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ABSTRACT

HIGH RESOLUTION CONDUCTIVITY IMAGING OF ANISOTROPIC
CONDUCTIVITY WITH MAGNETIC RESONANCE ELECTRICAL
IMPEDANCE TOMOGRAPHY (MR-EIT)

Degirmenci, Evren
Ph.D., Department of Electrical and Electronics iBegring

Supervisor : Prof. Dr. Murat Eyuplu

April 2010, 152 pages

Electrical conductivity of biological tissues isdastinctive property which differs
among tissues. It also varies according to theiplogical and pathological state of
tissues. Furthermore, in order to solve the bidetedield problems accurately,
electrical conductivity information is essential.alyhetic Resonance Electrical
Impedance Tomography (MREIT) technique is propdseiinage this information
with high spatial resolution. However, almost alRHEIT algorithms proposed to
date assumes isotropic conductivity in order to pdiltym the underlying
mathematics. But it is known that most of the tessun human body have
anisotropic conductivity values. The aim of thigdst is to reconstruct anisotropic
conductivity images with MREIT. In the study, fim@vel anisotropic conductivity
reconstruction algorithms are developed and imptgete Proposed algorithms are
grouped into two: current density based reconsbomcalgorithms Typel) and

magnetic flux density based algorithmgypell). Performances of the algorithms

iv



are evaluated in several aspects and comparedeath other. The technique is
experimentally realized using 0.15T METU — EE MRysg&&m and anisotropic
conductivity images of test phantoms are reconstdicusing all proposed

algorithms.

Keywords: Magnetic resonance, electrical impedanoejography, anisotropic

conductivity, reconstruction, imaging.



Oz

MANYET IK REZONANS ELEKTR IKSEL EMPEDANS TOMOGRAF iSi
ILE YON BAGIMLI iLETKENL iGiN YUKSEK COZUNURLUKLU
OLARAK GORUNTULENMES 1

Degirmenci, Evren
Doktora, Elektrik ve Elektronik MuhendigliBolimu
Tez Yoneticisi : Prof. Dr. Murat Eyulgtu

Nisan 2010, 152 sayfa

Dokularin elektriksel iletkengi dokular arasinda farklihk gosteren ayirici bir
Ozelliktir. Bu 6zellik dokunun fizyolojik ve patojix durumuna gore de dssiklik
gostermektedir. Ayrica biyoelektrik alan problenmer dogru olarak ¢ozulebilmesi
icin elektriksel iletkenlik bilgisine ihtiya¢ duyoidaktadir. Bu bilgiyi yliksek
¢6zunurlukll olarak elde edebilmek icin ManyetikzBeans Elektriksel Empedans
Tomografisi (MREET) oOnerilmgtir. Ancak simdiye kadar Onerilen MREET
algoritmalarinin hemen hepsinde iletkenlik, mateksat problemi basitigirmek
icin yon baimsiz kabul edilngitir. Fakat insan vicudundaki pek ¢cok dokunun yon
bagimli iletkenlige sahip oldgu bilinmektedir. Bu caémanin amaci MREET
teknigi ile yon baiml iletkenlik gortntuleri olgturmaktir. Cagmada MREET igin
bes ayri yon bg@mli iletkenlik goOruntileme algoritmasi gglrilmis ve
uygulanmgtir. Gelistirilen gorintl olgturma algoritmalari iki grupta toplansgtir:

akim ygunlugu kullanan algoritmalarT{p-l) ve manyetik aki ygunlugu kullanan

Vi



algoritmalar Tip-ll). Gelistirilen algoritmalarin performanslari pek cok yoénde
sinanmg ve baarimlari kagilastiriimistir. Ayrica teknik 0.15T ODTU — EE MRI
Sisteminde gergeklengve test cisimleri igin dnerilen tim algoritmaladarunti

olusturulmustur.

Anahtar Kelimeler: Manyetik rezonans, elektriksehpedans, tomografi, yon
bagimli iletkenlik, gericatim, gortintileme.
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CHAPTER 1

INTRODUCTION

1.1 Conductivity Imaging

Electrical conductivity is one of the distinctiveatures of biological tissues and this
makes the imaging of tissue conductivity valuessfds [1]. Furthermore this value
varies with physiological activity of the tissuedamaging tissue conductivity gives
information about physiological activities and patgies [2]. Accurate solution of
bioelectric field problems also requires correcowiedge of tissue conductivity
values [3], [4]. Electrical Impedance TomographyT)lEhas been proposed to
reconstruct electrical conductivity distributionside a volume conductor non-
invasively. The technique is based on generatigireent distribution inside the
conductor either by injecting or by inducing cutremd performing electrical or
magnetic measurements that reflect the internaldwctivity distribution [1].
According to the current excitation strategy, tleehnhique can be classified as
injected EIT or induced EIT. In injected EIT syswnturrent is applied via the
electrodes placed on the boundary, and potentiakrgéed by this current is
recorded using again the surface electrodes [5]lewh induced EIT, current
distribution is induced via an excitation coil ugitme varying fields [6]. Induced
current will generate a magnetic field reflectinget internal conductivity
distribution. This magnetic field is measured viensors to solve the inverse
problem of finding conductivity. This methodologyalso proposed for sub-surface

imaging.



The main limitations on conventional EIT systemg #ne resolution and the

sensitivity. The sensitivity of peripheral measuesns to conductivity perturbations
in different regions is different. Specifically, ductivity perturbations in the inner
parts of the imaging regions do not alter the bampd/oltage measurements as
much as the perturbations close to the boundarye®@r, the spatial resolution of
resistivity image is primarily determined by thenmuoer of electrodes used in the
EIT system. Since the number of electrodes thatbeaplaced on the boundary is
limited and the sensitivity of surface electrodes itner regions is small,

reconstructed conductivity images have low and splependent spatial resolution.

In order to eliminate the problem of non-uniforrmsiéivity, the data set must
include measurements that are equally dependentomuctivity changes in
different regions of the imaging region. If thealaet includes measurements made
directly from the inner regions, uniform sensitwiistribution can be achieved.
Voltage measurements cannot be obtained from imegions non-invasively.
However, it is possible to measure magnetic fluxsity distribution throughout the
imaging region generated by the externally appl®drent using Magnetic
resonance Imaging (MRI) techniques [7], [8]. Usihgse magnetic flux density
measurements, calculation of current density tistion in the imaging region is
also possible and this technique is named as Ma&gResonance Current Density
Imaging (MR-CDI) [7]. Current density measurememgng MR-CDI technique or
magnetic flux density measurements can be combimidid peripheral voltage
measurements of EIT to reconstruct absolute condiycimages with uniform
sensitivity and high resolution. This techniquecalled as Magnetic Resonance
Electrical Impedance Tomography (MR-EIT).

1.2 Development of MREIT

The main milestone in the development of MR-EITthe emergence of MR-CDI
technique. Therefore explaining briefly the impattaspects of this technique and
giving the development of it will be helpful to werdtand the basics of MR-EIT.



At the beginning of 1990’s, a new imaging modafitpposed to reconstruct images
of current density generated by injected or inducedents using magnetic flux
density measurements [7]. This technique is briefdmed as current density
imaging (CDI). CDI can be classified in 3 main gatees as DC-CDI, RF-CDI and
AC-CDI with respect to frequency of the injectedrent.

First CDI images were reported by Scettialin 1991 [7]. In this study, current was
applied to a conductor object in synchrony with {h@lse sequence used for
imaging and distribution of this current inside tbieject was imaged. Although,
injected current was not exactly a DC current, sittee frequency of it was low
with respect to the other injected currents, teehhique is named as DC-CDI. In
order to obtain the current density distributionD@-CDI, it is necessary to rotate
the object in the magnet. This is because, forddleulation of current density
distribution, the components of magnetic flux dgn&n all three dimensions are
needed but only the component in the same direetitmthe main magnetic field
can be measured. In a later study, the same gnmgoged to reconstruct RF-CDI
images in homogeneous medium using RF currentsirj&his study, they stated
that interleaved multi-slice pulse sequence carbeatsed in RF-CDI. In RF-CDI,
it is not necessary to rotate the object. Radiguemcy needed to use in this
technique is equal to the Larmor frequency of the 8§stem used. Although, RF-
CDI is advantageous when compared with the DC-Gbdesit does not require
rotation of the object, it would be difficult toakze circuits needed to use at radio
frequency. Electromagnetic considerations for RR-@ml the usage of RF-CDI in
heterogeneous media were investigated in [9].

Measurement of magnetic fields generated by nofeumi AC current density
using magnetic resonance was proposed by Ider amftiilelr [10], [11]. In this
study, currents having AC frequencies at 100-20@ k¥¢re passed through the
wires placed outside the object and AC magnetiddienside the object generated
by these currents were measured. Measurement pbael component of magnetic

flux density is sufficient also in this technique.



Misplacement of current carrying wires during CRperiments causes distortion in
the reconstructed image. This topic was examine&amba and Deply [12] and
they concluded that, in order to decrease the rtiigty current carrying wires must
be placed carefully that they do not produce magn@ld component in the
direction of the main magnetic field. There areoafmiblications about possible
clinical applications of CDI in the literature [13[L4], [15]. In [13], Sersaet al
investigated the current density imaging of mousedr. This work helped to
determine the effects of electrode geometry on dleetro-chemotherapy. The
success of electro-chemotherapy depends subshamimathe amplitude and spatial
distribution of the current density that passesugh inside and around the tumor.
Therefore, imaging of this current density disttibn affects the success of
chemotherapy directly. Beraes al used CDI for obtaining the spatial distribution
of DC electric current in the bone [14]. They masdgeriments on osteoporosis
patients which have very low calcium content inirtheones, compared the
conductivity of their bones with the healthy onesl showed that CDI can be used
in the diagnosis of osteoporosis. In 1999, dbgl made a study on determining the
current density and current pathways on a rabliinbduring trans-cranial electro

stimulation [15].

Bodurkaet al carried out experiments on a 3T MRI system forentr induced

magnetic resonance phase imaging [16]. In contoagtevious studies, no external
current is applied and magnetic field changes duestironal activity are measured.
It is reported that magnetic field changes of 1.3a0 were detectable due to

electric current as small as {i8.

In 2001, an alternative method for measuring AQ flensity and current density is
proposed by Mika@t al [17]. In his study 1kHz AC currents as low as 39én?

are imaged using a 2.35T system.

The idea of using current density distribution nueesents of CDI and boundary
voltage measurements of EIT in order to obtain ¢beductivity map inside an
object was first proposed by Zhang [18]. In thishi@que, potential difference



between surface pointd\§), current density ) and unknown conductivityd )

are related by the following integral equation:
Ap=[Erdl =[(¥) I (L.1)
| |

where | is any integral path in the tomographic plane Wwhionnects two surface

measurement points having a potential differencd@f If the imaging region is

divided into M pixels, all having constant conduitti, and the above equation is
reduced to an equation system for N measuremenfptlowing matrix equation is

obtained:
Ap=Gp+n (1.2)

where A¢ andn areNx1 measurement and noise vectors, respectiyelys Mx1

vector of unknown pixel conductivity values ariél is NxM projection matrix
which depends on inside current density informatéomd chosen integral path.

Unknown conductivity values can be found from thiatrix equation.

In 1994, Woo et al proposed a new technique which constitutes ebattri
conductivity image using current density distribatiobtained from CDI technique
[19]. In this study, the difference between thereatr density distribution measured
from a real object and the calculated current dendistribution using finite
element method for a computer simulation model masmized. But the technique
has low spatial resolution and poor convergenceacheristics since, it can not use
inside current density information effectively. Algn the reconstructed images, it
was seen that error is high especially at the regishere current density changes

rapidly.

In 1995, Birgul and Ider proposed a new techniquienid conductivity [20]. In this
technique, it is stated that when the conductiingide an object changes, current
density will change and there will be a changeha thagnetic field. Therefore, if



this change in the magnetic field could be measutesh the inverse problem that
finds the conductivity distribution will be formethd solved. Also, since the change
in the magnetic field can be measured with equasgiseity in the imaging region,
conductivity map will be obtained with a uniformasal distribution. The same
group published a paper including a two dimensieeasion of this technique [21].
In [21], it is stated that currents in a two dimiensl object will produce three
dimensional magnetic fields but, these magnetitdgiewill have only normal
component on the boundary of the object. A linealation between the
conductivity change and change in the normal corapb(taken as z direction in

the study) of magnetic field could be constitutathwhe following equation:

Ab = SAo (1.3)

Here, Ab is the change in the magnetic flux denstyg is the change around the
first assumed conductivity value ar&l is the sensitivity matrix. Behavior of the
sensitivity matrix is analyzed using singular valdecomposition in the study.
Sensitivity matrix is just calculated for the firsbnductivity distribution. After

obtaining the sensitivity matrix, sincgb is known, required conductivity change

values can be calculated from

Ao =S'Ab (1.4)

Here, S matrix doesn’t have to be square and is genesaflgular, so its inverse
can not be taken directly. In the study, generdlizatrix inverse was used. In this
technique, only the component of magnetic flux dgn® the direction of MR
system’s main magnetic field was used. Therefdre,need for rotating the object
as in the techniques which use current densityilligion is eliminated. In the
study, experimental magnetic field measurementsevadso used. Conductivity
image was obtained with high resolution. But theamant point here is, using only
the magnetic flux density measurements, a uniquduwdivity distribution couldn’t
be reconstructed using only the magnetic flux dgrmeieasurements. But in 2003,

Birgul et al was proposed a technique which uses magnetidguasity and surface



potential measurements together to obtain thedoneuctivity distribution [22]. In
this technique, magnetic flux density measuremevese used first to obtain a
detailed conductivity map and then this condudtivitap was scaled to satisfy the

potential measurements.

Eyubalu et al proposed another algorithm which uses currentigedsstribution

and surface potential measurements to image thductimity and patented this
technique [23]. Technique is based on the fact ¢hatent lines and equipotential
lines are perpendicular to each other. Using tlaist, f surface potentials are
projected inside the object through the lines wlaoh perpendicular to the current
lines. Therefore, every pixel in the object is gesd a potential value and inside
potential distribution and potential gradient istaabed. Then, since the current
density in measured conductivity distribution iscodated from the following

formula:

_ [3xy)

Dot y) (xy)os (1.5)

a(x,y)

Here, J is the current densityl¢ is the gradient of the potential field ai&dis the

imaging region [23], [24]. Simulation and experirnaresults obtained using this
technique is given in [25]. This technique can retauct true conductivity images
with high and position independent spatial resohutiAlso, one current injection
pattern is enough for reconstruction of the conglitlgtmap. Kwonet al developed
a similar technique that uses equipotential lin28] [showed that conductivity
image, reconstructed with a measurement which fiesgtiDirichlet boundary

conditions, is unique. But only the simulation léswere given in this study.

In 2002, Kwonet al proposed an alternative absolute conductivity metroiction
algorithm named J-substitution algorithm [27] arale the simulation results. In

the proposed iterative algorithm, Kwehal minimized the following function:



2

dr (1.6)

o(p) = |

Qd

1
J -—E
0= n

Here, J is magnitude of the current densitl, is magnitude of the electric field

strength calculated from Poisson equation whictoised for a given conductivity

distribution o with Neumann boundary conditions. This minimizatieas resulted

with an update equation:

p=— (1.7)

Finite element method is used for the solutiorheflboundary value problem in the

study. Sincep and ap would satisfy the same current density distributibrue

resistivity value is calculated updating the regilst using the potential

measurements as given in the following equation:

pi=E (1.8)

In this study, it is stated also that, if at lefsb current injection pattern satisfying

‘Jlx\lz‘io equality is used with one potential measuremehén tabsolute

conductivity can be reconstructed. In a later stuthys technique is examined
experimentally using a homogeneous phantom andaatpim having an insulator

object by Khang [28]. But in this study, althoudtete was no error definition,

various numerical error values were given. A siméaperimental study using J-
substitution algorithm was made by Letal [29]. In this study, a sausage was
placed in the phantom and current density is nai aaywhere was satisfied. Also,
with imaging the grid phantom with a spatial distiion of 256x256 instead of

128x128 and using a more effective phase unwrapaiggrithm, they obtained

more accurate results than [26]. In a recent stilyaci@lu and Eyubglu

combined the J-substitution algorithm and equipidéprojection algorithm in [31]



and proposed a new reconstruction algorithm [30jis Ttechnique reconstructs
conductivity using equipotential line method firstnd then this conductivity is
given to the J-substitution algorithm as an initdibtribution. Reconstruction
accuracy is higher than both techniques. This tectencontains the positive parts

of the both techniques.

Another technique, which obtains conductivity imdmeusing just the component
of magnetic flux density in the direction of mairagmetic field without requiring
the rotation of the object, was proposed by 8eal [31]. Although, this technique
does not require the rotation of the object whighmpractical, it is based on the

calculation of 0°B,. This means the differentiation of noiy, measurements

twice. Furthermore, proposed image reconstructigarghm finds conductivityo
from its spatial gradientlo using line integrals and both line integrals and
numerical derivation tend to increase the erroreréfore, in the study, only the
results obtained from simulations with small additerror added were published.
Later, this study was improved by @hal using various techniques [32] and named

as Harmoni®, algorithm. In this study, firstly, in order to supess the
measurement noise iB, better, current injection process was repeatedrest

Also, current injected from recessed electrodesorider to prevent distortions
especially near the current injection electrodesly@e simulations results were
given in this study, too. Phantom experiments alibaese studies were given in
[33]. The last technique related with these studias proposed by Pagk al [34].
The new technique in this study takes the derieati/B, once different from the
HarmonicB, algorithm. Therefore, it has slightly improved theise tolerance.
Realistic errors added simulation results were mgivethe study. In 2005, Oét al
published the reconstruction results of biologitsdue phantoms using Harmonic
B, algorithm in MREIT [35]. Bovine tongue and livgrprcine muscle and chicken
breast were used as biological tissues and comduatjar gelatin as background
medium in the study. Conductivity values were retarcted with errors of %5 -
%25. Although the same group reported increaseskertolerances in [38] and [39],

their usage of HarmoniB, algorithm in this study was quite interesting.



In 2003, Ideret al developed three new reconstruction algorithmsviB-EIT [36].
All the algorithms in this study were derived fromx pJ =0 equality which is

valid in the object. The problem of reconstructisrireated as a hyperbolic system
of first order differential equations and three ruital methods named “method of
characteristics”, “reconstruction by integratiororay Cartesian grid lines” and
“reconstruction formulated as a linear set of eiuiat using finite differences” are
used. In the study, firstly, “if only current detysmeasurements were used, what
will be reconstructed?” problem was investigated #rns found that, under definite
conditions current density measurements can reaanstrue conductivity image
except a scaling. Then it was shown that, for @pgbhns where absolute
conductivity values are needed, only one potemiehsurement is enough for the
completeness of the image. All three methods pmghas this study is three
dimensional and they can easily be adapted towbedtimensional imaging. Also,
methods are not iterative and it was proven thabnstructed images are unique.
Later, the same group proposed another algorithmhmeconstructs conductivity
using the component of magnetic flux density indirection of the main magnetic
field [37]. In this new method, the imaging problé&rformulated as the solution of
a non-linear matrix equation and it is solved itieedy to reconstruct resistivity.
Only the numerical simulations were used to testalgorithm but both noise free
and noisy simulations used in the study.

Lee et al proposed a study that demonstrates a basic setuprdast conductivity
imaging [38]. In this study, they introduced thesicaimaging setup of the breast
MREIT technique with an investigation of four difémt imaging configurations of
current injection electrode positions and pathwaggsng computer simulation
studies. Also they performed an experimental stwith a breast phantom on a

3.0T MREIT system. Harmoni®, algorithm was used to reconstruct conductivity

images. 15 mA current was applied to ensure thécmrft SNR but it was also
pointed out that this current level is beyond thenbn safety limit. In a similar
study, Sadlieret al reconstructed biological tissue conductivitiesPwMREIT at

11T MR System in order to decrease current lev@]l. [Bhey gave the experimental
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results and also described technical difficultie&aaintered in using high field

MREIT systems and possible solutions.

In 2007, Kimet al reconstructed the conductivity image of a postemarcanine
brain [40]. They used 40 mA applied current and rktamic B, algorithm for

reconstruction. Obtained results showed a cleatrasinbetween gray and white
matter. Also in this study, authors proposed a rmsgcription as ‘equivalent
isotropic conductivity’. They used this term todrgret anisotropic conductivity
value of white matter since it is known that whiteatter has anisotropic
conductivity distribution but reconstruction algbm used is for isotropic
conductivity reconstruction. Later, again Kieh al reconstructed the conductivity
image of canine brain but in this casevivo [41]. They applied 5 mA current to the
living canines first and then they repeated theeexpent with the same but
postmortem animals with 40 mA applied current. Tmegorted the differences

between living and postmortem brain conductivities.

All reconstruction algorithms explained up to hessume conductivity as isotropic
and formulates the underlying mathematics accortbntpis assumption. But it is
known that most biological tissues have anisotropinductivity values [42].
Therefore it is clear that this assumption will &se the accuracy of the
reconstruction and application area of the techmidine first algorithm which does
not assume isotropic conductivity is proposed by 8eal at 2004 [43]. In the

study, o conductivity tensor was used to show the anisatropnductivity. This
tensor was selected as a 3x3, positive definiteixngt have a physical meaning.

Therefore, this means that, instead of trying vaitte unknown as in the isotropic

case, it is necessary to deal with 6 unknowng offter defining the problem with
this tensor, conductivity is updated iterativeharshg from the isotropic value

found using the Harmoni®, algorithm for the same boundary conditions. All 6

unknowns ofg are found in every iteration. Update continuesil uatstopping
criterion is satisfied. The proposed technique esamined with two dimensional

simulations, 100 mA applied current and for noigagas, SNR levels of 300, 200

11



and 150. It is shown that anisotropic conductiigpsor can be reconstructed if
enough current is applied. But since the curresttbde kept under a definite value
for human and animal experiments, it is concludedt tmore studies on the
reduction of applied currents must be done. Later2007, Dgirmenci and
EyUbaslu proposed the second technique for anisotropiclgctivity reconstruction
[44]. This technique depends up on the constructtdbnequipotential lines.
Equipotential lines and current lines are perparidicto each other when the
conductivity is isotropic but it is not the caseemhthe conductivity is anisotropic.
Therefore, there is a nonlinear relation betweeasatropic conductivity distribution
and current lines. Technique solves this nonlirgablem iteratively. Numerical
simulations for a two dimensional simulation phamt@0 mA applied current and
for noisy cases, SNR levels of 30, 20 and 13 weseduto test the proposed
algorithm. Later, the same group proposed two nadgerithms for anisotropic
conductivity reconstruction called anisotropic bstitution and anisotropic hybrid
J-substitution algorithms [45]. These techniques aso iterative and tested with
simulation models. Details of these techniques]([#20]) will be given in this

thesis.

1.3 Objectives of the Thesis

The importance of imaging conductivity distributionthe human body is stated in
the previous sections. Therefore, reconstructionoofductivity distribution is one
of the most important study areas of biomedicalire®ying. Several techniques

exist for this purpose. MREIT is one of them.

Reconstruction algorithms developed for MREIT teqbe were given in the
previous section. Most of these algorithms are tdated for the reconstruction of
isotropic conductivity. But it is known that most the biological tissues in the
human body contain anisotropic conductivity val(42]. Therefore, developing
reconstruction algorithms for anisotropic condutyivdistribution is a very
important study in this field. The main researcpi¢oof this thesis is selected

according to this and the following objectives weedined:
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* To develop and implement different novel reconstomc algorithms for
MREIT for the anisotropic conductivity distributipn

* To explore the theoretical limits, contrast andtisphaesolution properties of
the proposed algorithms,

* To compare all of the novel algorithms using staddfata sets,

* To obtain magnetic flux density data using 0.15TTMEEE MRI System,

* To reconstruct conductivity images using this ekpental data.

1.4 Outline of the Thesis

In Chapter 2, the forward problem definition of sotropic MREIT technique is
given first. Method for extraction of magnetic flaensity data from MRI phase
images, phase unwrapping algorithm for the comacbf MR phase images and
calculation of current density distribution from gmetic flux density data are also
explained. Chapter 3 explains experimental stuaiakzed during this thesis study.
In Chapter 4, current density based anisotropicduaotivity reconstruction
algorithms, namely equipotential projection basedis@ropic conductivity
reconstruction algorithm, anisotropic J-substitoticand anisotropic hybrid
algorithms are explained. Chapter 4 covers the etagrflux density based
anisotropic conductivity reconstruction algorithmfese algorithms are anisotropic
Harmonic B and Sensitivity algorithms. Chapter 6 explains ¢henputer models
used in simulations and simulation test resultshaf algorithms. Experimental
results are also given in that chapter. Chapteroiiclades the thesis with a

summary, final conclusions and future work.
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CHAPTER 2

THEORY

2.1 Introduction

In this chapter, forward problem of anisotropic NERF is formulated first (Section
2.2). Once the potential distribution is calculateith the solution of the forward
problem, the magnetic flux density distribution dsncalculated using Biot-Savart
law. Section 2.3 explains the numerical implemeotadf the forward problem and
discretization of the Biot-Savart law for the cadiédion of magnetic flux density
from injected currents. In practice, the magndtig tlensity distribution induced by
injected currents is the only thing that can be suead using an MRI system. In
Section 2.4, the procedure to extract it from MRitadis explained. Also, the
concept of phase unwrapping and the phase unwmpgdgorithm used in this

study are defined in the final section.

2.2 The Forward Problem of Anisotropic MR-EIT

The forward problem for anisotropic MREIT imagingdality is defined as the
calculation of magnetic flux density distributiomdaperipheral surface potential
values for a known anisotropic conductivity distion and boundary conditions.
Forward problem solution is used mainly for the eration of the simulation data.
It is also used in the formulation of some recardton algorithms. The nonlinear
relation between potential field and anisotropindctivity is defined by Poisson’s

equation as:
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D¢§D¢ymw=o (x, y)O <. 2.1)

where E(x, y) is the anisotropic electrical conductivity whick defined as

= |0 O . . . . . .
0':[ “ Xy} for two dimensional case, is the electrical potential andl is the
o, O
yX yy
— axx axy sz
imaging slice. Hereo is defined ag o, o, o,,| for three dimensional case
o, O, O

zX zy 7z

and it is a positive definite symmetric matrix. Btjon (2.1) is combined with the
following Neumann boundary condition to form a bdary value problem (BVP)
of MREIT.

—

J onpositive current electroc

=09 _

—aa— ={-J onnegativecurrentelectro. (2.2)
n
0 elsewhere

Once the potential field distribution is obtainede electric field distribution is

calculated as:

and the corresponding current density distribuisocalculated via Ohm’s law as:

- _ .= Uxx ny U wx
J=0E=- . (2.4)
o, 0, |Ug,

yX

Magnetic flux density distribution both on imagipdane and at some off-slice
points may be required for some reconstructionrétyns. Magnetic flux density
generated by the current density distribution foumcequation (2.4) is given by
Biot-Savart relation as:
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é()g Y, Z):&J.M' (2.5)

4t R?

where 1, is the permeability of the free spad®, is the vector from source point

(x',y', 2') to the field point(x, y, 2) and &, is the unit vector in that direction.

2.3 Numerical Implementation of the Forward Problem

For complex conductivity distributions, analyticalutions to thd8VP expressed in
equations (2.1) and (2.2) do not exist in genéraérefore, numerical methods are
utilized to solve this kind oBVPs. There are several numerical methods in
literature such as finite element method (FEM)jtdirdifference method (FDM),
etc. In this study, FEM is used to solve potentield distribution for a given
conductivity distribution and boundary conditioris. this technique, instead of
finding the analytical expression for the potentield at all points, the value of the
potential field at discrete points is calculatetie3e discrete points are named as
nodes. The imaging region is then divided into $enalegions by connecting the
nodes in a systematic manner to form the finitenelats. Finite elements can be
triangular or tetrahedral. The obtained mesh frasdenand element structure is
called as the finite element mesh. In this studgngular elements are used the
finite element mesh and the nodes are at the esriid the elements. Since the
simulation models and the experimental phantomsqueare, the mesh structure is
prepared for a square imaging regions. It contdR&1l nodes and 6400 elements.
Employed mesh is given in Figure 2.1.
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Figure 2.1: Finite element mesh used in the thesis study ®2B1 nodes and 6400
elements.

The conductivity is assumed to be constant andpibtential field is assumed
linearly varying in each finite element. The potehfield inside each element is
expressed in terms of node potential values antilaggaordinates to form a linear
equation. Combining the linear equations for eal@ment, the boundary value
problem is converted to a matrix equation of thvenfo

A@=b (2.6)

where, A is the coefficient matrix which depends on the Ime&sructure and
anisotropic conductivityg is the vector of unknown node potentials dni the
boundary condition vector. The node potentials #wen calculated by matrix

inversion and multiplication as

p=A"b. 2.7)
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It is important to note that, the squ@enmust be nonsingular to be invertible. Since
only current values at some nodes or elements eified for a Neumann type
BVP, there might be more than one field solution tad&opn (2.1) which satisfies
the boundary condition in Equation (2.2). In thase, the resultind matrix is
singular. In order to solve this singularity prableand find a field solution, a
potential reference must be specified. Numerically implemented by selecting a
node for reference point and forcing this referenode potential to zero in the

matrix equation. This operation guaranties theiitilvidity of the coefficient matrix.

After calculating the node potentials, electricldieand current density in each
element are calculated using Equation (2.3) anchfimu (2.4), respectively. Next
step is the calculation of the magnetic flux degnslistribution via Biot-Savart
relation using calculated currents. DiscretizatdBiot-Savart relation is explained

in the following part.
2.3.1 Discretization of Biot-Savart Law

Since the relation between current density and mitagrilux density is linear, a
discretization will be sufficient [46]. In this d&mn, a matrix relation between

current and magnetic flux density is derived.

Biot-Savart relation can be rewritten as

dE:%(%) 2.8)

for a differential current elemerdl’ wherel is the current in one finite element

and dI" is the direction of the current. In this formutatj primed variables are used
to indicate the source related variables. The cunensity vector calculated in the
previous part is placed at the center of each eiemued weighted with the area of

the corresponding element. The differential cured@ment can be written as
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ldI'=A@RJ,+48,,+4d). (2.9)
Although the equation (2.9) can be reduced for wimensional case, matrix

equations is derived for the general case and #ietpbivhen necessary. The vector

between the source and the field points, whicR jcan be written as
R=(x=X)4+(y V) §+(z 3 £ (2.10)

Evaluating the cross product in equation (2.8), tithogonal components of

magnetic flux density can be written as

dg, = L2 =D
4t [(x=x)+(y- Y)+(z= 9P* | 2.11)
_HA y-vy) 3
4rr [(x=x)+(y=- Y)+(z= 9** °
B = HoA (x=x) J
YA [(x=X)+(y- Y)+(z 9P T | (2.12)
_HA (z-2) 3
4rr [(x=x)+(y=- Y)+(z= ** *
g = HoA (y=y) 3
©Am [(x=x)+(y- )+ (z 9 (2.13)
_HA (X=X

J
4 [(x=x)+(y= V) +(z= 2"

Here, it is important to note that, effect of eadrent element on itself is neglected
in order to handle singularity in evaluation of thigove integral. To explain more
clearly, consider a circular region omy plane and assume that uniform current
flows in x-y direction. For this configuration, the magnetiexfidensity at the center
of the circle will be zero. For our case, effecteatch element on itself is neglected

although triangular elements are used.
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Equations (2.11), (2.12) and (2.13) are writtennf@ource points ankifield points,
therefore R linear equations are formed. Thede éjuations can be written in
matrix form as

le Ja
by I
vyl dl,l v dl,:h jy 1
: = e e (2.14)
% d3k,l a3k,3n 3kx3n jyn
z1 jzl
_bZk_3k><1 L jZ”-SnXl

where the coefficient matrix depends only on therse and field coordinates and
therefore constant for a given mesh structure. csdficient matrix can be divided

into parts as

b, 0 D, | -D, ||
& =|-D,| 0 | D, ﬁ . (2.15)
b, Dy -D, 0 ,

Here D, ,D, and D, are the matrices which depend on the magnitudieR

vector and the difference betweeny andz components of field and source points,
respectively. Since these matrices are constana foresh structure, they can be
calculated once and stored. This increases thei@olspeed of the field problem

significantly.

For two dimensional casg, is equal to zero and the matrix equation reduzes t
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2.4 Extraction of Magnetic Flux Density from MR Images

The magnetic flux density distribution generatedHhsy currents inside a conductive
object can be measured magnetic resonance imagghgitjues. In obtaining these
distributions, MR images are taken using appropnmatilse sequences and magnetic
flux density distributions are extracted from thessasurements. However, only the
component of the magnetic flux density in the dimtof the main magnetic field
of the MR system can be measured using MRI teclenidherefore, the object
must be rotated and the experiment must be repéatdidree different orientations
if the magnetic flux densities in three dimensi@ne required. Placements of the
object in the magnet at these three orientatioesgaren in Figure 2.2. In this
figure, ,y,2 is the coordinate system for the object and ()@’)yis the coordinate
system for the MR system. The main magnetic fidldhe MR system is in the
direction of z'. Figure 2.2(a) shows the orientatiaf the object inside the magnet

for the measurement d,, similarly Figure 2.2 (b) and (c) shows the oratiuns

for B, and B, measurements, respectively.

When a noise free MRI data without spin relaxai®massumed and the geometric
distortions are neglected, the acquired MRI sigisaihg a spin echo pulse sequence

shown in Figure 2.3 (without current pulse) carekpressed as

S(k. k., 0= [ [ M(x y BP0l g (2.17)
Xy

Here, M(X,y) is the continuous real transverse magnetizatiB(y, y) is the
inhomogeneity component of the magnetic field #hds a constant phase due to

instrumentation and receiver circuits. is equal toyG,t andk, is equal toyGt ,
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where G, and G, are frequency encoding and phase encoding grasiientgths,
respectively. y is the gyromagnetic ratict, is the duration of theG, gradient

pulse and is the data acquisition time. The integrationspedgormed over the data
acquisition window. Magnetization density can béaoted by Fourier transforming
S(k. k,, § with respect tdk, andk, as:

M, ()= [ [ Sk, k. ) &7 g e (2.18)
ke Ky

The resulting complex MR image is expressed as:
M, (x, ) = M(x, y) dVBCIal, (2.19)

When a current is applied to a conductor objecyimchronization with MRI pulse
sequence as seen in Figure 2.3, then the compohehe magnetic flux density
(due to the current flow) parallel to the main metgmfield accumulates a phase in
the acquired signal. This is formulated as:

Sk, K, 9= [ [ M(x y BUROPATRBLONTHR K gy (2.20)
Xy

where, B, (X, y) is the component of the magnetic field in the ction of the main

magnetic field induced by the applied currefi}. is the total current injection

duration.
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Figure 2.3: MR-CDI pulse sequence.

Fourier transforming the Equation (2.20) with restp® k and k, yields the
complex MR image as:

BB (XD T+ B

M, 5 (X y) = M(% y)é (2.21)

where, B, (X, Y) is the component of the magnetic field in the ction of the main

magnetic field induced by the applied currefi}. is the total current injection

duration.

As seen from Equations (2.19) and (2.21), expressi@re the same except an

exponential term caused by the applied currentréfbee dividing the complex
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image with current flow to the complex image withourrent flow eliminates the
effects of the phase inhomogeneities and other emagifacts and following

equation is obtained:

jY B(x,y)t , P,
M, (%Y) _ M(x y)éjy{ i = @I/Br (W),

M, (xy) M (x, y) B el

(2.22)

Note that, resultant phase is the difference of phase images. In practice, the
ratio in Equation (2.22) is not calculated but @a&t, phase of Equation (2.21) is
subtracted from phase of Equation (2.19). Finally, (X, y) is extracted from the

phase in equation (2.22) as:

B, (X y) =¥ (2.23)

where, 8, is the difference of the phasesMf ; and M, which is also called the

normalizedphase image [7], [47]. The resolution of the maigrf&ix density image

in z-direction is equal to the resolution of the NiRage. As explained earlier,
experiments must be repeated for the measurementhef components of the
magnetic flux density by rotating the object tagalthe desired component with the

main magnetic field.

In some image reconstruction algorithms, magnétix density measurements are
directly used [31], [37], while some uses the cotrrdensity distribution calculated
from magnetic flux density measurements [25], [AHe relation between current

density and magnetic flux density is given by tbd operator as:

O
X
w!

(&)
I

(2.24)
Ho
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If this equation is written in open form, followinglation between current density

and magnetic flux density is obtained:

_ oB 0B
j=1(98 9B, @+i(55x_55zjgy+i B Bl (225
Mo\ 0y 0z Mo\ 0Z 0X y

As seen from Equation (2.25), the magnetic fluxsitgngenerated by the current

flow in x-y plane has onlg component on that plane. In other words,= B, =0

for z= z plane and it is sufficient to measuB on that plane. Althougk andy

components are zero on that plane, their derivatwéh respect ta are not

: : 0B
necessarily zero. Therefore, in order to calcu%%é anda—y, B, andB, must be
z z

measured on some near planeszpf If B, andB, are measured om, +Az and

z,— Az planes, their derivatives are calculated as:

a|3x| _ Bx|2:;)+Az_ BX| z 702 (2.26)

0z |Z:4) 207 ' '
and

aBy| _ By‘z:;)+AZ_ By zgb: (2.27)

0z ‘2:70 2Az | |

In experimental study, it is possible to measuee rtiagnetic flux density at two
neighboring slices of the imaging plane and thedigra in z direction can be

calculated using these formulas.
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2.5 Phase Unwrapping

In general, it is not trivial to obtain the phasenm 8, (X, y) for a complex image
distribution. 8, (X, y) is defined only in the principal value range[efr, 71 and

any phase value outside this range is wrappedigarterval yielding the wrapped
phase image. Hereaftél(x, y) will be used to denote the desired phase image and

9(x, y) will be used to represent the wrapped phase imBige.relation between

8(x, y) and (x, y) is:

8(x, y) =8(x )£ [(x Y2 (2.28)

wherel(X,y) is an integer valued function [48]. Since the negnflux density is
directly proportional to the actual phase imag&x,y), a phase unwrapping

algorithm that reconstructs actual phase from trepped phase is needed.

In this study, phase unwrapping algorithm propdsediang [48] and implemented
by Birgul [46] is used. In this method, the unwragphase function is represented
as the sum of a truncated Taylor series and auaisfdnction and the unwrapping
problem is converted to a parameter estimationlprobThe key point behind the
algorithm is that, the derivatives of the actuadl awrapped phase images are equal
to each other except at the points where a phasg wccurs. The idea is to
compute the phase derivatives and use them forapping. In Liang’'s approach,

the MRI phase image is represented by a polyncamidld(x, y) is expressed as:

a(x, y) = P(x )+ 1(x Y (2.29)

where P(x, y) is truncated Taylor series which is &" order polynomial defined

by:
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N n
P(xY)=>D> G(m Xy (2.30)

n=0 m=0

andr(x,y) is the corresponding residual function. Thereftre,problem is now to

determine the coefficients and the residual fumctibhe algorithm has three main
steps:

1. Calculation of the phase derivatives
00(%.Y) 4ng 96%Y)
0X oy

Fourier transform (FFT) algorithm.

Desired derivatives, , are calculated using fast

2. Calculation of the polynomial coefficients

The polynomial coefficientsC (m) for 0<n< N,m< n are calculated by

fitting "ng’ Y ng PN o 286 Y) -, 98(%,Y)
X

either separately or
ay 0x ay

jointly. It is stated in [48] that joint fitting ntleod is better, so it is preferred
here. The coefficients are calculated by solving weighted least squares
problems defined as minimization of the weightechsof squares of the
difference between derivative of the wrapped phasages and the
polynomial functions. The weighting factor is onéem the magnitude of

the MR image is above some threshold and zerowiber

3. Calculation of the residual function

Once the coefficientsq,(m) 's) are found, the polynomial functioR(X, y)
can be wrapped to obtairi3(>g y). The difference between wrapped

polynomial, |5(x, y), and the measured wrapped phaﬁ,x, y), IS

calculated and set as the residual functi¢n y) .

The effect of phase unwrapping is shown on Figude ™ Figure 2.4(a), the
colorbar axis is in radians, and it is seen thatwhapped image only takes values in
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the [-77, 1] range and sudden jumps, in another words phasesweogcur in this

iImage. In the unwrapped image (Figure 2.4(b)),pthase wraps are removed. It is
important to note that, MR images have random ph&sepoints in the field of
view without NMR active nuclei. Therefore, phaseages should be masked using

a mask based on the amplitude image before applfhegphase unwrapping

(@)
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Figure 2.4: Demonstration of unwrapping: (a) Phase image betowrapping, and (b)
after unwrapping.
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CHAPTER 3

EXPERIMENTAL SETUP

3.1 Introduction

Magnetic Resonance Electrical Impedance Tomograpiliges a spin echo pulse
sequence together with a bipolar DC current soufbé current source does not
exist in conventional MR systems. Therefore, aentrisource which is controlled
by the pulse sequence generation software of thd MRtem to ensure the
synchronization is required to generate the reduibipolar DC current pulse. In
Section 3.2, the synchronized DC current sourexjained in detail. Furthermore,
in order to realize MREIT experiments, a phantomcWlhas a closed volume and
current injection electrodes on the surface isgiesi and manufactured. A detailed

explanation of this phantom is given in Section 3.3

3.2 Current Source

As explained in the previous chapter, in order gasure the magnetic flux density
generated by the internal distribution of injectedrents, applied current must be in
synchronization with the spin echo pulse. During thesis study, a synchronized
voltage controlled DC current source is implemenildck diagram of the current

source is given in Figure 3.1. In order to avoid iRterference, main part of the
current source is placed in the Faraday cage asgbant is connected to the system
control unit using fiber optic cables. Likewise,onder to prevent 50 Hz noise of
the electrical network and switching noise of th€/BC converter to go into

Faraday cage, main part of the current sourceppl®d by batteries.
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Fiber optic transmitter part of the current soucoaverts the control signal of the
current pulse sequence to the optical signal. Resé#nd negative currents in the
pulse sequence are first produced as two 5 V sgmalthe National Instrument
(NI) digital to analog converter board’'s two separahannels. These signals are
then converted to the optical signal in the fibptio transmitter unit and carried
with two separate fiber optic cable. Fiber optangmitter circuit is shown in Figure
3.2. Required power for the operation of the trattens is supplied by a 5V
adapter. Transmitter and receiver circuits aregiesl according to the length of the
fiber optic cable used between them. Fiber optidlesaare fed into the Faraday

cage and connected to the fiber optic receiver. unit

Faraday Cage
DC Power Supply
+5V -5V GND +24V 24V
[ [ 1T [ 1]
— T 1
e—
——— 1
v/
MUX Converter
DC |/
Power 5V ] Fiber optic | }YAAA=®] Fiber optic
Supply GND transmitter r Receive

Figure 3.1: Block diagram of the current source.

[l ——

Figure 3.2: Fiber optic transmitter circuit (Agilent HFBR 2412
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Optical signals on the fiber optic cables are thenverted to the 5 V electrical
signals in the fiber optic receiver unit. This uisitshown in Figure 3.3. Outputs of
two channel fiber optic receivers are connectethéamultiplexer.

—— DATA
ouT

ﬂj p [ |
L = o
1

Figure 3.3: Fiber optic receiver circuit (Agilent HFBR 2412)

0
Vee

CD 4051 integrated circuit is used as analog meklgr in the current source
circuit. Connection diagram can be seen in Figude S0 and S1 digital inputs are
connected to the outputs of fiber optic receivarsn@ntioned previously. 0 V, +5 V
and -5 V voltages are connected to the A0, Al ardafalog inputs of the

multiplexer, respectively. Other inputs are notdise

0V —— a0 CD4051
5V —— Al Analog
Output
SV — A2
Not
Connected s
S2 S1 Sb
L

0oV \_Y_/
Fiber optic:
receiver ri
outputs

Figure 3.4: CD4051 Analog multiplexer connection diagram

32



The truth table for the multiplexer is given in Tal3.1. If 0 V is applied to both
inputs, output becomes 0 V. If one of these sigisatsb V or -5 V, then this signal
appears at the output of the multiplexer.

Table 3.1: CD4051 truth table.

S2 S1 SO ON
0 0 0 A0
0 0 1 Al
0 1 0 A2
The rest are not used. X

The last part of the current source is the voltegeurrent converter unit. In this
unit 3 OPA452T operational amplifiers are used. @ypoltages of the op-amps
are provided by batteries. Analog output of thetiplgxer is connected to the V
input of the voltage to current converter as seefigure 3.5. In this figure, Z
shows the load impedance andshows the constant current applied to the load.
Load voltage Yis sensed through a voltage buffer by the secorahgp. The third
op-amp takes the difference of &d \b,. By doing so, the difference betweeszV
and M therefore, the difference betwegnand } are kept constant. If the overall
circuit is analyzed, following equation is obtained

||_= |2:-V|/R2 (31)

As seen from equation (3.1), load current is ind€eat from load impedance.
Amplitude of the load current can be changed by @hlanging Y and R values.
When the input voltage becomes -5 V, 0 V or 5,\Gurrent can be adjusted in the
0 — 100 mA interval independent of load impedarsiagithe variable resistance R
(Upper limit of the current is defined also by theply voltage).
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Figure 3.5: Voltage to current converter circuit

3.3 Phantom

In order to test the proposed algorithms under exg@lerimental conditions, the
easiest way is to design and manufacture a phamomhich magnetic field

measurements will be made while applying currentr Fhis purpose an
experimental phantom is designed and manufacturédis study. Some important
aspects are taken into account during the desreps of the phantom, which are;

» Since this phantom is placed inside the RF cailditnension is designed to
fit and to be rotated in three directions inside &F coil.

* One side of the phantom is designed as cover,gp fding and emptying
of the phantom with experimental material.

* Recessed electrodes are used to avoid signal lesdodthe high current
density under electrodes.

» Electrodes are designed to allow change of eleetroagterials when needed.

* In order to define the position of the slice dureng experiment, a position

marker is built on one side of the phantom.
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Technical drawing of the phantom is given in Fig8ré. Since, this phantom will
be used in the MR system, manufacturing materighefphantom is required to be
selected as non MR active material. For this puwpd3exiglas material was
chosen.
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(b)

(d)

Figure 3.6: Designed phantom; (a) Technical drawing, (b) (Q) Views from several
directions.
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As seen from Figure 3.6, four electrodes are plawefbur edges of the phantom.
These electrodes are used for both current injeetral potential measurements. Six
different current injection profiles were providading opposite and adjacent pairs
of electrodes separately. 20 mA current was appieedach profile. Potential
measurements were also made from the same elextuseée for current injection
with a floating multimeter. Photographs of the mfaestured phantom are given in
Figure 3.7.

Figure 3.7: Photographs of the manufactured phantom.

After the production of the phantom and definitmfinthe current injection profiles,
the new subject was the internal material whicH el placed inside the phantom.
For this purpose, two different experimental phargovas designed, simulated on
the computer and produced physically. Three dinogradi and cross sectional
Images of these two phantoms are given in Fige 3.

In the first phantom, shown in Figure 3.8 (a) ahyl {n order to prevent flow of
current in one direction in the middle section bé timaging slice two 3 cm
insulator layers were placed. By doing so, an daropec conductivity is obtained in
the vicinity of the layers. A 3 by 3 cm square abjeith 2 S/m conductivity value
was prepared outside and placed between the ldyershis object, 1.75 gr Salt,
0.1 gr CuSq 1 gr AgarError! Reference source not found.and 1 gr TX151
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Error! Reference source not found.are mixed in 100 ml pure water while heating
the mixture. After boiling, the mixture is poured @& 3 by 3 cm square mold and
waited about 2 hours. After this time, solidifiect@rial is removed from the mold
and placed between the layers. For the backgrowatdrial, a similar material with
0.2 S/m was prepared. In this case, 0.1 gr Gu&& gr TX150Error! Reference
source not found, 2 gr TX151 were mixed in 100 ml pure water buatireg did
not opened in this time. After the mixing about hthutes, a liquid material was

obtained and poured remaining inner parts of trenfom.

-

ELK1

EATIELKZ

..... : Paoaaaath o
=

Figure 3.8: Designed two experimental phantoms: ((a) and Qecpss sectional, ((b) and
(d)) Three dimensional images.
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Since the layers placed inside the first phantoencampletely insulator, anisotropy
ratio could not be controlled according to the posi Because of this, second test
phantom was designed and holes are opened onyés lam order to change the
anisotropy controllably. There are 7 layers inph@ntom as seen on the Figure 3.8
(b) and (c). First, third, fifth and seventh laydrave four holes while the other
layers have three holes. Remaining part of the fonarare filled with mixture of
0.1 gr CuSQ@and 0.145 gr NaCl in 100 ml pure water which hasraductivity of 2
S/m. Because of hollow insulator layers, curremt @aly flow inside of these holes.
Using different numbers of holes in each layerwflof current in different paths
was ensured. Therefore, when the current is apfietdieen different electrode
pairs, different current paths occur and anisotr@pnductivity is obtained.

Overall MREIT setup is given in Figure 3.9. Usirtyst setup, data acquisition

process was completed for both of the phantomsnaagnetic field distributions

were calculated as explained in the previous chapte
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Figure 3.9: METU EEE MRI System and MREIT experiment setup.
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CHAPTER 4

CURRENT DENSITY BASED RECONSTRUCTION
ALGORITHMS

4.1 Introduction

In anisotropic MREIT technique, the aim is to fitlte anisotropic conductivity
distribution inside a conductor object from meaduneagnetic flux density and
peripheral voltage measurements. This procedurecaded as the image
reconstruction or the inverse problem of anisotdpREIT. For the solution of the
inverse problem, two different types of image restouction algorithms are
proposed. The first type uses current densityidigion calculated from magnetic
flux density measurement3ypet). This type of reconstruction requires magnetic
flux density measurements in three directions.hi@ $econd type, magnetic flux
density is used directly in image reconstructioml &nis possible to reconstruct
conductivity images using magnetic flux density sweament in one direction
(Typedl). In this chapter three anisotropic conductivigconstruction algorithms
which are classified a3ypet are presented. In section 4.2, the first algamith
namely Equipotential Projection Based anisotropamductivity reconstruction
algorithm is given. Anisotropic J-substitution asaisotropic Hybrid J-substitution

conductivity reconstruction algorithms are expldine detail in section 4.3.
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4.2 Equipotential Projection Based Anisotropic Conductvity

Reconstruction Algorithm

4.2.1 Introduction

In this part of the study, a novel MREIT reconstiat algorithm is proposed for
the solution of the inverse problem. The algorithuses the current density
distribution calculated from magnetic flux densimeasurements. This calculation
is given in chapter 2. In this algorithm, the diffece between calculated and
measured current density distributions is minimizestatively. Algorithm start

from an initial conductivity distribution and theqeedure is iterated by assigning
calculated conductivity as initial conductivity. &hdetailed explanation of the
algorithm is given in the next section. Performamests of the algorithm using

computer and experimental models are given in tesbipter.
4.2.2 Algorithm

The proposed algorithm, which is based on the cocisbn of equipotential lines in

the FOV at each iteration, reconstrua=ts iteratively using only current density
measurements. Since equation (2.4) uses potemsdiegt not the potential itself,
the potential values assigned to these equipotehtias may be any value
satisfying the correct potential gradient distribnt Therefore, reconstructed
anisotropic conductivity distribution is a relatigéstribution. In order to find the
true conductivity values, at least one potentialconductivity measurement is

needed to scale the reconstructed conductivityeglu

After the internal current density distribution imeasured, the anisotropic
conductivity reconstruction algorithm is realizext & rectangular object as follows.
It can also be easily adapted for other geomesiiese the algorithm operates pixel-
by-pixel instead of entire FOV.
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Calculation of pseudo-surface potential values

Calculation of anisotropic conductivity values neeaihly the potential
gradients in the FOV; therefore it is sufficient @btain potential
gradient values throughout boundary columns. Fds thurpose,

equation (2.4) is rearranged and solvedigr,

(4.1)

J axx_‘]p X
D¢y_ y y

nyayx - O-X)p- Yy

An equation for g, is also obtained similarly. Known conductivity
values are assigned to the boundary pixels in dalealculatellg, on

the left and right most boundary layers di@, on the upper and lower

most boundary layers. In practice, this structua@ be achieved by
wrapping a conductive belt with a known conducyivdround the object
to be imaged. Then potential gradients along allnbary pixels are
calculated. Based on these potential gradientengiat values of the
boundary pixels are calculated by assigning a pelemalue to any
pixel on the boundary. In this paper, these patésntare called as
pseudo-potentials since they are not the true patevalues but the
values satisfying the calculateddg components. Potential values are
assigned to the points at the centre of each boynpixel. If an
equipotential line starts from a point which is tloé central point of a
boundary pixel, then potential value of that eqteptial line is
estimated by linearly interpolating the nearesepbal values, prior to

constructing equipotential lines.

For object geometries other than the rectangulamgéry, boundary

layer potentials can be calculated usirigg, and ¢, values

simultaneously. In such a case, nearest lines leetwentres of each
neighbouring boundary layer pixels are determinkentintegral of
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(ii)

potential gradients are calculated along theses lisiarting, from an

initial potential in order to find the boundary &ypotentials.

Calculation of the angle between equipotential Sired current lines
and construction of equipotential lines

Let J(x,y) be an mxn matrix representing distribution of measured
current density vectors (wheréx,y)S). The angle between the
equipotential lines and the current vectors areerddahed by the
conductivity anisotropy at the crossing point. hder to find this angle,

the ratio ofLl¢, andU¢, from equation (2.4) is obtained as:

O, _ 3,0~ 3.0
O¢, Jo,~3go,,

(4.2)

Hereo,,, o o, and o, are the anisotropic conductivity

Xy ? yXx

components,J, and J, are the measured current density components in

x andy directions, respectively. Notice that, this rasaothing but the

tangent of thellg line at a point(x,y) whose anisotropic conductivity

values are,,, o, , 0, and o, and current density components are

XX 1 Xy !

J, and J,. Then, angle of thélg line at this point can be expressed

with the following equation:

, (x,y)dS. (4.3)

_ tan—l( ‘]yUxx_ ‘]pyx]
(x,y)

o =
Pl xy) Oy =T sy

Since equipotential lines are perpendiculatlig lines, equation (4.3) is

sufficient for the calculation of the angles of gmpiential lines. Note
that, at the first iteration it is impossible tarfeem the angle calculation,
since no conductivity distribution data is avaiiablk this point. Because
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(iii)

of that, equipotential lines are assumed to begretigular to the current

vectors at the first iteration.

After calculating the angles for the entire FOV, eaquipotential line is
initiated from the boundary of a left-most pixeldaprojected through
each pixel, with strictly satisfying the angle cdmh of the
corresponding pixel, to any other boundary of tk®/FThis process is
initiated at new points in all left most pixels eyt the pixels which are
under the current electrodes. Since the angle leetva@ equipotential
line in a pixel and the current vector of that pixe definite, all
equipotential lines in a pixel starting from ditat points follow parallel
but different paths and never cross each otherefdre, infinitely many
equipotential lines can be initiated. In our stufilye equipotential lines
are initiated for each boundary layer pixel. Thenegrocedure is also
repeated starting from the right-most, the top #mal bottom pixels.
After constructing the equipotential lines, the gudial distribution

inside the object can be obtained.

Determination of internal potential distribution dncalculation of its

gradient for the entire imaging region

This step is nothing more than projecting boundamtentials into the

pixels through which equipotential lines pass. 8imoore than one
equipotential line may pass through a pixel duéhtofinite size of the
pixel, the potential value at these pixels are \dated as the weighted

sum of these potentials as,

N
Dd@
9, =12 (4.4)
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where, ¢, is the pixel's potential valued. is the length of thei"

equipotential line in the pixelg is the potential value of thé"

equipotential line and N is the number of equiptiééiines crossing the
pixel. If no equipotential line passes through xepthen potential value
of this pixel is estimated by the weighted sum @fhe neighboring
pixels as

1 8
b = 20 (4.5)
i=1

where, ¢.. is the pixel's calculated potential valug, is the potential

value of thei™ neighboring pixel,w is the corresponding weighting

factor and N is the number of the pixels whose eatunot zero. The
contribution of a neighboring pixel to the missipgtential value of a
pixel is taken as inversely proportional to thetalise between these
pixels. Two weights are used in this applicationge as for diagonally
neighboring pixels and the other for non-diagonakyghboring pixels.

22

ndw,, = ——, respectively.

J2+1

. 2

The weights arew, =\/_2—+1 a
Note that, the calculated potential distributioraiselative distribution.
One potential measurement is used to convert thisklition to the true
distribution. A scale factor is calculated by divigl the measured
potential value by the calculated pseudo-potemtialhe measurement
pixel and then the relative distribution is scabsdthis factor to obtain
the true potential distribution. In case of the laygions where true
conductivity values are not necessary but only ¢batrast figure is
sufficient, then reconstruction becomes possiblhaut any potential

measurement. Following the determination of thecpial fieldg, its
directional gradients can be calculated by convgw#(x, y) with (3x3)

Sobel operators. Mathematically, it can be expikase
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. -1 0
D¢x(x,y=@—2 0 2008 (xy)

-1 0
(4.6)
LR
O, (x y)=§y 0 0 OiLpKxy)
-1 -2 -

where, Axand Ay are the pixel widths along the x and y directions,

respectively. The size of the templates used invalomtion affects the
amount of smoothing. Employing a (3%3) template esadtifferentiation
less sensitive to noise compared to a (2x2) templdowever, using
larger templates increases computational cost.eftwey, there is a trade

off between noise sensitivity and computationak.cos

(iv)  Aresidual function is defined as

— 2
R:jH—auw—JH ds 4.7)
S

where, | O is anL, norm, J is measured current density distribution,

Og¢ is the calculated potential gradient a8ds the imaging plane. The

surface integral is converted into summation oveelgelements as

— 2
R=Y H—ajuw—JH ds 4.8)
i's
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where, | is the element inde>«=7,- is the anisotropic conductivity of the

i™ element andS, represents the surface of th& element.R is

minimised with respect to ea(zTn by setting

X -9 (4.9)

Since minimising a function with respect to a matrieans minimising
it with respect to all matrix elements separatdbflowing equation

system is obtained for one current injection peofil

3} =al0g,+ o8,
(4.10)
R j j j
Jy —O'yXD¢X+0'y>D¢y

R

j
where, o -

XX

o), and o) are the anisotropic conductivity
components of thej™ element,J) and Jyj are the measured current

density components of thg" element in x and y directions, respectively
and g, and g, are their potential gradients. In equation (4.1i0gre

are four unknown anisotropic conductivity valuesthwionly two

equations. In order to solve this equation systenttfese unknowns, at
least two different current injection profiles areeded to obtain four
independent equations. Since thevalues are measured, if tHég

values are calculated from the true potential ithigtion, solution of this
equation system yields the unique solution. Buthd [1¢ values are
calculated from a relative potential distributidnen the solution of this
equation system gives a relative distribution whghot unique but the
numerical values of the distribution will be didgctdependent on the

assigned potential value to one boundary layerlpiker the whole
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imaging system and for N different current injentiprofiles, equation

(4.10) can be converted to the following equatigstem

I = o,0¢+0, 08
32 = o 0¢5+0,¢7
W= 0,00} +0,0¢)
(4.11)
1 _ 1 1
‘Jy - Jny¢x-"Uy>D¢y
33 = ayxm¢§+o—yp¢2y
3y = 0,09y +0,[8Y

These linear equations can be expressed in matdter form as

follows:

3 _fo Dj;_
2| |0 O -

IR ]

(&
x
®

(4.12)
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Now the new anisotropic conductivity distributioren be calculated as:

a, g,
“l=c'o, >t | T|=cTn,t (4.13)
Oyy Oy

SinceG matrix is not square, direct inverse®fcan not be calculated.
Inverse matrix is obtained by singular value decositipn (SVD). Note
that, G has only two Eigen values, and the inversion islenaithout

truncation.

These four steps given above are repeated itelativehe difference between two
consecutive conductivity images becomes less thamedefined valuee, then

iterations are terminated.

Reconstruction results of the proposed techniquegu®oth simulated and
experimental data are given in chapter 6.

4.3 Anisotropic J-Substitution and Anisotropic Hybrid J-
Substitution Conductivity Reconstruction Algorithm

4.3.1 Introduction

Kwon et al [27] proposed a new isotropic conductivity recamstion algorithm,
called J-substitution algorithm, in 2002. In thedst, they represented the image
reconstruction as a constructive m{aIpJ ,V} - p inside a regionQ within the
subject where), is the injected currend,is the magnitude of the current density and
V is the peripheral voltage measurements. In thidystextension of that algorithm
for the reconstruction of anisotropic conductivity performed and a new
anisotropic conductivity reconstruction algorithoalled anisotropic J-substitution

algorithm, is proposed. Detailed explanation of pneposed algorithm is given in
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Section 4.3.2. Simulation test results of the athor are given in the results
chapter.

Furthermore in this study, a novel anisotropic aatigity reconstruction algorithm
called anisotropic hybrid J-substitution algorithisy proposed. This algorithm
combines the equipotential projection based armapatrconductivity reconstruction
algorithm explained in the previous chapter andg@nopic J-substitution algorithm
explained in this chapter. Detailed definition bétalgorithm is given in Section
4.3.3. Simulation and experimental results of thelgrithms are given in the

results chapter.
4.3.2 Anisotropic J-Substitution Algorithm

In this part of the study, previously proposed Bssiution algorithm which is for
isotropic conductivity reconstruction is extendedr fthe reconstruction of
anisotropic conductivity. Before explaining the a@ithm for anisotropic
conductivity reconstruction, it will be helpful ove the underlying mathematics of
the isotropic conductivity reconstruction algorithfgeneral explanation about the
isotropic algorithm is below.

For any given resistivityo of a volumeQ, the corresponding voltagé, satisfies

the followingBVP:

0 [EEDVJ =0 in Q (4.14)
P
ov
1 _ j, onoQ (4.15)
£ on

Related to th®&VPin (4.14) and (4.15), following cost functionaihcae defined:
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2

W(p) ::j dr (4.16)

Q

x 1
J (1) _m E,(r)

where, J'(r ) is the magnitude of the measured interior curréensity and
E,(r) :=‘Dvp(r)‘ is the magnitude of the calculated electric filgnsity obtained

by solving (4.14) and (4.15) for a givem. After discretization of the model té

pixels with the same area for &lf, we get the following squared residual sBm

R(0y,...0N_1) = Z HJ (r)-oyE, (q (4.17)

kOQ

where,Qy is the K" pixel element of the modely, is the conductivity o that is

assumed to be constant at each element. To updateedfstivity from the zero
gradient argument for the minimization of the sedarresidual sum, we

differentiate (4.17) with respect @, for m=0,...,N-1 to get

0:6‘%: zj E, (N)(OmE, ()= 3" ())dr

(4.18)

+22 jak

kOQ

( KEp(r)=J3"(r)dr

This leads to the following approximate identity:

0= Ep (rm)(amE (rm) = J (rm)

N-1 (4.19)
Z "(k)( T E(r)=3"(r)

for m=0,...,N-1, wherer, is the center point of the element and we used the

simplest quadrature rule. Hence, the following uippdastrategy to minimize the
residual sum in (4.17) is obtained:
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1 - J*(rm)
Pm  Ep(t)

for m=0,...,N-1 (4.20)

where, ,Bm is a new resistivity value o€y, and E,(r,)) is the calculated electric

field intensity at the center point ©f, from an old resistivity distribution.

Explained algorithm up to here is for the recorddiom of the isotropic

conductivity. Since, our aim is to reconstruct atmgpic conductivity distribution,

scalarog (or p) is changed with 2x2 tensor distributioc?({aXX ny}) in the
yX yy

above formulation. Very similar study had been qened in our previously
proposed equipotential projection algorithm in gect4.2. In that study, interior
potential distribution is found by construction exfuipotential lines and projection
of boundary potentials through these lines. Théedihce in this algorithm is that,
interior potential distribution is obtained by soly the boundary value problem
using finite element or finite difference methotis.our study, we preferred to use
finite element method (FEM). Basics of the FEM &&nfound in Chapter 2. After
obtaining the potential distribution inside, potahgradient, therefore electric field
is calculated using 3x3 Sobel operators as in gugpetential projection algorithm.
Here, it is important to note that, since ther@asconductivity information at the
beginning, an initial conductivity distribution udilized for the construction of FEM
structure. For the next iterations, previously fdwonductivity distribution is used.
In order to find a updating equation, residual tiorc defined in (4.17) is written
for anisotropic conductivity. Differentiating thisinction and equating it for the

minimization purpose, following equation systenoligained:

R
(4.21)
Jy =oL0¢+0\ ¢,
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where, 0}, 0}, 0}, and o], are the anisotropic conductivity components of the

Xy 1

j" element,J) and J) are the measured current density components ofj the

element in x and y directions, respectively dig, and [¢, are their potential

gradients. In equation (4.21), there are four umkmaanisotropic conductivity
values with only two equations. In order to solhés tequation system for these
unknowns, at least two different current injectfmofiles are needed to obtain four
independent equations. For the whole imaging systechfor N different current

injection profiles, equation (4.21) can be conwkrte the following equation

system
Jy = o dg+o,0d J, = o,0d+o,0g,
i = o,0¢ +0,0¢ 3 = o,0¢ +0,0¢
(4.22)
Y = o, 0¢ +o,0¢ = o,0¢ +o,0d)
These linear system of equations can be expressieti@vs:
3] [og og) y| | De D¢
2
J)% Daf D@ Oxx Jy D(HXZ ij ny
S REEI RE [M -
3] |04 0d N |ogt og
— ~ < - < -
Ix G Iy G

Now the new anisotropic conductivity distributioren be calculated as:

(o) g
* =gt , =6, (4.24)
Oyy Oy
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Since G matrix is not square, direct inverse @f can not be calculated. Inverse
matrix is obtained by singular value decompositi§ivD). Note thatG has only

two Eigen values, and the inversion is made withautcation. Above steps are
repeated at each iteration. If the difference betwivo consecutive conductivity

images becomes less than a predefined altigen iterations are terminated.

An important point here is that, under the sameetrpattern, two conductivity
distributions o and ao will yield the same interior current density diistition.
Therefore, using only current density distributaminput, not the true conductivity
distribution but the relative distribution can exonstructed. In order to find the
true conductivity, a potential or a conductivity asarement is required as in the

equipotential projection algorithm.

4.3.3 Anisotropic Hybrid J-Substitution Algorithm

As the name of this new algorithm implies, it comds two anisotropic
conductivity reconstruction algorithms; one is afrigpic J-substitution algorithm
explained in the previous section and the otheramgsotropic equipotential
projection explained in chapter 4.2. In the newlppgwsed hybrid technique,
anisotropic conductivity is first reconstructed hveinisotropic EPP algorithm and
then this conductivity distribution is given to tRBesubstitution algorithm as the
initial distribution. By doing so, it is expected tlecrease the errors of anisotropic

EPP algorithm and obtain a faster convergence.

Simulation and experimental test results for thge algorithms are given in the
results chapter.
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CHAPTER 5

MAGNETIC FLUX DENSITY BASED
RECONSTRUCTION ALGORITHMS

5.1 Introduction

In the previous chapter, inverse problem of MREIBswdefined and image
reconstruction algorithms were classifiedTgpet and Typeil. In this chapter, two

anisotropic conductivity reconstruction algorithneeth areTypedl, are proposed.

These algorithms use only the magnetic flux densigasurement in one direction.
Therefore, rotation of the object inside the MRhmger is eliminated. In the
following section, anisotropic Harmonic Bonductivity reconstruction algorithm is
given. Anisotropic Sensitivity conductivity reconsttion algorithm is explained in

detall in section 5.3.

5.2 Anisotropic Harmonic B, Conductivity Reconstruction

Algorithm

5.2.1 Introduction

In 2003, Ohet al [32] proposed the Harmonic ;Balgorithm for isotropic
conductivity reconstruction. In that study, theat&n betweeri]’B, and 0o was

used to reconstruct conductivity distribution. Tdfere, conductivity is
reconstructed using only one component of magfietat by removing the need for

object rotation in the MR scanner. In this parth# thesis, extension of Harmonic
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B, for the reconstruction of anisotropic conductivity realized and a new
anisotropic conductivity reconstruction algorithnamely anisotropic Harmonic,B
algorithm, is proposed. Detailed explanation of pneposed algorithm is given in
Section 5.2.2. Simulation and experimental tesilte®f the algorithm are given in

the results chapter.
5.2.2 Algorithm

Fundamentals of the Harmonic, Bilgorithm are described in [32]. Here, the

proposed anisotropic conductivity reconstructiagoathm will be explained.

Algorithm starts with the following identity
OxOxH =0(0H)-0%H (5.1)

Here, sincedxH =J and OH =0 hold inside a volume conductor with current

flow, equation (5.2) is obtained from equation }5.1
O%H =-0xJ (5.2)

For anisotropic conductivity distribution, curremlensity can be written as,

J :;DQ where? is a 3 by 3 matrix. In this algorithm=7, Is defined as,

|0 0
o= 0 g,
0

0
0 (5.3)
0 o,

for simplification of the underlying mathematicsa this case, the following

equation is written:
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_ o, O 0 Ue,
J=-cOp=-| 0 o, 0 |D0g (5.4)
0 0 o,||Uey,
Then;
O-XXD¢X
J=-lo,0¢,|. (5.5)
O-ZZD¢Z

Combining equation (5.2) with equation (5.5) gittes following equation:

. JXXI:IwX
0°H =0x| | o,,0g, | |. (5.6)

O-ZZquZ
Only the z-component of this identity is writtenfaBows:

—. 00 oE
2R =2 + Sy -9
ox Y ox ¥

Oxx aEx
(E & .,. 5.7
3y X By XX ( )

Taking the derivatives using forward difference Inoet yields the following

equation:

DZHZ(X, y)= Oy (X+1, )gx— I (X, y)EEy( Xy

E, (x+1,y)- E,(x )
+ A &y (X, Y)
_ Jxx(x’ y+1)_axx(X! y) l

Ay (Ex (X )
_E(xyth)-E(x Y
Ay

(5.8)

BTXX(X’ y)
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is obtained. Finally, rearranging the above equatequation (5.9) is obtained:

O%H, (% ¥) = 0 (% y)FEx(X’ y);yEX(x y+1)}

2E, (x, y)— E,(x+1, y)} (5.9)

—Ty (X, y){ A

+0o,,(X+1, y)GM O, (X y+ 1)@X(M

As seen from equation (5.9), unknown conductivitynponents stay together with
measured magnetic field intensity and unknown gtectield data. In this
algorithm, electric field is calculated using fmielement method at each iteration.
In order to remove the unknown conductivity valwsx+1, y) and &, y+1)
coordinate points while calculating the conducyivdbmponents atx( y) point, the
first row and the last column conductivity compotseare assumed to be known.

Then equation (5.9) is rearranged as:

|]ZHz(X’ y) _Jyy(X+11 y)gu'l'axx(x, \Vaa 1)M

— 2E, (X, y)- 1Ly

(5.10)

Then the unknown conductivity components at theseéaow and n-£ column
can be calculated using the known conductivity @aland the calculated electric
field and the measured magnetic field data. Thiegadure continues with the third
row and the (n-1) column and all conductivity values in the FOV asdculated
recursively. Calculation sequence is given in Fegburl
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Figure 5.1: Conductivity calculation sequence for anisotroparidonic B algorithm.

Obtained results using this algorithm for both dated and experimental data are

given in chapter 6.

5.3 Anisotropic Sensitivity Conductivity Reconstruction
Algorithm

5.3.1 Introduction

Birgul and Ider proposed a new technique to finddrativity in 1995 [20]. In this
technique, it is stated that when the conductiingide an object changes, current
density will change and there will be a changehim thagnetic field. Therefore, if
this change in the magnetic field could be meastired the inverse problem which
finds the conductivity distribution can be formeawasolved. Furthermore, since the
change in the magnetic field can be measured wjtialesensitivity in the imaging
region, conductivity map will be obtained with aiform spatial distribution. But,
that study was for isotropic conductivity distritmut. In this study, extension of that
algorithm for anisotropic conductivity reconstraceti is realized. Detailed
explanation of the algorithm is given in the folliogy section. Obtained results will

be given in the next chapter.
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5.3.2 Algorithm

For isotropic conductivity distribution, a lineaglation between the conductivity
change and change in the normal component (takenda&gction in the study) of

magnetic field could be constituted with the follogyequation:
Ab =SAo (5.112)

Here, Abis the change in the magnetic flux densifyy is the change around the
first assumed conductivity value a&s the sensitivity matrix. Once the sensitivity
matrix is calculated, sincAb is known, required conductivity change values can

be obtained from
Ao =S"Ab (5.12)

When the anisotropic conductivity distribution im@oyed, the sensitivity matrix
must be calculated for conductivity changes of aflisotropic conductivity

components. For a two dimensional distribution,agigun 5.11 can be rewritten as:

Aoxx
Ab =S| Aoy (5.13)

Aayy

Here, Aoy is the change in the x directed conductivity comad around the

initial conductivity. Similarly, Aoy, and Agyyare the changes in off-diagonal and

y directed conductivity components respectivelyaigonce the sensitivity matrix
is calculated, required change of conductivity comgnts can be obtained from

equation (5.12).

Here, it is important to note the matrix does not have to be square and is

generally singular. Therefore, its inverse can bettaken directly. In this study,
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singular value decomposition based pseudo invese wged. AlsoS matrix is
calculated only one time for each geometry andecurinjection configuration and

stored. This increases the speed of the algoritgnificantly.

Another important aspect is that using only magnitix density measurements, a
unique conductivity distribution could not be restrncted. In this study, surface
potential and magnetic flux density measuremergsuaed together to reconstruct
true conductivity distribution uniquely. Magnetilux density measurements were
used first, to obtain a detailed conductivity map #en, this conductivity map was

scaled to satisfy the potential measurements.

Simulation and experimental results of this aldomtare given in the next chapter.
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CHAPTER 6

RESULTS AND COMPARISONS

6.1 Introduction

This chapter will cover the performance test resatftthe reconstruction algorithms
explained in the previous two chapters. Four déifelcomputer models constructed
for performance evaluation of the algorithms witinidated measurements will be
explained in section 6.2. In order to quantize rd@nstruction accuracy, an error
measure is defined. This definition is given intset6.3. In section 6.4, simulation
of the measurement noise for the test of the algos under noisy measurements is
explained. Then simulation and experimental resoltseach algorithm using
proposed models with and without noisy measuremeiltde given sequentially

in section 6.5. Furthermore, final comparisonsgawen in section 6.6.

6.2 Conductivity Models

In this study, four different two dimensional conbgrumodels were reconstructed to
investigate the performances of the reconstructatgorithms described in the
previous chapters. Dimensions of all models welected as 9 cnx 9 cm in order

to make the models similar to the experimental pfrarused in METU EEE 0.15 T

Magnetic Resonance System. 20 mA injected currer® mvodeled in simulations
again thinking the limits of the current source dug® experimental studies. Four
different current injection profiles were providég the electrodes placed on the
model boundaries. Electrode placements and the mimaiuthe currents on each

electrode are given in Figure 6.1 and Table 6dpeetively.
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Figure 6.1: Dimensions and electrode placement of the computeiel.

Table 6.1: Current amplitudes applied to the electrodes fioremt injection
patternd , I, 13 andl,4. Values are in mA.

El| E2 | E3| E4| E5 E6] E7 ES8

l | O 0 0|-200 0| O] 0| +20
I3 |+20| O 0 0(-200 0 | O 0
la | O 0 | +200 0 | O] O] -20] O

All computer models were discretized id@x 40 square elements. Therefore, two
dimensional current density distribution componewere generated agd0x 40
matrices. Two potential measurement data were atediifor each current injection

profile. These measurements were performed onutrerd injecting electrodes.
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6.2.1 Computer Model 1

The first model constructed in this study consigta quite difficult anisotropy with

a circle shaped object in x-directed conductivity,() and a square shaped object in
y-directed conductivity ¢, ) as seen in Figure 6.2. Radius of the circle add s

length of the square was selected as 15.75 mm &rs Bm, respectively. The
background conductivity was selected as 0.2 S/rorder to simulate the blood

conductivity. Conductivity values of the anisotropibject are given in Table 6.2.

0.55
0.5

0.45

0.4

@) (b)

Figure 6.2: Conductivity values of Model 1: (a) x-directed domtivity (o,,), (b) y-
directed conductivity @, ).

Table 6.2: Conductivity values of Model 1. Values are in S/m.

O, O, =0, a,
Object 0.4 0 0.6
Background| 0.2 0 0.2

The reason of constructing this model is mainlgxplore reconstruction accuracies

of the proposed reconstruction algorithms. Furtloean distinguishability
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properties of the algorithms in case of complexsaimopic conductivity

distributions will be investigated with this model.

6.2.2 Computer Model 2

Another computer model prepared in this study asgmall square objects which
have 2.25 mm side length. This dimension was sa&letd provide each square to
cover a 1 pixel area in 40x 40 grid. Two squares were placed in ten different
positions on a horizontal line passing through thieldle of the model. Model
geometry and the distances between two squaremedyiven in Figure 6.3 and

Table 6.3, respectively.

Ehs

>iie

Figure 6.3: Geometry of Model 2.

Table 6.3: Distance between two squares of Model 2. Valuesramm.

Case:;] 1 2 3 4 5 6 7 8 9 10

d 2.25]6.75| 11.25| 15.75| 20.25| 24.75| 33.75| 42.75] 51.75 | 60.75

Conductivity of the background was modeled as @n2. £onductivity values of the
squares were selected as anisotropic having a ArStadirection and 0.02 S/m in

y-direction.
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The aim of this model is to define the spatial hason properties of the proposed
reconstruction algorithms. Since point spread fonc{PSF) contains complete

information about the spatial resolution, two lgbigquares were modeled to obtain
PSF. To express the spatial resolution by a singtaber, it is possible to ignore

the shape of the PSF and simply measure its willte. most common way to

specify this is calculating the Full Width at Hailaximum (FWHM) value.

Therefore, FWHM values were computed for everysiadices.

6.2.3 Computer Model 3

The third model developed in this study has agaiallssquare objects which have
2.25 mm side length but in this case they weregulamn the main diagonal line of
the model. 9 square elements were used having 8d®utm apart from each other.
General model geometry can be seen in Figure Gofhd@tivity values of the

squares were selected as 2 S/m in x-direction a2l 8/m in y-direction whereas

background conductivity was 0.2 S/m isotropic.

Figure 6.4: Geometry of Model 3.

The aim in constructing this model is to examine plosition dependent accuracies

and spatial resolutions of the algorithms.
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6.2.4 Computer Model 4

The last model constructed in this study contairsgj@are object with a 22.5 mm
side length positioned at the middle of the mo@&lometry of the model is given in
Figure 6.5. Background conductivity is again asstgras 0.2 S/m. isotropic.
Nineteen different anisotropic conductivity valueere assigned to this square.
Nine of these were for more conductive cases. Thesductivity values are given
in Table 6.4. The other nine simulations were fess| conductive that is more
resistive cases. These values are given in TableR&maining one simulation was

for the uniform case in which square object conidiigtis assigned as 0.2 S/m in

both directions.

Table 6.4: Conductivity values of inner square in model 4rfwre conductive cases.

Figure 6.5: Geometry of Model 4.

Values are in S/m.

Experiment; 1 2 3 4 5 6 7 8
O 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Oy =0 0 0 0 0 0 0 0
a,, 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
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Table 6.5: Conductivity values of inner square in model 4léms conductive cases. Values

are in S/m.
Experiment; 1 2 3 4 5 6 7 8 9
O 0.1 | 0.067; 0.05| 0.04| 0.0330.028| 0.025| 0.022| 0.02
O0,=0y 0 0 0 0 0 0 0 0 0
g, 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

These nineteen different cases were generatedvistigate the reconstruction

accuracy and linearity properties of the algoritunder changing conductivities.

6.3 Error Calculation

In order to evaluate the performance of the studiegbrithms, the error in the
reconstructed conductivity is calculated. In prestithe real conductivity is not
known a priori, but in simulation studies, since the algorithme &d with

simulated data, the conductivity distribution isuatly known.

For quantitative evaluation the performance of {m@posed technique, the
following error formula is used for reconstructemhductivity images in x and y

directions.

N (. —0. 2
£, :\/AZM x100% (6.1)

Nz o7y,

where, u is anisotropic conductivity direction irdehich can be xx, Xy, yx or yy,

o, and o, are the true and the reconstructed conductivityesin any direction

for the j™ element and N denotes the total number of pixelthe image. For
isotropic regions, similar error calculation isataade. If xy and yx components of
the anisotropic conductivity is modeled as zerocsithe denominator of the
equation in 6.1 will be zero, this equation will meaningless. In this case, means

of the reconstructed images for these componeatadded to the error tables.
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6.4 Simulation of Measurement Noise

To evaluate the performance of the proposed algustin presence of noise,
current density noise model of Scettal [8] is employed as described by Birggil
al [22]. In this model, Scott defined the signal-tmise ratio (SNigr) as:

SNRAstquSA)Aﬁ z/ NOT N X)) (6.2)

where A is the noise free pixel value magnitudéhefcorresponding MR imags,
is the standard deviation of the complex imadk, is a system SNRAXAyAz is
the voxel volume, N is the total number of excdas, T, is the total readout
sampling time for one echo, aiM (X, y) is magnetization. Heres, is measured as

the RMS noise in the magnitude image backgrounditSgves the phase error

probability density function in his study by

f@(H):%Texp(—aZ /2)+%)expea2 )sif @ )/ 2erfefa cob(v) : (6.3)

Where,a=x/§SNI%R and @ represents phase error. Here, it is importanbte that

in this noise model, the phase error and hencendige inB,, is independent of

B, . Therefore, the proportional noise B),, and consequently id,,, is reduced

for increased amount of current density.

In 1992, Scotiet al reported an SNR measurement of 2T magnet as 3t Af
simulation study is achieved for SNR of 30 on thedel 1 given in Figure 6.2. to
test the proposed techniques under typical levisio Birgul et al reported an SNR
level of 13 for 0.15 T METU EEE Magnetic Resonai®ystem. Because of that
SNR of 13 was also investigated on the same model.
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6.5 Results of the Proposed Algorithms

In this part, reconstruction results of all algomis explained in the previous
chapters for the models given in part 6.2 will beeg. The results are grouped
under different computer models. For every modekults of five different

reconstruction algorithms are given. Also, obtaineslilts using experimental data
is given in this part. Comments on the results ballgiven at the end of each model

results.

6.5.1 Results for Computer Model 1

6.5.1.1 Reconstruction Using Anisotropic EPP Algotihm

In this part, reconstruction results for model lngsanisotropic equipotential

projection algorithm will be given. Figure 6.6 showhe results for noise free
simulations at 38 iteration and Table 6.6 gives corresponding erirsce the true

values of xy and yx components of the conductiistyero for the object, mean
values of the reconstructed conductivities for ¢heemponents are given in the
table.

The same model was then reconstructed using naisgrd density measurements
having SNR values of 30 and 13. Results for SNRa3@ SNR=13 are given in
Figure 6.7 and Figure 6.8, respectively. Correspunderrors for these

reconstructions are also given Table 6.7 and 6spectively.

In order to see the convergence behavior of therittgn a convergence plot was

generated. This plot is given in Figures 6.9.
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Figure 6.6: Reconstruction results for model 1 using anisatr@guipotential projection
(b) g, (c) 0,, and (d)o,, .
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Table 6.6: Percentage errors of reconstructed images in Eigu.

£, (%) £ (%) | g,,(Mean) | o,,(Mean)
Object 10.58 17.60 0.0013 0.0094
Background 8.65 8.51 - -

72



j0.45
106
loa 10.55
105
1035 10.45

(@) (b)
W .
n 10.02 I 0.02
I.: i ‘. " ".' 1‘- J |,
R 1. ERAae N
O | AEERNT
(c) (d)

Figure 6.7: Reconstruction results for model 1 using anisatr@guipotential projection
algorithm SNR = 30): (a) o,,, (b) 0,,, (c) T,, and (d)o,, .

X !

Table 6.7: Percentage errors of reconstructed images in Eigur.

£, (%) | & (%) | o,,(Mean) | o, (Mean)
Object 10.68 18.02 0.0015 0.0062
Background, 8.74 8.66 - -
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(@) (b)

(© (d)

Figure 6.8: Reconstruction results for model 1 using anisatr@guipotential projection
algorithm SNR = 13): (a) g,,, (b) g, (c) 0,, and (d)o,, .

X !

Table 6.8: Percentage errors of reconstructed images in &ig&.

&, (%) £Uw(%) o,,(Mean) | o, (Mean)

Object 19.83 23.89 0.066 0.087
Background 20.24 21.08 - -
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Figure 6.9: Convergence characteristic of the anisotropic BR@rithm for noise free
case.

6.5.1.2 Reconstruction Using Anisotropic J-Substitiion Algorithm

In this part, reconstruction results of model lngsianisotropic J-substitution
algorithm will be given. Figure 6.10, 6.11 and 6stbw the results for noise free,
SNR=30 and SNR=13 cases, respectively and Table 61® and 6.11 give

corresponding errors.
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(@)

(©)

Figure 6.10: Reconstruction results for model 1 using anisatrdgsubstitution algorithm

(d)

(SNR=): (@) 0,,, (b) 0,,,, (c) 7, and (d)a,, .

X !

Table 6.9: Percentage errors of reconstructed images in &iguO.

&, (%) saw(%) o,,(Mean) | o, (Mean)

Object 28.89 46.82 -0.0059 -0.006§
Background 8.59 15.33 - -
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Figure 6.11: Reconstruction results for model 1 using anisatrdgsubstitution algorithm
(SNR= 30): (a) 0, (b) 0, (¢) O, and (d)T,, .

(b)

(d)

Table 6.10:Percentage errors of reconstructed images in &igurl.

&, (%) f:(,w(%) o,,(Mean) | o, (Mean)

Object 28.92 46.87 -0.0058 -0.007C
Background 8.61 15.34 - -
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Figure 6.12: Reconstruction results for model 1 using anisatrdpsubstitution algorithm
(SNR=13): (a) ,,, (b) 0,,, (¢) T,, and (d)o, .

X !

Table 6.11:Percentage errors of reconstructed images in &igur2.

&, (%) ggw(%) o, (Mean) | o, (Mean)

Object 29.29 46.47 -0.042 0038
Background 39.06 54.29 - -
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6.5.1.3 Reconstruction Using Anisotropic Hybrid J-8bstitution Algorithm

In this part, reconstruction results of model Ingsanisotropic hybrid J-substitution
algorithm will be given. Figure 6.13, 6.14 and 6di%e the results for noise free,
SNR=30 and SNR=13 cases, respectively and Tabl2, ®&13 and 6.14 give

corresponding errors.

10.6
10.6

10.55
10.55

los 10.5

10.45

10.4

(@) (b)
? I'... I »:.02 H 'I':.. Vz.oz
I .'l‘ :. 0.02 i .':‘ .:i = -0.02
I ' -0.06 Ir = - -0.06
(c) (d)

Figure 6.13: Reconstruction results for model 1 using anisatrdyybrid J-substitution
algorithm SNR=w): (a) 0., (b) 0,,, (C) g, and (d)o,,.

Table 6.12:Percentage errors of reconstructed images in &igur3.

£, (%) £ (%) | o,,(Mean) | o, (Mean)

Object 10.15 17.43 0.0002 0.0002
Background 6.35 6.72 - -
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Figure 6.14: Reconstruction results for model 1 using anisatrdygybrid J-substitution
algorithm SNR = 30): (a) o,,, (b) g,,, (c) T,, and (d)o,, .

(b)

(d)

X !

Table 6.13:Percentage errors of reconstructed images in &igur.

&, (%) saw(%) o,,(Mean) | o, (Mean)

Object 28.92 46.87 -0.0058 -0.007(
Background 8.61 15.34 - -
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Figure 6.15: Reconstruction results for model 1 using anisdtrdyybrid J-substitution
algorithm SNR = 13): (a) g,,, (b) 0, (c) 0,, and (d)og,, .

X !

Table 6.14:Percentage errors of reconstructed images in &igub.

&, (%) EUW(%) o,,(Mean) | o, (Mean)

Object 22.30 22.42 0.094 0.097
Background 22.66 26.84 - -
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6.5.1.4 Reconstruction Using Anisotropic Harmonic BAlgorithm

In this part, reconstruction results of model 1ngsanisotropic Harmonic B

algorithm will be given. Figure 6.16, 6.17 and 6di8e the results for noise free,
SNR=30 and SNR=13 cases, respectively and Table, ®16 and 6.17 give

corresponding errors.

() (b)

Figure 6.16: Reconstruction results for model 1 using anisatréfarmonic B algorithm
(SNR=w): (a) g,,, (b) O, .

X !

Table 6.15:Percentage errors of reconstructed images in &igus6.

£, (%) [ £, (%)

Object 18.63 29.19
Background 15.77 27.87
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Figure 6.17: Reconstruction results for model 1 using anisatréfarmonic B algorithm
(SNR= 30): (a) 0, (b) g, .

X !

Table 6.16:Percentage errors of reconstructed images in &igu7.

£, (%) [ £, (%)

Object 52.03 40.83
Background 54.73 38.12
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Figure 6.18: Reconstruction results for model 1 using anisatréfarmonic B algorithm

(SNR=13): (a) 7, , (b) 7,,.

X !

Table 6.17:Percentage errors of reconstructed images in &ig8.

&, (%) £, (%)
Object 71.51 61.78
Background| 75.65 66.44
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6.5.1.5 Reconstruction Using Anisotropic SensitiwtAlgorithm

Finally, in this part, reconstruction results of ceb 1 using anisotropic Sensitivity
algorithm will be given. Figure 6.19, 6.20 and 6dite the results for noise free,
SNR=30 and SNR=13 cases, respectively and Tablg, ®&19 and 6.20 give

corresponding errors.

Figure 6.19: Reconstruction results for model 1 using anisatrégensitivity algorithm
(SNR=w): () g,,, (b) 0,,, (c) O, - O,.

X !

Table 6.18:Percentage errors of reconstructed images in &igur.

&, (%) & (%) | o,,—0,(Mean)

Object 22.62 34.84 0.0047
Background 9.82 10.69 -0.0003
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(@) (b)

Figure 6.20: Reconstruction results for model 1 using anisatrégensitivity algorithm
(SNR= 30): (a) 0, (b) 0,,, () T,, - O,,.

Table 6.19:Percentage errors of reconstructed images in &igu0.

&, (%) & (%) | o,,—0,(Mean)

Object 26.68 40.94 -0.0051
Background 13.26 15.81 -0.0009
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Figure 6.21: Reconstruction results for model 1 using anisatrégensitivity algorithm
(SNR=13): (a) 0, (b) 0, (¢) O,, - O,.

X !

Table 6.20:Percentage errors of reconstructed images in &igLa1.

&, (%) & (%) | o,,—0,(Mean)

Object 28.97 46.47 0.0373
Background 30.58 26.66 0.0409
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6.5.1.6 Comparisons for Model 1

When the reconstruction algorithms are first ev@dafor their reconstruction
accuracies, it is seen that, all of the algorithemsept anisotropic J-substitution
algorithm show quite similar and good performan&as. anisotropic J-substitution
algorithm reconstructs object conductivities wiélsd accuracy. Another drawback
of the anisotropic J-substitution algorithm isrgsonstruction time. One iteration of
that algorithm takes about 5 minutes in an InteteC®» Duo E8400 CPU at 3 GHz
and 4 GB of RAM. Therefore, it can be said thatsattopic J-substitution
algorithm reconstructs conductivity images with paxcuracy and long time
consumption. Long time consumption is also valid &misotropic Harmonic B

algorithm. It also takes about 5 minutes on theesaomputer.

When the noise performances of the algorithms ampared, it is seen that
anisotropic J-substitution algorithm has again ploerest performance. Harmonic
B, algorithm is also weak against noisy data sincayménic B algorithm uses
second derivative of noisy data. Other three algors show quite similar

performances.

6.5.2 Results for Computer Model 2

In this part of the study, FWHM values of reconsteal impulsive objects in model
2 were calculated. Since the impulsive object hasngulsive conductivity in x
direction and impulsive resistivity in y directiotwo separate plots were prepared
for these directions. Figure 6.25 and 6.26 give Ri¢HM plot for the impulsive
conductor in x-direction for current density basedl magnetic flux density based
algorithms. Similarly, Figure 6.27 and 6.28 give ffWHM plot for the impulsive
resistive in y direction. In Figure 6.17, since twuopulsive conductor objects
reconstructed using anisotropic EPP algorithm aarbe distinguishable when the
distance between objects is 2.25 mm, FWHM valuéHfisr case is not added to the
figure. Reconstructed images, using anisotropic BRBrithm when the distance

between the objects is 2.25 mm, are given in FigL2a.
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Figure 6.22: Reconstruction results for model 2 using anisotraggmuipotential projection
algorithm SNR=w): (a) o,,, (b) 0,,, () O, and (d)o,, .
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Figure 6.23: Reconstruction results for model 2 using anisatrégarmonic B algorithm
(SNR=w): (a) g,, , (b) O, .
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Figure 6.24: Reconstruction results for model 2 using anisatrdgensitivity algorithm
(SNR=w): (a) g,,, (b) 0, .
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Figure 6.25: FWHM plot for the x-directed conductivity compornei model 2 for current

density based algorithms.
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Figure 6.26: FWHM plot for the x-directed conductivity compomeof model 2 for

magnetic flux density based algorithms.
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Figure 6.27: FWHM plot for the y-directed conductivity componeri model 2 for current

density based algorithms.
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Figure 6.28: FWHM plot for the y-directed conductivity compomeof model 2 for

magnetic flux density based algorithms.
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6.5.2.1 Comparisons for Model 2

As seen from Figure 6.22, equipotential projectadgorithm has a point spread
function (PSF) which is about two times the thdoettvalue (pixel side length), at
every point of the imaging slice in case of a higinductivity value in x-direction.
This means that this algorithm can not distinguisté objects when the distance
between them is less than one pixel side length@imaging grid. But, this is not
the case in y-direction. In that direction, EPPoalym and the other algorithms
have a FWHM value which is almost the same as Heoretical value. J-
substitution and hybrid J-substitution algorithmavén these value also in x-
direction.

The reason behind this situation is probably thaten the conductivity in X

direction is high and conductivity in y directios low for an object, current flows
in x direction inside this object. Therefore, eaqigntial lines are forced to be
almost in y direction in the object and also vesw fequipotential lines pass from
the left and the right sides of the object. Singis@ropic EPP algorithm constructs
equipotential lines first in order to obtain poiahfield and sparse equipotential
lines causes the potential field to be wrong, pmdériield at the left and right

boundaries of this kind of object will be erroneoBgcause of that, reconstructed

conductivity values at that regions will be poor.
It is important to note that anisotropic HarmonicaBjorithm could not distinguish

the impulsive objects in y direction when the ds@between them is 0.225 cm. Its

behavior is similar to EPP algorithm’s behavioxidirection.
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6.5.3 Results for Computer Model 3

6.5.3.1 Reconstruction Using Anisotropic EPP Algotihm

This part covers the reconstruction results of @nigic equipotential projection

.
a il

algorithm for model 3. Figure 6.29 shows the residt noise free simulations.
(b)

- H . |
(@)
(d)

&
e | -

Figure 6.29: Reconstruction results for model 3 using anisdtr@guipotential projection

algorithm SNR=w): (a) g,,, (b) 0, (c) 0,, and (d)o,, .
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6.5.3.2 Reconstruction Using Anisotropic J-Substition Algorithm

This part covers the reconstruction results of@nipic J-substitution algorithm for

model 3. Figure 6.30 shows the results for noise fimulations.

() (b)
() (d)

Figure 6.30: Reconstruction results for model 3 using anisatrdgsubstitution algorithm
(SNR=w): (a) g,,, (b) 0,,, () 0, and (d)g,, .

X !
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6.5.3.3 Reconstruction Using Anisotropic Hybrid J-8bstitution Algorithm

In this part, reconstruction results of anisotrapybrid J-substitution algorithm for

model 3 are given. Figure 6.31 shows the resuitadcse free simulations.

' - 0.25

X 2 = 015

X L] ] o

X : = [] 0.05
() (b)

(c) (d)

Figure 6.31: Reconstruction results for model 3 using anisatrdygybrid J-substitution
algorithm SNR=w): (a) o,,, (b) 0,,, () O, and (d)o,, .

X !
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6.5.3.4 Reconstruction Using Anisotropic Harmonic BAlgorithm

In this part, reconstruction results of anisotrdgarmonic B algorithm for model 3

are given. Figure 6.32 shows the results for nfvese simulations.

[ —
. 0.3
. 0.25
-
-

0.2
= 0.15
- 0.1

(@) (b)

Figure 6.32: Reconstruction results for model 3 using anisatréfarmonic B algorithm
(SNR=w): (a) g,,, (b) O, .

X !
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6.5.3.5 Reconstruction Using Anisotropic SensitiwtAlgorithm

In this part, reconstruction results of anisotropensitivity algorithm for model 3
are given. Figure 6.33 shows the results for nfvese simulations.

0.25
0.2
I 0.15
:
I 0.1
| ]
L] 0.05
|
0
(6)

0.15

0.1

0.05

-0.05

-0.1

-0.15

Figure 6.33: Reconstruction results for model 3 using anisatréensitivity algorithm
(SNR=w): (a) g,,, (b) 0,,, (c) O, - O,.

X !
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6.5.3.6 Comparisons for Model 3

Model 3 was prepared to investigate the positiopeddent accuracy and spatial
resolution properties of the algorithms. Therefoiege impulsive objects whose x-
directed and y-directed conductivities are respebtiten times more conductive
and ten times less conductive than the backgroware wlaced in the model. When
the reconstruction results given in figures arelewed, it is seen that all five
algorithms can reconstruct nine impulse object oaetidities in both directions
independent of position. Anisotropic EPP algorithmasults again show a
background artifact caused from equipotential li@ssin the previous models.
Hybrid J-substitution algorithm removes these act$ to some extent and increases
the background conductivity reconstruction accuraurthermore, hybrid J-
substitution algorithm increases the reconstructameuracies of the impulsive
elements’ conductivities. In case of anisotropimsigvity algorithm, since the
theory of the algorithm is constructed on small dzostivity change assumption,
nine impulsive objects cause some artifacts ar theighboring pixels. In case of
spatial resolution, it can be said that all fivgaalthms have position independent

spatial resolution.
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6.5.4 Results for Computer Model 4

As explained previously, model 4 contains a sqodaject having nineteen different
anisotropic conductivities at nineteen differerdesm Since the aim of this model is
to explore the linearity properties of the algamt giving all reconstruction results
for all cases will be unnecessary. Only one of theas selected to display, which is
five times more conductive in x-direction case. Tilesults of anisotropic EPP
algorithm are given in Figure 6.34, anisotropicubstitution algorithm in Figure

6.35 and anisotropic hybrid J-substitution algartlin Figure 6.36. Results of
magnetic flux density based algorithms are alsemiin Figure 6.37 and 6.38.

Corresponding reconstruction errors are givenhbtetafollowing every figure.

For the investigation of the linearity propertidgtee algorithms, two linearity plots,
one is for more conductive cases and the otheoriseEs conductive cases, were
prepared. In these plots, ten different x-directect conductivity values of the
square object were marked first. Then correspondingnstructed mean x-directed
conductivity values of the square object were marka the same plot for each
algorithm separately and linearity behavior of talgorithms were produced.
Linearity plot for more conductive case is given Figure 6.39, and for less

conductive case in Figure 6.40, respectively.
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6.5.4.1 Reconstruction Using Anisotropic EPP Algotihm

() (b)

0.08

0.04

(d)

Figure 6.34: Reconstruction results of anisotropic EPP algorifiom model 4 with the
object having five times more conductivity with pest to background in x-direction

(SNR=w): (a) g,,, (b) 0,,, (c) O,, and (d)O,, .

X !

Table 6.21:Percentage errors of reconstructed images in &igLa4.

£, (%) [ £, (%)

Object 32.10 5.48
Background 11.42 7.78
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6.5.4.2 Reconstruction Using Anisotropic J-Substition Algorithm

10.65
10.45 10.6
loa 10.55

105

0.35

10.45

(@) (b)
——— - —0.4 S 0.4
10.3 103
0.2 I 0.2
b h 0.1 = i 0.1
0 10
- u 0.1 - 1l 0.1
0.2 -0.2
03 -0.3
— 0.4 -0.4
(c) (d)

Figure 6.35: Reconstruction results of anisotropic J-substitutilgorithm for model 4 with
the object having five times more conductivity widspect to background in x-direction

(SNR=): (@) 0,,, (b) 0,,,, (c) 7, and (d)a,, .

Table 6.22:Percentage errors of reconstructed images in &igLa5.

£, ) | &, (%)

Object 61.46 8.70
Background 14.33 4.70

102



6.5.4.3 Reconstruction Using Anisotropic Hybrid J-8bstitution Algorithm

(c) (d)

Figure 6.36: Reconstruction results of anisotropic hybrid Jsditttion algorithm for
model 4 with the object having five times more cactility with respect to background in

x-direction SNR=): (a) 0,,, (b) 0,,, (c) T,, and (d)o,, .

X !

Table 6.23:Percentage errors of reconstructed images in &igL36.

&, (%) & (%)

Object 29.95 5.60
Background 10.07 4.93
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6.5.4.4 Reconstruction Using Anisotropic Harmonic BAlgorithm

10.5

10.45

10.4

(@) (b)

Figure 6.37: Reconstruction results of anisotropic Harmonjaorithm for model 4 with
the object having five times more conductivity widspect to background in x-direction

(SNR=w): (a) g,,, (b) 0, .

X !

Table 6.24:Percentage errors of reconstructed images in &igL37.

£, (%) | &, (%)

Object 54.41 5.79
Background 18.15 10.28

104



6.5.4.5 Reconstruction Using Anisotropic SensitiwtAlgorithm

Figure 6.38: Reconstruction results of anisotropic Sensitiatgorithm for model 4 with
the object having five times more conductivity widspect to background in x-direction

(SNR=w): () G, (b) T,,,, (C) Ty~ O,

X !

Table 6.25:Percentage errors of reconstructed images in &igL38.

£, (%) [ £, (%)

Object 57.58 8.46
Background 10.55 7.17
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Figure 6.39: Linearity plot for the algorithms for more conduwet x-directed conductivity
with respect to background.
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Figure 6.40: Linearity plot for the algorithms for less conduet x-directed conductivity
with respect to background.
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6.5.4.6 Comparisons for Model 4

As seen from the linearity plot for the more condwe case, all five algorithms
confront a problem in reconstructing high contraBist, this is not the case when
the conductivity becomes less conductive with respe background. The reason
for this situation could be that, when the condutstivalue of a region is increased,
the current passing through this region will inseaBut, this increment in current
will not be as many as the increment in condugtigince the total current is kept
constant and some of the current will continue &asspthrough the background.
Therefore, reconstruction algorithm will converge & lower conductivity value
than the true conductivity. But, when the conduttivalue of a region decreased,
the current passing through that region will alsordase almost at the same amount
and the remaining of the current will pass throdigh background. In this case,

conductivity value of that region could be calcathticcurately.

When the individual reconstruction accuracies efdlgorithms are investigated for
model 4, it is seen that anisotropic hybrid J-stitsbn algorithm gives the best
results among others as in the previous casesmbog and less conductive cases
with respect to background, anisotropic sensitiatgorithm shows quite poor
results among other algorithms. This is becauseetlying theory of that algorithm
assumes small conductivity changes, therefore asang the conductivity contrast

causes more erroneous results.
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6.5.5 Results for Experimental Models

6.5.5.1 Experimental Model 1

Using the data acquisition protocol explained irctise 2, magnetic field
distributions inside the test phantom 1 in threedions were obtained. Magnetic
field distributions in z direction for vertical, heontal and four adjacent current
injection profiles for this phantom are given ingtiie 6.41, then using three
components of magnetic field measurements, cudensity distribution inside the
FOV can be calculated from Biot-Savart Law. Obtdineurrent density
distributions are given in Figure 6.42 for vertiaald horizontal current drives.

These experimental measurements were used to ai@ahisotropic conductivity
distribution using five anisotropic conductivitycanstruction algorithms proposed
in this thesis. Current density based algorithmvdjch are anisotropic EPP, J-
Substitution and Hybrid algorithms’ results areegivin Figure 6.43, 6.44 and 6.45,
respectively. Similarly, magnetic flux density bdsealgorithm’s, which are
anisotropic Harmonic Band Sensitivity algorithms’ results are given igufe 6.46

and 6.47, respectively.
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(©) (d)

(e) (f)

Figure 6.41: Measured magnetic fields in z direction for eipental model 1, (a) for
vertical current injection, (b) for horizontal cent injection, (c) for the first adjacent drive,

(d) for the second adjacent drive, (e) for thedfidjacent drive, (f) for the fourth adjacent
drive.
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Figure 6.42: Current density distributions for experimental mbd: (a) for vertical current

injection, (b) for horizontal current injection.



(@) (b)

Figure 6.43: Reconstruction results for experimental model ingisanisotropic EPP
algorithm: (a)o,,, (b) 0., .

X !

(@) (b)

Figure 6.44: Reconstruction results for experimental model Ingisanisotropic J-
substitution algorithm: (a7, , (b) T, .
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(@) (b)

Figure 6.45: Reconstruction results for experimental model thagisnisotropic Hybrid
algorithm: (a)0,,, (b) 0, .

(@) (b)

Figure 6.46: Reconstruction results for experimental model ibgisinisotropic Harmonic
B, algorithm: (a)o,,, (b) 0, .

X !
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(@) (b)

Figure 6.47: Reconstruction results for experimental model ibgianisotropic Sensitivity
algorithm: (a)0,,, (b) 0, .

After giving these results it will be appropriate define a conductivity ratio in

terms ofo,, and g, in order to increase the comprehensibility and enthle result

more interpretable. Figure 6.48 showrstang,, o, | ratio in degree.

Figure 6.48:Reconstructed conductivity ratio: arctan(/g,,).
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6.5.5.2 Experimental Model 2

Similar to the experimental model 1, magnetic fidistributions in z direction for
vertical, horizontal and four adjacent current dtijgn profiles for the second
phantom are given in Figure 6.49. Also, obtainedent density distributions are

given in Figure 6.50 for vertical and horizontatremt drives.

Results of all proposed algorithms are given inukeg6.51, 6.52, 6.53 6.54 and
6.55.
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Figure 6.49: Measured magnetic fields in z direction for dasig) model 2, (a) for vertical
current injection, (b) for horizontal current injen, (c) for the first adjacent drive, (d) for
the second adjacent drive, (e) for the third adjadeve, (f) for the fourth adjacent drive.
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(b)

Current density distributions for experimental dab 2

(a) for vertical

Figure 6.50

current injection, (b) for horizontal current injen.
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Figure 6.51: Reconstruction results for experimental model 2xgisanisotropic EPP

algorithm: (a)a,,, (b) g, .

X !
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() (b)

Figure 6.52: Reconstruction results for experimental model 2ngisanisotropi
Substitution algorithm: (ay,,, (b) g, .
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Figure 6.53: Reconstruction results for experimental model idgisinisotropic Hybrid
algorithm: (a)o,,, (b) 0., .
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Figure 6.54: Reconstruction results for experimental model 2ngisanisotropic

Harmonic B algorithm: (a)o,,, (b) 0, .
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Figure 6.55: Reconstruction results for experimental model ihgianisotropic Sensitivity
algorithm: (a)a,,, (b) g, .

Again, in order to increase the comprehensibiliyd anake the result more
interpretable, the same conductivity ratio is chlted and visualized as in

experimental model 1. Figure 3.55 shows dénesan¢,, /o,, | ratio in degree.

A

Figure 6.56: Reconstructed conductivity ratio: arctan(/g,, ).
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6.5.5.3 Comparisons for Experimental Models

As seen from the results, magnetic flux densityebaalgorithms perform better
than current density based algorithms. This is beeain order to find the current
density distributions, it is necessary to take dieevatives of noisy magnetic flux
density distributions and it is known that deriwatiof a noisy data increases noise
level dramatically. Therefore, current density wigttions obtained using Biot-
Savart Law become noisier. Since, current dengiged) algorithms use this data as
input, their results become erroneous. When thaviohehl results of these
algorithms are compared, it is seen that anisatr&BP algorithm gives the worst
results among others because it constructs equiaténes using current density
vectors and this makes it more sensitive to theeatirdensity noise. Also current
density vectors become noisier at the corners ant £dges since the current flow
is very little at these points. Therefore, equiptitd lines starting from that points
goes on the wrong way and projects surface poteribahe wrong regions. Since,
anisotropic J-Substitution algorithm calculated iteer potential field using FEM,

it is less sensitive to the current density noiéetually, anisotropic hybrid
algorithm is expected to show a similar performatocé-substitution algorithm but,
since its initial conductivity comes from EPP algun and since those
conductivities are very erroneous, hybrid algoritteoonstructed the conductivities
like EPP algorithm.

When the individual results of magnetic flux deyshased algorithms are

compared, anisotropic Sensitivity algorithm showsttdr performance than

anisotropic Harmonic Balgorithm. The reason for this situation is thartdonic

B, algorithm takes the derivative of magnetic fluxnsi¢y data twice and this

derivative operation increases the noise levehefflux density data tremendously.
Therefore, anisotropic Harmonic, Balgorithm results more erroneous results.
Furthermore, anisotropic Sensitivity algorithm slsowhe best results among
proposed five algorithms. This is because, magrikbcdensity measurement can
be made at every point in the FOV with equal semsitand this makes the

algorithm more robust against measurement noise.
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When the conductivity ratios in Figure 6.48 andétalbe investigated, it is seen that
zero degree is found in the vicinity of insulatayérs. This means that, there exist

nonzeroo,, conductivity component, bur, component is equal to zero. This is

as expected since insulator layer do not let cotmalugn y direction therefore, y
directed conductivity component is zero. On thesptiegions, conductivity ratio is

equal to about 45 degree which means isotropicwctiity.

As a final step on experimental study, magnetig tlensity measurements for both
phantoms are fed into the isotropic sensitivityoaltpm. Since this algorithm
assumes isotropic conductivity, only one conduttidistribution is obtained for
every model. Figure 6.57 shows reconstructed cadiiltycdistributions. As seen in
the figures, reconstructed images look like y d&dcanisotropic conductivity
component of each model. But images are much nwreped with respect to the
anisotropic reconstructions. It is also obvioust tt@nductivity distribution inside
the FOV can not be commented easily without haviogdea about the x directed

conductivity distribution.
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(b)

Figure 6.57:Reconstructed conductivity image using isotropgasitivity algorithm, (a)
for phantom 1, (b) for phantom 2.

6.6 Final Comparisons

In order to compare all of the algorithms easilyvigualizing this comparison, a
performance chart was prepared as seen in Figbe & this chart, every axis
shows a comparison criteria and performance ineseasile going far from center
on every axis. Eight different criterions were s&dd for comparison. These are,
object error for SNR=13 and infinity, backgroundoer SNR=13 and infinity,

memory usage, time consumption, simulation recang8tm quality, experimental

reconstruction quality. Memory usage and time congion parameters were
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evaluated on the same computer (Intel Core 2 DUDE&EPU at 3 GHz and 4 GB
of RAM) for all algorithms. Results of that studicsved that anisotropic EPP
algorithm reconstructs in about 5 minutes and usngttle amount of RAM,
whereas anisotropic J-substitution and Harmonicagorithm requires about 20
minutes and a big amount of RAM. When the anisatrdygybrid J-substitution
algorithm is used, it reconstructs in about 10 rreauncluding the EPP algorithm
with an intermediate amount of RAM. Anisotropic Siinity algorithm also
requires a big amount of RAM but it reconstructs about 7 minutes. Its

experimental reconstruction performance is als@sapamong others.

1/object error

SNR=inf
1itime 1/bgrnd error
consumption SNR=inf
1/memary 1/object error
usage SMNR=13
= Anis. EPP
m— Anis. J-sub
= Anis. Hybrid
Experimental 1/bgrnd error Ani
; — e ANIS. H.
reconstruction SNR=13 ! B
quality = Anis. Sens.
Simulation
reconstruction
quality

Figure 6.58: Performance chart for five algorithms.
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CHAPTER 7

CONCLUSIONS

7.1 Summary of the Thesis Work

In this study, five novel MREIT reconstruction afgoms to image anisotropic
conductivity were proposed. Three of the proposathriiques use the current
density distribution data with one potential measugnt as input and reconstructs
anisotropic conductivity components iteratively.nén potential distribution is
required for these algorithms. Anisotropic equiptigd projection algorithm
calculates potential field using equipotential $neEquipotential lines are
perpendicular to the current lines in case of gmtr conductivity but, in case of
anisotropic conductivity their crossing angle aetedmined by the conductivity
anisotropy at the crossing point. Different frome thnisotropic EPP technique,
anisotropic J-substitution technique calculatesipital field using FEM techniques.
The third technique, called anisotropic hybrid Bstitution algorithm, combines
both techniques. It first calculates the anisotopdnductivity using anisotropic
EPP technique and then this conductivity distriimutis given to the anisotropic J-
substitution algorithm as initial conductivity. @thtwo algorithms use magnetic
flux density data and one potential measurementnpst and calculate the
anisotropic conductivity distribution uniquely. Aatropic Harmonic Balgorithm
takes the second derivative of measured flux derdata and uses an iterative
algorithm. On the other hand, anisotropic Sensjtialgorithm first calculates
sensitivity matrix and obtains anisotropic condutfidirectly. Sensitivity matrix is
only depends on the outer geometry and boundargiwoms, therefore it can be
calculated once and stored.
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In order to explore the reconstruction performanmiethe proposed algorithms, 4
different computer models were prepared. These lmadere designed to cover all
critical aspects in reconstruction phenomena, siscteconstruction accuracy, noise
performance, spatial resolution, point spread fonct{PSF), linearity, position

dependency, etc.

Algorithms were also evaluated with experimentalasugements in this thesis
study. Measurements were performed in METU EEE D.MR System using

designed and manufactured test phantoms.

7.2 Conclusions

MREIT is an emerging imaging modality in the fietd tomographic imaging.
Various studies exist in literature. Almost all ¢ie MREIT reconstruction
algorithms assume isotropic conductivity in order dimplify the underlying
background. But it is known that most of the biotad tissues have anisotropic
conductivity values. The most important contribatiof this study to the MREIT
literature is five novel anisotropic conductivitgconstruction algorithms. By this
contribution, anisotropic conductivity reconstrocti deficiency in the MREIT

literature has been overcome to some extend.

Anisotropic MREIT algorithms proposed prior to thigesis have been tested with
different computer models. Therefore, an accuratesccomparison between them
did not exist. In this thesis, four different congrumodels were designed to test all
the algorithms. During the design process of timesdels, many aspects were taken
into account for anisotropic conductivity reconstron phenomena such as
reconstruction accuracy, noise performance, spatgolution, point spread

function (PSF), linearity, position.

Experimental measurements were also made in thay sthich is avoided most of

the studies because of difficulties. A current seuvas designed and manufactured
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for these measurements. This current source waeglmside the Faraday cage
timing signals were required to transport from catep to the source. For this
purpose, fiber optic cables were used and penatrati the RF noises inside the
Faraday cage over the timing cables was elimina&adther important issue about
the current source is the power supply unit dfiitst, AC/DC converter was used to
supply the source but this led to decreasing SNiRQ end even loss of MR signal
because of the switching noise of the AC/DC corerertBecause of this, DC

batteries were used and the problem of signaM@sssolved.

When the results of all algorithms with simulatiamd experimental data are
investigated altogether, anisotropic sensitivitygoaithm shows a magnificent
performance among others. This algorithm does tsm eequire rotation of the
object in the MRI scanner which is very difficuld tachieve in application.
Furthermore, anisotropic sensitivity algorithm cédétes the sensitivity matrix once
for given current injection drives and boundary diions, and calculates the
anisotropic conductivity faster than almost allestialgorithms. The only drawback
of that algorithm is its high memory usage but,taday’s rapidly developing

computer era, this is actually not a critical peshl

Another important study during this thesis waspgheparation of the test phantoms.
In order to remove the ion diffusion between thegeta, a solidifying material was
used. Actually, this material itself is sufficidiotobtain a solid material when added
to water. But, it is necessary to add CyS$©®water to decrease the fime during
measurements, and when the solidifying materiahilsed with CuSQ solution, it
loses its solidifying property and the mixture beeaa gelled material instead of a
solid material. Therefore, in order to make the emnat solid, agar is used in the

mixture and a solid material with very low ion di§ion is obtained.

All these experimental studies are a very imporfant of this thesis study. Up to
date, none of the anisotropic conductivity recargton algorithms are tested with
experimental data. In order to incorporate MREIThtaque into the diagnostic
imaging techniques, experimental realization omiist be completed. With this
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study, five anisotropic conductivity reconstructiatgorithms and experimental
realization of the technique are added to the MRHEt&rature. But, before
application of the technique to the humans, apmigdent must be decreased under
the safety limit. Using the optimized current irjen strategies for MREIT in
literature [51], current could be decreased under dafety limit. Future studies
must certainly be in this direction. If it is sueded, MREIT would have a chance
of being a diagnostic imaging technique and therélyms proposed in this thesis

would be used to reconstruct anisotropic condugtiistributions of tissues.
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APPENDIX A

EXTENSION OF THE TECHNIQUE PROPOSED BY
IDER ET AL FOR THE RECONSTRUCTION OF
ANISOTROPIC CONDUCTIVITY

In this part of the study, MREIT algorithm propodeylideret alin 2003 [36] for
isotropic conductivity imaging is tried to be extienl for the reconstruction of
anisotropic conductivity. But because of some potd encountered during the
study, this study could not be completed with teeonstruction of anisotropic
conductivity. In the following section, proposedy@iithm will be explained in

detail with the problems encountered and simulatesults will be given.

A.1 Algorithm

Let Q be a connected and bounded domairRi) with boundaryl. Inside this

Jxx ny sz
domain, we define a positive definite conductivignsoro=\o0,, o, o,|.
azx azy Jzz
pxx pxy pxz
The resistivity, p = %z Py Py, Pl is also assumed to be positive definite
pzx pzy Iozz

in Q. T is divided into two parts as current applicatiartp and other parts such
that
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J onI’
o2 _ Ve § (A.1)
on 0 onl’,

where J,, is the boundary injected current density ghds the potential field in

Q. 2D illustration of the injected current profilarcbe visualized as follows:

I'

a(x.y)

_ 1
POLY) I Japp

Figure A.1: lllustration of injected current profile for a 2@sistive object.

Since static conditions are assumed;
OxE=01InQ (A.2)
whereE is the electric field I2. SinceE = pJ
OxpJ =0 (A.3)

For simplification, let'sp be a diagonal matrix, that is;

P O O
p=l0 p, O (A.4)
0 0 p,
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Then,

IOXX 0 O ‘JX IOXX‘JX
pl=l 0 py, 0 DIy |=|pydy (A.5)
0 0 IOZZ ‘]Z pZZ‘]Z

is obtained. Finally we have,

~| 0 0 ~ |0 0
Uxpd=ay a_(pzz‘]z) __(pyy‘]y) +ay|:_ (pxx‘]x) __(pzz‘]z):|
y 0z 0z 0x (A.6)
+8 2 (0p35) =2 (D) | =0
z ox yyvy ay XXY X

Only the z-component of the equation (A.6) can bigen as,

d 9 9 d _
H&"wjﬂ”y*(a—x%}@w‘(a—ypﬂjmX‘[a—y*’xj@X*}‘° A

In order to discretize equation (A.7), followingsdiete model is used in the

imaging domain and equation (A.8) is obtained.

(xy+1) | (x+1,y+1)

(xy) (x+1,y)

Figure A.2: Discrete illustration of the imaging area.
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|:pyy()(+1, y)—PW(X, y)}Eﬂy(X’ y)+|:%( Jy( X »:| |$yy( X y

d (A.8)
_|:10xx(x, y+1)_10x><(xl y):| EDX(X| y)_|:i Jx( X »:| wxx( X y: O
d oy
Finally we have,
(x ){J(x -2 30 vm%— (H{ (xy2 x)m}
Pu(X: Y)| I, oy Py J ™ X (A.9)

= P (X Y+ (X Y+ o, (X1 YOI (% Y= 0

As seen, we have an equation which is equal to. Zdrerefore, the vector matrix

equation obtained from this equation without usang a-priori o information will

be in the form of
Alp=0 (A.10)

where A is an (mxnx2) by (mxnx2) coefficient matardp is an (mxnx2) by 1
resistivity vector which is written aspfix(1,1) pyy(1,1) pxx(1,2) pyw(1,2) .........

pxx(M,N) pyy(mM,n) ]T-
To solve this problem, let's assume that the fistv and the last column

resistivities of the object seen in Figure A.3 &mwn. Then, equation (A.9) is

rearranged for the second row and the {heblumn resistivities as
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Figure A.3: Discrete illustration of the imaging area in whtble first row and the last
column resistivities are known

Prx(X, y)[Jx(x, y) —a%Jx(x, y) m} = Pyy(X, y){Jy(x, y) —%Jy(x, y) m}

+ Py (X+1Y) LDy (X, Y) = (X, Y + D LDy (X, Y)

(A.11)

Prx(X, y)[Jx(x, y) —a%Jx(x, y) m} = Pyy(X, y){Jy(x, y) —%Jy(x, y) m}

= Pux(X Y D LI, (X, Y) = =pyy (X +1y) LD (X, Y)

(A.12)

respectively. Then, we can obtain a vector-maiguagion in the form of
Alp=b (A.13)

in which p is written agp«(2,1) py(2,1) ... pxx(2,n-1) pyy(2,n-1) pxx(3,n-1) py(3,n-1)

.. px(M,n-1) pyy(m,n-1)], A is a coefficient matrix and b is nonzero riglaini side.
SVD based pseudo inverse technique without any#tion is used to calculate the
inverse of A for the solution gf. A matrix has full column rank, and thereforesit i
guarantied thap is not in the null space of A. After finding thecond row and the

(n-1)" column resistivities, equations (A.1.11) and (A2).are used to obtain third
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row and the (n-2¥ column resistivities and this procedure is corgihtill reaching
to the last row. Since we have 2 unknowns in eeguyation, we must use at least

two different current injection patterns.

Here, it is important to note tha{%;ly(x,y)} and L%Jx(x,y)} derivative

operations can be performed using different methiodhe following parts some of
these methods will be implemented and effects an rdconstruction will be

evaluated. Following resistivity distribution wased for the simulations.

(a) (b)

Figure A.4: Conductivity distributions used for simulations) ©,,, (b) 0,,. Values are
in S/m.
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A.1.1 Derivation Using Sobel Operator

In this case, derivative operations were perforrasohg 3-by-3 Sobel operators

given by equations in (A.14).

5 . 10 -1
—Jy(xy)=—(2 0 -201,(x,
™ y(X,Y) A y(X,Y)
10 -1
(A.14)
_1 _2 —
iJ (xy)=i0 0 0|0, (xYy)
ay 777 8h X
1 2 1

For demonstration, y-component of the current dgndistribution and the x-
directed derivative of this distribution using Sbbperator are shown in Figure 3-c
and 3-d, respectively. Obtained resistivity imagsisg equations (A.11) and (A.12)
are given in Figure A.5a and A.5-b.

As seen from the reconstructed images, reconstruairors and even negative
resistivities start at the borders of the innereobjand continue until the boundary
of the imaging area because of the recursive beha¥ithe algorithm. When we

investigate the reason of this reconstruction eatathe border of the inner object,
we see that this error comes from the calculatetvatere values. To explain this

with more detail, let’s first look at the FiguresS4a and A.5-b. Because of the
smoothing effect of the 3-by-3 Sobel operatorssee a 2 point gradient at the right
and left borders of the inner object (25. — 26unuts and 40. and 41. columns.) in
the x gradient of theydJmage as in Figure 5-d. Buf iinage in Figure A.5-c has in

fact one point gradients between the 25. and 26nuts and between 40. and 41.

columns. Therefore wrong gradient value dominatesdoefficient of thep,, in

equations (A.11) and (A.12) and this causes ther ¢or start at the rapid gradient
change. As mentioned earlier, because of the reeubgehavior of the algorithm,

this error projected until the end of the imagimgaa Same explanation is also valid
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for p,,, but in that case, since y gradients are usedigdsain vertical directions

are important and error projects in that direction.

8

&
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Figure A.5: (a) x component of the reconstructed resistivitgge, (b) y component of
the reconstructed resistivity image, (c) y comparmérthe current density distribution
for one current drive and (d) x directed gradigfthe distribution shown in (c).
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A.1.2 Derivation Using FFT Algorithm Based Differertiation

For this part, assume that the given complex infegN, andN, pixels along the

andy directions with pixel siz&dx = 1 andAy = 1, respectively. It is easy to see that

0¢(m. n) N /21 i2”p i2rmp/ N
4~ 7= —F ,ne X A.15
o T2, Nz P (A.15)

where F,@(p,n) is the discrete Fourier transform @{m,n) along thex direction

given by

N, /2-1 _
FA(p)= Y @(mnye 2mP/ N (A.16)

m=-N, /2

Similarly, 0@ (m,n)/dy can be evaluated using FFT-based method.

Using this formulation, gradients of current deysltstribution components were
calculated first and resistivity images were thaicalated using equations (A.11)
and (A.12) and the algorithm just after it. In FHiguw.6, y-component of the current
density distribution, the x-directed derivativetbfs distribution and reconstructed

resistivity images are shown.
Similar to the previous case, derivative figure hgsain two point gradient at the

object borders. Therefore similar negative resistiskeconstructions are seen in the

reconstructed resistivity images.
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(© (d)

Figure A.6: (a) x component of the reconstructed resistivitgge, (b) y component of
the reconstructed resistivity image, (c) y comparmérthe current density distribution
for one current drive and (d) x directed gradigfrthe distribution shown in (c).
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A.1.3 Derivation Using Forward Difference Based Dierentiation
A forward difference is an expression of the form
AG[f]) = f(x+h) - f(X) (A.17)
The derivative of a functiohat a poinix is defined by the limit

f(x+h) - f(X)

£'() =lim -

(A.18)

If h has a fixed (honzero) value, instead of approachero, then the right-hand

side is

f(x+h)=f(x) _ A, [f]x)
h " h

(A.19)

Using this differentiation formulation, x and y eated gradients were calculated,
resistivity images were reconstructed. Y-componehtthe current density
distribution, the x-directed derivative of this tisution and reconstructed

resistivity images are shown in Figure A.7.

As seen from the gradient figure in Figure A.7-de @oint gradient is obtained in
this case. But since the gradient between (Ahd ' columns are written to the
n™ column, one pixel shift to the left appears. Mokearly, the gradient between
25. and 26. columns (26. column is the left boupddrthe inner object) is written
to the 25. column. Therefore, this causes agaimstowrong gradient value at 25.
column and reconstructed conductivity becomes ewoos. The rest also goes

erroneous because of the recurrence.

In order to overcome this problem, we thought tmaee one column from the
middle part of the inner object in the gradienufigy and shift the left hand side of

that column right. A similar operation is also penied for rows, one row is
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removed from the middle part of the inner objead @a@maining rows under it is

shifted up. So, gradients and the object boundasies coincided. Obtained

reconstructed results are shown in Figure A.8.

ro, o
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Figure A.7: (a) x component of the reconstructed resistivitage, (b) y component of
the reconstructed resistivity image, (c) y compadraenthe current density distribution

for one current drive and (d) x directed gradigfrthe distribution shown in (c).
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Figure A.8: (a) x component of the reconstructed resistivitgge, (b) y component of
the reconstructed resistivity image

As seen from the results, negative resistivity galare disappeared. But it is
obvious that finding the point where to remove @odumn is very difficult and
even impossible for more complex image distribigioS8o a more feasible way

should be found.

A.1.4 Derivation Using Forward Difference Based Dferentiation

with Up-sampling

In this part, we calculated the derivatives usioigviird difference formula as in the
previous case. But before this calculation, first wp-sampled current density
components by 2 and obtained J's as shown in ther&iA.9. Then using these
values, we calculated derivatives at points whéseegist. Therefore, we could
calculate the derivatives at exact points with entrrdensity components. Figure
A.10 shows the y-component of the current densiggridution, the x-directed

derivative of this distribution and reconstructedistivity images.
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Figure A.9: lllustration of up-sampling. Prime coordinates whihe points generated by
up-sampling.

As seen from the results, a similgy, image is obtained with Figure A.8-b without

removing any column or row. But this is not the ecder p,, image. This is

because, up sampling the current density image ag2selecting odd numbered
columns and rows for the calculation of gradientsl @en numbered ones for
current density data respond different manner ® ekien and odd numbered
columns and rows. More clearly, if the boundaryaof object is on the even
numbered column or row, after up sampling and dalmn of the gradient,

gradient data and the current density data at tumdary of the object coincide.
But, if the boundary of an object is on the odd bened column or row, they do
not coincide. In Figure A.10-b, since the left bdary of the object is on the even
numbered column, after reconstruction we didn’taobhegative resistivity values
at this boundary. But since the bottom boundarpristhe odd numbered row,
reconstruction becomes poor because of the ab@as®me Therefore, this method
for differentiation is not also a feasible way larmhong all, we thought that this

method is the most feasible one.
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Figure A.10: (a) x component of the reconstructed resistivitage, (b) y component of
the reconstructed resistivity image, (c) y comparadrthe current density distribution for
one current drive and (d) x directed gradient efdistribution shown in (c).
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After explaining all these methods, it is tried reconstruct more complex and
round shaped objects with taking the derivativengisihe method explained in

A.1.4. Model figure used for reconstruction is show Figure A.11. Obtained
reconstruction results are in Figure A.12.
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Figure A.11: Model figure used for reconstruction. The valuestbe figure indicate

conductivity values in S/m.
royy
10 20 30 40 50 i

o

o

&

S A b © N A 0o ©

1o,
XX
10
-10
10 20 30 40 50

@) (b)

Figure A.12: Obtained reconstruction results for the distrimitshown in Figure A.11. (a)
x component of resistivity, (b) y component of séisity.
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As seen from the results in Figure A.12, reconstididmages have sharp lines
starting from the object boundaries. The final @aéibn on this topic is to use a low
pass filter to the reconstructed images and tryonggmove the sharp lines. For this

purpose, following filter is designed fpy, image since sharp edges are mainly in 'y
direction.

Figure A.13: Designed low pass filter.

This filter is applied to the Fourier Transformtbé py, image which can be seen in
Figure A.14.
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Figure A.14: Fourier Transform of the image in Figure A.12-b.

Then the inverse Fourier transform operation isliagdo the filtered FFT image

and the following figure is obtained.

Filteredpyy 9

8 & &8 8 8 8 8B & B «

10 20 30 40 50

Figure A.15: Low pass filteregy, image in Figure A.12-b.

As seen from the figure, sharp lines in Figure Abl&re weakened but the image is
blurred as expected. At this point, it is thoudt#tf all possible studies on this work

are completed and it is decided to stop workinghasialgorithm.
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