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ABSTRACT

BIMODAL AUTOMATIC SPEECH SEGMENTATION AND BOUNDARY
REFINEMENT TECHNIQUES

Akdemir, Eren

Ph. D., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Tolga Çiloğlu

March 2010, 130 pages

Automatic segmentation of speech is compulsory for building large speech data-

bases to be used in speech processing applications. This study proposes a bi-

modal automatic speech segmentation system that uses either articulator motion

information (AMI) or visual information obtained by a camera in collaboration

with auditory information. The presence of visual modality is shown to be very

beneficial in speech recognition applications, improving the performance and

noise robustness of those systems. In this dissertation a significant increase in

the performance of the automatic speech segmentation system is achieved by

using a bimodal approach.

Automatic speech segmentation systems have a tradeoff between precision and

resulting number of gross errors. Boundary refinement techniques are used in

order to increase precision of these systems without decreasing the system perfor-

mance. Two novel boundary refinement techniques are proposed in this thesis; a

hidden Markov model (HMM) based fine tuning system and an inverse filtering

based fine tuning system. The segment boundaries obtained by the bimodal
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speech segmentation system are improved further by using these techniques.

To fulfill these goals, a complete two-stage automatic speech segmentation sys-

tem is produced and tested in two different databases. A phonetically rich

Turkish audiovisual speech database, that contains acoustic data and camera

recordings of 1600 Turkish sentences uttered by a male speaker, is build from

scratch in order to be used in the experiments. The visual features of the record-

ings are extracted and manual phonetic alignment of the database is done to

be used as a ground truth for the performance tests of the automatic speech

segmentation systems.

Keywords: speech segmentation,bimodal, audiovisual, boundary refinement, fine

tuning, visemes
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ÖZ

ÇİFT DURUMLU OTOMATİK KONUŞMA BÖLÜTLEME VE SINIR
İYİLEŞTİRME TEKNİKLERİ

Akdemir, Eren

Doktora, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Tolga Çiloğlu

Mart 2010, 130 sayfa

Otomatik konuşma bölütleme, konuşma işleme uygulamalarında kullanılacak

geniş konuşma veritabanlarının hazırlanması için gereklidir. Bu çalışmada ar-

tikülatörlerin konum bilgileri ya da kamera kayıtlarından elde edilen görsel veri-

leri, işitsel verilerle birlikte kullanan çift durumlu otomatik konuşma bölütleme

sistemi önerilmiştir. Görsel verilerden, birçok konuşma tanıma uygulamasında

faydalanılmıştır. Görsel bilgilerin varlığı bu sistemlerin performansını ve gürbüz-

lüklerini arttırmıştır. Bu çalışmada çift durumlu otomatik konuşma bölütleme

sistemi kullanılarak, bölütleme başarımında kayda değer bir artış sağlanmıştır.

Otomatik konuşma bölütleme sistemlerinin çözünürlüğü arttırıldığında sistemin

yaptığı büyük hatalar da artmaktadır. Bu durumun üstesinden gelebilmek

için sınır iyileştirme teknikleri kullanılmaktadır. Bu çalışmada iki ayrı sınır

iyileştirme yöntemi önerilmiştir; Saklı Markov Modeli (SMM) tabanlı ve ters

süzgeçleme tabanlı sınır iyileştirme sistemleri. Çift durumlu otomatik konuşma

bölütleme sistemiyle elde edilen ses sınırları önerilen iki yeni sınır iyileştirme sis-

temi kullanılarak elle işaretlenmiş sınırlarla aralarındaki ortalama mutlak fark
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daha da azaltılmıştır.

Sonuç olarak iki basamaklı bir otomatik konuşma bölütleme sistemi oluşturulmuş

ve bu sistemin başarımı iki ayrı veritabanı kullanılarak sınanmıştır. Ayrıca bu

çalışmada kullanılmak üzere, erkek bir konuşmacının akustik kayıtlarını ve ka-

mera kayıtlarını içeren 1600 cümlelik bir Türkçe görsel-işitsel konuşma veritabanı

oluşturulmuştur. Bu veritabanına ait görüntü kayıtlarının görsel öznitelikleri

çıkarılmış ve ayrıca veritabanının elle fonetik hizalaması yapılarak, veritabanı

otomatik konuşma bölütleme sistemlerinin başarım ölçümünde kullanılmaya hazır

hale getirilmiştir.

Anahtar Kelimeler: konuşma bölütleme, çift durumlu, görsel işitsel, sınır iy-

ileştirme, vizem
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Ekmekçi for their friendship and company, who made my times in the depart-

ment enjoyable and worthy.
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CHAPTER 1

INTRODUCTION

Speech has been the primary source of communication between humans since

the dawn of the civilization. Researchers investigated the production of speech

for centuries, the studies on producing mechanical synthetic speech goes back to

1773, Russian Professor Christian Kratzenstein studied physiological differences

between five sustained vowels (/a/, /e/, /i/, /o/, and /u/) and made some

apparatus to produce them artificially [1, 2], followed by Wolfgang and von

Kempelen in Vienna who build an “Acoustic-Mechanical speech machine” [3].

The first full electrical synthesis device was introduced by Stewart in 1922 [4],

since then the studies on mimicking the human speech production continues.

The history of speech recognition is relatively recent. The subject became a

topic of wide public interest after screening of several blockbuster movies starting

from early 1960’s [2], especially with Stanley Cubrick’s legendary movie “2001: a

Space Odyssey” and HAL (Heuristically programmed ALgorithmic Computer)

the first leading character played by a computer and one of the greatest film

villains of all time. HAL was an intelligent computer that understands the

speech and responds by talking back to the users, that became a symbol of

human and computer interaction for decades, followed by the droids, R2D2 and

C3PO from the Star Wars Universe created by George Lucas. The earliest speech

recognition systems stem back to digit recognition system by Davis et. al., in

Bell laboratories in 1952 [5] and sped up in 1960’s and 1970’s by the Works

of Itakura, Rabiner and Levinson and others [6, 7, 8]. The advances in both

fields are boosted by the introduction of digital computers, and nowadays the

human computer interaction is not a science fiction anymore, becoming a daily
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concept of our lives, already starting to take its place in personal computers,

home entertainment systems, game consoles, cellular phones, etc.

1.1 Automatic Speech Segmentation

State of the art speech processing tasks like speech synthesis and speech recog-

nition strongly rely on corpus-based methodologies and because of this the need

for well prepared speech databases arises. The databases are needed to be la-

beled and accurate and precise alignment between these labels and the speech

waveform should be provided in order to be used in speech processing applica-

tions. The task of matching phonetic units to available acoustic waveform is

called as the segmentation of the speech. The purpose of speech segmentation

(also referred to as phonetic alignment, phonetic segmentation or text to speech

alignment) is to time-align a sequence of phonetic labels and given acoustic data.

The phonetic units to be aligned can be words, syllables, phones, etc. Ultimately,

speech segmentation is the identification of phonetic boundaries in the speech

waveform. In this dissertation phonemes are selected as the phonetic units. A

phoneme is the smallest segment that is distinctive, in the sound system of a

language [9, 10, 11]. Hence, by selecting the phonemes as segmentation units,

the syllable case and word case are also covered. There are numerous applica-

tions in which large quantities of phonetically segmented speech is necessary.

Nowadays, data driven, concatenation based Text to Speech (TTS) systems are

mostly preferred in producing synthetic speech because of their naturalness, and

fluency with respect to other speech synthesis systems. Huge amounts of pho-

netically labeled sentences are required to build a speech synthesizer based on

waveform concatenation. As a result of the growing need for more versatile

speech synthesis systems, which can adapt to new voices, and/or new languages

quickly, with the maximum quality possible, the size of the needed phonetically

aligned databases are multiplied. It is obvious that building large corpora with

high quality as quickly as possible is invaluable for such tasks.

Despite the practical need of dividing the speech waveform into its segments, the

notion that speech is a string of conjoined segments is not completely true. In
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fact, apart from the cases where abrupt changes can be observed in the acoustical

signal, the speech waveform is a continuously changing signal. Considering the

speech waveform alone, isolating it from the meaning, perceptual and linguistic

properties, it would be very difficult to split it to some segments. However, if

the physical realization of the speech is considered including these factors, the

psychological reality behind the notion of speech segments arises. Actually seg-

mentation of the speech is so meaningful to humans, because both the listener’s

perceptual system and the speaker’s utterance planning system operate on sym-

bolic representation which is constrained to be in terms of sequenced discrete

objects [12]. So the speech segmentation process should aim to find the degraded

(in terms of discreteness) outcome of the human speech production system, by

the help of the perceptual and linguistic properties of speech.

Given acoustic data for two consecutive phonemes, there is no unique definition

for the location of boundary between the phonemes since phoneme to phoneme

transitions evolve in a gradual and continuous manner. Manual phonetic align-

ment -where the boundaries between phonetic units are marked by expert human

labelers - is still considered as the most reliable way of obtaining a labeled and

a time-aligned corpus. It is shown that the perceptual quality of the concatena-

tion based synthetic speech obtained by using a manually segmented database is

better than the one obtained by using the same database that is automatically

segmented, if the sizes of both databases are equal.

Manual segmentation of speech would probably be the most favorable method in

corpus development had it not been an extremely time-consuming process and

a considerably expensive one. Labelers have to spend 100-200 times of speech

duration to undertake the process [13, 14]. This is a major concern as the devel-

oping speech systems require larger and larger databases. Furthermore, issues

related to the training of labelers, differences among their levels of expertise,

inter- and intra-labeler inconsistencies of labels, have to be resolved. It should

also be noted that, manually segmented databases are not exactly reproducible

even with the same labelers [14, 15]. These concerns, especially as the database

sizes are multiplied, emphasize the creation of automatic methods of high accu-

racy, consistency and speaker/language independency.
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1.2 Literature Review

Hidden Markov Models (HMM) are widely used in speech recognition. HMM

speech recognizers are also used for automatic speech segmentation in forced

alignment mode [13, 14, 16, 17]. In forced alignment, HMM speech recognizer

is provided with the phonetic transcription of the speech to be recognized, this

reduces the duty of the speech recognizer to determine the phonetic boundaries,

from the optimal state sequence output of the HMM decoder. HMM based

segmentation systems mostly require a small amount of manually segmented

speech database to form initial phoneme models. Instead, linear initialization

is also possible, where the speech utterance is uniformly segmented and each

segment is used to initialize corresponding phoneme model in the utterance.

However, linear initialization is rarely used due to its low performance, except

the compulsory cases, where there is no manually segmented data available.

Both context dependent and context independent HMMs are used for AS. In

[13], the performances of HMM automatic segmentation systems using speaker

independent monophone, speaker dependent monophone, and speaker depen-

dent triphone models are compared against a hand labeled database by using

perceptual tests. In [14], the performances of HMM automatic segmentation

systems, using monophone, diphone, triphone, and tied state triphone models

are compared against each other using hand labeled data as a baseline. It was

shown that monophone HMM models with optimized number of states outper-

formed the others. Perception experiments were also made in order to evaluate

the effect of segmentation errors on the naturalness of synthetic speech. It was

observed that a manually segmented database produces superior results than

the automatically segmented database when the amounts of segmented data

are the same for both cases. However, doubling the automatically segmented

database size (while keeping the manually segmented database size unchanged)

yields better performance of automatic segmentation over the manual one in the

listening tests.

Although HMMAS systems are basically designed to maximize the probability of

the occurrence of the provided waveform for the given phonetic transcription but
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not specifically to identify the segment boundaries, they are the most commonly

used systems for AS. A different approach to automatic speech segmentation

problem is based on the use of dynamic time warping (DTW) technique to align

the given speech waveform with a corresponding synthetic speech waveform with

known segment boundaries. The advantage of this approach is that the need

for a training stage and a training database vanishes, and therefore the system

can be adapted to different languages as long as a speech synthesizer in that

language is available. In [16], a DTW AS system is compared to a conventional

HMM AS system using Gaussian Mixture Models (GMM) to model the state

emission probability density functions, and a hybrid HMM/Artificial Neural

Network (ANN) system. The performances of such systems are usually worse

than HMM AS systems [16].

Automatic speech segmentation systems, as they need more precise positioning

of the phonetic boundaries, mostly operate at higher frame rates (∼200-1000

frame/s) compared to speech recognition systems (∼100 frame/s). As a result,

the speech recognizers used in automatic speech segmentation should have in-

creased frame rates, but this is not always possible. One drawback of increasing

time resolution is the loss in the precision in frequency domain. The use of high

frame rates in a HMM based segmentation system leads to increased number

of gross errors due to decreased phone identification capability of the HMM

speech recognizer, i.e, misrecognitions increase and this increases the number of

gross errors [15]. To overcome this problem, two stage automatic speech seg-

mentation systems are proposed. In the first stage, phonetic boundaries are

estimated with a relatively lower frame rate system, and then these boundaries

are refined through a second process using some spectral measures, or additional

information from the database. This two-stage approach is similar to manual

phonetic segmentation process, in which first boundaries are found roughly, and

then refined by listening and inspecting the spectrogram, waveform, etc. Several

methods for boundary refinement were proposed in the literature, using statisti-

cal models, average phone durations, acoustic discontinuities, average deviations

from hand labeled boundaries, etc. [15, 18, 19, 21, 22, 23].

The performances of the AS systems are generally evaluated by comparing them
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with the manually segmented boundaries. The mean of the absolute values of

the differences between the boundaries found by the AS system and marked by

the manual segmenters, called average absolute boundary error, is the mostly

used measure [21, 24]. Another method is measuring the accuracy, by defining

the accuracy as the percent of boundaries where the magnitude of the difference

between the automatically found boundary and manually segmented boundary

is smaller than a threshold (typically 10-20 ms.) [15, 25, 26]. Conducting percep-

tual listening tests over the synthetic speech obtained by using the automatically

segmented database is another way of assessing the performances of AS systems.

Although, this method depends on the opinions of the listeners, hence is not an

objective method of assessment, it is used in some studies as a performance

measure [13].

1.3 Outline of the Thesis

A bimodal AS proposed in this thesis in order to explore the possible benefits

of the incorporation of visual data with the speech data. The suggested system

is tested on two different databases. Several audiovisual feature vectors are pro-

posed and tested on both databases. Afterwards, two new boundary refinement

techniques are proposed in order to further decrease the absolute error of the

boundaries estimated by the bimodal AS system.

The first stage is a HMM (Hidden Markov Model) automatic speech segmenta-

tion system, build by using HTK speech recognition toolkit [27]. The system

is actually a speech recognizer that is used in forced alignment mode, by using

the available phonetic transcriptions of the acoustic data. The HMM automatic

segmentation system is used in the experiments for the assessment of various

audiovisual feature vectors. The experiments run by using the MOCHA-TIMIT

database, incorporating the articulator motion information (positions of the up-

per lip, the lower lip and the jaw) and the acoustic data in various ways, are

presented in Chapter 2.

A phonetically rich Turkish audiovisual database is collected and prepared to
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fulfill the need of a richer audiovisual speech database, which has more visual

information available and has greater number of recordings that arises during

the experiments on MOCHA-TIMIT database. The presence of such a database

also enables the extension of the idea of audiovisual segmentation to Turkish as

well. Several audiovisual feature vectors are proposed using the speech and the

camera recordings of the database. Similar experiments to the ones in Chapter

2 are conducted to test the benefits of adding the visual information to acoustic

information. The preparation and collection of the Turkish audiovisual database,

the experiments on this database using various audiovisual feature vectors, and

several methods for using the different boundary sets estimated by using different

audiovisual features (decision fusion) are discussed in Chapter 3.

In Chapter 4 two algorithms are proposed for the refinement of the boundaries

estimated by the automatic speech segmentation systems suggested in Chapter

2 and 3. One of the proposed algorithms uses a modified HMM topology in

order to model different boundary types. The HMM boundary models are used

for the precise detection of the boundary locations. The second one introduces

a distance measure between consecutive speech segments, by using glottal in-

verse filtering of the speech. The refined boundaries are marked as the instants

where the suggested distance measure between the consecutive speech segments

is maximum. The overall results found by the refinement of the boundaries from

the first stage systems are presented to conclude the chapter.

Chapter 5 concludes the thesis with a summary of the work done, and the discus-

sions over the results achieved by the proposed automatic speech segmentation

systems.

1.4 Contributions

The major contributions of this thesis can be summarized as follows:

• Bimodal Automatic Speech Segmentation: Although the use of vi-

sual modality had been benefited widely in speech recognition systems, its

potential in automatic speech segmentation had not been investigated yet.
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In this thesis, the electromagnetic articulograph data and camera data

were used in collaboration with speech in order to inspect the possible im-

provements in the automatic segmentation results. The experiments had

shown that the performance of the AS system increases significantly with

the addition of information from visual modality.

• Turkish Audiovisual Speech Database: Databases are compulsory

for developing speech processing applications. A rich database in terms

of available acoustic and visual data and in terms of diversity of the vi-

sual data was needed for the studies in this thesis. There exists no publicly

available, and rich enough audiovisual database, and also no publicly avail-

able Turkish audiovisual speech database in the literature. A phonetically

rich audiovisual speech database is build in order to be able to test the

audiovisual automatic speech segmentation system proposed.

• Different Approach to Decrease Intralabeler inconsistency in man-

ual segmentation of speech databases: Nearly all speech processing

systems requires labeled and time-aligned databases. The time-alignment

process is usually handled by manual segmenters. Besides the time con-

sumingness and expensiveness of the process, interlabeler and intralabeler

inconsistency is a major problem. A boundary class wise manual segmen-

tation approach is suggested and used in the manual segmentation of the

Turkish audiovisual speech database in order to decrease the intralabeler

inconsistency problem.

• Two New methods for Boundary Refinement: Boundary refinement

is a process that tries to increase the precision and the accuracy of auto-

matic speech segmentation systems. By using the segmentation results

from first stage, acoustical properties of speech and some statistical in-

formation, the locations of the boundaries are fine tuned. Two different

boundary refinement techniques that can also be used mutually are sug-

gested in this thesis.

– HMM based boundary refinement: HMM’s are widely used in

speech processing applications and they are known to have a very
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high phone identification capacity with the sacrifice of low time res-

olution. In this thesis, a new HMM topology is suggested to be used

for boundary modeling. The proposed HMM topology can work in

high time resolution and also be used in a context dependent manner

by using the advantage of having the phonetic transcriptions of the

acoustic data.

– Glottal Inverse filtering based boundary refinement: Glottal

inverse filtering is used in various speech processing applications with

the aim of identification of glottal input waveform from the available

speech waveform. In this thesis, an algorithm that uses a newly de-

fined distance measure between successive speech segments is built

using inverse filtering. Boundary refinement is done by using this

algorithm by locating the boundary where the distance between suc-

cessive speech segments is found to be maximum.
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CHAPTER 2

BIMODAL AUTOMATIC SPEECH SEGMENTATION

2.1 Introduction

Speech production and perception are bimodal processes [30, 31] . Both acous-

tic and visual stimuli are produced during speech production, and at the other

side, both visual and acoustic data are processed by the listeners to understand

speech. The studies showing the benefit of visual data to speech intelligibility

in noise was introduced by Sumby and Pollack in 1954 [32]. Since then, bimodal

speech recognition systems aim to emulate multimodal structure of human per-

ception in order to improve performances of audio-only systems.

The bimodality of the speech perception is also demonstrated by the famous

experiment performed by McGurk and McDonald in 1976 [33]; when viewing

the video of a person uttering /ga/, and listening the sound /ba/, most of the

listeners perceives that the uttered sound is /da/. This phenomenon showing

the bimodal nature of speech perception is called McGurk effect.

The presence of visual information helps the listeners by providing complemen-

tary information to the audio data, by helping the speaker localization and by

providing speech segmental information, and by providing voice activity detec-

tion [34, 35]. Some phonemes that are similar in acoustic domain can be distin-

guished easily in visual domain. For example bilabial consonants /p/, /b/, and

/m/ can be distinguished easily from their velar and alveolar counterparts /k/,

/d/, and /n/ in visual domain, as distinctive place of articulation information

can be obtained. The movement of the jaw also provides segmental information
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about speech. Jaw syllabic oscillations and movement of the head, is highly

correlated to acoustic data and proved to improve human speech perception

[36, 37, 38].

The visual information had been used with speech in various human machine

interaction systems. The help of visual modality is used in: person recog-

nition/verification, laughter/smile detection, voice activity detection, emotion

recognition, speech recognition etc. There are a number of studies in bimodal

speech recognition, also referred as speechreading (uses both audio and visual

data) and lipreading (uses visual data only) [39, 40, 41, 42, 44, 45, 46, 47, 48, 49].

It has been found that speech recognition benefits from the use of visual modal-

ity especially in noisy environments [39, 40]. However, to the best of the author’s

knowledge, there is no work published on bimodal speech segmentation, except

the one published by Mak and Allen in 1994 [50]. In their study, the velocity

of the lips is used with acoustical data in order to increase the performance

of the segmentation system in noise. The visual segment boundaries are de-

cided by peak picking and thresholding the velocity of the lips and they are

fused with acoustic segmentation in order to improve segmentation accuracy in

noise. The results are tested on a database that consists of only 5 sentences and

segmentation errors are reduced by 10.4% when SNR is lower than 15 dB.

The studies presented in this chapter aim to investigate the possible improve-

ments that can be achieved by the inclusion of visual data to automatic speech

segmentation. Publicly available MOCHA-TIMIT database is used for this pur-

pose. The visual information is fused to acoustic information in feature level in

various ways, and the features obtained are used as input to a HMM automatic

speech segmentation system build by using HTK speech recognition toolkit [27].

The inclusion of the information from the visual modality is investigated in this

chapter. The organization of the chapter is as follows; some background in-

formation about speech production, phonemes, phones and phoneme types are

given in Section 2.2. The MOCHA-TIMIT database used in the experiments

is introduced in Section 2.3.1, the proposed audiovisual automatic speech seg-

mentation system is described in Section 2.3.2, the feature vectors that are used
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in the experiments are presented in Section 2.3.3. The experimental results

are listed and investigated regarding different phoneme classes in Section 2.4.

Finally, conclusion about the experiments is made in Section 2.5.

2.2 Speech Production

Speech signal is produced in the form of pressure waves emanating from the

speaker’s mouth to the ear of the listener. Despite the nonstationary character-

istics, the speech is accepted to be composed of sound segments, which share

some common acoustic and articulatory properties with one another for a short

interval of time (Section 1.1) [58]. Each of these segments has a positioning/state

of the vocal folds and vocal tract articulators; tongue, lips, teeth, velum and jaw.

The lungs are the source of energy for producing speech, generating the air flow

through the vocal tract during exhalation of the air. The air flowing through the

larynx and vocal tract creates the pressure necessary to produce speech. The

almost constant pressure from the lungs is not able to produce sound itself, as a

change in the pressure is needed for sound to be produced. The pressure change

is provided by the vibration of the vocal cords or by the turbulence created by

some constriction point on the vocal tract. The lung pressure vibrates the vocal

cords to produce periodic excitation for voiced speech or creates a random noise

source, by the compression of the air flow on some point/points in the vocal

tract. The excitation from the vocal folds or some point in the vocal tract, is

shaped by the vocal tract and radiated from the lips. This can be viewed as

a filtering operation, where the vocal tract acts as filter for the sound source

which can be periodic or noisy and aperiodic or both. The periodic excitation

case caused by the vibrations of the vocal folds, results in voiced speech that

is quasi-periodic (almost periodic). Aperiodic excitation case is caused by the

constriction of the air flow at some point/points of the vocal tract and results

in noisy, unvoiced speech.
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2.2.1 Vocal Folds

Vocal folds are two masses of flesh ligament and muscle, which stretch between

the front and the back of the larynx. They are free to move at the back and

sides of the larynx, attached to two cartilages, that controls the position and

the tension of the vocal folds in collaboration with the muscles within the folds.

They can abduct (move apart) and adduct (move together) during phonation.

Vocal folds have three primary states: breathing, voiced and unvoiced. The

glottis is wide open and the muscles within the vocal folds are relaxed in breath-

ing state. The air from the lungs is free to flow with no significant obstruction

by the vocal folds. However in production of the voiced speech, the air flow is

obstructed by the folds. The vocal folds are tensed up and come close together,

and the pressure from the lungs causes self-sustained oscillations of the vocal

folds. The unvoiced state is similar to breathing state, but the folds are brought

closer together and muscles are tenser than the breathing state. In this state

vocal folds create turbulence which is called aspiration [59].

2.2.2 Vocal Tract

The vocal tract acts as a linear filter that filters the input from the vocal folds

and/or other parts of the vocal cavity. The resonant frequencies of the vocal tract

are called formants. The vocal tract amplifies the energy of the source around the

resonant frequencies, while attenuating energy around antiresonant frequencies.

The vocal tract can be modeled as a number of concatenated cylinders of varying

cross-sectional area, but, in fact the actual shape is much more complex [60]. By

moving the articulators the shape of the vocal tract is changed, which changes

the frequency response of the system and the resonance frequencies. The shape

of the vocal tract has the most decisive role on the produced sound.
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Figure 2.1: Vocal tract and vocal folds.

2.2.2.1 Articulators

Articulators are the structures in the vocal tract that can be moved to reshape

the tubular form of the vocal tract. The tongue and lips are the most important

articulators in terms of producing different number of different sounds produced,

but velum and larynx also have important roles in speech production [58] (Figure

2.1).

• Lips: The most visible articulators are the lips. Lips can change the width

(closure) and shape (rounding) of the end of the vocal tract. Closure is

usually caused by the movement of the jaw and lower lip, while rounding

is caused by the lip muscle which surrounds the lips.
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• Teeth: The upper incisors are used to produce labio-dental (/f/,/v/) or

dental (/t/,/d/ etc.) obstruents, by contacting to the lips, the tongue or

lower incisors. They can be visible during the articulation of these sounds

most of the time.

• Tongue: Tongue is composed of 12 muscle pairs and some passive tissues.

It has ability to change shape of the vocal tract by changing its config-

uration, making contact with various parts of the oral tract, or creating

narrow cross sections to cause constriction of the air flow. Most of the

different vocal tract shapes are accomplished by different positioning of

the tongue.

• Velum (Soft Palate): is a valve composed of muscles that separates oral

cavity and nasal cavity. Velum is lowered and the air flow through nasal

cavity is allowed during the articulation of nasal consonants. It is closed

and blocks the air flow otherwise.

• Larynx: The primary function of the larynx is controlling the airflow

through the vocal tract but it can also be lowered or raised to change the

length of the vocal tract.

2.2.3 Phonemes and Phones

The notions of phoneme and phone are closely related and often used inter-

changeably. A phoneme is the smallest distinctive unit in the sound system of a

language [9, 10, 11]. The word distinctive should not be confused with distinct.

The distinctive refers the ability of a phoneme to make distinguish between

words. The phonemes are called units because they are the smallest parts that

must be substituted to make a different word. For example, the word kar in

Turkish is represented by the phonemes /k/-/a/-/r/. One need to change one of

the phonemes to change the meaning, the smaller changes can not change the

meaning of the word.

On the other hand, a phone is the smallest identifiable unit found in a stream

of speech that is able to be transcribed with a phonetic symbol. In other words
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phones are the acoustic realizations of speech and phonemes. However the re-

alization of a phoneme can be as different phones, the definition of allophones

emerges here. Allophones are different phones that are the acoustic realizations

of one phoneme. An example to this is the difference in the sounds correspond-

ing to the letter t in the English words tea and trip [11]. The different phones in

these words can be represented as [tv] and [tr]. This set of phones corresponding

to phoneme /t/ is called the allophones of phoneme /t/. Note that, substituting

the allophones with each other does not change the meaning, even though the

word can sound a bit weird. Phonemes are usually represented between slashes

and phones are usually represented between brackets by convention. One exam-

ple of allophones in Turkish can be given as; different realizations of the phoneme

/e/ that are called as closed /e/ as pronounced in the word gece and open /e/

as pronounced in the word eş, these two phones have the representation of [é]

and [e] respectively. These are the allophones of the phoneme /e/. However the

similar sounds in the words kar and kel that are represented by k in Turkish

alphabet are represented by different phonemes /k/ and /c/ in Turkish phonetic

alphabet, respectively [61].

2.2.4 Phoneme Groups

The phonemes can be categorized in various ways. The realization of a phoneme

arises from a combination of the states of the vocal folds and the vocal tract.

The phonemes can fall into different categories by whether the vocal folds are

vibrating or not; by different tongue positions; by different lip shapes; by whether

the velum is open or not, etc. As the phonemes are language specific, the number

of phonemes changes from language to language.

2.2.4.1 Vowels

Vowels are formed by the quasi-periodic input from the vocal folds, with an open

vocal tract allowing the air flow. Vowels have three subgroups according to the

position of the tongue; front, central or back. The sound is also quasi-periodic

as the input. One “period” of the speech waveform is called the pitch period. In
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Figure 2.4 time domain and frequency domain characteristics of the vowel /e/

are presented.

Figure 2.2: Time domain and frequency domain representations of /e/-/n/-/e/
triphone.

2.2.4.2 Nasals

The nasals are a subgroup of consonants. They are formed by the quasi-periodic

input from the vocal folds, with an open vocal tract allowing the air flow, such

as the vowels. The factor that causes the distinction from the vowels is the

opening of the velum. This allows the flow of the air from the nasal cavity, and

changes the vocal tract response immediately by introducing zeros to the transfer

function. Because of this, the nasals have low resonances and these resonances

have high bandwidths. Again the waveform is quasi-periodic, dominated by low

first formant (Figure 2.2).
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Figure 2.3: Time domain and frequency domain representations of /z/-/e/ di-
phone.

Figure 2.4: Time domain and frequency domain representations of /S/-/e/ di-
phone.
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2.2.4.3 Fricatives

Fricatives are formed by the noisy input generated by the turbulent airflow

caused by the constriction at some point on the vocal tract. They are divided to

two subcategories according to the state of the vocal folds during articulation.

In voiced fricatives vocal folds are tense and vibrate during the articulation and

cause the airflow causing the noise to be periodic, resulting a periodic/noisy

speech waveform (Figure 2.3). In unvoiced fricatives vocal folds are relaxed and

the resultant speech waveform is completely noisy (Figure 2.4).

As the place of the input is closer to the lips, the length of vocal tract that

shapes the input is shortened, and also the cavity behind the constriction point

produces anti-resonances, the vocal tract transfer function consist of high fre-

quency resonances. The resonance frequencies are determined by the place of

constriction.

2.2.4.4 Plosives

Plosives are formed by an impulsive source caused by the burst generated by

accumulated airflow behind a total constriction in the vocal tract. In voiced

plosives vocal folds are tense and vibrate during the accumulation of the air

pressure. During this step although the vocal tract is closed a low amplitude and

low frequency speech waveform is observed at the output, due to the propagation

of the input through the walls of the vocal tract (Figure 2.5). In unvoiced plosives

the vocal folds are relaxed and no output is observed during the accumulation

step (Figure 2.6). The time difference between the burst and the voicing before

or after the burst is called the voice onset time. The value of voice onset time

changes from plosive to plosive, it is negative for voiced plosives and positive for

unvoiced plosives, by definition.

The plosives are composed of three parts; closure, burst and aspiration (Figure

2.6). Closure is the state of air flow accumulation behind the constriction.

The burst stage follows the closure by the release of the accumulated airflow,

and in some plosives the aspiration state fallows with continuing noisy airflow.
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Aspiration state may not be observed in some plosives (Figure 2.5).

Figure 2.5: Time domain and frequency domain representations of closure and
burst states of the voiced plosive /b/.

2.2.4.5 Liquids and Glides

Liquids and glides are semi-vowels that show the vowel-like characteristics with

vibrating folds. These are dynamic and transitional sounds mostly occur before a

vowel or between vowels, showing transition between preceding and the following

vowel. Because of this transitional characteristic the boundaries of the semi-

vowels are very hard to be located.

2.2.4.6 Affricates

Affricates are articulated like fricatives except the plosive like closure state at

the beginning of the articulation. The examples are /tS/ as in the word chew

in English and as in the word çam in Turkish.
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Figure 2.6: Time domain and frequency domain representations of closure, burst
and aspiration states of the unvoiced plosive /t/.

2.3 The use of Articulator Motion Information in Automatic Speech

Segmentation

Speech signal is formed by glottal excitation of the human vocal tract, composed

of articulators, which shape and modify the sound passing from the articulator

system, as mentioned in Chapter 2.2. The state of the articulator system (or the

frequency response) is hidden in the speech waveform. Some phonemes can be

represented exactly by one articulator configuration, some phonemes can be rep-

resented with more than one articulator configuration, and some phonemes can

be represented by the transition of articulator configuration from one state to

another. However acquisition of the state of the articulator system is not an easy

task. The methods include mounting receiver coils inside the speaker’s mouth

as in Electromagnetic Articulograph method [28, 51], Magnetic resonance imag-

ing (MRI) [47], or X-ray imaging [48]. The position and the formation of the

lips are relatively easier to acquire by using a digital camera and they are more

appropriate to be used in practical systems. Starting with the pioneering work
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by Petajan [52], visual information has begun to be used in speech recognition

systems, as it increases the robustness of the system to acoustic noise and cross

talk among speakers [39, 40, 53, 54, 55, 56]. A major advantage of using visual

information is a result of the complementariness among acoustic and visual data

[34, 41, 57]. These systems use three types of features; shape based features,

appearance based features or both. Shape based features include; horizontal

and vertical apertures of the lips, the angle of the lips [39], parameters of ellip-

soid models fitted to lips, positions of the sensors placed on the speakers face.

Appearance based features include transform domain features found by trans-

formation of the visual data with wavelets, DCT etc. [42]. As a first step to

investigate using visual articulator positions in automatic segmentation a HMM

AS system is build using the publicly available MOCHA-TIMIT database [28].

2.3.1 The MOCHA-TIMIT Database

The MOCHA-TIMIT database, [28], consists of recordings of 460 English sen-

tences from TIMIT database, each uttered by a male and a female speaker. The

database consists of ;

• Acoustic data at 16kHz

• Laryngograph data at 16kHz

• Electromagnetic Articulograph (EMA) data (Figure 2.7) 500Hz sample

rate including vertical and horizontal positions of

– upper incisor

– lower incisor

– upper lip

– lower lip

– tongue tip

– tongue blade

– tongue dorsum

– velum
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The plots of the acoustic signal, laryngograph data, vertical positions of upper

lip and lower lip for the sentence “is this seesaw safe” from the database is

shown in Figure 2.8. In this research, among the available articulator positions,

the ones that can also be obtained visually are selected, as a result, only the

vertical and horizontal positions (horizontal positions in EMA data is composed

of advancement/retraction and not left/right.) of upper lip and lower lip and

vertical position of jaw were used in order to aid an HMM based AS system.

The database also includes .lab files, that supplements the time alignment be-

tween the speech waveforms and the phonetic transcription of each utterance.

The phonetic transcriptions contain 44 phonemes (/@/, / @@/, / a/, / aa/, /

ai/, / b/, / ch/, / d/, / dh/, / e/, / ei/, / eir/, / f/, / g/, / h/, / i/, / i@/, /

ii/, / iy/, / jh/, / k/, / l/, / m/, / n/, / ng/, / o/, / oi/, / oo/, / ou/, / ow/,

/ p/, / r/, / s/, / sh/, / t/, / th/, / u/, / uh/, / uu/, / v/, / w/, / y/, / z/, /

zh/)1, and silence and breath.

2.3.2 The Method

The speech segmentation system was build using HTK speech recognition toolkit

[27]. 420 sentences of MOCHA-TIMIT database, uttered by the male speaker,

were used to train the system, and 40 of them were used for testing. The feature

vectors are computed at 100 Hz with an analysis window of length 25 ms. 3

state, left-to-right, continuous Gaussian density HMMs were used for modeling.

Context independent HMMs are used as they are accepted to outperform con-

text dependent HMMs in the literature [13, 14]. Monophone acoustic models

for the 44 phonemes and silence and breath, are trained by initially using the

segment boundaries given in the database, as monophone models are proven to

produce better results for AS [14]. The HMM phoneme models are initialized

by using the phoneme boundaries supplemented in .lab files, using the HINIT

tool of HTK. HINIT accepts the prototype HMM as a generator of speech vec-

tors. Supplied training examples are treated as the output of the HMM whose

parameters are to be estimated. Thus, if the state that generated each vector

1Phonetic symbols are described in Appendix A
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Figure 2.7: Placement of the Electromagnetic Articulograph coils in MOCHA
Database [43]
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Figure 2.8: Acoustic signal, vertical positions of upper lip and lower lip for a
speech file from database. The bottom panel shows the segment labels and
segment boundaries.

in the training data was known, then the unknown means and variances could

be estimated by averaging all the vectors associated with each state. Similarly,

the transition matrix could be estimated by simply counting the number of time

slots that each state was occupied. After initial models are set, the training was

accomplished in an iterative manner by using Baum-Welch algorithm until the

settlement of segment boundaries, HEREST tool of HTK. The test utterances

were decoded using the Viterbi algorithm and forced alignment method. The

segment boundaries so obtained are compared against the boundaries produced

by manual segmentation.

Baseline automatic segmentation results were obtained by using audio feature

vector only. Audio feature vector is formed by using Mel frequency cepstral

coefficients (MFCCs) as they yield good representation and discrimination of

speech, and widely used in speech processing applications. The feature vectors

are computed at 100 Hz with an analysis window of length 25 ms. 13 MFCCs

(including energy coefficient), and their first and second order derivatives are
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extracted. The audio feature vectors were used as a benchmark for evaluating

the performances of the systems that use articulator motion information (AMI).

The incorporation of Articulator motion information (AMI) was experimented

by designing different feature vectors that include AMI in different forms in

addition to MFCCs. EMA records the positions of the articulators at 500 Hz

sampling rate. The noisy EMA data were low pass filtered, and then down-

sampled by 5 to synchronize with the 100 Hz extraction rate of MFCC vectors.

Downsampling operation does not cause any problems as the EMA data is con-

fined over very low frequencies (no significant frequency components beyond 10

Hz.).

In using AMI, the derivatives of lip and jaw positions were also utilized. Ar-

ticulator position data from the MOCHA seems to be noisy, this makes the

derivatives of the positions very noisy too. To prevent the noise the deriva-

tives are found by fitting 10th degree polynomials to 250 point segments of the

position data and then taking the derivative of the polynomials analytically.

2.3.3 Formation of Feature Vectors

The articulator position features are combined with MFCC vectors. In the ex-

periments, they were either substituted for some of the acceleration coefficients

or they were appended to the MFCC vector. The location for the best substi-

tution was experimentally found as the 38th position in MFCC 0 D A vector.

Modified feature vectors of each speech file are stored as .mfc files in the HTK

environment. The reason of experimenting with substitution of AMI data, in

addition to appending them to the MFCC feature vectors, is the possibility of

constraints on the size of the feature vectors. Some AS systems may require

fixed sized feature vectors (39-element MFCC vectors are commonly used).

The effect of integration of the lip and jaw positions to the automatic segmen-

tation was investigated with the following feature vector forms.

1. MFCC 0 D A: This is the baseline system. Feature vector contains 12
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MFCCs and 1 energy coefficient, their derivatives, and second derivatives.

(39 elements)

2. MFCC 0 D: Feature vector contains 12 MFCCs and 1 energy coefficient,

and their derivatives. (26 elements)

3. MFCC 0 D A-uly-lly: Vertical positions of upper lip (uly) and lower lip

(lly) are substituted at the 37th and the 38th positions of MFCC 0 D A.

4. MFCC 0 D A-lly: Vertical position of lower lip is substituted at the

38th position of MFCC 0 D A.

5. MFCC 0 D A-uly: Vertical position of upper lip is substituted at the

38th position of MFCC 0 D A.

6. MFCC 0 D A-lly-dlly: Vertical position of lower lip and its derivative

are substituted at the 37th and the 38th positions of MFCC 0 D A.

7. MFCC 0 D A-uly-lly-derivatives: Vertical positions of upper lip and

lower lip and their derivatives are substituted at the 35th-38th positions

of MFCC 0 D A.

8. MFCC 0 D A+lly: Vertical position of lower lip is appended to the

MFCC- 0 D A as the 40th element.

9. MFCC 0 D A+uly: Vertical position of upper lip is appended to the

MFCC 0 D A as the 40th element.

10. MFCC 0 D A+uly+lly: Vertical positions of upper lip and lower lip

are appended to the MFCC 0 D A as the 40th and the 41st elements.

11. MFCC 0 D A+lly+dlly: Vertical position of lower lip and its deriva-

tive are appended to the MFCC 0 D A as the 40th and the 41st elements.

12. MFCC 0 D A+uly+duly: Vertical position of upper lip and its deriva-

tive are appended to the MFCC 0 D A as the 40th and the 41st elements.

13. MFCC 0 D A+(uly-lly): Difference between vertical positions of upper

lip and lower lip are appended to the MFCC 0 D A as the 40th element.
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14. MFCC 0 D A+lly+llx: Vertical and horizontal positions of lower lip

are appended to the MFCC 0 D A as the 40th and the 41st elements.

15. MFCC 0 D A+distlips: Euclidian distance between lips is appended

to the MFCC 0 D A as the 40th element.

16. MFCC 0 D A+lly+distlips: Vertical position of lower lip and Euclid-

ian distance between lips is appended to the MFCC 0 D A as the 40th

and 41th elements.

17. MFCC 0 D A+jy: Vertical position of jaw (lower incisor) is appended

to the MFCC- 0 D A as the 40th element.

2.4 Experimental Results

2.4.1 Automatic Segmentation Results

Segmentation experiments were performed as described in Section 2.3.2 using

the above 17 types of feature vectors. In each case, segmentation errors are

computed by comparing the automatically found segment boundaries to those

found manually. The AMI contributions using the feature vectors of items 3-17

above are evaluated by comparing their individual results to those obtained by

using the MFCC 0 D A vector (item 1), the results are given in Table 2.1.

The average absolute error for segmentation boundary is found to be 9.9 ms

for the baseline system (MFCC 0 D A). In our experiments, AMI features were

substituted in place of some of the acceleration coefficients (items 3-7). To have

an idea about the contribution of acceleration coefficients alone, an experiment

with MFCC 0 D is performed. It is observed that the acceleration coefficients

have vital importance as the performance of the system falls dramatically (av-

erage absolute error increases by 18%) when they are not used.

There are 5 cases (3-7) where AMI features are substituted in place of accelera-

tion coefficients. First, the vertical positions of upper lip and lower lip (uly, lly)

are substituted in place of two consecutive acceleration coefficients. All possi-
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Table 2.1: Average Absolute Segment Boundary Errors for Different Feature
Vectors

# Feature Vector Average
Absolute
Error
(ms)

Variance
of Error
(X10
−4)

Percent Decrease
in Absolute Error
Relative to the Seg-
mentation by Using
MFCC 0 D A

1 MFCC 0 D A 9.9 2.09 -
2 MFCC 0 D 11.5 3.36 -18.2
3 MFCC 0 D A-uly-lly 9.1 1.59 8.1
4 MFCC 0 D A-lly 9.0 1.93 6.1
5 MFCC 0 D A-uly 9.7 1.67 2.0
6 MFCC 0 D A-lly-dlly 9.2 1.63 7.1
7 MFCC 0 D A-uly-lly-

derivatives
9.7 2.27 2.0

8 MFCC 0 D A+lly 8.9 1.51 10.1
9 MFCC 0 D A+uly 9.6 1.60 3.0
10 MFCC 0 D A+uly+lly 8.9 1.59 10.1
11 MFCC 0 D A+lly+dlly 9.3 1.65 6.1
12 MFCC 0 D A+uly+duly 10.7 1.89 -8.1
13 MFCC 0 D A+(uly-lly) 9.2 1.64 7.1
14 MFCC 0 D A+lly+llx 9.1 1.84 8.1
15 MFCC 0 D A+distlips 9.1 1.60 8.1
16 MFCC 0 D A+lly+distlips9.1 1.84 8.1
17 MFCC 0 D A+jy 9.4 1.67 5.1

bilities were experimented, and the system performed best when 37th and 38th

locations are used for substitution. In this case average absolute error is 9.1

ms, corresponding to 8.1% error reduction. Then, the vertical position of either

upper lip or lower lip is substituted into the feature vector individually. After a

series of experiments 38th location produced the best results for both upper lip

and lower lip position. Substitution of lly parameter or uly parameter results in

an average absolute error of 9 ms or 9.7 ms, respectively. This shows that the

information provided by the vertical motion of lower lip yields a contribution

much more significant than that of the vertical motion of the upper lip.

The time derivatives of the vertical positions of upper lip and lower lip were also

considered as components of the feature vector. Two substitution experiments

were performed in this context. Substitutions of uly, lly and their derivatives

in place of 35th to 38th locations yield an average absolute error of 9.7 ms.

Without using derivative information, better results were obtained by using lly
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alone compared to using lly and uly together. Along this track, experiments

are done by substituting lly and its derivative to 37th and 38th locations and

obtained an average absolute error of 9.2 ms.

Substitution experiments show that the largest reduction in average absolute

error is achieved by using lly in place of the second derivative of 12th MFCC.

It should be noted that in all substitution experiments usage of vertical lip

positions improved the automatic segmentation performance. However, since lly

alone yields the best result, it is not worth removing the acceleration coefficients

to use the other AMI features

As a next step, the experiments are carried out by forming the new feature

vectors by appending the data from lip positions to the MFCC feature vector of

length 39. uly and lly, alone and together, one of them and its derivative, their

difference, forward position of lower lip (llx), and Euclidian distance between lips

alone and with lly and vertical position of jaw (jy) are appended to MFCC 0 D A

in different experiments (Items 8-17). The feature vectors so formed have 40 or

41 elements. As a result of these experiments, it is seen that the segmentation

performance is improved in all cases except the addition of uly and its derivative

(item 12). The best performance with an average absolute error of 8.9 ms (10.1%

reduction compared to segmentation with MFCC 0 D A) is obtained by using

only lly. The minimum error variance is also observed in this case. Adding uly

together with lly does not change the average absolute error compared to adding

lly alone, however it increases the variance of error. The second best average

absolute error performance (9.1 ms) is obtained in three cases: one of them

is the addition of Euclidian distance between lips, another one is the addition

of lly with the Euclidian distance between lips, and finally the addition of lly

and llx, stated in order of increasing error variances. Appending the difference

between vertical positions of upper lip and lower lip resulted an average absolute

error of 9.2 ms which is the third best result. The fourth best result is obtained

by the addition of lly and its derivative with an average absolute error to 9.3

ms. It is interesting that this error value is close to that observed when lly

and its derivative are substituted in MFCC 0 D A. Just as it is in the case

of the substitution experiments, the least improvement is obtained by the uly
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parameter also in the addition experiments with an average absolute error of

9.6 ms (which is also close to 9.7 ms average absolute error observed in the

substitution experiments using uly parameter). The inclusion of vertical position

of the jaw reduced the average absolute error to 9.4 ms. This is probably due

to the syllabic oscillations of the jaw. It should be noted that this is a slightly

inferior result compared to that obtained by using lower lip. The movement of

the jaw is also included in the movement of lower lip. The results show that the

movement of the lower lip provides more information about the boundary point.

Appending the lly parameter, forming a feature vector of length 40 and append-

ing the lly and uly parameters together, forming a feature vector of length 41

reduced the average absolute error by 10% to 8.9 ms, the minimum average abso-

lute error achieved in the experiments. So if the automatic segmentation system

to be used allows feature vectors of any size one of these feature vectors can be

used. But, if the system is restricted to use a fixed size of 39, MFCC 0 D A-lly

can be considered as the candidate feature vector to get a performance close to

the best one (the performance differs approximately by 1% in the experiments.).

2.4.2 Analysis of Segmentation Errors According to Phoneme Classes

2.4.2.1 Acoustic Phoneme Classes

The segmentation results using feature vectors 8-17 were investigated in a phoneme

class based manner. For each class, the feature vector yielding the minimum

average absolute error is found and compared to the baseline system. The

phonemes are clustered into 5 classes as described in Section 2.2.4 regarding

their acoustical properties, as;

The phonemes are grouped acoustically as follows;

• Vowels: /aa/, /iy/, /i/, /@/, /ii/, /oo/, /ei/, /ou/, /@@/, /uu/, /ai/,

/o/, /e/, /eir/, /a/, /i@/, /u/, /oi/, /w/, /ow/, /uh/, /v/, /y/;

• Plosives: /b/, /p/, /d/, /t/, /g/, /dh/, /th/, /ng/, /k/;
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• Fricatives: /f/, /s/, /sh/, /z/, /zh/, /h/, /ch/, /jh/;

• Nasals:/m/, /n/;

• Liquids: /r/, /l/;

The affricates are included in the fricatives class and the glides are included in

the vowels class. Silence is considered as the sixth class. The average absolute

errors of class to class boundaries are calculated and the percent deviations of the

average absolute errors from those of the baseline system are given in Table 2.2.

For example, the feature vector resulting in the minimum average absolute error

and the change in the average absolute error for vowel-silence boundary is shown

in the cell of the vowel-row and silence-column; 8th feature vector resulted the

minimum average absolute error, the baseline average absolute error for vowel-

silence boundary is 9.6 ms and it becomes 7.6 ms when MFCC 0 D A+lly is used,

which corresponds to approximately 21% decrease in the average absolute error.

The values in parentheses are the number of occurrences of that boundary class

in the training set and in the test set, respectively. The feature vectors including

horizontal positions of upper lip and lower lip are used in the experiments for

the sake of completeness. However it is hard to find horizontal positions using

visual information, because of this the next best result without using horizontal

positions are also given in Table 2.2.

It is observed that the segmentation performances on all boundary classes start-

ing with a vowel are more or less increased. It is seen that relatively larger

number of training and testing samples are available for those cases. In par-

ticular, vowel-vowel and vowel-liquid transitions of the articulator system are

dominated by the movement of inner articulators but not by the movement of

the lips. These boundaries are very hard to label for even manual labelers. For

those transitions at which the lip motion is not so salient, a significant contribu-

tion of lip motion features is not expected. This is validated by the small gain

in performance (3.6% and 4.9%, respectively) for vowel-vowel and vowel-liquid

boundaries.
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Table 2.2: In each cell, the first line is the number of the feature vector yielding
minimum absolute average error, and the second line is the percent decrease
with respect to baseline for each acoustic class to class boundary and the 3rd
line is the numbers of training and test data. For each cell, row id is the left
phonetic class type and the column id is the right phonetic class type.

Silence Vowel Plosive Liquid Fricative Nasal

1 11 8 1 1 11
Silence - 12.5% 33.5% - - 23.0%

(0/0) (116/15) (204/15) (18/0) (66/8) (16/2)
8 17 13 13 10 14-8

Vowel 20.7% 3.6% 7.5% 4.9% 9.8% 45.4-
40.6%

(50/10) (1140/117) (1715/107) (615/66) (1111/78) (936/74)
1 10 1 9 15-10 8

Plosive - 15.5% - 4.1% 38.7-
28.1%

75%

(114/7) (1922/118) (363/16) (430/18) (320/16) (60/4)
1 16-10 1 1 1 1

Liquid - 18.2-
17.5%

- - - -

(58/4) (952/75) (92/8) (9/2) (61/6) (14/0)
14-10 15-10 17 17 1 11

Fricat-
63.7-
57.5%

16.7-9.7% 45.8% 24.2% - 14.3%

ive (148/14) (948/77) (448/28) (89/6) (131/9) (115/9)
10 14-10 13 1 15-10 9

Nasal 25.9% 39.8-
36.2%

33.0% - 20.0-
16.7%

19.3%

(50/5) (489/50) (387/15) (25/3) (190/16) (27/3)

The phoneme class couples that have sufficient data and accompanied by a

significant change in the performance (more than 10% increase or decrease) are

selected and related comments are given below.

The 45.4% increase in the performance for vowel-nasal boundary can be seemed

to be surprising, as it is known that for this boundary class the most dominant

change in the articulator system is the opening of the nasal cavity. However,

it is observed that this change in the articulator system is accompanied by

lip movements when ending or starting a vowel (Figure 2.9). Similarly, 39.8%

increase in segmentation accuracy for nasal-vowel boundaries can be justified

accordingly.
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Figure 2.9: Acoustic waveform (upper panel) and the vertical position of lower
lip (lower panel) for a-n and n-o boundary.

The biggest increase in the segmentation accuracy is observed in plosive-nasal

boundary (75% decrease in average absolute error.) where there are only 4

test samples. It is seen that the segmentation accuracy for the nasal-plosive

boundary is also increased by 33.0% as evaluated over 15 test samples. An

example of /p/-/n/ boundary is shown in Figure 2.10.

In fricative-silence boundaries average absolute error is decreased by 63.7%,

that is the second best degradation in average absolute boundary achieved by

adding lly feature. The fricative-silence boundaries in the database are mostly

consisting of /z/-/sil/ and /s/-/sil/ boundaries. Examining these boundaries, it

is observed that the position of the boundaries mostly coincide with local minima

of the vertical position of lower lip. An example of this is given in Figure 2.11.

One can expect a similar performance for silence-fricative boundary as well, but

baseline feature vector results in the best average absolute error for this case.

This result may not be so well-built as there are only 8 test samples for this

boundary class. Examining these samples it is observed that the degradation in

the performance is because of the 29% increase in the average absolute error for

/sil/-/h/ samples (3 of 7 samples) where the lip motion is weak.

For those boundary types that have richer training and testing datasets (so

that related results are more reliable), such as vowel- fricative, fricative-vowel,

plosive-vowel, liquid -vowel, fricative-plosive, nasal-plosive, nasal-vowel, vowel-
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Figure 2.10: Acoustic waveform (upper panel) and the vertical position of lower
lip (lower panel) for p-n boundary.

nasal boundaries, average absolute errors are decreased by 9.8% to 40.6% (45.4%

with llx). On the other hand, examining Table 2.2 one can see that the class

to class boundaries, at which AMI features do not reduce the average absolute

errors, have insufficient test and training data ((114,7), (66,8), (115,9), (61,6)

(92,8), (89,6)). So it can be stated that for the boundaries that have enough

training and test data there is not a significant decrease in segmentation accuracy

due to the use of lip motion information.

2.4.2.2 Visual Phoneme Classes

The phoneme classes used in Section 2.4.2.1 were formed using the acoustical

properties of phonemes. In an attempt to use visual information for segmen-

tation, it is reasonable to investigate the performance of AMI with respect to

visual phoneme classes. The vowels are divided into two classes as: rounded

vowels and unrounded vowels. The consonants are divided into 3 classes as: (1)

bilabial and labio-dental, (2) dental and alveolar, (3) palatal, velar and glottal

consonants. The resulting visual phoneme classes are;
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Figure 2.11: Acoustic waveform (upper panel) and the vertical position of lower
lip (lower panel) for z-silence boundary.

• Rounded Vowels: /oo/, /ou/, /uu/, /o/, /oi/, /ow/, /uh/, /u/, /w/,

/v/;

• Unrounded Vowels: /aa/, /iy/, /i/, /@/, /ii/, /ei/, /@@/, /ai/, /e/,

/eir/, /a/, /i@/, /y/;

• Bilabial and Labio-dental consonants: /b/, /p/, /m/, /f/;

• Dental and Alveolar Consonants: /t/, /dh/, /th/, /n/, /s/, /sh/, /z/,

/zh/, /r/, /l/, /d/;

• Palatal, Velar and Glottal Consonants: /h/, /ch/, /jh/, /g/, /ng/,

/k/;

The method used in Section 2.4.2.1 is repeated for these new classes. The results

are given in Table 2.3.

It is observed that, similar to the results in Section 2.4.2.1, at the class to class

boundaries with sufficient training and test data the average absolute bound-

ary error is decreased. There are only three exceptions to this; silence-dental
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Table 2.3: In each cell, the first line is the number of the feature vector yielding
minimum absolute average error, and the second line is the percent decrease
with respect to baseline for each visual class to class boundary and the 3rd line
is the numbers of training and test data. For each cell, row id is the left phonetic
class type and the column id is the right phonetic class type.

Silence Rounded Unrounded Bilabial
and

Dental
and

Palatal
glottal

vowels vowels labio-
dental

alveolar and velar

consonants consonants consonants

1 12 11 8 1 1
Silence - 19.2% 12.3% 17.4% - -

(0/0) (37/7) (79/8) (48/5) (190/12) (66/8)
Rounded 11 8 12 14-8 1 8
vowels 86.9% 18.6% 13.3% 52.9-

45.3%
- 13.1%

(8/2) (135/15) (374/34) (196/15) (727/58) (171/7)
Unrounded 10 17 8 17 15-10 10
vowels 25.4% 17.0% 40.5% 12.2% 22.9-

21.6%
18.3%

(42/8) (418/48) (213/20) (567/40) (209/172) (624/33)
Bilabial
and

10 11 10 1 10 9

labio-
dental

66.6% 26.2% 15.9% - 19.0% 31.6%

consonants (31/3) (206/10) (583/45) (86/4) (345/21) (30/3)
Dental
and

14-10 10 15-10 11 10 8

alveolar 28.4-
25.3%

38.2% 21.2-
17.7%

4.7% 10.4% 16.4%

consonants (302/24) (573/40) (2235/183) (334/20) (1269/74) (243/10)
Palatal
glottal

1 8 8 17 1 1

and velar - 33.2% 11.6% 9.4 - -
consonants (37/3) (242/11) (472/31) (50/2) (333/14) (7/1)

and alveolar consonants boundary, rounded vowels-dental and alveolar conso-

nants boundary and palatal glottal and velar consonants- dental and alveolar

consonants boundary. In all three cases, the boundaries end with a dental or

alveolar consonant. This does not sound strange since the lip motion is not

so dominant at these boundary types. The biggest decrease in the average ab-

solute error is achieved in rounded vowels-bilabial and labio-dental consonants

boundary (52.9%). This is reasonable as the lips motion is very definite for
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this boundary type. There are also considerable decreases in unrounded vowels-

unrounded vowels (40.5%) and dental and alveolar consonants-rounded vowels

(38.2%) boundaries.

Table 2.4: Average Absolute Segment Boundary Errors

System Average Error(ms)

Baseline system 9.90
AMI included using acoustical
classes (without horizontal posi-
tions)

8.35 (15.6%)

AMI included using acoustical
classes

8.24 (16.8%)

AMI included using visual classes
(without horizontal positions)

8.26 (16.6%)

AMI included using visual classes 8.12 (18.0%)

2.4.3 The use of AMI in Segmentation in a Phoneme Class Based

Manner

Lastly, after analyzing the boundary errors in a phoneme class based manner, for

a particular boundary, it is considered to use the feature vector that performs

best for that type of boundary. In most of the practical cases the text tran-

scription of the acoustic data to be segmented is available. Hence knowing the

boundary types for which AMI improves segmentation accuracy, it may be pos-

sible to use relevant AMI features for these boundaries. This can be considered

as a ROVER like approach [62]. However since the boundary type information

is available decision mechanism for the type of feature to be used is simpler. The

results for both acoustic and visual phoneme classes are given in Table 2.4. In

the table results are given for the feature vectors both including and excluding

vertical positions of the lips.
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2.5 Discussion

The concept of bimodal automatic speech segmentation is introduced in this

chapter. The introduction of the visual modality to speech segmentation was

achieved by using the positions of visible coils, which are the three coils on

the upper lip, lower lip and jaw, from the MOCHA-TIMIT database. The

EMA recordings include vertical and horizontal-forward positions of these coils

alongside the acoustic recordings of the 460 English utterances.

The articulator positions and their derivatives were embedded into the MFCC

feature vector in different ways. Experiments have shown that using only the

vertical position of the lower lip together with 13 MFCCs and their first and

second derivatives results in the best performance. The contribution of using

AMI was examined with respect to the phoneme classes around the phoneme

boundaries. The examination is done in two different ways; first using acous-

tic properties of the phonemes and second using the visual properties. The

phonemes are divided into 5 phoneme classes, regarding their acoustic proper-

ties; vowels, plosives, liquids and glides, fricatives, nasals. It is observed that

including AMI decreases the AABE in almost all of the boundary classes in

which sufficient training and test data exist. Degraded segmentation accuracy

was observed in the cases of insufficient training and/or test data. Further-

more, in some of these boundary classes where there is no apparent lip motion,

this does not imply that one has to expect degradation of segmentation accu-

racy because of insignificant lip motion, since nondegraded segmentation results

are observed for the boundaries of weak lip motion when richer training and

test data are available (i.e., vowel-vowel, liquid/glide- vowel, vowel- liquid/glide

boundaries.). Then, the phonemes are divided into 5 phoneme classes regarding

their visual properties; (1) rounded vowels, (2)unrounded vowels, (3) bilabial

and labio-dental consonants, (4) dental and alveolar consonants, (5) palatal, ve-

lar and glottal consonants. The observations were similar to the previous case.

The largest decrease in average absolute boundary error is achieved in rounded

vowels-bilabial and labio-dental consonants boundary.

Considering the availability of boundary type information in the segmentation
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process, the results of AMI based segmentation are used selectively depending on

the type of boundary class. For a particular boundary, it is considered using the

feature vector that performs best for that type of boundary. Average absolute

error decreases by 15.6% when acoustic classification of the phonemes is used,

and average absolute error decreases by 16.6% when visual classification of the

phonemes is used. The average absolute error can be decreased by 16.8% and

18.0% respectively, if horizontal positions of the lips are available.

The studies in this chapter constituted a primary step proving the benefits of

integrating the visual modality to automatic speech segmentation process. The

promising results achieved by using MOCHA-TIMIT database had directed the

course of this thesis to seek for improvements in automatic speech segmentation

using more visual information and a richer database, which leads to the studies

that will be presented in Chapter 3
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CHAPTER 3

AUDIOVISUAL AUTOMATIC SPEECH

SEGMENTATION

3.1 Introduction

Bimodal automatic speech segmentation is investigated in Chapter 2. By inte-

grating the positions of only the upper lip and the lower lip, a decrease of 18% in

average absolute boundary error (AABE) is achieved. Although that study had

shown that the visual modality could provide very beneficial information for the

segmentation process, this idea should be extended by integrating different vi-

sual features that can be extracted from the visual images of the speaker during

the utterance of the speech. In order to be able to test the idea of audiovisual

AS, a phonetically rich audiovisual database is needed. Although there are some

public databases available, they are more or less have the same size with the

MOCHA-TIMIT database, also there is no Turkish audiovisual speech database

that is publicly available. The lack of a public Turkish audiovisual database

limits the research in audiovisual speech processing applications for Turkish.

Because of this, the collection and preparation of a Turkish audiovisual speech

database had been the first step of the studies in audiovisual automatic speech

segmentation. After the recording of audiovisual data, manual segmentation

had to be done in order to have a ground truth data for the AS experiments.

Visual data is also prepared to be used in AS system by extracting several shape

based and appearance based visual feature vectors. Following the preparation

of the database procedures similar to the ones used in Chapter 2 are applied in

order to assess the benefits of the integration of the visual modality to automatic
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speech segmentation.

This chapter is organized as follows. In Section 3.2 the collection and prepara-

tion of the Turkish audiovisual speech database is represented. The preparation

of the text corpus, the properties of the acoustic and visual data is presented

in Section 3.2.1 and Section 3.2.2. Manual segmentation of the database and

the proposed method to decrease the intralabeler inconsistency in manual seg-

mentation are discussed in Section 3.2.3. After that, the detection and tracking

of the markers and normalization process are explained in Section 3.2.4 and

Section 3.2.5. In Section 3.3 the visual features to be used in the experiments

are introduced. The audiovisual AS system is proposed and several audiovisual

feature vectors that are used in the experiments are introduced in Section 3.4.1

and in Section 3.4.2. The improvements achieved by using this system are rep-

resented in Section 3.4.3, Section 3.4.4 and Section 3.4.5. The discussion about

the Chapter is made in Section 3.5.

3.2 Database Preparation

3.2.1 Preparation of the Text Corpus

The first step of building a speech database is the preparation of the text corpus

that will be uttered by the speakers. A phonetically rich and balanced text cor-

pus is compulsory for a useful speech database. A text corpus that is composed

of 1600 Turkish sentences is prepared.

The sentences in the text corpus are annotated using the Speech Assessment

Methods Phonetic Alphabet (SAMPA) for Turkish [64]. SAMPA notation has

42 phonemes (including eight vowels with length mark) for representing Turkish

sounds 2. Text corpus contains 85266 bigrams. The statistics and the sufficiency

of the database is observed with respect to acoustic and visual phoneme classes,

concerning the work done in Chapter 2. The numbers of the bigrams in means

of acoustic phoneme classes in the database are shown in Table 3.1 and the

2Phonetic symbols are described in Appendix B
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numbers of the bigrams in means of visual phoneme classes in the database are

shown in Table 3.2.

The phonemes are grouped acoustically as follows;

• Vowels: /a/,/ax/, /e/, /ex/, /I/, /Ix/, /i/, /ix/, /o/, /ox/, /O/, /Ox/,

/u/, /ux/, /y/, /yx/ ;

• Plosives: /b/, /p/, /d/, /t/, /g/, /gj/, /k/, /c/;

• Fricatives: /f/,/h/,/v/,/s/,/S/,/z/,/Z/,/tS/,/dZ/;

• Nasals: /m/, /n/, /N/;

• Liquids and glides: /G/,/r/,/L/,/j/,/l/,/w/;

The database seems to have ‘sufficient’ number of occurrences for most of the

bigram classes for either acoustic or visual classification cases. Only bigram

classes starting with a rounded vowel and ending with an unrounded vowel or a

rounded vowel have lower number of occurrences with respect to other bigram

classes for the visual classification case. For example, most of the visual bigram

classes have thousands of occurrences in the text corpus.

Table 3.1: The number of occurrences of acoustic bigram classes. Row id denotes
the phonetic class type of the starting phoneme and the column id denotes the
phonetic class type of second phoneme.

Vowels Plosives Fricatives Nasals Liquids-glides

Vowels 10088 8284 5919 7765 9223
Plosives 11905 923 335 287 795

Fricatives 6227 952 189 204 439
Nasals 5604 1779 821 278 569

Liquids-glides 7587 1754 594 575 508

The phonemes are grouped according to visual properties as follows;

• Rounded vowels: /o/, /ox/, /O/, /Ox/, /u/, /ux/, /y/ ;
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Table 3.2: The number of occurrences of visual bigram classes. Row id denotes
the visual class type of the starting phoneme and the column id denotes the
visual class type of second phoneme.

Rounded Unrounded Bilabial and Dental and Palatal glottal
vowels vowels labio-dental alveolar and velar

consonants consonants consonants

Rounded
vowels

113 132 759 2482 4279

Unrounded
vowels

501 758 3683 9660 13695

Bilabial
and labio-
dental
consonants

1173 5012 201 348 561

Dental and
alveolar
consonants

2580 9531 929 1978 2088

Palatal,
glottal
and velar
consonants

3352 13123 1319 2497 2850

• Unrounded vowels: /a/, /ax/, /e/, /ex/, /I/, /Ix/, /i/, /ix/;

• Bilabial and labio-dental consonants: /p/ , /b/, /m/, /f/, /v/;

• Dental and alveolar consonants: /t/, /d/, /s/, /z/, /n/, /tS/, /Z/;

• Palatal glottal and velar consonants: /dZ/, /g/, /gj/, /h/, /k/, /c/,

/l/, /r/, /S/ /j/;

3.2.2 Acoustic and Visual Data

A Matlab program with a graphical user interface is developed for collecting the

database. The user articulates the sentence displayed the screen after pressing

the “record/stop” button, and stops the recording upon finishing the sentence.

The recording can be repeated, or can be continued to the next sentence by

pressing the “next” button. A screenshot of the program is given in Figure 3.1.
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Figure 3.1: Graphical User Interface for the Recording of the Database

The utterances are recorded in a sound proof recording cabin (Figure 3.2), using

Edirol UA-1000 audio capture device. The audio files are recorded at 16 kHz

with 16-bit resolution. The cabin is illuminated with two white light bulbs on

two sides to decrease the shadows on the speaker’s face and have clear visual

records. The visual data is recorded at 30 fps at 800×600 resolution using a

commercially available Philips SPC1300 webcam.

12 blue markers are placed on the speaker’s face (Fig 3.3, Fig 3.4). The place-

ment of the markers enables easier and more accurate detection of the position

and the shape of the lips, chin and the speaker’s head. Three markers (on the

nose and cheeks) are used to calibrate the data, i.e., compensate the head move-

ments, change in the position of the speaker etc. There are 8 markers located on

the lips and one marker at the chin to capture the movement of the chin. The

visual data are recorded at 30 frames/s, with a resolution of 800×600 pixels, and

stored as image files (.jpg). Our previous research using the MOCHA database

had shown that, the highest frequency component of the visual articulators is

about 10 Hz, so data acquisition rate of 30 fps is adequate.
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Figure 3.2: The soundproof recording cabin and the recording environment.

To sum up, the database consists of 1600 Turkish sentences uttered by a male

speaker. The duration of the acoustic data is approximately 160 minutes, and

visual data is composed of approximately 23700 frames (800×600 pixels). For

each sentence, one .wav file and the corresponding image files (.jpg) are stored in

a directory named as the speaker’s name concatenated with utterance number.

3.2.3 Manual Segmentation of the Database

The audiovisual speech database should be manually segmented because of the

need for a ground truth for the automatic speech segmentation system to be

developed. Besides the inevitable disadvantage of being time consuming and

expensive, manual segmentation also suffers from the inconsistency problem.

Interlabeler inconsistency is the difference between the boundary marks of dif-

ferent segmenters for the same boundaries and intralabeler inconsistency is the
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Figure 3.3: A Series of Frames Captured

variation of the boundary points of similar boundary types that are marked by

the same segmenter at different times. It is not possible to get rid of the in-

consistency problem in manual segmentation, but it is tried to be minimized

by setting some ground rules describing where the boundary point should be

marked between two phonetic units. A widely used approach in the literature

is mentioned in [63]. Two principal rules used in this approach are:

Rule 1) The boundaries that can be found unambiguously by visual (speech

waveform/spectrogram) and audio inspection (listening) are marked directly.

Rule 2) For the ambiguous cases, speech is listened at a window placed on the

left and on the right side of the hypothesized boundary position and the window

is iteratively extended until each phonetic unit is perceived, respectively.

In our work, we extended these rules to decrease the interlabeler and intralabeler

inconsistency further. The additional rules for marking the boundary points

manually are listed below;

• Change in the source type: The type of the input/excitation differs for

different phoneme types. The excitation is periodic for voiced phonemes,

impulsive for plosives and noisy for fricatives. If a change in the type of

the excitation is detected at the speech waveform, the point where the

change occurred is marked as the boundary point (Figure 3.5).

• Instant change at the vocal tract shape: The vocal tract has the

function of shaping the input from the source to form the speech waveform.

The change in the vocal tract is not discrete; it changes from phoneme to

phoneme in a gradual manner. However, at some phoneme to phoneme
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Figure 3.4: Markers on the Speaker’s Face
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Figure 3.5: A vowel-fricative boundary (/e/-/S/). The red line shows the man-
ually marked boundary location.

boundaries an instant change at frequency domain and/or time domain can

be observed. Vowel-Nasal boundaries are good examples for this. At these

boundaries, the opening of the vellum is instantaneous and this introduces

new zeros to the vocal tract response function immediately, which changes

the output waveform significantly. At these type of phoneme couples,

the boundary point should be marked as the instant where the significant

change in the time and/or frequency domain is observed (Figure 3.6).

• Ambiguous cases: At some of the boundary types, especially at the ones

between similar phonemes, the change in the characteristics of the speech

waveform is gradual. This makes the detection of the boundary point very

difficult. At these type of boundaries rule 2 stated above is used to delimit

the location of the boundary point. After the margins for the possible

location of the boundary are found, each quasi-periodic speech segment

between glottal closure instants (GCIs) are considered. The point where

the ‘difference’ between two consecutive quasi-periodic segments is maxi-
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Figure 3.6: A vowel-nasal boundary (/e/-/n/). The red line shows the manually
marked boundary location.

mum is marked as the boundary point (Figure 3.7). Perhaps these types of

boundaries are the ones, where interlabeler, and intralabeler differences are

maximum, and also where the automatic segmentation systems produce

greatest errors.

In addition to applying the rules stated above, the manual segmenters should

have extensive knowledge about the phonemes, phoneme types, manner of ar-

ticulation and place of articulation of different phonemes and speech production

process in order not to get confused at some ambiguous boundaries. Two senior

electrical and electronics engineering students are lectured about basic speech

concepts such as speech production, phoneme types, place of articulation and

manner of articulation of different phonemes and speech segmentation, for a one

month period for this purpose. Afterwards, the trainees manually segmented a

75 sentence training set together, under supervision of the writer of this the-

sis and then, they are allowed to handle the marking of the boundaries at the

database. The supervision is continuously provided during the segmentation of

the database. Each manual segmenter marked 43000 of the 86000 boundaries
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Figure 3.7: A vowel-liquid boundary (/e/-/j/). The red line shows the manually
marked boundary location.

in the database. The initial phonetic boundaries are found using HTK in order

to speed up the segmentation process and increase the accuracy. Some exam-

ples about locating the boundary at different boundary types will be presented

below;

• (Vowel/Nasal/Liquid)-Plosive boundaries: The plosives are com-

posed of three parts; closure, burst, and aspiration. The lips are closed

when articulating a plosive sound in order to increase pressure in the mouth

to be able to produce a burst. The existence of closure state makes it easy

to detect the starting of plosives. For the unvoiced plosives (/p/, /t/, /k/)

at the closure part the amplitude of the speech waveform decreases almost

rapidly, that point should be marked as the point. In some cases some

sinusoid-like oscillations which seem to be very different from the previous

voiced phoneme can be observed after the closure of the lips, in that case

the boundary should be marked as the starting of these oscillations (Figure

3.8.a).
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Figure 3.8: Vowel-plosive boundaries. The red lines show the manually marked
boundary locations.

The oscillations after the closure of the lips are observed from beginning

to end of the closure part of the phoneme for the voiced plosives (/b/, /d/,

/g/). For most of the cases the transition is significant, the high frequency

component vanishes almost immediately. In that case the transition point

should be marked as the boundary point (Figure 3.8.b). Unlike the other

voiced phonemes to plosive boundaries, at nasal-(voiced plosive) bound-

aries the transition may not be observed clearly in some cases as the shape

of the waveform is simple and lack the high frequency components for both

nasals and burst phase of the voiced plosives (Figure 3.9). In that case

the procedure for the ambiguous boundaries which was described above

should be used to mark the boundary point.
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Figure 3.9: A nasal - plosive boundary

3.2.3.1 Boundary Class-wise Segmentation

Two major problems of manual speech segmentation are; it is a very time con-

suming process (It is known that it takes 100-200 times of real time to manually

segment and align a database [13, 14].), and interlabeler and intralabeler incon-

sistency. To overcome interlabeler inconsistency problem the number of manual

segmenters was kept as minimum (2 manual segmenters.) and the segmenters

are trained together in a one month long training. The author of this thesis had

been present as a supervisor during the segmentation process and the interac-

tion between the segmenters about the ‘challenging boundary types’ had been

encouraged during the manual segmentation process.

To increase the intralabeler consistency of the manual segmenters and to speed

up the manual segmentation process, a new concept of boundary class wise man-

ual segmentation is proposed. The phonemes are divided into 5 acoustic classes

as described in Section 3.2.1. After marking a boundary, the user interface makes

the manual segmenter mark similar boundaries until marking the boundaries be-

longing to that type of bigram class is finished. For example, when the manual

segmenter starts to mark the boundary between phonemes /a/ and /b/, he or she

continues to mark the boundaries between these phonemes until segmentation

of all /a/-/b/ boundaries in the database are done. When manual segmentation
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of /a/-/b/ boundaries is finished, the program continues with another phoneme

couple belonging to /class(a)/-/class(b)/ (i.e. /vowel/-/plosive/). Dealing with

the same type of boundaries repeatedly, will help the user on making similar

and more consistent decisions about the locations of the boundary points, and

also focusing in similar boundaries will speed up the segmentation process. Al-

though there exists no accepted method to measure intralabeler inconsistency,

depending on our experience on manual segmentation, we can strongly claim

that intralabeler consistency was increased significantly, using this approach.

This approach also decreases the time needed for manual segmentation of the

database. To the best of author’s knowledge, an approach like this is not used

before in manual segmentation process.

A Matlab program with a graphical user interface is prepared for boundary class

based manual segmentation process. A screen capture of the manual segmenta-

tion user interface is shown in Figure 3.10.
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3.2.3.2 Interlabeler Inconsistency

Each of the two manual segmenters aligned one half of the database, their work

included 75 utterances in common. The inconsistency between these segmenters

is obtained using the manual segmentation results of these utterances. The mean

error, average absolute boundary error (AABE) and variance of the error be-

tween the manually segmented boundaries belonging to different segmenters are

shown in Table 3.3. AABE is used as a metric to compare different segmentation

results in this study. The comparison can be made between different manual

segmentation results to find the interlabeler inconsistency or between manual

segmentation results and automatic segmentation results to assess the perfor-

mance of corresponding AS system. The calculation of the AABE is shown in

equation 3.1 for interlabeler inconsistency case and in equation 3.2 for perfor-

mance measurement of an AS system. The AABE between the manual segme-

ters, and the mean and the variance of the boundary differences between them

are presented in Table 3.3.

InterlabelerAABE =
1

Nbint

Nuttint∑
j=1

Nj∑
k=1

|ts1(j, k)− ts2(j, k)| (3.1)

AABE =
1

Nb

Nutt∑
j=1

Nj∑
k=1

|tm(j, k)− ta(j, k)| (3.2)

Where,

Nj=Number of phonetic boundaries in jth utterance

Nutt=Number of all utterances

Nuttint=Number of utterances segmented by both segmenters

Nb=Number of phonetic boundaries in the database

Nbint=Number of phonetic boundaries segmented by both segmenters

ts1(j, k)= kth manual segmentation boundary at the jth utterance marked by

the first segmenter
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ts2(j, k)= kth manual segmentation boundary at the jth utterance marked by

the second segmenter

tm(j, k)= kth manual segmentation boundary at the jth utterance

ta(j, k)= kth boundary found by AS system at the jth utterance

Nb =
Nutt∑
j=1

Nj (3.3)

Table 3.3: The mean error, average absolute error and variance of the error
between the manual segmentation results of the two segmenters.

Mean Average absolute error Variance
2.43ms 9.09ms 4.56e-004

3.2.4 Detection and Tracking of the Markers on the Speaker’s Face

12 blue markers were located on the speaker’s face during the recording of the

visual data in the database. The position information of these markers enables

more accurate and more precise extraction of the visual features. These positions

will be used in the extraction of both shape based visual features and appearance

based visual features which will be discussed in Section 3.3.

The color of the markers is selected as blue in order to allow a chroma key

approach to detect the positions of the markers, as blue is the most unlikely

color to be found on a human face unlike red and yellow. The detection of

the blue pixels is needed in order to find the positions of these markers. The

identification of the colors can be tricky in RGB format as different illumination

conditions result in completely different RGB values for the same color. The

images at RGB format are converted to YCbCr formatted images in order to get

rid of the illumination problem [65, 66]. In YCbCr format, Y is the luminance

value, Cb is the difference from blue, Cr is the difference from red (Equations

3.4,3.5,3.6).
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Y = Kr ∗R′ + (1−Kr −Kb) ∗G′ +Kb ∗B′ (3.4)

Cb = 1/2 ∗ (B′ − Y ′)/(1−Kb) (3.5)

Cr = 1/2 ∗ (R′ − Y ′)/(1−Kr) (3.6)

Where R′, G′, B′ are the normalized values of R,G,B, and Kb and Kr are nor-

malization parameters usually taken as 0.114, 0.219.

The resulting luma (Y) value will then have a nominal range from 0 to 1, and

the chroma (Cb and Cr ) values will have a nominal range from -0.5 to +0.5.

The reverse conversion process can be readily derived by inverting the above

equations.

The Y values are omitted in order to get rid of the problems can be caused

by different lighting conditions. The target candidates for the positions of the

blue markers are found as the pixels, where the difference between Cb and Cr

is maximum. Thresholding must be applied to the difference values in order to

find the connected regions that have the highest Cb-Cr difference. Thresholds are

decided iteratively for each image until the number of target candidates found

is between 15 and 20. Note that, these target candidates include the positions

of the markers and a few false alarms. A tracking algorithm should be used in

order to eliminate the false alarms and track the true targets.

After the detection process, the markers should be tracked within following

images. Auction algorithm [67] is used for tracking the blue markers. The al-

gorithm uses previous tracks (T1[n − 1], T2[n − 1], ..., T2[n − 1]), and the track

candidates for current frame (C1[n], C2[n], ..., CN [n], N > 12), and finds the map-

ping M (Equation 3.7) that chooses the current tracks (T1[n], T2[n], ..., T12[n])

by minimizing the total distance between previous tracks and possible current

tracks. A screen shot of the tracking user interface is shown in Figure 3.11.

The positions of the markers are found for all of the images in the database.

The position tracks for each uttered sentence are saved to a .mat file in the

corresponding directory for later use.
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[
T̂1[n], T̂2[n], ..., T̂12[n]

]
= M

([
C1[n], C2[n], ..., CN [n]

])
(3.7)

C =
12∑
k=1

|T̂k[n]− Tk[n− 1]|2 (3.8)

Figure 3.11: User interface for the tracking of the markers on the user’s face

3.2.5 Normalization of Tracking Results

The visual data are recorded by a still camera mounted to the wall of the sound

proof cabin (Figure 3.2). Although there is no camera movement, the position of

the speaker and the distance between the speaker and the camera vary between

different recordings and also during the same recording as well. The position

data should be normalized in order to compensate the rotation and translation

of the markers and to be able to capture the lip and chin motion accurately. The

static markers on the face (The first three markers; one on the nose and two

on the cheeks) are used for this purpose. The distance between the 2nd and the

3rd markers(d2−3) is used to normalize the x components of the position data,
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and the perpendicular distance between the 1st marker and the line between the

2nd and the 3rd markers is used to normalize the y components of the position

data. In order to be able to perform this scaling operation, the positions of the

markers should be projected on a plane, where the line between the 2nd and the

3rd markers is taken as X axis and the perpendicular line from the 1st marker

to the X-axis is taken as Y-axis (Fig 3.12).

The normalization process then reduces to finding the rotation (R) and trans-

lation (T) matrices that satisfy equations 3.9, 3.10, 3.11 for each frame.


x1

y1

1

 =
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R11 R12 Tx

R21 R22 Ty

0 0 1




0

d1−o

1

 (3.9)
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x2

y2

1

 =
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R11 R12 Tx

R21 R22 Ty

0 0 1


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d2−o

0

1

 (3.10)


x3

y3

1

 =


R11 R12 Tx

R21 R22 Ty

0 0 1



d3−o

0

1

 (3.11)

Where xn, yn are the x and y components of the nth point, and dn−o is the

distance between Nth point and the origin of the axes.

There are six equations for six unknowns (R11, R12, R21, R22, Tx and Ty). By solv-

ing these equations the translation and rotation matrices, T and R are found.

Then the 12 points are back projected using these matrices. Then all x compo-

nents are multiplied by (9.83/d2−3), as the actual distance between the 2nd and

the 3rd markers is 9.83 cm and all y components are multiplied by (3.2/d1−o) , as

the actual perpendicular distance between the 1st marker and the line between

the 2nd and the 3rd markers is 3.2 cm. It is worth to be noted that the selection

of the actual distances for normalization is not important for practical issues,

these values are selected in order to be able to compare the position data to

actual physical values.
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Figure 3.12: Normalization of the positions of the markers

3.3 Extraction of Visual Features

The visual features used in literature can be separated into two major classes,

namely; shape based visual features and appearance based visual features, where

the former includes the information extracted about the shape and contour of

the lips, the latter extracts the useful information from the pixel values of the

face or the region of interest.

3.3.1 Shape Based features

Shape based feature extraction assumes that most speechreading information is

contained in the shape (contours) of the speaker’s lips, or more generally, in the

face contours (e.g., jaw and cheek shape, in addition to the lips). Two types

of features fall within this category: Geometric type features, and shape model

based features. In both cases, an algorithm that extracts the inner and/or outer
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lip contours, or in general, the face shape, is required. The detection of the

markers located on the speaker’s face allows easier detection of the lip contours,

and extraction of the shape based features.

3.3.1.1 Lip geometric Features

Given the lip contour, a number of high level features, meaningful to humans,

can be extracted, such as the contour height, width, perimeter, as well as the area

contained within the contour. As demonstrated in Figure 3.13, such features do

contain significant speech information.

Figure 3.13: Lip geometric features

In this work, the lip geometric features are found using the normalized tracking

data (normalization process was discussed in Section 3.2.5), that makes these

features invariant to affine image transformations (i.e., translation, rotation,

scaling.). Width and height of the lips and the perpendicular distances of the

markers to the line between two markers on two sides of the lips are also found

(Figure 3.13). The distance between 1st and the 12th marker indicates the move-

ment of the chin. The chin movements are accepted to have high correlation

with the syllabic structure of the speech [68]. The area between 8 markers is
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also calculated and recorded to the database as the lip area for each image.

3.3.1.2 Lip model features

A number of parametric models have been used for lip or face-shape tracking

in the literature, are mentioned in a previous section. The parameters of these

models can be used as visual features. In this study the positions of the markers

located on the speaker’s lips can be used as lip model features.

Another popular lip model is the active shape model (ASM). ASMs are flexible

statistical models that represent an object by a set of labeled points. Such object

can be the inner and/or outer lip, or the union of various face shape contours.

To derive an ASM, a number of K contour points are first labeled on available

training set images, and their coordinates are placed on 2K-dimensional “shape”

vectors.

In our study, because of the presence of the positions of the markers on the lips,

the extraction of lip model features is not needed. The positions of the markers

can replace the lip model parameters, or model parameters can be easily obtained

by fitting polynomials or splines to the position data.

3.3.2 Appearance Based features

In this approach to visual feature extraction the image typically containing the

speaker’s mouth is considered as informative for lipreading. The region of in-

terest (ROI) may have a rectangular shape and it may also embrace a larger

portion around the mouth including jaw and cheeks. ROI’s from consecutive

images can be bundled to form a three dimensional (dynamic) information con-

tent. A feature vector is obtained by concatenating the ROI pixel grayscale,

or color values. This vector is expected to contain most visual speech informa-

tion. The dimensions of these vectors are too large to allow successful statistical

modeling of speech classes, or to be used in classifiers. Therefore, appropriate

transformations of the ROI pixel values are used as visual features. The most

popular appearance based feature representations achieve such reduction by us-
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ing traditional image transforms. The image compression transforms are used

for feature reduction with the hope that they preserve information most relevant

to speechreading.

In this work tracked markers are used to extract the ROI, the mean of the

markers located on the lips is used to find the center of the ROI. 128x128 pixels

frame around this center is extracted as ROI. Then RGB data is converted to

grayscale, and discrete cosine transform of the image is calculated. 128x128

DCT matrix is converted to a vector of length 16384, this vector can be used

as a feature vector, but as described above the size of this vector is too long

to be used in speech processing applications. In order to reduce the size of the

feature vector, the method of principal component analysis (PCA), borrowed

from eigenfaces approach to face recognition, is used [69].

Principal Component Analysis (PCA) (also named as discrete Karhunen-Loève

transform (DKLT)) involves a mathematical procedure that is used to represent

a function/signal/random variable as a linear combination of orthogonal basis

functions. The first principal component accounts for as much of the variability

in the data as possible, and each succeeding component accounts for as much

of the remaining variability as possible. The DKLT is the most efficient repre-

sentation of a random process if the expansion is truncated to use m number

components, where m is less than the length of the random process.

The method is based on representing the feature vector x, as a combination of

the eigenvectors of its covariance matrix. Where ui are the eigenvectors of the

covariance matrix of x, with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λN

x =
P∑
i=0

xiui (3.12)

The minimum mean square approximation of the feature vector x, with m coef-

ficients can be achieved by

x̂ =
m∑
i=0

xiui (3.13)
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To implement PCA, eigenvectors of the covariance matrix of x should be calcu-

lated. Before that, the mean of the data should be set to zero. The mean vector

of all the data is calculated and subtracted. Then the covariance matrix C can

be estimated by

C = E
[
xxT

]
≈ 1

N

P∑
i=0

xkx
T
k (3.14)

Where, xk are N training vectors from the database. If we pack these vectors

into a matrix X.

X =
[
x1,x2...xN

]T
(3.15)

Then C can be written as

C ≈ 1

N
XXT (3.16)

The dimensions of covariance matrix C are 16384 by 16384. It is very difficult to

find the eigenvectors of such a large matrix. The singular value decomposition

of X becomes useful at this point [70].

X has an SVD

X =
r∑

k=1

√
λkukv

T
k (3.17)

Where
√
λk , uk, and vk are singular values and left and right singular vectors

of X, and r is the rank of X, and r ≤ N. Then

XTX =
r∑

k=1

r∑
k=1

√
λk

√
λlvlu

T
l ukv

T
k (3.18)

XTX =
r∑

k=1

λkvkv
T
k (3.19)
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Since

uT
l uk = 1, ifk = l (3.20)

= 0, ifk ̸= l (3.21)

and similarly

XXT =
r∑

k=1

λkuku
T
k (3.22)

Thus, λk are nonzero eigenvalues of XXT and XTX, and uk (P×1 vector)and vk

(NX1 vector) are eigenvectors of , XXT and XTX respectively. By multiplying

both sides of equation 3.17 with vk from right,

uk =
1√
λk

Xvk (3.23)

So by finding the eigenvectors ofXTX (vk ), which is a much easier task (N<<P,

Typical value for N changes from 100 to 1000 where P=16384 in this case.),

the eigenvectors of XXT can be found. After finding the eigenvectors of C,

L eigenvectors with the highest eigenvalues are selected to represent x. x̂i in

eqn 3.13 can be found as the inner product of x and uk as the eigenvectors are

orthogonal. This reduces the size of the feature vector from 16384 to L (fig 3.14).

Some examples of the original images and image found by back transformation

of the reduced length feature vectors are shown in Figure 3.15. Examining

the images from reduced sized feature vectors, it can be stated that nearly all

information that is meaningful to human perception seems to be preserved by

using 10-20 parameters, i.e., the features that are visually meaningful to humans,

such as lip shape, lip opening, lip width, teeth visibility are detectable. For each

feature vector size, average absolute boundary errors per pixel are presented in

Table 3.4.
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Figure 3.14: Extraction of appearance based features

Table 3.4: Average absolute error per pixel using different length appearance
based feature vectors

Phoneme couple 20 coefficients 10 coefficients 5 coefficients

/r/-/i/ 7.57 8.18 8.54
/v/-/a/ 9.41 11.23 13.01
/i/-/l/ 9.22 11.96 12.57
silence 6.65 7.14 8.97
/t/-/ü/ 10.99 11.90 14.53

The inverse DCT of the eigenvectors with the largest five eigenvalues are pre-

sented in Figure 3.16. It can be observed that the eigenvector with the highest

eigenvalue seems like the average of the visual features and the remaining eigen-

vectors are the deviations from this average.

Teeth visibility: The visibility of the teeth is also an important cue for humans

in recognizing the uttered speech. Teeth visibility is a very distinctive property

for the recognition of labio-dental, dental and alveolar phonemes. A measure of

visible teeth area can be also useful for our purposes. The teeth area is found

by locating the brightest pixels (white area) in the ROI by thresholding the

image (Fig 3.17). The area of the white pixels are normalized by using the track
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Figure 3.15: Some examples of the images represented by reduced sized feature
vectors of length 20, 10 and 5

markers, the number of teeth pixels is divided by the area between the static

markers, and then saved to the database, for each utterance.

3.3.3 Visual Parameters Stored in the Database

The database contains different folders for each utterance. Each folder contains

a .wav file containing the audio data, a .lab file in HTK format, containing the

time labels of manual segmentation, visual data composed of .jpg files, and a

.mat file containing the visual features discussed in Chapter 3.3.
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Figure 3.16: The inverse DCT of five eigenvectors with the largest eigen values

The visual data recorded at 30 fps are interpolated to 200 fps in order to be

used with the audio data. The visual features saved to the database are;

1. tracked markers: vector sequence of the positions of the markers (length

24)

2. Normalized tracked markers: vector sequence of the normalized posi-

tions of the markers (length 24)

3. Wh: vector sequence of width and height of the lips (length 2).

4. Wh1h2u1u2: vector sequence of width and 4 type of height parameters

(Figure 3.13) (length 5).

5. Pcavect: vector sequence of PCA visual features (length20).

6. Teethscore: vector sequence containing teeth score.

7. Liparea: vector sequence containing normalized lip area.
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Figure 3.17: Finding the teeth area
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3.4 Audiovisual Automatic Speech Segmentation

The studies in Chapter 2 had shown the potential of the improvement that

can be achieved by the integration of the articulator positions to an automatic

speech segmentation system. The experiments had proven that even with limited

information about the articulator positions (only the positions of upper lip and

lower lip had been used) the average absolute boundary error can be reduced by

18%. A Turkish audiovisual speech database is prepared in order to extend the

idea of automatic audiovisual speech segmentation. The studies on this subject

will be described in following sections.

3.4.1 The Method

The AS system build for audiovisual automatic speech segmentation is similar

to the one described in Section 2.3.2 (Figure 3.18). The speech segmentation

system was build using HTK speech recognition toolkit [27].

Among 1600 utterances 1000 of utterances are used for training, 500 of utter-

ances are used for test, and 100 of the utterances are used for decision fusion

between the outputs of the system with different feature vectors (The decision

fusion method will be explained in Section 3.4.5). Phonemes are selected as

phonetic units for AS in the experiments.

3 state, left-to-right, continuous Gaussian density HMMs with 3 mixtures, were

used for modeling 42 phonemes (/o/, /ox/, /O/, /Ox/, /u/, /ux/, /y/, /a/,

/ax/, /e/, /ex/, /I/, /Ix/, /i/, /ix/, /p/ , /b/, /m/, /f/, /v/, /t/, /d/, /s/, /z/,

/n/, /tS/, /Z/), and silence and breath.

The system uses monophone acoustic models, as it was shown that monophone

HMM models with optimized number of states outperformed diphone and tri-

phone models [14]. The monophone models are trained initially by using the

segment boundaries given in the database, and then the model parameters are

re-estimated in an iterative manner by using Baum-Welch algorithm until the

settlement of segment boundaries. The test is done by finding the automatic seg-
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Figure 3.18: The Overview of the Automatic Speech Segmentation System
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mentation results using Viterbi algorithm by supplying the phonetic transcrip-

tion of the test utterances (forced alignment method). The segment boundaries

so obtained are compared against the boundaries produced by manual segmen-

tation. Average absolute boundary error (AABE) is used as a performance

measure for different systems/feature sets.

The acoustical feature vectors are computed at 100 Hz with an analysis win-

dow of length 25 ms. 3 state, left-to-right, continuous Gaussian density HMMs

with three mixtures were used for modeling. Context independent HMMs are

used as in the previous case. Monophone acoustic models for the 42 phonemes

and silence and breath, are trained initially by using the manually segmented

boundaries. The training and test are done using HTK as described in Section

2.3.2.

3.4.2 Feature Vectors

3.4.2.1 Acoustical Feature Vectors

Mel-Frequency Cepstral Coefficients (MFCC) that are frequently used in speech

processing applications are used as acoustical features in this study. The vector

includes 12 Mel-Frequency Cepstral Coefficients, an energy coefficient, and their

first and second order derivatives, resulting in an acoustical feature vector of

length 39. The feature vectors are computed at 100 Hz with an analysis window

of length 25 ms.

3.4.2.2 Visual Feature Vectors

The visual features stored in the database are used in the experiments (Section

3.3.3). The visual features on the database are at a rate of 200 fps. They are

downsampled to 100 fps in order to be compatible with the frame rate of the

acoustic features.
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3.4.2.3 Early Fusion of the Audio and Visual Features

The information from two different modalities; namely, the acoustic and visual

modalities have to be fused at some level. The acoustic and visual data may be

combined at a variety of levels from raw data level, feature level, state vector

level, to decision level, etc. The fusion at raw data level is preferred when the

data is available from different sensors measuring the same physical phenomena

(sensors are commensurate.). For the noncommensurate case, data are fused at

feature/state vector or decision level. In feature level fusion, different features

are extracted from the data of different types of sensors, and combined into

a single concatenated feature vector that will be used as input to a pattern

recognition process [71].

In this study available information are fused at feature level (early fusion), by

concatenating the acoustical and visual feature vectors. Multiple combinations

of the visual feature vectors are appended to acoustical feature vector (noted as

MFCC 0 D A), resulting features are saved to .mfc files for each utterance in

the database.

Different bimodal feature vectors obtained by appending the acoustical and vi-

sual feature vectors are as follows:

1. MFCC 0 D A: This is the baseline feature vector that contains 12 MFCCs

and 1 energy coefficient, their derivatives, and second derivatives. (39 el-

ements)

2. +h: The height of the lips is appended to the MFCC 0 D A as the 40th

element.

3. +h D: The height of the lips and its derivative are appended to the

MFCC 0 D A as the 40th and the 41st elements.

4. +wh: The width and height of the lips are appended to the MFCC-

0 D A as the 40th and the 41st elements.

5. +la: The lip area is appended to the MFCC 0 D A as the 40th element.
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6. +wh1h2u1u2: The width of the lips and h1h2u1u2 parameters (Section

3.3) are appended to the MFCC 0 D A resulting in a 44 element feature

vector.

7. +wh1h2u1u2 D: The wh1h2u1u2 vector described above and its deriva-

tive are appended to the MFCC 0 D A resulting in a 49 element feature

vector.

8. +h1h2u1u2: The h1h2u1u2 vector described above is appended to the

MFCC 0 D A resulting in a 43 element feature vector.

9. +h1h2u1u2 D: The h1h2u1u2 vector described above and its derivative

are appended to the MFCC 0 D A resulting in a 47 element feature vector.

10. +h1h2u1u2+la: The h1h2u1u2 vector described above and lip area are

appended to the MFCC 0 D A resulting in a 44 element feature vector.

11. +h1h2u1u2+teeth The h1h2u1u2 vector described above and and visi-

ble teeth area are appended to the MFCC 0 D A resulting in a 44 element

feature vector.

12. +normalized markers: Normalized positions of the 9 markers on the

speakers face are appended to the MFCC 0 D A resulting in a 57 element

feature vector.

13. +normalized uly-lly: The vertical positions of the upper lip and the

lower lip (normalized) markers (7 and 8) are appended to the MFCC 0 D A

resulting in a 41 element feature vector.

14. +pca12: Appearance based feature of length 12 that is explained in Sec-

tion 3.3.3 is appended to the MFCC 0 D A resulting in a 51 element fea-

ture vector.

Determination of the Size of the PCA Vector to be used: Visual inspec-

tion of the different length appearance based feature vectors obtained by using

PCA shows that most of the relevant features are preserved for the feature sizes

above 10. Obviously, increasing the feature size of the PCA feature vector would
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result in a better representation of the ROI, but because of the curse of dimen-

sionality, increasing the feature size would degrade the accuracy of the models

developed, as the training data is limited. Over the different sized PCA vectors,

the one resulting in the minimum AABE is used in the experiments. The aver-

age pixel errors and the AABE for different length PCA vectors are presented in

Figure 3.19, it can be observed that the PCA vector having 12 elements results

in the minimum AABE although the larger PCA vectors have smaller average

pixel errors.

a)

b)

Figure 3.19: a) the average pixel error and b) the average absolute boundary
error for different PCA vector sizes.

3.4.3 Audiovisual Automatic Segmentation Results

The system described in Section 3.4.1 is used to test the effect of using different

visual feature vectors on AS. The performance of the proposed automatic speech

segmentation system is observed for different bimodal feature vectors and these

performances are compared to each other in following work. AABE is used as a

performance measure of different feature vectors.
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Table 3.5: Average Absolute Boundary Errors Variances of Errors and Decrease
in the Average Absolute Boundary Errors for Different Feature Vectors

Feature AABE
(ms)

Variance
(X10-4)

AABE
with base-
line (ms)

Percent
Decrease
in AABE
Relative to
Baseline
System

1 MFCC 0 D A 17.77 7.34 17.77 -
2 +h 15.39 5.26 15.33 13.73
3 +h D 15.5 4.93 15.38 13.45
4 +wh 15.16 5.25 14.94 15.93
5 +liparea 15.34 5.24 15.29 13.96
6 +wh1h2u1u2 14.99 6.03 14.49 18.46
7 +wh1h2u1u2 D 20.72 28.21 16.57 6.75
8 +h1h2u1u2 14.67 5.64 14.4 18.96
9 +h1h2u1u2 D 20.20 24.13 16.8 5.46
10 + h1h2u1u2 +liparea 15.29 5.61 14.54 18.18
11 + h1h2u1u2 +teeth 15.04 7.02 14.75 16.99
12 +normalized mark-

ers
19.21 5.41 17.05 4.05

13 +normalizedulylly 15.36 6.15 15.6 12.21
14 +Pca12 16.18 8.39 14.07 20.82

The performance of the AS system using different feature vectors are presented

in Table 3.5. The value at the third column is the average absolute boundary

error (AABE) obtained by using the corresponding feature vector and the value

at the fourth column is the variance of that error. The fifth column shows the

AABE achieved when the boundaries obtained by the corresponding feature

vector are used selectively with the boundaries obtained by using the baseline

feature vector. The selection is done by using visual phoneme classes, each

boundary is selected from the outputs of the systems using two different feature

vectors, and the output of the system that gives the best overall performance

by that boundary class is selected.

The 8th feature vector, +h1h2u1u2, yields the smallest AABE. The AS system

using the 14th feature vector which includes appearance based features, leads

to the smallest AABE when used in collaboration with the baseline system,

resulting 20.8% decrease in the AABE. This means that the 14th feature vector

causes high improvements in some boundary classes, and high degradation in
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the others. This is predictable as the pca visual feature vector is the longest

vector and thus appending it to the acoustical features affects the performance

of that feature most.

The 13th vector includes the vertical positions of upper and lower lip (the 7th and

8th markers). In our previous work [72] (Chapter 2), using the vertical positions

of upper lip and lower lip had decreased the AABE by 8.1%. Although the

acquisition of the positions using a camera is expected to be less precise with

respect to EMA, it is seen that using the positions of the same articulators

12.21% decrease is achieved in AABE. This may partially be accounted for the

increase in the size of the database. The database in this work is also in a

different language and recorded by a different speaker. However, it is difficult

to speculate clearly on the possible effects of these differences.

3.4.4 Visual Phoneme Classes

The segmentation results using different feature vectors are investigated in a

phoneme class based manner. Firstly, AABE of the baseline feature vector

belonging to each phoneme class to phoneme class boundary is calculated and

listed in Table 3.6.

After that, for each class, the feature vector yielding the minimum average

absolute error is found and compared to the baseline system. The phonemes are

clustered into 5 classes regarding their visual properties; the vowels are divided

into two classes as: rounded vowels and unrounded vowels. The consonants are

divided into 3 classes as: (1) bilabial and labio-dental, (2) dental and alveolar,

(3) palatal, velar and glottal consonants. The phonemes are grouped according

to visual properties as follows;

• Rounded vowels: /o/, /ox/, /O/, /Ox/, /u/, /ux/, /y/ ;

• Unrounded vowels: /a/, /ax/, /e/, /ex/, /I/, /Ix/, /i/, /ix/;

• Bilabial and labio-dental consonants: /p/ , /b/, /m/, /f/, /v/;

• Dental and alveolar consonants: /t/, /d/, /s/, /z/, /n/, /tS/, /Z/;
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• Palatal glottal and velar consonants: /dZ/, /g/, /gj/, /h/, /k/, /c/,

/l/, /r/, /S/ /j/;

Table 3.6: AABE between phoneme classes. In each cell, the first line is the
AABE in milliseconds, and the second line presents the number of occurrences
of the boundary class in the database. For each cell, row id is the left phonetic
class type and the column id is the right phonetic class type.

Silence Rounded Unrounded Bilabial
and

Dental
and

Palatal
glottal

vowels vowels labio-
dental

alveolar and velar

consonants consonants consonants

Silence 37.20 10.42 9.70 17.17 21.42 31.65
4 509 279 675 300 1019

Rounded 63.88 24.94 27.12 19.30 25.58 24.02
vowels 1106 113 132 759 2482 4279

Unrounded41.56 29.46 18.04 16.51 24.78 23.80
vowels 188 501 758 3683 9660 13695
Bilabial
and 26.29 9.51 9.70 18.35 13.90 14.75
labio-
dental

358 1173 5012 201 348 561

Dental
and
alveolar

16.72 10.18 9.95 13.52 22.59 14.87

consonants300 2580 9531 929 1978 2088
Palatal
glottal

30.47 12.18 11.24 19.38 20.30 21.19

and ve-
lar con-
sonants

823 3352 13123 1319 2497 2850

The experimental results regarding the visual phoneme classes are presented in

Table 3.7 and Table 3.8. The results are listed in a phoneme class based manner
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Table 3.7: The best feature vector for each class to class boundary. AABE be-
tween phoneme classes. In each cell, the first line is the number of the feature
vector yielding minimum average absolute error, and the second line is the per-
cent decrease with respect to baseline for each visual class to class boundary.
The third cell represents the number of occurrences of the boundary class in the
database. For each cell, row id is the left phonetic class type and the column id
is the right phonetic class type.

Silence Rounded Unrounded Bilabial
and

Dental and Palatal
glottal

vowels vowels labio-
dental

alveolar and velar

consonants consonants consonants
14 12 12 2 3 8

Silence 53.75% -15.02% -5.94% 3.98% 24.11% 14.44%
4 509 279 675 300 1019

Rounded 14 14 14 14 14 14
vowels 32.15% 14.14% 9.08% 45.78% 23.82% 35.75%

1106 113 132 759 2482 4279
Unrounded 4 14 12 11 10 6
vowels 52.97% 26.15% 5.60% 23.29% 26.22% 25.63%

188 501 758 3683 9660 13695
Bilabial
and

4 5 2 12 14 4

labio- 37.71% 15.54% 13.38% 12.23% 25.44% 12.61%
dental 358 1173 5012 201 348 561
Dental
and

8 14 11 12 8 14

alveolar 9.97% 25.58% 7.21% 18.07% 3.91% 22.38 %
consonants 300 2580 9531 929 1978 2088
Palatal
glottal

3 11 13 4 10 14

and velar 23.10% 12.16% 3.92% 20.71% 26.16% 24.00 %
consonants 823 3352 13123 1319 2497 2850

in Table 3.7, each row shows the first phoneme class and each column shows the

second phoneme class at a boundary. The average absolute boundary errors of

class to class boundaries are calculated and the percent deviations of the average

absolute errors from those of the baseline system are given in the table (negative

values indicate that the best audiovisual feture vectors performs worse than

the baseline feature vector.). For example, the feature vector resulting in the

minimum average absolute error and the change in the average absolute error

for (rounded vowels)-(silence) boundary is shown in the cell of the (rounded

vowels) row and (silence) column; 14th feature vector resulted the minimum

AABE, approximately 32.2% decrease in the average absolute error is achieved.

The third value listed in that cell is the number of occurrences of that boundary
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Table 3.8: AABE for different boundary classes, sorted in descending order of
percentage decrease achieved.

Feature Type Best 3 % decrease Number
Features of samples

(Silence)-(Silence) 14, 2, 3 53.75 4
(Unrounded vowels)-(Silence) 4, 12, 6 52.97 188
(Rounded vowels)-(Bilabial and labio-dental) 14, 6, 10 45.78 759
(Bilabial and labio-dental)-(Silence) 4, 11, 13 37.71 358
(Rounded vowels)-(Palatal glottal and velar) 14, 8, 10 35.75 4279
(Rounded vowels)-(Silence) 14, 4, 13 32.15 1106
(Unrounded vowels)-(Dental and alveolar) 10, 8, 11 26.22 9660
(Palatal glottal and velar)-(Dental and alveolar) 10, 6, 8 26.16 2497
(Unrounded vowels)-(Rounded vowels) 14, 2, 5 26.15 501
(Unrounded vowels)-(Palatal glottal and velar) 6, 11, 10 25.63 13695
(Dental and alveolar)-(Rounded vowels) 14, 11, 10 25.58 2580
(Bilabial and labio-dental)-(Dental and alveolar) 14, 7, 6 25.44 348
(Silence)-(Dental and alveolar) 3, 7, 9 24.11 300
(Palatal glottal and velar)-(Palatal glottal and velar) 14, 8, 10 24.00 2850
(Rounded vowels)-(Dental and alveolar) 14, 6, 10 23.82 2482
(Unrounded vowels)-(Bilabial and labio-dental) 11, 6, 8 23.29 3683
(Palatal glottal and velar)-(Silence) 3, 2, 13 23.10 823
(Dental and alveolar) -(Palatal glottal and velar) 14, 11, 10 22.38 2088
(Palatal glottal and velar)-(Bilabial and labio-dental) 4, 2, 5 20.71 1319
(Dental and alveolar) -(Bilabial and labio-dental) 12, 13, 4 18.07 929
(Bilabial and labio-dental)-(Rounded vowels) 5, 2, 3 15.54 1173
(Silence)-(Palatal glottal and velar) 8, 6, 2 14.44 1019
(Rounded vowels)-(Rounded vowels) 14, 6, 11 14.14 113
(Bilabial and labio-dental)-(Unrounded vowels) 2, 5, 13 13.38 5012
(Bilabial and labio-dental)-(Palatal glottal and velar) 4, 6, 8 12.61 561
(Bilabial and labio-dental)-(Bilabial and labio-dental) 12, 13, 5 12.23 201
(Palatal glottal and velar)-(Rounded vowels) 11, 8, 6 12.16 3352
(Dental and alveolar) -(Silence) 8, 10, 5 9.97 300
(Rounded vowels)-(Unrounded vowels) 14, 13, 8 9.08 132
(Dental and alveolar) -(Unrounded vowels) 11, 1, 13 7.21 9531
(Unrounded vowels)-(Unrounded vowels) 12, 13, 11 5.60 758
(Silence)-(Bilabial and labio-dental) 2, 5, 13 3.98 675
(Palatal glottal and velar)-(Unrounded vowels) 13, 12, 5 3.92 13123
(Dental and alveolar) -(Dental and alveolar) 8, 9 ,16 3.91 1978
(Silence)-(Rounded vowels) 1, 12, 13 0.00 509
(Silence)-(Unrounded vowels) 1, 12, 8 0.00 279

class in the database. The results are listed by sorting the boundaries according

to the decrease achieved in AABE, by using the best feature vector for that class

to class boundary, from greatest to lowest in Table 3.8. The three feature types

yielding the lowest AABE also given at the second row of the table in descending

AABE order.

AABE is decreased at all boundary types except (silence)-(rounded vowels) and

(silence)-(unrounded vowels) boundaries. This can be explained by the low

correlation between lip movement and the boundary location in these types of
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boundary classes, i.e., the lips are opened much more before the production of

the vowel and there is no change in the positions of the articulators after the

silence. Note that, this is not the case in (silence)-(consonant) type boundaries,

there is a strong correlation between lip movement and the boundary location

in these boundaries, i.e., production of the consonants mostly starts with the

movement of the lips.

At most of the boundary types ending with silence more than 30% of decrease

in the AABE is observed. Also, within all the boundary types, the greatest

reduction in the AABE is observed in (unrounded vowels)-(silence) boundaries

(52.97%). These results seem reasonable, as the lip movement vanishes and all

face remains still almost simultaneously with the start of the silence. Also, the

third highest improvement is achieved at (bilabial and labio-dental consonants)-

(silence) boundaries may be explained by a similar reasoning.

Second highest reduction in AABE is achieved at boundaries between (rounded

vowels)-(bilabial and labio-dental consonants). Using PCA visual vector in con-

catenation with MFCC 0 D A vector caused a decrease of 45.78% in AABE in

these boundaries. Similar decrease had also been observed at this boundary

type in our previous study [72]. This seems relevant as the lip movement is

most clearly observed in these types of boundaries.

Furthermore, it is worth noting that, two of the three cases where the 11th

feature vector (including the visible teeth area) performs the best are the (un-

rounded vowels)-(bilabial and labio-dental consonants) and (bilabial and labio-

dental consonants)- (unrounded vowels) boundaries as the teeth are mostly vis-

ible at (vowel)-(bilabial consonants) and (bilabial consonants)-(vowel) bound-

aries. The improvement by 11th feature vector can be observed at boundaries

including unrounded vowels but not in rounded vowels. At most of the bound-

aries including a rounded vowel 14th feature vector performs best, when the

rounded vowels are articulated, beside the rounding, the lips are retracted to

forward too, it seems that this combined movement can be more successfully

detected by the 14th feature.

Investigating the results on Table 3.8 it can be observed that the boundaries with
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the least improvement are the boundaries ending with an (unrounded vowel),

five of the eight cases where the improvements are minimum are belonging to

this case.

3.4.5 Fusion of the Automatic Segmentation Results Obtained by

Using Different Audiovisual Feature Vectors

The decision fusion can be defined as the selection of a decision from a set of

available decisions from different systems. The experimental assessment of dif-

ferent pattern recognition systems may put forward one of the system as the best

system, but in most of the problems, different systems may provide complemen-

tary information in ‘some parts of the problem’, and combining these systems

appropriately would lead better performance than the system performing best

when used alone. This led the research on decision fusion techniques. The idea

is not to rely on a single decision making scheme. Instead, all available decisions

from different classifiers, or a subset, are used for finding a combined decision

[76].

The combination of the decisions of different classifiers would be particularly

useful when these classifiers are really ‘different’. This can be achieved by the

classifiers using different methods, different feature sets, or different training

sets.

The decision fusion techniques had also been used in speech segmentation sys-

tems to combine the boundary locations estimated by different AS systems.

Suppose that there are NAS boundary decisions from different AS systems. The

boundary locations found by these systems Ti={{ti(j, k)}
Nj

k=1}
Nutt
j=1 . Where,

Nutt=Number of all utterances

Nj=Number of boundaries at the jth utterance

ti(j, k)= kth boundary mark at the jth utterance found by the ith AS system.

The goal of decision fusion is to find final set of boundaries TF={{tF (j, k)}
Nj

k=1}
Nutt
j=1 ,

by using the set of boundaries T1, T2, ..., TNAS
.
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Several ways to combine the boundaries found by different AS systems had been

proposed. Using the average of the boundary locations estimated by different

AS systems is proposed as a combination method in [77] (Eqn 3.24).

tavgF (j, k) =
1

NAS

NAS∑
i=1

ti(j, k) (3.24)

The final boundaries can also be found as a weighted sum of the boundaries

found by different AS systems (Eqn 3.25).

twF (j, k) =

NAS∑
i=1

witi(j, k) (3.25)

where,
NAS∑
i=1

wi = 1 (3.26)

then the estimation of {wi}NAS
i=1 is the problem. Note that if wi’s are set to be

1
NAS

then twF (j, k) = tavgF (j, k). Different methods for calculating the weights

exist. The training set can be used for finding the weight values minimizing the

final error. A common approach to assign values to the weights is setting the

weight value corresponding to a system, inversely proportional to the variance

of the boundary errors achieved by that system.

wi =
1

VTσ2
i

(3.27)

Where,

σ2
i is the variance of boundary errors found by the ith AS system and VT is the

sum of the inverses of the variances, used to make the sum of the weights equal

to 1.

VT =

NAS∑
i=1

1

σ2
i

(3.28)
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The combination of the decisions of different AS systems makes more sense when

used in a context dependent manner. In that case the weights are calculated

for each phoneme couple or phoneme class couple. Then the final boundary,

tcF (j, k), will be calculated as;

tcF (j, k) =

NAS∑
i=1

wi(p(j, k), p(j, k + 1))ti(j, k) (3.29)

where, p(j, k) is the label of kth phoneme at the jth utterance. wi(p(j, k), p(j, k+

1)) is the weight for ith AS system for the boundary between the phonemes or

phonemecouples denoted by p(j, k) and p(j, k + 1), respectively. The weights

should sum up to 1 for each class to class boundary.

NAS∑
i=1

wi(Cj, Ck) = 1, ...∀j, k (3.30)

where, Ci is the ith phoneme class.

The weights for each phoneme class couple can be calculated by using the vari-

ances of errors corresponding to the boundary classes found in Section 3.4.4 as

explained before. The 100 utterances that were not included to training and test

sets are used for this purpose. By using this method AABE of the boundaries

is found to be 14.87 ms (Table 3.9).

This strategy can be modified to use N best boundary types for each boundary

type again by weighting them inversely proportional to their variances. The

fusion results for N= 3 and N= 5 are presented in Table 3.9.

Another strategy of fusing the decisions is selecting the feature vector yielding to

minimum AABE for each boundary class, by assessing the AABE found by using

the 100 utterances reserved for this pupose. This boundary class wise selection

based approach is also called hard decision fusion and can also be achieved by

setting the weight of the system resulting the minimum AABE to 1 and all the

others to 0. Using this approach led to the minimum error among all fusion

techniques, resulting an AABE of 13.49 ms meaning a 24.09% decrease with
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respect to the original system (Table 3.9).

Also, to be able to see the best performance that can be achieved by the system,

the best feature vectors for each boundary class is found by using the whole test

data. Using this information in the selection of the audiovisual feature vectors

for each boundary class resulted in a 25.27% decrease in the AABE (13.28 ms

AABE).

Table 3.9: AABE for different audiovisual feature vectors and for selective fea-
tures

Feature AABE (ms) % decrease
MFCC 0 D A 17.77
+h1h2u1u2 14.41 18.91%
+Pca12 14.07 20.82%
Weighted Decision Fusion 14.87 16.32%
Weighted Decision Fusion 5 Best 13.91 21.72%
Weighted Decision Fusion 3 Best 13.62 23.35%
Hard Fusion 13.49 24.09%
Hard Fusion Using All Test Set 13.28 25.27%
Hard Fusion Using All Test Set 12.95 27.12%
and 10 Phoneme Classes

Table 3.10: Accuracy of different segmentation systems for different thresholds

Segmentation System AABE <5ms <10ms <20ms <50ms

Baseline 17.77 ms 18.16% 38.41% 70.86% 96.12%
+wh 15.16 ms 21.28% 44.03% 76.92% 97.65%
Hard Fusion 13.28 ms 28.45% 52.33% 81.38% 97.92%
Manual discrepancies 9.09 ms 50.67% 73.91% 86.52% 98.07%

The phonemes in the Turkish audiovisual speech database are clustered into

6 phoneme classes for the results obtained to be comparable with the results

obtained in the previous section. Also it is difficult to visualize phoneme class

to phoneme class results when the class size increases. But, on the other hand

availability of the large database enables the clustering of the phones into more

classes. To be able to see the effect of this possibility, the experiments are

repeated by using 10 phoneme clusters. The experiments resulted in a lower
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AABE as expected. The AABE is decreased to 12.95 ms when hard decision

fusion is applied.

Note that, the phoneme class based approach in decision fusion is applicable

to speech segmentation, as at most of the cases, the phonetic transcriptions of

the speech data to be segmented are available, which is also true for the forced

alignment method used in this study. The results achieved by different fusion

techniques are presented in Table 3.9, with the results using baseline feature

vector, +h1h2u1u2 vector, +PCA12 vector.

The accuracies of the system using different fusion methods and different feature

vectors are represented in Table 4.8. The accuracy is calculated as the percentage

of the boundaries, which has an absolute value smaller than the corresponding

threshold value. It is observed that accuracies always increase as the AABE

decreases. The accuracies of the system with minimum AABE is close to the

manual segmentation for the thresholds of 20 ms and 50 ms. However, the

accuracies for the lower thresholds is very low for the AS systems and should be

increased further.

3.5 Discussion

The incorporation of the visual modality to automatic speech segmentation prob-

lem is investigated in this chapter. In Chapter 2 AABE had been decreased by

up to 18% by using the horizontal and the vertical positions of the upper lip

and the lower lip. The visual data collected by a camera contains much more

information about the state of the articulators, than the data from electromag-

netic articulograph that is used in previous chapter. Also the collection of the

camera recordings is much more feasible than the other techniques such as; elec-

tromagnetic articulograph, X-Ray, etc. The aim of the studies in this chapter is

extending the improvements achieved in the previous chapter by using the cam-

era recordings of the speaker. A Turkish audiovisual speech database is collected

and prepared in our laboratory for this purpose. The database includes audio

recordings of 1600 Turkish sentences and camera recordings of the speaker’s
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head during the articulation. There are 12 markers located on the speaker’s

face to make the visual feature extraction easier. Several shape based visual

features are extracted using positions of the markers, and an appearance based

feature vector is extracted by using eigenface approach. These visual features

are appended to the MFCC acoustic feature vector and the performance of the

AS system using different concatenated feature vectors is examined. AABE is

decreased by 18% by using +h1h2u1u2 visual features in concatenation with the

acoustic features.

The performance of the audiovisual feature vectors are examined in a boundary

class based manner, where the phones are clustered into visual boundary classes.

The experiments have shown that using visual information caused decrease in

AABE at almost all types of boundaries, however the type of the visual feature

vector causing the least AABE varies between boundary classes. Multiple de-

cision fusion algorithms are used in order to use the complementary outputs of

the different systems using different feature vectors. As the phonetic transcrip-

tions are available in AS problem, the fusion algorithm is used in a boundary

class based manner. By using the visual feature vectors selectively for different

boundary types (hard fusion), approximately 27% decrease in AABE is achieved.

In this study, it is shown that integration of visual information increase the

performance of an AS system even recorded with a cheap, widely available web-

cam. It is known that as the automatic segmentation results get closer to the

manual segmentation results, the quality of the TTS systems using the database

increase. Bimodal AS approach enables the time alignment of wide databases

with boundary locations closer to manual segmentation.
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CHAPTER 4

BOUNDARY REFINEMENT TECHNIQUES

4.1 Introduction

Boundary refinement (also referred to as boundary correction or fine tuning)

is the process of locating the actual boundaries of the utterances of a speech

database in a more precise way by using the boundary locations previously es-

timated by an AS system, acoustic properties of speech, statistical information

about the speech segments and other available information. In other words,

it is a second stage that takes the boundaries estimated by an automatic seg-

mentation system as input and searches for a better boundary location around

these initial estimates. The refinement process is generally applied to HMM AS

systems, as these systems are very good in phone identification, but they work

in lower frame rates (∼100 frame/s), where the frame rate of AS systems are

typically needed to be about 200 to 1000 frame/s. The time precision of a HMM

AS system can be increased by using a smaller window size and a smaller slide

rate, but increasing the time resolution decreases the frequency resolution of the

system and decreases phone identification capacity, which is also the case for

AS systems other than HMM AS systems. However, decreased phone identifica-

tion capacity causes a drastic increase in the number large errors that ruins the

overall system performance. For example, the HMM AS systems introduced in

previous chapters have frame rates of 100 frame/s. To increase the frame rate,

the experiments on the Turkish audiovisual speech database are carried out by

adapting the proposed system to a frame rate of 200 frame/s. The expected re-

sults are observed in these experiments. The AABE error increased drastically
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from 17.77 ms. to 88.25 ms., while the percentage of absolute boundary errors

smaller than 50 ms. decreases to 37.16% from 96.12%. The AABE errors and

the accuracies for different thresholds are presented in Table 4.1.

Table 4.1: AABE and Accuracy of different frame rate segmentation systems
for different thresholds

Segmentation System AABE <5ms <10ms <20ms <50ms

Baseline (100fps) 17.77 18.16% 38.41% 70.86% 96.12%
Increased Frame Rate (200fps) 61.39 2.26% 4.50% 9.82% 37.59%

Because of the need of increasing the precision of the AS systems, two stage ap-

proaches are widely used in the literature. Usually the boundaries obtained by

the first stage AS system have very few large errors and many small errors due

to the poor time resolution. Refinement process should decrease the magnitudes

of the small errors without adding new large errors to the ones obtained in the

first stage. In the first stage, phonetic boundaries are found with a relatively

lower frame rate system, and then these boundaries are refined through a sec-

ond process using some spectral measures, or additional information from the

database.

Two stage approaches for AS are also similar to the strategy followed by the

segmenters during manual segmentation process. In manual segmentation, the

segmenters find the location of the boundary roughly by using the spectrogram

of the speech utterance and then try to mark the boundary precisely by listening

the utterance, by inspecting the speech waveform in time domain, at most of

the phonetic boundaries.

Several approaches exist in the literature; in [18], average deviations from the

hand labeled boundaries are calculated for different boundary classes and the

boundaries from the first stage are shifted by boundary specific average devia-

tion. A context dependent approach uses boundary models composed of a fixed

length sequence of GMMs for every phoneme pair. Feature vectors contain el-

ements such as mean energy, voicing, MFCCs and their deltas. Ultimately, the
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boundary is found around the boundary point estimated in the first stage so

as to maximize its likelihood given the model [19, 20]. GMM based refinement

is also applied in [21], a homogeneity criterion is defined and speech is divided

into segments using this criterion. Another similar method aims to minimize

audible signal discontinuities caused by spectral mismatches when concatenat-

ing these units [22]. Voicing information is used to refine the boundaries in

[23]. Weighted spectral slope metric, [29], is adapted to find the boundary as

the point at which the spectral discontinuity is maximum. The search interval

for the maximization is determined according to the boundary class. A more

comprehensive work [15] involves building an ANN boundary model for the sec-

ond stage, which uses statistical information such as average durations of the

phonemes in the database and probability distribution function of the bound-

ary around the boundary found by first stage and also acoustic features such as

energy, correlation and log energy spectrum of the signal.

The organization of this chapter is as follows; The proposed HMM topology

for boundary modeling is presented in Section 4.2, the use of the topology in

boundary refinement is explained and refinement results are presented. In Sec-

tion 4.3 the boundary refinement algorithm based on a glottal inverse filtering

based distance measure between consecutive speech segments is explained, and

refinement results belonging to two databases are presented. In Section 4.4 two

boundary refinement systems are used in combination, and the overall improve-

ments in the AABE are listed. Discussions about the Chapter are stated in

Section 4.5.

4.2 HMM Based Boundary Refinement

HMMs are widely used in speech processing applications because of their excel-

lent time warping abilities. It is also explained in Section 4.1 that increasing

the frame rate of HMM systems decreases the phone identification capacity of

the system. Moreover, the goal of speech segmentation is to determine a point

(a frame) on the speech waveform, namely the boundary point, but traditional

HMM systems divide speech waveform into group of frames that are assigned to
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corresponding states of the models. In other words, HMM AS systems do not

try to find the boundary locations, but try to find the state sequence that max-

imizes the probability of the observation of the given feature sequence. A new

HMM topology that eliminates these problems, while keeping the time warping

ability, is designed for the second stage of segmentation.

A context dependent approach is used in building the boundary refinement stage.

For each boundary type between phoneme classes, a 3 stage left to right HMM

topology is proposed to model the boundaries [78] (Figure 4.3). 1st state of the

HMM is associated with the first phoneme class, the 2nd state is associated with

the boundary frame and the model jumps to 3rd state immediately in order to

restrict the boundary state to last only one frame, this is achieved by setting

the transition probability from 2nd state 3rd state (a23) to 1. The 3rd state is

associated with the second phoneme class (Fig. 4.2). Boundary models for each

phoneme to phoneme boundary could have been developed if the size of the

training and the test data were adequate. Instead, phonemes are divided into

10 classes and the boundary models are developed for each phoneme class to

phoneme class boundary, resulting in 121 boundary models (Breath and silence

is the 11th class for both cases).

The phonemes in MOCHA-TIMIT database are assigned to 10 classes with

respect to their acoustical properties as follows;

• Close/near-close front vowels : /iy/, /i/, /ii/, /i@/;

• Closed middle vowels and semi vowels : /ei/, /e/, /eir/, /y/, /w/,

/v/;

• Open vowels : /aa/, /ai/, /a/, /@/, /@@/;

• Back vowels : /oo/, /ou/, /ow/, /o/, /oi/, /u/, /uu/, /uh/;

• Voiced plosives : /b/, /d/, /dh/, /g/, /ng/;

• Unvoiced plosives : /p/, /t/, /th/, /k/;

• Liquids : /r/, /l/;
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• Voiced fricatives : /s/, /z/, /zh/, /jh/;

• Unvoiced fricatives : /sh/, /f/, /h/, /ch/;

• Nasals : /m/, /n/;

The phonemes in Turkish audiovisual database are assigned to 10 classes with

respect to their acoustical properties as follows;

• Close/near-close front vowels : /ix/, /i/, /I/, /Ix/;

• Close/front vowels : /e/, /ex/, /y/, /yx/;

• Open vowels : /a/, /ax/, /o/, /ox/;

• Close/ back vowels : /O/, /Ox/, /u/, /ux/;

• Voiced plosives : /b/, /d/, /g/, /gj/;

• Unvoiced plosives : /p/, /t/, /c/, /k/;

• Liquids and glides : /G/, /r/, /L/, /j/, /l/, /w/;

• Voiced fricatives : /v/, /s/, /z/, /Z/, /dZ/;

• Unvoiced fricatives : /f/, /h/, /S/, /tS/;

• Nasals : /m/, /n/, /N/;

/breath/ and /silence/ are also added as 11th phoneme group, for each case.

4.2.1 Training HMM Boundary Models

A HMM boundary model is trained for each phoneme class to phoneme class

type. Assuming that the phonemes are clustered to N phoneme classes, there

will be NXN HMM boundary models (121 boundary model is trained in this

case). An overview of the boundary model training stage is shown in Figure 4.1.

The phonetic transcriptions of the utterances and the locations of the boundaries

marked by the manual segmenters are stored in .lab files in both databases. The
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transcriptions are processed according to the phoneme classes defined above and

corresponding phoneme class names are substituted with the phoneme names.

The training data for each boundary class is extracted by using the phoneme

class based transcriptions. The training data for each boundary model is com-

posed of the acoustic data belonging to phoneme couples belonging to that

boundary class and the location of the boundary for corresponding bigram.

Hence, 121 data sets are generated for the training of the HMM boundary mod-

els.

The proposed HMM topology has the advantage of avoiding complex, iterative

and time consuming HMM training methods such as Baum-Welch algorithm [79],

or some gradient based techniques [80] that are generally used in HMM training.

Instead, the training is very fast and practical as the feature vectors belonging to

the states of the HMMs are strictly determined by the definition of the topology.

For each training set the starting 30% of the acoustic feature vectors belonging

to the first phoneme class are omitted in order to get rid of the portions of the

starting phoneme that also carries the properties of the preceding phoneme (the

phoneme before the diphone.). The remaining feature vectors belonging to first

phoneme are used to estimate the probability distribution function belonging

to 1st state of the boundary model. The feature vectors corresponding to the

boundary location are used to estimate the probability distribution belonging

to 2nd state and the feature vectors belonging to second phoneme are used to

estimate the probability distribution of the 3rd state after the last 30% of the

features of each sample is omitted as described before.

The probability distributions of the states are modeled with Gaussian mixture

models (GMMs). GMM parameters are extracted using the frames that are

associated to the phoneme classes and the boundary points in the training data.

The parameters of the GMMs with one mixture are calculated by finding the

means and the variances of the feature vectors belonging to the corresponding

state.

After the probability distributions of each state of the HMM are estimated, the

transition probabilities of the HMM topology are calculated as follows:
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Figure 4.1: Training the HMMs
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a11 = 1− 1
N1

(4.1)

a12 =
1
N1

(4.2)

a22 = 0 (4.3)

a23 = 1 (4.4)

a33 = 1 (4.5)

(4.6)

where, aij is the transition probability from ith state to jth state and N1 is the

average number of the frames observed in the 1st state.

The transition probability from first state to second state (a12) is inverse of num-

ber of average feature vectors observed before boundary point. The probability

to stay in 1st state (a11) is 1-a12. The transition probability from 2nd state to

3rd state and from 3rd state to itself is 1, as the 2nd state should last only one

frame according to the proposed HMM topology (Figure 4.3).

Figure 4.2: Assigning frames to HMM states

The acoustic feature vector that is used in Chapter 2, containing 13 MFCCs

(including energy coefficient), and their first and second order derivatives and
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they were used in the proposed system. The feature vectors are obtained by

using 10 ms windows. The sliding rate of the windows are set to be 5 ms for

voiced-voiced phoneme couples, and 1 ms for the phoneme couples including

an unvoiced phoneme group ( voiced-unvoiced, unvoiced-voiced and unvoiced-

unvoiced), as boundary location should/can be detected more precisely in the

boundaries including an unvoiced phoneme. The precision for the voiced-voiced

boundaries are less, as the change in the speech waveform is examined in a pitch

synchronous manner during manual segmentation and automatic segmentation

most of the time.

The training of the HMM boundary models are finished upon finding the pdf

for each state and state transition probability for the first state of each HMM.

4.2.2 Refining Boundaries Using HMM Boundary Models

Viterbi algorithm is generally used for associating the observed frames to HMMs.

The algorithm determines the most likely sequence of hidden states using the

observed frames and HMM parameters [81]. In this work, Viterbi algorithm is

used for the decoding of the HMMs and detection of boundary frame.

The locations of the boundaries estimated by the AS systems discussed in the

previous chapters were saved in .rec files by HTK. These boundary locations

will be refined in this stage. The boundary refinement stage is similar to the

training stage described in Section 4.2.1. The phonetic transcriptions of the

automatically segmented utterances in the .rec files are arranged according to

phoneme classes as in the training stage, i.e., the names of the phonemes are

substituted with the corresponding phoneme classes. For each utterance, the

boundary refinement process is handled diphone by diphone. The starting 30%

of the first phoneme and the last 30% of the second phoneme are omitted for

each diphone, like at the training stage. Then, boundary model corresponding to

that phoneme class to phoneme class boundary is used to decode the observed

features using Viterbi algorithm. The location of the feature vector that is

decoded as belonging to second state of the HMM boundary model is marked

as the refined boundary.
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The proposed HMM based boundary refinement system is firstly tested on two

boundary classes from the MOCHA-TIMIT database, a glide-vowel boundary

(/y/-/uu/) and a plosive-vowel boundary (/t/-(/uu//o/)). There are 125 utter-

ances of /y/-/uu/ boundary, The experiments are carried out by using 5-fold

validation set i.e., at each time 100 utterances are used to train the boundary

model and 25 utterances are used for test, this is repeated 5 times to use all

data. Same procedure is repeated for 50 utterances of /t/-(/uu/-/o/) boundary,

40 utterances are used for training and 10 are used for test each time. The test

results showing the AABE achieved by using each boundary model are listed in

Table 4.2. The AABE is decreased by 44% for /y/-/uu/ boundary and 63% for

/t/-(/uu//o/) boundary.

Figure 4.3: Three state HMM topology: States and transition probabilities

The proposed HMM boundary refinement algorithm is tested on both of the

databases using the AS results obtained by the AS systems introduced in Chap-

ter 2 and Chapter 3. The HMM boundary refinement experiments over MOCHA-

TIMIT database are done by using the same training and the test data in chapter

2 as the boundaries found by the 1st stage will be used in the 2nd stage. Hence
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Table 4.2: Average absolute boundary errors (ms) for /t/-(/uu//o/) boundaries

Boundary Average absolute
boundary error for
New HMM (ms)

Average absolute
boundary error for 1st
stage (ms)

/y/-/uu/ 8.9 (44% decrease) 15.8
/t/-(/uu//o/) 3.1 (63%) 8.3

420 of the utterances are used for recording and 40 of them are used for test.

The HMM boundary refinement algorithm decreased the average absolute bound-

ary error approximately by 18-20% (Table 4.3).

Table 4.3: Average absolute boundary errors (AABE) (ms) for 1st stage, and
after HMM and inverse filtering based boundary refinement (MOCHA-TIMIT
Database)

1st stage AS system AABE at 1st stage
(ms)

AABE after HMM
boundary refinement
(ms)

Baseline 9.94 7.96 (19.9%)
Lly-uly 8.91 7.32 (17.75%)
Clusterbased-visual 8.26 6.77 (18.04%)

The training set of 1000 utterances are used for training the HMM boundary

models, 500 of them are used for test. Using the same algorithm on Turkish

audiovisual speech database slightly better results are achieved, probably due to

the better estimation of parameters of the HMM boundary models and better

evaluation of the test results, as a result of the availability of more training and

test data (Table 4.4).

The experiments had shown that using the proposed boundary models based on

the modified HMM topology the AABE decreased about 20% for both databases.
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Table 4.4: Average absolute boundary errors (AABE) (ms) for 1st stage, and
after HMM and inverse filtering based boundary refinement (Turkish audiovisual
speech database)

1st stage AS system AABE at 1st stage
(ms)

AABE after HMM
boundary refinement
(ms)

Baseline 17.77 13.75 (22.6%)
wh 15.16 12.14 (19.92%)
Clusterbased-visual 13.28 10.92 (17.77%)

4.3 Glottal Inverse Filtering Based Boundary Refinement

4.3.1 Glottal Inverse Filtering

Glottal inverse filtering (GIF) is used in a wide range of speech processing appli-

cations. The production of speech is approximated as a source-filter process and

obtaining these source and filter components provides a flexible representation

of speech signal. Inverse filtering is primarily used in assessment of laryngeal

aspects of voice quality and for correlations between acoustic and vocal fold

dynamics etc [73]. Extraction of glottal signal is not primarily used but accu-

rate inverse filtering remains important in modeling the speech signal flexibly,

in some applications such as; harmonic pulse noise modeling [74], sinusoidal

modeling [75], voice conversion, or speech synthesis.

In this study we used GIF to develop a distance measure between speech seg-

ments for the detection of the boundary point between two voiced phonemes.

The boundary point is described as the sample where the dissimilarity between

successive frames of the estimated glottal waveform is maximum. Iterative adap-

tive inverse filtering is used in order to estimate GIF.

For the voiced speech case, speech waveform can be represented as the convolu-

tion of glottal flow, vocal tract response and radiation effect of the lips [73]. In

Z domain this equation can be written as;
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S(z) = AvP (z)G(z)V (z)R(z) (4.7)

Where Av is gain of the system and S(z), P(z), G(z), V(z), R(z) are z transforms

of speech waveform, glottal excitation, glottal filter, vocal tract impulse response

and radiation effect of the lips, respectively.

The glottal excitation p[n] is not actually a physical signal but a mathematical

input to a filter which will generate the glottal flow waveform. Lip radiation is

usually represented by a simple differencing filter:

R(z) = 1− z−1 (4.8)

Glottal input can be represented as:

P (z)G(z) =
S(z)

AV (z)R(Z)
(4.9)

Radiation term can be included in the glottal waveform by defining the signal

q(n) with z transform:

Q(z) = P (z)G(z)R(z) (4.10)

by using eqution 4.9:

Q(z) =
S(z)

AV (z)
(4.11)

In equation 4.11 only Z-transform of the speech waveform, S(z), is known. Solv-

ing for both Q(z) and V(z) is a blind deconvolution problem. One method is

using the time instants when the glottis is closed (g[n]=0). While the glottis is

closed, the speech waveform must be simply a decaying oscillation which is only

a function of the vocal tract and its resonances or formants i.e., it represents the

impulse response of the vocal tract. Solving for the system during this closed

phase should exactly capture the linear vocal tract filter, V (z), which may then

be used to inverse filter and recover Q(z). G(z) may then be reconstructed by in-

tegration (equivalently by inverse filtering by 1 /R(z) ). This approach is known
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as closed phase inverse filtering and is the basis of most approaches to recovering

the glottal flow waveform. However, especially for high pitch speakers, closed

phase is very small and the data is not enough to estimate the vocal tract filter.

There are a number of source filter decomposition algorithms, such as Zeros of

Z-Transform (ZZT), Cepstrum based minimum-maximum phase decomposition,

analysis by synthesis or iterative methods such as iterative adaptive inverse

filtering (IAIF).

4.3.2 Iterative Adaptive Inverse Filtering Algorithm

It is mentioned in previous section that estimation of the vocal tract response

is needed to find the glottal waveform. Iterative Adaptive Inverse Filtering

(IAIF) Algorithm proposed by Alku [82], operates in two repetitions. The overall

structure of the algorithm is shown in Figure 4.4 [83]. The first phase, blocks 2

to 6, generates an initial estimate of the glottal excitation, which is subsequently

used as input of the second phase, blocks 7 to 12, to achieve a more accurate

estimate. The steps of the method are described in detail below.

1. The input signal is first high-pass filtered to remove disturbing low-frequency

fluctuations captured by the microphone. The cut-off frequency should be

lower than the fundamental frequency of the speech signal in order to

avoid filtering out relevant information. The found signal s[n] will be used

in following steps.

2. A first-order LPC analysis is calculated in order to compensate for the

-12dB/octave effect caused by voice source and +6dB/octave high pass

effect from the lip radiation. Thus, a first order, discrete all-pole model

(DAP) Hgl(z) for the combined effect of -6dB/octave effect is calculated.

3. s[n] is inverse filtered using Hgl(z) to effectively remove the spectral tilt

caused by the spectrum of the excitation signal and the lip radiation effect

and to obtain pressure signal sgl[n] that contains only the effects of the

vocal tract response and the impulse-train excitation.
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4. The output of the previous step is analyzed by a pth order LPC to obtain

a model of the vocal tract transfer function (Hvt1(z)). The order p of the

LPC analysis is usually two times the sampling frequency in kHZ, i.e., p

is chosen as 32 for 16 kHz sampling rate.

5. The effect of the vocal tract is canceled from s[n], by inverse filtering s[n]

with the signal found in step 4.

6. The output of the previous step, ġ1[n], is integrated in order to cancel the

lip radiation effect. This yields the first estimate of the glottal flow, g1[n],

and completes the first repetition.

7. The second repetition starts by calculating a gth order analysis of the

obtained glottal flow estimate. This gives a spectral model of the effect

of glottal excitation on the speech spectrum. The value of g is usually

between 2 and 4.

8. The input signal is inverse filtered using the model of the excitation signal

to eliminate the glottal contribution.

9. Lip radiation is canceled by integrating the output of the previous step.

10. A new model of the vocal tract filter is formed by an rth order LPC analysis.

11. The effect of the vocal tract is removed from the input signal by inverse

filtering it with the vocal tract model obtained in the previous step.

12. Finally, the lip radiation effect is canceled by integrating the signal.

This yields the final estimate of the glottal flow, which is the output of the IAIF

method.

4.3.3 Boundary Estimation Using a Dissimilarity Metric Based on

IAIF

The speech waveform changes slowly in a gradual manner from one voiced

phoneme to another voiced phoneme, especially at the boundaries between vow-

els, liquids and glides. When the spectrum of the speech waveform is observed
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Figure 4.4: The Structure of IAIF Algorithm [83]
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it can be noticed that, the formants of the speech waveform slowly evolves from

the formants of the first phoneme to the formants of the following phoneme as

stated in Section 3.2.3. The change in the speech waveform is similar, the wave-

form changes from initial state to target state slowly in each period of speech,

the gradual change in the speech waveform can be seen in Figure 4.5, the wave-

form belonging to /e/-/a/ bigram. In such ambiguous cases, where it is hard to

locate the boundary point, manual segmenters are asked to find upper and lower

margins for the possible location of the boundary, and mark the point where the

difference between two consecutive quasi-periodic segments is maximum as the

boundary point (Section 3.2.3). The approach suggested to mark the ambiguous

boundaries can be adapted to boundary refinement problem.

3.49 3.5 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59

−0.1

−0.05

0

0.05

0.1

0.15

Figure 4.5: The acoustic waveform belonging to /e/-/a/ diphone

The boundary information from the 1st stage provides the upper and lower

margins for the location of the boundary to be found. As seen in Figure 4.5
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the change from one ‘period’ of speech to the next one is hard to notice or

compare with the following periods most of the time. To develop a metric of

change or dissimilarity is hard for both manual segmenters and for automatic

segmentation system. In this study IAIF algorithm is used to obtain a ‘simpler’

waveform that allows easier comparison of the consecutive periods and also much

more susceptible to the change in the vocal tract transfer function.

When using IAIF algorithm it is generally assumed that the speech signal to be

investigated is stationary, as a result the whole signal available is used for the

blind deconvolution of the glottal input and vocal tract response functions. After

the vocal tract response function is estimated, by inverse filtering the speech

waveform with this function glottal input is found. However, the stationarity

assumption is not true around the boundaries. Actually, the algorithm will be

used to detect the point where the signal (vocal tract) changes the most, by

operating on the speech segments around the boundaries.

A similar approach to the one in Section 4.2.1 is followed in this section. Using

the boundary locations estimated in the 1st stage, the bigram in which the

boundary will be refined is extracted. The starting 30% of the first phoneme

and the last 30% of the second phoneme are omitted. Then the samples from

the starting 50% of the remaining of the first phoneme is extracted to be used

in IAIF algorithm (Figure 4.6). The vocal tract transfer function belonging to

the extracted segment from the 1st phoneme is estimated by IAIF algorithm and

after that, the whole waveform (bigram) is inverse filtered with the estimated

vocal tract transfer function. The output of the filtering operation is the glottal

waveform of the bigram, estimated by using the properties of the first phoneme

only. As the estimation process is dependent on the vocal tract transfer function

solely, the estimated waveform is very susceptible to the change in the vocal tract

that is hidden in the speech waveform. At most of the cases, if the estimation of

the vocal tract transfer function of the first phoneme is successful, the resultant

waveform shows a drastic change near the boundary point (Figure 4.7, 4.8).

The consecutive segments of the estimated waveform should be compared with

each other in order to find the instant where maximum change between these
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Figure 4.6: Fine tuning using IAIF
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segments occurs. The change in the glottal waveform function is detected by

calculating the symmetrised Kullback-Leibler distance (divergence) [84] between

consecutive pitch periods of the waveform. This distance measure is selected as

it omits the change in the amplitude and uses the shape of the waveform. The

Kullback-Leibler divergence is actually measures distance between two prob-

ability distribution functions. The Kullback-Leibler divergence between two

continuous random variables P and Q is defined as:

DKL(P ||Q) =

∞∫
−∞

p(x)log
p(x)

q(x)
dx (4.12)

where p(x) and q(x) denote the densities of P and Q. The symmetrised distance

is

DKLs(P ||Q) = DKLs(Q||P ) = DKL(P ||Q) +DKL(Q||P ) (4.13)

The comparisons of the dissimilarity between consecutive speech segments are

made pitch synchronously. First the pitchmarks of the estimated glottal wave-

form belonging to the bigram are found and then, at each pitchmark, the distance

between the speech segments among that pitcmark and the previous and next

pitchmarks is calculated by using the symmetrised Kullback-Leibler distance.

The instant where the symmetrised Kullback-Leibler distance between consecu-

tive segments is found to be maximum is marked as the boundary location.

Proposed method is tested for some boundaries between vowels and liquids,

the results of the experiments are presented in table 4.5. Proposed algorithm

outperforms HMM fine tuning algorithm in some diphone classes, in other classes

HMM fine tuning is better. The fine tuning using inverse filtering does not need

any training stage; this is an important advantage of the system compared to

HMM fine tuning. These systems can be used selectively or in cascade in order

to decrease the overall AABE further.
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Speech\Glottal waveform	 Boundary estimated by IAIF Boundary estimated in first stage Actual boundary

Figure 4.7: The acoustic waveform, glottal waveform and the boundary locations
of /I/-/L/ diphone

Boundary refinement stage using IAIF is tested on the MOCHA database. As

training stage is not needed for glottal inverse filtering based boundary refine-

ment, the training set is omitted and the algorithm is used on 40 utterances that

were previously used as the test set for the 1st stage. Three different systems

defined in Section 2.4 are used as the first stage AS systems, namely; the sys-

tems using the baseline feature vector, MFCC 0 D A+(uly-lly) feature vector

and the one using all the feature vectors selectively. The results are presented in

Table 4.6. The proposed boundary refinement algorithm managed to decrease

the AABE by approximately 8.5% for all three 1st stage systems. Note that, the

algorithm can only be used in voiced-voiced boundaries as the glottal inverse

filtering is defined only for voiced phonemes. The SAMPA notation for English

has 27 voiced phonemes within 46 phonemes. This means that the proposed

algorithm can be used 729 of 2116 phoneme boundary types that means 34% of

the boundary types.
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Speech/ Glottal waveform Boundary estimated by IAIF Boundary estimated by 1st stage Actual boundary

Figure 4.8: The acoustic waveform, glottal waveform and the boundary locations
of /y/-/m/ diphone

Glottal inverse filtering based boundary refinement algorithm is also tested on

Turkish audiovisual speech database by using 500 test utterances that are used

in Chapter 3. The boundaries found by using the baseline feature vector, +wh

feature vector, and the boundaries found by using selective decision fusion are

used as input to the boundary refinement algorithms. The results are presented

in Table 4.7. The proposed boundary refinement algorithm managed to decrease

the AABE by 5% to 8% for different 1st stage systems. In SAMPA notation for

Turkish, 24 of 44 phonemes are voiced. This means that the proposed algorithm

can be used 672 of 1936 phoneme boundary types that means 35% of the bound-

ary types. Also it is worth noting that, there are actually 42197 voiced-voiced

boundaries in the Turkish audiovisual database, which is approximately 50% of

all boundaries (Table 3.1). This means that, by using glottal inverse filtering

based boundary refinement, a decrease of 10-16% is achieved in the AABE be-
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Table 4.5: Average absolute boundary errors (AABE) (ms) for some phoneme
couples after 1st stage, and after HMM and inverse filtering based boundary
refinement

Phoneme couple 1st stage HMM fine tuning Inverse filtering

/a/-/r/ 23.5ms 12.9ms (45.11%) 8.2ms (65.11%)
/a/-/l/ 18.9ms 6.3ms (66.67%) 6ms (68.25%)
/l/-/a/ 25.5ms 8ms (68.69%) 11.6ms (54.51%)
/j/-/uu/ 15.8ms 8.9ms (43.67%) 13.0ms (17.72%)

longing to voiced-voiced boundaries while the AABE belonging to the remaining

boundary types stays the same.

Table 4.6: Average absolute boundary errors (AABE) (ms) for 1st stage, and
after HMM and inverse filtering based boundary refinement

AABE at
1st stage
(ms)

AABE af-
ter HMM
boundary
refinement
(ms)

AABE after
inverse fil-
tering based
boundary
refinement
(ms)

AABE after
combined
boundary
refinement
(ms)

Baseline 9.94 7,96 (19.9%) 9.08 (8.65%) 7.64 (23.1%)
+Lly-uly 8.91 7.32

(17,75%)
8.15 (8.53%) 6.92 (22.3%)

Clusterbased-
visual

8.26 6.77
(18.04%)

7,56 (8.47%) 6,43 (22.15%)
(35.3% over-
all)

4.4 Combining HMM Based Boundary Refinement and Inverse Fil-

tering Based Boundary Refinement

Two novel boundary refinement techniques are proposed in previous sections.

The former builds HMM boundary models for each phoneme class to phoneme

class boundary, and tries to locate the refined boundary around the boundaries

supplied by the 1st stage using these boundary models, where the latter operates
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Table 4.7: Average absolute boundary errors (AABE) (ms) for 1st stage, and
after HMM and inverse filtering based boundary refinement

AABE at
1st stage
(ms)

AABE af-
ter HMM
boundary
refinement
(ms)

AABE after
inverse fil-
tering based
boundary
refinement
(ms)

AABE af-
ter combined
boundary refine-
ment (ms)

Baseline 17.77 13.91
(21.72%)

16.82
(5.35%)

13.20 (25.72%)

+wh 15.16 12.14
(19.92%)

14.01
(7.55%)

11.85(21.83%)

Clusterbased-
visual

13.28 10.92
(17.77%)

12.36
(6.92%)

10.42 (21.54%)
(41.36% overall)

on only the voiced-voiced boundaries and without the knowledge of context, it

tries to locate the instant where the ‘change’ in the speech waveform is maxi-

mum. Two systems operate in a very different manner, thus using these systems

together has the high potential of decreasing the AABE further. The combi-

nation of two boundary refinement systems is achieved by using these systems

in cascade, i.e., the boundaries found by HMM boundary refinement system

are used as input to the boundary refinement system based on IAIF and a sec-

ond boundary refinement is applied to those boundaries, resulting in a 3 stage

system.

The experiments are carried out on MOCHA-TIMIT database using three dif-

ferents systems as 1st stage and then using the proposed boundary refinement

algorithms separately and in cascade. The segmentation results are presented

in Table 4.6. The second column shows the segmentation results of the 1st

stage system that uses the feature vector in the 1st column. The 2nd and the

3rd columns show the segmentation results of HMM based and inverse filtering

based boundary refinement, respectively, and the segmentation results obtained

by using two of these systems in cascade are given in the 4th column.

The combination of the HMM based and inverse filtering based boundary refine-

ment decreases average absolute boundary error by 22-23% for each case. The
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Table 4.8: Accuracy of different segmentation systems for different thresholds

Segmentation System AABE <5ms <10ms <20ms <50ms

Baseline 17.77 ms 18.16% 38.41% 70.86% 96.12%
Baseline+HMM FT 13.91 ms 29.04% 53.53% 81.53% 96.53%
Baseline+Combined FT 13.20 ms 32.21% 59.22% 83.15% 96.53%
+wh 15.16 ms 21.28% 44.03% 76.92% 97.65%
+wh+HMM FT 12.14 ms 31.53% 56.75% 85.06% 97.99%
+wh+Combined FT 11.85 ms 33.30% 58.91% 86.29% 98.11%
Hard Fusion 13.28 ms 28.45% 52.33% 81.38% 97.92%
Hard Fusion+HMM FT 10.92 ms 34.03% 59.65% 87.23% 98.15%
Hard Fusion+Combined FT 10.42 ms 38.25% 63.01% 88.35% 98.91%

Manual discrepancies 9.09 ms 50.67% 73.91% 86.52% 98.07%

feature vectors used for 1st stage systems are MFCC 0 D A, MFCC 0 D A+uly+lly,

and class wise selected feature vectors as explained in Section 2.4.2.2, respec-

tively. By using the last one the average absolute boundary error is decreased

to 6.43 ms achieving a decrease of 35.3% with respect to the baseline system.

Same procedure is repeated for the Turkish audiovisual speech database using

boundaries from the AS system with the baseline feature vector, MFCC O D A+wh

feature and the results obtained by selectively using all the features. The seg-

mentation results are presented in Table 4.7. The second column shows the

segmentation results of the 1st stage system that uses the feature vector in the

1st column. The 2nd and the 3rd columns show the segmentation results of HMM

based and inverse filtering based boundary refinement, respectively, and the seg-

mentation results obtained by using two of these systems in cascade are given

in the 4th column.

Using both boundary refinement algorithms decreases AABE by 21-25% for

each case. When the boundaries obtained by the selectively usage of the visual

features are employed as input to 2nd stage, boundary refinement by using the

proposed algorithms in cascade results in an average absolute boundary error of

10.42 ms which means a decrease of 41.36% with respect to the baseline system.

The accuracies of different systems with respect to different thresholds are also

presented in Table 4.8. It is observed that the goal of decreasing the numbers
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of small errors without increasing the number of large errors is achieved on all

three AS systems. Actually the number of the large errors is slightly decreased

as well. For example, the percentage of the errors smaller than 5 ms is increased

to 38.25% from 28.45% for the boundaries obtained by the hard fusion of the

boundaries estimated by different systems, a small decrease in the percentage

of the errors greater than 50 ms is achieved as well. It is also observed that the

accuracy of the combined boundary refinement systems for the thresholds of 20

ms and 50 ms is better than the accuracy of the manual discrepancies, but for

smaller thresholds the accuracies of the manual discrepancies are higher.

4.5 Discussion

Refinement of the boundaries is compulsory for all AS systems in order to in-

crease the precision of these systems. In this chapter, two new methods for the

refinement of the boundaries estimated by an AS system are proposed. The

first method uses a new HMM topology for the modeling of the boundaries

between two phoneme classes and finds the refined boundary by using these

boundary models, while the second method locates the refined boundary where

the dissimilarity between consecutive speech segments is maximum, by using a

distance metric over the glottal waveform estimated around the previously lo-

cated boundary point. Both of these two methods are new approaches to the

boundary refinement problem.

The experiments on the MOCHA-TIMIT database and the Turkish audiovisual

speech database had shown that the HMM based boundary refinement algorithm

decreased the AABE about 20% and the glottal inverse filtering based boundary

refinement decreased the AABE about 6-9% with respect to the AABE achieved

by using the AS systems in the first stage. The proposed boundary refinement

algorithms were also used in combination, by supplying the output of the HMM

based method to the input of the glottal inverse filtering method. Actually,

using these methods in cascade, results in a 3 stage AS system that includes

two boundary refinement stages (Figure 4.9). Note that, the same training and
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Figure 4.9: The overview of the three stage AS system

test data are used for the first and the second stage, the third stage does not

need a training set, the same test data is used in the third stage too. The

AABE from the first stage is decreased by 22-23% for the MOCHA database,

and 21-25% for the Turkish audiovisual speech database, by the cooperation of

newly proposed boundary refinement algorithms. If the decrease in the AABE

achieved by including visual information in AS is also taken into account the

AABE is decreased by 35.3% for the MOCHA database and 41.36% for the

Turkish audiovisual speech database, by using the complete AS system that is

proposed in this thesis.
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CHAPTER 5

CONCLUSION

In this thesis, a complete automatic speech segmentation system is presented.

Each stage of the proposed system includes novel approaches to automatic

speech segmentation problem; firstly an unexplored concept of bimodal auto-

matic speech segmentation is investigated and successfully implemented to two

speech databases, and then two novel methods for the refinement of the bound-

aries estimated by an automatic speech segmentation system are introduced and

the estimated boundaries are improved further using these methods.

• Bimodal Automatic Speech Segmentation: The speech researches

make use of the visual modality to improve the performances of speech

processing systems in several applications. However, the incorporation of

the visual modality with the speech in automatic speech segmentation sys-

tems is an uninvestigated concept yet. In this thesis, the visual modality

is successfully integrated to acoustic modality, resulting in improved auto-

matic segmentation results. The information from different modalities are

fused in feature level. The experiments are held on the MOCHA-TIMIT

database and the audiovisual Turkish speech database developed for the

studies in this thesis. Several audiovisual feature vectors are investigated,

and the performances are inspected in different boundary classes, it is ob-

served that different visual features are more useful at different boundary

types. In order to benefit all the audiovisual feature types, the decisions

(boundary locations) of the systems using different feature vectors are also

fused. As a result, the AABE is decreased by 18% for MOCHA-TIMIT
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database and 27% for the audiovisual speech database by the integration

of the visual features to automatic speech segmentation process.

• Turkish Audiovisual Speech Database: A new database is collected

and prepared to be used in the experiments in this thesis. Although some

public audiovisual speech databases exist, they have either limited size or

limited visual information. The prepared database covers the need for a

phonetically rich data set as well as having appropriate visual data. The

phonetic transcriptions and manual segmentation of the database is done

and the visual features of the recordings are extracted and saved making

the database ready to be used by the researchers studying on audiovisual

speech processing.

A novel approach to manual segmentation process is proposed and used in

the manual segmentation of the prepared database. The boundaries are lo-

cated in a boundary class-wise manner in order to decrease the intralabeler

inconsistency.

• Novel Approaches to Boundary Refinement: Two new approaches to

boundary refinement problem are introduced in this thesis. The proposed

boundary refinement stages are used to refine the boundaries estimated by

the audiovisual speech segmentation systems, constituting a complete au-

tomatic speech segmentation system. The proposed boundary refinement

methods are;

– Boundary Refinement based on a New HMM Topology: A

new left to right HMM topology is proposed for developing boundary

models for boundary refinement. The models developed using the

proposed HMM topology are able to detect the boundary point and

also can be used at high frame rates unlike the HMM systems used

in the first stage. The AABE of the boundaries obtained in the first

stage is decreased by 18-20% in MOCHA-TIMIT database and 18-

22% in Turkish audiovisual speech database by using the proposed

HMM base boundary refinement method.

– Glottal Inverse Filtering Based Boundary Refinement: A
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new boundary refinement algorithm using a distance metric between

the glottal waveform estimate of the speech segment belonging to a

phoneme couple. The glottal waveform is estimated around bound-

aries found at the first stage of AS. The estimated glottal waveform

is very susceptible to the change in the vocal tract as only the speech

segment from the first phoneme is used in the estimation process.

Then the refined boundary is located where the Kullback-Leibler dis-

tance between consecutive phonemes is maximum. The drawback of

the algorithm is that, it only operates in voiced-voiced boundaries.

However, the ability of operating without the need of training stage

is a major advantage of this method. The AABE of the boundaries

obtained in the first stage is decreased by 8-9% in MOCHA-TIMIT

database and 5-8% in Turkish audiovisual speech database by using

the proposed HMM base boundary refinement method.

The proposed boundary refinement algorithms are integrated in cascade.

The boundaries estimated by HMM based boundary refinement are refined

one more time using the glottal inverse filtering based method. The AABE

from the first stage is decreased by 22-23% in MOCHA-TIMIT database

and 21-26% in Turkish audiovisual speech database by using the proposed

boundary refinement methods together in this way.

A three stage automatic speech segmentation system is build by integrating the

proposed automatic speech segmentation systems in this thesis (Figure 4.9).

First stage is a HMM speech recognizer based bimodal automatic speech seg-

mentation system, that uses several audiovisual feature vectors, the second stage

is a HMM based boundary refinement system and the third stage is the glottal

inverse filtering based boundary refinement system. By using the 3 stage AS

system AABE of a standard HMM based AS system is reduced by 35.3% for

MOCHA-TIMIT database and 41.36% for Turkish audiovisual speech database.
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APPENDIX A

PHONEMES in MOCHA-TIMIT DATABASE

Table A.1: Phones in MOCHA-TIMIT Database

Phone Word Phonetic Phone Word Phonetic
label transcription label transcription
@ was w @ z m man m a n
@@ thirty th @@ t iy n new n y uu
a exam i g z a m ng swing s w i ng
aa hard h aa d o on o n
ai bright b r ai t oi voyage v oi I jh
b bright b r ai t oo wall w oo l
ch Charlie ch aa l i ou yellow y e l ou
d good g u d ow allow a l ow
dh those dh ou z p petrol p e t r @ l
e every e v r iy r result r i z uh l t
ei fails f ei l z s safe s ei f
eir rare r eir sh musician m y uu z i sh @ n
f fails f ei l z t votes v ou t s
g gallon g a l @ n th walth w e l th
h healty h e l th iy u good g u d
i this dh i s uh money m uh niy
i@ near n i@ uu formula f oo m y uu l @
ii museum m y uu z ii @ m v vodka v o d k @
iy lily l i l iy w will w I l
jh orange o r i n jh y you y uu
k scholar s k o l @ z is i z
l lay l ei zh pleasure p l e zh @ r
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APPENDIX B

PHONEMES in SAMPA for TURKISH

Table B.1: Phones in Audiovisual speech database in SAMPA notation.

Phone Word Phonetic Phone Word Phonetic
label transcription label transcription
a ara a r a m masal m a s a L
ax arıza ax r I z a n yarın j a r I n
b bar b a r N ankara a N k a r a
c kitap c i t a p o olay o L a j
d deniz d e n i z ox koordinasyon k ox r d i n a s j o n
dZ cam dZ a m O önem O n e m
e emek e m e c Ox - -
ex tesis t ex s i s p pas p a s
f faz f a z r ray r a j
g gam g a m s ses s e s
gj genç gj e n tS S şan S a n
G sağır s a G I r t tam t a m
h ham h a m tS çiçek tS i tS e c
I sır s I r u futbol f u t b o L
Ix - - ux cumhuriyet dZ u m h ux r i j e t
i ilik i l i k v vergi v e r g i
ix dakika d a c ix k a w tavuk t a w u k
j ayar a j a r y ürün y r y n
k akıl a k I L yx güya gj ux j a
l lale l ax l e z zar z a r
L olay o L a j Z masaj m a s a Z
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