; 

                } 

                count = 0; 

                l++; 
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            } 

        } 

        k++; 

    } 

     

    for (k=0; k<l1; k++) 

    { 

        i = k / 8; 

        r = k % 8; 

 

        sign_ = sign[i] << r; 

         

        if ((sign_ & 128) == 0) 

        { 

            original[k]= original[k] ; 

        } 

        else 

        { 

            original[k]= - original[k] ; 

        } 

    } 

    return 0; 

} 
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APPENDIX C 

 

 

MATLAB M-FILES 

 

 

 

In this appendix, the MATLAB scripts (m-files) used in the study are explained 

briefly in Table C-1. Related sections of these files in the thesis are also noted. In 

Table C-2, MATLAB M-file for the ∆Y compression algorithm is presented. 

 

Table C-1   List of MATLAB M-Files Utilized in the Thesis 

Name Mentioned in Description 

above_err.m Chapter 4 Counts the number of data 

values above the acceptable 

error margin. 

acc.m Chapter 5 Accumulates the sequence 

according to the initial 

values supplied to the 

function. 

bernstein.m Chapter 4 Generates Bernstein 

polynomials with various 

orders and lengths. 
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bp_approx.m Chapter 4 Performs Bernstein 

approximation on the given 

trajectory. 

bp_approx_errcomp.m Chapter 4 First performs Bernstein 

approximation and then 

compresses the 

approximation errors. 

chebypol.m Chapter 4 Generates Chebyshev 

polynomials with various 

orders and lengths. 

compviadiff.m Chapter 5 Compares the compression 

ratios of differencing the 

input sequence for various 

orders. 

cp_approx.m Chapter 4 Performs Chebyshev 

approximation on the given 

trajectory. 

cp_approx_errcomp.m Chapter 4 First performs Chebyshev 

approximation and then 

compresses the 

approximation errors. 

dacomp.m Chapter 5 Performs Arithmetic coding 

algorithm on the given 

sequence for the specified 

order of difference and 

outputs the compressed 

code and memory 

requirements. 
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dhcomp.m Chapter 5 Performs Huffman 

compression algorithm on 

the given sequence for the 

specified order of difference 

and outputs the compressed 

code and memory 

requirements. 

dycomp.m Chapter 5 Performs ∆Y compression 

algorithm on the given 

sequence for the specified 

order of difference and 

outputs the compressed. 

dydcomp.m Chapter 5 Decompresses the encoded 

data with ∆Y compression 

algorithm and outputs the 

original data sequence.  

dydcompreverse.m Chapter 5 Decompresses the encoded 

data with ∆Y compression 

algorithm in reverse order 

and outputs the original data 

sequence.  

gen_enc_pulses Chapter 6 Generates sequences of 

encoder pulses from the tool 

location data sequences. 

legendre.m Chapter 4 Generates Legendre 

polynomials with various 

orders and lengths. 
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lookupgen.m Chapter 4 & 5 Creates look-up file for 

Chebyshev coefficients or 

encoded data. 

lp_approx.m Chapter 4 Performs Legendre 

approximation on the given 

trajectory. 

lp_approx_errcomp.m Chapter 4 First performs Legendre 

approximation and then 

compresses the 

approximation errors. 

to16.m Chapter 5 & 6 Converts 8-bit data to 16-bit 

data for SRAM 

compatibility. 

trajectory_generation.m Chapter 5 & 6 Generates command 

trajectories from the NC 

code according to the 

sampling time. 

vsint.m  Chapter 5 & 6 Performs variable speed 

interpolation on the given 

trajectory. 
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Table C-2   M-file for the ∆Y Compression Algorithm 

% 

% This function compresses a given time sequence 

% using ∆Y compression technique. 

% ($ REV 1.4, UY & MD, FEB-2010 $) 

%   

% Input arguments: 

%    q - time sequence (integer) 

%    n - order of differences {1,2,3, ...} 

% 

% Output argument: 

%   cdat - compressed data structure with following fields: 

%     amp: amplitude (bytes) 

%     len: length (bytes) 

%     sgn: sign (bytes) 

%      ic: initial conditions 

%       n: order of difference   

%       m: length of original sequence 

% 

function cdat = dycomp(q,n) 

  if (nargin==1), n = 3; end 

  m = length(q); q = q(:); y = diff(q,n); 

% 

% Calculate ICs 

% 

  ic = zeros(n,1,'int32'); ic(1) = q(1); q = q(1:n+1); 

  if(n>1) 

    for i = 2:n 

      t = diff(q,i-1); ic(i) = t(1); 

    end 

  end 

% 

% Sign field 

%   
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  ns = 8*ceil((m-n)/8); s = [(y>=0); zeros(ns-m+n,1)]; 

  sf = zeros(ns/8,1,'uint8'); 

  for k = 1:ns/8 

    i = 1 + 8*(k-1); j = i + 7;      

    sf(k) = bin2dec(num2str(s(i:j)')); 

  end 

% 

% Amplitude- and length fields 

% 

  as = []; ts = as; toggle = true; y = abs(y); 

  for k = 1:(m-n) 

    str = dec2bin(y(k)); L = length(str);  

    if (toggle) 

      ts = [ts num2str(ones(1,L),'%d')]; 

    else   

      ts = [ts num2str(zeros(1,L),'%d')];   

    end 

    toggle = not(toggle); as = [as str]; 

  end 

% 

% Now, some padding... 

% 

  na = ceil(length(as)/8); L = 8*na-length(as); 

  as = [as num2str(zeros(1,L),'%d')];  

  if (toggle) 

    ts = [ts num2str(ones(1,L),'%d')]; 

  else   

    ts = [ts num2str(zeros(1,L),'%d')];   

  end 

  

  tf = zeros(na,1,'uint8'); af = zeros(na,1,'uint8'); 

  for k = 1:na 

    i = 1 + 8*(k-1); j = i + 7; 

    af(k) = bin2dec(as(i:j)); tf(k) = bin2dec(ts(i:j)); 

  end 

  cdat = struct('amp',af,'len',tf,'sgn',sf,'ic',ic,'n',n,'m',m); 

end 
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APPENDIX D 

 

NC CODE OF PLASTIC INJECTION MOLD FOR A BOTTLE – CASE 

STUDY 

 

G00 Z-20.01 

G00 Y120 

G00 X-9.449 Y120.5 T4 (dia 4mm) 

G01 Z-20 F200 S150 

G18 G03 X9.449 Z-20 I9.449 K0 

G01 X9.5 Y120 

G01 Y118.5 

G18 G02 X-9.5 I-9.5 K0 

G01 Y116.5 

G18 G03 X9.5 Z-20 I9.5 K0 

G01 Y114.5 

G18 G02 X-9.5 I-9.5 K0 

G01 Y112.5 

G18 G03 X9.5 Z-20 I9.5 K0 

G01 Y110.5 

G18 G02 X-9.5 I-9.5 K0 

G01 Y108.5 

G18 G03 X9.5 Z-20 I9.5 K0 

G01 Y106.5 

G18 G02 X-9.5 I-9.5 K0 

G01 Y104.5 

G18 G03 X9.5 Z-20 I9.5 K0 

G01 Y103.5 

G01 X7.5 Y102.5 

G18 G02 X-7.5 I-7.5 K0 

G01 Y100.5 

G18 G03 X7.5 Z-20 I7.5 K0 

G01 Y98.5 

G18 G02 X-7.5 I-7.5 K0 

G01 Y96.5 

G18 G03 X7.5 Z-20 I7.5 K0 

G01 Y94.5 

G18 G02 X-7.5 I-7.5 K0 

G01 Y92.5 

G18 G03 X7.5 Z-20 I7.5 K0 

G01 Y90.5 

G18 G02 X-7.5 I-7.5 K0 

G01 Y88.5 

G18 G03 X7.5 Z-20 I7.5 K0 

G01 Y86.5 

G18 G02 X-7.5 I-7.5 K0 

G01 Y84.5 

G18 G03 X7.5 Z-20 I7.5 K0 

G01 Y82.5 

G18 G02 X-7.5 I-7.5 K0 

G01 Y80.5 

G18 G03 X7.5 Z-20 I7.5 K0 

G01 Y78.5 

G18 G02 X-7.5 I-7.5 K0 

G01 Y76.5 

G18 G03 X7.5 Z-20 I7.5 K0 

G01 Y74.5 

G18 G02 X-7.5 I-7.5 K0 

G01 Y73.487 

G01 X-12.243 Y72.5 

G18 G03 X12.243 Z-20 I12.243 K0 

G01 X14.928 Y70.5 

G18 G02 X-14.928 I-14.928 K0 

G01 X-16.367 Y68.5 

G18 G03 X16.367 Z-20 I16.367 K0 

G01 X17.165 Y66.5 

G18 G02 X-17.165 I-17.165 K0 

G01 X-17.487 Y64.5 

G18 G03 X17.487 Z-20 I17.487 K0 

G01 X17.5 Y64 

G01 Y62.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y60.5 
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G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y58.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y56.5 

G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y54.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y52.5 

G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y50.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y48.5 

G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y46.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y44.5 

G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y42.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y40.5 

G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y38.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y36.5 

G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y34.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y32.5 

G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y30.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y28.5 

G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y26.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y24.5 

G18 G03 X17.5 Z-20 I17.5 K0 

G01 Y22.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y20.5 

G18 G03 X17.5 I17.5 K0 

G01 Y18.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y16.5 

G18 G03 X17.5 I17.5 K0 

G01 Y14.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y12.5 

G18 G03 X17.5 I17.5 K0 

G01 Y10.5 

G18 G02 X-17.5 I-17.5 K0 

G01 Y10 

G01 X-17.381 Y8.5 

G18 G03 X17.381 I17.381 K0 

G01 X16.832 Y6.5 

G18 G02 X-16.832 I-16.832 K0 

G01 X-15.746 Y4.5 

G18 G03 X15.746 I15.746 K0 

G01 X13.831 Y2.5 

G18 G02 X-13.831 I-13.831 K0 

G00 Z5 

G00 X-17.5 Y10 

G01 Z-20 

G01 Y64 

G18 G02 X-7.5 Y73.487 I9.5 J0 

G01 Y102.5 

G01 X-8.5 

G18 G02 X-9.5 Y103.5 I0 J1 

G01 Y120 

G18 G02 X-7 Y122.5 I2.5 J0 

G01 X0 

G01 X7 

G18 G02 X9.5 Y120 I0 J-2.5 

G01 Y103.5 

G18 G02 X8.5 Y102.5 I-1 J0 

G01 X7.5 

G01 Y73.487 

G18 G02 X17.5 Y64 I0.5 J-9.487 

G01 Y10 

G18 G02 X8 Y0.5 I-9.5 J0 

G01 X0 

G01 X-8 

G18 G02 X-17.5 Y10 I0 J9.5 

G00 Z5 

M30 

 

 




