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ABSTRACT 

 

 

EXTRACTION OF BUILDINGS IN SATELLITE IMAGES 

 

 

Çetin, Melih 

Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Aydın Alatan 

Co-Supervisor: Prof. Dr. Uğur Halıcı 

 

May 2010, 197 pages 

 

In this study, an automated building extraction system, which is capable of 

detecting buildings from satellite images using only RGB color band is 

implemented. The approach used in this work has four main steps: local feature 

extraction, feature selection, classification and post processing. There are many 

studies in literature that deal with the same problem. The main issue is to find the 

most suitable features to distinguish a building. This work presents a feature 

selection scheme that is connected with the classification framework of Adaboost. 

As well as Adaboost, four SVM kernels are used for classification. Detailed 

analysis regarding window type and size, feature type, feature selection, feature 

count and training set is done for determining the optimal parameters for the 

classifiers. A detailed comparison of SVM and Adaboost is done based on pixel 

and object performances and the results obtained are presented both numerically 

and visually. It is observed that SVM performs better if quadratic kernel is used 

than the cases using linear, RBF or polynomial kernels. SVM performance is 

better if features are selected either by Adaboost or by considering errors 

obtained on histograms of features. The performance obtained by quadratic 

kernel SVM operated on Adaboost selected features is found to be 38% in terms 

of pixel based performance criteria quality percentage and 48% in terms object 

based performance criteria correct detection with building detection threshold 0.4. 



 v 

Adaboost performed better than SVM resulting in 43% quality percentage and 

67% correct detection with the same threshold. 

 

 

Keywords: Building detection, Feature selection, Textural features, Segmentation, 

Adaboost. 
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ÖZ 

 

 

UYDU GÖRÜNTÜLERİNDEN BİNALARIN ÇIKARILMASI 

 

 

Çetin, Melih 

Yüksek Lisans., Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. A. Aydın Alatan 

Ortak Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 

Mayıs 2010, 197 sayfa 

 

Bu çalışmada, sadece RGB renk bantı kullanarak uydu görüntülerinden  binaları 

tespit eden otonom bir sistem uygulanmıştır. Kullanılan yaklaşımın dört temel 

aşaması vardır: yerel öznitelik çıkarımı, öznitelik seçimi, sınıflandırma ve 

sınıflandırma sonrası işlemler. Literatürde bu sorun ile ilgili birçok çalışma vardır. 

Ana problem bir binayı ayırt etmek için en uygun öznitelikleri belirleyebilmektir. Bu 

çalışmada Adaboost sınıflandırıcısı tabanlı bir öznitelik seçim yöntemi 

kullanılmıştır.  Sınıflandırılma için, Adaboost’un yanı sıra SVM algoritması dört 

farklı çekirdek tipiyle kullanılmıştır. Sınıflandırıcıların optimal parametrelerini 

belirlemek için, çerçeve türü ve boyutu , öznitelik tipi, öznitelik seçimi, öznitelik 

sayısı ve eğitim seti ile ilgili detaylı analiz yapılmıştır. Piksel ve nesne 

performanslarına dayalı detaylı bir SVM- Adaboost  karşılaştırması yapılarak elde 

edilen sonuçlar hem sayısal hem görsel olarak sunulmaktadır. Buna göre, SVM, 

quadratik kernel kullanıldığında doğrusal, rbf veya polinom kernel kullanılan 

durumlara göre daha iyi performans göstermektedir. Öznitelikler Adaboost ile 

seçildiğinde veya öznitelik histogramlarından elde edilen hatalar göz önünde 

bulundurularak seçildiğinde SVM daha iyi performans göstermektedir. Bina 

algılama eşiği 0,4 iken, Adaboost ile seçilmiş öznitelikler üzerine quadratik 

çekirdek SVM işletildiğinde elde edilen performans: piksel tabanlı performans 

kriteri kalite yüzdesi bazında %38 ve  nesne tabanlı performans kriteri doğru 
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algılama bazında %48 olarak bulunmuştur. Aynı algılama eşiğinde, Adaboost 

%43 kalite yüzdesi ve %67 doğru algılama ile SVM’den daha iyi performans 

göstermiştir.  

 

 

Anahtar Kelimeler: Bina algılama, Öznitelik seçimi, Dokusal öznitelikler, 

Bölütleme, Adaboost. 
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     CHAPTER 1 

1 INTRODUCTION 

In this chapter, first the previous studies in the field of building detection and 

extraction in digital satellite/aerial images are described briefly. Then motivation of 

thesis, objective and goals, scope of the thesis, contribution of the thesis and 

organization of the thesis is given. 

 

1.1 Literature Survey on Building Detection 

 

Building extraction has attracted many researchers’ attention for many years. 

Extraction of buildings automatically from satellite/aerial imagery involves several 

different problems related to computer vision since in urban areas there are many 

other objects in close proximity such as trees, power lines vehicles, and parking 

lots. These problems make the automatic building extraction is a challenging 

problem. 

 

Image segmentation is one of the important tasks in computer vision, and many 

fields of application are concerned with it, including robotics, remote sensing, 

medical imaging, etc. The prime objective of segmentation is to produce a 

partition of an image into homogeneous regions that one hopes to correspond to 

objects or part of objects in the real scene under study [1]. Building extraction is a 

popular application of image segmentation and it is widely used in numerous 

fields. 

 

Extraction of buildings is not only challenging but also it is important for update of 

GIS systems. Therefore, many researchers focused on developing robust 

automatic building detection algorithms in satellite images. Mayer [2] surveyed 

object detection systems from aerial images, focusing on building detection.  
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Konecny and Schiewe [3] put emphasis on automatic city map generation. 

According to them, 33.5% of the world was mapped at 1:25,000 scale (around 

one meter per pixel resolution) as of 1993. This resolution is extremely important 

for developed crowded cities. The rate of manual map generation and updating is 

respectively 2.8% and 4.9%. It takes nearly 20 years for remapping the same 

area but a house can be built and destroyed in a very short time period compared 

with map generation rate. The current map update rates are inadequate but 

making this update with commercially available IKONOS images takes less than a 

month. Here the data collection rate exceeds the data process rate. That is 

automatic building detection is at high importance. As an example in [4], 

researchers automatically detected the unlicensed buildings that are on the 

forbidden areas of city İstanbul. At the time being these map generation issue is 

done by post-processing the images taken from satellite images but it will be 

possible in near future that the generation of maps, detection of illegal buildings 

etc. may be done in real time and changes in the man-made structures are easily 

recognized with the improvement of imaging sensors and developed algorithms.    

 

Numerous approaches for building extraction have been proposed in the 

literature. Huertas and Nevatia [5] proposed a method using line, corner and 

shadow information. Their method works on medium density places and they 

have an assumption that buildings are rectangular or composed of rectangular 

components thus “box”, “T”,  “L”, ”E” are allowed. Line segments near 90 degree 

L-junctions are used to form rectangles.  They use height information obtained 

from shadow for verifying building hypothesis and disambiguating raised 

structures from structures on the ground (such as parking lots). The main problem 

of the method is due to the real structures in the image for example sides of 

buildings may have trees, vehicles and road markings. In summary, their method 

is composed of detecting lines and corners, labeling corners based on shadows, 

tracing object boundaries and verifying hypotheses using shadow information. In 

[6] similar to [5] used the same concepts and add a method called FUSION in 

order to reduce the miss detections. The method is based on taking the results of 

detection results of BABE (builtup area building extraction based on edges and 

corners), SHADE (shadow detection), SHAVE (shadow verificaiton) and 
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GROUPER (BABE and back projection of building/shadow edges) and fusing the 

results of them. Noranha and Nevatia [7] used multiple views in a similar method 

and increased the detection rate. Krishnamachari and Chellappa [8] used Markov 

Random Field (MRF) models. They propose a method to extract straight lines 

from edge map of an image and then MRF model is used to group these lines.  

 

In [9], researchers used snake-based approach to extract 2D building outlines 

from high-resolution IKONOS satellite images and height data captured by 

airborne laser scanning system. A semi-automated approach is used in [10] 

based on active contour model (snakes) and the dynamic programming 

optimization technique. The method requires a digital surface model and an 

orthonormal image. This approach can be more effective if applied after a human 

operator has manually determined seed points near the boundary of a desired 

feature. Peng et al. [11] extract the principal contours of buildings in dense urban 

areas according to the radiometric behavior of buildings.  

 

In [12] Baltsavias et al. used digital surface model (DSM) and three different 

approaches namely, edge operator, mathematical morphology and height bins for 

building detection. Brunn and Weidner [13] used normalized DSM with a threshold 

first in order to segment higher areas and used area thresholding for discarding 

single trees. In order to discriminate large areas of trees, they used geometric 

information of the DSM like curvature and gradient. 

 

With the advance of imaging systems and the availability of high spatial and 

spectral resolution satellite images, most of the studies focus on the use of 

spectral reflectance values. In [14], Sha and Lee classified the IKONOS 

multispectral images into several classes, including water, road, roof, tree, marsh, 

grass and sand based on the selected training sites by using a Maximum 

Likelihood (ML) classifier. The resultant class maps are then vectorized to feature 

classes. Each vectorized building object will be used to define the searching area 

on the corresponding panchromatic image to delineate the building boundaries.  

 

 



 

4 

Ünsalan and Boyer [15] introduce measures on multispectral to detect regions of 

possible human activity. On these measures, they introduce a variation of the k-

means clustering (KMC) algorithm to extract possible houses and street networks 

by combining both spatial and spectral features. This combination of information 

improves the final clustering results. From clustering, they obtain a binary image 

containing possible street network fragments and houses then decompose this 

binary image using a balloon algorithm based on binary mathematical morphology 

and represent this decomposition in a graph for which balloons serve as vertices, 

while their neighborhood relationships are encoded as edges.  

 

In [16], Zhang merged multispectral classification with texture filtering. This is 

because objects in urban areas are very complicated with respect to both their 

spectral and spatial characteristics. Multispectral classification detects object 

classes only according to the spectral information of the individual pixels, while a 

large amount of spatial information is neglected. In this study, a technique is 

described which attempts to detect urban buildings in two stages. The first stage 

is a conventional multispectral classification. In the second stage, the 

classification of buildings is improved by means of their spatial information 

through a modified co-occurrence matrix based filtering. 

 

Stassopouloua and Caelli [17] proposed a new system, which differs from 

standard building detection algorithms in various ways. It uses performance 

optimization to train the system to fit how humans identify corners, and combine 

diverse data, raw or partly processed, in a probabilistic framework to assign 

probabilities to hypotheses. Information sources relevant to the detection of a 

building include geometric (anything relating to its shape), radiometric (using its 

spectral properties) and contextual (using the strong road building relationship).  

 

Kim et al. [18] used moments and Fourier descriptors to recognize buildings from 

satellite images. The Fourier descriptors and moment features (Zernike moments 

and Hu's moment invariants) are used as input vectors to the neural network 

classifier. Gilmore and Boyd [19] also utilized Hu’s well-known seven moment 

invariants to identify building and bridge targets with infrared imagery.  
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Wavelet transformation and multi-scale analysis have also been attempted in 

extracting building edges. Levitt and Aghdasi [20] applied wavelets and used 

scale-space for the extraction of buildings from monocular greyscale aerial 

photography. The wavelet transform extracts building edges corresponding to 

high frequencies while scaling provides abstraction by eliminating such frequency 

components. An attractive feature of the techniques investigated in [20] is that 

they generate a family of images at different scales and resolutions based on the 

original source image. 

 

Qu et al. [21] proposed a salient building detection system using a single nature 

image via wavelet decomposition. In their work, they use Haar wavelet 

decomposition to obtain the enhanced image and then they separate the 

candidates of building from the background based on projection profile. Finally, 

they discriminate building regions by Principle Component Analysis (PCA) in RGB 

color space.  

 

Bellman and Shortis [22] used Support Vector Machines to classify wavelet 

coefficients as a building or non-building object. The images are characterized 

using wavelet analysis. Selvarajan and Tat [23] used wavelet filter banks in two 

levels. In the first level, they constructed an edge map. In the second level, they 

constructed a region of interest map by using local intensity variations. 

 

Sırmaçek and Ünsalan [24] proposed an automated approach for building 

detection based on Gabor filters and spatial voting. They extract features 

(representing buildings) using Gabor filter responses. Using these features, they 

form a spatial voting matrix to detect buildings. Lacroix et al. [25], extracted edges 

of man-made structures (buildings and roads) using Gabor filters together with the 

NDVI (Normalized Difference Vegetation Index) in SPOT5 images. Comparing 

their edges of two image sequences taken from same region, they detected 

changes. 

 

 

An alternative solution for building detection is the analysis of texture pattern. 

Zimmermann [27] used well-known definitions of texture from Haralick at al. [26] 
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and derived six texture parameters: contrast, correlation, direction, entropy, 

homogeneity and uniformity. According to Zimmermann, pure texture 

segmentation gives a only a coarse segmentation, so they used texture 

segmentation only as auxiliary tool to check color segmentation and get texture 

parameters for the segmented regions. 

 

Both unsupervised classification and supervised classification techniques were 

applied to building detection problems. In many cases, better results were 

obtained using supervised classification techniques [28 and 29]. Brunn [30] (2001) 

devised a statistical approach to building detection in range and image data using 

Bayesian nets. Bartels and Wei (2006) [31] performed a pixel based supervised 

classification algorithm based on Bayesian maximum likelihood approach using 

high resolution first, last echo and intensity LIDAR data and co-registered line 

scanner bands such as aerial photos and near infra-red photos. The Bayesian 

method was also employed by Maas (1999) [28] to fuse various height texture 

measures extracted from laser range data for the detection of buildings and trees.  

 

Khoshelham et al. (2005) [32] developed a method to fit planar surfaces to height 

data within regions of a segmented aerial image for the detection of building roofs. 

This method is based on dividing image regions whose related height points do 

not fall in a single plane, and merging coplanar neighboring regions. A plane-

fitting method is used to fit planar surfaces to height points.  

 

Walter (2004) [33] applied a Bayesian maximum likelihood method to object-

based classification of multi-spectral aerial data. The multispectral bands grouped 

by objects and very different measures that can be derived from multispectral 

bands represent the n-dimensional feature space for the classification. Different 

input channels for the classification are defined and discussed.  

 

 

Rottensteiner et al. (2004) [34] and Lu et al. (2006) [35] developed methods to 

extract buildings from aerial imagery and laser range data based on the 

Dempster-Shafer theory of evidence (Shafer, 1976) [36].The Dempster-Shafer 
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data fusion technique is applied to detect buildings from the combination of 

multiple data sources. 

 

Elaksher and Bethel [37] used Neural Network to distinguish roof regions from 

non-roof regions. Two attributes is implemented for the classification process. The 

first one measures the linearity, and the second one measures the percentage of 

the points in the region that are higher than a threshold. 

 

Neural networks are capable of scale and rotation invariant matching of 

predefined neuron graphs to images [38]. The whole operation is done in two 

phases. First, the neurons are trained in specifically selected data and then they 

are ready to detect what they were trained for in other data. Another neural 

network based building detection system that also Lari and Ebadi [39] proposed 

works in two different phases. In the first phase, the presented neural network in 

the system is trained with the aid of test data, and in the second phase, the 

system will be used for detection and extraction of buildings from satellite images. 

The neural network used in this system is a three-layer perceptron. A specific 

weight is determined for each of input values. This network functions well if all 

weight coefficients are truly selected. In training process of neural network, this 

coefficient will be modified. In this system, initial image processing stage is 

implemented at first and followed by image segmentation procedure. Then 

suggested features are calculated for each region and a three-layer perceptron 

neural network is trained for detection of buildings in satellite images. 

 

Information about the shape and location of buildings is also used to improve 

mobile robot outdoor mapping. Persson et. al. [40] describes a system for 

automatic detection of buildings in aerial images taken from a nadir view. The 

system builds two types of independent hypotheses based on the image contents. 

A segmentation process implemented as an ensemble of SOMs (Self Organizing 

Maps) which is trained and used to create a segmented image showing different 

types of roofs, vegetation and sea. A line extraction process uses the edge image 

as input and extracts lines from it. From these edges, corners and rectangles that 

represent buildings are constructed. A classification process uses the information 

from both hypotheses to determine whether the rectangles are buildings, unsure 
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buildings or unknown objects. The SOM is an unsupervised neural network that 

clusters similar data into similar categories. Lee and Lathrop [41] also used self-

organizing map neural networks for urban land cover characterization.  

 

Bellman and Shortis [42] presents the results of an investigation into the use of 

machine learning in the form of a support vector machine. The images are 

characterized using wavelet analysis to provide multi-resolution data for the 

machine-learning phase. A public domain Support Vector Machine [44] was used 

to classify the image patches into building or non-building categories. Bruzzone 

and Carlin [43] proposed a pixel based system to classify very high-resolution 

satellite images. They used support vector machines fed with al feature extractor.  

 

Brunner and Burkhardt [45] proposed a geometric feature extraction method 

based on a special weighted hierarchical cluster analysis. The proposed features 

capture the intrinsic interrelation-ships of line segments, containing a high 

discriminative power verified by support vector machines with different kernel 

functions. They compared their proposed features with the well-established edge-

orientation histogram feature. The results proof that our features possess higher 

discrimination ability for the class of buildings. 

 

Although SVMs have been widely used in building detection, Adaboost has not. 

However, as Adaboost can select informative features from a potentially very 

large feature pool, it is likely to offer advantages in automatically finding good 

features for classification. This can greatly reduce, or eliminate the need for 

experts to choose informative features based on knowledge of every classification 

problem. Instead, one just needs to define a list of possibly informative features, 

and Adaboost will choose those that are actually informative.  

 

Zingaretti et al. (2007) [46] employed an adaptive boosting algorithm (Adaboost) 

[52] for the automated identification of classification rules. Adaboost algorithm is 

used for the identification of rules for the classification of raw LIDAR data mainly 

as buildings, ground and vegetation. First raw data are filtered, interpolated over a 

grid and segmented. Then geometric and topological relationships among regions 
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resulting from segmentation constitute the input to the tree-structured 

classification algorithm.  

 

In a previous study, Maloof et al. [47] evaluated a variety of machine learning 

methods on the rooftop detection task. Khoshelham et al. (2010) [29] presents a 

comparative analysis of different methods for automated building detection in 

aerial images and laser data at different spatial resolutions. Three classification 

methods: Bayesian (both maximum likelihood and minimum distance classifiers), 

Dempster-Shafer and Adaboost are compared with the normalized DSM method. 

These five methods are tested in two study areas using features extracted at both 

pixel level and object level. The results showed a better performance of the 

Dempster-Shafer method followed by the Adaboost in both study areas. The 

Dempster-Shafer method reached an overall accuracy of about 97% in the 

Mannheim study area. Both the Dempster-Shafer and the Adaboost method also 

yielded higher rates of unclassified pixels. The method of thresholding a 

normalized DSM (nDSM) reached a detection rate of 94.5% in the less vegetated 

Mannheim study area, but also yielded a high false positive error rate of 10.7%. 

The Bayesian methods perform reasonably well (with an overall accuracy above 

94%) in the Memmingen area where buildings have more or less the same 

heights. In both study areas, most of the errors were found at building boundaries 

and in areas where dense trees were present. 

 

When it comes to the robotic area, many real time systems use building detection. 

Persson et al. [48] propose a new system to process an aerial photo. The aerial 

photo is a color photograph taken from the air, for example by an UAV, from a 

nadir view. The building detection process is done in real time on board. They 

have promising results for detection of buildings and they plan to connect the 

output of the system to navigation sensors in order to make modeling with 

position information. 

 

Ioannidis et al. [49] mention the projects of fully automatic 3D map generation of a 

small area in Delhi, India. The automated system monitors the construction 

activities using high-resolution satellite imaging and a special multimedia mapping 

to build a 3D map with live cameras. 
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Kontitsis et al. [50] propose a machine vision system for aerial surveillance that 

can interpret and process data acquired by a UAV on-board infrared camera. 

System components include noise reduction, feature extraction, classification and 

decisionmaking. Decision-making is performed in terms of an alarm signal for fire 

detection.  

 

Fitzgerald at al. [51] present the evolution and status of a number of research 

programs focused on developing an automated fixed wing UAV landing system. 

An emergency or forced landing (in the case of an unpowered landing), is where 

the aircraft is required to perform an unplanned landing due to the occurrence of 

some onboard emergency (eg: an engine failure). Therefore, the objective of this 

research is to develop an onboard capability that allows the UAV to select a 

suitable landing site then maneuver the UAV to land at this location 

autonomously. If this functionality is realized, it will bring UAVs one-step closer to 

flying in civilian airspace above populated areas. 

 

1.2 Motivation 

Object detection from satellite images has been an important research topic in 

computer vision for many years. Satellite images give valuable information to 

monitor urbanization and building construction. Land planners and government 

agencies need to update their maps, but doing this manually is very time 

consuming. Although more details are visible with the improved resolution of 

satellite images, the building detection is still difficult. Main reasons are the 

denseness and the complexness of the scene. Therefore, many researchers 

focused on developing robust automatic building detection algorithms in satellite 

images. This is the basic motivation that leaded us to study on building detection 

in satellite images. 

 

Some useful applications of this subject are; updating of geographic information 

system (GIS) databases, urban city planning and land use analysis. With the 

availability of high-resolution satellite imagery, classification and detection of 

small-scale manmade structures therefore has been drawing great interest. The 
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fundamental challenges that drive much of the research in this field are the edge 

or line extraction problems and segmentation problem.  

 

Pixel-based methods like using local descriptors are popular tools in object 

recognition. They are robust to occlusion and global geometric deformations. 

There is a large number of features that can be used for pixel-based local image 

descriptor. The most important issue in this field is to select the most valuable 

features from a set of candidates to keep the classification efficient and reliable.  

 

When the building detection algorithms are examined, it can be seen that several 

features and classifiers are utilized. It is not possible to distinguish which features 

have better separation capacity and which methods for classification are better 

since different studies use different data sets and performance criteria. For 

example in some studies, performance evaluation is done only checking correct 

detection a few number of predefined pixels, while some uses object base 

performance evaluation such as the detection of buildings in a given ratio and 

evaluate the performance over all buildings. 

 

Subsequently, another motivation beyond this study is to select most convenient 

features and use only them in classification. Curse of dimensionality is a major 

problem in classification methods based on machine learning. If the feature vector 

size is large, classification performance decreases. In order to reduce the feature 

vector size subspace transformations like principal component analysis (PCA) are 

widely used. In order to use PCA all the features must be extracted which is very 

expensive in terms of computation time. If valuable features can be 

predetermined, the rest of features can be eliminated easily which saves 

computation time. Adaboost is a machine learning based classification algorithm 

which became very popular in recent years in pattern recognition area due to its 

feature selection property. Adaboost algorithm can select valuable features over a 

large feature set and based on these features it can make classification by the 

help of weak classifiers based on selected features. 

 

When Building Detection literature is examined, it is observed that support vector 

machine (SVM) algorithm is widely used recently in building detection problems 
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because of its superior performance; however, the usage of Adaboost algorithms 

for solving this problem is quite rare. Only two studies could be found in the 

literature. One makes classification of urban areas and rural areas, which is not 

directly related to building detection. The other one is a very recent study 

published in 2010 [29], which uses LIDAR information for detection of buildings. 

This type of satellite image data is different from the type of satellite images that 

we aimed to use. Google Earth™ is a virtual globe, map and geographic 

information program that display satellite images of varying resolution of the 

Earth's surface. For large parts of the surface of the Earth only 2D RGB images 

are available, from almost vertical photography.  

 

Despite buying a multi-spectral, stereo satellite image or LIDAR data is 

expensive, images in Google Earth Application, are permitted to be used free for 

research purposes. It is also available under different licenses when to be used 

commercially. Already several applications based on Google Earth images have 

been emerged on Internet. This is the motivation, leading us to use only RGB 

color band in building detection, which is compatible with Google Earth images.  

 

In this thesis, the answers for which intensity textural features and HSV domain 

features have more separation capacity, the effect of using these features 

combined or single, the effect of selection of features, and the success of two 

classifiers SVM and Adaboost are investigated.  

 

Adaboost learning algorithm is employed for both classification and determining 

the beneficial feature subset, due to its feature selector nature. Also, SVM 

performance with and without feature selection methods are examined. 

 

1.3 Objectives and Goals 

In this thesis, it is aimed to develop a robust, reliable building detection algorithm, 

which is capable of detecting buildings from a single satellite image using only 

RGB color band. For this purpose, an automated building extraction algorithm 

based on local feature extraction, feature selection, classification and post 

processing is to be developed.  
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The performance of the building classifier is directly related to the extracted 

features. To get a robust and reliable building classifier, we need good features to 

distinguish building pixels from non-building pixels. Therefore, feature selection is 

one of the most important issues for a good performance. 

 

In literature quite diverse type of features are used for building detection, however 

to compare their performance is problematic because of differences in data and 

also performance criteria used. An approach could be to use all the features, or to 

reduce the feature dimension using subspace transformations for an efficient 

classification. However, such an approach is time consuming since it requires all 

the features to be extracted, before dimension reduction. In contrary, we are 

aiming to increase classification performance while also decreasing the time 

required for feature extraction. Therefore, it becomes necessary to decide on a 

feature selection scheme to select valuable features from a set of candidates to 

keep the classification efficient and reliable while reducing the time required for 

feature extraction.  

 

Adaboost algorithm, due to its feature selection property, is a potent candidate for 

selecting valuable features. Beside its feature selection property, Adaboost is also 

a classifier that can be used for building detection. For being able to compare its 

performance another feature selection criteria, which is histogram based errors, 

are used for selecting most valuable features from a large set of local image 

features. As classifier beside Adaboost, SVM, which is shown to be quite powerful 

in many pattern recognition applications and also used efficiently in building 

detection, is considered in this study for comparison purposes. 

 

Consequently, in this thesis it is also aimed to see the effect of window size, 

window type, and using intensity textural and/or HSV domain features extracted 

from these windows. In addition, the effect of feature selection by Adaboost and 

by histogram errors is examined. Investigation of the effect of feature count on the 

performance and comparison of the performance of SVM kernels and Adaboost 

are done through meaningful performance criteria. Therefore, we will try to form 
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the best classifier with determining the optimal parameters and comparing four 

SVM kernels and Adaboost.   

 

1.4 Scope of the Thesis 

In this thesis, satellite nadir RGB images are used as input data for both 

classification and learning phases. The expected outputs of the system are a set 

of best features selected for building classification and the segmented regions in 

the image that represents buildings in the image.  

 

As mentioned in the objectives section, an important objective of this work is to 

present a feature selection scheme where the features are calculated locally for 

each pixel. Therefore, we do not consider any global image features and 

concentrate on local features. In addition to that, one can also extract additional 

information from a multi-spectral image like vegetation. Vegetation information 

can be extracted by using Normalized Difference Vegetation Index (NDVI). 

However, in this work we design a building classification that can be applied to 

any RGB satellite image. We also considered color image features but the system 

can be easily modified to grayscale mode by ignoring these color-based features.  

 

As described in literature survey part, many researchers use DEM information or 

extract the height information using stereo images. However, in this thesis, we 

focus on building detection from a single colored image. Therefore, using a single 

image for building detection is another constraint that should be considered. In 

addition to that, the input images are selected such that they are widely used and 

easily obtained.   

 

Local descriptors are popular tools in object recognition. They are robust to 

occlusion and global geometric deformations. For each window, a set of local 

feature descriptors are used in order to detect building pixels. Whereas pixel-

based evaluation gives estimates of the area that is correctly classified, the 

results are distorted by errors at the building outlines. On the other hand, object-

based evaluation techniques are less affected by such errors. However, object-

based techniques need a segmentation step, which is finding a desired object and 
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separating it from the background in the presence of distortions caused by other 

features such as surface markings, vegetation, shadows, and highlights. 

Therefore, the performance of the detection system is directly related to accuracy 

of the segmentation results. Image segmentation is an important research topic in 

computer vision and researchers has been working to find robust and reliable 

image segmentation methods for years. Another method that is commonly used is 

edge or line extraction based methods. Since edge based methods are more 

sensitive to these distortions, edge based methods are discarded in this work. As 

a result, we select to work on pixel-based evaluation techniques for building 

detection using local features. These local features are input to two classifiers 

which are Adaboost and SVM. Adaboost selects its own features and uses them 

for classification. For SVM kernels, the features selected by Adaboost and by 

histogram errors are used. No dimension reduction methods such as principal 

component analysis (PCA) are implemented since these methods use all feature 

set and do the dimension reduction. We want to get rid of the cost of extracting all 

features. 

1.5 Contribution of the thesis 

The main contribution of this work is to present a feature selection scheme that is 

connected with the classification framework of Adaboost and SVM with selected 

valuable features. We want to select the most valuable features from a set of 

candidates to keep the classification efficient and reliable. The performance of the 

Adaboost feature selection method is compared with histogram based error 

method to clarify the contribution of the proposed method. We also examined the 

distribution of the considered local image features for building and non-building 

images, which will be a useful tool for researchers working on local descriptors for 

building detection. By examining the distribution of the local features and 

Adaboost results (assigned weights and thresholds) one can select the most 

valuable features from a set of candidates according to his/her own needs.  

 

Although feeding SVM kernels by the features selected by Adaboost was studied 

previously for a different problem, which is face detection, it was not used for 

building detection problem. We used this approach and also compare the 
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classification performance of the Adaboost algorithm with SVM classifier using the 

features selected by both Adaboost and histogram-errors. 

 

In this thesis a detailed sensitivity analysis including window size, window type, 

feature type, feature count and training set are done. The sensitivity analysis 

gives information about selecting critical parameters for both training and 

evaluation of a building classifier. Also, performance of the proposed system is 

evaluated using object and pixel based measures including visual outputs. 
 

1.6 Organization of the Thesis 

The rest of the thesis chapters are organized as follows; Chapter 2 is devoted to 

background information on the buildings detection subject and the algorithms 

used throughout this study. In Chapter 3, the method used in this study is 

explained in detail. Chapter 4 covers the sensitivity analysis and experimental 

results obtained from test cases. Finally, Chapter 5 concludes the study. 
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CHAPTER 2 

2 BACKGROUND 

This chapter is aspired to present the algorithms and clarify the means used 

throughout the thesis. In Section 2.1, color models are given. In Section 2.2 

features used through the work is introduced. In Section 2.3, Adaboost algorithm 

is described. In Section 2.4, support vector machines are introduced. In Section, 

2.5 morphological operations are covered. In Section 2.6, performance criteria 

used in this work is described. 

 

2.1 Color Models 

2.1.1 RGB Color Model 

The RGB color model employs a Cartesian coordinate system and forms a unit 

cube shown in Figure 2.1. 

 

 

 

Figure 2.1: Rgb Color Cube 
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The dotted main diagonal of the cube, with equal amounts of Red, Green and 

Blue, corresponds to the gray levels. This diagonal is also referred to as the gray 

diagonal. The RGB color model is hardware oriented and is utilized in numerous 

image capturing, processing and rendering devices. 

 

2.1.2 HSV Color Model 

HSV which symbolizes hue, saturation and value is an associated symbol of 

points in an RGB color model which try to illustrate perceptual color correlations 

more precisely than RGB, while being computationally simpler. The HSV color 

model is shown in Figure 2.2. 

 

 

 

Figure 2.2: The HSV Color Model. 
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HSV is a design to depict colors as points in a cylinder (called a color solid). 

Central axis of that cylinder is from black at the bottom to white at the top, neutral 

colors are between them. The angle around the axis accounts for “hue”, the 

distance from the axis accounts for “saturation”, and the distance along the axis 

accounts for “lightness”, “value” or “brightness”. 

 

2.2 Features 

The features of this study are clarified below. During this part, the related image is 

symbolized as ( , )f x y  which is assumed to be NN ×  in size. 

  

2.2.1 Basic Features 

Basic statistical texture features used are explained below. 

 

Mean of intensity image, which stands for brightness of the pixels in a block on 

average, is defined as: 

 2

1= ( , )f
x y

mean f x y
N ∑∑  (2.1) 

 

Standard deviation of intensity image, which represents how dispersed the gray 

values are, i.e. contrast, is given: 

 2
2

1= ( ( , ) )f f
x y

var f x y mean
N

−∑∑  (2.2) 

 

Gradient magnitude approximation for the calculation of basic features is defined 

in the Equation 2.3: 

 ( , ) = ( , ) ( 1, ) ( ( , ) ( , 1))f x y f x y f x y j f x y f x y∇ − − + − −  (2.3) 
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Skewness shows the asymmetrical feature of a group of pixel values. If the 

skewness is equal to 0, it means the data is symmetrical rigorously and the farther 

from 0, the more asymmetrical. For a gray scale image (x1, x2... xn) represents a 

set for all pixel values in a moving window shown in Equation 2.4: 

 

3

f 3/ 2

( ( , ) )
1Skewness   

var

f
x y

f

f x y mean

NxN

−
=

∑∑
 (2.4) 

 

Kurtosis is a measure of peakedness or flatness of an image histogram, which 

has a form: 

 

4

2

( ( , ) )
1

var

f
x y

f
f

f x y mean
Kurtosis

NxN

−
=

∑∑
 (2.5) 

 

Entropy is a statistical measure of randomness calculated from the intensity 

histogram of the given window. The entropy equation is calculated as: 

 2= log ( )f i i
i

Entropy h x h∑   (2.6) 

Where hi denotes for i th element of histogram. 

 

Energy measures are intrinsically capable of making classification, which is given 

in Equation 2.7: 

 21 ( , )f
x y

Energy f x y
NxN

= ∑∑  (2.7) 

 

The variogram of an image is a function, which expresses the spatial correlation 

of regionalized variables of the image. In probabilistic notation, the image 

variogram, denoted as γ(h), can be defined as the expected value of the image 

intensities spatially distributed apart with a distance h: 

 1( ) {( ( , ) ( , ))}
2 i j k lh E f x y f x yγ = −  (2.8) 
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Mean of gradient magnitude, which presents information concerning average 

rate of gray level change between neighboring pixels, is given in Equation 2.9. 

 2

1= ( , )f
x y

mean f x y
N∇ ∇∑∑  (2.9) 

 

Standard deviation of gradient magnitude, which demonstrates how variable 

this rate of change can be defined as: 

 2
2

1= ( ( , ) )f f
x y

var f x y mean
N∇ ∇∇ −∑∑  (2.10) 

 

2.2.2 Zernike Moments 

Zernike moments are image moments, which are employed in rotation invariant 

recognition of images [53]. In contrast to regular image moments, they utilize a set 

of orthogonal basis functions, which constitute a complete orthogonal set inside 

the unit circle. Mapping of image function, onto Zernike polynomials, causes no 

redundancy between different Zernike moments, unlike regular image moments. 

The basis functions are in the form of Equation 2.11, i.e. Zernike Polynomials. 

 
θθ jm

mnmnmn erRrVyxV )(=),(=),( ,,,  (2.11) 

 

In this equation j  represents the imaginary unit, 1− , n  is a non-negative 

integer, m  is an integer, || mn−  is even, nm ≤||  and lastly r  and θ  are the 

magnitude and the angle of the vector from origin to ),( yx  point correspondingly 

where 122 ≤+ yx . In the same equation, )(, rR mn  represents the radial 

polynomial, which is described as: 
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| |
2

2
,

=0

( )!( ) = ( 1) | | | |!( )!( )!
2 2

n m

s n s
n m

s

n sR r rn m n ms s s

−

−−
−

+ −− −
∑  (2.12) 

 

Given these polynomials, Zernike Moments are defined as : 

 
2 1 *

, ,0 0

1( ) = ( , ) ( , )n m n m
nZ f f r V r rdrd

π
θ θ θ

π
+
∫ ∫  (2.13) 

 

In this equation, ∗ represents complex conjugate. Since f(x, y) is a real signal and 

Rn,m(r) = Rn,−m(r), complex conjugate of Zn,m,f , (i.e. Z∗n,m(f)), is equal to Zn,−m(f), . 

For a digital image, the expression above turns out to be: 

 *
, ,

1( ) = ( , ) ( , )n m n m
x y

nZ f f x y V r θ
π
+ ∑∑  (2.14) 

 

For the computation, the origin is assumed to be the center of the image f , and 

pixel coordinates are mapped into the range of unit circle. The pixels outside this 

range are omitted. In Table 2.1, Zernike Moments and their respective orders are 

given. 

 

  

Table 2.1: Zernike Moments and Their Respective Orders 

 

Order Moments Number of Moments 

0 0,0Z
 

1 

1 1,1Z
 

1 

2 2,0Z , 2,2Z  2 

3 3,1Z , 3,3Z  2 

4 4,0Z , 4,2Z , 4,4Z  3 
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Zernike Moments are complex numbers, where rotation of the image f , causes a 

shift in the phase of these numbers. In the meantime, their magnitude does not 

change as demonstrated by [53]. As a result acquiring rotation invariant features 

is achievable by using the magnitudes of Zernike Moments. It is also revealed in 

the same study that under moderate noise, Zernike Features has a good 

performance in a wide range of classification tasks. 

 

2.2.3 Circular-Mellin Features 

Circular-Mellin Features are textural features, which are discrete Fourier 

coefficients of the spatial image represented in the polar-log coordinate system 

[54]. These features represent by the spectral decomposition of image in the 

polar-log coordinate transformation.  

An image f (x, y) in Cartesian coordinates (x, y), can be represented in the polar-

log coordinate space (λ, θ) where 2 2e r x yλ = = +  and = arctan( , );y xθ  

( , )θ π π∈ − . Correlation response of an image, ( , )f λ θ  with a filter ( , )h λ θ  can 

be defined as: 

 ( , ) ( , )
x y

f x y h x y dxdy∫ ∫  (2.15) 

 

Equation (2.15) can be expressed using the polar-log coordinate represantation 

as: 

 * 2( , ) ( , )f h e d dλ

λ θ
λ θ λ θ λ θ∫ ∫  (2.16) 

 

In order to be the filter invariant, Circular Harmonic Functions (CHF) can be used. 

Then the filter is: 

 ( , ) = ( ) jq
qh h e θλ θ λ  (2.17) 

where q  is defined as the order of CHF or annular frequency. 
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Likewise scale invariance can be obtained by using a filter using Mellin Harmonic 

Functions (MHF) where p  is defined as the order of MHF or radial frequency. For 

various scales of ( , )f x y , the correlator function generates different magnitude 

values, but the ratio between these values remains same. Thus scale invariance 

is obtained by comparing the ratios of outputs for distinct p  values. As a result, 

the filter can be defined as: 

 2( , ) = ( ) j p
ph e h eλ π λλ θ θ−  (2.18) 

 

A filter function can be written combining two above filters as: 

 2
, ( , ) = j p jq

p qh e e eλ π λ θλ θ −  (2.19) 

 

So correlator function output becomes 

 * 2
, ,( ) = ( , ) ( , )p q p qC f f h e d dλ

λ θ
λ θ λ θ λ θ∫ ∫  (2.20) 

 

2.2.4 Fourier Power Spectrum 

Fourier analysis offers mathematical background for the analysis of signals based 

on frequency. Let ),( yxf  be the signal depiction of an image. Fourier transform 

of ),( yxf  is defined by  

 2 ( )( , ) = ( , ) j ux vyF u v f x y e dxdyπ∞ ∞ − +

−∞ −∞∫ ∫  (2.21) 

 

The Fourier power spectrum is formulized as *2 = FFF  represents the complex 

conjugate. In [55] and [56] power spectrum is analyzed by ring or wedge shaped 

regions, and four additional statistical features of the whole spectrum is defined. 

Ring and wedge shaped regions are given in Equations 2.22 and 2.23 

correspondingly. Illustration of these regions is shown in Figure 2.3. 
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2 22

,1 2 01
( ) = ( , )

r

r r r
f F r d dr

π
φ θ θ∫ ∫  (2.22) 

 22
,1 2 01

( ) = ( , )f F r drd
θ

θ θ θ
φ θ θ

∞

∫ ∫  (2.23) 

 

 

 
 

Figure 2.3: Ring and Wedge Shaped Regions On Frequency Domain.  

Different Shades of Gray Represent Different Regions. 

 

 

Because of the fact that coarse textures have high values of power spectrum 

close to the origin and finer textures have a more spread out power spectrum [57], 

ring shaped regions are related with coarseness of the texture whereas wedge 

shape regions are related with direction. Under these circumstances, it is possible 

to assume that ring shaped regions are rotationally invariant and wedge shaped 

regions are not. 

 

Given that discrete images are the concern for us, Discrete Fourier Transform of 

the N  by N  image must be utilized, it is shown in Equation 2.24. 

 
1 1 2

=0 =0

1( , ) = ( , )
ux vyN N j
N N

x yx y

F u v f x y e
N N

π ⎛ ⎞− − − +⎜ ⎟
⎝ ⎠∑∑  (2.24) 
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Ring shaped regions are approximated with their discrete complements. The 

basic features described in section 2.2.1 can be calculated for Discrete Fourier 

Transform of the image and also maximum magnitude of DFT can be calculated 

as in equation 2.25. 

 { }( ) = max ( , ) : ( , ) (0,0)Maximum Magnitude F F u v u v ≠  (2.25) 

 

2.2.5 Gabor Filters 

Gabor filters are linear filters, which involve one harmonic and one Gaussian 

function. These filters have optimal localization in both spatial and frequency 

domain by diminishing the joint uncertainty in both domains which is a striking 

aspect [58]. An appealing detail concerning the relationship of Gabor filters and 

human perception is that the characteristics of cortical cells in the human visual 

cortex can be approximated by Gabor filters [59]. A two-dimensional Gabor 

function is given in equation 2.26. 

 

2 21 22 221( , ) =
2

x y jWx
x y

x y

g x y e
π

σ σ

πσ σ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− + +⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  (2.26) 

 

The Fourier transform of the same function is 

 

2 21 ( )
2 22

( , ) =
u W v

u vG u v e σ σ

⎡ ⎤−⎢ ⎥− +
⎢ ⎥
⎢ ⎥⎣ ⎦  (2.27) 

 

In these equations, W  is in charge of the modulation and the variances have the 

relationship given in 2.28 and 2.29.  

 
1=

2x
u

σ
πσ

 (2.28) 
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1=

2y
v

σ
πσ

 (2.29) 

 

Gabor functions form a complete but non-orthogonal set of basis functions. With 

the intention of getting rid of the redundancy caused by non-orthogonality, these 

basis functions must be scaled and rotated through a generating function given in 

Equation 2.30 to obtain a Gabor filter dictionary. 

 , ( , ) = ( , )s
k sg x y a g x y− ′ ′  (2.30) 

where 

 = ( cos sin )sx a x yθ θ−′ +  (2.31) 

 = ( sin cos )sy a x yθ θ−′ − +  (2.32) 

 = k
K
πθ  (2.33) 

 

In these equations 1)(0 −≤≤ Ss  and 1)(0 −≤≤ Kk  where S  and K  are total 

number of scales and orientations respectively. Given that the real part of the 

generating function, i.e. )},({ , yxg skℜ , is used as filter, a symmetric frequency 

response is obtained for each orientation-scale pair. Half magnitudes of frequency 

responses of generating function and real part of the generating function is given 

in Figure 2.4 for an arbitrary ),( sk  pair.  
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Figure 2.4: Comparison of Complex and Real Gabor Filters. Complex Gabor Filters 
are not Symmetric over Frequency Domain While Their Real Counterparts are. 

 

 

2.2.6 Haralick Features 

Two-dimensional co-occurrence (gray-level dependence) matrices (GLCM), 

proposed by Haralick [26] in 1973, are generally used in texture analysis because 

they are able to capture the spatial dependence of gray-level values within an 

image. A 2D co-occurrence matrix, P , is an n n×  matrix, where n  is the number 

of gray-levels within an image. The GLCM is calculated as 

 ,

1 ( , ) = ( , ) =
( , ) =

0x y
x y

if f x y i and f x x y y j
P i j

otherwiseΔ Δ

+ Δ +Δ⎧
⎨
⎩

∑∑  (2.34) 

 

In this equation, ),( yxf  is the image function, ),( yx ΔΔ  is the offset vector, and 

lastly, as GLCM matrices are symmetric in [26], i  and j  are interchangeably row 

or column indices. The matrix acts as an accumulator so that , ( , )x yP i jΔ Δ  counts 

the number of pixel pairs having the intensities i  and j . Pixel pairs are defined 

by a distance and direction which can be represented by a displacement vector 

( , )x yδ = Δ Δ , where xΔ  represents the number of pixels moved along the x-axis, 

and yΔ  represents the number of pixels moved along the y-axis of an image 

slice. In this study six measures are computed from each matrix ( , )P i j . These 

measures are given in Table 2.2. 
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Table 2.2 : Haralick Feature Measures 

 

Inertia 
21 1

0 0
= ( ) ( , )

L L

i j
I i j P i j

− −

= =

−∑∑  

Cluster Shade 
31 1

0 0
= ( ) ( , )

L L

i j
i j

A i j P i jμ μ
− −

= =

+ − −∑∑  

Cluster Prominence 
41 1

0 0
= ( ) ( , )

L L

i j
i j

B i j P i jμ μ
− −

= =

+ − −∑∑  

Local Homegenity 
1 1

2
0 0

( , )=
1 ( )

L L

i j

P i jL
i j

− −

= = + −∑∑  

Energy [ ]
21 1

0 0
= ( , )

L L

i j
E P i j

− −

= =
∑∑  

Entropy 
1 1

0 0

= ( , ) log( ( , ))
L L

i j

H P i j P i j
− −

= =

−∑∑  

 

 

In what follows it is frequently convenient to consider ( , )x yδ = Δ Δ  not in a 

Cartesian form but rather in a apolar form ( , )dδ θ= , where max( , )d x y= Δ Δ  and 

arctan( / )y xθ = Δ Δ . In polar form d  is called the intersample spacing distance 

and θ  is called the angular orientation. In this work Haralick features are 

calculated using four different orientations and three different spacing distance 

which correspond to adjacent pixels at 0o , 45o , 90o  and 135o  and spacing 

distance as 1, 2, 3 and 4 pixels, respectively. 

 

2.2.7 Wavelet Features 

Wavelet features are extracted by means of Discrete Wavelet Transform (DWT). 

DWT involves filtering and down-sampling as shown in Figure 2.5. A multi-

resolution decomposition is achieved by applying the single-level wavelet 

decomposition recursively to low-frequency component (Figure 2.6). Multi-

resolution decomposition offers a basic hierarchical system in order to interpret 
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frequency and location based information included in the image. Given that 

utilized wavelet functions are orthogonal, each phase of decomposition observes 

different periodical aspects of the image. 

 

 

 

 

Figure 2.5: Single-Level Wavelet Decomposition 

 

 

 

 

Figure 2.6: Multi-Level Wavelet Decomposition 
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2.2.8 HSV Color Space 

Features obtained from HSV color space are employed in this thesis. The central 

idea of using features of HSV color space is to benefit from the success of this 

color space in representing perceptual color relationships. To describe these 

features, it is necessary to convert the images that are intrinsically in the RGB 

color space to HSV color space. This task is carried out with the equations given 

in Equations 2.35 - 2.37 where )},(),,(),,({max= yxbyxgyxrmax , 

)},(),,(),,({min= yxbyxgyxrmin , and finally ),( yxr , ),( yxg , ),( yxb  and 

),( yxh , ),( yxs , ),( yxv  functions stand for channels of RGB and HSV 

respectively. 

 

     

0 , =
( , ) ( , ) 60 360 360 , = ( , )

( , ) ( , )( , ) = 60 120 , = ( , )

( , ) ( , ) 60 240 , = ( , )

if max min
g x y b x y mod if max r x y

max min
b x y r x yh x y if max g x y

max min
r x y g x y if max b x y

max min

⎧
⎪

−⎛ ⎞⎪ +⎜ ⎟⎪ −⎝ ⎠
⎪⎪ −⎨ +

−⎪
⎪ −

+⎪
−⎪

⎪⎩

o

o o o

o o

o o

 (2.35) 

 

0, = 0

( , ) = 1 ,

if max
mins x y otherwise
max

⎧
⎪⎪ −⎨
⎪
⎪⎩

 (2.36) 

 ( , ) = maxv x y  (2.37) 

 

2.3 Adaboost Learning Algorithm 

Boosting is a common method to develop the performance of a learning 

algorithm. Adaboost (Adaptive Boosting) [60] is a boosting algorithm, which 

constitutes a linear combination out of a set of weak learners in order to produce 
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a strong classifier. A weak learner is a classifier, which provides weak hypotheses 

that are lacking ability to solve the problem on its own. These weak learners are 

generally picked as threshold classifiers, which decide the output by judging the 

result of a comparison between input and a threshold. A sample threshold 

classifier, )(xhj , is given in Equation 2.38.  

 
1 <

( ) =
1

j j j j
j j

if p x p
h x

otherwise
θ+⎧

⎨−⎩
 (2.38) 

 

In this equation jx  is the feature, jθ  is the threshold, jp  is the parity which 

decides the direction of inequality and Kj ≤≤1  where K  is the number of 

features. Every weak learner makes its decision based on the examination of just 

one feature, as a result, every classifier match up with a feature. Training of a 

weak learner, j , is given in Equation 2.39, and it means determining jθ  and jp  

values that minimizes the classification error on the iteration t . 

 ( , ) ,( , ) = { }j j p t jj j
p argmin θθ ε  (2.39) 

 

This operation can be accomplished by searching in intervals 

)(max)(min xx j ≤≤θ  and 1}1,{= −+jp . The definition of jt ,ε  is given in 

Equation 2.40 where iy  is the aspired output label. 

 ,
: ( )

= ( )t j t
i h x yj i i

D iε
≠

∑  (2.40) 

 

In this equation, )(iDt  is the distribution function over training samples on the tht  

iteration. This distribution is used to put emphasis on the misclassified samples, 

forcing the algorithm to focus on the hard examples in the training set. )(iDt  is 

initialized to be uniform, and on every iteration it is updated in a way that the true 

classified samples' values are reduced and false classified samples' values are 

increased. Complete algorithm of the Adaboost is given in Figure 2.7. 

  



 

33 

 
Figure 2.7: Adaboost Algorithm 

 

 

Adaboost is fast, simple and easy to program alongside its many advantages. At 

the same time, it is a nice aspect that it does not require the parameters to be 

tuned, except the iteration count T . Adaboost offers a provable method to 
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produce an accurate prediction rule by means of combining rough and moderately 

inaccurate weak learners. Then again, it should be kept in mind that boosting can 

fail with overly complex or too weak hypotheses, yet, it is consistent with the 

theory. 

 

2.4 Support Vector Machines 

Support vector machines (SVM) are a set of related supervised learning methods 

used for classification and regression [60]. In another terms, it is a prediction tool 

that uses machine-learning theory to maximize predictive accuracy while 

automatically avoiding over-fit to the data. Viewing input data as two sets of 

vectors in an n-dimensional space, an SVM will form a separating hyperplane in 

that space, one which maximizes the margin between the two data sets. To 

calculate the margin, two parallel hyperplanes are constructed. Good separation 

is achieved by the hyperplane that has the largest distance to the neighboring 

data points of both classes. 

 

Consider the linearly separable training set xi=f(x1i ,x2i)  i=1…l  that is, there is a 

linear discriminant function of the form 

 x→ wTx+b  (2.41) 

 

where w and b are learned from the training set. 
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       (a)            (b) 

Figure 2.8: (a) Linear Classifiers and (b) Best Linear Classifier 

 

 

Of course, there can be infinitely many linear classifiers that separate the training 

set as shown in Figure 1. The purpose of SVM is to find the hyperplane that best 

classifies the training set while maximizing the minimal margin of the linear 

discriminant function with respect to the training set Z. 

 

The aim of SVM is to maximize the distance between the two parallel lines which 

can be expressed as the following equations.  

 x · w + b = 1       and    x · w + b = -1 (2.42) 

 xi · w + b ≥  1   for yi=+1    and   xi · w + b ≤ -1   for yi=-1   (2.43) 

 

These two equations can be put together as: 

 yi(xi · w + b) ≥ 1 (2.44) 

 

xi is a feature vector of the ith training document represented by an n dimensional 

vector and yi is the class (positive (+1) or negative (-1)) label of the ith training 

document. All vectors lying on one side of the hyperplane are labeled as -1, and 

all vectors lying on the other side are labeled as 1. The training documents which 

lie on either of two dashed lines are called support vectors. 
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Figure 2.9: SVM with Maximum Margin 

 

 

The margin is given by: 

 

2
|| ||

M
w

=  (2.45) 

 

Hence the hyperplane that optimally separates the data is the one that minimizes: 

 21 || ||
2

L w=  (2.46) 

 

The solution to the optimization problem of Equation 2.46 under the constraints of 

Equation 2.44 is given by the saddle point of the Lagrange functional (Lagrangian)  

 
2

1 1

1 || || , )
2

l l

p i i i i
i i

L w y x w bα α
= =

= − < > + +∑ ∑  (2.47) 
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where α are the Lagrange multipliers. The Lagrangian has to be minimized with 

respect to w, b and maximized with respect to α ≥ 0.  

Solution to the problem is given by, 

 

*

1 1 1

1arg min ,
2

l l l

i j i j i j k
i j k

y y x x
α

α αα α
= = =

= < > −∑ ∑ ∑   (2.48) 

 

with constraints, 

 1

0
l

j j
j

yα
=

=∑
           

0iα ≥            i=1,2,......,l (2.49) 

 

Solving Equation 2.48 with constraints Equation 2.49 determines the Lagrange 

multipliers, and the optimal separating hyperplane is given by, 

 
*

1

l

i i i
i

w y xα
=

=∑
         

* *1 ,
2 r sb w x x= − < + >            (2.50) 

 

where rx and sx are any support vector from each class satisfying, 

 , 0     1, 1r s r sy yα α > = − =  (2.51) 

 

The hard classifier is then, 

 
*( ) sgn( , )f x w x b= < > +   (2.52) 

 

In the case where a linear boundary is inappropriate the SVM can map the input 

vector, x, into a high dimensional feature space, z. By choosing a non-linear 

mapping a priori, the SVM constructs an optimal separating hyperplane in this 

higher dimensional space, 
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Figure 2.10: Kernel Function Mapping 

 

 

This mapping is done by using polynomials, radial basis functions and certain 

sigmoid functions.  

 

The optimization problem of Equation 2.41 becomes, 

 

*

1 1 1

1arg min ( , )
2

l l l

i j i j i j k
i j k

y y K x x
α

α αα α
= = =

= −∑ ∑ ∑   (2.53) 

 

where ( , )i jK x x  is the kernel function performing the non-linear mapping into 

feature space, and the constraints are unchanged, 

                                  
1

0
l

j j
j

yα
=

=∑
        

0            ...i C i=1, ,lα≤ ≤     (2.54) 

 

Solving Equation 2.53 with constraints Equation 2.54 determines the Lagrange 

multipliers, and a classifier implementing the optimal separating hyperplane in the 

feature space is given by, 

 
( ) sgn( ( , ))i i j

i SVs
f x K x xα

ℑ

= ∑  (2.55) 
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2.4.1 Kernel Functions 

Define the kernel function K  by 

 ( , ) ( ), ( )ı ıK x x x x=<Φ Φ >  (2.56) 

 

An inner product in feature space has an equivalent kernel in input space. K  

should be positive semi definite function. Most common kernel functions are 

polynomial, radial basis and quadratic functions. 

2.4.1.1 Polynomial 

A polynomial mapping is a popular method for non-linear modeling, which has the 

form, 

 ( , ) ,ı ı dK x x x x=< >  (2.57) 

 

where d  denotes the degree of the polynomial. Linear (degree 1), Quadratic 

(degree 2) and Cubic (degree 3) kernels are special cases of the polynomial 

kernel and obtained using the polynomial kernels with the degrees 1, 2 and 3, 

respectively. The polynomial kernel is usually preferred as shown below in order 

to avoid problems with the hessian becoming zero. 

 ( , ) ( , 1)ı ı dK x x x x= < > +  (2.58) 

 

2.4.1.2 Gaussian Radial Basis Function 

A radial basis function of the form, 

 

2

2

|| ||( , ) exp( )
2

ı
ı x xK x x

σ
−

= −  (2.59) 

 

which produces a piecewise linear solution which can be attractive when 

discontinuities are acceptable. 
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2.5 Morphological Operations 

Morphology is a technique of image processing based on shapes. The value of 

each pixel in the output image is based on a comparison of the corresponding 

pixel in the input image with its neighbors. By choosing the size and shape of the 

neighborhood, you can construct a morphological operation that is sensitive to 

specific shapes in the input image. Morphologic operations are especially suited 

to the processing of binary images and grayscale images.  

 

2.5.1 Erosion and Dilation 

Dilation and erosion are two fundamental morphological operations. Dilation adds 

pixels to the boundaries of objects in an image, while erosion removes pixels on 

object boundaries. In the morphological dilation and erosion operations, the state 

of any given pixel in the output image is determined by applying a rule to the 

corresponding pixel and its neighbors in the input image. The rule used to process 

the pixels defines the operation as a dilation or an erosion. The rule of dilation can 

be defined as the value of the output pixel is the maximum value of all the pixels 

in the input pixel’s neighborhood. In a binary image, if any of the pixels is set to 

the value 1, the output pixel is set to 1. The rule of dilation can be defined as the 

value of the output pixel is the minimum value of all the pixels in the input pixel’s 

neighborhood. In a binary image, if any of the pixels is set to 0, the output pixel is 

set to 0. An example of erosion and dilation is illustrated in Figure 2.11. 
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Figure 2.11: (a) Images of Squares of Size 1,3,5,7,9,15 Pixels on the Side. (b) 
Erosion of (a) with a Structuring Element of 1’s,13 Pixels on the Side. (c) Dilation of 

(b) with the Same Structuring Element. 

 

 

2.6 Performance Criteria 

As to the accuracy assessment of the proposed methodology, pixel-based and 

object-based evaluation metrics were applied.In pixel-based evaluation [61], the 

ground truth data is compared to the output image obtained by the methodology. 

The accuracy assessment involves computation of True Positive (TP), False 

Positive (FP) and False Negative (FN) pixel counts. TP refers to the regions 

determined correctly as building. FP refers to the false alarm determined as 

buildings. FN refers to the regions, which could not be determined as buildings 

although they exist in the ground truth. Based on these components the split 

factor, (SF=FP/(TP+FP)), missing factor (MF=FN/(TP+FP)), percent of building 

determination (PBD=100*TP/(TP+FN) and quality percent 

(QP=100*TP/(TP+FP+FN)) are calculated.  

 

In object-based error measure, the overlapping area matrix (OAM) [62 and 63], is 

used to measure the performance of the algorithm. Let the i’th ground truth object 

be shown as iGT  while the j’th output object be denoted as jO . The set of objects in 

the ground truth are denoted as GTr = GT0,GT1,.....,GTNr{ } and the output objects are 

denoted as Oo = O0,O1,.....,ONo{ }, where 0GT  is background in the ground truth, 0O   is 
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background in the output, rN  is the number of objects in the ground truth and oN

is the number of objects in the output  maps. 

 

The sizes of the objects 
iGT  and 

jO  and the whole image I  are calculated from 

the OAM as 

 0

0
( )

N

i ij
j

n GT C
=

= ∑  (2.60) 

 
0

( )
rN

j ij
i

n O C
=

=∑  (2.61) 

 0

0 0
( ) ( ) ( )

r NN

i j
i j

n I n GT n O
= =

= =∑ ∑  (2.62) 

 

where ijC is the number of pixels in the i’th object in the ground truth map that 

overlap with the j’th object in an output map produced by the algorithm. 

By adoption of OAM on each pair of ground truth iGT  and model output 
jO , for a 

specified threshold T objects are classified as follows: 

 

Correct detection: A pair of objects iGT  and jO  is classified as an instance of 

correct detection if 

 ( )ij jC T n O≥ ×  (2.63) 

 ( )ij iC T n GT≥ × . (2.64) 

 

Over detection:  An object iGT  and a set of objects
kjj OO ,...,

1
, oNk ≤≤2 , are 

classified as an instance of over-detection if 

 ( )t iij jC T n O≥ × , ∀t ∈ 1,...,k{ }  (2.65) 

  ( )1 t

k
ij it

C T n GT
=

≥ ×∑  (2.66) 
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Under detection: A set of objects 
kii GTGT ,...,

1
, rNk ≤≤2 , and an object jO  are 

classified as an instance of under-detection if 

 
1

( )
t

k
i j jt

C T n O
=

≥ ×∑ ,  (2.67) 

 ( )t ti j iC T n GT≥ × , ∀t ∈ 1,...,k{ }. (2.68) 

 

Missed detection:  A ground truth object iGT  is classified as a missed detection if 

it does not participate in any instance of correct detection, over-detection or 

under-detection. 

 
False Alarm: An output object 

jO  is classified as a false alarm if it does not 

participate in any instance of correct detection, over-detection or under-detection. 
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    CHAPTER 3  

3 THE PROPOSED APPROACH FOR BUILDING 
DETECTION  

The proposed building detection method consists of four main stages; these 

are feature extraction, feature selection, classification and post processing. 

The basic block schema of the proposed approach is given in Figure 3.1. As 

input data, only mono RGB images are used. The proposed method is applied 

on the satellite images of the cities Eskisehir and Ankara in Turkey. The set of 

selected satellite images have different types of buildings (i.e. different colors 

and shapes). 

 

 

 

Figure 3.1: The Basic Block Schema Of The Proposed Building Detection Approach 
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The detailed block schema of the proposed approach is given in Figure 3.2. The 

feature extraction stage includes extraction of intensity textural features and HSV 

domain features. The classifiers may use these features’ set one by one and all 

together i.e. using features extracted only from intensity, using features extracted 

from HSV domain and using both of them.  In feature selection stage, selection by 

Adaboost, selection using minimum histogram errors and no selection is applied. 

Adaboost uses the features itself selected. SVM kernels are fed by all three type 

of feature selection methods. After applying a simple post-process stage, resulting 

segmented image with building patches are obtained. 

 

 

 

 

Figure 3.2: The Detailed Block Schema of the Proposed Building Detection 
Approach 
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3.1 Feature Extraction  

In order to extract local features, feature extraction windows must be defined. Two 

different types of windows are defined in this work. In the first one, feature 

extraction is in non-overlapping windows and labeling (i.e. building or non-

building) includes the whole window. If half of the pixels in the window belong to 

building, the window is in building class and vice versa. In classification stage, the 

window is also classified as building or non-building. Thus, the classification 

resolution of the image is reduced proportional to window size. In second style, 

features extracted are assigned to the center pixel. Feature extraction goes on an 

overlapping manner on the image. In training and classification, the label of the 

center pixel is used. Different window sizes are examined in this study for both 

overlapping and non-overlapping window types.  

 

The features are examined under eight classes, which are basic features, Zernike 

moments, Circular Mellin features, Fourier power spectrum features, Gabor filters, 

Haralick features, wavelet features and HSV domain features. Except the last one 

that is HSV features, only intensity information is used. Here HSV is used rather 

than RGB since in HSV domain, (HS) which is related to color is better 

differentiated from illumination component, which is (V).   

 

3.1.1 Basic Features 

Since building regions have similar intensity characteristics, it is reasonable to use 

these basic features for distinguishing buildings from its surroundings. The basic 

feature set consists of mean and variances of intensity and gradient of intensity of 

the concerned image block. In addition to that, some additional features of 

intensity, which are entropy, energy and variogram, are also utilized in basic 

feature set. The variogram features are computed for three different distance (d) 

scales as 1, 2 and 3 pixels. These features are listed as given below.  
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(3.1) 

 

3.1.2 Zernike Moments 

In this study, Zernike moments are employed as features as well. Zernike 

moments are rotation invariant image moments. Because of the fact that the 

orientation of building is not known, the rotation invariance is mandatory.  
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(3.2) 
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3.1.3 Circular Mellin 

Circular-Mellin features, which are orientation and scale invariant, are another set 

of utilized vectors used in this work. This algorithm uses two main parameters: 

radial frequency (p) and annular frequency (q). Some experimental results are 

given in [54] about the selection of these variables by a search algorithm. This 

search algorithm works as a feature selector and determines the best p and q 

combination. In reference [54] it is proposed that a single Circular-Mellin feature 

(p = 1 and q = 5) is used for building detection example. The set of used Circular-

Mellin features is given in Equation 3.3, which includes the aforementioned 

parameters: p = 1, q = 5.  
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F

 

(3.3) 

3.1.4 Fourier Power Spectrum 

Periodic image patterns can be extracted using Fourier Power Spectrum analysis. 

In this thesis, power spectrum is examined using six equal ring shaped regions. 

The feature vector is formed as given in Equation 3.4 
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(3.4)

 

 

where { }( , ) = ( , )u v DFT x yγΓ  and nr 's are equally spaced radii over frequency 

domain, 6r  being the maximum frequency.  

 

The first rows of the feature vector represent total powers contained by each 

region. The remaining rows contain the maximum, average, energy and variance 

information of Discrete Fourier Transform magnitude of image block. The 

variogram of DFT magnitude is also included in the feature set for three different 

distance (d) scales as 1, 2 and 3 pixels.

 
 

3.1.5 Gabor filters 

A dictionary of Gabor filters is computed in order to analyze directional 

components. Rangayyarn et al. [59] propose an approach that results in the 

following formulas for computing the filter parameters uσ and vσ : 
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(3.8) 

 

where lU  and hU  denote the lower and upper center frequencies of interest. The 

K and S parameters are, respectively, the number of orientations and the number 

of scales in the desired multi-resolution decomposition procedure. 

 

In this work, the Gabor wavelets were projected by using four scales (S = 4) and 

six directions (K = 6) with the lower and upper center frequencies specified as 

= 0.05lU  and = 4.5hU  cycles/pixel, respectively in accordance with [59]. The 

filtering process was performed in the frequency domain.  

   

Gabor filter features are shown in Equation 3.9. The means and variances of the 

Gabor filtered images used as features.  
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(3.9) 

 

where , ( )k sG γ  denotes the γ  signal, filtered with the Gabor filter, ,k sg . 

 

Gabor filters typically have directionality, which is not a desired property for 

building detection problem. A simple method, which is proposed in [64], is used to 

overcome this difficulty and make Gabor filter outputs approximately rotation 

invariant. The resulting feature vector is circularly shifted with the intention that 

the scale-orientation pair having the maximum mean is located at the beginning of 

the vector.  

 

3.1.6 Haralick Features 

As described in the background section, Haralick features are calculated in the 

polar form δ=(d, θ), where d is called the intersample spacing distance and θ is 

called the angular orientation. In this work Haralick features are calculated using 

four different orientations and three different spacing distance which correspond 

to adjacent pixels at 0 o , 45o , 90 o  and 135o  and spacing distance as 1, 2, 3 and 4 

pixels, respectively. The resulting feature measures are obviously orientation 

dependent. In this thesis, these measures are summed up for four different 

orientations to decrease the orientation dependency of the measures. As a result, 
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six measures are computed for four different spacing distances (sixteen features 

in total). The feature vector is given in Equation 3.10 where d denotes spacing 

distance. The computations of these measures are explained in the previous 

section in details. 
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(3.10) 

 

3.1.7 Wavelet Analysis 

Wavelet features are extracted by means of Discrete Wavelet Transform (DWT). 

In this work, daubechies-4 wavelet is used for wavelet analysis. A multi-resolution 

decomposition is achieved by applying the single-level wavelet decomposition 3 

times recursively to low-frequency component. Then, energies and standard 

deviations (2 measures) of four components (LL: Low-Low, LH: Low-High, HL: 

High-Low and HH: High-High) for three levels are employed as features (24 

features in total). The consequential feature vector is given in Equation 10 where 

,c senergy  and ,c svar  are the energy and variance of the wavelet filtered signals of 

component c  at stage s . 
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(3.11) 

 

3.1.8 HSV Domain Features 

HSV domain features are selected as: mean, variance, mean of gradient 

magnitude and variance of gradient magnitude for hue, saturation and value 

components. In addition to these features, center pixel values for each component 

are included in the feature set.  

 

Since the saturation and value components are linear data, common mean and 

variance formulas, given in Section 2.2.1 can be applied. On the other hand, Hue 

is an angular data and directional statistics is involved in mean and variance 

calculations as given in Equations 3.12-3.18  

 ( )2 ( , )= j h x y
h

x y
mean e π⎡ ⎤
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(3.13)  

 ,1( , ) = ( ( , ) ( 1, ) 360 ) 360hd x y h x y h x y mod− − + o o

 

(3.14) 

 ,2 ( , ) = ( ( , ) ( , 1) 360 ) 360hd x y h x y h x y mod− − + o o

 

(3.15) 
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(3.18) 

 

where h(x, y), s(x, y) and v(x, y) functions denote channels of HSV image and ∠  

denotes the angle of complex number. The HSV domain features used in this 

work are shown in Equation 3.19. 
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3.2 Feature Selection 

Among the two classifiers used in this study, Adaboost uses itself selected 

features so there is no need to select features for Adaboost. For SVM, this is not 

the case. SVM uses predefined features for both training and classification. One 

way is applying no feature selection and using all the features in the set. 

However, this is not a good approach since there may be invaluable features in 
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the feature set. Also using more features makes optimization phase of SVM more 

complex and extraction of all features takes more time than extraction of only 

useful features.  

 

In this study, two feature selection methods are applied. First one is take 

advantage of feature selector nature of Adaboost. In every iteration of Adaboost, 

the weights of the samples in the training set are updated. The weights of 

incorrectly classified samples are increased and the weights of correctly classified 

samples are decreased. In the following iteration these new weights are used 

enabling more chance for incorrectly classified samples to be correctly classified.    

As a result, Adaboost selects features taking into account incorrect classifications 

and features selected by Adaboost can be used in training and classification of 

SVM. 

  

The second way used for feature selection of SVM is feature histograms. By 

examining the histograms of features, the separation capacity of features can be 

obtained. The features having more separation capacity over the train set can be 

chosen. Also, the errors inferred from these histograms can also be used. In 

Appendix A, the normalized errors of the features are given as well as six 

example images with normalized feature values. For the extraction of these 

errors, the approach explained  below is used. First, the histogram of the feature 

is obtained with two classes. Example histogram is given in Figure 3.3.  

 

 

 
 

Figure 3.3: Example Histogram for Calculating Histogram Errors 
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The computation of the error is given below.  

 

E1 corresponds to the probability a sample from class A is (mis)classified to class 

B. E2 corresponds to the probability a sample from class B is (mis)classified to 

class A. In order to estimate E1 and E2 the algorithm given below is used. 

 

 

• Compute the histograms (h1 and h2) from the respective samples (Data1 and 

Data2). 

• Initialize: E1 = 0 and E2 = 0. 

• For each bin i in histogram h1: 

       if (h1(i)<h2(i)) then E1 = E1 + h1(i) 

       if (h1(i)>h2(i)) then E2 = E2 + h2(i) 

• Normalize E1 and E2 (divide by the sum of the h1 and h2 respectively). 

• Then, the errors are: 

• E = (E1 + E2) /2 

Figure 3.4: Algorithm for Computation of the Errors 

 

 

All three approaches namely, no selection, Adaboost selections, selection using 

histogram errors are applied to SVM. 

 

3.3 Classification 

For the purpose of classification, Adaboost and four SVM kernels are used. These 

kernels are linear, polynomial, RBF and quadratic. The background information of 

the classifiers is given in Section 2.3 and 2.4. The detailed analyses regarding 

these classifiers are given in Section 4.  
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3.4 Post-processing 

Two basic heuristics are used in post processing. First, one is area thresholding. 

Since the area of a building cannot be smaller than a threshold value, the 

connected regions smaller then that threshold are removed. Before this, a dilation 

operation is employed to break off the weak connections between regions. The 

second one is filling the holes, which are greater than the threshold value in 

connected regions. 
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    CHAPTER 4  

4 EXPERIMENTAL RESULTS  

In this chapter, first, the sensitivity analyses are done, then detailed results for the 

selected classifiers are given, and finally, a comparison of classifiers is done.  

4.1 Sensitivity analysis 

In sensitivity analysis, we will see how the performance of building detection 

success is affected by changing various parameters. The analysis that we 

employed mainly cover the window type and size, feature types, iteration count or 

number of features used and training set. Adaboost and SVM with linear, 

quadratic, polynomial and RBF kernels are used as classifiers.  

 

Five images are used for sensitivity analysis. These images are given in Figure 

4.1 to Figure 4.5. The image in Figure 4.5 is taken from IKONOS and has a 

resolution of 1 meter. The other images are taken from Quickbird and their 

resolutions are 0.6 meters. We try to choose our images having different size and 

type of buildings. 
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Figure 4.1: 1. Image (Quickbird Image of Resolution 0.6 M) 

 

 

 

 
 

Figure 4.2: 2. Image (Quickbird Image of Resolution 0.6 M) 
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Figure 4.3: 3. Image (Quickbird Image of Resolution 0.6 M) 

 

 

 

 
 

Figure 4.4: 4. Image (Quickbird Image of Resolution 0.6 M) 
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Figure 4.5: 5. Image (IKONOS Image of Resolution 1 M) 

 

 

 

There are several parameters to be considered whose different combinations 

require an excessive number of experiments to be conducted. In order to set a 

reasonable number of experiments, we try to fix some of the parameters while 

changing others. First, we will begin with window type and size and fix a window 

type and size. Then we will go through the effect of changing feature set that is 

using intensity textural features, HSV domain features and all features. After 

selecting the feature set, we will see the effect of iteration count for Adaboost and 

number of features for SVM. We will select suitable iteration number and feature 

count. Also at this point, we will reduce the classifier number. Finally, we will see 

the effect of changing training set. 

 

In order to do the selection of parameters, we need some performance measures. 

As pixel based performance, we use SF (split factor) where SF=FP/(TP+FP) that 

is the incorrectly detected regions that are not building over the all building output 

of the classifier, MF (missing factor) where MF=FN/(TP+FP) that is the regions 

that are building and not detected by the classifier over the all output of the 

classifier. PBD (percent of building detection) where PBD=100*TP/(TP+FN) is the 
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correctly detected building regions percentage over the ground truth building 

regions. PBD is only a measure of building areas and it does not contain any 

information about incorrectly detected regions. Finally, QP (quality percentage) 

where QP=100*TP/(TP+FP+FN) gives a quick performance of the classifier. It 

uses TP count which is correctly detected building areas in the numerator and 

uses (TP+FP+FN) in the dominator where (TP+FN) gives all ground truth building 

pixels and (TP+FP) gives the classifier output i.e. dominator is formed by the 

union of ground truth buildings and classifier output. If correct detection of building 

pixels decreases that is TP decreases, QP decreases and also if incorrect 

detection of building pixels increases that is FP increases, again QP decreases. 

Table 4.1 shows an example of pixel performance values. As a result, higher PBD 

and QP values and lower SF and MF values are fine for us. The range for SF is 0 

to 1, the range of MF is 0 to infinity and the range for PBD and QP is 0 to 100. In 

the ideal case which is corresponding to the first row of the Table 4.1, SF=0, 

MF=0, PBD=100 and QP=100. The last two rows of the Table 4.1 gives the results 

for giving all the pixels as building pixels and giving all the pixels as non-building 

pixels respectively. The building and non-building pixel numbers given in the last 

two rows are like our images in percentage. QP can give the overall performance 

by itself but the other measures are meaningful when used all together.  
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Table 4.1 : Example of Pixel Performance Values 

Example of pixel performance criteria 

All 

pixels 

GT 

Building 

pixels 

GT 

non-

building

pixels 

TP 

pixels

FP 

pixels

FN 

pixels

SF 

 

MF 

 

PBD 

 

QP 

 

200 100 100 100 0 0 0 0 100 100 

200 100 100 75 0 25 0 0,33 75 75 

200 100 100 75 50 25 0.4 0.2 75 50 

200 100 100 50 50 50 0,5 0,5 50 33 

200 50 150 50 150 0 0.75 0 100 25 

200 50 150 20 20 30 0.5 0.75 40 28.5 

200 50 150 40 100 10 0.71 0.07 80 26 

200 50 150 50 150 0 0.75 0 100 25 

200 50 150 0 0 50 0 nan 0 0 

 

 

 

Object based performance is the other measure that we use to evaluate 

performance. In object-based performance, performance evaluation is done 

based on objects. Objects are the connected pixel groups. Object based 

performance is evaluated using the intersection percentage of objects in the 

ground truth and in the output of the classifier. If this intersection percentage is 

higher than a threshold value “T” and there is no intersection with other objects, 

the object is an instance of “correct detection”. If an object in the ground truth 

intersects more than one object in the output and the intersection percentage is 

higher than the threshold value, this is an instance of “over detection”. If an object 

in the output intersects more than one object in the ground truth and the 

intersection percentage is higher than the threshold value, this is an instance of 

“under detection”. If an object in the ground truth has an intersection percentage 

less than the threshold value, this is an instance of “missed detection”. If an object 

in the output has an intersection percentage less than the threshold value, this is 

an instance of “false alarm”. Correct detections are the measure that we desired 

to increase, however in case some of the buildings are not correctly detected then 
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we prefer them to be still detected by over detection and under detection. Missed 

detections and false alarms are the measures that we desire to decrease. The 

examples of these measures are given in Figure 4.6. In that figure, object 

detection threshold value, T = 0.4. In the figure, reds are “correct detection”, 

yellows are “missed detection”, blues are “under detection”, greens are “over 

detection” and finally, purples are “false alarm”. 

 

 

 

(a) (b) 

(c) (d) 

Figure 4.6: Example of Object Detection Performance: a) Ground Truth Objects of 
Example Image 1, b) Classifier Output for Image 1, c) Ground Truth Objects of 

Example Image 2, d) Classifier Output for Image 2.  
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4.1.1 Window Size Analysis   

Our analyses start by choosing an appropriate window type and size. In order to 

reduce the number of experiments first we have to fix some parameters. All the 

features are used in this analysis and two feature selection approaches are 

applied. The first one is selection by Adaboost and the second one is selection 

according to histogram errors. The iteration count for Adaboost or the features 

used in SVM is fixed to 16. This number is decided by some priory experiments 

by observing the operation of Adaboost and SVM. Later, a further analysis will be 

done by considering the effect of changing iteration and feature count. Three 

different sets of features are formed for SVM kernels. These are features selected 

by Adaboost, features selected using histogram errors and all 161 features in the 

feature set. Adaboost also used 161 features with 16 iterations and use 

convenient features for training and classification. As training set %5 percent of all 

images are used to reflect all properties of the images and performance 

evaluation is done in the other %95. Similarly, a further analysis will be given 

considering the effect of training set.  In case of a memory problem %5 percent 

training images are appropriately down sampled. In fact in SVM kernels that is the 

case and training set is reduced to 100-300 feature vectors while using all 

features and 150-400 feature vectors while using selected features. No object 

performance is given in this analysis. Only average QP values obtained through 5 

images are used to evaluate the performance since QP both includes FN and FP 

values.  

 

Window size analysis includes two different window types. In the first one, feature 

extraction is in non-overlapping windows and labeling (i.e. building or non-

building) includes the whole window. If half of the pixels in the window belong to 

building, the window is in building class and vice versa. In classification stage, the 

window is also classified as building or non-building. Thus, the classification 

resolution of the image is reduced proportional to window size.  Window sizes 

from 3 to 19 will be examined. In second style, features extracted are assigned to 

the center pixel. Feature extraction goes on an overlapping manner. In training 

and classification, the label of the center pixel is used.  
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First off all, non-overlapping window analysis is presented. In these analyses, 

Adaboost is used with 16 iterations.  Figure 4.7 shows the QP values for different 

window sizes. In this figure, SVM kernels used all the features in the feature set. 

There was no selection of features for SVM kernels. Figure 4.8 illustrates the 

window size performance of SVM kernels with 16 features selected by Adaboost. 

Finally, Figure 4.9 presents the QP for SVM kernels with minimum histogram error 

features.  

 

 

 

 

Figure 4.7: Non-Overlapping Window; QP vs. Window Size Using All Features 
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Figure 4.8: Non-Overlapping Window; QP vs. Window Size Using Features Selected 
by Adaboost 

 

 

 

 

Figure 4.9: Non-Overlapping Window; QP vs. Window Size Using Features with 
Minimum Histogram Errors 
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There is a convergence problem for the RBF kernel while using all features. The 

performance of both Adaboost and SVM kernels are decreasing with increasing 

window size since the resolution of classification decreases with increasing 

window size i.e. the performance evaluation is done pixel based but classification 

is done with window size. An increase in the performance of SVM kernels is 

observed if feature selection either by Adaboost or by histogram errors is applied. 

 

It is the second window type which features extracted are assigned to the center 

pixel. Feature extraction goes on an overlapping manner. In training and 

classification, the label of the center pixel is used. 

 

Adaboost selects 16 features and uses them in classification in all sets. In first 

set, SVM kernels are fed by all the features and Figure 4.10 shows the results. 

Figure 4.11 illustrates the result of SVM kernels using Adaboost selected 

features. Figure 4.12 shows the results for SVM kernels fed by features with 

minimum histogram errors. 

 

 

 

 
 

Figure 4.10: Overlapping Window; QP vs. Window Size Using All Features 
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Figure 4.11: Non-Overlapping Window; QP vs. Window Size Using Features 
Selected by Adaboost 

 

 

 

 

Figure 4.12: Non-Overlapping Window; QP vs. Window Size Using Features with 
Minimum Histogram Errors 
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At first glance, overlapping window performances are better than non-overlapping 

window performances. That is what we expect. Applying overlapped window 

increases the classification resolution on the image. In addition, there is an 

increase in the performance if feature selection is applied rather than using all 

features. After deciding to use overlapping window and feature selection, we have 

to choose a window size and continue the further analyses using this window 

size. The performance of all the methods has a tendency first to increase as the 

window size increases but then it decreases. This is also what we expect. If the 

window size is too small, it is not sufficient to extract some textural features. If it is 

too large, the regions belonging to both building and non-building are covered 

together in the window so discrimination power of the feature is reduced.  

Adaboost has best performance in window sizes 7 and 9. Performances in 5, 11 

and 13 are also fine. SVM kernels using Adaboost selections have better results 

for window sizes 9 and 11. SVM kernels using minimum errors have better 

performances for 5, 11 and 13.  Window size of 11 seems a fair and good 

selection for all of the classifiers. 

 

In conclusion, overlapping window performances are better than non-overlapping 

window performances and feature selection increases the performance. Window 

size 11 is the most convenient one when overall performances of all the methods 

are considered. Further analyses on other parameters will be done with window 

size 11 and overlapping windows. 

 

4.1.2 Feature Analysis 

In feature analysis, the pixel performance of Adaboost and four SVM kernels are 

investigated. While doing experiments overlapping window with size 11 is used. 

The iteration count for Adaboost is 16 and feature count for SVM is 16. As training 

set, %5 of all images are used and performance is evaluated in other %95 part of 

the image. The average performance obtained through 5 images is considered. 

 

In first set, only intensity textural features are used. Adaboost is a method which 

selects its own features and uses them in classification. Therefore, no additional 

step is needed for feature selection for Adaboost. However, SVM kernels are fed 
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by three different set of features. The first one is all textural features in the feature 

set. Second one is the feature set selected by Adaboost and the third set is 

features with minimum histogram errors. SF, MF, PBD and QP values for 9 

classifier are given in Table 4.2. The best values obtained among Adaboost and 

SVM kernels for each performance criteria is indicated bold in the table. 

 

 

 

Table 4.2: SF, MF, PBD and QP Values for 9 Classifier with Intensity Textural 
Features 

 

INTENSITY TEXTURAL FEATURES PERFORMANCE 

Classifier/performance SF MF PBD QP 

ADABOOST 0.68 0.13 71.8 28.3 

SVM 

ALL 

TEXTURAL 

FEATURES 

LINEAR 0.93 105.5 0.84 0.82 

QUADRATIC 0.90 13.91 1.62 1.33 

RBF 0 0 0 0 

POLYNOMIAL 0.75 9.15 15.9 9.2 

SVM 

FEATURES 

SELECTED 

BY 

ADABOOST 

LINEAR 0.86 35.3 2.37 2.12 

QUADRATIC 0.54 2.36 23.9 17.6 

RBF 0.78 52.63 3.84 3.51 

POLYNOMIAL 0.71 17.6 9.37 6.52 

SVM 

FEATURES 

WİTH 

MINIMUM 

ERROR 

LINEAR 0.83 36.3 3,01 2.85 

QUADRATIC 0 0 0 0 

RBF 0.63 3.15 18.6 9,30 

POLYNOMIAL 0 0 0 0 
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Adaboost has a high PBD value but QP value is quite low. In addition, a high SF 

and low MF shows us that the classifier found most of the building areas but with 

a high rate of FP. Within the SVM kernels, only quadratic kernel with Adaboost 

selected features has remarkable performance but it also has much lower PBD 

value and lower QF value than Adaboost. Intensity textural features have less 

separation capacity compared to HSV features and here we can see that 

Adaboost can form a strong classifier from weak classifiers but SVM kernels have 

poor performances while using features with less separation capacity. 

 

In the second set, only HSV domain features are used. Adaboost selects its own 

features and uses them in classification. SVM kernels are fed by three different 

set of features. The first one is all textural features within the HSV domain. The 

second one is the HSV feature set selected by Adaboost and the third set is the 

HSV domain features with minimum histogram errors. SF, MF, PBD and QP 

values for 9 classifier are given in Table 4.3. Again, the best values obtained 

among Adaboost and SVM kernels for each performance criteria are indicated 

bold in the table. 
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Table 4.3: SF, MF, PBD and QP Values for 9 Classifier with HSV Domain Features 

 

HSV FEATURES PERFORMANCE 

Classifier/performance SF MF PBD QP 

ADABOOST 0.42 0.49 67.61 41.82 

SVM 

ALL 

FEATURES 

LINEAR 0.23 1.46 47,6 40.3 

QUADRATIC 0.21 1.07 45.74 41.29 

RBF 0.16 22.28 4.11 4.07 

POLYNOMIAL 0.25 1.53 43.8 37.2 

SVM 

FEATURES 

SELECTED 

BY 

ADABOOST 

LINEAR 0.32 1.13 38.1 31.9 

QUADRATIC 0.27 14.0 35.1 31.3 

RBF 0.086 13.91 5.35 5.29 

POLYNOMIAL 0.27 2.05 41.7 34.99 

SVM 

FEATURES 

WİTH 

MINIMUM 

ERROR 

LINEAR 0.27 1.86 28.93 24.31 

QUADRATIC 0.16 1.12 38.5 35.52 

RBF 0.14 1.07 39.47 36.75 

POLYNOMIAL 0.089 16.09 39.35 36.43 

 

 

 

Again, Adaboost has the best performance over all but this time all SVM kernels 

have also good results except RBF with all features and RBF with Adaboost 

selected features. Adaboost have acceptable SF and MF values which means 

that the classifier output have nearly same FN and FP values but in SVM kernels 

SF values are low i.e. FP values are low. The MF values of SVM kernels are high 

that is FN values are high. Nearly 25 percent of the images are building pixels. 

The size of non-building pixels is nearly three times larger than the size of building 

pixels so the SF values lower than 0.5 is reasonable. To conclude the results, 

Adaboost finds much of the building pixels but also finds non-building pixels as 

building pixels and SVM kernels finds less building pixels also they find less non-

building pixels as building pixels. 
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In third set all the features are used. Adaboost selects its own features and uses 

them in classification. SVM kernels are fed by three different set of features. The 

first one is all features in the feature set. The second one is the feature set 

selected by Adaboost and the third set is features with minimum histogram errors. 

SF, MF, PBD and QP values for 9 classifier are given in  

Table 4.4. 

 

 

 

Table 4.4: SF, MF, PBD and QP Values for 9 Classifier with All Features 

 

ALL FEATURES PERFORMANCE 

Classifier/performance SF MF PBD QP 

ADABOOST 0.35 0.45 67.8 46,9 

SVM 

ALL 

FEATURES 

LINEAR 0.23 6.09 33.5 31.2 

QUADRATIC 0.54 14.6 12.9 11.5 

RBF 0 0 0 0 

POLYNOMIAL 0.35 3.7 36.9 30,3 

SVM 

FEATURES 

SELECTED 

BY 

ADABOOST 

LINEAR 0.15 1.04 39.9 36.1 

QUADRATIC 0.29 1.32 39.5 33.4 

RBF 0.14 5.44 12.1 11.7 

POLYNOMIAL 0.21 2.72 39.9 32.9 

SVM 

FEATURES 

WİTH 

MINIMUM 

ERROR 

LINEAR 0.21 1.59 32.3 28.1 

QUADRATIC 0.11 1.34 35.1 33.0 

RBF 0.19 2.25 24.3 22.9 

POLYNOMIAL 0.27 0.85 43.6 36.9 
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Again, Adaboost classifier has the best performance and the performance is 

slightly increased compared to HSV domain performance. The performance of 

SVM kernels are slightly decreased compared to HSV domain. 

The best performance is achieved is in Adaboost by using all features. SVM 

kernels have slightly better performance in HSV domain. Also in the absence of 

RGB image, Adaboost with intensity textural features may be useful. In iteration 

count analysis, SVM kernels will be used with all features and HSV domain 

features. The analysis of feature count for SVM with intensity textural features will 

not be done since SVM kernels are not useful with low separation capacity 

features.  Adaboost will be used with textural features, HSV domain features and 

all features.  

 

4.1.3 Iteration and feature count analysis 

Now that we fixed window to overlapping with size 11 and decided to use all 

features for all SVM kernels, intensity textural features only for Adaboost. HSV 

domain features also will be used for Adaboost and one of the SVM kernels that 

gives the best result in all features count analysis. In the past analyses %5 off all 

images were used in training and pixel performance in unused %95 was 

evaluated. In iteration count analyses, upper %20 part of the all images will be 

used in training and object performance with building detection threshold of 0.4 

and pixel performance with PBD and QP will be evaluated in the lower %80 part 

of the images. These analyses will be done up to 30 features, keeping in mind 

that using the classifier with 161 features takes much time especially in feature 

extraction phase. Using more than 30 features will begin to take also much time.  

 

One important thing to keep in mind is that Adaboost uses selected features in a 

weighted way but SVM kernels uses them without weighting i.e. all features in 

SVM kernels have the same importance. Before starting the analysis, an example 

table will be given in order to explain how Adaboost uses features and also in the 

analysis, these features will be used by SVM kernels. In addition, SVM kernels 

will use the features with minimum histogram errors and example of this table will 

also be given.  
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4.1.3.1 Iteration and feature count analysis for all features 

The performance of Adaboost using all features and the performance of four SVM 

kernels will be investigated in this section with the changing iteration count for 

Adaboost and the changing feature count for SVM kernels. For SVM kernels, two 

different sets of features are used. First, one is the features selected using 

histogram errors. Second one is the features selected by Adaboost. Note that the 

features multiply selected by Adaboost are removed from SVM feature set. 

 

Before starting iteration and feature count analysis, introducing the features 

selected by Adaboost and the features selected using histogram errors would be 

better since this analysis is done using these features.  

Table 4.5 illustrates the features selected by Adaboost over all features. In this 

table, first three columns are selection order (Adaboost iteration count), feature 

name for this order and the number of the feature in the feature set respectively. 

The forth column shows if this feature is previously selected. The fifth column is 

the feature count discarding the features selected more than one. The last row is 

the error in the current classification. Note that, after each classification the 

weights of training samples changes and errors are calculated according to the 

weights of the training set. The weight changes in training samples are done 

using the Beta value. The weights of incorrectly classified samples are increased 

and the weights of correctly classified samples are decreased. By doing so, the 

feature that is capable of classifying incorrectly classified samples is selected in 

next iteration. After each iteration, the errors are calculated using new weights of 

training samples for each feature (weak classifier) and the feature with minimum 

error is selected next. Weight of the weak classifier, which is given in the seventh 

column of the table, is calculated using errors and threshold is the optimal value 

for giving minimum error. Normalized threshold is the normalized value of the 

threshold to [0,1] interval over the entire set. While doing classification, if the 

feature value of the sample in classification is smaller than the threshold value 

and the parity is positive then this weight is added to the overall sum. If the value 

of the sample in classification is larger than the threshold value and the parity is 

positive then this weight is subtracted from the overall sum. If parity is negative, 

vice versa. In other words, positive parity shows that the feature value should be 

less than threshold in order to be classified as building and negative parity shows 
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that the feature value should be more than threshold in order to be classified as 

building. Then the overall sum is checked. If it is larger than the half of sum of all 

weights, the sample in classification is marked as building. In Table 4.5, the 

feature selected in first order corresponds to the red values. That is in many 

cases the rooftops have this color. The second feature selects the highly 

illuminated pixels. The third one is highly saturated colors. The fourth one 

corresponds to low variation in saturation gradient. Up to this point, everything 

seems like reflecting the buildings in the training set. The fifth one is the colors 

discarding red, orange and some yellow in the visible spectrum. This is selection 

of center pixel value of hue for the second time. This one does not reflect the 

properties of most of the buildings. However, this might be due to the a few 

buildings having different rooftops and some of the objects in the rooftops such as 

chimneys have different colors. The samples of incorrectly classified rooftops in 

the training set start to get high weights. These changes in weights forced 

Adaboost to select this feature. Note that most of the features are either HSV 

domain features or basic features. The features other than HSV domain or basic 

features appears after seventeenth feature and still basic features and HSV 

domain features appear after that point.  
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Table 4.5: Features Selected by Adaboost over All Feature Set 
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1 Center pixel 

value of hue 

147 N 1 1 1.221 0.09 0.1 0.22 0.29 

2 Center pixel 

value of 

value 

161 N 2 -1 0.799 0.22 0.22 0.31 0.44 

3 Mean of 

saturation 

148 N 3 -1 0.520 0.44 0.48 0.37 0.59 

4 Variance of 

saturation 

gradient 

151 N 4 1 0.38 0.10 0.19 0.40 0.67 

5 Center pixel 

value of hue 

147 Y 4 -1 0.537 0.32 0.33 0.36 0.58 

6 Mean of 

intensity 

1 N 5 -1 0.369 0.13 0.13 0.40 0.69 

7 Center pixel 

value of 

value 

161 Y 5 -1 0.327 0.67 0.67 0.41 0.72 

8 Entropy of 

intensity 

5 N 6 1 0.363 5.25 0.75 0.41 0.69 

9 Variance of 

saturation 

149 N 7 -1 0.347 0.05 0.11 0.41 0.70 

10 Mean of hue 

gradient 

145 N 8 1 0.209 0.02 0.07 0.44 0.81 

11 Mean of hue 143 N 9 -1 0.242 0.21 0.21 0.43 0.78 

12 Mean of 

saturation 

gradient 

150 N 10 -1 0.324 0.02 0.03 0.41 0.72 
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Table 4.5 - Continued 

 

13 Mean of 

saturation 

148 Y 10 -1 0.254 0.48 0.53 0.43 0.77 

14 Skewness of 

DFT 

41 N 11 -1 0.286 8.80 0.79 0.42 0.75 

15 Center pixel 

value of hue 

147 Y 11 -1 0.237 0.41 0.42 0.44 0.78 

16 Variance of 

value gradient 

158 N 12 -1 0.212 0.01 0.04 0.44 0.80 

17 Variance of 

Gabor filter; 

fourth order 

54 N 13 1 0.225 0.00 0.06 0.44 0.79 

18 Wavelet 

variance(HH,1) 

126 N 14 -1 0.236 0.01 0.1 0.44 0.78 

19 Mean of DFT 38 N 15 1 0.180 0.69 0.22 0.45 0.83 

20 Variance of 

value gradient 

158 Y 15 -1 0.223 0.02 0.08 0.44 0.79 

21 Center pixel 

value of sat 

154 N 16 -1 0.179 0.51 0.51 0.45 0.83 

22 Mean of sat 

gradient 

150 Y 16 1 0.215 0.08 0.14 0.44 0.80 

23 Center pixel 

value of value 

161 Y 16 -1 0.182 0.64 0.64 0.45 0.83 

24 Center pixel 

value of hue 

147 Y 16 -1 0.189 0.09 0.1 0.45 0.82 

25 Center pixel 

value of hue 

147 Y 16 1 0.157 0.13 0.14 0.46 0.85 

26 Zernike of  

saturation 

152 N 17 -1 0.151 2.06 0.17 0.46 0.85 

27 Mean of Gabor 

filter; twelfth 

order 

69 N 18 -1 0.190 0.13 0.12 0.45 0.82 
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Table 4.5 - Continued 

 

28 variance 

of Gabor 

filter; 

fourteenth  

order 

74 N 19 1 0.203 0.02 0.07 0.44 0.81 

29 Mean of 

hue 

143 Y 19 -1 0.151 0.49 0.49 0.46 0.85 

30 Mean of 

saturation 

gradient 

150 Y 19 -1 0.197 0.01 0.02 0.45 0.82 

 

 

 

Figure 4.13 and Figure 4.14 illustrates the pixel and object performance of 

Adaboost vs. iteration count. Here a high performance is reached using only first 

feature and then performance does not change much since twenty-fifth feature 

and considering both pixel and object performances highest performance is 

achieved using 28 features. The QP value reached while using 28 features is 

nearly 47.  
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Figure 4.13: QP and PBD Values vs. Iteration Count for Adaboost with All Features 

 

 

 

 
 

Figure 4.14: Object Performance vs. Iteration Count for Adaboost with All Features 
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The second set of SVM features is selected by using histogram errors.Table 4.6 

shows the error of first 30 features. In this table no is the order of the feature 

considering the histogram error given in the error column. Feature name is the 

name of the feature. Feature number is the number of the feature in the feature 

set. Also in appendix A, the histogram errors of all features with example images 

are given.  Again, the first feature is centre pixel value of hue. The second feature 

is mean of hue. Mean of hue has very low error compared with the other features 

in the set and it has similar separation capacity as center pixel value of hue has 

i.e. they classify nearly the same things. Adaboost first selects the center pixel 

value of hue and does not select mean of hue since after the weights in training 

set changes with the center pixel value of hue. It is more convenient not to select 

mean of hue after selection of center pixel of hue since they are somehow 

correlated. In addition, there are many Gabor filter selections in the set, which 

indicates Gabor filters are more capable of discriminating the two classes 

compared with other intensity textural features. Note that features selected by 

Adaboost other than HSV domain features and basic features includes Gabor 

features in Table 4.6 also note that hue has very high separation capacity 

compared to others. 
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Table 4.6: Histogram Errors of Features over All Features 

 

No Feature name Feature number Error  

1 Center pixel value of hue 147 0.202 

2 Mean of hue 143 0.2147 

3 Center pixel value of value 161 0.2755 

4 Mean of saturation 148 0.2813 

5 Center pixel value of saturation 154 0.2834 

6 Mean of value 155 0.3033 

7 Mean of Gabor filter; second order 49 0.3237 

8 Mean of Gabor filter; fourteenth  order 73 0.3237 

9 Mean of intensity 1 0.3237 

10 Zernike (0,0) 12 0.3237 

11 Maximum value of DFT 37 0.3237 

12 Mean of Gabor filter; first  order 47 0.3237 

13 Mean of Gabor filter; third order 51 0.3237 

14 Mean of Gabor filter; fourth order 53 0.3237 

15 Mean of Gabor filter; thirteenth order 71 0.3237 

16 Mean of Gabor filter; fifteenth order 75 0.3237 

17 Mean of Gabor filter; sixteenth order 77 0.3237 

18 Mean of Gabor filter; eighth order 61 0.3238 

19 Mean of Gabor filter; twentieth order 85 0.3238 

20 Mean of Gabor filter; twelfth order 69 0.3239 

21 Mean of Gabor filter; twenty-fourth order 93 0.3239 

22 Variogram of DFT with 1 distance 44 0.327 

23 Ring 6 on PS 36 0.3284 

24 Mean of Gabor filter; eleventh order 67 0.3311 

25 Mean of Gabor filter; twenty-third order 91 0.3311 

26 Variance of DFT 40 0.3313 

27 Ring1 on PS 31 0.3316 

28 Mean of Gabor filter; seventh order 59 0.3317 

29 Mean of Gabor filter; twenty-first order 83 0.3317 

30 Variogram of DFT with 2 distance 45 0.3319 
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SVM often provides significantly better classification performance than other 

machine learning algorithms in reasonable sized datasets. They involve 

computationally expensive processes. SVM uses an optimization algorithm by 

selecting support vectors in order to maximize the margin between the classes 

which is hard to interpret intuitively in terms of components i.e. features of the 

support vectors. Although there exists some methods to choose parameters and 

kernels of SVM, the best way is doing experiments and choosing the best one 

[60].  

 

Figure 4.15 to Figure 4.18 illustrates the pixel and object performances of SVM 

linear kernel with both features selected by using histogram errors and features 

selected by Adaboost. The maximum QP value is 42 with 8 features when using 

histogram errors and the saturation is at 8 features. When using Adaboost 

selections QP performance saturated with 9 features and maximum QP value 

achieved with 16 features which is 40. 

 

 

 

 
 

Figure 4.15: Pixel Performance of SVM Linear Kernel Features Selected Using 
Histogram Errors over the Entire Set Of Features 
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Figure 4.16: Object Performance of SVM Linear Kernel Features Selected Using 
Histogram Errors over the Entire Set Of Features 

 

 

 

 
 

Figure 4.17: Pixel Performance of SVM Linear Kernel Features Selected Using 
Adaboost Over the Entire Set of Features 
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Figure 4.18: Object Performance of SVM Linear Kernel Features Selected Using 
Adaboost Over the Entire Set of Features 

 

 

 

Figure 4.19 to Figure 4.22 illustrates the pixel and object performances of SVM 

polynomial kernel with both features selected by using histogram errors and 

features selected by Adaboost. The maximum QP value is 43 with 7 features 

when using histogram errors and the saturation is at 3 features. When using 

Adaboost selections QP performance saturated with 4 features and maximum QP 

value achieved with 4 features which is 44. 
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Figure 4.19: Pixel Performance of SVM Polynomial Kernel Features Selected Using 
Histogram Errors over the Entire Set of Features 

 

 

 

 
 

Figure 4.20: Object Performance of SVM Polynomial Kernel Features Selected Using 
Histogram Errors over the Entire Set of Features 
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Figure 4.21: Pixel Performance of SVM Polynomial Kernel Features Selected Using 
Adaboost over the Entire Set of Features 

 

 

 

 

Figure 4.22: Object Performance of SVM Polynomial Kernel Features Selected Using 
Adaboost over the Entire Set of Features 
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Figure 4.23 to Figure 4.26 illustrates the pixel and object performances of SVM rbf 

kernel with both features selected by using histogram errors and features selected 

by Adaboost. The maximum QP value is 41 with 6 features when using histogram 

errors and the saturation is at 3 features. When using Adaboost selections QP 

performance saturated with 3 features and maximum QP value achieved with 4 

features which is 42. 

 

 

 

 

Figure 4.23: Pixel Performance of SVM RBF Kernel Features Selected Using 
Histogram Errors over the Entire Set of Features 
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Figure 4.24: Object Performance of SVM RBF Kernel Features Selected Using 
Histogram Errors over the Entire Set of Features 

 

 

 

 

 
 

Figure 4.25: Pixel Performance of SVM RBF Kernel Features Selected Using 
Adaboost over the Entire Set of Features 
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Figure 4.26: Object Performance of SVM RBF Kernel Features Selected Using 
Adaboost over the Entire Set of Features 

 

 

 

Figure 4.27 to Figure 4.30 illustrates the pixel and object performances of SVM 

quadratic kernel with both features selected by using histogram errors and 

features selected by Adaboost. The maximum QP value is 43 with 6 features 

when using histogram errors and the saturation is at 4 features. When using 

Adaboost selections QP performance saturated with 12 features and maximum 

QP value achieved with 14 features, which is 51. 
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Figure 4.27: Pixel Performance of SVM Quadratic Kernel Features Selected Using 
Histogram Errors over the Entire Set of Features 

 

 

 

 
 

Figure 4.28: Object Performance of SVM Quadratic Kernel Features Selected Using 
Histogram Errors over the Entire Set of Features 
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Figure 4.29: Pixel Performance of SVM Quadratic Kernel Features Selected Using 
Adaboost Over the Entire Set of Features 

 

 

 

 
 

Figure 4.30: Object Performance of SVM Quadratic Kernel Features Selected Using 
Adaboost Over the Entire Set of Features 
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In summary, when all the features (i.e. both intensity and HSV features) are used, 

each kernel gave acceptable results at different feature counts. The best result is 

achieved when using quadratic kernel trained with Adaboost selected features. 

The performance of this kernel is nearly %10 better than performance of 

Adaboost. Most of the kernels gave better results while using Adaboost selected 

features. That is an expected result since Adaboost selects features taking into 

account the incorrectly classified samples.  

 

4.1.3.2 Iteration and feature count analysis for intensity textural features 
 

We see in section 4.1.2 that the performance of SVM kernels by using intensity 

textural features was not acceptable. Adaboost can form a strong classifier by 

using weak classifiers obtained from features but SVM kernels unable to form a 

meaningful classifier by using features with low separation capacity. In this 

section, only iteration count analysis of Adaboost is done.Table 4.7 illustrates the 

intensity textural features selected by Adaboost. The first feature selected by 

Adaboost is variogram of DFT magnitude that is not selected by Adaboost when 

feature selection set was all features. Also the features are selected nearly from 

all classes of features. 
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Table 4.7: The Features Selected By Adaboost Over Intensity Textural Features 
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1 Variogram of 

DFT with 1 

distance 

44 N 1 -1 0.631 1.90 0.04 0.34 0.53 

2 Skewness of 

intensity 

3 N 2 1 0.424 0.68 0.41 0.39 0.65 

3 Entropy of 

intensity 

5 N 3 1 0.288 5.03 0.71 0.42 0.74 

4 Zernike (2,0) 14 N 4 -1 0.368 6.65 0.32 0.40 0.69 

5 Mean of 

Gabor filter; 

twelfth order 

69 N 5 -1 0.255 0.15 0.14 0.43 0.77 

6 Energy(LL,3) 135 N 6 1 0.250

2 

180 0.06 0.43 0.77 

7 Cluster 

shade with 

distance 1 

96 N 7 1 0.253 4.57 0.39 0.43 0.77 

8 Zernike (2,0) 14 Y 7 -1 0.246 2.70 0.13 0.43 0.78 

9 Kurtosis of 

intensity 

4 N 8 -1 0.216 8.01 0.08 0.44 0.80 

10 Mean of 

intensity 

1 N 9 -1 0.165 0.13 0.13 0.45 0.84 

11 Variance(HL,

3) 

140 N 10 1 0.183 0.04 0.03 0.45 0.83 
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Table 4.7 - Continued 
 

12 Variance(LH,1) 122 N 11 -1 0.1604 0.01 0.06 0.46 0.85 

13 Variance of 

gradient 

8 N 12 1 0.1606 0.68 0.08 0.45 0.85 

14 Entropy of 

intensity 

5 Y 12 1 0.1765 4.65 0.64 0.45 0.83 

15 Variance(HH,1) 126 N 13 -1 0.148 0.01 0.09 0.46 0.86 

16 Entropy of 

intensity 

5 Y 13 1 0.1704 5.35 0.77 0.45 0.84 

17 Variance(HL,2) 132 N 14 -1 0.137 0.13 0.19 0.46 0.87 

18 Mean of DFT 38 N 15 -1 0.1937 0.27 0.08 0.45 0.82 

19 Cluster shade 

with distance 1 

96 Y 15 1 0.1516 -

4.57 

0.39 0.46 0.85 

20 Energy(LL,1) 119 N 16 1 0.1503 18.5 0.06 0.46 0.86 

21 Variance(LH,1) 122 Y 16 -1 0.1668 0.01 0.03 0.45 0.84 

22 Zernike (4,0) 18 N 17 -1 0.1269 36.7 0.48 0.46 0.88 

23 Mean of DFT 38 Y 17 1 0.1424 0.66 0.21 0.46 0.86 

24 Ring6 on PS 36 N 18 1 0.1302 -408 0.97 0.46 0.87 

25 Kurtosis of 

intensity 

4 Y 18 -1 0.1237 12.3 0.13 0.46 0.88 

26 Mean of Gabor 

filter; twelfth 

order 

69 Y 18 -1 0.1205 0.13 0.12 0.46 0.88 

27 Variance of 

Gabor filter; 

first order 

48 N 19 -1 0.124 0.03 0.22 0.46 0.88 

28 Variance(LL,2) 128 N 20 1 0.0964 0.38 0.21 0.47 0.90 

29 Variance(LH,1) 122 Y 20 -1 0.1012 0.03 0.15 0.47 0.90 

30 Energy(LL,3) 135 N 21 1 0.0976 150. 0.05 0.47 0.90 
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Figure 4.31 and Figure 4.32 shows the pixel and object performance of Adaboost 

with intensity textural features. The QP values are near 30 percent. After iteration 

count of 15, false alarms in the object performance highly increases. Iteration 

count 14 has the best correct detection rate also with low false alarms. Taking into 

account this iteration count 14 with QP 28 is selected for Adaboost textural 

features. It is saturated with 12 iterations. 

 

 

 

 
 

Figure 4.31: QP and PBD Values vs. Iteration Count for Adaboost with Intensity 
Textural Features 
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Figure 4.32: Object Performance vs. Iteration Count for Adaboost with Intensity 
Textural Features 

 

 

 

4.1.3.3 Iteration and feature count analysis for HSV domain features 

Previous results showed us that HSV domain features have high separation 

capacity. In this section, we will select a classifier using only HSV domain 

features. Adaboost and SVM quadratic kernel, which gave the best results 

previously, will be analyzed in this section.  

 

Figure 4.33 and Figure 4.34 shows the pixel and object performances for 

Adaboost with HSV domain features. The maximum performance is achieved 

while using the first feature. The QP value for first feature is 45. That feature is the 

most dominant feature, which is center pixel value of hue, and the performance 

never passed that value again. 
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Figure 4.33: Pixel Performance for Adaboost with HSV Domain Features 

 

 

 

 
 

Figure 4.34: Object Performance for Adaboost with HSV Domain Features 

 

 

 



 

100 

Figure 4.35 and Figure 4.36 shows the pixel and object performances for SVM 

quadratic kernel with HSV domain features. The maximum performance is 

achieved while using 16 features with QP value 48. There is no need to use 

Adaboost selected features since the set of features is not large. Note that the 

performance achieved is better than the result of Adaboost with all features. 

 

 

 

 
 

Figure 4.35: Pixel Performance of SVM Quadratic Kernel Features Selected Using 
Histogram Errors over the Set Of HSV Domain Features 
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Figure 4.36: Object Performance of SVM Quadratic Kernel Features Selected Using 
Histogram Errors over the Set Of HSV Domain Features 

 

 

 

4.1.3.4  Summary of iteration and feature count analysis 

In this section, a summary of the results of iteration count analysis will be given. 

Table 4.8 illustrates the results of the analysis. The best results for the feature 

sets are given bold. Also, classifiers that will be used in further detailed analysis 

are given bold. The best result achieved is obtained with SVM quadratic kernel. 

The features of the kernel are selected by Adaboost over all features set (i.e. 

intensity and HSV features).  Adaboost gave the second best result when all 

features are used. In section 4.1.2, there were no acceptable results for SVM 

kernels using only intensity textural features so no feature count analysis is done 

for SVM kernels using intensity textural features. However, Adaboost gave some 

acceptable results while using only intensity textural features. The best results are 

achieved with SVM quadratic kernel while using all features and there were 

mainly HSV domain features in the selected features so HSV domain iteration 

count analysis is done using only SVM quadratic kernel and Adaboost.  
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Table 4.8: Summary of Iteration Count Analysis 

 

Featu

re set 

Classifie

r 

 Histogram error 

selected  

Adaboost selected 

Satu

ratio

n 

coun

t 

QP value 

for 

selected 

count 

Feat

ure 

cou

nt 

Saturatio

n for 

feature/it

eration 

count 

QP 

value for 

selected 

count 

Feature/itera

tion count 

for selection 

HSV 

+ 

intens

ity 

Adaboos

t 

Not applicable 16/25 47 19/28 

SVM lin 8 42 8 9 40 16 

SVM 

poly 

3 43 7 4 44 4 

SVM rbf 3 41 6 3 42 4 

SVM 

quad 

4 43 6 12 51 14 

Only 

intens

ity 

Adaboos

t 

Not applicable 11/12 28 12/14 

SVM lin Previously eliminated  

SVM 

poly 

SVM rbf 

SVM 

quad 

Only 

HSV 

Adaboos

t 

Not applicable 1/1 45 1/1 

SVM lin Previously eliminated 

SVM 

poly 

SVM rbf 

SVM 

quad 

12 48 16 Not applicable 
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The best result for HSV domain is achieved by SVM quadratic kernel. In further 

analyses, we will use Adaboost with all features, SVM quadratic kernel with 

Adaboost selected features over all features, Adaboost with intensity textural 

features and SVM quadratic kernel with HSV domain features. The detailed 

results including visual results will be given for these classifiers and a comparison 

will be done using these classifiers.       

 

4.1.4 Training set analyses 

Upper twenty percent of images are used one by one and object and pixel 

performances are checked in all images. The analyses are done using Adaboost 

with intensity textural features, Adaboost with all features and SVM quad kernel 

with features selected by Adaboost. The detailed pixel and object-based 

performances are given. For object-based performance, building detection 

threshold is taken as 0.4. 

 

Firstly, upper twenty percent of image 1 is used in training of Adaboost with 

intensity textural features. The pixel and object performances are given in Table 

4.9 and  

 

 

Table 4.10.The performance is nearly same as using all images in training set. 

Because, there are a few buildings, roads and green belts mainly in the upper part 

of image 1 and that is enough for training with intensity textural features. In all 

images, PBD values are high and QP values are low that is because of FP. The 

classifier cannot differentiate manmade objects (roads, parks, etc.) from buildings 

and this causes high FP values. 
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Table 4.9: Pixel Performance of Adaboost with Intensity Textural Features Using 
Image 1 in Training 

 

Image no SF MF PBD QP 

1 0.6889 0.1684 64.8759 26.6242 

2 0.748 0.0399 86.3216 24.2329 

3 0.8186 0.033 84.5984 17.561 

4 0.8241 0.0081 95.5954 17.4453 

5 0.6199 0.0505 88.2638 36.1822 

 

 

 

Table 4.10: Object Performance of Adaboost with Intensity Textural Features Using 
Image 1 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 14 0 0 21 48 

2 13 3 0 0 10 23 

3 24 6 0 0 18 34 

4 29 2 0 0 27 16 

5 70 1 0 0 69 5 
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Table 4.11: Pixel Performance of Adaboost with Intensity Textural Features Using 
Image 2 in Training 

 

Image no SF MF PBD QP 

1 0.7938 0.9163 18.3721 10.7617 

2 0.3552 7.9967 7.4614 7.1667 

3 1 19.2096 0 0 

4 1 14.4056 0 0 

5 0.2108 4.5578 14.7594 14.1995 

 

 

 

Table 4.12: Object Performance of Adaboost with Intensity Textural Features Using 
Image 1 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 2 0 0 33 65 

2 13 0 0 0 13 10 

3 24 0 0 0 24 7 

4 29 0 0 0 29 3 

5 70 9 0 0 61 0 

 

 

 

Upper twenty percent of image 2 is used in training of Adaboost with intensity 

textural features. The pixel and object performances are given in 11  and Table 

4.12.The performance is quite bad since there are few buildings on the training 

set actually only part of buildings and also there are much manmade objects 

which are not buildings that makes classifier to extract buildings in other images. 
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Table 4.13: Pixel Performance of Adaboost with Intensity Textural Features Using 
Image 3 in Training 

 

Image no SF MF PBD QP 

1 0.6837 7.1896 4.2138 3.862 

2 0.7949 0.2875 41.6384 15.9296 

3 0.6334 0.4084 47.2989 26.0269 

4 0.6007 0.4949 44.6551 26.7121 

5 0.9792 36.4078 0.057 0.0555 

 

 

 

Table 4.14: Object Performance of Adaboost with Intensity Textural Features Using 
Image 3 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 0 0 0 35 13 

2 13 4 0 0 9 21 

3 24 12 0 0 12 54 

4 29 14 0 0 15 64 

5 70 0 0 0 70 4 

 

 

 

Upper twenty percent of image 3 is used in training of Adaboost with intensity 

textural features. The pixel and object performances are given in Table 4.13 and 

 

Table 4.14. The textures in image 3 and 4 are close to each other and this makes 

an increase in the performances of these images. The buildings in image 4 and 5 

are like the roads in image 3 so the performance of these images is bad. 
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Upper twenty percent of image 4 is used in training of Adaboost with intensity 

textural features. The pixel and object performances are given in Table 4.15 and 

Table 4.16. The performance in image 4 is good since all the buildings in the 

image reflects same properties. Again SF is high that is because of the other 

manmade objects. As in the case before, also image 3 has good performance.   
 

 

 

Table 4.15: Pixel Performance of Adaboost with Intensity Textural Features Using 
Image 4 in Training 

 

Image no SF MF PBD QP 

1 0.0205 31.2394 3.04 3.0381 

2 0.7501 0.8316 23.106 13.6431 

3 0.6326 0.4897 42.8653 24.6633 

4 0.5801 0.1727 70.8594 35.8063 

5 NaN Inf 0 0 

 

 

 

Table 4.16: Object Performance of Adaboost with Intensity Textural Features Using 
Image 4 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 1 0 0 34 1 

2 13 2 0 0 11 26 

3 24 11 0 0 13 55 

4 29 19 0 0 10 41 

5 70 0 0 0 70 0 
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Upper twenty percent of image 5 is used in training of Adaboost with intensity 

textural features. The pixel and object performances are given in Table 4.17 and 

Table 4.18. The performance in the training image is good since the buildings in 

the image are much like each other. The buildings in image 5 are much like the 

other manmade object in other images so SF values are high which reduces the 

performances.  

 

 

 

Table 4.17: Pixel Performance of Adaboost with Intensity Textural Features Using 
Image 5 in Training 

 

Image no SF MF PBD QP 

1 0.7625 0.3841 38.2081 17.1579 

2 0.7212 0.627 30.7797 17.136 

3 0.9232 0.4873 13.6091 5.1613 

4 0.8486 0.2577 37.0148 12.0402 

5 0.4094 0.3967 59.8217 42.2862 

 

 

 

Table 4.18: Object Performance of Adaboost with Intensity Textural Features Using 
Image 5 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 6 0 0 29 47 

2 13 3 0 0 10 40 

3 24 0 0 0 24 74 

4 29 2 0 0 27 60 

5 70 14 0 5 52 10 
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Upper twenty percent of all images are used in training of Adaboost with intensity 

textural features. The pixel and object performances are given in Table 4.19 and  

Table 4.20. The overall performance is better than other cases only the 

performance of image 1 is not good compared to others. The performance of 

image 2 was not good while using image 2 in train but this time it is better since 

the building textures in image 1 are like in image 2. 
 

 

 

Table 4.19: Pixel Performance of Adaboost with Intensity Textural Features Using 
All Images in Training 

 

Image no SF MF PBD QP 

1 0.7407 0.5197 33.2886 17.0646 

2 0.7025 0.1536 65.9462 25.7914 

3 0.7159 0.0792 78.2031 26.3222 

4 0.7359 0.0202 92.8823 25.8817 

5 0.3647 0.5276 54.631 41.5871 

 

 

 

Table 4.20: Object Performance of Adaboost with Intensity Textural Features Using 
All Images in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 11 0 0 24 43 

2 13 9 0 0 4 30 

3 24 12 0 0 12 42 

4 29 10 0 0 19 35 

5 70 15 0 7 50 9 
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Upper twenty percent of image 1 is used in training of Adaboost with all features. 

The pixel and object performances are given in  

 

Table 4.21 and Table 4.22. HSV domain features are more dominant while using 

all features. There is an increase in the performance of image 1 compared to the 

only intensity features case. The performance of image 5 is also high since they 

are more like each other compares to each other. 

 
 
 

Table 4.21: Pixel Performance of Adaboost with All Features Using Image 1 in 
Training 

 

Image no SF MF PBD QP 

1 0,2356 1,2056 38,8038 34,6593 

2 0,8261 0,0006 99,6645 17,3801 

3 0,8295 0,0043 97,5363 16,9807 

4 0,7735 0,0013 99,4511 22,6223 

5 0,5354 0,1989 70,0178 38,7484 

 

 

 

Table 4.22: Object Performance of Adaboost with All Features Using Image 1 in 
Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 18 0 0 17 9 

2 13 0 0 0 13 6 

3 24 3 0 0 21 14 

4 29 3 0 0 26 19 

5 70 5 0 0 65 10 
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Upper twenty percent of image 2 is used in training of adaboost with all features. 

The pixel and object performances are given in Table 4.23 and  

Table 4.24. The performance of image 2 was not good while using only intensity 

textural features since building patches were small but this time performance is 

good since a small part of the building is enough for training including HSV 

domain features. 

 

 

 

Table 4.23: Pixel Performance of Adaboost with All Features Using Image 2 in 
Training 

 

Image no SF MF PBD QP 

1 0,3665 4,2321 13,0196 12,1075 

2 0,0337 1,4487 40,0119 39,4606 

3 0,1119 4,2244 17,3715 16,9995 

4 0,3906 0,6578 48,0879 36,7569 

5 NaN Inf 0 0 

 

 
 

Table 4.24: Object Performance of Adaboost with All Features Using Image 2 in 
Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 6 0 0 29 11 

2 13 8 0 0 5 3 

3 24 4 0 0 20 13 

4 29 13 0 0 16 32 

5 70 0 0 0 70 0 
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Upper twenty percent of image 3 is used in training of Adaboost with all features. 

The pixel and object performances are given in Table 4.25 and  

 

Table 4.26.Image 3 is quite different from other images and upper part of the 

image well reflects the lower part of the image so has a high performance and the 

performances of other images are not good. 

 

 

 

Table 4.25: Pixel Performance of Adaboost with All Features Using Image 3 in 
Training  

 

Image no SF MF PBD QP 

1 0,7857 0,2866 42,7846 16,6588 

2 0,7867 0,0539 79,8199 20,2427 

3 0,3845 0,0516 92,2705 58,5316 

4 0,7807 0,0072 96,801 21,769 

5 0,6043 7,6232 4,934 4,5883 

 
 
 

Table 4.26: Object Performance of Adaboost with All Features Using Image 3 in 
Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 3 0 0 10 9 

2 13 20 0 0 4 16 

3 24 10 0 0 19 23 

4 29 1 0 0 69 5 

5 70 3 0 0 10 9 
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Upper twenty percent of image 4 is used in training of Adaboost with all features. 

The pixel and object performances are given in Table 4.27 and Table 4.28. An 

interesting result is the performance of 3 images are quite good. In the other 2 

image, there are no TP values. The results for image 1 and 5 were also quite low 

while using intensity textural features only. By also using HSV domain features 

high performances are reached in image 2, 3 and 4 which have similar buildings 

to the training set used. 
 

 

 

Table 4.27: Pixel Performance of Adaboost with All Features Using Image 4 in 
Training 

 

Image no SF MF PBD QP 

1 1 48,5518 0 0 

2 0,0412 0,7871 54,9176 53,6508 

3 0,2905 0,0427 94,3277 68,0437 

4 0,2486 0,0495 93,8199 71,5966 

5 NaN Inf 0 0 

 

 

 

Table 4.28: Object Performance of Adaboost with All Features Using Image 4 in 
Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 0 0 0 35 1 

2 13 8 5 0 4 0 

3 24 19 0 0 5 12 

4 29 27 0 0 2 7 

5 70 0 0 0 70 0 
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Upper twenty percent of image 5 is used in training of Adaboost with all features. 

The pixel and object performances are given in Table 4.29 and Table 4.30. The 

performance of image 5 is quite good but in other images, SF values are high MF 

values are low that means classifier output includes high FP values and high TP 

values. 

 

 

 

Table 4.29: Pixel Performance of Adaboost with All Features Using Image 5 in 
Training 

 

Image no SF MF PBD QP 

1 0,7404 0,1407 64,8605 22,76 

2 0,8308 0,0015 99,1125 16,8929 

3 0,7987 0,009 95,7328 19,9513 

4 0,7998 0,0009 99,5456 19,9974 

5 0,2562 0,155 82,7522 64,3955 

 

 

 

Table 4.30: Object Performance of Adaboost with All Features Using Image 5 in 
Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 11 0 0 24 42 

2 13 0 0 0 13 2 

3 24 3 0 0 21 20 

4 29 1 0 0 28 21 

5 70 27 0 20 28 2 
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Upper twenty percent of all images are used in training of Adaboost with all 

features. The pixel and object performances are given in Table 4.31 and Table 

4.32. The overall performance is increased compared to using a single image in 

training. Although there were better results in some images while using only one 

in image in training, the classifier was not generic that is capable of classifying 

different images. By using different images with different types of buildings, a 

more robust classifier can be formed.   

 

 

 

Table 4.31: Pixel Performance of Adaboost with All Features Using All Images in 
Training 

 

Image no SF MF PBD QP 

1 0,2779 1,5222 32,1742 28,6293 

2 0,1648 0,3159 72,5582 63,4719 

3 0,4928 0,0204 96,1421 49,7129 

4 0,3764 0,0717 89,6938 58,1881 

5 0,1162 1,6474 34,9162 33,3833 

 

 

 

Table 4.32: Object Performance of Adaboost with All Features Using All Images in 
Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 19 0 0 16 7 

2 13 10 0 0 3 9 

3 24 20 0 0 4 32 

4 29 27 0 0 2 15 

5 70 17 0 0 53 5 
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Upper twenty percent of image 1 is used in training of SVM quadratic kernel with 

all features. The pixel and object performances are given in Table 4.33 and Table 

4.34. When using Adaboost with all features, the performance of image 5 was 

fine. Now image 5 has no output. Since SVM transforms the feature set into 

another space, this can be the case. Commenting into this result is difficult but the 

result of image one which is used in training is fine that is what we expect.  

 

 

 

Table 4.33: Pixel Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using Image 1 in Training 

 

Image no SF MF PBD QP 

1 0.1493 1.5758 35.0581 33.0255 

2 0.0458 1.5907 37.4936 36.8305 

3 0.8131 14.2944 1.2905 1.2219 

4 0.2574 29.8882 2.4242 2.404 

5 NaN Inf 0 0 

 

 

 

Table 4.34: Object Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using Image 1 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 19 0 0 16 6 

2 13 8 0 0 5 4 

3 24 0 0 0 24 11 

4 29 0 0 0 29 5 

5 70 0 0 0 70 0 
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Upper twenty percent of image 2 is used in training of SVM quadratic kernel with 

all features. The pixel and object performances are given in Table 4.35 and Table 

4.36. The kernel converged to a state that is only   

 

 

 

Table 4.35: Pixel Performance of SVM Quadratic with Adaboost Selected Features 
Using Image 2 in Training 

 

Image no SF MF PBD QP 

1 0.3536 15.4232 4.0226 3.936 

2 0.0173 1.9494 33.5145 33.3179 

3 0.8844 2.7834 3.9889 3.0565 

4 0.6936 3.2576 8.5964 7.1959 

5 NaN Inf 0 0 

 

 

 

Table 4.36: Object Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using Image 2 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 0 0 0 35 9 

2 13 6 0 0 7 3 

3 24 0 0 0 24 29 

4 29 1 0 0 28 34 

5 70 0 0 0 70 0 
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Upper twenty percent of image 3 is used in training of SVM kernel with Adabost 

selected features. The pixel and object performances are given in Table 4.37 and 

Table 4.38. Upper part of the image well reflects the lower part of the image so 

has a high performance and the performances of other images except image 4  

are not good. 
 

 

 

Table 4.37: Pixel Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using Image 3 in Training 

 

Image no SF MF PBD QP 

1 0.7312 0.379 41.4987 19.4946 

2 0.6853 0.5228 37.5786 20.667 

3 0.2791 0.3358 68.22 53.9647 

4 0.5704 0.0361 92.2572 41.4608 

5 0.2891 1.7899 28.4278 25.4826 

 

 

 

Table 4.38: Object Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using Image 3 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 8 0 0 27 51 

2 13 4 0 0 9 35 

3 24 17 6 0 5 14 

4 29 23 0 0 6 30 

5 70 14 0 0 56 4 
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Upper twenty percent of image 4 is used in training of kernel. The pixel and object 

performances are given in Table 4.39 and Table 4.40. The performance of 3 

images are quite good. In the other 2 image, the results are not acceptable.  
 

 

 

Table 4.39: Pixel Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using Image 4 in Training 

 

Image no SF MF PBD QP 

1 0.0487 5.6997 14.3033 14.1994 

2 0.0659 0.7998 53.8729 51.9003 

3 0.5023 0.07 87.6705 46.5129 

4 0.0896 0.135 87.0857 80.2095 

5 0.9638 1.3901 2.5383 1.5148 

 

 

 

Table 4.40: Object Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using Image 4 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 5 0 0 30 8 

2 13 9 0 0 4 2 

3 24 20 0 0 4 48 

4 29 26 0 0 3 2 

5 70 0 0 0 70 18 
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Upper twenty percent of image 5 is used in training of the kernel. The pixel and 

object performances are given in Table 4.41 and Table 4.42. The performance of 

image 5 is quite good but in other images, SF values are high MF values are low 

that means classifier output includes high FP values and high TP values. 

 

 

 

Table 4.41: Pixel Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using Image 5 in Training 

 

Image no SF MF PBD QP 

1 0.7928 0.0888 69.9932 19.0282 

2 0.618 0.1613 70.3075 32.8962 

3 0.7788 0.0708 75.7585 20.6547 

4 0.5499 0.0872 83.7685 41.3998 

5 0.2708 0.2117 77.4973 60.1761 

 

 

 

Table 4.42: Object Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using Image 5 in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 9 0 0 26 29 

2 13 5 0 3 6 26 

3 24 7 0 0 17 42 

4 29 21 0 4 5 44 

5 70 25 0 22 28 1 
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Upper twenty percent of all images are used in training of the quadratic kernel 

with Adaboost selected features. The pixel and object performances are given in 

Table 4.43 and Table 4.44. The overall performance is increased compared to 

using a single image in training. Although there were better results in some 

images while using only one in image in training, the classifier was not generic 

that is capable of classifying different images. By using different images with 

different types of buildings, a more robust classifier can be formed.   

 

 

 

Table 4.43: Pixel Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using All Images in Training 

 

Image no SF MF PBD QP 

1 0.2167 2.8313 21.6693 20.4434 

2 0.0848 0.5978 60.4892 57.2784 

3 0.0842 0.2356 79.54 74.1203 

4 0.1694 0.1503 84.6772 72.2077 

5 0.2979 1.0769 39.4652 33.8036 

 

 

 

Table 4.44: Object Performance of SVM Quadratic Kernel with Adaboost Selected 
Features Using All Images in Training 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 11 3 0 23 9 

2 13 8 0 0 5 5 

3 24 19 0 0 5 2 

4 29 25 0 0 4 9 

5 70 16 0 5 50 4 



 

122 

As a result, using only one image may give better results on that image or on the 

images similar but our aim is to form a classifier that would work on different type 

of images. To do so, using a large training set including different types of building 

and non-building areas is better than making the classifier memorize one specific 

image. 

4.2 Results 

In this section, detailed including visual results for four classifiers are given. The 

classifiers are chosen by sensitivity analyses. The first classifier is Adaboost with 

intensity textural features. It was the only classifier that has reasonable results 

when using only intensity textural features. The second classifier is Adaboost with 

all features. The third classifier is SVM quadratic kernel with the features selected 

by Adaboost over the all feature set. These two classifiers using all features are 

chosen since they have better performances and in order to make a comparison 

between them. The final classifier is SVM quadratic kernel selected using 

minimum histogram errors over the features extracted from HSV domain. The last 

classifier chosen has also good performance and extraction of its features saves 

time since it only uses HSV domain features.    

 

In this section, two sets of images are used. In the first set, the lower %80 part of 

the images are used for performance evaluation and upper %20 part of the 

images are used in training. In addition, these images were used in section 4.1 for 

sensitivity analyses. The numbers of these images go from 1 to 5. In the second 

set completely new images are introduced. There are 5 images in this set. The 

numbers of these images are between 6 and 10. The 6. Image is taken from 

IKONOS. The 7. Image is taken from Quickbird and last three images are taken 

from Google Earth Application. In the visual results of object performance, color 

codes are used to differentiate the objects. In these codes; reds are “correct 

detection”, yellows are “missed detection”, blues are “under detection”, greens are 

“over detection” and finally, purples are “false alarm”. In section 4.1, these are 

explained in a detailed way. 
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4.2.1 Adaboost with intensity textural features 

First classifier is Adaboost with textural features. The pixel performance is given 

in Table 4.45. In that table, high SF values shows that the detection of non-

building areas as building areas is very common. 

 

 

 

Table 4.45: Pixel Performance of the 1. Set  

 

Image no SF MF PBD QP 

1 0.7407 0.5197 33.2886 17.0646 

2 0.7025 0.1536 65.9462 25.7914 

3 0.7159 0.0792 78.2031 26.3222 

4 0.7359 0.0202 92.8823 25.8817 

5 0.3647 0.5276 54.631 41.5871 

All 0.65194 0.2601 64.9902 27.3294 

 

 

 

Figure 4.37 illustrates the results of object performance vs. object detection 

threshold and Table 4.46 shows the results when object detection threshold is 

equal to 0.4. %33 of the building found correctly and there are false alarms nearly 

equal to the number of buildings. 
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Figure 4.37: Object Performance vs. Object Detection Threshold 

 

 

 

Table 4.46: Object Performance of the 1. Set For T = 0.4 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 11 0 0 24 43 

2 13 9 0 0 4 30 

3 24 12 0 0 12 42 

4 29 10 0 0 19 35 

5 70 15 0 7 50 9 

All 171 57 0 7 109 159 

 

 

 

The visual results for image 1 to 5 are given in  

Figure 4.38 to  

Figure 4.42. In these figures (a) is the original image, (b) is the original image 

masked by the building patches, together with the borders of the buildings in the 
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ground truth data (c) is ground truth, (d) is the building patches extracted by the 

algorithm. In the results, it is seen that besides buildings, man-made objects like 

roads are also extracted since the texture of buildings and man-made objects are 

similar. Building boundaries could not be well extracted which reduces the object 

performance. 

 

 

 

(a) (b) 

(c) (d) 

 

Figure 4.38: Visual Results for Adaboost with Intensity Textural Features for 1. 
Image  
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(a) (b) 

(c) (d) 

 

Figure 4.39: Visual Results for Adaboost with Intensity Textural Features for 2. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.40: Visual Results for Adaboost with Intensity Textural Features for 3. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.41: Visual Results for Adaboost with Intensity Textural Features for 4. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.42: Visual Results for Adaboost with Intensity Textural Features for 5. 
Image 

 

 

 

The pixel performance of image set 2 is given in Table 4.47. In that table high SF 

values shows that the detection of non-building areas as building areas is very 

common. 
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Table 4.47: Pixel Performance of the Images in 2. Set 

 

Image no SF MF PBD QP 

6 0.7474 0.2285 52.5116 20.5658 

7 0.6506 0.3326 51.2284 26.216 

8 0.8168 0.0372 83.1058 17.664 

9 0.7492 0.0087 96.6483 24.8606 

10 0.587 0.0314 92.9317 40.0375 

All 0,7102 0,1277 75,2852 25,8688 

 

 

 

Figure 4.43 illustrates the results of object performance vs. object detection 

threshold for image set 2 and Table 4.48 shows the results when object detection 

threshold is equal to 0.4. The correct detection rate is highly low. 

 

 

 

 

Figure 4.43: Object Performance vs. Object Detection Threshold 
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Table 4.48: Object Performance of the 1. Set for T = 0.4 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

6 21 9 0 0 12 42 

7 50 20 0 0 30 8 

8 22 1 0 0 21 13 

9 11 0 0 0 11 36 

10 26 1 0 0 25 6 

All 130 31 0 0 99 105 

 

 

 

The visual results for image 6 to 10 are given in  

Figure 4.44 to  

Figure 4.48. In these figures (a) is the original image, (b) is the original image 

masked by the building patches, together with the borders of the buildings in the 

ground truth data (c) is ground truth, (d) is the building patches extracted by the 

algorithm. In the results, it is seen that in image 1 and image 2, some of the 

buildings are extracted but in image 5 which is a dense area of buildings and 

roads, the extraction is nearly the whole image.   
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(a) (b) 

(c) (d) 

 

Figure 4.44: Visual Results for Adaboost with Intensity Textural Features for 6. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.45: Visual Results for Adaboost with Intensity Textural Features for 7. 
Image 

 

 

 

  



 

134 

(a) (b) 

(c) (d) 

 

Figure 4.46: Visual Results for Adaboost with Intensity Textural Features for 8. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.47: Visual Results for Adaboost with Intensity Textural Features for 9. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.48: Visual Results for Adaboost with Intensity Textural Features for 10. 
Image 

 

 

 

4.2.2 Adaboost with all features 

Second classifier is Adaboost with all features. The pixel performance of image 

set 1 is given in Table 4.49.  
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Table 4.49: Pixel Performance of the 1. Set 

Image no SF MF PBD QP 

1 0.2779 1.5222 32.1742 28.6293 

2 0.1648 0.3159 72.5582 63.4719 

3 0.4928 0.0204 96.1421 49.7129 

4 0.3764 0.0717 89.6938 58.1881 

5 0.1162 1.6474 34.9162 33.3833 

All 0.28562 0.7155 65.0969 46.6771 

 

 

 

Figure 4.49 illustrates the results of object performance vs. object detection 

threshold and Table 4.50 shows the results when object detection threshold is 

equal to 0.4.  

 

 

 

 

Figure 4.49: Object Performance vs. Object Detection Threshold 
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Table 4.50: Object Performance of the 1. Set for T = 0.4 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 19 0 0 16 7 

2 13 10 0 0 3 9 

3 24 20 0 0 4 32 

4 29 27 0 0 2 15 

5 70 17 0 0 53 5 

All 171 93 0 0 78 68 

 

 

 

The visual results for image 1 to 5 are given in  

Figure 4.50 to  

Figure 4.54. In these figures (a) is the original image, (b) is the original image 

masked by the building patches, together with the borders of the buildings in the 

ground truth data (c) is ground truth, (d) is the building patches extracted by the 

algorithm.  
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(a) (b) 

(c) (d) 

 

Figure 4.50: Visual Results for Adaboost with All Features for 1. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.51: Visual Results for Adaboost with All Features for 2. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.52: Visual Results for Adaboost with All Features for 3. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.53: Visual Results for Adaboost with All Features for 4. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.54: Visual Results for Adaboost with All Features for 5. Image 

 

 

 

The pixel performance of image set 2 is given in Table 4.51. These are the best 

results achieved. 

 

 

Table 4.51: Pixel Performance of the 2. Set 

 

Image no SF MF PBD QP 

6 0.1611 0.6137 57.7512 51.9864 

7 0.1445 0.3662 70.0223 62.6156 

8 0.7734 0.1006 69.2414 20.5847 

9 0.1328 3.3477 20.5754 19.9471 

10 0.1084 0.4707 65.447 60.6243 

All 0.26404 0.9798 56.6075 43.1516 
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Figure 4.55 illustrates the results of object performance vs. object detection 

threshold for image set 2 and Table 4.52 shows the results when object detection 

threshold is equal to 0.4. The highest correct detection count is reached by this 

classifier. 

 

 

 

 
 

Figure 4.55: Object Performance vs. Object Detection Threshold 

 

 

Table 4.52: Object Performance of the Images in 2. Set 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

6 21 17 3 0 3 6 

7 50 31 0 0 19 0 

8 22 15 0 0 7 18 

9 11 1 0 0 10 4 

10 26 23 0 0 3 6 

All 130 87 3 0 42 34 
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The visual results for image 6 to 10 are given in  

Figure 4.56 to  

Figure 4.60. In these figures (a) is the original image, (b) is the original image 

masked by the building patches, together with the borders of the buildings in the 

ground truth data (c) is ground truth, (d) is the building patches extracted by the 

algorithm.  

 

 

 

(a) (b) 

(c) (d) 

 

Figure 4.56: Visual Results for Adaboost with All Features for 6. Image 
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(a) (b) 

(c) (d) 

Figure 4.57: Visual Results for Adaboost with All Features for 7. Image 

 

  



 

147 

(a) (b) 

(c) (d) 

 

Figure 4.58: Visual Results for Adaboost with All Features for 8. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.59: Visual Results for Adaboost with All Features for 9. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.60: Visual Results for Adaboost with All Features for 10. Image 

 

 

 

4.2.3 SVM quadratic kernel with Adaboost selected features  

Table 4.53 gives the pixel performance of the images used in sensitivity analyses, 

which is image set 1. Only %20 of the images are used in training and 

performance is evaluated in %80 of the images. The success in image 3 is 

maximum and the success in image 1 is minimum.  
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Table 4.53: Pixel Performance Values of Image 1 to Image 5 

 

Image no SF MF PBD QP 

1 0.2167 2.8313 21.6693 20.4434 

2 0.0848 0.5978 60.4892 57.2784 

3 0.0842 0.2356 79.54 74.1203 

4 0.1694 0.1503 84.6772 72.2077 

5 0.2979 1.0769 39.4652 33.8036 

All 0.1706 0.9784 57.1682 51.5707 

 

 

 

Figure 4.61 illustrates the object performance changing with object detection 

threshold. After 0.9, no objects are found i.e. there are no objects overlapping in 

%90 in ground truth and output of the classifier but note that there may be some 

operator faults while extracting ground truth objects. Table 4.54 shows the results 

when object detection threshold is equal to 0.4.  

 

 
 

Figure 4.61: Object performance vs. object detection threshold 
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Table 4.54: Object Performance of the 1. Set for T = 0.4  

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 11 3 0 23 9 

2 13 8 0 0 5 5 

3 24 19 0 0 5 2 

4 29 25 0 0 4 9 

5 70 16 0 5 50 4 

All 171 79 3 5 87 29 

 

 

 

The visual results for image 1 to 5 are given in Figure 4.62 to  

Figure 4.66. In these figures (a) is the original image, (b) is the original image 

masked by the building patches, together with the borders of the buildings in the 

ground truth data (c) is ground truth, (d) is the building patches extracted by the 

algorithm. 

 

 

(a) (b) 

(c) (d) 
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Figure 4.62: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 1. Image 

(a) (b) 

(c) (d) 

 

Figure 4.63: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 2. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.64: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 3. Image 

 

 

  



 

154 

(a) (b) 

(c) (d) 

 

Figure 4.65: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 4. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.66: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 5. Image 

 

 

 

The pixel performance of image set 2 is given in Table 4.55.  

 

 

 

Table 4.55: Pixel Performance of the Images in 2. Set 

Image no SF MF PBD QP 

6 0.1564 0.8749 49.0893 44.9936 

7 0.2209 0.2283 77.3348 63.4261 

8 0.3797 1.9442 24.1889 21.0697 

9 0.1641 3.1583 20.9279 20.102 

10 0.0959 1.1955 43.0598 41.1781 

All 0,2034 1,4802 42,9201 38,1539 
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Figure 4.67 illustrates the results of object performance vs. object detection 

threshold for image set 2 and Table 4.56 shows the results when object detection 

threshold is equal to 0.4. 

 

 

 

 
 

Figure 4.67: Object Performance vs. Object Detection Threshold 

 

 

 

Table 4.56: Object Performance of the 2. Set for T = 0.4 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

6 21 13 0 0 8 31 

7 50 31 0 0 19 6 

8 22 4 0 0 18 35 

9 11 0 10 0 8 6 

10 26 14 0 0 12 20 

All 130 62 10 0 65 98 
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The visual results for image 6 to 10 are given in  

Figure 4.68 to  

Figure 4.72. In these figures (a) is the original image, (b) is the original image 

masked by the building patches, together with the borders of the buildings in the 

ground truth data (c) is ground truth, (d) is the building patches extracted by the 

algorithm. 

 

 

 

(a) (b) 

(c) (d) 

 

Figure 4.68: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 6. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.69: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 7. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.70: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 8. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.71: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 9. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.72: Visual Results for SVM Quadratic Kernel with Adaboost Selected 
Features over All Features for 10. Image 
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4.2.4 SVM quadratic kernel with HSV features 

The pixel performance is given in Table 4.45.  

 

 

 

Table 4.57: Pixel Performance of the 1. Set  

 

Image no SF MF PBD QP 

1 0.1672 1.9563 29.8573 28.1682 

2 0.0758 0.7637 54.7562 52.404 

3 0.1392 0.1766 82.9805 73.1633 

4 0.2645 0.0563 92.8902 69.631 

5 0.2595 3.603 17.0481 16.0869 

All 0,18124 1,3112 55,5065 47,8907 

 

 

 

Figure 4.73 illustrates the results of object performance vs. object detection 

threshold and Table 4.58 shows the results when object detection threshold is 

equal to 0.4.  
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Figure 4.73: Object Performance Vs. Object Detection Threshold 

 

 

 

Table 4.58: Object Performance of the 1. Set for T = 0.4 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

1 35 17 0 0 18 7 

2 13 8 0 0 5 3 

3 24 18 0 0 6 9 

4 29 26 0 0 3 9 

5 70 8 0 0 62 6 

All 171 77 0 0 94 34 

 

 

 

The visual results for image 1 to 5 are given in  

Figure 4.74 to  

Figure 4.78. In these figures (a) is the original image, (b) is the original image 

masked by the building patches, together with the borders of the buildings in the 
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ground truth data (c) is ground truth, (d) is the building patches extracted by the 

algorithm.  

 

(a) (b) 

(c) (d) 

 

Figure 4.74: Visual Results for SVM Quadratic Kernel with HSV Features for 1. 
Image  
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(a) (b) 

(c) (d) 

 

Figure 4.75: Visual Results for SVM Quadratic Kernel with HSV Features for 2. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.76: Visual Results for SVM Quadratic Kernel with HSV Features for 3. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.77: Visual Results for SVM Quadratic Kernel with HSV Features for 4. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.78: Visual Results for SVM Quadratic Kernel with HSV Features for 5. 
Image 

 

 

 

The pixel performance of image set 2 is given in Table 4.59. 

 

 

Table 4.59: Pixel Performance of the Images in 2. Set 

 

Image no SF MF PBD QP 

6 0.1352 0.9811 46.8509 43.654 

7 0.1908 3.1069 20.6634 19.7034 

8 0.7475 1.6729 13.1152 9.4474 

9 0.1715 4.9918 14.234 13.8265 

10 0.165 1.7219 32.6567 30.6771 

All 0,282 2,4949 25,5040 23,4617 
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Figure 4.79 illustrates the results of object performance vs. object detection 

threshold for image set 2 and Table 4.60 shows the results when object detection 

threshold is equal to 0.4. The correct detection rate is highly low contrary to image 

set 1.  

 

 

 

 

Figure 4.79: Object Performance vs. Object Detection Threshold 

 

 

Table 4.60: Object Performance of the 2. Set For T = 0.4 

 

Image no Ground 

Truth 

Correct   

detection 

Over 

detection 

Under 

detection 

Missed 

detection 

False 

alarm   

6 21 16 0 0 5 22 

7 50 5 3 0 44 17 

8 22 0 0 0 22 72 

9 11 0 0 0 11 10 

10 26 9 0 0 17 40 

All 130 30 3 0 99 161 
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The visual results for image 6 to 10 are given in  

Figure 4.80 to  

Figure 4.84. In these figures (a) is the original image, (b) is the original image 

masked by the building patches, together with the borders of the buildings in the 

ground truth data (c) is ground truth, (d) is the building patches extracted by the 

algorithm. 

 

 

 

(a) (b) 

(c) (d) 

 

Figure 4.80: Visual Results for SVM Quadratic Kernel with HSV Features for 6. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.81: Visual Results for SVM Quadratic Kernel with HSV Features for 7. 
Image 
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(a) (b) 

(c) (d) 

 

Figure 4.82: Visual Results for SVM Quadratic with HSV Features for 8. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.83: Visual Results for SVM Quadratic with HSV Features for 9. Image 
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(a) (b) 

(c) (d) 

 

Figure 4.84: Visual Results for SVM Quadratic Kernel with HSV Features for 10. 
Image 

 

 

 

4.3 Comparison of classifiers 

Up to here, we have done several sensitivity analyses and by the help of these 

analyses, we have selected four classifiers. In addition, these classifiers are 

tested with a different image set then used in sensitivity analyses. We always 

used building detection performance as the criteria of selection. In this section, a 

final comparison of the classifiers will be done including pixel and object based 

performance criteria and time.  
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The pixel and object performances of image set 1 which upper %20 percent is 

used for training classifiers is given in Table 4.61 and Table 4.62. Note that 

performance evaluation is done on the lower %80 percent of the images. In this 

set, the best performance is achieved by SVM quadratic kernel with all features. 

Even SVM quadratic kernel with HSV features has better performance than both 

Adaboost classifiers. Adaboost with intensity textural features has low capacity to 

extract buildings.  

 

 

 

Table 4.61: Pixel Performances of the Selected Classifiers over Image Set 1 

 

Classifier SF MF PBD QP 

Adaboost with intensity textural 

features 0.65194 0.2601 64.9902 27.3294 

Adaboost with all features 0.28562 0.7155 65.0969 46.6771 

SVM quadratic kernel with features 

selected by Adaboost features 0.1706 0.9784 57.1682 51.5707 

SVM quadratic kernel with HSV 

features selected by histogram 

errors 0,18124 1,3112 55,5065 47,8907 
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Table 4.62: Object Performances of the Selected Classifiers over Image Set 1 
(numbers given in brackets are obtained by dividing by ground truth) 

 

Classifier Ground 

Truth 

Correct   

detection

Over 

detection

Under 

detection

Missed 

detection 

False 

alarm  

Adaboost with 

intensity textural 

features 

171 

 

57  

(0.33) 

0 

(0) 

7 

(0.4) 

109 

(0.64) 

159 

(0.93) 

Adaboost with 

all features 

171 

 

93 

(0.54) 

0 

(0) 

0 

(0) 

78 

(0.46) 

68 

(0.40) 

SVM quadratic 

kernel with 

features 

selected by 

Adaboost  

171 

 

79 

(0.46) 

3 

(0.2) 

5 

(0.3) 

87 

(0.51) 

29 

(0.17) 

SVM quadratic 

kernel with HSV 

features 

selected by 

histogram errors 

171 

 

77 

(0.45) 

0 

(0) 

0 

(0) 

94 

(0.55) 

34 

(0.20) 

 

 

 

The pixel and object based performances of the image set 2, which no parts of 

the images is used in training,  is given in Table 4.63 and Table 4.64. On the 

contrary to the 1. Image set best performances achieved while using Adaboost 

with all features. Adaboost with intensity textural features again has similar 

performance as in image set 1. However, the performance of SVM quadratic 

kernel with all features and with HSV features significantly decreased. The 

performance of SVM with HSV features even has worse results than Adaboost 

with intensity textural features. 
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Table 4.63: Pixel Performances of the Selected Classifiers over Image Set 2 

 

classifier SF MF PBD QP 

Adaboost with intensity textural 

features 0,7102 0,1277 75,2852 25,8688 

Adaboost with all features 0.26404 0.9798 56.6075 43.1516 

SVM quadratic kernel with features 

selected by Adaboost features 0,2034 1,4802 42,9201 38,1539 

SVM quadratic kernel with HSV 

features selected by histogram 

errors 0,282 2,4949 25,5040 23,4617 

 

 

 

Table 4.64: Object Performances of the Selected Classifiers over Image Set 2 
(numbers given in brackets are obtained by dividing by ground truth) 

 

classifier Ground 

Truth 

Correct   

detection

Over 

detection

Under 

detection

Missed 

detection 

False 

alarm  

Adaboost with 

intensity textural 

features 

130 

 

31 

(0.24) 

0 

(0) 

0 

(0) 

99 

(0.76) 

105 

(0.81) 

Adaboost with 

all features 

130 

 

87 

(0.67) 

3 

(0.2) 

0 

(0) 

42 

(0.32) 

34 

(0.26) 

SVM quadratic 

kernel features 

selected by 

Adaboost  

130 

 

62 

(0.48) 

10 

(0.8) 

0 

(0) 

65 

(0.50) 

98 

(0.75) 

SVM quadratic 

kernel with HSV 

features 

selected by 

histogram errors 

130 

 

30 

(0.23) 

3 

(0.2) 

0 

(0) 

99 

(0.76) 

161 

(1.24) 
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The previous tables show us that, Adaboost is more robust than SVM kernels. 

Using only intensity textural features does not have good performance compared 

with using all features. HSV domain features work well only in images used in 

training and changing the image set causes significant decrease in the 

performance. 

 

We will start time requirements first with the feature extraction. Feature extraction 

is the longest phase in the algorithm. For one image of size 500x500 pixels, it 

nearly takes 4 hours to extract all the features when using overlapping windows. 

Note that, there is no optimization in the source codes regarding time and the 

platform is Matlab 2007a which is nearly 10 times slower than C platforms. When 

using non-overlapping windows, this time is shortened proportional to the area of 

the window. If a fast algorithm is needed, non-overlapping windows can be used. 

However, performance will decrease. In training phase Adaboost can work with 

large sets and also Adaboost does the feature selection in training phase. After 

features are extracted, it takes nearly 1 hour for Adaboost to train 30 features that 

is the iteration count for Adaboost and one iteration takes nearly 2 minutes. There 

is no memory problem in training Adaboost if the training set is not larger than the 

memory capacity of PC. While training SVMs, the problem is not time but 

memory. SVM kernels can work on smaller training sets. The training of SVM 

kernels nearly takes 20 seconds after features are extracted. It takes nearly 5 

seconds for Adaboost to classify one image and this time is nearly 2 seconds for 

SVM.  

 

The classification times are very short compared with the feature extraction times. 

One way to decrease the time of the classifier is extracting only the features to be 

used and using large overlapping windows. Although feature selection increases 

the performance, using large overlapping windows decreases it as we have seen 

in sensitivity analyses. 
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     CHAPTER 5 

5 CONCLUSIONS 

In this study, an automated building extraction system, which is capable of 

detecting buildings from a single satellite image using only RGB color band is 

implemented. The approach used in this work has four main steps: local feature 

extraction, feature selection, classification and building boundary extraction. First 

local features are extracted using a predefined window. Using these local features 

each pixel when the window is overlapping and all pixels in the window when the 

window is non-overlapping is classified as building or non-building. Finally, the 

image pixels are grouped that belong to building class using some morphological 

operations and resulting building boundaries are determined. 

 

Several textural features are used extracted from both intensity and HSV domain. 

The separation capacities of the features are investigated. Different window types 

namely overlapping and non-overlapping are examined as well as different 

window sizes. Feature selection schemes based on Adaboost and histogram 

errors are considered. Four SVM kernels and Adaboost are used for classification 

with different window types and sizes, different class of features, different feature 

counts and different training sets. A detailed pixel and object based performance 

evaluation is done. Beside numerical results, visual results are also presented. 

 

We see that non-overlapping windows have disadvantage since they reduce the 

classification resolution. On the contrary, overlapping windows give better results 

but their time of extraction is long. While using non-overlapping windows, the 

performance has a tendency to decrease since the classification resolution 

decreases. On the other hand, the performance of overlapping windows first 

increases since this enables extraction of textural features more precisely, and 

then decreases since both building and non-building areas begin to be covered in 

the window.  
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Using only intensity textural features for classification is not enough to form a 

building detector since other manmade object like roads are similar to buildings in 

means of texture. SVM kernels are not able to form an acceptable classifier using 

only intensity textural features but Adaboost formed a reasonable classifier. SVM 

kernels need features with more separation capacities. The classifier formed by 

using only HSV domain features have good results when trained with parts of the 

images but the performance significantly decreased when a new set of images 

introduced. As expected, using both intensity textural and HSV domain features 

together gave the best results. Also they are more robust to different images than 

using only HSV domain features. 

 

Investigation of optimal parameters for four SVM kernels namely linear, 

polynomial, RBF, and quadratic and also for Adaboost is done in sensitivity 

analyses. Among SVM kernels, the best performance is achieved by quadratic 

SVM kernel.  

 

Adaboost can form its own features over a large feature set but SVM uses 

predefined features. We see that selecting features for SVM rather than giving all 

the features supplied better performances. Both histogram and Adaboost based 

feature selection methods significantly increase the performance. SVM quadratic 

kernel operated on Adaboost selected features have higher performance 

(QP=51.6%) than SVM quadratic kernel operated on features considering 

histogram errors (QP=43.2), since Adaboost selects features by taking into 

account the samples incorrectly classified by the previous weak classifiers formed 

by using selected features. Without any feature selection, best QP=26.7 obtained 

for SVM by quadratic kernel. 

 

The performance of SVM quadratic kernel with Adaboost selected features has 

nearly five percent better performance in terms of pixel based performance 

(QP=51.6%) than Adaboost (QP=46.7%) when a part of the images is used for 

training. In terms of object based performances regarding correct detection ratios 

(CDR) and false alarm ratios (FAR), SVM quadratic kernel with Adaboost selected 

features performed CDR=0.46 for T=0.4, CDR=0.36 for T=0.6, and FAR=0.17 for 

T=0.4 and FAR=0.28 for T=0.6. The same ratios for Adaboost are CDR=0.54 for 
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T=0.4, CDR=0.44 for T=0.6 and FAR=0.40 for T=0.4 and FAR=0.51 for T=0.6 

where T is building detection threshold. This shows although Adaboost is better in 

detecting buildings than SVM, worse in generating false alarms. 

 

However, if new images that had not been used in training were introduced, the 

performance regarding QP of Adaboost (QP=43.2%) was five percent better than 

SVM quadratic kernel with Adaboost selected features (QP=38.2%). In terms of 

object based performances regarding CDR and FAR, SVM quadratic kernel with 

Adaboost selected features performed CDR=0.48 for T=0.4, CDR=0.35 for T=0.6, 

and FAR=0.75 for T=0.4 and FAR=0.95 for T=0.6. The same ratios for Adaboost 

are CDR=0.67 for T=0.4, CDR=0.59 for T=0.6 and FAR=0.26 for T=0.4 and 

FAR=0.35 for T=0.6. In this case, Adaboost over performed the SVM quadratic 

kernel with Adaboost selected features both in terms of pixel based and the object 

based performance criteria. 

 

As a summary, in this study the best performances achieved using Adaboost with 

all features. The correct detection rate is 87 over 130 (CDR=0.67) buildings when 

building detection threshold is 0.4 and 77 over 130 (CDR=0.59) when building 

detection threshold is 0.6. The false alarm rate is 34 over 130 (FAR=0.26) 

buildings when building detection threshold is 0.4 and 46 over 130 (FAR=0.35) 

when building detection threshold is 0.6. In Pattern Recognition in Remote 

Sensing (PRRS) competition held in 2008, the best result presented was about 

850 of 3500 for correct detection (CDR=0.24) of buildings with threshold T=0.55 

[63]. (The data used is copy protected so we could not be able to run our 

algorithm on that data). Although the data used are different, the performance 

criteria used are the same. This might give an idea. The results we obtained are 

quite promising when compared with the results in [63], 

 

Future work involves continued evaluation of the proposed algorithm on images of 

different types. In this work we deal with visible band of the satellite images but 

the algorithms can be easily modified to work only on panchromatic band. Aerial 

images can also be used as input images. In addition to that, the proposed 

method can be extended to use all the spectral bands of the satellite image. As 

we mentioned before, vegetation and shadow information can be extracted by 
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using Normalized Difference Vegetation Index (NDVI) and ratio of hue to intensity 

in YIQ model, respectively. This additional information will improve the building 

detection performance of the system.  

 

The proposed feature selection and classification system can also be applied for 

objects of different types. Instead of buildings, the system can be modified to deal 

with road or some other special structure/area detection problems in satellite 

images. Some additional features will be integrated to the system to discriminate 

the selected object type from its surroundings.  

 

Another important future work will be improving the performance of the further 

processing phase of the proposed algorithm. The algorithm proposed here can be 

used for hypothesis generation that is in finding candidate regions for buildings. 

After determining the building regions some additional processes like boundary 

removal and region merging can be applied together as a hypothesis verification 

step further eliminate false alarms. Advanced boundary extraction algorithms can 

be also applied to get more reliable building boundaries.  
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APPENDIX A 

 

EXAMPLE FEATURE RESULTS 
 

 

 

Table A.1: Basic Features 
 

Basic Features 

Featur
e 

Nunbe
r 

Feature 
Name Buildin

g 
Buildin

g 
Buildin

g 
Non- 

buildin
g 

 
Non- 

buildin
g 

 
Non- 

buildin
g 

 
Normali-

zed 
histogra

m 
Error 

1 Mean 0.7498 0.397 0.2088 0 1 0.1942 0.3237 
2 Variance 0.539 0.0973 0.0495 0.0882 1 0 0.4619 
3 Skewnes

s 
0 0.2519 0.4697 0.3238 0.3766 1 0.398 

4 Kurtosis 0.1853 0.2409 1 0 0.0217 0.505 0.4248 
5 Entropy 0.9803 0.58 0.2371 0.5588 1 0 0.4428 
6 Energy 0.6056 0.2047 0.0782 0 1 0.0634 0.3374 
7 Mean of 

gradient 
0.932 0.3006 0.132 0.3036 1 0 0.4515 

8 Variance 
of 
gradient 

0.165 0 0.2927 0.0891 0.124 1 0.4483 

9 Variogra
m with 1 
distance 

0.8571 0.1665 0.0564 0.1124 1 0 0.4456 

10 Variogra
m with 2 
distance 

0.9415 0.1749 0.0733 0.1361 1 0 0.4562 

11 Variogra
m with 3 
distance 

0.7962 0.1492 0.0591 0.1256 1 0 0.4583 
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Table A.2: Zernike Moment 
 

Zernike Moments 

Featur
e 

Nunbe
r 

Featur
e 

Name 
 

Buildin
g 

Buildin
g 

Buildin
g 

Non- 
building

 
Non- 

building 

 
Non- 

building 

Normali-
zed 

histogra
m 

Error 
12 Zernik

e (0,0) 
0.7498 0.397 0.2088 0 1 0.1942 0.3237 

13 Zernik
e (1,1) 

0.5729 0.2923 0.1382 0.3063 1 0 0.4637 

14 Zernik
e (2,0) 

0.3465 0.3253 0.128 0 1 0.1396 0.3328 

15 Zernik
e (2,2) 

0.5264 0.0831 0 0.1015 1 0.1146 0.4668 

16 Zernik
e (3,1) 

0.481 0.688 0 1 0.924 0.1723 0.4673 

17 Zernik
e (3,3) 

1 0.9995 0 0.3307 0.425 0.2377 0.4669 

18 Zernik
e (4,0) 

0.4722 0.4854 0.1383 0 1 0.1691 0.3399 

19 Zernik
e (4,2) 

0.5546 0.1294 0.5384 0.1238 1 0 0.4748 

20 Zernik
e (4,4) 

0.8514 0.1756 0.0879 0.0384 1 0 0.3968 
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Table A.3: Circular Mellin Features 
 

Circular Mellin Features 

Featur
e 

Nunbe
r 

Featur
e 

Name 
 

Buildin
g 

Buildin
g 

Buildin
g 

Non- 
building

 
Non- 

building 

 
Non- 

building 

Normali-
zed 

histogra
m 

Error 
21 C(1,1) 0.8172 0.0565 0.436 0.3696 1 0 0.4658 
22 C(1,2) 1 0.1809 0.3519 0 0.934 0.2193 0.4713 
23 C(1,3) 1 0 0.3581 0.4988 0.8763 0.1323 0.4606 
24 C(1,4) 0.5468 0.3379 0.1462 0 1 0.1363 0.357 
25 C(1,5) 0.9025 0.1534 0.389 0.102 1 0 0.4657 
26 C(2,1) 1 0 0.4058 0.3759 0.7375 0.0648 0.4679 
27 C(2,2) 0.1913 0.2268 0.4268 0 1 0.1606 0.4626 
28 C(2,3) 0.7066 0.0995 0.241 0.2731 1 0 0.4622 
29 C(2,4) 0.1972 0.4163 0.2087 0 1 0.1785 0.3375 
30 C(2,5) 1 0.209 0.2379 0.113 0.6544 0 0.4661 
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Table A.4:  Fourier Power Spectrum Features 
 

Fourier Power Spectrum Features 

Featur
e 

Nunbe
r 

Feature 
Name Buildin

g 
Buildin
g 

Buildin
g 

Non- 
buildin
g 

 
Non- 
buildin
g 

 
Non- 
buildin
g 

Normali-
zed 

histogra
m 

Error 

31 Ring1 on 
PS 

0.5903 0.2092 0.0829 0 1 0.0709 0.3316 

32 Ring2 on 
PS 

1 0.153 0.0855 0.1262 0.8291 0 0.4573 

33 Ring3 on 
PS 

0.8889 0.1871 0.0723 0.1068 1 0 0.4485 

34 Ring4 on 
PS 

0.7114 0.2706 0.047 0.0872 1 0 0.4484 

35 Ring5 on 
PS 

0.832 0.211 0.0454 0.1117 1 0 0.4503 

36 Ring6 on 
PS 

1 0.2042 0.0395 0.1181 0.9556 0 0.3284 

37 Max of 
DFT 

0.7498 0.397 0.2088 0 1 0.1942 0.3237 

38 Mean of 
DFT 

0.9057 0.3649 0.1815 0.2063 1 0 0.4005 

39 Energy 
of DFT 

0.6056 0.2047 0.0782 0 1 0.0634 0.3374 

40 Variance 
of DFT 

0.5981 0.2076 0.0814 0 1 0.0687 0.3313 

41 Skewnes
s of DFT 

0.6256 0.848 0.8017 0 0.5236 1 0.4136 

42 Kurtosis 
of DFT 

0.6299 0.8494 0.8026 0 0.5125 1 0.4133 

43 Entropy 
of DFT 

0.099 0.6522 0.8869 0.9048 0 1 0.459 

44 Variogra
m of 
DFT 1 
distance 

0.5811 0.2243 0.0858 0 1 0.0799 0.327 

45 Variogra
m of 
DFT 2 
distance 

0.5772 0.2111 0.0807 0 1 0.0747 0.3319 

46 Variogra
m of 
DFT 3 
distance 

0.5833 0.2065 0.0801 0 1 0.0696 0.3337 
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Table A.5: Gabor Filters 
 

Gabor Filters 

Featur
e 

Nunbe
r 

Feature 
Name  

Building Building Building Non- 
building 

 
Non- 
building 

 
Non- 
building 

Normali-
zed 

histogra
m 

Error 
47 Mean 

and 
variance 
pairs of 
gabor 
filters 
with 6 
orienta-
tions 
and 4 
scales 
circularly 
shifted 
as pair 
with 
maximu
m mean 
located 
at the 
beginnin
g   

0.749 0.397 0.208 0 1 0.194 0.3237 
48 1 0.592 0.481 0.251 0.894 0 0.452 
49 0.749 0.397 0.208 0 1 0.194 0.3237 
50 0.837 0.510 0.517 0.454 1 0 0.4528 
51 0.250 0.603 0.791 1 0 0.805 0.3237 
52 0.587 0.326 0.399 0.138 1 0 0.4572 
53 0.749 0.397 0.208 0 1 0.194 0.3237 
54 0.355 0.130 0.101 0.052 1 0 0.4561 
55 0.749 0.397 0.208 0 1 0.194 0.3497 
56 1 0.148 0.189 0.150 0.855 0 0.4632 
57 0.749 0.444 0.242 0 1 0.226 0.3689 
58 0.989 0.141 0.144 0.177 1 0 0.4651 
59 0.245 0.899 0.992 0.981 0 1 0.3317 
60 0.672 0.263 0.309 0.051 1 0 0.4677 
61 0.749 0.997 0.631 0 1 0.603 0.3238 
62 0.202 0.083 0.032 0 1 0.000 0.4669 
63 0.749 0.397 0.208 0 1 0.194 0.3594 
64 0.403 0.105 0.107 0.092 1 0 0.4629 
65 0.749 0.352 0.177 0 1 0.164 0.3463 
66 0.878 0.187 0.279 0.232 1 0 0.4733 
67 0.260 0 0.365 1 0.014 0.393 0.3311 
68 0.323 0.048 0.049 0 1 0.036 0.4743 
69 0.753 0.102 0.007 0.015 1 0 0.3239 
70 0.297 0.093 0.070 0 1 0.042 0.476 
71 0.749 0.397 0.208 0 1 0.194 0.3237 
72 1 0.422 0.142 0.346 0.62 0 0.4463 
73 0.749 0.397 0.208 0 1 0.194 0.3237 
74 0.941 0.507 0.132 0.320 1 0 0.4639 
75 0.250 0.603 0.791 1 0 0.805 0.3237 
76 0.683 0.151 0.065 0.087 1 0 0.4622 
77 0.749 0.397 0.208 0 1 0.194 0.3237 
78 0.539 0.150 0.030 0.147 1 0 0.4612 
79 0.749 0.397 0.208 0 1 0.194 0.3497 
80 1 0.288 0.118 0.506 0.741 0 0.4618 
81 0.749 0.444 0.242 0 1 0.226 0.3689 
82 1 0.294 0.102 0.329 0.468 0 0.4571 
83 0.245 0.899 0.992 0.981 0 1 0.3317 
84 1 0.210 0.067 0.714 0.417 0 0.4571 
85 0.74 0.997 0.631 0 1 0.603 0.3238 
86 1 0.210 0.155 0.528 0.438 0 0.4569 
87 0.749 0.397 0.208 0 1 0.194 0.3594 
88 0.978 1 0.321 0.288 0.697 0 0.4529 
89 0.749 0.352 0.177 0 1 0.164 0.3463 
90 1 0.821 0.479 0.311 0.731 0 0.4572 
91 0.260 0 0.365 1 0.014 0.393 0.3311 
92 1 0.748 0.346 0.354 0.981 0 0.4603 
93 0.753 0.102 0.007 0.015 1 0 0.3239 
94   0.365 0.330 0.952 0.006 0.46 
  



 

194 

 
Table A.6: Haralick Features 

 

Haralick Features 

Featur
e 

Nunbe
r 

Feature 
Name Buildin

g 
Buildin
g 

Buildin
g 

Non- 
buildin
g 

 
Non- 
buildin
g 

 
Non- 
buildin
g 

Normali-
zed 

histogra
m 

Error 

95 Inertia 
with 
distance 1 

0.664 0.288 0.104 0 1 0.064 0.3563 

96 Cluster 
shade 
with 
distance 1 

0 0.254 0.320 0.289 1 0.295 0.4253 

97 Cluster 
prominan
ce with 
distance 1 

0.440 0.014 0.023 0.014 1 0 0.4585 

98 Local 
homegeni
ty with 
distance 1 

0.066 0.617 0.614 0.500 0 1 0.4574 

99 Energy 
with 
distance 1 

0.134 0.571 0.453 0.278 0 1 0.4542 

100 Entropy 
with 
distance 1 

0.840 0.341 0.358 0.448 1 0 0.4556 

101 Inertia 
with 
distance 2 

0.669 0.288 0.106 0 1 0.067 0.3536 

102 Cluster 
shade 
with 
distance 2 

0 0.201 0.256 0.246 1 0.246 0.4256 

103 Cluster 
prominan
ce with 
distance 2 

0.329 0.011 0.014 0.013 1 0 0.4636 

104 Local 
homegeni
ty with 
distance 2 

0.100 0.652 0.623 0.461 0 1 0.4608 

105 Energy 
with 
distance 2 

0.127 0.560 0.421 0.230 0 1 0.4547 

106 Entropy 
with 
distance 2 

0.829 0.330 0.350 0.458 1 0 0.456 
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Table A.6 - Continued 
 
107 Inertia with 

distance 3 
0.670 0.286 0.106 0 1 0.068 0.3522 

108 Cluster 
shade with 
distance 3 

0 0.168 0.231 0.236 1 0.226 0.4257 

109 Cluster 
prominance 
with 
distance 3 

0.288 0.010 0.011 0.014 1 0 0.4639 

110 Local 
homegenity 
with 
distance 3 

0.146 0.680 0.661 0.463 0 1 0.4578 

111 Energy with 
distance 3 

0.125 0.537 0.420 0.215 0 1 0.4572 

112 Entropy 
with 
distance 3 

0.813 0.330 0.335 0.460 1 0 0.4565 

113 Inertia with 
distance 4 

0.665 0.285 0.105 0 1 0.068 0.3517 

114 Cluster 
shade with 
distance 4 

0 0.224 0.298 0.318 1 0.206 0.4256 

115 Cluster 
prominance 
with 
distance 4 

0.2881 0.0094 0.0087 0.0162 1 0 0.4631 

116 Local 
homegenity 
with 
distance 4 

0.205 0.701 0.684 0.487 0 1 0.4592 

117 Energy with 
distance 4 

0.121 0.520 0.420 0.212 0 1 0.4594 

118 Entropy 
with 
distance 4 

0.806 0.334 0.330 0.462 1 0 0.459 
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Table A.7: Wavelet Features 
 

Wavelet Features 

Featur
e 

Nunb
er 

Feature 
Name Buildin

g 
Buildin
g 

Buildin
g 

Non- 
buildin
g 

Non- 
buildin
g 

Non- 
buildin
g 

Normali
-zed 

histogra
m 

Error 

119 Energy(LL,1) 0.2179 0.068 0 1 0.0603 0.6151 0.3425 
120 Variance(LL,

1) 
0.2509 0.201 0.2559 1 0 0.7218 0.4428 

121 Energy(LH,1
) 

0.1715 0.011 0.0354 1 0 0.6288 0.4476 

122 Variance(LH
,1) 

0.3795 0.063
7 

0.1449 1 0 0.7802 0.441 

123 Energy(HL,1
) 

0.1502 0.037 0.0823 0.2941 0 1 0.4656 

124 Variance(HL
,1) 

0.3254 0.123
1 

0.216 0.4934 0 1 0.4417 

125 Energy(HH,1
) 

0.1928 0.057 0.0825 1 0 0.6423 0.4459 

126 Variance(HH
,1) 

0.3759 0.165
3 

0.2133 1 0 0.7784 0.4302 

127 Energy(LL,2) 0.2365 0.054 0 1 0.0599 0.59 0.3463 
128 Variance(LL,

2) 
0.2244 0.25 0.2666 1 0 0.7106 0.4482 

129 Energy(LH,2
) 

0.3766 0.029
4 

0.0991 0.6546 0 1 0.4645 

130 Variance(LH
,2) 

0.593 0.128
1 

0.2767 0.8033 0 1 0.4591 

131 Energy(HL,2
) 

0.0791 0.530
1 

0.1643 0.2798 0 1 0.4607 

132 Variance(HL
,2) 

0.200 0.692 0.33 0.469 0 1 0.4401 

133 Energy(HH,2
) 

0.202 0.151 0.120 0.587 0 1 0.4683 

134 Variance(HH
,2) 

0.392 0.327 0.282 0.740 0 1 0.4634 

135 Energy(LL,3) 0.244 0.035 0 1 0.059 0.527 0.3498 
136 Variance(LL,

3) 
0.176 0.329 0.270 1 0 0.518 0.4634 

137 Energy(LH,3
) 

0.140 0.016 0.045 0.548 0 1 0.4781 

138 Variance(LH
,3) 

0.348 0.093 0.181 0.747 0 1 0.4724 

139 Energy(HL,3
) 

0.199 0.086 0.351 0.486 0 1 0.4713 

140 Variance(HL
,3) 

0.4004 0.239
7 

0.5455 0.6535 0 1 0.4516 

141 Energy(HH,3
) 

0.148 0.079 0.223 1 0 0.976 0.467 

142 Variance(HH
,3) 

0.321 0.210 0.416 1 0 0.986 0.4592 
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Table A.8:  HSV Domain Features 
 

HSV domain features 
Feat
ure 

Nunb
er 

Feature 
Name 

Building Building Building Non- 
building 

 
Non- 

building 

 
Non- 

building 

Normali-
zed 

histogram 
Error 

143 Mean of 
hue 

0 0.0989 0.941 0.4979 1 0.566 0.2147 

144 Variance 
of hue 

0.8708 0.0062 0.0991 1 0.9533 0 0.4291 

145 Mean of 
hue 
gradient 

0.5212 0.0333 0.1582 1 0.6707 0 0.3855 

146 Variance 
of hue 
gradient 

0.8294 0.0829 0.1309 0.9603 1 0 0.4111 

147 Center 
pixel value 
of hue 

0 0.0324 0.91 0.2853 1 0.3521 0.202 

148 Mean of 
sat 

0.4465 1 0.1546 0.3159 0 0.6916 0.2813 

149 Variance 
of sat 

1 0.2328 0 0.971 0.32 0.0039 0.386 

150 Mean of 
sat 
gradient 

0.3968 0.158 0.0456 1 0.2135 0 0.4137 

151 Variance 
of sat 
gradient 

0.3929 0.1076 0.0243 1 0.1874 0 0.411 

152 Zernike of  
sat 

1 0.1519 0 0.1926 0.5122 0.2778 0.4385 

153 Circular 
mellin of 
sat 

0.6993 0 0.4901 0.4966 1 0.7997 0.4713 

154 Center 
pixel value 
of sat 

0.5278 0.3758 0.1302 1 0 0.3928 0.2834 

155 Mean of 
value 

0.9573 0.6226 0.1959 0 1 0.2321 0.3033 

156 Variance 
of value 

0.824 0.3209 0.1599 0.2469 1 0 0.4434 

157 Mean of 
value 
gradient 

1 0.3275 0.1302 0.3167 0.98 0 0.4459 

158 Variance 
of value 
gradient 

0.8822 0.4755 0.2132 0.2066 1 0 0.4091 

159 Zernike of  
value 

0.5006 0.4013 0.1358 0.3405 1 0 0.4636 

160 Circular 
mellin of 
value 

1 0.1223 0.3901 0.3072 0.8207 0 0.467 

161 Center 
pixel value 
of value 

1 0.7376 0.3191 0 0.922 0.3262 0.2755 

 


