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ABSTRACT 

 

 

SMOOTHING AND DIFFERENTIATION OF DYNAMIC DATA 
 

 

Titrek, Fatih 

M.S., Department of Computer Engineering 

Supervisor: Prof. Dr. Sibel Tari 

May 2010, 113 pages 

 

Smoothing is an important part of the pre-processing step in Signal Processing. A 

signal, which is purified from noise as much as possible, is necessary to achieve our 

aim. There are many smoothing algorithms which give good result on a stationary 

data, but these smoothing algorithms don’t give expected result in a non-stationary 

data. Studying Acceleration data is an effective method to see whether the smoothing 

is successful or not. The small part of the noise that takes place in the Displacement 

data will affect our Acceleration data, which are obtained by taking the second 

derivative of the Displacement data, severely. In this thesis, some linear and non-linear 

smoothing algorithms will be analyzed in a non-stationary dataset.  

 

Keywords: One dimensional filters, Linear smoothing filters, Non-linear smoothing 

filters, Diffusion, Non-stationary signals. 

 

 

 



 v 

 

ÖZ 

 

 

DİNAMİK VERİLERİN DÜZGÜNLEŞTİRİLMESİ VE 

AYRIMLAŞTIRILMASI 
 

 

Titrek, Fatih 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Sibel Tari 

Mayıs 2010, 113 sayfa 

 

Düzgünleştirme işlemi, sinyal işlemede önemli bir ön işlemdir. Gürültüden 

temizlenebildiği kadar temizlenmiş bir sinyal, amacımıza ulaşmamız için gereklidir. 

Durağan sinyaller üzerinde iyi sonuçlar veren birçok düzgünleştirme algoritması 

vardır. Fakat bu algoritmalar durağan olmayan sinyaller üzerinde beklenilen sonuçları 

vermezler. İvme verisinin incelenmesi, düzgünleştirme işleminin başarılı olarak yapılıp 

yapılmadığını görmede etkili bir yöntemdir. Çünkü yer değiştirme verisinin içinde yer 

alan ufak gürültüler, yer değiştirme verisinin ikinci türevini alarak elde edilen ivme 

verisini büyük ölçüde etkileyecektir. Bu tezde, bazı doğrusal ve doğrusal olmayan 

düzgünleştirme algoritmaları durağan olmayan bir veri kümesi üzerinde incelenecektir. 

 

Anahtar Kelimeler: Tek boyutlu filtreleme, Doğrusal düzgünleştirme filtreleri, 

Doğrusal olmayan düzgünleştirme filtreleri, Difüzyon, Durağan olmayan sinyaller. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Data, resulting from quantitative measurements of a physical phenomenon, play a 

critical role in scientific investigation. These data typically exhibit randomness, either 

due to a limitation of the measuring device or a limitation on the measurability of the 

physical phenomena considered.  

In the most simplistic scenario, a single quantity is being searched. For example, one 

tries to measure a quantity such as weight. When the second measurement for the same 

quantity is made, the result may be identical to the first measurement up to a certain 

accuracy, e.g. two measurements (0.482 and 0.485) are identical up to 2 decimal places 

however in many cases the second measurement will be substantially different because 

each measurement ( iX ) is a sum of unknown true quantity and a measurement 

error  i . In such a situation, one often takes as many measurements as she or he can, 

and uses these measurements together in order to obtain a single number (e.g. average 

of all measurements), which reflects the measured quantity better than any of the 

obtained measurements. As the number of measurements increases, the accuracy of 

this number increases (more on this in Chapter 2). 

In a second scenario, one attempts to measure a dynamic phenomenon. i.e. a 

phenomena that produce time changing patterns such that the characteristics of the 

pattern at one time being interrelated with those at other times [1]. Data, resulting 

from a measurement of a dynamic phenomenon, have a natural temporal ordering; thus 

they are called as time series. As in the first scenario where a single quantity is 

measured, the measurement taken at each time instant kt  reflects a noisy measurement: 
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 ( ) ( ) ( )M k T k kf t f t t    

where,  

 k

 

( ) :  measured value at time t ,

( ) :  true value at time ,

( )  :  error at time .

M k

T k k

k k

f t

f t t

t t
 

If one can afford taking multiple measurements, 

 ( )          1,2,3,...i

M kf t i   

then one can estimate the true value ( )T kf t  e.g. by averaging. 

More over, obtaining a second measurement is not possible. Hence, one has to exploit 

the relation among values at different time instances as the characteristics of the 

pattern at one time is interrelated with those at other times. Data smoothing techniques 

should exploit the relation among data values at different time instances. Smoothing 

should preserve critical features in the data set while removing noise. On one hand, 

when a data is smoothed less, it contains more noise. On the other hand, when a data is 

smoothed more, critical features are lost. There should be a balance in terms of how 

much noise could be tolerated versus what feature should be preserved. 

The level of smoothing is especially critical if higher order derivatives are to be 

estimated from the smoothed data, and features of interest are sudden changes in the 

derivatives. First derivative is the rate at which the dependent variable changes with 

respect to a small change in an independent variable. If the independent variable 

corresponds to time and the dependent variable corresponds to positional displacement, 

the first derivative corresponds to velocity. The first derivative of velocity with respect 

to time is the second derivative of position and corresponds to acceleration. Therefore, 

being able to estimate the second derivative of a position data is important. 

Unfortunately, numerical differentiation is not robust to noise. A demonstration is 

given below using a Gaussian function (Figure 1.1) as the function to be differentiated 

numerically. Plots, shown between the Figure 1.1 and Figure 1.7, are taken from [19] 

and modified. These plots can be found in image processing textbooks as well. The 
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first derivative result is depicted in Figure 1.2, and the second derivative result is 

depicted in Figure 1.3. It is seen that both the first derivative and the second derivative 

results seem correct, because the function to be differentiated does not contain noise. 

In Figure 1.4, noise added form of the function in Figure 1.1 is shown. 

 

Figure 1.1: Original Data. 

 

 

 

Figure 1.2: First Derivative Result of Figure 1.1 
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Figure 1.3: Second Derivative Result of Figure 1.1 

 

 

Figure 1.4: Noisy Data. 

After some smoothing, numerical differentiation gives the results shown in Figures 1.5 

and 1.6 for the first and the second derivatives respectively. Notice that the higher 

order derivative is more sensitive to noise because differentiation amplifies high 

frequency components, hence amplifies noise. Specifically, notice that the second 

derivative estimate depicted in Figure 1.6 oscillates roughly in the range 

[
-2 -2

-3.5x10 ,  3.5x10 ] which is nearly 50 times larger than the range of the correct 

estimate depicted in Figure 1.3. 
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Figure 1.5: First Derivative Result after Smoothing in Figure 1.4 

The signal to noise ratio of a derivative can be significantly poorer in inadequate 

smoothing than that of the derivative of the original signal. However with a sufficient 

smoothing operation, the signal to noise ratio of the smoothed derivative can decrease 

to acceptable level. Better derivative estimates can be obtained using a different 

smoothing strategy. A second derivative estimate obtained after smoothing the data in 

Figure 1.4 more, which is depicted in Figure 1.7, 

Notice that oscillations are significantly reduced compared to those in Figure 1.6. The 

new estimate is roughly in [
-3 -3

-2x10 ,  1x10 ] range, which is only twice large than the 

interval of the correct second derivative depicted in Figure 1.3. The stationary nature 

of the signal in Figure 1.1, whose noisy form is in Figure 1.4, makes it possible for us 

to find the correct smoothing level that removes the noise thus enhance the signal to 

noise ratio. 
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Figure 1.6: Second Derivative Result after Smoothing less in Figure 1.4 

 

 

 

Figure 1.7: Second Derivative Result after Smoothing in Figure 1.4 

Unfortunately many interesting signals and time series are not stationary. For non-

stationary signals, one can not make a clear distinction between noise and signal.  

In this thesis, the effect of different smoothing strategies on a one dimensional time 

series representing a positional displacement and on its estimated second derivative is 

experimentally investigated.  

Experiments are performed on two data which are presented in [2, 3]. The second 

derivatives are estimated applying a Smoothing filter. The first data [2] is the 

displacement for a free falling golf ball. Thus the double differentiation should give the 

gravitational acceleration which is 9.81 m/s². The second data set is an angular 
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displacement for a swinging pendulum whose motion is impacted by a solid barrier 

during its motion. Reference acceleration is measured using an accelerometer. Double 

differentiation of the Displacement data should be close to the reference acceleration. 

Smoothing filters are grouped into two categories: linear and non-linear. Widely used 

filters developed for handling piecewise smooth data, where the jumps at the first 

derivative are of interest, are experimented with. These filters have been studied in 

terms of their effectiveness in the context of image processing [18]. 

Smoothing is especially important when acceleration (the second order derivative) is of 

interest which is estimated from the smoothed data. Smoothing should preserve critical 

features while reducing noise. Smoothing is the initial and most important part of the 

data analyzing. When the data are smoothed less, it contain more noise. On the other 

hand when the data are smoothed more, critical features are lost. So this balance is 

important to determine the amount of smoothing.  

The complexity of the problem comes from non-stationary nature of the selected 

displacement signals. Popular filtering algorithms are successful especially when the 

data to be processed is stationary (Woltring, 1990, 1995), but the signals experimented 

in this thesis are non-stationary. That is, some parts of the signal contain higher 

frequency components than the other parts. Noise and signal spectrums overlap. 

Locally at some point, interesting feature is a high frequency component, thus it is hard 

to separate this feature from the noise.  

Main topics covered in this thesis can be summarized as follows: The effects of widely 

used Linear smoothing algorithms are reviewed, and estimated second derivative 

results are experimentally investigated for a one dimensional data set. And the same 

processes are done for some Non-linear smoothing algorithms. Perona Malik filtering 

and Ambrosio Tortorelli approximation of Mumford Shah model are reviewed and 

experimented for the same data set too. An alternative method to the Kuwahara filter is 

proposed and analyzed on the second derivative results. The success of the smoothing 

methods is analyzed by considering the second derivative of the smoothed data sets. 
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1.1 EXPERIMENTAL DATA SETS 

Experiments are performed on two data, both taken from [2, 3].  

 The first data (Golf ball drop data), is the recorded position of a dropped golf 

ball falling under gravitational force, shown in Figure 1.1.1.  

The position d (meters) is recorded from time=0.00, to time=0.48265 (seconds). In 

total, these are 50 equally spaced measurements with 0.00985t   (seconds) [2]. 

Double differentiation should produce constant acceleration. 
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Figure 1.1.1: Original Golf Ball Drop Data 

 The second data (Accelerometer data) which is taken from an experiment in 

Biomechanics [3] contains two parts: angular displacement and acceleration 

measured by accelerometer. 

In the Accelerometer data set, the units of the angular displacement are in radians, 

and the units of the acceleration are in radians per seconds². In total, there are 600 

equally spaced measurements with 1

512
t   (seconds), in Figure 1.1.2.a and Figure 

1.1.2.b. While a solid is swinging forward in horizontal direction, suddenly a soft 

barrier impacts its motion and it stops a little time before it swings back. 
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Figure 1.1.2.a: Original Angular Displacement Data 
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Figure 1.1.2.b: Original Acceleration Data 

1.2 ORGANIZATION 

The organization of thesis is as follows: In Chapter 2, some Linear smoothing filters 

are reviewed and implemented by using two data taken from Biomechanics Repository 

and second derivative results are presented. Same works in Chapter 2 are applied for 

Non-linear smoothing filters in Chapter 3, and a new method, alternative to Kuwahara 

filter, is proposed and implemented. The thesis concludes with Chapter 4 in which 

summary and discussions are provided. 
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CHAPTER 2 

 

LINEAR SMOOTHING FILTERS 

 

 

Linear and Time Invariant (LTI) filter can be defined as [4]: 

 ( ) ( ),  where .i

i

Output x C Input x i x




      (2.1) 

 

( ),  where    : is the input data,

,  where               : is a set of real numbers,

( ),  where : is the output data.

i

Input x x

C i

Output x x











 

Notice that the filtered value at each point x is calculated by taking the weighted 

average of input values [5]. Further notice that the weights are merely a function of the 

distance (offset) i  from the position x .  

Thus, a Linear and Time Invariant (LTI) filter does not take the characteristic 

properties of the given data into account. Each data point is treated equally without 

paying attention to the context (i.e. a pattern which is formed around each point).  

Depending on the choice of weight function and the mathematical model, linear filters 

take various forms.  

 

 

 

 

http://www.statistics.com/resources/glossary/w/wmean.php
http://www.statistics.com/resources/glossary/w/wmean.php
http://www.statistics.com/resources/glossary/w/wmean.php
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In this chapter, six kinds of Linear smoothing filters are experimented.  

1.  Mean Filter

2.  Iterated Mean Filter

3.  Gaussian Filter

4.  Ideal Low Pass Filter

5.  Butterworth Low Pass Filter

6.  Linear Diffusion Filter

 

 

Our test data do not include the data, eliminated from all kinds of noise. So, to be able 

to see the effect of the Linear smoothing filters, a sinusoidal test data is used with some 

added noise. Signal to noise ratio of the original noisy test data is equal to 10.9379.  

The Linear smoothing filter results are:  

Signal to noise ratio of the test data, filtered by Iterated Mean filter, is 19.1682. Signal 

to noise ratio of the test data, filtered by Gaussian filter, is 19.9133. Signal to noise 

ratio of the test data, filtered by Ideal Low Pass filter, is 23.2372. Signal to noise ratio 

of the test data, filtered by Butterworth Low Pass filter, is 23.2155. Signal to noise 

ratio of the test data, filtered by Linear Diffusion filter, is 19.9279.  
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2.1 MEAN FILTER 

Typically due to noise, one measurement is not enough to get the correct value. Thus 

series of measurements ( iX  ) are collected. These measurements are associated with a 

single point on a time line as seen in Figure 2.1.1. 
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Figure 2.1.1: Measurements. 
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n


 

It is seen that, these measurements are collected around the real value (µ), which is 

nearly at the center of the measurements. 

Sum of the difference among the measurements, less than the value of µ, and µ is 

equal to the sum of the difference among the measurements, greater than the value of 

µ, and µ [1]. 

1 2 1 1 2( ) ( )  ... ( ) ( ) ( )  ... ( )k k k nX X X X X X                     (2.2)   

 
1

1 n

i

i

X
n




   (2.3) 

So, (2.3) is the arithmetic mean of the measurements. This is called as a sample mean. 

The difference between a measurement and the center of cluster, µ, gives error, (2.4). 

 i irror X     (2.4) 
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 Total rror  can be calculated by using (2.5), 

 2

1

_
n

i

i

Total rror rror 


  (2.5) 

In the absence of multiple measurements, the following assumption can be made:  

Assumption: In a time series, consecutive measurements are close to each other. The 

measured values are collected around the real value (µ), which is nearly at the center of 

the measurements (That is the measured phenomenon varies slowly). 

One can consider the smallest window size of 3. Then the Mean filter takes the form in 

(2.6). 

  1
 1  1   1 

3
 (2.6) 

Mean filtering reduces the change of intensity variation between 2 neighbor data, and 

simply replaces each data value with the average value of its neighbors and its own. 

Consequently, Mean filtering can be thought as computing by moving averages over a 

finite window size. For example, when (2.6) is used for the data in (2.7), 

 ... ...f    g de a b c 
 

 (2.7) 

 ... ( ) ( ) ...
f

3 3 3 3 3
    

e a b c 
 
  

         f
g d

g e a e b a c b d
 (2.8) 

The larger the mask size, smoother the result. The result of the Mean filter is seen in 

(2.9), when the mask size is increased from 3 to 5.  

 
1

... ( ) ( ) ( ) ( ) ...
5

g+f f  f     e a b 
 

          g c da b e b c e a c d     (2.9) 

If the mask size is defined as the size of the data (N), the data goes to an average value. 

It means that it goes to a line.  

 
1

... 1 1 1 1 1 1 1 1 ...                
N
 
 

 (2.10) 

Filter results can be seen at the end of the Section 2.2 by comparing with the Iterated 

Mean filter. 
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2.2 ITERATED MEAN FILTER 

Consider a Mean filter with window size of 3. Single application of Mean filter to (2.7) 

gives (2.11). If the same filter is applied to the output of the filter given in (2.11), new 

output is obtained as (2.12). 

1
... ( ) ( ) ...

3
f    g dg e a e b a c b d 

 
         f e a b c  (2.11) 

1
.. ( ) ( ) ..

9
f 2f 3 2 f 2 3 2 2 3 2    g e b c dg a b e b c e a c d    

 
           e a b

 (2.12) 

As you see from (2.12), when iteration number is increased, then the data, which are 

processed, start to be affected from distant data. For example, in (2.12), the value of e 

is effected by g, f, a and b in second iteration, but a and f affects it more than g and b. 

If the iteration number continues increasing, the value of e will be affected from all the 

data. 

In my experiment for the Iterated Mean filter, 2 kinds of filter masks are used. 

 1
 1  1   1 

3
 

Mask 1 

 

and 
 1
 1  1  1   1  1 

5
 

Mask 2 

The results are seen in Figure 2.2.1 and in Figure 2.2.2, after applying Mean filter and 

Iterated Mean filter to our datasets by using Mask 1 and Mask 2. 
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2.2.1 Golf Ball Data Results for Mean Filtering and Iterated Mean Filtering 
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      (b)  

Figure 2.2.1: (Mean Filter vs. Iterated Mean Filter). (a) Golf Ball Data Result using the mask 1, 

(b) The samples, between 16 and 22, of Figure 2.2.1.a. 

Black Line: The Original Golf Ball Drop Data. 

Blue Line: Smoothed Golf Data by using the mask 1 (1x3),  

Red Line: Smoothed Golf Data by using the mask 1 for 20 iterations, 

Green Line: Smoothed Golf Data by using the mask 1 for 30 iterations 

 

To be able to realize the difference between two figures, check the data values in 

Tables 2.2.1.1, 2.2.1.2, 2.2.1.3 and 2.2.1.4. 

Table 2.2.1.1: Original Golf Ball Data Values 

Height (meters) : ... 1,7260 1,7150 1,6980 1,6830 1,6670 1,6510 … 

Time (seconds) : ... 0.0394 0.04925 0.0591 0.06895 0.0788 0.08865 ... 

Sample # : ... 5 6 7 8 9 10 ... 

Table 2.2.1.2:  Smoothed Golf Data after applying Mean filter by using mask 1 

Height (meters) : ... 1.727 1.713 1.6987 1.6827 1.667 1.65 ... 

Time (seconds) : ... 0.0394 0.04925 0.0591 0.06895 0.0788 0.08865 ... 

Table 2.2.1.3:    Smoothed Golf Data after applying Mean filter by using mask 1 for 20 iterations 

Height (meters) : ... 1,7206 1,7069 1,6925 1,6772 1,6610 1,6439 ... 

Time (seconds) : ... 0.0394 0.04925 0.0591 0.06895 0.0788 0.08865 ... 

Table 2.2.1.4:    Smoothed Golf Data after applying Mean filter by using mask 1 for 30 iterations 

Height (meters) : ... 1,7185 1,7045 1,6898 1,6743 1,6581 1,6409 ... 

Time (seconds) : ... 0.0394 0.04925 0.0591 0.06895 0.0788 0.08865 ... 
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      (b)  

Figure 2.2.2: (Mean Filter vs. Iterated Mean Filter).  (a) Golf Ball Data Result using the mask 2, 

(b) The samples, between 16 and 22, of Figure 2.2.2.a. 

Black Line: The Original Golf Ball Drop Data. 

Blue Line: Smoothed Golf Data by using the mask 2 (1x5),  

Red Line: Smoothed Golf Data by using the mask 2 for 20 iterations, 

Green Line: Smoothed Golf Data by using the mask 2 for 30 iterations 

 

To be able to realize the difference between two figures, check the data values in 

Tables 2.2.1.1, 2.2.1.5, 2.2.1.6 and 2.2.1.7. 

Table 2.2.1.5:    Smoothed Golf Data after applying Mean filter by using mask 2 

Height (meters) : ... 1,7254 1,7124 1,6978 1,6828 1,6662 1,6490 ... 

Time (seconds) : ... 0.0394 0.04925 0.0591 0.06895 0.0788 0.08865 ... 

Table 2.2.1.6:    Smoothed Golf Data after applying Mean filter by using mask 2 for 20 iterations  

Height (meters) : ... 1,7134 1,6983 1,6827 1,6666 1,6498 1,6322 ... 

Time (seconds) : ... 0.0394 0.04925 0.0591 0.06895 0.0788 0.08865 ... 

Table 2.2.1.7:    Smoothed Golf Data after applying Mean filter by using mask 2 for 30 iterations  

Height (meters) : ... 1,7098 1,6938 1,6773 1,6604 1,6428 1,6247 ... 

Time (seconds) : ... 0.0394 0.04925 0.0591 0.06895 0.0788 0.08865 ... 

 

Black line is the second derivative of the input data. There are so many noises. As you 

see from Figure 2.2.3, Figure 2.2.4 and Figure 2.2.5, when smoothing effect of the 

Mean filter is increased then the second derivative of the data become less noisy, and it 

goes to a line. 
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         (b)  

Figure 2.2.3: (Mean Filter vs. Iterated Mean Filter).  (a) Second Derivative Result of Smoothed 

Golf Ball Data using the mask 1, (b) The samples, between 10 and 22, of Figure 2.2.3.a. 

Black Line: Second Derivative of the Original Golf Ball Drop Data. 

Blue Line: Second Derivative of the Data by using the mask 1 (1x3),  

Red Line: Second Derivative of the Data by using the mask 1 for 20 iterations, 

Green Line: Second Derivative of the Data by using the mask 1 for 30 iterations 
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           (b)  

Figure 2.2.4: (Mean Filter vs. Iterated Mean Filter).  (a) Second Derivative Result of Smoothed 

Golf Ball Data using the mask 2, (b) The samples, between 10 and 22, of Figure 2.2.4.a. 

Black Line: Second Derivative of the Original Golf Ball Drop Data. 

Blue Line: Second Derivative of the Data by using the mask 2 (1x5),  

Red Line: Second Derivative of the Data by using the mask 2 for 20 iterations, 

Green Line: Second Derivative of the Data by using the mask 2 for 30 iterations 
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Figure 2.2.5: (Iterated Mean Filter). (a) Second Derivative Result of Smoothed Displacement Data 

using the mask 1 (1x3), (b) Second Derivative Result of Smoothed Displacement Data using the 

mask 2 (1x5). 

Red Line: Second Derivative Result of the Displacement Data for 20 iterations, 

Green Line: Second Derivative Result of the Displacement Data for 30 iterations.  

 

2.2.2 Displacement Data Results for Mean Filtering 

Comparative results of the Mean filter and Iterated Mean filter for various filter size 

and iteration can be seen in Figure 2.2.6 and Figure 2.2.7.  
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Figure 2.2.6: (Mean Filter vs. Iterated Mean Filter).  (a) Displacement Data Result using the  

mask 1, (b) The samples, between 333 and 364, of Figure 2.2.6.a.  

Black Line: The Original Displacement Data. 

Blue Line: Smoothed Displacement Data by using the mask 1 (1x3),  

Red Line: Smoothed Displacement Data by using the mask 1 for 20 iterations, 

Green Line: Smoothed Displacement Data by using the mask 1 for 30 iterations 
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Figure 2.2.7: (Mean Filter vs. Iterated Mean Filter).  (a) Displacement Data Result using the  

mask 2, (b) The samples, between 333 and 364, of Figure 2.2.7.a.  

Black Line: The Original Displacement Data. 

Blue Line: Smoothed Displacement Data by using the mask 2 (1x5),  

Red Line: Smoothed Displacement Data by using the mask 2 for 20 iterations, 

Green Line: Smoothed Displacement Data by using the mask 2 for 30 iterations 

 

Comparative Second Derivative Result of the Smoothed Displacement data by using 

the Mean filter and Iterated Mean filter for various filter size and iteration can be seen 

in Figure 2.2.8 and Figure 2.2.9.  
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          (b)  

Figure 2.2.8: (Mean Filter vs. Iterated Mean Filter). (a) Second Derivative Result of Smoothed 

Displacement Data using the mask 1, (b) The samples, between 333 and 364, of Figure 2.2.8.a. 

Black Line: Second Derivative of the Original Displacement Data. 

Blue Line: Second Derivative of the Data by using the mask 1 (1x3),  

Red Line: Second Derivative of the Data by using the mask 1 for 20 iterations, 

Green Line: Second Derivative of the Data by using the mask 1 for 30 iterations 
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          (b)  

Figure 2.2.9: (Mean Filter vs. Iterated Mean Filter). (a) Second Derivative Result of Smoothed 

Displacement Data using the mask 2, (b) The samples, between 333 and 364, of Figure 2.2.9.a. 

Black Line: Second Derivative of the Original Displacement Data. 

Blue Line: Second Derivative of the Data by using the mask 2 (1x5),  

Red Line: Second Derivative of the Data by using the mask 2 for 20 iterations, 

Green Line: Second Derivative of the Data by using the mask 2 for 30 iterations 

 

Second Derivative Result of the Smoothed Displacement data by using the Iterated 

Mean filter for various filter size and iteration can be seen in Figure 2.2.10.  
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     (b)  

Figure 2.2.10: (Iterated Mean Filter). (a) Second Derivative Result of Smoothed Displacement 

Data using the mask 1 (1x3), (b) Second Derivative Result of Smoothed Displacement Data using the 

mask 2 (1x5). 

Red Line: Second Derivative Result of the Displacement Data for 20 iterations, 

Green Line: Second Derivative Result of the Displacement Data for 30 iterations.  
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2.2.3 Acceleration Data Results for Mean Filtering 

As it is seen from Figure 2.2.11 and Figure 2.2.12, when the filter size is increased, 

fluctuations and the instant noise start to decrease. However, at the same time, sudden 

changes evaporate and the fluctuating transitions of the data become quite soft.  
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Figure 2.2.11: (Mean Filter vs. Iterated Mean Filter).  (a) Acceleration Data Result using the  

mask 1, (b) The samples, between 207 and 242, of Figure 2.2.11.a.  

Black Line: The Original Acceleration Data. 

Blue Line: Smoothed Acceleration Data by using the mask 1 (1x3),  

Red Line: Smoothed Acceleration Data by using the mask 1 for 20 iterations, 

Green Line: Smoothed Acceleration Data by using the mask 1 for 30 iterations. 
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      (b)  

Figure 2.2.12: (Mean Filter vs. Iterated Mean Filter).  (a) Acceleration Data Result using the  

mask 2, (b) The samples, between 207 and 242, of Figure 2.2.12.a.  

Black Line: The Original Acceleration Data. 

Blue Line: Smoothed Acceleration Data by using the mask 2 (1x5),  

Red Line: Smoothed Acceleration Data by using the mask 2 for 20 iterations, 

Green Line: Smoothed Acceleration Data by using the mask 2 for 30 iterations. 
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2.2.4 Comparing Mean and Iterated Mean Filters 

Both the amount of smoothing and choice of smoothing procedure are important. 

Results are shown in Figures 2.2.13, 2.2.14 and 2.2.15. The peak, seen in the Figure 

2.2.13 in the area of 1, is the critical feature of the Acceleration data. This peak should 

be preserved after smoothing operation, but the peak, seen in the area of 2, is the noise 

that should be smoothed as much as possible. This is the major difficulty of this 

problem. In the area of 2, the results of the filtering are not successful, but Iterated 

Mean filtering result, seen by blue line in Figure 2.2.15, gives comparatively better 

result than others, but the same line is not successful in the area of 1. The peak in the 

area of 1 is not a noise, but the filtered signal lost this critical feature as shown by blue 

line. The result of the filtering, red line in Figure 2.2.14, gives relatively good result 

while giving the worst result in the area of 2. Also the results of filtered Displacement 

data can also be seen in Figure 2.2.6 and in Figure 2.2.7 by using the same parameters. 
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Figure 2.2.13: (Mean Filtering). The Comparative Second Derivative Results of Smoothed 
Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Red Line: Second Derivative of Smoothed Displacement Data by using the mask 1 (1x3) 

Blue Line: Second Derivative of Smoothed Displacement Data by using the mask 2 (1x5) 
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Figure 2.2.14: (Iterated Mean Filtering). The Comparative Second Derivative Results of Smoothed 
Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Red Line: Second Derivative of Smoothed Displacement Data by using the mask 1 for 20 iterations 

Blue Line: Second Derivative of Smoothed Displacement Data by using the mask 1 for 30 iterations 
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Figure 2.2.15: (Iterated Mean Filtering). The Comparative Second Derivative Results of Smoothed 
Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Red Line: Second Derivative of Smoothed Displacement Data by using the mask 2 for 20 iterations 

Blue Line: Second Derivative of Smoothed Displacement Data by using the mask 2 for 30 iterations 
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2.3 GAUSSIAN FILTER 

Gaussian filtering is another linear smoothing method. Filter weights are taken from 

Gaussian distribution. The characteristic feature of this filter is that the data, which are 

near the center, is more effective than the data, which are far away [9].  

Gaussian has the form: 

 

2

22
1

( )
2



 



 
 

x

g x e  (2.13) 

In (2.13), σ is the Standard Deviation of the Gaussian distribution and x is the distance 

from the origin in the horizontal axis. Gaussian filter smoothes the signal by 

convolving the input data with a Gaussian function.  

 

Figure 2.3.1:  Gaussian distribution where σ =3, Size=6*σ+1 

 _ 6 +1 Kernel Size  (2.14) 

Actually, Gaussian distribution behaves like weighted Mean filtering. The difference 

between them is that the weights on the Gaussian filter related to the filter size, which 

is in relation with the standard deviation, are calculated automatically. On the other 

hand, the weights on the Weighted Mean filter are defined manually. Larger standard 

deviations require larger convolution kernels. So, bigger standard deviation gives us 

smoother result. 
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2.3.1 Displacement Data Results for Gaussian Filtering 

Results of the Gaussian filtering for various σ values can be seen in Figure 2.3.2 and 

Figure 2.3.3. 
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Figure 2.3.2: (Gaussian Filtering).  (a) Displacement Data Results for σ=1, 2, 4, 6, size=6*σ+1, 

(b) The samples, between 333 and 364, of Figure 2.3.2.a.  

Black Line: The Original Displacement Data. 

Blue Line: Smoothed Displacement Data by using σ=1,  

Red Line: Smoothed Displacement Data by using σ=2, 

Green Line: Smoothed Displacement Data by using σ=4,  

Yellow Line: Smoothed Displacement Data by using σ=6. 
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Figure 2.3.3: (Gaussian Filtering).  (a) Displacement Data Results between 180 and 370 for σ=1, 6, 

size=6*σ+1, (b) Displacement Data Results between 460 and 600.  

Black Line: The Original Displacement Data. 

Blue Line: Smoothed Displacement Data by using σ=1,  

Yellow Line: Smoothed Displacement Data by using σ=6. 
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2.3.2 Second Derivative Results for Gaussian Filtering 

Second Derivative Result of Smoothed Displacement data by using Gaussian filter for 

various σ values can be seen in Figure 2.3.4 and Figure 2.3.5. 
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Figure 2.3.4: (Gaussian Filtering). (a) Second Derivative Result of Smoothed Displacement Data 

for σ=1, 2, 4, 6, size=6*σ+1, (b) The samples, between 333 and 364, of Figure 2.3.4.a. 

Black Line: Second Derivative of the Original Displacement Data. 

Blue Line: Second Derivative of the Data by using σ=1, 

Red Line: Second Derivative of the Data by using σ=2, 

Green Line: Second Derivative of the Data by using σ=4,  

Yellow Line: Second Derivative of the Data by using σ=6, 
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Figure 2.3.5: (Gaussian Filtering). (a) Second Derivative Result of Smoothed Displacement Data 

for σ=4, 6, size=6*σ+1, (b) Second Derivative Result of Smoothed Displacement Data for σ=6, 10 

size=6*σ+1, 

Green Line: Second Derivative of the Data by using σ=4,  

Yellow Line: Second Derivative of the Data by using σ=6,  

Cyan Line: Second Derivative of the Data by using σ=10, 
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2.3.3 Acceleration Data Results for Gaussian Filtering 

After applying the Gaussian filter to the Acceleration data, in Figure 1.1.2.b, the 

following results are obtained. 

Gauss Convolution results for various σ=1, 2, 3, 4 and size=6*σ+1 are seen in Figure 

2.3.6. All the results are overlapped and seen in Figure 2.3.8. When the standard 

deviation is increased, the filter size also increases as in (2.14). As increase in filter 

size means that the data in the center are affected by the data which are far away, so 

our data will become smoother. In Figure 2.3.6 and in Figure 2.3.8, it is seen how the 

data become smoother when the standard deviation increases. In Figure 2.3.7, in order 

to see the difference in the data, when σ=1, 2, 3, 4 more clearly, the spaces between the 

samples of 195 and 215 are overlapped and showed with different colors, and in Figure 

2.3.8.b the spaces between the samples of 185 and 230 are overlapped too. 
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Figure 2.3.6: (Gaussian Filtering). Filter Size is calculated by using (2.14). 

(a) σ = 1, (b) σ = 2, (c) σ = 4, (d) σ = 6. 
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Figure 2.3.7: (Gaussian Filtering).  Results between 186 and 215 for σ=1, 2, 3, 4, size=6*σ+1. 
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Figure 2.3.8: (Gaussian Filtering).  (a) Acceleration Data Results for σ=1, 2, 4, 6, size=6*σ+1, (b) 

The samples, between 185 and 230, of Figure 2.3.8.a.  

Black Line: The Original Acceleration Data. 

Blue Line: Smoothed Acceleration Data by using σ=1,  

Red Line: Smoothed Acceleration Data by using σ=2, 

Green Line: Smoothed Acceleration Data by using σ=4,  

Yellow Line: Smoothed Acceleration Data by using σ=6. 

 

Fourier transform of a Gaussian function is also a Gaussian. This makes working on 

Gaussian function both in spatial and frequency domain possible by using the same 

function [9]. Gaussian filtering decreases high frequencies more than low frequency.   

 



 29 

2.3.4 Comparing Gaussian Filters of Varying Standard Deviation  

The Comparative Second Derivative Results of Smoothed Displacement data and 

Original Acceleration data are seen in Figure 2.3.9. Gaussian filtering result, seen by 

yellow line in Figure 2.3.9, gives comparatively better result in the area of 2 than the 

others, but the same line is not successful in the area of 1. The result of filtering, seen 

by green line in Figure 2.3.9, gives best result in the area of 1 while giving worst result 

in the area of 2. Also results of filtered Displacement data can also be seen in Figure 

2.3.2 and in Figure 2.3.3 by using the same parameters. 
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Figure 2.3.9: (Gaussian Filtering). The Comparative Second Derivative Results of Smoothed 

Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Green Line: Second Derivative of Smoothed Displacement Data by using σ=4, (size=6*σ+1) 

Yellow Line: Second Derivative of Smoothed Displacement Data by using σ=6  
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2.4 IDEAL LOW PASS FILTER 

Ideal Low Pass filter works on the frequency domain. This filter works like a 

smoothing filter. The Ideal Low Pass filter removes all the frequency components 

above a Cut off frequency which is defined by the user [9]. Removing frequency 

components above a Cut off frequency means removing sudden change beside the 

noise because noise and sudden change in the data correspond to high frequency 

components. Removing these high frequency components gives a result for smoothing 

the output data.  

Table 2.4.1:    Ideal Low Pass Filter 

 

In Spatial Domain   In Frequency Domain  

( )f x    ( )F u  (2.15) 

  1,
( )

0,
H u


 


    
if

if

( ) _

( ) _

D u CutOff Frequency

D u CutOff Frequency




 

(2.16) 

  2( )D u u  (2.17) 

  ( ) ( ) ( )G u F u H u   (2.18) 

( )g x    ( )G u  (2.19) 

( )H u  is the ideal filter and created by using (2.16).  

 

Figure 2.4.1: Ideal Low Pass Filter Cross Section 
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Because of working in frequency domain, Fourier transform of the input data given in 

(2.15) is taken. After that all frequency components above a Cut off frequency are 

removed and then Inverse Fourier transform is taken to get the result given in (2.19). 

Increasing the Cut off frequency means that more frequency components will pass, 

given in Figure 2.4.1. So that, more data in detail but less smoothed result will be 

obtained. 

 

2.4.1 Golf Ball Data Results for Ideal Low Pass Filtering 

After applying the Ideal Low Pass filter to the Golf ball data, in Figure 1.1.1, following 

results are obtained, in Figure 2.4.2 and 2.4.3. 

To be able to realize the difference between figures, check the Tables 2.4.1.1, 2.4.1.2, 

2.4.1.3, 2.4.1.4 and 2.4.1.5. 
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(a) 

Figure 2.4.2: (Ideal Low Pass Filtering). (a) Smoothed Golf Data by using the Cut off 

Frequency=10, (b) Smoothed Golf Data by using the Cut off Frequency=24. 
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(b) 

Figure 2.4.2: (Continued) 

Table 2.4.1.1:   Smoothed Golf Data after applying ILP filter by using Cut off Frequency=10 

Height (meters) : ... 1,6472 1,6641 1,7361 1,7358 1,6601 1,6045 ... 

Sample # : ... 5 6 7 8 9 10 ... 

Table 2.4.1.2:   Smoothed Golf Data after applying ILP filter by using Cut off Frequency=24 

Height (meters) : ... 1,7101 1,7309 1,6821 1,6989 1,6511 1,6669 ... 

Sample # : ... 5 6 7 8 9 10 ... 
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(b) 

Figure 2.4.3: (Ideal Low Pass Filtering). (a) Smoothed Golf Data by using the Cut off 

Frequency=25, (b) Smoothed Golf Data by using the Cut off Frequency=40 

Table 2.4.1.3:   Smoothed Golf Data after applying ILP filter by using Cut off Frequency=25 

Height (meters) : ... 1,7260 1,7150 1,6980 1,6830 1,6670 1,6510 ... 

Sample # : ... 5 6 7 8 9 10 ... 

Table 2.4.1.4:   Smoothed Golf Data after applying ILP filter by using Cut off Frequency=40 

Height (meters) : ... 1,7260 1,7150 1,6980 1,6830 1,6670 1,6510 ... 

Sample # : ... 5 6 7 8 9 10 ... 
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2.4.2 Displacement Data Results for Ideal Low Pass Filtering 

After applying the Ideal Low Pass filter to the Displacement data, in Figure 1.1.2.a, 

following results are obtained, in Figure 2.4.4 and in Tables 2.4.2.2, 2.4.2.3, 2.4.2.4. 

Table 2.4.2.1: Original Displacement Data Values 

Height (meters) : ... 1.482 1.4685 1.4854 1.4664 1.4823 1.4769 ... 

Sample # : ... 353 354 355 356 357 358 ... 
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(b) 

Figure 2.4.4: (Ideal Low Pass Filtering). (a) Smoothed Displacement Data by using the Cut off 

Frequency=10, (b) Smoothed Displacement Data by using the Cut off Frequency=40, (c) Smoothed 

Displacement Data by using the Cut off Frequency=100. 
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(c) 

Figure 2.4.4: (Continued). 

Table 2.4.2.2: Smoothed Displacement Data after applying ILP filter by using Cut off Freq.=10 

Height (meters) : ... 1,4790 1,4766 1,4741 1,4715 1,4688 1,4659 ... 

Sample # : ... 353 354 355 356 357 358 ... 

Table 2.4.2.3:  Smoothed Displacement Data after applying ILP filter by using Cut off Freq.=40 

Height (meters) : ... 1,4807 1,4795 1,4781 1,4765 1,4746 1,4725 ... 

Sample # : ... 353 354 355 356 357 358 ... 

Table 2.4.2.4:  Smoothed Displacement Data after applying ILP filter by using Cut off Freq.=100 

Height (meters) : ... 1,4756 1,4755 1,4765 1,4768 1,4755 1,4729 ... 

Sample # : ... 353 354 355 356 357 358 ... 

 

2.4.3 Acceleration Data Results for Ideal Low Pass Filtering 

After applying the Ideal Low Pass filter to the Acceleration data, in Figure 1.1.2.b, 

results are obtained in Figure 2.4.5, 2.4.6. 

Table 2.4.3.1: Original Acceleration Data Values 

Height (meters) : ... -135.4 -383.5 -372.8 -352.2 -308.4 -372.4 ... 

Sample # : ... 195 196 197 198 199 200 ... 
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As it is seen from Figure 2.4.3, after a definite Cut off frequency which is 25 for Golf 

ball data, actually, the result does not change because this data have not so much noise. 

On the other hand, Acceleration data affected these Cut off frequency values severely 

because the intensity of fluctuation in Acceleration data is higher than the other 2 

datasets as in Figure 2.4.5 and Figure 2.4.6. 
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Figure 2.4.5: (Ideal Low Pass Filtering). (a) Smoothed Acceleration Data by using the Cut off 

Frequency=10, (b) Smoothed Acceleration Data by using the Cut off Frequency=40. 
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Table 2.4.3.2: Smoothed Acceleration Data after applying ILP filter by using Cut off Freq.=10 

Height (meters) : ... -136,53 -139,06 -141,05 -142,47 -143,33 -143,62 ... 

Sample # : ... 195 196 197 198 199 200 ... 

Table 2.4.3.3: Smoothed Acceleration Data after applying ILP filter by using Cut off Freq.=40 

Height (meters) : ... -198,71 -243,57 -284,71 -318,92 -343,42 -356,11 ... 

Sample # : ... 195 196 197 198 199 200 ... 
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Figure 2.4.6: (Ideal Low Pass Filtering). Smoothed Acceleration Data by using the Cut off 

Frequency=100. 

Table 2.4.3.4: Smoothed Acceleration Data after applying ILP filter by using Cut off Freq.=100 

Height (meters) : ... -203,78 -287,03 -346,13 -374,62 -376,91 -361,17 ... 

Sample # : ... 195 196 197 198 199 200 ... 
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2.4.4 Second Derivative Results for Ideal Low Pass Filtering 

The Second Derivative Result of the Smoothed Displacement data can be seen in 

Figure 2.4.7 and Figure 2.4.8 by using the Ideal Low Pass filter for various Cut off 

Frequencies. 
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Figure 2.4.7: (Ideal Low Pass Filtering). Second Derivative Result of Smoothed Golf Ball Data 

using Cut off Frequency=10, 24 and 25. 

Black Line: Second Derivative of the Original Golf Ball Drop Data. 

Blue Line: Second Derivative of the Data by using the Cut off Frequency=10,  

Red Line: Second Derivative of the Data by using the Cut off Frequency=24, 

Green Line: Second Derivative of the Data by using the Cut off Frequency=25. 
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   (b)  

Figure 2.4.8: (Ideal Low Pass Filtering). (a) Second Derivative Result of Smoothed Displacement 

Data using Cut off Frequency=10, 24 and 25, (b) Same as Figure 2.4.8.a except Original 

Displacement Data (Black Line). 

Black Line: Second Derivative of the Original Displacement Data. 

Blue Line: Second Derivative of the Data by using the Cut off Frequency=10,  

Red Line: Second Derivative of the Data by using the Cut off Frequency=24, 

Green Line: Second Derivative of the Data by using the Cut off Frequency=25. 



 39 

2.4.5 Comparing Ideal Low Pass Filters of Varying Cut off Frequency 

The Comparative Second Derivative Results of the Smoothed Displacement data and 

Original Acceleration data are seen in Figure 2.4.9. Ideal Low Pass filtering result, 

seen by red line in Figure 2.4.9, gives comparatively better result in the area of 1 than 

others, but the same line is not successful at any other part of the data.  
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Figure 2.4.9: (Ideal Low Pass Filtering). The Comparative Second Derivative Results of Smoothed 

Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Blue Line: Second Derivative of Smoothed Displacement Data by using the Cut off Frequency=10, 

Red Line: Second Derivative of Smoothed Displacement Data by using the Cut off Frequency=24 
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2.5 BUTTERWORTH LOW PASS FILTER 

Butterworth Low Pass filter works on the frequency domain like Ideal Low Pass filter. 

This filter works like a smoothing filter. The difference between the Ideal Low Pass 

filter and the Butterworth Low Pass filter is the order parameter. This order parameter 

decides the shape of the filter’s cross section. For the large values of order, shape of 

the Butterworth Low Pass filter’s cross section resembles to the shape of the Ideal Low 

Pass filter because increasing the order means that value of the filter, ( )H u , converges 

to 1 or 0. However in the Ideal Low Pass filter, the value of ( )H u  is 1 or 0 precisely, 

but the value of ( )H u  is calculated in Butterworth Low Pass filter by using the 

formula in (2.20). 

 
2

0

1
( )

1 ( ( ) / ) n
H u

D u D



 (2.20) 

Decreasing the value of order parameter resembles to the Gaussian smoothing in 

spatial domain [9]. Ideal Low Pass filter removes all frequency components above a 

Cut off frequency. However in Butterworth Low Pass filter, neither any frequency 

components above a Cut off frequency are blocked, nor all frequency components 

below a Cut off frequency are passed. 

Noise and sudden change in the data correspond to high frequency components. 

Removing these high frequency components gives a result for smoothing the output 

data. 

In Spatial Domain   In Frequency Domain  

( )f x    ( )F u  (2.21) 

  

0

2

1
( )

1 ( ( ) / )
n

H u
D u D




 

 

(2.22) 

  2( )D u u  (2.23) 

  ( ) ( ) ( )G u F u H u   (2.24) 

( )g x    ( )G u  (2.25) 

 

n  is the order parameters. ( )H u  is the Butterworth filter and created by using (2.22).   
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Because of working in frequency domain, the Fourier transform of the input data is 

taken, (2.21). After removing some frequency components above a Cut off frequency, 

the Inverse Fourier transform is taken to get the result, (2.25). Increasing the Cut off 

frequency means more frequency components will pass, Figure 2.5.1, so that, more 

data in detail but less smoothed result will be obtained.  

 

Figure 2.5.1: Butterworth Low Pass Filter Cross Section 

By keeping constant the Cut off frequency and changing the order parameter, 

Butterworth Low Pass filter behaves like Ideal Low Pass filter for high values of order. 

For small values of order, it behaves like Gaussian filter. 

2.5.1 Displacement Data Results for Butterworth Low Pass Filtering 

After applying the Butterworth Low Pass filter to the Displacement data, in Figure 

1.1.2.a, following results are obtained, in Figure 2.5.2 and in Tables 2.5.1.1, 2.5.1.2. 
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(c) 

Figure 2.5.2: (Butterworth Low Pass Filtering). (a) Smoothed Displacement Data by using the Cut 

off Frequency=10 and Order=3, (b) Smoothed Displacement Data by using the Cut off Frequency=40 

and Order=3, (c) Smoothed Displacement Data by using the Cut off Frequency=100 and Order=3. 
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Table 2.5.1.1: Smoothed Displacement Data after applying Butterworth Low Pass filter by 

using Cut off Frequency=10 and Order=3 

Height (meters) : ... 1,4805 1,4790 1,4775 1,4759 1,4741 1,4722 ... 

Sample # : ... 353 354 355 356 357 358 ... 

Table 2.5.1.2: Smoothed Displacement Data after applying Butterworth Low Pass filter by 

using Cut off Frequency=100 and Order=3 

Height (meters) : ... 1,4756 1,4753 1,4762 1,4767 1,4754 1,4729 ... 

Sample # : ... 353 354 355 356 357 358 ... 

 

After keeping the value of Cut off frequency constant and increasing the order 

parameter by taking it to infinity, Butterworth Low Pass filter starts to behave like 

Ideal Low Pass filter, as in Figure 2.5.3. 
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Figure 2.5.3: (Butterworth Low Pass Filtering). Blue Line is the Original input data. Green Line, 

Red Line and Black Line are the Smoothed Displacement Data by using the Cut off Frequency is 40 

and Orders are 1, 2 and 50. Magenta Line is the Ideal Low Pass Filter Result where Cut off 

Frequency=40. 

2.5.2 Acceleration Data Results for Butterworth Low Pass Filtering 

Results of Butterworth Low Pass filter by using various Cut off Frequencies are in 

Figure 2.5.4, 2.5.5 and in Tables 2.5.2.1, 2.5.2.2, 2.5.2.3. 
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Figure 2.5.4: (Butterworth Low Pass Filtering).  
 

(a) Smoothed Acceleration Data by using the Cut off Frequency=10 and Order=3,  

(b) Smoothed Acceleration Data by using the Cut off Frequency=40 and Order=3,  

(c) Smoothed Acceleration Data by using the Cut off Frequency=100 and Order=3. 
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Table 2.5.2.1: Smoothed Acceleration Data after applying Butterworth Low Pass filter 

by using Cut off Frequency=10 and Order=3 

Height (meters) : ... -132,29 -134,83 -136,84 -138,32 -139,24 -139,61 ... 

Sample # : ... 195 196 197 198 199 200 ... 

Table 2.5.2.2: Smoothed Acceleration Data after applying Butterworth Low Pass filter 

by using Cut off Frequency=40 and Order=3 

Height (meters) : ... -202,62 -246,74 -286,47 -318,73 -340,97 -351,50 ... 

Sample # : ... 195 196 197 198 199 200 ... 

Table 2.5.2.3: Smoothed Acceleration Data after applying Butterworth Low Pass filter 

by using Cut off Frequency=100 and Order=3 

Height (meters) : ... -201,74 -291,15 -350,59 -373,42 -371,87 -359,14 ... 

Sample # : ... 195 196 197 198 199 200 ... 
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Figure 2.5.5: (Butterworth Low Pass Filtering). Zoom in Smoothed Acceleration Data by using 

Cut off Frequency=40 and Order=1,2 and 10. 
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2.5.3 Second Derivative Results for Butterworth Low Pass Filtering 

Second Derivative Results of Smoothed Displacement data can be seen in Figure 2.5.6 

and Figure 2.5.7 by using the Butterworth Low Pass filtering for various Cut off 

Frequency and order parameters. 
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     (b)  

Figure 2.5.6: (Butterworth Low Pass Filtering). (a) Second Derivative Result of Smoothed 

Displacement Data using Cut off Frequency=10, 40, 100, and Order=3 (b) Same as Figure 2.5.6.a 
except Original Displacement Data (Black Line). 

Black Line: Second Derivative of the Original Displacement Data. 

Blue Line: Second Derivative of the Data by using the Cut off Frequency=10 and Order=3,  

Red Line: Second Derivative of the Data by using the Cut off Frequency=40 and Order=3, 

Green Line: Second Derivative of the Data by using the Cut off Frequency=100 and Order=3. 
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   (b)  

Figure 2.5.7: (Butterworth Low Pass Filtering). (a) Second Derivative Result of Smoothed 

Displacement Data using Cut off Frequency=40, and Order=1, 2, 50 (b) Same as Figure 2.5.7.a 
except Original Displacement Data (Black Line).  

Black Line: Second Derivative of the Original Displacement Data. 

Blue Line: Second Derivative of the Data by using the Cut off Frequency=40 and Order=1,  

Red Line: Second Derivative of the Data by using the Cut off Frequency=40 and Order=2, 

Green Line: Second Derivative of the Data by using the Cut off Frequency=40 and Order=50. 
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2.5.4 Comparing Butterworth Low Pass Filters of Varying Cut off and Order 

Parameters 

The Comparative Second Derivative Results of Smoothed Displacement data and 

Original Acceleration data are seen in Figure 2.5.8. Butterworth Low Pass filtering 

result, blue line, gives comparatively better result in the area of 2, but the same line is 

not successful in the area of 1. The result of filtering, red line, gives good result in the 

area of 1 while giving bad result in the area of 2. Also the results of the filtered 

Displacement data can also be seen in Figure 2.5.2 by using the same parameters. 
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Figure 2.5.8: (Butterworth Low Pass Filtering). The Comparative Second Derivative Results of 

Smoothed Displacement Data and Original Acceleration Data. 

Black Line   : Original Acceleration Data 

Blue Line    : Second Derivative of Smoothed Displacement Data by using the Cut off  

Frequency=10 and Order=3, 

Red Line      : Second Derivative of Smoothed Displacement Data by using the Cut off 

Frequency=40 and Order=3. 
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2.6 LINEAR DIFFUSION FILTER 

Diffusion is a physical process which balances the concentration difference without 

destroying the data. Smoothing process can be considered as a diffusion process, 

which decreases the number of maxima and minima in the data without increasing the 

difference between maxima and minima. Diffusion process equation can be considered 

in one dimension as [15]: 

 ( . )
  


  

u
c u

t x x
 (2.26) 

Where c is the diffusivity control and u is the input data. 

 
2

2
.( )

u u
c

t x

 


 
 (2.27) 

Explicit scheme discretization is,  

 
( , ) ( , )u u x t t u x t

t t

  


 
 (2.28) 

 
1[ ] [ ]t tu u x u x

t t

 


 
 (2.29) 

 
1[ ] [ ]

( [ 1] [ 1] 2 [ ])
t tu x u x

c u x u x u x
t

 
     


 (2.30) 

Partial differential equation of linear diffusion equation, calculated from (2.30), is: 

 1[ ] ( . ) ( [ 1] [ 1]) ((2 ) [ ]) [ ]t t t t tu x c t u x u x c t u x u x            (2.31) 

 1[ ] ( . ) ( [ 1] [ 1]) (1 (2 . )) [ ]t t t tu x c t u x u x c t u x            (2.32) 

[ ]tu x  is the value of input data at the location of x at time t. 

t  is the time step and c  is a constant which controls the diffusivity. In my 

experiments, the value of c is assumed as 1. 

In Figure 2.6.1, Figure 2.6.2 and Figure 2.6.3, there are nearly no change by keeping T 

constant and changing n and ∆t accordingly.  

 n=T/ t  (2.33) 
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2.6.1 Acceleration Data Results for Linear Diffusion Filtering 

Smoothing is applied to Acceleration Data to see the smoothing effect of Linear 

Diffusion Equation. The result of the change in T can be seen in Figure 2.6.4 while 

keeping ∆t constant. The output changes when T is increased then accordingly the 

smoothing effect increases.  
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Figure 2.6.1: (Linear Diffusion Filtering).  T=1 & ∆t=0.01, 0.1, 0.2, 0.5 

Black Line: The Original Data. Red Line: T=1, ∆t=0.01, n=100 Magenta Line: T=1, ∆t=0.50, n=2 

Blue Line: T=1, ∆t=0.10, n=10 Green Line: T=1, ∆t=0.20, n=5  
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Figure 2.6.2: (Linear Diffusion Filtering).  T=5 & ∆t=0.01, 0.1, 0.2, 0.5 

Black Line: The Original Data. Red Line: T=5, ∆t=0.01, n=500. Magenta Line: T=5, ∆t=0.50, n=10 

Blue Line: T=5, ∆t=0.10, n=50. Green Line: T=5, ∆t=0.20, n=25.  
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Figure 2.6.3: (Linear Diffusion Filtering).  T=20 & ∆t=0.01, 0.1, 0.2, 0.5 

Black Line: The Original Data. Red Line: T=20, ∆t=0.01, n=2000 Magenta Line: T=20, ∆t=0.50, n=80 

Blue Line: T=20, ∆t=0.10, n=200 Green Line: T=20, ∆t=0.20, n=100  
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Figure 2.6.4: (Linear Diffusion Filtering).  ∆t=0.1 & T=1, 5, 20, 30 

Black Line: The Original Data. Red Line: T=1, ∆t=0.1, n=10 Magenta Line: T=30, ∆t=0.1, n=300 

Blue Line: T=5, ∆t=0.1, n=50 Green Line: T=20, ∆t=0.1, n=200  

 

Linear Diffusion process is not invertible. When some negative values are set to ∆t, 

some undesirable outputs are obtained, seen in Figure 2.6.5. 
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Figure 2.6.5: (Linear Diffusion Filtering). T=1, ∆t=-0.05 

Black Line is the Original Data. 

Red Line: T=1, ∆t=-0.05 

 

For the condition c=1, the stability limit for ∆t is 0.50. So, when ∆t is set to a greater 

value than 0.50, Figure 2.6.6 and Figure 2.6.7, some unstable results are obtained. 
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Figure 2.6.6: (Linear Diffusion Filtering).  T=20, ∆t=0.53 

Black Line is the Original Data. 

Red Line: T=20, ∆t=0.53, n=37 
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Figure 2.6.7: (Linear Diffusion Filtering).  T=20 & ∆t=0.53, 0.55 

Black Line is the Original Data.  

Red Line: T=20, ∆t=0.53, n=37  Blue Line: T=20, ∆t=0.55, n=36 

 

2.6.2 Displacement Data Results for Linear Diffusion Filtering 

After applying the Linear Diffusion filtering to the Displacement data, Figure 1.1.2.a, 

following results are obtained, Figure 2.6.8 and Figure 2.6.9. 
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Figure 2.6.8: (Linear Diffusion Filtering) 

Black Line: Original Displacement Data. Red Line: The result for T=10, ∆t=0.1 

Blue Line: The result for T=1, ∆t=0.1 Green Line: The result for T=100, ∆t=0.1 
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Figure 2.6.9: (Linear Diffusion Filtering) The samples, between 190 and 380, of 

Figure 2.6.8 

Black Line: Original Displacement Data, Red Line: The result for T=10, ∆t=0.1, 

Blue Line: The result for T=1, ∆t=0.1, Green Line: The result for T=100, ∆t=0.1. 

 

When Linear Diffusion is applied to a data, for each of the iteration, mean value of the 

data doesn’t change (because of the Neumann BC). Variance, standard deviation and 

total gradient, Σ|Δ|² monotonically decreases. 

Figure 2.6.10 is the result of Linear Diffusion filter by using n=10 and ∆t=0.1. Mean, 

variance, total gradient and standard deviation are given in Figure 2.6.11 by using 

Figure 2.6.10, but entropy is the result of Linear Diffusion by using n=200 and 

∆t=0.01. 
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Figure 2.6.10: (Linear Diffusion Filtering).  T=10, ∆t=0.1 

Black Line is the Original Data.       Red Line is result for T=10, ∆t=0.1, n=100 

 

 
(a) 

 
(b) 

Figure 2.6.11: (Linear Diffusion Filtering).  T=10, ∆t=0.1 (a) Mean Value, (b) Variance,  

(c) Total Gradient, (d) Standard Deviation, (e) Entropy for the values T=200 and ∆t=0.01. 
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(e) 

Figure 2.6.11: (Continued). 

Changes in mean, variance, standard deviation, total gradient and entropy are given in 

Figure 2.6.12 by using T=10 and various ∆t.  

∆t=[0.01,  0.05,  0.1,  0.15,  0.2,  0.25,  0.3,  0.35,  0.4,  0.45,  0.5] 

There is no change in mean for all the iterations. Last Iteration values of Variance, 

Total Gradient and Standard Deviation, given in Figure 2.6.12.b, Figure 2.6.12.c and 

Figure 2.6.12.d, for the various ∆t and n in case of constant T are nearly same. 
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(a): Mean Value vs. Iteration 

 

(b): Variance vs. Iteration 

 

(c): Total Gradient vs. Iteration 

 

 

(d): Standard Deviation vs. Iteration 

 

(e): Entropy vs. Iteration 

Figure 2.6.12: (Linear Diffusion Filtering). T=10, ∆t=0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,  

0.4, 0.45, 0.5 (a)Mean Value, (b)Variance, (c) Total Gradient, (d) Standard Deviation, (e) Entropy. 
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2.6.3 Second Derivative Results for Linear Diffusion Filtering 

Second Derivative Result of Smoothed Displacement data by using the Linear 

Diffusion filtering for various T and ∆t values can be seen in Figure 2.2.13. 
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Figure 2.6.13: (Linear Diffusion Filtering). (a) Second Derivative Result of Smoothed Displacement 

Data (b) Same as Figure 2.6.13.a except Original Displacement Data (Black Line) and Green Line.  

Black Line: Second Derivative of the Original Displacement Data, 

Green Line: Second Derivative of the Data by using the T=5, ((∆t=0.50, n=10), ∆t.n=T), 

Yellow Line: Second Derivative of the Data by using the T=1, (∆t=0.01, n=100), 

Blue Line: Second Derivative of the Data by using the T =5, (∆t=0.1, n=50), 

Red Line: Second Derivative of the Data by using the T=10, (∆t=0.1, n=100). 

2.6.4 Comparing Linear Diffusion Filters of Varying Parameters 

The Comparative Second Derivative Results of Smoothed Displacement data and 

Original Acceleration data are seen in Figure 2.6.14. The peak, seen in the Figure 

2.6.14 in the area of 1, is the critical feature of Acceleration data. This peak should be 

preserved after smoothing operation, but the peak, in the area of 2, is the noise that 

should be smoothed as much as possible. This is the major difficulty of this problem. 

In the area of 2, the result of the filtering shown by green line is successful because it is 

successfully got rid of the noise in that area, but the same line is not successful in the 

area of 1. The data in the area of 1 is not a noise, but the filtered signal as shown by 

green line lost this critical feature. The result of filtering shown by red line gives 

relatively good result while giving the worst result in the area of 2. Also the results of 
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the filtered Displacement data can also be seen in Figure 2.6.8 and in Figure 2.6.9 by 

using the same parameters, except magenta line. 
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Figure 2.6.14: (Linear Diffusion Filtering). The Comparative Second Derivative Results of Smoothed 

Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Red Line: Second Derivative of Smoothed Displacement Data by using the T=10, ∆t=0.1 

Magenta Line: Second Derivative of Smoothed Displacement Data by using the T=20, ∆t=0.1 

Green Line: Second Derivative of Smoothed Displacement Data by using the T=100, ∆t=0.1 
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2.7 GENERAL REVIEW OF LINEAR SMOOTHING FILTERS  

In this chapter, Linear smoothing filters are experimented with. Linear smoothing 

filters eliminate high frequency components. Removing noise from an input signal, 

without eliminating important features, is the first step of signal processing. Linear 

smoothing filters are not good at discriminating the noise and the important features in 

the signal. They remove the critical features. This is an undesirable result of the Linear 

smoothing filters.  

Both the spatial domain filters and frequency domain filters are also experimented 

with. The transition between spatial domain and frequency domain is provided by the 

convolution theorem. 

Let ( )f x  and ( )h x  be functions in spatial domain. If the Fourier transform, (2.34), of 

( )f x  and ( )h x  in spatial domain is taken, F(u) and H(u) are obtained in frequency 

domain. Convolution of f(x)*h(x)  in spatial domain is equal to the multiplication of 

F(u) H(u)  in frequency domain, (2.35). 

 
1 2 ( )

0

1
( ) ( )

u xN i
N

x

F u f x e
N


  



   (2.34) 

( ) ( )f x F u  ( ) ( )h x H u  

 f(x)*h(x)  F(u) H(u)   
(2.35) 

Similar to (2.34), ( )f x and ( )h x  are obtained in spatial domain by taking the Inverse 

Fourier transform of F(u) and H(u) in frequency domain using (2.36). 

 
1 2 ( )

0

1
( ) ( )

u xN i
N

u

f x F u e
N


 



   (2.36) 

N    : Size of the data.

f(x) : Data in Spatial Domain

F(u): Data in Frequency Domain

 

The Fourier transform is used to separate data into its sine and cosine components. In 

the Fourier Domain data, each point represents a particular frequency contained in the 

spatial domain data [6]. 
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The solution for Linear Diffusion Equation can be obtained by convolving the input 

data by a Gaussian Kernel on condition that 
2

2





T

c
, where c is assumed as 1. So the 

equation is 
2 

  and  2
2

T T


   . 

When the equation 
2 

2
T


  is provided, nearly the same results are obtained. Linear 

Diffusion parameter, which is ∆t, is defined as 0.25 for all of the experiments. And 

Gaussian filter size is defined as 6σ+1, in Figure 2.7.1. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.7.1: (Linear Diffusion Filtering vs. Gauss Convolution). T=10, ∆t=0.25,  

(a) Original Acceleration Data,  

(b) Linear Diffusion for T=8 vs. Gauss Convolution for σ=4,  

(c) Linear Diffusion for T=18 vs. Gauss Convolution for σ=6,  

(d) Linear Diffusion for T=32 vs. Gauss Convolution for σ=8. 
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Which Linear smoothing algorithms give better result than the others can be seen in 

Figure 2.7.2, when the noise level of the smoothed Displacement data is hold similarly 

for the first 150 samples and it is zoomed around the point of impact level. 
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Figure 2.7.2: (The Comparative Second Derivative Results of Displacement Data by using All 

Experimented Linear Smoothing Filters).  Black Line: Original Acceleration Data, 

(a) Ideal Low Pass Filter Result by using the Cut off Frequency=8, (b) Iterated Mean Filter Result by 

using Filter Size=11 for 3 iterations, (c) Linear Diffusion Filter Result by using the T=20, ∆t=0.1, (d) 

Gaussian Filter Result by using σ=6, (e) Butterworth Low Pass Filter Result by using the Cut off 

Frequency=24 and Order=2, (f) Comparison of all results from Figure 2.7.2.a to Figure 2.7.2.e 



 62 

 

CHAPTER 3 

 

NON-LINEAR SMOOTHING FILTERS 

 

 

In the previous chapter, chapter 2, Linear smoothing filters are given. Linear 

smoothing filters are not good at saving the important part in the data.  Non-linear 

smoothing filters are important at smoothing the data. Linear smoothing filters can not 

determine the data, whether it is a noise or an important part of the data. The condition, 

which is expected, is smoothing the data while keeping the distinctive data. Non-linear 

smoothing filters provide this condition. 

In this section, I am going to examine some kinds of Non-linear smoothing filters, 

which are; 

1.  Kuwahara Filter

2.  Sigma Filter

3.  Median Filter

4.  Perona Malik Filter

5.  The Ambrosio Tortorelli Approximation of the Mumford Shah Model

 

Our test data does not include the data which is eliminated from all kinds of noise. So, 

to be able to see the effect of Non-linear smoothing filters, a sinusoidal test data is used 

with some added noise. Signal to noise ratio of the original noisy test data is equal to 

10.9379.  
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The Non-linear smoothing filter results are:   

Signal to noise ratio of the test data, filtered by Kuwahara filter, is 14.0394. Signal to 

noise ratio of the test data, filtered by Sigma filter, is 19.7889. Signal to noise ratio of 

the test data, filtered by Median filter, is 17.5168. Signal to noise ratio of the test data, 

filtered by Perona Malik filter, is 19.8506. Signal to noise ratio of the test data, filtered 

by Ambrosio Tortorelli approximation of Mumford Shah model, is 19.8093.  
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3.1 KUWAHARA FILTER 

Kuwahara is a Non-linear smoothing filtering. One dimensional Kuwahara filter works 

on an array which is divided into two overlapping sub array parts [16]. In each sub 

array part, the mean and the variance are computed. The output value (located at the 

center of the array) is set to the mean value of the sub array where the variance is 

smaller than the other part. For the condition that mask size is 5: 

1 2 2 3 4                i i i i i iX X X Y Y Y    
   
   

 
 
 

 
(3.1) 

2 2      are point the same address.i iX and Y   

Compute the following values: 

Xmean : Mean the value of  1 2     i i iX X X   (3.2) 

Ymean : Mean the value of  2 3 4      i i iY Y Y    (3.3) 

varX : Variance the value of  1 2     i i iX X X   (3.4) 

varY : Variance the value of  2 3 4      i i iY Y Y    (3.5) 

varX  and varY  are compared and the mean value of the smaller variance is copied to 

the address which is defined by 2 2    i iX and Y  . These 2 2    i iX and Y   values refer to 

the same address which is located at the center of the array. 

3.1.1 Displacement Data Results for Kuwahara Filtering 

After applying the Kuwahara filter on the Displacement data, Figure 1.1.2.a, the results 

are in Figure 3.1.1 and in Figure 3.1.2: 
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Figure 3.1.1: (Kuwahara Filtering). (a) Smoothed Displacement Data Result, (b) The samples, 

between 200 and 360, of Figure 3.1.1.a.  

Black Line: The Original Displacement Data, 

Blue Line: Smoothed Displacement Data by using the Mask Size=5,  

Red Line: Smoothed Displacement Data by using the Mask Size=5 for 3 iterations. 

Table 3.1.1.1: Kuwahara Filter Results by using Mask Size=5 

Height (meters) : ... 1,4797 1,4738 1,4786 1,4752 1,4780 1,4692 ... 

Sample # : ... 353 354 355 356 357 358 ... 

Table 3.1.1.2: Kuwahara Filter Results by using Mask Size=5 for 3 iterations 

Height (meters) : ... 1,4769 1,4764 1,4768 1,4764 1,4768 1,4678 ... 

Sample # : ... 353 354 355 356 357 358 ... 
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(b)  

Figure 3.1.2: (Kuwahara Filtering). (a) Smoothed Displacement Data Result, (b) The samples, 

between 200 and 360, of Figure 3.1.2.a.  

Black Line: The Original Displacement Data, 

Blue Line: Smoothed Displacement Data by using the Mask Size=9,  

Red Line: Smoothed Displacement Data by using the Mask Size=9 for 3 iterations. 



 66 

Table 3.1.1.3: Kuwahara Filter Results by using Mask Size=9 

Height (meters) : ... 1,4769 1,4759 1,4786 1,4712 1,4720 1,4686 ... 

Sample # : ... 353 354 355 356 357 358 ... 

Table 3.1.1.4: Kuwahara Filter Results by using Mask Size=9 for 3 iterations 

Height (meters) : ... 1,4729 1,4718 1,4708 1,4741 1,4694 1,4693 ... 

Sample # : ... 353 354 355 356 357 358 ... 

 

3.1.2 Acceleration Data Results for Kuwahara Filtering 

After applying the Kuwahara filter to the Acceleration data to see the smoothing effect, 

in Figure 1.1.2.b, results are following. 

As in Figure 3.1.1, figure 3.1.2, figure 3.1.3 and Figure 3.1.4, when Mask size is 

increased, the difference between maxima and minima does not decrease much, 

however, a corruption on the signal itself occurs.  
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Figure 3.1.3: (Kuwahara Filtering). (a) Smoothed Acceleration Data Result, (b) The samples, 

between 190 and 220, of Figure 3.1.3.a.  

Black Line: The Original Acceleration Data, 

Blue Line: Smoothed Acceleration Data by using the Mask Size=5,  

Red Line: Smoothed Acceleration Data by using the Mask Size=5 for 3 iterations. 
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Table 3.1.2.1: Kuwahara Filter Results by using Mask Size=5 

Height (meters) : ... -90,63 -369,5 -344,5 -369,5 -344,5 -356,7 ... 

Sample # : ... 195 196 197 198 199 200 ... 

Table 3.1.2.2: Kuwahara Filter Results by using Mask Size=5 for 3 iterations 

Height (meters) : ... -43,34 -356,96 -353,4 -354 -351,83 -353,2 ... 

Sample # : ... 195 196 197 198 199 200 ... 
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Figure 3.1.4: (Kuwahara Filtering). (a) Smoothed Acceleration Data Result, (b) The samples, 

between 190 and 220, of Figure 3.1.4.a.  

Black Line: The Original Acceleration Data, 

Blue Line: Smoothed Acceleration Data by using the Mask Size=9,  

Red Line: Smoothed Acceleration Data by using the Mask Size=9 for 3 iterations. 

Table 3.1.2.3: Kuwahara Filter Results by using Mask Size=9 

Height (meters) : ... -65,42 -357,86 -355,12 -346,2 -326,76 -357,86 ... 

Sample # : ... 195 196 197 198 199 200 ... 

Table 3.1.2.4: Kuwahara Filter Results by using Mask Size=9 for 3 iterations 

Height (meters) : ... -27,501 -342,58 -342,47 -342,1 -314,61 -342,58 ... 

Sample # : ... 195 196 197 198 199 200 ... 
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3.1.3 Second Derivative Results for Kuwahara Filtering 

As it is seen in Figure 3.1.5 and Figure 3.1.6, if the value of Mask Size is increased, 

Kuwahara filter result starts to corrupt.  
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          (b)  

Figure 3.1.5: (Kuwahara Filtering). (a) Second Derivative Result of Smoothed Displacement Data 

using Mask Size= 5 and 9 (b) Same as Figure 3.1.5.a except Original Displacement Data (Black Line). 

Black Line: Second Derivative of the Original Displacement Data, 

Blue Line: Second Derivative of the Data by using the Mask Size=5,  

Red Line: Second Derivative of the Data by using the Mask Size=9. 
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          (b)  

Figure 3.1.6: (Kuwahara Filtering). (a) Second Derivative Result of Smoothed Displacement Data 

using Mask Size= 5 for 3 iteration and Mask Size= 9 for 3 iteration (b) Same as Figure 3.1.6.a except 
Original Displacement Data (Black Line).  

Black Line: Second Derivative of the Original Displacement Data, 

Blue Line: Second Derivative of the Data by using the Mask Size=5 for 3 iteration,  

Red Line: Second Derivative of the Data by using the Mask Size=9 for 3 iteration. 
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3.1.4 Comparing Kuwahara Filters of Varying Mask Size and Iteration 

The Comparative Second Derivative Results of Smoothed Displacement data and 

Original Acceleration data are seen in Figure 3.1.7 and Figure 3.1.8. The results of the 

Kuwahara filtering and Iterative Kuwahara filtering are not clear at all. Iterative 

Kuwahara filter gives comparatively better result than Kuwahara filter.  
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Figure 3.1.7: (Kuwahara Filtering). The Comparative Second Derivative Results of Smoothed 

Displacement Data and Original Acceleration Data. Black Line is the Original Acceleration Data. 

Blue Line: Second Derivative of Smoothed Displacement Data by using the Mask Size=21 

Red Line: Second Derivative of Smoothed Displacement Data by using the Mask Size=31 
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Figure 3.1.8: (Iterative Kuwahara Filtering). The Comparative Second Derivative Results of Smoothed 

Displacement Data and Original Acceleration Data. Black Line is the Original Acceleration Data. 

Blue Line: Second Derivative of Smoothed Displacement Data by using the Mask Size=41 for 3 iteration 

Red Line: Second Derivative of Smoothed Displacement Data by using the Mask Size=61 for 3 iteration 
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3.2 SIGMA FILTER 

The main idea of the Sigma filter is based on the fact that 95.5% of the area of 

Gaussian distribution curve with mean (µ) and variance (σ²) is between [µ-2σ] and 

[µ+2σ], in Figure 3.2.1.  

 
Figure 3.2.1: (Gaussian (Normal) Distribution Curve) 

Applying this observation, Sigma filter works by computing the local average of 

neighboring data, inside the interval of [input(i)-2σ, input(i)+2σ], and replaces the 

corresponding data, output(i), with the local average value [17]. 

For example, if the mask size is defined as 7 and sigma value as 2, three data from 

both in the right and in the left side of the centered data whose value will be changed, 

are taken, and then the neighbor data values will be found, between [(input(i)-4), 

(input(i)+4)]. As a result, the average of these neighbor values are taken and put into 

the place of the output(i).  

Sigma filtering is based on the assumption that the value of the data in input(i) is a 

good estimate of the local neighbor mean.  So, choosing the appropriate Mask size and 

the sigma value is important. 
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3.2.1 Displacement Data Results for Sigma Filtering 

After the application of Sigma filter on the Displacement data, the results are seen in 

Figure 1.1.2.a: 

Keeping the value of Mask Size is constant in Sigma filter and decreases sigma 

parameter, Sigma filter result looks like the original input, Figure 3.2.2. Increasing the 

value of the sigma, the data do not get smoother and stay the same after a certain value.  
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Figure 3.2.2: (Sigma Filtering), Mask Size is constant. 

(a) Smoothed Displacement Data by using the values: 

Black Line: The Original Displacement Data, 

Blue Line: σ=0.015, Mask Size= 5 
Red Line: σ=0.005, Mask Size= 5 

(b) The samples, between 333 and 364, of Figure 
3.2.2.a, 

(c) Smoothed Displacement Data by using the values: 

Black Line: The Original Displacement Data, 

Blue Line: σ=0.015, Mask Size= 7 
Red Line: σ=0.005, Mask Size= 7 

(d) The samples, between 333 and 364, of Figure 
3.2.2.c, 
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As it is seen in Figure 3.2.3, when the value of sigma is kept constant in Sigma filter, 

and the Mask Size parameter is increased, Sigma filter result continues smoothing. 
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Figure 3.2.3: (Sigma Filtering), Sigma is constant. 

(a) Smoothed Displacement Data by using the 

values: 

Black Line: The Original Data, 

Blue Line: σ=0.01, Mask Size= 3 

Red Line: σ=0.01, Mask Size= 7 
Green Line: σ=0.01, Mask Size= 15 

(b) The samples, between 333 and 364, of Figure 

3.2.3.a, 

(c) Smoothed Displacement Data by using the 

values: 

Black Line: The Original Data, 

Blue Line: σ=0.015, Mask Size= 3 

Red Line: σ=0.015, Mask Size= 7 

Green Line: σ=0.015, Mask Size= 15 

(d) The samples, between 333 and 364, of Figure 

3.2.3.c, 
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3.2.2 Acceleration Data Results for Sigma Filtering 

After applying the Sigma filter on the Acceleration data, in Figure 1.1.2.a, the results 

are in Figure 3.2.4 and in Figure 3.2.5. 
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Figure 3.2.4: (Sigma Filtering), Mask Size is constant. 

(a) Smoothed Acceleration Data by using the values: 

Black Line: The Original Data, 

Blue Line: σ=5, Mask Size= 5, 

Red Line: σ=10, Mask Size= 5, 

Green Line: σ=15, Mask Size= 5. 

(b) The samples, between 209 and 218, of Figure 
3.2.4.a 

(c) Smoothed Acceleration Data by using the values: 

Black Line: The Original Data, 

Blue Line: σ=5, Mask Size= 101, 

Red Line: σ=10, Mask Size= 101, 
Green Line: σ=15, Mask Size= 101. 

(d) The samples, between 209 and 218, of Figure 

3.2.4.c 
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Figure 3.2.5: (Sigma Filtering), Sigma is constant. 

(a) Smoothed Acceleration Data by using the values: 

Black Line: The Original Data, 

Blue Line: σ=3, Mask Size= 21, 

Red Line: σ=3, Mask Size= 51, 
Green Line: σ=3, Mask Size= 101. 

(b) The samples, between 209 and 218, of 

Figure 3.2.5.a 

(c) Smoothed Acceleration Data by using the values: 

Black Line: The Original Data, 

Blue Line: σ=10, Mask Size= 21, 

Red Line: σ=10, Mask Size= 51, 
Green Line: σ=10, Mask Size= 101. 

(d) The samples, between 209 and 218, of 

Figure 3.2.5.c 
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3.2.3 Second Derivative Results for Sigma Filtering 

The Second Derivative Result of Smoothed Displacement data can be seen in Figure 

3.2.6 by using the Sigma filter for various σ values. 
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        (b)  

Figure 3.2.6: (Sigma Filtering). (a) Second Derivative Result of Smoothed Displacement Data 

using σ= 0.015, 0.01 and Mask Size = 7 (b) Same as Figure 3.2.6.a except Original Displacement 

Data (Black Line).  

Black Line: Second Derivative of the Original Displacement Data, 

Blue Line: Second Derivative of the Data by using the σ=0.01 and Mask Size= 7,  

Red Line: Second Derivative of the Data by using the σ=0.015 and Mask Size= 7. 

 

3.2.4 Comparing Sigma Filters of Varying Sigma and Mask Size Parameters 

The Comparative Second Derivative Results of Smoothed Displacement data and 

Original Acceleration data are seen in Figure 3.2.7. The results of the filtered 

Displacement data can also be seen in Figure 3.2.2.d and Figure 3.2.3.d by using the 

same parameters. 
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Figure 3.2.7: (Sigma Filtering). The Comparative Second Derivative Results of Smoothed 

Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Blue Line: Second Derivative of Smoothed Displacement Data by using the σ=0.015 and Mask Size=7 

Green Line: Second Derivative of Smoothed Displacement Data by using the σ=0.015 and Mask Size=15 
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3.3 MEDIAN FILTER 

Median filter is a kind of Non-linear smoothing filter, which removes impulsive noise. 

Mask size, defined by the Median filter, defines the number of data, placed in the left 

and right sides of the center data. These data are sorted in terms of their values and 

then median value, which comes out after sorting, is written in the place of the 

centered data and this process is done through all the data [7, 8]. For example, if the 

filter size is defined as 5, taken two data from both in the right and in the left side of 

the centered data, whose value will be changed, and then these data will be put in 

order, according to their size. The third biggest data is taken and put into the place of 

the centered data and go right then the same process is applied to whole signal again 

and again.  

For the data which have a lot of noise in it, Median filter may not give the expected 

result. However for the data which have less density impulsive noise, Median filter 

gives the expected results. As long as the density of the impulsive noise in our data 

increases; the results that are obtained by using Median filter decreases [9]. 

Median Filter Masks are: 

Filter size=5 

 3 51 2 4
        xx x x x 

 
 (3.6) 

Filter size=7 

 4 5 71 2 3 6
            xx x x x x x 

 
 (3.7) 
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3.3.1 Golf Ball Data Results for Median Filtering 

Median filter removes impulsive noise. However as it is seen in Figure 3.3.1, the 

inputs, which have not impulsive noise, can not be corrected. After applying the 

Median filter by using (3.6) and (3.7), no change in the result value of the Golf ball 

data occurs. The reason for this is that there are not sudden changes but small noises in 

the data. 
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Figure 3.3.1: (Median Filtering). (a) Filter Size=5, (b) Filter Size=7. 
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3.3.2 Displacement Data Results for Median Filtering 

After applying the Median filter to the Displacement data, in Figure 1.1.2.a, the results 

are in Figure 3.3.2. 
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Figure 3.3.2: (Median Filtering). (a) Filter Size=5, (b) Filter Size=5 & Iteration number=3,  

(c) Filter Size=7, (d) Filter Size=7 & Iteration number=3. 
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3.3.3 Acceleration Data Results for Median Filtering 

After applying the Median filter to the Acceleration data, in Figure 1.1.2.b, the results 

are in Figure 3.3.3.  
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Figure 3.3.3: (Median Filtering). (a) Filter Size=5, (b) Filter Size=5 & Iteration number=3,  

(c) Filter Size=7, (d) Filter Size=7 & Iteration number=3. 

As it is seen from the results of Median filter that is applied to the displacement and 

the Acceleration data, in the area of impulsive noise, Median filter corrected these 

noises. The iterations of the filter can make the result better, however after some 

iterations, the result does not change. At this point, where the result does not change, 

filter size should be increased instead of continuing to iterations in order to continue 

filtering,. So, Median filter can continue giving better results. While, increase in the 

filter size means the decrease in fluctuations in the signal, on the other hand, it means 

increase in loss in data. Instead of this, if filter size is kept small and iteration number 
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is increased, better results can be obtained. However, if filter size is kept too small, it 

makes us get an output which is not debugged from the noise enough, and this is an 

unexpected situation. As a result, in order to get a good result, these two criteria (filter 

size and iteration number) should be balanced very well. 

Keeping the filter size as 21 and iteration number as 7, better results than Figure 3.3.3 

can be obtained in Figure 3.3.4. However, the result in which the same values are used 

but Acceleration data is also used are worse than the results before.   
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Figure 3.3.4: (Median Filtering). 

(a) Smoothed Displacement Data by using Filter Size=21 and Iteration number=7,  

(b) Smoothed Acceleration Data by using Filter Size=21 and Iteration number=7. 
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3.3.4 Second Derivative Results for Median Filtering 

Second Derivative Result of Smoothed Displacement data can be seen in Figure 3.3.5 

and in Figure 3.3.6 by using the Median filter for various filter size and iteration. 
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            (b)  

Figure 3.3.5: (Median Filtering). (a) Second Derivative Result of Smoothed Displacement Data 

using Filter Size = 5, 7, 21 (b) Same as Figure 3.3.5.a except Original Displacement Data (Black Line).  

Black Line: Second Derivative of the Original Displacement Data, 

Blue Line: Second Derivative of the Data by using the Filter Size= 5,  

Red Line: Second Derivative of the Data by using the Filter Size= 7, 

Green Line: Second Derivative of the Data by using the Filter Size= 21. 
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          (b)  

Figure 3.3.6: (Median Filtering). (a) Second Derivative Result of Smoothed Displacement Data 

using Filter Size = 5, 7, 21 for 3 iteration (b) Same as Figure 3.3.6.a except Original Displacement Data 
(Black Line).  

Black Line: Second Derivative of the Original Displacement Data, 

Blue Line: Second Derivative of the Data by using the Filter Size= 5 for 3 iteration,  

Red Line: Second Derivative of the Data by using the Filter Size= 7 for 3 iteration, 

Green Line: Second Derivative of the Data by using the Filter Size= 21 for 3 iteration. 



 83 

3.3.5 Comparing Median Filters of Varying Filter Size and Iteration Parameters 

The Comparative Second Derivative Results of Smoothed Displacement data and 

Original Acceleration data are seen in Figure 3.3.7 and in Figure 3.3.8.  
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Figure 3.3.7: (Median Filtering). The Comparative Second Derivative Results of Smoothed 
Displacement Data and Original Acceleration Data. Black Line is the Original Acceleration Data. 

Red Line: Second Derivative of Smoothed Displacement Data by using Filter Size=7 

Green Line: Second Derivative of Smoothed Displacement Data by using Filter Size=21 
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Figure 3.3.8: (Iterative Median Filtering). The Comparative Second Derivative Results of Smoothed 

Displacement Data and Original Acceleration Data. Black Line is the Original Acceleration Data. 

Red Line: Second Derivative of Smoothed Displacement Data by using Filter Size=7 for 3 iteration 

Green Line: Second Derivative of Smoothed Displacement Data by using Filter Size=21 for 3 iteration 
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3.4 PERONA MALIK FILTER 

Diffusion processes derive from Fick’s law [10]. Smoothing is the result of a diffusion 

process as mentioned in Linear Diffusion filtering. Diffusion is a physical process 

which balances the concentration difference without destroying the data, and 

smoothing process can be considered as a diffusion process. Perona-Malik Diffusion is 

the space variant smoothing filter depending on the data content [11]. This technique 

reduces the high frequency components, like noise, without removing significant parts 

of the data content.  

Diffusion equation can be considered as [12]: 

 ( . )
  


  

u
C u

t x x
 (3.8) 

where C is the diffusion coefficient, u is the input data. If the value of C=1 then the 

result will be the same as the Linear Diffusion filter, and Diffusion Equation will be  

 
2

2

 


 

u
u

t x
 (3.9) 

The idea of Perona Malik is making the diffusivity signal dependent. The value of C 

must be between 0 and 1. When the process is near significant parts of the data, the 

value of C converges to 0 in the other parts of the data it converges to 1.  

The value of C is determined by using the magnitude of the first derivative 

 2( )





C g u
x

 (3.10) 

By using (3.10) in (3.8), anisotropic Perona Malik Diffusion Equation is [13].  

 2( ( ) )
  


  

u
g u

t x x
 (3.11) 

Where 

 
2

2

1
( )

( )

(1 ( ))









g u
x

u
x

 (3.12) 
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3.4.1 Displacement Data Results for Perona Malik Filtering 

After applying the Perona Malik filter to the Displacement data, Figure 1.1.2.a, the 

results are in Figure 3.4.1 and in Figure 3.4.2. 
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Figure 3.4.1: (Perona Malik Filtering), (a) Smoothed Displacement Data Result, (b) The samples, 

between 200 and 360, of Figure 3.4.1.a. 

Black Line: The Original Displacement Data, 

Red Line   : Smoothed Displacement Data by using the λ=10, T=5, ∆t=0.25 and σ=3, 

Blue Line  : Smoothed Displacement Data by using the λ=10, T=50, ∆t=0.05 and σ=3. 
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(b)  

Figure 3.4.2: (Perona Malik Filtering), (a) Smoothed Displacement Data Result, (b) The samples, 

between 200 and 360, of Figure 3.4.2.a. 

Black Line: The Original Displacement Data, 

Red Line   : Smoothed Displacement Data by using the λ=10, T=10, ∆t=0.25 and σ=3, 

Blue Line  : Smoothed Displacement Data by using the λ=80, T=100, ∆t=0.25 and σ=1. 
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3.4.2 Acceleration Data Results for Perona Malik Filtering 

After applying the Perona Malik filter to the Acceleration data, in Figure 1.1.2.b, the 

results are in Figure 3.4.3 and in Figure 3.4.4. 

 

Figure 3.4.3: (Original Acceleration Data between the samples of 176 and 284) 

 

 

Figure 3.4.4: (Perona Malik Filtering). Results between the samples of 176 and 284 for λ=10, 

T=10, ∆t=0.25 and various σ=1, 3, 7, 10, 17, 35. 

λ and σ are the parameters of Regularized Perona-Malik beside ∆t and T. 

Sigma (σ) which is a scale parameter in the Regularized Perona-Malik equation can be 

seen as a smoothing factor. 



 87 

As it is seen in Figure 3.4.3, there are changes only in curvature points, but actually 

there is no change on straight lines. It means, this is a Non-linear smoothing filter. 

After a while the signal doesn’t change so much, also if the value of σ is increased to 

some larger value for the fix λ. 

Lambda (λ) term in Perona Malik equation can be thought as a contrast parameter 

separating regions of forward diffusion from regions of backward diffusion. It decides 

on whether an edge or curve in the diffusion process is preserved or not. 

To see the effect of the λ, Regularized Perona-Malik is applied to Acceleration data for 

some various λ values by keeping σ, ∆t and T constant, in Figure 3.4.5. 

 

Figure 3.4.5: (Perona Malik Filtering). Results between the samples of 176 and 284 for σ= 3, 

T=10, ∆t=0.25 and  various λ=5,  10,  20,  40,  80,  120. 

After a definite value of λ, the effect of the λ becomes smaller even if the value of λ is 

set to a larger value for the fix σ. So the effect of σ and λ does not increase linearly by 

their values. 

The mean, variance, standard deviation, total gradient and entropy are examined, 

Figure 3.4.7, by using the parameters σ=3, λ=10, T=50 and ∆t=0.05 on the 

Acceleration data signal by applying Perona-Malik, Figure 3.4.6. 
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Figure 3.4.6: (Perona Malik Filtering). ) Smoothed Acceleration Data by using σ=3, λ=10, 

T=50 and ∆t=0.05. 
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Figure 3.4.7: (Perona Malik Filtering).  
(a) Mean Value vs. Iteration for σ=3, λ=10, T=50 and ∆t=0.05 

(b) Variance vs. Iteration for σ=3, λ=10, T=50 and ∆t=0.05 

(c) Total Gradient vs. Iteration for σ=3, λ=10, T=50 and ∆t=0.05 

(d) Standard Deviation vs. Iteration for σ=3, λ=10, T=50 and ∆t=0.05 

(e) Entropy vs. Iteration for σ=3, λ=10, T=50 and ∆t=0.05 
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(e)  

Figure 3.4.7: (Continued). 

When the Perona-Malik filter is applied to a signal, for the each iteration, mean value 

of the signal doesn’t change. Variance, standard deviation and total gradient, Σ|Δ|² 

monotonically decrease. 

3.4.3 Second Derivative Results for Perona Malik Filtering 

Second Derivative Result of Smoothed Displacement data can be seen in Figure 3.4.8 

by using Perona Malik filter. 
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Figure 3.4.8: (Perona Malik Filtering). (a) Second Derivative Result of Smoothed 

Displacement Data (b) Same as Figure 3.4.8.a except Original Displacement Data (Black Line).  

Black Line: Second Derivative of the Original Displacement Data, 

Blue Line: Second Derivative of the Data by using the λ=10, T=10, ∆t=0.25 and σ=3, 

Red Line: Second Derivative of the Data by using the λ=80, T=10, ∆t=0.25 and σ=1.  

 



 90 

3.4.4 Comparing Perona Malik Filters of Varying Parameters 

The Comparative Second Derivative Results of Smoothed Displacement data and 

Original Acceleration data are seen in Figure 3.4.9. Perona Malik filtering result, blue 

line in Figure 3.4.9, gives comparatively better result in the area of 2, because it is 

successfully got rid of the noise, but it is not successful in the area of 1, because the 

critical feature is lost. The result of filtering, red line, gives good result in the area of 1 

while giving bad result in the area of 2. The results of the smoothed Displacement data 

can also be seen in Figure 3.4.1 by using the same parameters. 
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Figure 3.4.9: (Perona Malik Filtering). The Comparative Second Derivative Results of Smoothed 
Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Red Line: Second Derivative of Smoothed Displacement Data by using λ=10, T=5, ∆t=0.25 and σ=3, 

Blue Line: Second Derivative of Smoothed Displacement Data by using λ=10, T=50, ∆t=0.05 and σ=3. 
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3.5 THE AMBROSIO-TORTORELLI APPROXIMATION OF THE 

MUMFORD-SHAH MODEL 

Ambrosio-Tortorelli is using smoothing based Partial Differential Equation by using 

coupled Partial Differential Equation to solve the diffusion process [14]:  

 2((1 ) ( )) ( )




  
    

  

u
v u u g

t x x
 (3.13) 

 

2
2

2 2

2 ( )

(1 )



 



     
 

u
v vxv v
t x

 (3.14) 

Parameters in this Partial Differential Equation are: 

g: is the input data. 

u: is the nonlinearly smoothed version of input data. 

v: is an estimate of the first derivative. 

v is the result of regularized first derivative function. The regularization of v can be 

ignored: 

 

2

2

2 ( )

1 2 ( )













u
xv

u
x

 (3.15) 

Using the equation (3.13): 
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Bold part can be written as: 
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Perona Malik Diffusion Equation, in (3.12), was: 
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So, in Perona Malik Diffusion, when   is replaced with  
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Then the result will be the Ambrosio Tortorelli Partial differential Equation [14]. 
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Equation (3.21) is equal to: 
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where 



 is the stopping criteria. Equation (3.23) is about the time to stop. 

  
2  

2

 


  (3.23) 

3.5.1 Acceleration Data Results for Ambrosio Tortorelli Approximation of the 

Mumford Shah 

After applying the Ambrosia Tortorelli to the Acceleration data, in Figure 1.1.2.b, 

following results are obtained. 

Seeing the result of Ambrosio Tortorelli, when 



 is constant, and change the value of ρ: 
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If parameter ρ goes to 0, Ambrosio Tortorelli filter works better, as in Figure 3.5.1, 

Figure 3.5.2 and Figure 3.5.3. When the parameter ρ decreases, the signal smoothes 

and less noise appears. 

 

Figure 3.5.1: (Result for the Ambrosio Tortorelli Approximation of the Mumford Shah) 

The results for T=100,  ∆t=0.4,  α=8,  β=0.1,  ρ= 0.05, 0.01, 0.001, 0.0001, 0.00001, 0.000001 

 

Figure 3.5.2: (Result for the Ambrosio Tortorelli Approximation of the Mumford Shah) 

The results for T=100,  ∆t=0.4,  α=2,  β=0.025,  ρ= 0.05, 0.01, 0.001, 0.0001, 0.00001, 0.000001 
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Figure 3.5.3: (Result for the Ambrosio Tortorelli Approximation of the Mumford Shah) 

The results for T=100,  ∆t=0.4,  α=32,  β=0.4,  ρ= 0.05, 0.01, 0.001, 0.0001, 0.00001, 0.000001 

 

After changing the value of α, the result of Ambrosio Tortorelli is as in Figure 3.5.4. 

 

Figure 3.5.4: (Result for the Ambrosio Tortorelli Approximation of the Mumford Shah) 

The results for T=100, ∆t=0.4, α=8, 16, 32, 64, β=0.025, ρ= 0.000001. 
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After changing the value of β, the result of Ambrosio Tortorelli is as in Figure 3.5.5 

and in Figure 3.5.6. 

 

Figure 3.5.5: (Result for the Ambrosio Tortorelli Approximation of the Mumford Shah) 

The results for T=100,  ∆t=0.4,  α=8,  β=4, 8, 16, 32, 64, ρ= 0.000001 

 

 

 

Figure 3.5.6: (Result for the Ambrosio Tortorelli Approximation of the Mumford Shah) 

The result for T=100,  ∆t=0.4,  α=8,  β=0.1,  ρ= 0.000000001 
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3.5.2 Displacement Data Results for Ambrosio Tortorelli Approximation of the 

Mumford Shah 

After applying the Ambrosia Tortorelli to the Displacement data, Figure 1.1.2.a, the 

results are in Figure 3.5.7 and in Figure 3.5.8. 
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Figure 3.5.7: (Result for the Ambrosio Tortorelli Approximation of the Mumford Shah),  

(a) Smoothed Displacement Data Result, (b) The samples, between 190 and 380, of Figure 3.5.7.a. 

Black Line : The Original Displacement Data, 

Blue Line   : Smoothed Displacement Data by using the T=100, ∆t=0.4, α=64, β=0.025, ρ=0.000001, 

Red Line    : Smoothed Displacement Data by using the T=100, ∆t=0.4, α=8, β=64, ρ=0.000001. 
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Figure 3.5.8: (Result for the Ambrosio Tortorelli Approximation of the Mumford Shah),  

(a) Smoothed Displacement Data Result, (b) The samples, between 190 and 380, of Figure 3.5.8.a. 

Black Line : The Original Displacement Data, 

Blue Line   : Smoothed Displacement Data by using the T=100, ∆t=0.4, α=64, β=0.025, ρ=0.000001, 

Red Line    : Smoothed Displacement Data by using the T=100, ∆t=0.4, α=8, β=256, ρ=0.000001. 
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3.5.3 Second Derivative Results for Ambrosio Tortorelli Approximation of the 

Mumford Shah 

The Second Derivative Result of Smoothed Displacement data can be seen in Figure 

3.5.9 by using the Ambrosio Tortorelli approximation of the Mumford Shah. 
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    (b)  

Figure 3.5.9: (Ambrosio Tortorelli Approximation of the Mumford Shah). (a) Second 

Derivative Result of Smoothed Displacement Data (b) Same as Figure 3.5.9.a except Original 
Displacement Data (Black Line).  

Black Line: Second Derivative of the Original Displacement Data, 

Blue Line: Second Derivative of the Data by using the T=100, ∆t=0.4, α=64, β=0.025, ρ=0.000001, 

Red Line: Second Derivative of the Data by using the T=100, ∆t=0.4, α=8, β=256, ρ=0.000001. 

3.5.4 Comparing Ambrosio Tortorelli Approximation of Mumford Shah of 

Varying Parameters 

The Comparative Second Derivative Results of Smoothed Displacement data and 

Original Acceleration data are seen in Figure 3.5.10 and Figure 3.5.11. Ambrosio 

Tortorelli approximation of the Mumford Shah result, blue line in Figure 3.5.10, gives 

comparatively better result in the area of 2, because it is successfully got rid of the 

noise, but it is not successful in the area of 1, because the critical feature is lost. The 

result of filtering, red line, gives good result in the area of 1 while giving bad result in 

the area of 2 in Figure 3.5.10. The results of smoothed Displacement data can also be 

seen in Figure 3.5.8 by using the same parameters. 



 98 

0 100 200 300 400 500 600
-400

-300

-200

-100

0

100

200

Samples

D
a
ta

 V
a
lu

e

Second Derivative Result of Displacement Data

  1

  2

 

Figure 3.5.10: (Ambrosio Tortorelli Approximation of the Mumford Shah). The Comparative 

Second Derivative Results of Smoothed Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Blue Line   : Second Derivative of Smoothed Displacement Data by using T=100, ∆t=0.4, α=64, 

β=0.025, ρ=0.000001, 

Red Line    : Second Derivative of Smoothed Displacement Data by using T=100, ∆t=0.4, α=8, 
β=256, ρ=0.000001. 
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Figure 3.5.11: (Ambrosio Tortorelli Approximation of the Mumford Shah). The Comparative 

Second Derivative Results of Smoothed Displacement Data and Original Acceleration Data. 

Black Line: Original Acceleration Data 

Blue Line   : Second Derivative of Smoothed Displacement Data by using T=100, ∆t=0.4, α=8, β=90, 

ρ=0.000001, 

Green Line : Second Derivative of Smoothed Displacement Data by using T=100, ∆t=0.4, α=8, 
β=70, ρ=0.015, 

Red Line    : Second Derivative of Smoothed Displacement Data by using T=100, ∆t=0.4, α=8, 
β=50, ρ=0.033. 
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3.6 GENERAL REVIEW OF THE NON-LINEAR SMOOTHING FILTERS 

Smoothing is a process that removes high frequency components. Non-linear 

smoothing filters are the filters that smoothes the data without removing significant 

parts of the data content.  

Anisotropic diffusion can be used to remove noise from the data without removing 

significant parts of the data. With a constant diffusion coefficient, the anisotropic 

diffusion equations reduce Gaussian blurring. If the value of the diffusion coefficient is 

determined by using magnitude of the first derivative, like Perona Malik, the resulting 

equations discourage diffusion at the significant part of the data and encourage 

diffusion in the other part of the data. Hence the significant part of the data can be kept 

while removing the high frequency components from the data. 

Perona-Malik and Ambrosia-Tortorelli are anisotropic diffusion filters. If the contrast 

parameters are adjusted correctly, Perona-Malik and Ambrosia-Tortorelli give the 

same result. Time to stop for Perona-Malik is determined by using the equation in 

(3.23) at Ambrosio-Tortorelli approximation. So, 

 
2 





  (3.24) 

The value of λ, a contrast parameter of Perona Malik equation, can be found 

experimentally, by using the equation (3.20), as seen in Figure 3.6.1. 
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Figure 3.6.1: (Perona-Malik Equation vs. Ambrosio-Tortorelli Equation) 

Green Line : Ambrosio-Tortorelli Result for T=200, ∆t=0.4, α =8, β=0.05, ρ= 0.000000001 

Red Line : Perona-Malik Result for T=200, ∆t=0.4, λ=10, and σ=18. 

 

When the Ambrosio-Tortorelli is applied to a signal, for each iteration, mean value of 

the signal doesn’t change. Variance, Gradient, Total Gradient Σ|Δ|², standard deviation 

and Entropy monotonically decrease. 

The examination of these values on the Acceleration Data, using Ambrosio-Tortorelli 

in Figure 3.6.2, is in Figure 3.6.3. 

 

Figure 3.6.2: (Result for the Ambrosio Tortorelli Approximation of the Mumford Shah) 

The result for Result: T=200, ∆t=0.4, α =8, β=0.05, ρ= 0.000001   
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(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

Figure 3.6.3: (Results for the Ambrosio Tortorelli Approximation of the Mumford Shah)  
(a) Mean Value vs. Iteration  

(b) Variance vs. Iteration 

(c) Gradient vs. Iteration  

(d) Total Gradient vs. Iteration  

(e) Standard Deviation vs. Iteration  

(f) Entropy vs. Iteration  

 

 



 102 

Which Non-linear smoothing algorithm gives better result than the others can be seen 

in Figure 3.6.4, when the noise level of smoothed Displacement data is hold similarly 

for the first 150 samples and concentrated on the impulse level. 
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Figure 3.6.4: (The Comparative Second Derivative Results of Displacement Data by 

using some of the experimented Non-Linear Smoothing Filters).   
Black Line: Original Acceleration Data,  

(a) Sigma Filter Result by using σ=0.5, Filter size=91, 

(b) Perona Malik Filtering Result by using λ=10, T=18, ∆t=0.25 and σ=3, 

(c) Ambrosio Tortorelli Approximation by using T=100, ∆t=0.4, α=8, β=50, ρ=0.033, 

(d) Comparison of all results from Figure 3.6.4.a to Figure 3.6.4.c 
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3.7 BAKLAVA FILTER 

Baklava filtering is a Non-linear smoothing filtering. One dimensional Baklava filter 

works on an array which is divided into two sub array parts. In this method, filter size 

should be defined as an odd number. In the first array part, members are taken from the 

middle of the array. The second array part is consisting of all array members out of the 

first part. The size of the array parts are determined by dividing two equal or almost 

equal parts of processed array. In each sub array part, the mean and variance are 

computed. The output value (located at the center of the array) is set to the mean value 

of the sub array where the variance is the smaller than the other part. The mask size is 

defined as 7 for the following implementation: 

     1 5 62 3 4                     
 
 i i i ii i iX X X XY Y Y  (3.25) 

 

So, it divides into 2 sub array parts.  

First array part is: 

 1 5 6             i i i iX X X X  (3.26) 

And second array part is: 

2 3 4             i i iY Y Y  (3.27) 

Last step is computing the following values: 

Xmean : Mean the value of the first array part. 

Ymean : Mean the value of the second array part 

varX  : Variance the value of the first array part. 

varY  : Variance the value of second array part. 

varX  and varY  are compared and the mean value of the smaller variance is copied to 

the address which is defined by 3iY . This 3iY  value is located at the center of the 

array sequence. 
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This algorithm gives better result than Kuwahara filter. Some comparisons are done for 

the test data. In this algorithm filter size shouldn’t be increased so much because of the 

stability of the algorithm and the result.  

3.7.1 Golf Ball Drop Data Results for Baklava Filtering 

After applying the Baklava filter on the Golf ball drop data, in Figure 1.1.1, the results 

are in Figure 3.7.1. 
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Figure 3.7.1: (Baklava Filtering vs. Kuwahara Filtering) 

 
Black Line: Original Golf Ball Drop Data, 

Blue Line: The result of the Baklava Filtering for Filter Size = 7, 

Red Line: The result of the Baklava Filtering for Filter Size = 9, 

Green Line: The result of the Kuwahara Filtering for Filter Size = 7, 

 

As it is seen from Figure 3.7.1, while Kuwahara filter results are corrupted in some 

part of the data, Baklava filter gives better result and there is no corruption in any part 

of the data. This condition can be seen clearly in Figure 3.7.2. 



 105 

16 18 20 22
1.35

1.4

1.45

1.5

1.55

1.6
Golf Ball Drop Data

 
Figure 3.7.2: (The samples, between 16 and 22, of Figure 3.7.1) 

 
Black Line: Original Golf Ball Drop Data, 

Blue Line: The result of the Baklava Filtering for Filter Size = 7, 

Red Line: The result of the Baklava Filtering for Filter Size = 9, 

Green Line: The result of the Kuwahara Filtering for Filter Size = 7, 

 

3.7.2 Displacement Data Results for Baklava Filtering 

After applying the Baklava filter on the Displacement data, in Figure 1.1.2.a, the 

results are in Figure 3.7.3, Figure 3.7.4 and in Figure 3.7.5. 
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(b)  

Figure 3.7.3: (Baklava Filtering vs. Kuwahara Filtering) (a) Smoothed Displacement Data 
Result, (b) The samples, between 105 and 125, of Figure 3.7.3.a. 

Black Line : The Original Displacement Data, 

Blue Line: The result of the Baklava Filtering for Filter Size = 7, 

Red Line: The result of the Baklava Filtering for Filter Size = 9, 

Green Line: The result of the Kuwahara Filtering for Filter Size = 7, 
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Figure 3.7.4: (Baklava Filtering vs. Kuwahara Filtering) (a) Smoothed Displacement Data Result, 

(b) The samples, between 0 and 110, of Figure 3.7.4.a. 

Black Line : The Original Displacement Data, 

Red Line: The result of the Baklava Filtering for Filter Size = 21, 

Blue Line: The result of the Kuwahara Filtering for Filter Size = 21, 
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(b)  

Figure 3.7.5: (Baklava Filtering vs. Kuwahara Filtering) (a) The samples, between 130 and 230, 

of Figure 3.7.4.a., (b) The samples, between 445 and 555 of Figure 3.7.4.a. 

Black Line : The Original Displacement Data, 

Red Line: The result of the Baklava Filtering for Filter Size = 21, 

Blue Line: The result of the Kuwahara Filtering for Filter Size = 21, 
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3.7.3 Acceleration Data Results for Baklava Filtering 

After applying the Baklava filter to the Acceleration data, in Figure 1.1.2.b, following 

results are obtained. When mask size is increased, the difference between maxima and 

minima does not decrease a lot, however, a corruption on the signal itself occurs, in 

Figure 3.7.6 and in Figure 3.7.7. 
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Figure 3.7.6: (Baklava Filtering vs. Kuwahara Filtering) 

Black Line: Original Acceleration Data, 

Blue Line: The result of the Baklava Filtering for Filter Size = 7, 

Red Line: The result of the Baklava Filtering for Filter Size = 9, 

Green Line: The result of the Kuwahara Filtering for Filter Size = 7. 
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Figure 3.7.7: (The samples, between 190 and 230, of Figure 3.7.6) 

Black Line: Original Acceleration Data, 

Blue Line: The result of the Baklava Filtering for Filter Size = 7, 

Red Line: The result of the Baklava Filtering for Filter Size = 9, 

Green Line: The result of the Kuwahara Filtering for Filter Size = 7. 
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3.7.4 Second Derivative Results for Baklava Filtering:   

Second Derivative Result of Smoothed Displacement data by using the Baklava 

filtering can be seen in Figure 3.7.8 and in Figure 3.7.9. 
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(b)  

Figure 3.7.8: (Baklava Filtering vs. Kuwahara Filtering). (a) Second Derivative Result of 

Smoothed Golf Ball Data using Baklava Filtering & Kuwahara Filtering for the Mask Size=7 (b) 
Same as Figure 3.7.8.a except Kuwahara Filtering Result. 

Black Line: Second Derivative of the Original Golf Ball Drop Data, 

Blue Line: Second Derivative of the Data by using the Baklava Filtering for mask Size=7,  

Red Line: Second Derivative of the Data by using the Kuwahara Filtering for mask Size=7. 
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(b)  

Figure 3.7.9: (Baklava Filtering vs. Kuwahara Filtering). (a) Second Derivative Result of 

Smoothed Displacement Data using Baklava Filtering & Kuwahara Filtering for the Mask Size=7 
(b) Same as Figure 3.7.9.a except Kuwahara Filtering Result. 

Black Line: Second Derivative of the Original Displacement Data, 

Blue Line: Second Derivative of the Data by using the Baklava Filtering for mask Size=7,  

Red Line: Second Derivative of the Data by using the Kuwahara Filtering for mask Size=7. 



 109 

 

CHAPTER 4 

 

SUMMARY AND CONCLUSION 

 

 

In this thesis, the effect of different smoothing strategies on the estimated second 

derivative is experimentally investigated. Widely used filters developed for handling 

piecewise smooth data, where the jumps at the first derivative are of interest, are 

examined in a context where the interest is to obtain the second derivative accurately. 

In particular second derivative of a positional Displacement data have a physical 

importance because it corresponds to acceleration. Obtaining accurate estimate of the 

second derivative is much more challenging than obtain accurate estimate of the 

original data (which is the zeroth derivative) or of the first derivative. This is because 

differentiation amplifies high frequency content more than low frequency content, thus 

decreases signal to noise ratio. Naturally, differentiating twice decreases signal to noise 

ratio more than differentiating once. So that, second derivative of the filtered signals 

don’t give good result while getting better result in the first derivative which used for 

preserving the edge. A new method is also proposed in Section 3.7, named Baklava 

filtering. Codes, used to demonstrate the results of the smoothing methods, are coded 

by using Matlab by the author and images are saved by using Enhanced Meta File 

(EMF) and BMP format. 

Linear smoothing filters that are covered in Chapter 2 are: 

2.1 Mean Filter 

 

2.2 Iterated Mean Filter 

 

2.3 Gaussian Filter 

 

2.4 Ideal Low Pass Filter 
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2.5 Butterworth Low Pass Filter 

 

2.6 Linear Diffusion Filter 

 

Linear smoothing filters don’t take the characteristic properties of the given data into 

account. Depending on the choice of weight function and choice of the mathematical 

model, linear filters take various forms. These filters are not successful at preserving 

the critical features in the data. 

When the noise level of the smoothed Displacement data is hold similarly for the first 

150 samples and concentrated on the impulse level in Figure 2.7.2, Butterworth Low 

Pass filter seems to give better result between the samples 180 and 220, but it does not 

give good result between the samples 230 and 350. When the filter gives smooth result 

at the second area, between the samples 230 and 350, then the critical feature in the 

first area, between the samples 180 and 220, is lost. All of the experimented Linear 

smoothing algorithms have the same problem, because noise and signal spectrums are 

overlapping each other. Locally at some part of the data, signal has got high spectrum 

value. So especially in this area, it is hard to separate the signal from the noise. Finding 

the right cut-off value which separates the signal from the noise is not possible for this 

condition.  

Non-linear smoothing filters that are covered in Chapter 3 are: 

3.1 Kuwahara Filter 

 

3.2 Sigma Filter 

 

3.3 Median Filter 

 

3.4 Perona Malik Filter 

 

3.5 The Ambrosio Tortorelli Approximation of the Mumford Shah Model 

Non-linear filters are important at smoothing the data. Linear smoothing filters can not 

determine the data, whether it is noise or an important part of the data. The condition, 

which is expected, is smoothing the data while keeping important part of the data. 

Non-linear smoothing filters provide this condition.  
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When the noise level of the smoothed Displacement data is hold similarly for the first 

150 samples and concentrated on the impulse level in Figure 3.6.4, Ambrosio 

Tortorelli Approximation gives better result between the samples 180 and 220, but it 

does not give good result between the samples 230 and 350.  

Actually, when the right parameters are chosen for Ambrosio Tortorelli and Perona 

Malik they all give the same result. If the contrast parameters are adjusted correctly, 

they give the same result. Time to stop for Perona-Malik is determined by using the 

equation in (3.23) at Ambrosio-Tortorelli approximation. So, (3.24) shows the relation 

between Perona Malik and Ambrosio Tortorelli Approximation.  

Widely used successful filters in image processing aim at preserving discontinuities in 

the data and estimate the first order derivative accurately. They fail when the aim is to 

estimate second order derivative (acceleration) accurately. 

Complexity of the problem comes from the non-stationary condition of the signal. 

Popular filtering algorithms are successful especially when the data to be processed are 

stationary (Woltring, 1990, 1995), but this data set is a non-stationary and some part of 

the signal contains high frequency components as a critical feature. So it is hard to 

remove the noise from the original data by using conventional smoothing filters. So, 

new methods are necessary for the second derivative problems. 
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