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ABSTRACT 

 

 

HIGH RESOLUTION CONDUCTIVITY IMAGING OF ANISOTROPIC  

CONDUCTIVITY WITH MAGNETIC RESONANCE ELECTRICAL 

IMPEDANCE TOMOGRAPHY (MR-EIT) 

 

 

 

Değirmenci, Evren 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor : Prof. Dr. Murat Eyüboğlu 

April 2010, 152 pages 

 

 

 

Electrical conductivity of biological tissues is a distinctive property which differs 

among tissues. It also varies according to the physiological and pathological state of 

tissues. Furthermore, in order to solve the bioelectric field problems accurately, 

electrical conductivity information is essential. Magnetic Resonance Electrical 

Impedance Tomography (MREIT) technique is proposed to image this information 

with high spatial resolution. However, almost all MREIT algorithms proposed to 

date assumes isotropic conductivity in order to simplify the underlying 

mathematics. But it is known that most of the tissues in human body have 

anisotropic conductivity values. The aim of this study is to reconstruct anisotropic 

conductivity images with MREIT. In the study, five novel anisotropic conductivity 

reconstruction algorithms are developed and implemented. Proposed algorithms are 

grouped into two: current density based reconstruction algorithms (Type-I) and 

magnetic flux density based algorithms (Type-II). Performances of the algorithms 



 v 

are evaluated in several aspects and compared with each other. The technique is 

experimentally realized using 0.15T METU – EE MRI System and anisotropic 

conductivity images of test phantoms are reconstructed using all proposed 

algorithms. 

 

Keywords: Magnetic resonance, electrical impedance, tomography, anisotropic 

conductivity, reconstruction, imaging. 
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ÖZ 

 

 

MANYET ĐK REZONANS ELEKTR ĐKSEL EMPEDANS TOMOGRAF ĐSĐ 

ĐLE YÖN BAĞIMLI ĐLETKENL ĐĞĐN YÜKSEK ÇÖZÜNÜRLÜKLÜ 

OLARAK GÖRÜNTÜLENMES Đ 

 

 

 

Değirmenci, Evren 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Murat Eyüboğlu 

Nisan 2010, 152 sayfa 

 

 

 

Dokuların elektriksel iletkenliği dokular arasında farklılık gösteren ayırıcı bir 

özelliktir. Bu özellik dokunun fizyolojik ve patolojik durumuna göre de değişiklik 

göstermektedir. Ayrıca biyoelektrik alan problemlerinin doğru olarak çözülebilmesi 

için elektriksel iletkenlik bilgisine ihtiyaç duyulmaktadır. Bu bilgiyi yüksek 

çözünürlüklü olarak elde edebilmek için Manyetik Rezonans Elektriksel Empedans 

Tomografisi (MREET) önerilmiştir. Ancak şimdiye kadar önerilen MREET 

algoritmalarının hemen hepsinde iletkenlik, matematiksel problemi basitleştirmek 

için yön bağımsız kabul edilmiştir. Fakat insan vücudundaki pek çok dokunun yön 

bağımlı iletkenliğe sahip olduğu bilinmektedir. Bu çalışmanın amacı MREET 

tekniği ile yön bağımlı iletkenlik görüntüleri oluşturmaktır. Çalışmada MREET için 

beş ayrı yön bağımlı iletkenlik görüntüleme algoritması geliştirilmi ş ve 

uygulanmıştır. Geliştirilen görüntü oluşturma algoritmaları iki grupta toplanmıştır: 

akım yoğunluğu kullanan algoritmalar (Tip-I) ve manyetik akı yoğunluğu kullanan 



 vii  

algoritmalar (Tip-II). Geliştirilen algoritmaların performansları pek çok yönden 

sınanmış ve başarımları karşılaştırılmıştır. Ayrıca teknik 0.15T ODTÜ – EE MRI 

Sisteminde gerçeklenmiş ve test cisimleri için önerilen tüm algoritmalarla görüntü 

oluşturulmuştur.  

  

Anahtar Kelimeler: Manyetik rezonans, elektriksel empedans, tomografi, yön 

bağımlı iletkenlik, geriçatım, görüntüleme. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Conductivity Imaging 

 

Electrical conductivity is one of the distinctive features of biological tissues and this 

makes the imaging of tissue conductivity values possible [1]. Furthermore this value 

varies with physiological activity of the tissue and imaging tissue conductivity gives 

information about physiological activities and pathologies [2]. Accurate solution of 

bioelectric field problems also requires correct knowledge of tissue conductivity 

values [3], [4]. Electrical Impedance Tomography (EIT) has been proposed to 

reconstruct electrical conductivity distribution inside a volume conductor non-

invasively. The technique is based on generating a current distribution inside the 

conductor either by injecting or by inducing current and performing electrical or 

magnetic measurements that reflect the internal conductivity distribution [1]. 

According to the current excitation strategy, the technique can be classified as 

injected EIT or induced EIT. In injected EIT systems, current is applied via the 

electrodes placed on the boundary, and potential generated by this current is 

recorded using again the surface electrodes [5], while in induced EIT, current 

distribution is induced via an excitation coil using time varying fields [6]. Induced 

current will generate a magnetic field reflecting the internal conductivity 

distribution. This magnetic field is measured via sensors to solve the inverse 

problem of finding conductivity. This methodology is also proposed for sub-surface 

imaging. 
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The main limitations on conventional EIT systems are the resolution and the 

sensitivity. The sensitivity of peripheral measurements to conductivity perturbations 

in different regions is different. Specifically, conductivity perturbations in the inner 

parts of the imaging regions do not alter the boundary voltage measurements as 

much as the perturbations close to the boundary. Moreover, the spatial resolution of 

resistivity image is primarily determined by the number of electrodes used in the 

EIT system. Since the number of electrodes that can be placed on the boundary is 

limited and the sensitivity of surface electrodes to inner regions is small, 

reconstructed conductivity images have low and space dependent spatial resolution. 

 

In order to eliminate the problem of non-uniform sensitivity, the data set must 

include measurements that are equally dependent on conductivity changes in 

different regions of the imaging region. If the data set includes measurements made 

directly from the inner regions, uniform sensitivity distribution can be achieved. 

Voltage measurements cannot be obtained from inner regions non-invasively. 

However, it is possible to measure magnetic flux density distribution throughout the 

imaging region generated by the externally applied current using Magnetic 

resonance Imaging (MRI) techniques [7], [8]. Using these magnetic flux density 

measurements, calculation of current density distribution in the imaging region is 

also possible and this technique is named as Magnetic Resonance Current Density 

Imaging (MR-CDI) [7]. Current density measurements using MR-CDI technique or 

magnetic flux density measurements can be combined with peripheral voltage 

measurements of EIT to reconstruct absolute conductivity images with uniform 

sensitivity and high resolution. This technique is called as Magnetic Resonance 

Electrical Impedance Tomography (MR-EIT). 

 

1.2 Development of MREIT 

 

The main milestone in the development of MR-EIT is the emergence of MR-CDI 

technique. Therefore explaining briefly the important aspects of this technique and 

giving the development of it will be helpful to understand the basics of MR-EIT. 
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At the beginning of 1990’s, a new imaging modality proposed to reconstruct images 

of current density generated by injected or induced currents using magnetic flux 

density measurements [7]. This technique is briefly named as current density 

imaging (CDI). CDI can be classified in 3 main categories as DC-CDI, RF-CDI and 

AC-CDI with respect to frequency of the injected current.  

 

First CDI images were reported by Scott et al in 1991 [7]. In this study, current was 

applied to a conductor object in synchrony with the pulse sequence used for 

imaging and distribution of this current inside the object was imaged. Although, 

injected current was not exactly a DC current, since the frequency of it was low 

with respect to the other injected currents, this technique is named as DC-CDI. In 

order to obtain the current density distribution in DC-CDI, it is necessary to rotate 

the object in the magnet. This is because, for the calculation of current density 

distribution, the components of magnetic flux density in all three dimensions are 

needed but only the component in the same direction with the main magnetic field 

can be measured. In a later study, the same group proposed to reconstruct RF-CDI 

images in homogeneous medium using RF currents [8]. In this study, they stated 

that interleaved multi-slice pulse sequence can not be used in RF-CDI. In RF-CDI, 

it is not necessary to rotate the object. Radio frequency needed to use in this 

technique is equal to the Larmor frequency of the MR system used. Although, RF-

CDI is advantageous when compared with the DC-CDI since it does not require 

rotation of the object, it would be difficult to realize circuits needed to use at radio 

frequency. Electromagnetic considerations for RF-CDI and the usage of RF-CDI in 

heterogeneous media were investigated in [9]. 

 

Measurement of magnetic fields generated by non-uniform AC current density 

using magnetic resonance was proposed by Ider and Müftüler [10], [11]. In this 

study, currents having AC frequencies at 100-200 kHz were passed through the 

wires placed outside the object and AC magnetic fields inside the object generated 

by these currents were measured. Measurement of only one component of magnetic 

flux density is sufficient also in this technique. 
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Misplacement of current carrying wires during CDI experiments causes distortion in 

the reconstructed image. This topic was examined by Gamba and Deply [12] and 

they concluded that, in order to decrease the distortion, current carrying wires must 

be placed carefully that they do not produce magnetic field component in the 

direction of the main magnetic field. There are also publications about possible 

clinical applications of CDI in the literature [13], [14], [15]. In [13], Sersa et al 

investigated the current density imaging of mouse tumor. This work helped to 

determine the effects of electrode geometry on the electro-chemotherapy. The 

success of electro-chemotherapy depends substantially on the amplitude and spatial 

distribution of the current density that passes through inside and around the tumor. 

Therefore, imaging of this current density distribution affects the success of 

chemotherapy directly. Beravs et al used CDI for obtaining the spatial distribution 

of DC electric current in the bone [14]. They made experiments on osteoporosis 

patients which have very low calcium content in their bones, compared the 

conductivity of their bones with the healthy ones and showed that CDI can be used 

in the diagnosis of osteoporosis. In 1999, Joy et al made a study on determining the 

current density and current pathways on a rabbit brain during trans-cranial electro 

stimulation [15].  

 

Bodurka et al carried out experiments on a 3T MRI system for current induced 

magnetic resonance phase imaging [16]. In contrast to previous studies, no external 

current is applied and magnetic field changes due to neuronal activity are measured. 

It is reported that magnetic field changes of 1.7±0.3nT were detectable due to 

electric current as small as 10 µA. 

 

In 2001, an alternative method for measuring AC flux density and current density is 

proposed by Mikac et al [17]. In his study 1kHz AC currents as low as 350 A/m2 

are imaged using a 2.35T system. 

 

The idea of using current density distribution measurements of CDI and boundary 

voltage measurements of EIT in order to obtain the conductivity map inside an 

object was first proposed by Zhang [18]. In this technique, potential difference 
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between surface points (ϕ∆ ), current density (J ) and unknown conductivity (σ ) 

are related by the following integral equation: 

 

( )1
l l

E dl J dlφ σ∆ = ⋅ = ⋅∫ ∫
� �� �

 (1.1) 

 

where l  is any integral path in the tomographic plane which connects two surface 

measurement points having a potential difference of ϕ∆ . If the imaging region is 

divided into M pixels, all having constant conductivity, and the above equation is 

reduced to an equation system for N measurement, the following matrix equation is 

obtained: 

 

ϕ ρ∆ = +G n  (1.2) 

 

where φ∆  and n  are N×1 measurement and noise vectors, respectively, ρ  is M×1 

vector of unknown pixel conductivity values and G  is N×M  projection matrix 

which depends on inside current density information and chosen integral path. 

Unknown conductivity values can be found from this matrix equation. 

 

In 1994, Woo et al proposed a new technique which constitutes electrical 

conductivity image using current density distribution obtained from CDI technique 

[19]. In this study, the difference between the current density distribution measured 

from a real object and the calculated current density distribution using finite 

element method for a computer simulation model was minimized. But the technique 

has low spatial resolution and poor convergence characteristics since, it can not use 

inside current density information effectively. Also in the reconstructed images, it 

was seen that error is high especially at the regions where current density changes 

rapidly. 

 

In 1995, Birgül and Ider proposed a new technique to find conductivity [20]. In this 

technique, it is stated that when the conductivity inside an object changes, current 

density will change and there will be a change in the magnetic field. Therefore, if 



 6 

this change in the magnetic field could be measured, then the inverse problem that 

finds the conductivity distribution will be formed and solved. Also, since the change 

in the magnetic field can be measured with equal sensitivity in the imaging region, 

conductivity map will be obtained with a uniform spatial distribution. The same 

group published a paper including a two dimensional version of this technique [21]. 

In [21], it is stated that currents in a two dimensional object will produce three 

dimensional magnetic fields but, these magnetic fields will have only normal 

component on the boundary of the object. A linear relation between the 

conductivity change and change in the normal component (taken as z direction in 

the study) of magnetic field could be constituted with the following equation: 

 

σ∆ = ∆b S  (1.3) 

 

Here, ∆b  is the change in the magnetic flux density, σ∆  is the change around the 

first assumed conductivity value and S is the sensitivity matrix. Behavior of the 

sensitivity matrix is analyzed using singular value decomposition in the study. 

Sensitivity matrix is just calculated for the first conductivity distribution. After 

obtaining the sensitivity matrix, since ∆b  is known, required conductivity change 

values can be calculated from 

 

1σ −∆ = ∆S b (1.4) 

 

Here, S matrix doesn’t have to be square and is generally singular, so its inverse 

can not be taken directly. In the study, generalized matrix inverse was used. In this 

technique, only the component of magnetic flux density in the direction of MR 

system’s main magnetic field was used. Therefore, the need for rotating the object 

as in the techniques which use current density distribution is eliminated. In the 

study, experimental magnetic field measurements were also used. Conductivity 

image was obtained with high resolution. But the important point here is, using only 

the magnetic flux density measurements, a unique conductivity distribution couldn’t 

be reconstructed using only the magnetic flux density measurements. But in 2003, 

Birgül et al was proposed a technique which uses magnetic flux density and surface 
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potential measurements together to obtain the true conductivity distribution [22]. In 

this technique, magnetic flux density measurements were used first to obtain a 

detailed conductivity map and then this conductivity map was scaled to satisfy the 

potential measurements. 

 

Eyüboğlu et al proposed another algorithm which uses current density distribution 

and surface potential measurements to image the conductivity and patented this 

technique [23]. Technique is based on the fact that current lines and equipotential 

lines are perpendicular to each other. Using this fact, surface potentials are 

projected inside the object through the lines which are perpendicular to the current 

lines. Therefore, every pixel in the object is assigned a potential value and inside 

potential distribution and potential gradient is obtained. Then, since the current 

density in measured conductivity distribution is calculated from the following 

formula: 

 

Syx
yx

yxJ
yx ∈

∇
= ),(

),(

),(
),(

φ
σ  (1.5) 

 

Here, J  is the current density, φ∇  is the gradient of the potential field and S  is the 

imaging region [23], [24]. Simulation and experimental results obtained using this 

technique is given in [25]. This technique can reconstruct true conductivity images 

with high and position independent spatial resolution. Also, one current injection 

pattern is enough for reconstruction of the conductivity map. Kwon et al developed 

a similar technique that uses equipotential lines [26] showed that conductivity 

image, reconstructed with a measurement which satisfies Dirichlet boundary 

conditions, is unique. But only the simulation results were given in this study.  

 

In 2002, Kwon et al proposed an alternative absolute conductivity reconstruction 

algorithm named J-substitution algorithm [27] and gave the simulation results. In 

the proposed iterative algorithm, Kwon et al minimized the following function: 
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∫
Ω

−=Φ
s

drE
r

rJ
2

)(
1

)(:)( ρρ
ρ  (1.6) 

 

Here, J  is magnitude of the current density, ρE  is magnitude of the electric field 

strength calculated from Poisson equation which is solved for a given conductivity 

distribution ρ  with Neumann boundary conditions. This minimization was resulted 

with an update equation: 

 

J

Ek
k =+1ρ  (1.7) 

 

Finite element method is used for the solution of the boundary value problem in the 

study. Since ρ  and αρ  would satisfy the same current density distribution, true 

resistivity value is calculated updating the resistivity using the potential 

measurements as given in the following equation: 

 

k

k
k

V

V

J

E=+1ρ  (1.8) 

 

In this study, it is stated also that, if at least two current injection pattern satisfying 

1 2 0× ≠J J  equality is used with one potential measurement, then absolute 

conductivity can be reconstructed. In a later study, this technique is examined 

experimentally using a homogeneous phantom and a phantom having an insulator 

object by Khang [28]. But in this study, although there was no error definition, 

various numerical error values were given. A similar experimental study using J-

substitution algorithm was made by Lee et al [29]. In this study, a sausage was 

placed in the phantom and current density is not zero anywhere was satisfied. Also, 

with imaging the grid phantom with a spatial distribution of 256×256 instead of 

128×128 and using a more effective phase unwrapping algorithm, they obtained 

more accurate results than [26]. In a recent study, Boyacıoğlu and Eyüboğlu 

combined the J-substitution algorithm and equipotential projection algorithm in [31] 
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and proposed a new reconstruction algorithm [30]. This technique reconstructs 

conductivity using equipotential line method first, and then this conductivity is 

given to the J-substitution algorithm as an initial distribution. Reconstruction 

accuracy is higher than both techniques. This technique contains the positive parts 

of the both techniques.  

 

Another technique, which obtains conductivity image by using just the component 

of magnetic flux density in the direction of main magnetic field without requiring 

the rotation of the object, was proposed by Seo et al [31]. Although, this technique 

does not require the rotation of the object which is impractical, it is based on the 

calculation of zB2∇ . This means the differentiation of noisy zB  measurements 

twice. Furthermore, proposed image reconstruction algorithm finds conductivity σ  

from its spatial gradient σ∇  using line integrals and both line integrals and 

numerical derivation tend to increase the error. Therefore, in the study, only the 

results obtained from simulations with small additive error added were published. 

Later, this study was improved by Oh et al using various techniques [32] and named 

as Harmonic zB  algorithm. In this study, firstly, in order to suppress the 

measurement noise in zB  better, current injection process was repeated N times. 

Also, current injected from recessed electrodes in order to prevent distortions 

especially near the current injection electrodes. Only the simulations results were 

given in this study, too. Phantom experiments about these studies were given in 

[33]. The last technique related with these studies was proposed by Park et al [34]. 

The new technique in this study takes the derivative of zB  once different from the 

Harmonic zB  algorithm. Therefore, it has slightly improved the noise tolerance. 

Realistic errors added simulation results were given in the study. In 2005, Oh et al 

published the reconstruction results of biological tissue phantoms using Harmonic 

zB  algorithm in MREIT [35]. Bovine tongue and liver, porcine muscle and chicken 

breast were used as biological tissues and conductive agar gelatin as background 

medium in the study. Conductivity values were reconstructed with errors of %5 - 

%25. Although the same group reported increased noise tolerances in [38] and [39], 

their usage of Harmonic zB  algorithm in this study was quite interesting. 
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In 2003, Ider et al developed three new reconstruction algorithms for MR-EIT [36]. 

All the algorithms in this study were derived from 0=×∇ Jρ  equality which is 

valid in the object. The problem of reconstruction is treated as a hyperbolic system 

of first order differential equations and three numerical methods named “method of 

characteristics”, “reconstruction by integration along Cartesian grid lines” and 

“reconstruction formulated as a linear set of equations using finite differences” are 

used. In the study, firstly, “if only current density measurements were used, what 

will be reconstructed?” problem was investigated and it is found that, under definite 

conditions current density measurements can reconstruct true conductivity image 

except a scaling. Then it was shown that, for applications where absolute 

conductivity values are needed, only one potential measurement is enough for the 

completeness of the image. All three methods proposed in this study is three 

dimensional and they can easily be adapted to the two dimensional imaging. Also, 

methods are not iterative and it was proven that reconstructed images are unique. 

Later, the same group proposed another algorithm which reconstructs conductivity 

using the component of magnetic flux density in the direction of the main magnetic 

field [37]. In this new method, the imaging problem is formulated as the solution of 

a non-linear matrix equation and it is solved iteratively to reconstruct resistivity. 

Only the numerical simulations were used to test the algorithm but both noise free 

and noisy simulations used in the study. 

 

Lee et al proposed a study that demonstrates a basic setup for breast conductivity 

imaging [38]. In this study, they introduced the basic imaging setup of the breast 

MREIT technique with an investigation of four different imaging configurations of 

current injection electrode positions and pathways using computer simulation 

studies. Also they performed an experimental study with a breast phantom on a 

3.0T MREIT system. Harmonic zB  algorithm was used to reconstruct conductivity 

images. 15 mA current was applied to ensure the sufficient SNR but it was also 

pointed out that this current level is beyond the human safety limit. In a similar 

study, Sadlier et al reconstructed biological tissue conductivities with MREIT at 

11T MR System in order to decrease current level [39]. They gave the experimental 
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results and also described technical difficulties encountered in using high field 

MREIT systems and possible solutions. 

 

In 2007, Kim et al reconstructed the conductivity image of a postmortem canine 

brain [40]. They used 40 mA applied current and Harmonic zB algorithm for 

reconstruction. Obtained results showed a clear contrast between gray and white 

matter. Also in this study, authors proposed a new description as ‘equivalent 

isotropic conductivity’. They used this term to interpret anisotropic conductivity 

value of white matter since it is known that white matter has anisotropic 

conductivity distribution but reconstruction algorithm used is for isotropic 

conductivity reconstruction. Later, again Kim et al reconstructed the conductivity 

image of canine brain but in this case in-vivo [41]. They applied 5 mA current to the 

living canines first and then they repeated the experiment with the same but 

postmortem animals with 40 mA applied current. They reported the differences 

between living and postmortem brain conductivities. 

 

All reconstruction algorithms explained up to here assume conductivity as isotropic 

and formulates the underlying mathematics according to this assumption. But it is 

known that most biological tissues have anisotropic conductivity values [42]. 

Therefore it is clear that this assumption will decrease the accuracy of the 

reconstruction and application area of the technique. The first algorithm which does 

not assume isotropic conductivity is proposed by Seo et al at 2004 [43]. In the 

study, σ  conductivity tensor was used to show the anisotropic conductivity. This 

tensor was selected as a 3×3, positive definite matrix to have a physical meaning. 

Therefore, this means that, instead of trying with one unknown as in the isotropic 

case, it is necessary to deal with 6 unknowns of σ . After defining the problem with 

this tensor, conductivity is updated iteratively starting from the isotropic value 

found using the Harmonic zB  algorithm for the same boundary conditions. All 6 

unknowns of σ  are found in every iteration. Update continues until a stopping 

criterion is satisfied. The proposed technique was examined with two dimensional 

simulations, 100 mA applied current and for noisy cases, SNR levels of 300, 200 
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and 150. It is shown that anisotropic conductivity tensor can be reconstructed if 

enough current is applied. But since the current has to be kept under a definite value 

for human and animal experiments, it is concluded that more studies on the 

reduction of applied currents must be done. Later in 2007, Değirmenci and 

Eyüboğlu proposed the second technique for anisotropic conductivity reconstruction 

[44]. This technique depends up on the construction of equipotential lines. 

Equipotential lines and current lines are perpendicular to each other when the 

conductivity is isotropic but it is not the case when the conductivity is anisotropic. 

Therefore, there is a nonlinear relation between anisotropic conductivity distribution 

and current lines. Technique solves this nonlinear problem iteratively. Numerical 

simulations for a two dimensional simulation phantom, 20 mA applied current and 

for noisy cases, SNR levels of 30, 20 and 13 were used to test the proposed 

algorithm. Later, the same group proposed two more algorithms for anisotropic 

conductivity reconstruction called anisotropic J-substitution and anisotropic hybrid 

J-substitution algorithms [45]. These techniques are also iterative and tested with 

simulation models. Details of these techniques ([49], [50]) will be given in this 

thesis.  

 

1.3 Objectives of the Thesis 

 

The importance of imaging conductivity distribution in the human body is stated in 

the previous sections. Therefore, reconstruction of conductivity distribution is one 

of the most important study areas of biomedical engineering. Several techniques 

exist for this purpose. MREIT is one of them. 

 

Reconstruction algorithms developed for MREIT technique were given in the 

previous section. Most of these algorithms are formulated for the reconstruction of 

isotropic conductivity. But it is known that most of the biological tissues in the 

human body contain anisotropic conductivity values [42]. Therefore, developing 

reconstruction algorithms for anisotropic conductivity distribution is a very 

important study in this field. The main research topic of this thesis is selected 

according to this and the following objectives were defined: 
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• To develop and implement different novel reconstruction algorithms for 

MREIT for the anisotropic conductivity distribution, 

• To explore the theoretical limits, contrast and spatial resolution properties of 

the proposed algorithms, 

• To compare all of the novel algorithms using standard data sets, 

• To obtain magnetic flux density data using 0.15T METU-EE MRI System, 

• To reconstruct conductivity images using this experimental data. 

 

1.4 Outline of the Thesis 

 

In Chapter 2, the forward problem definition of anisotropic MREIT technique is 

given first. Method for extraction of magnetic flux density data from MRI phase 

images, phase unwrapping algorithm for the correction of MR phase images and 

calculation of current density distribution from magnetic flux density data are also 

explained. Chapter 3 explains experimental studies realized during this thesis study. 

In Chapter 4, current density based anisotropic conductivity reconstruction 

algorithms, namely equipotential projection based anisotropic conductivity 

reconstruction algorithm, anisotropic J-substitution and anisotropic hybrid 

algorithms are explained. Chapter 4 covers the magnetic flux density based 

anisotropic conductivity reconstruction algorithms. These algorithms are anisotropic 

Harmonic Bz and Sensitivity algorithms. Chapter 6 explains the computer models 

used in simulations and simulation test results of the algorithms. Experimental 

results are also given in that chapter. Chapter 7 concludes the thesis with a 

summary, final conclusions and future work. 
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CHAPTER 2 

 

 

THEORY 

 

 

2.1 Introduction 

 

In this chapter, forward problem of anisotropic MR-EIT is formulated first (Section 

2.2). Once the potential distribution is calculated with the solution of the forward 

problem, the magnetic flux density distribution can be calculated using Biot-Savart 

law. Section 2.3 explains the numerical implementation of the forward problem and 

discretization of the Biot-Savart law for the calculation of magnetic flux density 

from injected currents. In practice, the magnetic flux density distribution induced by 

injected currents is the only thing that can be measured using an MRI system. In 

Section 2.4, the procedure to extract it from MRI data is explained. Also, the 

concept of phase unwrapping and the phase unwrapping algorithm used in this 

study are defined in the final section. 

 

2.2 The Forward Problem of Anisotropic MR-EIT 

 

The forward problem for anisotropic MREIT imaging modality is defined as the 

calculation of magnetic flux density distribution and peripheral surface potential 

values for a known anisotropic conductivity distribution and boundary conditions. 

Forward problem solution is used mainly for the generation of the simulation data. 

It is also used in the formulation of some reconstruction algorithms. The nonlinear 

relation between potential field and anisotropic conductivity is defined by Poisson’s 

equation as:  
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 ( ) ( , ) 0 ( , )x y x y Sσ ϕ∇ ⋅ ∇ = ∈ . (2.1) 

 

where ),( yxσ  is the anisotropic electrical conductivity which is defined as 
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 for three dimensional case 

and it is a positive definite symmetric matrix. Equation (2.1) is combined with the 

following Neumann boundary condition to form a boundary value problem (BVP) 

of MREIT. 
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Once the potential field distribution is obtained, the electric field distribution is 

calculated as: 

 

 φ−∇=E  (2.3) 

 

and the corresponding current density distribution is calculated via Ohm’s law as: 
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φ
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σ . (2.4) 

 

Magnetic flux density distribution both on imaging plane and at some off-slice 

points may be required for some reconstruction algorithms. Magnetic flux density 

generated by the current density distribution found in equation (2.4) is given by 

Biot-Savart relation as: 
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 0
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( , , )

4
RJ x y dS â

B x y z
R

µ
π

×= ∫
��

��
. (2.5) 

 

where 0µ  is the permeability of the free space, R
��

 is the vector from source point 

( ', ', ')x y z  to the field point ( , , )x y z  and Râ  is the unit vector in that direction. 

 

2.3 Numerical Implementation of the Forward Problem 

 

For complex conductivity distributions, analytical solutions to the BVP expressed in 

equations (2.1) and (2.2) do not exist in general. Therefore, numerical methods are 

utilized to solve this kind of BVP’s. There are several numerical methods in 

literature such as finite element method (FEM), finite difference method (FDM), 

etc. In this study, FEM is used to solve potential field distribution for a given 

conductivity distribution and boundary conditions. In this technique, instead of 

finding the analytical expression for the potential field at all points, the value of the 

potential field at discrete points is calculated. These discrete points are named as 

nodes. The imaging region is then divided into smaller regions by connecting the 

nodes in a systematic manner to form the finite elements. Finite elements can be 

triangular or tetrahedral. The obtained mesh from node and element structure is 

called as the finite element mesh. In this study, triangular elements are used the 

finite element mesh and the nodes are at the vertices of the elements. Since the 

simulation models and the experimental phantom are square, the mesh structure is 

prepared for a square imaging regions. It contains 3281 nodes and 6400 elements. 

Employed mesh is given in Figure 2.1. 
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Figure 2.1: Finite element mesh used in the thesis study with 3281 nodes and 6400 
elements. 

The conductivity is assumed to be constant and the potential field is assumed 

linearly varying in each finite element. The potential field inside each element is 

expressed in terms of node potential values and spatial coordinates to form a linear 

equation. Combining the linear equations for each element, the boundary value 

problem is converted to a matrix equation of the form 

 

 φ =A b  (2.6) 

 

where, A is the coefficient matrix which depends on the mesh structure and 

anisotropic conductivity, φ  is the vector of unknown node potentials and b is the 

boundary condition vector. The node potentials are then calculated by matrix 

inversion and multiplication as 

 

 1φ −= A b . (2.7) 
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It is important to note that, the square A must be nonsingular to be invertible. Since 

only current values at some nodes or elements are specified for a Neumann type 

BVP, there might be more than one field solution to Equation (2.1) which satisfies 

the boundary condition in Equation (2.2). In this case, the resulting A matrix is 

singular. In order to solve this singularity problem and find a field solution, a 

potential reference must be specified. Numerically it is implemented by selecting a 

node for reference point and forcing this reference node potential to zero in the 

matrix equation. This operation guaranties the invertibility of the coefficient matrix.  

 

After calculating the node potentials, electric field and current density in each 

element are calculated using Equation (2.3) and Equation (2.4), respectively. Next 

step is the calculation of the magnetic flux density distribution via Biot-Savart 

relation using calculated currents. Discretization of Biot-Savart relation is explained 

in the following part. 

 

2.3.1 Discretization of Biot-Savart Law 

 

Since the relation between current density and magnetic flux density is linear, a 

discretization will be sufficient [46]. In this section, a matrix relation between 

current and magnetic flux density is derived.  

 

Biot-Savart relation can be rewritten as  

 

 0
3

'

4

I dl R
d B

R

µ
π
 ×=  
 

�� ��
��

 (2.8) 

 

for a differential current element 'Idl
��

 where I is the current in one finite element 

and 'dl
��

 is the direction of the current. In this formulation, primed variables are used 

to indicate the source related variables. The current density vector calculated in the 

previous part is placed at the center of each element and weighted with the area of 

the corresponding element. The differential current element can be written as 
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 ' ( )x x y y z zIdl A â J â J â J= + +
��

. (2.9) 

 

Although the equation (2.9) can be reduced for two dimensional case, matrix 

equations is derived for the general case and simplified when necessary. The vector 

between the source and the field points, which is R
��

, can be written as 

 

 ( ') ( ') ( ')x y zR x x â y y â z z â= − + − + −
��

. (2.10) 

 

Evaluating the cross product in equation (2.8), the orthogonal components of 

magnetic flux density can be written as 
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Here, it is important to note that, effect of each current element on itself is neglected 

in order to handle singularity in evaluation of the above integral. To explain more 

clearly, consider a circular region on x-y plane and assume that uniform current 

flows in x-y direction. For this configuration, the magnetic flux density at the center 

of the circle will be zero. For our case, effect of each element on itself is neglected 

although triangular elements are used. 

 



 20 

Equations (2.11), (2.12) and (2.13) are written for n source points and k field points, 

therefore 3k linear equations are formed. These 3k equations can be written in 

matrix form as 
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where the coefficient matrix depends only on the source and field coordinates and 

therefore constant for a given mesh structure. The coefficient matrix can be divided 

into parts as 
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Here xD ,D y  and Dz  are the matrices which depend on the magnitude of the R
��

 

vector and the difference between x, y and z components of field and source points, 

respectively. Since these matrices are constant for a mesh structure, they can be 

calculated once and stored. This increases the solution speed of the field problem 

significantly. 

 

For two dimensional case, zj  is equal to zero and the matrix equation reduces to 
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2.4 Extraction of Magnetic Flux Density from MR Images 

 

The magnetic flux density distribution generated by the currents inside a conductive 

object can be measured magnetic resonance imaging techniques. In obtaining these 

distributions, MR images are taken using appropriate pulse sequences and magnetic 

flux density distributions are extracted from these measurements. However, only the 

component of the magnetic flux density in the direction of the main magnetic field 

of the MR system can be measured using MRI technique. Therefore, the object 

must be rotated and the experiment must be repeated for three different orientations 

if the magnetic flux densities in three dimensions are required. Placements of the 

object in the magnet at these three orientations are given in Figure 2.2. In this 

figure, (x,y,z) is the coordinate system for the object and (x’,y’,z’) is the coordinate 

system for the MR system. The main magnetic field of the MR system is in the 

direction of z’. Figure 2.2(a) shows the orientation of the object inside the magnet 

for the measurement of zB , similarly Figure 2.2 (b) and (c) shows the orientations 

for xB  and yB  measurements, respectively. 

 

When a noise free MRI data without spin relaxation is assumed and the geometric 

distortions are neglected, the acquired MRI signal using a spin echo pulse sequence 

shown in Figure 2.3 (without current pulse) can be expressed as 

 

 { }( , )
( , , ) ( , ) c x yj B x y t k x k y

x y
x y

S k k t M x y e dxdy
γ θ + + + = ∫ ∫ . (2.17) 

 

Here, ( , )M x y  is the continuous real transverse magnetization, ( , )B x y  is the 

inhomogeneity component of the magnetic field and cθ  is a constant phase due to 

instrumentation and receiver circuits. xk  is equal to xG tγ  and yk  is equal to y yG tγ , 
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where xG  and yG  are frequency encoding and phase encoding gradient strengths, 

respectively. γ  is the gyromagnetic ratio, yt  is the duration of the yG  gradient 

pulse and t is the data acquisition time. The integrations are performed over the data 

acquisition window. Magnetization density can be obtained by Fourier transforming 

( , , )x yS k k t  with respect to andx yk k  as: 

 

 
( )

( , ) ( , , ) x y

x y

j k x k y
r x y x y

k k

M x y S k k t e dk dk
 − + = ∫ ∫ . (2.18) 

 

The resulting complex MR image is expressed as: 

 

 [ ]( , )( , ) ( , ) cj B x y t
rM x y M x y e γ θ+= . (2.19) 

 

When a current is applied to a conductor object in synchronization with MRI pulse 

sequence as seen in Figure 2.3, then the component of the magnetic flux density 

(due to the current flow) parallel to the main magnetic field accumulates a phase in 

the acquired signal. This is formulated as: 

  

 { },( , ) ( , )
( , , ) ( , ) c J z c x yj B x y t B x y T k x k y

x y
x y

S k k t M x y e dxdy
γ θ γ + + + + = ∫ ∫ . (2.20) 

 

where, , ( , )J zB x y  is the component of the magnetic field in the direction of the main 

magnetic field induced by the applied current. cT  is the total current injection 

duration.  
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(a) (b) 

 

(c) 

Figure 2.2: Orientation of an object inside the MRI system for measuring three 
components of the induced magnetic flux density. The electrodes and current injections are 
shown for each case. Object placement, (a) to measure zB , (b) to measure xB , (c) for to 

measure yB .  
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Figure 2.3: MR-CDI pulse sequence. 

 

Fourier transforming the Equation (2.20) with respect to xk  and yk  yields the 

complex MR image as: 
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, ( , ) ( , ) J z c cj B x y t B x y T j

r JM x y M x y e
γ θ + + = . (2.21) 

 

where, , ( , )J zB x y  is the component of the magnetic field in the direction of the main 

magnetic field induced by the applied current. cT  is the total current injection 

duration.  

 

As seen from Equations (2.19) and (2.21), expressions are the same except an 

exponential term caused by the applied current. Therefore dividing the complex 
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image with current flow to the complex image without current flow eliminates the 

effects of the phase inhomogeneities and other image artifacts and following 

equation is obtained: 

 

 
{ }

[ ]

,

,

( , ) ( , )
( , ),

( , )

( , ) ( , )

( , ) ( , )

J z c c

J z c

c

j B x y t B x y T j
j B x y Tr J

j B x y t
r

M x y M x y e
e

M x y M x y e

γ θ
γ

γ θ

 + + 

+
= = . (2.22) 

 

Note that, resultant phase is the difference of two phase images. In practice, the 

ratio in Equation (2.22) is not calculated but instead, phase of Equation (2.21) is 

subtracted from phase of Equation (2.19). Finally, , ( , )J zB x y  is extracted from the 

phase in equation (2.22) as:  
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T
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= . (2.23) 

 

where, JNθ  is the difference of the phases of ,r JM  and rM , which is also called the 

normalized phase image [7], [47]. The resolution of the magnetic flux density image 

in z-direction is equal to the resolution of the MR image. As explained earlier, 

experiments must be repeated for the measurement of other components of the 

magnetic flux density by rotating the object to align the desired component with the 

main magnetic field. 

 

In some image reconstruction algorithms, magnetic flux density measurements are 

directly used [31], [37], while some uses the current density distribution calculated 

from magnetic flux density measurements [25], [27]. The relation between current 

density and magnetic flux density is given by the curl operator as: 
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If this equation is written in open form, following relation between current density 

and magnetic flux density is obtained: 
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As seen from Equation (2.25), the magnetic flux density generated by the current 

flow in x-y plane has only z component on that plane. In other words, 0x yB B= =  

for 0z z=  plane and it is sufficient to measure zB  on that plane. Although x and y 

components are zero on that plane, their derivatives with respect to z are not 

necessarily zero. Therefore, in order to calculate xB

z

∂
∂

 and yB

z

∂
∂

, andx yB B  must be 

measured on some near planes of 0z . If andx yB B  are measured on 0z z+ ∆  and 

0z z− ∆  planes, their derivatives are calculated as: 
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and 
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In experimental study, it is possible to measure the magnetic flux density at two 

neighboring slices of the imaging plane and the gradient in z direction can be 

calculated using these formulas. 
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2.5 Phase Unwrapping 

 

In general, it is not trivial to obtain the phase term ( , )JN x yθ  for a complex image 

distribution. ( , )JN x yθ  is defined only in the principal value range of [ , ]π π−  and 

any phase value outside this range is wrapped to this interval yielding the wrapped 

phase image. Hereafter ( , )x yθ  will be used to denote the desired phase image and 

ˆ( , )x yθ  will be used to represent the wrapped phase image. The relation between 

( , )x yθ  and ˆ( , )x yθ  is: 

 

 ˆ( , ) ( , ) ( , ) 2x y x y l x yθ θ π= ± ⋅  (2.28) 

 

where ( , )l x y  is an integer valued function [48]. Since the magnetic flux density is 

directly proportional to the actual phase image, ( , )x yθ , a phase unwrapping 

algorithm that reconstructs actual phase from the wrapped phase is needed. 

 

In this study, phase unwrapping algorithm proposed by Liang [48] and implemented 

by Birgül [46] is used. In this method, the unwrapped phase function is represented 

as the sum of a truncated Taylor series and a residual function and the unwrapping 

problem is converted to a parameter estimation problem. The key point behind the 

algorithm is that, the derivatives of the actual and wrapped phase images are equal 

to each other except at the points where a phase wrap occurs. The idea is to 

compute the phase derivatives and use them for unwrapping. In Liang’s approach, 

the MRI phase image is represented by a polynomial and ( , )x yθ  is expressed as: 

 

 ( , ) ( , ) ( , )x y P x y r x yθ = +  (2.29) 

 

where ( , )P x y  is truncated Taylor series which is an thN  order polynomial defined 

by: 
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and ( , )r x y  is the corresponding residual function. Therefore, the problem is now to 

determine the coefficients and the residual function. The algorithm has three main 

steps: 

 

1. Calculation of the phase derivatives 

Desired derivatives, 
( , )x y

x

θ∂
∂

 and 
( , )x y

y

θ∂
∂

, are calculated using fast 

Fourier transform (FFT) algorithm. 

 

2. Calculation of the polynomial coefficients 

The polynomial coefficients, ( )nC m  for 0 ,n N m n≤ ≤ ≤  are calculated by 

fitting 
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 to 
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 and 
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 either separately or 

jointly. It is stated in [48] that joint fitting method is better, so it is preferred 

here. The coefficients are calculated by solving the weighted least squares 

problems defined as minimization of the weighted sum of squares of the 

difference between derivative of the wrapped phase images and the 

polynomial functions. The weighting factor is one when the magnitude of 

the MR image is above some threshold and zero otherwise. 

 

3. Calculation of the residual function 

Once the coefficients ( ( )nC m ’s) are found, the polynomial function ( , )P x y  

can be wrapped to obtain ̂( , )P x y . The difference between wrapped 

polynomial, ˆ ( , )P x y , and the measured wrapped phase, ˆ( , )x yθ , is 

calculated and set as the residual function ( , )r x y . 

 

The effect of phase unwrapping is shown on Figure 2.4. In Figure 2.4(a), the 

colorbar axis is in radians, and it is seen that the wrapped image only takes values in 
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the [ , ]π π−  range and sudden jumps, in another words phase wraps, occur in this 

image. In the unwrapped image (Figure 2.4(b)), the phase wraps are removed. It is 

important to note that, MR images have random phases for points in the field of 

view without NMR active nuclei. Therefore, phase images should be masked using 

a mask based on the amplitude image before applying the phase unwrapping 

algorithm. 

 

 

 

-3

-2

-1

0

1

2

3

 

(a) 

 

 

 

0

5

10

15

20

25

 

(b) 

 

Figure 2.4: Demonstration of unwrapping: (a) Phase image before unwrapping, and (b) 
after unwrapping. 
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CHAPTER 3 

 

 

EXPERIMENTAL SETUP 

 

 

3.1 Introduction 

 

Magnetic Resonance Electrical Impedance Tomography utilizes a spin echo pulse 

sequence together with a bipolar DC current source. This current source does not 

exist in conventional MR systems. Therefore, a current source which is controlled 

by the pulse sequence generation software of the MRI system to ensure the 

synchronization is required to generate the required bipolar DC current pulse. In 

Section 3.2, the synchronized DC current source is explained in detail. Furthermore, 

in order to realize MREIT experiments, a phantom which has a closed volume and 

current injection electrodes on the surface is designed and manufactured. A detailed 

explanation of this phantom is given in Section 3.3. 

 

3.2 Current Source 

 

As explained in the previous chapter, in order to measure the magnetic flux density 

generated by the internal distribution of injected currents, applied current must be in 

synchronization with the spin echo pulse. During this thesis study, a synchronized 

voltage controlled DC current source is implemented. Block diagram of the current 

source is given in Figure 3.1. In order to avoid RF interference, main part of the 

current source is placed in the Faraday cage and this part is connected to the system 

control unit using fiber optic cables. Likewise, in order to prevent 50 Hz noise of 

the electrical network and switching noise of the AC/DC converter to go into 

Faraday cage, main part of the current source is supplied by batteries. 
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Fiber optic transmitter part of the current source converts the control signal of the 

current pulse sequence to the optical signal. Positive and negative currents in the 

pulse sequence are first produced as two 5 V signals by the National Instrument 

(NI) digital to analog converter board’s two separate channels. These signals are 

then converted to the optical signal in the fiber optic transmitter unit and carried 

with two separate fiber optic cable. Fiber optic transmitter circuit is shown in Figure 

3.2. Required power for the operation of the transmitters is supplied by a 5V 

adapter. Transmitter and receiver circuits are designed according to the length of the 

fiber optic cable used between them. Fiber optic cables are fed into the Faraday 

cage and connected to the fiber optic receiver unit. 

 

 

 

 

Figure 3.1: Block diagram of the current source. 

 

Figure 3.2: Fiber optic transmitter circuit (Agilent HFBR 2412) 
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Optical signals on the fiber optic cables are then converted to the 5 V electrical 

signals in the fiber optic receiver unit. This unit is shown in Figure 3.3. Outputs of 

two channel fiber optic receivers are connected to the multiplexer. 

 

 

Figure 3.3: Fiber optic receiver circuit (Agilent HFBR 2412) 

CD 4051 integrated circuit is used as analog multiplexer in the current source 

circuit. Connection diagram can be seen in Figure 3.4. S0 and S1 digital inputs are 

connected to the outputs of fiber optic receivers as mentioned previously. 0 V, +5 V 

and -5 V voltages are connected to the A0, A1 and A2 analog inputs of the 

multiplexer, respectively. Other inputs are not used. 

 

 

 

 

Figure 3.4: CD4051 Analog multiplexer connection diagram 
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The truth table for the multiplexer is given in Table 3.1. If 0 V is applied to both 

inputs, output becomes 0 V. If one of these signals is +5 V or -5 V, then this signal 

appears at the output of the multiplexer. 

 

 

Table 3.1: CD4051 truth table. 

 

S2 S1 S0 ON 

0 0 0 A0 

0 0 1 A1 

0 1 0 A2 

The rest are not used. X 

 

 

The last part of the current source is the voltage to current converter unit. In this 

unit 3 OPA452T operational amplifiers are used. Supply voltages of the op-amps 

are provided by batteries. Analog output of the multiplexer is connected to the VI 

input of the voltage to current converter as seen in Figure 3.5. In this figure, ZL 

shows the load impedance and IL shows the constant current applied to the load. 

Load voltage VL is sensed through a voltage buffer by the second op-amp. The third 

op-amp takes the difference of VI and VO2. By doing so, the difference between VO3 

and VL therefore, the difference between IL and I2 are kept constant. If the overall 

circuit is analyzed, following equation is obtained: 

 

 IL = I2 = - VI / R2 (3.1) 

 

As seen from equation (3.1), load current is independent from load impedance. 

Amplitude of the load current can be changed by only changing VI and R2 values. 

When the input voltage becomes -5 V, 0 V or 5 V, IL current can be adjusted in the 

0 – 100 mA interval independent of load impedance using the variable resistance R2 

(Upper limit of the current is defined also by the supply voltage). 
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Figure 3.5: Voltage to current converter circuit 

3.3 Phantom 

 

In order to test the proposed algorithms under real experimental conditions, the 

easiest way is to design and manufacture a phantom in which magnetic field 

measurements will be made while applying current. For this purpose an 

experimental phantom is designed and manufactured in this study. Some important 

aspects are taken into account during the design process of the phantom, which are; 

 

• Since this phantom is placed inside the RF coil, its dimension is designed to 

fit and to be rotated in three directions inside the RF coil. 

• One side of the phantom is designed as cover, to easy filling and emptying 

of the phantom with experimental material. 

• Recessed electrodes are used to avoid signal loss due to the high current 

density under electrodes. 

• Electrodes are designed to allow change of electrode materials when needed. 

• In order to define the position of the slice during an experiment, a position 

marker is built on one side of the phantom. 
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Technical drawing of the phantom is given in Figure 3.6. Since, this phantom will 

be used in the MR system, manufacturing material of the phantom is required to be 

selected as non MR active material. For this purpose, Plexiglas material was 

chosen.  

 

 

 

 

 

 

(a) 

 

Scale: ½ 

Unit: mm 
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(b) 

 

 
(c) 

 

 
(d) 

 

Figure 3.6: Designed phantom; (a) Technical drawing, (b) (c) (d) Views from several 
directions. 

Electrodes and 
removable 
electrode covers 
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As seen from Figure 3.6, four electrodes are placed on four edges of the phantom. 

These electrodes are used for both current injection and potential measurements. Six 

different current injection profiles were provided using opposite and adjacent pairs 

of electrodes separately. 20 mA current was applied in each profile. Potential 

measurements were also made from the same electrodes used for current injection 

with a floating multimeter. Photographs of the manufactured phantom are given in 

Figure 3.7.  

 

 

       
 

Figure 3.7: Photographs of the manufactured phantom. 

After the production of the phantom and definition of the current injection profiles, 

the new subject was the internal material which will be placed inside the phantom. 

For this purpose, two different experimental phantoms was designed, simulated on 

the computer and produced physically. Three dimensional and cross sectional 

images of these two phantoms are given in Figure 3.8.   

 

In the first phantom, shown in Figure 3.8 (a) and (b), in order to prevent flow of 

current in one direction in the middle section of the imaging slice two 3 cm 

insulator layers were placed. By doing so, an anisotropic conductivity is obtained in 

the vicinity of the layers. A 3 by 3 cm square object with 2 S/m conductivity value 

was prepared outside and placed between the layers. For this object, 1.75 gr Salt, 

0.1 gr CuSo4, 1 gr Agar Error! Reference source not found. and 1 gr TX151 
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Error! Reference source not found. are mixed in 100 ml pure water while heating 

the mixture. After boiling, the mixture is poured in a 3 by 3 cm square mold and 

waited about 2 hours. After this time, solidified material is removed from the mold 

and placed between the layers. For the background material, a similar material with 

0.2 S/m was prepared. In this case, 0.1 gr CuSo4, 0.2 gr TX150 Error! Reference 

source not found., 2 gr TX151 were mixed in 100 ml pure water but heating did 

not opened in this time. After the mixing about 10 minutes, a liquid material was 

obtained and poured remaining inner parts of the phantom.  

 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.8: Designed two experimental phantoms: ((a) and (c)) Cross sectional, ((b) and 
(d)) Three dimensional images. 
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Since the layers placed inside the first phantom are completely insulator, anisotropy 

ratio could not be controlled according to the position. Because of this, second test 

phantom was designed and holes are opened on the layers in order to change the 

anisotropy controllably. There are 7 layers in the phantom as seen on the Figure 3.8 

(b) and (c). First, third, fifth and seventh layers have four holes while the other 

layers have three holes. Remaining part of the phantom are filled with mixture of 

0.1 gr CuSO4 and 0.145 gr NaCl in 100 ml pure water which has a conductivity of 2 

S/m. Because of hollow insulator layers, current can only flow inside of these holes. 

Using different numbers of holes in each layer, flow of current in different paths 

was ensured. Therefore, when the current is applied between different electrode 

pairs, different current paths occur and anisotropic conductivity is obtained. 

 

Overall MREIT setup is given in Figure 3.9. Using this setup, data acquisition 

process was completed for both of the phantoms and magnetic field distributions 

were calculated as explained in the previous chapter. 
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Figure 3.9: METU EEE MRI System and MREIT experiment setup. 
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CHAPTER 4 

 

 

CURRENT DENSITY BASED RECONSTRUCTION 

ALGORITHMS 

 

 

4.1 Introduction 

 

In anisotropic MREIT technique, the aim is to find the anisotropic conductivity 

distribution inside a conductor object from measured magnetic flux density and 

peripheral voltage measurements. This procedure is called as the image 

reconstruction or the inverse problem of anisotropic MREIT. For the solution of the 

inverse problem, two different types of image reconstruction algorithms are 

proposed. The first type uses current density distribution calculated from magnetic 

flux density measurements (Type-I). This type of reconstruction requires magnetic 

flux density measurements in three directions. In the second type, magnetic flux 

density is used directly in image reconstruction and it is possible to reconstruct 

conductivity images using magnetic flux density measurement in one direction 

(Type-II). In this chapter three anisotropic conductivity reconstruction algorithms 

which are classified as Type-I are presented. In section 4.2, the first algorithm 

namely Equipotential Projection Based anisotropic conductivity reconstruction 

algorithm is given. Anisotropic J-substitution and anisotropic Hybrid J-substitution 

conductivity reconstruction algorithms are explained in detail in section 4.3. 
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4.2 Equipotential Projection Based Anisotropic Conductivity 

Reconstruction Algorithm 

 

4.2.1 Introduction 

 

In this part of the study, a novel MREIT reconstruction algorithm is proposed for 

the solution of the inverse problem. The algorithm uses the current density 

distribution calculated from magnetic flux density measurements. This calculation 

is given in chapter 2. In this algorithm, the difference between calculated and 

measured current density distributions is minimized iteratively. Algorithm start 

from an initial conductivity distribution and the procedure is iterated by assigning 

calculated conductivity as initial conductivity. The detailed explanation of the 

algorithm is given in the next section. Performance tests of the algorithm using 

computer and experimental models are given in results chapter. 

 

4.2.2 Algorithm 

 

The proposed algorithm, which is based on the construction of equipotential lines in 

the FOV at each iteration, reconstructs σ  iteratively using only current density 

measurements. Since equation (2.4) uses potential gradient not the potential itself, 

the potential values assigned to these equipotential lines may be any value 

satisfying the correct potential gradient distribution. Therefore, reconstructed 

anisotropic conductivity distribution is a relative distribution. In order to find the 

true conductivity values, at least one potential or conductivity measurement is 

needed to scale the reconstructed conductivity values. 

 

After the internal current density distribution is measured, the anisotropic 

conductivity reconstruction algorithm is realized for a rectangular object as follows. 

It can also be easily adapted for other geometries since the algorithm operates pixel-

by-pixel instead of entire FOV. 
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(i) Calculation of pseudo-surface potential values:  

Calculation of anisotropic conductivity values needs only the potential 

gradients in the FOV; therefore it is sufficient to obtain potential 

gradient values throughout boundary columns. For this purpose, 

equation (2.4) is rearranged and solved for yϕ∇  

 

 y xx x yx
y

xy yx xx yy

J Jσ σ
ϕ

σ σ σ σ
−

∇ =
−

. (4.1) 

 

An equation for xϕ∇ is also obtained similarly. Known conductivity 

values are assigned to the boundary pixels in order to calculate yϕ∇  on 

the left and right most boundary layers and xϕ∇  on the upper and lower 

most boundary layers. In practice, this structure can be achieved by 

wrapping a conductive belt with a known conductivity, around the object 

to be imaged. Then potential gradients along all boundary pixels are 

calculated. Based on these potential gradients, potential values of the 

boundary pixels are calculated by assigning a potential value to any 

pixel on the boundary. In this paper, these potentials are called as 

pseudo-potentials since they are not the true potential values but the 

values satisfying the calculated ϕ∇  components. Potential values are 

assigned to the points at the centre of each boundary pixel. If an 

equipotential line starts from a point which is not the central point of a 

boundary pixel, then potential value of that equipotential line is 

estimated by linearly interpolating the nearest potential values, prior to 

constructing equipotential lines. 

 

For object geometries other than the rectangular geometry, boundary 

layer potentials can be calculated using xϕ∇  and yϕ∇  values 

simultaneously. In such a case, nearest lines between centres of each 

neighbouring boundary layer pixels are determined then integral of 
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potential gradients are calculated along these lines starting, from an 

initial potential in order to find the boundary layer potentials.  

 

(ii)  Calculation of the angle between equipotential lines and current lines 

and construction of equipotential lines:  

Let J(x,y) be an n×n matrix representing distribution of measured 

current density vectors (where (x,y)∈S). The angle between the 

equipotential lines and the current vectors are determined by the 

conductivity anisotropy at the crossing point. In order to find this angle, 

the ratio of yϕ∇  and xϕ∇  from equation (2.4) is obtained as: 

 

 y y xx x yx

x x yy y xy

J J

J J

ϕ σ σ
ϕ σ σ

∇ −
=

∇ −
. (4.2) 

 

Here xxσ , xyσ , yxσ  and yyσ  are the anisotropic conductivity 

components, xJ  and yJ  are the measured current density components in 

x and y directions, respectively. Notice that, this ratio is nothing but the 

tangent of the ϕ∇  line at a point (x,y) whose anisotropic conductivity 

values are xxσ , xyσ , yxσ  and yyσ , and current density components are 

xJ  and yJ . Then, angle of the ϕ∇  line at this point can be expressed 

with the following equation: 

 

 1

( , )
( , )

tan y xx x yx

x y
x yy y xy

x y

J J

J Jϕ
σ σ

α
σ σ

−
∇

 −
=   − 

,   ( , )x y S∈ . (4.3) 

 

Since equipotential lines are perpendicular to ϕ∇  lines, equation (4.3) is 

sufficient for the calculation of the angles of equipotential lines. Note 

that, at the first iteration it is impossible to perform the angle calculation, 

since no conductivity distribution data is available at this point. Because 
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of that, equipotential lines are assumed to be perpendicular to the current 

vectors at the first iteration. 

 

After calculating the angles for the entire FOV, an equipotential line is 

initiated from the boundary of a left-most pixel and projected through 

each pixel, with strictly satisfying the angle condition of the 

corresponding pixel, to any other boundary of the FOV. This process is 

initiated at new points in all left most pixels except the pixels which are 

under the current electrodes. Since the angle between an equipotential 

line in a pixel and the current vector of that pixel is definite, all 

equipotential lines in a pixel starting from different points follow parallel 

but different paths and never cross each other. Therefore, infinitely many 

equipotential lines can be initiated. In our study, five equipotential lines 

are initiated for each boundary layer pixel. The same procedure is also 

repeated starting from the right-most, the top and the bottom pixels. 

After constructing the equipotential lines, the potential distribution 

inside the object can be obtained. 

 

(iii)  Determination of internal potential distribution and calculation of its 

gradient for the entire imaging region:  

This step is nothing more than projecting boundary potentials into the 

pixels through which equipotential lines pass. Since more than one 

equipotential line may pass through a pixel due to the finite size of the 

pixel, the potential value at these pixels are calculated as the weighted 

sum of these potentials as,   

 

 1

1

N

i i
i

n N

i
i

d e

d

ϕ =

=

⋅
=
∑

∑
 (4.4) 
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where, nϕ  is the pixel’s potential value, id  is the length of the thi  

equipotential line in the pixel, ie  is the potential value of the thi  

equipotential line and N is the number of equipotential lines crossing the 

pixel. If no equipotential line passes through a pixel then potential value 

of this pixel is estimated by the weighted sum of eight neighboring 

pixels as 

 

 
8

1

1
m i i

i

w
N

ϕ ϕ
=

= ∑  (4.5) 

 

where, mϕ  is the pixel’s calculated potential value, iϕ  is the potential 

value of the thi  neighboring pixel, iw  is the corresponding weighting 

factor and N is the number of the pixels whose value is not zero. The 

contribution of a neighboring pixel to the missing potential value of a 

pixel is taken as inversely proportional to the distance between these 

pixels. Two weights are used in this application; one is for diagonally 

neighboring pixels and the other for non-diagonally neighboring pixels. 

The weights are 
2

2 1
dw =

+
 and

2 2

2 1
ndw =

+
, respectively. 

 

Note that, the calculated potential distribution is a relative distribution. 

One potential measurement is used to convert this distribution to the true 

distribution. A scale factor is calculated by dividing the measured 

potential value by the calculated pseudo-potential of the measurement 

pixel and then the relative distribution is scaled by this factor to obtain 

the true potential distribution. In case of the applications where true 

conductivity values are not necessary but only the contrast figure is 

sufficient, then reconstruction becomes possible without any potential 

measurement. Following the determination of the potential fieldφ , its 

directional gradients can be calculated by convolving ( , )x yϕ  with (3×3) 

Sobel operators. Mathematically, it can be expressed as 
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1 0 1
1

( , ) 2 0 2 ( , )
8

1 0 1
x x y x y

x
ϕ ϕ

−
∇ = − ∗∗

∆
−

 

 

1 2 1
1

( , ) 0 0 0 ( , )
8

1 2 1
y x y x y

y
ϕ ϕ∇ = ∗∗

∆
− − −

 

(4.6) 

 

where, x∆ and y∆ are the pixel widths along the x and y directions, 

respectively. The size of the templates used in convolution affects the 

amount of smoothing. Employing a (3×3) template makes differentiation 

less sensitive to noise compared to a (2×2) template. However, using 

larger templates increases computational cost. Therefore, there is a trade 

off between noise sensitivity and computational cost.  

 

(iv) A residual function is defined as 

 

 
2

S

R J dSσ ϕ= − ⋅∇ −∫
�

 (4.7) 

 

where, ⋅  is an 2L  norm, J  is measured current density distribution, 

φ∇  is the calculated potential gradient and S  is the imaging plane. The 

surface integral is converted into summation over pixel elements as 

 

 
2

j

j
j S

R J dSσ ϕ= − ⋅∇ −∑ ∫
�

 (4.8) 
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where, j  is the element index, jσ  is the anisotropic conductivity of the 

thj  element and jS  represents the surface of the thj  element. R  is 

minimised with respect to each jσ  by setting 

 

 0
j

R

σ
∂ =

∂
 (4.9) 

 

Since minimising a function with respect to a matrix means minimising 

it with respect to all matrix elements separately, following equation 

system is obtained for one current injection profile: 

 

j j j j j
x xx x xy yJ σ ϕ σ ϕ= ∇ + ∇  

j j j j j
y yx x yy yJ σ ϕ σ ϕ= ∇ + ∇  

(4.10) 

 

where, j
xxσ , j

xyσ , j
yxσ  and j

yyσ  are the anisotropic conductivity 

components of the thj  element, j
xJ  and j

yJ  are the measured current 

density components of the thj  element in x and y directions, respectively 

and xϕ∇  and yϕ∇  are their potential gradients. In equation (4.10), there 

are four unknown anisotropic conductivity values with only two 

equations. In order to solve this equation system for these unknowns, at 

least two different current injection profiles are needed to obtain four 

independent equations. Since the J values are measured, if the ϕ∇  

values are calculated from the true potential distribution, solution of this 

equation system yields the unique solution. But if the ϕ∇  values are 

calculated from a relative potential distribution, then the solution of this 

equation system gives a relative distribution which is not unique but the 

numerical values of the distribution will be directly dependent on the 

assigned potential value to one boundary layer pixel. For the whole 



 49 

imaging system and for N different current injection profiles, equation 

(4.10) can be converted to the following equation system 

 

1 1 1

2 2 2

. . .

. . .

x xx x xy y

x xx x xy y

N N N
x xx x xy y

J

J

J

σ ϕ σ ϕ

σ ϕ σ ϕ

σ ϕ σ ϕ

= ∇ + ∇

= ∇ + ∇

= ∇ + ∇

 

 

1 1 1

2 2 2

. . .

. . .

y yx x yy y

y yx x yy y

N N N
y yx x yy y

J

J

J

σ ϕ σ ϕ

σ ϕ σ ϕ

σ ϕ σ ϕ

= ∇ + ∇

= ∇ + ∇

= ∇ + ∇

 

(4.11) 

These linear equations can be expressed in matrix-vector form as 

follows: 
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Now the new anisotropic conductivity distributions can be calculated as: 

 

 1 1xx

xy

σ
σ

− − 
= ⋅ 

 
xG J        ,     1 1yx

yy

σ
σ

− − 
= ⋅ 

  
yG J  (4.13) 

 

Since G matrix is not square, direct inverse of G can not be calculated. 

Inverse matrix is obtained by singular value decomposition (SVD). Note 

that, G has only two Eigen values, and the inversion is made without 

truncation. 

 

These four steps given above are repeated iteratively. If the difference between two 

consecutive conductivity images becomes less than a predefined value ε , then 

iterations are terminated. 

 

Reconstruction results of the proposed technique using both simulated and 

experimental data are given in chapter 6. 

 

4.3 Anisotropic J-Substitution and Anisotropic Hybrid J -

Substitution Conductivity Reconstruction Algorithm 

 

4.3.1 Introduction 

 

Kwon et al [27] proposed a new isotropic conductivity reconstruction algorithm, 

called J-substitution algorithm, in 2002. In the study, they represented the image 

reconstruction as a constructive map { }, ,I J V ρ→  inside a region Ω  within the 

subject where, I is the injected current, J is the magnitude of the current density and 

V is the peripheral voltage measurements. In this study, extension of that algorithm 

for the reconstruction of anisotropic conductivity is performed and a new 

anisotropic conductivity reconstruction algorithm, called anisotropic J-substitution 

algorithm, is proposed. Detailed explanation of the proposed algorithm is given in 
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Section 4.3.2. Simulation test results of the algorithm are given in the results 

chapter. 

 

Furthermore in this study, a novel anisotropic conductivity reconstruction algorithm 

called anisotropic hybrid J-substitution algorithm is proposed. This algorithm 

combines the equipotential projection based anisotropic conductivity reconstruction 

algorithm explained in the previous chapter and anisotropic J-substitution algorithm 

explained in this chapter. Detailed definition of the algorithm is given in Section 

4.3.3. Simulation and experimental results of these algorithms are given in the 

results chapter. 

 

4.3.2 Anisotropic J-Substitution Algorithm 

 

In this part of the study, previously proposed J-substitution algorithm which is for 

isotropic conductivity reconstruction is extended for the reconstruction of 

anisotropic conductivity. Before explaining the algorithm for anisotropic 

conductivity reconstruction, it will be helpful to give the underlying mathematics of 

the isotropic conductivity reconstruction algorithm. A general explanation about the 

isotropic algorithm is below.  

 

For any given resistivity ρ  of a volume Ω, the corresponding voltage ρV  satisfies 

the following BVP: 

 

 0
1 =







 ∇⋅∇ ρρ
V         in  Ω (4.14) 

 

 Ijn

V
=

∂
∂ ρ

ρ
1

       on Ω∂  (4.15) 

 

Related to the BVP in (4.14) and (4.15), following cost functional can be defined: 
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2

* 1
( ) : ( ) ( )

( )
J r E r dr

r ρρ
ρΩ

Ψ = −∫  (4.16) 

 

where, )(* rJ  is the magnitude of the measured interior current density and 

)(:)( rVrE ρρ ∇=  is the magnitude of the calculated electric field intensity obtained 

by solving (4.14) and (4.15) for a given ρ . After discretization of the model to N 

pixels with the same area for all Ωk, we get the following squared residual sum R: 
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where, Ωk is the kth pixel element of the model, kσ  is the conductivity on Ωk that is 

assumed to be constant at each element. To update the resistivity from the zero 

gradient argument for the minimization of the squared residual sum, we 

differentiate (4.17) with respect to mσ  for m=0,…,N-1 to get 
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This leads to the following approximate identity: 
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for m=0,…,N-1, where kr  is the center point of the element Ωk and we used the 

simplest quadrature rule. Hence, the following updating strategy to minimize the 

residual sum in (4.17) is obtained: 

 



 53 

 
* ( )1

: for 0,..., 1
( )

m
m

mm

J r
m N

E rρ
σ

ρ
= = = −  (4.20) 

 

where, mρ  is a new resistivity value on Ωm and )( mrEρ is the calculated electric 

field intensity at the center point of Ωm from an old resistivity distribution. 

 

Explained algorithm up to here is for the reconstruction of the isotropic 

conductivity. Since, our aim is to reconstruct anisotropic conductivity distribution, 

scalar σ  (or ρ ) is changed with 2×2 tensor distribution ( xx xy

yx yy

σ σ
σ

σ σ
 

=  
 

) in the 

above formulation. Very similar study had been performed in our previously 

proposed equipotential projection algorithm in section 4.2. In that study, interior 

potential distribution is found by construction of equipotential lines and projection 

of boundary potentials through these lines. The difference in this algorithm is that, 

interior potential distribution is obtained by solving the boundary value problem 

using finite element or finite difference methods. In our study, we preferred to use 

finite element method (FEM). Basics of the FEM can be found in Chapter 2. After 

obtaining the potential distribution inside, potential gradient, therefore electric field 

is calculated using 3×3 Sobel operators as in the equipotential projection algorithm. 

Here, it is important to note that, since there is no conductivity information at the 

beginning, an initial conductivity distribution is utilized for the construction of FEM 

structure. For the next iterations, previously found conductivity distribution is used. 

In order to find a updating equation, residual function defined in (4.17) is written 

for anisotropic conductivity. Differentiating this function and equating it for the 

minimization purpose, following equation system is obtained: 

 

j j j j j
x xx x xy yJ σ ϕ σ ϕ= ∇ + ∇  

j j j j j
y yx x yy yJ σ ϕ σ ϕ= ∇ + ∇  

(4.21) 
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where, j
xxσ , j

xyσ , j
yxσ  and j

yyσ  are the anisotropic conductivity components of the 

thj  element, j
xJ  and j

yJ  are the measured current density components of the thj  

element in x and y directions, respectively and xϕ∇  and yϕ∇  are their potential 

gradients. In equation (4.21), there are four unknown anisotropic conductivity 

values with only two equations. In order to solve this equation system for these 

unknowns, at least two different current injection profiles are needed to obtain four 

independent equations. For the whole imaging system and for N different current 

injection profiles, equation (4.21) can be converted to the following equation 

system 
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These linear system of equations can be expressed as follows: 
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Now the new anisotropic conductivity distributions can be calculated as: 

 

           1 1xx
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σ
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Since G matrix is not square, direct inverse of G can not be calculated. Inverse 

matrix is obtained by singular value decomposition (SVD). Note that, G has only 

two Eigen values, and the inversion is made without truncation. Above steps are 

repeated at each iteration. If the difference between two consecutive conductivity 

images becomes less than a predefined valueε , then iterations are terminated. 

 

An important point here is that, under the same current pattern, two conductivity 

distributions σ  and ασ  will yield the same interior current density distribution. 

Therefore, using only current density distribution as input, not the true conductivity 

distribution but the relative distribution can be reconstructed. In order to find the 

true conductivity, a potential or a conductivity measurement is required as in the 

equipotential projection algorithm. 

 

4.3.3 Anisotropic Hybrid J-Substitution Algorithm 

 

As the name of this new algorithm implies, it combines two anisotropic 

conductivity reconstruction algorithms; one is anisotropic J-substitution algorithm 

explained in the previous section and the other is anisotropic equipotential 

projection explained in chapter 4.2. In the newly proposed hybrid technique, 

anisotropic conductivity is first reconstructed with anisotropic EPP algorithm and 

then this conductivity distribution is given to the J-substitution algorithm as the 

initial distribution. By doing so, it is expected to decrease the errors of anisotropic 

EPP algorithm and obtain a faster convergence. 

 

Simulation and experimental test results for these two algorithms are given in the 

results chapter. 
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CHAPTER 5 

 

 

MAGNETIC FLUX DENSITY BASED 

RECONSTRUCTION ALGORITHMS 

 

 

5.1 Introduction 

 

In the previous chapter, inverse problem of MREIT was defined and image 

reconstruction algorithms were classified as Type-I and Type-II. In this chapter, two 

anisotropic conductivity reconstruction algorithms, both are Type-II, are proposed. 

These algorithms use only the magnetic flux density measurement in one direction. 

Therefore, rotation of the object inside the MRI scanner is eliminated. In the 

following section, anisotropic Harmonic Bz conductivity reconstruction algorithm is 

given. Anisotropic Sensitivity conductivity reconstruction algorithm is explained in 

detail in section 5.3. 

 

5.2 Anisotropic Harmonic Bz Conductivity Reconstruction 

Algorithm 

 

5.2.1 Introduction 

 

In 2003, Oh et al [32] proposed the Harmonic Bz algorithm for isotropic 

conductivity reconstruction. In that study, the relation between 2
zB∇  and σ∇  was 

used to reconstruct conductivity distribution. Therefore, conductivity is 

reconstructed using only one component of magnetic field by removing the need for 

object rotation in the MR scanner. In this part of the thesis, extension of Harmonic 
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Bz for the reconstruction of anisotropic conductivity is realized and a new 

anisotropic conductivity reconstruction algorithm, namely anisotropic Harmonic Bz 

algorithm, is proposed. Detailed explanation of the proposed algorithm is given in 

Section 5.2.2. Simulation and experimental test results of the algorithm are given in 

the results chapter. 

 

5.2.2 Algorithm 

 

Fundamentals of the Harmonic Bz algorithm are described in [32]. Here, the 

proposed anisotropic conductivity reconstruction algorithm will be explained.  

 

Algorithm starts with the following identity 

 

 2( )H H H∇×∇× = ∇ ∇ ⋅ − ∇
��� ���

 (5.1) 

 

Here, since H J∇× =
��� ��

 and 0H∇ ⋅ =
���

 hold inside a volume conductor with current 

flow, equation (5.2) is obtained from equation (5.1): 

 

 2H J∇ = −∇×
��

 (5.2) 

 

For anisotropic conductivity distribution, current density can be written as, 

J σ φ= ∇
��

, where σ  is a 3 by 3 matrix. In this algorithm, σ  is defined as,  
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σ σ

σ
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 (5.3) 

 

for simplification of the underlying mathematics. In this case, the following 

equation is written: 
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Then;  
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Combining equation (5.2) with equation (5.5) gives the following equation: 
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Only the z-component of this identity is written as follows: 

 

 2 yy y xx x
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E E
H E E

x x y y
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Taking the derivatives using forward difference method yields the following 

equation: 
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 is obtained. Finally, rearranging the above equation, equation (5.9) is obtained: 
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As seen from equation (5.9), unknown conductivity components stay together with 

measured magnetic field intensity and unknown electric field data. In this 

algorithm, electric field is calculated using finite element method at each iteration. 

In order to remove the unknown conductivity values at (x+1, y) and (x, y+1) 

coordinate points while calculating the conductivity components at (x, y) point, the 

first row and the last column conductivity components are assumed to be known. 

Then equation (5.9) is rearranged as: 
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. (5.10) 

 

Then the unknown conductivity components at the second row and n-1th column 

can be calculated using the known conductivity values and the calculated electric 

field and the measured magnetic field data. This procedure continues with the third 

row and the (n-1)th column and all conductivity values in the FOV are calculated 

recursively. Calculation sequence is given in Figure 5.1 

 



 60 

 

 

Figure 5.1: Conductivity calculation sequence for anisotropic Harmonic Bz algorithm. 

Obtained results using this algorithm for both simulated and experimental data are 

given in chapter 6. 

 

5.3 Anisotropic Sensitivity Conductivity Reconstruction 

Algorithm 

 

5.3.1 Introduction 

 

Birgül and Ider proposed a new technique to find conductivity in 1995 [20]. In this 

technique, it is stated that when the conductivity inside an object changes, current 

density will change and there will be a change in the magnetic field. Therefore, if 

this change in the magnetic field could be measured then the inverse problem which 

finds the conductivity distribution can be formed and solved. Furthermore, since the 

change in the magnetic field can be measured with equal sensitivity in the imaging 

region, conductivity map will be obtained with a uniform spatial distribution. But, 

that study was for isotropic conductivity distribution. In this study, extension of that 

algorithm for anisotropic conductivity reconstruction is realized. Detailed 

explanation of the algorithm is given in the following section. Obtained results will 

be given in the next chapter. 
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5.3.2 Algorithm 

 

For isotropic conductivity distribution, a linear relation between the conductivity 

change and change in the normal component (taken as z direction in the study) of 

magnetic field could be constituted with the following equation: 

 

 σ∆ = ∆b S  (5.11) 

 

Here, ∆b is the change in the magnetic flux density, σ∆ is the change around the 

first assumed conductivity value and Sis the sensitivity matrix. Once the sensitivity 

matrix is calculated, since ∆b  is known, required conductivity change values can 

be obtained from 

 

 1σ −∆ = ∆S b  (5.12) 

 

When the anisotropic conductivity distribution is employed, the sensitivity matrix 

must be calculated for conductivity changes of all anisotropic conductivity 

components. For a two dimensional distribution, equation 5.11 can be rewritten as: 

 

 

xx

xy

yy

σ
σ
σ

 ∆
 

∆ = ∆ 
 ∆  

b S  (5.13) 

 

Here, xxσ∆  is the change in the x directed conductivity component around the 

initial conductivity. Similarly, xyσ∆  and yyσ∆ are the changes in off-diagonal and 

y directed conductivity components respectively. Again once the sensitivity matrix 

is calculated, required change of conductivity components can be obtained from 

equation (5.12). 

 

Here, it is important to note that S matrix does not have to be square and is 

generally singular. Therefore, its inverse can not be taken directly. In this study, 
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singular value decomposition based pseudo inverse was used. Also, S matrix is 

calculated only one time for each geometry and current injection configuration and 

stored. This increases the speed of the algorithm significantly. 

 

Another important aspect is that using only magnetic flux density measurements, a 

unique conductivity distribution could not be reconstructed. In this study, surface 

potential and magnetic flux density measurements are used together to reconstruct 

true conductivity distribution uniquely. Magnetic flux density measurements were 

used first, to obtain a detailed conductivity map and then, this conductivity map was 

scaled to satisfy the potential measurements. 

 

Simulation and experimental results of this algorithm are given in the next chapter. 
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CHAPTER 6 

 

 

RESULTS AND COMPARISONS 

 

 

6.1 Introduction 

 

This chapter will cover the performance test results of the reconstruction algorithms 

explained in the previous two chapters. Four different computer models constructed 

for performance evaluation of the algorithms with simulated measurements will be 

explained in section 6.2. In order to quantize the reconstruction accuracy, an error 

measure is defined. This definition is given in section 6.3. In section 6.4, simulation 

of the measurement noise for the test of the algorithms under noisy measurements is 

explained. Then simulation and experimental results of each algorithm using 

proposed models with and without noisy measurements will be given sequentially 

in section 6.5. Furthermore, final comparisons are given in section 6.6. 

 

6.2 Conductivity Models 

 

In this study, four different two dimensional computer models were reconstructed to 

investigate the performances of the reconstruction algorithms described in the 

previous chapters. Dimensions of all models were selected as 9 cm ×  9 cm in order 

to make the models similar to the experimental phantom used in METU EEE 0.15 T 

Magnetic Resonance System. 20 mA injected current was modeled in simulations 

again thinking the limits of the current source used in experimental studies. Four 

different current injection profiles were provided by the electrodes placed on the 

model boundaries. Electrode placements and the amount of the currents on each 

electrode are given in Figure 6.1 and Table 6.1, respectively. 
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Figure 6.1: Dimensions and electrode placement of the computer model. 

 
Table 6.1: Current amplitudes applied to the electrodes for current injection 

patterns I1, I2, I3 and I4. Values are in mA. 

 

 E1 E2 E3 E4 E5 E6 E7 E8 

I1 0 +20 0 0 0 -20 0 0 

I2 0 0 0 -20 0 0 0 +20 

I3 +20 0 0 0 -20 0 0 0 

I4 0 0 +20 0 0 0 -20 0 

 

 

 

All computer models were discretized into 40 40×  square elements. Therefore, two 

dimensional current density distribution components were generated as 40 40×  

matrices. Two potential measurement data were simulated for each current injection 

profile. These measurements were performed on the current injecting electrodes. 

 

E1 E2 E3 

E4 

E5 E6 E7 

E8 

9 cm 

9 cm 1 cm 
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6.2.1 Computer Model 1 

 

The first model constructed in this study consists of a quite difficult anisotropy with 

a circle shaped object in x-directed conductivity (xxσ ) and a square shaped object in 

y-directed conductivity ( yyσ ) as seen in Figure 6.2. Radius of the circle and side 

length of the square was selected as 15.75 mm and 31.5 mm, respectively. The 

background conductivity was selected as 0.2 S/m in order to simulate the blood 

conductivity. Conductivity values of the anisotropic object are given in Table 6.2. 
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Figure 6.2: Conductivity values of Model 1: (a) x-directed conductivity ( xxσ ), (b) y-

directed conductivity ( yyσ ).  

 
Table 6.2: Conductivity values of Model 1. Values are in S/m. 

 
 

xxσ  xy yxσ σ=  yyσ  

Object 0.4 0 0.6 
Background 0.2 0 0.2 

 

 

The reason of constructing this model is mainly to explore reconstruction accuracies 

of the proposed reconstruction algorithms. Furthermore, distinguishability 
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properties of the algorithms in case of complex anisotropic conductivity 

distributions will be investigated with this model. 

 

6.2.2 Computer Model 2 

 

Another computer model prepared in this study has two small square objects which 

have 2.25 mm side length. This dimension was selected to provide each square to 

cover a 1 pixel area in a 40 40×  grid. Two squares were placed in ten different 

positions on a horizontal line passing through the middle of the model. Model 

geometry and the distances between two squares, d, are given in Figure 6.3 and 

Table 6.3, respectively. 

 

 

 

Figure 6.3: Geometry of Model 2. 

 
Table 6.3: Distance between two squares of Model 2. Values are in mm. 

 
Case: 1 2 3 4 5 6 7 8 9 10 

d 2.25 6.75 11.25 15.75 20.25 24.75 33.75 42.75 51.75 60.75 
 

 

Conductivity of the background was modeled as 0.2 S/m. Conductivity values of the 

squares were selected as anisotropic having a 2 S/m in x-direction and 0.02 S/m in 

y-direction.  

d 
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The aim of this model is to define the spatial resolution properties of the proposed 

reconstruction algorithms. Since point spread function (PSF) contains complete 

information about the spatial resolution, two 1 pixel squares were modeled to obtain 

PSF. To express the spatial resolution by a single number, it is possible to ignore 

the shape of the PSF and simply measure its width. The most common way to 

specify this is calculating the Full Width at Half Maximum (FWHM) value. 

Therefore, FWHM values were computed for every d distances. 

 

6.2.3 Computer Model 3 

 

The third model developed in this study has again small square objects which have 

2.25 mm side length but in this case they were placed on the main diagonal line of 

the model. 9 square elements were used having about 9.5 mm apart from each other. 

General model geometry can be seen in Figure 6.4. Conductivity values of the 

squares were selected as 2 S/m in x-direction and 0.02 S/m in y-direction whereas 

background conductivity was 0.2 S/m isotropic.  

 

 

 

Figure 6.4: Geometry of Model 3. 

The aim in constructing this model is to examine the position dependent accuracies 

and spatial resolutions of the algorithms. 
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6.2.4 Computer Model 4 

 

The last model constructed in this study contains a square object with a 22.5 mm 

side length positioned at the middle of the model. Geometry of the model is given in 

Figure 6.5. Background conductivity is again assigned as 0.2 S/m. isotropic. 

Nineteen different anisotropic conductivity values were assigned to this square. 

Nine of these were for more conductive cases. These conductivity values are given 

in Table 6.4. The other nine simulations were for less conductive that is more 

resistive cases. These values are given in Table 6.5. Remaining one simulation was 

for the uniform case in which square object conductivity is assigned as 0.2 S/m in 

both directions. 

 

 

Figure 6.5: Geometry of Model 4. 

Table 6.4: Conductivity values of inner square in model 4 for more conductive cases. 
Values are in S/m. 

 
Experiment: 1 2 3 4 5 6 7 8 9 

xxσ  0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

xy yxσ σ=  0 0 0 0 0 0 0 0 0 

yyσ  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
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Table 6.5: Conductivity values of inner square in model 4 for less conductive cases. Values 
are in S/m. 

 
Experiment: 1 2 3 4 5 6 7 8 9 

xxσ  0.1 0.067 0.05 0.04 0.033 0.028 0.025 0.022 0.02 

xx yyσ σ=  0 0 0 0 0 0 0 0 0 

yyσ  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

 

 

These nineteen different cases were generated to investigate the reconstruction 

accuracy and linearity properties of the algorithms under changing conductivities.  

 

6.3 Error Calculation 

 

In order to evaluate the performance of the studied algorithms, the error in the 

reconstructed conductivity is calculated. In practice, the real conductivity is not 

known a priori, but in simulation studies, since the algorithms are fed with 

simulated data, the conductivity distribution is actually known. 

 

For quantitative evaluation the performance of the proposed technique, the 

following error formula is used for reconstructed conductivity images in x and y 

directions. 

 

 
2

2
1

( )1
100%u u

u

u

N
jt jr

j jtNσ
σ σ

ε
σ=

−
= ×∑  (6.1) 

 

where, u is anisotropic conductivity direction index which can be xx, xy, yx or yy, 

jtσ  and jrσ  are the true and the reconstructed conductivity values in any direction 

for the thj  element and N denotes the total number of pixels in the image. For 

isotropic regions, similar error calculation is also made. If xy and yx components of 

the anisotropic conductivity is modeled as zero, since the denominator of the 

equation in 6.1 will be zero, this equation will be meaningless. In this case, means 

of the reconstructed images for these components are added to the error tables.  
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6.4 Simulation of Measurement Noise 

 

To evaluate the performance of the proposed algorithms in presence of noise, 

current density noise model of Scott et al [8] is employed as described by Birgül et 

al [22]. In this model, Scott defined the signal-to-noise ratio (SNRMR) as: 

 

 ( , )MR s s
n

A
SNR x y z N T M x y

s
= = Ψ ∆ ∆ ∆ ⋅  (6.2) 

 

where A is the noise free pixel value magnitude of the corresponding MR image, ns  

is the standard deviation of the complex image, sΨ  is a system SNR, x y z∆ ∆ ∆  is 

the voxel volume, N is the total number of excitations, sT  is the total readout 

sampling time for one echo, and ( , )M x y  is magnetization. Here, ns  is measured as 

the RMS noise in the magnitude image background. Scott gives the phase error 

probability density function in his study by 

 

 2 2 21 cos( )
( ) exp( / 2) exp( )sin ( ) / 2erfc( cos( ) 2)

2 2 2

a
f a a a

θθ θ θ
π πΘ = − + − −  (6.3) 

 

where, 2 MRa SNR=  and θ  represents phase error. Here, it is important to note that 

in this noise model, the phase error and hence, the noise in MRB
�

 is independent of 

MRB
�

. Therefore, the proportional noise in MRB
�

 and consequently in MRJ
�

 is reduced 

for increased amount of current density. 

 

In 1992, Scott et al reported an SNR measurement of 2T magnet as 30. A set of 

simulation study is achieved for SNR of 30 on the model 1 given in Figure 6.2. to 

test the proposed techniques under typical level. Also Birgül et al reported an SNR 

level of 13 for 0.15 T METU EEE Magnetic Resonance System. Because of that 

SNR of 13 was also investigated on the same model. 

 



 71 

6.5 Results of the Proposed Algorithms 

 

In this part, reconstruction results of all algorithms explained in the previous 

chapters for the models given in part 6.2 will be given. The results are grouped 

under different computer models. For every model, results of five different 

reconstruction algorithms are given. Also, obtained results using experimental data 

is given in this part. Comments on the results will be given at the end of each model 

results. 

 

6.5.1 Results for Computer Model 1 

 

6.5.1.1 Reconstruction Using Anisotropic EPP Algorithm 

 

In this part, reconstruction results for model 1 using anisotropic equipotential 

projection algorithm will be given. Figure 6.6 shows the results for noise free 

simulations at 35th iteration and Table 6.6 gives corresponding errors. Since the true 

values of xy and yx components of the conductivity is zero for the object, mean 

values of the reconstructed conductivities for these components are given in the 

table. 

 

The same model was then reconstructed using noisy current density measurements 

having SNR values of 30 and 13. Results for SNR=30 and SNR=13 are given in 

Figure 6.7 and Figure 6.8, respectively. Corresponding errors for these 

reconstructions are also given Table 6.7 and 6.8, respectively. 

 

In order to see the convergence behavior of the algorithm a convergence plot was 

generated. This plot is given in Figures 6.9. 

 



 72 

 

 

0.2

0.25

0.3

0.35

0.4

0.45

  

 

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

 

(a) (b) 

 

 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

  

 

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

 

(c) (d) 

Figure 6.6: Reconstruction results for model 1 using anisotropic equipotential projection 
algorithm (SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 

Table 6.6: Percentage errors of reconstructed images in Figure 6.6. 
 

 (%)
xxσε  (%)

yyσε  (Mean)xyσ  (Mean)yxσ  

Object 10.58 17.60 0.0013 0.0094 
Background 8.65 8.51 - - 
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Figure 6.7: Reconstruction results for model 1 using anisotropic equipotential projection 
algorithm (SNR 30= ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 

Table 6.7: Percentage errors of reconstructed images in Figure 6.7. 
 

 (%)
xxσε  (%)

yyσε  (Mean)xyσ  (Mean)yxσ  

Object 10.68 18.02 0.0015 0.0062 
Background 8.74 8.66 - - 
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Figure 6.8: Reconstruction results for model 1 using anisotropic equipotential projection 
algorithm (SNR 13= ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 

Table 6.8: Percentage errors of reconstructed images in Figure 6.8. 
 

 (%)
xxσε  (%)

yyσε  (Mean)xyσ  (Mean)yxσ  

Object 19.83 23.89 0.066 0.087 
Background 20.24 21.08 - - 
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Figure 6.9: Convergence characteristic of the anisotropic EPP algorithm for noise free 
case.  

 

6.5.1.2 Reconstruction Using Anisotropic J-Substitution Algorithm 

 

In this part, reconstruction results of model 1 using anisotropic J-substitution 

algorithm will be given. Figure 6.10, 6.11 and 6.12 show the results for noise free, 

SNR=30 and SNR=13 cases, respectively and Table 6.9, 6.10 and 6.11 give 

corresponding errors. 
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Figure 6.10: Reconstruction results for model 1 using anisotropic J-substitution algorithm 
(SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 
Table 6.9: Percentage errors of reconstructed images in Figure 6.10. 

 
 (%)

xxσε  (%)
yyσε  (Mean)xyσ  (Mean)yxσ  

Object 28.89 46.82 -0.0059 -0.0068 
Background 8.59 15.33 - - 
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Figure 6.11: Reconstruction results for model 1 using anisotropic J-substitution algorithm 
(SNR 30= ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 
Table 6.10: Percentage errors of reconstructed images in Figure 6.11. 

 
 (%)

xxσε  (%)
yyσε  (Mean)xyσ  (Mean)yxσ  

Object 28.92 46.87 -0.0058 -0.0070 
Background 8.61 15.34 - - 
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Figure 6.12: Reconstruction results for model 1 using anisotropic J-substitution algorithm 
(SNR 13= ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 
Table 6.11: Percentage errors of reconstructed images in Figure 6.12. 

 
 (%)

xxσε  (%)
yyσε  (Mean)xyσ  (Mean)yxσ  

Object 29.29 46.47 -0.042 0 038 
Background 39.06 54.29 - - 
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6.5.1.3 Reconstruction Using Anisotropic Hybrid J-Substitution Algorithm 

 

In this part, reconstruction results of model 1 using anisotropic hybrid J-substitution 

algorithm will be given. Figure 6.13, 6.14 and 6.15 give the results for noise free, 

SNR=30 and SNR=13 cases, respectively and Table 6.12, 6.13 and 6.14 give 

corresponding errors. 
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Figure 6.13: Reconstruction results for model 1 using anisotropic hybrid J-substitution 
algorithm (SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

Table 6.12: Percentage errors of reconstructed images in Figure 6.13. 
 

 (%)
xxσε  (%)

yyσε  (Mean)xyσ  (Mean)yxσ  

Object 10.15 17.43 0.0002 0.0002 
Background 6.35 6.72 - - 
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Figure 6.14: Reconstruction results for model 1 using anisotropic hybrid J-substitution 
algorithm (SNR 30= ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 
Table 6.13: Percentage errors of reconstructed images in Figure 6.14. 

 
 (%)

xxσε  (%)
yyσε  (Mean)xyσ  (Mean)yxσ  

Object 28.92 46.87 -0.0058 -0.0070 
Background 8.61 15.34 - - 
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Figure 6.15: Reconstruction results for model 1 using anisotropic hybrid J-substitution 
algorithm (SNR 13= ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 
Table 6.14: Percentage errors of reconstructed images in Figure 6.15. 

 
 (%)

xxσε  (%)
yyσε  (Mean)xyσ  (Mean)yxσ  

Object 22.30 22.42 0.094 0.097 
Background 22.66 26.84 - - 
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6.5.1.4 Reconstruction Using Anisotropic Harmonic Bz Algorithm 

In this part, reconstruction results of model 1 using anisotropic Harmonic Bz 

algorithm will be given. Figure 6.16, 6.17 and 6.18 give the results for noise free, 

SNR=30 and SNR=13 cases, respectively and Table 6.15, 6.16 and 6.17 give 

corresponding errors. 
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Figure 6.16: Reconstruction results for model 1 using anisotropic Harmonic Bz algorithm 
(SNR= ∞ ): (a) xxσ , (b) yyσ . 

Table 6.15: Percentage errors of reconstructed images in Figure 6.16. 
 

 (%)
xxσε  (%)

yyσε  

Object 18.63 29.19 
Background 15.77 27.87 
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Figure 6.17: Reconstruction results for model 1 using anisotropic Harmonic Bz algorithm 
(SNR 30= ): (a) xxσ , (b) yyσ . 

Table 6.16: Percentage errors of reconstructed images in Figure 6.17. 
 

 (%)
xxσε  (%)

yyσε  

Object 52.03 40.83 
Background 54.73 38.12 
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Figure 6.18: Reconstruction results for model 1 using anisotropic Harmonic Bz algorithm 
(SNR 13= ): (a) xxσ , (b) yyσ . 

Table 6.17: Percentage errors of reconstructed images in Figure 6.18. 
 

 (%)
xxσε  (%)

yyσε  

Object 71.51 61.78 
Background 75.65 66.44 
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6.5.1.5 Reconstruction Using Anisotropic Sensitivity Algorithm 

Finally, in this part, reconstruction results of model 1 using anisotropic Sensitivity 

algorithm will be given. Figure 6.19, 6.20 and 6.21 give the results for noise free, 

SNR=30 and SNR=13 cases, respectively and Table 6.18, 6.19 and 6.20 give 

corresponding errors. 
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Figure 6.19: Reconstruction results for model 1 using anisotropic Sensitivity algorithm 
(SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  - yxσ . 

 

Table 6.18: Percentage errors of reconstructed images in Figure 6.19. 
 

 (%)
xxσε  (%)

yyσε  (Mean)xy yxσ σ−  

Object 22.62 34.84 0.0047 
Background 9.82 10.69 -0.0003 
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Figure 6.20: Reconstruction results for model 1 using anisotropic Sensitivity algorithm 
(SNR 30= ): (a) xxσ , (b) yyσ , (c) xyσ  - yxσ . 

 
Table 6.19: Percentage errors of reconstructed images in Figure 6.20. 

 
 (%)

xxσε  (%)
yyσε  (Mean)xy yxσ σ−  

Object 26.68 40.94 -0.0051 
Background 13.26 15.81 -0.0009 
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Figure 6.21: Reconstruction results for model 1 using anisotropic Sensitivity algorithm 
(SNR 13= ): (a) xxσ , (b) yyσ , (c) xyσ  - yxσ . 

 
Table 6.20: Percentage errors of reconstructed images in Figure 6.21. 

 
 (%)

xxσε  (%)
yyσε  (Mean)xy yxσ σ−  

Object 28.97 46.47 0.0373 
Background 30.58 26.66 0.0409 
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6.5.1.6 Comparisons for Model 1 

 

When the reconstruction algorithms are first evaluated for their reconstruction 

accuracies, it is seen that, all of the algorithms except anisotropic J-substitution 

algorithm show quite similar and good performances. But anisotropic J-substitution 

algorithm reconstructs object conductivities with less accuracy. Another drawback 

of the anisotropic J-substitution algorithm is its reconstruction time. One iteration of 

that algorithm takes about 5 minutes in an Intel Core 2 Duo E8400 CPU at 3 GHz 

and 4 GB of RAM. Therefore, it can be said that anisotropic J-substitution 

algorithm reconstructs conductivity images with poor accuracy and long time 

consumption. Long time consumption is also valid for anisotropic Harmonic Bz 

algorithm. It also takes about 5 minutes on the same computer. 

 

When the noise performances of the algorithms are compared, it is seen that 

anisotropic J-substitution algorithm has again the poorest performance. Harmonic 

Bz algorithm is also weak against noisy data since, Harmonic Bz algorithm uses 

second derivative of noisy data. Other three algorithms show quite similar 

performances. 

 

6.5.2 Results for Computer Model 2 

 

In this part of the study, FWHM values of reconstructed impulsive objects in model 

2 were calculated. Since the impulsive object has an impulsive conductivity in x 

direction and impulsive resistivity in y direction, two separate plots were prepared 

for these directions. Figure 6.25 and 6.26 give the FWHM plot for the impulsive 

conductor in x-direction for current density based and magnetic flux density based 

algorithms. Similarly, Figure 6.27 and 6.28 give the FWHM plot for the impulsive 

resistive in y direction. In Figure 6.17, since two impulsive conductor objects 

reconstructed using anisotropic EPP algorithm can not be distinguishable when the 

distance between objects is 2.25 mm, FWHM value for this case is not added to the 

figure. Reconstructed images, using anisotropic EPP algorithm when the distance 

between the objects is 2.25 mm, are given in Figure 6.22. 
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Figure 6.22: Reconstruction results for model 2 using anisotropic equipotential projection 
algorithm (SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ .  
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Figure 6.23: Reconstruction results for model 2 using anisotropic Harmonic Bz algorithm 
(SNR= ∞ ): (a) xxσ , (b) yyσ . 
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Figure 6.24: Reconstruction results for model 2 using anisotropic Sensitivity algorithm 
(SNR= ∞ ): (a) xxσ , (b) yyσ . 
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Figure 6.25: FWHM plot for the x-directed conductivity component of model 2 for current 

density based algorithms. 
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Figure 6.26: FWHM plot for the x-directed conductivity component of model 2 for 

magnetic flux density based algorithms. 
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Figure 6.27: FWHM plot for the y-directed conductivity component of model 2 for current 

density based algorithms. 
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Figure 6.28: FWHM plot for the y-directed conductivity component of model 2 for 

magnetic flux density based algorithms. 
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6.5.2.1 Comparisons for Model 2 

 

As seen from Figure 6.22, equipotential projection algorithm has a point spread 

function (PSF) which is about two times the theoretical value (pixel side length), at 

every point of the imaging slice in case of a high conductivity value in x-direction. 

This means that this algorithm can not distinguish the objects when the distance 

between them is less than one pixel side length of the imaging grid. But, this is not 

the case in y-direction. In that direction, EPP algorithm and the other algorithms 

have a FWHM value which is almost the same as the theoretical value. J-

substitution and hybrid J-substitution algorithms have these value also in x-

direction.  

 

The reason behind this situation is probably that; when the conductivity in x 

direction is high and conductivity in y direction is low for an object, current flows 

in x direction inside this object. Therefore, equipotential lines are forced to be 

almost in y direction in the object and also very few equipotential lines pass from 

the left and the right sides of the object. Since anisotropic EPP algorithm constructs 

equipotential lines first in order to obtain potential field and sparse equipotential 

lines causes the potential field to be wrong, potential field at the left and right 

boundaries of this kind of object will be erroneous. Because of that, reconstructed 

conductivity values at that regions will be poor. 

 

It is important to note that anisotropic Harmonic Bz algorithm could not distinguish 

the impulsive objects in y direction when the distance between them is 0.225 cm. Its 

behavior is similar to EPP algorithm’s behavior in x direction. 
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6.5.3 Results for Computer Model 3 

 

6.5.3.1 Reconstruction Using Anisotropic EPP Algorithm 

 

This part covers the reconstruction results of anisotropic equipotential projection 

algorithm for model 3. Figure 6.29 shows the results for noise free simulations. 
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Figure 6.29: Reconstruction results for model 3 using anisotropic equipotential projection 
algorithm (SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ .  
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6.5.3.2 Reconstruction Using Anisotropic J-Substitution Algorithm 

 

This part covers the reconstruction results of anisotropic J-substitution algorithm for 

model 3. Figure 6.30 shows the results for noise free simulations. 
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Figure 6.30: Reconstruction results for model 3 using anisotropic J-substitution algorithm 
(SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ .  
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6.5.3.3 Reconstruction Using Anisotropic Hybrid J-Substitution Algorithm 

 

In this part, reconstruction results of anisotropic hybrid J-substitution algorithm for 

model 3 are given. Figure 6.31 shows the results for noise free simulations. 
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Figure 6.31: Reconstruction results for model 3 using anisotropic hybrid J-substitution 
algorithm (SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ .  
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6.5.3.4 Reconstruction Using Anisotropic Harmonic Bz Algorithm 

 

In this part, reconstruction results of anisotropic Harmonic Bz algorithm for model 3 

are given. Figure 6.32 shows the results for noise free simulations. 
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Figure 6.32: Reconstruction results for model 3 using anisotropic Harmonic Bz algorithm 
(SNR= ∞ ): (a) xxσ , (b) yyσ . 
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6.5.3.5 Reconstruction Using Anisotropic Sensitivity Algorithm 

 

In this part, reconstruction results of anisotropic Sensitivity algorithm for model 3 

are given. Figure 6.33 shows the results for noise free simulations. 

 

 

 

0.15

0.2

0.25

0.3

0.35

  

 

0

0.05

0.1

0.15

0.2

0.25

 

(a) (b) 

 

 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 

(c) 

Figure 6.33: Reconstruction results for model 3 using anisotropic Sensitivity algorithm 
(SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  - yxσ . 
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6.5.3.6 Comparisons for Model 3 

 

Model 3 was prepared to investigate the position dependent accuracy and spatial 

resolution properties of the algorithms. Therefore, nine impulsive objects whose x-

directed and y-directed conductivities are respectively ten times more conductive 

and ten times less conductive than the background were placed in the model. When 

the reconstruction results given in figures are reviewed, it is seen that all five 

algorithms can reconstruct nine impulse object conductivities in both directions 

independent of position. Anisotropic EPP algorithm results again show a 

background artifact caused from equipotential lines as in the previous models. 

Hybrid J-substitution algorithm removes these artifacts to some extent and increases 

the background conductivity reconstruction accuracy. Furthermore, hybrid J-

substitution algorithm increases the reconstruction accuracies of the impulsive 

elements’ conductivities. In case of anisotropic Sensitivity algorithm, since the 

theory of the algorithm is constructed on small conductivity change assumption, 

nine impulsive objects cause some artifacts at their neighboring pixels. In case of 

spatial resolution, it can be said that all five algorithms have position independent 

spatial resolution. 
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6.5.4 Results for Computer Model 4 

 

As explained previously, model 4 contains a square object having nineteen different 

anisotropic conductivities at nineteen different cases. Since the aim of this model is 

to explore the linearity properties of the algorithms, giving all reconstruction results 

for all cases will be unnecessary. Only one of them was selected to display, which is 

five times more conductive in x-direction case. The results of anisotropic EPP 

algorithm are given in Figure 6.34, anisotropic J-substitution algorithm in Figure 

6.35 and anisotropic hybrid J-substitution algorithm in Figure 6.36. Results of 

magnetic flux density based algorithms are also given in Figure 6.37 and 6.38. 

Corresponding reconstruction errors are given in tables following every figure. 

 

For the investigation of the linearity properties of the algorithms, two linearity plots, 

one is for more conductive cases and the other is for less conductive cases, were 

prepared. In these plots, ten different x-directed true conductivity values of the 

square object were marked first. Then corresponding reconstructed mean x-directed 

conductivity values of the square object were marked on the same plot for each 

algorithm separately and linearity behavior of the algorithms were produced. 

Linearity plot for more conductive case is given in Figure 6.39, and for less 

conductive case in Figure 6.40, respectively. 
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6.5.4.1 Reconstruction Using Anisotropic EPP Algorithm 
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Figure 6.34: Reconstruction results of anisotropic EPP algorithm for model 4 with the 
object having five times more conductivity with respect to background in x-direction 
(SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ .  

 
Table 6.21: Percentage errors of reconstructed images in Figure 6.34. 

 
 (%)

xxσε  (%)
yyσε  

Object 32.10 5.48 
Background 11.42 7.78 
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6.5.4.2 Reconstruction Using Anisotropic J-Substitution Algorithm 
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Figure 6.35: Reconstruction results of anisotropic J-substitution algorithm for model 4 with 
the object having five times more conductivity with respect to background in x-direction 
(SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 
Table 6.22: Percentage errors of reconstructed images in Figure 6.35. 

 
 (%)

xxσε  (%)
yyσε  

Object 61.46 8.70 
Background 14.33 4.70 
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6.5.4.3 Reconstruction Using Anisotropic Hybrid J-Substitution Algorithm 
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Figure 6.36: Reconstruction results of anisotropic hybrid J-substitution algorithm for 
model 4 with the object having five times more conductivity with respect to background in 
x-direction (SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ  and (d) yyσ . 

 
Table 6.23: Percentage errors of reconstructed images in Figure 6.36. 

 
 (%)

xxσε  (%)
yyσε  

Object 29.95 5.60 
Background 10.07 4.93 
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6.5.4.4 Reconstruction Using Anisotropic Harmonic Bz Algorithm 
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Figure 6.37: Reconstruction results of anisotropic Harmonic Bz algorithm for model 4 with 
the object having five times more conductivity with respect to background in x-direction 
(SNR= ∞ ): (a) xxσ , (b) yyσ . 

 
Table 6.24: Percentage errors of reconstructed images in Figure 6.37. 

 
 (%)

xxσε  (%)
yyσε  

Object 54.41 5.79 
Background 18.15 10.28 

 



 105 

6.5.4.5 Reconstruction Using Anisotropic Sensitivity Algorithm 
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Figure 6.38: Reconstruction results of anisotropic Sensitivity algorithm for model 4 with 
the object having five times more conductivity with respect to background in x-direction 
(SNR= ∞ ): (a) xxσ , (b) yyσ , (c) xyσ - yxσ . 

 
Table 6.25: Percentage errors of reconstructed images in Figure 6.38. 

 
 (%)

xxσε  (%)
yyσε  

Object 57.58 8.46 
Background 10.55 7.17 
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Figure 6.39: Linearity plot for the algorithms for more conductive x-directed conductivity 
with respect to background. 
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Figure 6.40: Linearity plot for the algorithms for less conductive x-directed conductivity 
with respect to background. 
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6.5.4.6 Comparisons for Model 4 

 

As seen from the linearity plot for the more conductive case, all five algorithms 

confront a problem in reconstructing high contrasts. But, this is not the case when 

the conductivity becomes less conductive with respect to background. The reason 

for this situation could be that, when the conductivity value of a region is increased, 

the current passing through this region will increase. But, this increment in current 

will not be as many as the increment in conductivity since the total current is kept 

constant and some of the current will continue to pass through the background. 

Therefore, reconstruction algorithm will converge to a lower conductivity value 

than the true conductivity. But, when the conductivity value of a region decreased, 

the current passing through that region will also decrease almost at the same amount 

and the remaining of the current will pass through the background. In this case, 

conductivity value of that region could be calculated accurately. 

 

When the individual reconstruction accuracies of the algorithms are investigated for 

model 4, it is seen that anisotropic hybrid J-substitution algorithm gives the best 

results among others as in the previous cases. For more and less conductive cases 

with respect to background, anisotropic sensitivity algorithm shows quite poor 

results among other algorithms. This is because; underlying theory of that algorithm 

assumes small conductivity changes, therefore increasing the conductivity contrast 

causes more erroneous results. 
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6.5.5 Results for Experimental Models 

 

6.5.5.1 Experimental Model 1 

 

Using the data acquisition protocol explained in section 2, magnetic field 

distributions inside the test phantom 1 in three directions were obtained. Magnetic 

field distributions in z direction for vertical, horizontal and four adjacent current 

injection profiles for this phantom are given in Figure 6.41, then using three 

components of magnetic field measurements, current density distribution inside the 

FOV can be calculated from Biot-Savart Law. Obtained current density 

distributions are given in Figure 6.42 for vertical and horizontal current drives. 

 

These experimental measurements were used to calculate anisotropic conductivity 

distribution using five anisotropic conductivity reconstruction algorithms proposed 

in this thesis. Current density based algorithm’s, which are anisotropic EPP, J-

Substitution and Hybrid algorithms’ results are given in Figure 6.43, 6.44 and 6.45, 

respectively. Similarly, magnetic flux density based algorithm’s, which are 

anisotropic Harmonic Bz and Sensitivity algorithms’ results are given in Figure 6.46 

and 6.47, respectively. 
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(c) (d) 

  

(e) (f) 

Figure 6.41:  Measured magnetic fields in z direction for experimental model 1, (a) for 
vertical current injection, (b) for horizontal current injection, (c) for the first adjacent drive, 
(d) for the second adjacent drive, (e) for the third adjacent drive, (f) for the fourth adjacent 
drive. 
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(a) 

 

(b) 

Figure 6.42: Current density distributions for experimental model 1: (a) for vertical current 
injection, (b) for horizontal current injection. 
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(a) (b) 

Figure 6.43: Reconstruction results for experimental model 1 using anisotropic EPP 
algorithm: (a) xxσ , (b) yyσ . 

 

 

 

 

  

(a) (b) 

Figure 6.44: Reconstruction results for experimental model 1 using anisotropic J-
substitution algorithm: (a) xxσ , (b) yyσ . 
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(a) (b) 

Figure 6.45: Reconstruction results for experimental model 1 using anisotropic Hybrid 
algorithm: (a) xxσ , (b) yyσ . 

 

 

 

 

(a) (b) 

Figure 6.46: Reconstruction results for experimental model 1 using anisotropic Harmonic 
Bz algorithm: (a) xxσ , (b) yyσ . 
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Figure 6.47: Reconstruction results for experimental model 1 using anisotropic Sensitivity 
algorithm: (a) xxσ , (b) yyσ . 

 

 

 

After giving these results it will be appropriate to define a conductivity ratio in 

terms of xxσ  and yyσ  in order to increase the comprehensibility and make the result 

more interpretable. Figure 6.48 shows arctan( / )yy xxσ σ  ratio in degree. 

 

 

0

10

20

30

40

50

60

70

80

90

 

Figure 6.48: Reconstructed conductivity ratio: arctan(yyσ / xxσ ). 
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6.5.5.2 Experimental Model 2 

 

Similar to the experimental model 1, magnetic field distributions in z direction for 

vertical, horizontal and four adjacent current injection profiles for the second 

phantom are given in Figure 6.49. Also, obtained current density distributions are 

given in Figure 6.50 for vertical and horizontal current drives. 

 

Results of all proposed algorithms are given in Figure 6.51, 6.52, 6.53 6.54 and 

6.55. 
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Figure 6.49:  Measured magnetic fields in z direction for designed model 2, (a) for vertical 
current injection, (b) for horizontal current injection, (c) for the first adjacent drive, (d) for 
the second adjacent drive, (e) for the third adjacent drive, (f) for the fourth adjacent drive. 
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(a) 

 

(b) 

Figure 6.50:  Current density distributions for experimental model 2: (a) for vertical 
current injection, (b) for horizontal current injection. 
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Figure 6.51: Reconstruction results for experimental model 2 using anisotropic EPP 
algorithm: (a) xxσ , (b) yyσ . 
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Figure 6.52: Reconstruction results for experimental model 2 using anisotropic J-
Substitution algorithm: (a) xxσ , (b) yyσ . 
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Figure 6.53: Reconstruction results for experimental model 2 using anisotropic Hybrid 
algorithm: (a) xxσ , (b) yyσ . 
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Figure 6.54: Reconstruction results for experimental model 2 using anisotropic 
Harmonic Bz algorithm: (a) xxσ , (b) yyσ . 
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(a) (b) 

Figure 6.55: Reconstruction results for experimental model 1 using anisotropic Sensitivity 
algorithm: (a) xxσ , (b) yyσ . 

 

 

 

Again, in order to increase the comprehensibility and make the result more 

interpretable, the same conductivity ratio is calculated and visualized as in 

experimental model 1. Figure 3.55 shows thisarctan( / )yy xxσ σ  ratio in degree. 

 

Figure 6.56: Reconstructed conductivity ratio: arctan(yyσ / xxσ ). 
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6.5.5.3 Comparisons for Experimental Models 

 

As seen from the results, magnetic flux density based algorithms perform better 

than current density based algorithms. This is because, in order to find the current 

density distributions, it is necessary to take the derivatives of noisy magnetic flux 

density distributions and it is known that derivation of a noisy data increases noise 

level dramatically. Therefore, current density distributions obtained using Biot-

Savart Law become noisier. Since, current density based algorithms use this data as 

input, their results become erroneous. When the individual results of these 

algorithms are compared, it is seen that anisotropic EPP algorithm gives the worst 

results among others because it constructs equipotential lines using current density 

vectors and this makes it more sensitive to the current density noise. Also current 

density vectors become noisier at the corners and some edges since the current flow 

is very little at these points. Therefore, equipotential lines starting from that points 

goes on the wrong way and projects surface potentials to the wrong regions. Since, 

anisotropic J-Substitution algorithm calculated the inner potential field using FEM, 

it is less sensitive to the current density noise. Actually, anisotropic hybrid 

algorithm is expected to show a similar performance to J-substitution algorithm but, 

since its initial conductivity comes from EPP algorithm and since those 

conductivities are very erroneous, hybrid algorithm reconstructed the conductivities 

like EPP algorithm. 

 

When the individual results of magnetic flux density based algorithms are 

compared, anisotropic Sensitivity algorithm shows better performance than 

anisotropic Harmonic Bz algorithm. The reason for this situation is that Harmonic 

Bz algorithm takes the derivative of magnetic flux density data twice and this 

derivative operation increases the noise level of the flux density data tremendously. 

Therefore, anisotropic Harmonic Bz algorithm results more erroneous results. 

Furthermore, anisotropic Sensitivity algorithm shows the best results among 

proposed five algorithms. This is because, magnetic flux density measurement can 

be made at every point in the FOV with equal sensitivity and this makes the 

algorithm more robust against measurement noise. 
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When the conductivity ratios in Figure 6.48 and 6.56 are investigated, it is seen that 

zero degree is found in the vicinity of insulator layers. This means that, there exist 

nonzero xxσ  conductivity component, but yyσ  component is equal to zero. This is 

as expected since insulator layer do not let conduction in y direction therefore, y 

directed conductivity component is zero. On the other regions, conductivity ratio is 

equal to about 45 degree which means isotropic conductivity. 

 

As a final step on experimental study, magnetic flux density measurements for both 

phantoms are fed into the isotropic sensitivity algorithm. Since this algorithm 

assumes isotropic conductivity, only one conductivity distribution is obtained for 

every model. Figure 6.57 shows reconstructed conductivity distributions. As seen in 

the figures, reconstructed images look like y directed anisotropic conductivity 

component of each model. But images are much more corrupted with respect to the 

anisotropic reconstructions. It is also obvious that conductivity distribution inside 

the FOV can not be commented easily without having no idea about the x directed 

conductivity distribution. 
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(a) 
 

 

(b) 
 

Figure 6.57: Reconstructed conductivity image using isotropic Sensitivity algorithm, (a) 
for phantom 1, (b) for phantom 2. 

 

 

6.6 Final Comparisons 

 

In order to compare all of the algorithms easily by visualizing this comparison, a 

performance chart was prepared as seen in Figure 6.57. In this chart, every axis 

shows a comparison criteria and performance increases while going far from center 

on every axis. Eight different criterions were selected for comparison. These are, 

object error for SNR=13 and infinity, background error SNR=13 and infinity, 

memory usage, time consumption, simulation reconstruction quality, experimental 

reconstruction quality. Memory usage and time consumption parameters were 
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evaluated on the same computer (Intel Core 2 Duo E8400 CPU at 3 GHz and 4 GB 

of RAM) for all algorithms. Results of that study showed that anisotropic EPP 

algorithm reconstructs in about 5 minutes and using a little amount of RAM, 

whereas anisotropic J-substitution and Harmonic Bz algorithm requires about 20 

minutes and a big amount of RAM. When the anisotropic hybrid J-substitution 

algorithm is used, it reconstructs in about 10 minutes including the EPP algorithm 

with an intermediate amount of RAM. Anisotropic Sensitivity algorithm also 

requires a big amount of RAM but it reconstructs in about 7 minutes. Its 

experimental reconstruction performance is also superior among others. 

 

 

 

 

 

Figure 6.58: Performance chart for five algorithms. 
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CHAPTER 7 

 

 

CONCLUSIONS 

 

 

7.1 Summary of the Thesis Work 

 

In this study, five novel MREIT reconstruction algorithms to image anisotropic 

conductivity were proposed. Three of the proposed techniques use the current 

density distribution data with one potential measurement as input and reconstructs 

anisotropic conductivity components iteratively. Inner potential distribution is 

required for these algorithms. Anisotropic equipotential projection algorithm 

calculates potential field using equipotential lines. Equipotential lines are 

perpendicular to the current lines in case of isotropic conductivity but, in case of 

anisotropic conductivity their crossing angle are determined by the conductivity 

anisotropy at the crossing point. Different from the anisotropic EPP technique, 

anisotropic J-substitution technique calculates potential field using FEM techniques. 

The third technique, called anisotropic hybrid J-substitution algorithm, combines 

both techniques. It first calculates the anisotropic conductivity using anisotropic 

EPP technique and then this conductivity distribution is given to the anisotropic J-

substitution algorithm as initial conductivity. Other two algorithms use magnetic 

flux density data and one potential measurement as input and calculate the 

anisotropic conductivity distribution uniquely. Anisotropic Harmonic Bz algorithm 

takes the second derivative of measured flux density data and uses an iterative 

algorithm. On the other hand, anisotropic Sensitivity algorithm first calculates 

sensitivity matrix and obtains anisotropic conductivity directly. Sensitivity matrix is 

only depends on the outer geometry and boundary conditions, therefore it can be 

calculated once and stored. 
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In order to explore the reconstruction performances of the proposed algorithms, 4 

different computer models were prepared. These models were designed to cover all 

critical aspects in reconstruction phenomena, such as reconstruction accuracy, noise 

performance, spatial resolution, point spread function (PSF), linearity, position 

dependency, etc.  

 

Algorithms were also evaluated with experimental measurements in this thesis 

study. Measurements were performed in METU EEE 0.15T MR System using 

designed and manufactured test phantoms.  

 

7.2 Conclusions 

 

MREIT is an emerging imaging modality in the field of tomographic imaging. 

Various studies exist in literature. Almost all of the MREIT reconstruction 

algorithms assume isotropic conductivity in order to simplify the underlying 

background. But it is known that most of the biological tissues have anisotropic 

conductivity values. The most important contribution of this study to the MREIT 

literature is five novel anisotropic conductivity reconstruction algorithms. By this 

contribution, anisotropic conductivity reconstruction deficiency in the MREIT 

literature has been overcome to some extend. 

 

Anisotropic MREIT algorithms proposed prior to this thesis have been tested with 

different computer models. Therefore, an accurate cross comparison between them 

did not exist. In this thesis, four different computer models were designed to test all 

the algorithms. During the design process of these models, many aspects were taken 

into account for anisotropic conductivity reconstruction phenomena such as 

reconstruction accuracy, noise performance, spatial resolution, point spread 

function (PSF), linearity, position.  

 

Experimental measurements were also made in this study which is avoided most of 

the studies because of difficulties. A current source was designed and manufactured 
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for these measurements. This current source was placed inside the Faraday cage 

timing signals were required to transport from computer to the source. For this 

purpose, fiber optic cables were used and penetration of the RF noises inside the 

Faraday cage over the timing cables was eliminated. Another important issue about 

the current source is the power supply unit of it. First, AC/DC converter was used to 

supply the source but this led to decreasing SNR ratio and even loss of MR signal 

because of the switching noise of the AC/DC converters. Because of this, DC 

batteries were used and the problem of signal loss was solved. 

 

When the results of all algorithms with simulation and experimental data are 

investigated altogether, anisotropic sensitivity algorithm shows a magnificent 

performance among others. This algorithm does not also require rotation of the 

object in the MRI scanner which is very difficult to achieve in application. 

Furthermore, anisotropic sensitivity algorithm calculates the sensitivity matrix once 

for given current injection drives and boundary conditions, and calculates the 

anisotropic conductivity faster than almost all other algorithms. The only drawback 

of that algorithm is its high memory usage but, in today’s rapidly developing 

computer era, this is actually not a critical problem.   

 

Another important study during this thesis was the preparation of the test phantoms. 

In order to remove the ion diffusion between the layers, a solidifying material was 

used. Actually, this material itself is sufficient to obtain a solid material when added 

to water. But, it is necessary to add CuSO4 to water to decrease the T1 time during 

measurements, and when the solidifying material is mixed with CuSO4 solution, it 

loses its solidifying property and the mixture became a gelled material instead of a 

solid material. Therefore, in order to make the material solid, agar is used in the 

mixture and a solid material with very low ion diffusion is obtained.  

 

All these experimental studies are a very important part of this thesis study. Up to 

date, none of the anisotropic conductivity reconstruction algorithms are tested with 

experimental data. In order to incorporate MREIT technique into the diagnostic 

imaging techniques, experimental realization of it must be completed. With this 
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study, five anisotropic conductivity reconstruction algorithms and experimental 

realization of the technique are added to the MREIT literature. But, before 

application of the technique to the humans, applied current must be decreased under 

the safety limit. Using the optimized current injection strategies for MREIT in 

literature [51], current could be decreased under the safety limit. Future studies 

must certainly be in this direction. If it is succeeded, MREIT would have a chance 

of being a diagnostic imaging technique and the algorithms proposed in this thesis 

would be used to reconstruct anisotropic conductivity distributions of tissues.  
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APPENDIX A 

 

 

EXTENSION OF THE TECHNIQUE PROPOSED BY 

IDER ET AL FOR THE RECONSTRUCTION OF 

ANISOTROPIC CONDUCTIVITY 

 

 

In this part of the study, MREIT algorithm proposed by Ider et al in 2003 [36] for 

isotropic conductivity imaging is tried to be extended for the reconstruction of 

anisotropic conductivity. But because of some problems encountered during the 

study, this study could not be completed with the reconstruction of anisotropic 

conductivity. In the following section, proposed algorithm will be explained in 

detail with the problems encountered and simulation results will be given. 

 

A.1 Algorithm 

 

Let Ω be a connected and bounded domain in 3R , with boundary Γ. Inside this 

domain, we define a positive definite conductivity tensor 
xx xy xz

yx yy yz

zx zy zz

σ σ σ
σ σ σ σ

σ σ σ

 
 =  
 
 

. 

The resistivity, 1
xx xy xz

yx yy yz

zx zy zz

ρ ρ ρ
ρ ρ ρ ρσ

ρ ρ ρ

 
 = =  
 
 

, is also assumed to be positive definite 

in Ω. Γ is divided into two parts as current application parts and other parts such 

that 
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 (A.1) 

 

where appJ  is the boundary injected current density and ϕ  is the potential field in 

Ω. 2D illustration of the injected current profile can be visualized as follows: 

 

 

 

 

Figure A.1: Illustration of injected current profile for a 2D resistive object. 

 

Since static conditions are assumed; 

 

 0=×∇ E  in Ω (A.2) 

 

where E is the electric field in Ω. Since JE ρ=   

 

 0=×∇ Jρ  (A.3) 

 

For simplification, let’s ρ  be a diagonal matrix, that is; 
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Then,  
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is obtained. Finally we have,  
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Only the z-component of the equation (A.6) can be written as, 

 

 0yy y y yy xx x x xxJ J J J
x x y y

ρ ρ ρ ρ
    ∂ ∂ ∂ ∂   ⋅ + ⋅ − ⋅ − ⋅ =       ∂ ∂ ∂ ∂        

 (A.7) 

 

In order to discretize equation (A.7), following discrete model is used in the 

imaging domain and equation (A.8) is obtained.  

 

 

 

     

 
Figure A.2: Discrete illustration of the imaging area. 
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Finally we have, 
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 (A.9) 

 

As seen, we have an equation which is equal to zero. Therefore, the vector matrix 

equation obtained from this equation without using any a-priori ρ  information will 

be in the form of 

 

 0A ρ⋅ =  (A.10) 

 

where A is an (m×n×2) by (m×n×2) coefficient matrix and ρ is an (m×n×2) by 1 

resistivity vector which is written as [ ρxx(1,1)  ρyy(1,1)  ρxx(1,2)  ρyy(1,2)  .........  

ρxx(m,n)  ρyy(m,n) ]T. 

 

To solve this problem, let’s assume that the first row and the last column 

resistivities of the object seen in Figure A.3 are known. Then, equation (A.9) is 

rearranged for the second row and the (n-1)th column resistivities as 
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Figure A.3: Discrete illustration of the imaging area in which the first row and the last 
column resistivities are known 

 

 
),()1,(),(),1(

),(),(),(),(),(),(

yxJyxyxJyx

dyxJ
x

yxJyxdyxJ
y

yxJyx

xxxyyy

yyyyxxxx

⋅+=⋅++






 ⋅
∂
∂−−








⋅

∂
∂−

ρρ

ρρ
 (A.11) 

 

 
),(),1(),()1,(

),(),(),(),(),(),(

yxJyxyxJyx

dyxJ
x

yxJyxdyxJ
y

yxJyx

yyyxxx

yyyyxxxx

⋅+−=⋅+−






 ⋅
∂
∂−−








⋅

∂
∂−

ρρ

ρρ
 (A.12) 

 

respectively. Then, we can obtain a vector-matrix equation in the form of  

 

 A bρ⋅ =  (A.13) 

 

in which ρ is written as [ρxx(2,1)  ρyy(2,1) … ρxx(2,n-1)  ρyy(2,n-1)  ρxx(3,n-1)  ρyy(3,n-1) 

... ρxx(m,n-1)  ρyy(m,n-1)]T, A is a coefficient matrix and b is nonzero right hand side. 

SVD based pseudo inverse technique without any truncation is used to calculate the 

inverse of A for the solution of ρ. A matrix has full column rank, and therefore it is 

guarantied that ρ is not in the null space of A. After finding the second row and the 

(n-1)th column resistivities, equations (A.1.11) and (A.1.12) are used to obtain third 

...............

...............

...............

1 n 

1 

m 
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row and the (n-2)nd column resistivities and this procedure is continued till reaching 

to the last row. Since we have 2 unknowns in every equation, we must use at least 

two different current injection patterns. 

 

Here, it is important to note that, 






∂
∂

),( yxJ
x y  and 









∂
∂

),( yxJ
y x  derivative 

operations can be performed using different methods. In the following parts some of 

these methods will be implemented and effects on the reconstruction will be 

evaluated. Following resistivity distribution was used for the simulations. 
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Figure A.4: Conductivity distributions used for simulations: (a) xxσ , (b) yyσ . Values are 

in S/m. 
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A.1.1 Derivation Using Sobel Operator 

 

In this case, derivative operations were performed using 3-by-3 Sobel operators 

given by equations in (A.14). 
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(A.14) 

 

For demonstration, y-component of the current density distribution and the x-

directed derivative of this distribution using Sobel operator are shown in Figure 3-c 

and 3-d, respectively. Obtained resistivity images using equations (A.11) and (A.12) 

are given in Figure A.5a and A.5-b.  

 

As seen from the reconstructed images, reconstruction errors and even negative 

resistivities start at the borders of the inner object and continue until the boundary 

of the imaging area because of the recursive behavior of the algorithm. When we 

investigate the reason of this reconstruction error at the border of the inner object, 

we see that this error comes from the calculated derivative values. To explain this 

with more detail, let’s first look at the Figures A.5-a and A.5-b. Because of the 

smoothing effect of the 3-by-3 Sobel operators, we see a 2 point gradient at the right 

and left borders of the inner object (25. – 26. columns and 40. and 41. columns.) in 

the x gradient of the Jy image as in Figure 5-d. But Jy image in Figure A.5-c has in 

fact one point gradients between the 25. and 26. columns and between 40. and 41. 

columns. Therefore wrong gradient value dominates the coefficient of the yyρ  in 

equations (A.11) and (A.12) and this causes the error to start at the rapid gradient 

change. As mentioned earlier, because of the recursive behavior of the algorithm, 

this error projected until the end of the imaging area. Same explanation is also valid 
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for xxρ , but in that case, since y gradients are used, changes in vertical directions 

are important and error projects in that direction. 
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(c) (d) 

Figure A.5: (a) x component of the reconstructed resistivity image, (b) y component of 
the reconstructed resistivity image, (c) y component of the current density distribution 
for one current drive and (d) x directed gradient of the distribution shown in (c).  
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A.1.2 Derivation Using FFT Algorithm Based Differentiation 

 

For this part, assume that the given complex image has Nx and Ny pixels along the x 

and y directions with pixel size ∆x = 1 and ∆y = 1, respectively. It is easy to see that 
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where ),( npxϕF  is the discrete Fourier transform of ),( nmϕ  along the x direction 

given by 
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Similarly, ynm ∂∂ ),(ϕ can be evaluated using FFT-based method. 

 

Using this formulation, gradients of current density distribution components were 

calculated first and resistivity images were then calculated using equations (A.11) 

and (A.12) and the algorithm just after it. In Figure A.6, y-component of the current 

density distribution, the x-directed derivative of this distribution and reconstructed 

resistivity images are shown.  

 

Similar to the previous case, derivative figure has again two point gradient at the 

object borders. Therefore similar negative resistivity reconstructions are seen in the 

reconstructed resistivity images. 
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(c) (d) 

Figure A.6: (a) x component of the reconstructed resistivity image, (b) y component of 
the reconstructed resistivity image, (c) y component of the current density distribution 
for one current drive and (d) x directed gradient of the distribution shown in (c). 
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A.1.3 Derivation Using Forward Difference Based Differentiation 

 

A forward difference is an expression of the form 

 

 [ ] )()()( xfhxfxfh −+=∆  (A.17) 

 

The derivative of a function f at a point x is defined by the limit 
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If h has a fixed (nonzero) value, instead of approaching zero, then the right-hand 

side is 
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Using this differentiation formulation, x and y directed gradients were calculated, 

resistivity images were reconstructed.  Y-component of the current density 

distribution, the x-directed derivative of this distribution and reconstructed 

resistivity images are shown in Figure A.7. 

 

As seen from the gradient figure in Figure A.7-d, one point gradient is obtained in 

this case. But since the gradient between (n+1)th and nth columns are written to the 

nth column, one pixel shift to the left appears. More clearly, the gradient between 

25. and 26. columns (26. column is the left boundary of the inner object) is written 

to the 25. column. Therefore, this causes again to use wrong gradient value at 25. 

column and reconstructed conductivity becomes erroneous. The rest also goes 

erroneous because of the recurrence.  

 

In order to overcome this problem, we thought to remove one column from the 

middle part of the inner object in the gradient figure and shift the left hand side of 

that column right. A similar operation is also performed for rows, one row is 
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removed from the middle part of the inner object and remaining rows under it is 

shifted up. So, gradients and the object boundaries are coincided. Obtained 

reconstructed results are shown in Figure A.8. 
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(c) (d) 

Figure A.7: (a) x component of the reconstructed resistivity image, (b) y component of 
the reconstructed resistivity image, (c) y component of the current density distribution 
for one current drive and (d) x directed gradient of the distribution shown in (c). 
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(a) (b) 

Figure A.8: (a) x component of the reconstructed resistivity image, (b) y component of 
the reconstructed resistivity image 

 

As seen from the results, negative resistivity values are disappeared. But it is 

obvious that finding the point where to remove one column is very difficult and 

even impossible for more complex image distributions. So a more feasible way 

should be found. 

 

A.1.4 Derivation Using Forward Difference Based Differentiation 

with Up-sampling 

 

In this part, we calculated the derivatives using forward difference formula as in the 

previous case. But before this calculation, first we up-sampled current density 

components by 2 and obtained J’s as shown in the Figure A.9. Then using these 

values, we calculated derivatives at points where J’s exist. Therefore, we could 

calculate the derivatives at exact points with current density components. Figure 

A.10 shows the y-component of the current density distribution, the x-directed 

derivative of this distribution and reconstructed resistivity images. 
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Figure A.9: Illustration of up-sampling. Prime coordinates show the points generated by 
up-sampling. 

 

As seen from the results, a similar yyρ  image is obtained with Figure A.8-b without 

removing any column or row. But this is not the case for xxρ  image. This is 

because, up sampling the current density image by 2 and selecting odd numbered 

columns and rows for the calculation of gradients and even numbered ones for 

current density data respond different manner to the even and odd numbered 

columns and rows. More clearly, if the boundary of an object is on the even 

numbered column or row, after up sampling and calculation of the gradient, 

gradient data and the current density data at the boundary of the object coincide. 

But, if the boundary of an object is on the odd numbered column or row, they do 

not coincide. In Figure A.10-b, since the left boundary of the object is on the even 

numbered column, after reconstruction we didn’t obtain negative resistivity values 

at this boundary. But since the bottom boundary is on the odd numbered row, 

reconstruction becomes poor because of the above reason. Therefore, this method 

for differentiation is not also a feasible way but among all, we thought that this 

method is the most feasible one. 
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(c) (d) 

Figure A.10: (a) x component of the reconstructed resistivity image, (b) y component of 
the reconstructed resistivity image, (c) y component of the current density distribution for 
one current drive and (d) x directed gradient of the distribution shown in (c).  
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After explaining all these methods, it is tried to reconstruct more complex and 

round shaped objects with taking the derivative using the method explained in 

A.1.4. Model figure used for reconstruction is shown in Figure A.11. Obtained 

reconstruction results are in Figure A.12. 

 

 

 

 
Figure A.11: Model figure used for reconstruction. The values on the figure indicate 
conductivity values in S/m. 
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(a) (b) 

Figure A.12: Obtained reconstruction results for the distribution shown in Figure A.11. (a) 
x component of resistivity, (b) y component of resistivity. 
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As seen from the results in Figure A.12, reconstructed images have sharp lines 

starting from the object boundaries. The final evaluation on this topic is to use a low 

pass filter to the reconstructed images and trying to remove the sharp lines. For this 

purpose, following filter is designed for ρyy image since sharp edges are mainly in y 

direction.  
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Figure A.13: Designed low pass filter. 

 

 

 

This filter is applied to the Fourier Transform of the ρyy image which can be seen in 

Figure A.14. 
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Figure A.14: Fourier Transform of the image in Figure A.12-b. 

Then the inverse Fourier transform operation is applied to the filtered FFT image 

and the following figure is obtained. 
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Figure A.15: Low pass filtered ρyy image in Figure A.12-b. 

As seen from the figure, sharp lines in Figure A.12-b are weakened but the image is 

blurred as expected. At this point, it is thought that, all possible studies on this work 

are completed and it is decided to stop working on this algorithm. 

Filtered ρyy 
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