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ABSTRACT 

 

 

MULTI RESOURCE AGENT BOTTLENECK GENERALIZED 

ASSIGNMENT PROBLEM 

 

 

Karabulut, Özlem 

 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 

 

May 2010, 124 pages 

 

In this thesis, we consider the Multi Resource Agent Bottleneck Generalized 

Assignment Problem. We aim to minimize the maximum load over all agents. 

 
We study the Linear Programming (LP) relaxation of the problem. We use the 

optimal LP relaxation solutions in our Branch and Bound algorithm while 

defining lower and upper bounds and branching schemes. We find that our 

Branch and Bound algorithm returns optimal solutions to the problems with up to 

60 jobs when the number of agents is 5, and up to 30 jobs when the number of 

agents is 10, in less than 20 minutes. 

 

To find approximate solutions, we define a tabu search algorithm and an α 

approximation algorithm. Our computational results have revealed that these 

procedures can find high quality solutions to large sized instances very quickly. 

 

Keywords: Bottleneck Generalized Assignment Problem, Multi Periods, Branch 

and Bound Algorithm, Linear Programming Relaxation
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ÖZ 

 

 

DARBOĞAZ ÇOK KAYNAKLI GENELLE ŞTĐRĐLM ĐŞ ATAMA 

PROBLEM Đ 

 

 

Karabulut, Özlem 

 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Meral Azizoğlu 

 

Mayıs 2010, 124 sayfa 

 

Bu çalışmada, Darboğaz Çok Kaynaklı Genelleştirilmi ş Atama Problemi ele 

alınmıştır. Amacımız, temsilcilere dönemler üzerinden atanan en büyük toplam iş 

yükünü enazlamaktır.  

 

Problemin doğrusal programlama gevşetmesini çalıştık. Optimal doğrusal 

programlama gevşetmesi çözümlerini önerdiğimiz dal-sınır yönteminde alt ve üst 

sınır ve dallandırma yöntemini belirlemekte kullandık. Dal-sınır yöntemimizin 

büyüklüğü temsilci sayısı 5 iken 60 işe ve temsilci sayısı 10 iken 30 işe  kadar 

olan problemleri 20 dakikadan daha kısa sürede çözdüğünü gördük. 

 

Yaklaşık çözümler bulmak için, bir tabu arama algoritması ve α yaklaşıklama 

algoritması geliştirdik. Deneylerimizin sonuçları bu yöntemlerin büyük boyuttaki 

problemlere kısa sürede yüksek kaliteli çözümler bulduğunu göstermiştir. 

 

Anahtar Kelimeler: Darboğaz Genelleştirilmi ş Atama Problemi, Çok Dönemli, 

Dal-Sınır Yöntemi, Doğrusal Programlama Gevşetmesi 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Assignment Problems are motivated and stimulated by the situations where the 

scarce resources have to be allocated to the activities. The assignment theory is 

concerned with the optimal allocation of scarce resources to the activities through 

the development and analysis of mathematical models and techniques.  

 

In service environments, each activity, called opportunity (job, request), requires 

at most one resource, called agent (server), of limited capacity and availability.  In 

production environments, the opportunities and agents are replaced by jobs 

(tasks) and machines (workers), respectively. 

 

There are two types of assignment problems, namely total cost and bottleneck 

based on the objective functions.  The total cost type objective functions 

minimize the sum of the assignment costs whereas the bottleneck type functions 

minimize the maximum cost over all assignments.   

 

The basic assignment model assumes no capacities on the resources, makes a 

single assignment to each agent and minimizes the total cost. The basic model and 

its generalizations have been studied for many decades.  Besides their obvious 

practical importance, the assignment problems appear as subproblems in many 

well recognized Operations Research problems like the Traveling Salesman 

Problem, Routing, Scheduling, Location and Layout Problems.  

 

Due to the special structure of its constraint space, the basic assignment problem 

sets all assignment variables to either zero or one, when the integrality 
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requirements are relaxed. This follows that the basic model can be solved in 

polynomial time by Linear Programming (LP) software. Even simpler polynomial 

time algorithms like Hungarian, Labelling algorithms can be used to solve the 

problem. 

 

The Generalized Assignment Problem (GAP) is an assignment problem where 

there are capacities on the agents and multiple job assignments to an agent are 

allowed. 

 

The GAP has many real-life applications as cited in the literature. Some 

applications, as cited in Cattrysee and Van Wassenhove (1992), include fixed-

charge plant location models in which customer requirements must be satisfied by 

a single plant, grouping and loading for Flexible Manufacturing Systems 

(Mazzola, Neebe, and Dunn, 1989), resource scheduling, scheduling of project 

networks, storage space allocation, designing communications networks with 

node capacity constraints (Grigoriadis, Tang and Woo, 1974),  scheduling 

payments on accounts where ‘lump sum’ payments are specified, assigning 

software development tasks to programmers, assigning jobs to computers in 

computer networks (Balachandran, 1972), scheduling variable length television 

commercials into time slots, assigning ships to overhauls (Gross and Pinkus, 

1972), routing (Fisher and Jaikumar, 1981). As mentioned by Campbell and 

Diaby (2002), the GAP is also used as an approximation when allocating cross-

trained workers to multiple departments where the benefits of assigning additional 

personnel to a department are given by a concave function. The p-median 

problem, the capacity constrained p-median problem and the plant location 

problem can also be modeled as the GAPs (see Ross and Soland, 1977). 

 

The GAP with the minimum total cost objective is NP-hard in the strong sense, 

since its feasibility question is so (see Martello and Toth, 1995). 

 

The bottleneck GAP (BGAP) is the GAP that has the minimax objective instead 

of the minimum-sum objective. The BGAP has many practical applications 
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especially in the public sector. One noteworthy application is the location of the 

emergency service facilities.  

 

The BGAP is categorized as task based and agent based problems. The task based 

BGAP (TBGAP) minimizes the maximum cost over all assignments whereas the 

agent based BGAP (ABGAP) minimizes the maximum cost over all agents. 

  

The task and agent based BGAP are NP hard in the strong sense based on the fact 

that GAP is so (Martello and Toth, 1995).  

 

The GAP assumes that there is only one type of resource defined on the agent 

capacities. Pentico (2007), in his survey of assignment problems, identifies 

another version of the Generalized Assignment Problem namely, the multiple 

resource GAP (MRGAP). As the name implies the MRGAP deals with an 

environment where multiple resources define the agent capacities.   

 

The cited practical applications of the MRGAP include the allocation of databases 

among the nodes of a distributed computer system (Pirkul, 1986), processor and 

database location in distributed computer systems (Gavish and Pirkul, 1982 and 

1986) and the truck routing problem (Murph, 1986). The vehicle routing problem 

with multiple resources can also be modeled as the MRGAP.  The other potential 

applications as cited by Gavish and Pirkul (1991) include telecommunication 

network design, cargo loading on ships, warehouse design and work load 

planning in job shops. 

 

There are two versions of the MRGAP, namely the minimum-sum MRGAP and 

the Bottleneck MRGAP.  Both problems are NP hard in the strong sense as their 

single resource versions are strongly NP hard. 

 

In this study we consider the Multi-Resource Agent Bottleneck Generalized 

Assignment Problem (MRABGAP). To the best of our knowledge, there is no 
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reported study on the MRABGAP.  Our interest on this problem stems from its 

wide practical applications and lack of any theoretical result. 

 

One practical application that we take our motivation from is faced in a nationally 

recognized firm in the Heating, Ventilating and Air Conditioning (HVAC) sector. 

The problem they defined and thereafter we formalized was assigning agents to 

the opportunities such that the agent assigned to an opportunity will follow the 

opportunity for multiple periods. The agents have limited time for each period, 

and the time requirement of an opportunity changes according to the agent it is 

assigned. It is essential that an opportunity is assigned to a single agent. This is 

because it would take time to coordinate the agents to follow a single opportunity 

and the communication between the agents would slow down the process if 

multiple agents were responsible from an opportunity. On the other hand, due to 

the capacity limitations, the agents should serve a limited number of 

opportunities. Moreover, the workload balance between the agents should be 

regarded from managerial perspective. Even when the capacity of an agent 

permits to serve all opportunities and this agent serves at the fastest pace, the 

balanced solution would assign a subset of the opportunities to this agent and the 

rest to the other slower ones. 

 

In this study we first investigate the properties of the optimal solution and state 

some rules to detect the infeasibility of the instances. We incorporate those 

properties to our Linear Programming (LP) relaxations en route to improve its 

efficiency. Moreover we incorporate some valid cuts that are satisfied by the 

optimal solution, but not the optimal LP relaxed solution. We then propose a 

Branch and Bound algorithm that incorporates the optimality properties together 

with efficient bounding mechanisms. Our lower bounds are of two types: one is 

simple, but not-as-efficient, and used as a filtering mechanism. The other one is 

an optimal LP relaxed solution, hard-to-compute, is however efficient in 

performance. 
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We could solve test problems with up to 60 jobs for 5 agents and up to 30 jobs for 

10 agents and up to 5 periods in reasonable CPU times. We hope our results 

stimulate future research on the subject. 

 

The rest of the thesis is organized as follows. In Chapter 2, we review the 

literature on the Generalized Assignment Problems. We also give the related 

mathematical programming formulations of the problems. In Chapter 3, we 

present our model and state the properties of the optimal and some feasible 

solutions. We give the LP relaxation bounds.  

 

We discuss our solution procedures in Chapters 4 and 5. We present our Branch 

and Bound algorithm in Chapter 4 and discuss some filtering mechanisms we 

incorporated into the algorithm. In Chapter 5, we discuss heuristic procedures to 

find approximate solutions: a tabu search algorithm and an α approximation 

scheme.  We report the results of our computational experience in Chapter 6. 

Chapter 7 concludes the study with our main findings and future research 

suggestions. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

The Generalized Assignment Problem (GAP) is a generalization of the well-

known assignment problem (AP). The GAP allows multiple assignments to the 

agents as long as the capacity restrictions are satisfied. As in the classic AP, the 

GAP assumes that each job will be assigned to only one agent. Throughout the 

thesis we use the terms opportunity and job, interchangeably. 

 

In this chapter, we first formulate and review the GAP with total cost objective 

and then the bottleneck GAP. 

 

2.1. The GAP with Total Cost Objective 

 

In this chapter, we first give the GAP model with total cost objective and then 

give the related literature review. 

 

2.1.1. The Model 

 

The GAP can be modeled as follows: 

(4)10

(3) 1

(2) 

(1)min

  J,        I,   j,   i or  x          

        J,                 j,x           

    I,               i,bxa s.t.      

                              xc      

ij

i
ij

j
iijij

i j
ijij 

∈∈=

∈=

∈≤

∑

∑

∑∑

 

where ijx  equals 1 if job j is assigned to agent i, 0 otherwise. 
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ijc is the cost of assigning job j to agent i. 

ija is the agent i’s capacity required by job j.  

ib is the available capacity of agent i.  

 

Constraint set (2) ensures that agents are not overloaded and constraint set (3) 

states that each job can be performed by only one agent. The objective function 

given in (1) tries to minimize the total cost over all assignments. 

 

2.1.2. Survey on the GAP  

 

We first review the optimization and then the approximation algorithms 

developed and reported for the GAP. 

 

Optimization Algorithms 

 

The GAP is a widely studied problem in the literature. Many optimization studies 

are reported most noteworthy of which are due to  Ross and Soland (1975), 

Martello and Toth (1981b), Fisher, Jaikumar and Van Wassenhove (1986), 

Guignard and Rosenwein (1989a), Wilcox (1989), Jörnsten and Värbrand (1987), 

Karabakal et al. (1992), Savelsbergh (1997), Cattrysse et al. (1998), Park et al. 

(1998), Farias and Nemhauser (2001), Nauss (2003), Haddadi et al. (2004), 

Pigatti et al. (2005), Avella et al. (2008). 

 

For a more thoroughly review of the algorithms, one may refer to the survey 

paper by Cattrysse and Van Wassenhove (1992).  

 

Ross and Soland (1975) propose a lower bound obtained by deleting the capacity 

constraints (2), hence solving a classical assignment problem. The assignment 

based lower bound is then strengthened by adding penalties defined for 

reassigning jobs from one agent to another that satisfy the capacity constraints.  
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Ross and Soland (1975) and Fisher,  Jaikumar and Van Wassenhove (1986) also 

show that a lower bound can be obtained by relaxing constraint set (3) by 

Lagrange multiplier. The relaxed problem is a knapsack problem and solved by 

setting the Lagrange multipliers to the second smallest cij values. This lower 

bound is used in a Branch and Bound (B&B) algorithm employing a binary 

branching strategy based on the remaining agent capacities and the penalty for not 

assigning a job to the least costly agent. They report computational results for the 

problems with up to 4000 binary variables. 

 

Martello and Toth (1981b) remove the constraint set (3) from the equivalent 

maximization model and find single independent knapsacks. Their branching 

strategy assigns the unassigned jobs and handles the jobs that are assigned more 

than once. The bound is improved by computing a lower bound on the penalty for 

satisfying the relaxed constraints. The job with the maximum penalty is chosen as 

the branching variable in this Branch and Bound algorithm. They report 

computational results for problems with up to 5 agents and 20 jobs and show the 

superiority of their results over those of Ross and Soland (1975).  

 

Fisher, Jaikumar and Van Wassenhove (1986) study the Lagrangean relaxation of 

the problem that dualizes constraint set (3). They set the corresponding 

Lagrangean multipliers, jµ , to the second largest ijc value (the maximization 

version is considered), hence obtain the bound proposed by Ross and Soland. In 

the first step the jobs are assigned to the agents having ijc - jµ >0, i.e., to the 

maximum profit agents, then an assignment problem is solved for the jobs having 

ijc - jµ = 0. In the second step, the multipliers are adjusted by a heuristic 

procedure so as to assign more jobs. The Branch and Bound algorithm starts when 

no further improvements are possible. The branching strategy selects the free 

variable with the largest ija  value. Their computational results for problems with 

up to 20 jobs and 5 agents show the superiority of the algorithm over those of 

Ross-Soland (1975) and Martello-Toth (1981b).  
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Guignard and Rosenwein (1989a) study the procedure proposed by Fisher, 

Jaikumar and Van Wassenhove (1986). They use a Lagrangean dual ascent 

procedure which solves a Lagrangean dual at each enumeration node and adds a 

surrogate constraint to the Lagrangean relaxed model. In the Branch and Bound 

algorithm, they use a branching scheme that combines depth-first and breadth-

first strategies. The branching is based on the jobs with multiple assignments; the 

job with the maximum of the minimum resource usage is selected to branch on 

among the ones with multiple assignments. The authors report the satisfactory 

performance of their algorithm for the problems with up to 500 variables. 

 

Another study on the Lagrangean relaxation of the problem is performed by 

Wilcox (1989), who relaxes the constraint set (3). The Lagrangean multipliers are 

adjusted so that the multipliers of the unassigned jobs are higher than those of the 

multiple assigned jobs. He compares the binary branching and multiple branching 

strategies and concludes that the multiple branching rule is better. Fixing the 

variables to zero and one, the size of the problem is reduced. The branching is on 

the job with the largest number of fixed variables. The problem sizes are up to 5 

agents and 40 jobs. When compared to the approach of Fisher, Jaikumar and Van 

Wassenhove (1986), the algorithm is reported to be faster and results in smaller 

tree sizes.  

 

Two algorithms are proposed by Jörnsten and Värbrand (1987) for the GAP. The 

first one strengthens the bound obtained from the Lagrangean relaxation of the 

constraint set (2), via valid inequalities. When no valid inequality can be 

generated, a Branch and Bound procedure is used.  The second procedure uses a 

surrogate relaxation of constraint set (2) and valid inequalities. The first 

procedure is reported to be more efficient. Their test problems have 4 agents and 

25 jobs. 

 

Karabakal et al. (1992) propose a more effective multiplier adjustment method 

than the ones used by Fisher, Jaikumar and Van Wassenhove (1986) and 

Guignard and Rosenwein (1989a) to solve the Lagrangean relaxation of the 
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problem. They relax the constraint set (3). The multiplier adjustment method 

suggested by Fisher, Jaikumar and Van Wassenhove (1986) and then improved by 

Guignard and Rosenwein (1989a) is improved by a post optimality analysis of the 

0-1 knapsack subproblems. This method is embedded in a Branch and Bound 

algorithm. They use the branching strategy suggested by Bean (1984). A violated 

constraint (from constraint set 3) with the largest multiplier value is selected. 

Their computational results show the superiority of the algorithm over that of 

Martello and Toth (1981a). 

 

Savelsbergh (1997) proposes a branch and price algorithm which uses both 

column generation and Branch and Bound techniques. The problem is formulated 

as a set partitioning problem. Branching strategies based on variable fixing are 

shown to be suitable to the pricing. His computational study includes problems 

with up to 20 agents and 50 jobs. He compares his results with those of Karabakal 

et al. (1992) and finds that his algorithm performs better for problems with a 

relatively small n/m ratio (smaller than 5) while the other one performs better for 

problems that have higher n/m ratio. The author concludes that these two 

algorithms are good complements of each other.   

 

Park et al. (1998) propose a Lagrangean-Dual-Based Branch and Bound 

Algorithm for the Generalized Multi Assignment Problem, of which the GAP is a 

special case. For the GAP they compare the performance of their algorithm to 

those of Guignard and Rosenwein (1989a), Martello and Toth (1990). The authors 

conclude that their algorithm outpaces the others in terms of problem sizes that 

can be solved to optimality. They also conclude that as the n/m ratio gets bigger, 

the corresponding GAP becomes harder to solve. 

 

Cattrysse et al. (1998) discuss an improvement on the standard procedure for 

generating lifted cover inequalities that yields good upper bounds. Using this 

improvement they propose two heuristic procedures. They also use some pre 

processing techniques to reduce the size of the B&B tree. These techniques along 

with the proposed bounds are used in a B&B algorithm. They report 
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computational results for problems with m ∈{5, 8, 10} and n/m ratio ∈ {3, 4, 5, 

6} and show that the Branch and Bound algorithm outperforms the B&B 

algorithm of Martello and Toth (1990) in terms of average CPU time. It is noted 

that this satisfactory performance is achieved by the cuts and size reduction 

techniques. 

 

Farias and Nemhauser (2001) discuss a family of inequalities that are valid for the 

GAP polytope. The proposed inequalities are used in a branch and cut algorithm 

and computational results indicate a %53 reduction in the number of nodes and a 

%66 reduction in the CPU time by the proposed inequality. They compare their 

algorithm with the one proposed by Savelsbergh (1997) and conclude that their 

proposed algorithm is superior in terms of the computation time and the problem 

sizes that could be solved to optimality. 

 

Nauss (2003) proposes a Branch and Bound algorithm in which linear 

programming cuts, feasible solution generators, Lagrangean relaxation and 

subgradient optimization methods are used. His computational results show that 

that the algorithm outperforms the Savelsbergh’s algorithm especially in terms of 

the CPU time. Another comparison is done with CPLEX 6.6 on small sized 

problems and the proposed algorithm is reported to solve the test problems about 

3.5 times faster. Nauss mentions that the algorithm reaches good feasible 

solutions at early stages, hence, could be used as a heuristic when the guarantee of 

optimality is not essential.  

 

Haddadi et al. (2004) work on a Branch and Bound algorithm using a breadth first 

approach and selecting the node with the largest upper bound for branching. 

Lagrangean Relaxation which relaxes constraint set (2) is used. A standard 

subgradient method is used to solve this Lagrangean dual. At each iteration of the 

subgradient method, a heuristic is used. The results of their computational study 

reveal their Branch and Bound algorithm outperforms the Nauss’s (2003) 

algorithm and their Lagrangean heuristic outperforms the tabu search algorithm 

by Yagiura et al. (1999). The Lagrangean heuristic and the Branch and Bound 
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algorithm are reported to be better than the tabu search heuristic in terms of speed 

and both speed and accuracy, respectively. For the tested instances the proposed 

algorithm is shown to be better than the Branch and Bound algorithm of Nauss 

(2003). 

 

Pigatti et al. (2005) propose a branch and cut and price algorithm with a 

stabilization mechanism to improve the convergence of column generation. The 

authors also propose ellipsoidal cuts which are reported to produce good upper 

bounds for the branch and cut and price algorithm.   

 

Avella et al. (2008) introduce a cutting plane algorithm and perform a 

computational study of exact knapsack separation for the GAP. The proposed 

algorithm is tested on the problems taken from the OR-Library. The solutions for 

problems with up to 80 agents and 1600 jobs are reported. The authors report that 

they could solve four ‘hard’ instances that were reported as unsolved.  

 

Approximation Algorithms 

 

Some noteworthy approximation algorithms on the GAP are due to Martello and 

Toth (1981a, 1981b), Cattrysse (1990), Cattrysse, Salomon  and Van Wassenhove 

(1994), Osman (1995), Klastorin (1979), Jörnsten and Näsberg (1986), Jörnsten 

and Värbrand (1991), Trick (1992), Savelsbergh (1997), Hallefjord, Jörnsten and 

Värbrand (1993), Amini and Racer (1994, 1995), Racer and Amini (1994), 

Osman (1995), Chu and Beasley (1997), Yagiura et al. (1998, 2006), Higgins 

(2001), Díaz and Fernández (2001) and  Lourenço and Serra (2002). Osman 

(1995) provides a thorough review of the heuristic methods designed for the 

GAP.  

 

Martello and Toth (1981b) propose a greedy heuristic that determines the job with 

the maximum regret and assigns it to the agent that leads to maximum profit. 

Another version is discussed by the same authors, which assigns the job to the 

agent for whom the regret is minimum (1981a). The heuristic continues with an 
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improvement step using a shift procedure.  The performance of the heuristic 

algorithm is tested on problems with up to 20 agents and 200 jobs. The solution is 

compared with the optimal solution given by the Ross and Soland (1975) 

algorithm and 0.1% average deviation from the optimal is reported. 

 

Cattrysse (1990) proposes a variable fixing procedure that can be used to reduce 

the problem sizes. First the Linear Programming (LP) relaxation of the problem is 

solved and then violated valid inequalities are added to the formulation. The 

resulting formulation is solved and other valid inequalities are added. This 

continues until no further valid inequalities can be found. After this procedure, the 

variables that are found as 1 are fixed to 1 and capacities of the agents are updated 

accordingly. The resulting problem which is of a smaller size is solved by using a 

Simulated Annealing (SA) procedure. The authors report computational results for 

problems with up to 10 agents and 60 jobs. The Simulated Annealing algorithm is 

found to deviate no more than 3.9% from optimality on average. The fixing 

procedure finds solutions that are 0.72% apart from optimality and reduces the 

solution times. 

 

Cattrysse (1990) and Cattrysse, Salomon, Van Wassenhove (1994) study a set 

partitioning heuristic for the GAP.  The heuristic proposed in Cattrysse, Salomon, 

and Van Wassenhove (1994) uses column generation techniques and provides 

both upper and lower bounds. The authors report an average deviation of 0.13% 

from optimality. 

 

Osman (1995) imposes a time limit on the execution of the exact algorithms of 

Martello and Toth (1990) and Fisher and Jaikumar (1981). In this method, depth 

search is applied first and once a feasible solution is found a tree search is 

implemented.  

 

The heuristics proposed by Klastorin (1979), Jörnsten and Näsberg (1986) and 

Jörnsten and Värbrand (1991) use the Lagrangean relaxation and try to obtain 

feasible solutions based on the results of the relaxation.  
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Klastorin (1979) proposes a two phased Lagrangean relaxation based heuristics 

using modified subgradient and Branch and Bound approaches. A computational 

experience is cited for problems containing up to 12,000 binary variables. 

 

Jörnsten and Näsberg (1986) use Lagrangean decomposition bounds and obtain 

feasible solutions by modifying them. The violated capacity constraints are 

handled by interchanges and the resulting feasible solution is improved by 

reassignments of jobs from one agent to another. Jörnsten and Värbrand (1991) 

obtain feasible solutions based on the Lagrangean lower bound at every node of 

the tree search. The results are reported for problems with 4 agents and 25 jobs. 

 

A Linear Programming relaxation based heuristic for the GAP is proposed by 

Trick (1992). The author first eliminates the assignments for which the job’s 

requirement is greater than the agent’s capacity. The LP relaxation is solved and 

the variables that received value 1 in the relaxed solution are fixed to 1. These 

jobs are deleted and the agent capacities are updated accordingly. These steps are 

repeated until no variables are left. This algorithm is followed by an improvement 

procedure that swaps jobs of two agents or assigns a job to an agent different than 

the currently assigned one. This heuristic is shown to be consistent when 

compared to Martello and Toth (1990)’s heuristics. The results are reported for 

problems with up to 100 agents and 500 jobs. The proposed heuristic is reported 

to outperform Martello and Toth (1990)’s heuristics. 

 

Savelsbergh (1997) discusses the performance of the truncated tree search 

algorithms. The first heuristic is based on setting a predefined limit, µ, to the 

number of nodes and the second one is based on using an optimality tolerance, α 

such that the nodes having IPLP Zα)(Z *1+≤  are fathomed. He concludes that the 

proposed heuristics outperform the linear relaxation heuristic of Trick (1992) in 

terms of solution quality with an acceptable increase in computation time. When 

α is set to 0.005, a significant increase in computation time is reported. 
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Hallefjord, Jörnsten and Värbrand (1993) propose an algorithm based on the idea 

of partitioning the jobs into clusters. The jobs are grouped via a hierarchical 

cluster analysis. The resulting aggregated GAP is solved to optimality and the 

optimal aggregated solution is then disaggregated to obtain a feasible solution to 

the GAP. The authors solve two problems of sizes 4 agents- 25 jobs and 4 agents-

1000 jobs. 

 

Amini and Racer (1994) and Racer and Amini (1994) develop a variable-depth 

search heuristic (VDSH) for the GAP. The proposed algorithm is a two phase 

algorithm. The first phase generates an initial feasible solution and an LP based 

lower bound. The second phase is a refinement phase in which a job is assigned to 

another agent or two jobs assigned to different agents are interchanged while 

ensuring feasibility. The authors compare the results of their heuristic to that of 

Martello and Toth (1990) on problem instances with 5-20 agents and 50-200 jobs. 

They report solutions that are closer to optimality however at an expense of 

increased solution times. 

 

Osman (1995) studies the implementation of local search descent, hybrid 

Simulated Annealing / Tabu Search (SA/TS) and TS methods. He compares the 

performances with those of the best reported algorithms by Cattrysse (Simulated 

Annealing) (1990), Cattrysse et al. (Set Partitioning Heuristic) (1994), Fisher et 

al. (1986) (curtailed B&B), and Martello and Toth (1990) (curtailed B&B). The 

computational results with up to 10 agents and 60 jobs reveal that SA and TS 

outperform the other heuristics in terms of the solution quality and time. Also the 

local search descent method is found to be much faster than SA/TS and TS 

mechanisms and recommended when computation time is a limiting factor. 

 

Amini and Racer (1995) propose a hybrid heuristic that combines greedy heuristic 

and a refinement phase. Local optimal solutions are avoided by allowing chain 

moves. They show that the problem instances with up to 200 jobs and 20 agents 

are solved in 30 seconds on average.  
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Chu and Beasley (1997) develop a Genetic Algorithm (GA). The performance of 

the algorithm is compared to those of SA heuristic of Cattrysse (1990), the set 

partitioning heuristic of Cattrysse, Salomon and Van Wassenhove (1994) and the 

SA/TS heuristic of Osman (1995). Their computational study shows that the 

average deviation from optimality is 0.01% and the computational times are 

compatible with those of other heuristics. 

 

Yagiura et al. (1998) introduce a variable depth search (VDS) algorithm with 

branching search. The algorithm is a more sophisticated version of the VDS 

algorithm developed by the same authors. The authors compare their heuristic 

with the heuristics by Yagiura et al. (1997), VDS by Racer and Amini (1994), 

tabu search by Laguna et al. (1995), tabu search for the general purpose constraint 

satisfaction problem by Nonobe and Ibaraki (1998) on the test problems with up 

to 20 agents and 200 jobs. The solution quality of the proposed algorithm is 

reported to be better than the existing algorithms in most cases. 

 

Higgins (2001) introduces new versions of the TS algorithm. The algorithm 

applies dynamic oscillation and changes the size of the neighborhood sample as 

time progresses. The new version is compared with the three existing versions of 

TS for the test problems with up to 50000 jobs and 40 agents. In time limit of 10 

minutes, the new version is reported to outperform the others in terms of the 

solution quality. In order to compare the computation times of the algorithms, the 

author runs the proposed version for 2 minutes, records the solution, and observes 

the time for the other versions to reach the quality of this solution. The existing 

versions are reported to require 1.5-3 times more time than the proposed one for 

the same solution quality. 

 

Díaz and Fernández (2001) develop a tabu search heuristic. The performance of 

the algorithm is tested on problems with up to 40 agents and 400 tasks. The 

proposed algorithm is reported to provide good solutions in competitive 

computational times with SA/TS and TS heuristics proposed by Osman (1995) and 

the GA proposed by Chu and Beasley (1997). 
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Lourenço and Serra (2002) apply adaptive search method for the GAP based on 

GRASP and Ant Colony optimization. Their hybrid approach includes ideas from 

Max Min Ant Systems (MMAS) and GRASP and combines them with tabu 

search techniques. The results compare favorably with MMAS and the greedy 

randomized adaptive heuristics both in terms of time taken and quality of the 

solution. 

 

Yagiura et al. (2006) introduce a metaheuristic that includes path relinking 

approach along with an ejection chain approach. The authors test the performance 

of their algorithm on the instances with up to 20 agents and 200 jobs. They 

compare their results with those of Alfandari et al.(2002), Díaz and Fernández 

(2001), Haddadi and Ouzia (2001), Yagiura et al. (2004), Racer and Amini 

(1994), Laguna et al. (1995), MAX–MIN ant system by Lourenço and Serra 

(2002), Chu and Beasley (1997) and a mixed integer programming solver CPLEX 

6.5. The proposed algorithm is reported to be superior in most instances. 

 

2.2. The Bottleneck GAP 

 

The bottleneck GAP (BGAP) is first mentioned by Francis and White (1974) and 

is first defined by Mazzola and Neebe (1988). There are two versions of the 

problem: task based and agent based.  

 

The Task BGAP (TBGAP) minimizes the maximum cost of the assignments. The 

associated formulation for the Task BGAP is as follows: 
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The Task BGAP is shown to be NP hard in the strong sense based on the fact that 

GAP is so (Martello and Toth, 1995). 
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Mazzola and Neebe (1988) discuss solution procedures to solve the Task BGAP. 

Through an appropriate transformation they formulate the problem as a minisum 

GAP, which can be used to solve the corresponding TBGAP when the number of 

distinct cij  values is small. The authors also discuss an iterative procedure to solve 

the Task BGAP and provide an example to illustrate the procedure. No 

computational results are reported for the procedures. 

 

Mazzola and Neebe (1993) propose an algorithm for the Task BGAP that uses the 

procedures discussed in Mazzola and Neebe (1988). They use an equivalent 

formulation of the problem and propose the so called iterative TBGAP algorithm 

to solve this modified version. The authors find optimal solutions to the instances 

with up to 5 agents and 20 jobs. 

 

Martello and Toth (1995) discuss the relaxations to the TBGAP. They find 

bounds by relaxing the resource constraints and applying a surrogate relaxation. 

They propose an approximate algorithm that finds a feasible solution in less than 

a given threshold. They define a Branch and Bound algorithm that uses the results 

of the approximate algorithms. The search strategy used is depth-first search and 

the branching is done by assigning the selected job to all feasible agents. A simple 

mechanism is used to fathom the nodes, if the mechanism fails to fathom the node 

the relaxations are applied in a sequence from weakest to strongest. The authors 

report computational results of both the exact and approximation algorithms for 

problems with up to 50 agents and 1000 jobs. 

 

The Agent BGAP (ABGAP) minimizes the maximum of the total costs assigned 

to each agent. The formulation is as stated below: 
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To the best of our knowledge there is no reported study on the Agent Bottleneck 

Generalized Assignment Problem. 

 

2.3. The Multi Resource GAP (MRGAP) 

 

The MRGAP is a generalization of the GAP with multi resources. The problem is 

formulated as follows: 

 

Given  

• A set of agents I = {1, …, m} 

• A set of tasks J = {1,…, n} 

• A set of periods T={1,…, s} 

• bit: Available capacity of agent i in period t  

• pijt: Time required by task j in period t if performed by agent i.  

 

Min  ∑∑
= =

=
m

i

n

j
ijij xcz

1 1
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where  

ijx =








otherwise 0

agent   toassigned is  task if  1 ij
 

 

The assignment decision variables, xij ’s are binary. 
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Constraint set (1) ensures that the capacities of the agents are not exceeded and 

constraint set (2) ensures that each task is assigned to one agent.  

 

The studies about the MRGAP are summarized in the following table: 

 

Table 2.1: Literature Review for the MRGAP 

Title  Authors  Method  Publication Date  

Algorithms for the MRGAP Gavish and Pirkul Optimization Jun-91 

Heuristics for the MRGAP 
Mazzola and 

Wilcox 
Optimization Mar-01 

A very large-scale 

neighborhood search 

algorithm for the MRGAP 

Yagiura, Iwasaki, 

Ibaraki, Glover 

Very large-scale 

neighborhood 

search 

Mar-04 

Local search intensified: Very 

large Scale Variable 

Neighborhood search for the 

MRGAP 

Minic, Punnen 

Very large-scale 

variable 

neighborhood 

search 

Apr-09 

 

Gavish and Pirkul (1991) study different Lagrangian relaxations of the problem 

and develop three heuristics.  The first heuristic simply assigns the tasks that 

would result in high incremental costs if they were not assigned to the least costly 

agent.  The second heuristic uses the solution of the Lagrangian Relaxation by the 

constraint set (2) as an initial solution and generates a feasible solution by 

reassigning some tasks. 

 

The third heuristic obtains a feasible solution using the Lagrangian relaxation of 

constraint set (1). The computational results indicate that for difficult problems, 

the third heuristic dominates the others and it is used as a bounding scheme in 

their Branch and Bound algorithm. The bound is calculated when a free variable 

xij is fixed to 1-xij*. A combination of three different rules are used in the 

algorithm. The first one uses a subgradient optimization algorithm to determine 

the Lagrangean multipliers and new bound. In the second method, the solution for 

the Lagrangean relaxation is found by using the most recent multiplier set and in 

the third one sensitivity analysis is used. The branching strategy is based on 
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selecting a job according to a predefined penalty measure and assigning this job 

to each agent in increasing order of the penalty values. The optimal solutions to 

problems with up to 10 agents and 100 jobs are reported. 

 

Mazzola and Wilcox (2001) propose a three phased heuristic that first seeks to 

construct a feasible solution and then systematically improves the solution. In the 

first phase, a function based on predefined weight functions is used to calculate a 

“regret” value for a job. From the unassigned jobs, the job yielding the largest 

regret is assigned to the agent that minimizes the selection function. In the second 

phase, jobs from the agents that are overloaded are reassigned to other available 

agents according to a given priority measure. In the third phase, they propose a 

solution improving procedure which uses a feasible solution and improves it by 

using an Integer Programming model that maximizes the improvement of total 

cost when the jobs are shifted between agents. They also suggest a modification 

for the heuristic by Gavish and Pirkul (1991) to reduce its computational burden. 

A hybrid heuristic using this modified heuristic and the three phased heuristic is 

discussed. The hybrid heuristic is reported to be the most effective of all with an 

average deviation of less than 3% from the optimal solution for the problems with 

up to 10 agents, 75 jobs and 4 resource types. 

 

Yagiura et al. (2004) work on a very-large scale neighborhood search algorithm 

based on tabu search which they call as TS-CS (tabu search with chained shift 

neighborhood). The authors provide computational results for problems with up 

to 20 agents, 200 jobs and 8 resource types. The optimal solution by  alternative 

TS applications are compared with each other and with CPLEX 6.5. They find 

that TS-CS performs better for majority of the problem instances. 

 

Mitrović-Minić and Punnen (2009) develop a very large scale variable 

neighborhood search (VNS) algorithm for the MRGAP. The basic idea is as 

follows:  

• Start with a feasible solution.  
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• Divide the assignments of the solution into two parts, namely S and S’, fix 

the assignments of the tasks in set S and solve a relatively smaller Integer 

Program to find the optimal allocation of the tasks of set S’. 

• The new solution that includes the optimal assignments for S’ set replaces 

the current feasible solution if it has a better objective function value.  

 

The most important decision involved is the size of set S, i.e., |S|.  For small |S|, 

searching the neighborhood is almost equivalent to solving the MRGAP itself and 

for large |S|, the neighborhood is weak. The authors propose nine ways to select 

|S|. They suggest to start with large |S|, and decrease it gradually, resulting in a 

very large scale VNS. They use the test problems of Yagiura et al. (2004) and 

compare the performance of their algorithm with TS of Yagiura et al. (2004) and 

with the best solution found by CPLEX in a predefined time limit.  

 

In this study we consider an Agent Bottleneck MRGAP (MRABGAP). To the 

best of our knowledge, there is no reported study on this problem. 
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CHAPTER 3 

 

 

PROBLEM DEFINITION 

 

 

 

An Agent Bottleneck MRGAP (MRABGAP) is an Agent Bottleneck Generalized 

Assignment Problem (ABGAP) with multiple types of resources.  We assign the 

agents to the job opportunities while obeying the agent capacities and assigning 

each job to exactly one agent. These assignments are valid for a horizon that 

includes multiple equal-length periods, hence multi resources. That is, in the  

MRABGAP we seek to find the assignment that balances total agent loads.  We 

achieve load balancing by minimizing the maximum total load over all agents.  In 

our case, the time capacity of the agents is the single physical resource type,  but 

the problem has direct analogy with the multi-resource problem as available 

capacity changes from period to period for an agent.  Unlike the other problem 

types we do not have any cost concern; we only try to find an optimal balance in 

the total workloads of agents. 

 

The Generalized Assignment Problem (GAP) is strongly NP-hard, since even its 

feasibility question is NP-complete (Martello and Toth, 1995). So is any 

generalization of the GAP. The MRABGAP is a generalization of the GAP with 

multiple resources and has the same feasible region. This follows that the feasible 

region of the MRABGAP is strongly NP-complete and the optimality problem is 

NP-hard in the strong sense.  

 

We next give the mathematical model of the MRABGAP. 
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3.1. Mathematical Model of the MRABGAP 

 

Parameters 

 

bit: Available capacity of agent i in period t. 

pijt: Time required by task j in period t if performed by agent i.  

 

Decision Variables 

 

The  binary variables, xijs,define the assignments such that 

xij= 








otherwise 0

agent   toassigned is  task if  1 ij
 

 

Constraints 

 

Given  

• A set of agents I = {1, …, m} 

• A set of tasks J = {1, …, n} 

• A set of periods T={1, …, s} 

 

stmibxp
n

j
itijijt  ..., ,1     , ..., ,1                       

1

=∀=∀≤∑
=

 (1)        

∑
=

=
m

i
ijx

1

1                            nj  ..., ,1  =∀                              (2)  

ijx = 0 or 1                           mi  ..., ,1  =∀  , nj  ..., ,1  =∀  (3) 

 

Constraint set (1) ensures that the capacities of the agents are not exceeded and 

constraint set (2) ensures that each task is assigned to one agent. The assignment 

restrictions are given by constraint set (3). 
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Objective Function 

 

The MRABGAP minimizes the maximum of the total loads assigned over all 

agents. The objective function is as follows: 


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We can linearize this objective function by defining a continuous variable, Z, 

which denotes the minimum of the maximum total load over all agents. We add 

the following constraint set to the formulation: 
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This constraint set defines a bottleneck type objective function that returns the 

maximum of the total load over all agents.  

 

Below is the linearized formulation of the MRABGAP: 

(P) 

Min Z  
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Size of the model 

 

Number of constraints 

 

Given m agents, n jobs and s periods the number of constraints is m*s + n+ m, 

excluding the set constraints. 

 

Number of decision variables 

 

Binary Variables: Given m agents and n jobs the number of binary variables (xijs) 

is m*n. 

Continuous Variables: There a single continuous variable (Z). 

 

An Example Problem 

 

Consider the following example problem with the parameters provided in Tables 

3.1 and 3.2. 

 

Table 3.1: bit Values of the Example Problem 

Agent Period 1 Period 2 

1 18 16 

2 16 16 

3 40 30 

4 23 22 

5 16 15 

 

Table 3.2: pijt values of the Example Problem 

  Period 1 Period 2 

Agent/Job 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

1 10 10 7 6 15 12 7 11 7 12 8 10 5 5 14 9 4 12 6 11 

2 6 9 11 5 11 14 8 8 11 7 5 11 10 4 11 11 9 9 12 6 

3 11 5 12 14 10 14 12 11 8 12 11 4 12 11 10 14 14 10 8 14 

4 14 14 11 12 5 8 15 14 12 12 13 14 11 9 5 7 16 14 11 9 

5 11 6 14 7 5 8 8 9 9 7 13 6 12 6 4 7 8 9 10 7 
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A feasible solution to the problem is as follows: 

x21=x32=x43=x14=x35=x46=x17=x38=x59=x210=1 and all the other xijs are 0. The 

bottleneck agent is agent 3 with a total load value of  50.  The total loads of 

agents is demonstrated in Figure 3.1. 

 

A feasible solution
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Figure 3.1: The Total Loads of the Agents for a Feasible Solution 

 

An optimal solution to the problem is as follows: 

x21=x32=x13=x54=x45=x46=x17=x28=x39=x510 =1 and all other xijs are 0. Agent 2 is 

the bottleneck agent and the optimal solution value, i.e., the total load of agent 2, 

is 28. Below is a graphical representation of the total loads of the agents.  

 

The optimal solution
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Figure 3.2: The Total Loads of the Agents in the Optimal Solution 
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3.2. Properties of Solutions 

 

Properties of Feasible Solutions 

 

1. For each agent, total work should be less than or equal to an upper bound (UB). 

 

∑∑ ∀≤
j t

iijijt iRHSxp               (1) 

 

iRHS ≡  








∑
t

itbUB, Min  

 

Note: If RHSi = ∑
t

itb (1) would be redundant. 

If RHSi = UB such that UB<∑
t

itb ; (1) may be used as a valid cut. 

 

Problem Size Reduction Properties 

 

One can use the following rules before using an optimization algorithm in order 

to fix some variables to 0 or 1; hence reduce the problem size beforehand.  

1.  

a. If the time required for agent i to perform job j in period t is greater than the 

maximum available time agent i has in a period over all the periods, then the 

corresponding variable xij  should be 0. 

 

If { }   it
t

ijt bMaxp > then xij =0 (1.a) 

 

Otherwise the feasibility condition stated by (1) is violated. 

 

b. If the time required for agent i to perform job j in period t is greater than        

the maximum available time for that period over all the agents, then the 

corresponding variable, xij  should be 0. 
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If { }   it
i

ijt bMaxp >   then xij  =0 (1.b) 

 

Otherwise the feasibility condition stated by constraint set (1) is violated. 

 

c. If the time required for agent i to perform job j in period t is greater than        

the available time of the agent for that period t, then the corresponding variable, 

xij should be 0. 

 

 If itijt bp >  for any i, j, t then xij =0 (1.c) 

 

Otherwise the feasibility condition stated by (1) is violated. 

 

2.  If the total time required for agent i to perform job j is greater than the total 

available time of agent i over all periods, then the corresponding variable xij is 0. 

 

If ∑ ∑>
t t

itijt bp  for any i and j then 0=ijx  (2) 

 

Otherwise the feasibility condition stated by (1) is violated. 

 

3. If minimum time required for agent i to perform any job is greater than the 

maximum available time of that agent for a period then no jobs are assigned to 

that agent in a feasible solution. 

  

 If  it
t

ijt
tj

 bMax pMin >
,

 for i then 0=∑
j

ijx  for agent i    (3) 

 

Otherwise the feasibility condition stated by (1) is violated. 

 

4. If minimum time required for agent i to perform any job in period t is greater 

than the available time of the agent in that period then no jobs are assigned to that 

agent in a feasible solution. 
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If itijt
j

bpMin >   for any t then  0=∑
j

ijx     for agent i    (4) 

 

Otherwise the feasibility condition stated by (1) is violated.                                         

 

5. The rules 1.a, 1.b, 1.c and 2 can be easily modified for eliminating agents from 

further considerations as follows: 

 

If 0=ijx  holds for all j for an agent i then 0=∑
j

ijx    (5) 

 

Otherwise the feasibility condition stated by (1) is violated. 

 

6.  If job j cannot be assigned to any agent but agent k then the corresponding 

variable xkj should be 1 in a feasible solution. 

 

If 0=ijx  for all agents but one agent k then  1=kjx    (6) 

 

Otherwise constraint set (2) is violated. 

 

Comparison of the Rules  

 

1. Rule 0 and rule 2 are not substitutable, checking one of them does not imply 

checking the other. 

2. Rule 1.c, which already implies 1.a and 1.b, is a stronger rule. 1.a and 1.b are 

different rules but they are weak rules to be used in practice.   

3. Rule 1.c already implies rule 2. 

4. Instead of using ∑
t

itb it is always possible to use an upper bound (UB) such 

that UB <∑
t

itb to make the corresponding rules stronger. 
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Some Rules to Detect Infeasibility 

 

One can use the following rules to detect infeasibility beforehand. One should 

note that the following checks for infeasibility are one-sided. If the conditions are 

satisfied then the problem is infeasible. However if the conditions are not 

satisfied, feasibility is not guaranteed. As the decision version of the problem is 

NP-complete, there cannot be any rule that detects the infeasibility. 

 

0. If the minimum time needed to perform a job in a period is greater than 

maximum available time in any period t, then the problem is infeasible. 

 

If   { } { }it
i

ijt
i

bMaxpMin >   for any t and j then the problem (P) is infeasible    (0) 

 

1. If condition (1.a) holds for all i for at least one j then job j cannot be assigned 

to any agent, hence (P) is infeasible. 

 

2. If condition (1.b) holds for all i for any j and t then job j cannot be assigned to 

any agent, hence (P) is infeasible. 

 

3. If condition (1.c) holds for all i for at least one j and t then job j cannot be 

assigned to any agent, hence (P) is infeasible. 

 

4. If condition (2.b) holds for all i for at least one j then the problem is 

infeasible. 

 

5. If the minimum total time needed to perform all jobs is greater than the total 

available capacity, then the problem is infeasible. 

     a. If  { } ∑∑∑∑ >
t i

it
t

ijt
j

i
bpMin  then the problem is infeasible. 

The above condition states that even all jobs are performed by their quickest 

agent in each period the total capacity over all periods is exceeded. 
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     b. If  ∑∑∑∑ >








t i
it

t
ijt

j
i

bpMin , then the problem is infeasible. 

The above condition states that even all jobs are performed by their quickest 

agent over t periods; the total capacity over all periods is exceeded. 

 

6. If the minimum total time needed to perform all jobs in any period t is greater 

than the total available capacity for that period, then the problem is infeasible. 

 

If { } ∑∑ >
i

itijt
j

i
bpMin ,   for any t then the problem is infeasible.     (6) 

 

Comparison of the Rules  

 

1. Rule 5.b, which implies 5.a., is a stronger cut than rule 5.a.  

2. Rule 1.c in problem size reduction part already implies rules 5.a and 5.b. 

 

3.3. Lower Bounds 

 

We develop three lower bounds on the optimal value of the MRABGAP. These 

are namely Lower Bound 1, Lower Bound 2 and Linear Programming Relaxation 

Based Lower Bound. 

 

3.3.1. Lower Bound 1 (LB1) 

 

To find a lower bound on the optimal objective function value, we make the 

following relaxations: 

 

The capacities of the agents are unlimited (hence remove constraint set (1)) 

The opportunities can be split between the agents (hence relax the integrality of 

xijs) 
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Moreover we use underestimation for the total load of each opportunity, i.e., 

hence we relax the time parameters. 

 

The optimal solution to the problem after these relaxations, LB1, provides a lower 

bound on the optimal objective function value, Z*. 

LB1 = 
m

pMin
j t

ijt
i

∑ ∑








 

 

Theorem below states this result formally. 

Theorem: LB1 is a lower bound on Z*. 

Proof: Let TATj denote the total time job j takes at the optimal solution.  

The total load of all jobs at the optimal solution is∑
j

jTAT . We know that TAT j ≥ 








∑

t
ijt

i
pMin , implying ∑ ∑∑







≥

j t
ijt

i
j

j pMinTAT . ∑ ∑








j t
ijt

i
pMin  is the total 

load if all the opportunities are performed by their fastest agent, i.e., total load of 

the opportunity is underestimated. When the integrality constraints on xij  values 

are relaxed and capacity constraints are removed, the optimal solution divides the 

load ∑ ∑








j t
ijt

i
pMin  evenly between all agents, and give an objective function 

value of ∑ ∑








j t
ijt

i
pMin /m. Hence LB1 is a valid lower bound on Z* value, as it 

is an optimal solution to a problem where some parameters are underestimated 

and some constraints are relaxed.                  

 

If the lower bound solution is feasible, i.e., all opportunities can be performed by 

their fastest agents without violating the capacity constraints and with a 

bottleneck load of LB1 units, it is optimal. Moreover if a feasible solution with Z 

value of LB1 is achieved then its optimality can be warranted. 
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To evaluate the partial solution with set S of assigned opportunities and Zi of load 

of agent i, we extend LB1 as follows: 

We calculate the minimum total load due to the unassigned jobs as in LB1 and 

distribute it to the nonbottleneck agents until they are full up to the bottleneck 

load. Then, if remains, we distribute the load evenly to all m agents and obtain a 

lower bound for the optimal solution of the corresponding partial solution. 

The lower bound is available by the following expression: 

LB1(S) = BL+ 
























−−









∑∑∑ ∑
∈∉

m

SxpmBpMin

Max Si t
ijijtL

Sj t
ijt

i
))()*((

,0  

 

where BL = { }i
i

ZMax ,i.e., the bottleneck load of partial solution S and xij(S) is the 

value of the assignment variable in the partial solution. 

∑∑
∈Si t

ijijt Sxp )(  is the current total load due to the assignments of the partial 

solution. 

 

First, all the agents are filled up to the BL value, assuming a total capacity of 

BL*m and hence the unused capacity becomes BL*m-∑∑
∈Si t

ijijt Sxp )( . If the 

remaining work is smaller than this value, i.e., LB1(S) is equal to BL, the 

bottleneck will not change. But if it is higher, we distribute the excess load evenly 

over all agents, raising the bottleneck load to LB1. 

 

We next discuss further improvements of LB1. 

 

Strengthened versions of Lower Bound 1 

 

Note that LB1(S) completely ignores the capacity constraints. We strengthen LB1 

by incorporating the capacity constraints, to some extent. These strengthened 

versions of LB1(S) are referred to as version 1 and version 2. The first one 

strengthens the bound by preventing the assignment of a job to an agent whose 
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aggregate capacity is not sufficient. The second one performs this check for each 

individual period and does not allow the assignment of a job to an agent if the 

available capacity of the agent is not sufficient to serve the job at any period t.  

 

Strengthened Version 1  

 

In finding the minimum time of a job, we exclude the agents that do not have 

enough total available capacity to process that job. As we improve our estimation 

on total loads while preserving other assumptions, strengthened version 1 

dominates LB1(S). For a partial solution, the capacities are updated by considering 

the already assigned tasks. 

 

This strengthened version is calculated via the following equation: 

LB1(S) = BL+ 
























−−









∑
∑∑∑ ∑
∈∉ ≤

m

SxpmBpMin

Max
Si t

ijijtL
Sj t

ijt
STACpi

t
iijt

))()*((

,0
)(|

 

 

where BL is the bottleneck value of the partial solution and ∑∑
∈Si t

ijijt Sxp )(  is the 

current total load due to the assignments of the partial solution S. 

 

TACi (S) is the total available capacity of agent i in the partial solution. 

 

One can prove easily that this version provides a lower bound for the optimal 

solution in a similar way as in LB1(S). 

 

Strengthened Version 2 

 

The second strengthened version of LB1(S) dominates the strengthened version 1. 

It differs from version 1 in the way the capacity constraints are incorporated. The 

second version excludes the agents that do not have available capacity in any 
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period t. For a partial solution, strengthened version 2 is calculated via the 

following equation: 

 

LB1(S) = BL+ 
























−−









∑∑∑ ∑
∈∉ ∀≤

m

)(S)xp*m)((BpMin

,Max Si t
ijijtL

Sj t
ijt

t(S)  capi|p tiijt

0  

 

where BL is the bottleneck value of the partial solution at hand,  ∑∑
∈Si t

ijijt Sxp )(  is 

the current total load due to the assignments of the partial solution and capit (S)   is 

the available capacity of agent i for period t in the partial solution. 

 

Numerical Example 

 

We illustrate our lower bounds on an example problem with 5 agents, 10 jobs and 

2 periods. The problem data are given in Tables 3.3, 3.4 and 3.5. 

 

Table 3.3: bit Values of the Example Problem 

Agent Period 1 Period 2 

1 18 16 

2 16 16 

3 23 23 

4 23 22 

5 16 15 

 

Table 3.4: pijt Values of the Example Problem 

  Period 1 Period 2 

Agent/Job 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

1 10 10 7 6 15 12 7 11 7 12 8 10 5 5 14 9 4 12 6 11 

2 6 9 11 5 11 14 8 8 11 7 5 11 10 4 11 11 9 9 12 6 

3 11 5 12 14 10 14 12 11 8 12 11 4 12 11 10 14 14 10 8 14 

4 14 14 11 12 5 8 15 14 12 12 13 14 11 9 5 7 16 14 11 9 

5 11 6 14 7 5 8 8 9 9 7 13 6 12 6 4 7 8 9 10 7 



  

 37 

Table 3.5: ∑
t

ijtp  Values of the Example Problem 

Agent/Job 1 2 3 4 5 6 7 8 9 10 

1 18 20 12 11 29 21 11 23 13 23 

2 11 20 21 9 22 15 17 17 23 13 

3 22 9 24 25 20 28 26 21 16 26 

4 27 28 22 21 10 15 31 28 23 21 

5 24 12 26 13 9 15 16 18 19 14 

 

The minimum total time that jobs require and the corresponding agents are given 

in Table 3.6.  

 

Table 3.6: Minimum Total Loads and Corresponding Agents of the Example 

Problem 

Job Min Total Load Min Total Load Agent 

1 11 2 

2 9 3 

3 12 1 

4 9 2 

5 9 5 

6 15 2,4,5 

7 11 1 

8 17 2 

9 13 1 

10 13 2 

 

At the root node, when all the jobs are unassigned the lower bound is calculated 

as follows: 

LB1 = (11+9+12+……+13+13)/5 = 23.8 

 

Suppose that we have a partial solution S, where x16(S) = x22(S) = x35(S) = x43(S) 

=x54(S) =1. Jobs 1, 7, 8, 9 and 10, are unassigned and the lower bound on the 

remaining work will be found based on these jobs. Figure 3.3 gives the loads of 

the agents given the partial solution S. Note that the bottleneck value of the partial 

solution, BL is 22 and the total load over all agents is 96. 
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Loads for the partial solution
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 Figure 3.3: Total Agent Loads in a Partial Solution of the Example Problem 

 

LB1(S) is calculated as follows:  

LB1(S) = 22+ [(11+11+17+13+13)-((22*5)-(21+20+20+22+13))]/5 

LB1(S) = 32.2 

 

Figure 3.4 shows the estimated loads of the agents by lower bound 1. 

 

Lower Bound 1 

21 20 20 22

13

1 2 2
9

10.2 10.2 10.2 10.2 10.2

0

5

10

15

20

25

30

35

1 2 3 4 5

Agent

To
ta

l L
oa

d

 

Figure 3.4: Lower Bound 1 Calculation for the Example Problem 

 

The first strengthened version uses the total available capacity of the agents, 

tabulated below.  
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Table 3.7: Available Capacities of the Agents for the Example Problem 

Agent Available Capacity (S) 

1 13 

2 12 

3 26 

4 23 

5 18 

 

Based on these capacities we estimate our minimum total load. Agent 2 is the 

minimum load agent for the unassigned jobs 8 and 10; however the agent does not 

have enough capacity to serve them. Hence, the minimum total load estimations 

for jobs 8 and 10 are updated. The results are given in the Table 3.8. The changes 

are shown in bold. 

 

Table 3.8: Minimum Total Load Estimation Updates for the Example 

Problem -Version 1  

LB 1(S)  Strengthened version 1 

Job 

Min. Total 

Load 

Min. Total Load  

Agent  Job 

Min Total  

Load 

Min Total Load  

Agent 

1 11 2  1 11 2 

7 11 1  7 11 1 

8 17 2  8 18 5 

9 13 1  9 13 1 

10 13 2  10 14 5 

 

The new lower bound is calculated as follows: 

LB1(S) = 22+ [(11+11+18+13+14)-((22*5)-(21+20+20+22+13))]/5 

LB1(S) = 32.6 

 

The second strengthened version uses the available capacity information of the 

agents for each period in the partial solution, which is given in Table 3.9.  
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Table 3.9: Available Capacities of Agents at each Period for the Example 

Problem 

  bit(S) 

Agent Period 1 Period 2 

1 6 7 

2 7 5 

3 13 13 

4 12 11 

5 9 9 

 

Based on these available capacities we update our minimum total load 

estimations. The minimum total loads for jobs 7 and 9 are determined by the load 

of agent 1. However, note that agent 1 does not have sufficient capacity at period 

1 to serve these jobs. Hence, agent 1 is not considered while estimating the 

minimum load for these jobs. Agents 5 and 3 determine the minimum total load 

estimations for jobs 7 and 9, respectively. The results are given in Table 3.10; the 

changes are shown in bold. 

 

Table 3.10: Minimum Total Load Estimation Updates for the Example 

Problem -Version 2 

Strengthened version 2 

Job Min Total Load  

Min Total Load 

Agent 

1 11 2 

7 16 5 

8 18 5 

9 16 3 

10 14 5 

 

The new lower bound is calculated as follows: 

LB1(S) = 22+ [(11+16+18+16+14)-((22*5)-(21+20+20+22+13))]/5 

LB1(S) = 34.2 
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Our pilot runs revealed that the strengthened version 2 does not increase the 

computational time significantly while providing the tightest bound value. Hence, 

we use it in the optimization algorithm as a bounding scheme and hereafter call it 

LB1.  

 

3.3.2. Lower Bound 2 (LB2) 

 

LB1 assigns all opportunities to their minimum time agents. The minimum time 

agent for many opportunities may correspond to the same agent as the capacities 

of the agents are not considered in defining the assignments. LB2 recognizes this 

fact and defines an upper bound on the number of opportunities to be assigned to 

each agent for a feasible solution. We let this upper bound be ni for agent i and in 

defining the total load we select a maximum of ni opportunities from agent i. We 

find ni using the following procedure: 

 

a. Find an upper bound on the objective function value, ZUB. 

b. Sort the ∑
t

ijtp  values from minimum to maximum for an agent i, such 

that ∑
t

ijtp ≤∑ +
t

tijp 1 for all j.  

c. Find ni such that, },{
1

∑∑∑
=

≤
t

it

n

j t
UBijt bZMinp

i

 and 

∑∑ ∑
+

=

>
1

1

},{
in

j t t
itUBijt bZMinp  

 

As the minimum possible durations are considered, ni is an upper bound on the 

number of opportunities that can be processed by agent i.  

 

After nis are found, we look for the number of opportunities that are assigned to 

agent i in LB1(S) computations. We let this number be r i.  Formally, 

r i = number of j’s such that 







∑∀≤

t
ijt

cappi
pMin

itijt t  |
 = ∑

t
ijtp . 
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If { }∑
i

ii -nrMax  ,0  is too big then LB1 becomes a poor estimation. We set a 

threshold k and revise LB1 if { }∑
i

ii -nrMax  ,0 >k. In doing so, we assign 

( { }∑
i

ii -nrMax  ,0 -k) jobs to their second minimum agents. To ensure the validity 

of the lower bound the selected second minimum values are the ones that cause a 

minimum increase in the total load value. Having found a tighter lower bound on 

the total remaining workload, the lower bound is calculated like LB1. 

 

If the lower bound solution is feasible, i.e., all opportunities can be performed by 

their fastest or second fastest agents without violating the capacity constraints and 

with a bottleneck load of LB2 units, it is optimal. Moreover if a feasible solution 

with Z value of LB2 is achieved then its optimality can be warranted. 

 

Numerical Example 

 

We illustrate LB2 computations on our previous example instance. Note that from 

now on we use the strengthened version 2 as LB1. 

 

When no upper bound is available, ni values can be calculated according to ∑
t

itb  

or ∑
t

itb (S) for partial solution S, as follows: 

For agent 1 the total processing times are 18, 20, 12, 11, 29, 21, 11, 23, 13 and 23. 

In the partial solution, jobs 2, 3, 4, 5 and 6 are assigned. The processing times of 

the unassigned jobs are 18, 11, 23, 13, 23 and the total available capacity of agent 

1, i.e. ∑
t

itb (S), is 13. 

 

We now order the processing times of the unassigned jobs by agent 1. 

11, 13, 18, 23, 23 

11≤ 13   and 11+13>13, hence n1 is 1.  
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The other ni values are calculated accordingly and given together with the r i 

values in the following table.  

 

Table 3.11: ni and r i Values of the Example Problem 

Agent(i) ni r i 

1 1 0 

2 1 1 

3 1 1 

4 1 0 

5 2 1 

  

{ }∑
i

ii -nrMax  ,0 =1, hence 1 job that causes minimum increase in the total load 

will be reassigned. The increase in the total load value when jobs are assigned to 

their second minimum load agents is calculated for each job. Note that while 

finding the second minimums we select from the agents that have sufficient 

capacity every period. 

 

Table 3.12: Difference between Minimum and 2nd Minimum Loads  

Job Min Total Load Sec.  Min. Total Load  Difference 

1 11 22 11 

7 16 26 10 

8 18 21 3 

9 16 23 7 

10 14 21 7 

 

The job resulting in minimum increase is reassigned to its second minimum load 

agent. The minimum difference occurs when job 8 is reassigned.  The lower 

bound for the minimum total load is now 78, hence 3 units more than LB1. We 

calculate the LB2 value as follows: 

LB2 = 22+ [(11+16+21+16+14)-((22*5)-(21+20+20+22+13))]/5 

LB2 = 34.8 
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3.3.3. Linear Programming Relaxation Based Bound (LB3) 

 

LB3 is found by simply relaxing the integrality constraints on xij values and letting 

10 ≤≤ ijx for all i and j. LB3 dominates LB1 and LB2 as it considers the capacity 

constraints and uses exact time values, unlike LB1 and LB2.  

 

We propose a strengthened version of LB3 that uses the upper bound on the 

maximum number of opportunities that can be assigned to an agent and 

incorporates it as a cut on the pure LP relaxation. The upper bound on the number 

of opportunities that can be assigned to an agent is found as in LB2. This is then 

introduced to the LP relaxation by adding the following constraint set: 

i
j

ij nx ≤∑       i∀    

where ni is the maximum number of jobs that can be assigned to agent i. 

 

We hereafter refer to this strengthened version as LB3. We calculate LB3 simply 

after using LB1 and LB2 for node elimination. If the node cannot be eliminated 

using LB3, this bound is used in determining the node to branch on.  

 

The LB3 value calculated at the root node for the previous example is 24.9. Recall 

that the LB1 value at the root node was 23.8, which indicates that LB3 is stronger 

than LB1. 
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CHAPTER 4 

 

 

BRANCH AND BOUND ALGORITHM 

 

 

 

Our preliminary runs on the Linear Programming (LP) relaxation of the problem 

have revealed that the average number of fractional variables at the optimal LP 

relaxation solution is relatively low. Hence we use LP relaxation in the Branch 

and Bound algorithm to define our branching scheme. We solve LP relaxation at 

every branch of the algorithm; use the results to select the variable to branch on 

and the optimal solution value of the relaxation as a lower bound. 

 

4.1. Selection Strategy and the Branching Scheme: 

 

At a node we find the job corresponding to the highest fractional variable of the 

LP Relaxation and select this job to branch on. Then the selected job is assigned 

in turn to each agent. For a selected job, j, the following m subproblems (nodes) 

are created: 

Subproblem 1: x1j =1 

Subproblem 2: x2j =1 

Subproblem 3: x3j =1 

Subproblem 4: x4j =1 

. 

. 

Subproblem m: xmj =1 

The associated tree is shown in Figure 4.1. 
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Figure 4.1: The Branching Scheme 

 

We evaluate each of the m nodes using the elimination mechanisms discussed 

next. 

 

4.2. Elimination Strategies 

 

We fathom a node representing the assignment of opportunity j to agent i if one of 

the following conditions holds: 

 

1. The node cannot lead to a feasible solution. 

 

1.1. Given the assigned jobs of the partial solution, if the available capacity of 

agent i is not sufficient to serve job j for any period t, constraint set (1) is 

violated, the subproblem cannot lead to a feasible solution.  Hence the 

associated node should be fathomed. Formally, 

 

If Cit(S) + pijt >bit, then xij cannot be set to 1.   (1.1) 

 

where Cit(S) = load of agent i in period t. 

Otherwise constraint set (1) is violated. (xij (S)=0). 

 

1.2. This mechanism finds an upper bound on the number of jobs that each 

agent can serve. Assume the total available capacities of the agents are used to 

calculate the upper bound on the total number of jobs that all the agents can 

X1j=1 X2j=1      Xmj=1 
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serve.  If this upper bound is less than the number of jobs, then constraint set 

(3) is surely violated, hence no feasible solution exists for the subproblem. 

Assume an upper bound on the objective function value, ZUB, is used for 

calculating the upper bound.  If the upper bound on total number of jobs all 

the agents can serve is less than the number of jobs, then the subproblem 

cannot lead to a solution better than the incumbent solution. Hence, we 

fathom the node. Formally, 

 

a. Find an upper bound on the objective function value, ZUB.  

b. Sort the ∑
t

ijtp  values from minimum to maximum for an agent i, such 

that ∑
t

ijtp ≤∑ +
t

tijp 1 for all j.  

c. Find ni such that,  

},{
1

∑∑∑
=

≤
t

it

n

j t
UBijt bZMinp

i

 and ∑∑ ∑
+

=

>
1

1

},{
in

j t t
itUBijt bZMinp  

 

As the minimum possible durations are considered, ni is an upper bound on 

the number of opportunities that can be served by agent i.  

 

If ∑ <
i

i nn then fathom the node     (1.2.) 

 

If this mechanism cannot fathom the node, i.e.,∑ ≥
i

i nn , then this 

information is introduced to the LP relaxation as a cut to strengthen its 

performance (see Section 3.3.3).  In doing so, the following constraint set is 

added to the LP relaxation of the subproblem: 

∑ ≤
j

iij nx  ,  i∀ . 

 

2. The node cannot lead to an optimal solution. 

2.1.We check whether the best objective value will be exceeded if the 

corresponding branch is used. At each branch we assign a job j to an agent i. 
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After that assignment if the total load of the agent becomes no less than the 

upper bound (UB), we guarantee that if this variable is set to 1, the objective 

function value cannot be less than UB. Hence, the node is fathomed. 

 

If ∑ ≥+
t

ijti UBpSZ )(  , then the assignment of job j to agent i raises the load 

of agent i above UB. Hence such an assignment cannot lead to a unique 

optimal solution. (xij (S)=0). 

 

3. The optimal solution emanating from that node can be found easily. 

 

3.1. On a branch that assigns a job j to an agent i, we first determine the set of 

unassigned jobs that can be assigned to agent i. If it is possible to assign all 

unassigned jobs to agent i without violating feasibility and still having total 

load for agent i no bigger than the bottleneck load of partial solution, Z(S), 

then the optimality is guaranteed with an optimal value of Z(S). We fathom 

the node by optimality. If all unassigned jobs are feasibly assigned to agent i 

but the bottleneck value is exceeded, we obtain an integer feasible solution; 

hence can use the load of agent i as an upper bound. Formally, 

 

a. Determine Si, set of jobs that can be assigned to agent i such that 

  Si = { j | pijt < bit(S) for all t} 

b. If all the unassigned jobs are included in Si and 

}{ k
k

t Sj
iijt ZMaxZp

i

≤+∑∑
∈

then fathom the node as the optimal solution is 

found.  

c. If all the unassigned jobs are included in Si and 

}{ k
k

t Sj
iijtUB ZMaxZpZ

i

>+>∑∑
∈

then update the upper bound such that 

ZUB =∑∑
∈

+
t Sj

iijt

i

Zp (S). 
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Our preliminary runs have revealed that this mechanism does not effect the 

computation time significantly. This is mostly due to the Branch and Bound 

algorithm’s power in finding close optimal solutions quickly, thereby 

decreasing the effect of the mechanism. 

 

Agent i is removed from all future considerations if one of the following 

conditions hold: 

 

1. There cannot be any feasible assignment to agent i. 

 

An agent is removed from all future considerations emanating from node S, if it 

cannot process any unassigned job. We first check whether 







< ∑∑

t
ijt

j
t

it pMinSb )( , i.e., the total remaining capacity of agent i is not 

sufficient to process even the minimum total requirement over all unassigned 

jobs. If this condition is passed, we make a more precise check and test whether 

bit(S) <







∑

t
ijt

j
pMin , i.e., the remaining capacity of agent i for any period t is not 

sufficient to process even the minimum time required in that period. Formally we 

check,  

If 






< ∑∑

t
ijt

j
t

it pMinSb )( , then remove agent i. 

If , bit(S) <







∑

t
ijt

j
pMin   for any period t, remove agent i. 

 

2.  The optimal assignment to agent i is available.  

 

On a branch that assigns a job j to an agent i, we first determine the set of 

unassigned   jobs that can be assigned to agent i. Even when all the jobs in this set 

are assigned to agent i the total load of agent is lower than the bottleneck load of 

the partial solution, we assign the jobs in this set to the agent and fix the 
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corresponding variables to 1, hence reduce the problem size. Since we have 

already assigned all possible (feasible) jobs to agent i, we remove this agent from 

all further considerations. Formally, 

 

   a. Determine Si, set of jobs that can be assigned to agent i such that 

Si = { j | pijt < bit(S) for all t} 

   b. If }{ k
k

t Sj
iijt ZMaxZp

i

≤+∑∑
∈

then assign the jobs in Si to agent i, and remove 

agent i from further considerations. 

 

For each unfathomed node, we first calculate LB1. If LB1 does not eliminate we 

calculate LB2. If LB2 cannot eliminate the node as well, we calculate the LP 

Relaxation bound, LB3. We select the node having the smallest LB3 value for 

further branching. If LB3 gives a feasible solution then we fathom the node. We 

update the upper bound value if the solution is lower than the best solution value 

at hand. If all nodes are fathomed at any level then we backtrack to the previous 

level. 

 

We next discuss an algorithm that we use to find an upper bound on the optimal 

solution of the problem. 

 

Upper Bounds 

 

In this section we discuss a heuristic procedure used for obtaining upper bounds. 

The upper bounds are either used as an initial solution in our Branch and Bound 

algorithm or as an approximate solution. Our upper bound is based on the LP 

relaxation; hence the algorithm runs in polynomial time. Recall that the decision 

version of our problem is NP-complete, which implies any heuristic procedure, 

hence ours, cannot guarantee feasibility. However, our preliminary runs have 

proved that this simple heuristic is very effective in finding feasible solutions.  
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Our heuristic has two phases. The first phase constructs an initial solution, if 

possible. This initial solution is obtained by modifying LP relaxation solution. If 

we can find a feasible solution better than the incumbent then the second phase 

that tries to improve the initial solution is performed. The improvement phase 

uses two steps. In the first step, one job from the bottleneck agent is reassigned to 

another agent and in the second one; two jobs are interchanged between the 

bottleneck agent and a non bottleneck agent. The change that results with the 

maximum improvement in the objective function value is performed. The phase 

continues until a predefined limit for the non improving moves or for the total 

number of moves is reached. The detailed explanation of these phases is provided 

in Section 5.1. 

 

Example 

 

We now demonstrate the branching scheme on an example problem with 5 agents 

and 10 jobs. 

 

Suppose that we branch from node n. In the corresponding LP Relaxation solution 

the job with the highest fractional assignment is job 5. The best solution value at 

hand, UB, is 110. We first create 5 branches as shown in Figure 4.2. 

 

 

Figure 4.2: Branching Scheme for the Example Problem-1 

 

 

 

X15=1 X25=1      X55=1      X45=1 X35=1 

  n 

    n +1      n + 2      n + 3   n + 4      n + 5 
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For each branch generated, we apply the following procedure: 

 

1. Check rules 1.1 and 2.1. If the node can be fathomed go to the next branch 

at the same level. If not, continue. 

 

2. Calculate LB1 and check whether LB1 > UB-1. The objective function 

value,







∑∑

= =

u

t

n

j
ijijt

i
xpMaxMin

1 1

, is integer as we assume integer ijtp  values. 

Hence if LB1 > UB-1 the node can be fathomed unless we are after 

alternative optimal solutions. If the node is fathomed, go to the next 

branch and start with step 1.  Else, continue. 

 

3. Check elimination rule 1.2. If the node is fathomed by this rule, go to the 

next branch and start with step 1. Else, continue. 

 

4. Calculate LB2 if { }∑
i

ii -n, rMax 0 > k, where k is a predefined threshold 

parameter. (We take k as 1 in our runs). Check whether LB2 > UB-1. If the 

node is fathomed, go to the next branch and start with step 1. If not, 

continue. 

 

5. Finally calculate LB3. Check whether LB3 > UB-1. If the node is fathomed, 

go to the next branch and start with step 1. If not, check whether the 

solution is feasible. If the solution is feasible update the upper bound, i.e., 

set UB = LB3 and fathom the node. Else, keep the lower bound and the job 

with the most fractional variable in memory; go to the next branch and 

repeat this procedure. 

 

After this procedure is applied to all nodes of the same level, we may end up with 

two outcomes. Either all the nodes are fathomed or we have at least one 

unfathomed node.  If we have unfathomed nodes, the one with the lowest LB3 

value is selected to branch on. Since we keep the job with the highest fractional 
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assignment variable, we branch the selected node based on this job and open 5 

(m) branches and repeat the above procedure for these new branches. If all the 

nodes at the same level are fathomed, we backtrack to the nearest level and find 

the open node with the lowest LB3 value to branch on. 

 

Suppose that after applying the procedure for all the branches we end up with the 

following situation: 

  

 

Figure 4.3: Branching Scheme for the Example Problem-2 
 

As seen from the above figure, there are two unfathomed nodes, node n+2, 

and n+5 with respective LB3 values of 103.8 and 105.2. Node n+2 has smaller 

lower bound; hence it is selected to branch on. Suppose that the job with the 

highest assignment value is 9 at the LP relaxation solution. We create the next 

branches as shown in Figure 4.4 below. 

X15=1 X25=1 X55=1 X45=1 X35=1 

LB1=109.1 
LB1>UB-1 
Fathomed  

LB1=102.5   
LB1<UB-1 
LB2=103.1 
LB2<UB-1 
LB3=103.8 
LB3<UB-1 
Unfathomed 
 

Fathomed 
by rule 1.1 

LB1=104.5   
LB1<UB-1 
 
Fathomed 
by rule 2.1 

LB1=103.5   
LB1<UB-1 
LB2=104.8 
LB2<UB-1 
LB3=105.2 
LB3<UB-1 
Unfathomed 

n + 2    n + 1    n + 3    n + 5    n + 4 

  n  
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Figure 4.4: Branching Scheme for the Example Problem-3 

 

We repeat the procedure for the generated branches. 

 

Figure 4.5 shows the flowchart of the algorithm for the root node and Figure 4.6 

summarizes the procedure for the intermediate nodes. 

 

X15=1 X25=1 X55=1 X45=1 X35=1 

Fathomed  Fathomed  Fathomed  LB3=105.2 
Unfathomed 

X19=1 X29=1 X39=1 X49=1 X59=1 

   n + 1 n + 2    n + 3    n + 4    n + 5 

   n + 6    n + 7    n + 8    n + 9  n + 10 

      n  
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Solve LP relaxation

Find LB3

Z* optimal. STOP.

Z*UB=Z*

Call Improvement

Call construction 

heuristics

Is the solution 

feasible

LB3>Z*UB-1?

Stop. Any solution 

from the node  is 

infeasible

Is a feasible solution 

found such that 

Z >Z*UB ?

Improved?

Update Z*UB
Z*UB = Z

Update Z*UB
Z*UB = Zimp

Generate next 

branches

Go to the next level

Yes

Yes

Yes

No

No

No

Yes

No

 

Figure 4.5: Flowchart of B&B Algorithm for the Root  Node 
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 Figure 4.6: Flowchart of B&B Algorithm for Interme diate Nodes 
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Alternate Branching Scheme  

 

We propose an alternative branching scheme that creates two nodes from each 

parent node. We branch from the highest fractional variable of the optimal LP 

relaxation solution. For the chosen variable, xij, we generate the following 

subproblems:  

 

Subproblem 1: xij  =0 

Subproblem 2: xij  =1 

 

The associated tree is demonstrated in Figure 4.7. 

 

 

Figure 4.7: Alternate Branching Scheme 

 

The selection strategy for the alternate branching scheme is as follows: 

When the two branches are created at a node, continue with the one that fixes the 

variable to 1. If that node is fathomed continue with the one that sets the variable 

to 0.  

 

Our preliminary runs have revealed that the first branching strategy outperforms 

the second one in terms of average CPU time. Hence we used the first branching 

scheme in our main runs. The detailed comparison of the two branching schemes 

will be discussed later in preliminary experiments section of Chapter 6. 

 

 

X ij=0 X ij=1 
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CHAPTER 5 

 

 

HEURISTIC PROCEDURES 

 

 

 

In this chapter we discuss the heuristics we propose for the Multi Resource Agent 

Bottleneck Generalized Assignment Problem (MRABGAP). First we study a tabu 

search algorithm and then we discuss a Branch and Bound (B&B) based heuristics 

that uses an α approximation scheme. 

 

5.1. Tabu Search 

 
In this section, we discuss our tabu search algorithm. For the detailed information 

on tabu search techniques, one may refer to the book of Glover and Laguna 

(1997). 

 

We first discuss our neighborhood structure.  

 

Two neighborhoods are used in the algorithm, namely N1 and N2. Since we have 

a bottleneck type objective function, we construct the neighborhood of a solution 

around its bottleneck agent(s). 

 

The basic move of N1 is taking a task already assigned to the bottleneck agent 

and reassigning it to another agent. This basic move makes two decisions: which 

task to select and whom to assign. N1 is defined as follows: 

Assign every task of the bottleneck to every other agent as long as the assignment 

is feasible, i.e., the newly assigned agent has available capacity. 
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The neighborhood size is a variable that changes based on the number of tasks at 

the current bottleneck agent/s. It is upper bounded by n*(m-1) as there can be at 

most m bottleneck agents and each agent will be a candidate for an exchange over  

m-1 possible locations. A tighter upper bound is:  )1(*∑ −
k

bk mn  where nbk is the 

number of tasks assigned to the bottleneck agent k. 

 

Basic move of N2 is based on choosing two tasks, one from the bottleneck agent 

and the other from another agent and exchanging their agents. In this basic move 

we have to make decisions about which tasks should be selected for exchange. N2 

is defined as follows: Exchange all job pairs between bottleneck and non 

bottleneck agents, as long as the exchange results with a feasible solution. 

 

The neighborhood size is upper bounded by








2

n
.  This bound is loose, since the 

jobs that are already assigned to the same agent cannot be exchanged. A tighter 

upper bound can be as follows: ∑ ∑
<

−−
k kl

blbkbk nnnn )(*  where nbk and nbl are the 

number of jobs assigned to the bottleneck agents k and l, respectively. 

 

For each neighborhood savings are kept in memory, resulting in a memory 

requirement of O (n*(m-1) + n*(n-1)/2), that is O (n2+n*m). 

 

As N2 does not change the number of jobs, some solutions become unreachable 

from the current solution. This brings dependency on the initial solution. 

However N1 avoids this dependency. On the other hand, if we cannot find a 

feasible move in N1 due to the capacity restrictions, we use N2 with the hope of 

improving the current solution. 

 

In N1, the tabu attributes can be defined as the bottleneck agent and the job that is 

taken from this bottleneck agent most recently. 

 

In N2, tabu attributes are the jobs that are swapped most recently.  
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Upper bound on the tabu tenure of N1 is a variable since the bottleneck agent 

changes as we take a job from that agent. (m-1)*(n-1) is an upper bound, 

however, not a tight one.   

 

Upper bound on the tabu tenure of N2 is also a variable as the number of possible 

and feasible swaps changes. A theoretical upper bound is 








2

n
. 

 

Due to the dynamic nature of the neighborhood size, tabu tenures are determined 

empirically. Three levels for tabu tenure are used which are 10, 50 and 100. 

Tenure sizes of 10 and 100 are selected to see the effect of relatively small and 

large tenure values on the performance of the algorithm and 50 is selected as an 

intermediate value. 

 

Aspiration criterion is chosen as the best solution. Tabu statuses of the moves that 

improve the best solution found so far are overridden. 

 

In neighborhood 1, solutions involving most recent TabuTenure changes will be 

classified as Tabu. Accordingly, if job j is taken from agent i in an iteration, it 

will not be reassigned to that agent for TabuTenure iterations unless aspiration 

criterion is satisfied. 

 

In neighborhood 2, solutions involving most recent TabuTenure swaps are 

defined as Tabu. Accordingly, if jobs j and k are swapped, they will not be 

reswapped for TabuTenure iterations unless aspiration criterion is satisfied. 

 

The solution attributes that have changed recently are recorded in the recency 

based memory. For neighborhood 1, a matrix called Tabu is used for this purpose. 

The structure of the memory is represented in Figure 5.1. The row headers 

correspond to the agent indices and the column headers correspond to the job 

indices. 
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 1 2 3 . . . . n 

1                 

2                 

3                 

.                 

.                 

.                 

m                 

Figure 5.1: Schematic Representation of Recency Based Memory for N1 

 

The recency based memory requirement is O (m*n) for N1. 

 

For neighborhood 2, a matrix called Tabu2 is used for this purpose. The structure 

of the memory is represented in Figure 5.2. 

 

 1 2 3 . . . n 

1               

2               

3               

.               

.               

.               

n               

Figure 5.2: Schematic Representation of Recency Based Memory for N2 

 

Note that, only the upper triangle of this matrix is used for recency based memory 

since we are dealing with swaps. The recency based memory requirement is 

O(n*n) for N2. 

 

Our algorithm finds all feasible neighbors of a solution and selects the most 

improving one using the recency based memory and aspiration criterion. The 

search is intensified by considering all neighborhoods and the selecting the move 

with the steepest descent. 



  

 62 

We now discuss the termination condition of the algorithm. 

 

Termination criterion is set to the number of nonimproving moves and the total 

number of iterations. When the number of nonimproving moves equals to a 

predetermined limit called nonimplimit or the total number of iterations equals to 

the limit maxiter, the algorithm terminates. 

 

We try 50, 150 and 250 for nonimplimit in our experiments. Our preliminary runs 

revealed that this limit is affecting the performance of the algorithm significantly; 

the higher the limit the better is the performance. Hence a value of 250 is used for 

the nonimplimit in the final algorithm. The limit on the total number of iterations, 

maxiter, is set to 1000. 

 

The Algorithm 

 

Our tabu search algorithm starts with a feasible solution. Two neighborhoods are 

defined for this feasible solution. The savings corresponding to these moves are 

calculated and kept in memory. To avoid the infeasible moves we assign a saving 

value of -2000000. Then the non-tabu move with the maximum saving value or 

the tabu move that satisfies the aspiration criterion is selected and we move from 

the current solution to that solution. That is, we move in the direction of steepest 

descent. If the new solution is better than the best solution at hand, the best 

solution value is updated. The algorithm stops when the number of nonimproving 

moves or the number of iterations reach their predetermined limits. Below a 

stepwise description of the algorithm is given.  

 

STEP 1. Initialization 

 

As the decision problem of the MRABGAP is NP-complete it is not possible to 

find a polynomial algorithm that guarantees a feasible solution. The LP relaxation 

based construction algorithm that is used in the Branch and Bound algorithm is 

used to find a solution, hopefully a feasible one. This algorithm runs in 
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polynomial time, hence returns an initial solution quickly. However the resulting 

solution is not necessarily feasible. We use this solution as an initial solution in 

our TS algorithm. Note that even when an infeasible solution is given to the TS 

algorithm there is still a chance that the TS algorithm returns a feasible one. 

 

Subroutine for the construction procedure 

1. Solve LP Relaxation of the Problem 

2. For j=1,….,n ( for all the jobs) 

            Find the highest assignment value in the LP relaxation, xij for job j 

                        Set xij =1  

End For 

 

STEP 2. Neighborhood Search 

 

STEP 2.1. If the termination criterion (nonimp>nonimplimit or iter>maxiter) is 

reached, stop.   

 

STEP 2.2. Generate all neighbors of the current solution, using the following 

subroutine. 

 

Subroutine for the neighborhood search procedure 

 

For b=1,….,numofbot ( for all the bottleneck agents of the current solution) 

              Calculate savings for each move of N1 

         Find the maximum saving in N1 for bottleneck agent b  

    

         Calculate savings for each move of N2 

         Find the maximum saving in N2 for bottleneck agent b 

    

End For 
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The above subroutine finds the savings values for all moves in N1 and N2. If the 

current solution has more than one bottleneck agent these neighborhoods are 

generated considering each bottleneck. 

 

The subroutines that calculate the savings from the moves are stated below. 

 

Subroutine to calculate the savings from the move (i,j) in N1 

For i=1,….,m 

       For j=1,….,n 

                    Xne=Xnow 

              If (  j is not assigned to the bottleneck agent considered)Then  

                                     Savings1 (i ,j) = -2000000 

                                                     

              Else                             

                     If ( If i is the bottleneck agent considered)Then 

                                  Savings1(i,j) = -2000000 

                     Else  

                          If( The move is not feasible)Then 

                                       Savings1(i,j)  =-2000000 

                Else 

                           In Xne assign job j to agent i 

                           Update the loads of the agents for Xne 

                           Find the bottleneck value for Xne 

                          Savings1(i,j)=( Bottleneck valueof Xnow -Bottleneck value of Xne) 

         End if 

          End if                                  

             End If      

                       

  

This subroutine finds the savings of the shift move. Note that the moves involving 

the jobs of the non-bottleneck agents, the moves that assign a job to the current 
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bottleneck agent and infeasible moves are given small saving values. Hence, these 

moves are avoided.  

 

Subroutine to calculate the savings from the move (j, k) in N2 

For j=1,….,n 

       For k=1,….,n 

                   Xne=Xnow 

                If (  j is not assigned to the bottleneck agent considered)Then  

                                     Savings2 ( j , k) = -2000000                               

              Else                             

                    If ( If k is assigned to the same bottleneck agent) Then 

                                  Savings2 ( j , k) = -2000000 

                    Else  

                          If( The move is not feasible)Then 

                                      Savings2 ( j ,k) = -2000000 

              Else 

                         In Xne swap jobs j and k 

                         Update the loads of the agents for Xne 

                         Find the bottleneck value for Xne 

                         Savings2(j,k)=(Bottleneck value of Xnow- Bottleneck value of Xne)

   End if 

        End if                                  

                End If                           

 

Again, in this subroutine only the feasible moves that take a job from the 

bottleneck agent and swap it with a job of another agent are considered, the others 

are avoided by giving a very small saving value. 

 

At the end of these two subroutines, the move is selected based on the steepest 

descent rule and aspiration criterion. Note that, if the saving of the selected move 

is -2000000, which may happen when all the moves are infeasible in the 

neighborhood, then we allow an infeasible move, update the current solution 
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accordingly and continue the search, but in such a case we do not update Xbest. 

Although never happened in the computational experiments such a case is more 

likely to occur towards the end of the algorithm. This strategy may help the 

diversification of the algorithm. 

 

STEP 2.3. Making the move 

 

The current solution is updated by making the selected move and updating the 

used capacities (loads) of the agents, finding the new bottleneck agent(s) and the 

bottleneck (objective function) value. If the objective function value is better than 

the best solution at hand, Xbest is updated. Below is the subroutine of the move. 

 

Subroutine for making the selected move 

If  (The selected move is from N1) Then  

                  Update the corresponding recency based memory 

                   Make the selected move 

                  Update Xnow using the attributes of the selected move 

                  Find the bottleneck(s) of Xnow and the new objective function value 

 End if                      

 

 If (The selected move is from N2) Then  

                  Update the corresponding recency based memory 

                   Make the selected move 

                  Update Xnow using the attributes of the selected move 

                  Find the bottleneck(s) of Xnow and the new objective function value 

 End if  

 

 If  (saving from the selected move ≤ 0) Then  

      nonimp=nonimp+1 

 Else  

        lastimp=iter 

End if  
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If (The selected move is not infeasible & Objective function value of Xnow< 

Objective function value of Xbest) Then 

    Xbest=Xnow 

End if 

 

Below is the overall statement of the TS algorithm. 

 

Statement of the TS Algorithm 

 

 

Fine Tuning the Tabu Search Heuristic 

 

Based on the results of our factorial design, we fine-tuned our algorithm. Our 

decisions are the levels of Tabutenure and nonimplimit.  

 

Our preliminary runs have revealed that the effect of Tabutenure on % deviation 

of tabu solution from the optimal solution is insignificant, i.e., our algorithm 

seems to be robust to changes in Tabutenure. We report the results of the 

algorithm with a Tabutenure value of 50. Moreover the preliminary tests have 

showed that the performance of the algorithm is sensitive to the stopping 

condition parameter, nonimplimit. As nonimplimit increases, the quality of the 

solutions increases, at an expense of the increase in the running time of the 

Use Construction to find an initial (feasible) solution  

Set Xnow as the solution of the construction 

Xbest=Xnow 

nonimp=0 

Repeat 

          Compute savings for all moves in N1and N2   

          Find the move with max{saving}from N1(Xnow) and N2(Xnow) 

          Make the selected move using the ‘move’ subroutine 

Until nonimp>nonimplimit or iter>maxiter 
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algorithm. Based on the relative importance of these two measures one can 

determine the nonimplimit, i.e., if we have time restrictions a low nonimplimit 

value like 150 can be used, but if the main concern is the solution quality, one can 

increase the nonimplimit. With further analysis an upper bound for nonimplimit, 

after which the solution quality does not significantly change can also be 

determined. In our experiments, we use a nonimplimit value of 250 as it has 

returned high quality solutions without causing a significant increase in the 

solution times. 

 

5.2. Branch and Bound Based Heuristics - α Approximation Scheme 

 

The quality of the linear programming relaxation bound and the fact that good 

feasible solutions are found at earlier steps suggest that the Branch and Bound 

based algorithms may be used as efficient approximation algorithms.  

 

In this study, we develop an α % approximation scheme. The algorithm executes 

like our Branch and Bound algorithm, however uses a different rule to check the 

promise of the node (inflates lower bound). 

 

The α approximation scheme defines an optimality tolerance, α and fathoms a 

node if (1+ α)*ZLB > ZUB. With this scheme one can guarantee that the solution 

found is within the α*100 percent of the optimal objective function value; 

however it requires exponential time as the original Branch and Bound algorithm 

with α = 0.  
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CHAPTER 6 

 

 

COMPUTATIONAL RESULTS 

 

 

 

In this chapter we aim to test the performance of our algorithms together with 

bounding and reduction mechanisms.  We present our data generation scheme, 

state our performance measures and discuss the results of our preliminary and 

main computational experiment. 

 

6.1. Generating Test Problems 

 

We generate the processing times for each agent for the first period from a 

discrete uniform distribution between a and b. We use the following three sets for 

a and b: 

 

Set I. a=5, b=25 

        pij1~ U [5, 25] 

Set II. a=15, b=25 

        pij1~ U [15, 25] 

Set III. a=25, b=35 

        pij1~ U [25, 35] 

 

Set I represents cases where variance (range) of the distribution is relatively high. 

Set II is used to see the effect of a decrease in the range of the distribution while 

keeping the expected value nearly the same.  Set III stands for the instances where 

the range of the distribution is low while the expected value is high. 

 

We hereafter refer to these sets as S1, S2 and S3. 
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For each set, we generate pijt  and itb values using the procedure reported in the OR 

library for the GAP. The stepwise description of the procedure is given below. 

 

Step 0. Generate pij1~ U [a, b] for defined set (Set I, Set II, Set III) 

Step 1. Set ∑
∈

=
Jj

iji mpcb /11 , where c is a predefined factor 

Step 2. Set 2/4/3 11 ijijtijijt ppp γ+=  for each t≥2, where ijtγ  are random numbers 

from [0,1]. 

Step 3. Set ∑
∈

=
Jj

ijtit mpcb /  for each t≥2  

 

While generating the capacity of an agent i in period t, bit, we calculate a load for 

that agent as if all jobs are performed by that agent. Then we assume distributing 

this load to all agents evenly and set the capacity equal to this distributed load 

multiplied by a factor. Note that, as the pijt values change from agent to agent and 

period to period, the corresponding bit values change accordingly. 

 

The choice of the factor c is important, setting it too low results in many 

infeasible instances. In steps 2 and 4, we use the following two sets for c values.  

 

Set I.  c = 1.0 

Set II. c = 1.2 

 

We hereafter refer to these sets as C1 and C2. Sets C1 and C2 represent low and 

high capacity instances, respectively. We also tried for c = 0.8 in our preliminary 

experiments. However, we observed that the majority of the instances were 

infeasible. When c = 1.0, we could obtain feasible solutions for almost all of the 

instances.  

 

Three sets of processing times and two sets of capacities together yield six 

combinations. For each combination, we generate instances starting with n = 10, 
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m = 5, and s = 2 and increasing them in increments of 10, 5 and 1 respectively. 

For each set combination, m, n, and s values we generate 10 problem instances. 

 

6.2. Performance Measures 

 

In this section, we discuss the performance measures we used to evaluate the 

efficiency of our Branch and Bound (B&B) algorithm, Heuristics and Lower 

Bounds. 

 

To evaluate our Branch and Bound algorithm we used the following performance 

measures: 

1. CPU time in seconds (average, maximum) 

2. Number of nodes generated (average, maximum) 

3. Number of nodes until the optimal solution is found (average, maximum) 

 

We set a termination limit of 20 minutes for our mathematical model and Branch 

and Bound algorithm.  

 

We use the following performance measures for our heuristics. 

1.  CPU time in seconds (average, maximum) 

2. Percent deviation from the optimal (or best known) solution 

3. Number of times optimal solution is reached 

 

For lower bound we only report the percent deviations from the optimal solutions. 

The optimal solutions are found by CPLEX 10.1. CPLEX is run for 1200 seconds. 

The same termination limit is put to our Branch and Bound algorithm as well. All 

experimentations are done in Pentium IV 2.8 GHz, 1 GB RAM. All algorithms 

are coded with Microsoft Visual C++ 2005. 

 



  

 72 

6.3. Preliminary Experiments 

 

We design a preliminary experiment to evaluate the effects of the lower and upper 

bounds, branching schemes on the performance of our Branch and Bound 

algorithm. We define different versions of the Branch and Bound algorithm using 

different choices of these mechanisms. Table 6.1 shows these versions and the 

corresponding abbreviations. 

 

Table 6.1:  Branch and Bound Algorithm Versions 

Lower Bounds (LB) 
LB0 With LB1, LB2 and LB3 

  LB1-2 Without LB1 and LB2 
LB2 Without LB2 
LB3 Without LB3 

Branching Strategy (BS) 
BS1 Normal Branching Scheme 
BS2 Alternate Branching Scheme 

Upper Bounds (UB) 
UB0 Without using the upper bound heuristics 
UB1 With using the upper bound heuristics 

 

We use 10 instances with parameter settings S2C1 and S3C1, each with 5 agents, 

30 jobs and 3 periods. We now present the results of our preliminary runs. 

 

Effects of the Lower Bounds  

 

We use three versions of the Branch and Bound algorithm to see the effect of the 

lower bounds. The first one uses only LB3, but not LB1 and LB2, whereas the 

second one uses LB1 and LB3, but not LB2. We do not construct a B&B algorithm 

that uses LB2 but not LB1 as LB2 uses the information from LB1 calculations.  

Finally, we try to see the impact of using LB3 by generating a B&B algorithm that 

uses LB2 in the branch selecting scheme instead of LB3, i.e., the node with the 

lowest LB2 value is selected to branch on. In this version LB3 is only used to 

determine the job to branch on. 
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The results of the preliminary runs are shown in Tables 6.2 and 6.3. Note that we 

set a limit on the number of nodes. If the algorithm cannot find the optimal 

solution after 399996 nodes, the best solution on hand is reported with the 

corresponding solution time. 

 

Table 6.2:  Preliminary Run Results for the Effects of LBs- S2C1 

   LB0 LB1-2 LB2 LB3 
Average 9.40 9.89 9.74 130.63 

CPU time  
Maximum 29.03 29.47 30.59 215.51 
Average 9462 9736 9501 257416 

# of nodes  
Maximum 36239 37455 36254 399866 
Average 4175 4276 4177 270136 

Node of optimality 
Maximum 26402 27223 26417 399996 

*In LB3 3 instances could not be solved to optimality within the node limit, hence the results are 
underestimates. 
 

Table 6.3: Preliminary Run Results for the Effects of LBs- S3C1 

  LB0 LB1-2 LB2 LB3 
Average 4.00 4.39 4.23 143.57 

CPU time 
Maximum 14.28 14.92 15.69 216.41 
Average 3638 3797 3640 281866 

# of nodes 
Maximum 13131 13850 13144 399996 
Average 136 144.6 136 265548 

Node of optimality 
Maximum 1017 1012 1017 399719 

*In LB3 only 2 instances could be solved to optimality within the node limit, hence the results are 
underestimates. 
 

As can be observed from Tables 6.2 and 6.3, the CPU times and number of nodes 

in the B&B tree slightly increase when both LB1, LB2 and LB2 are not used. This 

indicates that using these elimination mechanisms does not increase the 

computational time while decreasing the number of nodes. Hence we use these 

mechanisms in our main experiment. 

 

It can be observed from the tables, the CPU times and the number of nodes 

increase considerably when the LP relaxation is not used (in version LB3). This 

proves the strength of the LP relaxation as a bounding scheme.  
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Based on these preliminary results we use all three lower bounds in our main 

runs. 

 

Branching Strategy Selection 

 

After LB0 (the setting with all three lower bounds) is chosen, we compare the 

branching schemes. Tables 6.4 and 6.5 demonstrate the average and maximum 

CPU times, number of nodes in B&B tree and node of optimality.  

 

Table 6.4:  Preliminary Run Results for Branching Strategies - S2C1 

    BS1 BS2 
Average 9.40 116.41 

CPU time 
Maximum 29.03 1042.50 
Average 9462 44303 

# of nodes  
Maximum 36239 390231 
Average 4174 4481 

Node of optimality 
Maximum 26402 18689 

 

Table 6.5:  Preliminary Run Results for Branching Strategies - S3C1 

  BS1 BS2 
Average 4.00 6.284 

CPU time 
Maximum 14.28 26.61 
Average 3638 2665 

# of nodes  
Maximum 13131 10756 
Average 136 890 

Node of optimality 
Maximum 1017 6952 

 

As can be observed from Table 6.4 the alternate branching strategy results in 

larger sized trees; hence larger CPU times. The increase in CPU time is also 

observed from Table 6.5; however it is observed that number of nodes is smaller 

in the alternate branching strategy. This is due to the fact that our branching 

strategy opens m branches at a level while alternate branching strategy opens only 

two. A similar situation occurs for the node of optimality results. Hence, it is seen 

from Table 6.4 that the maximum number of nodes for the BS1 is larger than that 

of the BS2 although on the average BS1 has better node of optimality results.  
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Note from the tables that BS1 outperforms BS2 in terms of CPU times, number of 

nodes and node of optimality. Based on these results we perform our main 

experiments using BS1.  

 

Effect of the Upper Bound 

 

We conduct experiments on the same instances to see the effect of our upper 

bounds on the performance of the Branch and Bound algorithm. We use LB0 and 

BS1 combination based on the results of the previous experiments. Tables 6.6 and 

6.7 report the average and maximum CPU times, number of nodes in the B&B 

tree and node of optimality for two versions of the B&B algorithm. 

 

Table 6.6:  Preliminary Run Results for Effect of Upper Bound - S2C1 

    UB0 UB1 
Average 13.704 9.459 

CPU time Maximum 37.47 29.11 
Average 13971 9462 

# of nodes  Maximum 35679 36239 

Average 8930 4175 

Node of optimality Maximum 28350 26402 
 

Table 6.7:  Preliminary Run Results for Effect of Upper Bound - S3C1 

    UB0 UB1 
Average 5.951 3.957 

CPU time Maximum 16.17 13.86 
Average 5368 3638 

# of nodes  Maximum 13725 13131 
Average 2025 136 

Node of optimality Maximum 5852 1017 
 

It can be observed from the tables that using upper bounds results in lower CPU 

times and fewer nodes on the average. Moreover, the node where the optimal 

solution is reached decreases remarkably when the upper bounds are used.  Hence 

we use upper bounds in our main experiment. 
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6.4. Main Experiment 

 

In our main experiment, we use the best mechanisms found by our preliminary 

experiment.  

 

We first study the performance of the LP relaxation lower bound, LB3, which is 

the objective function value of the optimal LP relaxed problem obtained at the 

root node.  We compute the deviation form the optimal solution as  

100% ×






 −=
OPT

LBOPT
Dev  where 

OPT = Optimal solution value 

LB = Optimal solution value of the LP Relaxed Problem 

 

In Tables 6.8, 6.9 and 6.10 we report the average and maximum values of the 

deviations of the lower bound from the optimal solution, the number of fractional 

variables in the optimal LP relaxation solution, the number of jobs that are not 

assigned to a unique agent, average number of agents that such jobs are assigned. 

The tables show the results for s=2, s=3 and s=5, respectively. 

 

As can be observed from the tables, the lower bounds behave consistent for 

almost all problem instances. Almost all average deviations are below 10% and 

almost all maximum deviations are below 12%, except for the setting m=10 and 

n=20 where a significant increase in the deviation is observed. For such instances 

the average deviation and the maximum deviations are about 17% and 23%, 

respectively.  

 

This satisfactory performance of the lower bounds can be explained by very few 

fractional variables produced by the optimal LP relaxation. It can also be 

observed from the tables that the number of fractional variables is very low.  It is 

also observed that, for fixed m as the number of jobs, n, increases the power of 

the lower bound increases.  
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Table 6.8: Lower Bound 3 Deviations for s=2 

s=2 
C1 

      
# of fractional 

variables 

# of jobs 
split to 

multiple 
agents 

# of agents 
with split 

jobs Dev. (%)  
  m n Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

20 7.5 8 3.5 4 2.20 3 6.66 9.00 
30 7.5 8 3.5 4 2.23 3 4.16 4.96 
40 7.8 8 3.8 4 2.07 2.33 2.41 2.85 
50 7.8 8 3.8 4 2.07 2.33 1.64 2.95 

5 

60 8 8 4 4 2.00 2 1.51 2.20 
20 16.4 17 7.4 8 2.23 2.29 17.34 19.43 

S1 

10 
30 17.2 18 8.2 9 2.11 2.29 9.50 11.61 
20 7.80 8 3.80 4 2.07 2.33 3.17 4.66 
30 7.44 8 3.44 4 2.22 3.00 2.39 4.91 
40 7.70 8 3.70 4 2.10 2.33 1.45 2.38 
50 8.00 8 4.00 4 2.00 2.00 1.10 1.70 

5 

60 7.90 8 3.90 4 2.03 2.33 0.97 1.76 
20 17.00 18 8.00 9 2.14 2.50 7.06 11.78 

S2 

10 
30 17.00 18 8.00 9 2.14 2.50 5.40 11.98 
20 7.70 8 3.70 4 2.13 3.00 2.58 4.88 
30 7.70 8 3.70 4 2.10 2.33 1.95 4.33 
40 7.90 8 3.90 4 2.03 2.33 1.17 2.03 
50 7.90 8 3.90 4 2.03 2.33 0.97 2.17 

5 

60 8.00 8 4.00 4 2.00 2.00 0.71 1.28 
20 16.60 18 7.60 9 2.20 2.50 4.85 7.54 

S3 

10 
30 16.80 17 7.80 8 2.16 2.29 3.89 7.03 

C2 
20 7.5 8 3.5 4 2.20 3 6.66 9.00 
30 7.5 8 3.5 4 2.23 3 4.16 4.96 
40 7.8 8 3.8 4 2.07 2.33 2.41 2.85 
50 7.8 8 3.8 4 2.07 2.33 1.64 2.95 

5 

60 8 8 4 4 2.00 2 1.51 2.20 
20 16.4 17 7.4 8 2.23 2.29 17.34 19.43 

S1 

10 
30 17.2 18 8.2 9 2.11 2.29 9.50 11.61 
20 7.80 8 3.80 4 2.07 2.33 3.17 4.66 
30 7.44 8 3.44 4 2.22 3.00 2.39 4.91 
40 7.70 8 3.70 4 2.10 2.33 1.45 2.38 
50 8.00 8 4.00 4 2.00 2.00 1.03 1.70 

5 

60 7.90 8 3.90 4 2.03 2.33 0.97 1.76 
20 17.00 18 8.00 9 2.14 2.50 7.06 11.78 

S2 

10 
30 17.00 18 8.00 9 2.14 2.50 5.40 11.98 
20 7.70 8 3.70 4 2.13 3.00 2.58 4.88 
30 7.70 8 3.70 4 2.10 2.33 1.95 4.33 
40 7.90 8 3.90 4 2.03 2.33 1.17 2.03 
50 7.90 8 3.90 4 2.03 2.33 0.97 2.17 

5 

60 8.00 8 4.00 4 2.00 2.00 0.71 1.28 
20 16.60 18 7.60 9 2.20 2.50 4.85 7.54 

S3 

10 
30 16.80 17 7.80 8 2.16 2.29 3.89 7.03 
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Table 6.9: Lower Bound 3 Deviations for s=3 

s =3 
C1 

      
# of fractional 

variables 

# of jobs 
split to 

multiple 
agents 

# of agents 
with split 

jobs % dev  
  m n Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

20 7.60 8 3.60 4 2.13 2.33 7.14 9.34 
30 7.80 8 3.80 4 2.07 2.33 3.83 4.93 
40 7.80 8 3.80 4 2.07 2.33 2.34 3.26 
50 7.70 8 3.70 4 2.10 2.33 1.82 2.62 

5 

60 7.80 8 3.80 4 2.07 2.33 1.35 1.75 
20 16.80 18 7.80 9 2.18 2.50 16.81 23.17 

S1 

10 
30 17.10 18 8.10 9 2.12 2.29 10.15 12.60 
20 7.80 8 3.80 4 2.07 2.33 3.62 4.88 
30 7.90 8 3.90 4 2.03 2.33 2.36 4.17 
40 7.90 8 3.90 4 2.03 2.33 1.57 2.44 
50 7.80 8 3.80 4 2.07 2.33 1.42 2.10 

5 

60 8.00 8 4.00 4 2.00 2.00 0.77 1.11 
20 16.80 18 7.80 9 2.17 2.50 6.64 10.95 

S2 

10 
30 17.10 18 8.10 9 2.12 2.29 4.86 8.22 
20 7.70 8 3.70 4 2.10 2.33 2.39 3.44 
30 7.90 8 3.90 4 2.03 2.33 1.61 2.75 
40 7.90 8 3.90 4 2.03 2.33 1.27 4.14 
50 7.90 8 3.90 4 2.03 2.33 1.23 2.01 

5 

60 7.90 8 3.90 4 2.03 2.33 0.67 1.00 
20 16.90 19 7.80 9 2.19 2.50 5.04 5.84 

S3 

10 
30 17.70 18 8.70 9 2.04 2.29 3.76 5.67 

C2 
20 7.60 8 3.60 4 2.13 2.33 7.14 9.34 
30 7.80 8 3.80 4 2.07 2.33 3.83 4.93 
40 7.80 8 3.80 4 2.07 2.33 2.34 3.26 
50 7.70 8 3.70 4 2.10 2.33 1.82 2.62 

5 

60 7.80 8 3.80 4 2.07 2.33 1.35 1.75 
20 16.80 18 7.80 9 2.18 2.50 16.81 23.17 

S1 

10 
30 17.10 18 8.10 9 2.12 2.29 10.15 12.60 
20 7.80 8 3.80 4 2.07 2.33 3.62 4.88 
30 7.90 8 3.90 4 2.03 2.33 2.36 4.17 
40 7.90 8 3.90 4 2.03 2.33 1.54 2.44 
50 7.80 8 3.80 4 2.07 2.33 1.42 2.10 

5 

60 8.00 8 4.00 4 2.00 2.00 0.77 1.11 
20 16.80 18 7.80 9 2.17 2.50 6.64 10.95 

S2 

10 
30 17.10 18 8.10 9 2.12 2.29 4.86 8.22 
20 7.70 8 3.70 4 2.10 2.33 2.36 3.44 
30 7.90 8 3.90 4 2.03 2.33 1.61 2.75 
40 7.90 8 3.90 4 2.03 2.33 1.27 4.14 
50 7.90 8 3.90 4 2.03 2.33 1.23 2.01 

5 

60 7.90 8 3.90 4 2.03 2.33 0.67 1.00 
20 16.70 18 7.70 9 2.19 2.50 4.99 5.84 

S3 

10 
30 17.70 18 8.70 9.00 2.04 2.29 3.76 5.67 
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Table 6.10: Lower Bound 3 Deviations for s=5 

s=5 

C1 

      
# of fractional 

variables 

# of jobs 
split to 

multiple 
agents 

# of agents 
with split 

jobs % dev  
  m n Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

20 7.50 8 3.50 4 2.17 2.33 7.09 8.45 
30 7.40 8 3.40 4 2.23 3.00 4.01 6.50 
40 7.90 8 3.90 4 2.03 2.33 2.34 3.24 

5 

50 7.90 8 3.90 4 2.03 2.33 1.82 2.44 
20 16.40 18 7.40 9 2.25 2.80 16.09 20.95 

S1 

10 
30 16.60 18 7.60 9 2.22 2.80 10.05 12.09 
20 8.00 8 4.00 4 2.00 2.00 3.33 6.53 
30 7.90 8 3.90 4 2.03 2.33 2.33 4.34 
40 7.90 8 3.90 4 2.03 2.33 1.38 2.70 

5 

50 8.00 8 4.00 4 2.00 2.00 1.13 1.71 
20 16.90 18 7.80 9 2.19 2.50 6.18 9.01 

S2 

10 
30 17.50 18 8.50 9 2.07 2.29 5.32 8.47 
20 8.20 10 4.00 5 2.07 2.33 2.62 4.93 
30 8.00 8 4.00 4 2.00 2.00 1.89 4.00 
40 8.00 8 4.00 4 2.00 2.00 1.09 2.19 

5 

50 7.80 8 3.80 4 2.07 2.33 0.97 1.39 
20 17.70 20 8.10 9 2.20 2.50 5.00 7.97 

S3 

10 
30 17.20 18 8.20 9 2.11 2.29 4.02 5.79 

C2 

20 7.50 8 3.50 4 2.17 2.33 7.09 8.45 
30 7.40 8 3.40 4 2.23 3.00 4.01 6.50 
40 7.90 8 3.90 4 2.03 2.33 2.34 3.24 

5 

50 7.90 8 3.90 4 2.03 2.33 1.82 2.44 
20 16.40 18 7.40 9 2.25 2.80 16.09 20.95 

S1 

10 
30 16.60 18 7.60 9 2.22 2.80 10.05 12.09 
20 8.00 8 4.00 4 2.00 2.00 3.33 6.53 
30 7.90 8 3.90 4 2.03 2.33 2.33 4.34 
40 7.90 8 3.90 4 2.03 2.33 1.38 2.70 

5 

50 8.00 8 4.00 4 2.00 2.00 1.13 1.71 
20 16.80 18 7.80 9 2.17 2.50 6.18 9.01 

S2 

10 
30 17.50 18 8.50 9 2.07 2.29 5.32 8.47 
20 7.80 8 3.80 4 2.07 2.33 2.51 4.93 
30 8.00 8 4.00 4 2.00 2.00 1.88 4.00 
40 8.00 8 4.00 4 2.00 2.00 1.09 2.19 

5 

50 7.80 8 3.80 4 2.07 2.33 0.95 1.39 
20 16.60 18 7.60 9 2.20 2.50 4.72 7.97 

S3 

10 
30 17.20 18 8.20 9 2.11 2.29 4.02 5.79 
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On the other hand, increasing the number of agents, m, has a negative affect on 

the power of the lower bound. This is expected since as m gets bigger, a job is 

split between more agents, hence the number of fractional variables increase 

which in turn reduces the performance of the lower bound. Hence we can 

conclude that the higher the n/m ratio, the better the performance of the LP 

relaxation.  

 

We could not observe any notable difference in the lower bound performances 

between different s values.  

 

It is observed from the tables that the power of the lower bound is affected by the 

processing times. The lower bound is weaker for set S1 where the variance of the 

processing times is relatively high and the mean is low and the best performances 

are observed for set S3 where the variance is low and the mean is high. 

 

We now discuss the performance of our Branch and Bound algorithm. We 

perform our main experiment using BS1, UB1 and all the three lower bounds LB1, 

LB2 and LB3.  

 

The size of the problem is basically determined by the number of agents, m, and 

the number of jobs, n.  This is because, the number of decision variables increase  

as these parameters increase. Hence, we expect an increase in the complexity of 

the problem with an increase in the problem size parameters. 

 

We choose two values of m; m= 5 and 10. n values are between 20 and 60 (for 

s=5, up to 50) in increments of 10. We use three values of s, which are 2, 3 and 5. 

For all six combinations we report the average and maximum number of nodes, 

node of optimality and CPU times. We also report the number of instances that 

can be solved to optimality in our termination limit of 1200 seconds. The average 

and maximum CPU times of CPLEX and the number of instances that can be 

solved to optimality by CPLEX within 1200 seconds are also reported. For a fair 

comparison only the instances that can be solved by both CPLEX and B&B 
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algorithms are used while computing the CPU times. The number of such 

instances is also reported. 

 

Tables 6.11, 6.12 and 6.13 show the results for s=2, s=3 and s=5, respectively.  

 

As can be observed from Tables 6.11, 6.12 and 6.13, when the number of jobs 

increases, the CPU times and in turn the number of nodes of the B&B algorithm 

increases. There are a few exceptions, one of which is due to S1C2, s=2, m=5. For 

n=50 the average CPU time is 150.22 seconds whereas it is 56.92 seconds for 

n=60.  However, note here that, one out of ten instances could not be solved when 

n=60, hence the average is calculated over 9 instances while it is calculated over 

10 instances when n=50. This increase in the number of nodes and CPU time is 

mainly due to the fact that the depth of the B&B tree increases as n increases. The 

effect of n on the problem complexity can also be observed from the increase in 

CPU times of CPLEX with an increase in n for fixed m and s. 

 

The effect of the number of agents, m, is more notable on the CPU times and the 

number of nodes of the B&B algorithm. As m increases, the number of nodes and 

in turn the CPU times increase. This is true for all the problem combinations. For 

example, for S1C1, n=30 and s=2 when m is increased from 5 to 10; the average 

CPU time increases from 10.03 to 232.58 seconds, i.e., increases more than 20 

times. This is an expected behavior due to our branching strategy. As the number 

of agents increase, the number of branches increases at each level, resulting in a 

bigger tree size, hence higher CPU time. The effect of m can also be observed 

from the results of CPLEX: either the CPU time increases or the number of 

instances that can be solved to optimality within 20 minutes decreases as m 

increases for fixed n and s. It is also observed from the three tables that an 

increase in the number of agents has a more substantial effect on the solution time 

of the B&B algorithm than that of CPLEX especially for the sets S2C1 and S3C1.  
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 Table 6.11: B&B  and CPLEX Results for s=2 

m n Avg. Max. Avg. Max. Avg. Max. Avg. Max.
20 2328 9215 1112 7445 1.34 5.09 10 0.59 4.03 10 10
30 12088 38860 8358 37785 9.83 36.34 10 0.77 1.41 10 10
40 26241 57200 11213 32674 28.08 65.55 10 1.30 4.25 10 10
50 104524 334110 89317 315451 123.68 323.81 9 1.63 4.17 10 9
60 45342 175675 7104 29891 58.51 245.31 9 2.12 4.92 10 9
20 38053 101274 15112 92145 26.38 67.13 10 3.76 24.05 10 10
30 107890 255160 41755 194967 241.09 750.98 7 31.50 64.30 10 7
20 752 4007 75 601 0.48 2.44 10 0.17 0.66 10 10
30 801 5003 247 1897 0.97 6.17 10 40.88 296.78 8 8
40 1207 3660 400 1504 2.02 5.76 10 7.57 24.02 10 10
50 22272 74170 17270 71632 56.00 176.38 9 156.11 829.88 9 8
60 9886 38185 7839 37729 19.14 68.17 7 121.15 533.92 6 5
20 42545 389596 709 3807 43.42 403.11 10 0.34 2.00 10 10
30 25091 145227 24213 145220 60.30 351.52 6 23.22 73.00 10 5
20 374 1578 68 596 0.24 0.92 10 0.12 0.38 10 10
30 112 421 31 273 0.18 0.53 10 0.22 0.70 10 10
40 2143 7850 1557 7678 3.57 12.52 10 3.55 11.91 9 9
50 4784 15199 1773 11727 9.57 36.72 10 36.25 303.42 9 9
60 12545 37365 9073 37323 26.09 72.33 9 58.86 177.45 7 6
20 945 6044 45 216 0.96 5.92 10 0.27 1.33 10 10
30 37150 243203 33880 243199 66.84 451.20 9 1.02 4.14 9 9

20 2333 9250 1118 7480 1.77 5.03 10 0.55 3.67 10 10
30 12099 38855 8357 37780 10.03 35.14 10 1.10 3.70 10 10
40 26249 57185 11223 32769 27.70 66.80 10 1.47 4.19 10 10
50 120666 335270 105811 316631 159.22 587.66 10 3.00 9.86 10 10
60 45191 175800 6959 29891 56.92 234.89 9 3.23 13.27 10 9
20 38180 100573 14773 88586 26.53 65.03 10 3.44 19.75 10 10
30 107883 254360 41656 194277 232.58 779.91 7 48.18 114.63 107
20 819 4275 85 685 0.64 2.69 10 0.31 1.00 10 10
30 716 5035 219 1897 0.97 6.86 10 54.62 364.45 9 9
40 1186 3615 386 1489 2.07 6.11 10 51.36 346.50 10 10
50 61560 376195 2546 12088 122.55 755.19 10 93.93 351.48 7 7
60 9866 38145 7831 37689 19.15 67.26 7 90.13 389.72 6 5
20 5068 31267 977 4760 3.78 22.13 9 2.31 14.48 10 9
30 49548 211919 15050 46255 73.30 318.13 7 221.68 983.64 5 5
20 405 1695 86 751 0.24 0.91 10 2.58 23.33 10 10
30 134 425 38 313 0.20 0.51 10 28.80 229.17 9 9
40 2286 7875 1765 7703 3.66 11.88 10 9.05 42.14 8 8
50 4771 15265 1784 11708 9.17 34.26 10 79.65 655.06 9 9
60 12688 37295 9195 37253 26.22 70.89 8 132.76 436.11 7 6
20 637 3122 30 250 2.54 17.09 10 0.20 0.50 10 10
30 17405 38608 11983 28358 41.91 118.69 9 21.19 66.25 6 6
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Table 6.12: B&B  and CPLEX Results for s=3 

m n Avg. Max. Avg. Max. Avg. Max. Avg. Max.
20 897 2570 175 1048 0.48 1.33 10 0.33 0.97 10 10
30 10834 36820 4787 12577 8.68 25.52 10 0.69 1.42 10 10
40 46535 117920 25559 101697 46.00 109.67 10 2.35 10.80 10 10
50 65883 188740 27542 113462 70.25 229.51 10 1.86 5.74 10 10
60 120276 264255 71515 234349 231.14 781.63 8 1.92 2.61 10 8
20 45183 131672 22607 121344 31.32 93.09 10 1.65 4.38 10 10
30 144407 262970 34080 152264 201.66 347.03 6 211.87 566.64 96
20 569 1520 67 567 0.37 0.95 10 0.14 0.34 10 10
30 9462 36239 4175 26402 9.54 29.09 10 61.22 321.42 10 10
40 6648 18940 2118 18284 9.66 27.27 10 146.85 967.22 9 9
50 71204 269425 66052 253053 153.23 553.69 9 89.16 270.16 5 5
60 135379 277260 79390 257407 310.91 689.89 7 35.32 117.23 107
20 24149 160291 8074 27505 21.73 144.69 9 0.26 1.20 10 9
30 46618 210336 4125 14875 82.11 377.02 5 3.68 9.52 9 5
20 400 2554 44 360 0.30 1.80 10 0.09 0.16 10 10
30 3638 13131 136 1017 3.95 13.38 10 0.34 0.73 10 10
40 16446 36911 7621 20244 24.71 69.41 10 55.90 325.86 9 9
50 4190 17716 3799 17080 10.66 44.36 10 45.66 204.59 5 5
60 13959 34338 3459 22695 36.91 96.01 9 62.68 217.51 9 7
20 20749 38232 10037 38228 19.47 36.36 9 0.82 1.34 10 9
30 13469 69758 5647 22854 22.31 112.36 6 4.71 27.45 10 6

20 899 2570 176 1048 0.48 1.28 10 0.34 0.88 10 10
30 10834 36820 4786 12577 8.29 22.83 10 0.88 2.58 10 10
40 46527 117925 25546 101697 46.01 110.06 10 2.22 6.66 10 10
50 65879 188740 27542 113472 72.09 246.99 10 1.74 3.47 10 10
60 120011 264160 71262 234269 186.56 455.25 8 2.69 7.14 10 8
20 46496 135087 23625 124704 31.52 94.26 10 2.17 5.06 10 10
30 146320 268700 34506 152401 203.27 351.19 6 188.11 565.80 96
20 602 1660 70 608 0.39 1.13 10 1.11 7.08 10 10
30 9706 37775 4300 27583 9.32 28.36 10 175.35 944.69 10 10
40 5576 18975 2387 18319 7.38 25.08 10 54.52 191.42 8 8
50 71150 269440 66000 253078 160.58 579.42 9 200.28 556.95 5 5
60 134756 278165 79674 258232 315.14 672.25 7 151.72 630.91 97
20 26899 165915 7607 30085 22.99 142.34 9 1.10 2.58 10 9
30 4181 9219 3497 9211 5.64 11.83 5 135.47 934.98 5 4
20 396 2805 47 449 0.25 1.59 10 0.41 1.27 10 10
30 3766 13560 165 1217 4.01 13.67 10 9.93 60.22 10 10
40 16966 38735 7869 19629 26.78 77.56 10 195.90 1074.30 9 9
50 4277 18260 3866 17592 10.74 44.94 10 115.55 477.39 5 5
60 14163 34410 4007 23701 37.75 102.47 9 133.28 399.76 8 8
20 16109 43519 5966 23166 14.97 46.52 10 1.01 3.13 10 10
30 23467 78640 10931 28516 35 116 5 101.18 248.78 5 4
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Table 6.13: B&B  and CPLEX Results for s=5 

m n Avg. Max. Avg. Max. Avg. Max. Avg. Max.
20 1495 4435 288 2824 0.82 2.19 10 0.28 0.64 10 10
30 15946 62640 9120 52078 14.79 56.74 10 1.51 4.58 10 10
40 86122 323210 13641 109465 89.68 370.77 10 2.69 9.30 10 10
50 108594 344820 39672 106514 120.06 362.11 9 2.83 7.36 10 9
20 26848 81051 11628 79285 19.96 61.08 9 1.77 5.11 10 9
30 175324 336179 37604 136766 210.64 413.95 5 219.08 473.08 10 5
20 394 1414 111 780 0.33 1.19 10 0.17 0.48 10 10
30 3987 13171 1322 6738 4.65 15.83 10 72.22 554.38 8 8
40 43625 363214 27035 236265 66.97 556.72 10 7.72 25.03 9 9
50 32238 108345 7835 28120 61.47 200 8 32.36 104.09 7 6
20 16795 82062 4198 37072 15.56 72.88 10 0.27 0.89 10 10
30 41102 153948 39040 153949 67.53 255.09 8 3.93 17.92 10 8
20 621 3876 66 393 0.59 3.78 10 0.14 0.27 10 10
30 8925 73083 717 5546 11.85 100.75 10 9.66 84.63 10 10
40 8040 42452 5010 41747 12.65 63.42 10 7.09 53.02 9 9
50 62025 352777 53270 322194 153.30 902.30 10 62.98 217.55 7 7
20 29080 212432 5197 17513 32.22 239.17 9 0.55 1.14 10 9
30 35649 208492 27427 136008 73.05 462.48 9 1.14 4.33 10 9

20 1496 4455 286 2804 0.82 2.28 10 0.31 0.66 10 10
30 15951 62660 9124 52093 15.25 57.95 10 1.89 6.92 10 10
40 86135 323275 13634 109505 92.67 385.94 10 4.67 23.05 10 10
50 108591 344750 39668 106484 117.02 354.16 9 5.18 17.31 10 9
20 26900 79099 11554 78208 18.61 57.59 9 2.64 7.91 10 9
30 166348 304100 32485 110957 204.06 364.73 5 260.62 452.83 10 5
20 558 2130 249 2127 0.41 1.31 10 0.96 7.02 10 10
30 4206 14140 1388 6992 4.52 16.13 10 71.80 551.06 8 8
40 46179 386295 29543 258804 69.20 577.83 10 21.97 79.45 9 9
50 32156 107680 7816 28315 59.50 194.39 8 52.83 141.98 7 6
20 41440 243933 26603 243933 40.51 261.44 10 7.71 44.97 10 10
30 15293 39341 11824 39334 20.90 51.44 9 185.77 490.41 4 4
20 212 1330 5 36 0.18 0.94 10 0.25 0.78 10 10
30 12389 82035 5923 41231 13.16 87.88 10 40.74 315.72 8 8
40 7386 43045 4590 42324 11.44 64.67 10 41.90 353.49 10 10
50 12241 33015 7131 26524 26.18 72.17 9 25.88 62.88 6 6
20 18204 123897 13719 118224 18.24 121.00 10 0.42 1.36 10 10
30 22888 100974 17247 100971 40.71 149.58 8 309.30 1,045.06 7 7
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We do not observe a remarkable effect of s in our experiments. This is because 

the value of s does not affect the number of decision variables of the problem. 

The number of periods, s, affects the feasible region of the problem and the 

feasible region does not have a certain effect on the solution speed.  The increase 

in s may help our B&B algorithm in that more potential assignments can be 

eliminated using feasibility checks. On the other hand an increase in s also means 

an increase in the total load of the agents when the other parameters are fixed. 

Such an increase may lead to an increase in the number of alternative optimal 

solutions, which makes the verification of optimality more difficult, since there 

are many promising branches. To illustrate, for set S1C1 m=5, n=30 when s 

increases from 2 to 3 the number of nodes, node of optimality and CPU times 

decrease and when s increases from 3 to 5, all these three performance measures 

increase. The same results hold for CPLEX. 

 

We observe from the three tables that the parameter settings affect the problem 

complexity considerably. This is mainly due to the change in the power of the LP 

relaxation lower bound.  

 

For set S1 where the variance of the processing times is relatively high and the 

mean is low, CPLEX seems to be more effective. On the other hand for the sets 

S2 and S3 our Branch and Bound algorithm is compatible with or better than 

CPLEX in terms of both CPU times and number of instances that can be solved to 

optimality within 20 minutes for most instances. For example for set S2C2, m=10, 

n=30 and s=5, the average CPU time is 20.9 seconds and 9  instances are solved 

by the B&B algorithm whereas the average CPU time is 185.77 seconds and 4  

instances are solved by the CPLEX.  The B&B finds the optimal solution about 9 

times faster than CPLEX and solves more instances to optimality within the same 

time limit. There are some exceptions to this situation. However in most of these 

instances although the average solution time of the B&B algorithm is higher than 

CPLEX, the number of instances it could solve to optimality is bigger. One such 

exception occurs for S3C1, m=5, n=50 and s=5. The average CPU times are 153.3 

and 62.98 seconds whereas the numbers of instances solved to optimality are 10 
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and 7 for B&B and CPLEX, respectively. Moreover in some instances we observe 

the effect of a single dominating instance on the average solution time of the B&B 

algorithm. To illustrate, for S2C1 m=5, n=40, s=5 the average solution time for 

the B&B algorithm is 66.97 seconds with a single instance having a solution time 

of 556.72 seconds. The B&B algorithm solves all 10 instances to optimality in the 

time limit. However CPLEX could not solve one instance to optimality, hence the 

average is calculated over 9 solved instances. When the dominating instance is 

excluded, the average solution time decreases to 5.75 seconds and becomes 

smaller than the average CPU time by CPLEX which is 7.72 seconds.  

 

We also investigate the effect of the capacity factor, c, and could not observe any 

consistent behavior. The average solution times of both B&B and CPLEX 

increase or decrease when c is increased from 1.0 to 1.2.  The c value changes the 

feasible region of the problem, however a change in the feasible region may not 

have consistent effect on the performances; the optimal solution may change or 

may stay the same. However we observe that our B&B algorithm is more 

insensitive to the changes in the c value. This is most probably due to the fact that 

the negative effect of the change of the optimal solution and the feasible region is 

balanced by the enhanced performance of our improvement heuristic. Recall that 

the heuristic switches a job or interchanges jobs between agents. The increase in 

the capacities increases the number of feasible improving moves; hence the 

improvement heuristic returns better solutions. One such noteworthy result is 

observed for S2 m=10, n=30 and s=5. When c increases from 1.0 to 1.2 the 

average solution time of the B&B algorithm decreases from 67.53 to 20.9 seconds 

while the number of instances solved to optimality increases from 8 to 9. On the 

other hand the average solution time of CPLEX increases from 3.93 to 185.77 

seconds while the number of instances solved to optimality decreases from 8 to 4. 

 

In Tables 6.14 and 6.15, we summarize the results of our Branch and Bound 

algorithm by reporting the averages of number of nodes, node of optimality and 

CPU times for low and high capacities, respectively. Recall that a time limit of 
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1200 seconds is set and the instances that cannot be solved to optimality within 

this time limit are not considered while computing the averages.  

 

Table 6.14: Branch and Bound Algorithm Results for C1 

C1 

 S1 S2 S3 

m n s 
Avg. # of  

nodes 
Avg.  

CPU time 

Avg. # of  
nodes 

in B&B tree 
Avg.  

CPU time 

Avg. # of  
nodes 

 in B&B 
tree 

Avg.  
CPU time 

20 2328 1.34 752 0.48 374 0.24 
30 12088 9.83 801 0.97 112 0.18 
40 26241 28.08 1207 2.02 2143 3.57 
50 104524 123.68 22272 56.00 4784 9.57 

5 

60 45342 58.51 9886 19.14 12545 26.09 
20 38053 26.38 42545 43.42 945 0.96 

10 
30 

2 

107890 241.09 25091 60.30 37150 66.84 
20 897 0.48 569 0.37 400 0.30 
30 10834 8.68 9462 9.54 3638 3.95 
40 46535 46.00 6648 9.66 16446 24.71 
50 65883 70.25 71204 153.23 4190 10.66 

5 

60 120276 231.14 135379 310.91 13959 36.91 
20 45183 31.32 24149 21.73 20749 19.47 

10 
30 

3 

144407 201.66 46618 82.11 13469 22.31 
20 1495 0.82 394 0.33 621 0.59 
30 15946 14.79 3987 4.65 8925 11.85 
40 86122 89.68 43625 66.97 8040 12.65 

5 

50 108594 120.06 32238 61.47 62025 153.30 
20 26848 19.96 16795 15.56 29080 32.22 

10 
30 

5 

175324 210.64 41102 67.53 35649 73.05 

 

 

 

 

 

 

 

 

 



  

 88 

Table 6.15: Branch and Bound Algorithm Results for C2 

C2 

  S1 S2 S3 

m n s 
Avg. # of 

nodes 
Avg.  

CPU time 

Avg. # of 
nodes 

 in B&B tree 
Avg.  

CPU time 

Avg. # of 
nodes 

 in B&B 
tree 

Avg.  
CPU time 

20 2333 1.77 819 0.64 405 0.24 
30 12099 10.03 716 0.97 134 0.20 
40 26249 27.70 1186 2.07 2286 3.66 
50 120666 159.22 61560 122.55 4771 9.17 

5 

60 45191 56.92 9866 19.15 12688 26.22 
20 38180 26.53 5068 3.78 637 2.54 

10 
30 

2 

107883 232.58 49548 73.30 17405 41.91 
20 899 0.48 602 0.39 396 0.25 
30 10834 8.29 9706 9.32 3766 4.01 
40 46527 46.01 5576 7.38 16966 26.78 
50 65879 72.09 71150 160.58 4277 10.74 

5 

60 120011 186.56 134756 315.14 14163 37.75 
20 46496 31.52 26899 22.99 16109 14.97 

10 
30 

3 

146320 203.27 2338 3.37 15315 23.74 
20 1496 0.82 558 0.41 212 0.18 
30 15951 15.25 4206 4.52 12389 13.16 
40 86135 92.67 46179 69.20 7386 11.44 

5 

50 108591 117.02 32156 59.50 12241 26.18 
20 26900 18.61 41440 40.51 18204 18.24 

10 
30 

5 

166348 204.06 15293 20.90 22888 40.71 
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We next discuss the performance of our heuristic procedures. We evaluate the 

performances over the solution times and solution quality.  For solution quality, 

we use the percentage deviation from the optimal solution.  

 

100
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
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We first discuss the results of the tabu search algorithm. In our experiments, we 

set the Tabutenure to 50 and take nonimplimit and maxiter as 250 and 1000, 

respectively. 

 

Table 6.16 reports the results of the tabu search algorithm for s=5. The results of 

the algorithm for s=2 and s=3 are given in Appendix A, in Tables A.1- A.2 and 

A.3-A.4, respectively.  

 

As can be observed from the tables the deviations and the CPU times of the 

construction phase and the entire algorithm including the construction phase are 

very small. The maximum average construction time is 0.05 seconds and the 

maximum time construction takes over all instances is 0.27 seconds. As expected, 

for some instances the CPU times increase slightly as the number of agents or the 

number of jobs increase. Moreover the construction algorithm behaves 

consistently well over all instances in terms of CPU time.  

 

When the CPU time of the entire tabu search algorithm is investigated, it is 

observed that the maximum average time is 0.28 seconds and the worst CPU time 

is 0.30 seconds for sets S1C1 and S1C2 when m=5, n=60 and s=2 (See Tables A.1 

and A.2, Appendix A). The effects of m and n are clear in the solution times of 

the tabu search algorithm. As expected, the increase in these parameters, results in 

a slight increase in the solution time for almost all instances. This is because 

increase in m and n results in an increase in the problem size, thereby in the 

neighborhood size.  
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Table 6.16: Tabu Search Results for s=5 

s=5 
C1 

   Tabu time Construction time % dev 
 m n Avg. Max. Avg. Max. Avg. Max. 

20 0.04 0.05 0.03 0.11 0.00 0.00 (10) 
30 0.09 0.09 0.02 0.05 0.49 1.26 (5) 
40 0.16 0.17 0.02 0.03 0.42 1.13 (5) 

5 

50 0.25 0.27 0.03 0.03 0.22 1.18 (6) 
20 0.07 0.08 0.03 0.06 0.93 5.48 (6) 

S1 

10 
30 0.14 0.16 0.05 0.27 1.05 3.92 (5) 
20 0.04 0.05 0.02 0.03 0.00 0.00 (10) 
30 0.09 0.09 0.02 0.03 0.62 3.14 (6) 
40 0.15 0.17 0.02 0.05 0.35 3.46 (9) 

5 

50 0.25 0.28 0.02 0.03 0.60 1.89 (4) 
20 0.05 0.06 0.03 0.05 0.19 0.64 (7) 

S2 

10 
30 0.14 0.16 0.03 0.03 0.04 0.43 (9) 
20 0.05 0.05 0.02 0.05 0.00 0.00 (10) 
30 0.09 0.09 0.02 0.03 0.03 0.25 (9) 
40 0.16 0.17 0.02 0.03 0.00 0.00 (10) 

5 

50 0.26 0.27 0.03 0.03 0.04 0.61 (8) 
20 0.04 0.06 0.03 0.03 2.31 6.92 (3) 

S3 

10 
30 0.14 0.16 0.03 0.05 0.13 0.77 (7) 

C2 
20 0.05 0.05 0.02 0.03 0.00 0.00 (10) 
30 0.09 0.09 0.02 0.03 0.49 1.26 (5) 
40 0.16 0.17 0.03 0.03 0.42 1.13 (5) 

5 

50 0.25 0.27 0.03 0.05 0.22 1.18 (6) 
20 0.07 0.08 0.02 0.03 0.38 1.43 (7) 

S1 

10 
30 0.14 0.16 0.03 0.03 1.05 3.92 (5) 
20 0.05 0.05 0.02 0.03 0.00 0.00 (10) 
30 0.09 0.09 0.02 0.03 0.62 3.14 (6) 
40 0.16 0.17 0.02 0.05 0.35 3.46 (9) 

5 

50 0.25 0.27 0.03 0.05 0.60 1.89 (4) 
20 0.07 0.08 0.02 0.03 0.00 0.00 (10) 

S2 

10 
30 0.14 0.16 0.03 0.05 0.13 0.43 (7) 
20 0.05 0.05 0.02 0.03 0.00 0.00 (10) 
30 0.09 0.09 0.02 0.03 0.00 0.00 (10) 
40 0.16 0.17 0.02 0.03 0.00 0.00 (10) 

5 

50 0.26 0.27 0.03 0.05 0.05 0.61 (8) 
20 0.07 0.08 0.03 0.03 0.08 0.38 (8) 

S3 

10 
30 0.14 0.16 0.03 0.05 0.03 0.27 (9) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 
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Moreover it can be observed from Tables 6.16, A.1, A.2, A.3 and A.4 that 

increasing the number of periods causes a slight increase in the CPU times.  

 

Finally, we can conclude that the tabu search algorithm returns solutions in 

consistent CPU times over all processing time and capacity sets. 

 

As can be observed from the tables all average deviations are below 2.5% and the 

maximum deviation is 6.92% at worst. This indicates that our tabu search 

algorithm performs consistently well over all instances. We observe a slight 

increase in deviations when m (n) values increase for the fixed n (m) for most 

settings.  

 

We could not observe any significant and predictable effect of s values on the 

deviation results. As can be observed from Tables A.1, A.2, A3 and A4 for s 

values of 2 and 3, the processing time sets affect the average deviations. The 

deviations are relatively higher for S1 set and the lowest deviations usually occur 

for S3 set when all the other factors are the fixed. For s=5 (Table 6.16) there are 

more exceptions to this observation.  

 

An increase in the capacity factor does not have a negative effect on the deviation 

results, with a few exceptions. The deviation usually stays the same or decreases 

when the capacity factor is increased. This is due to the fact that increasing the 

agent capacities, increases the number of feasible improving shifts and swap 

moves that the algorithm makes.  

 

The tabu search algorithm finds 862 optimal solutions out of 1200 problem 

instances, i.e., in about 72% of the instances the optimal solution is produced. 

 

Based on these results we can say that our TS algorithm is quite successful in 

finding good quality and quick solutions.  
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We next study the performance of our Branch and Bound based heuristic, namely 

the α approximation scheme. We performed experiments for three values of α, 

0.1, 0.05 and 0.02.   

 

Table 6.17 shows the results for α=0.1, when s=5.  Tables B.1-B.2 and B.3-B.4 in 

appendix report the results when s=2 and s=3, respectively.  

 

We observe that the algorithm performs different for set S1 and m=10. We call 

this combination as S1M10. We study the results in two parts: For S1M10 and the 

other combinations. For the sets other than S1M10, all average and maximum 

CPU times are below 0.5 and 2.03 seconds, respectively. The average and 

maximum number of nodes are at most 243 and 1149, respectively.  Moreover the 

average deviations are less than 1.8% for almost all instances and the maximum 

deviation is 5.77%.  The performance of the algorithm decreases considerably for 

S1M10 with respective average and maximum CPU times of 13 and 78.38 

seconds. The results are similar for the number of nodes: the average and 

maximum number of nodes increase up to 6900 and 46000, respectively. The 

deviations are more consistent than the CPU times and are similar to the other 

instances with a maximum deviation of 6.67%. Hence we can conclude that the α 

approximation scheme performs consistently well over all instances in terms of % 

deviation but this good performance comes with an increase the CPU times. Since 

this is a Branch and Bound based heuristic the effects of the parameters on the 

CPU time is similar to those of the Branch and Bound algorithm. Also it can be 

observed from the tables that in more than 30% of the instances (388 out of 

1200), the heuristic finds the optimal solution. 

 

For α=0.05, Table 6.18 reports the results when s=5 and Tables C.1- C.2 and C.3-

C.4 report the results when s=2 and s=3, respectively. It is clear that as α gets 

closer to zero, the behavior of the algorithm becomes closer to the original Branch 

and Bound algorithm, hence decreasing α increases the CPU time and number of 

nodes while providing solutions closer to optimal solutions.  



  

 93 

Table 6.17: α Approximation Scheme Results for α=0.1, s=5 

s=5 
C1 

      
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.04 0.09 19 160 0.54 3.66 (7) 
30 0.05 0.06 1 1 1.68 3.45 (1) 
40 0.08 0.11 1 1 1.82 3.46 (2) 

5 

50 0.11 0.17 1 1 0.96 1.90 (1) 
20 4.93 33.41 4525 29677 0.82 4.11 (6) 

S1 

10 
30 12.28 77.38 6891 45520 1.31 3.64 (4) 
20 0.03 0.05 2 10 0.70 2.42 (4) 
30 0.06 0.08 1 1 1.06 3.14 (2) 
40 0.08 0.09 1 1 1.01 4.09 (1) 

5 

50 0.15 0.22 1 1 1.04 1.89 (0) 
20 0.06 0.13 5 20 0.82 3.18 (6) 

S2 

10 
30 0.08 0.14 4 10 1.18 2.92 (1) 
20 0.03 0.05 4 15 0.41 2.42 (5) 
30 0.05 0.06 1 5 0.20 0.63 (3) 
40 0.08 0.11 1 5 0.29 1.18 (2) 

5 

50 0.14 0.23 1 5 0.41 0.99 (0) 
20 0.48 2.03 243 1149 1.31 5.02 (1) 

S3 

10 
30 0.08 0.09 5 10 0.57 2.61 (5) 

C2 
20 0.04 0.09 19 160 0.54 3.66 (7) 
30 0.06 0.08 1 1 1.68 3.45 (1) 
40 0.09 0.13 1 1 1.82 3.46 (2) 

5 

50 0.12 0.19 1 1 0.96 1.90 (1) 
20 4.72 31.63 4518 29750 0.82 4.11 (6) 

S1 

10 
30 11.96 77.30 6599 45320 1.31 3.64 (4) 
20 0.03 0.03 1 1 0.70 2.42 (4) 
30 0.05 0.06 1 1 1.06 3.14 (2) 
40 0.08 0.09 1 1 1.01 4.09 (1) 

5 

50 0.15 0.22 1 1 1.04 1.89 (0) 
20 0.04 0.06 1 1 1.13 3.18 (5) 

S2 

10 
30 0.08 0.14 1 1 1.39 3.75 (1) 
20 0.03 0.03 1 1 0.31 1.35 (7) 
30 0.05 0.09 1 1 0.32 1.29 (3) 
40 0.09 0.11 1 1 0.31 1.18 (2) 

5 

50 0.15 0.22 1 1 0.40 0.99 (0) 
20 0.05 0.05 1 1 0.89 2.36 (4) 

S3 

10 
30 0.07 0.08 1 1 0.49 1.82 (3) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table 6.18: α Approximation Scheme Results for α=0.05, s=5 

s=5 
C1 

   
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

 m n Avg. Max. Avg. Max. Avg. Max. 
20 0.09 0.26 97.6 360 0.00 0.00 (10) 
30 0.14 0.36 101.0 320 1.24 2.30 (1) 
40 0.10 0.17 7.3 50 1.35 3.29 (3) 

5 

50 0.12 0.17 1.0 1 0.96 1.90 (1) 
20 20.21 122.97 24207.9 145089 0.55 4.11 (8) 

S1 

10 
30 127.19 788.50 49217.0 253140 0.47 1.00 (5) 
20 0.06 0.09 3.1 10 0.55 2.15 (4) 
30 0.08 0.11 2.9 20 0.90 3.14 (2) 
40 0.10 0.23 1.4 5 0.65 1.37 (1) 

5 

50 0.22 0.52 1.0 1 1.04 1.89 (0) 
20 0.08 0.22 19.2 110 0.63 3.14 (6) 

S2 

10 
30 0.12 0.17 8.3 20 1.14 2.92 (2) 
20 0.04 0.08 3.6 15 0.21 0.58 (5) 
30 0.05 0.06 1.4 5 0.20 0.63 (3) 
40 0.10 0.14 1.4 5 0.29 1.18 (2) 

5 

50 0.16 0.27 1.4 5 0.41 0.99 (0) 
20 0.76 4.45 395.6 2652 0.69 1.93 (2) 

S3 

10 
30 0.10 0.17 7.3 10 0.21 0.79 (7) 

C2 
20 0.09 0.27 97.6 360 0.00 0.00 (10) 
30 0.14 0.38 101.0 320 1.24 2.30 (1) 
40 0.10 0.17 7.3 50 1.35 3.29 (3) 

5 

50 0.12 0.17 1.0 1 0.96 1.90 (1) 
20 18.95 132.16 23247.0 162734 0.67 4.11 (7) 

S1 

10 
30 82.16 433.86 41689.0 230070 0.47 1.00 (5) 
20 0.04 0.05 2.2 5 0.70 2.42 (4) 
30 0.06 0.13 2.9 20 0.90 3.14 (2) 
40 0.08 0.16 1.4 5 0.65 1.37 (1) 

5 

50 0.15 0.23 1.0 1 1.04 1.89 (0) 
20 0.07 0.19 18.2 110 0.94 3.18 (6) 

S2 

10 
30 0.11 0.20 6.4 10 1.22 3.75 (3) 
20 0.04 0.05 1.0 1 0.31 1.35 (7) 
30 0.05 0.08 1.0 1 0.32 1.29 (3) 
40 0.09 0.13 1.0 1 0.31 1.18 (2) 

5 

50 0.15 0.23 1.0 1 0.40 0.99 (0) 
20 0.06 0.13 8.2 10 0.70 2.36 (5) 

S3 

10 
30 0.10 0.17 4.6 10 0.44 1.82 (4) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 
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The increase in the CPU times and number of nodes and the decrease in the 

deviations can also be observed from Tables 6.18, C.1, C.2, C.3 and C.4. For the 

instances other than S1M10, the increase in CPU time is not significant with a few 

exceptions. However for S1M10 the increase in CPU time is much more 

remarkable (maximum average CPU time is 127.19 and the CPU time is 788.5 

seconds for the worst case for S1C1, m=10 n=30, s=5, over all such instances). 

Since the heuristic runs in exponential time, 2 instances (S1C1 m=10, n=30, s=3 

and S1C2 m=10, n=30, s=3) could not be solved in our time limit of 20 minutes. 

These instances are excluded from solution time computations. The same 

situation occurs in terms of the number of nodes. The average deviations are 

below 1.8% over all instances and the maximum deviation is 4.26%. As solution 

quality increases more instances are solved to optimality, in about 38% of the 

instances (453 out of 1198), the optimal solution is found. 

 

The results of the algorithm with α =0.02 are reported in Tables 6.19 for s=5 and 

D.1-D.2, D.3-D.4 for s=2 and s=3, respectively. When we decrease α to 0.02, we 

observe similar effects on the CPU time, number of nodes and deviations. Since 

the algorithm becomes much closer to the original Branch and Bound algorithm, 

the CPU times and number of nodes increase while the number of instances that 

can be solved within the time limit decreases. As we guarantee to have better 

results by decreasing α, the deviations from the optimal solution decreases and the 

number of instances that finds the optimal solution increases. In about half of the 

reported instances (585 out of 1182) the algorithm returns the optimal solution. 
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Table 6.19: α Approximation Scheme Results for α=0.02 s=5 

s=5 

C1 

      
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.37 1.14 609 2125 0.00 0.00(10) 
30 3.06 9.72 3235 11270 0.38 1.26 (6) 
40 1.49 4.05 1343 4560 0.58 1.64 (5) 

5 

50 1.01 6.44 908 7020 0.52 1.37 (2) 
20 203.41 1897.22 46360 325527 0.00 0.00(10)** 

S1 

10 
30 348.31 1097.48 121436 260199 0.23 0.95 (6)** 
20 0.05 0.11 7 25 0.36 2.15 (6) 
30 0.13 0.48 45 375 0.32 0.80 (3) 
40 0.10 0.17 4 10 0.42 1.37 (3) 

5 

50 0.30 0.92 60 540 0.65 1.46 (0) 
20 1.41 13.25 1274 12584 0.38 1.27 (6) 

S2 

10 
30 0.24 0.69 54 217 0.72 1.31 (3) 
20 0.04 0.09 5 15 0.17 0.58 (6) 
30 0.06 0.09 4 20 0.15 0.63 (5) 
40 0.09 0.16 2 5 0.27 1.18 (2) 

5 

50 0.14 0.23 2 5 0.41 0.99 (0) 
20 4.33 33.41 2508 20352 0.65 1.93 (3) 

S3 

10 
30 0.12 0.19 10 10 0.21 0.79 (7) 

C2 

20 0.42 1.30 605 2090 0.00 0.00(10) 
30 3.06 10.17 3233 11255 0.38 1.26 (6) 
40 1.47 3.97 1343 4560 0.58 1.64 (5) 

5 

50 0.95 5.89 908 7015 0.52 1.37 (2) 
20 320.78 3083.70 48001 327039 0.14 1.43 (9)** 

S1 

10 
30 337.65 1132.75 119453 261640 0.23 0.95 (6)** 
20 0.05 0.19 17 125 0.46 2.15 (5) 
30 0.12 0.45 45 375 0.32 0.80 (3) 
40 0.10 0.17 4 10 0.42 1.37 (3) 

5 

50 0.25 0.77 60 540 0.65 1.46 (0) 
20 1.47 14.05 1442 14313 0.50 2.45 (6) 

S2 

10 
30 0.24 0.50 33 160 0.72 1.67 (4) 
20 0.04 0.06 4 5 0.06 0.58 (9) 
30 0.06 0.08 3 5 0.28 1.29 (4) 
40 0.10 0.16 1 5 0.27 1.18 (2) 

5 

50 0.14 0.23 1 5 0.40 0.99 (0) 
20 0.28 1.25 161 779 0.31 1.15 (7) 

S3 

10 
30 0.13 0.17 10 10 0.42 1.82 (5) 

*  The figures in parenthesis indicate the number of times the optimal solution is found.          

** 2 out of 10 instances could not be solved in S1C1 m=10, n=30 and S1C2 m=10, n=30 sets. 



  

 97 

When we compare the tabu search and α approximation scheme, we see that the 

TS algorithm produces solutions faster. When a satisfactory solution is required 

quickly one can use TS.  However no guarantee for its performance can be stated. 

The α approximation scheme guarantees that the worst case performance is below 

a predefined limit, but at an expense of higher CPU times. The α approximation 

scheme runs in exponential time but has the advantage of flexibility. If time is a 

scarce resource, α=0.1 approximation scheme can be used. When better solutions 

are required in tolerable time α can be set to 0.05.  Finally, if the decision maker 

is more after near optimal solutions than quick ones then α can be set to 0.02. 

Note that, the computational time of the α approximation scheme even with α = 

0.02 is significantly smaller than that of Branch and Bound Algorithm.  
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CHAPTER 7 

 

 

CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS 

 

 

 

In this study, we consider the Multi Period Agent Bottleneck Generalized 

Assignment Problem. Our aim is to minimize the maximum load over all agents. 

We are motivated from a practical problem arising in Heat Ventilation and Air 

Conditioning (HVAC) industry. 

 

We develop a Branch and Bound algorithm for optimal solutions and heuristic 

algorithms for approximate solutions. To the best of our knowledge, our 

algorithms are first attempts to solve the problem. 

 

In our Branch and Bound algorithm, we use the optimal solutions of the Linear 

Programming (LP) relaxations in finding lower and upper bounds and defining 

our branching scheme. Our motivation is the satisfactory behavior of the LP 

relaxation in producing solutions with few continuous variables and objective 

function values that are very close to the optimal objective function values. We 

also derive simpler lower bounds and use them as filtering mechanisms. Our hope 

is to reduce the number of LP relaxation problems solved. 

 

Our Branch and Bound algorithm could find optimal solutions for the problems 

with up to 60 jobs when the number of agents is 5 and up to 30 jobs when the 

number of agents is 10 in our plausible limit of 20 minutes. We find that the 

number of jobs and the number of agents are dominant factors in defining the 

complexity of the problems. However, the number of periods does not have a 

significant effect on the performance. Moreover, we observe that the distribution 
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of the processing time affects the complexity and the hardest to solve instances 

are observed when the processing time distribution has low mean and high 

variance. 

 

Our heuristic procedures are of two types. One is tabu search and the other is α 

approximation Branch and Bound algorithm. We find that tabu search produces 

very quick, high quality solutions, hence can be used to solve very large sized 

problem instances. On the other hand α approximation algorithm runs in 

exponential time, with guaranteed performance. Our experiments have revealed 

that the α approximation algorithm runs considerably faster than Branch and 

Bound algorithm, hence can be used when guaranteed performance with quick 

solution times is required.  

 

To the best our knowledge our study is the first attempt to solve the bottleneck 

generalized assignment problem with multiple periods. We hope our results 

stimulate further research in generalized assignment problem literature. Some 

noteworthy extensions of our work can be listed as: 

 

• Defining off periods for the job requirements. 

• Defining skill levels for the agents such that some agents perform all 

opportunities at a higher pace. 

• Finding the polynomially solvable special cases of the problem. 

• Developing Lagrangean relaxation based lower bounds. 

• Developing Branch and Bound based heuristic procedures, like beam 

search, filtered beam search, that benefit from our bounding mechanisms. 

• Defining a neighborhood that allows infeasibility in tabu search. This will 

help to search the feasible region better and increase the solution quality, 

however at an expense of increased computational time brought by repair 

mechanisms. 

• Incorporating the cost aspects: In addition to or as an alternative to 

minimizing maximum load, minimizing total cost can be studied. 
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• Incorporating stochastic aspects of the parameters. For example, the 

processing times of the opportunities may vary as time progresses.
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APPENDIX A 

 

 

TABU SEARCH RESULTS FOR s=2 AND s=3 

 

 

 

Table A.1: Tabu Search Results for s=2, C1 
C1 

      Tabu time Construction time % dev  
  m n Avg. Max. Avg. Max. Avg. Max. 

20 0.03 0.03 0.02 0.03 0.00 0.00(10) 
30 0.06 0.08 0.02 0.03 0.52 2.06 (6) 
40 0.11 0.13 0.02 0.03 0.39 0.81(5) 
50 0.19 0.20 0.02 0.03 0.24 0.63 (6) 

5 

60 0.28 0.30 0.03 0.05 0.41 1.00 (4) 
20 0.05 0.06 0.02 0.03 1.60 6.45 (6) 

S1 

10 
30 0.10 0.11 0.02 0.03 1.60 4.35 (4) 
20 0.03 0.03 0.02 0.03 0.08 0.76 (9) 
30 0.06 0.08 0.02 0.03 0.00 0.00 (10) 
40 0.09 0.13 0.02 0.03 0.15 1.15 (8) 
50 0.13 0.19 0.02 0.03 0.40 1.55 (4) 

5 

60 0.25 0.31 0.04 0.11 0.47 1.32 (4) 
20 0.05 0.06 0.05 0.20 0.16 1.59 (9) 

S2 

10 
30 0.10 0.11 0.02 0.03 0.22 1.08 (8) 
20 0.03 0.03 0.02 0.05 0.00 0.00 (10) 
30 0.06 0.06 0.02 0.03 0.06 0.32 (8) 
40 0.10 0.13 0.02 0.03 0.10 0.73 (8) 
50 0.17 0.22 0.03 0.05 0.06 0.20 (7) 

5 

60 0.25 0.33 0.03 0.05 0.15 0.81 (5) 
20 0.05 0.05 0.03 0.05 0.10 0.96 (9) 

S3 

10 
30 0.10 0.11 0.02 0.03 0.00 0.00 (10) 

*The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table A.2: Tabu Search Results for s=2, C2 

C2 
   Tabu time Construction time % dev  
 m n Avg. Max. Avg. Max. Avg. Max. 

20 0.03 0.03 0.02 0.03 0.00 0.00 (10) 
30 0.06 0.06 0.02 0.03 0.52 2.06 (6) 
40 0.12 0.13 0.02 0.03 0.39 0.81 (5) 
50 0.19 0.20 0.03 0.05 0.24 0.63 (6) 

5 

60 0.28 0.30 0.02 0.03 0.41 1.00 (4) 
20 0.05 0.06 0.02 0.03 1.90 6.45 (6) 

S1 

10 
30 0.11 0.11 0.02 0.05 1.60 4.35 (4) 
20 0.03 0.03 0.02 0.03 0.00 0.00 (10) 
30 0.07 0.08 0.02 0.03 0.00 0.00 (10) 
40 0.09 0.13 0.02 0.03 0.15 1.15 (8) 
50 0.13 0.19 0.04 0.17 0.40 1.55 (4) 

5 

60 0.25 0.31 0.03 0.05 0.47 1.32 (4) 
20 0.05 0.06 0.02 0.03 0.16 1.59 (9) 

S2 

10 
30 0.10 0.11 0.02 0.03 0.22 1.08 (8) 
20 0.02 0.03 0.02 0.03 0.00 0.00 (10) 
30 0.06 0.06 0.02 0.03 0.06 0.32 (8) 
40 0.11 0.13 0.02 0.03 0.10 0.73 (8) 
50 0.17 0.20 0.03 0.05 0.06 0.20 (7) 

5 

60 0.24 0.28 0.03 0.05 0.15 0.81 (5) 
20 0.05 0.05 0.02 0.03 0.19 0.97 (9) 

S3 

10 
30 0.11 0.11 0.02 0.03 0.00 0.00 (10) 

*The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table A.3: Tabu Search Results for s=3, C1 

C1 
   Tabu time Construction time % dev 
 m n Avg. Max. Avg. Max. Avg. Max. 

20 0.03 0.05 0.02 0.08 0.20 1.96 (9) 
30 0.08 0.08 0.02 0.03 0.26 1.95 (8) 
40 0.14 0.14 0.02 0.03 0.62 1.49 (3) 
50 0.22 0.23 0.03 0.05 0.49 1.25 (4) 

5 

60 0.32 0.34 0.03 0.03 0.26 0.75 (5) 
20 0.06 0.06 0.03 0.06 1.48 6.38 (6) 

S1 

10 
30 0.12 0.13 0.02 0.05 2.22 6.67 (2) 
20 0.04 0.05 0.02 0.05 0.00 0.00 (10) 
30 0.08 0.09 0.02 0.03 0.03 0.34 (9) 
40 0.13 0.16 0.02 0.03 0.13 0.77 (8) 
50 0.19 0.24 0.03 0.03 0.55 2.06 (5) 

5 

60 0.27 0.36 0.03 0.03 0.42 1.92 (8) 
20 0.05 0.06 0.02 0.05 0.00 0.00 (10) 

S2 

10 
30 0.12 0.13 0.03 0.06 0.14 0.71 (8) 
20 0.03 0.05 0.02 0.05 0.00 0.00 (10) 
30 0.07 0.08 0.02 0.03 0.00 0.00 (10) 
40 0.14 0.19 0.03 0.05 0.03 0.16 (8) 
50 0.20 0.23 0.03 0.03 0.23 1.93 (6) 

5 

60 0.30 0.34 0.03 0.05 0.22 1.42 (6) 
20 0.04 0.05 0.03 0.06 0.06 0.65 (9) 

S3 

10 
30 0.12 0.13 0.03 0.05 0.09 0.46 (8) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table A.4: Tabu Search Results for s=3, C2 

C2 
   Tabu time Construction time % dev 
 m n Avg. Max. Avg. Max. Avg. Max. 

20 0.03 0.03 0.03 0.16 0.20 1.96 (9) 
30 0.08 0.08 0.02 0.03 0.26 1.95 (8) 
40 0.14 0.14 0.03 0.05 0.62 1.49 (7) 
50 0.22 0.23 0.02 0.03 0.49 1.25 (4) 

5 

60 0.32 0.34 0.03 0.03 0.26 0.75 (5) 
20 0.06 0.06 0.02 0.03 1.28 6.38 (7) 

S1 

10 
30 0.12 0.13 0.03 0.03 2.22 6.67 (2) 
20 0.03 0.05 0.02 0.03 0.00 0.00 (10) 
30 0.08 0.09 0.02 0.03 0.03 0.34 (9) 
40 0.12 0.16 0.03 0.03 0.15 1.03 (8) 
50 0.20 0.24 0.02 0.05 0.55 2.06 (5) 

5 

60 0.28 0.38 0.05 0.16 0.42 1.92 (8) 
20 0.06 0.08 0.02 0.05 0.00 0.00 (10) 

S2 

10 
30 0.12 0.14 0.02 0.03 0.07 0.70 (9) 
20 0.03 0.05 0.02 0.03 0.00 0.00 (10) 
30 0.08 0.08 0.02 0.03 0.00 0.00 (10) 
40 0.14 0.16 0.02 0.03 0.03 0.16 (8) 
50 0.20 0.23 0.03 0.03 0.23 1.93 (6) 

5 

60 0.30 0.36 0.03 0.03 0.22 1.42 (6) 
20 0.06 0.06 0.04 0.22 0.00 0.00 (10) 

S3 

10 
30 0.12 0.13 0.03 0.05 0.09 0.46 (8) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 
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APPENDIX B 

 

 

α APPROXIMATION SCHEME RESULTS FOR α = 0.1 

 

 

 

Table B.1: α Approximation Scheme Results for α=0.1, s=2, C1 
C1 

      
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.05 0.11 9 85 0.97 2.78 (5) 
30 0.05 0.09 1 1 1.33 3.19 (2) 
40 0.07 0.09 1 1 0.99 3.88 (2) 
50 0.10 0.27 1 1 1.40 2.52 (0) 

5 

60 0.15 0.19 1 1 0.77 2.14 (3) 
20 1.94 5.72 1956 5720 0.30 3.03 (9) 

S1 

10 
30 6.72 49.15 3651 25230 2.04 4.55 (3) 
20 0.02 0.03 1 1 0.75 2.96 (5) 
30 0.05 0.08 1 5 0.25 1.02 (6) 
40 0.07 0.09 1 1 1.07 3.44 (2) 
50 0.10 0.13 1 1 1.42 3.41 (1) 

5 

60 0.12 0.16 1 1 0.96 1.82 (2) 
20 0.04 0.06 2 10 0.92 4.62 (6) 

S2 

10 
30 0.07 0.11 2 10 0.74 2.15 (5) 
20 0.02 0.05 1 1 0.57 1.44 (4) 
30 0.04 0.05 1 5 0.16 0.65 (7) 
40 0.06 0.08 1 1 0.63 1.23 (2) 
50 0.10 0.13 1 1 0.17 0.58 (4) 

5 

60 0.13 0.19 1 1 0.53 2.60 (1) 
20 0.03 0.06 1 1 0.87 5.77 (7) 

S3 

10 
30 0.06 0.08 1 1 0.79 2.65 (5) 

* The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table B.2: α Approximation Scheme Results for α=0.1, s=2, C2 

C2 

  
 

Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

 m n Avg. Max. Avg. Max. Avg. Max. 
20 0.03 0.13 9 85 0.97 2.78 (5) 
30 0.04 0.06 1 1 1.33 3.19 (2) 
40 0.06 0.08 1 1 0.99 3.88 (2) 
50 0.08 0.14 1 1 1.40 2.52 (0) 

5 

60 0.13 0.19 1 1 0.77 2.14 (3) 
20 1.97 6.31 2175 7850 0.30 3.03 (9) 

S1 

10 
30 8.37 42.79 4821 23000 1.83 4.55 (3) 
20 0.02 0.03 1 1 0.75 2.96 (5) 
30 0.05 0.08 1 1 0.28 1.02 (5) 
40 0.06 0.08 1 1 1.07 3.44 (2) 
50 0.10 0.14 1 1 1.42 3.41 (1) 

5 

60 0.12 0.14 1 1 0.96 1.82 (2) 
20 0.04 0.06 2 10 0.92 4.62 (6) 

S2 

10 
30 0.07 0.11 2 10 0.74 2.15 (5) 
20 0.02 0.03 1 1 0.57 1.44 (4) 
30 0.03 0.05 1 1 0.16 0.65 (7) 
40 0.06 0.09 1 1 0.63 1.23 (2) 
50 0.09 0.13 1 1 0.17 0.58 (4) 

5 

60 0.13 0.19 1 1 0.53 2.60 (1) 
20 0.03 0.05 1 1 0.87 5.77 (7) 

S3 

10 
30 0.06 0.08 1 1 0.79 2.65 (5) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table B.3: α Approximation Scheme Results for α=0.1, s=3, C1 

C1 

      
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.03 0.05 2 5 0.93 4.39 (7) 
30 0.04 0.06 1 1 1.80 4.55 (3) 
40 0.08 0.13 1 1 1.78 3.09 (0) 
50 0.11 0.16 1 1 1.03 3.35 (2) 

5 

60 0.16 0.22 1 1 0.94 2.25 (1) 
20 4.11 14.23 5015 18865 1.05 6.38 (8) 

S1 

10 
30 5.34 13.56 3232 9360 2.05 6.67 (2) 
20 0.03 0.03 1 1 0.40 1.49 (5) 
30 0.05 0.06 1 5 0.95 3.68 (3) 
40 0.07 0.13 1 1 0.54 1.50 (5) 
50 0.08 0.16 1 1 0.94 2.47 (1) 

5 

60 0.15 0.28 1 1 0.78 1.92 (0) 
20 0.04 0.06 3 10 0.93 2.08 (4) 

S2 

10 
30 0.05 0.11 1 1 0.91 3.50 (5) 
20 0.03 0.05 3 15 0.38 1.57 (6) 
30 0.05 0.06 2 5 0.67 2.17 (2) 
40 0.07 0.09 1 1 0.57 2.37 (2) 
50 0.10 0.13 2 10 0.58 1.93 (1) 

5 

60 0.17 0.22 1 1 0.54 1.97 (1) 
20 0.05 0.11 6 30 1.28 3.23 (2) 

S3 

10 
30 0.07 0.09 2 10 0.66 2.59 (3) 

* The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table B.4: α Approximation Scheme Results for α=0.1, s=3, C2 

C2 

  
 

Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

 m n Avg. Max. Avg. Max. Avg. Max. 
20 0.03 0.06 2 5 0.93 4.39 (7) 
30 0.05 0.06 1 1 1.80 4.55 (3) 
40 0.07 0.11 1 1 1.78 3.09 (0) 
50 0.11 0.16 1 1 1.03 3.35 (2) 

5 

60 0.16 0.22 1 1 0.94 2.25 (1) 
20 3.56 14.84 4459 20068 0.83 4.26(8) 

S1 

10 
30 5.35 13.48 3260 9360 2.05 6.67 (2) 
20 0.03 0.03 1 1 0.40 1.49 (5) 
30 0.05 0.06 1 1 0.58 1.70 (4) 
40 0.07 0.13 1 1 0.56 1.50 (5) 
50 0.09 0.16 1 1 0.94 2.47 (1) 

5 

60 0.15 0.28 1 1 0.78 1.92 (0) 
20 0.04 0.06 2 10 0.93 2.08 (4) 

S2 

10 
30 0.06 0.11 1 1 0.91 3.50 (5) 
20 0.03 0.03 1 1 0.38 1.57 (5) 
30 0.05 0.08 1 1 0.67 1.27 (1) 
40 0.07 0.09 1 1 0.57 2.37 (2) 
50 0.10 0.14 1 1 0.58 1.93 (1) 

5 

60 0.17 0.23 1 1 0.54 1.97 (1) 
20 0.04 0.05 1 1 1.03 2.55 (1) 

S3 

10 
30 0.06 0.09 1 1 1.00 2.59 (2) 

* The figures in parenthesis indicate the number of times the optimal solution is found. 
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APPENDIX C 

 

 

α APPROXIMATION SCHEME RESULTS FOR α = 0.05 

 

 

 

Table C.1: α Approximation Scheme Results for α=0.05, s=2, C1 

C1 
  

  
  

Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree 

%dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.15 0.50 231 780 0.13 1.32 (9) 
30 0.08 0.41 68 555 1.13 3.19 (3) 
40 0.07 0.16 3 30 0.60 1.43 (3) 
50 0.08 0.13 1 1 1.40 2.52 (0) 

5 

60 0.13 0.17 1 1 0.77 2.14 (3) 
20 9.57 30.02 12069 40638 0.30 3.03 (9) 

S1 

10 
30 70.31 374.55 37927 194510 0.92 2.38 (6) 
20 0.03 0.03 1 5 0.75 2.96 (5) 
30 0.04 0.05 1 5 0.25 1.02 (6) 
40 0.07 0.16 4 40 0.73 2.24 (3) 
50 0.09 0.14 1 1 1.42 3.41 (1) 

5 

60 0.12 0.16 1 1 0.96 1.82 (2) 
20 0.06 0.11 11 30 0.47 1.59 (7) 

S2 

10 
30 0.09 0.09 5 10 0.74 2.15 (5) 
20 0.02 0.03 1 1 0.57 1.44 (4) 
30 0.03 0.05 1 5 0.16 0.65 (7) 
40 0.06 0.08 1 1 0.63 1.23 (2) 
50 0.09 0.13 1 1 0.17 0.58 (4) 

5 

60 0.13 0.20 1 1 0.53 2.60 (1) 
20 0.04 0.06 4 10 0.49 1.98 (7) 

S3 

10 
30 0.06 0.11 2 10 0.79 2.65 (5) 

* The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table C.2: α Approximation Scheme Results for α=0.05, s=2, C2 

C2 

 
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree 

%dev 

 m n Avg. Max. Avg. Max. Avg. Max. 
20 0.14 0.47 231 780 0.13 1.32 (9) 
30 0.09 0.41 68 555 1.13 3.19 (3) 
40 0.07 0.16 3 30 0.60 1.43 (3) 
50 0.08 0.14 1 1 1.40 2.52 (0) 

5 

60 0.14 0.19 1 1 0.77 2.14 (3) 
20 8.69 26.67 11060 29889 0.30 3.03 (9) 

S1 

10 
30 72.05 363.84 39634 193840 0.92 2.38 (6) 
20 0.03 0.03 1 5 0.75 2.96 (5) 
30 0.04 0.06 1 1 0.28 1.02 (5) 
40 0.07 0.16 4 40 0.73 2.24 (3) 
50 0.09 0.14 1 1 1.42 3.41 (1) 

5 

60 0.11 0.14 1 1 0.96 1.82 (2) 
20 0.05 0.08 9 10 0.47 1.59 (7) 

S2 

10 
30 0.08 0.09 5 10 0.74 2.15 (5) 
20 0.02 0.03 1 1 0.57 1.44 (4) 
30 0.04 0.05 1 1 0.16 0.65 (7) 
40 0.06 0.08 1 1 0.63 1.23 (2) 
50 0.09 0.11 1 1 0.17 0.58 (4) 

5 

60 0.12 0.19 1 1 0.53 2.60 (1) 
20 0.04 0.06 4 10 0.49 1.98 (7) 

S3 

10 
30 0.07 0.11 2 10 0.79 2.65 (5) 

* The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table C.3: α Approximation Scheme Results for α=0.05, s=3, C1 

C1 

      
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.09 0.25 83 295 0.20 1.96 (9) 
30 0.12 0.41 96 435 0.68 1.90 (5) 
40 0.08 0.11 6 55 1.78 3.09 (0) 
50 0.11 0.19 1 1 1.03 3.35 (2) 

5 

60 0.16 0.22 1 1 0.94 2.25 (1) 
20 15.26 59.34 19328 71793 0.83 4.26 (8) 

S1 

10 
30 130.35 459.88 70288 250250 0.70 1.67 (5) 
20 0.03 0.05 1 1 0.40 1.49 (5) 
30 0.05 0.09 1 10 0.58 1.70 (4) 
40 0.09 0.14 1 1 0.54 1.50 (5) 
50 0.10 0.17 1 1 0.94 2.47 (1) 

5 

60 0.17 0.30 1 1 0.78 1.92 (0) 
20 1.06 10.11 837 8304 0.62 2.08 (5) 

S2 

10 
30 4.82 47.34 1829 18244 0.70 3.50 (5) 
20 0.04 0.06 2 15 0.38 1.57 (6) 
30 0.05 0.06 1 5 0.67 2.17 (2) 
40 0.07 0.09 1 1 0.57 2.37 (2) 
50 0.10 0.14 1 10 0.58 1.93 (1) 

5 

60 0.17 0.22 1 1 0.54 1.97 (1) 
20 0.14 0.66 42 336 1.28 3.23 (2) 

S3 

10 
30 0.08 0.13 3 10 0.40 1.37 (4) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 
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Table C.4: α Approximation Scheme Results for α=0.05, s=3, C2 

C2 

  
 

Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

 m n Avg. Max. Avg. Max. Avg. Max. 
20 0.08 0.22 83 295 0.20 1.96 (9) 
30 0.12 0.38 96 435 0.68 1.90 (5) 
40 0.08 0.13 6 55 1.78 3.09 (0) 
50 0.11 0.16 1 1 1.03 3.35 (2) 

5 

60 0.16 0.22 1 1 0.94 2.25 (1) 
20 14.98 60.70 18888 71488 0.83 4.26 (8) 

S1 

10 
30 152.60 600.05 70273 249920 0.70 1.67 (5) 
20 0.04 0.05 1 1 0.40 1.49 (5) 
30 0.05 0.08 1 1 0.58 1.70 (4) 
40 0.07 0.13 1 1 0.56 1.50 (5) 
50 0.08 0.14 1 1 0.94 2.47 (1) 

5 

60 0.16 0.30 1 1 0.78 1.92 (0) 
20 1.12 10.75 1026 10190 0.62 2.08 (5) 

S2 

10 
30 4.90 48.17 2228 22230 0.70 3.50 (5) 
20 0.03 0.03 1 1 0.38 1.57 (5) 
30 0.05 0.06 1 1 0.67 1.27 (1) 
40 0.07 0.09 1 1 0.57 2.37 (2) 
50 0.10 0.14 1 1 0.58 1.93 (1) 

5 

60 0.17 0.22 1 1 0.54 1.97 (1) 
20 0.10 0.51 36 279 0.96 2.55 (2) 

S3 

10 
30 0.08 0.23 4 10 0.57 2.18 (4) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 
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APPENDIX D 

 

 

α APPROXIMATION SCHEME RESULTS FOR α = 0.02 

 

 

 

Table D.1: α Approximation Scheme Results for α=0.02, s=2, C1 

C1 

      
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.70 2.20 1225 4210 0.13 1.32 (9) 
30 2.01 10.28 2266 11000 0.40 1.06 (6) 
40 0.74 3.08 695 3425 0.46 0.81 (4) 
50 0.29 1.19 200 1310 0.91 1.28 (1) 

5 

60 0.31 1.39 142 1125 0.56 1.50 (3) 
20 14.76 41.45 21072 64122 0.00 0.00(10) 

S1 

10 
30 65.80 139.53 33280 70320 0.00 0.00(8)** 
20 0.05 0.17 27 202 0.08 0.78 (9) 
30 0.05 0.09 3 5 0.10 0.51 (8) 
40 0.61 5.33 285 2825 0.47 1.56 (3) 
50 0.17 0.36 22 85 0.58 1.23 (1) 

5 

60 0.23 0.64 47 285 0.52 1.32 (3) 
20 0.23 1.06 188 1136 0.16 1.59 (9) 

S2 

10 
30 1.90 17.28 1060 10211 0.32 1.08 (7) 
20 0.03 0.03 4 5 0.33 0.97 (6) 
30 0.04 0.05 4 15 0.16 0.65 (7) 
40 0.13 0.56 24 220 0.34 0.98 (4) 
50 0.09 0.11 1 5 0.17 0.58 (4) 

5 

60 0.16 0.50 15 145 0.40 1.30 (1) 
20 0.10 0.52 1 1 0.19 0.97 (8) 

S3 

10 
30 0.11 0.16 1 1 0.53 1.34 (5) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 

          ** 2 out of 10 instances could not be solved in S1 m=10, n=30 set. 
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Table D.2: α Approximation Scheme Results for α=0.02, s=2, C2 

C2 

      
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.77 2.47 1219 4220 0.13 1.32 (9) 
30 1.99 9.98 2269 11030 0.40 1.06 (6) 
40 0.76 3.14 695 3425 0.46 0.81 (4) 
50 0.28 1.11 200 1310 0.91 1.28 (1) 

5 

60 0.30 1.34 142 1125 0.56 1.50 (3) 
20 20.39 90.38 24519 94889 0.00 0.00(10) 

S1 

10 
30 66.59 126.08 32690 70950 0.00 0.00(8)** 
20 0.06 0.19 27 205 0.08 0.78 (9) 
30 0.06 0.08 3 5 0.11 0.51(7)** 
40 0.62 5.50 285 2825 0.47 1.56 (3) 
50 0.18 0.42 22 85 0.58 1.23 (1) 

5 

60 0.22 0.63 47 285 0.52 1.32 (39 
20 0.22 1.00 212 1334 0.16 1.59 (9) 

S2 

10 
30 4.76 46.19 3396 33660 0.32 1.08 (7) 
20 0.02 0.03 4 5 0.33 0.97 (6) 
30 0.04 0.05 3 5 0.16 0.65 (7) 
40 0.12 0.56 24 220 0.34 0.98 (4) 
50 0.10 0.14 1 5 0.17 0.58 (4) 

5 

60 0.16 0.53 15 145 0.40 1.30 (1) 
20 0.10 0.45 1 1 0.19 0.97 (8) 

S3 

10 
30 0.10 0.16 1 1 0.53 1.34 (5) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 

          ** 2 out of 10 instances could not be solved in S1 m=10, n=30 set. 

               1 out of 10 instances could not be solved in S2 m=5, n=30 set.
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            Table D.3: α Approximation Scheme Results for α=0.02, s=3, C1 

C1 

      
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.22 0.44 328 785 0.00 0.00(10) 
30 1.20 2.66 1567 3995 0.40 1.40 (6) 
40 1.52 3.25 1575 3175 0.51 1.49 (4) 
50 0.67 3.95 497 3220 0.45 0.87 (3) 

5 

60 0.63 2.16 293 1220 0.62 1.50 (1) 
20 22.11 66.30 29301 88688 0.00 0.00(10) 

S1 

10 
30 229.36 925.19 75975 254187 0.25 1.52(5)** 
20 0.04 0.06 8 28 0.15 0.52 (7) 
30 0.53 4.69 351 3445 0.52 1.70 (5) 
40 0.12 0.25 15 95 0.39 1.29 (6) 
50 0.26 0.69 63 365 0.39 1.03 (3) 

5 

60 0.29 1.31 50 480 0.56 1.19 (0) 
20 25.51 234.99 25118 235058 0.52 2.08 (6) 

S2 

10 
30 0.56 2.59 63 477 0.47 1.43(4)** 
20 0.05 0.13 7 40 0.22 1.24 (7) 
30 0.08 0.13 4 10 0.39 0.88 (3) 
40 0.10 0.17 3 15 0.37 0.94 (2) 
50 0.14 0.25 2 10 0.39 1.04 (2) 

5 

60 0.23 0.39 5 35 0.38 1.52 (1) 
20 5.18 50.34 3697 36328 0.38 0.65 (4) 

S3 

10 
30 0.38 2.92 125 1161 0.40 1.37 (4) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 

          ** 4 out of 10 instances could not be solved in S1 m=10, n=30 set. 

               1 out of 10 instances could not be solved in S2 m=10, n=30 set. 
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Table D.4: α Approximation Scheme Results for α=0.02 s=3, C2 

C2 

      
Solution Time  
(CPU seconds) 

Number of nodes 
 in B&B Tree %dev 

  m n Avg. Max. Avg. Max. Avg. Max. 
20 0.22 0.47 328 785 0.00 0.00(10) 
30 1.27 2.78 1567 3995 0.40 1.40 (6) 
40 1.52 2.88 1575 3175 0.51 1.49 (4) 
50 0.67 3.98 500 3220 0.45 0.87 (3) 

5 

60 0.66 2.28 294 1220 0.62 1.50 (1) 
20 24.57 87.20 29557 87619 0.00 0.00(10) 

S1 

10 
30 163.16 452.05 64458 179690 0.00 0.00(6)** 
20 0.05 0.08 9 30 0.15 0.52 (7) 
30 0.52 4.77 352 3490 0.52 1.70 (5) 
40 0.11 0.23 15 95 0.41 1.29 (5) 
50 0.25 0.66 63 365 0.39 1.03 (3) 

5 

60 0.29 1.30 50 480 0.56 1.19 (0) 
20 95.85 924.80 29127 278208 0.52 2.08 (6) 

S2 

10 
30 0.58 2.41 63 480 0.47 1.43(4)** 
20 0.05 0.09 3 5 0.10 0.64 (8) 
30 0.07 0.16 3 5 0.47 0.88 (2) 
40 0.10 0.20 3 15 0.37 0.94 (2) 
50 0.14 0.25 2 10 0.43 1.04 (1) 

5 

60 0.26 0.56 5 35 0.38 1.52 (1) 
20 0.75 5.53 554 4207 0.58 1.94 (4) 

S3 

10 
30 0.37 2.66 128 1182 0.40 1.37 (4) 

*  The figures in parenthesis indicate the number of times the optimal solution is found. 

          ** 4 out of 10 instances could not be solved in S1 m=10, n=30 set. 

               1 out of 10 instances could not be solved in S2 m=10, n=30 set. 

 


