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ABSTRACT

MULTI RESOURCE AGENT BOTTLENECK GENERALIZED
ASSIGNMENT PROBLEM

Karabulut, Ozlem

M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Meral Aziztu

May 2010, 124 pages

In this thesis, we consider the Multi Resource AgBottleneck Generalized

Assignment Problem. We aim to minimize the maximaad over all agents.

We study the Linear Programming (LP) relaxationtte# problem. We use the
optimal LP relaxation solutions in our Branch anduBd algorithm while

defining lower and upper bounds and branching selseriVe find that our
Branch and Bound algorithm returns optimal solwgitmthe problems with up to
60 jobs when the number of agents is 5, and u@t@Bs when the number of

agents is 10, in less than 20 minutes.

To find approximate solutions, we define a taburdeaalgorithm and aru
approximation algorithm. Our computational resuitsve revealed that these

procedures can find high quality solutions to lasged instances very quickly.

Keywords: Bottleneck Generalized Assignment Probleiulti Periods, Branch
and Bound Algorithm, Linear Programming Relaxation
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DARBOGAZ COK KAYNAKLI GENELLE STIRILM iS ATAMA
PROBLEMIi

Karabulut, Ozlem

Yuksek Lisans, Endustri Muhend&liBolumu
Tez Yoneticisi: Prof. Dr. Meral Azizgu

Mayis 2010, 124 sayfa

Bu calsmada, Darbgaz Cok Kaynakli Geneljgriimis Atama Problemi ele
alinmstir. Amacimiz, temsilcilere donemler Gzerinden ataen buylk toplansi

yukini enazlamaktir.

Problemin d@rusal programlama geetmesini cahltik. Optimal dgrusal
programlama gexetmesi ¢cozimlerini 6nergiimiz dal-sinir yonteminde alt ve Ust

sinir ve dallandirma yoéntemini belirlemekte kulldndDal-sinir yontemimizin
olan problemleri 20 dakikadan daha kisa suredeigiedi gorduk.

Yaklasik ¢c6zimler bulmak icin, bir tabu arama algoritmasio yaklasiklama
algoritmasi gefitirdik. Deneylerimizin sonugclari bu yontemlerin biayuk baski

problemlere kisa sirede yuksek kaliteli cozumlddigunu gosternstir.

Anahtar Kelimeler:Darbgzaz Genellgtiriimis Atama Problemi, Cok Ddnemli,

Dal-Sinir Yontemi, Dgrusal Programlama Ggetmesi
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CHAPTER 1

INTRODUCTION

Assignment Problems are motivated and stimulatethbysituations where the
scarce resources have to be allocated to the tesivirhe assignment theory is
concerned with the optimal allocation of scarceueses to the activities through
the development and analysis of mathematical madelgechniques.

In service environments, each activity, called ofyputy (job, request), requires
at most one resource, called agent (server), afddrcapacity and availability. In
production environments, the opportunities and egemwe replaced by jobs

(tasks) and machines (workers), respectively.

There are two types of assignment problems, natoéd) cost and bottleneck
based on the objective functions. The total cogtetobjective functions
minimize the sum of the assignment costs whereaddttleneck type functions

minimize the maximum cost over all assignments.

The basic assignment model assumes no capacitigeeoresources, makes a
single assignment to each agent and minimizestaédost. The basic model and
its generalizations have been studied for many disca Besides their obvious
practical importance, the assignment problems apggasubproblems in many
well recognized Operations Research problems llk@ Traveling Salesman

Problem, Routing, Scheduling, Location and Layawtems.

Due to the special structure of its constraint sp#te basic assignment problem

sets all assignment variables to either zero or, omeen the integrality

1



requirements are relaxed. This follows that theidbasodel can be solved in
polynomial time by Linear Programming (LP) softwaEyen simpler polynomial
time algorithms like Hungarian, Labelling algoritancan be used to solve the

problem.

The Generalized Assignment Problem (GAP) is angassent problem where
there are capacities on the agents and multipleagsiignments to an agent are
allowed.

The GAP has many real-life applications as citedthe literature. Some
applications, as cited in Cattrysee and Van Wassanl{1992), include fixed-
charge plant location models in which customer iregquents must be satisfied by
a single plant, grouping and loading for FlexibleamMfacturing Systems
(Mazzola, Neebe, and Dunn, 1989), resource scheguicheduling of project
networks, storage space allocation, designing comications networks with
node capacity constraints (Grigoriadis, Tang andoW»974), scheduling
payments on accounts where ‘lump sum’ payments saexified, assigning
software development tasks to programmers, asgjgjuhs to computers in
computer networks (Balachandran, 1972), schedwartable length television
commercials into time slots, assigning ships torloaels (Gross and Pinkus,
1972), routing (Fisher and Jaikumar, 1981). As moeed by Campbell and
Diaby (2002), the GAP is also used as an approxamavhen allocating cross-
trained workers to multiple departments where theelfits of assigning additional
personnel to a department are given by a concametifin. The p-median
problem, the capacity constrained p-median probkml the plant location
problem can also be modeled as the GAPs (see RdsSadand, 1977).

The GAP with the minimum total cost objective is-N&d in the strong sense,

since its feasibility question is so (see Martelm Toth, 1995).

The bottleneck GAP (BGAP) is the GAP that has theinmex objective instead

of the minimum-sum objective. The BGAP has manyctical applications



especially in the public sector. One noteworthyligppon is the location of the

emergency service facilities.

The BGAP is categorized as task based and agead lpasblems. The task based
BGAP (TBGAP) minimizes the maximum cost over akiggments whereas the

agent based BGAP (ABGAP) minimizes the maximum owst all agents.

The task and agent based BGAP are NP hard inriregssense based on the fact
that GAP is so (Martello and Toth, 1995).

The GAP assumes that there is only one type ofuresodefined on the agent
capacities. Pentico (2007), in his survey of assagm problems, identifies
another version of the Generalized Assignment Brobhamely, the multiple
resource GAP (MRGAP). As the name implies the MRGédals with an

environment where multiple resources define thenagapacities.

The cited practical applications of the MRGAP imduthe allocation of databases
among the nodes of a distributed computer systarkulP1986), processor and
database location in distributed computer syste@aish and Pirkul, 1982 and
1986) and the truck routing problem (Murph, 1988)e vehicle routing problem
with multiple resources can also be modeled adR&SAP. The other potential
applications as cited by Gavish and Pirkul (19919lude telecommunication
network design, cargo loading on ships, warehoussigd and work load

planning in job shops.

There are two versions of the MRGAP, namely theimmim-sum MRGAP and
the Bottleneck MRGAP. Both problems are NP harthastrong sense as their

single resource versions are strongly NP hard.

In this study we consider the Multi-Resource Ag@&dttleneck Generalized
Assignment Problem (MRABGAP). To the best of ouokiedge, there is no



reported study on the MRABGAP. Our interest ors ghioblem stems from its
wide practical applications and lack of any theicegtresult.

One practical application that we take our motwatirom is faced in a nationally
recognized firm in the Heating, Ventilating and Aionditioning (HVAC) sector.
The problem they defined and thereafter we forredlizvas assigning agents to
the opportunities such that the agent assigned topportunity will follow the
opportunity for multiple periods. The agents haweited time for each period,
and the time requirement of an opportunity charegrding to the agent it is
assigned. It is essential that an opportunity sga®d to a single agent. This is
because it would take time to coordinate the agentsllow a single opportunity
and the communication between the agents would slown the process if
multiple agents were responsible from an opporyui@n the other hand, due to
the capacity limitations, the agents should servelimited number of
opportunities. Moreover, the workload balance betw¢he agents should be
regarded from managerial perspective. Even whencHpmacity of an agent
permits to serve all opportunities and this agenmves at the fastest pace, the
balanced solution would assign a subset of the rypities to this agent and the
rest to the other slower ones.

In this study we first investigate the propertiédghe optimal solution and state
some rules to detect the infeasibility of the insts. We incorporate those
properties to our Linear Programming (LP) relaxadieen route to improve its
efficiency. Moreover we incorporate some valid cthiat are satisfied by the
optimal solution, but not the optimal LP relaxeduson. We then propose a
Branch and Bound algorithm that incorporates th&aity properties together

with efficient bounding mechanisms. Our lower bosirade of two types: one is
simple, but not-as-efficient, and used as a fitignmechanism. The other one is
an optimal LP relaxed solution, hard-to-compute, hiswever efficient in

performance.



We could solve test problems with up to 60 jobsS@agents and up to 30 jobs for
10 agents and up to 5 periods in reasonable CPEstiM/e hope our results

stimulate future research on the subject.

The rest of the thesis is organized as follows.Clmapter 2, we review the
literature on the Generalized Assignment Problewis. also give the related
mathematical programming formulations of the protde In Chapter 3, we
present our model and state the properties of fftanal and some feasible

solutions. We give the LP relaxation bounds.

We discuss our solution procedures in Chaptersdd5aWe present our Branch
and Bound algorithm in Chapter 4 and discuss sattezirig mechanisms we
incorporated into the algorithm. In Chapter 5, vigcdss heuristic procedures to
find approximate solutions: a tabu search algoritnd ana approximation

scheme. We report the results of our computatiexplerience in Chapter 6.
Chapter 7 concludes the study with our main findirand future research

suggestions.



CHAPTER 2

LITERATURE SURVEY

The Generalized Assignment Problem (GAP) is a gedization of the well-

known assignment problem (AP). The GAP allows midtiassignments to the
agents as long as the capacity restrictions argfisdt As in the classic AP, the
GAP assumes that each job will be assigned to oné agent. Throughout the

thesis we use the terms opportunity and job, ihimngeably.

In this chapter, we first formulate and review tBAP with total cost objective
and then the bottleneck GAP.

2.1. The GAP with Total Cost Objective

In this chapter, we first give the GAP model witital cost objective and then

give the related literature review.
2.1.1. The Model

The GAP can be modeled as follows:

min sz:cij X, (1)

s.t. Zaﬂ x, <b, Ol (2)
Z]:xij =1, jad, (3)
>g.|j=00r1, igln, joJ, (4)

where x; equals 1 if jo is assigned to agentO otherwise.



c; is the cost of assigning jolio agent.
a; is the agent's capacity required by jop

b, is the available capacity of agent

Constraint set (2) ensures that agents are notoaxksd and constraint set (3)
states that each job can be performed by only geataThe objective function

given in (1) tries to minimize the total cost oadlrassignments.

2.1.2. Survey on the GAP

We first review the optimization and then the ap@ration algorithms

developed and reported for the GAP.

Optimization Algorithms

The GAP is a widely studied problem in the literatuMany optimization studies
are reported most noteworthy of which are due t@ssRand Soland (1975),
Martello and Toth (1981b), Fisher, Jaikumar and \Afassenhove (1986),
Guignard and Rosenwein (1989a), Wilcox (1989), gtém and Varbrand (1987),
Karabakal et al. (1992), Savelsbergh (1997), Csdtryet al. (1998), Park et al.
(1998), Farias and Nemhauser (2001), Nauss (2d98¢dadi et al. (2004),
Pigatti et al. (2005), Avella et al. (2008).

For a more thoroughly review of the algorithms, anay refer to the survey
paper by Cattrysse and Van Wassenhove (1992).

Ross and Soland (1975) propose a lower bound @uatdg deleting the capacity
constraints (2), hence solving a classical assignrpeoblem. The assignment
based lower bound is then strengthened by addinuplipes defined for

reassigning jobs from one agent to another thafgdhe capacity constraints.



Ross and Soland (1975) and Fisher, Jaikumar amdWassenhove (1986) also
show that a lower bound can be obtained by relaxiogstraint set (3) by
Lagrange multiplier. The relaxed problem is a kiaaksproblem and solved by
setting the Lagrange multipliers to the second ksiat; values. This lower

bound is used in a Branch and Bour&B) algorithm employing a binary
branching strategy based on the remaining ageicdags and the penalty for not
assigning a job to the least costly agent. Thegntegpmputational results for the

problems with up to 4000 binary variables.

Martello and Toth (1981b) remove the constraint (8tfrom the equivalent
maximization model and find single independent lsagks. Their branching
strategy assigns the unassigned jobs and handigstib that are assigned more
than once. The bound is improved by computing afdvound on the penalty for
satisfying the relaxed constraints. The job with thaximum penalty is chosen as
the branching variable in this Branch and Boundoslgm. They report
computational results for problems with up to 5rageand 20 jobs and show the

superiority of their results over those of Ross 8othnd (1975).

Fisher, Jaikumar and Van Wassenhove (1986) stui dlgrangean relaxation of
the problem that dualizes constraint set (3). Tl the corresponding

Lagrangean multipliergs;, to the second largest; value (the maximization
version is considered), hence obtain the boundgsegh by Ross and Soland. In
the first step the jobs are assigned to the adeamsg c; -y, >0, i.e., to the
maximum profit agents, then an assignment probtesoived for the jobs having

c,-4;= 0. In the second step, the multipliers are adpisby a heuristic

procedure so as to assign more jobs. The BrancBaundd algorithm starts when
no further improvements are possible. The branclsingtegy selects the free
variable with the largesd; value. Their computational results for problemghwi
up to 20 jobs and 5 agents show the superioritthefalgorithm over those of
Ross-Soland (1975) and Martello-Toth (1981b).



Guignard and Rosenwein (1989a) study the proceguoposed by Fisher,
Jaikumar and Van Wassenhove (1986). They use aahggan dual ascent
procedure which solves a Lagrangean dual at easmenation node and adds a
surrogate constraint to the Lagrangean relaxed modéhe Branch and Bound
algorithm, they use a branching scheme that comsbilepth-first and breadth-
first strategies. The branching is based on the yaith multiple assignments; the
job with the maximum of the minimum resource usegeelected to branch on
among the ones with multiple assignments. The asitheport the satisfactory

performance of their algorithm for the problemshaup to 500 variables.

Another study on the Lagrangean relaxation of theblem is performed by
Wilcox (1989), who relaxes the constraint set {3)e Lagrangean multipliers are
adjusted so that the multipliers of the unassigobd are higher than those of the
multiple assigned jobs. He compares the binarydimaig and multiple branching
strategies and concludes that the multiple bramchirie is better. Fixing the
variables to zero and one, the size of the prolideraduced. The branching is on
the job with the largest number of fixed variabl€se problem sizes are up to 5
agents and 40 jobs. When compared to the apprddeisteer, Jaikumar and Van
Wassenhove (1986), the algorithm is reported tdabter and results in smaller

tree sizes.

Two algorithms are proposed by Jornsten and Vado(a887) for the GAP. The
first one strengthens the bound obtained from tagrangean relaxation of the
constraint set (2), via valid inequalities. When walid inequality can be
generated, a Branch and Bound procedure is uskd.sdcond procedure uses a
surrogate relaxation of constraint set (2) and dvahequalities. The first
procedure is reported to be more efficient. Thest problems have 4 agents and
25 jobs.

Karabakal et al. (1992) propose a more effectivdtiptier adjustment method
than the ones used by Fisher, Jaikumar and Van aifhsse (1986) and

Guignard and Rosenwein (1989a) to solve the Lagmamgelaxation of the



problem. They relax the constraint set (3). Thetipligr adjustment method
suggested by Fisher, Jaikumar and Van Wassenh88é) and then improved by
Guignard and Rosenwein (1989a) is improved by & gaemality analysis of the
0-1 knapsack subproblems. This method is embedudexl Branch and Bound
algorithm. They use the branching strategy sugddsgeBean (1984). A violated
constraint (from constraint set 3) with the largesiltiplier value is selected.
Their computational results show the superioritytloé algorithm over that of
Martello and Toth (1981a).

Savelsbergh (1997) proposes a branch and priceithlgo which uses both
column generation and Branch and Bound techniqties problem is formulated
as a set partitioning problem. Branching strategi@sed on variable fixing are
shown to be suitable to the pricing. His computalostudy includes problems
with up to 20 agents and 50 jobs. He compareselislts with those of Karabakal
et al. (1992) and finds that his algorithm perforbetter for problems with a
relatively smalln/m ratio (smaller than 5) while the other one perferdpetter for
problems that have highar/m ratio. The author concludes that these two

algorithms are good complements of each other.

Park et al. (1998) propose a Lagrangean-Dual-BaBemhch and Bound
Algorithm for the Generalized Multi Assignment Pierin, of which the GAP is a
special case. For the GAP they compare the perfarenaf their algorithm to
those of Guignard and Rosenwein (1989a), MarteltbBoth (1990). The authors
conclude that their algorithm outpaces the otherteims of problem sizes that
can be solved to optimality. They also conclude #sathen/m ratio gets bigger,

the corresponding GAP becomes harder to solve.

Cattrysse et al. (1998) discuss an improvementhenstandard procedure for
generating lifted cover inequalities that yieldsodoupper bounds. Using this
improvement they propose two heuristic proceduiid®y also use some pre
processing techniques to reduce the size oB8a8 tree. These techniques along
with the proposed bounds are used inB&B algorithm. They report
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computational results for problems witlm[LI{5, 8, 10} andn/mratio Ul {3, 4, 5,
6} and show that the Branch and Bound algorithmpedibrms theB&B
algorithm of Martello and Toth (1990) in terms afeaage CPU time. It is noted
that this satisfactory performance is achieved gy tuts and size reduction

techniques.

Farias and Nemhauser (2001) discuss a family ofualkgies that are valid for the
GAP polytope. The proposed inequalities are useal anch and cut algorithm
and computational results indicate a %53 redudticthe number of nodes and a
%66 reduction in the CPU time by the proposed iaétyu They compare their
algorithm with the one proposed by Savelsbergh 712%d conclude that their
proposed algorithm is superior in terms of the cotagon time and the problem

sizes that could be solved to optimality.

Nauss (2003) proposes a Branch and Bound algorithmwhich linear
programming cuts, feasible solution generators, rdagean relaxation and
subgradient optimization methods are used. His coatipnal results show that
that the algorithm outperforms the Savelsberghger@hm especially in terms of
the CPU time. Another comparison is done with CPL&E® on small sized
problems and the proposed algorithm is reportesbtee the test problems about
3.5 times faster. Nauss mentions that the algoritle@aches good feasible
solutions at early stages, hence, could be usadasristic when the guarantee of
optimality is not essential.

Haddadi et al. (2004) work on a Branch and Bougdrdghm using a breadth first
approach and selecting the node with the largepemupound for branching.
Lagrangean Relaxation which relaxes constraint (8tis used. A standard
subgradient method is used to solve this Lagrandeah At each iteration of the
subgradient method, a heuristic is used. The esfdltheir computational study
reveal their Branch and Bound algorithm outperforthe Nauss's (2003)
algorithm and their Lagrangean heuristic outperfoitine tabu search algorithm

by Yagiura et al. (1999). The Lagrangean heuriatid the Branch and Bound
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algorithm are reported to be better than the taawuch heuristic in terms of speed
and both speed and accuracy, respectively. Foteited instances the proposed
algorithm is shown to be better than the Branch Badnd algorithm of Nauss
(2003).

Pigatti et al. (2005) propose a branch and cut pnde algorithm with a
stabilization mechanism to improve the convergewsiceolumn generation. The
authors also propose ellipsoidal cuts which arented to produce good upper

bounds for the branch and cut and price algorithm.

Avella et al. (2008) introduce a cutting plane aigon and perform a
computational study of exact knapsack separationttfe GAP. The proposed
algorithm is tested on the problems taken from@keLibrary. The solutions for
problems with up to 80 agents and 1600 jobs arerteg. The authors report that
they could solve four ‘*hard’ instances that wengoréed as unsolved.

Approximation Algorithms

Some noteworthy approximation algorithms on the G&® due to Martello and
Toth (1981a, 1981b), Cattrysse (1990), Cattrysalngon and Van Wassenhove
(1994), Osman (1995), Klastorin (1979), Jornsted Hésberg (1986), Jornsten
and Varbrand (1991), Trick (1992), Savelsbergh 7)9Biallefjord, J6rnsten and
Varbrand (1993), Amini and Racer (1994, 1995), Ramed Amini (1994),
Osman (1995), Chu and Beasley (1997), Yagiura .e{1898, 2006), Higgins
(2001), Diaz and Fernandez (2001) and Lourenco Sema (2002). Osman
(1995) provides a thorough review of the heuristiethods designed for the
GAP.

Martello and Toth (1981b) propose a greedy heurtbit determines the job with
the maximum regret and assigns it to the agent lgsts to maximum profit.
Another version is discussed by the same authdngshwassigns the job to the

agent for whom the regret is minimum (1981a). Tkarlstic continues with an
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improvement step using a shift procedure. Theoperdnce of the heuristic
algorithm is tested on problems with up to 20 ageamd 200 jobs. The solution is
compared with the optimal solution given by the ®a@nd Soland (1975)

algorithm and 0.1% average deviation from the oaliis reported.

Cattrysse (1990) proposes a variable fixing prooediat can be used to reduce
the problem sizes. First the Linear Programming) (leffaxation of the problem is
solved and then violated valid inequalities are eaddb the formulation. The
resulting formulation is solved and other valid qoelities are added. This
continues until no further valid inequalities canfound. After this procedure, the
variables that are found as 1 are fixed to 1 apaaéies of the agents are updated
accordingly. The resulting problem which is of aadler size is solved by using a
Simulated AnnealinggA procedure. The authors report computational tesoi
problems with up to 10 agents and 60 jobs. The Bitad Annealing algorithm is
found to deviate no more than 3.9% from optimabty average. The fixing
procedure finds solutions that are 0.72% apart foptimality and reduces the

solution times.

Cattrysse (1990) and Cattrysse, Salomon, Van Whesen(1994) study a set
partitioning heuristic for the GAP. The heurighi®posed in Cattrysse, Salomon,
and Van Wassenhove (1994) uses column generatabmitpies and provides
both upper and lower bounds. The authors repodvanage deviation of 0.13%
from optimality.

Osman (1995) imposes a time limit on the executibthe exact algorithms of
Martello and Toth (1990) and Fisher and Jaikumas{). In this method, depth
search is applied first and once a feasible salutfo found a tree search is

implemented.
The heuristics proposed by Klastorin (1979), J@&msind Nasberg (1986) and

Jornsten and Varbrand (1991) use the Lagrangeawatedn and try to obtain

feasible solutions based on the results of thexatiian.
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Klastorin (1979) proposes a two phased Lagrangekxation based heuristics
using modified subgradient and Branch and Boundagmhes. A computational

experience is cited for problems containing up2@Q@O0 binary variables.

Jornsten and Nasberg (1986) use Lagrangean deciimpdsounds and obtain
feasible solutions by modifying them. The violatedpacity constraints are
handled by interchanges and the resulting feassoleition is improved by
reassignments of jobs from one agent to anothenstkin and Varbrand (1991)
obtain feasible solutions based on the Lagrangeaerlbound at every node of

the tree search. The results are reported for @nablith 4 agents and 25 jobs.

A Linear Programming relaxation based heuristic tfeg GAP is proposed by
Trick (1992). The author first eliminates the assignts for which the job’s
requirement is greater than the agent’s capachw. OP relaxation is solved and
the variables that received value 1 in the relas@dtion are fixed to 1. These
jobs are deleted and the agent capacities are egpdatordingly. These steps are
repeated until no variables are left. This alganitis followed by an improvement
procedure that swaps jobs of two agents or assignis to an agent different than
the currently assigned one. This heuristic is shdanbe consistent when
compared to Martello and Toth (1990)’s heuristitse results are reported for
problems with up to 100 agents and 500 jobs. Thegsed heuristic is reported

to outperform Martello and Toth (1990)’s heuristics

Savelsbergh (1997) discusses the performance oftrirecated tree search
algorithms. The first heuristic is based on settngredefined limitu, to the
number of nodes and the second one is based og aisioptimality tolerancey
such that the nodes havify, <(1+a)* Z, are fathomed. He concludes that the
proposed heuristics outperform the linear relaxatieuristic of Trick (1992) in
terms of solution quality with an acceptable insee& computation time. When
a is set to 0.005, a significant increase in comanaime is reported.
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Hallefjord, Jornsten and Varbrand (1993) proposalgarithm based on the idea
of partitioning the jobs into clusters. The job® arouped via a hierarchical
cluster analysis. The resulting aggregated GAPolged to optimality and the
optimal aggregated solution is then disaggregaiembtain a feasible solution to
the GAP. The authors solve two problems of sizagehts- 25 jobs and 4 agents-
1000 jobs.

Amini and Racer (1994) and Racer and Amini (199&yelop a variable-depth
search heuristic (VDSH) for the GAP. The proposkgbrithm is a two phase
algorithm. The first phase generates an initiakifda solution and an LP based
lower bound. The second phase is a refinement phagleich a job is assigned to
another agent or two jobs assigned to differeninegare interchanged while
ensuring feasibility. The authors compare the tesuil their heuristic to that of
Martello and Toth (1990) on problem instances BP0 agents and 50-200 jobs.
They report solutions that are closer to optimahgwever at an expense of

increased solution times.

Osman (1995) studies the implementation of locar@de descent, hybrid
Simulated Annealing / Tabu Sear(®A/TS)and TS methods. He compares the
performances with those of the best reported algos by Cattrysse (Simulated
Annealing) (1990), Cattrysse et al. (Set PartitgnHeuristic) (1994), Fisher et
al. (1986) (curtaile3&B), and Martello and Toth (1990) (curtail&&B). The
computational results with up to 10 agents and dif jreveal thaBA and TS
outperform the other heuristics in terms of thaigoh quality and time. Also the
local search descent method is found to be mucterfaban SATS and TS

mechanisms and recommended when computation tinérnsting factor.

Amini and Racer (1995) propose a hybrid heuristat tombines greedy heuristic
and a refinement phase. Local optimal solutionsam@ded by allowing chain
moves. They show that the problem instances withou®00 jobs and 20 agents

are solved in 30 seconds on average.
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Chu and Beasley (1997) develop a Genetic Algori(®A). The performance of
the algorithm is compared to those ®A heuristic of Cattrysse (1990), the set
partitioning heuristic of Cattrysse, Salomon ana Wedassenhove (1994) and the
SATS heuristic of Osman (1995). Their computationaldgtishows that the
average deviation from optimality is 0.01% and ttwmputational times are

compatible with those of other heuristics.

Yagiura et al. (1998) introduce a variable depthrde(VDS) algorithm with
branching search. The algorithm is a more sophist version of thé/DS
algorithm developed by the same authors. The asitbompare their heuristic
with the heuristics by Yagiura et dl1997), VDS by Racer and Amini (1994),
tabu search by Lagunaat (1995), tabu search for tgeneral purpose constraint
satisfaction problem by Nonobe and Ibaraki (1998}tee test problems with up
to 20 agents and 200 jobs. The solution qualitythaf proposed algorithm is
reported to be better than the existing algoritimmaost cases.

Higgins (2001) introduces new versions of th8 algorithm. The algorithm
applies dynamic oscillation and changes the sizéh@fmeighborhood sample as
time progresses. The new version is compared \Wwéhthree existing versions of
TSfor the test problems with up to 50000 jobs andagénts. In time limit of 10
minutes, the new version is reported to outperfoine others in terms of the
solution quality. In order to compare the compuotatimes of the algorithms, the
author runs the proposed version for 2 minutegroscthe solution, and observes
the time for the other versions to reach the gualitthis solution. The existing
versions are reported to require 1.5-3 times mione than the proposed one for

the same solution quality.

Diaz and Fernandez (2001) develop a tabu seardaisti@uThe performance of
the algorithm is tested on problems with up to 4@nds and 400 tasks. The
proposed algorithm is reported to provide good tsmhs in competitive
computational times witBATSandTSheuristics proposed by Osman (1995) and
the GA proposed by Chu and Beasley (1997).
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Lourenco and Serra (2002) apply adaptive searchoder the GAP based on
GRASP and Ant Colony optimization. Their hybrid eggch includes ideas from
Max Min Ant Systems (MMAS) and GRASP and combinBent with tabu

search techniques. The results compare favorably MMAS and the greedy
randomized adaptive heuristics both in terms ofetimken and quality of the

solution.

Yagiura et al. (2006) introduce a metaheuristict tilcludes path relinking
approach along with an ejection chain approach.alitkors test the performance
of their algorithm on the instances with up to 2femts and 200 jobs. They
compare their results with those of Alfandari e{(24102), Diaz and Fernandez
(2001), Haddadi and Ouzia (2001), Yagiura et aD0@, Racer and Amini
(1994), Laguna et al. (1995), MAX-MIN ant system bgurenco and Serra
(2002), Chu and Beasley (1991)d a mixed integer programming solver CPLEX
6.5. The proposed algorithm is reported to be sapar most instances.

2.2. The Bottleneck GAP
The bottleneck GAP (BGAP) is first mentioned byraia and White (1974) and
is first defined by Mazzola and Neebe (1988). Thare two versions of the

problem: task based and agent based.

The Task BGAP (TBGAP) minimizes the maximum costhaf assignments. The

associated formulation for the Task BGAP is asfed:

z =min{ rEIaX{Cij X; 1} (1)
0
st. Y ax shb, 0l (2)
j
2% =1 jioJ, 3)
x, =0orl, i0l, jOJ, 4)

The Task BGAP is shown to be NP hard in the stsmgse based on the fact that
GAP is so (Martello and Toth, 1995).
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Mazzola and Neebe (1988) discuss solution procedorsolve the Task BGAP.
Through an appropriate transformation they forneutae problem as a minisum
GAP, which can be used to solve the correspondBGAP when the number of
distinctc; values is small. The authors also discuss an iergtocedure to solve
the Task BGAP and provide an example to illustrttte procedure. No

computational results are reported for the procesiur

Mazzola and Neebe (1993) propose an algorithmhieimask BGAP that uses the
procedures discussed in Mazzola and Neebe (1988y Tise an equivalent
formulation of the problem and propose the so dalierative TBGAP algorithm

to solve this modified version. The authors findilmal solutions to the instances

with up to 5 agents and 20 jobs.

Martello and Toth (1995) discuss the relaxationstte TBGAP. They find
bounds by relaxing the resource constraints andyiagpa surrogate relaxation.
They propose an approximate algorithm that findsasible solution in less than
a given threshold. They define a Branch and Bougaorithm that uses the results
of the approximate algorithms. The search stratesgpd is depth-first search and
the branching is done by assigning the selectetbjaltl feasible agents. A simple
mechanism is used to fathom the nodes, if the nrmesmeafails to fathom the node
the relaxations are applied in a sequence from estak strongest. The authors
report computational results of both the exact apgroximation algorithms for
problems with up to 50 agents and 1000 jobs.

The Agent BGAP (ABGAP) minimizes the maximum of tio¢al costs assigned

to each agent. The formulation is as stated below:

z=min{ max{ > c;x; }} (1)
s.t. quxij Jjb,, iol, 2)
z]xij =1, jOJ, 3)
>q.ij=00r1, inl, joJ, (4)
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To the best of our knowledge there is no reportadyson the Agent Bottleneck
Generalized Assignment Problem.

2.3. The Multi Resource GAP (MRGAP)

The MRGAP is a generalization of the GAP with mu#sources. The problem is

formulated as follows:

Given
« Asetofagents|={1, ., m}
« AsetoftasksJ={1,.,n}
e A set of periods T={1,.,.s}
* by Available capacity of agemtin periodt

* pji: Time required by taskin periodt if performed by agerit

Subject to

Yx =1 Oj=1..,n (1)

i=1

Z Py X; < by Oi=1..m, Ot=1..,s (2
=1

x; U {0, 1} Oi=21.m, Oj=1..,n
where

X

_[1if taskj isassignedoagent
" | 0otherwise

The assignment decision variablgss are binary.
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Constraint set (1) ensures that the capacitieb@fagents are not exceeded and
constraint set (2) ensures that each task is asignone agent.

The studies about the MRGAP are summarized indhaing table:

Table 2.1: Literature Review for the MRGAP

Title Authors Method Publication Date
Algorithms for the MRGAP Gavish and Pirkul  Optimiizen Jun-91
o Mazzola and o
Heuristics for the MRGAP ) Optimization Mar-01
Wilcox
A very large-scale ) ~ Very large-scale
_ Yagiura, Iwasaki, _
neighborhood search _ neighborhood Mar-04
] Ibaraki, Glover
algorithm for the MRGAP search
Local search intensified: Very Very large-scale
large Scale Variable o variable
] Minic, Punnen . Apr-09
Neighborhood search for the neighborhood
MRGAP search

Gavish and Pirkul (1991) study different Lagrangrataxations of the problem

and develop three heuristics. The first heuristroply assigns the tasks that
would result in high incremental costs if they wace assigned to the least costly
agent. The second heuristic uses the solutiohetagrangian Relaxation by the
constraint set (2) as an initial solution and gatex a feasible solution by

reassigning some tasks.

The third heuristic obtains a feasible solutiomgsihe Lagrangian relaxation of
constraint set (1). The computational results iaichat for difficult problems,
the third heuristic dominates the others and iiged as a bounding scheme in
their Branch and Bound algorithm. The bound is Wlaked when a free variable
X;j is fixed to 1-x;*. A combination of three different rules are usedthe
algorithm. The first one uses a subgradient op@tion algorithm to determine
the Lagrangean multipliers and new bound. In tlvesé method, the solution for
the Lagrangean relaxation is found by using thetmexgent multiplier set and in

the third one sensitivity analysis is used. Thenbining strategy is based on
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selecting a job according to a predefined penakasare and assigning this job
to each agent in increasing order of the penaltyes The optimal solutions to
problems with up to 10 agents and 100 jobs arertego

Mazzola and Wilcox (2001) propose a three phasedidie that first seeks to
construct a feasible solution and then systemétigabroves the solution. In the
first phase, a function based on predefined welgittions is used to calculate a
“regret” value for a job. From the unassigned jaib® job yielding the largest
regret is assigned to the agent that minimizesdéhection function. In the second
phase, jobs from the agents that are overloadedeassigned to other available
agents according to a given priority measure. tthrd phase, they propose a
solution improving procedure which uses a feasdalition and improves it by
using an Integer Programming model that maximibesitmprovement of total
cost when the jobs are shifted between agents. &lseysuggest a modification
for the heuristic by Gavish and Pirkul (1991) tduee its computational burden.
A hybrid heuristic using this modified heuristicdathe three phased heuristic is
discussed. The hybrid heuristic is reported tohgemost effective of all with an
average deviation of less than 3% from the optiseéltion for the problems with
up to 10 agents, 75 jobs and 4 resource types.

Yagiura et al. (2004) work on a very-large scalgimeorhood search algorithm
based on tabu search which they callT&CS (tabu search with chained shift
neighborhood). The authors provide computationsiilte for problems with up
to 20 agents, 200 jobs and 8 resource types. Thmalpsolution by alternative
TS applications are compared with each other and ®RbLEX 6.5. They find
that TSCSperforms better for majority of the problem instas.

Mitrovi¢-Mini¢ and Punnen (2009) develop a very large scale blaria
neighborhood searcfVNS) algorithm for the MRGAP. The basic idea is as
follows:

* Start with a feasible solution.
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» Divide the assignments of the solution into twatgamamely S and S’, fix
the assignments of the tasks in set S and soletatively smaller Integer
Program to find the optimal allocation of the taskset S'.

* The new solution that includes the optimal assigmséor S’ set replaces

the current feasible solution if it has a bettgeotive function value.

The most important decision involved is the sizeself S, i.e., |S|. For small |S],
searching the neighborhood is almost equivalesbtang the MRGAP itself and
for large |S|, the neighborhood is weak. The agtlpoopose nine ways to select
|S|. They suggest to start with large |S|, andedser it gradually, resulting in a
very large scal&/NS They use the test problems of Yagiura et al. 42Gihd
compare the performance of their algorithm withof Yagiura et al. (2004) and
with the best solution found by CPLEX in a predefirtime limit.

In this study we consider an Agent Bottleneck MRGAIRABGAP). To the

best of our knowledge, there is no reported studihs problem.
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CHAPTER 3

PROBLEM DEFINITION

An Agent Bottleneck MRGAP (MRABGAP) is an Agent Beheck Generalized

Assignment Problem (ABGAP) with multiple types ekources. We assign the
agents to the job opportunities while obeying thera capacities and assigning
each job to exactly one agent. These assignmeatvad for a horizon that

includes multiple equal-length periods, hence mrggources. That is, in the
MRABGAP we seek to find the assignment that balariotal agent loads. We
achieve load balancing by minimizing the maximumalttoad over all agents. In

our case, the time capacity of the agents is thglesiphysical resource type, but
the problem has direct analogy with the multi-reseuproblem as available

capacity changes from period to period for an agddlike the other problem

types we do not have any cost concern; we onlyotfind an optimal balance in

the total workloads of agents.

The Generalized Assignment Problem (GAP) is stypiNP-hard, since even its
feasibility question is NP-complete (Martello andtf, 1995). So is any
generalization of the GAP. The MRABGAP is a geneadion of the GAP with

multiple resources and has the same feasible regloa follows that the feasible
region of the MRABGAP is strongly NP-complete ahéd bptimality problem is

NP-hard in the strong sense.

We next give the mathematical model of the MRABGAP.
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3.1. Mathematical Model of the MRABGAP
Parameters

bii: Available capacity of agemtin periodt.
pic: Time required by taskin periodt if performed by agent

Decision Variables

The binary variables;s,define the assignments such that

1 if task | isassignedoagent
Xjj= .
Ootherwise

Constraints

Given
e Asetofagents|={1, ..m}
e AsetoftasksJ ={1, ..n}
e A set of periods T={1, .,.s}

Zn: Py X; < by Oi=1...m, Ot=1..,s (1)
j=1

DX =1 Oj=1..n (2)
i=1

X;=0orl Oi=2.m, Oj=1...n (3

Constraint set (1) ensures that the capacitieb@fagents are not exceeded and
constraint set (2) ensures that each task is assignone agent. The assignment

restrictions are given by constraint set (3).
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Objective Function

The MRABGAP minimizes the maximum of the total leadssigned over all
agents. The objective function is as follows:

Min M_ax{izn: Pie X }

t=1 j=1

We can linearize this objective function by defmia continuous variable,
which denotes the minimum of the maximum total loaér all agents. We add

the following constraint set to the formulation:

S

zz PpX; <Z Oi=1..,m

j=1 t=1

This constraint set defines a bottleneck type diedunction that returns the

maximum of the total load over all agents.

Below is the linearized formulation of the MRABGAP:

Z Py %; <by Oi=1..m, Ot=1..s (1)

x;=0orl Oi=L..m, Oj=1..,n4)
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Size of the model

Number of constraints

Given m agentsh jobs ands periods the number of constraintsmgs + n+ m

excluding the set constraints.
Number of decision variables
Binary Variables: Givem agents and jobs the number of binary variablegs)

IS m*n.

Continuous Variables: There a single continuougabée ).

An Example Problem

Consider the following example problem with thegmaeters provided in Tables
3.1and 3.2.

Table 3.1:b; Values of the Example Problem

Agent | Period 1 Period 2
1 18 16
2 16 16
3 40 30
4 23 22
5 16 15

Table 3.2:pj values of the Example Problem

Period 1 Period 2
Agent/Job| 1| 2| 3| 4| 5| 6| 7| 8§ D1|2| 3| 4| 5| 6| 7/ 8
1 10|10 7| 6| 15/12| 7 |11 7|12/ 8|10/ 5| 5|14/ 9| 4|12/ 6 |11
2 69|11 5|11(14| 8| 8|11 7| 5|11/10| 411|119 | 9| 12| 6
3 11| 5|12|14|10|14|12|11| 8 |12|11| 4 |12|11|10|14|14|10| 8 |14
4 14|114(11|12| 5| 8| 15/14|12|12|13|14(11| 9 | 5| 7| 16/ 14|11| 9
5 11|16 (14| 7| 5| 8| 8| 9| 9| 7/ 186 (126 | 4| 7| 8| 9| 107

(o]
[N
(o]
[N
[=)

26



A feasible solution to the problem is as follows:

X21=X32=X43=X14=X35=X46=X17=X35=X50=X21~1 and all the other(;js are 0. The

bottleneck agent is agent 3 with a total load vadtie 50.

agents is demonstrated in Figure 3.1.

The total loads of

60

Total Workload

A feasible solution

50 7

40 1

30 1

22

20 1

101

50

37

24

19

Agent

Figure 3.1: The Total Loads of the Agents for a Fesable Solution

An optimal solution to the problem is as follows:

X21=X32=X13=X54=Xa5=X46=X17=X28=X39=X510 =1 and all othek;s are 0. Agent 2 is

the bottleneck agent and the optimal solution valee the total load of agent 2,

is 28. Below is a graphical representation of ttaltloads of the agents.

60

The optimal solution

50

40 1

30 1
207

Total Workload

10 7

23

28 25 27

f o

Figure 3.2: The Total Loads of the Agents in the Ogimal Solution
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3.2. Properties of Solutions
Properties of Feasible Solutions

1. For each agent, total woskould be less than or equal to an upper bou). (

> 2P SRHS 00 (1)

RHS = Min {UB, an}

Note: fRHS= Zb,t (1) would be redundant.
t

If RHS= UB such thaUB<ZbIt ; (1) may be used as a valid cut.
t

Problem Size Reduction Properties

One can use the following rules before using amuopéation algorithm in order
to fix some variables to O or 1; hence reduce tbhélpm size beforehand.

1.

a. If the time required for agemtto perform jobj in periodt is greater than the
maximum available time agenthas in a period over all the periods, then the

corresponding variabbg should be 0.

It py > Mtax{bn} thenx; =0 (1.a)

Otherwise the feasibility condition stated by (@ violated.

b. If the time required for agentto perform jobj in periodt is greater than
the maximum available time for that period over #ie agents, then the

corresponding variable; should be 0.
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If p, >Max{b,} thenx;=0 (1.b)

Otherwise the feasibility condition stated by coaisit set (1) is violated.

c. If the time required for agentto perform jobj in periodt is greater than
the available time of the agent for that peripthen the corresponding variable,

X;j should be 0.

If p,, >b, foranyi, j, t thenx; =0 (1.c)

Otherwise the feasibility condition stated by (@ violated.

2. If the total time required for agento perform jobj is greater than the total

available time of agentover all periods, then the corresponding variaplie O.

If > p, >>_b, foranyi andj thenx; =0 (2)
t t

Otherwise the feasibility condition stated by (@ violated.

3. If minimum time required for agentto perform any job is greater than the
maximum available time of that agent for a peribdnt no jobs are assigned to

that agent in a feasible solution.

If Min p, >Max b, fori theanij =0 for ageni (3)
Jt t f

Otherwise the feasibility condition stated by (@ violated.

4. If minimum time required for agemtto perform any job in periotlis greater
than the available time of the agent in that petiah no jobs are assigned to that

agent in a feasible solution.
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If Minp,, >b, foranytthen E x; =0 foragent (4)
J -
J

Otherwise the feasibility condition stated by (@ violated.

5.The rules 1.a, 1.b, 1.c and 2 can be easily nemtifor eliminating agents from

further considerations as follows:

If x; =0 holds for allj for an agent theanij =0 (5
i

Otherwise the feasibility condition stated by (d yiolated.

6. If job j cannot be assigned to any agent but agehen the corresponding

variablex,; should be 1 in a feasible solution.

If x, =0 for all agents but one agenthen x,, = 1 (6)

Otherwise constraint set (2) is violated.
Comparison of the Rules

1. Rule 0 and rule 2 are not substitutable, checkimg af them does not imply
checking the other.

2. Rule 1.c, which already implies 1.a and 1.b, israngjer rule. 1.a and 1.b are
different rules but they are weak rules to be usequtactice.

3. Rule 1.c already implies rule 2.

4. Instead of usingz b, it is always possible to use an upper boudB)(such
t

thatuB <an to make the corresponding rules stronger.
t
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Some Rules to Detect Infeasibility

One can use the following rules to detect infeséisfbbeforehand. One should

note that the following checks for infeasibilityeamne-sided. If the conditions are
satisfied then the problem is infeasible. Howeverthie conditions are not

satisfied, feasibility is not guaranteed. As theisien version of the problem is
NP-complete, there cannot be any rule that detbetmfeasibility.

0. If the minimum time needed to perform a job in aiqu is greater than

maximum available time in any peridbdhen the problem is infeasible.

If Min{pijt}> Max{b,t} for anyt andj then the problem (P) is infeasible (0)

1. If condition (1.a) holds for all for at least ong¢ then jobj cannot be assigned

to any agent, hence (P) is infeasible.

2. If condition (1.b) holds for all for anyj andt then jobj cannot be assigned to

any agent, hence (P) is infeasible.

3. If condition (1.c) holds for ali for at least ong¢ andt then jobj cannot be

assigned to any agent, hence (P) is infeasible.

4. If condition (2.b) holds for alli for at least ong then the problem is
infeasible.

5. If the minimum total time needed to perform all gols greater than the total

available capacity, then the problem is infeasible.

alf > I\/Iiin{pm} >>'>'b, then the problem is infeasible.
t ] i

t
The above condition states that even all jobs @&mopned by their quickest

agent in each period the total capacity over ailopls is exceeded.

31



b.If > I\/Iiin{z pijt} >>">"b, , then the problem is infeasible.
i t toi

The above condition states that even all jobs @&mopned by their quickest

agent ovet periods; the total capacity over all periods iseeded.

6. If the minimum total time needed to perform allgah any period is greater

than the total available capacity for that peribeén the problem is infeasible.

Iif > I\/I_in{pijt}> > b, , for anyt then the problem is infeasible.  (6)
]. I

Comparison of the Rules

1. Rule 5.b, which implies 5.a., is a stronger canthule 5.a.

2.Rule 1.c in problem size reduction part alreadplies rules 5.a and 5.b.

3.3. Lower Bounds

We develop three lower bounds on the optimal valuthe MRABGAP. These
are namely Lower Bound 1, Lower Bound 2 and Lif&argramming Relaxation
Based Lower Bound.

3.3.1. Lower Bound 1 (Bj)

To find a lower bound on the optimal objective ftioc value, we make the

following relaxations:
The capacities of the agents are unlimited (heac®ve constraint set (1))

The opportunities can be split between the agdrgade relax the integrality of
X;S)
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Moreover we use underestimation for the total l@édeach opportunity, i.e.,

hence we relax the time parameters.

The optimal solution to the problem after thesexations L B;, provides a lower

bound on the optimal objective function value, Z*.

RIS

LB =

m

Theorem below states this result formally.
Theorem: LB; is a lower bound oZ*.

Proof: Let TAT, denote the total time jgltakes at the optimal solution.

The total load of all jobs at the optimal squtieETATj . We know thaTAT; >
i

Min{z pm}, implying > TAT, 2 ZMin{Z pijt}. ZMin{Z pijt} is the total
: t [ i ! t i ! t

load if all the opportunities are performed by tHastest agent, i.e., total load of
the opportunity is underestimated. When the inlégraonstraints orx; values

are relaxed and capacity constraints are remohedyptimal solution divides the

load ZMin{z pijt} evenly between all agents, and give an objectivetfon
I

value of ) Min{z pijt}/m. Hencel B, is a valid lower bound o&* value, as it
iUt

is an optimal solution to a problem where some mpatars are underestimated

and some constraints are relaxed.

If the lower bound solution is feasible, i.e., @fiportunities can be performed by
their fastest agents without violating the capaciiynstraints and with a
bottleneck load of.B; units, it is optimal. Moreover if a feasible saturt with Z

value ofLB; is achieved then its optimality can be warranted.
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To evaluate the partial solution with &of assigned opportunities aégdof load
of agent, we extend.B; as follows:

We calculate the minimum total load due to the siggeed jobs as ihB; and
distribute it to the nonbottleneck agents untilyttaee full up to the bottleneck
load. Then, if remains, we distribute the load éy¢o all m agents and obtain a
lower bound for the optimal solution of the corresging partial solution.

The lower bound is available by the following e>gsien:

S Min| 0, | -(B M - X3 By (5)

LBy(S)= B+ Max{ 0,22 t EEl

m

whereB. =Max{Z } ,i.e., the bottleneck load of partial solutiSmndx;(S)is the

value of the assignment variable in the partialisoh.

D> p% (S) is the current total load due to the assignmerfitthe partial

igs t

solution.

First, all the agents are filled up to tBe value, assuming a total capacity of

B.*m and hence the unused capacity becoBgsn-» > p,x(S). If the

i0s t
remaining work is smaller than this value, i.eBy(S) is equal toB,, the
bottleneck will not change. But if it is higher, wstribute the excess load evenly
over all agents, raising the bottleneck loatBy.

We next discuss further improvementd & .
Strengthened versions of Lower Bound 1

Note thatLB,(S)completely ignores the capacity constraints. WengfthenLB;
by incorporating the capacity constraints, to soeméent. These strengthened
versions ofLB,(S) are referred to as version 1 and version 2. Th& fine

strengthens the bound by preventing the assignuofeatjob to an agent whose
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aggregate capacity is not sufficient. The secorel merforms this check for each
individual period and does not allow the assignnena job to an agent if the
available capacity of the agent is not sufficiensérve the job at any peritd

Strengthened Version 1

In finding the minimum time of a job, we excludesthgents that do not have
enough total available capacity to process thatAabwe improve our estimation
on total loads while preserving other assumptiostsengthened version 1
dominated B,(S) For a partial solution, the capacities are uptlageconsidering
the already assigned tasks.

This strengthened version is calculated via thiefohg equation:

jDS”Z p!:/gliqu(S){tz Pit } - ((BL *m) - %S:Z Piit %; (S)

LB1(S)=B.+ Max 0,

m

whereB is the bottleneck value of the partial solutioml aiz P % (S) is the

i0s t

current total load due to the assignments of tggbaolutionS,
TAG (S)is the total available capacity of ageim the partial solution.

One can prove easily that this version providesveet bound for the optimal

solution in a similar way as InB;(S).
Strengthened Version 2
The second strengthened versiorLBf(S) dominates the strengthened version 1.

It differs from version 1 in the way the capacibnstraints are incorporated. The
second version excludes the agents that do not &eaiable capacity in any
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period t. For a partial solution, strengthened version Zasculated via the

following equation:

Min, {3 Py (@) - 33 5y (S)

ilpj; <cap;(S) Ot DS 1

LBy(S)=B.+ Max{0,22
m

whereB, is the bottleneck value of the partial solutiorhand, zz P % (S) is

i0s t
the current total load due to the assignmentseptrtial solution andap; (S) is

the available capacity of agerfor periodt in the partial solution.

Numerical Example

We illustrate our lower bounds on an example prmoblgth 5 agents, 10 jobs and

2 periods. The problem data are given in Tables®34and 3.5.

Table 3.3:b;; Values of the Example Problem

Agent | Period 1 Period 2
1 18 16
2 16 16
3 23 23
4 23 22
5 16 15

Table 3.4:pj: Values of the Example Problem

Period 1 Period 2
Agent/Job| 1| 2| 3| 4| 5| 6| 7| 8§ D1|2| 3| 4| 5| 6| 7/ 8
1 10|10 7| 6| 1512 7 |11 7|12/ 8|10/ 5| 5|14/ 9| 4|12/ 6 |11
2 69|11 5|11(14| 8| 8|11 7| 5|11/10| 411|119 | 9| 12| 6
3 11| 5|12|14|10|14|12|11| 8 |12|11| 4 |12|11|{10|14|14|10| 8 |14
4 14|114(11|12| 5| 8| 15/14|12|12|13|14(11| 9 | 5| 7| 16/ 14|11| 9
5 11(6 |14 7| 5| 8| 8| 9| 9| 7/ 186 |12/6| 4| 7| 8| 9| 107

(o]

[N
(o]
[N
[=)
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Table 3.5: z p, Values of the Example Problem
t

Agent/Job| 1| 2| 3| 4| 5| 6] 7/ § 9 1P

1 18120|12|11|29|21)|11|23|13|23
11120|21| 9 | 22|15|17|17|23|13
22| 9| 24|25|20(28|26(21| 16|26
27|28|22121|10(15|31(28|23|21
24112|126|13| 9 |15/16(18|19| 14

A B~ W N

The minimum total time that jobs require and theresponding agents are given
in Table 3.6.

Table 3.6: Minimum Total Loads and Corresponding Agnts of the Example

Problem

Job Min Total Load Min Total Load Agent
11 2

9
12
9
9
15 2
11
17
13
13

w

O O N o g Bl W N| =

N R N RN O] N e
)]

[N
o

At the root node, when all the jobs are unassighedower bound is calculated
as follows:
LB; = (11+9+12+...... +13+13)/5 = 23.8

Suppose that we have a partial solut®nvherex;g(S) = %2(S) = %5(S) = %3(S)
=Xs4(S) =1. Jobs 1, 7, 8, 9 and 10, are unassigned antbwer bound on the
remaining work will be found based on these jobgufe 3.3 gives the loads of
the agents given the partial soluti8nNote that the bottleneck value of the partial

solution,B, is 22 and the total load over all agents is 96.
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Loads for the partial solution

25

2
a 20 20

20

15 13

Total Load

10

Agent

Figure 3.3: Total Agent Loads in a Partial Solutiom of the Example Problem
LB,(S)is calculated as follows:
LB1(S)= 22+ [(11+11+17+13+13)-((22*5)-(21+20+20+22+15)]

LBy(S)= 32.2

Figure 3.4 shows the estimated loads of the admniswver bound 1.

Lower Bound 1

Total Load

Figure 3.4: Lower Bound 1 Calculation for the Exampe Problem

The first strengthened version uses the total ablal capacity of the agents,

tabulated below.

38



Table 3.7: Available Capacities of the Agents forite Example Problem

Agent Available Capacity (S)
1 13
2 12
3 26
4 23
5 18

Based on these capacities we estimate our mininadah fbad. Agent 2 is the
minimum load agent for the unassigned jobs 8 andd@ever the agent does not
have enough capacity to serve them. Hence, themamitotal load estimations
for jobs 8 and 10 are updated. The results arengivéhe Table 3.8. The changes

are shown in bold.

Table 3.8: Minimum Total Load Estimation Updates fo the Example

Problem -Version 1

LB (S) Strengthened version 1
Min. Total Min. Total Load Min Total Min Total Load

Job Load Agent Job Load Agent
1 11 2 1 11 2
11 1 11 1
17 2 18 5
13 1 13 1
10 13 2 10 14 5

The new lower bound is calculated as follows:
LB1(S)= 22+ [(11+1148+13+14)-((22*5)-(21+20+20+22+13))]/5
LB.(S)= 32.6

The second strengthened version uses the avatablgcity information of the
agents for each period in the partial solution,alths given in Table 3.9.
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Table 3.9: Available Capacities of Agents at eachdfiod for the Example

Problem
bi(S)
Agent | Period 1 Period 2
1 6 7
2 7 5
3 13 13
4 12 11
5 9 9

Based on these available capacities we update oarmom total load

estimations. The minimum total loads for jobs 7 8rare determined by the load
of agent 1. However, note that agent 1 does nat bafficient capacity at period
1 to serve these jobs. Hence, agent 1 is not cerexidwhile estimating the
minimum load for these jobs. Agents 5 and 3 deteenthe minimum total load
estimations for jobs 7 and 9, respectively. Thelltssare given in Table 3.10; the

changes are shown in bold.

Table 3.10: Minimum Total Load Estimation Updates br the Example
Problem -Version 2

Strengthened version 2
Min Total Load
Job | Min Total Load Agent

1 11 2
7 16 5
8 18 5
9 16 3
10 14 5

The new lower bound is calculated as follows:
LB1(S)= 22+ [(1146+18+16+14)-((22*5)-(21+20+20+22+13))]/5
LB,(S)=34.2
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Our pilot runs revealed that the strengthened wer@ does not increase the
computational time significantly while providingehightest bound value. Hence,
we use it in the optimization algorithm as a boagdscheme and hereafter call it
LBs.

3.3.2. Lower Bound 2 (B>)

LB, assigns all opportunities to their minimum time r@ge The minimum time
agent for many opportunities may correspond tosdree agent as the capacities
of the agents are not considered in defining tisggamentsLB, recognizes this
fact and defines an upper bound on the number pbrdygnities to be assigned to
each agent for a feasible solution. We let thiseugmund be; for agent and in
defining the total load we select a maximumrmobpportunities from agent We

find n; using the following procedure:

a. Find an upper bound on the objective function valijg.

b. Sort thez p; values from minimum to maximum for an agensuch
t
that ) py <D p;.y for allj.
t t

c. Findn; such that,zz Py < Min{ZUB,Zb.t Yand

j=1 t t
n+1

>3 Py > Min{Z,e, Y b}

=1t t

As the minimum possible durations are considengds an upper bound on the

number of opportunities that can be processed bgtag

After n;s are found, we look for the number of opportusitieat are assigned to

agenti in LB,(S)computations. We let this numberhe Formally,

ri= number of’s such that Min {z pijt} = Z Pit -
t t

i|pj; <cap, DOt
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If ZMax{O, r-n} is too big therLB; becomes a poor estimation. We set a
threshold k and reviselLB; if ZMax{O,ri-ni}>k. In doing so, we assign

(z Max{O, ri-ni} k) jobs to their second minimum agents. To ensugevtlidity

of the lower bound the selected second minimumemhre the ones that cause a
minimum increase in the total load value. Havingnio a tighter lower bound on

the total remaining workload, the lower bound ikakated likeLB;.

If the lower bound solution is feasible, i.e., @fiportunities can be performed by
their fastest or second fastest agents withouatiigd the capacity constraints and
with a bottleneck load dfB; units, it is optimal. Moreover if a feasible sadurt

with Z value ofLB; is achieved then its optimality can be warranted.
Numerical Example

We illustrateLB, computations on our previous example instance. Matefrom

now on we use the strengthened version 2Bas

When no upper bound is availabteyalues can be calculated accordingzd)It
t

or z b, (S)for partial solutiorf, as follows:
t

For agent 1 the total processing times are 1812011, 29, 21, 11, 23, 13 and 23.
In the partial solution, jobs 2, 3, 4, 5 and 6 assigned. The processing times of

the unassigned jobs are 18, 11, 23, 13, 23 antbtaleavailable capacity of agent
1,i.e.> b, (S)is 13.
t

We now order the processing times of the unassi@iesdby agent 1.
11, 13, 18, 23, 23
11<13 and 11+13>13, henogis 1.
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The othern; values are calculated accordingly and given tagethth ther;
values in the following table.

Table 3.11:n; and r; Values of the Example Problem

Agent(i) |ni| T

gl B w| N e
N R R R e
R o r|l Rl O

ZMax{O, r-n} =1, hence 1 job that causes minimum increagkertotal load

will be reassigned. The increase in the total lealde when jobs are assigned to
their second minimum load agents is calculatedefach job. Note that while
finding the second minimums we select from the &xyehat have sufficient

capacity every period.

Table 3.12: Difference between Minimum and ® Minimum Loads

Job Min Total Load Sec. Min. Total Load Differene
1 11 22 11
7 16 26 10
8 18 21 3
9 16 23 7
10 14 21 7

The job resulting in minimum increase is reassigieeids second minimum load
agent. The minimum difference occurs when job 8emssigned. The lower
bound for the minimum total load is now 78, hencenits more tharLB;. We
calculate the_B;, value as follows:

LB, = 22+ [(11+1621+16+14)-((22*5)-(21+20+20+22+13))]/5

LB, =34.8
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3.3.3. Linear Programming Relaxation Based Bound.B;)

LBs is found by simply relaxing the integrality corsshits onx; values and letting

0<x; <1for alli andj. LBz dominated B, andLB; as it considers the capacity

constraints and uses exact time values, unli&eandLB..

We propose a strengthened versionL&k that uses the upper bound on the
maximum number of opportunities that can be assigi® an agent and
incorporates it as a cut on the pure LP relaxafitve upper bound on the number
of opportunities that can be assigned to an agefaund as irLB,. This is then

introduced to the LP relaxation by adding the fwilag constraint set:
dYxsn O
j
wheren; is the maximum number of jobs that can be assitmedent.
We hereatfter refer to this strengthened versiohBasWe calculatd_Bz simply

after usingLB; andLB; for node elimination. If the node cannot be eliated

usingLBs, this bound is used in determining the node taditaon.
The LB;3 value calculated at the root node for the prevexample is 24.9. Recall

that theLB; value at the root node was 23.8, which indicates$liBs is stronger
thanLB;.
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CHAPTER 4

BRANCH AND BOUND ALGORITHM

Our preliminary runs on the Linear Programming (k&axation of the problem
have revealed that the average number of fractieaaébles at the optimal LP
relaxation solution is relatively low. Hence we ude relaxation in the Branch
and Bound algorithm to define our branching scheie.solve LP relaxation at
every branch of the algorithm; use the resultselect the variable to branch on

and the optimal solution value of the relaxatioraaswer bound.

4.1. Selection Strategy and the Branching Scheme:

At a node we find the job corresponding to the agiHfractional variable of the
LP Relaxation and select this job to branch on.nTie selected job is assigned
in turn to each agent. For a selected jobhe followingm subproblems (nodes)
are created:

Subproblem 1x;;=1

Subproblem 2x;;=1

Subproblem 3x;=1

Subproblem 4x,;=1

Subproblem mxqy;=1

The associated tree is shown in Figure 4.1.
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Figure 4.1: The Branching Scheme

We evaluate each of tlrenodes using the elimination mechanisms discussed

next.

4.2. Elimination Strategies

We fathom a node representing the assignment airappty|j to agent if one of

the following conditions holds:

1. The node cannot lead to a feasible solution.

1.1.Given the assigned jobs of the partial solutibthe available capacity of
agent is not sufficient to serve jgbfor any period, constraint set (1) is
violated, the subproblem cannot lead to a feasibletion. Hence the

associated node should be fathomed. Formally,

If Cie(S)+ pit >bi, thenx; cannot be setto 1. (1.1)

whereCi;(S) = load of agentin periodit.
Otherwise constraint set (1) is violatex]. (S)=0).

1.2. This mechanism finds an upper bound on the nurobgsbs that each
agent can serve. Assume the total available cagaadft the agents are used to
calculate the upper bound on the total number lo$ jiat all the agents can
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serve. If this upper bound is less than the nurob@rbs, then constraint set
(3) is surely violated, hence no feasible solutexists for the subproblem.
Assume an upper bound on the objective functiomuejalyg is used for

calculating the upper bound. If the upper boundatal number of jobs all
the agents can serve is less than the number sf jblen the subproblem
cannot lead to a solution better than the incumisshttion. Hence, we
fathom the node. Formally,

a. Find an upper bound on the objective function valijg.

b. Sort thez p; values from minimum to maximum for an agensuch
t

that ) py, <D p;.y for allj.
t t

c. Findn; such that,

n; n+1

ZZ Py = Min{zua’zbn} and ZZ Py > Min{ZUB'zbit}

=1t t =1t t

As the minimum possible durations are considengds an upper bound on

the number of opportunities that can be servedgent.

If > n, <nthen fathom the node  (1.2.)

If this mechanism cannot fathom the node, Eenizn, then this

information is introduced to the LP relaxation asw to strengthen its
performance (see Section 3.3.3). In doing sofalhewing constraint set is
added to the LP relaxation of the subproblem:

dox <n , Oi.
j

2. The node cannot lead to an optimal solution.
2.1We check whether the best objective value will xeeeded if the

corresponding branch is used. At each branch wigraasjobj to an ageni.
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After that assignment if the total load of the ageecomes no less than the
upper boundyB), we guarantee that if this variable is set téhg, objective
function value cannot be less thdB. Hence, the node is fathomed.

If Z,(S)+ Z P, =2UB , then the assignment of jplo agent raises the load
t

of agent aboveUB. Hence such an assignment cannot lead to a unique
optimal solution. X; (S)=0).

. The optimal solution emanating from that node cardond easily.

3.1.0n a branch that assigns a jaio an agent, we first determine the set of
unassigned jobs that can be assigned to agdit is possible to assign all
unassigned jobs to agentvithout violating feasibility and still having tait
load for ageni no bigger than the bottleneck load of partial 8oly Z(S)
then the optimality is guaranteed with an optimalue ofZ(S) We fathom
the node by optimality. If all unassigned jobs fasibly assigned to ageint
but the bottleneck value is exceeded, we obtaimeager feasible solution;

hence can use the load of ageas an upper bound. Formally,

a. DetermineS, set of jobs that can be assigned to agseuath that
S={j | pit <bi(S)for all t}
b. If all the unassigned jobs are included§iand

D> pp tZ s MaxZ,} then fathom the node as the optimal solution is
tj0S

found.

c. If all the unassigned jobs are includedsiand

Zys > D> Py tZ > Max Z,} then update the upper bound such that

t jOs

Zyg = Z Z Py + Z (S)

tjos
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Our preliminary runs have revealed that this meigmardoes not effect the
computation time significantly. This is mostly dteethe Branch and Bound
algorithm’s power in finding close optimal solutenquickly, thereby

decreasing the effect of the mechanism.

Agent i is removed from all future considerations if onk tbe following
conditions hold:

1. There cannot be any feasible assignment to agent

An agent is removed from all future consideratiensnating from nod§, if it

cannot process any unassigned job. We first chékiver
an (S <M.in{2 pm}, l.e., the total remaining capacity of agentis not
t ] t
sufficient to process even the minimum total regmient over all unassigned
jobs. If this condition is passed, we make a maeeipe check and test whether
bit(S) < M_in{z Pyt } l.e., the remaining capacity of ageribr any period is not
) t

sufficient to process even the minimum time requirethat period. Formally we

check,

If > b, (S) <Min{z P } then remove agent
t U

If, be(S)< Min{z pm} for any period, remove agerit
! t

2. The optimal assignment to agems available.

On a branch that assigns a jplto an ageni, we first determine the set of
unassigned jobs that can be assigned to agewen when all the jobs in this set
are assigned to agenthe total load of agent is lower than the botttdni®ad of

the partial solution, we assign the jobs in this ®ethe agent and fix the
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corresponding variables to 1, hence reduce thelgmolsize. Since we have
already assigned all possible (feasible) jobs entig we remove this agent from

all further considerations. Formally,

a.DetermineS, set of jobs that can be assigned to agseuath that
S={] | pix <bi(S)for all t}
b.If > > py +Z; < Max Z,} then assign the jobs B to ageni, and remove

t oS

agent from further considerations.

For each unfathomed node, we first calculaBg. If LB; does not eliminate we
calculateLB,. If LB, cannot eliminate the node as well, we calculat IR
Relaxation boundl.B;. We select the node having the smalleBg value for
further branching. ILB; gives a feasible solution then we fathom the nite.
update the upper bound value if the solution iselothhan the best solution value
at hand. If all nodes are fathomed at any leveah the backtrack to the previous

level.

We next discuss an algorithm that we use to findigmer bound on the optimal

solution of the problem.
Upper Bounds

In this section we discuss a heuristic proceduesl dsr obtaining upper bounds.
The upper bounds are either used as an initiatisalin our Branch and Bound
algorithm or as an approximate solution. Our uppaund is based on the LP
relaxation; hence the algorithm runs in polynontiige. Recall that the decision
version of our problem is NP-complete, which impl@ny heuristic procedure,
hence ours, cannot guarantee feasibility. Howeuwar, preliminary runs have

proved that this simple heuristic is very effectindinding feasible solutions.
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Our heuristic has two phases. The first phase natst an initial solution, if
possible. This initial solution is obtained by migdig LP relaxation solution. If
we can find a feasible solution better than theimloent then the second phase
that tries to improve the initial solution is parfted. The improvement phase
uses two steps. In the first step, one job frombtbileneck agent is reassigned to
another agent and in the second one; two jobs raezchanged between the
bottleneck agent and a non bottleneck agent. Tlamgeh that results with the
maximum improvement in the objective function valseerformed. The phase
continues until a predefined limit for the non imping moves or for the total
number of moves is reached. The detailed explamatithese phases is provided
in Section 5.1.

Example

We now demonstrate the branching scheme on an dggrgblem with 5 agents
and 10 jobs.

Suppose that we branch from nodén the corresponding LP Relaxation solution
the job with the highest fractional assignmenbis $. The best solution value at

hand,UB, is 110. We first create 5 branches as shownguargi4.2.

Figure 4.2: Branching Scheme for the Example Probha-1
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For each branch generated, we apply the follownoggdure:

1. Check rules 1.1 and 2.1. If the node can be fatllogoeto the next branch

at the same level. If not, continue.

2. CalculateLB; and check whetheltB; > UB-1. The objective function
value,Min Max{zz P % } is integer as we assume integgy values.
: t=1 j=1
Hence ifLB; > UB-1 the node can be fathomed unless we are after
alternative optimal solutions. If the node is fattem, go to the next

branch and start with step 1. Else, continue.

3. Check elimination rule 1.2. If the node is fathontgdthis rule, go to the

next branch and start with step 1. Else, continue.

4. CalculateLB; if > Max0, r,-n}> k, wherek is a predefined threshold

parameter. (We takeas 1 in our runs). Check whethds, > UB-1. If the
node is fathomed, go to the next branch and staht step 1. If not,

continue.

5. Finally calculatd_Bs. Check whetheltB; > UB-1. If the node is fathomed,
go to the next branch and start with step 1. If, mbeck whether the
solution is feasible. If the solution is feasibledate the upper bound, i.e.,
setUB = LBz and fathom the node. Else, keep the lower boundtangb
with the most fractional variable in memory; gothe next branch and

repeat this procedure.

After this procedure is applied to all nodes of shene level, we may end up with
two outcomes. Either all the nodes are fathomedwer have at least one
unfathomed node. If we have unfathomed nodesptieewith the lowestBs

value is selected to branch on. Since we keepadihevjth the highest fractional
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assignment variable, we branch the selected noskedban this job and open 5
(m) branches and repeat the above procedure for ti@gebranches. If all the
nodes at the same level are fathomed, we backtoatite nearest level and find

the open node with the lowdsB; value to branch on.

Suppose that after applying the procedure forhalliranches we end up with the

following situation:

LB,=109.1 LB,=102.5 LB,=104.5 Fathomed LB;=103.5
LB,>UB-1 LB;<UB-1 LB;<UB-1 byrulel1l.1 LB;<UB-1

Fathomed LB,=103.1 LB,=104.8
LB,<UB-1  Fathomed LB,<UB-1
LB3;=103.8 by rule 2.1 LB3=105.2
LB;<UB-1 LBs<UB-1
Unfathomed Unfathomed

Figure 4.3: Branching Scheme for the Example Probha-2

As seen from the above figure, there are two unfattd nodes, node+2,
andn+5 with respectivé.B; values of 103.8 and 105.2. Noae2 has smaller
lower bound; hence it is selected to branch onp8sg that the job with the
highest assignment value is 9 at the LP relaxaadation. We create the next

branches as shown in Figure 4.4 below.
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Fathomec Fathomec LB3=105.2

Unfathomed

Figure 4.4: Branching Scheme for the Example Problha-3

We repeat the procedure for the generated branches.

Figure 4.5 shows the flowchart of the algorithm tlee root node and Figure 4.6

summarizes the procedure for the intermediate nodes
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Stop. Any solution
from the node is
infeasible

Yes

Solve LP relaxation
Find LB3

Z* optimal. STOP. |

Zryg=Z*

Yes

LB3>Z*yp-1?

No

s the solution

No

Yes

Update Z*yg

Z*ug = Zimp [\

feasible

No

Call construction
heuristics

s a feasible solution
found such that
Z2>Z* g ?

Yes

Call Improvement

Improved?

No

Update Z* g
Z'yg=Z

Generate next
branches
Go to the next level

Figure 4.5: Flowchart of B&B Algorithm for the Root Node
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.| Check the rules 1.1

and 2.1

Is the node

Yes

fathomed?

No

Calculate LB

Yes

LB>Z*ys-1?

No

Check rule 1.2

Is the node

Yes

fathomed?

No

Calculate LB,

Yes

Fathom the node.

LB>Z*ys-1?

Calculate LB;

Update incumbent

Z*g=LBy

No

s the solution B2 1?2

Yes

Yes feasible?

Go to the next node

at the same level

Are all the nodes at the
same level fathomed?

No

Branch on the
unfathomed node
with the lowest LB;
value

Figure 4.6: Flowchart of B&B Algorithm for Interme diate Nodes
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Alternate Branching Scheme

We propose an alternative branching scheme thatesdwo nodes from each
parent node. We branch from the highest fractioa@iable of the optimal LP
relaxation solution. For the chosen variabkg, we generate the following

subproblems:

Subproblem 1x; =0
Subproblem 2x; =1

The associated tree is demonstrated in Figure 4.7.

Figure 4.7: Alternate Branching Scheme

The selection strategy for the alternate branchofgme is as follows:

When the two branches are created at a node, centiith the one that fixes the
variable to 1. If that node is fathomed continughwhe one that sets the variable
to O.

Our preliminary runs have revealed that the firsinching strategy outperforms
the second one in terms of average CPU time. Henecaesed the first branching
scheme in our main runs. The detailed comparisahetwo branching schemes

will be discussed later in preliminary experimesgstion of Chapter 6.
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CHAPTER 5

HEURISTIC PROCEDURES

In this chapter we discuss the heuristics we preposthe Multi Resource Agent
Bottleneck Generalized Assignment Problem (MRABGAR)st we study a tabu
search algorithm and then we discuss a Branch anddBB&B) based heuristics

that uses an approximation scheme.

5.1. Tabu Search

In this section, we discuss our tabu search alguorit-or the detailed information
on tabu search techniques, one may refer to th& bbdslover and Laguna
(1997).

We first discuss our neighborhood structure.

Two neighborhoods are used in the algorithm, narN@lyand N2. Since we have
a bottleneck type objective function, we constthet neighborhood of a solution

around its bottleneck agent(s).

The basic move of N1 is taking a task already assigo the bottleneck agent
and reassigning it to another agent. This basicemakes two decisions: which
task to select and whom to assign. N1 is definefidlbswvs:

Assign every task of the bottleneck to every otigent as long as the assignment

is feasible, i.e., the newly assigned agent hasadna capacity.
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The neighborhood size is a variable that changssdan the number of tasks at
the current bottleneck agent/s. It is upper bourtsed*(m-1) as there can be at
mostm bottleneck agents and each agent will be a catalfdaan exchange over

m-1 possible locations. A tighter upper boundEsnbk *(m-  Bhereny is the
k

number of tasks assigned to the bottleneck dgent

Basic move of N2 is based on choosing two tasks,fam the bottleneck agent
and the other from another agent and exchangingdbents. In this basic move
we have to make decisions about which tasks sHmikklected for exchange. N2
is defined as follows: Exchange all job pairs betwebottleneck and non
bottleneck agents, as long as the exchange resithts feasible solution.

The neighborhood size is upper boundeé}} This bound is loose, since the

jobs that are already assigned to the same agenbitthe exchanged. A tighter

upper bound can be as foIIowg Ny * (N— Ny, — Z n, ) Wherengcandny are the
k I<k

number of jobs assigned to the bottleneck ageatxll, respectively.

For each neighborhood savings are kept in memasulting in a memory
requirement oD (n*(m-1) + n*(n-1)/2),that isO (rf+n*m).

As N2 does not change the number of jobs, someaigotubecome unreachable
from the current solution. This brings dependengy tbe initial solution.
However N1 avoids this dependency. On the othedhédnwe cannot find a
feasible move in N1 due to the capacity restrictjome use N2 with the hope of

improving the current solution.

In N1, the tabu attributes can be defined as thtelbeck agent and the job that is
taken from this bottleneck agent most recently.

In N2, tabu attributes are the jobs that are swappest recently.
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Upper bound on the tabu tenure of N1 is a variabtee the bottleneck agent
changes as we take a job from that agémt:1)*(n-1) is an upper bound,
however, not a tight one.

Upper bound on the tabu tenure of N2 is also aabégias the number of possible

n
and feasible swaps changes. A theoretical uppenfd)b%zj.

Due to the dynamic nature of the neighborhood s&®) tenures are determined
empirically. Three levels for tabu tenure are uséddch are 10, 50 and 100.
Tenure sizes of 10 and 100 are selected to seeffinet of relatively small and

large tenure values on the performance of the @lhgorand 50 is selected as an

intermediate value.

Aspiration criterions chosen as the best solution. Tabu statuse® ohtves that

improve the best solution found so far are oveeridd

In neighborhood 1, solutions involving most recéabuTenurechanges will be
classified as Tabu. Accordingly, if jgbis taken from agentin an iteration, it
will not be reassigned to that agent ftabuTenurdterations unless aspiration

criterion is satisfied.

In neighborhood 2, solutions involving most recefdbuTenureswaps are
defined as Tabu. Accordingly, if jobdsand k are swapped, they will not be

reswapped folrabuTenureterations unless aspiration criterion is satisfied

The solution attributes that have changed receanity recorded in the recency
based memory. For neighborhood 1, a matrix callgoluTis used for this purpose.
The structure of the memory is represented in Eigbuil. The row headers
correspond to the agent indices and the columnemsacbrrespond to the job

indices.
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m

Figure 5.1: Schematic Representation of Recency BasMemory for N1

The recency based memory requireme ign*n) for N1.

For neighborhood 2, a matrix called Tabu2 is usedHis purpose. The structure

of the memory is represented in Figure 5.2.

12 3 . . . n

n

Figure 5.2: Schematic Representation of Recency BasMemory for N2

Note that, only the upper triangle of this matsxused for recency based memory
since we are dealing with swaps. The recency basechory requirement is
O(n*n) for N2.

Our algorithm finds all feasible neighbors of awi@n and selects the most
improving one using the recency based memory apdation criterion. The
search is intensified by considering all neighbod®and the selecting the move

with the steepest descent.
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We now discuss the termination condition of theoatgm.

Termination criterion is set to the number of nopioving moves and the total
number of iterations. When the number of nonimprgvmoves equals to a
predetermined limit calledonimplimitor the total number of iterations equals to

the limit maxiter,the algorithm terminates.

We try 50, 150 and 250 foronimplimitin our experiments. Our preliminary runs
revealed that this limit is affecting the performarof the algorithm significantly;
the higher the limit the better is the performardence a value of 250 is used for
the nonimplimitin the final algorithm. The limit on the total nber of iterations,

maxiter, is set to 1000.

The Algorithm

Our tabu search algorithm starts with a feasiblatem. Two neighborhoods are
defined for this feasible solution. The savingsresponding to these moves are
calculated and kept in memory. To avoid the infelasmoves we assign a saving
value of -2000000. Then the non-tabu move withrtteximum saving value or
the tabu move that satisfies the aspiration caters selected and we move from
the current solution to that solution. That is, nveve in the direction of steepest
descent. If the new solution is better than thet Isetution at hand, the best
solution value is updated. The algorithm stops winennumber of nonimproving
moves or the number of iterations reach their pgexdened limits. Below a

stepwise description of the algorithm is given.

STEP 1.Initialization

As the decision problem of the MRABGAP is NP-contglé is not possible to
find a polynomial algorithm that guarantees a telassolution. The LP relaxation
based construction algorithm that is used in th@enBhn and Bound algorithm is

used to find a solution, hopefully a feasible ofdis algorithm runs in

62



polynomial time, hence returns an initial solutimuckly. However the resulting
solution is not necessarily feasible. We use thlgten as an initial solution in
our TS algorithm. Note that even when an infeasible sotuts given to thelr'S

algorithm there is still a chance that i®@algorithm returns a feasible one.

Subroutine for the construction procedure

1. Solve LP Relaxation of the Problem
2. For j=1,....,n ( for all the jobs)
Find the highest assignment value in thedl&xation x; for jobj
Seg =1
End For

STEP 2.Neighborhood Search

STEP 2.1.If the termination criterionnonimp>nonimplimitor iter>maxiten is

reached, stop.

STEP 2.2. Generate all neighbors of the current solutionngighe following

subroutine.

Subroutine for the neighborhood search procedure

For b=1,....,numofbot ( for all the bottleneck agents the current solution)
Calculate savings for each move of N1

Find the maximum saving in N1 for bottlek@genb

Calculate savings for each move of N2
Find the maximum saving in N2 for bottlek@genb

End For
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The above subroutine finds the savings valueslfanaves in N1 and N2. If the
current solution has more than one bottleneck agsdge neighborhoods are
generated considering each bottleneck.

The subroutines that calculate the savings fronmtbees are stated below.

Subroutine to calculate the savings from the maykeit N1

Fori=1,.....m
For j=1,....,n
Xne=Xnow
If ( j is not assigned to the bottleneck agent consijlEneth
Savingsl (i ,jF -2000000

Else
If ( If i is the bottleneck agent considefBaen
Savings1(i,j= -2000000
Else
IfThe move is not feasiblEhen
Savings1(i,j)=-2000000
Else
In Xnhe assign joh to agent
Update the loads of élgents foiX,e
Find the bottleneck \&afor X,
Savingsl(i,j)=(Bottleneck valueoK,,, -Bottleneck value oK)
End if
End if
End If

This subroutine finds the savings of the shift mdvete that the moves involving

the jobs of the non-bottleneck agents, the movasdksign a job to the current
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bottleneck agent and infeasible moves are givenl saang values. Hence, these
moves are avoided.

Subroutine to calculate the savings from the mpuMe (n N2

For j=1,....,n
For k=1,....,n
Xne=Xnow

If ( j is not assigned to the bottleneck agent consijlEheth
Savings2 (], k¥ -2000000
Else
If (If k is assigned to the same bottleneck agéhen
Savings2 (], k¥ -2000000
Else
IfThe move is not feasiblEhen
Savings2 (] ,k¥ -2000000
Else
In Xne Swap jobg and k
Update the loads of therdg forXe
Find the bottleneck vataeXe
Savings2(j,k)£Bottleneck value oK., Bottleneck value oKe)
End if
End if
End If

Again, in this subroutine only the feasible movéstttake a job from the
bottleneck agent and swap it with a job of anodgant are considered, the others

are avoided by giving a very small saving value.

At the end of these two subroutines, the move liscssd based on the steepest
descent rule and aspiration criterion. Note tHahe saving of the selected move
is -2000000, which may happen when all the moves iafeasible in the

neighborhood, then we allow an infeasible move,atgpdhe current solution
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accordingly and continue the search, but in sucase we do not updatges:

Although never happened in the computational erpenis such a case is more

likely to occur towards the end of the algorithmhidT strategy may help the

diversification of the algorithm.

STEP 2.3. Making the move

The current solution is updated by making the seteenove and updating the

used capacities (loads) of the agents, findingnthe bottleneck agent(s) and the

bottleneck (objective function) value. If the oldjee function value is better than
the best solution at han®,estis updated. Below is the subroutine of the move.

Subroutine for making the selected move

If (The selected move is from NIhen

Update the corresponding recdrased memory

Make the selected move

Updat¥o\ using the attributes of the selected move

Find the bottleneck(s)X#w and the new objective function value
End if

If (The selected move is from NZhen

Update the corresponding recdrased memory

Make the selected move

UpdatX,, using the attributes of the selected move

Find the bottleneck(s)X#w and the new objective function value
End if

If (saving from the selected mog#) Then
nonimp=nonimp-1
Else
lastimp=iter
End if
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If (The selected move is not infeasible & Objectivection value o<
Objective function value ofpes) Then

Xoest=Xnow
End if

Below is the overall statement of th&€algorithm.

Statement of th& SAlgorithm

UseConstructionto find an initial (feasible) solution

SetXnowas the solution of the construction

XpestXnow

nonimp=0

Repeat
Computesavings for all moves in Nland N2
Find the move with maxdavingfrom N1(Xnow) and N2Kow)
Make the selected move using the ‘mouérsutine

Until nonimp>nonimplimibr iter>maxiter

Fine Tuning the Tabu Search Heuristic

Based on the results of our factorial design, we-funed our algorithm. Our

decisions are the levels dabutenureandnonimplimit

Our preliminary runs have revealed that the eftécfabutenureon % deviation

of tabu solution from the optimal solution is ingigcant, i.e., our algorithm
seems to be robust to changesTabutenure We report the results of the
algorithm with aTabutenurevalue of 50. Moreover the preliminary tests have
showed that the performance of the algorithm issisige to the stopping
condition parametemonimplimit As nonimplimitincreases, the quality of the

solutions increases, at an expense of the incrimslkee running time of the
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algorithm. Based on the relative importance of ¢héso measures one can
determine thenonimplimit i.e., if we have time restrictions a lawonimplimit

value like 150 can be used, but if the main coneethe solution quality, one can
increase theonimplimit With further analysis an upper bound fanimplimit

after which the solution quality does not signifidlg change can also be
determined. In our experiments, we usaamimplimit value of 250 as it has
returned high quality solutions without causing igngicant increase in the

solution times.

5.2. Branch and Bound Based Heuristicse Approximation Scheme

The quality of the linear programming relaxatiorubd and the fact that good
feasible solutions are found at earlier steps ssigtj@t the Branch and Bound

based algorithms may be used as efficient apprdiemalgorithms.

In this study, we develop an% approximation scheme. The algorithm executes
like our Branch and Bound algorithm, however uselffaerent rule to check the

promise of the node (inflates lower bound).

The o approximation scheme defines an optimality toleean and fathoms a
node if (1+a)*Z g > Zys. With this scheme one can guarantee that theigolut
found is within thea*100 percent of the optimal objective function w&lu
however it requires exponential time as the origBranch and Bound algorithm
with o = 0.

68



CHAPTER 6

COMPUTATIONAL RESULTS

In this chapter we aim to test the performance wf agorithms together with
bounding and reduction mechanisms. We presendat& generation scheme,
state our performance measures and discuss thisre§wur preliminary and

main computational experiment.

6.1. Generating Test Problems

We generate the processing times for each agenthéorfirst period from a
discrete uniform distribution betwearandb. We use the following three sets for

a andb:

Set l.a=5,b=25
R~ U [5, 25]

Set Il.a=15,b=25
R~ U [15, 25]

Set lll. a=25,b=35
R~ U [25, 35]

Set | represents cases where variance (rangeg afiskribution is relatively high.
Set Il is used to see the effect of a decreaskamnange of the distribution while
keeping the expected value nearly the same. Ba&hHds for the instances where

the range of the distribution is low while the esjgel value is high.

We hereatfter refer to these set$S4sS2andS3
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For each set, we genergdgand b, values using the procedure reported in the OR

library for the GAP. The stepwise description & firocedure is given below.

Step 0Generateji~ U [a, b for defined set (Set I, Set Il, Set Ill)

Step 1Setb, = CZ p;. /M, wherec is a predefined factor
i0d

Step 2Set p;, =3p;, /4+y;, p;, /2 for eacht=2, where y;, are random numbers
from [0,1].
Step 3Seth, =c)_ p;, /m for eacht>2

j0d

While generating the capacity of an ageint periodt, by, we calculate a load for
that agent as if all jobs are performed by thanagehen we assume distributing
this load to all agents evenly and set the capatyal to this distributed load
multiplied by a factor. Note that, as thg values change from agent to agent and

period to period, the correspondibgvalues change accordingly.

The choice of the factoc is important, setting it too low results in many
infeasible instances. In steps 2 and 4, we usitiosving two sets forc values.

Setl.c=1.0
Setll.c=1.2

We hereafter refer to these set€CdsandC2. SetsC1 andC2 represent low and
high capacity instances, respectively. We alsaltioe c = 0.8 in our preliminary
experiments. However, we observed that the majasitythe instances were
infeasible. Wherc = 1.0, we could obtain feasible solutions for adinall of the

instances.

Three sets of processing times and two sets ofcdags together yield six
combinations. For each combination, we generataness starting with = 10,
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m = 5, ands = 2 and increasing them in increments of 10, 5 hmdspectively.
For each set combinatiom, n ands values we generate 10 problem instances.

6.2. Performance Measures

In this section, we discuss the performance measwee used to evaluate the
efficiency of our Branch and Bound&B) algorithm, Heuristics and Lower

Bounds.

To evaluate our Branch and Bound algorithm we tkedollowing performance
measures:

1. CPU time in seconds (average, maximum)

2. Number of nodes generated (average, maximum)

3. Number of nodes until the optimal solution is foyaglerage, maximum)

We set a termination limit of 20 minutes for ourthematical model and Branch

and Bound algorithm.

We use the following performance measures for euristics.
1. CPU time in seconds (average, maximum)
2. Percent deviation from the optimal (or best knoswlution

3. Number of times optimal solution is reached

For lower bound we only report the percent devigitrom the optimal solutions.
The optimal solutions are found by CPLEX 10.1. CRLi&run for 1200 seconds.
The same termination limit is put to our Branch &udind algorithm as well. All
experimentations are done in Pentium IV 2.8 GHGHR RAM. All algorithms

are coded with Microsoft Visual C++ 2005.
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6.3. Preliminary Experiments

We design a preliminary experiment to evaluateefifiects of the lower and upper
bounds, branching schemes on the performance ofBoanch and Bound
algorithm. We define different versions of the Brrand Bound algorithm using
different choices of these mechanisms. Table 6dwshthese versions and the
corresponding abbreviations.

Table 6.1: Branch and Bound Algorithm Versions

Lower Bounds|I(B)
LBg With LBy, LB, andL83
LB1o Without LB, andLBz
LB, Without LB,
LBs Without LBs
Branching StrategyBS
BS Normal Branching Scheme
BS Alternate Branching Scheme
Upper BoundsyB)
UBy, | Without using the upper bound heuristi¢s
UB; With using the upper bound heuristics

We use 10 instances with parameter settB@2S1andS3C1 each with 5 agents,
30 jobs and 3 periods. We now present the restitiargpreliminary runs.

Effects of the Lower Bounds

We use three versions of the Branch and Bound ighgorto see the effect of the
lower bounds. The first one uses orhlBs, but notLB; and LB,, whereas the
second one uséd; andLBs, but notLB,. We do not construct B&B algorithm
that usesLB, but notLB; as LB, uses the information frorhB; calculations.
Finally, we try to see the impact of usibBs; by generating 8&B algorithm that
usesLB; in the branch selecting scheme instead.Bf, i.e., the node with the
lowest LB, value is selected to branch on. In this verdi®3 is only used to

determine the job to branch on.
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The results of the preliminary runs are shown iblds 6.2 and 6.3. Note that we
set a limit on the number of nodes. If the algoniticannot find the optimal
solution after 399996 nodes, the best solution andhis reported with the

corresponding solution time.

Table 6.2: Preliminary Run Results for the Effectoof LBs-S2C1

LBy LB;-» LB, LBs
Average 9.40 9.89 9.74 130.43
Maximum | 29.03 29.47| 30.59 21581
Average 9462 9736 9501 2574]6
Maximum | 36239| 37455 36254 399866
Average 4175 4276 4177 270186

Maximum | 26402| 27223 26417 399996

*In LB;3 3 instances could not be solved to optimality imitthe node limit, hence the results are
underestimates.

CPU time

# of nodes

Node of optimality

Table 6.3: Preliminary Run Results for the Effectoof LBs-S3C1

LBo LB, LB, LBs
Average 4.00 4.39 4.23 143.57
Maximum | 14.28 14.92 15.69 216.41
Average 3638 3797 3640 281866
Maximum | 13131| 13850 13144 399996
Average 136 144.6 136 265548

Maximum 1017 1012 1017] 399719

*In LB3 only 2 instances could be solved to optimalityhivitthe node limit, hence the results are
underestimates.

CPU time

# of nodes

Node of optimality

As can be observed from Tables 6.2 and 6.3, the @R”&s and number of nodes
in the B&B tree slightly increase when batiB,, LB, andLB, are not used. This
indicates that using these elimination mechanismogsdnot increase the
computational time while decreasing the number ades. Hence we use these

mechanisms in our main experiment.
It can be observed from the tables, the CPU timab the number of nodes

increase considerably when the LP relaxation isused (in versior.Bg). This
proves the strength of the LP relaxation as a biogngtheme.
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Based on these preliminary results we use all tlhoeer bounds in our main
runs.

Branching Strategy Selection
After LBy (the setting with all three lower bounds) is chgsee compare the
branching schemes. Tables 6.4 and 6.5 demonstrataverage and maximum

CPU times, number of nodesB&B tree and node of optimality.

Table 6.4: Preliminary Run Results for Branching $rategies -S2C1
BS BS

CPU time Avgrage 9.40| 116.41
Maximum| 29.03 | 1042.50
# of nodes Average | 9462 44303

Maximum| 36239| 390231
Average | 4174| 4481
Maximum| 26402| 18689

Node of optimality

Table 6.5: Preliminary Run Results for Branching $rategies -S3C1

BS BS
Average| 4.00] 6.284
Maximum| 14.28| 26.61
Average| 3638 2665
Maximum| 13131 10756
Average| 136 890
Maximum| 1017 | 6952

CPU time

# of nodes

Node of optimality

As can be observed from Table 6.4 the alternatacbiag strategy results in
larger sized trees; hence larger CPU times. Theease in CPU time is also
observed from Table 6.5; however it is observed tloanber of nodes is smaller
in the alternate branching strategy. This is dueghw fact that our branching
strategy opens branches at a level while alternate branchingeggsaopens only

two. A similar situation occurs for the node of iomlity results. Hence, it is seen
from Table 6.4 that the maximum number of nodegtieBS is larger than that

of theBS although on the avera@s has better node of optimality results.
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Note from the tables th&S outperformsBS in terms of CPU times, number of
nodes and node of optimality. Based on these msesu#t perform our main

experiments usinBS.

Effect of the Upper Bound

We conduct experiments on the same instances tdhseeffect of our upper
bounds on the performance of the Branch and Bolguatitom. We usd.By and
BS combination based on the results of the previope@ments. Tables 6.6 and
6.7 report the average and maximum CPU times, numbaodes in tha8&B

tree and node of optimality for two versions of B&B algorithm.

Table 6.6: Preliminary Run Results for Effect of Upper Bound -S2C1

UBy UB;
Average| 13.704 9.459
CPU time Maximum| 37.47 29.11

Average| 13971 9462
# of nodes Maximum| 35679 | 36239
Average| 8930 4175

Node of optimality | Maximum| 28350 | 26402

Table 6.7: Preliminary Run Results for Effect of {pper Bound - S3C1

UBy UB;
Average| 5.951 3.957
CPU time Maximum| 16.17 13.86
Average| 5368 3638
# of nodes Maximum| 13725 | 13131
Average 2025 136
Node of optimality| Maximum| 5852 1017

It can be observed from the tables that using uppands results in lower CPU
times and fewer nodes on the average. Moreoverntige where the optimal
solution is reached decreases remarkably whenpperiuounds are used. Hence

we use upper bounds in our main experiment.
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6.4. Main Experiment

In our main experiment, we use the best mechanfemnsd by our preliminary

experiment.

We first study the performance of the LP relaxatiower bound B3, which is
the objective function value of the optimal LP sedd problem obtained at the

root node. We compute the deviation form the ogatisolution as
%Dev= (Mj x100 where
OPT

OPT = Optimal solution value

LB = Optimal solution value of the LP Relaxed Problem

In Tables 6.8, 6.9 and 6.10 we report the averagknaximum values of the
deviations of the lower bound from the optimal $iolo, the number of fractional
variables in the optimal LP relaxation solutione thumber of jobs that are not
assigned to a unique agent, average number ofsatf@itsuch jobs are assigned.

The tables show the results 812, s=3 ands=5, respectively.

As can be observed from the tables, the lower beumehave consistent for
almost all problem instances. Almost all averageiat®ns are below 10% and
almost all maximum deviations are below 12%, exdepthe settingr=10 and
n=20 where a significant increase in the deviat®observed. For such instances
the average deviation and the maximum deviatioes afout 17% and 23%,

respectively.

This satisfactory performance of the lower bounais be explained by very few
fractional variables produced by the optimal LPaxakion. It can also be
observed from the tables that the number of fraalieariables is very low. It is
also observed that, for fixet as the number of jobs, increases the power of

the lower bound increases.
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Table 6.8: Lower Bound 3 Deviations fois=2

=2
C1
# of jobs
split to # of agents
# of fractional| multiple with split
variables agents jobs Dev. (%)
m| n| Avg. | Max. | Avg.| Max. | Avg. | Max. | Avg. Max.
20| 7.5 8 3.5 4 2.20 3 6.66 9.0(
30| 75 8 3.5 4 2.23 3 4.16 4.9¢
5140| 7.8 8 3.8 4 2.07 2.33 2.41 2.8b
S1 50| 7.8 8 3.8 4 2.07 2.33 1.64 2.9
60 8 8 4 4 2.00 2 151 2.20
10 20| 164 17 7.4 8 223 229 17.34 19.43
30| 17.2 18 8.2 9 211 229 950 11.61
20| 7.80 8 3.80 4 2.07 238 3.17 4.6p
30| 7.44 8 3.44 4 222 3.00 2.39 4.91
5 (40| 7.70 8 3.70 4 210 233 1.45% 2.3
S2 50| 8.00 8 4.00 4 200 2.00 1.10 1.7p
60| 7.90 8 3.90 4 2.03 2383 0.97 1.76
10 20| 17.00| 18 | 8.00 9 214 250 7.06 11.¥8
30| 17.00| 18 | 8.00 9 214 250 540 11.98
20| 7.70 8 3.70 4 213 3.00 2.58 4.88
30| 7.70 8 3.70 4 210 233 1.9% 4.3B
5 (40| 7.90 8 3.90 4 203 238 117 2.0B
S3 50| 7.90 8 3.90 4 2.03 238 0.97 2417
60| 8.00 8 4.00 4 200 2.00 0.71 1.2B
10 20| 16.60| 18 | 7.60 9 220 250 4.8b 7.54
30| 16.80| 17 | 7.80 8 216 2.2 3.89 7.03
C2
20| 7.5 8 3.5 4 2.20 3 6.66 9.0(
30| 75 8 3.5 4 2.23 3 4.16 4.9¢
5/40| 7.8 8 3.8 4 2.07 2.33 2.41 2.8b
S1 50| 7.8 8 3.8 4 2.07 2.33 1.64 2.9
60 8 8 4 4 2.00 2 151 2.20
10 20| 164 17 7.4 8 223 229 1734 1943
30| 17.2 18 8.2 9 211 229 950 11.61
20| 7.80 8 3.80 4 207 238 3.17 4.6p
30| 7.44 8 3.44 4 222 3.00 239 4.9
5 40| 7.70 8 3.70 4 210 233  1.45 2.38
S2 50| 8.00 8 4.00 4 200 200 1.03 1.70
60| 7.90 8 3.90 4 203 238 097 1.76
10 20| 17.00| 18 | 8.00 9 214 250 7.06 118
30| 17.00| 18 | 8.00 9 214 250 54p 11.98
20| 7.70 8 3.70 4 213 3.00 258 4.88
30| 7.70 8 3.70 4 210 233 1.9% 4.3B
5 40| 7.90 8 3.90 4 203 238 117 2.0
S3 50| 7.90 8 3.90 4 203 238 097 2.1
60| 8.00 8 4.00 4 200 200 0.71 1.2
10 20| 16.60| 18 | 7.60 9 220 250 4.8b 7.54
30| 16.80| 17 | 7.80 8 216 229 3.89 7.03
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Table 6.9: Lower Bound 3 Deviations fois=3

s=3
Cl
# of jobs
split to # of agents
# of fractional| multiple with split
variables agents jobs % dev
m| n| Avg. | Max. | Avg.| Max. | Avg. | Max. | Avg. | Max.
20| 7.60 8 3.60 4 213 238 7.14 9.3¢
30| 7.80 8 3.80 4 207 2383 3.83 4.9B
5 (40| 7.80 8 3.80 4 207 238 2.34 3.2p
S1 50| 7.70 8 3.70 4 210 2383 1.82 2.6p
60| 7.80 8 3.80 4 207 238 1.3% 1.7
10 20| 16.80| 18 | 7.80 9 218 250 16.81 23.17
30| 1710 18 | 8.10 9 212 229 1015 1250
20| 7.80 8 3.80 4 207 2383 3.62 4.8B
30| 7.90 8 3.90 4 203 238 2.36 4.17
5 (40| 7.90 8 3.90 4 203 238 157 2.44
S2 50| 7.80 8 3.80 4 207 238 1.42 2.1p
60| 8.00 8 4.00 4 200 2.00 0.77 1.1p
10 20| 16.80| 18 | 7.80 9 217 250 6.64 10.95
30| 1710 18 | 8.10 9 212 229 4.8p 8.22
20| 7.70 8 3.70 4 210 2383 2.39 3.4
30| 7.90 8 3.90 4 203 2383 161 2.7
5 (40| 7.90 8 3.90 4 203 238 1.2¢7 4.14
S3 50| 7.90 8 3.90 4 203 2383 1.28 2.0t
60| 7.90 8 3.90 4 203 238 0.67 1.0p
10 20| 1690 19 | 7.80 9 219 250 5.04 5.944
30| 17.70| 18 | 8.70 9 204 229 3.76 5.7
Cc2
20| 7.60 8 3.60 4 213 238 7.14 9.3¢
30| 7.80 8 3.80 4 207 2383 3.83 4.9B
5 (40| 7.80 8 3.80 4 207 238 2.34 3.2p
S1 50| 7.70 8 3.70 4 210 2383 1.82 2.6p
60| 7.80 8 3.80 4 207 238 1.3% 1.7
10 20| 16.80| 18 | 7.80 9 218 250 16.81 23.47
30| 1710 18 | 8.10 9 212 229 1015 1250
20| 7.80 8 3.80 4 207 238 3.62 4.8B
30| 7.90 8 3.90 4 203 238 236 4.1
5 (40| 7.90 8 3.90 4 203 238 1.54 2.44
S2 50| 7.80 8 3.80 4 207 238 142 2.1p
60| 8.00 8 4.00 4 200 200 o0.77 1.1p
10 20| 16.80| 18 | 7.80 9 217 250 6.64 10.95
30| 1710 18 | 8.10 9 212 229 4.8p 8.92
20| 7.70 8 3.70 4 210 238 236 3.44
30| 7.90 8 3.90 4 203 233 161 2.7p
5 (40| 7.90 8 3.90 4 203 238 1.27 4.14
S3 50| 7.90 8 3.90 4 203 238 1.28 2.0
60| 7.90 8 3.90 4 203 238 0.67 1.0p
10 20| 16.70| 18 | 7.70 9 219 250 4099 5.4
30| 17.70| 18 | 8.70 9.0 204 229 3.76 5.67
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Table 6.10: Lower Bound 3 Deviations fos=5

s=5
C1
# of jobs
split to # of agents
# of fractional| multiple with split
variables agents jobs % dev
m| n| Avg. | Max. | Avg.| Max. | Avg. | Max. | Avg. | Max.
20| 7.50 8 3.50 4 217 233 7.0 8.4p
5 30| 7.40 8 3.40 4 223 3.00 4.01 6.5p
s1 40| 7.90 8 3.90 4 203 233 234 3.24
50| 7.90 8 3.90 4 203 233 182 2.44
10 20| 16.40| 18 | 7.40 9 22% 280 16.09 20.p5
30| 16.60| 18 | 7.60Q 9 222 280 10.05 12.p9
20| 8.00 8 4.00 4 200 200 3.33 6.5B
5 30| 7.90 8 3.90 4 203 238 2.33 4.3
S2 40| 7.90 8 3.90 4 203 238 1.38 2.7p
50| 8.00 8 4.00 4 200 2.00 1.13 1.7
10 20| 16.90| 18 | 7.80 9 219 250 6.18 9.01
30| 17.50| 18 | 8.50 9 207 229 53p 8.47
20| 8.20 10 | 4.00 5 207 238 262 4.93
5 30| 8.00 8 4.00 4 200 2.00 1.89 4.0p
s3 40| 8.00 8 4.00 4 200 200 1.09 2.1p
50| 7.80 8 3.80 4 207 238 0.97 1.3p
10 20| 17.70| 20 | 8.10 9 220 250 5.00 7.97
30| 17.20| 18 | 8.20 9 211 229 4.02 5.719
C2
20| 7.50 8 3.50 4 217 238 7.0 8.4p
5 30| 7.40 8 3.40 4 223 3.00 4.01 6.5p
s1 40| 7.90 8 3.90 4 203 233 234 3.24
50| 7.90 8 3.90 4 203 233 182 2.44
10 20| 16.40| 18 | 7.40 9 22% 280 16.09 20.p5
30| 16.60| 18 | 7.60 9 222 280 10.05 12.p9
20| 8.00 8 4.00 4 2.00 2.00 3.33 6.5B
5 30| 7.90 8 3.90 4 203 238 2.33 4.3
S92 40| 7.90 8 3.90 4 203 233 138 2.7p
50| 8.00 8 4.00 4 200 200 113 1.7
10 20| 16.80| 18 | 7.80 9 217 250 6.18 9.01
30| 17.50| 18 | 8.50 9 207 229 53p 8.47
20| 7.80 8 3.80 4 207 238 251 4.9
5 30| 8.00 8 4.00 4 200 200 183 4.0p
s3 40| 8.00 8 4.00 4 200 200 1.09 2.1p
50| 7.80 8 3.80 4 2.07 238 0.9% 1.3p
10 20| 16.60| 18 | 7.60 9 220 250 4.7P 7.97
30| 17.20| 18 | 8.20 9 211 22D 4.02 5.719
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On the other hand, increasing the number of agemtbas a negative affect on
the power of the lower bound. This is expectedesiasm gets bigger, a job is
split between more agents, hence the number ofidreat variables increase
which in turn reduces the performance of the loweund. Hence we can
conclude that the higher th&m ratio, the better the performance of the LP

relaxation.

We could not observe any notable difference inltveer bound performances

between differensg values.

It is observed from the tables that the power efldwer bound is affected by the
processing times. The lower bound is weaker foSdethere the variance of the
processing times is relatively high and the medavisand the best performances

are observed for s&3where the variance is low and the mean is high.

We now discuss the performance of our Branch andnBoalgorithm. We
perform our main experiment usiig, UB; and all the three lower bount8,,
LB, andLBg.

The size of the problem is basically determinedh®/number of agents), and
the number of jobs). This is because, the number of decision varsiplerease
as these parameters increase. Hence, we expectraase in the complexity of
the problem with an increase in the problem sizaipaters.

We choose two values ofi m= 5 and 10n values are between 20 and 60 (for
s=5, up to 50) in increments of 10. We use threaesbfs, which are 2, 3 and 5.
For all six combinations we report the average m@imum number of nodes,
node of optimality and CPU times. We also repoé tlumber of instances that
can be solved to optimality in our termination liraf 1200 seconds. The average
and maximum CPU times of CPLEX and the number efaimces that can be
solved to optimality by CPLEX within 1200 seconde also reported. For a fair
comparison only the instances that can be solveddif CPLEX andB&B
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algorithms are used while computing the CPU timEse number of such
instances is also reported.

Tables 6.11, 6.12 and 6.13 show the results$@rs=3 ands=5, respectively.

As can be observed from Tables 6.11, 6.12 and 6vh&n the number of jobs
increases, the CPU times and in turn the numbeodés of thd8&B algorithm
increases. There are a few exceptions, one of whidbe to0S1C2 s=2, m=5. For
n=50 the average CPU time is 150.22 seconds whéres6.92 seconds for
n=60. However, note here that, one out of ten mesta could not be solved when
n=60, hence the average is calculated over 9 instawtile it is calculated over
10 instances when=50. This increase in the number of nodes and GR¥ is
mainly due to the fact that the depth of BB tree increases asincreases. The
effect ofn on the problem complexity can also be observenh filwe increase in
CPU times of CPLEX with an increasenrior fixed m ands.

The effect of the number of agents, is more notable on the CPU times and the
number of nodes of thB&B algorithm. Asm increases, the number of nodes and
in turn the CPU times increase. This is true fothed problem combinations. For
example, forS1C1 n=30 ands=2 whenm is increased from 5 to 10; the average
CPU time increases from 10.03 to 232.58 seconés,increases more than 20
times. This is an expected behavior due to ourdbriag strategy. As the number
of agents increase, the number of branches in@edseach level, resulting in a
bigger tree size, hence higher CPU time. The efdéch can also be observed
from the results of CPLEX: either the CPU time @ases or the number of
instances that can be solved to optimality withih rRinutes decreases as
increases for fixech ands. It is also observed from the three tables that an
increase in the number of agents has a more stiastaifect on the solution time
of theB&B algorithm than that of CPLEX especially for thésse2ClandS3C1
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Table 6.11:B&B and CPLEX Results fors=2

s=2
C1
Number of B&B Solution CPLEX
nodes Node of Time Solution Time
inB&B Tree | Optimality | (CPU secondgq)BB*| (CPU secondqCPX*|B*
m| n| Avg. | Max. | Avg. | Max.| Avg.| Max. Avg.]| Max.
20| 2328] 9215 1114 744p 13 509 10 0p9 4.3 10
30| 12089 38860 8358 37745 9.43 3634 O O]77 1j41 10
540] 26241 57200 11218 32674 28p8 6555 [10 130 425 10
S1 50| 104524 334110 89317 315451 124.68 328.81 | 9 163 4.17 10
60| 45342] 175675 7104 29891 58b1 24431 |9 212 492 10
10 20| 38053 101274 15112 92145 26B8 67|13 |10 3J76 24.05 |10
30 107899 255140 417945 194967 2414.09 750.98 | 7 311.50 64.30 | 10
20| 752 ] 4007 75 601 048 244 10 0.17 0.66 10
30| 801 ] 5003] 247 1897 O0.9f 6.1y 10 40|88 294.78 |8
5140 1207| 3660] 400] 1504 2.0p 57 10 77 2402 RO
S2 50| 22272 74179 17270 71632 56.p0 174.38 |9 196.11 849.88 | 9
60| 9886] 3818% 7839 37749 19.14 687 |7 1201.15 53B.92 | 6
10 20| 42545 389596 709 380 43.42 40311 |10 034 200 10
30| 25091 145227 24213 145420 60J30 351.52 |6 2B.22 7B.00 |10
20 374 ] 1578 68 506] 0.24 092 10 0.12 0.38 10
30| 112 421 31 273] 0.18 058 10 0.22 0.0 0
5]140] 2143| 78500 15594 7678 3.5/ 1252 J0 355 1191 9
S3 50| 4784] 15199 1773 11737 9497 36./2 [0 34.25 30B.42 |9
60| 12545 3736% 9073 37333 26.p9 7233 |9 5886 17r.45 |7
10 20| 945 | 6044 45 216] 096 59 10 0.27 1.33 10
30| 3715(]243207] 3388( (243199 66.84| 451.2(| 9 | 1.0z | 4.1¢ 9 |9
C2
20| 2333] 9250 1114 7480 177 5.03 10 0p5 3.p7 10
30| 12099 3885% 8357 37730 10.p3 35{14 10 110 3}70 10
5140] 26249 5718% 11223 32749 27)0 66J80 |10 1447 4419 10
S1 50| 12066¢ 335270 1058[L1 3166431 159.22 58y.66 | 10 8.00 .86 0
60| 45191] 175800 6959 29891 56.p2 23489 |9 323 13.27 |10
10 20| 38180 100573 14773 88586 2653 65/03 |10 J44 19.75 |10
30/ 107883 254340 41696 194477 234.58 779.91 | 7 4B.18 114.63 | I(
20| 819 ] 4275 85 685 064 269 10 0.31 1.00 10
30 716 ] 5035 219| 1897 O0.9f 6.86 10 54|62 364.45 |9
5140 1186| 3615 386 1489 2.0f 6.1 10 51§36 346.50 |10
S2 50| 61560 376195 2546 12088 122|155 754.19 |10 9B.93 39148 | 7
60| 9866] 3814% 7831 37649 19.15 67p6 |7 9Q.13 38p.72 |6
10 20| 5068] 31267 977 476p 378 2243 |9 2B1 14448 [0
30| 49549 211919 15090 462%5 7330 31§4.13 |7 231.68 943.64 | 5
20| 405 ] 1695 86 751 024 091 10 2.%8 2333 10
30| 134 425 38 313] 020 051 10 28B0 22917 |9
5140] 2286| 7875 1763 7708 3.66 11.88 JO 95 4214 8
S3 50| 4771] 1526% 1784 11738 9.7 34p6 [0 79.65 65b5.06 |9
60| 12689 3729% 919% 37233 26.p2 7089 |8 13p.76 436.11 | 7
10 20| 637 ] 3122 30 250 254 1749 10 0.0 0.%50 10
30| 1740¢| 3860¢]| 11987 | 2835¢] 41.971| 118.6¢| 9 | 21.1¢] 66.2¢ 6 6
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Table 6.12:B&B and CPLEX Results fors=3

s=3
Cl
B&B Solution CPLEX
Number of nodg Node of Time Solution Time
in B&B Tree Optimality | (CPU secondg) (CPU secondg
m| n| Avg. | Max. | Avg.| Max.| Avg.] Max.|BB*| Avg.| Max.|CPX*|B*
20| 897 2570 1750 1044 0.4 1.3B 0 0.3 0.97 10
30| 10834] 3682Q 478 12547 8.48 25p2 [0 O0O]69 142 10
5140| 46535| 11792D 255%9 101607 46J00 109.67 |10 3.35 10.80 14
S1 50] 65883| 18874p 27542 113462 70§25 229.51 |10 186 H74 10
60] 120274 264256 71515 234349 231.14 781.63 | 8 192 261 14
10 20] 45183| 13167p 22607 121344 31)32 93|09 |10 1.65 438 10
30| 144407 262970 34080 152264 201.66 34Y.03 | 6 211.87 566.64 | 69
20| 569 1520 67 567 03 09 10 0.14 0.34 10
30] 9462 | 36239 417p 26402 9.4 29.p9 [0 61.22 32142 |10
5140 6648 18940 2118 18284 9.46 27.p7 [0 14p.85 96y.22 | 9
S2 50| 71204 269425 660%2 253063 153.23 553.69 | 9 8p.16 270.16 | 5
60| 135379 277260 79390 257407 31(4.91 689.89 | 7 3b.32 117.23 | 10
10 20] 24149| 16029l 807@ 275Q05 213 14469 |9 026 1]20 10
30| 46618 21033p 412p 14845 8211 374.02 [5 368 9|52 9
20| 400 2554 44 360] 030 1.8p 10 0.09 0.16 10
30] 3638| 13133 134 1017 39 1388 JO 0B4 0.F3 10
5140| 16446] 36911 762]L 20244 241 6941 |10 5%.90 32pb.86 9
S3 50| 4190 17714 3799 17080 10.p6 446 [0 45.66 20459 |5
60] 13959 34338 345p 22695 36.p1 96J01 |9 62.68 21y.51 |9
10 20] 20749 38232 10037 38248 1947 36/36 |9 082 1]34 10
30| 1346¢| 6975¢ | 5647 | 2285¢| 22.311112.3¢| 6 | 4.71| 27.45 | 1C | 6
C2
20| 899 25701 176 1044 0.4 1.2B 0 0B4 0.48 10
30| 10834] 36820 478p 12547 8.49 2283 [0 0|88 2)58 10
5140| 46527] 117926 25546 1016P7 46J01 110.06 |10 2.22 .66 10
S1 50| 65879 18874p 27542 113472 72J09 246.99 |10 1.74 347 10
60]) 120011 264160 71262 234269 184.56 45%.25 | 8 2.69 7.14 14
10 20] 46496| 13508)y 23625 1247p4 31]52 94|26 |10 24.17 506 10
30] 146320 268700 34506 152401 203.27 351.19 | 6 1$8.11 565.80 | 69
20| 602 1660 70 608 039 118 10 1.11 7.48 10
30] 9706 | 37774 430D 27543 9.32 286 [0 17p.35 944.69 |10
5140 5576 | 18975 238y 18319 7.38 25.p8 [0 54.52 19}1.42 8
S2 50| 71150] 26944p 66000 2530178 160.58 579.42 | 9 2(0.28 546.95 | 5
60) 13475 278165 79614 258232 319.14 6792.25 | 7 1%1.72 630.91 | /S
10 20] 26899| 16591p 760 30045 229 142.34 |9 110 2|58 10
30] 4181] 9219] 3497 9211 564 1183 [5 13%.47 93498 |5
20| 396 2805 47 449 0.2 15p 10 041 137 10
30] 3766] 13564 16§ 1217 4.0 13.67 JO 993 60|22 10
5140| 16966] 3873% 786p 19649 26./8 77556 [0 195.90 1074.30 | 9
S3 50| 4277| 1826(d 386p 17592 10.fj4 44p4 PO 11p.55 47).39 5
60| 14163 34410 400 23741 37.f5 102447 |9 133.28 39p.76 | 8
10 20] 16109 43519 596p 23146 14.p7 46552 |10 1]01  3J13 10
30| 23467 | 7864(]10937] 2851¢| 35 11€ 5 1101.14 248.7¢] 5 | 4
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Table 6.13:B&B and CPLEX Results fors=5

s=5
Cl
Number of B&B Solution CPLEX
nodes Node of Time Solution Time
in B&B Tree Optimality | (CPU secondd (CPU seconds
m| n| Avg. | Max. | Avg.| Max.| Avg.| Max.|BB*| Avg. Max. |CPX*| B*
20] 1495] 4435 2883 2824 08P 2.1p 10 0.p8 0.64 10
5 30] 15946] 62640 912p 52048 14.y9 56J/4 |10 1|51 458 10
s1 40| 86122] 32321pD 13641 109465 8968 37Q.77 |10 3.69 9130 10
50] 108594 344820 39672 106914 12(4.06 362.11 | 9 4.83 71.36 10
10 20] 26848] 81051 11628 79285 19.p6 61J08 |9 1|77 501 10
30] 175324 336179 37604 136766 210.64 413.95 | 5 239.08 443.08 | &
20] 394 14141 111 780] 033 1.1p 10 0.17 0.48 L0
5 30] 3987 13173} 132 6738 4.66 1583 [0 7222 554.38 8
S2 40| 43625] 363214 27035 236265 6697 554.72 |10 1.72  2%.03 9
50| 32238] 10834p 783p 28130 61.47 240 8 32.36 104.09 7
10 20] 16795 82062 4198 37042 15.66 7288 |10 0|27 089 10
30] 41102] 153948 39040 153949 673 259.09 |8 393 17.92 10
20] 621 | 3876 66 393] 059 378 10 0.14 0.7 |0
5 30] 8925] 73083 714 5546 11.85 100|75 [0 9)66 84|63 10
s3 40| 8040| 42453 5010 41747 12.65 6342 PO 7Jj09 5302 9
50] 62025] 35277 53270 322194 153.30 902.30 |10 6p.98 217.55 7
10 20] 29080] 21243p 519 17513 32.p2 239.17 |9 0}55 1{14 10
30| 3564¢|20849:] 27427|13600¢| 73.0t | 462.4¢] 9 | 1.14 4.3t 10 | 9
C2

20] 1496| 4455 286 2804 0.8 2.2B 10 O0.B1 0.66 10
5 30] 15951] 62660 91244 52093 15.p5 5795 |10 1|89 692 10
s1 40| 86135] 32327p 13634 109505 9267 389.94 |10 4.67 23.05 10
50] 108591 344790 39668 106484 114.02 354.16 | 9 §.18 17.31 14
10 20] 26900] 79099 11534 78208 18.p1 579 |9 2|64 791 10
30] 166343 304100 32485 110957 204.06 364.73 | 5 260.62 452.88 | 8
20] 558 2130] 249 2127 041 131 0 0.96 7.2 10
5 30] 4206| 1414 1388 699p 4.5 16.13 [0 7180 551.06 8
S0 40| 46179] 38629b 29543 258804 69p0 574.83 |10 2L.97 79.45 9
50] 32156] 10768D 781p 28315 59.p0 194.39 |8 52.83 14[.98 7
10 20| 41440] 24393B 26603 243933 4051 261.44 |10 4.71 44.97 10
30] 15293] 39341 11824 39334 20.p0 5144 |9 18pb.77 49D.41 4
20] 212 1330 5 36 0.19 094 10 0.35 0.7B 10
5 30] 12389] 8203% 592B 41231 13.16 87B8 |10 40.74 315.72 8
S3 40| 7386| 43043 459D 42324 1144 64p7 PO 4190 358.49 |10
50| 12241] 33013 713 26544 26.18 7247 |9 24.88 62.88 6
10 20| 18204] 12389y 13719 118224 18p4 123.00 |10 d.42 1136 10
30| 2288¢ 100974 17247110097] 40.71]1149.5¢] 8 |309.3(]1,045.04 7 |7
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We do not observe a remarkable effecsaf our experiments. This is because
the value ofs does not affect the number of decision variabllethe problem.
The number of periodss, affects the feasible region of the problem anel th
feasible region does not have a certain effechersblution speed. The increase
in s may help ourB&B algorithm in that more potential assignments can b
eliminated using feasibility checks. On the othandhan increase malso means
an increase in the total load of the agents whenother parameters are fixed.
Such an increase may lead to an increase in théewof alternative optimal
solutions, which makes the verification of optinhalmore difficult, since there
are many promising branches. To illustrate, for S8€C1 m=5, n=30 whens
increases from 2 to 3 the number of nodes, nodeptimality and CPU times
decrease and whenincreases from 3 to 5, all these three performaneasures

increase. The same results hold for CPLEX.

We observe from the three tables that the paransetéings affect the problem
complexity considerably. This is mainly due to tenge in the power of the LP

relaxation lower bound.

For setS1where the variance of the processing times idivels high and the
mean is low, CPLEX seems to be more effective. l@nather hand for the sets
S2 and S3 our Branch and Bound algorithm is compatible withbetter than
CPLEX in terms of both CPU times and number ofanses that can be solved to
optimality within 20 minutes for most instancesr Egample for se$2C2 m=10,
n=30 ands=5, the average CPU time is 20.9 seconds and &nicss are solved
by the B&B algorithm whereas the average CPU time is 185¢torgls and 4
instances are solved by the CPLEX. B#®B finds the optimal solution about 9
times faster than CPLEX and solves more instarceptimality within the same
time limit. There are some exceptions to this $itua However in most of these
instances although the average solution time oB&B algorithm is higher than
CPLEX, the number of instances it could solve taroality is bigger. One such
exception occurs fd83C1 m=5, n=50 ands=5. The average CPU times are 153.3

and 62.98 seconds whereas the numbers of instanbesd to optimality are 10
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and 7 for B&B and CPLEX, respectively. Moreovessmme instances we observe
the effect of a single dominating instance on terage solution time of tH&&B
algorithm. To illustrate, foS2C1m=5, n=40, s=5 the average solution time for
the B&B algorithm is 66.97 seconds with a single instaméng a solution time
of 556.72 seconds. TH&&B algorithm solves all 10 instances to optimalitythe
time limit. However CPLEX could not solve one insta to optimality, hence the
average is calculated over 9 solved instances. Whemominating instance is
excluded, the average solution time decreases %6 Seconds and becomes
smaller than the average CPU time by CPLEX whichT2 seconds.

We also investigate the effect of the capacitydad, and could not observe any
consistent behavior. The average solution timesbath B&B and CPLEX
increase or decrease wheris increased from 1.0 to 1.2. Thealue changes the
feasible region of the problem, however a changiénfeasible region may not
have consistent effect on the performances; thenaptsolution may change or
may stay the same. However we observe that B&B algorithm is more
insensitive to the changes in thealue. This is most probably due to the fact that
the negative effect of the change of the optimaltan and the feasible region is
balanced by the enhanced performance of our imprexe heuristic. Recall that
the heuristic switches a job or interchanges jodtsvben agents. The increase in
the capacities increases the number of feasibleowvimy moves; hence the
improvement heuristic returns better solutions. Gneh noteworthy result is
observed forS2 m=10, n=30 ands=5. Whenc increases from 1.0 to 1.2 the
average solution time of tH&&B algorithm decreases from 67.53 to 20.9 seconds
while the number of instances solved to optimahiyreases from 8 to 9. On the
other hand the average solution time of CPLEX iases from 3.93 to 185.77
seconds while the number of instances solved tionafity decreases from 8 to 4.

In Tables 6.14 and 6.15, we summarize the restdlisup Branch and Bound

algorithm by reporting the averages of number afesp node of optimality and
CPU times for low and high capacities, respectivBlgcall that a time limit of
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1200 seconds is set and the instances that caenstlbed to optimality within

this time limit are not considered while computthg averages.

Table 6.14: Branch and Bound Algorithm Results forC1

C1
S1 S2 S3
Avg. # of
Avg. # of nodes
Avg. # of Avg. nodes Avg. in B&B Avg.
m|nj|s nodes CPU time | in B&B tree| CPU time tree CPU time
20 2328 1.34 752 0.48 374 0.24
30 12088 9.83 801 0.97 112 0.18
5 |40 26241 28.08 1207 2.02 2143 3.57
50(2| 104524 123.68 22272 56.00 4784 9.57
60 45342 58.51 9886 19.14 12545 26.09
10 20 38053 26.38 42545 43.42 945 0.96
30 107890 241.09 25091 60.30 3715( 66.84
20 897 0.48 569 0.37 400 0.30
30 10834 8.68 9462 9.54 3638 3.95
5 |40 46535 46.00 6648 9.66 16446 24.71
50|3 65883 70.25 71204 153.23 4190 10.64
60 120276 231.14 135379 310.91 13959 36.91
10 20 45183 31.32 24149 21.73 20749 19.47
30 144407 201.66 46618 82.11 13469 22.31
20 1495 0.82 394 0.33 621 0.59
5 30 15946 14.79 3987 4.65 8925 11.85
40 5 86122 89.68 43625 66.97 8040 12.65
50 108594 120.06 32238 61.47 62024 153.30
10 20 26848 19.96 16795 15.56 29080 32.27
30 175324 210.64 41102 67.53 35649 73.04
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Table 6.15: Branch and Bound Algorithm Results forC2

C2
S1 S2 S3
Avg. # of
Avg. # of nodes
Avg. # of Avg. nodes Avg. in B&B Avg.

m|n nodes CPU time | in B&B tree| CPU time tree CPU time

20 2333 1.77 819 0.64 405 0.24

30 12099 10.03 716 0.97 134 0.20
5140 26249 27.70 1186 2.07 2286 3.66

50 120666 159.22 61560 122.55 4771 9.17

60 45191 56.92 9866 19.15 12688 26.22
10 20 38180 26.53 5068 3.78 637 2.54

30 107883 232.58 49548 73.30 17405 41.91L

20 899 0.48 602 0.39 396 0.25

30 10834 8.29 9706 9.32 3766 4.01
5140 46527 46.01 5576 7.38 16966 26.74

50 65879 72.09 71150 160.58 4277 10.74

60 120011 186.56 134756 315.14 14163 37.7p
10 20 46496 31.52 26899 22.99 16109 14.97

30 146320 203.27 2338 3.37 15315 23.74

20 1496 0.82 558 0.41 212 0.18
5 30 15951 15.25 4206 4.52 12389 13.14

40 86135 92.67 46179 69.20 7386 11.44

50 108591 117.02 32156 59.50 12241 26.1B
10 20 26900 18.61 41440 40.51 18204 18.24

30 166348 204.06 15293 20.90 22884 40.71L
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We next discuss the performance of our heuristazguiures\We evaluate the
performances over the solution times and solutioality. For solution quality,
we use the percentage deviation from the optimatiso.

HeuristicSolution— OPT
OPT

%Dev= ( j x100

We first discuss the results of the tabu searcbrdhgn. In our experiments, we
set theTabutenureto 50 and takenonimplimit and maxiter as 250 and 1000,

respectively.

Table 6.16 reports the results of the tabu sedgdrithm for s=5. The results of
the algorithm for s=2 ang=3 are given in Appendix A, in Tables A.1- A.2 and
A.3-A.4, respectively.

As can be observed from the tables the deviatiows the CPU times of the
construction phase and the entire algorithm incigdhe construction phase are
very small. The maximum average construction timed.05 seconds and the
maximum time construction takes over all instansds27 seconds. As expected,
for some instances the CPU times increase sligistlihe number of agents or the
number of jobs increase. Moreover the construct@gorithm behaves

consistently well over all instances in terms of.Ctitne.

When the CPU time of the entire tabu search algoriis investigated, it is
observed that the maximum average time is 0.28nskscand the worst CPU time
is 0.30 seconds for s ClandS1C2whenm=5, n=60 ands=2 (See Tables A.1
and A.2, Appendix A). The effects ai andn are clear in the solution times of
the tabu search algorithm. As expected, the inereathese parameters, results in
a slight increase in the solution time for almobtimstances. This is because
increase inm andn results in an increase in the problem size, theiiabthe

neighborhood size.
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Table 6.16: Tabu Search Results fos=5

s=5
C1
Tabu time Construction time % dev

m n Avg. Max. Avg. Max. Avg. Max.
20 0.04 0.05 0.03 0.11 0.00 0.00 (10)
5 30 0.09 0.09 0.02 0.05 0.49 1.26 (%)
s1 40 0.16 0.17 0.02 0.03 0.42 1.13 (%)
50 0.25 0.27 0.03 0.03 0.22 1.18 (6)
10 20 0.07 0.08 0.03 0.06 0.93 5.48 (§)
30 0.14 0.16 0.05 0.27 1.05 3.92 (%)
20 0.04 0.05 0.02 0.03 0.00 0.00 (10)
5 30 0.09 0.09 0.02 0.03 0.62 3.14 (§)
S92 40 0.15 0.17 0.02 0.05 0.35 3.46 (9)
50 0.25 0.28 0.02 0.03 0.60 1.89 (4)
10 20 0.05 0.06 0.03 0.05 0.19 0.64 (1)
30 0.14 0.16 0.03 0.03 0.04 0.43 (9)
20 0.05 0.05 0.02 0.05 0.00 0.00 (10)
5 30 0.09 0.09 0.02 0.03 0.03 0.25 (9)
s3 40 0.16 0.17 0.02 0.03 0.00 0.00 (10)
50 0.26 0.27 0.03 0.03 0.04 0.61 ()
10 20 0.04 0.06 0.03 0.03 2.31 6.92 (B)
30 0.14 0.16 0.03 0.05 0.13 0.77 (1)

C2

20 0.05 0.05 0.02 0.03 0.00 0.00 (10)
5 30 0.09 0.09 0.02 0.03 0.49 1.26 (b)
s1 40 0.16 0.17 0.03 0.03 0.42 1.13 (%)
50 0.25 0.27 0.03 0.05 0.22 1.18 (6)
10 20 0.07 0.08 0.02 0.03 0.38 1.43 (1)
30 0.14 0.16 0.03 0.03 1.05 3.92 (%)
20 0.05 0.05 0.02 0.03 0.00 0.00 (10)
5 30 0.09 0.09 0.02 0.03 0.62 3.14 (§)
S2 40 0.16 0.17 0.02 0.05 0.35 3.46 (9)
50 0.25 0.27 0.03 0.05 0.60 1.89 (4)
10 20 0.07 0.08 0.02 0.03 0.00 0.00 (10)
30 0.14 0.16 0.03 0.05 0.13 0.43 (1)
20 0.05 0.05 0.02 0.03 0.00 0.00 (30)
5 30 0.09 0.09 0.02 0.03 0.00 0.00(]]0)
s3 40 0.16 0.17 0.02 0.03 0.00 0.00 (10)
50 0.26 0.27 0.03 0.05 0.05 0.61 (8)
10 20 0.07 0.08 0.03 0.03 0.08 0.38 (8)
30 0.14 0.16 0.03 0.05 0.03 0.27 (9)

* The figures in parenthesis indicate the numbeimaods the optimal solution is found.
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Moreover it can be observed from Tables 6.16, AR, A.3 and A.4 that
increasing the number of periods causes a slight¢@se in the CPU times.

Finally, we can conclude that the tabu search dhguor returns solutions in

consistent CPU times over all processing time apécity sets.

As can be observed from the tables all averageatiens are below 2.5% and the
maximum deviation is 6.92% at worst. This indicateat our tabu search
algorithm performs consistently well over all instas. We observe a slight
increase in deviations when (n) values increase for the fixed (m) for most

settings.

We could not observe any significant and predietadffect ofs values on the
deviation results. As can be observed from Tablels A.2, A3 and A4 fors
values of 2 and 3, the processing time sets affectaverage deviations. The
deviations are relatively higher f&1set and the lowest deviations usually occur
for S3set when all the other factors are the fixed. && (Table 6.16) there are

more exceptions to this observation.

An increase in the capacity factor does not hanegative effect on the deviation
results, with a few exceptions. The deviation ugusthlys the same or decreases
when the capacity factor is increased. This is uthe fact that increasing the
agent capacities, increases the number of feasigbeoving shifts and swap

moves that the algorithm makes.

The tabu search algorithm finds 862 optimal sohgimut of 1200 problem
instances, i.e., in about 72% of the instancefienal solution is produced.

Based on these results we can say thatT&ialgorithm is quite successful in

finding good quality and quick solutions.
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We next study the performance of our Branch andnBduased heuristic, namely
the a approximation scheme. We performed experimentdhae values of,
0.1, 0.05 and 0.02.

Table 6.17 shows the results f+0.1, whens=5. Tables B.1-B.2 and B.3-B.4 in

appendix report the results wher2 ands=3, respectively.

We observe that the algorithm performs differemtdetS1 andm=10. We call
this combination aS1M10 We study the results in two parts: RitM10and the
other combinations. For the sets other ti&M1Q all average and maximum
CPU times are below 0.5 and 2.03 seconds, respéctiihe average and
maximum number of nodes are at most 243 and 1&4Pectively. Moreover the
average deviations are less than 1.8% for almbstsihnces and the maximum
deviation is 5.77%. The performance of the alponitdecreases considerably for
S1M10 with respective average and maximum CPU times ®fahd 78.38
seconds. The results are similar for the numbemades: the average and
maximum number of nodes increase up to 6900 an@Gj6@spectively. The
deviations are more consistent than the CPU timelsase similar to the other
instances with a maximum deviation of 6.67%. Hemeecan conclude that the
approximation scheme performs consistently welk @heinstances in terms of %
deviation but this good performance comes withnaneiase the CPU times. Since
this is a Branch and Bound based heuristic thecesffef the parameters on the
CPU time is similar to those of the Branch and Rbatgorithm. Also it can be
observed from the tables that in more than 30%hef ihstances (388 out of

1200), the heuristic finds the optimal solution.

Fora=0.05, Table 6.18 reports the results wkeh and Tables C.1- C.2 and C.3-
C.4 report the results whes¥2 ands=3, respectively. It is clear that asgets
closer to zero, the behavior of the algorithm beesicioser to the original Branch
and Bound algorithm, hence decreasingcreases the CPU time and number of
nodes while providing solutions closer to optimallisions.
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Table 6.17:0 Approximation Scheme Results fow=0.1,5=5

s=5
C1
Solution Time Number of nodes
(CPU seconds) in B&B Tree %dev
m n Avg. Max. Avg. Max. Avg. Max.
20 0.04 0.09 19 160 0.54 3.66 (1)
5 30 0.05 0.06 1 1 1.68 3.45(1
s1 40 0.08 0.11 1 1 1.82 3.46 (2
50 0.11 0.17 1 1 0.96 1.90 (1
10 20 4.93 33.41 4525 29677 0.82 4.11 (B)
30 12.28 77.38 6891 45520 1.31 3.64 ()
20 0.03 0.05 2 10 0.70 2.42 (4)
5 30 0.06 0.08 1 1 1.06 3.14 (2
S92 40 0.08 0.09 1 1 1.01 4.09 (1
50 0.15 0.22 1 1 1.04 1.89 (0
10 20 0.06 0.13 5 20 0.82 3.18 ()
30 0.08 0.14 4 10 1.18 2.92 (1)
20 0.03 0.05 4 15 0.41 2.42 (5)
5 30 0.05 0.06 1 5 0.20 0.63 (3
s3 40 0.08 0.11 1 5 0.29 1.18 (2
50 0.14 0.23 1 5 0.41 0.99 (0
10 20 0.48 2.03 243 1149 1.31 5.02 (1)
30 0.08 0.09 5 10 0.57 2.61(5)
Cc2
20 0.04 0.09 19 160 0.54 3.66 (1)
5 30 0.06 0.08 1 1 1.68 3.45(1
s1 40 0.09 0.13 1 1 1.82 3.46 (2
50 0.12 0.19 1 1 0.96 1.90 (1
10 20 4.72 31.63 4518 29750 0.82 4.11 (B)
30 11.96 77.30 6599 45320 1.31 3.64 (4)
20 0.03 0.03 1 1 0.70 2.42 (4
5 30 0.05 0.06 1 1 1.06 3.14 (2
S92 40 0.08 0.09 1 1 1.01 4.09 (1
50 0.15 0.22 1 1 1.04 1.89 (0
10 20 0.04 0.06 1 1 1.13 3.18 (5
30 0.08 0.14 1 1 1.39 3.75(1
20 0.03 0.03 1 1 0.31 1.35 (7
5 30 0.05 0.09 1 1 0.32 1.29 (3
s3 40 0.09 0.11 1 1 0.31 1.18 (2
50 0.15 0.22 1 1 0.40 0.99 (0
10 20 0.05 0.05 1 1 0.89 2.36 (4
30 0.07 0.08 1 1 0.49 1.82 (3

* The figures in parenthesis indicate the numbeinaods the optimal solution is found.
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Table 6.18:0 Approximation Scheme Results fo=0.05,s=5

s=5
C1
Solution Time Number of nodes
(CPU seconds) in B&B Tree %dev
mi| n Avg. Max. Avg. Max. Avg. Max.
20 0.09 0.26 97.6 360 0.00 0.00 (40)
5 30 0.14 0.36 101.0 320 1.24 2.30(L)
s1 40 0.10 0.17 7.3 50 1.35] 3.29(3)
50 0.12 0.17 1.0 1 096/ 1901
10 20| 20.21 122.97 24207.9 145089 0.55 4.11(98)
30| 127.19 788.50 49217.0 253140 0.47 1.00]|(5)
20 0.06 0.09 3.1 10 0.55 2.15@14)
5 30 0.08 0.11 2.9 20 0.90] 3.14 (2)
S92 40 0.10 0.23 14 5 0.65 137(1)
50 0.22 0.52 1.0 1 1.04] 1.89(®)
10 20 0.08 0.22 19.2 110 0.63 3.14 (p)
30 0.12 0.17 8.3 20 1.14] 2.92(2)
20 0.04 0.08 3.6 15 0.21] 0.58 (%)
5 30 0.05 0.06 14 5 0.20] 0.63 (%)
s3 40 0.10 0.14 14 5 0.29] 1.18(23
50 0.16 0.27 14 5 0.41] 0.99 ()
10 20 0.76 4.45 395.6 2652 0.69 1.93 ()
30 0.10 0.17 7.3 10 0.21] 0.79 (1)
C2
20 0.09 0.27 97.6 360 0.00 0.00 (%0)
5 30 0.14 0.38 101.0 320 1.24 2.30(L)
s1 40 0.10 0.17 7.3 50 1.35] 3.29(3)
50 0.12 0.17 1.0 1 0.96)] 1901
10 20 18.95 132.16 23247.0 162734 0.67 4.11(7)
30| 82.16 433.86 41689.0 230070 0.47 1.00(5)
20 0.04 0.05 2.2 5 0.70) 2.42(4)
5 30 0.06 0.13 2.9 20 0.90] 3.14 (2)
S92 40 0.08 0.16 14 5 0.65 137(1)
50 0.15 0.23 1.0 1 1.04] 1.89(®)
10 20 0.07 0.19 18.2 110 0.94 3.18 (p)
30 0.11 0.20 6.4 10 1.22] 3.75(3)
20 0.04 0.05 1.0 1 031 135()
5 30 0.05 0.08 1.0 1 0.32] 1.29(3)
s3 40 0.09 0.13 1.0 1 0.31] 1.18(2)
50 0.15 0.23 1.0 1 0.40] 0.99 ()
10 20 0.06 0.13 8.2 10 0.700 2.36 (%)
30 0.10 0.17 4.6 10 0.44 1.82(4)

* The figures in parenthesis indicate the numbeinoés the optimal solution is found.
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The increase in the CPU times and number of nodestlae decrease in the
deviations can also be observed from Tables 6.18,@2, C.3 and C.4. For the
instances other tha1M1Q the increase in CPU time is not significant vatfew
exceptions. However folS1M10 the increase in CPU time is much more
remarkable (maximum average CPU time is 127.19thadCPU time is 788.5
seconds for the worst case ®1C1 m=10 n=30, s=5, over all such instances).
Since the heuristic runs in exponential time, 2anses $1C1m=10, n=30, s=3
andS1C2 nx10,n=30, s=3) could not be solved in our time limit of 20 mites.
These instances are excluded from solution time pcoations. The same
situation occurs in terms of the number of noddse &verage deviations are
below 1.8% over all instances and the maximum diewvias 4.26%. As solution
quality increases more instances are solved tanafity, in about 38% of the

instances (453 out of 1198), the optimal solutefound.

The results of the algorithm with=0.02 are reported in Tables 6.19 6 and
D.1-D.2, D.3-D.4 fors=2 ands=3, respectively. When we decreast 0.02, we
observe similar effects on the CPU time, numbenaxfes and deviations. Since
the algorithm becomes much closer to the origimainBh and Bound algorithm,
the CPU times and number of nodes increase whelentimber of instances that
can be solved within the time limit decreases. As guarantee to have better
results by decreasing the deviations from the optimal solution decreamed the
number of instances that finds the optimal solutrameases. In about half of the
reported instances (585 out of 1182) the algoritetarns the optimal solution.
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Table 6.19:a Approximation Scheme Results fon=0.02s=5

* The figures in parenthesis indicate the numbeinoés the optimal solution is found.

** 2 out of 10 instances could not be solve&iIrC1m=10,n=30 andS1C2 m10,n=30 sets.
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s=5
C1
Solution Time Number of nodes
(CPU seconds) in B&B Tree %dev
mi|n Avg. Max. Avg. Max. Avg. Max.
20 0.37 1.14 609 2125 0.00 0.00(10
5 30 3.06 9.72 3235 11270 0.38 1.26 ()
s1 40 1.49 4.05 1343 4560 0.5§ 1.64 ()
50 1.01 6.44 908 7020 0.52 1.37 ()
10 20| 20341 1897.22 46360 325527 0.J0  0.00(10)**
30| 348.31 1097.48 121436 260199 0.23 0.95 (g)**
20 0.05 0.11 7 25 0.36 2.15 (6
5 30 0.13 0.48 45 375 0.32 0.80 (3)
S0 40 0.10 0.17 4 10 0.42 1.37 (3
50 0.30 0.92 60 540 0.65 1.46 (0
10 20 1.41 13.25 1274 12584 0.38 1.27 (4)
30 0.24 0.69 54 217 0.72 1.31 (3)
20 0.04 0.09 5 15 0.17 0.58 (6
5 30 0.06 0.09 4 20 0.15 0.63 (5
s3 40 0.09 0.16 2 5 0.27 1.18 (2
50 0.14 0.23 2 5 0.41 0.99 (0
10 20 4.33 33.41 2508 20352 0.65 1.93 (3)
30 0.12 0.19 10 10 0.21 0.79 (7
c2
20 0.42 1.30 605 2090 0.0q 0.00(109)
5 30 3.06 10.17 3233 11255 0.38 1.26 (6)
s1 40 1.47 3.97 1343 4560 0.5§ 1.64 (§)
50 0.95 5.89 908 7015 0.5 1.37 (9)
10 20| 320.78 3083.70 48001 327034 0.14 1.43 (9*
30| 337.65 1132.75 119453 26164( 0.2 0.95 (§)**
20 0.05 0.19 17 125 0.46 2.15(5
5 30 0.12 0.45 45 375 0.32 0.80 (3
S92 40 0.10 0.17 4 10 0.42 1.37 (3
50 0.25 0.77 60 540 0.65 1.46 (0
10 20 1.47 14.05 1442 14313 0.50 2.45 (6)
30 0.24 0.50 33 160 0.72 1.67 (4
20 0.04 0.06 4 5 0.06 0.58 (9
5 30 0.06 0.08 3 5 0.28 1.29 (4
s3 40 0.10 0.16 1 5 0.27 1.18 (2
50 0.14 0.23 1 5 0.40 0.99 (0
10 20 0.28 1.25 161 779 0.31 1.15 (7]
30 0.13 0.17 10 10 0.42 1.82 (5



When we compare the tabu search arapproximation scheme, we see that the
TSalgorithm produces solutions faster. When a satisfg solution is required
quickly one can us€S However no guarantee for its performance castéted.
The a approximation scheme guarantees that the worstgagormance is below
a predefined limit, but at an expense of higher Gii¢s. Theo approximation
scheme runs in exponential time but has the adgantéflexibility. If time is a
scarce resource;=0.1 approximation scheme can be used. When lsstlations
are required in tolerable timecan be set to 0.05. Finally, if the decision nmake
is more after near optimal solutions than quicksotiteena can be set to 0.02.
Note that, the computational time of theapproximation scheme even with=
0.02 is significantly smaller than that of Branctdd@ound Algorithm.
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CHAPTER 7

CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

In this study, we consider the Multi Period Agenbttneck Generalized
Assignment Problem. Our aim is to minimize the maxin load over all agents.
We are motivated from a practical problem arisingHieat Ventilation and Air
Conditioning (HVAC) industry.

We develop a Branch and Bound algorithm for optis@ltions and heuristic
algorithms for approximate solutions. To the bes$toor knowledge, our

algorithms are first attempts to solve the problem.

In our Branch and Bound algorithm, we use the ogltisolutions of the Linear
Programming (LP) relaxations in finding lower angpar bounds and defining
our branching scheme. Our motivation is the satiefg behavior of the LP
relaxation in producing solutions with few contimsovariables and objective
function values that are very close to the optioigkective function values. We
also derive simpler lower bounds and use themltasifig mechanisms. Our hope

is to reduce the number of LP relaxation probleaigesl.

Our Branch and Bound algorithm could find optimalusions for the problems
with up to 60 jobs when the number of agents is1® @ap to 30 jobs when the
number of agents is 10 in our plausible limit of @hutes. We find that the
number of jobs and the number of agents are domif@@tors in defining the
complexity of the problems. However, the numberpefiods does not have a

significant effect on the performance. Moreover, abserve that the distribution

98



of the processing time affects the complexity amel hardest to solve instances
are observed when the processing time distribubhaa low mean and high

variance.

Our heuristic procedures are of two types. Onalisi tsearch and the otherois
approximation Branch and Bound algorithm. We fihdtttabu search produces
very quick, high quality solutions, hence can bedut solve very large sized
problem instances. On the other hamdapproximation algorithm runs in
exponential time, with guaranteed performance. &yeriments have revealed
that thea approximation algorithm runs considerably fastesnt Branch and
Bound algorithm, hence can be used when guarameddrmance with quick

solution times is required.

To the best our knowledge our study is the firgtrapt to solve the bottleneck
generalized assignment problem with multiple pesiowe hope our results
stimulate further research in generalized assighrpesblem literature. Some

noteworthy extensions of our work can be listed as:

» Defining off periods for the job requirements.

» Defining skill levels for the agents such that soagents perform all
opportunities at a higher pace.

* Finding the polynomially solvable special casethefproblem.

» Developing Lagrangean relaxation based lower baunds

* Developing Branch and Bound based heuristic praesduike beam
search, filtered beam search, that benefit frombownding mechanisms.

» Defining a neighborhood that allows infeasibilitytabu search. This will
help to search the feasible region better and as&ré¢he solution quality,
however at an expense of increased computatiamal irought by repair
mechanisms.

* Incorporating the cost aspects: In addition to eram alternative to

minimizing maximum load, minimizing total cost che studied.
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* Incorporating stochastic aspects of the parameteos. example, the

processing times of the opportunities may vary iase tprogresses.
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APPENDIX A

TABU SEARCH RESULTS FOR s=2 AND s=3

Table A.1: Tabu Search Results fos=2, C1

C1
Tabu time Construction time % dev
m n Avg. Max. Avg. Max. Avg. Max.

20 0.03 0.03 0.02 0.03 0.00]  0.00(10)
30 0.06 0.08 0.02 0.03 0.52 2.06 (B)
5 | 40 0.11 0.13 0.02 0.03 0.39 0.81(%)
S1 50 0.19 0.20 0.02 0.03 0.24 0.63 ()
60 0.28 0.30 0.03 0.05 0.41 1.00 (4)
20 0.05 0.06 0.02 0.03 1.60 6.45 (B)
30 0.10 0.11 0.02 0.03 1.60 4.35 (%)

10

20| 0.03 0.03 0.02 0.03 0.08 0.76 (9)
30| 0.06 0.08 0.02 0.03 0.00] 0.00 (10)
5 (40| 0.09 0.13 0.02 0.03 0.15 1.15(8)
S2 50| 0.13 0.19 0.02 0.03 0.40] 1.55 (4)
60 | 0.25 0.31 0.04 0.11 0.47] 1.32(4)
20| 0.05 0.06 0.05 0.20 0.16] 1.59 (9)
30| 0.10 0.11 0.02 0.03 022  1.08(8)

10

20 0.03 0.03 0.02 0.05 0.00[ 0.00 (10)
30 0.06 0.06 0.02 0.03 0.06 0.32 (8)
5 | 40 0.10 0.13 0.02 0.03 0.10 0.73 (8)
S3 50 0.17 0.22 0.03 0.05 0.06 0.20 (7)
60 0.25 0.33 0.03 0.05 0.15 0.81 ()
20 0.05 0.05 0.03 0.05 0.10 0.96 (9)
30 0.10 0.11 0.02 0.03 0.00] 0.00 (10)

10

*The figures in parenthesis indicate the numbeimés the optimal solution is found.
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Table A.2: Tabu Search Results fos=2,C2

C2
Tabu time Construction time % dev

m n Avg. Max. Avg. Max. Avg. Max.
20 0.03 0.03 0.02 0.03 0.00 0.00 (10)
30 0.06 0.06 0.02 0.03 0.52 2.06 (b)
5 1|40 0.12 0.13 0.02 0.03 0.39 0.81 (b)
S1 50 0.19 0.20 0.03 0.05 0.24 0.63 (b)
60 0.28 0.30 0.02 0.03 0.41 1.00 ()
10 20 0.05 0.06 0.02 0.03 1.90 6.45 (6)
30 0.11 0.11 0.02 0.05 1.60 4.35 ()
20 0.03 0.03 0.02 0.03 0.00 0.00 (10)
30 0.07 0.08 0.02 0.03 0.00 0.00 (10)
5 1|40 0.09 0.13 0.02 0.03 0.15 1.15(B)
S2 50 0.13 0.19 0.04 0.17 0.40 1.55 @)
60 0.25 0.31 0.03 0.05 0.47 1.32 ()
10 20 0.05 0.06 0.02 0.03 0.16 1.59 ()
30 0.10 0.11 0.02 0.03 0.22 1.08 (B)
20 0.02 0.03 0.02 0.03 0.00 0.00 (10)
30 0.06 0.06 0.02 0.03 0.06 0.32 (8)
5 1|40 0.11 0.13 0.02 0.03 0.10 0.73 (B)
S3 50 0.17 0.20 0.03 0.05 0.06 0.20 (7)
60 0.24 0.28 0.03 0.05 0.15 0.81 (b)
10 20 0.05 0.05 0.02 0.03 0.19 0.97 (9)
30 0.11 0.11 0.02 0.03 0.00 0.00 (10)

*The figures in parenthesis indicate the numbeimés the optimal solution is found.
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Table A.3: Tabu Search Results fos=3, C1

Ci1
Tabu time Construction time % dev

m n Avg. Max. Avg. Max. Avg. Max.
20 0.03 0.05 0.02 0.08 0.20 1.96 (9)
30 0.08 0.08 0.02 0.03 0.26 1.95 (B)
5 |40 0.14 0.14 0.02 0.03 0.62 1.49 (B)
S1 50 0.22 0.23 0.03 0.05 0.49 1.25 (4)
60 0.32 0.34 0.03 0.03 0.26 0.75 (B)
10 20 0.06 0.06 0.03 0.06 1.48 6.38 (b)
30 0.12 0.13 0.02 0.05 2.22 6.67 (R)
20 0.04 0.05 0.02 0.05 0.000 0.00 (10)
30 0.08 0.09 0.02 0.03 0.03 0.34 (9)
5 |40 0.13 0.16 0.02 0.03 0.13 0.77 (B)
S2 50 0.19 0.24 0.03 0.03 0.55 2.06 (B)
60 0.27 0.36 0.03 0.03 0.42 1.92 (B)
10 20 0.05 0.06 0.02 0.05 0.000 0.00 (10)
30 0.12 0.13 0.03 0.06 0.14 0.71 (B)
20 0.03 0.05 0.02 0.05 0.00) 0.00 (10)
30 0.07 0.08 0.02 0.03 0.00) 0.00 (10)
5 |40 0.14 0.19 0.03 0.05 0.03 0.16 (B)
S3 50 0.20 0.23 0.03 0.03 0.23 1.93 (B)
60 0.30 0.34 0.03 0.05 0.22 1.42 (B)
10 20 0.04 0.05 0.03 0.06 0.06 0.65 (9)
30 0.12 0.13 0.03 0.05 0.09 0.46 (B)

* The figures in parenthesis indicate the numbeinaods the optimal solution is found.
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Table A.4: Tabu Search Results fos=3, C2

Cc2
Tabu time Construction time % dev
m n Avg. Max. Avg. Max. Avg. Max.

20 0.03 0.03 0.03 0.16 0.20 1.96 (0)
30 0.08 0.08 0.02 0.03 0.26 1.95 (B)
5 | 40 0.14 0.14 0.03 0.05 0.62 1.49 ()
S1 50 0.22 0.23 0.02 0.03 0.49 1.25 (@)
60 0.32 0.34 0.03 0.03 0.26 0.75 ()
20 0.06 0.06 0.02 0.03 1.28 6.38 ([7)
30 0.12 0.13 0.03 0.03 2.22 6.67 ()
20 0.03 0.05 0.02 0.03 0.00 0.00 (10)
30 0.08 0.09 0.02 0.03 0.03 0.34 (9)
5 | 40 0.12 0.16 0.03 0.03 0.15 1.03 (B)
S2 50 0.20 0.24 0.02 0.05 0.55 2.06 (b)
60 0.28 0.38 0.05 0.16 0.42 1.92 (B)
20 0.06 0.08 0.02 0.05 0.00 0.00 (10)
30 0.12 0.14 0.02 0.03 0.07 0.70 (9)
20 0.03 0.05 0.02 0.03 0.00 0.00 (10)
30 0.08 0.08 0.02 0.03 0.00 0.00 (10)
5 | 40 0.14 0.16 0.02 0.03 0.03 0.16 (B)
S3 50 0.20 0.23 0.03 0.03 0.23 1.93 (b)
60 0.30 0.36 0.03 0.03 0.22 1.42 (p)
20 0.06 0.06 0.04 0.22 0.00, 0.00(10)
30 0.12 0.13 0.03 0.05 0.09 0.46 (8)
* The figures in parenthesis indicate the numbeinoés the optimal solution is found.

10

10

10
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APPENDIX B

o APPROXIMATION SCHEME RESULTS FOR a=0.1

Table B.1: a Approximation Scheme Results fow=0.1,5=2,C1

C1
Solution Time Number of nodes
(CPU seconds) in B&B Tree %dev
m n Avg. Max. Avg. Max. Avg. Max.
20 0.05 0.11 9 85 0.97 2.78 (b)
30 0.05 0.09 1 1 1.33 3.19 (2)
5 | 40 0.07 0.09 1 1 0.99 3.88 (2)
S1 50 0.10 0.27 1 1 1.40 2.52 ()
60 0.15 0.19 1 1 0.77 2.14 (3)
10 20 1.94 5.72 1956 5720 0.30 3.03 (9)
30 6.72 49.15 3651 25230 2.04 4.55 (3)
20 0.02 0.03 1 1 0.75 2.96 (%)
30 0.05 0.08 1 5 0.25 1.02 (6)
5 | 40 0.07 0.09 1 1 1.07 3.44 (2)
S2 50 0.10 0.13 1 1 1.42 3.41 (1)
60 0.12 0.16 1 1 0.96 1.82 (2)
10 20 0.04 0.06 2 10 0.92 4.62 (6)
30 0.07 0.11 2 10 0.74 2.15 (b)
20 0.02 0.05 1 1 0.57 1.44 (4)
30 0.04 0.05 1 5 0.16 0.65 (7)
5 | 40 0.06 0.08 1 1 0.63 1.23 (2)
S3 50 0.10 0.13 1 1 0.17 0.58 (4)
60 0.13 0.19 1 1 0.53 2.60 (1)
10 20 0.03 0.06 1 1 0.87 577 (1)
30 0.06 0.08 1 1 0.79 2.65 (%)

* The figures in parenthesis indicate the numbermés the optimal solution is found.
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Table B.2: a Approximation Scheme Results fow=0.1,s=2, C2

Cc2
Solution Time Number of nodes
(CPU seconds) in B&B Tree %dev
m n Avg. Max. Avg. Max. Avg. Max.
20 0.03 0.13 9 85 0.97 2.78 ()
30 0.04 0.06 1 1 1.33 3.19 (3)
5 |40 0.06 0.08 1 1 0.99 3.88 (3)
S1 50 0.08 0.14 1 1 1.40 2.52 (h)
60 0.13 0.19 1 1 0.77 2.14 ()
10 20 1.97 6.31 2175 7850 0.30 3.03 (9)
30 8.37 42.79 4821 23000 1.83 4.55 (3)
20 0.02 0.03 1 1 0.75 2.96 (%)
30 0.05 0.08 1 1 0.28 1.02 (%)
5 |40 0.06 0.08 1 1 1.07 3.44 (3)
S2 50 0.10 0.14 1 1 1.42 341 (1)
60 0.12 0.14 1 1 0.96 1.82 (2)
10 20 0.04 0.06 2 10 0.92 4.62 (6)
30 0.07 0.11 2 10 0.74 2.15 ()
20 0.02 0.03 1 1 0.57 1.44 (4)
30 0.03 0.05 1 1 0.16 0.65 (1)
5 |40 0.06 0.09 1 1 0.63 1.23 (2)
S3 50 0.09 0.13 1 1 0.17 0.58 (4)
60 0.13 0.19 1 1 0.53 2.60 (1)
10 20 0.03 0.05 1 1 0.87 577.(1)
30 0.06 0.08 1 1 0.79 2.65 ()

* The figures in parenthesis indicate the numbeinoés the optimal solution is found.

114



Table B.3: a Approximation Scheme Results fow=0.1,5=3,C1

Cl

Solution Time

Number of nodes

(CPU seconds) in B&B Tree %dev
m n Avg. Max. Avg. Max. Avg. Max.
20 0.03 0.05 2 5 0.93 4.39 (7
30 0.04 0.06 1 1 1.80 4.55 (3
5 ] 40 0.08 0.13 1 1 1.78 3.09 (0
S1 50 0.11 0.16 1 1 1.03 3.35(2
60 0.16 0.22 1 1 0.94 225(1
10 20 4.11 14.23 5015 18865 1.05 6.38 (B)
30 5.34 13.56 3232 9360 2.05 6.67 (2
20 0.03 0.03 1 1 0.40 1.49 (5
30 0.05 0.06 1 5 0.95 3.68 (3
5 ] 40 0.07 0.13 1 1 0.54 1.50 (5
S2 50 0.08 0.16 1 1 0.94 247 (1
60 0.15 0.28 1 1 0.78 1.92 (0
10 20 0.04 0.06 3 10 0.93 2.08 (4
30 0.05 0.11 1 1 0.91 3.50 (5
20 0.03 0.05 3 15 0.38 1.57 (6
30 0.05 0.06 2 5 0.67 2.17 (2
5 ] 40 0.07 0.09 1 1 0.57 2.37 (2
S3 50 0.10 0.13 2 10 0.58 1.93 (1
60 0.17 0.22 1 1 0.54 1.97 (1
10 20 0.05 0.11 6 30 1.28 3.23 (2
30 0.07 0.09 2 10 0.66 2.59 (3

* The figures in parenthesis indicate the numbeimés the optimal solution is found.
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Table B.4: a Approximation Scheme Results fow=0.1,s=3, C2

C2

Solution Time

Number of nodes

3)

D

(CPU seconds) in B&B Tree %dev

m n Avg. Max. Avg. Max. Avg. Max.
20 0.03 0.06 2 5 0.93 4.39 (7
30 0.05 0.06 1 1 1.80 4.55 (3
5 ] 40 0.07 0.11 1 1 1.78 3.09 (0
S1 50 0.11 0.16 1 1 1.03 3.35(2
60 0.16 0.22 1 1 0.94 225(1
10 20 3.56 14.84 4459 20068 0.83 4.26(8
30 5.35 13.48 3260 9360 2.05 6.67 (1
20 0.03 0.03 1 1 0.40 1.49 (5
30 0.05 0.06 1 1 0.58 1.70 (4
5 ] 40 0.07 0.13 1 1 0.56 1.50 (5
S2 50 0.09 0.16 1 1 0.94 247 (1
60 0.15 0.28 1 1 0.78 1.92 (0
10 20 0.04 0.06 2 10 0.93 2.08 (4
30 0.06 0.11 1 1 0.91 3.50 (5
20 0.03 0.03 1 1 0.38 1.57 (5
30 0.05 0.08 1 1 0.67 1.27 (1
5 ] 40 0.07 0.09 1 1 0.57 2.37 (2
S3 50 0.10 0.14 1 1 0.58 1.93(1
60 0.17 0.23 1 1 0.54 1.97 (1
10 20 0.04 0.05 1 1 1.03 2551
30 0.06 0.09 1 1 1.00 2.59 (2

* The figures in parenthesis indicate the numbeimés the optimal solution is found.
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APPENDIX C

o APPROXIMATION SCHEME RESULTS FOR a =0.05

Table C.1: a Approximation Scheme Results fow=0.05,5=2,C1

C1
Solution Time Number of nodes %d
(CPU seconds) in B&B Tree odev
m| n Avg. Max. Avg. Max. Avg. Max.
20 0.15 0.50 231 780 0.13 1.32(9)
30 0.08 0.41 68 555 1.13 3.19(3)
5140 0.07 0.16 3 30 0.60] 1.43 (3)
S1 50 0.08 0.13 1 1 1.40] 2.52 (D)
60 0.13 0.17 1 1 0.77) 2.14 (B)
10 20 9.57 30.02 12069 40638 0.30 3.03|(9)
30| 70.31 374.55 37927 194510 0.92 2.38(6)
20 0.03 0.03 1 5 0.75] 2.96 (b)
30 0.04 0.05 1 5 0.25] 1.02 (p)
5140 0.07 0.16 4 40 0.73] 2.24 (3)
S2 50 0.09 0.14 1 1 1.42] 341()
60 0.12 0.16 1 1 0.96] 1.82 (R)
10 20 0.06 0.11 11 30 0.47 1.59 (7)
30 0.09 0.09 5 10 0.74) 2.15(H)
20 0.02 0.03 1 1 0.57] 1.44 (%)
30 0.03 0.05 1 5 0.16/ 0.65 (|7)
5140 0.06 0.08 1 1 0.63] 1.23(R)
S3 50 0.09 0.13 1 1 0.17) 0.58 (#)
60 0.13 0.20 1 1 0.53] 2.60 (1)
10 20 0.04 0.06 4 10 0.49] 1.98 (7)
30 0.06 0.11 2 10 0.79] 2.65 (b)

* The figures in parenthesis indicate the numbermés the optimal solution is found.
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Table C.2: o Approximation Scheme Results fow=0.05,5=2,C2

C2
Solution Time Number of nodes %d
(CPU seconds) in B&B Tree odev

m| n| Avg. Max. Avg. Max. Avg. Max.
20 0.14 0.47 231 780 0.13 1.32(9)
30 0.09 0.41 68 555 113 3.19(3)
5140 0.07 0.16 3 30 0.60] 1.43(¥)
S1 50 0.08 0.14 1 1 1.40] 2.52 ()
60 0.14 0.19 1 1 0.77] 2.14 (B)
10 20 8.69 26.67 11060 29889 0.30 3.03{(9)
30| 72.05 363.84 39634 193840 0.92 2.38(6)
20 0.03 0.03 1 5 0.75] 2.96 (p)
30 0.04 0.06 1 1 0.28] 1.02 (p)
5140 0.07 0.16 4 40 0.73] 2.24 (3)
S2 50 0.09 0.14 1 1 1.42] 341()
60 0.11 0.14 1 1 0.96/ 1.82 (p)
10 20 0.05 0.08 9 10 0.47] 1.59 (7)
30 0.08 0.09 5 10 0.74] 2.15(p)
20 0.02 0.03 1 1 0.57] 1.44 (B)
30 0.04 0.05 1 1 0.16/ 0.65 (J)
5140 0.06 0.08 1 1 0.63] 1.23(R)
S3 50 0.09 0.11 1 1 0.17] 0.58 ()
60 0.12 0.19 1 1 0.53] 2.60 (|)
10 20 0.04 0.06 4 10 0.49 1.98(7)
30 0.07 0.11 2 10 0.79 2.65(p)

* The figures in parenthesis indicate the numbermés the optimal solution is found.
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Table C.3: a Approximation Scheme Results fo=0.05,5=3,C1

C1
Solution Time Number of nodes
(CPU seconds) in B&B Tree %dev
mi| n Avg. Max. Avg. Max. Avg. Max.
20 0.09 0.25 83 295 0.200 1.96 (9)
30 0.12 0.41 96 435 0.68 1.90 (b)
5140 0.08 0.11 6 55 1.78] 3.09 (D)
S1 50 0.11 0.19 1 1 1.03] 3.35(R)
60 0.16 0.22 1 1 0.94| 2.25(1)
10 20 15.26 59.34 19328 71793 0.88 4.26|(8)
30| 130.35 459.88 70288 250250 0.70 1.67|(5)
20 0.03 0.05 1 1 0.40] 1.49 (b)
30 0.05 0.09 1 10 0.58] 1.70 (#)
5140 0.09 0.14 1 1 0.54| 1.50 (b)
S2 50 0.10 0.17 1 1 0.94| 2.47 (1)
60 0.17 0.30 1 1 0.78] 1.92 (P)
10 20 1.06 10.11 837 8304 0.62 2.08 (5)
30 4.82 47.34 1829 18244 0.70 3.50(5)
20 0.04 0.06 2 15 0.38] 1.57 (b)
30 0.05 0.06 1 5 0.67| 2.17 (R)
5140 0.07 0.09 1 1 0.57| 2.37 (B)
S3 50 0.10 0.14 1 10 0.58] 1.93 (L)
60 0.17 0.22 1 1 0.54| 1.97 (1)
10 20 0.14 0.66 42 336 1.28 3.23(2)
30 0.08 0.13 3 10 0.40] 1.37 (%)

* The figures in parenthesis indicate the numbeimaods the optimal solution is found.
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Table C.4: o Approximation Scheme Results fo=0.05,5=3,C2

Cc2

Solution Time

Number of nodes

(CPU seconds) in B&B Tree %dev
mi| n Avg. Max. Avg. Max. Avg. Max.
20 0.08 0.22 83 295 0.200 1.96 (9)
30 0.12 0.38 96 435 0.68 1.90 (b)
5140 0.08 0.13 6 55 1.78] 3.09(P)
S1 50 0.11 0.16 1 1 1.03] 3.35(p
60 0.16 0.22 1 1 0.94] 2.25(1)
10 20| 14.98 60.70 18888 71488 0.88 4.26|(8)
30| 152.60 600.05 70273 249920 0.70 1.67|(5)
20 0.04 0.05 1 1 0.40] 1.49 (p)
30 0.05 0.08 1 1 0.58] 1.70 ()
5140 0.07 0.13 1 1 0.56] 1.50 (p)
S2 50 0.08 0.14 1 1 0.94| 2.47 (L)
60 0.16 0.30 1 1 0.78] 1.92 (D)
10 20 1.12 10.75 1026 10190 0.62 2.08[5)
30 4.90 48.17 2228 22230 0.70 3.50(5)
20 0.03 0.03 1 1 0.38] 1.57 (p)
30 0.05 0.06 1 1 0.67] 1.27 (L)
5140 0.07 0.09 1 1 0.57] 2.37 (P)
S3 50 0.10 0.14 1 1 0.58] 1.93 (1)
60 0.17 0.22 1 1 0.54| 1.97 (L)
10 20 0.10 0.51 36 279 0.96 2.55 ()
30 0.08 0.23 4 10 0.57] 2.18 (#)

* The figures in parenthesis indicate the numbeinoés the optimal solution is found.
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APPENDIX D

a APPROXIMATION SCHEME RESULTS FOR a =0.02

Table D.1: o Approximation Scheme Results fow=0.02,5=2,C1

Cl

Solution Time

Number of nodes

(CPU seconds) in B&B Tree %dev
mi| n Avg. Max. Avg. Max. Avg. Max.
20 0.70 2.20 1225 4210 0.13 1.32(9)
30 2.01 10.28 2266 11000 0.4( 1.06 (6)
5140 0.74 3.08 695 3425 0.46 0.81 ()
S1 50 0.29 1.19 200 1310 0.91 1.28 (IL)
60 0.31 1.39 142 1125 0.56 1.50 (B)
10 20| 14.76 41.45 21072 64122 0.0 0.00(10)
30| 65.80 139.53 33280 70320 0.0 0.00(8)**
20 0.05 0.17 27 202 0.08 0.78 (9)
30 0.05 0.09 3 5 0.10 0.51 (§)
5140 0.61 5.33 285 2825 0.47 1.56 (B)
S2 50 0.17 0.36 22 85 0.58 1.23(1)
60 0.23 0.64 47 285 0.52 1.32(B)
10 20 0.23 1.06 188 1136 0.14 1.59 (P)
30 1.90 17.28 1060 10211 0.32 1.08 (7)
20 0.03 0.03 4 5 0.33 0.97 (§)
30 0.04 0.05 4 15 0.16 0.65 (1)
5140 0.13 0.56 24 220 0.34 0.98 ()
S3 50 0.09 0.11 1 5 0.17 0.58 (4)
60 0.16 0.50 15 145 0.40 1.30(1)
10 20 0.10 0.52 1 1 0.19 0.97 (§)
30 0.11 0.16 1 1 0.53 1.34 (%)

* The figures in parenthesis indicate the numbeinoés the optimal solution is found.

** 2 out of 10 instances could not be solve®&inn¥10,n=30 set.
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Table D.2: o Approximation Scheme Results fow=0.02,5=2,C2

c2
Solution Time Number of nodes
(CPU seconds) in B&B Tree %dev
mij| n Avg. Max. Avg. Max. Avg. Max.
20 0.77 2.47 1219 4220 0.13 1.32 (9)
30 1.99 9.98 2269 11030 0.4( 1.06 (6)
5140 0.76 3.14 695 3425 0.46 0.81 ()
S1 50 0.28 1.11 200 1310 0.91 1.28 (I)
60 0.30 1.34 142 1125 0.56 1.50 (B)
10 20| 20.39 90.38 24519 94889 0.0 0.00(10)
30| 66.59 126.08 32690 70950 0.0 0.00(8)**
20 0.06 0.19 27 205 0.08 0.78 (9)
30 0.06 0.08 3 5 0.11] 0.51(7N)*
5140 0.62 5.50 285 2825 0.47 1.56 (B)
S2 50 0.18 0.42 22 85 0.58 1.23(1)
60 0.22 0.63 47 285 0.52 1.32 (39
10 20 0.22 1.00 212 1334 0.16 1.59 (P)
30 4.76 46.19 3396 33660 0.32 1.08 (7)
20 0.02 0.03 4 5 0.33 0.97 (8)
30 0.04 0.05 3 5 0.16 0.65 (1)
5140 0.12 0.56 24 220 0.34 0.98 (#)
S3 50 0.10 0.14 1 5 0.17 0.58 (4)
60 0.16 0.53 15 145 0.40 1.30 (1)
10 20 0.10 0.45 1 1 0.19 0.97 (8)
30 0.10 0.16 1 1 0.53 1.34 ()

* The figures in parenthesis indicate the numbeinaods the optimal solution is found.

** 2 out of 10 instances could not be solve®&inn¥10,n=30 set.

1 out of 10 instances could notdged inS2 n¥5, n=30 set.
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Table D.3: a Approximation Scheme Results fo=0.02,5=3,C1

C1
Solution Time Number of nodes
(CPU seconds) in B&B Tree %dev
mi| n Avg. Max. Avg. Max. Avg. Max.
20 0.22 0.44 328 785 0.00 0.00(10)
30 1.20 2.66 1567 3995 0.4( 1.40 (B)
5 140 1.52 3.25 1575 3175 0.51 1.49 )
S1 50 0.67 3.95 497 3220 0.44 0.87 (B)
60 0.63 2.16 293 1220 0.62 1.50 (I)
10 20 22.11 66.30 29301 88688 0.0p 0.00(10)
30| 229.36 925.19 75975 254187 0.25 1.52(%)**
20 0.04 0.06 8 28 0.15 0.52 (1)
30 0.53 4.69 351 3445 0.52 1.70 (b)
5140 0.12 0.25 15 95 0.39 1.29 ()
S2 50 0.26 0.69 63 365 0.39 1.03 ()
60 0.29 1.31 50 480 0.56 1.19 (D)
10 20 25.51 234.99 25118 235058 0.52 2.08(6)
30 0.56 2.59 63 477 0.47 1.43(4)p*
20 0.05 0.13 7 40 0.22| 1.24(7)
30 0.08 0.13 4 10 0.39] 0.88(3)
5 140 0.10 0.17 3 15 0.37] 0.94 (2)
S3 50 0.14 0.25 2 10 0.39] 1.04 (2)
60 0.23 0.39 5 35 0.38 1.52(1)
10 20 5.18 50.34 3697 36328 0.38 0.65(4)
30 0.38 2.92 125 1161 0.4( 1.37 (#)

* The figures in parenthesis indicate the numbeinaods the optimal solution is found.

** 4 out of 10 instances could not be solve®&inn¥10,n=30 set.

1 out of 10 instances could notdged inS2 n¥10, =30 set.
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Table D.4: o Approximation Scheme Results fow=0.02s=3, C2

C2
Solution Time Number of nodes
(CPU seconds) in B&B Tree %dev
mi| n Avg. Max. Avg. Max. Avg. Max.
20 0.22 0.47 328 785 0.00 0.00(10)
30 1.27 2.78 1567 3995 0.4( 1.40 (B)
5 140 1.52 2.88 1575 3175 0.51 1.49 )
S1 50 0.67 3.98 500 3220 0.44 0.87 (B)
60 0.66 2.28 294 1220 0.62 1.50 (I)
10 20 24.57 87.20 29557 87619 0.0p 0.00(10)
30| 163.16 452.05 64458 179690 0.J0  0.00(4)**
20 0.05 0.08 9 30 0.15 0.52 (1)
30 0.52 4.77 352 3490 0.52 1.70 (b)
5140 0.11 0.23 15 95 0.41 1.29 (%)
S2 50 0.25 0.66 63 365 0.39 1.03 ()
60 0.29 1.30 50 480 0.56 1.19 (D)
10 20 95.85 924.80 29127 278208 0.52 2.08(6)
30 0.58 2.41 63 480 0.47 1.43(4)p*
20 0.05 0.09 3 5 0.10] 0.64 (8)
30 0.07 0.16 3 5 0.47] 0.88(2)
5 140 0.10 0.20 3 15 0.37] 0.94 (2)
S3 50 0.14 0.25 2 10 0.43 1.04(1)
60 0.26 0.56 5 35 0.38 1.52(1)
10 20 0.75 5.53 554 4207 0.5 1.94 ()
30 0.37 2.66 128 1182 0.4( 1.37 (#)

* The figures in parenthesis indicate the numbeinaods the optimal solution is found.

** 4 out of 10 instances could not be solve®&im=10,n=30 set.

1 out of 10 instances could notdged inS2 n¥10,n=30 set.
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