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Computer Engineering Dept., Boğaziçi University
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ABSTRACT

NANOSIM: A SIMULATION FRAMEWORK FOR NANOSCALE
MOLECULAR COMMUNICATION NETWORKS

Gül, Ertan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Özgür Barış Akan

May 2010, 118 pages

A number of nanomachines that cooperatively communicate and share informa-

tion in order to achieve specific tasks is envisioned as a nanonetwork. Due to size

and capabilities of nanomachines, the traditional communication paradigms cannot

be used for nanonetworks in which network nodes may be composed of just several

atoms or molecules and scale on the orders of few nanometers. Instead, molecu-

lar communication is a promising solution approach for nanoscale communication

paradigm. However, molecular communication must be thoroughly investigated to

realize the nanoscale communication and nanonetworks for many envisioned appli-

cations such as nanoscale body area networks, nanoscale molecular computers. In

this thesis, a simulation framework (NanoSim) for nanoscale molecular communica-

tion networks is presented. The objective of the framework is to provide a simulation

experimental tool in order to create a better understanding of nanonetworks and fa-

cilitate the development of new communication techniques and validation of theoret-

ical results. The NanoSim framework is built on top of core components of widely
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used network simulator (ns-2). It incorporates the simulation modules for various

nanoscale communication paradigms based on diffusive molecular, motor-based and

gap junction-based molecular communication channels. The details of NanoSim

are discussed and some functional scenarios are defined to validate NanoSim. In

addition to this, the numerical analyses of these functional scenarios and their ex-

perimental results are presented. The validation of NanoSim is done by comparing

these experimental and numerical results.

Keywords: Molecular Communication, Molecular Network Simulator, Nanonet-

work Simulator, Diffusive Molecular Communication, Motor-Based Molecular Com-

munication, Gap Junction-Based Molecular Communication
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ÖZ

NANOSIM: NANO-ÖLÇEKLİ MOLEKÜLER İLETİŞİM AĞLARI İÇİN
BENZETİM ÇERÇEVESİ

Gül, Ertan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Özgür Barış Akan

Mayıs 2010, 118 sayfa

Belirli işlevleri yerine getirmek için işbirliği yaparak haberleşen ve bilgi

paylaşan bir kaç nanomakine nano ağ olarak tasavvur edilir. Boyutları ve kabiliyet-

lerinden dolayı, geleneksel haberleşme paradigmaları, sadece bir kaç mol atom veya

molekülden oluşabilen ve birkaç nanometre boyutlarında olabilen nanomakinelerin

arasındaki haberleşme için kullanılamaz. Bunun yerine, moleküler haberleşme nano-

ölçekli haberleşme paradigması için gelecek vadeden bir çözüm yaklaşımıdır. Fakat,

moleküler haberleşme, nano-ölçekli haberleşme ve nano ağları nano-ölçekli vücut

alanı ağı, nano-ölçekli moleküler bilgisayarlar gibi birçok uygulamada gerçekleştir-

mek için detaylı bir şekilde araştırılmalıdır. Bu tezde, nano-ölçekli moleküler haber-

leşme ağları için bir benzetim çerçevesi sunulmuştur. Çerçevenin amacı nano ağları

daha iyi anlayabilmek ve yeni haberleşme teknikleri ve teorik sonuçları onaylamak

için deneysel benzetim aracı sağlamaktır. NanoSim çerçevesi, geniş kullanım alanı

bulunan ağ simülatörünün (ns-2) temel bileşenleri üzerine geliştirilmiştir. NanoSim

difüzyon, motor-temelli ve oluklu bağlantı-temelli moleküler iletişim kanalları için
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benzetim modülleri içerir. NanoSim’in detayları tartışılmış ve NanoSim’in doğrula-

ması için bazı fonksiyonel senaryolar tanımlanmıştır. Buna ek olarak, bu fonksiyonel

senaryoların nümerik analizleri ve deneysel sonuçları sunulmuştur. Bu deneysel ve

nümerik sonuçlar karşılaştırılarak, NanoSim’in doğrulaması yapılmıştır.

Anahtar Kelimeler: Moleküler Haberleşme, Moleküler Ağ Simülatorü, Nano Ağ

Simülatorü, Difüzyon Temelli Moleküler Haberleşme, Motor Temelli Moleküler

Haberleşme, Oluklu Bağlantı Temelli Moleküler Haberleşme

vii



To my family

viii



ACKNOWLEDGMENTS

I would like to express my gratefulness and deepest respect to my advisor, Dr.
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port and encouragement, and I thank my brother, Erhan, the most important person

for me, for everything.

ix



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1

INTRODUCTION

The idea of nanotechnology was introduced nearly half century ago by Richard

Feynman [55]. Nanotechnology enables the practical realization of nanoscale de-

vices, the size of which ranges from 1 to 100 nanometers. The studies on nan-

otechnologies are categorized into two techniques. Dry technique covers studies of

fabrication of nanoscale devices, composed of carbon, silicon and other inorganic

materials such as carbon nanotubes and nanowires, whereas wet technique refers to

all nanotechnologies that cover studies of biological systems that exist in aqueous

medium [49].

In nanotechnology, nanomachines, which have limited size and limited capa-

bility, are considered as the smallest functional unit elements. Nanomachines are

capable of performing basic tasks like movement generation, releasing molecules,

receiving molecules via chemical reactions. Because of their simple structure, they

need to cooperate with each other to perform complex tasks. This requirement brings

the necessity of communication between nanomachines.

Nanonetwork, which is the interconnection between nanomachines, can be

accomplished in several methods such as acoustic, electromagnetic, nanomechan-

ical and molecular communication [48]. In acoustic communication, information is

carried via acoustic signal. In nanomechanical communication, information flows

through mechanical connection of nanoscale devices. In electromagnetic communi-

cation, information is encoded into electromagnetic waves. Molecules are utilized
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as information carriers in molecular communication which can be identified as wet

nanotechnology [15].

Molecular communication, inspired from the real biological molecular sys-

tems, gathers several disciplines such as nanotechnology, biotechnology and com-

munication systems. By molecular communication, short-range (nm - m) commu-

nication between nanomachines is provided and molecules are used as communica-

tion carriers instead of electromagnetic waves. For instance, in molecular commu-

nication, transmitter nanomachine inserts molecules into aqueous medium and then

receiver nanomachine captures the molecules from communication channel like bio-

logical structures, i.e., cell, tissue, organ, communicating with each other via special

molecules in nature [1].

Molecular communication has several potential application areas. These areas

can be outlined as follows [15]:

• Biomedical Area: The most exciting potential applications are on biomedical

area as a result of biocompatibility feature of molecular communication. The

future health care examples, presented in [14], are Lab-on-a-chip, Drug/DNA

delivery system, and human body monitoring. Additionally, immune sys-

tem support, bio-hybrid implants, and genetic engineering implementations

are promising fields.

• Environmental Area: Since molecular communication is compatible and in-

spired from nature, it has potential environmental applications such as animal

and biodiversity control, air pollution control, and biodegradation.

• Industrial Area: Due to the chemical sensitivity of molecular communica-

tion, food and water quality controls are examples of potential industrial ap-

plications.

• Military Area: Nuclear, biological and chemical defenses, and nano-function-

alized equipments are the examples of potential military applications.

Molecular communication systems can be categorized into three models ac-

cording to their propagation mechanisms. These are gap junction-based, motor-
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based and diffusive molecular communication models.

Molecular communication through gap junctions is presented in [9]. The sys-

tem is based on diffusion of information molecules through gap junctions which are

special proteins that provide connection between two cells. This model provides

shared medium for the nanomachines in the system. Calcium signaling is used as

communication carrier in the system. In [22], more detailed design of a molecu-

lar channel with gap junctions and modeling of molecular communication system

are proposed. In the designed system, signal switching, filtering and aggregation

functionalities are controlled by adjusting the permeability and selectivity of gap

junctions. Besides, a cell-based molecular communication network based on gap

junction channels is designed. The proposed system focuses on basic computational

logic units [5].

Molecular motor-based communication is inspired from intra-cell communi-

cation of real biological cells. Message molecules are transported by molecular mo-

tors. Biomolecular linear systems contain molecular motors and protein filaments.

Molecular motors, i.e., kinesins, dyneins, and myosins are protein complexes that

transform chemical energy into mechanical work. There are two propagation types

in molecular motor-based communication system. For one of them, molecular mo-

tors carry the cargoes and move along protein filaments [8], [36] . For the other

one, protein filaments glide over the immobilized molecular motors [3], [14]. Thus,

in this model, protein filaments called as molecular rail [11]. This model can be

considered as wired communication in traditional communication.

In addition to the models mentioned above, molecules may also freely prop-

agate in an aqueous medium. In this case, firstly, transmitter nanomachine releases

molecules into free aqueous medium, then molecules propagate in the molecular

communication channel, and the receiver nanomachine captures these information

molecules with chemical reactions as shown in Figure 1.1. The motion of parti-

cles in one dimension is modeled via Brownian motion and the channel capacity

is computed in [7]. Simplified version of ligand-receptor mechanism is analyzed

and channel capacity of diffusive biochemical channel is estimated in [10]. An in-
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formation theoretical approach for molecular communication is presented in [17].

Molecular communication channel capacity between two nanomachines is analyzed

in that paper. Molecular multiple access, broadcast and relay channel models for

molecular communication are presented, and their capacity expressions are derived

in [20]. Besides, deterministic capacity of information flow is analyzed in molecular

nanonetworks in [4].

TN RN

DIFFUSIVE MOLECULAR 
CHANNEL

Receptor

Ligand (Molecule)

Figure 1.1: Diffusive molecular communication model [17].

The idea of developing a functional and powerful molecular communication

simulator, which supplies different nanonetwork topologies and molecular commu-

nication models, has arisen, due to lack of open source molecular communication

network simulator which provides a simulation environment to implement and eval-

uate new communication techniques for molecular communication.

The purpose of this thesis is to develop a molecular communication simulator

which is based on nanoscale molecular communication networks for ns-2 that also

supports the development of communication networks in addition to traditional one.

The resulting simulation framework, NanoSim, provides a good infrastructure for

further development and evaluation of molecular communication protocols. Besides,

it will be used for validation of derived models. The design of NanoSim enables the

code utilization for the implementation which will be developed for other molecu-

lar communication models. In this thesis, communication models defined above are
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modeled and analyzed. The design and implementation details of NanoSim, which

is developed for diffusive and motor-based communication models, are also given.

Then, numerical analyses for validation scenarios of NanoSim are introduced. Fi-

nally, the performance evaluation and validation of NanoSim are presented.

In the rest of this chapter, firstly, discussion of the related work is given. Then,

the background about ns-2 is introduced. Finally, the organization of thesis is pre-

sented.

1.1 Related Work

There are several reaction-diffusion models to cope with biochemical activities

in different levels as examined in [38]. Highly accurate microscopic methods are

too computational, whereas the macroscopic Ordinary Differential Equation (ODE)

methods cannot handle biochemical activities enough. Because of that, we select

mesoscopic method to simulate our system. We choose Gillespie-Multi-Particle

method (GMP) [30] among several reaction-diffusion models [39], [40], [41]. In

GMP method, diffusion and reaction events are discrete in contrast to [41], in which

these events are merged. The distinction between reaction and diffusion phases di-

minishes computational cost of reaction-diffusion merged models and makes GMP

method suitable for parallel computation. Moreover, the distinction between reac-

tion and diffusion brings modularity to GMP algorithm. As an algorithm for dif-

fusive molecular communication modules, diffusion phase of the GMP method is

required in motor-based communication which does not need the reaction part of

GMP method. Thus, we plug the diffusion model of GMP algorithm to motor-based

communication model.

There are several cellular activity oriented simulators. One of them is E-Cell3

[33] which is an object-oriented program that aims to model, simulate and, analyze

the complex bio-structures like cells. E-Cell Simulation Environment, in which nu-

merous algorithms are applied, is a very powerful tool. There are also several similar

cellular scale simulators such as V-cell [35] and cellware [34]. Even though these

simulators are powerful for complex nature of biological systems, they are not ap-
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propriate for molecular communication due to lack of network aspect. For instance,

it is impossible to implement network protocols with them.

The simulation studies for molecular communication exist in the literature. In

[18], unicast communication on microtubule topology is investigated. The probabil-

ity of successful transmission for diffusive and motor-based propagation systems is

compared. However, the topology of environment is composed of only one single

sender, one single receiver and microtubule. The simplicity of the topology reduces

the level of realism. In [13], delay characteristics of different microtubule topolo-

gies, which are fundamental structures of motor-based molecular communication

system, are analyzed. In [43], three types of molecular communication propagation

approaches are defined. In diffusion-only propagation system, there is not any mi-

crotubule in the environment and molecules diffuse between sender and receiver. In

motor-only propagation system, sender and receiver are connected and information

molecule is directly transferred from sender to receiver nanomachine. In the hybrid

propagation system, information molecules are released, then information molecules

may propagate to receiver by diffusing in the environment or binding microtubule

which has instable behavior and moving through bound microtubule. The informa-

tion rates of propagation models are compared. Additionally, the noise analysis of

these models are investigated in [42].

Despite promising progress performed in molecular communication and ex-

isting cell simulators, there is currently no open source molecular communication

simulator which provides practical and beneficial simulation suite to develop net-

work protocols for nanonetworks. The necessity of a molecular communication net-

work simulator motivates us to develop a simulator which allows the user to manage

different nanonetwork topologies and molecular communication models.

1.2 Network Simulator (ns-2)

Network simulator is a discrete event-driven network simulator specially geared

for scientific researches [32]. It provides the simulation of TCP, routing, and multi-

cast protocols over wired and wireless networks, e.g., local and satellite. Moreover,
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it supplies development environment to model promising networks which are dif-

ferent from traditional communication as [46]. Due to these features of ns-2, it is

chosen as our simulation environment.

ns-2 is an object-oriented simulator which is written in C++ and OTcl inter-

preter. C++ is generally utilized in complicated protocol implementation as it is fast

to run. On the other hand, OTcl is used for simulation configuration since it can be

changed very quickly. OTcl interpreter, which is the user interface of ns-2 as shown

in Figure 1.2, provides the scheduling of the simulation, setting the network topol-

ogy, configuring network parameters and plumping the components of network [47].

In our simulator, ns-mol.tcl library is developed since we design a new node struc-

ture named as NanoNode, which is plumped in ns-mol.tcl, besides, new network

components, parameters and methods for molecular communication are defined in

this file.

TclCL
Simulation 

Objects
Simulation 

Objects

C++ OTcl

ns-2 Tcl Interpreter Shell (ns)

Tcl 
Simulation 

Script
Simulation 
Trace File

Nam
Animation

Analysis

Graph
plotting

NS Simulator Library

Figure 1.2: ns-2 simulation architecture [51].

ns-2 merges C++ and OTcl objects by providing support for split objects as

depicted in Figure 1.2. When a simulator object is created through OTcl interpreter,

first of all, an object is initialized in interpreted hierarchy, i.e., OTcl, and then a

matching object in compiled hierarchy, i.e., C++, is created. The link between the

objects in interpreted hierarchy and compiled hierarchy gives the control of C++

objects to OTcl. Attributes of these objects can be bound in the implementation. In

this condition, when one object is changed in interpreted or compiled hierarchy, the

other one is automatically changed.

One of the major components of ns-2 is the event scheduler. There are four
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types of schedulers in ns-2. These are a simple linked-list, heap, calendar queue, i.e.,

default, and a special type called real− time [37]. The scheduler puts the events in a

timeline. At the simulation time, the scheduler fetches the earliest event and executes

it. The execution of an event means giving the event to associated handler function

as input. After the execution of the event, scheduler moves to the next earliest event.

This cycle continues until the simulation is over.

An event is composed of a unique id, a firing time, a handler function, and a

pointer to next Event as shown in Figure 1.3. Two classes are derived from Event

base class, at − event and Packet class. Instance of at-event class schedules the

event at a particular time. On the other hand, Packet class is the constituent unit of

exchanges between network components. In the simulator, we have implemented

MolecularData class, which is used instead of Packet class as elaborately depicted

in Section 3.3.3.

handler_ next_

uid_ time_
event

handler

handle() {
     <action>
}

handler_ next_

uid_ time_

handle() {
     < action>
}

event

handler

Figure 1.3: Event class architecture [51].

Although the exchange between network components is achieved by defining

MolecularData class in the simulator, diffusion, and reaction events should also be

included in ns-2 scheduler mechanism. Therefore, handle() functions are embedded

into diffusion and reaction classes. Additionally, we design MolecularEnvironment

class to trace the environment, since diffusion and reaction events depend on the en-

vironment. MolecularEnvironment class can be considered as the input of reaction-

diffusion events.
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1.3 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, molecular commu-

nication models are explained including the details of the models in simulator design

and employed algorithms. Design and implementation details of diffusive and motor-

based molecular communication simulators are described in Chapter 3 and Chapter

4, respectively. Numerical analysis of molecular communication is introduced in

Chapter 5. The validation and performance evaluation of NanoSim framework are

presented in Chapter 6. Finally, concluding remarks are given in Chapter 7.
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CHAPTER 2

MOLECULAR COMMUNICATION

In this chapter, firstly, the characteristics of molecular communication are

briefly presented. Then, diffusive, motor-based and gap junction-based communi-

cation models are introduced. Meanwhile, the details of the models in simulator

design are discussed.

Molecular communication has different characteristics compared to traditional

communication. Some features may give the opportunity to develop more complex

and efficient communication networks in the future, whereas some of them may

limit the feasibility of molecular communication. Each of molecular communication

capabilities is concisely given below [44]:

• Biocompatibility: The components of molecular communication are inspired

from biological system. Thus, nanomachines use the same communication

mechanism as biological systems. It brings the biocompatibility of molecular

communication.

• Functional complexity: Cells, which have functional complexity, are com-

posed of sensors, logic circuits, memory and actuators which generate motion

[12].

• Robustness and fragility: Cells and biological systems have robustness against

internal and external stimulations to some degree. However, they are very frag-

ile to environmental conditions such as temperature and pH changes [12].
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• Stochasticity: Communication models use free diffusion at least in one of

their communication phase. Brownian motion, which is the cause of the free

diffusion, causes particles to move in a random fashion. It is totally in a

stochastic manner. Moreover, communication occurs through chemical chan-

nels between nanomachines, and chemical reactions are stochastic processes

as a kind of random-walk process [27].

• Delay: Molecular communication is quite slower than traditional communica-

tion. Molecular motors carry molecules up to 400 mm/day inside the cell [15].

This large latency requires nanonodes to work in an asynchronous manner.

• Energy efficiency: As the result of evolution, molecular systems do not need

any energy or they consume energy very efficiently. For example, diffusive

molecular communication models do not need energy for propagation phase.

Additionally, molecular motors use ATP to obtain kinetic energy. The energy

efficiency of ATP consumption is about 90 percent.

Table 2.1 summarizes the features of molecular communication mentioned

above and presents the comparison between traditional communication and molecu-

lar communication.

2.1 Diffusive Communication

Diffusive molecular communication is one of the fundamental mechanisms

that is used by biological systems. For example, in the human body, thyrotropes in

the hypophysis, i.e., senders, emit thyroid stimulating hormone, i.e., carrier molecules,

into the environment, then the stimulated epithelial cells secrete thyroxine. Finally,

thyroxine is received by thyroxine receptors from environment [11]. This model is

based on passive transport, which means that no energy is required during trans-

portation.

In nature, diffusive molecular communication is usually based on ligand-recep-

tor binding mechanism. Biological sender node generates and inserts ligand molecules

into the medium. The released molecules diffuse in the environment and bind to the
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Table 2.1: Traditional vs. molecular communication [1].

Traditional Molecular

Communication Communication

Communication carrier Electromagnetic Waves Molecules

Signal type Electronic and optical

(Electromagnetic)

Chemical

Propagation speed Light (3 × 108m/s) Extremely slow

Medium conditions Almost immune Affect communication

Noise Electromagnetic fields

and signals

Particles and molecules

in medium

Encoded information Voice, text, and video Phenomena, chemical

states, or processes

Other features Accurate communication

and high energy con-

sumption

Stochastic communi-

cation and low energy

consumption

receptor molecules of receiver node. Binding event is a chemical reaction between

ligand and receptor molecules. This binding event allows the receiver node to cap-

ture the information molecules. After receiver nanomachine captures information

molecules from molecular channel, it decodes the bound ligand molecules. The dif-

fusive molecular communication model is depicted in Figure 1.1.

In the remainder of this section, first, literature background about diffusion

and reaction processes is given, then reaction-diffusion algorithm which constructs

the foundation of diffusive communication model is presented.
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2.1.1 Diffusion Process

The source of diffusion is the Brownian motion, which is the random move-

ment of the particles in gas or aqueous medium and a consequence of the constant

thermal motion of atoms, molecules, and particles. It arises due to the collision of

molecules with the atoms, molecules, and particles of the medium.

Fick’s Second Law states that time rate of change in concentration is propor-

tional to the curvature of concentration and to a constant called diffusion coefficient.

In order to formulate the displacement of a single molecule, A, concentration param-

eter is replaced with the probability density function (pdf) of molecule A’s displace-

ment in one direction in the Fick’s Second Law

dpAx(r, t)
dt

= DA ▽2 pAx(r, t) (2.1)

The solution of (2.1), given in [25], [24], presents the pdf of molecule A’s displace-

ment in one direction, which has a Gaussian form as follows

GS (∆x) ≡ 1

σA
√

2π
exp(−∆x2

2σ2
A

) (2.2)

σA ≡
√

2DA∆t (2.3)

in which GS (∆x) is normalized Gaussian with mean 0 and standard deviation is equal

to σ, which is equal to step length of molecule A.

The displacements of each direction (x, y, z) are independent occurrences. Hence.

the pdf of molecule A’s total displacement is estimated as follows

pA(r + ∆r, t + ∆t) = GS A(∆x)GS A(∆y)GS A(∆z) (2.4)

(2.3) formulates the step length of molecule A in one dimension. The total displace-

ment of molecule A is defined as follows

∆r =
√

(∆x)2 + (∆y)2 + (∆z)2 (2.5)

Therefore, the total displacement of molecule A, which is achieved by combining

(2.3) and (2.5), is equal to
√

6DA∆t .
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2.1.2 Reaction Process

There are two types of homogeneous reaction approaches: deterministic ap-

proach and stochastic approach. Deterministic process is completely predictable and

presented by differential reaction-rate equations. This approach assumes that reac-

tion process has continuous and deterministic features. However, reaction system is

not a continuous process as the amount of molecules is changed discretely, and it

is not possible to predict the exact molecular population levels without the knowl-

edge of the previous position and velocity of the molecules. On the other hand, in

macroscopic systems, deterministic approach is applicable for a large number of in-

teracting molecules. The randomness of this behavior averages out as the overall

macroscopic state of the system becomes highly predictable [53].

Stochastic approach depicts that molecular reactions are random processes and

it is impossible to predict the exact time of the next reaction and the next reaction

channel. The commonly accepted algorithm for stochastic approach was proposed

by Gillespie [26]. This formulation is applicable for any chemical system that is kept

well mixed.

In order to apply stochastic approach to complex systems, a simple compu-

tational algorithm is proposed by Gillespie [27]. In Gillespie’s method, N species

which are able to react with other species through M reaction channels have been

uniformly mixed in a fixed volume V:

R1 : S 1 + S 2 → C1
...

RM : S N−1 + S N → CM

M Reaction Channels (2.6)

where S is the input substance, C is the output component and R is the reaction

channel.

In order to determine which reaction occurs next and when the next reaction

occurs in the reaction system, i.e., “reaction probability density function”, P(τ, µ), is
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defined as follows

P(τ, µ)dτ ≡ probability that given the state Xi(t)(i = 1, ...,N)

at time t, the next reaction in the volume will occur in the

in f initesimal time interval (t + τ; t + τ + dτ) and will be an Rµ.

(2.7)

where Xi(t)(i = 1, ...,N) denotes the number of species.

Reaction probability of Rµ is the case that no reaction will occur during τ after

reaction µ occurred. Hence, (2.7) equals the product of P0(τ) and propensity value

of Rµ, which gives the probability of occurrence of reaction µ in (t,t+τ):

P(τ, µ)dτ = P0(τ)aµdτ (2.8)

The propensity function pertains to the rate constant of reaction and the quantity of

reaction input combinations as follows

aµ = hµcµ (2.9)

where cµ is the rate constant which depends on the radius of the molecules, their

average velocities and individual masses. hµ is the quantity of reaction input combi-

nations. For instance, hµ value of reaction “Rµ : S 1 + S 2 → anything” equals X1X2.

After applying derivations in [27], P0(τ) is given as follows:

P0(τ) = exp (−
M∑
µ=1

aµτ) (2.10)

From the synthesis of (2.8) and (2.10), following expression is derived

P(τR, µ) =


aµ exp(−a0τR) 0 ≤ τR < ∞,

µ = 1, ...,M,

0, otherwise

(2.11)

where aµ = hµcµ and a0 =
∑M
υ=1 aυ. As shown in (2.11), P(τR, µ) is equal to multi-

plication of two separate functions, f (µ) and g(τ). From (2.12) and (2.13), τ and µ

values are obtained by assigning two random variables, r1, r2, in interval [0,1] [27].

τ =
1
a0

ln
1
r1

(2.12)

µ−1∑
υ=1

< r2a0 ≤
µ∑
υ=1

(2.13)
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2.1.3 Reaction-Diffusion Model

There are several stochastic approaches to model biochemical activities. We

consider mesoscopic level archetype, which treats molecules discretely, but does not

track positions in a compartment or within a subvolume, to model molecular channel

of the simulator. Since our channel archetype needs both reaction and diffusion

capabilities, we model our channel model with a reaction-diffusion paradigm.

GMP algorithm, which is particle-based spatial stochastic method, is used as

reaction-diffusion model [30]. In this model, diffusion and reaction are distinct

events. The basis of diffusion is the multiparticle lattice gas automata (LGA) al-

gorithm [31]. In multiparticle LGA algorithm, medium is divided into lattice sides.

Consequently, the inhomogeneity of the system is reduced to lattice volume. Each

lattice site holds a discrete number of uniformly distributed particles. Molecules per-

form random walk on the lattices and are distributed to 6 neighbor lattices randomly.

If a small number of molecules exist in the lattice, molecules move individually to

neighbor lattice. If the number of molecules is larger than 60 [30], molecules are

moved in a bulk to lattice according to Gaussian distribution. In the algorithm, the

exact position of a molecule is not necessary, however only the lattice position of the

molecule is required. Thus, lattice coordinate system is utilized in the simulator.

Normally, every species has a particular diffusion coefficient. Diffusion time

step, τDS , of each species is calculated as follows

τDS =
1

2d
λ2

DS
(2.14)

where DS is diffusion coefficient of the species, λ is the length of each lattice, d is

the dimension of simulation medium.

As indicated, reaction process is distinct from diffusion process. Reaction

events occur between diffusion events. It is assumed that chemical reactions are

local events. Therefore, Stochastic Simulation Algorithm (SSA) is applied to per-

form reaction events in each lattice side. The algorithm of GMP algorithm is given

in Algorithm 1.

As mentioned in Section 2.1.2, SSA can only be applied to well-mixed vol-

umes. Hence, the length of the lattice sides should not be long in order to keep
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Algorithm 1: GMP Reaction-Diffusion Algorithm [30]
1 Initialize tS = min{τDS } for all species S
2 tsim=0 , nS=1 for all S
3 while tsim < tend do
4 while tsim < tS do
5 Reaction µ in τR on every lattice site
6 Advance simulation time tsim = tsim + τR

7 end
8 Diffuse species for which tS = tsim

9 Increment iteration nS for the diffused species
10 tS = min{τDS ∗ nS } for all S
11 end

homogenization of lattice volume 1. In the simulator, lattice length is determined by

user from run script. If the length of lattice size is not assigned, the simulator uses

default lattice size, which is 100 nm.

The diffusion and reaction events in the molecular channel are entirely inde-

pendent from communication of nodes. Even though there is not any communication

between nanonodes, the reaction-diffusion events are performed in the background.

In fact, molecular channel has individual commands to start and stop channel simu-

lation as depicted in Chapter 3.

As expected, this independency is unilateral in the simulator. The communi-

cation between nodes completely depends on reaction-diffusion events. The propa-

gation of information molecules and reception of the carrier molecules are the crops

of reaction-diffusion events. Therefore, nodes cannot communicate with each other

unless reaction-diffusion events are performed by the molecular channel.

2.2 Molecular Motor-Based Communication

Motor-based communication is inspired from intra-cell communication of real

biological cells. The organelles in the cell usually communicate with each other by

using molecular motor-based communication. Molecular motor is a protein complex

that converts chemical energy, i.e., ATP, into kinematic energy. Molecular motor can

carry the information between transmitter and receiver nanomachines by using this

1The analysis of optimal lattice size is beyond the scope of this work. An analysis of optimal

lattice size is presented in [30].
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kinematic energy. It transports elements, i.e., DNA, vesicle, along the biological

filaments called microtubules. This mechanism is called as active transport [28].

As mentioned, motor-based communication is composed of molecular motors,

i.e., kinesins, dyneins, and myosins, and their consistent protein filaments called

as molecular rails, i.e., microtubules and actin filaments. Molecular motors may

flow along protein filaments or protein filaments glide over immobilized molecular

motors. In [3], a molecular propagation system in which carrier molecules glide over

fixed molecular motors is proposed as shown in Figure 2.1. In the proposed system,

loading and unloading operations are performed with no effect or a little stimulation.

Single stranded DNA (ssDNA) is utilized to load and unload information. DNA

hybridization occurs during the loading and unloading of information molecules on

sender and receiver sides. Information molecule is attached to long ssDNA on sender

side. When carrier molecule with short ssDNA, which is partial complementary of

information molecule’s ssDNA, moves near the information molecule, information

molecule is attached to carrier molecule by DNA hybridization. The information

molecule glides over fixed molecular motors with carrier molecule. Information

molecule is unloaded when carrier molecule passes over a long ssDNA which is the

complementary of information molecule’s ssDNA. As a yield of this propagation

system, information molecule is replaced to receiver side.

Protein filament

Information
Molecule

Motor Protein

Sender Receiver

Long
ssDNA

Short
ssDNA

Figure 2.1: An overview of propagation system in which protein filaments glides

over immobilized molecular motors [2].

As molecular motors walk along the microtubules, they are not affected by dis-

turbance molecules which cause Brownian motion. This provides high percentage of
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successful transmission between sender and receiver nanomachines. Transportation

is faster and more efficient than diffusive communication. Because of the reasons

given above, motor-based communication model can be imagined as wire communi-

cation in traditional communication.

Microtubules have instable behavior in the nature. Protein filaments change

their lengths. The instability depends on the concentration of tubulin, i.e., the struc-

tural unit of microtubules, and on the presence of MAP activity. The instable grow-

ing and shrinking features of microtubules are taken into account in the proposed

system of [18].

Transmitter node encodes the information into molecules. DNA, protein, pep-

tides can be given as examples of carrier molecules. In [2], [29], carrier molecules

are inserted into a vesicle embedded with channel proteins to transport the molecules.

Vesicles, which encapsulate the information molecules, behave like communication

interfaces between sender and receiver. They protect carrier molecules from en-

vironmental conditions and maintain compatibility between information molecules

and environment. When vesicle contacts with sender nanomachine, hemi-channel

gap junctions are constructed between sender and vesicle. Molecules are transferred

from sender to the vesicle via free diffusion.

After molecules are transferred to vesicle, gap junctions between sender and

vesicle are closed. Vesicle binds to molecular motor and molecular motor starts to

move along rails according to direction of the filament as shown in Figure 2.2. At

the end of propagation, when vesicle contacts with the receiver nanomachine, hemi-

channel gap junctions are built up. Information molecules are transferred via free

diffusion from vesicle to receiver nanomachine.

Additionally, in [29], an addressing mechanism is proposed. The destination

address is assigned by one ssDNA sequence. Receiver nanomachines have the com-

plementary ssDNA sequence. Thus, receiver molecule accepts the carrier molecule

if received ssDNA meshes with possessed DNA sequence.

19



TN RN

Protein
Filament

Vesicle

Motor
Protein

Figure 2.2: An overview of propagation system in which molecular motors flow

along protein filament.

2.3 Gap Junction-Based Communication

Gap junction-based cell to cell communication model, inspired from inter-

cellular communication in nature, is a sort of short range communication between

nanomachines. In this model, signaling occurs through gap junction which is the

physical contact between the neighbor cells. Transmitter nanomachine initializes

signaling by stimulating the adjacent cell. Stimulated nanomachine broadcasts car-

rier molecules. The neighbor nanonodes receive the signal and also broadcast the

carrier molecules. By this way, each node triggers the adjacent node. Thus, com-

munication between sender and receiver nanomachines is realized as illustrated in

Figure 2.3.

Ca2+ is a universal second messenger, which is responsible for relaying in-

formation from receptors on the surface of biological structure to molecules inside

the cell. Crucial cellular activities like fertilization, contraction, secretion, are per-

formed via calcium signaling [15]. The studies about the communication via gap

junctions designate Ca2+ as carrier molecule in their proposed systems, like assigned

in nature. Ca2+ spikes are utilized to encode information. For example, cells can use

some modulation techniques similar to ones used in radio broadcast, e.g., AM and

FM, to encode information [6]. Sending of Ca2+ waves is determined by encoding

process. Ca2+ waves propagate through gap junctions via free diffusion. The ampli-

fication of Ca2+ spikes is possible with Calcium Induced Calcium Release (CICR)

20



Carrier 
Molecules

Encoder
DecoderGap Junction

TX
Nanomachine RX

Nanomachine

Figure 2.3: Signal propagation in gap junction-based molecular communication sys-

tem.

to increase the propagation distance of calcium waves [12]. After the propagation

process, finally, destination nanomachine receives the calcium waves from neighbor

nanomachine and decodes the signal.

Gap junction, which connects cytoplasm of two adjacent cells, can be con-

structed with different types of connexin proteins. Normally, gap junctions allow

the molecules which are smaller than 1000Da to pass. The permeability and selec-

tivity of gap junctions vary based on the constructive proteins of the gap junction

[50]. Besides, miscellaneous internal and external factors including cytosolic Ca2+

concentration, transjunctional and transmembrane potential, connexin phosphoryla-

tion, electromagnetic fields, temperature and pH level in the environment alter the

permeability and selectivity of gap junction [9]. These capabilities of gap junction

allow nanomachine to apply filtering, switching and signal aggregation functionali-

ties [22].

Since gap junctions may have different permeability and selectivity, nanoma-

chine can filter the coming carrier molecules as packet filtering in traditional net-

work. The permeability and selectivity of gap junction can be adjusted with various

external stimulations as mentioned above. Nanomachine can allow or block the car-

rier molecules to pass through the gap junctions. By this way, nanomachine gains

switching functionality. In addition to these, signal aggregation is enabled with per-
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meability and selectivity features of gap junction.

In this thesis, diffusive and motor-based molecular communication paradigms

are modeled and developed among the ones explained in this chapter. The implemen-

tation details of diffusive and motor-based communication simulation frameworks

adopted in NanoSim are presented in Chapter 3 and 4, respectively.
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CHAPTER 3

SIMULATION OF DIFFUSIVE MOLECULAR COMMUNICATION

In this chapter, the extensions which provide the simulation of diffusive molec-

ular communication in ns-2 are described. The extensions are inspired from diffu-

sive molecular communication model given in Section 2.1. This diffusive molecular

model is principally aimed to study networking aspects of diffusive molecular sys-

tems and to provide background for promising improvement on diffusive molecular

communication. This chapter covers the internals of nanonode, network compo-

nents that are used to construct the network stack for a nanonode and constituents

that compose diffusive molecular communication system.

3.1 Overview of Diffusive Molecular Communication Model

Diffusive molecular communication simulator provides a mechanism for nanoma-

chines to communicate over a short distance via propagation of molecules in aque-

ous medium. The main components of molecular communication systems consist

of sender nanomachines, receiver nanomachines, carrier molecules and the environ-

ment that these operate in. The classes of these actors have to be designed in order

to develop this simulator.

First of all, sender and receiver nanomachines are required to be designed. In

order to do this, we propose NanoNode object to simulate nanomachines. The sender

nanonode sends the molecules to receiver nanonodes by releasing carrier molecules

into the environment. This case brings the necessity of another actor. We have to cre-
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ate a class that has the features of carrier molecules such as proteins, ions or DNA.

Information is encoded into Molecule objects. Carrier molecules diffuse in the envi-

ronment. To simulate this, we need a mechanism which provides diffusion process.

We choose diffusion model proposed in [31]. In this study, environment is divided

into lattice sides. Thus, we design Lattice class for lattice sides. Since we divide

the entire medium into lattice sides, we need to reallocate every object according to

lattices. We propose a coordinate system, MolPosition, the unit element of which

is lattice. Owing to diffusion, molecules walk randomly from one lattice side to an-

other one. We design Di f f usion and Randomizer classes in order to accomplish this

requirement.

When carrier molecules reach receiver nanonode, the receiver nanomachine

should detect and receive the carrier molecules by binding them. Binding operation

is a chemical process. In order to construct apprehend mechanism, reaction channel

objects that define chemical reactions and reaction object which is able to apply SSA

are required. Therefore, we design Reaction and ReactionChannel classes.

A class which provides shared medium for nanonode and manages propagation

and binding mechanism is also required for the simulator. Hence, we design diffusive

molecular channel, MolChannelDi f f usion. We propose MolecularEnvironment

class to keep all data about molecular communication channel like lattice sides, reac-

tion channels and species. MolChannelDi f f usion class accesses entire environment

data through a pointer attribute of MolecularEnvironment class.

3.2 Network Components in Diffusive Communication System

The network stack for a nanonode consists of a molecular link layer, MAC

layer, physical layer and channel which contain diffusion and reaction objects. These

network components are created and plumbed together in OTcl. The relevant NanoN-

ode method is add−inter f ace(), which is coded in ./ns/tcl/lib/ns-mol.tcl. The plumb-

ing of components creates the network stack in Figure 3.1.

Main components of molecular network interface are briefly described below:

• MolLL: The link layer of molecular communication. It only receives and
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Figure 3.1: Main components of a molecular network interface.

forwards MolecularData. If needed, user can define delay for this layer. The

corresponding class name for TclObject name space is LL/Mol.

• MolMAC: MolMAC provides connection between link layer and physical

layer. MAC layer is supposed to follow a particular MAC protocol to provide

multiple accesses for molecular channel. Currently, one type of MAC proto-

col, explicated in Section 3.4, is implemented for molecular communication.

The corresponding class name for TclObject name space is MAC/Mol.

• MolPhy: One type of physical layer is defined. This layer passes informa-

tion down (release molecules) and up (construct molecular data) according to

direction molecular data. The corresponding class name for TclObject name

space is Phy/Mol.

• MolChannel: Two molecular channel models are defined. One of them is

developed for diffusive communication, while the other one is developed for

motor-based communication. This layer provides releasing, propagation and

binding of molecules. Diffusion and reaction objects are attached to this mod-

ule. The corresponding class name for TclObject name space is Channel/Mol.
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• Diffusion: One type of diffusion model is considered. This module provides

diffusion functionality for simulator. The corresponding class name for TclOb-

ject name space is Di f f usion.

• Reaction: Three types of reaction models are considered. These modules

provide reaction functionality for simulator. The corresponding class name

for TclObject name space is Reaction.

3.3 Implementation of Diffusive Molecular Communication

In this section, we focus on some of the key components in the implementation

and take a detailed look at each component of diffusive molecular communication

system in ns-2. The implementation overview of molecular communication ns-2

simulation framework is depicted in Figure 3.2. The structures of nanonode and user

interface commands are built up in OTcl programming language; on the other hand,

almost all of the mechanisms are implemented in C++. The interfaces of the classes

implemented in C++ are given in Appendix B.

3.3.1 NanoNode: Constituent of Molecular Communication

The basic structure of molecular communication is NanoNode in ns-2. The

class NanoNode is derived from Node class. Node class is a standalone class in

OTcl [37]. Almost all the components of Node class are TCLObjects. NanoNode is

a split object which has some additional functionalities like releasing-binding carrier

molecules on molecular channel that simulate aqueous environment and volume occu-

pation on environment. The volume occupation expresses occupying lattices accord-

ing to the coordinates and the radius of the nanomachine. In other words, volume

occupation means creating nanonode in the lattice space. Nanonode creation is per-

formed at the beginning of the simulation when simulation time is zero. Nanoma-

chines are immobilized in the simulation in other saying, nanonodes do not move.

All functionalities of NanoNode are implemented in C++ except the construction of

NanoNode itself.
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NS-2.33

molmac.{cc,h}

molagent.{cc,h}

molnode.{cc,h}

diffusion.{cc,h}

molchannel.{cc,h}

molecule.{cc,h}

molerrmodel.{cc,h}

molenvironment.{c
c,h}

molcom/tcl/lib
MakeFile

molphy.{cc,h}

molposition.{cc,h}

moltrace.{cc,h}

randomizer.{cc,h}

reaction.{cc,h}

ns-lib.tcl

ns-mol.tcl

mollink.{cc,h}

Figure 3.2: The implementation process of implemented files for NanoSim.

NanoNode has two kinds of molecule genus. One of them is ligand type of

genus, the other one is receptor type of genus. The ligand molecules are released

by the transmitter nanomachines. These molecules are carrier molecules. Receptor

molecules are used by receiver nanomachine in order to capture ligand molecules

only if a reaction channel between ligand and receptor molecule exists in the sys-

tem. If receptor molecule reacts with ligand molecule, following reaction equation

occurs:

RECEPTOR + LIGAND→ RECEPTOR + DAT A (3.1)

which states that if the reaction occurs, the number of ligand molecules decreases,

whereas the number of receptor molecules does not change.
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NanoNode is constructed with two kinds of lattices, i.e., cytosol and mem-

brane. Cytosol lattices simulate the core of nanonode which can be expressed as

VIVO, whereas membrane lattices simulate the membrane of the nanomachine. Mem-

brane lattices contain receptor molecules, thus, the ligand molecules are captured in

this type of lattices. In other words, the carrier molecules’ trading occurs in this type

of lattices.

Nanomachines are also built up in the lattice space. The shape of nanoma-

chines is considered as sphere. However, spatial discretization of lattice space makes

it impossible to create a perfect sphere in the simulator. As a result, we have to dis-

cretize the nanomachine.

Let’s assume that we have a function that calculates the distance between the

membrane lattice (xm, ym, zm) and the central lattice (xc, yc, zc) :

D(xm, ym, zm) =
√

(xc − xm)2 + (yc − ym)2 + (zc − zm)2 (3.2)

We can determine the membrane lattice with the following equation:

D(xm, ym, zm) ≤ R < D(xm, ym, zm ± 1) (3.3)

where (xm, ym, zm) is the coordinate of membrane lattice, R is the radius of the nanoma-

chine defined by user. The lattices between membrane lattice and central lattice are

cytosol lattices. Figure 3.3 depicts the 2D representation of a nananomachine.

There are some differences between the structure of NanoNode and Node in

ns-2. Like all ns-2 nodes, the NanoNode has an entry point, nevertheless its entry

point does not designate to regular classifiers different from the other nodes in ns-

2. Molecular routing agent, which is developed for future implementations, only

checks the direction of MolecularData and orients it in the current implementation

of NanoSim. If incoming MolecularData is destined to this node, it is directed to

S rc/S ink Agent. Besides, we cancel port classifier, demux , which exists in base

Node class, since there is no equivalent mechanism in current molecular communi-

cation models. The structure of NanoNode object is shown in Figure 3.4.

Molecules leaving the network stack are sent to the node’s entry. As mentioned

before, entry point is connected to routing agent. When routing agent receives a
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MEMBRANE of 
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Figure 3.3: 2D slices representation of a nanomachine the radius of which is 4.

MolecularData, it checks the direction of it. If the direction field indicates down, it

sends molecules to link the layer. Otherwise, routing agent transfers MolecularData

to the sink.

In NanoNode class, there are pointers which show additional objects. Each

NanoNode object contains a position object that points the centre of itself, a ligand

and receptor molecules pointers. It also keeps the radius of nanonode as a static

variable and the number of receptor molecules of nanonode.

Likewise, there are some pointers which point the network components in

NanoNode. Each NanoNode contains a pointer to channel (channel ) and its physical

layer (phy ).

Besides, NanoNode contains a static integer variable, type , to keep the type of

the molecular communication system. The type of communication channel system

is distributed from this variable to the other classes in the simulator. The type of the

system is assigned by the user via Tcl script.

3.3.2 MolPosition: Molecular Communication Coordinate System

This class inherits from TclObject class in order to take parameters via Tcl

scripts. As a consequence of GMP algorithm, molecular communication environ-

ment is divided into cubic lattice sides. Cartesian coordinate system is used in our
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MolMAC

MolPhy

Src/Sink

MolChannel

entry_

MolPosition* pos_ 
MolChannel* channel_
MolPhy* phy_
Molecule* ligand_

Molecule* receptor_

List of pointers:

class MolNode : public Node

uptarget_

channel_

downtarget_

downtarget_

uptarget_

uptarget_

phy_

link_

target_

Figure 3.4: Schematic of a NanoNode.

simulator. The unit of coordination system is the lattice, the size of which is lambda.

The coordinate entries and output of simulator are in units of lattice. For example, a

nanonode is created and its position is designated as:

set n0 [$ns node];

$n0 set-position 10.0 20.0 30.0

the actual position of nanonode is equal to (10× lambda, 20× lambda, 30× lambda)

in real coordinate system. The unit of lambda is nm in the simulator.

In most cases, access to member variable is restricted to the compile time;
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nevertheless, in ns-2 it is possible to change it by binding the member variable with

the corresponding Tcl variable in the constructor of member owner class. Variable

binding feature of ns-2 is applied to lambda variable. lambda, which is an attribute

of MolecularEnvironment class, is bound with Tcl variable, i.e., lambda . The value

of lambda can be adjusted via Tcl run script without compiling the simulator as

mentioned in Section 1.2.

3.3.3 MolecularData: Packet Unit of Molecular Communication

Packet class instances are the fundamental exchange units between objects in

the ns-2 simulation [37]. Since, all send() and recv() methods of classes, derived

from TclObject, accept Packet pointer, MolecularData is derived from Packet class.

MolecularData, which requires to be inherited from Event class, passes through the

network structures and provides the communication between network components.

Its building structure is MolecularDataUnit objects. Information is encoded into the

number of molecules. MolecularData contains MolecularDataUnit objects in order

to keep the number of molecules. MolecularData class retains MolecularDataUnit

in linked list form as figured in Figure 3.5. Only the head and the tail of linked list

exist in MolecularData class.

MolecularDataUnit object keeps the pointer of molecule and the amount of the

molecule. In brief, MolecularData object keeps MolecularDataUnit instances and

similarly MolecularDataUnit object keeps Molecule instances. The class diagram of

molecular data is given in Figure 3.6.

Molecule is the constructive structure of molecular communication. It is the

most physically realistic fundamental unit of molecular communication in the sim-

ulator. In NanoSim, information is encoded in terms of molecule concentration as

given in [17]. Therefore, individual molecules do not carry any information.

We assume that ligand molecules in the simulator are sphere. Thus, according

to S tokes − Einstein formula, diffusion coefficient of a ligand molecule is given as

follows

D =
kT

6πrη
(3.4)
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MolecularData

MolecularDataUnit

MolecularDataUnit

MolecularDataUnit

data_header
(MolecularDataUnit *)

Molecular
DataUnit*

Molecule
Amount

Molecule*

last_unit
(MolecularDataUnit *)

Figure 3.5: MolecularDataUnit linked link structure.

where k is Boltzmann constant, T is temperature of medium, r is radius of sphere and

η is the viscosity of the aqueous medium. The derivation of this formula is available

in [23].

Operator is able to define ligand and receptor molecules for a nanonode. Also,

the radius of a molecule can be defined for each molecule. The diffusion coefficient

of a molecule is estimated as given in (3.4) inside getDiffusionCoefficient() method of

Molecule object. Since each molecule type has a unique diffusion coefficient, every

molecule has a specific time step, which is the time interval between two consequent

diffusion events of each molecule, according to (2.14).

3.3.4 Diffusion: Propagation System

Diffusion class inherits from TclObject class. Diffusion inherits from TclOb-

ject since the type of diffusion object is determined by user via diffusion parameter in

node configuration interface. Currently, only one type of Diffusion model is imple-

mented; nevertheless, another diffusion model can be implemented and joined into

the simulator.

Diffusion class is also derived from Handler class. As explained before, Han-
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Event

Packet

+data() : MolecularDataUnit
+set_direction() : bool
+set_molecule() : void

-data_header : MolecularDataUnit
-last_unit : MolecularDataUnit
-direction_ : bool
-node_ : MolNode
-com_type : int

MolecularData

-mol_ : Molecule
-amount_ : int
-next_ : MolecularDataUnit

MolecularDataUnit

+getDiffusionCoefficient() : double

-genus : int
-diffusion_time : double
-radius : double
-moleculeID : long = 0

Molecule

1 1..* 1 1..*

Figure 3.6: Class diagram of molecular data.

dler is an abstract class. When an event is ready, the handle method of Handler

derived class, Di f f usion, is called. In handle function of diffusion class, diffusion

event is triggered. Diffusion class has an interface only with MolChannel class. The

minimum interface with other components brings the modularity to diffusion object.

The basis of this diffusion processes is the multi particle LGA algorithm [30].

In this algorithm, medium is divided into lattices. Each lattice site holds a discrete

number of uniformly distributed particles [31]. As a result of diffusion, molecules

perform random walk on the lattices. Molecules are distributed to neighbor lattices

randomly. The exact position of a molecule is not necessary, only the lattice position

of the molecule is needed. Every species has particular diffusion coefficient. Diffu-

sion time of each species is calculated with lattice length and diffusion coefficient.

If the number of molecules existing in the lattice is less than 60 [30], the molecules

move individually to neighbor lattice. If the number of molecules is larger than 60,

molecules are moved in a bulk to lattice according to Gaussian distribution.

As mentioned before, membrane lattices act like a wall. Molecules coming

from outside the nanomachine cannot enter cytosol lattices. To simulate membrane

lattices like a wall, reflective boundary conditions are used. If molecules try to dif-

fuse cytosol lattices, these molecules reflect from cytosol lattices and stay in their

local lattice.
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Every lattice has two different attributes in order to hold type and number of

the molecules. One of them keeps the current state, which keeps the actual molecule

number in the lattice; while the other one keeps the temporary state, which keeps

the molecule numbers in diffusion state. During diffusion process, the molecules

in current state are distributed to temporary states of neighbor lattice sides. At the

end of diffusion process, temporary state is transferred to current state and reset. An

example that depicts the state of lattices is given in Figure 3.7.

CS= 0
TS = 2

CS=10
TS = 0

CS= 0
TS = 2

CS= 0
TS = 3

CS= 0
TS = 3

CS= 3
TS = 0

CS= 2
TS = 0

CS= 3
TS = 0

CS= 0
TS = 0

CS= 2
TS = 0

CS=10
TS = 0

Initial State Diffusion State Final State

CS = Molecule Number in Current State

TS = Molecule Number in Temporarily State

Figure 3.7: Descripton of states in diffusion process in 2D.

3.3.5 Reaction: Capture Mechanism

Reaction class is derived from TclObject and Handler classes like Diffusion

object. Three types of reaction models, i.e. NoReaction, Berg, Gillespie, can be

selected via Tcl script. In NoReaction option, ligand molecule is captured when it

touches receiver nanomachine. Berg choice implements the reaction model given in

[54]. The foundation of Gillespie selection is obtained from SSA as described in

Section 2.1.3. The class diagram of reaction model is depicted in Figure 3.8.

The identity element of reaction mechanism is reaction channel. Reaction-

Channel class presents the chemical reaction channel. Chemical reaction is defined

by user via set − reaction method of molecular channel. In the simulator, only sec-

ond order chemical reactions can be defined. The types of molecules and diffusion
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#handle(in event_ : Event) : void

Handler

#command() : int

TclObject

#command() : int

+channel_

Reaction

+handle(in event_ : Event) : void
+simpleReaction() : void

NoReaction

+handle(in event_ : Event) : void
+gillespie() : void
+react() : void

GillespieReaction

+handle(in event_ : Event) : void
+bergReaction() : void

BergReaction

+react()
+getPropensityValue()

-ligand_ : Molecule
-receptor_ : Molecule
-reaction_rate : double

ReactionChannel

Figure 3.8: Class diagram of reaction model.

coefficient rates define a reaction channel. An example of reaction channel definition

is given below:

$channel set-reaction A B 10.1

SSA is elaborately described in Section 2.1.2. Some adaptations and assumptions

are added to SSA. These adaptation and assumptions are;

• We have a limited time interval to apply the algorithm,

• If a reaction occurs in a vitro type lattice, both of input molecules will decrease,

• If a reaction occurs in a membrane type lattice, the number of receptor molecule

will not change; only ligand molecule will decrease,

• There cannot be a chemical reaction inside cytosol lattice.

After the adaptations and assumptions are applied to SSA, Algorithm 2 is

achieved.

3.3.6 MolChannelDiffusion: Challenge of Molecular Communication

The challenging issue of molecular communication simulator is the modeling

of molecular channel. Molecular channel is totally different from the traditional

one as defined in Table 2.1. The difference between molecular communication and
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Algorithm 2: SSA for NanoSim
1 tdelta is the input time interval
2 tsim=0
3 forall the existence lattices except (lattice type == CYTOSOL) do
4 while tsim < tdelta do
5 Calculate propensity function for every species aµ = hµcµ
6 if propensity function == 0 then
7 break
8 end
9 Generate two random variable r1, r2

10 Calculate τ , τ = 1
a0

ln 1
r1

11 if tsim + τ > tdelta then
12 break
13 end
14 Estimate µ ,

∑µ−1
υ=1 < r2a0 ≤

∑µ
υ=1

15 tsim = tsim + τ
16 if lattice type == VITRO then
17 Decrease input molecules
18 end
19 else if lattice type ==MEMBRANE then
20 Decrease only ligand molecule
21 end
22 end
23 end

traditional communication in propagation style and propagation medium brings the

necessity to develop a new communication channel for molecular communication.

MolChannel class is derived from Channel class. In this thesis, we model

two different types of molecular communication schemes. Hence, we need two

types of different molecular channels. Actually, the characteristics of both molecular

channels are almost the same. Hence, we develop two types of molecular channel

classes which inherit from MolChannel. These classes are MolChannelDiffusion and

MolChannelMotor. Figure 3.9 depicts class diagram of molecular channels. Accord-

ing to molChannelType value given in the node configuration interface, molecular

communication type of simulator is designated.

MolChannel accesses to environmental data through a pointer to MolecularEn-

vironment class. MolecularEnvironment class keeps all the data about the molecular

channel like a repository of simulator. Simulator environment contains nanoma-

chines, species, reaction channels and lattices.

Lattices are the members of MolecularEnvironment class which keeps the en-
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TclObject

-sendUp(in p : Packet, in txif : Phy) : void
#recv(in p : Packet, in handler_ : Handler) : void

Channel

#command() : int
+setReceptorSpace(in node_ : MolNode) : void
+init() : void
+simulate() : void
+sendMolecules(in node_ : MolNode, in num : int) : void
+send(in node_ : MolNode, in molecule : Molecule, in time : double) : void

MolChannel

#command() : int
+setReceptorSpace(in node_ : MolNode) : void
+init() : void
+simulate() : void
+sendMolecules(in node_ : MolNode, in num : int) : void

MolChannelDiffusion

#command() : int
+setReceptorSpace(in node_ : MolNode) : void
+init() : void
+simulate() : void
+sendMolecules(in node_ : MolNode, in num : int) : void

MolChannelMotor

Figure 3.9: Class diagram of molecular channel.

tire lattice medium. There are three kinds of lattices for diffusive molecular com-

munication. These lattice types are cytosol, membrane, vitro. As mentioned before,

nanonodes are constructed with membrane and cytosol lattices. The lattices in which

propagation of molecules occurs are expressed as vitro type lattices. Vitro type lat-

tices behave like outside of nanonodes. Molecules cannot diffuse to cytosol lattices

from membrane and vitro lattices. Lattice side is supposed to keep the molecules.

Lattice class fulfills this requirement with two maps, which keep the molecule type

and the number of molecules. One of them holds the current state, the other keeps

the temporary state of the lattice.

Actually, data flow in the simulator occurs in the molecular environment. Be-

cause of that, molecular environment is created only once in ns-lib.tcl and linked to

molecular channel which is also alone in the simulator. The lattice space is retained

with following type definition:

typedef std::map< int, Lattice∗ > latticeMap;
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typedef std::map< int, latticeMap > latticeMapMap;

typedef std::map< int, latticeMapMap > latticeMapMapMap;

Three maps are put one inside the other in the type definition of latticeMapMapMap.

It behaves like a 3D matrix, each element of which points a Lattice object. This struc-

ture of NanoSim has two major advantages. First the boundaries of matrix can be

determined during program execution. Second, if there is no molecule inside a lat-

tice, the lattice is deleted from matrix. By this way, the performance of the simulator

is increased and huge amount of memory is saved.

In addition to keeping lattices and lattices space, MolecularEnvironment class

retains species and reaction channels in vectors. Other classes can reach and use

these data in any time of the simulation. It also keeps environmental attributes,

which affect the result of the simulation, i.e., viscosity, temperature and lattice side

length.

In diffusive molecular communication, molecular channel keeps all nanonodes

in the simulator. Diffusive molecular channel is associated with diffusion and reac-

tion classes and “has a” relationship with molecular environment class as depicted

in Figure 3.10. In order to obtain modularity in the simulator, interface between

components is kept at minimum as much as possible.

+simulate() : void
+diffuse(in molecule_ : Molecule) : void
+react(in time : double) : void

#dif : Diffusion
#reaction_ : Reaction
#me : MolecularEnvironment
#molnodes : MolNode

MolChannelDiffusion

+handle(in event_ : Event) : void

-channel_ : MolChannelDiffusion

Diffusion

#command() : int

+temperature : double
+viscosity : double
+lambda : double
-mol_channel : MolChannelDiffusion
-container : Lattice
-species : Molecule
-reaction_channel_ : ReactionChannel

MolecularEnvironment

+handle(in event_ : Event) : void

-channel_ : MolChannelDiffusion

Reaction

1

1

1 1

11

Figure 3.10: Class diagram of diffusive molecular channel.

Molecular channel also provides a shared medium for all nanonodes to com-
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municate with each other. The diffusion and reaction events in the molecular channel

are entirely independent from the communication of nodes. Although they are inde-

pendent from communication of nodes, communication between nodes are shaped

by these events. Molecules, which can be expressed as information, are transported

and captured by these events.

3.4 Molecular MAC Protocol

We devise and incorporate a basic molecular MAC protocol (MolMAC) in

order to serve as a model for the future MAC protocol implementation. Each trans-

mitter uses the shared channel in its own time slot. Our MAC implementation is in-

spired from this behavior of simple Time Division Multiple Access (TDMA) which

is a channel access protocol for shared medium networks. Additionally, the system

given in [17] is taken as reference. In this system, if the captured molecules in that

time slot are more than the prescribed value, transmitted information is assumed as

logic 1, otherwise logic 0. Hence, MolecularData, filled with the total number of

captured molecules in that time slot, has to be sent to upper layers at the end of each

time slot.

Three types of time handler classes are used in this MAC implementation. One

of them is used to organize time slots. The other time handler class which handles

sending of MolecularData checks whether it is its nanonode turn or not. When the

time slot is its nanonode turn, it calls recv() method of physical layer. The last time

handler class deals with capturing molecules in each time slot. Actually, MolMAC

receives the MolecularData immediately, when a ligand molecule is captured. Mol-

MAC adds the received moleculardata to repository which is a MolecularData type

variable of MolMAC class. At the end of the time slot, a copy of repository is sent

to link layer and then repository is reset for the next time slot.

In our MAC implementation, there is a preamble time slot. We assume that

nanonodes inform the other nodes whether they send data in the forthcoming frame

or not. In the protocol, each nanonode gives release order in a sequence. The re-

leasing sequence between nanonodes is a random event. A nanonode cannot start
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releasing until the current NanoNode finishes its time slot. The time slot of a nanon-

ode the interval value of which is defined by the user is very important in order

to avoid interference of molecules. Because, if time slot is too short, the receiver

nanomachine cannot capture desired molecules from the channel. If it is too long,

the receiver can receive noise molecules which are released by another nanonode or

released in one of the previous interval.

3.5 Detailed Look at Diffusive Molecular Communication Links

In this section, we describe how MolecularData moves up and down the stack,

and the key points to note at each layer. Here, the composite structure of diffusive

molecular communication links as a network stack. The file ./ns/tcl/lib/ns-mol.tcl

contains the various OTcl instprocs that assemble links. Figure 3.11 provides a de-

tailed look at how molecular communication links are composed.

MolecularData leaving a node passes to the class MolLL. If an outgoing error

model is defined for NanoNode, MolecularData passes to molecular error model.

After error model is applied to MolecularData, the recv() method of MolMAC class

is called. Unless an outgoing error model is declared, MolLL object sends Molecu-

larData to MolMAC object. Next, the packet is sent to MolPhy.

MolPhy class inherits from Phy class. As usual, MolPhy is responsible for

providing connection between MolMAC and molecular channel. In addition to this,

MolPhy is in charge of releasing molecules to molecular channel and capturing the

molecules from molecular channel. This object just releases the packet to the at-

tached channel. When MolecularData is received from MolMAC layer, it is ex-

tracted. Molecules and the number of molecules are obtained. When MolPhy re-

ceives a MolecularData instance, it checks the direction of MolecularData. If its

direction is down, it releases the molecules by calling sendMolecules() of molecular

channel and calls recv() method of molecular channel. In sendMolecules() of diffu-

sive molecular channel, molecules are put into membrane lattices of the nanonode.

The release of molecules is the beginning of its own time slot.

The outgoing molecules are finally sent to MolChannelDiffusion. As described
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Figure 3.11: Detailed look at network interface stack.

in previous sections, diffusion and reaction processes are independent from sending

and receiving cycle. It can be said that the received molecules are inserted into

reaction-diffusion cycle. When a molecule is captured, MolChannel creates Molecu-

larData using the information of captured molecule. The direction of MolecularData

is set to up and this MolecularData is sent to physical layer of receiver nanonode.

When recv() method of MolPhy is called, MolPhy checks the direction of

MolecularData, and then it decides what to do. If the direction is up, it fills the

data field of MolecularData with the type and number of captured molecules in that

interval. Then MolPhy sends MolecularData to MolMAC if no incoming error model
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is declared. Otherwise, MolecularData is sent to molecular error model object. If the

MolecularData arrives safely at the MAC, it next passes to MolLL object. Finally,

the packet moves to the entry of the NanoNode.

3.6 Molecular Trace Support

There are several ways to collect trace data on a simulation. Generally, trace

data is either displayed directly during execution of the simulation, or more com-

monly, stored in a file to be post-processed and analyzed. In the current ns-2 simu-

lator, there is a Trace class to monitor capabilities. A trace records each individual

event as it arrives, departs, or is dropped at a link or queue. Trace objects are con-

figured into a simulation as nodes in the network topology. They are inherited from

Connector class. Thus, they can be easily plugged into network stack.

Trace files used for molecular communication have the same structure as con-

ventional ns-2 tracing. Class MolTrace derives from class Trace. Molecular trace

objects are plumbed into network stack if they are enabled in Tcl script. Although

the structure trace mechanism is similar with conventional ns-2 tracing, their formats

are totally different, due to the communication carrier and channel structure incom-

patibility. Hence, the information to be traced is changed. The format of molecular

trace is given in Table 3.1.

There are three types of molecular traces. These are transmitter (Trace/Mol/-

Trans), receiver (Trace/Mol/Recv) and error traces (Trace/Mol/Error). Transmitter

ones are utilized to trace sent molecules. The type of this trace is t. Since the receiver

of molecular trace is not known, the receiver node id, receptor molecule and position

of receiver nanonode fields are set to “-1”, “?” and “-999,-999,-999”, respectively.

Receiver traces are utilized to trace accepted molecules. The type of this trace is

r. When molecules are received, MolecularDataUnit instances are constructed and

then MolecularData is created by them. If the number of possible transmitter node

of a received molecule is more than one, the sender node id and position of sender

nanonode fields are set to “-1” and “-999,-999,-999”, respectively. Error traces are

utilized to trace molecules which are corrupted by error model. The type of this trace
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Table 3.1: The format of molecular trace.

1 time 2 s 3 d 4 lig 5 rec 6 sp 7 dp 8 a 9 cp 10

Description Of Fields

[1] Type of the trace

[2] Time of the trace

[3] No of the sender NanoNode

[4] No of destination NanoNode

[5] Type of the ligand molecule

[6] Type of the receptor molecule

[7] Molecular position of sender NanoNode

[8] Molecular position of destination NanoNode

[9] Number of captured molecules

[10] Molecular position of the lattice where the ligand molecule is captured

is e. The error traced molecules are dropped due to errors defined by the error model.

To enable tracing of all molecular links in the simulator, use the following

commands before instantiating nodes and links:

set f [open out.tr w]

$ns trace-all $f

3.7 Molecular Error Model

MolErrorModel class inherits from ErrorModel class. These error models,

causing molecules to be corrupted according to various probability distributions, are

simple and do not necessarily correspond to any experience on an actual molecu-

lar channel. Each nanonode can insert a given statistical error model either over

outgoing or incoming molecular channels. Precisely, the instantiated error model is

stuck between mac and phy modules for incoming link and between link layer and

mac modules for outgoing link as depicted in Figure 3.11. For the outgoing link,
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the error module would be pointed by downtarget of the above link layer module

while for the incoming link, it would be linked by up-target pointer of the below phy

module. Thus, the target of the error module points to mac layer in both cases.

In molecular error model, every molecule is checked according to rate and dis-

tribution of random variable. If no error is obtained from error model for a molecule,

molecule can continue its way. Otherwise, it is directed to NULL agent. If tracing

facility is enabled, information about error molecules is written into trace file.

Molecular error model can be applied to molecular data in molecule or Molec-

ularData level. This implies that error models can check erroneous cases for every

molecule or MolecularData. This capability is determined by user with unit com-

mand. If molecule option is chosen as the unit of error model, each molecule is

inspected whether it is corrupted or not. Otherwise, each MolecularData is exam-

ined.

The reason of placing error models, i.e., incoming and outgoing, over two dif-

ferent locations is that the outgoing error model causes all the receivers to receive

the packet suffering the same degree of errors, since the erroneous situation is deter-

mined before phy releases the molecules to molecular channel. On the other hand,

the incoming error module lets each receiver get the molecules corrupted with differ-

ent degree of error, since the error is computed independently in each error module.

The following code provides an example of how to add an error model to an

incoming link:

set em [new ErrorModel/Mol]

$em set rate 0.02

$em ranvar [new RandomVariable/Exponential]

$n1 interface-incoming-errormodel $em

The following code provides an example of how to add an error model to an

outgoing link:

set em1 [new ErrorModel/Mol]

$em1 set rate 0.2

$em1 ranvar [new RandomVariable/Uniform]
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$n1 interface-outgoing-errormodel $em1

3.8 Commands at a Glance

The commands for diffusive molecular communication part of NanoSim are

given in Appendix A.
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CHAPTER 4

SIMULATION OF MOTOR-BASED MOLECULAR COMMUNICATION

In this chapter, the extensions that provide the simulation of motor-based molec-

ular communication in ns-2 are described. The extensions are inspired from molec-

ular motor-based molecular communication model given in Section 2.2. This chap-

ter contains the components that construct motor-based molecular communication

system. Motor-based molecular communication part of NanoSim is designed and

implemented in order to serve as a model for the future extensions of NanoSim.

4.1 Overview of Motor-Based Molecular Communication Model

This part of the simulator is based on motor-based molecular communication.

A motor-based communication model is designed according to communication sys-

tem which is introduced in Section 2.2. The class of molecular motor-based molecu-

lar communication system consists of sender nanomachines, receiver nanomachines,

carrier molecules and the environment in which these operate as diffusive one. The

network components of both diffusive and motor-based communication systems are

the same except molecular channel.

In our envisaged model, nanonodes communicate with each other through vesi-

cle communication interface via molecular motors. Sender nanonode transfers infor-

mation molecules into vesicle. Carrier molecules diffuse into vesicles through gap

junctions. Vesicle with molecular motor is released next to microtubule. Vesicle

makes free diffusion near the microtubule. There are two possibilities in this case.
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It may be attached to protein filament or diffuse without touching molecular rail and

perish. If it is attached to molecular rail, it walks through molecular rail with con-

stant velocity [21]. Afterwards, vesicle connects to receiver nanonode through gap

junction. Information molecules diffuse from vesicle to receiver nanonode through

gap junction. Finally, vesicle is disconnected when receiving interval is over.

The components of both diffusive and motor-based communication systems

are almost the same. There are few differences in molecular channel structure. As

mentioned before, diffusive molecular communication refers to wireless communi-

cation, whereas motor-based molecular communication refers to wired communica-

tion [45]. In motor-based communication, protein filaments are considered as wired

connection. In addition to components utilized in diffusive communication, molec-

ular link is designed. Besides, there are components which are not used in motor-

based communication, even though they are used in diffusive communication. For

example, there is no need for reaction mechanism in motor-based communication as

Reaction and ReactionChannel classes are not used in the motor-based one.

It seems that there is no necessity for molecular channel since the connection

between nanonodes is established by molecular link. However, a molecular channel

which can manage diffusion process and keep environmental data is required. Ow-

ing to this necessity, we design motor-based molecular channel, MolChannelMotor,

which inherits from MolChannel class.

4.2 Network Components in Motor-Based Communication System

From network perspective, there is a major difference between diffusive and

motor-based molecular communications. We replace molecular channel which pro-

vides a shared medium for nanonodes with communication link which supports node

to node communication. Molecular link is created and inserted between nanonodes

in OTcl. The network stack for motor-based molecular communication is given in

Figure 4.1.
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molLL

molMAC

molPhy molPhy

molMAC

molLL

molLink

Node Node

Receiver  NanoNodeSender NanoNode

Figure 4.1: Network components of molecular motor-based molecular communica-

tion.

4.3 Implementation of Motor-Based Molecular Communication

In this section, we focus on some of the key components of the implementation

and take a detailed look at each component of motor-based molecular communica-

tion system in ns-2. Since almost the same network components are used for both

systems, the implementation details of same components are not described in this

section. Please refer to Section 3.3 for implementation details of these components.

In the rest of this section, MolLink and MolChannelMotor, new components, are

introduced.
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4.3.1 MolLink: Link Between NanoNodes

The MolLink class is implemented in order to establish molecular link between

nanonodes. Molecular link is inspired from microtubules which have normally un-

stable behavior in the nature. In our model, we assume that connection between

nanonodes is established by user command and shows a stable attitude.

As mentioned in Section 2.2, the propagation in microtubule is in one direc-

tion. Connection is established only from sender nanonode to receiver nanonode

and the propagation in the opposite direction is not possible. If the propagation in

opposite direction is required, another molecular link should be established between

nanonodes.

The functionality of molecular link can be divided into 3 phases. These phases

are diffusion of information from sender nanonode to vesicle, propagation of vesi-

cle and diffusion of information molecules from vesicle to receiver nanonode. The

phases are clearly depicted in Figure 4.2.

Phase I Phase II Phase III

Figure 4.2: Phases of motor-based molecular communication.

In phase-1, information molecules propagate from sender nanonode to vesicle.

The propagation occurs as a result of free diffusion. Vesicle is modeled as a lattice

side in the simulator. We define a new type of lattice called vesicle. In this phase,

when recv() method of MolecularLink is called by MolPhy, the type of a lattice next

to cytosol lattice is changed to vesicle. The molecules which have already diffused

between cytosol lattices begin to diffuse vesicle lattice. The diffusion of molecules
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between cytosol lattices and vesicle continues until MolLink passes to phase-2. Pe-

riod of phase-1 is designed as a constant value and designated by user.

When phase-2 starts, the type of a lattice which is next to cytosol on receiver

nanonode side is changed to reserve and the molecules in vesicle lattice are trans-

ferred to reserve lattice. Then, vesicle lattice is reset and its type is changed to

membrane. By this way, the connection between sender and vesicle is closed.

In second phase, vesicle is transported from sender nanonode to receiver nanon-

ode molecular motor. We assume that molecular motor propagates with constant ve-

locity. The velocity of molecular motor is defined by user. Time period of phase-2

is calculated as follows

tprog =
Dmemb

Vmotor
(4.1)

where the distance between two nanonode membrane, Dmemb, is equal to

Dmemb = Dcentre − 2 × R (4.2)

where Dcentre equals the distance between two nanonodes and R is the radius of

nanonode. From the distance of two points in 3D space we obtain final formulation

of phase-2 period:

tprog =

√
(xs − xr)2 + (ys − yr)2 + (zs − zr)2 − 2 × R

Vmotor
(4.3)

where (xs, ys, zs) and (xr, yr, zr) are the central lattices of sender nanonode and re-

ceiver nanonode respectively. After phase-2, phase-3 begins. In phase-3, information

molecules propagate from vesicle to receiver nanonode. At the beginning of phase-

3, the type of reserve lattice is changed to vesicle. Then, information molecules

begin to diffuse from vesicle to receiver nanonode. Period of phase-3 is designed as

a constant value and assigned by user.

When phase-3 is over, vesicle lattice is reset, and its type is changed to mem-

brane. By this way, the connection between vesicle and receiver nanonode is closed.

Then, MolecularData is constructed from the transferred information molecules and

recv() method of MolPhy is called.

Phases mentioned above are managed by MolLink class. MolLink class con-

tains three timer classes which are derived from Handler class in order to cope with
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these phases. It also contains two pointers that show sender and receiver nanonodes,

and needs the molecular environment in order to change the type of lattices. The

class diagram of MolLink is given in Figure 4.3.

+send(in p : Packet, in h : Handler) : void
+recv(in p : Packet, in h : Handler) : void

#sender_ : MolNode
#receiver_ : MolNode
#molenv_ : MolecularEnvironment
#shTimer_ : SendingHandler
#rhTimer_ : ReceivingHandler
#phTimer_ : PropagationHandler

MolLink

+handle() : Event

-link_ : MolLink

SendingHandler

-link_ : MolLink

MolNode

#handle(in event_ : Event) : void

Handler

+getLattice(in pos_ : MolPosition) : Lattice

-container : Lattice

MolecularEnvironment

Connector TclObject

+handle() : Event

-link_ : MolLink

PropagationHandler

+handle() : Event

-link_ : MolLink

ReceivingHandler

Figure 4.3: Class diagram of molecular link.

4.3.2 MolChannelMotor: Challenge Issue of Molecular Communication

As indicated in previous section, communication between nanonodes is real-

ized through molecular links. In spite of this, our design needs molecular commu-

nication channel. In our design, communication channel manages diffusion events,

and also keeps molecular environment data via MolecularEnvironment class.

MolChannelMotor class derives from MolChannel like MolChannelDiffusion.

Motor-based communication channel has almost the same functional features as dif-

fusive communication channel. The main difference is that there is no reaction facil-

ity in motor-based communication system. In molecular channel models, simulation
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is managed in simulation() method. In diffusive molecular channel, diffusion and

reaction events are directed in simulation() method, whereas only diffusion events

are managed in motor-based communication channel.

4.4 Detailed Look at Motor-Based Molecular Communication Links

The same types of network components are used for diffusive and motor-based

communication. MolLL, MolMAC and MolTrace objects are the common compo-

nents. However, the behavior of MolPhy is different for diffusive and motor-based

communications.

In motor-based communication model, when MolPhy receives MolecularData,

it releases the molecules inside the NanoNode by calling sendMolecules() method

of MolChannelMotor object. MolChannelMotor object puts molecules inside the

cytosol lattices, whereas in diffusive communication channel they are put into mem-

brane lattices. Additionally, MolPhy calls recv() method of molLink. Then, molLink

performs the phases of molecular link. At the end of these phases, molLink con-

structs MolecularData with diffused molecules and sends MolecularData to MolPhy.

After this point, the same way is pursued as described in Section 3.5.

4.5 Molecular Error Model

The molecular error model for motor-based communication covers diffusive

communication’s error model. In addition to the features of it, a molecular er-

ror model is inserted between the molecular link and the physical layer of receiver

nanonode as inspired from the hybrid − asters propagation approach given in [42].

In hybrid− asters propagation approach, information molecules diffuse from sender

nanomachine onto protein filaments in order to propagate to receiver nanomachine.

While information molecule diffuses, it may touch the protein filaments and begin

to move along the protein filament with constant velocity. In our implementation,

we demonstrate this event with probabilistic manner. We assume that vesicle, which

carries the information molecules, may not bind to protein filaments according to the

probability distribution and rate, which are defined by user.
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If vesicle binds to protein filament, molecular error model passes Molecular-

Data to receiver nanonode. On the contrary, the vesicle may be considered as not

binding to protein filament and canceled. Therefore, MolecularData will not pass

to physical layer of receiver nanonode. There is one difference between the error

models used in diffusive communication and motor-based communication. In the

diffusive communication, each captured molecule is checked whether it is erroneous

or not. However, we cannot realize this mechanism in motor-based one due to the

fact that molecules are kept in vesicle. We have to check each vesicle to apply error

model. Thus, the unit of error model should be assigned as moldata.

4.6 Commands at a Glance

The commands for motor-based molecular communication part of NanoSim

are given in Appendix A.
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CHAPTER 5

NUMERICAL ANALYSIS OF MOLECULAR COMMUNICATION

In this chapter, we present the numerical analysis of molecular communica-

tion. We designed specific scenarios that provide a feasible context to make numer-

ical analyses. Firstly, the scenarios are introduced. After the introduction of the

scenarios, they are analyzed and formulated. The numerical results of derived for-

mulas and the results of the simulation are compared in the next section in order to

validate the simulator.

5.1 The Explication of Scenarios

We designed three types of scenarios that are called as Di f f usion− S cenario,

Berg − S cenario and Gillespie − S cenario in the rest of the document. All of these

scenarios are designed to analyze specific functionalities.

The aim of Diffusion-Scenario is to provide feasible context to analyze dif-

fusion functionality. In Diffusion-Scenario, we cover the burst mode, in which the

source emits the information molecules instantaneously into a stationary medium.

A point source exists in the center of a sphere plate. On the other hand, there is

a receiver nanomachine the center of which is on the surface of the outer sphere.

When an information molecule contacts with receiver nanomachine, it is captured.

Otherwise, if the molecule touches the outer shelter sphere, it is destroyed.

Owing to the fact that an information molecule is captured when it collides to

receiver nanomachine surface, the surface of the system should be taken into account
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in the analysis. However, as the concentration function is only valid for volume cal-

culations, it is assumed that there is a shelter surrounding the surfaces. The thickness

of the shelter and nanomachine, notated as d, is infinitesimal.

We include reaction functionality to the previous scenario in Berg-Scenario.

Normally, reaction between ligand and receptor molecules binds the information

molecules to receiver nanomachine. Because of that, not only collision is required

to capture the molecule, but also reaction event is needed. Ligand molecule is bound

by receptor molecules only if it collides into the binding area of receptor molecule

as given in [54].

In Berg-Scenario, N receptor molecules, the binding area of which is rB are

uniformly distributed over the nanomachine surface. We assume that there is no

intersection between the binding areas of receptor molecules. Moreover, if ligand

molecule collides with nanomachine out of the binding area, it sticks into the mem-

brane of the nanomachine and becomes unusable.

In Gillespie-Scenario, we model our medium to analyze SSA individually. The

ligand and receptor molecules are released in a well-stirred volume, lattice, at the

beginning of the simulation. When reaction occurs between ligand and receptor

molecule, the number of receptor molecules stays the same, whereas the number of

ligand molecules decreases and information molecule is obtained.

5.2 Numerical Analysis of Diffusion Mechanism

In this section, we make numerical analysis of Diffusion-Scenario. Suppose

that Q molecules are released instantaneously from the origin of Cartesian coordinate

system at t = 0. The spatial density of concentration in space through time is given

as:

U(x, y, z, t) =
Q

(4πDt)3/2 e−r2/4Dt (5.1)

where r2 = x2 + y2 + z2 and D is the diffusion constant that is explicated in (3.4).

In (5.1), the instant concentration of a volume unit is calculated. However, we

need to integrate the concentration of molecules over time in order to evaluate the
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captured molecules. The integration of concentration over time is given as

U(r, t) =
∫ t

0

Q
(4πDt∗)3/2 e−

r2
(4Dt∗) dt∗ = − Q

4Dπr
er f (

r
√

4Dt∗
) |t0=

Q
4Dπr

er f c(
r
√

4Dt
)

(5.2)

in which er f c(x) is complementary error function. er f c(x) is represented as

er f c(x) =
2
√
π

∫ ∞

x
e−x2

dx (5.3)

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

er
fc

(x
)

Figure 5.1: erfc(x) function.

If propagation of the molecules is observed for a long time, the value inside

the er f c() function approaches 0. As shown in Figure 5.1, er f c(0) is equal to 1.

Therefore, the density function of captured molecules approaches the limit

U(r) =
Q

4Dπr
(5.4)

In order to calculate the volume of this thin shelter, consider two spheres. The

radius of first sphere is a + d, and the radius of other sphere which is inside of the

first one is a. The subtraction of spheres’ volumes gives the volume of the shelter.

Since our source is a point source and the variable of (5.1) is r, the volume of sphere

has to be expressed in r.
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Figure 5.2: Representation of parameters used in volume calculation.

In order to calculate the volume of sphere in terms of r, the sphere is divided

into small flat slices, the radius of which is
√

a2 − r2 as indicated in Figure 5.2. Then,

the slices are summed up as follows

V =
∫ a

−a
π(a2 − r2)dr (5.5)

which estimates the volume of sphere by taking the center of it as a reference point.

However, our reference point is R away from the sphere center. Hence, (5.5) should

be re-expressed as

V =
∫ R+a

R−a
π(a2 − (r − R)2)dr (5.6)

The total amount of molecules existing in sphere during time t is estimated as follows

C(r, t) =
∫ x

y

Q
4Dπr

er f c(
r
√

4Dt
)π(a2 − (r − R)2)dr (5.7)

where the limits of (5.7), [x,y], are determined according to the visible sides of

nanomachine by point source.

As projected in Figure 5.3, point source can only view (DE) surface of nanoma-

chine. In order to determine the limits of (5.7), we need to find l. As understood from

Figure 5.3, (D̂ON) = 2 × (D̂EN) = α. Hence,

tan(D̂ON) =
2 tan(D̂EN)

1 − tan2(D̂EN)
⇒ 2m

n2 − m2 =
1

R − m
(5.8)
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Figure 5.3: The representation used parameters of shelter sphere and nanomachine

The solution of (5.8) is

m =
a2

R
⇒ l = a(1 − a

R
) (5.9)

To find the molecules captured by thin shelter, the ones captured by bigger

sphere should be subtracted from the ones captured by smaller sphere. Moreover,

only visible side of sphere should be considered. Hence, the total amount molecules

captured by the shelter is equal to

C(r, t) = Q
4D (
∫ R−a2/R

R−a−d
er f c( r√

4Dt
) ((a+d)2−(r−R)2)

r dr

−
∫ R−a2/R

R−a
er f c( r√

4Dt
) ((a)2−(r−R)2)

r dr)
(5.10)

The value calculated from (5.10) is not the final result. It should be normal-

ized with whole space which is summation of (5.10) and surrounding sphere. The

molecules captured by surrounding sphere is given by

S (r, t) = β
∫ R

R−d

Q
4Dπr

er f c(
r
√

4Dt
)4πr2dr (5.11)

in which β is the ratio between visible area from point source and entire area of

surrounding sphere. Therefore, in order to find β, we need a formula that calculates
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the surface of sphere in terms of r in a definite interval [52]:

S ur f ace =
∫ b

a
2π f (x)

√
1 + | f ′(x)|2 (5.12)

in which f (x) =
√

a2 − r2 is applied for a sphere. Hence, β is given as

β =

∫ a− a2
R

−a
2π
√

a2 − r2
√

1 + ( r√
a2−r2

)2dr∫ a

−a
2π
√

a2 − r2
√

1 + ( r√
a2−r2

)2dr
= 1 − a

2R
(5.13)

After a long time period, the concentration of molecules over time approaches

a limit value. The limit values should be used in the calculation of normalization

factor. As a result, the normalization factor, NF, is given as

NF = lim
t→t∗

1
C(r, t) + S (r, t)

(5.14)

in which t∗ is the saturation time in which concentration of molecules approaches

the limit value.

The multiplication of (5.10) and (5.14) provides the probability of crash of a

molecule into nanomachine with respect to time:

PCol(t) =
C(r, t)

limt→t∗(C(r, t) + S (r, t))
(5.15)

The multiplication of PCol(t) with the the total amount of carrier molecules, Q, gives

the number of collided molecules, M(t), over time:

M(t) = PCol(t)Q (5.16)

To calculate total number of collided molecules, we need to consider that a long

period of time, t → ∞, passes. Hence, the probability of collision of a molecule

after a long period of time is

P∗Col =
C(r,∞)

C(r,∞) + S (r,∞)
(5.17)

As given in (5.4), when t → ∞, the er f c function in the equation approaches 1.

After the er f c functions are replaced with 1, the solution of P∗Col is as follows

P∗Col = 1 −
4R(1 − a

2R )

(R + a) + 4R(1 − a
2R ) + 2a ln( R− a2

2R
R−a−d ) + (a2−R2)

d ln( R−a
R−a−d )

(5.18)
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The total number of collided molecules is given as

M∗Col = Q(1 −
4R(1 − a

2R )

(R + a) + 4R(1 − a
2R) + 2a ln( R− a2

2R
R−a−d ) + (a2−R2)

d ln( R−a
R−a−d )

) (5.19)

(5.19) gives the total number collided molecules in terms of R, a and d. Al-

though diffusion coefficient, D, is one of a term that effects the diffusion mechanism

as given in (5.1), it has no impact on the total number of collided molecules. The

numerical results obtained in this section are compared with experimental data in

Section 6.1.

5.3 Numerical Analysis of Berg Reaction Mechanism

In this section, we make numerical analysis of Berg-Scenario which includes

reaction capability in addition to Diffusion-Scenario. Thus, we can utilize the de-

rived formulas in diffusion mechanism analysis. As given in Section 5.1, receiver

nanomachine contains N receptors on its surface and the ligand molecules are cap-

tured if they are collided into the binding area of a receptor molecule.

The ratio between the summation of binding areas of receptors and the surface

of nanomachine gives the probability of reaction. Due to the assumption that there is

not any intersection between the binding areas of receptor molecules, the summation

of binding areas equals the receptor number, N, times one receptor binding area. As

a result, the probability of reaction is given as

PReact =

∑
binding areas

nanomachine sur f ace
=

Nπr2
B

4πa2 =
Nr2

B

4a2 (5.20)

As mentioned above, we should consider reaction probability while analyzing

capturing event. Since collision and reaction events are independent, the probability

of capturing event equals the multiplication of these independent events. Therefore,

the capturing probability is as follows

PCap = PCol × PReact = (
Nr2

B

4a2 )
C(r, t)

limt→t∗(C(r, t) + S (r, t))
(5.21)

in which t∗ is the saturation time. Finally, the total number of captured molecule is

given as

M∗Cap = Q(
Nr2

B

4a2 )(1−
4R(1 − a

2R )

(R + a) + 4R(1 − a
2R ) + 2a ln( R− a2

2R
R−a−d ) + (a2−R2)

d ln( R−a
R−a−d )

) (5.22)
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in which, it is understood that the number of captured molecules depends on the

surface concentration of the receptor molecules on receiver nanomachine. The for-

mulas derived in this section are used for validation and performance evaluation of

this mechanism of NanoSim in Section 6.2.1.

5.4 Numerical Analysis of Gillespie Reaction Mechanism

The goal this section is to introduce theoretical decomposition of SSA imple-

mentation of our reaction system in NanoSim. In this section, we use Gillespie-

Scenario in the analysis. As implemented in the simulator, ligand and receptor

molecules react with each other considering

L + R
k→ M + R (5.23)

in which L is ligand molecules, R is receptor molecule, M is captured molecule and

k is the reaction rate.

We analyze SSA by using classical deterministic approach. The chemical de-

terministic description of the system is given by following ODE

∂CL(t)
∂t

= kCL(t)CR (5.24)

where CL(t) is the concentration of ligand molecules and CR is the concentration of

receptor molecules. As it can be understood from the notation of ligand and receptor

concentrations, the concentration of ligand molecules changes towards time, whereas

the number of receptor molecules stays the same.

In (5.23), the variables are in terms of concentration. However, the input of

analysis is in terms of the number of ligand and receptor molecules. Therefore,

we need to transform the concentration values into the number of molecules. The

relation between concentration and number of molecule can be expressed as

C =
n

NV
(5.25)

in which n is the number of molecules, N is Avogadro constant and V is the volume

in unit of liter. Hence, the solution of (5.23) is given as

nL(t) = nL(0)e−
knRt
NV (5.26)

61



where nL(0) is the initial number of ligand molecules.

We can figure out the characteristics of captured molecules number, nM(t),

from nL(t). Since the ligand molecules are transformed into captured molecules, we

can state that captured molecule number is the complementary of ligand molecule

number. The summation of ligand and captured molecules always equals the ini-

tial number of ligand molecules. Hence, the number of captured molecules can be

expressed as follows

nM(t) = nL(0)(1 − e−
knRt
NV ) (5.27)

According to (5.27), the number of captured molecules increases as reaction rate,

ligand and receptor number go up, whereas it decreases as volume increases. (5.27)

is utilized in the validation of SSA in Section 6.2.2.
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CHAPTER 6

VALIDATION OF NANOSIM FRAMEWORK

In this chapter, we present the validation and performance evaluation of NanoSim

by comparing the outputs of NanoSim and the results of our numerical analysis

which are derived in Chapter 5. The scenarios, which are described in Section 5.1,

are used as simulation scenarios in this chapter.

A test version of NanoSim is implemented for the performance evaluation and

validation of the simulator. Some features, e.g., point source, outer shelter, are added

to the simulator and test version of simulator is achieved. At start-up of simulations,

Q message molecules are released from the point source. During the propagation

of molecules, some of them are captured by receiver nanomachine. The captured

molecules are logged by trace mechanism of NanoSim, i.e., MolTrace. Then, the

output file of NanoSim, out.tr, is processed by unix scripts. After out.tr is refined,

data files which contain the captured molecules number and the summation of cap-

tured molecules number with respect to time are obtained.

The derived formulas, given in Chapter 5, are implemented in MATLAB, and

numerical analysis results are plotted using MATLAB. Moreover, data files that are

obtained from NanoSim are processed and plotted by means of MATLAB.

NanoSim is run with different parameters to observe different features. Since

diffusion and reaction events are stochastic processes, the results of simulations are

not exactly the same. Therefore, we make at least 10 trials for each simulation case.

We take the average of the output data of trials by using MATLAB. However, there
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is a tricky part in taking the average of NanoSim outputs. The capturing events do

not occur exactly at the same time. Because of that, we divide the simulation time

into periods, and take the average of number of molecules in each period.

We can categorize the main features of the simulator into two, i.e., diffu-

sion and reaction. Firstly, validation and performance evaluation of the simulator

for these functionalities are presented. Then, utilization rate and error analysis of

NanoSim are given in the rest of this chapter.

6.1 Validation of Diffusion Functionality

In this section, we validate and evaluate the performance of diffusion function-

ality through captured molecules, diffusion coefficient and NanoSim scale.

6.1.1 Validation by Captured Molecules

In this section, we evaluate the performance of the simulator according to the

number of captured molecules by NanoSim with time. We analyze the behavior of

captured molecules with respect to the ratio between nanomachine radius and the

shelter radius, a/R, and the amount of released molecules.

6.1.1.1 Captured molecules according to a/R

In this section, we analyze the behavior of captured molecules with respect to

the ratio, a/R. We fix the simulation parameters except a and change a every 0.1

steps in the analysis. The parameters used in the simulation are given in Table 6.1.

The simulator results and numerical analyses for each ratio, which are between 0.2

and 0.9, are shown in Figures 6.1, 6.2, 6.3 and 6.4.

As mentioned before, our simulator has lattice structure. Because of that, it

behaves like in a discrete space. Therefore, the integral step is equal to the lattice

length, 0.1µm, as depicted in Table 6.1.

As depicted in Figures 6.1 − 6.4, although numerical analyses and NanoSim

outputs exhibit similar behavior for each a/R ratio, they are not exactly matched. In

fact, this mismatch is an expected result due to the assumptions and constraints in
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Table 6.1: Simulation parameters to validate diffusion capability by captured

molecules with respect to a/R.

Symbol (Unit) Definition Quantity

Q amount of molecules 1000

R (µm) radius of shelter 1

a (µm) radius of nanomachine 0.x

D (µm2/s) diffusion coefficient 2.197

s (µm) integral step 0.1

numerical analysis. The significant point of the behavior of NanoSim and numerical

analysis is the number of captured molecules in steady state. In Figures 6.1−6.4, it is

observed that the results of NanoSim reach the saturation time faster than numerical

analysis results. As explained in forthcoming sections, the curves and the saturation
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Figure 6.1: Number of collided molecules for a/R=0.2, a/R=0.3.
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Figure 6.2: Number of collided molecules for a/R=0.4, a/R=0.5.
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Figure 6.3: Number of collided molecules for a/R=0.6, a/R=0.7.

times of the simulations do not affect the total number of collided molecules and

depend on the speed of the carrier molecules, D. The reason of this mismatch is the

lattice structure of the environment. Moreover, NanoSim is implemented in Carte-
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Figure 6.4: Number of collided molecules for a/R=0.8, a/R=0.9.

sian coordinate system as described in Section 3.3.1. In Cartesian coordinate system,

there always exists discretization error while constructing a sphere, i.e., NanoNode.

However, we do not use Cartesian coordinate system in our numerical analysis. The

validation of NanoSim framework based on the comparison of numerical and exper-

imental results is given in Section 6.3.

6.1.1.2 Captured molecules according to Q

We have analyzed the behavior of captured molecules according to a/R value,

up to now. In this section, we analyze the attitude of captured molecules with respect

to the amount of released molecules, Q. In the analysis, only Q is changed while the

other simulation parameters are fixed as given in Table 6.2.

In Figures 6.5 and 6.6, although NanoSim results quickly reach the saturation

time, it is observed that the simulator results and numerical analyses of various Q’s

show similar behavior. Besides, the normalized manners of simulation results and

numerical analysis, which are normalized with Q, are presented in Figure 6.7. Here,

the normalized simulation results for various Q show similar behavior.
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Table 6.2: Simulation parameters to validate diffusion capability by captured

molecules with respect to Q.

Q a (µm) R (µm) D (µm2/s)

Trial 1 100 0.5 1 2.197

Trial 2 200 0.5 1 2.197

Trial 3 500 0.5 1 2.197

Trial 4 1000 0.5 1 2.197

Trial 5 2000 0.5 1 2.197

Trial 6 5000 0.5 1 2.197

Trial 7 10000 0.5 1 2.197

Trial 8 20000 0.5 1 2.197

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

Time (sec)

N
um

be
r 

of
 c

ol
lid

ed
 m

ol
ec

ul
es

 

 

Trial−2 Numerical
Trial−2 NanoSim
Trial−3 Numerical
Trial−3 NanoSim
Trial−4 Numerical
Trial−4 NanoSim

Figure 6.5: Behavior of collided molecules for Q = 200, 500, 1000.
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Figure 6.6: Behavior of collided molecules for Q = 2000, 5000, 10000.

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (sec)

N
um

be
r 

of
 c

ol
lid

ed
 m

ol
ec

ul
es

 

 

Normalized Numerical
Normalized Trial−1 NanoSim
Normalized Trial−4 NanoSim
Normalized Trial−8 NanoSim

Figure 6.7: Normalized number of collided molecules for Q = 100, 1000, 20000.

In addition to these, we present exhaustive performance evaluation of captured
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molecules according to Q in Table 6.3. Here, error ratio is estimated as follows

ER =
|ECM − OCM|

RM
(6.1)

where ECM is the expected captured molecules according to numerical analyses,

OCM is the captured molecules obtained from NanoSim, RM is the total amount of

released molecules. As observed from Table 6.3, although the number of variance

molecules increases with the amount of released molecule, error ratios of trials do

not depend on the amount of released molecules. The error ratios of trials range

from 0.07% to 1.35%. The narrowness of the range, which can be an acceptable

value, shows that the amount of released molecules does not affect the error ratio of

NanoSim.

Table 6.3: Error analysis of diffusion capability by captured molecules with respect

to Q.

Obtained

Captured

Molecules

Expected

Captured

Molecules

Variance

Molecules

Error Ratio

Trial 1 17.7 16.4 1.34 1.35%

Trial 2 32.9 32.7 0.14 0.07%

Trial 3 82.3 81.8 0.57 0.12%

Trial 4 171.5 163.5 7.95 0.8%

Trial 5 351.9 327.1 24.76 1.24%

Trial 6 874.9 817.7 57.13 1.14%

Trial 7 1742.8 1635.4 107.32 1.07%

Trial 8 3477.8 3270.9 206.94 1.03%
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6.1.2 Validation of Diffusion Coefficient

In this section, we validate diffusion functionality of NanoSim framework with

respect to diffusion coefficient, D, which is the parameter that affects the speed of

the diffusion. D is expressed in terms of temperature, viscosity and the radius of

molecule as explained in (3.4). First of all, we analyze the effects of temperature,

viscosity and the radius of molecule on simulation results one by one. Then, we

analyze the behavior of D on NanoSim. Moreover, we measure the performance of

NanoSim with respect to diffusion coefficient.

If we consider our nanomachine as a unit volume, we can use (5.2) in our

analysis. In (5.2), the saturation time, t∗, can be expressed in terms of D as follows

t∗ =
C1

D(er f c′(C2D))2 (6.2)

in which er f c′ is the inverse function of er f c, and C1,C2 are constant values. From

(6.2), it is observed that while D increases, t∗ decreases and vice versa.

We categorize the trials in order to inspect the effects of temperature, viscosity

and the radius of molecule on D individually. We analyze temperature, viscosity and

the radius of molecule in category a, b and c, respectively. The simulation parameters

and categorization of them are given in Table 6.4.

In category a, we examine the impact of temperature on simulation results.

We fix all simulation parameters except temperature. In Figure 6.8, while tempera-

ture increases, which means increase of D, the saturation time of trials decreases as

derived in (6.2).

We examine the influence of viscosity of medium on simulation results in cat-

egory b. We fix all simulation parameters except viscosity. In Figure 6.9, while vis-

cosity increases, which means decrease of D, the saturation time of trials increases

as derived in (6.2).

In category c, we inspect the effect of the radius of carrier molecule on sim-

ulation results. We fix all simulation parameters except the radius of information

molecule. In Figure 6.10, while the radius of carrier molecule increases, which

means decline of D, the saturation time of trials increases as derived in (6.2).
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Table 6.4: Simulation parameters to analysis impact of temperature, viscosity of

medium and radius of the carrier molecules on simulation results.

Q a (µm) R (µm) T (K) η (J/K) rM (nm) D (µm2/s)

Trial 1 1000 0.3 1 150 0.001 100 1.098

Trial 2 1000 0.3 1 300 0.001 100 2.197
a

Trial 3 1000 0.3 1 600 0.001 100 4.394

Trial 4 1000 0.3 1 900 0.001 100 6.591

Trial 5 1000 0.4 1 300 0.0005 100 4.394

Trial 6 1000 0.4 1 300 0.001 100 2.197
b

Trial 7 1000 0.4 1 300 0.002 100 1.098

Trial 8 1000 0.4 1 300 0.003 100 0.732

Trial 9 1000 0.6 1 300 0.001 50 4.394

Trial 10 1000 0.6 1 300 0.001 100 2.197
c

Trial 11 1000 0.6 1 300 0.001 200 1.098

Trial 12 1000 0.6 1 300 0.001 300 0.732

In the rest of this section, we examine the impact of D on NanoSim. To achieve

our purpose, the simulator is run with the parameters given in Table 6.5.

Figure 6.11 plots the number of collided molecules with time behavior of all

trials given in Table 6.5. Diffusion coefficient has no impact on the total number

of collided molecules according to (5.18). If we check the total number of collided

molecules of trials on Figure 6.11, we see that they are in the range 170 − 180. The

width of range, 10, is an acceptable value in order to infer that diffusion coefficient

does not effect the total number of collided molecules.

In 6.2, we can neglect the impact of D on er f c′, hence we can assume er f c′

expression as a constant value. After the assumption, it is seen that t∗ is propor-
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Figure 6.8: Impact of the temperature on simulation results.
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Figure 6.9: Impact of the viscosity of medium on simulation results.

tional to 1
D . The inverse proportion relation between saturation time and diffusion

coefficient is depicted in Figure 6.12.
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Figure 6.10: Impact of the radius of carrier molecule on simulation results.

Table 6.5: Simulation parameters to validate diffusion capability by diffusion coeffi-

cient.

Symbol (Unit) Trial 1 Trial 2 Trial 3 Trial 4

Q 1000 1000 1000 1000

R (µm) 1 1 1 1

a (µm) 0.5 0.5 0.5 0.5

s (µm) 0.1 0.1 0.1 0.1

T (K) 300 100 100 100

η (J/K) 0.001 0.001 0.002 0.002

rM (nm) 10 10 10 20

D (µm2/s) 21.973 7.324 3.662 1.831

74



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

20

40

60

80

100

120

140

160

180

Time (sec)

N
um

be
r 

of
 c

ol
lid

ed
 m

ol
ec

ul
es

 

 

Trial 1
Trial 2
Trial 3
Trial 4

Figure 6.11: Number of collided molecules for different diffusion coefficients.
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Figure 6.12: The inverse proportion between t∗ and diffusion coefficient. The inverse

ratio equation is equal to y = 0.615/x.
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6.1.3 Validation of NanoSim Scalability

We evaluate the performance of the simulator with respect to the ratio be-

tween the radius of nanomachine and radius of the shelter up to now. However, it

is not standalone enough for validation and performance evaluation of the simulator.

Scalability factor with respect to a/R should also be examined in the validation and

performance evaluation. We make our scaling analysis for a specific ratio, i.e., 0.4.

We ran the simulator with the parameters given in Table 6.6.

Table 6.6: Simulation parameters to validate diffusion capability by simulator scale.

Symbol (Unit) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Q 2000 2000 2000 2000 2000

R (µm) 0.5 1 1.5 2.0 2.5

a (µm) 0.2 0.4 0.6 0.8 1

D (µm2/s) 2.197 2.197 2.197 2.197 2.197

λ (nm) 100 100 100 100 100

Figure 6.13 plots the number of captured molecules with time behavior for all

trials given in Table 6.6. Since lattice size of the simulation is fixed, the distance

between source and nanomachine is proportional to the number of lattice.

If we consider our nanomachine as a unit volume, we can use (5.2) in our

analysis. In (5.2), the saturation time, t∗, can be given in terms of r as follows

t∗ =
r2

C1(er f c′(C2r))2 (6.3)

in which er f c′ is the inverse er f c function and C1,C2 are constant values. It is seen

that t∗ is proportional to r2. Hence, the following relationship exists between the t∗

trials

R1 < R2 < R3 < R4 < R5 ⇒ t∗1 < t∗2 < t∗3 < t∗4 < t∗5 (6.4)
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It is observed in Figure 6.13 that the relationship among t∗ of simulator results is

consistent with (6.4).
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Figure 6.13: Number of collided molecules for different scales.

If the effect of scaling is analyzed considering (5.18), all parameters except
(a2−R2)

d ln( R−a
R−a−d ) is proportional to the scaling factor, whereas (a2−R2)

d ln( R−a
R−a−d ) is pro-

portional to k2. Since (a2 −R2) is always negative, the number of collided molecules

decreases when k increases as depicted in Figure 6.14.

We plot the relation between utilization of molecules and the radius of the shel-

ter in Figure 6.14 for all trials given in Table 6.6. It is observed that when the radius

of covering sphere is 0.5µm, the utilization ratio is almost the same for NanoSim

and numerical analysis, whereas the ratio of difference between them over utiliza-

tion ratio of numerical analysis, error ratio, increases up to 20% as radius goes up

to 2.5µm. Although error ratio is approximately 20% for big scaling factor, the ratio

of difference over total utilization ratio is approximately 2% which is an acceptable

figure.
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Figure 6.14: Utilization ratio for different scales.

6.2 Validation of Reaction Functionality

We can categorize reaction capability of NanoSim into two components. One

of them realizes the reaction mechanism given in [54] and the other one applies SSA

in NanoSim. In the rest of this section, we validate and make performance analysis

of reaction characteristics of NanoSim.

6.2.1 Validation of Berg Reaction Capability

The reaction probability, PReact, is independent from collision probability of the

molecule as mentioned in Section 5.3. Hence, there is a linear relationship between

collided and captured number of molecules. The reaction parameters which affect

PReact are the number of receptor molecules, binding radius of receptor molecules

and the the radius of the nanomachine. We prepared various data sets for each ratio

to analyze reaction functionality. The data sets are represented in Table 6.7.

The simulator is run with the parameters given in Table 6.7. The behavior

of collided molecules and captured molecules, achieved from simulator output, are

plotted in Figure 6.15.
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Table 6.7: Simulation parameters to validate Berg reaction functionality.

Symbol (Unit) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7

Q 1000 1000 1000 1000 1000 1000 1000

R (µm) 1 1 1 1 1 1 1

a (µm) 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D (µm2/s) 2.197 2.197 2.197 2.197 2.197 2.197 2.197

N 5000 3000 3000 5000 10000 5000 2000

rB (nm) 7 7 12 13 6 14 21
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Figure 6.15: Collided and captured molecules.

It is expected that the number of captured molecules is obtained by multiply-

ing the collided molecule number with the probability of reaction which is given in

(5.22). However, the number of obtained captured molecules is not exactly the same

as the excepted one. We present exhaustive performance evaluation in Table 6.8. In
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the table, error ratio is estimated as follows

Error Ratio =
(Expected Cap. Mol. − Obtained Cap. Mol.)

Col. Mol.
(6.5)

Table 6.8: Error analysis of Berg reaction capability.

Collision

Number

Obtained

Captured

Number

Expected

Captured

Number

Error Ratio

Trial 1 55.4 39.3 37.7 2.8%

Trial 2 117.7 28.8 27.3 1.3%

Trial 3 172.6 73 74.56 0.9%

Trial 4 273.7 160.4 160.61 0%

Trial 5 389.3 72.8 71.5 0.3%

Trial 6 531.2 205.8 203.35 0.5%

Trial 7 706.4 187.3 192.30 0.7%

As observed from Table 6.8, the error ratio of trials is at most 2.8%, which is

an acceptable value.

6.2.2 Validation of Gillespie Reaction Capability

In this section, we validate and evaluate the performance of SSA implemen-

tation of NanoSim. We make numerical analysis of SSA according to Gillespie-

Scenario, in which ligand and receptor molecules are in a lattice side, in Section

5.4. In the validation of SSA implementation, we make our trials according to the

parameters given in Table 6.9.

As derived in (5.27), the behavior of captured molecules depends on initial

number of ligand molecules, receptor molecules, reaction rate, volume of well-

stirred medium and time. We check the impact of each of these parameters in Figures
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Table 6.9: Simulation parameters to validate SSA.

# of Ligand

Molecules

# of Receptor

Molecules

Reaction

Rate (s/µM2)

Volume Side

(nm)

Trial 1 40 20 0.01 100

Trial 2 40 20 0.001 100

Trial 3 40 20 0.005 100

Trial 4 80 10 0.005 100

Trial 5 80 20 0.005 200

Trial 6 80 20 0.005 100

Trial 7 80 20 0.005 50

6.16−6.18. In each figure, the response of NanoSim and numerical analysis are plot-

ted in order to validate each of these parameters one by one.
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Figure 6.16: The captured molecules for varying reaction rates.
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Figure 6.17: The captured molecules for varying number of receptors.
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Figure 6.18: The captured molecules for varying volumes.

The impact of reaction rate can be observed in Figure 6.16. Numerical result

and NanoSim output show almost the same behavior. Nevertheless, Trial 1, in which

a deviation exists between NanoSim and numerical results, has the largest reaction

82



rate. Figure 6.17 shows the behavior of NanoSim and numerical analysis for varying

number of receptor molecules. Numerical result and NanoSim output show almost

the same behavior as the previous one. The trias that have less number of receptor

molecules, and show more inconsistency with numerical analysis. Figure 6.18 gives

the behavior of NanoSim for varying volumes. Here, NanoSim exhibits similar re-

sponses with the numerical results for alternating volumes.

6.3 Utilization Ratio and Error Analysis of Simulator

In this section, we make performance evaluation according to the utilization

ratio of NanoSim. Utilization ratio of a trial, UR, can be achieved as follows

UR =
# o f Captured Molecules

Total # o f Molecules
(6.6)

The utilization of the simulator for different a/R ratios is given in Figure 6.19.

Here, captured molecules are plotted for two sources which are obtained from sim-

ulator and numerical analysis. It is observed that the results shows parallel attitudes.

However, they are not exactly matched.
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Figure 6.19: The utilization ratio of NanoSim and numerical analysis.
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Figure 6.20: NanoSim error ratio.

We analyze this discrepancy in an error model. In this error model, we di-

vide the difference in the number of captured molecules between the NanoSim and

numerical analysis results by numerical analysis result as follows

ER =
|S R − AR|

AR
(6.7)

in which ER is the error ratio, S R is the number of captured molecules by NanoSim,

AR is the number of captured molecules with respect to analysis result. Figure 6.20

depicts the ER value of NanoSim in varying a/R ratios.

We can find error ratio of the NanoSim by taking the average of the error ratios

of the radius given in Figure 6.20. Here, it is observed that the error ratio decreases

and becomes stable for a/R values larger than 0.5. Thus, it is reasonable to select

a/R values in the simulations.

The average error ratio of NanoSim is 14.9% according to error ratio values

given in Figure 6.7. However, if the figure is inspected, it is noticed that there is

a peak value on a = 0.2 for numerical analysis result. The reason of this peak

value is that the captured molecule number is quite small for a = 0.2. Although the

difference between S R and AR is quite small with respect to total number of receptor
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molecules, a greater error ratio is observed for a = 0.2. Thus, it is rational to ignore

a = 0.2 while taking the average. If we ignore a = 0.2, the error ratio of the NanoSim

becomes 8.3%.
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CHAPTER 7

CONCLUSION

Molecular communication, inspired from the real biological molecular sys-

tems, gathers several disciplines such as nanotechnology, biotechnology and com-

munication systems. Most of the existing communication networks’ background is

not applicable for nanonetworks. For instance, by molecular communication, short-

range communication between nanomachines is provided, and instead of electro-

magnetic waves, molecules are used as communication carriers. Owing to the dis-

tinctions between traditional and molecular communication, and lack of open source

and widely used molecular communication simulator, we have designed and imple-

mented our molecular channel model in ns-2.

In this thesis, we investigated the characterization of molecular channel prop-

erties as the first step. The molecular channel models in the literature, i.e., diffusive,

molecular motor-based and gap junction-based molecular channels, are described.

We analyzed and modeled diffusive molecular communication. We chose reaction-

diffusion model to simulate diffusive molecular channel. GMP, reaction-diffusion

modeling algorithm, is selected as our fundamental algorithm. We represented our

classes, their functionalities and relationship with each other in order to build-up dif-

fusive molecular channel. We have constructed our network stack by creating classes

which are inherited from basic structures of ns-2. We have merged diffusive channel

structures and this network stack. Eventually, NanoSim is formed. Nevertheless, we

have not implemented complex MAC, routing or transport layer protocols. We have
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only implemented a basic MAC protocol as an illustration.

Another aim of this thesis is to provide development environment for the other

types of nanonetworks. NanoSim has an object-oriented structure like ns-2 which

brings modularity to it. For instance, we have also designed and implemented net-

work simulator for molecular motor-based communication. Motor-based communi-

cation part of NanoSim, which requires diffusion functionality, uses Diffusion class

of diffusive communication part to handle diffusion functionality. This demonstrates

the modularity of NanoSim. By adding new classes and using the current ones,

NanoSim can gain abilities to simulate new molecular channel models.

We exhibit numerical analysis of molecular communication for specific sce-

narios. In the analysis, we formulate the behavior of captured molecules with time

in terms of radius of nanomachine, distance from source and time. Additionally,

the formulation of final number of bound molecules is obtained in terms of radius

of nanomachine and distance from source. The accuracy of formulas were checked

with MATLAB simulation.

We presented performance evaluation and validation for diffusion and reaction

capabilities of NanoSim. The performance evaluation and validation are made in

terms of captured molecule, diffusion coefficient, simulation scalability and utiliza-

tion rate. Additionally, we analyze the error ratio of NanoSim, ER. The average ER

value of NanoSim is 8.3%. Nevertheless, there is a drawback in the performance

evaluation of NanoSim scalability. The error ratio is approximately 20% for big

scaling factors. Fortunately, the amount of error is almost 2% of the total number of

molecules for a/R = 0.4.

We have elaborately modeled and implemented diffusive molecular channel.

On the other hand, motor-based molecular communication part of NanoSim is de-

signed and implemented in order to serve as a model for the future extensions of

NanoSim. Hence, elaborately modeling and implementation of motor-based com-

munication can be considered as future work. Gap junction-based communication

can also be considered in the same way. Moreover, in the current implementa-

tion of NanoSim, nanomachines are fixed objects. Adding mobility functionality

87



to nanomachines is another future work. In addition, the experimental validation of

NanoSim can be considered as one of the important future directions.

Finally, a full protocol stack which contains MAC, routing and transport layer

protocols is required to complete ns-2 molecular simulation suite. However, re-

search on molecular communication area is too new. Hence, network protocols for

each layer do not exist or are just at beginning stage for molecular communication.

We believe that NanoSim will provide practical and beneficial simulation suite to

develop network protocols for nanonetworks.

88



REFERENCES

[1] S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T.
Nakano, “Molecular Communication”, Proc. NSTI Nanotech’05, Vol. 3, pp.
391-394, May 2005.

[2] Y. Moritani, S. Hiyama, T. Suda, “Molecular Communication among
Nanomachines Using Vesicles”, Proc. NSTI Nanotech’06, Vol. 2, pp. 705-
708, May 2006.

[3] S. Hiyama, Y. Isogawa, T. Suda, Y. Moritani, K. Sutoh, “A Design of an Au-
tonomous Molecule Loading/Transporting/Unloading System Using DNA
Hybridization and Biomolecular Linear Motors”, Proc. ENS’05, Dec. 2005.

[4] B. Atakan, O. B. Akan, “Deterministic Capacity of Information Flow in
Molecular Nanonetworks,” to appear in Nano Communication Networks
Journal (Elsevier), 2010.

[5] T. Nakano, M. Moore, A. Enomoto, T. Suda, T. Koujin, T. Haraguchi, Y.
Hiraoka, “A Cell-based Molecular Communication Network”, Proc. of the
IEEE/ACM International Conference on Bio Inspired Models of Network,
Information and Computing Science Systems (BIONETICS), Dec. 2006.

[6] M. J. Berridge, “The AM and FM of Calcium Signaling”, Nature, Vol. 386,
pp. 759-780, 1997.

[7] A. Eckford, “Nanoscale Communication with Brownian Motion”, Proc.
41st Annual Conference on Information Sciences and Systems (CISS 2007),
2007.

[8] M. Moore, A. Enomoto, T. Nakano, R. Egashira, ,T. Suda, A. Kayasuga,
H. Kojima, H. Sakakibara, K. Oiwa, “A Design of a Molecular Communi-
cation System for Nanomachines Using Molecular Motors”, IEEE Confer-
ence on Pervasive Computing and Communications, 2006.

[9] T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, K. Arima,
“Molecular Communication for Nanomachines Using Intercellular Calcium
Signaling”, Proc. 5th IEEE Conference on Nanotechnology, 2005.

89



[10] P. J. Thomas, D. J. Spencer, S. K. Hampton, P. Park, J. P. Zurkus, “The
Diffusion Mediated Biochemical Signal Relay Channel”, Proc. 17th Annual
Conference on Neural Information Processing Systems (NIPS ’03), 2003.

[11] T. Suda, M. Moore, T. Nakano, R. Egashira, A. Enomoto, S. Hiyama, Y.
Moritani, “Exploratory Research in Molecular Communication between
Nanomachines”, UCI Technical Report, 05-3, Mar. 2005.

[12] T. Nakano, T. Suda, T. Koujin, T. Haraguchi, Y. Hiraoka, “Molecular Com-
munication Through Gap Junction Channels”, Springer Trans. Comput.
Syst. Biol., Vol. 5410 , pp. 81-99, 2008.

[13] M. J. Moore, A. Enomoto, T. Nakano, Y. Okaie, A. Kayasuga, H. Kojima,
H. Sakakibara, K. Oiwa, T. Suda, “Molecular Communication: Simulation
of Microtubule Topology”, Proc. 2nd Int. Workshop Natural Comput., pp.
134-144, 2007.

[14] Y. Moritani, S. Hiyama, T. Suda, “Molecular Communication for Health
Care Applications”, Proc. 4th Annu. IEEE Conf. Pervasive Comput. Com-
mun. Workshops, pp. 553-557, 2006.

[15] I. F. Akyildiz, F. Brunetti, C. Blazquez, “NanoNetworking: A New Com-
munication Paradigm”, Computer Networks Journal (Elsevier), June 2008.

[16] B. Atakan, O. B. Akan, “An Information Theoretical Approach for Molec-
ular Communication”, Bio-Inspired Models of Network, Information and
Computing Systems, 2007. Bionetics 2007. 2nd, Dec. 2007.

[17] B. Atakan, O. B. Akan, “On Channel Capacity and Error Compensation
in Molecular Communication”, Springer Trans. on Computational System
Biology, 2008.

[18] M. J. Moore, A. Enomoto, K. Oiwa, T. Suda, “Molecular Communication:
Uni-cast Communication on a Microtubule Topology”, IEEE International
Conference on Systems, Man and Cybernetics(SMC), pp.18-23, Oct. 2008.

[19] F. Walsh , S. Balasubramaniam, D. Botvich, T. Suda , T. Nakano, S. F.
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APPENDIX A

COMMANDS AT A GLANCE

A.1 Commands for Both Diffusive and Motor-Based Molecular Communica-

tion

The list of commands related to both diffusive and motor-based molecular commu-

nication are as follows:

$ns node-config -molChannelType <type>

-llType <type>

-macType <type>

-phyType <type>

-diffusion <type>

-reaction <type>

molChannelType parameter declares that the subsequent new nodes created

will be nanonodes. It determines the molecular communication type. Possible val-

ues of molChannelType parameters are Mol / Channel / Diffusion and Mol / Channel

/ Motor. For diffusive molecular communication, molChannelType parameter shall

be Mol / Channel / Diffusion. Additionally, three types of reaction model can be

selected with reaction parameter. The options of are reaction Reaction/No, Re-

action/Berg and Reaction/Gillespie

$nanonode set-position <x coordinate> <y coordinate> <z coordinate>

This is a wrapper method that assigns the coordinates of a nanonode. The <x coordi-
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nate>, <y coordinate> and <z coordinate> define the x,y and z Cartesian coordi-

nates in units of lattice system.

$nanonode setMolNode <ligand molecule> <receptor molecule>

This is a wrapper method that assigns the ligand and receptor molecules of nanonode.

If ligand or receptor molecule is not defined in the script, it automatically generates

a molecule whose diffusion coefficient is “1”.

$mol channel set-reaction <molecule> <molecule> <value>

This is a wrapper method that defines a reaction channel. Molecular channel de-

cides reaction occurrences according to these reaction channels defined by the user.

<value> is the reaction rate constant. Its unit is µM−1s−1.

$mol channel set-radius <molecule> <value>

This is a wrapper method that defines the molecule and radius of the molecule.

<value> is radius of the molecule. Its unit is nm.

$molagent start

This is a wrapper method that starts corresponding agent to release carrier molecules.

$molagent stop

This is a wrapper method that stops corresponding agent to release carrier molecules.

$mol channel start simulation

This is a wrapper method that starts channel activities which are diffusion and reac-

tion. Molecular Channel event simulation command is distinct from molecular agent

“start” command. This command should be specially given in the running script oth-

erwise molecules do not start to diffuse and react.

$mol channel stop simulation
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This is a wrapper method that stops channel activities which are diffusion and reac-

tion. Molecular Channel event simulation command is distinct from molecular agent

“stop” command. This command should be specially given in the running script oth-

erwise molecules do not stop to diffuse and react.

$ns trace-all-mollinks <value>

This is a wrapper method that enables all molecular traces and direct molecular traces

to output file the name of which is <value>.

Agent/Mol set interval <value>

This parameter defines the system interval of the simulator. Its unit is ms.

Node/MolNode set radius <value>

This parameter defines the radius of nanomachines. Its unit is one lattice length.

MolecularEnvironment set lambda <value>

This parameter defines the length of a lattice. Its unit is nm.

Mac/Mol set interval <value>

This parameter defines time interval of MolMAC. Its unit is ms.

Agent/Mol set send amount <value>

This parameter defines the amount of molecules that MolAgent sends in one shot.

Channel/Mol/Diffusion set const memb concentration <value>

if const memb concentration is bigger than 0, every membrane lattice has the same

receptor number value.

MolecularEnvironment set temperature <value>

This parameter defines the temperature of molecular environment. Its unit is K.
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MolecularEnvironment set viscosity <value>

This parameter defines the viscosity of molecular environment. Its unit is J/K ,

Pa m3K−1.

Molecule set radii <value>

This parameter defines the default value of radius of molecules. Its unit is nm.

Channel/Mol set MIN LAT <value>

This parameter defines the minimum boundary lattice value.

Channel/Mol set MAX LAT <value>

This parameter defines the maximum boundary lattice value.

set error model [new ErrorModel/Mol]

This script creates a MolErrorModel object and assigns to error model object.

$error model unit <value>

This script determines the unit of error model molecular error model object. The

value of this parameter can be molecule or moldata.

$error model ranvar [new RandomVariable/<value>]

This script determines the probability distribution of error model molecular error

model object. The value of this parameter can be Exponential or Uni f orm.

$error model set rate <value>

This script determines the rate of error model molecular error model object. The

value of this parameter must be between 0 and 1.

$n1 interface-outgoing-errormodel $error model
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This method inserts the error model molecular error model object into outgoing

link of NanoNode object, n1.

$n1 interface-incoming-errormodel $error model

This method inserts the error model molecular error model object into incoming

link of NanoNode object, n1.

A.2 Commands for Only Motor-Based Molecular Communication

The list of commands related to only motor-based molecular communication are the

following:

molChannelType parameter of node-config interface shall be Mol/Channel/Motor.

set link [new MolLink $n1]

This is script creates a MolLink object, the receiver node of which is NanoNode ob-

ject, n1, then assigns it to link object.

$sender nanonode mollink $link

This is a wrapper method that provides unidirectional molecular link between sender

nanonode object and link molecular link object.

Channel/Mol/Motor set concentration quantity <value>

This parameter defines whether concentration or quantity distribution is applied.

CONCENTRATION = 1, QUANTITY = 2

Channel/Mol/Motor set concentration <value>

This parameter defines the molecule concentration of nanonode cytosol.

Channel/Mol/Motor set quantity <value>

This parameter defines the quantity of molecule inside one lattice of nanonode cy-
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tosol.

MolLink set sendingInterval <value>

This parameter defines the time interval to transfer molecules from nanomachine to

vesicle for motor-based communication. Its unit is s.

MolLink set receivingInterval <value>

This parameter defines the time interval to transfer molecules from vesicle to nanoma-

chine for motor-based communication. Its unit is s.

MolecularEnvironment set motorVelocity <value>

This parameter defines the velocity of molecular motor. Its unit is nm/s.

$link mollink-errormodel $error model

This method inserts the error model molecular error model object into molecular

link, i.e., link.
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APPENDIX B

CODES

The interfaces of NanoSim, the header files, are given as follows:

Diffusion.h :

class Diffusion : public Handler, public TclObject {

private:

static MolecularEnvironment* molenv;

long seed;

Randomizer* r;

int moleculePerLattice[6];

MolChannel* channel ;

public:

Diffusion();

Diffusion(MolChannel*);

static void setMolecularEnvironment(MolecularEnvironment* m);

void diffuseEnvironment(Molecule*);

void diffuseLattice(Lattice*, Molecule*);

void assignMoleculeNumbers(int);

void diffuseLarge(int);

void diffuseSmall(int);

void setChannel(MolChannel*);

protected:

int command(int argc, const char*const * argv);

void handle(Event*);
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};

Randomizer.h:

class Randomizer {

private:

long random number;

public:

Randomizer();

long next();

double gasdev(long* idum, double mean, double var);

double rando(long* idum);

};

Molagent.h:

class Mol Agent : public Agent {

private:

MolNode* node ;

static int send amount;

static int agent number;

public:

Mol Agent();

int command(int argc, const char * const * argv);

void timeout();

void start channel simulation();

static double interval;

void start(void);

void stop(void);

void send(Packet* p, Handler* h);

protected:

void recv(Packet*, Handler*);

Mol Timer* mol timer ;

int running ;
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double nextReleasetime ;

};

MolChannel.h:

class MolChannel : public Channel {

public:

//variables

static int state ;

static vector< MolNode*> molnodes;

static int MAX LAT;

static int MIN LAT;

MolPosition* t senderLatticePosition;

MolPosition* t receiverLatticePosition;

//constructor and methods

MolChannel();

void add captured mol(MolNode*, Molecule*);

void start simulation();

void stop simulation();

void react(double);

void add node(MolNode*);

void addSpecies(Molecule*);

vector< Molecule*> getSpecies();

void addMolecule(MolPosition*, Molecule*, int);

void addMoleculeInitially(MolPosition*, Molecule*, int);

void addReactionChannel(ReactionChannel*);

void diffuse(Molecule*);

int total transmitter node number();

int node queue number(MolPhy*);

double t distance(MolPosition*);

double t totalDistance();

//inline methods which set or get any variable

inline Reaction* reaction();
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void set reaction time(double t);

void set diffusion molecule(Molecule* m);

vector< captured molecules*> node captured mol();

static int state();

static void setState(int s);

void set reaction channel(ReactionChannel* r);

ReactionChannel* get reaction channel();

MolEvent* event instance();

MolecularEnvironment* get mol env();

vector< MolNode*> get molnodes();

void send(MolNode*, Molecule*, double);

void send(MolNode*, Molecule*, int, Lattice*, double);

//virtual methods

virtual void init() {}

virtual void setReceptorSpace(MolNode*) {}

virtual void setReceptorSpaceTest(MolNode*) {}

virtual void check(){}

virtual void sendMolecules(MolNode* m, int a){}

virtual void sendMoleculesTest(MolNode* m, int a) {}

virtual void simulate(){}

protected:

//varibles

Lattice* passive;

Diffusion* dif;

Reaction* reaction ;

MolecularEnvironment* me;

Simulation Timer* simulation timer ;

ReactionChannel* reaction channel;

MolEvent* channel event;

vector< captured molecules*> node captured mol ;

int running ;

int* diffusion times;
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double* diffusion durations;

double tsim;

//methods

int command(int argc, const char*const * argv);

};

MolChannelDiffusion.h:

class MolChannelDiffusion : public MolChannel {

public:

MolChannelDiffusion();

void init();

void print();

void setReceptorSpace(MolNode*);

void setReceptorSpaceTest(MolNode*);

static int const memb concentration;

void sendMolecules(MolNode* m, int a);

void simulate();

void sendMoleculesTest(MolNode* m, int a);

};

MolChannelMotor.h:

class MolChannelMotor : public MolChannel {

public:

MolChannelMotor();

void init();

void print();

void setReceptorSpace(MolNode*);

static int concentration quantity;

static double concentration;

static int quantity;

void sendMolecules(MolNode* m, int a);

void simulate();
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void connectVesicle(Lattice);

void disconnectVesicle();

};

MolTrace.h:

class MolTrace : public Trace {

protected:

void format(int tt, int s, int d, Packet* p);

public:

MolTrace(int type): Trace(type){}

};

MolPosition.h:

class MolPosition : public TclObject {

public:

MolPosition();

MolPosition(double x , double y , double z );

MolPosition(int x , int y , int z );

Node* node();

double x, y, z;

int latX, latY, latZ;

double getY();

double getX();

double getZ();

void translatePosition(MolPosition* p);

bool operator==(const MolPosition& other) const;

MolPosition* copy();

void print();

double distance(MolPosition*);

protected:

int command(int argc, const char*const * argv);

Node* node ;
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};

MolPhy.h:

class MolPhy : public Phy {

public:

MolPhy(): Phy(){}

void sendDown(Packet* p);

int sendUp(Packet* p);

void recv(Packet* p, Handler*);

void handle(Event*);

protected:

int command(int argc, const char*const * argv);

};

MolLL.h:

class MolLL : public LL {

public:

MolLL(): LL();

virtual void sendDown(Packet* p);

virtual void sendUp(Packet* p);

virtual void recv(Packet* p, Handler* h);

protected:

int command(int argc, const char*const * argv);

};

MolMAC.h:

class MolMac : public Mac {

friend class SlotTimer;

friend class TxMoleculeTimer;

friend class RxMoleculeTimer;

public:

MolMac();
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virtual void recv(Packet* p, Handler* h);

MolNode* molnode();

static int queue number;

MolChannel* channel;

void handle(Event*);

void slotHandler(Event* e);

void sendHandler(Event* e);

void receiveHandler(Event* e);

static double interval;

protected:

int command(int argc, const char*const * argv);

MolNode* molnode ;

int max node num ;

private:

void re schedule();

void makePreamble();

void sendUp(Packet* p);

void sendDown(Packet* p);

void send();

inline int is idle(void);

SlotTimer mhSlot ;

TxMoleculeTimer mhTxPkt ;

RxMoleculeTimer mhRxPkt ;

MacState tx state ; // outgoing state

int tx active ; // transmitter is ACTIVE

static int max slot num ;

static double slot time ;

static double start time ;

static int active node ;

static int* tdma schedule ;

int slot num ; // The slot number it’s allocated.

static int* tdma preamble ;// The preamble data structure.
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int slot count ;

MolecularData* repository ;

};

MolNode.h:

class MolNode : public Node {

friend class NodePositionHandler;

friend class NodePositionTestHandler;

public:

MolNode();

MolPosition* position();

MolChannel* channel();

int receptor number();

Molecule* ligand();

Molecule* receptor();

double radius();

MolPhy* phy();

static int type();

void set type(int t);

MolLink* molLink();

static double radius ;

void write();

static double binding radius;

protected:

int command(int argc, const char*const * argv);

MolChannel* channel ;

MolPhy* phy ;

MolPosition* pos ;

Molecule* ligand ;

Molecule* receptor ;

int receptor number ;

NodePositionHandler* position handler;
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NodePositionTestHandler* position test handler;

Event* position event;

static int type ;//it can be diffusion,motor or junction

MolLink* molLink ;

};

MolError.h:

class MolErrorModel : public ErrorModel {

public:

MolErrorModel();

virtual void recv(Packet*, Handler*);

MolErrorUnit unit();

protected:

virtual int command(int argc, const char*const * argv);

bool CorruptMolecule();

MolErrorUnit unit ;// mol error unit in molecule or moleculardata

};

MolEnvironment.h:

class MolecularEnvironment : public TclObject {

private:

static MolChannel* mol channel;

vector< Lattice*> container;

vector< Molecule*> species;

vector< ReactionChannel*> reaction channel ;

latticeMapMapMap lattice structure;

long seed;

Randomizer* random;

public:

MolecularEnvironment();

MolecularEnvironment(MolChannel*);

static void setChannel(MolChannel* m);
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Lattice* getLattice(MolPosition*);

Lattice* getLattice(int, int, int);

Lattice* getLattice(Lattice*, int);

void setLattice(Lattice*, int, int, int);

void setLattice(Lattice*);

void addLattice(Lattice*);

void addLattices(vector< Lattice*>);

void print();

void printOzel();

void deleteLattice(Lattice*);

void deleteLattice(Lattice*, int);

void addSpecies(Molecule* m);

void addReactionChannel(Molecule*, Molecule*, double);

void addReactionChannel(ReactionChannel*);

vector< Lattice*> getContainer();

vector< Molecule*> getSpecies();

vector< ReactionChannel*> reaction channel();

static double temperature;

static double viscosity;

static double lambda;

static double motorVelocity;

protected:

int command(int argc, const char*const * argv);

};

Lattice.h:

class Lattice {

private:

static MolecularEnvironment* me;

Lattice* neighbours[6];

int lattice ID;

map< string,int> currentState;
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map< string,int> tempState;

int assignLatticeID();

static int currentLatticeID;

MolPosition* centre point;

int type;//CYTOSOL,MEMBRANE,VITRO,VESICLE

MolNode* node ;

public:

Lattice();

Lattice(MolPosition*);

Lattice(MolPosition*, MolNode*);

static void setMolecularEnvironment(MolecularEnvironment* m);

int getLatticeID();

void den();

MolPosition* getPosition();

void addMolecule(Molecule* m, int number);

void addMoleculeInitially(Molecule* m, int number);

void removeMolecule(Molecule* m);

void addLink(Lattice*, int t);

Lattice* getNeighbourLattice(int);

bool operator==(const Lattice& other) const;

map< string,int> inline getCurrentState();

map< string,int> inline getTempState();

bool finalizeState(Molecule*, int);

void finalizeState(Molecule*);

void inline setLatticeID(int l);

void print();

void printMoleculeInfo();

void printMoleculeInfoOzel();

bool moleculeTypeExist(Molecule*);

int getMoleculeNumber(Molecule*);

int getMoleculeNumberT(Molecule*);

void inline setType(int a);
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int inline getType();

bool checkReactionPossibility();

MolNode* node();

void zeroise();

void zeroise(Molecule*);

};

Molecule.h:

class Molecule : public TclObject {

private:

long assignMoleculID();

static long currentMoleculeID;

int sender id;

int receiver id;

long moleculID;

string type;

double diffusion time;//diffusion time to diffuse a lattice

int genus;//RECEPTOR or LIGAND

double diffusionCoefficient;//D

double radius;

static double radii;

public:

Molecule();

Molecule(string);

Molecule(string, double);

long getMoleculID();

string inline getType();

double getDiffusionTime();

void inline setDiffusionTime(double t);

bool operator==(const Molecule& other) const;

void inline setGenus(int a);

int inline getGenus();
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void inline setDiffusionCoefficient(double d);

double inline getDiffusionCoefficient;

void print();

static double default coef;

protected:

int command(int argc, const char*const * argv);

MolNode* node ;

};

MolecularDataUnit.h:

class MolecularDataUnit {

private:

Molecule* mol ;

int amount ;

MolecularDataUnit* next ;

Lattice* captured lattice;

public:

MolecularDataUnit() : next (NULL), captured lattice(NULL){}

MolecularDataUnit(Molecule* m, int q, Lattice* lat) :

next (NULL), mol (m), amount (q), captured lattice(lat){}

MolecularDataUnit* next();

MolecularDataUnit* next(MolecularDataUnit* n);

Molecule* mol();

int amount();

Molecule* mol(Molecule* m);

int amount(int q);

void setLattice(Lattice* l);

Lattice* getLattice();

};

MolecularData.h:

class MolecularData : public Packet {
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private:

bool direction ;

MolecularDataUnit* data header;

MolecularDataUnit* last unit;

MolNode* node ;

int com type;

double ts ;

public:

MolecularData(MolNode* n);

MolecularData(MolNode*, Molecule*, int);

MolecularData(MolNode*, Molecule*, int, Lattice*);

void up();

void down();

bool direction();

void set direction(bool d);

int get molecule(Molecule* m);

void set molecule(Molecule* m, int i, Lattice* lat);

void set molecule(Molecule* m, int i);

MolecularDataUnit* data();

void print();

MolNode* node();

int comType();

MolecularData* copy();

void timestamp(double t);

double timestamp();

void zeroise();

};

MolLink.h:

class MolLink : public Connector {

public:

MolLink(MolNode*);
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void recv(Packet* p, Handler*);

void send(Packet* p, Handler*);

double sendingInterval();

double receivingInterval();

SendingHandler* shTimer();

ReceivingHandler* rhTimer();

PropagationHandler* phTimer();

Event intr();

double txtime();

Lattice* senderConnection();

Lattice* receiverConnection();

MolecularEnvironment* molenv();

MolNode* sender();

MolNode* receiver();

protected:

int command(int argc, const char*const* argv);

static double sendingInterval ;

static double receivingInterval ;

Event intr ;

SendingHandler* shTimer ;

ReceivingHandler* rhTimer ;

PropagationHandler* phTimer ;

MolNode* sender ;

MolNode* receiver ;

MolecularEnvironment* molenv ;

};

Reaction.h::

class Reaction : public TclObject, public Handler {

public:

vector< ReactionChannel*> allReactions;

Reaction();
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Reaction(MolChannel*);

void addReactionChannel(ReactionChannel*);

void addReactionChannel(Molecule*, Molecule*, double);

void print();

double get reaction time(double tau);

Event* event instance();

virtual void handle(Event*){}

MolChannel* channel();

void setChannel(MolChannel*);

protected:

int command(int argc, const char*const * argv);

MolecularEnvironment* molenv;

Randomizer* r;

long seed;

MolChannel* channel ;

double t; /*current simulation time*/

Lattice* lattice ;//current lattice

ReactionChannel* reaction channel ;//current reaction channel

};

GillespieReaction.h:

class ReactionGillespie : public Reaction {

public:

ReactionGillespie():Reaction(){}

ReactionGillespie(MolChannel* m):Reaction(m){}

virtual void handle(Event*);

void gillespie(Lattice*, double);

void react(Lattice*, double);

};

ReactionBerg.h:

class ReactionBerg : public Reaction {
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public:

ReactionBerg():Reaction(){}

ReactionBerg(MolChannel* m):Reaction(m){}

virtual void handle(Event*);

void bergReaction(Lattice*);

};

ReactionNo.h:

class ReactionNo : public Reaction {

public:

ReactionNo():Reaction(){}

ReactionNo(MolChannel* m):Reaction(m){}

virtual void handle(Event*);

void simpleReaction(Lattice*);

};

ReactionChannel.h:

class ReactionChannel : public TclObject {

private:

Molecule* A;

Molecule* B;

double c;

int reactionNumber;

public:

Molecule* getA();

Molecule* getB();

ReactionChannel();

ReactionChannel(Molecule*, Molecule*, double);

void react(Lattice*);

double getPropensityValue(Lattice*);

void incReactionNumber();

int getReactionNumber();
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Molecule* get ligand(MolNode*);

void print();

protected:

int command(int argc, const char*const * argv);

};
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