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ABSTRACT 

COMPARISO
 A
D EVALUATIO
 OF THREE 

DIME
SIO
AL PASSIVE SOURCE LOCALIZATIO
 

TECH
IQUES 

 

Batuman, Emrah 

 

M. S., Department of Electrical and Electronics Engineering  

Supervisor: Prof. Dr. Temel Engin Tuncer 

 

June 2010, 158 pages 

 

Passive source localization is the estimation of the positions of the sources or 

emitters given the sensor data.  In this thesis, some of the well known methods for 

passive source localization are investigated and compared in a stationary emitter-

sensor framework. These algorithms are discussed in detail in two and three 

dimensions for both single and multiple target cases. 

Passive source localization methods can be divided into two groups as two-step 

algorithms and single-step algorithms. Angle-of-Arrival (AOA) based Maximum 

Likelihood (ML) and Least Squares (LS) source localization algorithms, Time-

Difference-of-Arrival (TDOA) based ML and LS methods, AOA-TDOA based 

hybrid ML methods are presented as conventional two step techniques. Direct 

Position Determination (DPD) method is a well known technique within the single-
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step approaches. In thesis, a number of variants of DPD technique with better 

computational complexity (the proposed methods do not need eigen-decomposition 

in the grid search) are presented. These are the Direct Localization (DL) with 

Multiple Signal Classification (MUSIC), DL with Deterministic ML (DML) and 

DL with Stochastic ML (SML) methods. The evaluation of these algorithms is done 

by considering the Cramer Rao Lower Bound (CRLB). Some of the CRLB 

expressions given in two dimensions in the literature are presented for three-

dimensions. 

Extensive simulations are done and the effects of different parameters on the 

performances of the methods are investigated. It is shown that the performance of 

the single step algorithms is good even at low SNR. DL with MUSIC algorithm 

performs as good as the DPD while it has significant savings in computational 

complexity. AOA, TDOA and hybrid algorithms are compared in different 

scenarios. It is shown that the improvement achieved by single-step techniques may 

be acceptable when the system cost and complexity are ignored. The localization 

algorithms are compared for the multiple target case as well. The effect of sensor 

deployments on the location performance is investigated. 

Keywords: 3D Source Localization, AOA, TDOA, DPD, Single Step Location 

Estimation, Multiple Emitters 
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ÖZ 

ÜÇ BOYUTLU PASĐF KO
UM BELĐRLEME 

TEK
ĐKLERĐ
Đ
 KARŞILAŞTIRILMASI VE 

DEĞERLE
DĐRĐLMESĐ 

 

Batuman, Emrah 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Temel Engin Tuncer 

 

Haziran 2010, 158 sayfa 

 

Konum belirleme, algılayıcı verileri kullanılarak yayıcıların veya vericilerinin 

konumlarının kestirilmesidir. Bu tez çalışmasında pasif konum kestirim teknikleri 

araştırılmış ve durağan algılayıcı-yayıcı geometrisi dâhilinde bu teknikler 

karşılaştırılmıştır. Söz konusu teknikler tek ve çoklu hedef durumları için iki ve üç 

boyutlu geometrilerde değerlendirilmiştir. 

Pasif konum belirleme teknikleri, iki-adımlı ve tek-adımlı teknikler olarak iki gruba 

ayrılabilir. Đki adımlı konum belirleme teknikleri olarak Varış Açısı (VA) tabanlı En 

Büyük Olabilirlik (EBO) ve En Küçük Kareler (EKK) teknikleri, Geliş Zaman Farkı 

(GZF) tabanlı EBO ve EKK teknikleri, VA-GZF tabanlı melez EBO tekniği 

sunulmuştur. 
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Doğrudan Konum Belirleme (DKB) metodu tek-adımlı iyi bilinen bir konum 

kestirim tekniğidir. Bu tez çalışmasında, DKB türevi olup DKB’den daha iyi 

hesaplama karmaşıklığına sahip (önerilen tekniklerde ızgara aramasında öz-

ayrışıma gerek duyulmamaktadır) bazı tek-adımlı teknikler sunulmuştur. Bu 

teknikler, Çoklu Sinyal Sınıflandırma (ÇSS) ile Doğrudan Konum Kestirimi 

(DKK), Rastgele Olmayan EBO (ROEBO) ile DKK ve Rastgele EBO (REBO) ile 

DKK teknikleridir. Teknikler Cramer Rao Alt Sınırı (CRAS) ile karşılaştırılarak 

değerlendirilmiştir. Literatürde iki boyutlu verilen bazı CRAS ifadeleri üç boyutlu 

senaryolar için türetilerek sunulmuştur. 

Kapsamlı benzetimler gerçekleştirilmiş, farklı değişkenlerin yöntemlerin başarımı 

üzerindeki etkileri araştırılmıştır. Yapılan benzetimlerde tek-adımlı tekniklerin 

başarımının düşük SNR seviyesinde dahi iyi olduğu gösterilmiştir. Hesaplama 

karmaşıklığını önemli derecede düşüren ÇSS-DKK tekniğinin başarımının DKB 

kadar iyi olduğu gözlemlenmiştir. VA, GZF ve melez teknikler değişik durumlarda 

karşılaştırılmıştır. Tek-adımlı teknikler ile elde edilen başarım artışı, sistem maliyeti 

ve karmaşıklığı göz ardı edildiğinde kabul edilebilir seviyededir. Ayrıca, konum 

belirleme teknikleri çoklu kaynak durumları için de karşılaştırılmıştır. Algılayıcı 

konuşlanmasının, konum kestirim başarımı üzerindeki etkileri araştırılmıştır. 

Anahtar Kelimeler:  3B Konum Kestirimi, GA, GZF, DKB, Tek Adımlı Konum 

Kestirimi, Çoklu Kaynak 
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CHAPTER 1  

 

I
TRODUCTIO
 

In this work, conventional two step and single step source localization approaches 

are investigated for unknown emitters with stationary emitter(s)-sensors (and sensor 

arrays) geometry. 

Source localization is the estimation of the positions of the emitters given the sensor 

data. For defense, security and emergency purposes, estimating the location of the 

RF emitter with unknown waveform in a passive way incorporated the significance 

of this problem. The source localization problem may be classified for the 

geometrical scenarios of the targets and the sensors. When at least one of the targets 

and sensors are moving during the observation period, the Doppler shift is observed. 

This is called as a non-stationary geometrical scenario. In stationary geometry, it 

can be assumed that neither sources nor the sensors move in the data collection 

period. 

Conventionally, the source localization problem is solved with two steps. The first 

step may be called as Measurement Step in which various parameters can be 

estimated such as Angle-of-Arrival (AOA) and Time-Difference-of-Arrival 

(TDOA) with respect to the sensor array structure. In other words, if separated 

sensors are deployed, TDOA between the sensor pairs can be estimated, whereas if 

the sensor arrays are used, AOA of the observed signal can be measured in each 

array. In some algorithms, TDOA information between the sensor array pairs is 

measured in addition to the AOA measurements to enhance the performance of the 

localization. The second step can be called as Localization Step. In the second step, 

by using the pre-measured parameters such as AOA, TDOA or both of AOA-

TDOA sets, the location of the emitter(s) can be estimated.  
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However, in [1] it is shown that the source localization problem with stationary 

deployment geometry can be solved directly. In other words, the measurement and 

localization steps are merged to enhance the performance. The source location(s) of 

the target(s) can be estimated directly by processing all the observations taken by all 

of the sensors.  

Certainly, the first emitter localization algorithm in the literature, which uses pre-

measured AOA values, was presented by Stansfield [2]. Stansfield’s pioneering 

approach has been adapted in different purposes [3, 4]. At least two sensor arrays 

are required for AOA based localization. In each sensor array, at least three sensors 

are required to estimate the AOA by measuring synchronous data. Well known 

AOA based localization algorithms are the Maximum Likelihood Estimation (MLE) 

approaches [5, 6]. Moreover Taylor Series approximations and Newton-Gauss 

iterations are used for non-linear minimization purposes in [5-7]. Another 

conventional localization algorithms using pre-measured AOA information are 

based on Least Squares (LS) approaches. One of the first LS localization solutions 

was proposed by Poirot in the sense of hemispheric LS error estimation in [4, 8]. 

Afterwards a new LS algorithm, which is based on minimizing the square of the 

miss distance of the position estimate from the measured AOAs, was presented by 

Brown in [9]. Another well known LS solution was proposed by Pages-Zamora in 

[10]. Moreover a Total Least Squares (TLS) solution to the localization problem 

was presented by Rao in [11].  Finally, a closed form approximate ML (AML) 

solution based on divide and conquers approach was presented by Pages-Zamora in 

[12]. The sources of error in the AOA based source localization problem are the 

effect of geometrical deployment of the sensor arrays and the target which can be 

called as Geometric Dilution of Precision (GDOP), Line-of-Bearing (LOB) errors, 

the effects of bias on AOA based localization, the effects of combining noisy AOA 

measurements and the effect of navigation errors. The effect of all of these error 

sources are investigated in the literature [5, 13-17].  

TDOA based localization is used in Radar and Sonar applications and in emergency 

GSM localization purposes. At least four sensors (three TDOA measurements) are 

required for 3D TDOA based localization. Synchronized clock structure between 
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the sensors is required for accurate TDOA estimation. The TDOA estimation 

accuracy depends on the signal bandwidth [18-23]. The TDOA estimation accuracy 

degrades with decreasing signal bandwidth, in other words TDOA based 

localization methods are not suitable for narrowband communication waveforms. 

TDOA based localization methods give good performance for unknown signals 

with large bandwidths such as pulses, Code Division Multiple Access (CDMA) 

waveforms; known signals such as GSM waveforms with pilot, synchronization 

bursts etc. In this thesis, passive localization of the emitters with completely 

unknown waveforms is investigated. A well known ML solution and Gauss Newton 

iterations were presented in [5].  Fang proposed an exact solution to TDOA based 

localization problem when the number of TDOA measurements is equal to the 

number of unknown transmitter coordinates [24]. However Fang’s algorithm cannot 

use the advantage of extra measurements. Closed form techniques dealing with 

extra measurements can be summarized as Spherical Interpolation Method, Divide 

and Conquer Method, Chan’s Method, and Tyler Series Method which are 

presented respectively in [5, 25-27]. Divide and Conquer Method can achieve the 

optimum performance if the excessive number of sensors are used [28]. Chan’s 

Method is better than the Spherical Interpolation and Divide and Conquer methods. 

Chan’s Method gives approximately the same performance with the MLE when the 

TDOA measurement errors are small [28]. Finally, Doğançay presented new 

methods based on approximating the non linear hyperbolic equation sets to linear 

asymptotes [29-30]. The performance of the Doğançay’s method degrades with 

respect to the ML solution in low SNR values due to the asymptotical linearization 

[28]. The comparison of the various TDOA based localization methods such as 

Analytical Method, LS Method, Taylor Series Method, Approximate ML (AML) 

Method, Two-Stage ML Method and Genetic Algorithm is presented in [31]. The 

sources of error in the TDOA based source localization problem are the effect of 

Geometric Dilution of Precision (GDOP), TDOA estimation errors, the effect of 

bias on TDOA based localization and navigation errors [13, 32-33]. 

Many localization algorithms based on the fusion of hybrid measurements have 

been developed. Almost all of these hybrid techniques address the localization of 
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the mobile users in the emergency situations. Basically, by using hybrid 

measurements, performance improvement over the single measurement type can be 

achieved, since the measurement noise for various types of measurements comes 

from different sources [28]. Consequently, location estimation errors of the different 

measurement types are assumed to be partially independent. This independence 

between the various measurement types provides designing estimators with better 

accuracies (by using data fusion techniques) than the estimators based on single 

measurement type [34]. Both ML and LS AOA-TDOA based hybrid localization 

algorithms depend on merging the AOA and TDOA based equation sets. MLE for 

3D AOA-TDOA hybrid localization is derived in this work. In the literature, 

various methods have been presented such as LS Method, Two-Step LS Method, 

Divide and Conquer Method, methods specific to UWB and WCDMA systems, 

hybrid estimation with artificial neural networks [12, 35-40].  

Weiss et al have proposed single step localization methods for various situations 

such as multiple number of emitters, known/unknown waveforms, stationary/non 

stationary geometries, for OFDM systems etc in [1, 41-45]. This method is called as 

Direct Position Determination (DPD), and the performance bounds of the DPD 

method under various cases are investigated in [46-48]. In this thesis, new single 

step localization techniques, which are applicable to multiple number of emitters, 

are introduced.  

Various Cramer Rao Lower Bound (CRLB) expressions are presented for each 

different approach such as AOA, TDOA, AOA-TDOA Hybrid and Single Step 

based source localization algorithms to compare the performance of different 

techniques with the achievable ultimate performance. The reason of using CRLB 

expression is that CRLB gives the ultimate limit for an unbiased estimator.  The 

CRLB for single step approaches was derived by Weiss for flexible geometric 

dimensions in [41]. For conventional two step localization methods, CRLB 

expressions are generally derived for 2D geometry for simplicity in the literature [7, 

13]. In the literature, 3D CRLB expressions have been presented for TDOA based 

localization, however for AOA based methods due to the angular diversity (azimuth 

and elevation measurements) 2D expressions are preferred to be derived for 
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superficiality [7, 13, 49]. Moreover, due to the same reason CRLB expression for 

AOA-TDOA based hybrid methods, 2D representations are derived. However in 

this work, CRLB statements are derived for 3D for all methods. 

The contributions in this thesis can be summarized as follows: 

• 2D derivations in the literature are extended to 3D for AOA based and 

AOA-TDOA hybrid based Maximum Likelihood (ML) and Least Squares 

(LS) source localization methods. 

• A two step LS technique for 3D source localization using only the AOA 

information is presented. 

• 2D derivations in the literature are extended to 3D for CRLB expression for 

AOA based and AOA-TDOA hybrid based localization. Moreover, 

supplementary derivations for single step CRLB expression, namely, 

derivative of the combined manifold expression with respect to the source 

position vectors, are introduced. 

• The approach in Direct Position Determination (DPD) technique is adapted 

for Multiple Signal Classification (MUSIC), Deterministic Maximum 

Likelihood (DML) and Stochastic Maximum Likelihood (SML) algorithms, 

and new single step localization algorithms with better computational 

complexities are proposed. 

• The robustness of the localization algorithms to target-sensor deployments is 

investigated.  

• Comparison of several different localization algorithms is done in a variety 

of scenarios for both single and multiple target cases.  

The thesis is organized in six chapters. In Chapter 2 source localization techniques 

are classified with respect to various cases such as number of emitters, localization 

processors and target-sensor geometry. Moreover, basic mathematical expressions 

and illustrations are presented to emphasize the basic philosophy of the source 

localization approaches. In Chapter 3, conventional two step localization algorithms 

are presented. Namely, AOA based, TDOA based and AOA-TDOA based Hybrid 
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localization techniques are exhibited. Individual CRLB expressions are derived for 

each localization methods such as AOA, TDOA and AOA-TDOA Hybrid. 

Moreover some adaptive solutions are presented for the ML estimators. The work 

goes on with presenting the single step source localization methods such as Direct 

Position Determination (DPD), MUSIC, DML and SML localization algorithms for 

multiple emitters in Chapter 4. In addition, CRLB expression is presented for single 

step source localization problem. In Chapter 5, the comparison and the evaluation of 

the various localization methods are presented and explained for different cases. 

Finally, Chapter 6 summarizes the thesis and presents the conclusions. 
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CHAPTER 2  

 

SOURCE LOCALIZATIO
 PROBLEM 

In this chapter, the source localization algorithms are classified with respect to the 

various factors which are referred in detail. The chapter goes on with the 

representation of the mathematical model for the observations taken by the sensors 

(or sensor arrays) from the target(s) for a stationary geometry. 

2.1 CLASSIFICATIO
 OF THE SOURCE LOCALIZATIO
 

TECH
IQUES 

Paradowski [50] has classified the localization algorithms with respect to different 

concepts such as input data structure and the type of used geometrical quantities, 

object observation uncertainty model, input data collection and processing strategy. 

When the localization algorithms are classified with respect to the input data 

structure and the type of used geometrical quantities, the sub-classes are the 

homogenous and non-homogenous algorithms which are using the same type (i.e. 

AOA) and various types (i.e. AOA/TDOA Hybrid) of geometrical quantities, 

respectively. Secondly, Paradowski classified the algorithms with respect to the 

observation object uncertainty model, in which the sub-classes are Fisherian, 

Bayesian and Pseudo-Bayesian localization algorithms. In Fisherian algorithms, a 

priori knowledge concerning the emitter is not taken into the account. In Bayesian 

algorithms, a priori information about the emitter is used for location estimation, 

whereas in Pseudo-Bayesian algorithms are using joint particular features of the 

Fisherian and Bayesian algorithms. Pseudo-Bayesian algorithms can be classified as 

Fisherian-Bayesian and Bayesian-Fisherian algorithms. Finally Paradowski 
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classified the algorithms with respect to the input data collection and processing 

strategy in which the sub classes are simultaneous and asynchronous observations.  

In this work, it is mainly interested in localization of the emitters without any prior 

information. In other words, it can be said that in this work the comparison and 

evaluation of the Fisherian localization algorithms are investigated. Some adaptive 

Bayesian solutions are presented for the Fisherian ML solutions. 

Weiss [51] has classified algorithms as single step and two step algorithms which is 

tried to be illustrated in Figure 2.1. In single step algorithms, the source localization 

is directly estimated from the observed data. However in two step algorithms the 

source location is estimated via the premeasured parameters such as AOA, Time-of-

Arrival (TOA), TDOA, Received-Signal-Strength (RSS), Frequency-of-Arrival 

(FOA), Frequency-Difference-of-Arrival (FDOA) (or any hybrid combination of 

these) which are measured with the observed data at separated sensors (or sensor 

arrays).  

 

 

 

Figure 2.1: Conventional Two Step and Single Step Source Localization 
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By considering the geometrical deployment of the emitters and the sensors, source 

localization algorithms covered in this work is presented in Figure 2.2. 

 

 

 

Figure 2.2: Source Localization Techniques Covered in This Thesis 

The localization problem is classified with respect to the emitters-sensors geometry. 

If one of the emitters or the sensors (or sensor arrays) is moving, the geometry can 

be named as non-stationary. In this work, targets and the sensors are assumed to be 

stationary in the observation period, so it can be called as there is a stationary 

geometry of targets-sensors. In multiple emitter scenarios, there are at least two 

sources emitting at the same frequency. As a second classification step, it is 

preferred to classify the algorithms for the number of sources since many 

algorithms such as TOA, TDOA (except CDMA networks), and RSS cannot resolve 

the emitters for continuously emitting targets. High resolution AOA algorithms can 
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handle this problem by using an association algorithm [52]. The necessity of the 

data association is expressed exhaustively in the next chapter. 

TOA and RSS based localization methods for stationary geometries and the 

localization algorithms for non-stationary geometries are not referred in this work, 

since this work focuses on the localization of continually emitting unknown 

source(s). Brief conceptual information about these algorithms is presented in the 

following paragraphs.   

When the transmitting power of the emitter is known, by measuring received signal 

strength (RSS) at all sensors, the target localization can be estimated. Different 

propagation loss models are used to estimate the range of arrival (ROA), in other 

words the distance between the target and the sensor due to the terrain variations 

such as urban rural etc and the frequency of the transmission. Various RSS based 

localization algorithms are presented in the literature for different aspects such as 

GSM localization [53-57]. The geometrical interpretation of the RSS based 

localization is identical to the TOA based localization since both of them use ROA 

information.  

Moreover, some fingerprint techniques are used for mobile positioning in GSM 

networks, which are based on searching the likelihood coordinate in the terrain. In 

such systems, a mobile emitter is located each point in the city and the RSS is 

measured from all sensors. By using the pre-measured RSS tables (comparing the 

RSSs measured during the localization operation), the localization of the GSM users 

can be done. 

When the transmission frequency of the moving and emitting source is known, the 

Frequency-of Arrival (FOA) of the received signal can be estimated. However, if 

the transmission frequency is not known, the Frequency-Difference-of-Arrival 

(FDOA) between the separated sensors can be measured. There are various methods 

based on geometric and statistical approaches in the literature [13-14, 58]. By using 

the frequency differences between sources, Iso-Doppler curves are obtained on 

which the emitter position lies. Conversely these techniques (FOA and FDOA) are 

used with scenarios at least one of the sensors or target is non stationary. The 
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mathematical equation sets of the FDOA based localization correspond to the 

derivative of the TDOA equations with respect to the time.  

Moreover, Weiss et al. have studied the single step localization techniques for non-

stationary scenarios presented in [42]. In single step methods, all FOA and TOA 

information are embedded into the manifold model. By using all of the information, 

moreover the entire sensor pairs jointly, the performance of the single step 

localization algorithms outperforms the traditional FDOA measurement plus FDOA 

based localization techniques. However, the computational complexity of the single 

step method is much higher than that of the traditional FDOA based method. 

2.2 BASIC OBSERVATIO
 MODEL FOR STATIO
ARY 

GEOMETRY 

In this section, the snapshot model for the stationary geometry is presented. The 

model is based on amplitude, phase and time differences of the received waveforms. 

Since, there is no relative movement between the targets and the sensors; frequency 

difference between the sensors is not used. 

Under the assumption that the source is far away from the sensor array (a plane 

wave), a phase difference occurs between the antennas. In other words, the wave 

travels � ������ path between the two sensors due to the illustration given in Figure 

2.3, where  � is the distance between the two antenna in y-axis. 

 

 

Figure 2.3: Basic Concept of AOA Estimation 

The narrowband snapshot model received by the DF system can be written as 
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����� = ��  �����  ����  + ����� 

0 ≤ � ≤ ! 
(2.1) 

under some assumptions such as, the receiver channels, antennas and all cabling are 

phase identical. " is the total number of sensor arrays, # is the number of sensors 

used in each array for AOA estimation. In the snapshot representation,  ��    is the 

complex attenuation coefficient between the emitter and the $%& sensor array, ���� is 

the signal waveform of the emitter, '(�)�  is the steering vector with respect to the 

emitter and  ����� is the zero mean Gaussian noise at the $%& sensor. 

However, in real (3D) world, the manifold representation is a bit different from the 

illustration given in Figure 2.3. Each entry of the #*1 manifold vector '(�)� can be 

represented as 

��+ = �, -./  01234567��2�895��2�:123;895��2�895��2�:123<567��2�=
 (2.2) 

where >�+4, >�+;and >�+<  are the x, y and z coordinates of the ?%& sensor of the  $%& array, respectively. �� is the azimuth angle of the source signal to the $%& array, 

whereas @� is the elevation angle. 

If there is more than one emitter in the environment, namely, A number of emitters, 

at the observation period, then the #*A array manifold matrix which consists of 

manifold column vectors for each target should be constructed.  

For TDOA localization, in each sensor the snapshot model can be written as 

����� = ��   ���−C���� − �D� +  ����� (2.3) 

where ��    is the complex attenation coefficient between the emitter and the $%& 

sensor, ���� is the signal waveform of the emitter, C���� is the flight time of the 

signal between the target and the $%& sensor, �D is the transmission time of the signal 

at the emitter and ����� is the zero mean Gaussian noise at the $%& sensor. 
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Figure 2.4: Basic Concept of TDOA estimation 

The signal transmitted at time �D arrives at the sensors with delays, which may be 

called as flight times of the signal or TOAs. By cross-correlating the received 

waveforms, the TDOA between the sensor pairs can be estimated. By using the 

TDOA pairs and the coordinate of the sensors, the source localization can be 

estimated, which is presented in detail in the next chapter.  

In AOA estimation of the received signal, the phase difference between the sensors 

with respect to the carrier (of the received signal) is measured, whereas in TDOA 

estimation, time delays between the sensors with respect to the message signal is 

calculated.  Measuring the phase difference with respect to the carrier frequency 

requires calibration between the channels of the Direction Finder (DF) receivers. 

All the components (antennas, RF front ends, down-converters, ADCs) should give 

the same response, or should be calibrated. Consequently, there is no need for 

calibration data or phase identical requirements between the sensors for proper 

TDOA estimation. However, good time synchronization between the sensors is 

needed. 
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CHAPTER 3  

 

CO
VE
TIO
AL TWO STEP SOURCE 

LOCALIZATIO
 ALGORITHMS 

In this chapter, conventional two step source localization algorithms which are 

applicable to unknown emitters are presented. The chapter consists of three main 

parts. In each part, different localization methods which are based on different pre-

measured parameters are investigated. Pre-measured parameters are Angle-of-

Arrival (AOA) and Time-Difference-of-Arrival (TDOA) values. Moreover, hybrid 

based methods which use both AOA and TDOA measurements are presented. 

The chapter starts with AOA Based Source Localization. First, AOA based 

localization problem is formulated. AOA based localization algorithms are derived 

for 2D and 3D localization scenarios such as Maximum Likelihood (ML) and Least 

Squares (LS) based methods. Adaptive techniques are presented for ML solutions. 

AOA based localization accuracy is investigated in two different ways such as 

giving the Cramer Rao Lower Bound (CRLB) expression and defining the error 

ellipse. Ghost node concept is presented for multiple source localization with AOA 

measurements and relevant data association algorithms are presented. 

In the second part, TDOA Based Source Localization is investigated. TDOA based 

source localization problem is formulated for 3D localization. TDOA based 

localization algorithms are derived for 3D localization scenarios such as Maximum 

Likelihood (ML) and Least Squares (LS) based methods. Adaptive techniques are 

presented for ML solutions. This part ends with deriving the CRLB expression for 

3D TDOA based localization problem. 
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Finally, AOA plus TDOA Based Hybrid Source Localization is investigated. 

Hybrid based source localization problem is formulated. Maximum Likelihood 

(ML) expression is derived for 3D localization and literature survey about LS based 

hybrid methods is briefly presented. This part ends with deriving the CRLB 

expression for 3D AOA-TDOA based localization problem. 

3.1 AOA BASED SOURCE LOCALIZATIO
 

Position estimation concept starts with using AOA measurements taken from 

different sensor arrays. As mentioned in the previous chapter, by using amplitude or 

phase differences or observation correlation between the sensors, AOA 

measurement is performed. Different techniques have been developed for AOA 

estimation. Most of these techniques depend on amplitude or phase differences 

between the sensors such as Watson-Watt Method, Interferometer Algorithm and 

Single Rotating Directional Antenna Method whereas some techniques such as 

Pseudo-Doppler Technique depends on the frequency difference [13, 14, 51, 59]. 

Moreover High Resolution (HR) techniques have been developed to estimate AOAs 

for multiple sources by using the observation covariance of the sensors such as 

MUSIC, ESPRIT, and Min-Norm [60-63]. Some fast HR algorithms (search free) 

which depend on polynomial root finding have been developed to reduce the 

algorithmic complexity such as Root MUSIC, Root Min-Norm methods [64]. 

However uniform linear arrays are required for these fast algorithms. For this 

reason, array interpolation techniques, which are used to transform real arbitrary 

array data to virtual ULA data, have been developed. Various fast AOA estimation 

algorithms and array interpolation techniques have been presented in [51, 59]. 

AOA estimation accuracy depends on many factors such as observation covariance, 

array geometry, SNR, number of snapshots, covariance of the signal waveforms etc. 

[65]. 
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3.1.1 Problem Formulation 

After performing AOA measurement in all sensor arrays, the position of the source 

can be estimated, by using the location of the sensor arrays. Noise-free 2D 

illustration is given in Figure 3.1. 

 

Figure 3.1: Noise Free Scenario for 2D AOA Based Source Localization 

By the effect of observation noise, Line-of-Bearings (LOBs) are distorted. Noisy 

observation scenario is illustrated in Figure 3.2. Some non-statistical triangulization 

techniques have been developed to estimate the position of the source that depends 

on intersection of medians, intersection of angle bisectors and Steiner point [66]. 

These classical techniques and the statistical analysis have been summarized by 

Poisel [13]. Some deployment techniques such as concave and convex deployments 

are suggested for tactical Electronic Warfare (EW) scenarios for the accurate 

localization [14]. 

The problem is estimating the position of the source by using noisy LOB 

measurements taken from different sensor arrays and array locations. Many 
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techniques depend on geometric solutions have been developed whereas, Maximum 

Likelihood (ML) based techniques depend on some statistical properties of the 

measured LOBs such as covariance of the LOB measurements for accurate 

positioning.  

 

Figure 3.2: Noisy Scenario for 2D AOA Based Source Localization 

However, in 3D geometry both azimuth and elevation deviations should be taken 

into account. The target lies inside the elliptic cones. The radiuses of the elliptic 

cone depend on the deviations of the azimuth and elevation measurements. An 

illustrative scenario is shown in Figure 3.3. When the observations are noiseless, 

target position is the intersection of the rays coming from the sensor arrays, which 

is tried to be visualized with the dashed lines.  
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Figure 3.3: Noisy and Noise Free Scenario for 3D AOA Based Source Localization 

 

3.1.2 AOA Based Source Localization Algorithms 

In this section AOA based source localization algorithms have been presented. 

Section starts with deriving the Maximum Likelihood (ML) cost function of the 

localization problem. Iterative technique is presented for this ML cost function and 

the section ends with giving the Least Squares (LS) solution to the problem. 

3.1.2.1 AOA Based Maximum Likelihood Source Localization 

Algorithms 

In this section Maximum Likelihood (ML) algorithms and iterative solutions are 

presented. The definitions start with 2D localization problem, then goes with 3D 

expressions. 

By assuming the noise is zero mean Gaussian, the Maximum Likelihood Estimation 

(MLE) of the 2D source position can be written as [7] 
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)E = �FG?��H I��, �� (3.1) 

where the cost function I��, �� is 

I��, �� = 12 L M�)� − N OPQRSL M�)� − N O (3.2) 

The cost function depends on the azimuth measurements, covariance of these AOA 

measurements and the angles with respect to the search point M�)�. At each search 

point, the angle between the $%& sensor array and the search point is calculated as 

G���� = ���RT U>V − >�V>W − >�WX (3.3) 

then, these angles are combined in "*1 vector M�)� as 

M�)� = LGT���,  G-���, … , GZ���OP (3.4) 

The azimuth measurements of each sensor array are merged into a "*1 vector N as 

N = L�T,  �-, … , �ZOP (3.5) 

Finally "*" covariance matrix Q contains the covariance of the AOA measurements 

on its diagonals as 

Q = ���G[��\- , ��]- , … , ��-̂ _ (3.6) 

The pre-mentioned ML cost function I��, �� can be rewritten as 

I��, �� = 12 `aQRS` = 12 b c�-��2-
Z

�dT  (3.7) 

where c� represents the error between the measured angle of the  $%& sensor array 

and the angle with respect to the search point. 

` = LcT,  c-, … , cZOP = M�)� − N  (3.8) 

MLE Algorithm: 

1. Estimate the Angle-of Arrival (AOA) of the received signal in each sensor 

array by using any DOA estimation algorithm. 
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2. As mentioned in equations (3.5) and (3.6), obtain the measurement vector  N 

and the measurement covariance matrix Q. 

3. Perform a grid search, in each search point  

i. Calculate the angle between the search point and the sensor arrays, 

and obtain vector M�)� 

ii. Calculate the cost function I��, �� 

4. After performing the grid search, find the position estimate )E , which gives 

the minimum cost. 

The solution of the MLE of the source position can be found by using Newton-

Gauss iterations as [13]  

)Ee:S = )Ee + fM)aQRSM)gP M)aQRS LN − M�)Ee�O (3.9) 

where )Ee and  )Ee:S are the position estimates at the �%& and �� + 1�5%  iterations 

respectively. M) represents the derivative of M�)� evaluated at the true target 

position, which yields to 

M) = hMh) =
ijj
jk−�>V − >TV�lm − mSl −�>V − >-V�lm − mnl … −�>V − >ZV�lm − mol�>W − >TW�lm − mSl �>W − >-W�lm − mnl … �>W − >ZW�lm − mol pqq

qr
 (3.10) 

The adaptive implementation of the MLE algorithm can be described as follows: 

Adaptive MLE Algorithm: 

1. Estimate the Angle-of Arrival (AOA) of the received signal in each sensor 

array by using any DOA estimation algorithm. 

2. As mentioned in equations (3.5) and (3.6), obtain the measurement vector  N 

and the measurement covariance matrix Q. 

3. Obtain an initial position estimate )Es by using any source localization 

algorithm. 
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4. By using a stopping criterion (i.e. �)Ee:S − )Ee� < u ), start the iterations with 

the initial position estimate until the stopping criterion is satisfied. 

5. In each iteration step, 

i. Calculate the matrix M) with the previously estimated position. 

ii. By using equation (3.9), estimate the new position. 

 

Stansfield’s Algorithm: 

Stansfield’s Algorithm is one of the first algorithms developed for estimating the 

location of the emitter source based on AOA measurements [2, 13]. AOA 

measurement errors are assumed to be Gaussian. The main idea is minimizing the 

joint probability density function of the miss distances. The geometry of the 

Stansfield’s Algorithm is illustrated in Figure 3.4.  The previously mentioned 

original ML cost function is given by 

I��, �� = 12 `aQRS` = 12 b c�-��2-
Z

�dT  (3.11) 

where c� represents the difference between the measured AOA and the angle 

between the sensor array and the estimated target location )E. As shown in Figure 

3.4, these differences are represented by ∆�� as 

c� = G���� − �� = ∆��   (3.12) 

Stansfield’s approach is based on assuming that the measurement errors are small. 

By assuming small errors, the sine function approximation can be performed on 

errors as 

sin�∆�� ≈ ∆� (3.13) 
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Figure 3.4: Stansfield’s Geometry for 2D AOA Based Source Localization 

Then, the Stansfield’s ML cost function can be written as 

I{P��, �� = 12 b ���-�∆�����2-
Z

�dT  (3.14) 

By using trigonometric identities, the cost function can be rewritten a 

I{P��, �� = 12 �|) − }�P~RSQRS�|) − }� (3.15) 

where the "*2 matrix | and the "*1 vector } are written as 

| =
ijj
jjk
�����T� −�����T������-� −�����-�⋮ ⋮�����Z� −�����Z�pqq

qqr (3.16) 
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} =
ijj
jjk
>TV�����T� − >TW�����T�>-V�����-� − >-W�����-�⋮>ZV�����Z� − >ZW�����Z�pqq

qqr (3.17) 

The "*" diagonal matrix ~ contains the distances between the estimated target 

position and the sensor arrays on its diagonals. 

~ = ���G{lm − mSl-, lm − mnl-, … , lm − mol-} (3.18) 

The solution which minimizes the Stansfield’s cost function with the weighting 

matrix  � = ~RSQRS, can be given as 

)EQa = �|a~RSQRS|�RS|a~RSQRS} (3.19) 

Note that, the matrix ~ is assumed to be known or a rough estimate is used without 

affecting the solution significantly since the cost function is a weak function of ~. 

This solution is non-iterative and has accuracy close to the original MLE. However, 

Gavish and Weiss showed that Stansfield’s estimator is biased [7]. Moreover, the 

bias and the RMS error do not decrease with the number of observations. 

Stansfield’s Algorithm: 

1. Estimate the Angle-of Arrival (AOA) of the received signal in each sensor 

array by using any DOA estimation algorithm. 

2. As mentioned in equations (3.16) and (3.17), obtain the matrix |, vector } 

and the measurement covariance matrix � by using the AOA measurements 

and the positions of the sensor arrays. 

3. By using any source localization algorithm, obtain a rough position 

estimate )Es. Obtain matrix ~, by using this estimate and the sensor array 

locations. 

4. Estimate the source position )EQa by using closed form solution given in 

equation (3.19). 



24 

 

Extension to 3D Localization: 

By assuming the noise is zero mean Gaussian, the Maximum Likelihood Estimation 

(MLE) of the 3D source position can be written as [49] 

)E = �FG?��H I��, �, @� (3.20) 

where the cost function I��, �, @� is 

I��, �, @� = 12 �ME − M�)��P�RS�ME − M�)�� (3.21) 

The derivation goes on with defining ME  which represents the azimuth and elevation 

measurements as 

ME = f MENa ,  ME�a  ga
 (3.22) 

2"*1  vector ME consists of  two "*1 vectors; MEN and ME�, which represent the 

azimuth and elevation values measured by the sensor arrays. These vectors are 

MEN = f��T,  ��-, … , ��ZgP
 (3.23) 

 

ME� = f@�T,  @�-, … , @�ZgP
 (3.24) 

The 2"*2" matrix � represents the covariance of the AOA measurements. 

Assuming that the elevation and azimuth angles are independent and noise is 

independent between azimuth and elevation measurements, the measurement 

covariance matrix can be written as 

� = ��N ss ��� (3.25) 
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where the "*"  matrices �N and �� are the covariances of the azimuth and 

elevation measurements, respectively. The covariance matrices of the azimuth and 

elevation measurements can be written as 

�N = ���G[��\- , ��]- , … , ��-̂ _ (3.26) 

 

�� = ���G[��\- , ��]- , … , ��^- _ (3.27) 

by assuming that the angle measurements are independent between the sensor 

arrays. The  2"*1  vector M�)� represents angles with respect to the search point ), 

i.e.  

M�)� = fMSa�)�  Mna�)�ga
 (3.28) 

This vector consists of  two "*1 vectors; MS�)� and Mn�)�, which represents the 

azimuth and elevation angles with respect to the search point. 

MS�)� = L�T,  �-, … , �ZOP (3.29) 

 

Mn�)� = L@T,  @-, … , @ZOP (3.30) 

The $%& element of the azimuth vector MS�)� can be calculated with respect to the 

search point and the position of the $%&  sensor array as 

����� = ���RT U>V − >�,V>W − >�,WX (3.31) 

Similarly, the $%& element of the elevation vector Mn�)� can be calculated as 

@���� = ���RT
�
� >� − >�,����>V − >�,V�- + �>W − >�,W�-��

� (3.32) 
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3D MLE Algorithm: 

1. Estimate the Angle-of Arrival (AOA) of the received signal in each sensor 

array by using any DOA estimation algorithm. 

2. As mentioned in equations (3.22) and (3.25), obtain the measurement vector  ME and the measurement covariance matrix �. 

3. Perform a 3D grid search, in each search point  

i. Calculate the azimuth and elevation angles between the search point 

the sensor arrays, and obtain vector M�)� 

ii. Calculate the cost function I��, �, @� 

4. After performing the grid search, find the position estimate )E , which gives 

the minimum cost. 

Newton-Gauss Iterations can be easily modified for 3D scenario by replacing the 

measurement vector, covariance of the measurements for 3D definitions given in 

this section. 

3.1.2.2 AOA Based Least Squares Source Localization Algorithms 

Least Squares based solution was proposed by Pages Zamora for single source 

localization problem [10].  

First, the position vectors are defined as m( and m for the  $%& sensor array and the 

source, respectively. The source position can be written in terms of the position of 

each sensor array by using the distance between the sensor array and the emitter ��, 
and the unitary vector �(.  These mentioned parameters are seen in Figure 3.5 for 

2D noiseless scenario. 
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Figure 3.5: Pages-Zamora’s Geometry for 2D AOA Based Source Localization 

As mentioned before, the source position can be written in terms of the position of 

each sensor array as 

m = m( + ���( $ = 1,2, … , " 
(3.33) 

where �� is the distance between the sensor array and the source. Unitary vector  �( 
is defined in terms of the angle between the source and the array with respect to the 

north.  

�( = ���������������� (3.34) 

Then equation (3.33) can be rewritten in vector equations as 
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m = �>V>W� = �>�V>�W� + �� ���������������� (3.35) 

When the first and second rows of the equation set are multiplied by ������� and �������, respectively, the equations can be rewritten as 

>V ������� = >�V ������� + ��  ������� ������� (3.36) 

 

>W  ������� = >�W ������� + �� ������� ������� (3.37) 

When the first equation is subtracted from the second equation, the below equation 

can be written for each sensor array as 

−>V ������� + >W  ������� = −>�V ������� + >�W �������  
$ = 1,2, … , " 

(3.38) 

The equations can be merged into a matrix equation representation as 

}�N� = ��N� m (3.39) 

where the "*1 vector }�N� and the "*2  matrix ��N� are defined as 

}�N� =
ijj
jjk
−>TV �����T� + >TW �����T�−>-V �����-� + >-W �����-�⋮−>ZV �����Z� + >ZW �����Z�pqq

qqr (3.40) 

 

��N� =
ijj
jjk
−�����T� �����T�−�����-� �����-�⋮ ⋮−�����Z� �����Z�pqq

qqr (3.41) 
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At least two sensor arrays are required to obtain an over-determined set of equations 

for 2-D localization. Then the least squares solution for the set of over-determined 

equations can be written as 

m� = �#�N�}�N� = ����N� ��N��RS���N� }�N� (3.42) 

where the operator �. �# represents the Moore-Penrose pseudo inverse and the 

resulting expression is shown above. 

LS Pages-Zamora Algorithm: 

1. Estimate the Angle-of Arrival (AOA) of the received signal in each sensor 

array by using any DOA estimation algorithm. 

2. As mentioned in equations (3.40) and (3.41), obtain the }�N� and  ��N� 

expressions by using the AOA estimates and the array positions. 

3. Estimate the source position by using LS solution given in equation (3.42). 

 

Extension to 3D Geometry: 

Similarly, �� is the distance between the $%& sensor array and the source. In 3D 

unitary vector  �( is defined in terms of the azimuth and elevation angles between 

the source and the array with respect to the north (y-axis) and the ground (x-y 

plane), respectively.  

�( =
ijj
jk�����������@�������������@������@�� pqq

qr
 (3.43) 

These mentioned parameters are seen in Figure 3.6 for 3D noiseless scenario. 
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Figure 3.6:  Pages-Zamora’s Geometry for 3D AOA Based Source Localization 

Then the source position can be rewritten in vector equations as 

m =
ijj
jk>V>W>� pqq

qr =
ijj
jk>�V>�W>��pqq

qr + �� ijj
jk�����������@�������������@������@�� pqq

qr
 (3.44) 

When the rows of the equation set are multiplied by  ������� ����@��,  ������� ����@��  and  ������� ������� ����@��  respectively, the equations can be 

rewritten as 

>V �����������@��= >�V  �����������@��+ �� ������� ����@�������������@�� 

 

(3.45) 
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>W �����������@��= >�W �����������@��+ �� �����������@�������������@�� 

 

>� ������� ������� ����@��= >�� ������� ������� ����@��+ �� ������� ������� ������� ����@�� 

When twice of the third equation is subtracted from the sum of first two equations, 

the below equation can be written for each sensor array as 

>V  �����������@�� + >W  �����������@�� − 2 >� ������� ������� ����@��= >�V �����������@�� + >�W �����������@��− 2>�� ������� ������� ����@�� 

 

$ = 1,2, … , " 

(3.46) 

The equations can be merged into a matrix equation representation as 

}�N, �� = ��N, �� m (3.47) 

where the "*1 vector }�N, �� and the "*3  matrix ��N, �� are defined as 

}�N, ��
=

ijj
jjk

>TV  �����T�����@T� + >TW �����T�����@T� − 2>T� �����T� �����T� ����@T�>-V  �����-�����@-� + >-W �����-�����@-� − 2>-� �����-� �����-� ����@-�⋮>ZV  �����Z�����@Z� + >ZW  �����Z�����@Z� − 2>Z� �����Z� �����Z� ����@Z�pqq
qqr (3.48) 
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��N, ��
=

ijj
jjk
�����T�����@T� �����T�����@T� −2�����T� �����T� ����@T������-�����@-� �����-�����@-� −2 �����-� �����-� ����@-�⋮ ⋮ ⋮�����Z�����@Z� �����Z�����@Z� −2 �����Z� �����Z� ����@Z�pqq

qqr (3.49) 

At least three sensor arrays are required to obtain an over-determined set of 

equations for 3D localization. Then the least squares solution for the set of over-

determined equations can be written as 

m� = �#�N, ��}�N, �� = ����N, �� ��N, ���RS���N, �� }�N, �� (3.50) 

where the operator �. �# represents the Moore-Penrose pseudo inverse and the 

resulting expression is shown above. 

3D LS Pages-Zamora Algorithm: 

1. Estimate the azimuth and elevation angles of the received signal in each 

sensor array by using any DOA estimation algorithm. 

2. As mentioned in equations (3.48) and (3.49), obtain the }�N, �� and  ��N, �� expressions by using the AOA estimates and the array positions. 

3. Estimate the source position by using LS solution given in equation (3.50). 

 

However this algorithm gives solution when the number of sensor arrays is larger 

than 2. Moreover, the trigonometric functions of the noisy angles are multiplied in 

the expressions }�N, �� and  ��N, ��, which degrades the performance of the 

algorithm. The reason of this situation can be explained with simple statistics. The 

multiplication of random variables with any variances gives larger variance. 

Consequently the performance of the algorithm degrades with increasing residuals 

of the least squares equation system. 
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To avoid this performance reduction and to find a solution with 2 Line-of-Bearings 

(LOBs), a straightforward 2 step LS approach can be written. The equation in (3.39) 

can be written as  

}�N� = ��N� � (3.51) 

where  

�� = �>�V>�W� = �#�N�}�N� = ����N� ��N��RS���N� }�N� (3.52) 

where the "*1 vector }�N� and the "*2  matrix ��N� are defined as 

}�N� =
ijj
jjk
−>TV �����T� + >TW �����T�−>-V �����-� + >-W �����-�⋮−>ZV �����Z� + >ZW �����Z�pqq

qqr (3.53) 

 

��N� =
ijj
jjk
−�����T� �����T�−�����-� �����-�⋮ ⋮−�����Z� �����Z�pqq

qqr (3.54) 

Then the projection of the distances onto the x-y plane can be written as 

��V&W = � �>�V − >�V>�W − >�W� � (3.55) 

where the operator l. l represents the Euclidean norm of the inside vector. ��V&W becomes the distance between the $%& sensor array and the estimated position 

in x-y plane. By using exactly the same geometrical relationship between the source 

and the sensor array positions, the expressions }��� and ���� can be written as 
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}��� =
ij
jj
jj
k�TV&W����@T� + >T� ����@T�
�-V&W����@-� + >-� ����@-�

⋮
�ZV&W����@Z� + >Z� ����@Z�pq

qq
qq
r
 (3.56) 

 

���� =
ijj
jjj
k����@T�
����@-�

⋮
����@Z�pqq

qqq
r
 (3.57) 

The z-coordinate of the source position can be estimated as 

>�� = �#���}��� = ������ �����RS����� }��� (3.58) 

By combining the separate coordinate estimates, the source position estimate can be 

written as 

m� =
ijj
jk>�V>�W>�� pqq

qr
 (3.59) 

3D Two Step LS Algorithm: 

1. Estimate the azimuth and elevation angles of the received signal in each 

sensor array by using any DOA estimation algorithm. 

2. As mentioned in equations (3.53) and (3.54), obtain the }�N� and  ��N� 

expressions by using the azimuth measurements and the array positions. 

3. Estimate the x and y coordinates of the source position by using LS solution 

given in equation (3.52). 
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4. By using estimates found in Step (3), calculate the projection of the 

distances between the sensor arrays and source onto the x-y plane; obtain the 

expression ��V&W for each array. 

5. As mentioned in equations (3.56) and (3.57), obtain the }��� and  ���� 

expressions by using the elevation measurements and the array positions. 

6. Estimate the z coordinate of the source position by using LS solution given 

in equation (3.58). 

The performances of the 3D LS Pages-Zamora and the 3D Two Step LS Algorithms 

are compared. First, the sensor arrays are assumed to be located at the corners of 10*10  ?- square region, whereas the target is located at the Cartesian coordinates 

(15, 15, 5) km. Both azimuth and elevation deviations are assumed to be 1° and 100 

experiments are performed with each method. 

  

i. 3D LS Pages-Zamora ii. 3D Two Step LS 

Figure 3.7: 3D Position Estimates Found with LS Pages-Zamora and 3D Two Step 
LS Methods 

It is obviously seen from Figure 3.7 that 3D Two Step LS Algorithm is better than 

3D LS Pages-Zamora Method. Moreover, the performances of these methods are 

compared with varying angle deviations. Also, the 3D MLE method and the 3D 

CRLB for AOA based source localization are evaluated and compared with the LS 

methods. The performance comparison and the lower bound are shown in Figure 

3.8. 

0

5

10

15

20

0

5

10

15

20
0

2

4

6

8

 ← Array-2

X-Axis (km)

 ← Position Estimates

 ← Target-1 ← Target-1 ← Target-1 ← Target-1

 ← Array-4

Position Estimates; Azimuth and Elevation with σ=1°

 ← Array-1

 ← Array-3

Y-Axis (km)

Z
-A
x
is
 (
k
m
)

0

5

10

15

20

0

5

10

15

20
0

1

2

3

4

5

6

 ← Array-2

X-Axis (km)

 ← Position Estimates
 ← Target-1 ← Target-1 ← Target-1 ← Target-1

 ← Array-4

Position Estimates; Azimuth and Elevation with σ=1°

 ← Array-1

 ← Array-3

Y-Axis (km)

Z
-A
x
is
 (
k
m
)



36 

 

Figure 3.8: 3D Performance Comparison for AOA Based Methods and CRLB 

It is shown in Figure 3.8 that, ML and Two Step LS methods give better results, 

than Pages-Zamora method. The reason of this situation is mentioned at the end of 

the algorithmic steps for 3D LS Pages-Zamora method. 

3.1.3 Cramer Rao Lower Bound for AOA Based Source 

Localization 

In this part the Cramer Rao Lower Bound (CRLB) is presented for 3D AOA based 

source localization problem. The CRLB is the minimum achievable error 

covariance matrix by an unbiased estimator [82]. The CRLB is found by inverting 

the Fisher Information Matrix (FIM). The $¡%& block of the FIM is given by [49] 

L¢£¤�)�O�¥ = ¦ § hh�� $��c̈©�G©: ��� hh�¥ $��c̈©�G©: ���« (3.60) 
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where )( is the $%& element of the true target location vector m; c̈©�G©: �� is the 

likelihood function with respect to the true target position and �RS is the inverse of 

the covariance of the angle measurements. The natural log-likelihood function can 

be written as 

$��c̈©�G©: ��� = 12 �ME − M�)��a�RS�ME − M�)�� + ¬ (3.61) 

where ¬ is constant term independent from the target position. The complete FIM 

can be written as 

¢£¤�)� = �)M�)��a�RS�)M�)�� (3.62) 

The 3D derivation of the CRLB expression goes on with defining the operator ) 

which represents the gradient vector. 

)M�)� = �hM�)�h�V
hM�)�h�W

hM�)�h�� � (3.63) 

Under the assumption that azimuth and elevation measurements are independent 

from each other, the covariance of the angle measurements can be written as 

� = ��N ss ��� (3.64) 

where the "*"  matrices �N and �� are the covariances of the azimuth and 

elevation measurements respectively. The covariance matrices of the azimuth and 

elevation measurements can be written as 

�N = ���G[��\- , ��]- , … , ��-̂ _ (3.65) 

 

�� = ���G[��\- , ��]- , … , ��^- _ (3.66) 

by assuming the angle measurements are independent between the sensor arrays. 

The  2"*1  vector M�)� represents the true angles with respect to the true target 
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position. This vector consists of  two "*1 vectors; MS�)� and Mn�)�, which 

represent the true azimuth and elevation angles. 

M�)� = fMSa�)�  Mna�)�ga
 (3.67) 

 

MS�)� = L�T,  �-, … , �ZOP (3.68) 

 

Mn�)� = L@T,  @-, … , @ZOP (3.69) 

The $%& element of the true azimuth vector MS�)� can be calculated with respect to 

the true target position and the position of the $%&  sensor array as 

����� = ���RT U>V − >�,V>W − >�,WX (3.70) 

Similarly, the $%& element of the true elevation vector Mn�)� can be calculated as 

@���� = ���RT
�
� >� − >�,����>V − >�,V�- + �>W − >�,W�-��

� (3.71) 

The expression )M�)�, can be separated as 

)M�)� = �)MS�)�)Mn�)�� (3.72) 

The separated "*3  matrix )MS�)� can be represented as 

)MS�)� = �hMS�)�h�V    hMS�)�h�W    hMS�)�h�� � (3.73) 

where 
®MS�)�®H4  is the partial derivate of the azimuth angles with respect to the x-

coordinate of the true target position, 
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hMS�)�h�V =

ij
jj
jj
jj
jj
jj
jj
k¯ −�>W − >T,W��>V − >T,V�- + �>W − >T,W�-°
¯ −�>W − >-,W��>V − >-,V�- + �>W − >-,W�-°

⋮
¯ −�>W − >Z,W��>V − >Z,V�- + �>W − >Z,W�-°pq

qq
qq
qq
qq
qq
qq
r

 (3.74) 

Similarly expressions  
®MS�)�®H;   and 

®MS�)�®H<  are the partial derivates of the azimuth 

angles with respect to the y and z coordinates of the true target position 

respectively. These expressions can be written as 

hMS�)�h�W =

ij
jj
jj
jj
jj
jj
jj
k¯ �>* − >1,*��>* − >1,*�2 + �>� − >1,��2°
¯ �>* − >2,*��>* − >2,*�2 + �>� − >2,��2°

⋮
¯ �>* − >",*��>* − >",*�2 + �>� − >",��2°pq

qq
qq
qq
qq
qq
qq
r

 (3.75) 

 

hMS�)�h�� = sZVT (3.76) 

Moreover, the separated "*3  matrix )Mn�)� can be represented as 
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)Mn�)� = �hMn�)�h�V    hMn�)�h�W    hMn�)�h�� � (3.77) 

where 
®Mn�)�®H4  is the partial derivate of the elevation angles with respect to the x-

coordinate of the true target position, 

hMn�)�h�V =

ij
jj
jj
jj
jj
jj
jj
jj
k
�
� −�>* − >1,*��>± − >1,±�

lm − mSl2��>* − >1,*�2 + �>� − >1,��2�
�

�
� −�>* − >2,*��>± − >2,±�

lm − mnl2��>* − >2,*�2 + �>� − >2,��2�
�

⋮

�
� −�>* − >",*��>± − >",±�

lm − mol2��>* − >",*�2 + �>� − >",��2�
�

pq
qq
qq
qq
qq
qq
qq
qq
r

 (3.78) 

Similarly expressions  
®Mn�)�®H;   and 

®Mn�)�®H<  are the partial derivates of the elevation 

angles with respect to the y and z coordinates of the true target position 

respectively. These expressions can be written as 
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hMn�)�h�W =

ij
jj
jj
jj
jj
jj
jj
jj
k
�
� −�>� − >1,���>± − >1,±�

lm − mSl2��>* − >1,*�2 + �>� − >1,��2�
�

�
� −�>� − >2,���>± − >2,±�

lm − mnl2��>* − >2,*�2 + �>� − >2,��2�
�

⋮

�
� −�>� − >",���>± − >",±�

lm − mol2��>* − >",*�2 + �>� − >",��2�
�

pq
qq
qq
qq
qq
qq
qq
qq
r

 (3.79) 

 

hMn�)�h�� =

ij
jjj
jjj
jjj
jjj
jk��>* − >1,*�2 + �>� − >1,��2

lm − mSl2
��>* − >2,*�2 + �>� − >2,��2

lm − mnl2

⋮
��>* − >",*�2 + �>� − >",��2

lm − mol2 pq
qqq
qqq
qqq
qqq
qr

 (3.80) 

After calculating the complete FIM, CRLB matrix is written as 

²�o³ = �¢£¤�RS (3.81) 

The 3*3 CRLB matrix contains the axial minimum achievable variances on its 

diagonals, i.e. 
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���G�²�o³� = ´�14- , �1;- , �1<- µ (3.82) 

The trace of the CRLB matrix gives the minimum achievable localization variance, 

�1- = �F�²�o³� (3.83) 

3.1.4 Error Ellipse 

The error ellipse defined by the Stansfield represents the accuracy of the source 

localization [2]. Moreover, the error ellipse may be used for the selection of the 

locations of the sensor arrays. By exploring the ellipse parameters, the best 

locations can be chosen for the sensor arrays for the target source region.  

The error ellipse covers the region, in which the true target position lies with a 

probability of Ƥ. The center of the error ellipse is the estimated position of the 

source. An illustration of the mentioned scenario is given in Figure 3.9. There is no 

significance of the estimator model on the ellipse parameters.  

 

Figure 3.9: Error Ellipse with ��=2° and Ƥ =0.9 

-10 0 10 20 30 40 50 60 70
-10

0

10

20

30

40

50

60

70

X-Axis (km)

Y
 A
x
is
 (
k
m
)

 

 

Target

Position Estimate

Sensor Arrays

Line of Bearings



43 

The ellipse parameters depend on the estimated source position, positions of the 

sensor arrays, AOAs and the standard deviation of the AOAs. The distance between 

the estimated source position and the $%&  sensor array can be written as 

�� = lm¶·¸ − m(l (3.84) 

where the operator l. l represents the Euclidean norm. The ellipse equation can be 

written as [2] 

*-�- + �-�-  = −2$��1 − Ƥ� (3.85) 

The parameters  � and  � represent the major and minor radiuses of the ellipse. The 

radiuses are found in terms of the DOAs and the standard deviation of the AOAs as 2�- = ¹º + µ + »��º − µ�- + 4½-�¾ (3.86) 

 2�- = ¹º + µ − »��º − µ�- + 4½-�¾ (3.87) 

The parameters º, µ and ½ can be written as 

º = b U���-��¿����2-  ��- XZ
�dT  (3.88) 

 

µ = b U���-��¿����2-  ��- XZ
�dT  (3.89) 

 

½ = b U�����¿�� �����¿����2-  ��- XZ
�dT  (3.90) 

where �¿�  is the estimated azimuth angle of the $%& sensor array and ��2-  represents 

the variance of this measurement. 
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The ellipse equation can be simplified as 

*-"À- + �-"Á-  = 1 (3.91) 

where the radiuses can be presented as 

"Á = ���-�−2$��1 − Ƥ��� (3.92) 

 

"À = ���-�−2$��1 − Ƥ��� (3.93) 

Finally, the orientation of the ellipse with respect to the y-axis can be written as 

Â = ���RT Ã ∑  0 >V − >�Vlm¶·¸ − m(l-=Z�dT
∑  0 >W − >�Wlm¶·¸ − m(l-=Z�dT  Å (3.94) 

In practical EW systems, error ellipse is calculated with both fixed and varying 

angle variation ��2- . In earlier systems, this variation is fixed to the DF accuracy of 

the system (i.e.  ��2 = 2° Æ#�). However, in some systems, the variation of the 

Direction Finding (DF) results for the same received signal is used to calculate ��2- .  

The error ellipse is drawn around the estimated source position, and it means that 

the true position of the emitter is inside this ellipse with a probability of Ƥ. 

An illustration is given in Figure 3.10 (The same scenario mentioned in Figure 3.9). 

The error ellipses are calculated for different probabilities. By using a little analogy, 

the center of the ellipse is chosen as the true source position. 20 experiments are 

performed to estimate the source location. Each source position estimate is plotted 

in the figure. 
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Figure 3.10: 20 Position Estimates and the Error Ellipse with ��=2° and varying Ƥ    
It is obviously seen from the illustration that the number of the position estimates 

covered by the error ellipses is consistent with the mentioned probabilities. 

As mentioned in the first paragraph of this part, the positions of the sensor arrays 

and the source highly affect the minor and major radiuses of the ellipse. 

Consequently, the position of the sensor arrays and the source affect the localization 

accuracy. This fact is illustrated by two different scenarios seen in Figure 3.11 and 

Figure 3.12. 
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Figure 3.11: Error Ellipse with ��=2° and Ƥ =0.9 for the “Array Deployment-1” 

When the target is surrounded by the sensor arrays, the radiuses of the ellipse are 

small. However, when the target is separated from the arrays the radiuses become 

larger. This fact is directly in accordance with the localization accuracy. For 

accurate source localization, source should be surrounded by the sensor arrays. 
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Figure 3.12: Error Ellipse with σ�=2° and Ƥ =0.9 for the “Array Deployment-2” 

The same effect is tried to be simulated for 3D localization.  100 experiments are 

performed with two step Least Square Algorithm. Both azimuth and elevation 

angles have 1° standard deviation. Each position estimate, array and target 

coordinates are labeled in the figures. In Figure 3.13, the target is far away from the 

sensor arrays. When the position estimates are investigated, they compose a volume 

like rugby ball. This rugby ball figure may be called as error ellipsoid with 

probability of one.  
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Figure 3.13: 100 Position Estimates with σθ=1° and σ�=1° for the “Target-1” 
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Figure 3.14: 100 Position Estimates with σ�=1° and σ�=1° for the “Target-2” 

When the target is located closer to the sensor arrays, it is seen from Figure 3.14 

that the deviation of position estimates becomes smaller. Consequently, it is seen 

that the localization accuracy is affected by the target and array locations. 

3.1.5 Data Association Techniques for AOA Based Multiple Source 

Localization 

When the number of RF sources is more than one, the DOAs of the sources can be 

found with High Resolution-Direction Finding (HR-DF) or Maximum Likelihood 

DF (ML-DF) algorithms. The AOA based localization algorithms work for single 

source. The AOA based source localization algorithms are insufficient for this 

problem. Individual AOA sets should be classified for each transmitter. The 

problem is illustrated in Figure 3.15. When three LOBs from each sensor array 

become closer, it seems like a position estimate. This situation is defined as Ghost 

(ode Concept [52]. True source positions and the ghost nodes are seen in the figure.  
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Figure 3.15: AOA Association Problem, Ghost Node Concept and Localization via 
Multiple LOBs 

When the associated results are collected in the localization processor, the DOA 

estimates should be shown as, 

Ç =
ijj
jjk
ÈT,T ÈT,- … ÈT,ÉÈ-,T È-,- … È-,É⋮ ⋮ … ⋮ÈZ,T ÈZ,- … ÈZ,Épqq

qqr (3.95) 

where Ç(,Ê represents the DOA estimates (associated azimuth and elevation pairs) 

of the $%& sensor array with respect to the ¡%& source, i.e., Ç(,Ê = [��,¥ , @�,¥_. Then 

the source localization is performed for each column of  Ç. 

However, the rows of the matrix Ç are taken arbitrarily from the sensor arrays, 

since there is no priori information about the source locations.  
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Different techniques have been developed to solve AOA association problem [52]. 

Some of these techniques are based on clustering the AOA measurements. 

Moreover, Cyclic MUSIC spectrum can be used for an AOA association. However, 

the cycle rate (typically, twice the carrier rate and multiples of the baud rate) cannot 

be used for completely unknown signals [67]. In this section, the Brute Force 

Method, which gives more accurate association results, is presented. The AOA 

association algorithms (Clustering Method, Signal Selectivity with Cyclic MUSIC) 

are developed to reduce the algorithmic complexity of Brute Force Method which is 

given in the end of the next part.  

 

Brute Force AOA Association Method: 

In Brute Force Method (BFM), an exhaustive search is performed over the set of all 

possible sets of AOA combinations to find the most likely one.  

For each set of the AOA combinations, each source position is estimated by using 

the relevant column of the AOA set.  

Then the angles between the estimated target position and the sensor array is 

calculated for each source and each sensor array as 

���,¥ = ���RT U�̂¥,V − >�,V�̂¥,W − >�,WX (3.96) 

where �̂¥,V,  �̂¥,W and �̂¥,� represent the x, y and z Cartesian coordinates of the ¡%& 

emitter respectively. Similarly >�,V, >�,W, and >�,�represent the Cartesian coordinates 

of the $%& sensor array. 

@��,¥ = ���RT
�
� �̂¥,� − >�,�����̂¥,V − >�,V�- + ��̂¥,W − >�,W�-��

� (3.97) 

where ���,¥ and @��,¥ are the azimuth and elevation angles between the $%& sensor 

array and the ¡%& transmitter. The azimuth residual of the combination set is defined 

as 
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∆� = b bÌ��,¥ − ���,¥ÌÍ
ÊdS

o
(dS  (3.98) 

Similarly, the elevation residual of the combination set is defined as 

∆@ = b bÌ@�,¥ − @��,¥ÌÍ
ÊdS

o
(dS  (3.99) 

Finally the total angle residual can be calculated as 

∆È = ∆� + ∆@ (3.100) 

At the end of the residual calculation for all unique combination sets, the 

combination which gives the minimum residual is selected as the associated set of 

AOA measurements. 

Brute Force AOA Association Algorithm: 

1. Obtain a unique combination set of AOA measurements (combination in 

row-wise in measurement matrix Ç ), and define this combination set as Ç. 

2. By using any AOA based localization algorithm, compute the location of 

each source by using the relevant column of the combination set found in 

Step 1. 

3. Calculate the angles between each sensor array and each source estimated in 

Step 2 by using the equations (3.96) and (3.97). 

4. Calculate the residual of the combination set by using equation (3.100). 

5. Repeat steps 1-4 until all the combinations are finished. Choose the 

combination set which gives the minimum residual as the Associated AOA 

Set. 

As seen from the algorithmic steps, the complexity of the BFM is very high. Total 

number of computations used in BFM is calculated by Buehrer et al. as [52] 
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�41 " A − 1� �A!�ZRT (3.101) 

For easier view of the concept, Data Association Technique for 2D localization 

problem is given in [52]. 

3.2 TDOA BASED SOURCE LOCALIZATIO
 

Time Difference of Arrival (TDOA) based localization is usually used for Radar 

applications and GSM based localization services [19-23]. 

By using cross correlation processors and parabolic interpolators, TDOA values 

between the separated sensors are measured [68]. Moreover super resolution 

techniques have been developed for Code Division Multiple Access (CDMA) 

systems which use Pseudo Noise (PN) sequences. One of the best of these methods 

is called as Super Resolution PN Correlation Method (SPM Algorithm) which is 

presented in [69-70]. Moreover the performance of the SPM algorithm is given in 

[71]. The noise and the measurement errors are the main sources of TDOA 

estimation error. Measurement errors are systematic and unique to each 

implementation [13]. Stein derived Cramer Rao Lower Bound (CRLB) for TDOA 

estimation in his study [18]. TDOA estimation accuracy depends on various 

parameters such as noise bandwidth of the receiver, signal bandwidth, observation 

time and effective input SNR which is calculated by using the SNR values at the 

separated sensors used for TDOA estimation. CRLB expression for the TDOA 

estimation highly depends on the bandwidth of the signal. Good time 

synchronization (i.e. several nanoseconds) between the sensors is a must to estimate 

the accurate TDOA values between the sensors. Moreover, in digital TDOA 

estimation applications, oversampling factor affects the TDOA estimation accuracy 

[72]. TDOA based location estimation is directly proportional with the TDOA 

measurement accuracy. Finally the geometry formed by the sensors and the target 

location is one of the most important characteristic that determines the localization 

accuracy [13]. Optimum sensor geometries for 2D and 3D localization problems are 

presented by Yang and Scheuing [73]. Sensor array configurations with geometry of 
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a platonic solid are defined as optimum sensor geometry for 3D localization 

problem for single emitter case. Sample platonic solids are seen in Figure 3.16. 

 

 

Figure 3.16: Sample Platonic Solid Geometries  

The parameters that affect the TDOA based localization estimation accuracy and 

the mathematical relations between these parameters and localization accuracy can 

be summarized as, 

• By increasing the integration time, location estimation accuracy increases 

• By increasing the oversampling factor, location estimation accuracy 

increases 

• By increasing the synchronization error, location estimation accuracy 

decreases 

• By increasing the signal bandwidth, location estimation accuracy increases 

• By increasing the noise bandwidth of the receiver, location estimation 

accuracy increases 

• Platonic solid array configurations (or Uniform Angular Array (UAA) for 

2D) should be used for accurate 3D positioning  
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3.2.1 Problem Formulation 

Each TDOA value represents a unique hyperbola which lies on the target positions. 

However, in 3D geometry each TDOA value represents a branch of hyperboloid 

and the target position lies on the surface of it.  

 By using these unique hyperbolas (hyperboloids in 3D), the location of the emitter 

can be estimated. An illustrative noise free scenario is seen in Figure 3.17 which 

illustrates the 2D geometric interpretation.  

 

 

Figure 3.17: Noise Free Scenario for 2D TDOA Based Source Localization 

For easier illustration, the 2D problem is considered in geometric sense in the 

previous figure. This part starts with defining the mathematical expressions of the 

problem. 
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In a constant velocity medium, let’s define the distance between the target and the $%&    sensor as 

F� = � �� $ = 1,2, … , " 
(3.102) 

where � is the propagation speed of the signal (for an electromagnetic wave, speed 

of light); " is the total number of sensors and �� is the propagation time between the 

target and the relevant sensor.  Then C�Ï is defined as the time difference of arrival 

between the $%& and  %& sensors, 

C�Ï = �� − �Ï = �F� − FÏ� � 

$,   = 1,2, … , " 

(3.103) 

 

F� = ��>V − >�,V�-  +  �>W − >�,W�- + �>� − >�,��- (3.104) 

where �>V , >W, >�� and �>�,V, >�,W, >�,�� are the Cartesian coordinates of the target and $%& sensor, respectively. 

A non-linear relationship between the “TDOA values between the sensor pairs” and 

the “target location” is obviously seen in the above equations. The problem is 

estimating the target location with using sensor position and noisy TDOA 

measurements.  

3.2.2 TDOA Based Source Localization Algorithms 

In this part, some TDOA based localization algorithms are given such as Maximum 

Likelihood (ML) and Least Squares (LS) localization algorithms. Moreover, 

iterative techniques are presented for ML solution.  
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3.2.2.1 TDOA Based Maximum Likelihood Source Localization 

Algorithms 

By assuming the noise is zero mean Gaussian, the Maximum Likelihood Estimation 

(MLE) of the source position can be written as [49] 

�̂ = �FG?��1 {I
���} (3.105) 

where the cost function I
��� is 

I
��� = 12 �Ð� − Ð�)��a�ÑRS�Ð� − Ð�)�� (3.106) 

The cost function depends on the range difference measurements, covariance of 

these range difference measurements and the range differences with respect to the 

search point Ð�)�.  

The �" − 1�*1  vector Ð�)� represents the range differences between the first 

sensor and the others with respect to the search point. 

Ð�)� = Lℎ-��� ℎÓ��� … ℎZ��� OP (3.107) 

At each search point, the range difference between the  $%& sensor and the first one 

with respect to the search point is calculated as 

ℎ���� = lm( − ml − lmS − ml (3.108) 

The �" − 1�*1  vector Ð� represents the range difference measurements between the 

first sensor and the others. 

Ð� = � fC-,T, CÓ,T, … , CZ,TgP
 (3.109) 

Assuming that the range (Time of Arrival (TOA) values multiplied by propagation 

speed c) measurements are independent from each other, the covariance of the 

range difference measurements can be written as [27] 
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�Ñ = �-�PÔÕ-

ij
jj
jj
jk1 12 … 1212 1 ⋱ ⋮

⋮ ⋱ ⋱ 1212 … 12 1pq
qq
qq
qr
 (3.110) 

MLE Algorithm: 

1. Estimate the Time Difference of Arrival (TDOA) of the received signal 

between the sensor pairs by using any TDOA estimation algorithm. 

2. As mentioned in equations (3.109) and (3.110), obtain the measurement 

vector Ð� and the measurement covariance matrix �Ñ. 

3. Perform a grid search; in each search point  

i. Calculate the range difference between the first sensor and the others 

with respect to the search point; obtain vector Ð�)� 

ii. Calculate the cost function I
��� 

4. After performing the grid search, find the position estimate )E , which gives 

the minimum cost. 

 

Localization with Stochastic Gradient: 

Gustafsson and Gunnarsson presented a Normalized Least Mean Squares (NLMS) 

type iterative algorithm to the TDOA Based ML localization problem [74]. 

Let m denote the target position and )Ee be the estimate of the target location m in the �%& iteration.  In this algorithm, iterations are performed due to least mean squares 

as 

)Ee:S = )Ee − µ6 Ð)× �)Ee� fÐ� − Ð�)Ee�g (3.111) 

The definitions for Ð and Ð�  are given in equations (3.107-3.109). The step size is 

found by 
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µ6 = µfÐ)× �)Ee�gaÐ)× �)Ee� (3.112) 

where µ is the LMS step size which is selected due to stability conditions for 

convergence. Ð)×   is the gradient of Ð)  with respect to the global coordinate axis. 

Ð)× = )Ð�)� = �hÐ�)�h�V
hÐ�)�h�W

hÐ�)�h�� � (3.113) 

The partial derivatives are given in CRLB derivation for TDOA Based Localization 

(equations 3.131-3.133). The LMS step size should satisfy the below condition for 

convergence. 

0 < µ < 1º+ÁV (3.114) 

where º+ÁV is the maximum eigenvalue of matrix �Ñ. Typically faster convergence 

is obtained with larger step sizes. 

The weights  Ð)× �)Ee� are adjusted adaptively in the algorithm. For an initial guess 

LS target location estimate may be used for this algorithm. 

Adaptive MLE Algorithm: 

1. Estimate the Time Difference of Arrival (TDOA) of the received signal 

between the sensor pairs by using any TDOA estimation algorithm. 

2. As mentioned in equations (3.109) and (3.110), obtain the measurement 

vector Ð� and the measurement covariance matrix �Ñ. 

3. Obtain an initial position estimate )Es by using any source localization 

algorithm. 

4. By using a stopping criterion (i.e. �)Ee:S − )Ee� < Ø ), start the iterations with 

the initial position estimate until the stopping criterion is satisfied. 

5. In each iteration step, 

i. Calculate the matrix  Ð)× �)Ee�  with the previously estimated position. 

ii. Calculate the step size µ6 with equation (3.112). 
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iii. By using equation (3.111), estimate the new position. 

3.2.2.2 TDOA Based Least Squares Source Localization Algorithms 

Similar derivations were performed by Bard and Mellen to obtain closed form LS 

solutions for target location [75-76]. The idea is linearizing the non-linear 

relationships by adding a new unknown into the equations. The distance between 

the target and the 1st sensor is introduced as a new unknown in this algorithm. Let’s 

assume that this distance is F , then 

F- = �>V − >T,V�-  + �>W − >T,W�- + �>� − >T,��- (3.115) 

Let C6 be the TDOA between the  $%& and the 15% sensor, 

C� = �� − �T 

$ = 2, … , " 

F = � �T 

(3.116) 

Then, for each sensor, the non linear equations can be re-written as  

�� ���- = �F + � C��- = �>V − >�,V�- + �>W − >�,W�-+�>� − >T,��- (3.117) 

The equations are written for all sensors except the reference one, 

�F + � C-�- = �>V − >-,V�- + �>W − >-,W�- + �>� − >-,��- 

�F + � CÓ�- = �>V − >Ó,V�- + �>W − >Ó,W�- + �>� − >Ó,��- 

⋮ 
�F + � CZ�- = �>V − >Z,V�- + �>W − >Z,W�- + �>� − >Z,��- 

(3.118) 

When the differences are taken between the above equations and the F- expression, 

the resulting equations are 
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−2 F � C- + �� C-�-= >T,V- + >T,W- + >T,�- − >-,V- − >-,W- − >-,�-
+ 2�>-,V − >T,V�>V + 2�>-,W − >T,W�>W + 2�>-,� − >T,��>� 

 

 −2 F � CÓ + �� CÓ�-= >T,V- + >T,W- + >T,�- − >Ó,V- − >Ó,W- − >Ó,�-
+ 2�>Ó,V − >T,V�>V + 2�>Ó,W − >T,W�>W + 2�>Ó,� − >T,��>� 

 ⋮ 
 

−2 F � CZ + �� CZ�-= >T,V- + >T,W- + >T,�- − >Z,V- − >Z,W- − >Z,�-
+ 2�>Z,V − >T,V�>V + 2�>Z,W − >T,W�>W + 2�>Z,� − >T,��>� 

(3.119) 

These equations can be written in the matrix form as 

Ù =  2 Ú Û (3.120) 

where vectors Ü, Ý and  matrix | are defined as 

Ü =
ijj
jk>V>W>�F pqq

qr
 (3.121) 

 

Ý =
ij
jj
jj
k>T,V- + >T,W- + >T,�- − >-,V- − >-,W- − >-,�- + �� C-�-
>T,V- + >T,W- + >T,�- − >Ó,V- − >Ó,W- − >Ó,�- + �� CÓ�-

⋮
>T,V- + >T,W- + >T,�- − >Z,V- − >Z,W- − >Z,�- + �� CZ�-pq

qq
qq
r
 (3.122) 
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| =
ij
jj
jj
k�>T,V − >-,V� �>T,W − >-,W� �>T,� − >-,�� �−� C-�
�>T,V − >Ó,V� �>T,W − >Ó,W� �>T,� − >Ó,�� �−� CÓ�

⋮ ⋮ ⋮ ⋮
�>T,V − >Z,V� �>T,W − >Z,W� �>T,� − >Z,�� �−� CZ�pq

qq
qq
r
 (3.123) 

Then the LS solution can be written as; 

ÜEoQ = 12 |#Ý = 12 �|�|�RS|�Ý (3.124) 

As seen from the matrix structures, for an over-determined equation system �" −1�  ≥ 4. For 3D localization at least 5 sensors should be used in Least Squares 

Localization Algorithm.  

Algorithm: 

1. Estimate the Time-Difference-of Arrival (TDOA) between the 1st sensor and 

the rest of the sensors for the received signals by using any TDOA 

estimation algorithm. 

2. As mentioned in equations (3.122) and (3.123), obtain the Ý and  | 

expressions by using the TDOA estimates and the sensor positions. 

3. Estimate the source position by using LS solution given in equation (3.124). 

 

As obviously seen from the LS solution expression, this solution highly depends on 

the location of the sensors and the target. When TDOAs are close to each other or 

sensor positions badly chosen, the expression �|�|�  becomes close to singular. To 

prevent ill-conditioned inverse situations the locations of the sensors should be 

chosen well. The pseudo inverse operations are performed via SVD in the 

simulations. The effect of this case is investigated in Chapter 5. 
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3.2.3 Cramer Rao Lower Bound for TDOA Based Source 

Localization 

Many different Cramer-Rao Lower Bound expressions for TDOA based source 

localization have been derived in the literature [77]. However, some of these are the 

approximate solutions to the lower bound.  

 The $¡%& block of the FIM is given by [49] 

L¢£¤�)�O�¥ = ¦ § hh�� $��c&��ℎ�: ��� hh�¥ $��c&��ℎ�: ���« (3.125) 

where )( is the $%& element of the true target location vector m; c̈©�ℎ�: �� is the 

likelihood function with respect to the true target position and �ÑRS is the inverse of 

the covariance of the range difference measurements. The natural log-likelihood 

function can be written as 

$��c&��ℎ�: ��� = 12 �Ð� − Ð�)��a�ÑRS�Ð� − Ð�)�� + ¬ (3.126) 

where ¬ is constant term independent from the target position. The complete FIM 

can be written as 

¢£¤�)� = �)Ð�)��a�ÑRS�)Ð�)�� (3.127) 

The derivation starts with defining the operator ß) which represents the gradient 

vector, 

)Ð�)� = �hÐ�)�h�V
hÐ�)�h�W

hÐ�)�h�� � (3.128) 

The �" − 1�*1  vector Ð�)� represents the true range differences between the first 

sensor and the others with respect to the true target position. 

Ð�)� = � fC-,T, CÓ,T, … , CZ,TgP
 (3.129) 
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Assuming that the range (Time of Arrival (TOA) values multiplied by propagation 

speed c) measurements are independent from each other, the covariance of the 

range difference measurements can be written as 

�Ñ = �-�PÔÕ-

ij
jj
jj
jk1 12 … 1212 1 ⋱ ⋮

⋮ ⋱ ⋱ 1212 … 12 1pq
qq
qq
qr
 (3.130) 

where the �" − 1�*�" − 1�  matrix �Ñ is the covariance of the range difference 

measurements. 

The expression  
®Ð�)�®H4  is the partial derivate of the range difference values with 

respect to the x-coordinate of the true target position, 

hÐ�)�h�V =

ijj
jjj
jjj
jjk
�>V − >-,V�lm − mnl − �>V − >T,V�lm − mSl�>V − >Ó,V�lm − màl − �>V − >T,V�lm − mSl

⋮
�>V − >Z,V�lm − mol − �>V − >T,V�lm − mSl pqq

qqq
qqq
qqr
 (3.131) 

Similarly expressions  
®Ð�)�®H;   and 

®Ð�)�®H<  are the partial derivates of the range 

differences with respect to the y and z coordinates of the true target position 

respectively. These expressions can be written as 
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hÐ�)�h�W =

ijj
jjj
jjj
jjk
�>W − >-,W�lm − mnl − �>W − >T,W�lm − mSl�>W − >Ó,W�lm − màl − �>W − >T,W�lm − mSl

⋮
�>W − >Z,W�lm − mol − �>W − >T,W�lm − mSl pqq

qqq
qqq
qqr
 (3.132) 

 

hÐ�)�h�� =

ijj
jjj
jjj
jjk
�>� − >-,��lm − mnl − �>� − >T,��lm − mSl�>� − >Ó,��lm − màl − �>� − >T,��lm − mSl

⋮
�>� − >Z,��lm − mol − �>� − >T,��lm − mSl pqq

qqq
qqq
qqr
 (3.133) 

After calculating the complete FIM, CRLB matrix is written as 

²�o³ = �¢£¤�RS (3.134) 

The 3*3 CRLB matrix contains the axial minimum achievable variances on its 

diagonals. 

���G�²�o³� = ´�14- , �1;- , �1<- µ (3.135) 

The trace of the CRLB matrix gives the minimum achievable localization variance. 

�1- = �F�²�o³� (3.136) 
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3.3 AOA-TDOA BASED HYBRID SOURCE LOCALIZATIO
 

In this part, AOA-TDOA based hybrid source localization is investigated. After 

formulating the hybrid localization problem, Maximum Likelihood (ML) based 

hybrid localization algorithm is presented for 3D localization. Literature survey on 

Least Squares (LS) based hybrid localization algorithms is briefly presented. This 

part ends with derivation of the Cramer Rao Lower Bound (CRLB) expression for 

3D AOA-TDOA based hybrid source localization problem. 

3.3.1 Problem Formulation 

To estimate the position of the target with AOA-TDOA based hybrid localization 

algorithms, the pre-measured AOA and TDOA values are needed. The TDOA 

values are measured between the different sensor arrays and AOA values are 

measured at each sensor array. As mentioned before, each TDOA value represents a 

branch of hyperboloid and the target position lies on the surface of it. Moreover the 

target lies on rays (azimuth and elevation), each starts from the sensor arrays. By 

using these unique hyperboloids and the rays the location of the emitter can be 

estimated. An illustrative noise free scenario is seen in Figure 3.18 which illustrates 

the 2D geometric interpretation.  
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Figure 3.18: Noise Free Scenario for 2D Hybrid Based Source Localization 

The problem is estimating the position of the target with using noisy LOB 

measurements taken from different sensor arrays, noisy TDOA measurements 

calculated between the sensor arrays and array locations. Many techniques depend 

on geometric solutions have been developed whereas, Maximum Likelihood (ML) 

based techniques depend on some statistical properties of the pre-measured 

parameters such as covariance of the LOB measurements and covariance of the 

TDOA measurements for accurate positioning.  

3.3.2 Hybrid Based Source Localization Algorithms 

In this part, AOA-TDOA based hybrid source localization algorithms are given 

such as Maximum Likelihood (ML) and Least Squares (LS) based hybrid 

localization algorithms. Maximum Likelihood (ML) based hybrid localization 

algorithm is presented for 3D localization. Literature survey on Least Squares (LS) 

based hybrid localization algorithms is briefly presented. 
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3.3.2.1 Hybrid Based Maximum Likelihood Source Localization 

Algorithms 

By assuming the noise is zero mean Gaussian, the Maximum Likelihood Estimation 

(MLE) of the source position can be written as [49]  

)E = �FG?��1{I��, @, C, ��} (3.137) 

where the cost function I��, @, C, �� is 

I��, @, C, �� = 12 �á� − á�)��a�áRS�á� − á�)�� (3.138) 

The cost function depends on the angle and range difference measurements, 

covariance of these measurements and the angles and range differences with respect 

to the search point. �3" − 1�*1  vector á�  represents the angle and range difference 

measurements. 

á� = fMEN a    ME� a    Ð�aga
 (3.139) 

The measurement vector components are defined in equations (x-y-z). 

The �3" − 1�*1  vector á�)� represents the azimuth and elevation angles; the 

range differences between the first sensor and the others; with respect to the search 

point. 

á�)� = fMN a �)�    M� a �)�     Ða�)�ga
 (3.140) 

where the "*1 vectors MN�)� and M��)� represent the azimuth and elevation angles 

with respect to the search point respectively. Moreover �" − 1�*1 vector Ð�)� 

represents the range differences between the first sensor and the others with respect 

to the search point. The expressions for these vectors are given in sections 3.1 and 

3.2.  
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Assuming that the range measurements and angle measurements are independent 

from each other, the covariance of AOA and TDOA measurements can be written 

as 

�á = â�N s ss �� ss s �Ñ
ã (3.141) 

MLE Algorithm: 

1. Estimate the Angle of Arrival values of the sensors arrays and Time 

Difference of Arrival (TDOA) of the received signal between the sensor 

array pairs by using any AOA and TDOA estimation algorithms. 

2. As mentioned in equations (3.139) and (3.141), obtain the measurement 

vector á�  and the measurement covariance matrix �á. 

3. Perform a grid search; in each search point  

i. Calculate the range difference between the first sensor and the others 

with respect to the search point; obtain vector Ð�)� 

ii. Calculate the relative azimuth and elevation angles for each sensor 

array with respect to the search point; obtain vectors MN�)� and M��)� 

iii. By using vectors found in (i) and (ii) obtain  �3" − 1�*1  vector á�)� 

iv. Calculate the cost function I��, @, C, �� 

4. After performing the grid search, find the position estimate )E , which gives 

the minimum cost. 
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3.3.2.2 Hybrid Based Least Squares Source Localization 

Algorithms 

Many closed form localization algorithms based on fusion of hybrid measurements 

have been developed. LS AOA-TDOA based hybrid localization algorithms depend 

on merging the AOA and TDOA based equation sets. In the literature, various 

methods have been presented such as LS Method, Two-Step LS Method, Divide 

and Conquer Method, methods specific to UWB and WCDMA systems, hybrid 

estimation with artificial neural networks [12, 35-40]. Both of these methods 

depend on combining the AOA and TDOA equation sets into a single equation 

system.  

3.3.3 Cramer Rao Lower Bound for AOA-TDOA Based Hybrid 

Source Localization 

In this part the Cramer Rao Lower Bound (CRLB) is presented for 3D AOA-TDOA 

based hybrid source localization problem. The CRLB is found by inverting the 

Fisher Information Matrix (FIM). The $¡%& block of the FIM is given by [49] 

L¢£¤�)�O�¥ = ¦ § hh�� $��cä� �È�: ��� hh�¥ $��cä� �È�: ���« (3.142) 

where )( is the $%& element of the true target location vector m; cä� �È�: �� is the 

likelihood function with respect to the true target position and �ÇRS is the inverse of 

the covariance of the angle and range difference measurements. The natural log-

likelihood function can be written as 

$��cä� �È�: ��� = 12 �Ç� − Ç�)��a�ÇRS�Ç� − Ç�)�� + ¬ (3.143) 

where ¬ is constant term independent from the target position. The complete FIM 

can be written as 

¢£¤�)� = �)Ç�)��a�ÇRS�)Ç�)�� (3.144) 



71 

The derivation starts with defining the operator ) which represents the gradient 

vector 

)Ç�)� = �hÇ�)�h�V
hÇ�)�h�W

hÇ�)�h�� � (3.145) 

Under assuming azimuth and elevation measurements are independent from each 

other, the covariance of the angle measurements can be written as 

�Ç = â�N s ss �� ss s �Ñ
ã (3.146) 

where the "*"  matrices �N and �� are the covariances of the azimuth and 

elevation measurements respectively. Moreover �" − 1�*�" − 1�  matrix �Ñ 

represents the covariance of the range difference measurements. The covariance 

matrices of the azimuth, elevation and range difference measurements are presented 

in sections 3.1 and 3.2. 

The  �3" − 1�*1  vector Ç�)� represents the true angles and range differences with 

respect to the true target position. This vector consists of  two o*1 vectors and one �" − 1�*1 vector;  MS�)�,  Mn�)�, Ð�)� which represent the true azimuth, elevation 

angles and range differences respectively, i.e., 

Ç�)� = LMSa�)�   Mna�)� Ða�)�Oa (3.147) 

 

MS�)� = L�T,  �-, … , �ZOP (3.148) 

 

Mn�)� = L@T,  @-, … , @ZOP (3.149) 

 

Ð�)� = � fC-,T, CÓ,T, … , CZ,TgP
 (3.150) 
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The expression ß)Ç�)�, can be represented in terms of the gradients of the true 

parameters as 

)Ç�)� =
ijj
jk)MS�)�
)Mn�)�
)Ð�)� pqq

qr
 (3.151) 

The separated �3" − 1�*3  matrix )Ç�)� can be represented as 

)Ç�)� =  
ijj
jjj
jjk
hMS�)�h�V

hMS�)�h�W
hMS�)�h��hMn�)�h�V

hMn�)�h�W
hMn�)�h��hÐ�)�h�V

hÐ�)�h�W
hÐ�)�h�� pqq

qqq
qqr
 (3.152) 

The sub-blocks of the matrix ß)Ç�)�  represent the partial derivate of the true 

parameters (azimuth and elevation angles, range differences) with respect to each 

coordinate of the true target position. The sub-block expressions have been 

presented in sections 3.1 and 3.2. 

After constructing the matrix ß)Ç�)�  and calculating the complete FIM, CRLB 

matrix is written as 

²�o³ = �¢£¤�RS (3.153) 

The 3*3 CRLB matrix contains the axial minimum achievable variances on its 

diagonals. 

���G�²�o³� = ´�14- , �1;- , �1<- µ (3.154) 

The trace of the CRLB matrix gives the minimum achievable localization variance. 

�1- = �F�²�o³� (3.155) 
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CHAPTER 4  

 

SI
GLE STEP SOURCE LOCALIZATIO
 

ALGORITHMS  

In this chapter, single step source localization algorithms are investigated for 

different number of sources. The chapter starts with formulating the single step 

localization problem. After problem formulation, single step localization algorithms 

which are in maximum likelihood sense are presented. Two different algorithms are 

presented by Weiss and Amar for single and multiple sources [1, 45]. After 

presenting these algorithms, some novel high resolution and maximum likelihood 

approaches are introduced. Both of these algorithms use embedded AOA and TOA 

information of the received signals in the manifold model. In other words, these 

algorithms are designed to estimate the location of the source in a hybrid single step 

manner. The chapter ends by presenting the Cramer Rao Lower Bound expression 

for the single step source localization problem. 

4.1 PROBLEM FORMULATIO
 

Consider an emitting source and  " sensor arrays, each one consisting of  #  
elements. The vectors p and )( denote the Cartesian coordinates of the transmitter 

and the  $%&  array respectively. By assuming LOS (line-of-sight) propagation 

between the transmitter and the arrays, the signal observed by the $%&  sensor array is 

given by 
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Ý(�¸� = �� '(�)� ���−C��)� − �D� +  å(�¸�  
0 ≤ � ≤ ! 

(4.1) 

where Ý(�¸� is a #*1 vector, �� is an unknown complex attenuation coefficient 

between the transmitter and the  $%&  sensor array, '(�)� is the #*1 array steering 

vector of the  $%&  array with respect to the transmitter location ) , ���� is the 

transmitted signal waveform, �D is the transmission time, C��)� is the flight time of 

the signal between the array and transmitter and å((t) is the noise vector. After 

sampling the received signal (eqn. 4.2), DFT is taken (eqn. 4.3). 

Ý(�å� = [�� '(�)� ���−C��)� − �D� +  å(�¸� O%d7P 

0 ≤ � < æ5 
(4.2) 

 Ý(�ç� = �� '(�)�� � � �R,.èé.�
2�)�:%ê� + å(�ç� 

0 ≤   < æ5;  ëÏ = -. Ïìí P 
(4.3) 

Note that the steering vector '(�)� and the time of arrival C��)� expressions contain 

the information about the location of the transmitter. The problem is finding the 

position of the source with the observed data directly, instead of the conventional 

two-step localization methods. 

The problem formulation can easily be extended to multiple numbers of sources [1]. 

Consider A  emitting sources and "  sensor arrays, each one consists of # elements. 

The vector  )Ê  denotes the Cartesian coordinate of the  ¡%&  transmitter. By 

previously mentioned assumptions, the signal observed by the  $%&     sensor array is 

given by 

Ý(�¸� = b ��¥ '(�)Ê� �¥��−C��)Ê� − �¥D�É
¥dT +  å(�¸� 

0 ≤ � ≤ ! 

(4.4) 
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where Ý(�¸� is a #*1 vector, ��¥ is an unknown complex attenuation coefficient 

between the  ¡%&  transmitter and the  $%&   sensor array, '(�)Ê� is the #*1 array 

steering vector of the  $%&  array with respect to the  ¡%&   transmitter location )Ê, �¥���  is the transmitted signal waveform from the  ¡%&   transmitter, �¥D is the 

transmission time, C��)Ê� is the flight time of the signal between the array and  ¡%&   
transmitter and å(�¸� is the noise vector. The received signal partitioned into î sections each of length !/î ≫ ?�*{C��)Ê�} . Actually the maximum realizable 

propagation time is the maximum propagation time between the receivers. For 

instance, if the largest distance between the sensor arrays is 50 km, then max 

{C��)¥�} becomes 166 microseconds. Therefore 33.2 milliseconds for !/î period 

satisfy the requirement of 20 dB isolation ratio (" ≫ " represents 200 times for 20 

dB isolation) between the sources [1, 59]. After sampling the received signal, DFT 

is taken for each section (eqn. 4.5). 

Ý(�ò, ç� = bL ��¥ '(�)Ê�  �¥�ë,  �  �R,.ó.�
2�)Ê�:%ôê� O + å(�ò, ç�É
¥dT  

k=1, 2… K;           w=1, 2… W;             õ = -. èö �P/÷� 
(4.5) 

where Ý(�ò, ç� is the ëth Fourier coefficient of the   %&  section of the  $%&  array 

corresponding to the frequency õ; �¥�ë,  � is the ëth Fourier coefficient of the   %&  
section of the  ¡%&  signal waveform, å(�ò, ç� is the ëth Fourier coefficient of the   %&  section of the noise waveform at the  $%&  array. For a simple representation, the 

vectors and scalars are rewritten as 

�¥ø �ë,  � = �¥�ë,  � �R,.ó.%ôê (4.6) 

 

'(ø �ò, )Ê, }(Ê� = ��¥'(�)Ê� �R,.ó.
2�)Ê� (4.7) 
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It is obviously seen that all the information about the position of the transmitters are 

embedded into the expression '(ø �ò, )Ê,  }(Ê�. In matrix notation, equations can be 

rewritten as 

Ý(�ò, ç� =  |(�ò�·ù�ò, ç� +  å(�ò, ç� (4.8) 

 

|(�ò� = f'(ø �ò, )S, }(S�, '(ø �ò, )n, }(n�, … , '(ø �ò, )Í, }(Í�g (4.9) 

 

·ù�ò, ç� = L �Tø �ë,  �, �-ø �ë,  �, … , �Éùùù�ë,  � OP (4.10) 

Since the signal waveform vectors ·ù�ò, ç� are the same for all sensors, the 

equations can be represented as 

Ý�ò, ç� = |�ò� ·ù�ò, ç� +  å�ò, ç� (4.11) 

 

Ý�ò, ç� = LÝSa�ò, ç�, Ýna�ò, ç�, … , Ýoa�ò, ç� Oa (4.12) 

 

å�ò, ç� = LåSa�ò, ç�, åna�ò, ç�, … , åoa�ò, ç� Oa (4.13) 

 

|�ò� = L |Sa�ò�, |na�ò�, … , |oa�ò� Oa (4.14) 

Then autocorrelation matrix of each frequency bin can be written as 

��ò� = ¦{ Ý�ò, ç� Ý��ò, ç� } = |�ò� �·�ò� |��ò� +  �-£ (4.15) 

 

�·�ò� = ¦{ ·ù�ò, ç�  ·ù��ò, ç� } (4.16) 
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�-£ =  ¦{ å�ò, ç�  å��ò, ç� } (4.17) 

where the noise is assumed to be temporally and spatially white, uncorrelated 

between the frequency bins, uncorrelated with the signal waveforms and assumed to 

be zero mean with variance �-.   

The problem is finding the locations of multiple number of sources from the 

observation autocorrelation matrices ��ò�. The AOA and TOA information of the 

sources are embedded in the array manifold expressions |�ò�, where the AOA 

information is the same for all frequency bins whereas TOA information changes. 

4.2 SI
GLE STEP SOURCE LOCALIZATIO
 ALGORITHMS 

In this part of the thesis, single step localization algorithms are presented. This part 

starts with presenting the Direct Position Determination Algorithms for single and 

multiple emitter cases, and then goes on with designing the conventional DOA 

estimation solutions for the multiple source localization problem.  Multiple Signal 

Classification, Deterministic Maximum Likelihood and Stochastic Maximum 

Likelihood algorithms are modified for the single step passive multiple source 

localization problem. The sense of the modification is designing a centralized 

manifold model for the system, which is presented in detail in the relevant parts. 

4.2.1 Direct Position Determination for Single Source 

Various kinds of Direct Position Determination (DPD) algorithms were presented 

by Weiss et al. DPD algorithm is modified for different geometries (stationary, non-

stationary) and modulation dependencies (modulation independent, OFDM) [1, 42-

45]. 

For this algorithm the signal model given in (4.3) is used since there is only one 

source [45]. DPD algorithm is based on minimizing the cost function, 

A�)� =  b b  úÝ(�ç� − �� '(�)� �� � �R,.èé.�
2�)�:%ê�úû-  ìíRT
ÏdD

Z
�dT  (4.18) 
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where operator l. lû  represents the Frobenius norm. By minimizing the cost 

function A�)� with respect to unknown attenuation coefficients �� and without loss 

of generality assumptions 

l��l-=1; l'(�)�l-=1;  ∀$ (4.19) 

DPD cost function for an unknown signal becomes, 

A¿�)� =  º+ÁV�~� (4.20) 

where  º+ÁV�~� represents the largest eigenvalue of the matrix ~. The æ5*æ5 
matrix ~ is defined as 

~ = ýý�
 (4.21) 

æ5* " matrix ý  consists of vectors which are calculated for each sensor array, 

ý = L þS, þn, . . . , þoO (4.22) 

Each  æ5* 1 vector  þ( contains information for each DFT coefficient as 

þ( = L ���0�, ���1�, … , ���æ5 − 1� OP  (4.23) 

Actually this information is the correlation of the observed data with the array 

manifold, 

��� � =  �R,.èé.�
2�)��'(��)�Ý(�ç�  (4.24) 

Dimensions of the matrix ý are æ5* ", so ~ becomes æ5* æ5 matrix. Maximization 

of the cost function A¿�)� requires 2 dimensional search (or 3 dimensional search 

for 3D localization).  Due to the large dimension cases (large number of snapshots) 

for matrix ~, ~ is replaced with "*" matrix ~� . Then the cost function becomes, 

A¿�)� = º+ÁV�~�� (4.25) 
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~� = ý�ý  (4.26) 

This result holds for an observation of the signal over time  æ5! seconds. 

DPD Algorithm for Single Source: 

1. After the observation period, obtain the snapshot vector Ý(�ç� for each 

sensor array and for each DFT point. 

2. Perform a grid search; in each search point  

i. Calculate the expressions ��� �, þ( and ý with respect to the search 

point 

ii. By using expression ý found in (i) obtain  the expression ~�  

iii. Calculate the largest eigenvalue of the matrix ~� , and label it cost for 

the search point as A¿�)� 

3. After performing the grid search, find the position estimate )E , which gives 

the maximum cost. 

4.2.2 Direct Position Determination for Multiple Sources 

As mentioned in the previous part, this algorithm is also presented by Weiss and 

Amar [1]. The algorithm uses signal subspace of the autocorrelation matrix of the 

observed waveforms. Similarly, the algorithm uses both the embedded AOA and 

TOA information of the multiple sources in one step. As Single Source DPD 

algorithm, Multiple DPD algorithm is frequency-bin dependent to use the TOA 

information.  The cost function of the algorithm for a single source was presented in 

the previous part. In order to avoid the multiple dimensional search for each source, 

authors prefer to use MUSIC approach, in other words use the signal subspace of 

the autocorrelation matrix.  

The received signal model for multiple sources is given in (4.5). The autocorrelation 

matrix can be written for each frequency bin as 

��ò� = ¦{ Ý�ò, ç� Ý��ò, ç� } = |�ò� �·�ò� |��ò� +  �-£ (4.27) 

where �·�ò� represents the signal covariance for each frequency bin ë, 
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�·�ò� = ¦{ ·ù�ò, ç�  ·ù��ò, ç�  
k=1, 2… K;           w=1, 2… W 

(4.28) 

Similarly, �-£  represents the noise covariance for each frequency bin ë, 

�-£ =  ¦{ å�ò, ç�  å��ò, ç� } 

k=1, 2… K;           w=1, 2… W 
(4.29) 

Again, sectioning in time domain is applied for isolation purposes [1, 59]. In other 

words, î number of snapshots are taken for each frequency bin. As indicated 

before, MUSIC based DPD approach uses the cost function, 

I�), }� = b  'ø��ò, ), }� ý·�ò� ý·��ò� 'ø�ò, ), }�ö
èdT  (4.30) 

where 'ø�ò, ), }� represents the collection of the steering expressions of each sensor 

array 

'ø�ò, ), }� = L 'øSa�ò, ), }S�, 'øna�ò, ), }n�, … , 'øoa�ò, ), }o�Oa (4.31) 

 

} = L�T, �-, … , �Z OP (4.32) 

where ý·�ò� is #"*A  matrix which consists of the eigenvectors of  ��ò� 

corresponding to the A  largest eigenvalues. Also ) and } represent the unknown 

position vector and the unknown complex attenuation coefficients between the 

arrays and this unknown source position respectively. Note that the manifold vector  'ø�ò, ), }� contains the L complex attenuation coefficients in addition to embedded 

AOA and TOA information respect to the unknown position. The extreme points of 

the cost function depend on all unknowns and require 2�" − 1� + � dimensional 

search. To reduce the search dimension, authors present the manifold expression as 

'ø�ò, ), }� = Ç�ò� � } (4.33) 
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Ç�ò�= ���G {  'Sa�)� �R,.ó.
\�)�,   'na�)� �R,.ó.
]�)�, … ,   'oa�)� �R,.ó.
^�)�  } 
(4.34) 

 

� = £Z  ⊗  S� (4.35) 

where Ç�ë� is the block diagonal matrix with elements consist of response 

manifold vectors of the sensor arrays, £Z is " * "  identity matrix, S¤  is # * 1  

vector consists of ones and ⊗ stands for Kronecker product. Substituting the 

mentioned new manifold representation in the original cost function (4.30) results 

with 

I�), }� =  }���  � b  Ç��ò� ý·�ò� ý·��ò� Ç�ò� ö
èdT 	� } (4.36) 

The norm of } is assumed as 1 to obtain a unique solution. Consequently, for any 

position ), the maximum point of the cost function I�), }�, corresponds to the 

maximum eigenvalue of the matrix ~�)� defined as 

~�)� =  ��  � b  Ç��ò� ý·�ò� ý·��ò� Ç�ò� ö
èdT 	� (4.37) 

Finally, the original cost function I�), }� reduces to 

I�)� = º+ÁV{ ~�)� } (4.38) 

where  º+ÁV{ ~�)� } represents the largest eigenvalue of the matrix ~�)�, which is 

a function of the observed data, in other words, function of the signal subspace of 

the auto-covariance matrix of the received data, and the manifold response of each 

sensor array with respect to the source located at location ). The searching is 

required to achieve in D-dimensions (generally D=2, for 3D localization D=3).  

An illustrative scenario is shown in Figure 4.1. In this scenario SNR is 0 dB and for 

each DFT bin 100 snapshots are used to calculate the cost function. Each sensor 
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array is equipped with a 5 element Uniform Linear Array (ULA). True target 

locations and the positions of the sensor arrays are labeled.  

 

 

Figure 4.1: Contour Plot of the DPD Cost Function for 2D Scenario (SNR=0dB) 

The cost function I�)� = º+ÁV{ ~�)� } has peaks near the target locations. The 

true target locations are labeled with the arrows; the peaks give the position 

estimates. 

DPD Algorithm for Multiple Emitters: 

1. After the observation period, obtain the snapshot vector Ý�ò, ç� for each 

section   and frequency bin ë. 

2. Calculate the observation covariance matrix ��ò�for each frequency bin. 

3. Obtain the matrix ý·�ò� by calculating the eigenvectors of  ��ò� 

corresponding to the A  largest eigenvalues. 
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4. Perform a grid search; in each search point  

i. Calculate the expression Ç�ò� with respect to the search point 

ii. By using expression Ç�ò�  found in (i) obtain the expression ~�)� 

iii. Calculate the largest eigenvalue of the matrix ~�)�, and label it cost 

for the search point as I�)� 

5. After performing the grid search, find the position estimate )E , which gives 

the maximum cost. 

Weiss and Amar, analyzed the performance of the DPD algorithm in the presence of 

modeling errors such as multipath, mutual coupling and calibration errors in [48]. 

The DPD algorithm gives better location estimates than the conventional AOA 

based method for multiple emitters in the presence of mentioned model errors. 

4.2.3 Direct Localization with Multiple Signal Classification 

Certainly, Multiple Signal Classification (MUSIC) algorithm marks a new era in 

Direction-of-Arrival (DOA) estimation [60, 78]. As mentioned in the previous part, 

Weiss et al. uses an alternative MUSIC approach in single step multiple source 

localization problem. In conventional MUSIC approach, noise subspace of the total 

observation is used instead of using signal subspace of the observations. In other 

words, conventional MUSIC is applied to the multiple source localization problem 

with little modifications on array manifold expression. The array manifold and the 

observation autocorrelation matrix consequently signal and noise subspaces are 

modified by using all sensors of the separated sensor arrays. To merge the separated 

array manifolds by preventing spatial aliasing, the TOA information of each array is 

added to the conventional manifold expression. The resulting expression becomes, 

|�ò� = L�TT �ë�   �T-�ë� … �T��ë�  �-T �ë� …  ��+�ë� … �Z� �ë�OP (4.39) 

where ��+�ë� represents the phase response of the ?%& sensor of the  $%& array with 

respect to the ë%&   frequency bin. 
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��+�ë�
=  �R,. -. èö �P÷��
2�)���R, -./  01234567��2�895��2�:123;895��2�895��2�:123<567��2�=

 

w=1, 2… W 

(4.40) 

where >�+4, >�+;and >�+<  are the x, y and z coordinates of the ?%& sensor of the  $%& array respectively. �� is the azimuth angle of the source signal to the $%& array, 

whereas @� is the elevation angle. The angles �� and @� can be easily expressed with 

the vector coordinates of the $%& array  �� , ?%& sensor of $%& array ��+ and the 

transmitter  ).  

��+�ë� =  �R,. -. èö �P÷�   lmRm(l8   �R, -./  m(
a �mRm(�lmRm(l 
(4.41) 

where the operator l. l represents the Euclidian norm. The observation 

autocorrelation matrix given in (4.15) is rewritten 

��ò� = ¦{ Ý�ò, ç� Ý��ò, ç� } = |�ò� �·�ò� |��ò� +  �-£ (4.42) 

where the signal and noise covariance matrices are defined as 

�·�ò� = ¦{ ·ù�ò, ç�  ·ù��ò, ç� } �-£ =  ¦{ å�ò, ç�  å��ò, ç� } 

k=1, 2… K;           w=1, 2… W; 

(4.43) 

As shown in the above expression, the rank of the part |�ò� �·�ò� |��ò� is equal 

to the number of sources A. Similarly the rank of the noise expression  �-£  is equal 

to the total number of sensors "#. Consequently the rank of the autocorrelation 

matrix is equal to "#. If the autocorrelation matrix is written in terms of its 

eigenvalues and eigenvectors, 

��ò� = � ∧  �� (4.44) 

where #"*#" matrix ∧ contains the eigenvalues of ��ò� on its diagonal entries, 
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∧= ���G{ �ºT +  �-�,  �º- +  �-�, … ,  �ºÉ +  �-�,  �-, … ,  �- } (4.45) 

#"*#" matrix � contains the eigenvectors of ��ò�  on its columns, 

� = L�S,  �n, … ,  �Í,  �Í:S, … , �¤o O (4.46) 

The signal and noise subspaces of the observation autocorrelation matrix can be 

defined as 

Q = L�S,  �n, … ,  �ÍO (4.47) 

 

 = L�Í:S, … , �¤o O (4.48) 

where #"*A matrix Q contains the eigenvectors of the signal components, #"*�#" − A� matrix  contains the eigenvectors of the noise components. When 

the ��ò� expression is multiplied with noise subspace , 

��ò�  = �- = |�ò� �·�ò� |��ò�  +  �- (4.49) 

Then, the representation reduces to 

|�ò� �·�ò� |��ò�  = 0 (4.50) 

However the  |�ò� �·�ò�  part of the expression has a full column rank, so the |��ò�   part should be zero to satisfy the equation (4.50). 

|��ò�  = s (4.51) 

The true locations of the sources {)e}edSÍ  are the only solutions of the equation, 

|��ò�  �|�ò� = 0 (4.52) 

if #" > A, in other words if the number of sources is less than the total number of 

sensors. Then the MUSIC spectrum can be written in terms of the source position as 
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I�)� = 1|��ò�  �|�ò� (4.53) 

Note that the manifold expression |�ò� highly depends on the source position ). 

When the MUSIC spectrum is calculated for each position (grid search is 

performed), the peaks of the spectrum give the source location estimates. This fact 

can be written as 

)E = �FG?�*H   � 1|��ò�  �|�ò�  � (4.54) 

Similarly, the searching is required to achieve in D-dimensions (generally D=2, for 

3D localization D=3).  

An illustrative scenario is shown in Figure 4.2, for 2D scenario the MUSIC cost 

function I�)� is calculated for each point. The scenario is exactly the same with the 

scenario used in DPD illustration (i.e. SNR=0 dB, 100 snapshots are used for each 

frequency bin, each sensor array is equipped with 5-element ULA, locations of the 

sensor arrays and the targets are the same).  

 

Figure 4.2: MUSIC Cost Function for 2D Scenario (SNR=0 dB) 
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As mentioned in the previous paragraphs, the peaks of the MUSIC spectrum give 

the location estimates of the emitters. MUSIC spectrum has sharper peaks than the 

DPD cost function. The contour plot of the MUSIC spectrum is shown in Figure 

4.3. When the contour plots of the MUSIC and DPD cost functions are compared, it 

is obviously seen that MUSIC spectrum contains sharper peaks. The true target 

locations and the locations of the sensor arrays are labeled in the figure. 

 

 

Figure 4.3: Contour Plot of the MUSIC Cost Function for 2D Scenario (SNR=0 dB) 
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1. After the observation period, obtain the snapshot vector Ý�ò, ç� for each 
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2. Calculate the observation covariance matrix ��ò�for each frequency bin. 

3. Obtain the noise subspace matrix �ò� by performing an eigen 

decomposition to   ��ò�  
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4. Perform a grid search; in each search point  

i. Calculate the expression |�ò� with respect to the search point 

ii. Calculate the MUSIC pseudo spectrum, and label it cost for the 

search point as I�)� 

5. After performing the grid search, find the position estimate )E , which gives 

the maximum cost. 

4.2.4 Direct Localization with Deterministic Maximum Likelihood 

for Multiple Sources 

Deterministic Maximum Likelihood (DML) algorithm is widely used in Direction-

of-Arrival (DOA) estimation. The DML algorithm was contributed to the literature 

by Schweppe to estimate the DOA of the multiple sources with a sensor array [59, 

79-80]. 

In this part, DML expression used in DOA estimation problem is modified for the 

single step multiple source localization problem. In this algorithm, the noise is 

modeled as a stationary Gaussian white process. Moreover noise is assumed to be 

spatially and temporally white and circularly symmetric between the sensors and 

the frequency bins. Under these assumptions, noise can be written as 

¦{å�ò', ç�  å��ò}, (�} = �- £ �ÁÀ�Ï� ¦{å�ò', ç�  åa�ò}, (�} = 0 
(4.55) 

where  � represents Dirac -Delta function. The signal is also assumed to be 

circularly symmetric and temporally white Gaussian random process with 

mean |�ò�·ù�ò, ç�. The array output expression is written as 

Ý�ò, ç� = |�ò� ·ù�ò, ç� + å�ò, ç� (4.56) 

So the multivariate Probability Density Function (PDF) of the snapshot model can 

be presented as, 
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cW�Ý�ò, ç�� = 1���-��Z   �*� � −lÝ�ò, ç� − |�ò� ·ù�ò, ç�l-�-  � (4.57) 

Then, the likelihood function can be written as 

"��Z�ë, ), ·ù�ò, ç�, �-�
= ����-�R�Z÷

ÏdT �*� � – lÝ�ò, ç� − |�ò� ·ù�ò, ç�l-�-  � 
(4.58) 

By taking the logarithm of both left and right sides, the negative log-likelihood 

function (normalized by the number of snapshots) becomes 

$��Z = #" $�G��-� + 1K�- blÝ�ò, ç� − |�ò� ·ù�ò, ç�l-�
�dT  (4.59) 

When the log-likelihood function is minimized for the noise variance �-and the 

signal waveforms ·ù�ò, ç�, these expressions can be written as, 

�©- = 1#" �F{П|� ��Ý�ò�} (4.60) 

 

·©�ò, ç� = |#�ò� Ý�ò, ç� (4.61) 

where ��Ý�ò� is the observation covariance matrix constructed by using all sensors 

as 

��Ý�ò� = 1î b Ý�ò, ç� Ý��ò, ç�÷
ÏdT  (4.62) 

and П|� represents the projector onto the noise subspace. The projector П|� can be 

calculated by using the projector onto the signal space. The expression П|� can be 

written as 

П|� = £ − П| (4.63) 
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where the expression П| is the projector onto the signal subspace. £ represents the 

identity matrix with dimension "#*"#. The projector onto the signal subspace can 

be calculated with the manifold expression as 

П| = |�ò� |#�ò� (4.64) 

The expression |#�ò� is the pseudo-inverse of the manifold, which can be written 

as 

|#�ò� = L |��ò� |�ò� ORS |��ò� (4.65) 

Finally, by using the explicit minima for the noise variance and the signal 

waveforms, the position estimate can be written as 

)E = �FG?��H  [  �F{ П|� ��Ý�ò�}  _ (4.66) 

The derivation of the expression is similar to the DML derivation used in DOA 

estimation [59]. The idea is, when the projector П|�  removes all signal components, 

energy should be the smallest. After the grid search,  A (number of sources) lowest 

valleys give the source locations. Iterative techniques can be used to reduce the 

algorithmic complexity; however good initial position estimates are required to find 

the global minima and the other lowest �A − 1� valleys. 

Direct Localization with DML Algorithm: 

1. After the observation period, obtain the snapshot vector Ý�ò, ç� for each 

section   and frequency bin ë. 

2. Calculate the observation covariance matrix ��ò�for each frequency bin. 

3. Perform a grid search; in each search point  

i. Calculate the expression |�ò� with respect to the search point 

ii. By using the expression |�ò�, calculate the projector onto the noise 

subspace П|� 

iii. Calculate the expression  �F{ П|� ��Ý�ò�}, and label it as the cost of 

the search point 
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4. After performing the grid search, find the position estimate )E , which gives 

the minimum cost. 

4.2.5 Direct Localization with Stochastic Maximum Likelihood for 

Multiple Sources 

The Stochastic Maximum Likelihood (SML) algorithm was introduced by Stoica to 

estimate the DOA of the multiple sources with a sensor array [81]. In this part, SML 

expression used in DOA estimation problem is modified for the single step multiple 

source localization problem. The proposed approach cannot be used for totally 

unknown signals, because the signal waveforms are modeled as unknown Gaussian 

random processes.  

By ignoring the constant terms, negative log-likelihood function becomes, 

1Kbl П|� Ý�ò, ç� l-�
�dT = �F{ П|� ��Ý�ò�} (4.67) 

For fixed position vector ), the log-likelihood function minimized with respect to 

the signal covariance  �·�ò� and the noise variance �-. The resulting expressions 

for ��·�ò� and �©- can be written as 

��·�ò� = |#�ò����Ý − �©{�Z-  £��|#�ò��� (4.68) 

 

�©{�Z- = 1#" − A  �F{ П|� ��Ý�ò�} (4.69) 

where the observation covariance is calculated by using all snapshots from all 

sensors, as 

��Ý = 1î b Ý�ò, ç� Ý��ò, ç�÷
ÏdT  (4.70) 

Then the source position is represented as 
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)E = �FG?��H  [$�G  f���  � | ��·�ò�|� + �©{�Z-  £ �g_ (4.71) 

where the ��� represents the determinant of the inside. Similarly, for A number of 

sources, A lowest valleys give the source location estimates after the grid search. 

Direct Localization with SML Algorithm: 

1. After the observation period, obtain the snapshot vector Ý�ò, ç� for each 

section   and frequency bin ë. 

2. Calculate the observation covariance matrix ���� for each frequency bin. 

3. Perform a grid search; in each search point  

i. Calculate the expression |�ò� with respect to the search point 

ii. By using the expression |�ò�, calculate the projector onto the noise 

subspace П|� 

iii. By using the expression П|�, calculate  �©{�Z-  

iv. By using the expression |�ò� and  �©{�Z-  , calculate ��·�ò� 

v. Calculate the expression $�Gf���� | ��·�ò�|� + �©{�Z-  £ �g and label 

it as the cost of the search point 

4. After performing the grid search, find the position estimate )E , which gives 

the minimum cost. 

4.3 CRAMER RAO LOWER BOU
D FOR SI
GLE STEP 

SOURCE LOCALIZATIO
 

In this part, Cramer Rao Lower Bound (CRLB) expression for the single step 

multiple source localization problem is presented. In the simulations, accuracies of 

the various single step position estimators are compared with the lower bound.  The 

CRLB defines the limits of the estimators, that is no estimator can perform better 

than this bound. The noise and the measurement errors are the main sources of 

error. Measurement errors are systematic and unique to each implementation.  The 

Cramer Rao Lower Bound for Single Step Source Localization problem was derived 

and presented by Weiss [41]. As mentioned in the “Problem Formulation” part, the 
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unknowns are the locations of the sources, complex attenuation coefficients 

between the sources and the sensor arrays and the signal waveforms of the sources. 

These unknowns are mathematically represented as,  

m = L)S, )n, … , )ÍO (4.72) 

 

³ = L}S, }n, … , }ÍO (4.73) 

 

}Ê = f�T,¥, �-,¥ , … , �Z,¥gP
 (4.74) 

where A is the number of sources, " is the number of sensor arrays, )Ê is the �*1  

vector representing the Cartesian coordinates of the ¡%& source,  ��,¥ is the complex 

attenuation coefficient between the ¡%&  source and the $%&  sensor array. Moreover, 

there is no prior knowledge about the A number of different signal waveforms. The 

CRLB matrix is equal to the inverse of the Fisher Information Matrix (FIM). The 

FIM consists of different blocks each contains information about different 

unknowns. For zero mean Gaussian signals, the blocks of the FIM are represented 

as, 

¢£¤6, = �F §�ÝRS h�ÝhNe �ÝRS h�ÝhN� «  (4.75) 

where �Ý is the autocorrelation matrix constructed by using all sensors. �Ý can be 

represented as, 

�Ý = | ∧ |� + �-£ (4.76) 

| is the #"*A manifold matrix and contains the phase response of each sensor with 

respect to the each source, ∧ is the A*A autocorrelation matrix of the signal 

waveforms.  
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As mentioned, the complete FIM consists of different blocks with respect to the 

unknown parameters, namely, signal waveforms, real and imaginary parts of the 

complex attenuation coefficients and the source positions. The complete FIM 

consists of 16 different blocks for this problem. The structure of the complete FIM 

is shown below. 

¢£¤ =
ijj
jjj
k¢£¤∧∧  ¢£¤∧³ø   ¢£¤∧³�   ¢£¤∧m  
¢£¤³ø∧  ¢£¤³ø³ø   ¢£¤³ø³�   ¢£¤³øm  
¢£¤³�∧  ¢£¤³�³ø  ¢£¤³�³�   ¢£¤³�m  
¢£¤m∧  ¢£¤m³ø   ¢£¤m³�   ¢£¤mm  pqq

qqq
r
 (4.77) 

By using the fact, 

¢£¤6, = ¢£¤,6� (4.78) 

the off-diagonal blocks are represented for only the upper triangular part of the 

FIM.  

In Appendix A, the FIM block representations are directly given. The derivations of 

the FIM blocks are given in [41]. The derivative of the manifold matrix | with 

respect to the source position is required to calculate all of the FIM blocks. In 

Appendix B, derivative of the manifold matrix is presented. By constructing the 

complete FIM, CRLB matrix can be calculated as 

²�o³ = �¢£¤�RS (4.79) 

The diagonal entries of the CRLB matrix give the lower bounds for the estimation 

variances of the unknown parameters. By considering the structures of the FIM 

blocks, block diagonals of the CRLB matrix can be expressed as 
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²�o³ =
ijj
jjj
k²�o³∧∧      

 ²�o³³ø³ø     
  ²�o³³�³�     
    ²�o³mm  pqq

qqq
r
 (4.80) 

The block associated with the source position variances is the rightmost lowest 

block of the matrix ²�o³. The size of the block ²�o³mm is 3A*3A for 3D 

localization problem. The block ²�o³mm contains the achievable minimum axial 

variances for each emitter on its diagonals.   

²�o³mm = ���G��H\,4- , �H\,;- , �H\,<- … , �H�,4- , �H�,;- , �H�,<- � (4.81) 

By selecting the diagonal entries of the matrix ²�o³mm the lower variances of the 

positions of the emitters can be calculated. 

4.4 CO
CLUSIO
 

In this chapter, the single step source localization problem is formulized for single 

and multiple number of emitters. As seen from the formulation, the received signal 

model contains both AOA and TOA information. A criterion for the observation 

time is given for multiple localization problem for isolation purposes between the 

targets. Moreover the criterion for sectioning in the observation period is presented. 

Secondly, the Direct Position Determination (DPD) algorithms are presented for 

single source and multiple source cases. New direct localization approaches are 

derived for 3D localization such as Direct Localization with Multiple Signal 

Classification (MUSIC), Direct Localization with Deterministic Maximum 

Likelihood (DML) and Direct Localization with Stochastic Maximum Likelihood 

(SML). The cost functions of some of the methods are compared in 2D scenarios 

for easier illustration of the concept. 

Finally, the Cramer Rao Lower Bound expression derived by Weiss is given for 

single step multiple source localization problem. The FIM block representations 
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(derived by Weiss in [41]) are given in Appendix A. Moreover, derivative of the 

manifold matrix  | with respect to the true source positions is required to calculate 

all of the FIM blocks. The derivation of the derivative of the manifold matrix is 

performed in this thesis and presented in Appendix B. As mentioned before, the 

CRLB consists of different blocks with respect to the unknown parameters, namely, 

signal waveforms, real and imaginary parts of the complex attenuation coefficients 

and the positions of the emitters. The CRLB expression contains minimum 

achievable variances of the unknowns.  
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CHAPTER 5  

 

SIMULATIO
S 

The performances of the AOA based ML and LS, TDOA based ML and LS, AOA-

TDOA based hybrid ML, single step based DPD, MUSIC, DML and SML location 

estimation algorithms are compared under various cases. In each comparison, 

related CRLB expressions are calculated to investigate the performance of the 

algorithms with the achievable ultimate performance.  

The simulations are presented in two parts. In the first part, individual comparisons 

of the algorithms are presented. In other words, AOA based methods, TDOA based 

methods and single step based methods are investigated individually under the 

single source case. AOA-TDOA based hybrid ML method is compared with the 

AOA and TDOA based methods in order to see the performance improvement. The 

performances are evaluated by comparing the azimuth & elevation deviations and 

TOA deviations for conventional methods. These deviation values chosen to 

represent the error statistics are consistent with the literature [7, 12, 27, 49]. 

However the performances of the single step methods are evaluated by comparing 

the SNR of the observed signal and number of snapshots used for location 

estimation. Lastly the geometrical dependencies of the conventional methods and 

the single step methods are investigated by comparing the CRLB expressions with 

fixed statistical errors. In other words, the angle, time deviations, SNR values are 

fixed for the methods; and CRLB expressions are compared by changing the target 

and sensor geometries to investigate the performance deviations with respect to the 

geometrical effects.  
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In the second part of the simulations, the performance of the single step and AOA 

based ML methods are compared under multiple emitter case. The performance 

comparisons are evaluated by changing the SNR values and the number of 

snapshots. Moreover resolvability analyses are performed to investigate the 

capabilities of the methods under various geometrical deployments.  

Each point of the simulation plots is the result of 100 Monte-Carlo experiments, if it 

is not indicated. 

The accuracy measure in the simulations is the Root-Mean-Square (RMS) of the 

position error. The RMS error can be defined as 

Æ#� = � 1æ� búm − m�eú-ì!"
6dT  (5.1) 

where m is the emitter location, m�e is the �%&  emitter location estimate and  æ�  is 

the number of Monte-Carlo experiments. When the performance comparisons have 

been performed under multiple number of emitters, the RMS of the whole system is 

used for evaluation. The RMS expression can be simply written as 

Æ#� = � 1æ� A b búmÊ − m�Êeú-É
¥dT

ì!"
6dT  (5.2) 

where A represents the total number of emitters, mÊ is the location of the ¡%&  emitter and m�Êe is the �%&  emitter location estimate for the ¡%&  source. 

In the simulations, additive zero-mean white Gaussian noise waveforms are used. 

The snapshot model for multiple emitter scenario is given in equation (4.4). In the 

simulations, complex attenuation coefficients ��¥ equal to 1 for all sensor arrays and 

the emitters. Then the SNR expression can be written as 
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�æÆ = 10$�GTD U�5ô-�72- X 

�5ô- = �5-, ∀¡ �72- = �7-, ∀$ 
 

(5.3) 

5.1 I
DIVIDUAL COMPARISO
 OF THE ALGORITHMS 

U
DER SI
GLE SOURCE CASE 

5.1.1 Comparison of AOA Based Localization Techniques 

As a first simulation, the planar deployment is chosen for the sensor arrays. Sensor 

arrays are located at the corners of a 100km x 100km square, and the Cartesian 

coordinate of the emitter is (150, 150, 30).  

 

Figure 5.1:  Sensor Array and Target Locations for AOA Based Localization 
Scenario 
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Figure 5.2: 3D Performance Comparison of AOA Based Algorithms where �� = �� 

First, the performance of the AOA based localization algorithms are compared with 

the Cramer Rao Lower Bound (CRLB) for various azimuth and elevation 

deviations. In the simulation, azimuth and elevation deviations are equal in each 

step and the deviations are changing between 0.5° and 4°.  

In the simulations, first LS location estimation is computed, and then this LS 

estimate is taken as initial location for the ML algorithm. An iterative grid search 

(20km x 20 km x 20km) is performed near the LS estimate and the point which 

gives the minimum cost is labeled as location ML estimate. 

The algorithms (ML and LS) show good performances with respect to the CRLB. 

However when the geometric scenario shown in Figure 5.1 is considered, it is 

obvious that AOA based localization is successful (can be considered as 

localization errors lower than 5-7 km) for angle deviations lower than 1.5° or 1°.  

Moreover, it is seen from Figure 5.2 that this claim is supported by the CRLB. 
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Figure 5.3: 3D Performance Comparison of AOA Based Algorithms with Fixed 
Elevation Deviation �� = 1° 

To see the effects of the individual angle deviations, two different simulations have 

been done. First, elevation deviation is fixed at 1° for all cases and azimuth 

deviation varies between 4° and 0.5° for all sensor arrays. It is seen from Figure 5.3 

that the performance of the LS algorithm degrades for higher azimuth deviations. 

Hence the ML performance degrades since the grid search is performed near LS 

estimate. Secondly azimuth deviation is fixed to 1° for all cases and elevation 

deviation varies between 4° and 0.5°. As seen from Figure 5.4, methods have good 

performances with respect to the CRLB. A geometrical illustration of this problem 

is given in Chapter-3. By changing angle deviations, the shapes of the elliptic cones 

are changed. Moreover by changing sensor array- target geometry, the volume 

which is the intersection of the elliptic cones lies from sensor array to the target 

location changes. The degradation on the performance is not specific for the 
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words, the degradation in azimuth is due to the planar deployment of the arrays as 

in Figure 5.1.  

 

Figure 5.4: 3D Performance Comparison of AOA Based Algorithms with Fixed 
Azimuth Deviation �� = 1° 
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in section 3.2, platonic sensor deployment is optimum for TDOA based source 

localization for single emitter case.  

 

Figure 5.5: Sensor and Target Locations for TDOA Based Localization Scenario 

In the simulation, Time-of-Arrival (TOA) deviations are changing between 0.8 µsec 
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performance of the TDOA based localization algorithms is highly dependent on the 

sensor-target geometry, which is investigated in the further simulations. 

 

Figure 5.6: Performance Comparison of TDOA Based Algorithms for Different 
TOA Deviations �
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emitter is (15, 40, 15). The locations of the sensor arrays and the emitter are shown 

in Figure 5.7.  

In the simulations, various conventional two step algorithms, moreover the lower 

bounds are investigated; namely, for AOA based algorithms ML and LS techniques, 

for TDOA based localization ML and LS methods, lastly ML for hybrid based 

localization. Different CRLBs are compared with the performance of the algorithms 

such as CRLB of AOA based localization, CRLB of TDOA based localization and 

CRLB for AOA-TDOA based hybrid localization. These CRLB expressions have 

been derived in Chapter-3. 

  

 

Figure 5.7: Locations of the Octahedron Sensor Array and the Emitter 
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deviations varies in each step and these deviations are labeled at the upper and 

lower x-axes of the performance plot seen in Figure 5.8.  

When the performance plot is investigated, it is seen that the AOA based algorithms 

have better performance than TDOA based localization techniques. The reason of 

this situation is directly relevant with the selected angle and TOA deviations. The 

performance of the hybrid algorithm is better than both AOA based and TDOA 

based localization methods. 

 

 

Figure 5.8: 3D Performance Comparison of Conventional Two Step Algorithms for 
Different Angle Deviations �� = �� and TOA Deviations �
 

Actually, the aim of this simulation is to show the performance improvement by 

merging the AOA and TDOA measurements for hybrid localization. 

As seen from Figure 5.8, the ML algorithm gives better performance than LS 

algorithms for AOA and TDOA based localization. Moreover the Hybrid ML 

0.511.522.533.54
0

2

4

6

8

10

12

14

Angle Deviation (°)

R
M
S
 E
rr
o
r 
(k
m
)

 

 

AOA-LS

AOA-ML

CRLB-AOA

TDOA-LS

TDOA-ML

TDOA-CRLB

Hybrid-ML

CRLB-Hybrid

0.10.20.30.40.50.60.70.8

0

2

4

6

8

10

12

14

R
M
S
 E
rr
o
r 
(k
m
)

Time Deviation (usec)



107 

algorithm outperforms both AOA and TDOA based ML methods. By combining the 

independent angle and TDOA measurements, minimum achievable RMS error 

value, namely, CRLB, becomes lower than the CRLB of AOA based localization 

and CRLB of TDOA based localization in hybrid processing.  However, it is 

obviously seen that the performance improvement in AOA-TDOA Hybrid method 

does not seem very important at low angle deviations with respect to the other 

methods.  

 

 

Figure 5.9: Performance Comparison of Conventional Two Step Algorithms for 
Different Azimuth Deviations �� and TOA Deviations �
 with fixed Elevation 

Deviation �� = 1° 
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degrades with respect to the AOA based CRLB. The performance of AOA based 

ML algorithm and hybrid based ML algorithm become better with fixed elevation 

deviation. 

The CRLBs for hybrid and AOA based localization become lower for higher 

azimuth deviation values with respect to the previous analysis.  

 

Figure 5.10: 3D Performance Comparison of Conventional Two Step Algorithms 
for Different Elevation Deviations �� and TOA Deviations �
 with fixed Azimuth 

Deviation �� = 1° 

As a third simulation, the azimuth deviation is fixed to 1°, and the elevation 

deviation is changing between 0.5° and 4°.  Moreover TOA deviation varies 

between 0.8 µsec to 0.1 µsec.  As seen in Figure 5.10, TDOA based localization 

algorithms and the CRLB of TDOA based localization stay the same with the 

previous simulations since the TOA deviations are the same. The performances of 

AOA based ML algorithm and hybrid based ML algorithm become better with fixed 

azimuth deviation. 
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The CRLBs for hybrid and AOA based localization become lower for higher 

azimuth deviation values with respect to the previous analysis.  

The performance of the AOA based LS algorithm becomes better with respect to 

the AOA based CRLB. However the performance of the AOA based LS method 

seems like not changing with the elevation deviation in Figure 5.10. For closer 

investigation the performance plot is zoomed near the relevant region as shown in 

Figure 5.11. 

Figure 5.11: 3D Performance Comparison of Conventional Two Step Algorithms 
for Different �� and  �
 with �� = 1°;  (Zoomed) 

When closer investigation is performed, it is seen from Figure 5.11 that the 

performance of the AOA based LS method improves slightly with a decreasing 

elevation deviation.  

As a last simulation for conventional two step algorithms, azimuth and elevation 
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deviation. 
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As shown in Figure 5.12, the performance of the hybrid based ML algorithm and 

the relevant CRLB are affected from the fixed TOA deviation. The performances of 

the Hybrid and AOA based methods become similar at low angle deviations due to 

the fixed TOA deviation. It is obviously shown that previous linear characteristics 

(see Figure 5.8) of the performance of the Hybrid method and Hybrid CRLB 

become corrupted with fixing the TOA deviation. 

 

 

Figure 5.12: 3D Performance Comparison of Conventional Two Step Algorithms 
for Different Angle Deviations �� and �� with fixed TOA Deviation  �
 = 0.5 µ��� 
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the wavelength. Only one frequency bin is used to estimate the target location, and 

100 snapshots are calculated for this frequency bin. 

After generating the snapshot model for each sensor, additive white Gaussian 

(AWG) noise is added to the observation with various SNR values. The noise is 

independent from the signal waveform and the independent between the sensors. 

The single step algorithms are Direct Position Determination, MUSIC, DML and 

SML methods which are presented in sections 4.2.2, 4.2.3, 4.2.4 and 4.2.5 

respectively. Moreover the performances of the algorithms are compared with the 

CRLB of single step source localization which is given in section 4.3. In the 

simulation, 100 experiments have been performed for each SNR value.  

Actually, it is a fact that 2D AOA estimation cannot be performed with a ULA since 

the θ and ϕ separation cannot be solved with phase difference measurements in one 

dimension. However, by using TOA information which is embedded in the gross 

manifold model, this problem is solved. This is another advantage of the single step 

methods tried to be illustrated in Figure 5.13. 
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Figure 5.13: 3D Performance Comparison of Single Step Algorithms for Different 
SNR Values 

The SNR value varies between -9 dB to 9 dB with 3 dB steps. It is seen from the 

above figure that all of the algorithms are working in low SNR values, which 

cannot be performed with conventional two step techniques. The main source of 

this performance improvement is on the array gain. In other words, in the 

observation period, the signal components of the observations are added since the 

signal components observed by the sensors are coherent, whereas noise components 

cannot be added since the noise is independent between the sensors. 

As seen from Figure 5.13, the performances of the algorithms seem to be the same. 

However, the RMS errors of the algorithms are higher than the CRLB of single step 

localization, which means that all algorithms still are not efficient localization 

approaches. 
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As a second simulation for single step algorithms, the effect of snapshot number is 

investigated. The snapshot number logarithmically varies between 64 and 1024. The 

snapshots numbers are [64, 128, 256, 512, 1024]. 

 

Figure 5.14: 3D Performance Comparison of Single Step Algorithms for different 
number of snapshots with -10 dB SNR value 

When the snapshot number is changing, SNR value is fixed to -10 dB in all sensor 

arrays. It is seen from Figure 5.14 that, MUSIC, DML and SML give little bit 

accurate target location estimates than DPD in high number of snapshots.  
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that the single step algorithms outperform conventional two step algorithms.  
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5.1.5 Geometrical Effects on the Localization Methods  

In this part of the simulations, the geometrical effects on the source location 

problem are investigated. It is known that the performance of the TDOA based 

algorithms highly depends on the sensor-target geometry. Moreover, the 

performances of the AOA based algorithms are affected with the array-target 

geometry, which is tried to be illustrated in section 3.1.4 by defining and giving 

different error ellipses.  

In this part, mainly two different geometrical effects are illustrated. In the first 

simulation step, the coordinate of the first sensor array varied, whereas in the 

second simulation step, the target coordinate is varied in each Cartesian dimension. 

In the first simulation the sensor arrays are located at (0 0 Z; 7.0711 7.0711 0; -

7.0711 7.0711 0; 7.0711 -7.0711 0; -7.0711 -7.0711 0) such as a pyramid 

deployment. 

 

Figure 5.15: Geometrical Scenario: Effect of Sensor Array Location 
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Moreover the target is located at (15, 40, 15). The z-coordinate of the first array 

varies between 20 and -20 with 2km steps. The geometrical scenario is shown in 

Figure 5.15. The aim is to see the effects of planar or near planar sensor array 

deployment on the performances of the methods. In these simulations (geometrical 

effects) only the CRLBs are compared to see the geometrical effects on minimum 

achievable RMS errors, in other words, to see the geometrical effects on parameter 

estimation and source location with pre-measured parameters.    

 

Figure 5.16: Comparison of Lower Bounds for Changing Sensor Array Location 

When the z-coordinate of the first sensor array varies between 20 and -20, the 

azimuth and elevation deviations are fixed to 2°, the TOA deviation is fixed to 0.4 
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localization and the single step localization are calculated for each geometric 

scenario. For single step localization, in each sensor array 5 element ULA is used. 

Moreover 100 snapshots are taken from each sensor for only one frequency bin.  
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It is obvious from Figure 5.16 that, all of the lower bounds are affected from the 

varying sensor array coordinate. However, TDOA based lower bound is more 

affected than the others. The reason of the fluctuating response in TDOA based 

localization is due to the parameter estimation performed between separate sensors. 

In AOA based localization angle measurements are independent between the sensor 

arrays, whereas, TDOA is calculated via correlating the observations taken from 

separate sensors. When the TDOA values between the sensor arrays become closer, 

the lower bound becomes higher. It is seen from Figure 5.16 that hybrid based 

lower bound gives a response better than the AOA and TDOA based lower bounds. 

Hybrid based lower bound becomes constant between the z-coordinate values -10 

and 5. Finally, it is obvious that single step based lower bound is the least 

dependent on the array deployment geometry. 

 

Figure 5.17: Geometrical Scenario: Effect of Target Location 
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7.0711 0; 7.0711 -7.0711 0; -7.0711 -7.0711 0) and the target coordinate is 

changing near the same target coordinate mentioned in the previous simulations. 

The axial coordinates of the target is varied in each step of this simulation. The x 

and z coordinates of the target varies between 5 to 25 with 2km steps, whereas the y 

coordinate varies between 10 to 70 with 5 km steps. The geometrical scenario is 

illustrated in Figure 5.17.  

Deviations of the parameters, namely, azimuth, elevation and TOA deviations are 

the same with the previous simulations (�� = �� = 2° and �
 = 0.4 µ���). 

Moreover all of the parameters are the same for the single step localization (5-

element ULA, SNR=0dB, Number of Snapshots=100).  

First, the effect of the x-coordinate of the target is investigated. 1000 experiments 

have been performed for each geometrical scenario. 

 

Figure 5.18: Comparison of Lower Bounds for Changing x-Coordinate of the Target 
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In the simulation shown in Figure 5.18, it is shown that AOA based lower bound is 

the least dependent on this situation. TDOA based lower bound becomes higher 

with an increasing x-coordinate of the target since the TDOA values measured 

between the sensors become closer to each other.  

 

Figure 5.19: Comparison of Lower Bounds for Changing y-Coordinate of the Target 
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Figure 5.20: Comparison of Lower Bounds for Changing z-Coordinate of the Target 

It is shown that AOA based lower bound is the least dependent on varying z-
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increasing z-coordinate of the target since the TDOA values measured between the 
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Association algorithm (BFA) is used as a two step localization method. TDOA 

based localization hence hybrid based techniques are not investigated in multiple 

emitters case, since TDOA cannot be measured for completely continuous multiple 

emitters.  

In the simulations, 5-element Uniform Linear Array (ULA) with 0.5 º sensor 

separation is used in each sensor array. Two sources are modeled as emitting 

independent signal waveforms. Only one frequency bin is used to estimate the 

target location, and N (mentioned in the simulations) number of snapshots are 

calculated for this frequency bin. After generating the snapshot model for each 

sensor, additive white Gaussian (AWG) noise is added to the observation with 

various SNR values. The noise is independent from the signal waveforms and 

independent between the sensors. In each simulation, 150 experiments have been 

performed.  

Root-MUSIC algorithm is used to estimate the AOA values (for two emitters) in 

each sensor array. After performing AOA measurements, BFA is used to associate 

the AOA values for each emitter. By obtaining the associated AOA sets, AOA 

based ML localization algorithm is used to estimate the target locations.  

As mentioned in the previous simulations, target coordinates are estimated directly 

by the single step algorithms. 

Moreover, both AOA based and single step localization lower bounds are compared 

with each simulation.  

The simulations consist of three main parts. The first two parts are performed to 

investigate the geometrical effects on the methods, whereas the last part is 

performed to investigate the resolvability skills of the algorithms. 

5.2.1 Comparison of the Algorithms under Optimum Geometry 

Optimum deployment scenarios for AOA based localization are investigated in 

section 3.1.4 by illustrating error ellipses. As seen from the mentioned analyses, the 

major and minor radiuses of the error ellipse become smaller when the target is 

surrounded by the sensor arrays.  
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In the simulations, 4 sensor arrays (ULA with 5 element) and 2 sources are used. 

The Cartesian coordinates of the targets are (30, 50) and (70, 50), whereas the 

positions of the sensor arrays are (-5 -5; -5 105; 105 -5; 105 105). The deployment 

scenario is shown in Figure 5.21.  

 

Figure 5.21: Multiple Source Scenario-1: Locations of Sensor Arrays and the 
Emitters  
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Figure 5.22: Performance Comparison of the Techniques with changing SNR value 
for Multiple Source Scenario-1 
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algorithms perform source localization. By increasing the number of snapshots, 

algorithms start to work, and become closer to the lower bound.  

 

Figure 5.23: Performance Comparison of the Techniques with Changing Number of 
Snapshots and fixed -10 dB SNR value for Multiple Source Scenario-1 
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step methods, whereas 5 sensors are used to estimate 2 AOA values (2 azimuth 

angles for 2 sources, see Figure 5.21) in each sensor array for AOA based ML 

localization. 

 

Figure 5.24: Performance Comparison of the Techniques with Changing Number of 
Snapshots and fixed 0 dB SNR value for Multiple Source Scenario-1 
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In the simulations, 3 sensor arrays (ULA with 5 element) and 2 sources are used. 

The Cartesian target locations are (10, 60) and (90, 60), whereas the positions of the 

sensor arrays (10 5; 50 15; 90 5). The deployment scenario is shown in Figure 5.25. 

 

Figure 5.25: Multiple Source Scenario-2: Locations of Sensor Arrays and the 
Emitters 

The number of snapshots are fixed to 100 for only one frequency bin. The first 
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analyses are presented in section 5.3 for both optimum and practical deployment 

geometries.  

 

Figure 5.26: Performance Comparison of the Techniques with Changing SNR value 
for Multiple Source Scenario-2 
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Figure 5.27: Performance Comparison of the Techniques with Changing Number of 

Snapshots and fixed -10 dB SNR value for Multiple Source Scenario-2 
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Figure 5.28: Performance Comparison of the Techniques with Changing Number of 
Snapshots and fixed 0 dB SNR value for Multiple Source Scenario-2 
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(-5 -5; -5 105; 105 -5; 105 105) which is the same as the previous optimum 

deployment. The deployment scenario is shown in Figure 5.29. 

 

Figure 5.29: Resolvability Analysis for Multiple Source Scenario-1: Target-1 is 
fixed and x-Coordinate of the Target-2 is changing 

In the simulations, 100 snapshots are used for only one frequency bin, and SNR 

value is fixed to 20 dB to investigate the resolvability capabilities of the algorithms 

when the targets are close to each other. 150 experiments are performed for each x-

coordinate of the second target.  

The resolvability performances of the methods are shown in Figure 5.30. When the 

performance of the AOA based ML method is investigated, it is shown that the 

algorithm cannot resolve the targets, when the separation between the targets is 

lower than 6 km. In other words, when the x-coordinate of the target is 47 or 53, 

AOA based ML method has a RMS error around 7 km which is approximately 

twice the separation distance.  
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Figure 5.30: Comparison of the Resolvability Performances of the Algorithm with 
20 dB SNR value 

In the optimum deployment scenario, the performance degradation of the AOA 

based localization method is due to the insufficiency of the Root-MUSIC algorithm 

in resolving the closely located emitters. Improvement of localization performance 

for AOA based location estimation with optimum deployment is presented in 

Section 3.1.4 with error ellipses. 

The second analysis is performed with using the practical deployment mentioned in 

the previous section. Two different simulations are performed with the practical 

scenario; both x and y coordinates of the target are varying in the analysis.  

The sensor arrays are deployed as mentioned in the previous section, which is 

considered to be practical deployment. The coordinates of the sensor arrays are (10 

5; 50 15; 90 5) and the first target coordinate is fixed to (60, 90). Structure of the 

sensor arrays (ULA with 5 element), number of snapshots and the SNR value are 

the same with the previous resolvability analyses for optimum deployment scenario. 
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Figure 5.31: Resolvability Analysis for Multiple Source Scenario-2: Target-1 is 
fixed and x-Coordinate of the Target-2 is changing 

As a first investigation, the x-coordinate of the second target is varied between 30 

and 90, and the y-coordinate of the second target is 90. The x-coordinate values 

used in RMSE calculations are (30, 40, 45, 51, 54, 57, 63, 66, 69, 75, 80, 90). The 

deployment scenario is shown in Figure 5.31.  

The resolvability performances of the methods are shown in Figure 5.32. It is 

shown that AOA based localization performance is improved with respect to the 

optimum deployment due to the wide angular separation between the targets. In 

other words, the practical array-target deployment is worse than the optimum 

deployment for AOA based localization, whereas the practical deployment is better 

than the optimum deployment for AOA measurement. By combining the two steps, 

the performance of the conventional method is improved. When the performance of 

the single step algorithms is investigated, it is shown that algorithms perfectly 

resolve the emitter when the separation between the emitters are higher than 9 km. 
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By decreasing the separation distance, algorithms become worse with respect to the 

single step CRLB. 

 

Figure 5.32: Comparison of the Resolvability Performances of the Algorithms with 
20 dB SNR value 

As a second investigation, the y-coordinate of the second target is varied between 

20 and 80. The x-coordinate of the second target is fixed to 60 and the y-coordinate 

values used in RMSE calculations are (20, 30, 35, 40, 41, 44, 47, 53, 56, 59, 65, 70, 

80). The deployment scenario is shown in Figure 5.33. All other parameters such as 

sensor arrays (ULA with 5 element), number of snapshots and the SNR value are 

the same with the previous resolvability analysis. 

The resolvability performances of the methods are shown in Figure 5.34. It is 

shown that AOA based localization performance is improved with respect to the 

optimum deployment due to the wide angular separation between the targets. When 

the performances of the single step algorithms are investigated, it is shown that 

algorithms perfectly resolve the emitter when the separation between the emitters 

are higher than 9 km. 
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Figure 5.33: Resolvability Analysis for Multiple Source Scenario-2: Target-1 is 
fixed and y-Coordinate of the Target-2 is changing 

By decreasing the separation distance, algorithms become worse with respect to the 

single step CRLB.  

Moreover, the AOA based localization and single step localization methods show 

approximately the same performance when the emitters are close to each other. 
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Figure 5.34: Comparison of the Resolvability Performances of the Algorithms with 
20 dB SNR value 

 

5.3 EVALUATIO
 OF THE SIMULATIO
S 

Simulations have been done in two parts. In the first part of the simulations, 

individual comparison of the classical two step and single step methods are 
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coordinates. In the second part, the performance of the AOA based localization 

method (with Brute Force data association algorithm) and the single step algorithms 

are investigated under the multiple source case.  
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gives near the performance of an efficient estimator. However, in some parts of the 
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minimum cost in the 20x20x20  ?Ó volume around the LS estimate. The same 

reason is valid for the performance degradation of the TDOA based ML method. It 

is seen from the simulations that, the performances of both AOA and TDOA based 

LS methods depend on the target-sensor geometry. The performance improvement 

is observed by using the AOA and TDOA measurements jointly. Due to combining 

the different equation sets with different independent error statistics, the 

performance improvement is observed. 

The single step methods give better performances; especially, Direct Localization 

(DL) with MUSIC method gives at least the same performance with the Direct 

Position Determination (DPD) in all of the simulations. As mentioned in Chapter-4, 

DPD method needs eigen-decomposition in each grid search, however MUSIC 

method does not. It is obviously seen that MUSIC method is less complex than the 

DPD method. DL with Deterministic ML (DML) and DL with Stochastic ML 

(SML) methods give good performances at low SNR values, however with an 

increasing SNR, the performance of the algorithms become similar with the 

conventional methods. Moreover, the geometrical effects on the performance of the 

techniques are investigated. In the mentioned simulations, CRLB expressions of the 

AOA based, TDOA based, AOA-TDOA based hybrid and single step methods are 

compared. In other words, by comparing achievable ultimate performances, the 

geometrical effects on the methods examined clearly. It is shown from the 

simulations that the localization accuracy of the TDOA based methods highly 

depends on the target-sensor geometry. The performance of the TDOA based 

methods suddenly degrades with small geometrical differences. AOA based 

localization methods also depend on the deployment geometry, which is presented 

by performing various simulations based on error ellipse forms in Chapter-3. 

However, AOA based methods are not dependent on geometry as TDOA based 

methods. Moreover, hybrid methods give a better performance than the TDOA and 

AOA based methods. Finally it can be said that single step methods are most robust 

to the geometrical effects. 

In the second part of the simulations, the performances of the AOA based method 

and single step methods are compared under the multiple source case. Two different 
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deployment geometries are used to investigate the performances of the methods 

under the optimum and practical deployment scenarios. It is shown by the 

simulations that the performance of the single step methods outperforms the 

classical AOA based localization method in all deployment cases. When, the 

performances of the algorithms are compared with varying number of snapshots, the 

single step methods give better results as expected. Finally resolvability skills of the 

techniques are investigated. It is shown from the simulations that the single step 

methods have better resolvability capabilities than the conventional AOA based 

method. Actually, this result is not surprising due to the dimensions of the 

observation covariance matrices used in AOA based methods and single step 

methods. In AOA based methods " different #*# covariance matrices are used for 

AOA measurements, however in single step methods "#*"# covariance matrix is 

used for location estimation, where " is the number of sensor arrays each has # 

sensors. In AOA based methods, the overall system can resolve �# − 1�  emitters; 

however in single step methods �"# − 1�  emitters can be resolved due to the larger 

covariance matrix. 
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CHAPTER 6  

 

CO
CLUSIO
S  

The main focus of this thesis is the 3D location estimation of the unknown emitters 

with stationary target-sensor deployment. The approaches developed to solve this 

problem can be separated into two parts. The first group can be considered as a 

conventional approach and called as the two step localization. In the first step, 

position related parameters such as AOA and TDOA are estimated; and in the 

second step, location of the emitter is estimated by collecting the pre-measured 

location related parameters from distributed stations. However, the location 

estimation problem can be solved directly, which is called as single step 

localization. In single step localization concept, the location of the emitter is 

estimated directly by collecting the observations from the spatially distributed 

stations. The practical implementations of the single step methods seem feasible 

with developing communication technologies. In this work, both of these concepts 

are presented and investigated in detail. 

First, conventional methods such as AOA based, TDOA based and AOA-TDOA 

based hybrid algorithms are presented. 3D ML and LS based methods are given for 

the conventional methods. Since CRLB expressions, ML and LS localization 

approaches are given for 2D geometry in the literature; various 3D expressions are 

derived and presented in this work. Namely, 3D CRLB expressions and 3D ML 

localization approaches for AOA based and AOA-TDOA based hybrid methods; 3D 

LS expressions for AOA based methods are derived and presented in this thesis. 

Error ellipse expressions, which can be considered as a performance criterion for 

AOA based methods, are presented and various simulations have been performed to 
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express the geometrical dependencies of the AOA based techniques for both 2D and 

3D geometrical scenarios. It is shown by the simulations that the localization 

accuracy improves when the target is surrounded by the sensor arrays. Moreover the 

need of data association for AOA based localization methods for multiple emitter 

cases is presented and expressed with illustrations. Brute Force method [52] which 

is proposed for data association is discussed. 

Single step localization methods found in the literature are presented such as DPD 

methods for single source and multiple sources. Moreover, three different single 

step location estimation methods are proposed using the philosophy of high 

resolution and ML Direction Finding (DF) techniques. Proposed Direct Localization 

(DL) with Multiple Signal Classification (MUSIC), DL with Deterministic 

Maximum Likelihood (DML) and DL with Stochastic Maximum Likelihood (SML) 

approaches are presented and explained.  

Specific CRLB expressions for AOA based, TDOA based, AOA-TDOA based 

hybrid and single step localization approaches are derived and presented for 

investigating the ultimate achievable performance. 

Various simulations are performed and evaluated. Individual comparisons of the 

methods are done. The performances are evaluated by comparing the azimuth and 

elevation deviations and TOA deviations for the conventional methods. In the 

simulations, ML methods give better performance than the LS techniques for AOA 

based and TDOA based localization methods as expected. However ML methods do 

not achieve the best performance in these simulations since the MLE is found by 

searching the grid point with minimum cost near the LS location estimate. The 

performances of the single step methods are evaluated by comparing the SNR 

values and the number of snapshots observed for single step methods. Using 

simulations, it is shown that the performance of the single step algorithms is good 

even at the -10 dB SNR values with comparable number of snapshots (~100). DPD 

and MUSIC methods give approximately the same performance in various 

simulations. As presented in the detailed algorithmic expressions, DPD method 

needs eigen-decomposition in each grid search; however DL with MUSIC method 

does not. It is shown that algorithmic complexity of the proposed MUSIC method is 
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less than that of the DPD method. DL with DML and DL with SML methods give 

good performances at low SNR values, however with an increasing SNR, the 

performances of the algorithms become similar with the conventional methods. One 

drawback of the DML and SML methods can be briefly explained as the need of the 

multidimensional search for the multiple emitter cases. However, there is no need to 

increase the search dimension in DPD and MUSIC methods due to multiple source 

scenarios. Furthermore, geometrical effects on the performance of the localization 

methods are investigated. It is shown that the localization accuracy of the TDOA 

based methods highly depends on the target-sensor geometry. The performance of 

the TDOA based methods degrades with small geometrical differences. As seen 

from the simulations, it can be said that single step methods are more robust to the 

geometrical effects. However, the single step methods are algorithmically more 

complex than the conventional methods. 

In the second part of the simulations, performances of the methods are compared 

under the multiple source case with different geometrical deployments such as 

optimum and practical deployment scenarios. AOA based ML localization 

algorithm is used together with  Root MUSIC AOA estimation method and Brute 

Force data association technique as a conventional two step algorithm. DPD and 

MUSIC methods are used for single step methods. In the simulations, it is shown 

that the single step methods outperform the conventional two step method under 

various cases such as varying SNR values and number of snapshot values. 

Moreover resolvability capabilities of the methods are compared. In the simulations, 

the coordinate of the first emitter is fixed and the position of the second emitter is 

varied near the first one. It is shown that the resolvability of the single step methods 

is better than that of the classic method. Actually, this result is not surprising due to 

the dimensions of the covariance matrices used in AOA based methods and the 

single step methods. In AOA based methods " different #*# covariance matrices 

are used for AOA measurements, however in single step methods "#*"# 

covariance matrix is used for location estimation, where " is the number of sensor 

arrays each has # sensors. In AOA based methods, the overall system can resolve �# − 1�  emitters; however in single step methods �"# − 1�  emitters can be 
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resolved due to the gross covariance matrix. The performance improvement of the 

centralized processing in the localization problem can be explained by the 

observation covariance dimensions. The main source of this performance 

improvement directly depends on the array gain. In other words, in the observation 

period the signal components of the observations are added since the signal 

components observed by the sensors are coherent. However noise components 

cannot be added since the noise is independent between the sensors. 

The advantages of the single step methods over the conventional methods under 

multiple emitter case can be summarized as follows:  

• Performance improvement due to the centralized processing  

• No need of data association algorithm for multiple source case 

• Can use ULA for 3D localization 

However, the main disadvantage of the single step methods is that they are 

computationally very expensive compared to the conventional methods. 

Furthermore, in single step techniques the communication load between the sensor 

arrays and the processing center is higher than that of the conventional approaches.  

Many of conventional two step source localization methods contributed to the 

literature for single emitter scenarios. However, for multiple emitter scenarios, data 

association of pre-measured position related parameters (i.e. AOAs) with respect to 

each emitter should be performed. As future work, conventional two step 

localization algorithms for multiple emitters, which do not need data association, 

may be investigated. In this thesis, source localization problem is investigated for 

stationary emitter-sensor deployment. Conventional two step and single step 

localization methods for “moving sensor-stationary target”, “stationary sensor- 

moving target”, “moving sensor-moving target” scenarios can be studied. Finally, 

closed form solutions of single step source localization problem may be 

investigated as future work for both stationary and non-stationary deployment 

scenarios. 
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APPE
DIX A  

 

FIM BLOCK REPRESA
TATIO
S FOR SI
GLE STEP 

MULTIPLE SOURCE LOCALIZATIO
 PROBLEM  

In this part, direct representations for all FIM blocks are given for single step source 

localization problem. The derivations of the FIM blocks are given in [41]. As 

mentioned in Section 4.1, the unknowns for the single step localization problem are 

the locations of the sources, complex attenuation coefficients between the sources 

and the sensor arrays and the signal waveforms of the sources. The complete FIM 

consists of 16 different blocks for this problem. The structure of the complete FIM 

is shown below. 

¢£¤ =
ijj
jjj
k¢£¤∧∧  ¢£¤∧³ø   ¢£¤∧³�   ¢£¤∧m  
¢£¤³ø∧  ¢£¤³ø³ø   ¢£¤³ø³�   ¢£¤³øm  
¢£¤³�∧  ¢£¤³�³ø  ¢£¤³�³�   ¢£¤³�m  
¢£¤m∧  ¢£¤m³ø   ¢£¤m³�   ¢£¤mm  pqq

qqq
r
 (A.1) 

By using the fact, 

¢£¤6, = ¢£¤,6� (A.2) 

the off-diagonal blocks are represented for only the upper triangular part of the 

FIM.  
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The block related to the unknown signal waveforms can be presented as 

¢£¤∧∧ = �|��ÝRS|�⨀�|��ÝRS|�∗ (A.3) 

where the operator ⨀ represents the Schur-Hadamard product (element-wise 

product). The gross manifold matrix expression | can be written in terms of the 

manifold expression for each sensor array as 

| = L |Sa, |na, … , |oa Oa (A.4) 

For each sensor array, the individual manifold expressions can be written in terms 

of each emitter as 

|( = f'(ø �)S, }(S�, '(ø �)n, }(n�, … , '(ø � )Í, }(Í�g (A.5) 

Finally, the column vector component of the manifold expression |( can be 

separated into manifold vector, complex attenuation coefficient and TOA 

expression as 

'(ø �)Ê, }(Ê� = ��¥'(�)Ê� �R,.ó.
2�)Ê� (A.6) 

The '(ø �)Ê, }(Ê� expression is #*1 vector, which contains the response of each 

sensor in the $%& sensor array with respect to the ¡%& emitter. 

The second block of the FIM is constructed due to the real parts of the complex 

attenuation coefficients.  

¢£¤³ø
³ø( = 2Æ�[�∧ |��ÝRS²ø(� ⊙ �²ø
� �ÝRS| ∧�∗+ �²ø
� �ÝRS²ø(� ⊙ �∧ |��ÝRS| ∧�∗_ 
(A.7) 

where ²øå represents the partial derivatives of the manifold matrix with respect to 

the real parts of the related complex attenuation coefficients. The mathematical 

structure of the matrix ²øå is shown below. 
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²øå = � h'Sh�ù7T , h'nh�ù7- , … , h'Íh�ù7É� (A.8) 

where 'Ê represents the ¡%&  column of the manifold matrix |. 

Due to the mathematical similarity with the other FIM blocks, the block is rewritten 

as 

¢£¤³ø
³ø( = 2Æ�[�|S�²ø(� ⊙ �²ø
� |S�∗ + �²ø
� �ÝRS²ø(� ⊙ |n∗ _ (A.9) 

where the expressions |S and |n are defined as 

|S ≜ �ÝRS| ∧ (A.10) 

 

|n ≜ ∧ |��ÝRS| ∧ (A.11) 

By using similar derivations, the blocks ¢£¤³ø
³�( ,  ¢£¤³�
³�(  can be written as 

¢£¤³ø
³�( = 2Æ�[�|S�²�(� ⊙ �²ø
� |S�∗ + �²ø
� �ÝRS²�(� ⊙ |n∗ _ (A.12) 

 

¢£¤³�
³�( = 2Æ�[�|S�²�(� ⊙ �²�
� |S�∗ + �²�
� �ÝRS²�(� ⊙ |n∗ _ (A.13) 

where ²�å represents the partial derivatives of the manifold matrix with respect to 

the imaginary parts of the related complex attenuation coefficients. The structure of 

the matrix ²�å is shown below. 

²�å = � h'Sh�¿7T , h'nh�¿7- , … , h'Íh�¿7É� (A.14) 

Similar to the attenuation coefficient related FIM blocks, FIM block associated 

with the unknown source positions can be written as 

¢£¤m
m( = 2Æ�[�|S�~(� ⊙ �~
� |S�∗ + �~
� �ÝRS~(� ⊙ |n∗ _ (A.15) 
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where ~å consists of the partial derivatives of the manifold matrix with respect to 

each Cartesian coordinate of the related source position. The structure of the matrix ~å is given as, 

~å = � h'Sh�7T , h'nh�7- , … , h'Íh�7É� (A.16) 

where )åÊ is the �%& & ¡%&  entry of the matrix m, given in equation (4.72). The FIM 

blocks related with the source positions and the complex attenuation coefficients 

(real and imaginary parts) are presented as 

¢£¤m
³ø( = 2Æ�[�|S�²ø(� ⊙ �~
� |S�∗ + �~
� �ÝRS²ø(� ⊙ |n∗ _ (A.17) 

 

¢£¤m
³�( = 2Æ�[�|S�²�(� ⊙ �~
� |S�∗ + �~
� �ÝRS²�(� ⊙ |n∗ _ (A.18) 

Finally, the FIM block can be written as 

¢£¤∧³ø
 = 2Æ�[�|��ÝRS| ∧�∗ ⊙ �|��ÝRS²ø
�_ (A.19) 

which can be written in terms of the previously defined similar expressions |S and  |n as 

¢£¤∧³ø
 = 2Æ�[�|�|S�∗⊙ �|��ÝRS²ø
�_ (A.20) 

Similarly, the block related with the signals waveforms and the imaginary part of 

the complex attenuation coefficients can be presented as 

¢£¤∧³�( = 2Æ�[�|�|S�∗⊙ �|��ÝRS²�
�_ (A.21) 

As seen from the previous derivations, the FIM block related to the signal 

waveforms and the source position can be written as 

¢£¤∧)
 = 2Æ�[�|�|S�∗⊙ �|��ÝRS~
�_ (A.22) 
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Finally, all of the blocks of the FIM have been represented. By constructing the 

complete FIM, CRLB matrix can be calculated as 

²�o³ = �¢£¤�RS (A.23) 
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APPE
DIX B  

 

D MATRIX REPRESA
TATIO
 FOR SI
GLE STEP 

MULTIPLE SOURCE LOCALIZATIO
 CRLB 

EXPRESSIO
  

~å consists of the partial derivatives of the manifold matrix with respect to each 

Cartesian coordinate of the related source position. The structure of the matrix ~å is 

given as 

~å = � h'Sh�7T , h'nh�7- , … , h'Íh�7É� (B.1) 

where )åÊ is the �%& & ¡%&  entry of the matrix m 

m = L)S, )n, … , )ÍO (B.2) 

where A is the number of sources, )Ê is the �*1  vector representing the Cartesian 

coordinates of the ¡%& source. Each entry of the "#*1 vector 'Ê can be written as  

�¥23
= ��¥  �R,. -. èö �P÷��
2�)Ê�� �R, -./  01234567��2ô�895��2ô� : 123;895��2ô�895��2ô� : 123<567��2ô�= (B.3) 

where the trigonometric expressions of the azimuth and elevation angles between 

the $%& sensor array and the ¡%& emitter can be written as 
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��� ���ô� = ��¡* − >�+4�
)��¡* − >�+4�2 + 0�¡� − >�+;=2 

(B.4) 

 

��� ���ô� = 0�¡� − >�+;=
)��¡* − >�+4�2 + 0�¡� − >�+;=2 

(B.5) 

 

��� �@�ô� = ��¡± − >�+<�
)��¡* − >�+4�2 + 0�¡� − >�+;=2 + ��¡± − >�+<�2 

(B.6) 

 

��� �@�ô� = )��¡* − >�+4�2 + 0�¡� − >�+;=2

)��¡* − >�+4�2 + 0�¡� − >�+;=2 + ��¡± − >�+<�2 (B.7) 

 

The ��+ expression can be separated as 

�¥23 = ��¥* ¬ (B.8) 

where the expressions * and ¬ can be written as 

* = �R,. -. èö �P÷��
2�)Ê��  (B.9) 

 
¬ = �R, -./  01234567��2ô�895��2ô� : 123;895��2ô�895��2ô� : 123<567��2ô�= (B.10) 

The components of the ~å expression can be written for each emitter as 

~Êå = h�¥h�¥+ (B.11) 
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where � is the index for the dimension vectors, i.e. *, �, ±. The components of the ®Áô®Hô+ expression can be written for each dimension as 

h��+h�7 = ��¥ 0 h*h�7 ¬ + h¬h�7 *= (B.12) 

And the components 
®,®H+ can be written as 

h*h�7 = − * -. 2� ë/ �!î�  �    �>7 − >�++�lm − m(l - 
� = *, �, ± 

(B.13) 

Also the components 
®0®H+ can be written as 

h¬h�V = − ¬ - . 2�º ¯>�+4 ¯lm − m(l- − �>V − >�+4�-lm − m(lÓ °
− >�+; U�>V − >�+4��>W − >�+;�lm − m(lÓ X
− >�� U�>V − >�+4��>� − >�+<�lm − m(lÓ X-° 

(B.14) 

 

h¬h�W = − ¬ - . 2�º 1>�+4 U�>V − >�+4��>W − >�+;�lm − m(lÓ X
− >�+; 1lm − m(l- − �>W − >�+;�-

lm − m(lÓ 2
− >�� U�>W − >�+;��>� − >�+<�lm − m(lÓ X-2 

(B.15) 
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h¬h�� = − ¬ - . 2�º ¯>�+4 U�>V − >�+4��>� − >�+<�lm − m(lÓ X
− >�+; U�>W − >�+;��>� − >�+<�lm − m(lÓ X
− >�� ¯lm − m(l- − �>� − >�+<�-lm − m(lÓ ° -° 

(B.16) 

By obtaining each ~å expression, the FIM blocks, consequently the minimum 

achievable positioning error can be calculated. 

 
 

 


