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ABSTRACT 

MULTIPLE HYPOTHESIS TRACKING FOR 

MULTIPLE VISUAL TARGETS 

 
Türker, Burcu 

 
M.Sc., Department of Electrical and Electronics Engineering  
Supervisor: Prof. Dr. M. Kemal Leblebicioğlu 
Co-supervisor: Prof. Dr. Gözde Bozdağı Akar 

 
 

April 2010, 119 pages 
 
 

Visual target tracking problem consists of two topics: Obtaining targets from 

camera measurements and target tracking. Even though it has been studied for more 

than 30 years, there are still some problems not completely solved. Especially in the 

case of multiple targets, association of measurements to targets, creation of new 

targets and deletion of old ones are among those. What is more, it is very important 

to deal with the occlusion and crossing targets problems suitably. We believe that a 

slightly modified version of multiple hypothesis tracking can successfully deal with 

most of the aforementioned problems with sufficient success. Distance, track size, 

track color, gate size and track history are used as parameters to evaluate the 

hypotheses generated for measurement to track association problem whereas size 

and color are used as parameters for occlusion problem. The overall tracker has 

been fine tuned over some scenarios and it has been observed that it performs well 

over the testing scenarios as well. Furthermore the performance of the tracker is 
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analyzed according to those parameters in both association and occlusion handling 

situations. 

Keywords: Visual Surveillance, Mixture of Gaussians Method, Moving Object 

Detection, Multiple Hypothesis Tracking.  
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ÖZ 

ÇOKLU HİPOTEZ YÖNTEMİ İLE ÇOKLU GÖRSEL 

HEDEF TAKİBİ 

 
Türker, Burcu 

 
Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 
Tez Yöneticisi: Prof. Dr. M. Kemal Leblebicioğlu 
Ortak Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar 
 

 
Nisan 2010, 119 sayfa 

 
 

Görsel hedef takibi problemi kamera ölçümlerinden hedeflerin elde edilmesi ve 

hedef takibi olmak üzere iki temel konudan oluşur. 30 yılı aşkın süredir bu konuda 

çalışmalar yapılmaktadır ancak halen bazı problemler tamamen çözülmemiştir; 

bunların başında birden fazla hedef takibi, ölçümlerin hedefler ile eşleştirilmesi, 

yeni hedeflerin oluşturulması ve eski hedeflerin silinmesi gibi problemler yer 

almaktadır. Ayrıca hedeflerin örtüşmesi ve çapraz geçişleri de hedef takibinde 

çözümlenmesi gereken önemli konulardandır. Çoklu hipotez yönteminin bir miktar 

uyarlanması ile sözü geçen problemlerin çoğunun çözümünde önemli ölçüde başarı 

elde edileceğine inanmaktayız. Ölçüm-hedef eşleştirme hipotezlerini 

değerlendirmek için uzaklık, hedef büyüklüğü, hedef rengi, kapı genişliği ve hedef 

geçmişi parametre olarak kullanılırken hedeflerin örtüşmesi problemini çözmek için 

hedef rengi ve hedef büyüklüğü değerlendirme parametresi olarak kullanılmıştır. 

Tasarlanan hedef takipçisi bazı senaryolar üzerinde ayarlandıktan sonra test 

senaryoları üzerinde denenmiş ve iyi bir performans gösterdiği gözlenmiştir. Ayrıca 
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hedef takipçisinin ölçüm-hedef eşleştirme ve hedeflerin örtüşmesi problemlerinin 

çözümündeki başarısı bu parametrelere göre analiz edilmiştir. 

Anahtar Kelimeler: Görsel Gözetim, Gauss’ların Karışımı Yöntemi, Hareketli 

Nesnelerin Tespiti, Çoklu Hipotez Yöntemi. 
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CHAPTER 1  

 

INTRODUCTION 

Visual surveillance is one of the popular research areas in computer vision as a 

result of the society’s increasing needs especially in security issues and the 

developments in computer technology. Visual surveillance systems are considered 

as a solution to security problems in both civilian and military areas. Crowded 

places such as airports, train stations, banks and strategically critical regions like 

country borders are the major application areas of these systems. Furthermore, in 

traffic monitoring, visual surveillance systems are becoming more important 

because of their additional ability of recording the violations of traffic rules. As 

computer technology improves, processor speeds and capacities increase and this 

makes implementing complex and computationally loaded algorithms possible. 

Furthermore, as camera technology develops, output quality and zoom ability of 

cameras increase and their sizes gets even smaller. Therefore cameras can be 

mounted anywhere and the detection of human’s face mimics is even possible. 

Visual surveillance systems monitor and report the activities in a specified area by 

analyzing the data coming from the video cameras or visual sensors which are 

placed in the region of interest. These cameras can be fixed or placed on pan-tilt 

devices. The data gathered from video cameras is analyzed by computers or human 

operators or both. In traditional surveillance systems, human effort is utilized for the 

analysis of the activities from camera outputs, whereas, computers are used for this 

purpose in automated systems. In recent years, automated surveillance systems are 

taking the place of traditional ones because of their advantages such as being 

cheaper and more reliable. A computer can analyze the data from many cameras at 
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the same time, however many human operators are needed to do the same job; 

therefore from this respect, traditional systems are more expensive. Besides, in 

parallel with the technological developments, there is a decrease in camera and 

computer costs. Furthermore, the performance of traditional systems is highly 

dependent on human operators’ concentration, making these systems less reliable. 

An automated visual surveillance system consists of three basic steps which are 

information coming from one video camera or from well-spaced camera nets, 

motion detection and target tracking. In some applications, data (information 

coming from many cameras) fusion step is performed in the first place whereas in 

some other applications it is performed in late steps. Furthermore, in some 

surveillance implementations, motion detection and target tracking steps are 

realized together as one step. There may be some additional abilities of the system 

such as motion or target recognition and action decision (specified motion or target 

recording and alarm giving on specified conditions). The general flow of visual 

surveillance systems is shown in Figure 1-1. 
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Figure 1-1 General flow of visual surveillance systems 

The researches on surveillance systems are mostly concentrated on improving the 

performance of the system in terms of motion detection by making it robust to the 

dynamic changes in the environment and target tracking by solving the problems 

such as occlusions and tracking targets passing behind an object.  

1.1 Scope of the Thesis 

The aim of the thesis is to develop an automatic multiple object detection and 

tracking system. The developed system is composed of two parts: 1) Moving object 

detection based on Gaussian Mixture Model (GMM) and 2) Moving object tracking 

based on Multiple Hypothesis Tracking (MHT).  
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In moving object detection, first the foreground objects are detected by GMM. The 

algorithm is tested with different learning rates. Then a statistical method is applied 

for shadow removal and after that erosion, dilation and connected component 

labeling operations are performed on these detected foreground parts. 

In moving object tracking part of the system, multiple hypothesis tracking method 

is applied which is capable of tracking multiple objects with track initiation, track 

confirmation and track deletion. Hypothesis based MHT is implemented to solve 

the observation-to-track association problem of multiple target tracking. In addition 

to distance feature as in standard MHT [24], color, size, gate size and track history 

features are also used for solving the association problem. Problematic cases 

including occlusion, tracking targets passing behind an object and tracking 

temporarily undetected targets are handled. 

The performance of the developed system is analyzed through extensive 

simulations. First analysis aims to examine the effects of the duration of the 

background training period on tracking performance. The second analysis aims to 

see the sensitivity of the tracking performance on the features that are utilized for 

observation-to-track association. Finally, the third analysis examines the sensitivity 

of the occlusion handling performance on the features that are utilized for the 

separation of occlusion participants. 

1.2 Outline of the Thesis 

In Chapter 2, the related studies on the moving object detection and moving object 

tracking parts of visual surveillance systems are presented. 

In Chapter 3, moving object detection using mixture of Gaussians method is 

described and the results of the implementation of the proposed method are 

presented. Shadow removal using a statistical method, noise removal using 

morphological operations such as erosion and dilation and connected component 

labeling are also described in this chapter. 
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In Chapter 4, the steps of moving object tracking using multiple hypothesis tracking 

method is presented in detail and the results of the implementation of the proposed 

method are presented. Track confirmation and occlusion handling issues are also 

described in this chapter.  

In Chapter 5, the details of the performance analysis of the developed system are 

presented. In the first part of the analysis, the effects of the duration of the 

background training period on tracking performance; in the second part, the 

sensitivity of the tracking performance on the features that are utilized for 

observation-to-track association and in the third part, the sensitivity of the occlusion 

handling performance on the features that are utilized for separation score 

calculation are examined. 

In Chapter 6, the summary of the thesis is presented and future work is discussed. 
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CHAPTER 2  

 

A SHORT SURVEY ON VISUAL SURVEILLANCE 

Visual surveillance systems consist of three basic parts which are moving object 

detection, moving object tracking and multiple target tracking. This chapter 

summarizes the latest studies in the literature related with the scope of the thesis. 

2.1 Moving Object Detection 

The first part of a visual surveillance system is generally moving object detection 

which is the process of distinguishing the moving parts of video streams. The 

following parts of the system use the output of this part; therefore the performance 

of the whole system is highly dependent on the performance of the moving object 

detection part. There may be some difficulties in detection of moving objects such 

as repetitive motion and unstable illumination depending on the input video stream. 

The methods of moving object detection are grouped under three main categories 

according to [1], [7]: temporal differencing, background subtraction and optical 

flow. 

2.1.1 Temporal Differencing 

Temporal differencing method uses the intensity differences of each pixel between 

consecutive frames to make a decision whether a pixel is part of background or a 

moving object. The pixels that have differences greater than a threshold are 

considered as foreground where as the pixels with smaller differences are 

considered as background. Here, the determination of the threshold value has great 
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importance. The simplest way to determine the moving parts of a video frame using 

this method is to use the intensity difference of consecutive frames pixel by pixel 

[12] and motion image detection is formulated in (1-1) and (1-2).  

 1−Ι−Ι=∆ nnn  (1-1) 

 







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,

 (1-2) 

where In be the intensity of the nth frame, ∆n be the intensity difference of two 

consecutive frames, Mn be the motion image and T be the threshold value.  

Here the determination of the motion image detection threshold value is important 

which is dependent on the application and can be set experimentally. According to 

[7] the disadvantage of this technique is its dependency on the speed of the motion 

image whereas it has the advantage of being adaptive to dynamic environments and 

computationally efficient. 

2.1.2 Background Subtraction 

Background subtraction uses a background model to detect moving parts of the 

video frames and is one of the most common moving object detection methods. 

This method generates a background model that designates the video sequence 

without moving parts and performs the comparison of the current frame with the 

background model. Background subtraction approaches are categorized according 

to their way of background modeling.  

Pfinder [21] which is a real-time person finder system models each pixel of the 

background using Gaussian distribution. The color of the pixels is modeled in terms 

of their mean and covariance values. A statistical color and shape model is used for 

the representation of the moving parts. Pfinder also uses an adaptive filter to 

compensate for illumination changes and the differences in the background model 

caused by the motion of the human. 
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Instead of modeling each background pixel with a single Gaussian model, [22] 

proposes a method, mixture of Gaussians, that models every background pixel with 

a number of Gaussian distributions. Based on the persistence and the variance of 

each of the Gaussians of the mixture, they determine which Gaussians may 

correspond to background colors. This method performs well in backgrounds with 

cluttered regions and slowly moving parts. The details of the mixture of Gaussians 

method is given in 3.1.1. 

Yang et al. [5] proposes a method using two-layer Gaussian mixture model for the 

case of changing environment. One of the layers models the pixels that change 

gradually whereas the other layer models the pixels that change abruptly. This 

method models the dynamic scene accurately and is good at transparent problem 

solution. 

Haritaoğlu [26] models each pixel of the background with its minimum and 

maximum intensity values and maximum intensity difference between consecutive 

frames. 

In this study mixture of Gaussians method is chosen as the moving object detection 

method. 

2.1.3 Optical Flow 

Optical flow based motion detection [26] uses characteristics of flow vectors of 

moving objects over time to detect moving regions in an image sequence. For 

example, Meyer et al. [34] compute the displacement vector field for the extraction 

of articulated objects. This kind of methods are computationally complex and noise 

sensitive, however they have the advantage of being able to detect the moving 

objects even in the case of moving cameras. 

2.2 Moving Object Tracking  

The second part of visual surveillance systems is moving object tracking which 

follows the detection of moving objects in video frames. The main idea of this step 
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is to obtain the association of moving objects between consecutive frames. These 

association approaches may differ from each other depending on the methods they 

utilize to correlate the moving objects. According to [26], tracking methods are 

divided into four major categories: region-based tracking, active-contour-based 

tracking, feature-based tracking and model-based tracking. 

2.2.1 Region-Based Tracking 

In region-based tracking methods moving object region differences between the 

consecutive frames are considered. 

The study by McKenna on tracking groups of people [13] is a good example of 

region-based tracking in which tracking is realized at three levels of abstraction: 

regions, people and groups. McKenna et al. [13] defines regions as connected 

components that have been tracked for at least a number frames with a bounding 

box, a support map, a timestamp and a tracking status. People are defined as one or 

more regions grouped together with an appearance model based on color; and 

groups are defined as one or more people grouped together. Track initializations, 

deletion, merging and splitting issues are performed based on regions. It is also 

stated that region-based tracking together with color appearance model gives 

successful results even in occlusion cases. 

2.2.2 Active-Contour-Based Tracking 

Active contour-based tracking algorithms track objects by representing their 

outlines as bounding contours and updating these contours dynamically in 

successive frames [26]. 

Tracking using “snakes” is one of the active-contour-based tracking methods and it 

is based on snake energy minimization. Snake active-contour models, firstly used 

by Kass et al. [15] as a basis for interactively matching 3D models to images and 

tracking. 
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Paragio and Deriche [14] propose a framework that links the minimization of a 

geodesic active contour objective function to the detection and the tracking of 

moving objects and this framework is implemented using the level set method and 

can successfully deal with the challenging problem of tracking non-rigid objects 

that cannot be easily parameterized.  

2.2.3 Feature-Based Tracking  

Feature-based tracking algorithms are mostly used in motion recognition studies. 

This kind of algorithms are defined [26] as the algorithms that perform recognition 

and tracking of objects by extracting elements, clustering them into higher level 

features and matching the features between images. The features that are used for 

correspondence are color, perimeter, area, centroid, distance. 

A robust method for the recognition of activities like walking is proposed in [28] 

where a feature-based tracking algorithm is used. Tracking of moving objects is 

performed following the centroid features of the objects between consecutive 

frames and the recognition part of the method is based on low-level features of 

motion. 

2.2.4 Model-Based Tracking  

A tracking algorithm that combines motion and appearance information into an 

observation model and uses a particle filter framework for tracking the objects in 

subsequent frames is proposed in [1]. A simple adaptive Markov model is used as 

the adaptive state transition model with adaptive velocity and noise. Next, the 

estimation of the unknown state vector is performed using a particle filter. It is 

stated that this algorithm is very robust even in challenging tracking conditions like 

static occlusion and cluttering background.  

2.3 Multiple Target Tracking 

Almost all of the visual surveillance systems deals with multiple targets and 

multiple target tracking part is one of the most important parts of these systems. The 
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detection of moving objects (observations) is followed by association of 

observations with targets. The accuracy of this association has great importance 

since next states of the associated targets are predicted using the output of this 

correspondence.  

Multiple target tracking methods evaluates the observations in each frame and 

decides whether the observation initiates a new target or updates an existing target. 

While making this decision the observations within the predicted area of the targets 

are taken into consideration. 

The popular and basic target association problem is closely spaced multiple targets 

case in which target 1 and target 2 shares two observations in their predicted areas 

[25]. This problematic case is shown in Figure 2-1, where P1 and P2 denote the 

predicted positions of the targets and O1, O2 and O3 denote the positions of the 

observations. 

 

 

Figure 2-1 Closedly spaced multiple targets 

A conventional MTT system consists of observation-to-track association, track 

maintenance, filtering and prediction and gating computations stages [18]. The 

block diagram of this system is shown in Figure 2-2.  
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Figure 2-2 Basic elements of a conventional MTT system 

There are many solutions of observation-to-track association problem; three of 

which are explained here: Nearest Neighbor Method, Global Nearest Neighbor 

Method and Multiple Hypothesis Tracking Method. The performance of these 

methods can be evaluated according to their simplicity, computational load and the 

concerned tracking problem itself. 

2.3.1 Global Nearest Neighbor  

Global Nearest Neighbor (GNN) method [18] finds the most likely assignment of 

input observations to existing tracks. The term global is used to refer to the fact that 

the assignment is made considering all possible (within gates) associations under 

the constraint that an observation can be associated with at most one track. 

Blackman [18] defines gate as the predicted area in which the track can appear 

based on the maximum acceptable measurement plus tracking prediction error 

magnitudes. 

For the case in Figure 2-1, O1 would be assigned to track 1, O2 would be assigned 

to track 2 and O3 would initialize a new track called track 3. Here, the most 

important assumption is an observation can only be produced by a single target. 

Blackman describes the targets having no common observation as compatible 

targets. According to [18] Global Nearest Neighbor assignment solution contains 

only compatible tracks and unassigned observations initiate new track candidates. A 
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track candidate is validated after a number of consecutive frames in which the 

existence of that track is confirmed. The number of the frames needed to confirm its 

existence can be set to 3. In a similar manner, an existing track can be deleted after 

confirming its absence with a number, say 5, of consecutive frames. Some other 

rules can be introduced for track confirmation and deletion. After assignment of 

observations to tracks and track confirmation is performed, next positions of the 

tracks are estimated. Kalman Filter is a widely used technique for next state 

estimation.  

2.3.2 Nearest Neighbor 

Nearest Neighbor (NN) method [18] finds the closest observation to existing tracks. 

Different from GNN, an observation can be shared with another track, in other 

words, tracks do not have to be compatible with each other. The observation-to-

track assignment is performed as in GNN concerning the observations in the gate of 

the tracks.  

For the example in Figure 2-2, the closest observations are chosen for each track. 

Let us assume the nearest observation to track 1 is O1 and track 2 to O2; then, O1 is 

assigned to track 1, O2 is assigned to track 2 and O3 would initialize a new track 

called track 3. The remaining part of the method is the same as GNN Method. A 

track candidate is validated after a number of consecutive frames at which the 

existence of that track is confirmed. The number of the frames needed to confirm its 

existence can be set to 3. In a similar manner, an existing track can be deleted after 

confirming its absence with a number of consecutive frames, say 5. Some other 

rules can be introduced for track confirmation and deletion. After assignment of 

observations to tracks and track confirmation is performed, subsequent positions of 

the tracks are estimated.  

2.3.3 Multiple Hypothesis Tracking 

Multiple Hypothesis Tracking (MHT) algorithm is developed by Reid in 1979 [24] 

and several implementations of this algorithm are performed during the years up to 
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now. Cox and Leonard [29] propose a multiple hypothesis approach for building 

and maintaining a world model for an autonomous robot vehicle. Cox and 

Hingorani [20] present an efficient implementation of Reid’s Multiple Hypothesis 

Tracking algorithm using the k-best hypotheses. They describe MHT as being the 

only statistical data association algorithm that integrates all the capabilities of track 

initiation, track termination, track continuation, explicit modeling of spurious 

measurements and explicit modeling of uniqueness constraints.  

Multiple Hypothesis Tracking is an iterative algorithm. Instead of making 

observation-to-track assignments with the current data, this method generates 

hypotheses for the solution of the assignment problem. The iteration begins with 

some hypotheses for the solution, then for each hypothesis, each track’s position in 

the following frame is predicted. The predicted position of the track is used to 

calculate the field of observation for the following frame. The distance between the 

track and the observations in its field of observation is taken into account to 

evaluate the hypotheses for that track. After the evaluation, some hypotheses are 

killed and the remaining is used to generate new hypotheses. 

Blackman in [18] states that in problematic cases, like the one in Figure 2-1, MHT 

method generates alternative data association hypotheses and defers the association 

decision to the following frames. Hypotheses are propagated to the future and 

assignments are done using the future data, rather than deciding the assignment in 

the present frame. However, in GNN method the most likely assignment and in NN 

method the closest observation assignment is decided with the current data. 

Multiple Hypothesis Tracking is chosen as the multiple target tracking method in 

this study. 
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CHAPTER 3  

 

MOVING OBJECT DETECTION  

The first part of visual surveillance systems is moving object detection. Moving 

object detection is the step at which the detection of the foreground objects is 

performed. Since the output of the moving object detection step is used as the input 

of the tracking step in surveillance systems, the accuracy of the moving object 

detection affects the overall performance of the system. The flow diagram of 

moving object detection algorithm is given in Figure 3-1. 

Moving object detection algorithm consists of two basic steps which are foreground 

segmentation and sub-operations. In foreground segmentation step, regions 

corresponding to the moving objects are identified. This step is followed by sub-

operations step in which shadows and noise are removed and components are 

labeled. Sub-operations consist of shadow removal, morphological operations and 

connected component labeling.  
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Figure 3-1 Flow diagram of moving object detection algorithm 

3.1 Foreground Segmentation 

Foreground segmentation is mostly based on a comparison between the input frame 

and a certain background model. The different regions between the input and the 

model are labeled as foreground based on this comparison. If the background is 

static, simple frame differencing algorithms can be sufficient for foreground 

segmentation. However, for the case in which the background is dynamic, in other 

words there is a repetitive motion in the background such as swaying of tree 

branches, more complex modeling is needed. 

One of the methods which have good performance even in dynamic background 

cases is the Mixture of Gaussians method. It is an adaptive background subtraction 

method which is proposed by Grimson and Stauffer [22]. The main idea is to model 

the intensity values of each background pixel as the mixture of Gaussians and then 

compare them with the pixel values of the input frame to make the decision whether 
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the input pixel belongs to the background or not. The method proposed in [22] is 

robust to small motions in the background. 

3.1.1 Mixture of Gaussians Method 

Mixture of Gaussians method [22] is based on modeling every pixel as a mixture of 

Gaussians instead of using a single model for the entire background pixels. 

Gaussians corresponding to the background colors are identified by looking at the 

variance and persistence of each of the Gaussians. Pixels that do not fit the 

background distributions are considered foreground until there is a Gaussian that 

includes them with sufficient, consistent evidence supporting it to convert it to a 

new background mixture.  

This method adapts itself to deal robustly with dynamic environment. The model is 

successful at detecting slowly moving objects since their color variance is greater 

than the background. Repetitive variations are also learned by the background 

model. 

In Mixture of Gaussians method, the recent history of each pixel, { 1X , ..., tX }, is 

modeled by a mixture of K Gaussian distributions. The probability of observing the 

current pixel value is  
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K is determined by the available memory and computational power. Generally, K 

values from 3 to 5 are used. Also, for computational reasons, the covariance matrix 

is assumed to be of the form: 

 Ikk

2
σ=∑  (3-3) 

This assumes that the red, green, and blue pixel values are independent and have the 

same variances. While this is certainly not the case, the assumption allows us to 

avoid a costly matrix inversion at the expense of some accuracy. Using a diagonal 

covariance would allow a Gaussian to represent that a particular channel showed 

more variation. Using a full covariance matrix would allow each Gaussian to model 

its local variation with more accuracy. 

Thus, the distribution of recently observed values of each pixel in the scene is 

characterized by a mixture of Gaussians. Every new pixel of the current frame will 

be represented by one of the major components of the mixture model and used to 

update the model. 

Every new pixel value, tX , is compared against the existing K Gaussian 

distributions, until a match is found. A match is defined as a pixel value within 2.5 

standard deviations of a distribution. This threshold value is suitable for the cases 

with regions with different lightning. If none of the K distributions match the 

current pixel value, the least probable distribution is replaced with the current tX  by 

its mean value with an initially high variance, and a low prior weight. The prior 

weight of the th
k Gaussian at time t  is adjusted as follows: 

 tktktk Mww ,1,, )1( αα +−= −  (3-4) 

where α  is the learning rate and tkM ,  is ‘1’ for matched models, and ‘0’ for 

remaining models. 

The µ  and σ  for unmatched distributions remain same while matched ones are 

updated as follows: 

 ttt xϕµϕµ +−= +1)1(  (3-5) 
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where ),|( kktX σµαηϕ = . 

In order to decide what portion of the mixture model best represents background 

processes σω /  ratios are considered. First, the Gaussians are ordered by the value 

of σω / . This value increases both as a distribution gains more evidence and as the 

variance decreases. After re-estimating the parameters of the mixture, it is sufficient 

to sort from the matched distribution towards the most probable background 

distribution, because only the matched models’ relative value will have changed. 

This ordering of the model is effectively an ordered, open-ended list, where the 

most likely background distributions remain on top and the less probable transient 

background distributions gravitate towards the bottom and are eventually replaced 

by new distributions. Then the first B distributions are chosen as the background 

model, where 

 )(minarg
1
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where T is a measure of the minimum portion of the data that should be accounted 

for by the background. This takes the “best” distributions until a certain portion, T, 

of the recent data has been accounted for. If a small value for T is chosen, the 

background model is usually unimodal. If this is the case, using only the most 

probable distribution will save processing. If T is higher, a multi-modal distribution 

caused by a repetitive background motion (e.g., leaves on a tree, a flag in the wind, 

etc.) could result in more than one color being included in the background model. 

This results in a transparency effect which allows the background to accept two or 

more separate colors. 

The algorithm used in this study to apply Mixture of Gaussians method is as 

follows: 
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1. Constant parameters such as the number of Gaussian components, the 

number of background components, positive deviation threshold, learning 

rate, foreground threshold and initial standard deviation are defined. 

2. For each pixel in the frame, the initialization of the mean values for red, 

green and blue for each Gaussian are performed. 

3. For each pixel in the frame, the initialization of the standard deviation values 

for red, green and blue for each Gaussian are performed. 

4. For each Gaussian of each pixel in each frame, the difference between 

current pixel values and the means of the Gaussians is calculated. 

5. For each Gaussian of each pixel in each frame, the calculated difference 

values are compared with the standard deviation values. If difference value 

is within the limits, corresponding Gaussian components are updated; if this 

condition is not satisfied then new Gaussian components are created. 

6. For each Gaussian of each pixel in each frame, using the arithmetic mean of 

the standard deviations of red, green and blue, component rank for each 

Gaussian is calculated.  

7. Calculated ranks are sorted. 

8. Identification of foreground pixels is performed by checking whether a pixel 

value (the difference between current pixel value and the means of the 

Gaussians) is not within 2.5 standard deviations of a ranked Gaussian 

distribution. 

3.1.1.1 Results 

Foreground segmentation using Mixture of Gaussians method is tested with 

PETS2001/Dataset1/Testing/Camera1 video [30] sequence and the results are given 

in Figure 3-2. 
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(c)             (d) 
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      (g)                 (h)   

Figure 3-2 Results of foreground segmentation algorithm (a) 7th frame (b) 17th 

frame (c) 49th frame (d) 90th frame (e) 210th frame (f) 326th frame (g) 914th frame 

(h) 1321st frame 

Consequently, simulation results show that Mixture of Gaussians method models 

background successfully. Being an adaptive background modeling method makes 

Mixture of Gaussians suitable for dynamic environments such as swaying of tree 

branches and robust to lightning changes. 

3.2 Sub-Operations 

The output of the foreground segmentation process may include shadows of moving 

objects and some noise. Therefore, before moving object tracking algorithm some 

other operations are applied to the output of foreground segmentation algorithm to 

remove shadows and noise and label the detected objects. These operations are 

shadow removal, morphological and connected component labeling. 

3.2.1 Shadow Removal 

The output of foreground segmentation process includes shadows of the moving 

objects since the intensity values of shadows of moving objects are different from 
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the intensity values of background. The need for the removal of shadows from the 

detected parts has two basic reasons. The first reason is that shadows cause false 

segmentation of the objects in terms of their features such as shape and size. The 

second reason is occlusion may occur as a result of large shadows. Therefore for 

accurate detection of moving parts in video frames, shadow removal is very 

important. 

Shadow detection method proposed in [16] uses a color model that separates 

brightness from chromaticity component. This method is based on the brightness 

distortion iα  and the chrominance distortion iCD  values of pixels. The values iα  

and iCD  obtained are used to classify a pixel in four categories: foreground, 

background, shadowed background and highlighted background. The shadowed 

regions are identified as the regions with similar chromaticity, but lower brightness 

than the background model. 

The brightness distortion is obtained minimizing the equation (3-8). 

 ( ) ( )2

iiii EI ααφ −=  (3-8) 

The color distortion of a pixel i  is given by the equation (3-9). 

 iiii EICD α−=  (3-9) 

In the training period, the background is modeled statistically and each pixel is 

modeled by a 4-tuple < iE , iδ , ia , ib > where iE  is the expected color value, iδ is the 

standard deviation of color value, ia  is the variation of the brightness distortion, 

and ib is the variation of the chromaticity distortion of the th
i pixel. The expected 

color value of pixel i  is given by ( ) ( ) ( )[ ]iBiGiREi µµµ ;;=  where ( )iRµ , ( )iGµ  and 

( )iBµ  are the arithmetic means of the th
i pixel's red, green, blue values computed 

over N  background frames. Here ia  and ib  are calculated as follows: 
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Using the calculated pixel components and suitable thresholds, pixel classification 

is performed. This method classifies a given pixel into four categories. A pixel in 

the current image is 

• Original background, if it has both brightness and chromaticity similar to 

those of the same pixel in the background image. 

• Shaded background or shadow, if it has similar chromaticity but lower 

brightness than those of the same pixel in the background image. 

• Highlighted background, if it has similar chromaticity but higher brightness 

than the background image. 

• Moving foreground object, if the pixel has chromaticity different from the 

expected values in the background image. 
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The method proposed in [16] is an overall method that detects both moving parts 

and shadows. In our case, since Mixture of Gaussians (MoG) method is used for 

foreground subtraction, we use the proposed algorithm after MoG in order to 

identify the shadowed regions that are detected by MoG. Therefore, in our study, 

the method proposed in [16] is modified and applied using the following algorithm: 

1) Obtain expected color values for red, green and blue for each pixel; these are 

the arithmetic means of the th
i pixel's red, green, blue values computed over 

N background frames. 
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2) Obtain standard deviation values for red, green and blue for each pixel; these 

are the standard deviation of the th
i  pixel's red, green, blue values computed 

over N frame of the background frames. 

3) Calculate the variation of the brightness distortion for each pixel. 

4) Calculate the variation of the chromaticity distortion for each pixel. 

5) Construct the mask. 

6) Using the mask, classify each pixel as foreground, background, shadowed 

background or highlighted background. 

Shadow removal using the proposed method is tested with 

PETS2001/Dataset1/Testing/Camera1 video [30] sequence and the results are given 

Figure 3-3. 

  

  (a)                                                          (b) 

Figure 3-3 Result of shadow removal algorithm (a) before shadow removal (b) after 

shadow removal 

3.2.2 Morphological Operations 

Morphological operations are image processing operations that process images 

based on shapes and they are used to remove the noise in the image which is 

obtained by moving object segmentation process. Mostly, morphological operations 

work mostly on binary images and apply structuring elements to the binary input 
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image, creating an output image of the same size. In most of the cases, the 

structuring element is sized nn ×  and has its origin at the center pixel. It is shifted 

over the input image and at each pixel of the image its elements are compared with 

the set of the underlying pixels. If the two sets of elements match the condition 

defined by the operator, the pixel underneath the origin of the structuring element is 

set to a pre-defined value. Dilation and erosion are basic operations and can be 

combined into more complex sequences. The combination of erosion and dilation 

constitutes new operations called opening and closing. They are the most useful 

morphological filtering operations. 

3.2.2.1 Erosion 

Erosion operation shrinks foreground objects by etching away in other words 

eroding their boundaries. Individual pixels in the foreground image are removed by 

erosion using a structuring element in (3-13): 
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The structuring element is shifted over the image, if the origin of it coincides with a 

background pixel in the image, no operation is performed. If the origin of the 

structuring element coincides with a foreground pixel in the image and any of the 

surrounding ‘1’ valued pixels in the structuring element coincides with a 

background pixel then the value of the pixel in the image is changed to a ‘0’. 

Shadow removal using the proposed method is tested with 

PETS2001/Dataset1/Testing/Camera1 video [30] sequence and the results are given 

Figure 3-4. 
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 (a)                                                          (b) 

Figure 3-4 Result of erosion operation (a) before erosion (b) after erosion 

3.2.2.2 Dilation 

The dual operation of erosion is dilation. Dilation allows objects to expand, fills in 

small holes and connects disjoint object. A frequently used structuring element is 

given in (3-14). 
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The structuring element is slided across the image, if the origin of it coincides with 

a background pixel in the image, no operation is performed. If the origin of the 

structuring element coincides with a foreground pixel, “or” logic operation is 

performed on all pixels within the structuring element. 

In order to remove the noise in the image, erosion and dilation can be applied to the 

binary image more than once and in different orders. In this study, after two erosion 

operations, three dilation operations are performed on the image. 

Shadow removal using the proposed method is tested with 

PETS2001/Dataset1/Testing/Camera1 video [30] sequence and the results are given 

Figure 3-5. 
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 (a)                                                          (b) 

Figure 3-5 Result of dilation operation (a) before dilation (b) after dilation 

3.2.3 Connected Component Labeling 

After morphological operations, connected component labeling is applied to the 

foreground image. Connected component labeling identifies the objects in the 

binary image by finding the connected components in the image and labeling them.  
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CHAPTER 4  

 

MOVING OBJECT TRACKING 

Moving object tracking is one of the most important parts of visual surveillance 

systems. Moving object detection step is followed by moving object tracking which 

is based on the association of observations with tracks. Here, observations are the 

detected moving objects and the association is performed comparing the features of 

observations in the current frame with the features of tracks in the previous frames. 

The success of a surveillance system strongly depends on the accuracy of the 

observation-to-track association.  

In this study, Multiple Hypothesis Tracking is used as the moving object tracking 

method. The method is evaluated using PETS2001 [30] and PETS2006 [31] data 

sets. 

4.1 Multiple Hypothesis Tracking 

Multiple Hypothesis Tracking is an iterative tracking method. Instead of making 

observation-to-track assignments with the current data, this method generates 

hypothesis for the solution of this assignment problem [18]. The iteration begins 

with some hypothesis for the solution, then for each hypothesis, each track’s 

position is predicted for the following frame. The predicted position of the track is 

used to calculate the field of observation for the next frame. Hypotheses are 

evaluated using the distances between the tracks and the observations in their fields 

of observation. According to the evaluation, some hypotheses are killed and the 

remaining is used to generate new hypotheses. 
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In problematic cases, MHT method generates alternative data association 

hypotheses and postpones the decision to the forthcoming frames. Rather than 

deciding the assignment in the present frame, hypotheses are carried to the future 

and assignments are done using the future data. However, in GNN method the most 

likely assignment and in NN method the closest observation assignment is decided 

with the current data.  

Reid [24] suggests an algorithm for MHT method, this algorithm consists of four 

major parts which are Cluster Formation (CLUSTR), Hypothesis Generation 

(HYPGEN), Reduction (REDUCE) and Mash. The flow diagram of his algorithm is 

given in Figure 4-1. 

In the CLUSTER step of the algorithm, measurements are associated with previous 

clusters. The entire measurements and targets are divided into independent groups 

which are called clusters. By this way, in parallel, measurement-to-target 

association is considered in each cluster independently. A new target that does not 

belong to existing clusters forms a new cluster. A measurement that belongs to 

more than one previously independent cluster combines these clusters and the 

resulting cluster is called as a super cluster. The measurements and targets of the 

super cluster are the sum of the measurements and targets that were previously 

belonging to the cluster that forms the super cluster.  

In the HYPOTHESIS GENERATION step, in each cluster, measurement-to-track 

association hypotheses are formed. The probability of each hypothesis is calculated 

and target predictions are updated. 

The measurement oriented hypothesis generation technique is used as the 

hypothesis generation technique in which for each measurement every possible 

track is listed. While doing this, some rules are considered and these are; the 

existence of tentative tracks should be implied by previous related hypothesis, a 

track can be associated with only one measurement in one data set and a track can 

only be associated with a measurement if the measurement is in the gate of this 

track. 



31 

 

Initialization 
(A priori targets)

Recieve New Data Set

Perform Target Time 
Update

HYPGEN:
Form new set of 

hypotheses, calculate 
their probabilities, and 
perform a target 

measurement update for 
each hypothesis of each 

cluster 

CLUSTR:
Form new clusters,  
identifying which 
targets and 

measurements are 
associated with each 

other

MASH:
Simplify hypothesis 
matrix of each cluster. 
Transfer tentative 
targets with uniform 

probability to confirmed 
target category. Create 
new clusters for 

confirmed targets no 
longer in hypothesis 

matrix

Stop

REDUCE:
Reduce number of 
hypotheses by 
elimination or 
combination

Return for next data 

set  

Figure 4-1 Basic flow diagram of Reid’s algorithm for MHT, [24] 
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In the REDUCE part of the algorithm, low probability hypotheses are eliminated 

and similar hypotheses are combined.  

In the MASH part, the hypothesis matrix is simplified. High probability tentative 

targets are moved to the confirmed target category and new clusters are formed for 

these targets. 

4.1.1 Hypothesis-Oriented MHT 

In hypothesis-oriented MHT implementations, measurement-to-track association 

hypotheses are carried from one scan to the next. Therefore, [18] each hypothesis 

carried from the previous scan causes an increase in the number of hypothesis and 

most of these hypotheses may be eliminated later because of their low scores 

(probabilities). Reid’s algorithm is hypothesis-oriented and the potential explosion 

of new hypotheses that may result from an expansion of the old hypotheses has 

been a barrier to the practical implementation of Reid’s algorithm. Cox et al. [20] 

proposes an efficient implementation of Reid’s algorithm that only generates 

“good” hypotheses. Cox et al. use Murty’s method [35] for finding the m-best 

solutions to the assignment problem in [20]. Using this approach, given mp(k - 1) 

hypotheses from the previous scan, the number of hypotheses formed in the current 

scan can be limited to m(k) when m is an input parameter that could be set a priori 

or, presumably, could be chosen adaptively [18]. The important principle is that the 

generation of many low probability hypotheses, which resulted from earlier 

implementations of Reid’s algorithm, is avoided. 

4.1.2 Track-Oriented MHT 

In track-oriented MHT implementations, in each scan, hypotheses are re-evaluated 

using the updated tracks. [18] Rather than maintaining, and expanding, hypotheses 

from scan to scan, the track-oriented approach discards the hypotheses formed on 

scan k - 1. The tracks that survive pruning are predicted to the next scan k where 

new tracks are formed, using the new observations, and reformed into hypotheses. 

Except for the necessity to delete some tracks based upon low probability, no 
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information is lost because the track scores, that are maintained, contain all the 

relevant statistical data. 

The disadvantage of hypothesis-oriented approach is the explosion in the number of 

hypotheses generated in each scan and carried over to the future scans. Despite its 

disadvantage, in this study hypothesis-oriented approach is used, since maintaining 

hypotheses gives overall information about all associations. However, track-

oriented approach may result in information loss. In track deletion, using 

hypothesis-oriented approach and therefore, maintaining hypotheses is very helpful 

since the tracks to be deleted can easily be understood as all the relation between 

hypotheses and tracks are kept.  

4.2 Multiple Hypothesis Tracking 

In this study, a multiple hypothesis tracking algorithm is applied to the objects 

detected in the moving object detection part of the system. The inputs of this 

algorithm are those detected objects and in the algorithm these detected objects are 

called as the observations. The observations are evaluated in each frame in terms of 

their position, size and color to achieve observation-to-track association in each 

frame of the input video.  

The algorithm used for the application of MHT method consists of seven basic parts 

and these are Distance Matrix Calculation, Cluster Formation, Hypothesis 

Generation, Hypothesis Score Calculation, Track Update, Tree Management, Track 

Confirmation and Occlusion Handling. Flow diagram of the MHT method 

algorithm used in this study is given in Figure 4-2. 
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Initialization 

Recieve New Data Set

FORM CLUSTERS:
Form independent groups (clusters) 
consisting of observations and 
tracks which are related with each 

other

Stop

CALCULATE DISTANCE 
MATRIX:

Calculate the distance between each 
observation and each track and 

identify which observation is in the 
gate of each track

FORM HYPOTHESES:
Generate observation oriented 
hypotheses assuming the possible 
conditions of observations in each 

cluster

CALCULATE HYPOTHESIS 
SCORES:

Calculate the score of each 
hypothesis in each cluster

TRACK UPDATE:
Update the track structure using 
Kalman Prediction, calculate track 

scores for each track

TREE MANAGEMENT:
Form track trees, evaluate the 

highest score hypothesis, delete the 
tree branches that are not related 
with the highest score hypoothesis

TRACK CONFIRMATION & 
OCCLUSION HANDLING:
Detected tracks are confirmed, 
detect occlusions and separate the 
occlusion participants at the end of 

the occlusion

 

Figure 4-2 Flow diagram of the algorithm used in this study to apply the MHT 

method 
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Throughout the algorithm the information of each track is stored in a structure array 

called track as shown in Table 4-1. 

Table 4-1 Track structure of nth track 

Gate width 

Coordinate 

Observation 

Delete number 

Confirmation number 

Initialization 

Covariance 

State 

Track number 

Score 

Cluster 

Manage group 

Size 

Color 

Window 
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In each frame, the values in the fields of the track structure are updated. The 

explanations of the fields of the array are: 

• Gate width: The gate width of the track, the predicted area in which the track 

can appear, is stored in this field. Initially a predefined value, then in each 

frame the predicted gate width value (using Kalman prediction) is assigned 

as the gate width. 

• Coordinate: The position information of the centroid of the track in x-y 

coordinates is stored in this field and it is a vector in the form of [x y]. Its 

initial value is the position vector of one of the observations, since in the 

first frame each observation is a track candidate. Then in each frame the 

corrected position vector (using Kalman prediction) is assigned as the 

coordinate value. 

• Observation: The indices of observations that are in the gate of the track are 

stored in this field. Its initial value is an observation index, since in the first 

frame each observation is a track candidate. 

• Delete number: The number of the consecutive frames that the track is not 

updated with an observation. Its initial value is zero. If this value reaches a 

predefined deletion number, this track is deleted. 

• Confirmation number: The number of the consecutive frames that a tentative 

track is updated with an observation. Its initial value is zero. If this value 

reaches a predefined confirmation number, this track becomes a confirmed 

track, no more a tentative track. 

• Initialization: The value of this field defines the state of the track. If the 

track is in the initialization state, this value is set to 1. Its initial value is 

zero.  

• Covariance: The covariance value is stored in this field. It is the zero matrix 

initially and then in each frame, the covariance matrix calculated using 

Kalman prediction is assigned to this field. 

• State: The state vector is stored in this field. Initially it is the zero vector and 

then in each frame the state vector calculated using Kalman prediction is 
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assigned. The state vector consists of the predicted x-y position, 

displacement in x-y coordinates differences, size, mean value of red, mean 

value of green and mean value of blue; [ x , y , x∆ , y∆ , S , Rµ , Gµ , Bµ ]. 

• Track number: The existing track number of the track is stored in this field. 

Its initial value is an observation index, since in the first frame each 

observation is a track candidate. 

• Score: The calculated score value of the track is stored in this field. Its initial 

value is zero and in each frame it is calculated from the scores of the 

hypothesis in which the track takes place. 

• Cluster: The cluster index in which the track takes place is stored in this 

field. Its initial value is an observation index, since in the first frame each 

observation forms a cluster. 

• Manage group: The manage group index in which the track takes place is 

stored in this field. Its initial value is an observation index, since in the first 

frame each observation forms a manage group. 

• Size: The size, total number of pixels, of the track is stored in this field. Its 

initial value is the size of an observation, since in the first frame each 

observation is a track candidate. 

• Color: The RGB color means of the track is stored in this field. It is a vector 

in the form of [ Rµ , Gµ , Bµ ]. Its initial value is the RGB color means of an 

observation, since in the first frame each observation is a track candidate. 

• Window: The width and length value of the window that surrounds the track 

is stored in this field. It is a vector in the form of [ width , length ], where 

width corresponds to x and length corresponds to y coordinates. Its initial 

value is the width and length values of the window that surrounds an 

observation, since in the first frame each observation is a track candidate. 

4.2.1 Distance Matrix Calculation 

Distance matrix consists of the distance information between each observation and 

each track. The distance information is important because the decision whether an 
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observation is related with a track or not is made considering the distance between 

the observation and the track. If this distance is smaller than the width of the track 

gate then, this observation is considered as related with that track. In the remaining 

part of the algorithm, this relation is examined to decide whether to update the track 

with this observation or not. Similarly, if the distance is greater than the width of 

the track gate then, this observation is considered as unrelated with that track.  

Here, track gate is the predicted area in which the track can appear in the following 

frame of the video. Track gate is calculated (predicted) in each frame for each track 

with Kalman prediction. If a track does not have any observation within its track 

gate, the width of its gate is incremented according to Kalman prediction or if a 

track is updated with an observation in its gate than the track gate is decremented 

via Kalman prediction. 

An example case is given in Figure 4-3. Here, P1 and P2 denote the predicted 

positions of the tracks T1 and T2, respectively. O1 and O2 denote the positions of 

two observations. O1 is in the track gate of P1 whereas O2 is in the gates of both 

tracks. 

 

Figure 4-3 Example case with two existing tracks and two observations 

Distance matrix is an mxn matrix where m is the number of observations and n is 

the number of tracks. In order to obtain the distance matrix, position information of 

observations and tracks are used. The position information consists of x-y 
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coordinate values. The distance is the Euclidean distance between each observation 

and each track and it is calculated as the square root of the sum of the squares of x 

and y coordinates differences between two points. If the Euclidean distance is 

smaller than the width of the track gate then, this observation is considered as 

related with that track. This relation is shown in (4-1) and detailed below. 

 ( ) ( ) gateototji ryyxxd
ii

<−+−=
22

,  (4-1) 

To do this, for each track, 

• An (mx1) matrix is formed whose elements are the same representing the x-y 

coordinates of that track, ( )tt yx , , 

• An (mx1) matrix is formed whose elements represent the x-y positions of m 

observations, ( )
ii oo yx , , 

• Second matrix is subtracted from the first one, ( ) ( )
ii otot yyxx −− , , 

• The square root of sum of the squares of these differences is taken in terms 

of x-y coordinates as in (4-2). 

 ( ) ( )22

, ii ototji yyxxd −+−=  (4-2) 

This value, the distance between the observations and the track, is compared with 

the gate width of that track. If the distance is greater, a relatively large number (it is 

chosen as 100), is assigned instead of that distance value. Then this number 

designates an observation that is outside the gate of this track. 

After these calculations, a distance matrix, is formed whose ( )th
ji,  element, jid , , is 

the distance between the th
i  observation and thj  track if the th

i  observation is in the 

gate of the thj track and 100 otherwise.  

The distance matrix of the example is given in Table 4-2. Here, the gate widths of 

the tracks T1 and T2 are both chosen as 20. ( )th2,1  element is 100 since O1 is not in 
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the gate of T2 and other elements of the matrix represent the corresponding distance 

values. 

Table 4-2 Distance matrix for the example case 

Observation\Track T1 T2 

O1 5 100 

O2 10 10 

In addition to distance matrix, logical distance matrix, is formed whose elements are 

either 1 or 0. This matrix is obtained by assigning 0 instead of 100 and 1 instead of 

the remaining elements of the distance matrix. In other words, if ( )th
ji, element of 

this matrix has the value 1 then, th
i  observation is in the track gate of the thj  track. 

The logical distance matrix of the example is given in Table 4-3. ( )th1,1 element is 1 

since O1 is in the gate of T1, ( )th2,1  element is 0 since O1 is not in the gate of T2, 

( )th1,2  and ( )th2,2 elements are both 1, since O2 is in the gate of both T1 and T2. 

Table 4-3 Logical distance matrix for the example case 

Observation\Track T1 T2 

O1 1 0 

O2 1 1 

In this step, another matrix called distance score matrix is also calculated which will 

be used in hypothesis score calculation step. This matrix is obtained by assigning 0 

instead of 100 in the distance matrix and divide the resulting non-zero elements, 
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2
, jid by the corresponding track gate width, 2

jgw . Then the non-zero elements 

represent the normalized distance values by the gate width of the corresponding 

track, jji gwd , . As a result, the distance score matrix stores the score-distance 

relation between the observations and the tracks. If the distance is large, the score is 

low because of the inverse ratio. 

4.2.2 Cluster Formation 

Observations and related tracks have to be divided into independent groups in order 

to be able to examine them separately. While forming these independent groups 

which are called as clusters, the directly and indirectly related observations and 

tracks are held in the same group. The relationship information comes from the 

logical distance matrix. Here, direct and indirect relationship can be explained with 

an example. Say, observations O1 and O2 are related with track T1 and 

observations O2 and O3 are related with track T2. Then (O1, O2, T1) and (O2, O3, 

T2) are directly related whereas, because of O2 (O1, O2, O3, T1, T2) are indirectly 

related. 

Clusters are stored in a 2xn cell array where n denotes the number of clusters. The 

first row of the cell array consists of the track indices and the second row consists of 

the observation indices in that cluster. Cluster cell array format is shown in Table 

4-4. 

Table 4-4 Cluster cell array format 

Track & Obs. \ Cluster C1 C2 … Cn 

Track Field … … … … 

Observation Field … … … … 
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While forming clusters logical distance matrix is considered and the following rules 

are used: 

1. An observation that is not related with any track forms a cluster itself. 

2. A track that is not related with any observation forms a cluster itself. 

3. Directly and indirectly related observations and tracks takes place in the 

same cluster. 

The algorithm which is used to achieve these rules is given in Figure 4-4. 

 

Figure 4-4 Cluster formation algorithm 
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The details of the algorithm are given below: 

• Form Clusters With Only One Observation: An observation that is not 

related with any track forms a cluster itself. This cluster consists of only one 

element which is that observation. Such an observation is found from the 

distance matrix by looking at its empty rows. A row is called empty if none 

of its elements are 1. Then the indices of the empty rows of the logical 

distance matrix give the indices of the observations that are not related with 

any track. Each of these observations forms a cluster whose track index is 

empty. After examining empty rows, they are removed from the logical 

distance matrix. 

• Check Whether the Observations are Related: The rows of the logical 

distance matrix are compared one by one. If two rows have 1 in the same 

column, the corresponding observations are related. 

• Merge Rows and Find the Groups of Related Observations and Tracks: If 

the observations of two rows are related, these rows are merged, in other 

words logical OR operation is applied to these two rows. The resulting row 

is replaced with the upper row in the logical distance matrix and the lower 

one is erased. This step is applied to the example case as shown in Figure 

4-5. 

    Figure 4-5 Row merging for cluster formation 

• Check Whether Grouping is Completed: This rule is repeated until the 

columns have at most one 1 in its elements. To do this, the sum of the 

elements of a column is checked. If the sum is greater than 1, there still 

1 1 
1 0 

1 1 
These two rows 

are merged 
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exists rows having a 1 in the same column and the rule has to be repeated. 

This condition is checked in the case of the example as in      Figure 4-6. 

 

 

 

 

 

 

     Figure 4-6 Checking the completion of grouping for cluster formation 

Up to now in this step, the rows having a 1 in the same column are merged; 

in other words; the observations related with the same track are summed and 

placed in the same row.  

While forming a cluster using the observation-track relationship from the 

resulting distance matrix, each row of this matrix is taken into consideration 

since each row of this matrix will form a cluster. The track indices of a 

cluster are found from the column indices of the 1’s in a row of this matrix. 

The observation indices of the cluster is found from the row indices of the 

1’s in the column of the track in consideration in the original input logical 

distance matrix. 

• Form Clusters With Only One Track: A track that is not related with any 

observation forms a cluster itself. This cluster consists of only one element 

which is that track. Such a track is found from the resulting distance matrix 

by looking at its empty columns. A column is called empty if none of its 

elements are 1. Then the indices of the empty columns of the resulting 

logical distance matrix give the indices of the tracks that are not related with 

any observation. Each of these tracks forms a cluster whose observation 

index is empty.  

1 1 

These two columns have at 
most one 1 in its elements 
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The cluster cell array for the example case is formed as given in Table 4-5. This 

table is formed assuming that there are some other tracks and observations that are 

not related with the tracks and observations considered in this example. Therefore 

those unrelated tracks and observations form other clusters. It is also assumed that 

the cluster formed for the example case is the second cluster. 

Table 4-5 Cluster cell array for the case of the example 

Track & Obs. \ Cluster C1 C2 … Cn 

Track Field … T1,T2 … … 

Observation Field … O1,O2 … … 

4.2.3 Hypothesis Generation 

For each cluster a hypothesis set is generated and these are stored in a 1xn cell array 

called hypothesis matrix where n denotes the number of clusters. Each cell of the 

hypothesis matrix is an mxk matrix where m is the number of generated hypotheses 

for this cluster and k is the number of observations. Hypothesis cell array format is 

shown in Table 4-6. 

Table 4-6 Hypothesis cell array format 

Track & Obs. \ Cluster C1 C2 … Cn 

Hypothesis Field … … … … 

In this algorithm, observation oriented hypothesis generation technique is used. 

Observation oriented hypothesis generation technique is listing possible tracks for 

each observation. The rules used for hypothesis generation are as follows: 
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1. If a cluster does not contain any observation, its corresponding hypothesis 

matrix cell consists of only one element which is the index of the track in 

that cluster. And that means there is one possible hypothesis which tells the 

track in the cluster remains alive. 

2. If a cluster does not contain any track, its corresponding hypothesis matrix 

cell consists of two kinds of hypotheses which are false alarm and new 

track.  

False alarm hypothesis means the observation in the cluster is detected 

wrongly therefore; this observation does not update or initiate any track. 

False alarm hypothesis is labeled with a zero.  

New track hypothesis means the observation in the cluster initiates a new 

track that does not exist before. New track hypothesis is labeled with new 

track index. And it is calculated by incrementing the maximum existing 

track index by one. 

3. If a cluster contains both observations and tracks, three kinds of hypothesis 

are generated for each observation which are false alarm, new track and 

track update. Since this algorithm uses the observation oriented hypothesis 

generation technique, hypotheses are generated based on the possibilities of 

observations. 

First kind is false alarm hypothesis that means this observation does not 

update or initiate any track. This kind of hypothesis is labeled with a zero. 

The second type is the one in which a new track is initiated with that 

observation and this kind of hypothesis is shown with new track index and 

again this new track index is calculated by incrementing the maximum 

existing track index by one. 

The third type consists of the hypothesis of every possible association of 

each observation with tracks. Here the word “possible” is used in order to 

emphasize that an observation can only be associated with a track if and 

only if it is in the gate of that track. This type of hypothesis defines the 
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update of a track with an observation in its gate and it is shown with the 

existing track index. 

In such a cluster containing both observations and tracks, hypothesis 

formation is as follows: For the first observation these three type hypotheses 

are formed and held in a vector called hypothesis vector containing one 

hypothesis in each row. This vector is the upper part of the first column of 

the hypothesis matrix. Each column of the hypothesis matrix is related with 

one observation. For the case of the example, the hypothesis of O1 and O2 

are given in Figure 4-7 where 3 and 4 are the new track indices generated for 

O1 and O2 respectively. 

0 

T2 

T4 

 

 

Figure 4-7 Hypotheses vector formation for the example case 

The hypotheses of the second observation are formed like the first one and 

the hypothesis vector of this observation is generated in the same manner.  

After this, the first observation’s hypothesis vector is copied as the number of 

the hypothesis of the second observation (number of the elements of the 

second hypothesis vector) and the copies of the first vector are placed under 

the first vector. Then, in the second column of the hypothesis matrix, each 

element of the second observation’s hypothesis vector is placed through the 

rows of each copy of the first observation’s hypothesis vector. 

For the third observation, the hypothesis vector is formed and the copying 

process is repeated as if the two columns are considered as the first 

observation’s hypothesis vector. Therefore, these two columns are copied as 

0 

T1 

T3 

Hypotheses vector  
           of O1 

Hypotheses vector  
          of O2 
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the number of the hypothesis in the third observation’s hypothesis vector and 

the elements of the third observation’s hypothesis vector are placed as in the 

second observation case. The hypothesis matrix of the example case is shown 

in Figure 4-8. 

0 0 

T1 0 

T3 0 

0 T1 

T1 T1 

T3 T1 

0 T2 

T1 T2 

T3 T2 

0 T4 

T1 T4 

T3 T4 

Figure 4-8 Hypothesis matrix of the example case 

This procedure is repeated for other observations and during the procedure; 

hypotheses of the examined observations are copied in the same manner in 

order to generate the hypothesis matrix. The rows of this matrix give the 

hypotheses. A simplification is performed to prevent the update of the same 

track with more than one observation in the same hypothesis. This means a 

track index cannot appear more than once in a row of the hypothesis matrix. 

Therefore, these rows that have repeated track indices as its elements are 

cleared. This rule is applied to the hypothesis matrix of the example case as 

in Figure 4-9. 
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0 0 

T1 0 

T3 0 

0 T1 

T3 T1 

0 T2 

T1 T2 

T3 T2 

0 T4 

T1 T4 

T3 T4 

  

Figure 4-9 Hypothesis matrix row deletion for the example case 

After repeating this process for each cluster, the output hypothesis matrix is 

generated which is a 1xn cell array where n is the number of the clusters. 

Applying these steps also satisfies some criteria implied in Reid’s MHT Method; in 

a hypothesis, a track can be associated with only one observation and this 

observation has to be in the track gate. 

4.2.4 Hypothesis Score Calculation 

In this step, hypotheses scores are calculated and stored in a 1xn cell array called 

score matrix where n denotes the number of clusters. Each cell of the cell array is a 

1xm vector where m is the number of generated hypotheses for this cluster. 

0 0 

T1 0 

T3 0 

0 T1 

T1 T1 

T3 T1 

0 T2 

T1 T2 

T3 T2 

0 T4 

T1 T4 

T3 T4 

This row 
is deleted 
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If there is an observation-to-track association, in other words, a track is updated 

with an observation; the score of the hypothesis is calculated according to the 

features: distance, size, color, gate and track history. Therefore, the observation-to-

track association is evaluated via these criteria and the resulting score shows the 

validity of that association. 

Here, distance is the absolute difference of the x-y positions of the observation and 

the track. This information is obtained from the distance score matrix. Distance 

score matrix stores the distance-to-gate width ratio and it gives idea about how 

close the observation and the track are to each other; if the distance score is high, 

the distance is small and vice versa. 

Similar to distance score, color and size scores give idea about how much the size 

and color of the observation match with the size and color of the track. Therefore, 

the reality of the association is examined in terms of their size and color 

information. 

Gate and track history scores give idea about the previous associations of the track. 

When an observation-to-track association is performed, the next possible position of 

the track is predicted more precisely compared with a large track gate case, and then 

the track gate is small. Therefore, the smaller the track gate, the higher the score. 

Similarly, track history score is high if observation-to-track associations are 

performed in last scans. 

The score of a hypothesis is calculated individually for each of these criteria. The 

total score is the weighted sum of the individual scores calculated via these features 

with normalized weights and this calculation is shown as follows: 

 
( )

( )hgcsd

hgcsd

v

..........
 TotalScore

wwww

SHwSGwSCwSSwSDw

++++

×+×+×+×+×
=  (4-3) 

 1,,,,0 ≤≤ dhgsc wwwww  (4-4) 
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where dw  is the weight of the distance score (D.S.), sw  is the weight of the size 

score (S.S.), cw  the weight of the color score (C.S.), gw  is the weight of the gate 

score (G.S.) and hw is the weight of the track history score (H.S.). 

Hypothesis score calculation is performed in every cluster according to these rules: 

• If the hypothesis index is 0, which means a false alarm, a predefined score 

value for “a false alarm” is assigned which is relatively small. 

• If the hypothesis index is a new track index and the cluster contains old 

(previously existing) tracks, hypothesis score is the predefined score value 

of the case “new track found in a cluster that has some other tracks 

previously”. 

• If the hypothesis index is a new track index and the cluster does not contain 

old (previously existing) tracks, hypothesis score is the predefined score 

value of the case “new track found in a cluster that has no tracks 

previously”. 

• If the hypothesis index is an index of an existing track and the cluster does 

not contain any observations, hypothesis score is the predefined score of the 

case of “an existing track without an update because there is no observation 

to update this track”. 

• If the hypothesis index is an index of an existing track and the cluster 

contains observations, this means an existing track is updated with an 

observation in its track gate. Individual scores according to distance, size, 

color, gate and track history are calculated and then the total score of this 

observation-to-track association is obtained with the formula (4-1). This 

score gives idea about the validity of this association. 

Distance score calculation:  

Maximum distance score is 100 and this is the score of the case in which the 

center of the track gate coincides with the center of the observation. A 

predefined step score multiplied by the normalized distance (calculated in 
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the distance score matrix) is subtracted from 100 (maximum score) as 

shown in (4-5). 

 ( ) diff scoredist min  widthgatedistance- 100  score Distance ∗=  (4-5) 

Therefore, a distance score assigned for an observation becomes smaller for 

larger distances. 

Size score calculation:  

Maximum size score is 100 and this is the score of the case in which the size 

of the observation matches with the size of the track. A predefined step 

score difference multiplied by the ratio of the size difference to step size is 

subtracted from 100 (maximum score) as shown in (4-6).  

 ( ) diff score size stepsize stepdiff size-100 score Size ∗=  (4-6) 

Therefore, a size score assigned for an observation becomes smaller for 

mismatched sizes. 

Color score calculation: 

Maximum color score is 100 and this is the score of the case in which the 

color of the observation matches with the color of the track as shown in (4-

7). Arithmetic mean of red, green and blue is used in the calculation. 

 ( ) diff scorecolor  stepcolor stepdiffcolor -100 scoreColor ∗=  (4-7) 

A predefined step score multiplied by the color score is subtracted from 100 

(maximum score). Therefore, a color score assigned for an observation 

becomes smaller for mismatched colors. 

Gate score calculation: 

Maximum gate score is 100 and this is the score of the case in which the 

gate of the track is small, in other words, the track is continuously updated 

with an observation. A predefined step score difference multiplied by the 

ratio of the gate difference to step gate is subtracted from 100 (maximum 

score) as shown in (4-8).  
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 ( ) diff score gate stepgate stepdiff gate-100 score Gate ∗=  (4-8) 

Therefore, a gate score assigned for an observation becomes smaller for 

tracks that are not updated. 

History score calculation: 

Maximum history score is 100 and this is the score of the case in which the 

track is updated in a number of, say 5, consecutive frames. A predefined 

history score difference multiplied by the ratio of the history difference to 

step history is subtracted from 100 (maximum score) as shown in (4-9).  

 ( ) diff scorehistory  stephistory stepdiffhistory -100 scoreHistroy ∗=  (4-9) 

Therefore, a history score assigned for an observation becomes smaller for 

tracks that are not updated. 

4.2.5 Track Update  

Track management consists of two steps which are Kalman Prediction and Track 

Score Calculation as shown in Figure 4-10. 

 

Figure 4-10 Flow diagram of track update 

The update of track structure parameters is performed in Kalman prediction step. 

Then, in Track Score Calculation step, track scores are calculated for each track 

using the scores of the hypothesis in which that track takes place.  
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4.2.5.1 Kalman Prediction 

Kalman filter [35] is used for track update, in other words, to predict the parameters 

in the track structure. Kalman filter is a set of mathematical equations that provides 

an efficient computational means to estimate the state of a process by minimizing 

the mean of the squared error. Using this filter past, present and future states of the 

system can be estimated without knowing the exact behavior of the system. For this 

reason Kalman filter is very popular since 1960 and used in this study for track 

update. 

The Kalman filter addresses the general problem of trying to estimate the state 

n
Rx ∈  of a discrete-time controlled process that is governed by the linear 

stochastic difference equation 

 111 −−− ++= kkkk wBuAxx  (4-10) 

with a measurement defined by the equation 

 kkk vHxz +=  (4-11) 

The random variables kw  and kv  represent the process and measurement noise, 

respectively. They are assumed to be independent of each other, white, and with 

normal probability distributions. 

 ( ) ( )QNwp ,0~  (4-12) 

 ( ) ( )RNvp ,0~  (4-13) 

In practice, the process noise covariance Q and measurement noise covariance R 

matrices might change with each time step or measurement, however assume they 

are assumed to be constant in our work. 

The next state of a process is estimated by Kalman filter by the scheme given in 

Figure 4-11. The time update projects the current state estimate ahead in time. The 

measurement update adjusts the projected estimate by an actual measurement at that 

time. 
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Time Update

(Predict)

Measurement 

Update

(Correct)

 

Figure 4-11 Kalman filter cycle 

For time-update and measurements update steps of Kalman filter, there are 

equations by which a priori ( )−

kx̂  and posteriori ( )kx̂  estimates are determined. 

Time update equations (predict): 

 11ˆˆ
−−

− += kkk BuxAx  (4-14) 

 QAAPP
T

kk += −

−

1  (4-15) 

Measurement update (correct): 

 1)( −−− += RHHPHPK
T

k

T

kk  (4-16) 

 )ˆ(ˆˆ −− −+= kkkkk xHzKxx  (4-17) 

 −−= kkk PHKIP )(  (4-18) 

The state vector of the track consists of the x-y position, displacement in x-y 

coordinates differences, size, mean value of red, mean value of green and mean 

value of blue; [ x , y , x∆ , y∆ , S , Rµ , Gµ , Bµ ]. Kalman filter is performed for the 

prediction of the next state of this state vector using the following rules in this 

study: 

• If the track is updated with an observation, then the state of this observation 

is used for prediction. 



56 

 

• If the track is not updated with an observation, then the previous state of the 

track is used for prediction. 

Track gate width is calculated from the covariance of the Kalman filter and it is 

updated after each prediction. When the track is updated with an observation, the 

track gate width becomes smaller; similarly when the track is not updated, its gate 

width is enlarged. 

4.2.6 Track Score Calculation 

Track scores are calculated from hypothesis scores. The score of each track is the 

sum of the scores of the hypothesis in which the index of that track is contained. 

Track score calculation is performed using the following rules: 

• Track score calculation of a new track: For each hypothesis in a cluster, new 

tracks are found by comparing the track indices with the existing track 

indices; the track indices that are greater than the existing track indices gives 

the new track indices. Then for each new track, the hypotheses are searched 

in which that track index is contained. The score of each new track is the 

sum of the scores of the hypothesis in which the index of that track is 

contained. The score of each track is stored in the track structure. 

• Track score calculation of an existing track which is updated with an 

observation: These are the tracks from previous frames having one or more 

observation in their track gates. The score of these tracks, when they are 

updated with each of these observations, are calculated using the hypothesis 

scores matrix. Here, the column of the hypothesis score matrix which 

corresponds to the observation updating that track is considered. Then the 

score of each track is the sum of the scores of the hypothesis in which the 

index of that track is contained. The score of each track is stored in the track 

structure. 

• Track score calculation of an existing track which is not updated with an 

observation: This situation can occur when there is no observation in the 
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gate of the track or the observation in the track gate initiates a new track or 

the observation in the track gate is a false alarm. The score of the track in 

one of these situations is the sum of the scores of the hypothesis in which 

the index of that track is not contained. The score of each track is stored in 

the track structure. 

4.2.7 Track Tree Management 

Track tree management consists of three steps which are Track Tree Formation, 

Highest Score Hypothesis Evaluation and Tree Pruning as shown in Figure 4-12. 

Track Tree 

Formation

Hypothesis 

Evaluation

Tree Pruning

 

Figure 4-12 Flow diagram of track tree management 

The trees which are the update structures of tracks with observations are formed in 

Tree Formation step, hypotheses are evaluated in Hypothesis Evaluation step and 

then according to the result of the Hypothesis Evaluation step, the tree braches that 

do not represent the highest score hypothesis are deleted in the Tree Pruning step. 
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4.2.7.1 Track Tree Formation 

Track trees are the structures that are used for the implementation of the deferred 

decision logic of MHT. The history of the relationship between tracks and 

hypotheses are stored in track trees. Track trees are used for the selection of the 

most probable observation-to-track association and deletion of the associations 

contradicting with that most probable association. 

 

Figure 4-13 Track tree elements 

A track tree consists of some elements such as root node, node, branch, decision 

depth and current depth as in Figure 4-13. A root node is the source node or the 

origin of a tree, in other words, it is the confirmed track from which all the track 

candidates are generated using hypotheses. Nodes are the track candidates that are 

generated with hypotheses and branches are the hypotheses that represent the 

observation-to-track association between nodes. The decision depth of a track is the 

number of scans that the association decision is deferred. If the decision depth is k, 

then the observation-to-track association decision is made considering the data of 

recent k scans or in other words, the decision is postponed for k scans. It is 3 in 

Figure 4-13. The current depth is the number of scans whose information is stored 

in that tree, or in other words, it is the number of recent scans that are included in 

the history of the tree. 
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The decision depth of the tree, or the maximum allowed depth of the tree, has an 

important effect on the performance of the MHT since the association decision is 

made considering that much earliest data. In this study, decision depth is chosen as 

4 therefore, the decision of an association is made after 4 scans.  

In this study, in order to build the track tree, a structure called manage track is 

formed for each tree as in Table 4-7. 

Table 4-7 Manage track structure of nth tree 

 

 

 

Track indices  

Track positions 

Track groups 

Track scores 

Current depth 

Tree number 

Root node 

History 

Confirmation flag 

Deletion flag 

Confirmed list index 
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SCAN

k - 2

k - 1

k 

1

1 5

no update

1 9

no update update

update

1 17

no updateupdate

9 25

no update update

5 13

no update update

5 21

no updateupdate

13 29

no update update

k - 3

group1 group2
 

Figure 4-14 Example track tree 

In each frame the values in the fields of the manage track structure is updated. An 

example track tree is given in Figure 4-14. The explanations of the fields of the 

array are: 

Track indices: The indices of the tracks which are the nodes of the tree are stored in 

this field. Since most of the trees have many tracks and the depth of the tree is 

greater than 1, these indices are also held in a matrix called track indices as in Table 

4-8. 
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Table 4-8 Track indices matrix for the example track tree 

Node at depth 

1 (root node) 

Nodes at 

depth 2 

Nodes at 

depth 3 

Nodes at 

depth 4 

1 1 1 1 

0 5 9 17 

0 0 5 5 

0 0 13 21 

0 0 0 9 

0 0 0 25 

0 0 0 13 

0 0 0 29 

Track positions: The branching information is stored in this field as a matrix called 

track positions. If a node branches into two nodes in the following frame, the 

corresponding cell value is 2. An example of this matrix is shown in Table 4-9. 

Each branch designates a hypothesis; this means if a cell value is 2, there are 2 

hypotheses for this node. The first hypothesis is the observation is false alarm 

therefore the track is not updated and the second one is the association of the track 

with an observation and the track is updated with an observation (this observation 

index is stored in that track’s track structure). In fact, there is one more hypothesis 

that is generated for an observation and it is the initiation of a new track. However, 

since the tree is built concerning the track’s point of view, this hypothesis is not 

shown as a third hypothesis in the track positions matrix; instead it is represented as 

a new root node. 
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Table 4-9 Track positions matrix for the example track tree 

Node at depth 

1 (root node) 

Nodes at 

depth 2 

Nodes at 

depth 3 

Nodes at 

depth 4 

2 2 2 0 

0 2 2 0 

0 0 2 0 

0 0 2 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Track groups: The groups of the tracks which are the nodes of the tree are stored in 

this field. These groups are also held in a matrix called track groups as in Table 

4-10. The group number is either 1 or 2 since there are always 2 groups in a tree. 

The first group is the group of track nodes which are originated from the no update 

case of the root node, in other words, these tracks are generated from the hypothesis 

of the root node is not updated with an observation. The second group is the group 

of track nodes which are originated from the update case of the root node. This 

notation is necessary for the tree pruning step which will be discussed later since the 

decision of association is made after k scans. By this way, it is easy to understand 

which tracks are going to be deleted when the decision is the update or no update of 

the root node track. 
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Table 4-10 Track groups matrix for the example track tree 

Node at depth 

1 (root node) 

Nodes at 

depth 2 

Nodes at 

depth 3 

Nodes at 

depth 4 

0 1 1 1 

0 2 1 1 

0 0 2 2 

0 0 2 2 

0 0 0 1 

0 0 0 1 

0 0 0 2 

0 0 0 2 

Track scores: The scores of the tracks which are the nodes of the tree are stored in 

this field. These scores are also held in a matrix called track scores as in Table 4-11. 
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Table 4-11 Track scores matrix for the example track tree 

Node at depth 

1 (root node) 

Nodes at 

depth 2 

Nodes at 

depth 3 

Nodes at 

depth 4 

0.1407 0.8525 0.8579 0.8605 

0 0.1475 0.1421 0.1408 

0 0 0.8515 0.8530 

0 0 0.1485 0.1467 

0 0 0 0.6123 

0 0 0 0.2842 

0 0 0 0.5478 

0 0 0 0.1355 

Current depth: It is the current depth of the track tree which is the number of scans 

that are included in the history of the tree. 

Tree number: Track trees are numerated and this field contains the index given for 

that track tree. 

Root node: It is the track index of the root node and root node is, as explained 

before, the origin of the track tree. 

History: The decision history of the track tree is stored in this field. Decision history 

gives information about the association decisions of the track in consecutive scans 

which are an update decision or no-update decision with an observation. This 

history is used as the consistency measure of the tracks in such a way that a track is 

consistent if it is updated continuously with the observations in its track gate. The 

history is stored for the previous n scans in a vector such as [ ]1110 . This 
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history vector means that the track is not updated at the ( )th
n 3−  scan and it is 

updated at the next scans. The update case is represented as a 1 and the no update 

case is represented as a 0 in the vector. 

Confirmation flag: A track tree is said to be confirmed if its root nodes are updated 

for the last n consecutive scans. In other words, for the last n consecutive scans, the 

hypotheses used for the decision about the root node are towards updating the root 

node with observations. History field of the tree is used for confirmation. 

Confirmation flag is set to 1, when the track tree is confirmed. In this study n is 5. 

Deletion flag: A track tree is deleted if its deletion flag is 1 and this flag is set to 1 if 

the root nodes are not updated for the last n consecutive scans. In other words, for 

the last n consecutive scans, the hypotheses used for the decision about the root 

node are towards not updating the root node and the corresponding observations are 

taken as false alarms. In this study n is 5 and the history of a track whose deletion 

flag is 1 is [ ]00000 . 

Confirmed list number: The confirmed tracks which are the root nodes of the track 

trees are listed in the confirmed list. And the index of the root node track in the list 

is stored in this manage track field for the sake of establishing the correspondence 

between the confirmed list and the manage track structure since the indices of the 

tracks can be different. Similarly, in the confirmed list the manage track index of 

the confirmed track is stored. 

4.2.7.2 Highest Score Hypothesis Evaluation 

In each cluster, the highest score hypothesis of scan k is selected for the decision of 

the associations of scan k-4. This evaluation is performed in each cluster since the 

clusters are independent from each other and the tracks in a cluster are 

incompatible. 

In every cluster, the scores of the hypotheses are ordered in a descending manner. 

The upper most, highest score, hypothesis is selected if its content is also 

appropriate. If the highest score hypothesis of scan k mentions “the observation is a 
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false alarm” or “the observation of scan k forms a new track”, this hypothesis is said 

to be inappropriate since it does not give an idea to make a decision about scan k-4. 

The aim of the highest score hypothesis selection is to decide which track in the 

track tree remains alive and which are to be deleted, in other words, which branches 

are to be cut. Since new tracks are shown as a the initiation of a new track tree 

whose depth is 1, at scan k, if the highest score hypothesis mentions a new track 

formation, this evaluation does not give any idea about the update or no-update case 

of the track at scan k-4. Therefore if the highest score hypothesis is a false alarm or 

a new track initiation the second highest score one is selected and if both the first 

and second highest score hypotheses are a false alarm or a new track initiation the 

third highest score hypothesis is selected. 

Following this selection, at scan k-4 the branches whose hypotheses are not in the 

selected hypothesis are pruned. 

4.2.7.3  Tree Pruning 

In each cluster, using the highest score hypothesis of scan k, tree branches of scan k-

4 are pruned. The highest score hypothesis can mention three cases which are no-

association, observation-to-track association and track initiation. Concerning tree 

structure, no-association corresponds to no-update case of track (track index does 

not change), observation-to-track association corresponds to observation updates 

track (a new track index is given to the updated track) and track initiation 

corresponds to initiation of a new track tree whose root node is this new track. 
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 Figure 4-15 Tree pruning example 

In Figure 4-15, the decision depth of the track tree is chosen as 3, in this study it is 

chosen as 5 instead. At scan k-3, observation 1 (O1) is in the track gate of track 1 

(T1). Therefore, the hypotheses and the tree structure for this scan are as follows: 

• No-association (Branch 1): O1 is not associated with T1; T1 is not updated 

and the index of the track is same; T1 remains as T1 at scan k-2. 

• Observation-to-track association (Branch 2): O1 updates T1 and forms the 

updated track T2. 

• Track initiation (Branch 3): O1 does not associate with T1; O1 initiates a 

new track called T3 instead. This new track initiates a new tree and it is the 

root node of this tree at scan k-2. 

Highest score hypothesis at scan k identifies which branch of scan k-3 is to be 

deleted. There are 6 cases that are examined for pruning the branches at scan k-3 

and these are: 

• Highest score hypothesis at scan k mentions a false alarm: This hypothesis is 

an inappropriate hypothesis since it mentions that O3 is a false alarm at scan 

k, however it does not give any idea about scan k-3. Therefore, in this case 



68 

 

the highest score hypothesis is not used for tree pruning, the next highest 

score hypothesis is searched until an appropriate one is found. 

• Highest score hypothesis at scan k belongs to track Group 1 of Tree 1: This 

group corresponds to Branch 1 of scan k-3 which means T1 is not updated. 

Since Branch 1 is selected in scan k-3, the other branches (branches whose 

corresponding hypotheses are opposed to the highest score hypothesis) are 

deleted as shown in Figure 4-16. Therefore, Branch 2 should be deleted 

since the update of T1 with O1 is not possible (O1 is not associated with 

T1). Similarly, Tree 2 is not deleted since initiation of T3 is possible (O1 

can initiate a track). 

 

Figure 4-16 Tree pruning example when the highest score hypothesis at scan k 

belongs to track Group 1 of Tree 1 

• Highest score hypothesis at scan k belongs to track Group 2 of Tree 1: This 

group corresponds to Branch 2 of scan k-3 which means O1 updates T1 and 

forms T2. Since Branch 2 is selected in scan k-3, the other branches and 

newly formed trees of scan k-3 (branches and trees whose corresponding 

hypotheses are opposed to the highest score hypothesis) are deleted as 

shown in Figure 4-17. Therefore, Branch 1 should be deleted since O1 
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cannot be a false alarm (O1 is updates T1). Similarly, Tree 2 should be 

deleted since initiation of T3 is not possible (O1 is used for updating T1 and 

tracks are not allowed to share observations). 

 

Figure 4-17 Tree pruning example when the highest score hypothesis at scan k 

belongs to track Group 2 of Tree 1 

• Highest score hypothesis at scan k belongs to Tree 2: Initiation of a new tree 

of scan k-3 is selected which means O1 initiates T3. Since Tree 2 is selected 

in scan k-3, the other branches of scan k-3 (branches whose corresponding 

hypotheses are opposed to the highest score hypothesis) are deleted as 

shown in Figure 4-18. Therefore, Branch 2 should be deleted since update of 

T1 with O1 is not possible (O1 is used for initiating T3 and tracks are not 

allowed to share observations). Branch 1 should is not deleted since O1 is 

used to initiate T3 and therefore T1 cannot be associated with O1).  
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Figure 4-18 Tree pruning example when the highest score hypothesis at scan k 

belongs to Tree 2 

• Highest score hypothesis at scan k belongs to Tree 3: This hypothesis is an 

inappropriate hypothesis since it mentions that O3 initiates a new track at 

scan k, however it does not give any idea about scan k-3. Therefore, in this 

case the highest score hypothesis is not used for tree pruning, the next 

highest score hypothesis is searched until an appropriate one is found. 

• Highest score hypothesis at scan k belongs to Tree 4: This hypothesis is an 

inappropriate hypothesis since it mentions that O3 initiates a new track at 

scan k, however it does not give any idea about scan k-3. Therefore, in this 

case the highest score hypothesis is not used for tree pruning, the next 

highest score hypothesis is searched until an appropriate one is found. 

In addition those mentioned up to now, some other pruning operations are 

performed following these rules: 

• If the deletion flag of the track is 1, this track is deleted since this means the 

track is not updated for the previous 5 scans. In other words, the number of 

scans during which the track has not been associated with any observation in 

its gate enough to delete the track.  
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• If there is a tree whose depth is 5 (more than the allowed depth number in 

this study) and the highest score hypothesis does not contain any branch of 

this tree, the branches of the tree that correspond to the update of its tracks 

are deleted. In other words, its no-update branches remained alive and the 

tracks of the tree are forced to be deleted in the next scans because of their 

history (if a track is not updated for consecutive 5 scans, its deletion flag is 

set to 1 forcing it to be deleted). 

• If there is a track tree having only one node and the node is not associated 

with an observation, this track tree and the track are deleted. This means that 

the track does not have an observation in its track gate after its initiation and 

therefore it is not updated and should be deleted. 

After pruning operations, current depth, tree number, root node, history, 

confirmation flag and deletion flag fields of the manage track structure are formed 

for newly formed tracks and updated for existing tracks. For existing tracks, track 

indices, track positions, track groups and track scores matrices are updated by 1 

column shifting their columns to the left and adding the new values corresponding 

to the new scan to the right most columns. The updated forms of these matrices are 

given in Table 4-12, Table 4-13, Table 4-14 and Table 4-15, respectively 

considering the update case of track 5 in the example tree in Figure 4-14. 
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Table 4-12 Track indices matrix update for the example track tree in Figure 4-14 

Node at depth 

1 (root node) 

Nodes at 

depth 2 

Nodes at 

depth 3 

Nodes at 

depth 4 

1 1 1 1 

0 9 17 40 

0 0 9 9 

0 0 25 42 

0 0 0 17 

0 0 0 41 

0 0 0 25 

0 0 0 43 
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Table 4-13 Track positions matrix update for the example track tree in Figure 4-14 

Node at depth 

1 (root node) 

Nodes at 

depth 2 

Nodes at 

depth 3 

Nodes at 

depth 4 

2 2 2 0 

0 2 2 0 

0 0 2 0 

0 0 2 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

Track groups: The groups of the tracks which are the nodes of the tree are stored in 

this field. These groups are also held in a matrix called track groups as in Table 

4-14. The group number is either 1 or 2 since there are always 2 groups in a tree. 

The first group is the group of track nodes which are originated from the no update 

case of the root node, in other words, these tracks are generated from the hypothesis 

of the root node is not updated with an observation. The second group is the group 

of track nodes which are originated from the update case of the root node. This 

notation is necessary for the tree pruning step which will be discussed later since the 

decision of association is made after k scans. By this way, it is easy to understand 

which tracks are going to be deleted when the decision is the update or no update of 

the root node track. 
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Table 4-14 Track groups matrix update for the example track tree in Figure 4-14 

Node at depth 

1 (root node) 

Nodes at 

depth 2 

Nodes at 

depth 3 

Nodes at 

depth 4 

0 1 1 1 

0 2 1 1 

0 0 2 2 

0 0 2 2 

0 0 0 1 

0 0 0 1 

0 0 0 2 

0 0 0 2 

Track scores: The scores of the tracks which are the nodes of the tree are stored in 

this field. These scores are also held in a matrix called track scores as in Table 4-15. 
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Table 4-15 Track scores matrix update for the example track tree in Figure 4-14 

Node at depth 

1 (root node) 

Nodes at 

depth 2 

Nodes at 

depth 3 

Nodes at 

depth 4 

0.8525 0.8579 0.8605 0.8627 

0 0.1421 0.1408 0.5444 

0 0 0.6123 0.6144 

0 0 0.2842 0.2389 

0 0 0 0.1496 

0 0 0 0.8253 

0 0 0 0.2750 

0 0 0 0.1894 

 

4.2.8 Track Confirmation and Occlusion Handling 

During a video sequence, many tracks are detected. These tracks can move 

continuously or stop for a while and then start their motion or stop permanently or 

disappear for a while, leave the view area of the camera or occlude. In order to be 

able to track objects accurately, recognize the previously confirmed tracks and 

handle occlusions some more information about tracks are stored in structures 

called confirmed track list, occluded track list and occlusion matrix. 

Confirmed track list structure is given in Table 4-16 and it is used for establishing 

the correspondence between confirmed tracks up to that scan and the tracks that are 

selected from the track trees using the highest score hypothesis. 
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Table 4-16 Confirmed track list structure for nth track 

Confirmed track index  

Manage track index 

Live 

Occluded 

Close track index 

The explanations of the fields in confirmed track list structure are: 

Confirmed track index: This index is given to the tracks that are confirmed. This is 

the number printed on the screen to mark the tracked objects as the output of the 

overall system. 

Manage track index: This index is the dual of the confirmed list index field in the 

manage track structure and it is used for establishing the correspondence between 

confirmed tracks and the tracks in the track trees. 

Live: It is the flag that shows a confirmed track is whether alive or dead. Here, an 

alive track means the tracks is not deleted in its corresponding track tree and a dead 

track means vice versa. Dead tracks are the tracks that leave the view area of the 

camera or stop for a while or permanently, or pass behind an object. 

Occluded: It is the flag that shows two or more objects get too close to each other 

that they are detected as one track. Occlusion is the detection and tracking of more 

than one object as one track because of their closeness. This flag is set to 1 if the 

confirmed track is occluded with other track/tracks. 

Close track index: The indices of the tracks that are close to that confirmed track are 

stored in this field. This information is used for occlusion detection. 
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4.2.8.1 Confirmed Track Management 

It is very important to be consistent on naming confirmed tracks while managing 

them. The tracks are named with their confirmed track list indices and these indices 

are printed on the output video to mark the tracks.  

New confirmed track list indices are given to new tracks. Each time a new 

confirmed track is detected, it is compared with the deleted (dead) tracks since dead 

tracks may appear in the following frames. This can happen when an object stops 

for a while and then moves again or when an object passes behind an object, etc. 

Since moving objects are detected, when an object stops it is not detected and the 

corresponding track dies, similarly when a track moves behind an object it is not 

detected and the corresponding track dies. However, after a while when the object is 

detected again, it is tracked with a new track tree index. Therefore, to establish the 

correspondence between track trees and printed track indices a confirmed track list 

is used in this study. The track index in the manage track structure is stored in the 

manage track number field of the confirmed track list and vice versa. 

The algorithm for confirmed track management is given in Figure 4-19. 
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Figure 4-19 Confirmed track management algorithm 

The algorithm can be summarized as follows: 

• If the confirmed track list is empty, the confirmed track is written to the first 

position in the list. 
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• If the confirmed track list is not empty and the confirmed track has already 

been in the confirmed track list with that track number before, the confirmed 

track is written to its previous position in the list. 

• If the confirmed track list is not empty and the confirmed track has never 

been in the confirmed track list with that track number before and there is no 

dead tracks in the confirmed track list, the confirmed track is written to the 

next available position in the list. 

• If the confirmed track list is not empty and the confirmed track has never 

been in the confirmed track list with that track number before and there are 

dead tracks in the confirmed track list, a comparison is made to decide 

whether the confirmed track is a previously dead track. This comparison is 

made concerning position, size, and color of the tracks. A match is 

established when 

 ( ) ( ) posdldl Tyyxx ≤−+−
22  (4-19) 

and 

 colRGBRGB T
dl

≤− µµ  (4-20) 

and 

 sizedl Tss ≤−  (4-21) 

where posT  is the position threshold, colT  is the RGB color threshold, sizeT  is 

the size threshold, ( )lll yxc ,  is the center of the live track, ( )ddd yxc ,  is the 

center of the dead track, 
lRGBµ  is the RGB color mean of the live 

(confirmed) track, 
dRGBµ  is the RGB color mean of the dead track, ls is the 

size of the live track and ds  is the size of the dead track. RGBµ  of live and 

dead tracks are calculated as follows: 

 
3

BGR

RGB

µµµ
µ

++
=  (4-22) 
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If there is a match between the confirmed track and the dead track, the 

confirmed track is written in the dead track’s position. 

• If the confirmed track list is not empty and the confirmed track has never 

been in the confirmed track list with that track number before and there are 

dead tracks in the confirmed track list, a comparison is made to decide 

whether the confirmed track is a previously dead track. If there is no match 

between the confirmed track and the dead tracks, the confirmed track is 

written to the next available position in the list. 

4.2.8.2 Occlusion Handling 

Occlusion handling is performed in two steps: Occlusion Detection and Separation 

of Occlusion Participants as shown in Figure 4-20. 

 

Figure 4-20 Flow diagram of occlusion handling 

Occlusions are handled using occluded track list and occlusion matrix in addition to 

confirmed track list. Occluded track list structure is given in Table 4-17. 

 



81 

 

Table 4-17 Occluded track list structure for nth track 

Occlusion participants 

Occlusion center 

Occlusion radius 

Resultant occluded track 

The explanations of the fields in the occluded track list structure are: 

Occlusion participants: The indices of the occlusion participants are stored in this 

field. The number of participant tracks can be more than two. 

Occlusion center: The arithmetic mean of the x-y coordinates of the participant 

tracks is stored in this field. The track center is the centroid of the area that 

approximates the region of the track. Occlusion center ( )ococ yx ,  is calculated as 

follows: 

 ( )




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
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00 ,,  (4-23) 

where ( )icic yx ,  is the center of the th
i track in the occlusion. 

Occlusion radius: The sum of the radii of the participant tracks is stored in this field. 

The track radius is the radius of the circle that approximates the region of the track. 

Occlusion radius or  is calculated as follows: 

 ∑
=

=
n

i

io rr
0

 (4-24) 

where ir  is the radius of the th
i track in the occlusion. 
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Resultant occluded track: The track index which is formed as the result of the 

occlusion and whose center is ( )icic yx ,  and radius is or . 

Table 4-18 Occlusion matrix for n  confirmed tracks where 4=n  

 Track1 Track2 Track3 Track4 

Track1 0 
12d  13d  14d  

Track2 
21d  0 

23d  24d  

Track3 
31d  32d  0 

34d  

Track4 
41d  42d  43d  0 

Occlusion matrix, which is shown in Table 4-18, is formed to detect occlusions 

using the distances between live confirmed tracks. The confirmed tracks are said to 

be occluded if the Euclidean distance between track centers is smaller than the sum 

of the radii of the tracks plus a threshold and a new track appears in the thresholded 

area where the confirmed close tracks disappeared. 

 

Figure 4-21 Occlusion of tracks 

In the occlusion matrix, the Euclidean distances between each track is stored in its 

cells. Occlusion of two tracks is shown in Figure 4-21 where 1r , 2r  are the radii and 
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( )111 , yxc  and ( )222 , yxc  are the centers of the tracks T1 and T2, respectively. The 

Euclidean distance 12d  is calculated as follows for the tracks: 

 ( ) ( )2

21

2

2112 yyxxd −+−=  (4-25) 

The tracks are said to be occluded if 

 ( ) oTrrd ≤+− 2112  (4-26) 

where oT  is the occlusion threshold used as a measure of the closeness of tracks. In 

the occlusion matrix, jiij dd =  since they refer the same distance and 0=iid  since 

the diagonals in the matrix correspond to the distances of the tracks to themselves. 

4.2.8.2.1 Occlusion Detection 

Occlusion occurs when two or more tracks get closer to each other so that they are 

detected as one object. The resultant object is tracked as a new track in this study. 

And this new track, resultant occluded track, has a new track index. The flow of the 

occlusion detection algorithm is given in Figure 4-22. 

Find an occlusion participant: The occlusion participants are not-occluded dead 

tracks in that scan. Using the confirmed track list, the tracks whose occlusion and 

live fields are 0 are found. 

Find the other occlusion participant/participants: From the occlusion matrix, find 

other not-occluded dead tracks that are close to tracks found in the previous step. 

Update the occlusion track list: Add the occlusion participants to each others’ 

occlusion track list. Calculate the occlusion center and occlusion radius fields of the 

occlusion list. 

Find the resultant occluded track: Check whether a new track is formed in the 

occlusion region. Here, the occlusion region is the circle centered at the occlusion 

center with a radius of the occlusion radius. This newly formed track is the resultant 

track of the occlusion, in other words, this track is formed since two tracks are too 
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close to each other that they are detected as one track. This track is stored in the 

resultant occluded track field of the occlude track list. 

Update confirmed track list: An occlusion is detected therefore the occluded flag in 

the confirmation track list of the dead tracks that participate in the occlusion are set 

to 1. 

 

Figure 4-22 Occlusion detection algorithm 
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4.2.8.2.2 Separation of Occlusion Participants: 

Occlusion of objects ends when the occlusion participants separate from each other. 

The main problem in the end of the occlusion is the matching of the occlusion 

participants with the new tracks that are initiated in the region where the occlusion 

ends. The flow of the separation of the occlusion participants algorithm is given in 

Figure 4-23. 

 

Figure 4-23 Separation of the occlusion participants algorithm 

Check if an occlusion ends: End of an occlusion can be understood from the live 

flag (in the confirmed track list) of the new formed track (resultant occluded track) 
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in the occlude track list. If this flag is set to 0, the occlusion which results in the 

formation of that new formed track ends. 

Find new tracks in the occlusion region: Using the confirmed track list, examine the 

new tracks whether they are initiated in the region where the occlusion ends. The 

examination is performed by calculating the distance between the centers of the 

occluded track ( )ooo yxc ,  and the new tracks ( )nnn yxc ,  that are detected in the 

region of occlusion and comparing this distance with a distance threshold. In this 

study this distance threshold is chosen as 2 times the radius of the occluded track, 

or : 

 ( ) ( )
oonon ryyxx ∗≤−+− 222  (4-27) 

If this condition is satisfied then, the new tracks are said to be in the region where 

the occlusion ends and they may be formed because of the separation of the 

occluded tracks. 

Compare with old occlusion participants: In order to match the old occlusion 

participants with the new tracks that are formed at the end of an occlusion, a 

comparison is made by calculating the separation score. This score, sepscore , is 

evaluated according to the size and color of the tracks as follows: 

 oldnewsRGBRGBcsep sswwscore
oldnew

−∗+−∗= µµ  (4-28) 

where cw  is the RGB color weight, sw  is the size weight, 
newRGBµ  is the RGB color 

mean of the new track, 
oldRGBµ  is the RGB color mean of the old track, news is the 

size of the new track and olds  is the size of the old track. Here an old track is one of 

the occlusion participants (from the occlusion detection algorithm) and occlusion 

participants are previously confirmed dead tracks whose occluded flag is 1 in the 

confirmed track list. RGBµ  of both new and old tracks are calculated as follows: 

 
3

BGR

RGB

µµµ
µ

++
=  (4-29) 
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The separation scores, sepscore , corresponding to occlusion participants and the new 

tracks are calculated and sorted. The lowest score is compared with the separation 

threshold, sepT , if the lowest separation score is also lower than the separation 

threshold, then a match is found. The new track is matched with the one that is dead 

because of a previous occlusion. 

Update confirmed list: In the confirmed track list, the track indices of the new 

confirmed tracks that are initiated in the region of occlusion are replaced with the 

matched track indices of the occlusion participants. 

4.3 Results 

In this section, PETS2001/Dataset1/Testing/Camera1 video [30] is used as “test 

video1”, PETS2001/Dataset1/Training/Camera1 video [30] is used as “test video2”, 

PETS2001/Dataset2/Testing/Camera2 video [30] is used as “test video3” and 

PETS2006/S4-T5-A video [31] is used as “test video4”. 

4.3.1 Results of the Developed System with Multiple Targets  

In Figure 4-24 and Figure 4-25, some examples of the performance of the overall 

system are presented for tracking multiple targets case. 

 

Figure 4-24 An example from test video3 – Tracking of multiple targets labeled as 

10, 11 and 12 
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Figure 4-25 An example from test video4 – Tracking of multiple targets labeled as 

1, 2 and 3 

4.3.2 Results of the Developed System in Occlusion Case 

In this section, some examples of the occlusion handling results of the overall 

system are presented through Figure 4-26 to Figure 4-34. In order to show the 

results of each occlusion case, three scenes of the test videos are selected; one scene 

to represent the participants before occlusion, one scene to represent the resultant 

occluded track and one scene to represent the participants after occlusion. 

 

Figure 4-26 An occlusion example from test video1 – Before occlusion of tracks 

labeled 5 and 6 
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Figure 4-27 An occlusion example from test video1 – During occlusion, the 

occlusion of tracks labeled as 5 and 6, results in the occluded track labeled as 8 

 

 

Figure 4-28 An occlusion example from test video1 – At the end of the occlusion 

the occlusion participants labeled as track 5 and track 6 are separated 
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Figure 4-29 An occlusion example from test video2 – Before occlusion of tracks 

labeled 3 and 4 

 

 

Figure 4-30 An occlusion example from test video2 – During occlusion, the 

occlusion of tracks labeled as 3 and 4, results in the occluded track labeled as 5 
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Figure 4-31 An occlusion example from test video2 – At the end of the occlusion 

the occlusion participants labeled as track 3 and track 4 are separated 

 

 

Figure 4-32 An occlusion example from test video4– Before occlusion of tracks 

labeled 8 and 9 
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Figure 4-33 An occlusion example from test video4 – During occlusion, the 

occlusion of tracks labeled as 8 and 9, results in the occluded track labeled as 10 

 

 

Figure 4-34 An occlusion example from test video4 – At the end of the occlusion 

the occlusion participants labeled as track 8 and track 9 are separated 
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CHAPTER 5  

 

PERFORMANCE ANALYSIS OF MULTIPLE 

HYPOTHESIS TRACKING ALGORITHM  

Multiple Hypothesis Tracking algorithm is implemented and tested over some 

scenarios using PETS2001 [30] and PETS2006 [31] video sets. Some of the videos 

from these video sets are chosen to test and examine the sensitivity of the MHT 

algorithm according to their scenarios in this study. Since the run time of the 

implemented code is long, some periods of these selected videos are used. In this 

chapter background training, target tracking and occlusion handling performances 

of the MHT implementation is analyzed under some conditions like indoor and 

outdoor videos, tracking close and distant targets.  

5.1 Tracking Performance Analysis According to the Background 

Training Duration 

This analysis aims to examine the sensitivity of the performance of the tracker to 

the number of frames that are used for background training in foreground 

segmentation step. This analysis is performed on PETS2006/S4-T5-A video [31]. 
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Figure 5-1 Sensitivity of the tracker to the background training frame number 

The performance of the overall tracker is highly dependent on the performance of 

the foreground segmentation step. As explained in section 3.1, Mixture of 

Gaussians method is used for moving object detection in this study. Background 

training period is effective on the detection performance and as shown in Figure 

5-1, the performance of the tracker increases with the number of background 

training frames. This is because, using a relatively small learning rate (i.e., 0.0008) 

and a long learning period (i.e., 900 frames) results in a well-defined background, 

successful moving object detection and therefore less mistakes in moving object 

tracking. In this study, before tracking algorithm is run, background training is 

performed with a small background learning rate and a duration of nearly the same 

number as the frame number of the test video. After this training period, the overall 

algorithm is run and background learning rate is increased (i.e., 0.008) so that the 

foreground segmentation algorithm would be able to include the objects, which stop 

after a while, in the background in a fast manner. 

5.2 Tracking Performance Analysis According to the Parameters 

Used in Hypothesis Score Calculation 

This analysis aims to examine the sensitivity of the tracking performance of MHT 

algorithm to the parameters used in hypothesis score calculation. In other words, the 
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aim is to understand how observation-to-track association is affected by the features 

such as distance, size, color, gate size and track history. 

In this analysis PETS2001/Dataset1/Testing/Camera1 video is used as “test 

video1”, PETS2001/Dataset1/Training/Camera1 video is used as “test video2” and 

PETS2006/S4-T5-A video is used as “test video3”. The features of the input test 

videos are given in Table 5-1. 

Table 5-1 Features of the input test videos 

Input/Features Environment 
Distance of the 

camera 

Number of 

moving 

objects 

Illumination 

Test video1 Outdoor Distant 6 Daylight 

Test video2 Outdoor Distant 8 Daylight 

Test video3 Indoor Close 7 
Indoor 

lightning 

Test video1 and test video2 contain both close and distant objects whereas test 

video3 contains close objects. Here, close and distant words are used for defining 

the distance between targets and the camera. As mentioned in section 4.2.4, 

distance, size, color, gate size and track history features are used in hypothesis score 

calculation with weights changing from 0 to 1 in the score formula (4-3). The 

feature weights that are used in hypothesis score calculation of tracking 

performance analysis for test videos are given in Table 5-2. 
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Table 5-2 Feature weights used in hypothesis score calculation of tracking 

performance analysis for test videos 

Input/Parameter Distance Size Color Gate History 

Test video1 1 0.2 0.1 0.4 0.8 

Test video2 1 0.2 0.1 0.6 0.8 

Test video3 0.8 0.2 0.1 0.2 0.8 

The sensitivity of the MHT algorithm is examined according to one parameter by 

giving different values to that parameter while keeping the other parameters same as 

in Table 5-2. The tracking performance analysis result is given in Table 5-3. 

Table 5-3 Sensitivity of the tracking performance of MHT algorithm in terms of the 

parameters used in hypothesis score calculation 

Condition/Parameter Distance Size Color Gate History 

Indoor insensitive insensitive insensitive sensitive sensitive 

Outdoor insensitive insensitive sensitive sensitive sensitive 

Close Objects sensitive sensitive insensitive sensitive sensitive 

Distant Objects insensitive insensitive insensitive sensitive sensitive 
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Figure 5-2 Sensitivity graph of the tracking performance of MHT algorithm in 

terms of distance weight in hypothesis score calculation 

According to the analysis results given in Figure 5-2, the algorithm is not sensitive 

to the changes in the weight of the distance feature while tracking distant objects 

(objects far from the camera) whereas it is sensitive in close objects (objects close 

to the camera) case. The reason is that in consecutive frames the displacement of a 

distant object is small; therefore the observations in the gate of a distant track are 

very close to that track and observation-to-track associations are succeeded. 

However, the displacement of a close object in consecutive frames is greater than 

that of a distant one and the observations in the gate of a close track are not close to 

that track. Therefore, while tracking close objects hypothesis score is sensitive to 

distance feature and observation-to-track associations are not always succeeded. 



98 

 

 

Figure 5-3 Sensitivity graph of the tracking performance of MHT algorithm in 

terms of size weight in hypothesis score calculation 

The algorithm is not sensitive to the changes in the weight of the size feature while 

tracking distant objects whereas it is sensitive in close objects case as shown in 

Figure 5-3. Since a distant object is small with respect to a close one, in consecutive 

frames the size difference of a distant object is very small. Therefore the sizes of the 

observations in the gate of a distant track are very similar to the size of that track 

and consequently in hypothesis score calculation the size score is generally high and 

the algorithm is not sensitive to size feature for distant tracks. 
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Figure 5-4 Sensitivity graph of the tracking performance of MHT algorithm in 

terms of color weight in hypothesis score calculation 

Another result of the analysis is that the algorithm is not sensitive to the changes in 

the weight of the color feature when tested with indoor videos whereas it is 

sensitive when tested with outdoor videos as shown in Figure 5-4. This is because 

in consecutive frames of indoor videos, lightning is almost stable however; in 

outdoor conditions lightning may change abruptly and therefore the colors of the 

detected objects may differ from frame to frame as a result of too much lightning or 

shadows. Consequently, for outdoor scenes the color of the observations in the gate 

of a track may be different from the color of that track and therefore in hypothesis 

score calculation the color score is generally low and the algorithm is sensitive to 

color feature for outdoor videos. 
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Figure 5-5 Sensitivity graph of the tracking performance of MHT algorithm in 

terms of gate size weight in hypothesis score calculation 

 

Figure 5-6 Sensitivity graph of the tracking performance of MHT algorithm in 

terms of history weight in hypothesis score calculation 
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The analysis results also imply that the algorithm is sensitive to the changes in the 

gate size and history weights in any condition as shown in Figure 5-5 and Figure 

5-6. In fact, the sensitivity of the algorithm to these features is slightly different 

since these features are the consistency measures of the tracks. In hypothesis score 

calculation, gate and history scores give idea about the previous associations of a 

track. In detail, if the track is continuously updated (associated) with the 

observations in its track gate, its gate becomes smaller and therefore its gate score 

becomes higher. Similarly, if the track is continuously updated (associated) with the 

observations in its track gate, the history score of the track becomes higher since the 

update of the tracks with the observations empowers the consistency of tracking. 

Therefore, for all conditions of the analysis, with a weight value above 0.25 the 

performance of the algorithm is high therefore; these parameters may be fixed for 

all conditions above 0.25. 

According to the tracking performance analysis the optimum feature weights are 

determined for each test video as in Table 5-4. 

Table 5-4 Optimum feature weights used in hypothesis score calculation of tracking 

performance analysis for test videos 

Input/Parameter Distance Size Color Gate History 

Test video1 1 0 0 0.75 0.75 

Test video2 1 0 0 0.75 0.75 

Test video3 0 0 0.5 0.75 0.75 
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5.3 Occlusion Handling Performance Analysis According to the 

Parameters Used in Separation Score Calculation 

This analysis aims to examine the sensitivity of the occlusion handling performance 

of the MHT algorithm to the parameters used in separation score calculation. In 

other words, the aim is to understand how the separation of occlusion participants’ 

performance is affected by the features such as size and color.  

In this analysis PETS2001/Dataset1/Testing/Camera1 video is used as “test 

video1”, PETS2001/Dataset1/Training/Camera1 video is used as “test video2” and 

PETS2006/S4-T5-A video is used as “test video3”. The features of the input test 

videos are given in Table 5-5.  

Table 5-5 Features of the input test videos 

Input/Features Environment 

Distance 

of the 

camera 

Illumination 

Number 

of 

occlusions 

Test video1 Outdoor Distant Daylight 1 

Test video2 Outdoor Distant Daylight 3 

Test video3 Indoor Close 
Indoor 

lightning 
2 

 

Test video1 and test video2 contain both close and distant objects whereas test 

video3 contains close objects. Here, close and distant words are used for defining 

the distance between targets and the camera. As mentioned in section 4.2.8.2.2, at 

the end of an occlusion, occlusion participants are compared with the new tracks 

that are initiated in the region where the occlusion ends. This comparison is made 

considering the separation score. Size and color features are used in separation 



103 

 

calculation with weights changing from 0 to 1 in the separation score formula (4-

28). The feature weights that are used in separation score calculation for test videos 

are given in Table 5-6. 

Table 5-6 Feature weights used in separation score calculation for test videos 

Input/Parameter Size Color 

Test video1 0 0.5 

Test video2 0 0.5 

Test video3 0 0.5 

The sensitivity of the MHT algorithm is examined according to one parameter by 

giving different values to that parameter while keeping the other parameter same as 

in Table 5-6. The tracking performance analysis result is given in Table 5-7. 

Table 5-7 Sensitivity of the occlusion handling performance of the MHT algorithm 

in terms of the parameters used in separation score calculation 

 
Condition/Parameter Size Color 

Indoor insensitive sensitive 

Outdoor insensitive sensitive 

Close Objects insensitive sensitive 

Distant Objects insensitive sensitive 
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Figure 5-7 Sensitivity graph of the occlusion handling performance of MHT 

algorithm in terms of size weight in separation score calculation 

According to the analysis as shown in Figure 5-7, the algorithm is insensitive to the 

changes in the weight of the size feature for all cases. The increase in the weight of 

the size feature results in a decrease in the performance of the system. This is 

because during the occlusion, the sizes of the participants change as they move 

towards the camera or far from the camera. As a result, before and after the 

occlusion, the participants’ sizes are different and it is not correct to match the 

participants considering their sizes for these test videos. Therefore, size is not a 

distinctive feature between the occlusion participants for the test videos that are 

used in this analysis. For some other test scenarios that have occlusion participants 

with different sizes, a size weight greater than 0 would help in matching the 

participants. 
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Figure 5-8 Sensitivity graph of the occlusion handling performance of MHT 

algorithm in terms of color weight in separation score calculation 

The algorithm is sensitive to the changes in the weight of the color feature for all 

conditions as shown in Figure 5-8. In fact, the sensitivity of the algorithm to this 

feature is slightly different; because for these test videos, using color feature is a 

necessity for occlusion handling and for color weights above 0.25 the performance 

of the algorithm does not change. During the occlusion, the colors of the 

participants do not change much and as a result, the colors of the participants’ 

before the occlusion can be used as a measure to match the participants at the end of 

the occlusion. Therefore color is a distinctive feature between the occlusion 

participants for the test videos that are used in the analysis and for these videos a 

color weight above 0.25 is sufficient for the correct matching of occlusion 

participants. For some other test videos, different values of color weight would be 

suitable depending on the color difference between the participants. 

According to the occlusion handling performance analysis the optimum feature 

weights are determined for each test video as in Table 5-8. 
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Table 5-8 Optimum feature weights used in separation score calculation of 

occlusion handling performance analysis for test videos 

Input/Parameter Size Color 

Test video1 0 0.5 

Test video2 0 0.5 

Test video3 0 0.5 

 

5.4 Results of MHT Algorithm with Other Test Scenarios Using 

Optimized Feature Weights  

In this section, the results of the MHT algorithm are presented with some other test 

videos using optimized feature weights that are determined in sections 5.2 and 5.3. 

PETS2001/Dataset2/Testing/Camera2 video is run with the optimized feature 

weights of PETS2001/Dataset1/Testing/Camera1 video and the results of the test 

are given in Figure 5-9. These two videos have similar features; they are recorded 

with the same camera and similar outdoor conditions, however they have different 

targets with different target movements. PETS2001/Dataset2/Testing/Camera2 

video has 9 tracks and 3 occlusion cases. 
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(c)        (d) 

  

(e)        (f) 
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(g)        (h) 

 

  

(i)        (j) 

  

(k)        (l) 

Figure 5-9 Results of PETS2001/Dataset2/Testing/Camera2 video with optimized 

feature weights of test video1 of section 5.2  
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The results of the MHT algorithm for PETS2001/Dataset2/Testing/Camera2 with 

the optimized feature weights show that the algorithm is not successful at tracking 

the first bicycle-man and handling 3 occlusion cases.  

As seen in Figure 5-9 (d), the first bicycle-man is not tracked by the algorithm until 

he goes far from the camera. Since the bicycle-man moves fast, when he is close to 

the camera the displacement of him between two consecutive frames is large. 

Consequently, the observations are not in the gate of the track or the distance score 

of the hypothesis is low; therefore observation-to-track association is not succeeded. 

When the bicycle-man goes away from the camera, he becomes a distant track; his 

displacement between two consecutive frames becomes smaller and as seen in 

Figure 5-9 (g) he is tracked correctly even he goes fast. 

In Figure 5-9, the car is always tracked correctly even it moves fast because the car 

is a large object and consequently its track gate is large. Thus, there are always 

observations in its track gate and observation-to-track associations are succeeded. 

As shown in Figure 5-9 (j) and (l), the second bicycle-man is tracked correctly 

regardless of the distance between the bicycle-man and the camera because he does 

not move fast and the displacement between two frames is small enough for correct 

observation-to-track association. 

The occlusions in Figure 5-9 (e) and (f) are not handled correctly because these are 

not realized as occlusions by the algorithm. The algorithm detects an occlusion 

when two or more tracks get closer to each other so that they are detected as one 

object. However, in these occlusion cases, there are not two or more tracks that get 

closer since the second participant (the bicycle-man) is not a track yet. Therefore 

the occlusion condition is not satisfied for the cases in Figure 5-9 (e) and (f). In 

Figure 5-9 (g), track3 is recognized correctly by the algorithm as the bicycle-man 

goes away from it, however in Figure 5-9 (f), track4 is not recognized correctly and 

it is labeled as track7. This is because during the occlusion of track4 and the 

bicycle-man, the displacement of track4 is large; consequently the last position of 

the dead track (track4) and the position of the new track are far from each other. As 

a result, the new track is not recognized as track4; instead it is labeled as track7. 
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At the end of the occlusion in Figure 5-9 (k), one of the occlusion participants 

(track10) is not recognized correctly and labeled as track8 as shown in Figure 5-9 

(l). The reason of this wrong labeling is the mismatch of the participants with the 

dead tracks in the occlusion area. At the end of the occlusion, using the separation 

score, the tracks that are initiated in the thresholded occlusion area are compared 

with the occlusion participants. Since the separation score of the second occlusion 

participant (track 10) is above the threshold, this track is not recognized as track10 

at the end of the occlusion and it is compared with the tracks which were dead in 

that area. According to this comparison which is detailed in section 4.2.8.1, this 

track is matched with the dead track track8. 

PETS2006/S2-T3-C video is run with the optimized feature weights of 

PETS2006/S4-T5-A video and the results of the test are given in Figure 5-10. These 

two videos have similar features; they are recorded with the same camera and 

similar indoor conditions; however they have different targets with different target 

movements. This PETS2006/S2-T3-C video has 11 tracks and 1 occlusion case. 

 

  

(a) (b) 
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(c)        (d) 

  

(e)        (f) 

  

(g)        (h) 

Figure 5-10 Results of PETS2006/S2-T3-C video with optimized feature weights of 

test video3 of section 5.2 
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The results of the MHT algorithm for PETS2006/S2-T3-C video with the optimized 

feature weights shows that the algorithm is not successful at tracking track7 and 

track8 and handling an occlusion. 

In Figure 5-10 (d), track7 and track8 are labeled wrongly. Since the displacement of 

track7 (the track labeled as track7 in Figure 5-10 (c)) is large between two 

consecutive frames, observation-to-track association is not succeeded, track7 (the 

track labeled as track7 in Figure 5-10 (c)) is dead and a new track called track8 is 

initiated in Figure 5-10 (d). The track labeled as track7 in Figure 5-10 (d) should be 

labeled as a new track however, this track is matched with a track which was dead 

in that area because of the similarity of their position, size and color and therefore 

labeled as that dead track. 

At the end of the occlusion in Figure 5-10 (e), occlusion participants are not 

recognized correctly and labeled as track12 and track13 as shown in Figure 5-10 (f). 

Since the occlusion participants (track6 and track8 of Figure 5-10 (d)) are close 

tracks (close to the camera) and they are moving towards the camera, the 

differences in the occlusion participants’ position between two consecutive frames 

are large. Consequently, the new tracks that are formed after the separation of the 

occlusion participants (track12 and track13) are not in the thresholded occlusion 

area where the occlusion ends. Therefore, these new tracks are not compared with 

the old occlusion participants (track6 and track8) and as a result the occlusion 

participants are not recognized at the end of the occlusion; instead they are labeled 

as track12 and track13. 
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CHAPTER 6  

 

CONCLUSION  

6.1 Summary and Conclusions 

Visual surveillance systems are mostly used in airports, train stations, banks and 

country borders as a solution to security problems. Since automated surveillance 

systems consist of cameras and computers, the performance of these systems 

increases as computer technology develops. In this study, moving object detection 

and moving object tracking parts which are the basic blocks of visual surveillance 

systems have been implemented and the overall performance of the developed 

system is analyzed. 

The first part of the developed visual surveillance system is moving object detection 

in which the detection of foreground objects is performed. Foreground 

segmentation and sub-operations are the sub-steps of this part. Mixture of Gaussians 

method has been utilized for foreground segmentation. This method is an adaptive 

model and robust to dynamic changes in the environment. Therefore, this method is 

suitable for environments with gradual lightning changes, repetitive motions like 

swaying of trees. The duration of the background training period has an effect on 

the detection performance and therefore on the performance of the whole system. It 

is observed that the performance of the system is better if background training 

period is longer and the learning rate is relatively small in the training period since 

the background is learned well. After the detection of moving objects, sub-

operations step is performed which consists of shadow removal and morphological 
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operations steps. A statistical method is applied for shadow removal. Shadow 

removal is important since they may cause false segmentation of object features in 

terms of their shape and size and furthermore, large shadows may cause false 

occlusions. After shadow removal, morphological operations like erosion and 

dilation are performed on detected objects. The number and order of erosion and 

dilation operations and also the size and the shape of the structuring elements may 

be different for different input videos. In this study, three dilations, after two 

erosion operations are implemented with same structuring element. Morphological 

operations are followed by connected component labeling. 

The second part of the developed visual surveillance system is moving object 

tracking which is implemented using multiple hypothesis tracking method. The 

performance of this method is good at tracking multiple targets since this method 

generates hypotheses for the solution of the observation-to-track association 

problem and defers the decision to the following frames rather than deciding the 

solution with the current data. Since the deferred decision is made using the data of 

more than one frame, more reliable assignments are made with this method. In 

hypothesis evaluation, track features such as distance, size, color, gate size and 

track history are utilized. In addition, this method is capable of implementing track 

initiation, confirmation and deletion. However, its computational load and the 

difficulties in constructing the track tree structures are the disadvantages of this 

method. Track confirmation and occlusion handling are also realized in this study. 

Size and color features of the occlusion participants are utilized for occlusion 

handling. 

The performance of the system is examined with three analyses. The first analysis 

aims to understand the effects of the duration of background training on the overall 

tracking performance. It is observed that 35 – 40 seconds long background training 

period with a relatively small learning rate via the tracking part results in high 

tracking performance because of the well-defined background. The second analysis 

presents the sensitivity of the tracking performance with respect to the features that 

are used for hypothesis score calculation. According to this analysis, the algorithm 
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is not sensitive to the changes in the weight of the distance and size while tracking 

distant objects whereas it is sensitive in close objects case; the algorithm is not 

sensitive to the changes in the weight of the color feature when tested with indoor 

videos whereas it is sensitive with outdoor videos and the algorithm is sensitive to 

the changes in the gate size and history weights in any condition. The third analysis 

presents the sensitivity of the occlusion handling performance with respect to the 

features that are used in separation score calculation. According to this analysis, the 

algorithm is not sensitive to the changes in the weight of the size feature, whereas, it 

is sensitive to the changes in the weight of the color feature considering the 

occlusion handling performance for all the test videos used in the analysis. 

6.2 Future Work 

The proposed tracking system is designed for a single camera case. Using more than 

one camera can be helpful to improve the occlusion handling performance. In 

addition to occlusion handling, the performance of tracking for targets passing 

behind an object or leaving the field of view of the camera can also be improved. 

However, it brings the additional problem of information fusion. This problem can 

be solved by implementing a supervisory system to deal with data fusion. The 

homography between the views of the cameras can be utilized for this purpose. 

According to the performance analysis the system has sensitivity to the parameters 

used in hypothesis score calculation and occlusion handling. The sensitivity of the 

system can be reduced by implementing a supervisory system that automatically 

tunes these parameters according to the features of the tracks such as being close to 

the camera. Another improvement of the system may be using pan-tilt-zoom 

cameras instead of static ones. This may be helpful for tracking targets leaving the 

field of view or observing the motion of the targets in more detail by zooming if 

necessary. For future MHT implementations using a structure based programming 

language which is capable of implementing tree structure would be helpful in 

implementing track tree forming and tree pruning. 
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