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ABSTRACT 

 

 

ADAPTIVE ESTIMATION AND HYPOTHESIS TESTING METHODS 

 

 

Dönmez, Ayça 

Ph. D., Department of Statistics 

Supervisor: Prof. Dr. Moti Lal Tiku 

 

March 2010, 153 pages 

 

 

For statistical estimation of population parameters, Fisher’s maximum 

likelihood estimators (MLEs) are commonly used. They are consistent, unbiased 

and efficient, at any rate for large n. In most situations, however, MLEs are elusive 

because of computational difficulties. To alleviate these difficulties, Tiku’s 

modified maximum likelihood estimators (MMLEs) are used. They are explicit 

functions of sample observations and easy to compute. They are asymptotically 

equivalent to MLEs and, for small n, are equally efficient. Moreover, MLEs and 

MMLEs are numerically very close to one another. For calculating MLEs and 

MMLEs, the functional form of the underlying distribution has to be known. For 

machine data processing, however, such is not the case. Instead, what is reasonable 

to assume for machine data processing is that the underlying distribution is a 

member of a broad class of distributions. Huber assumed that the underlying 

distribution is long-tailed symmetric and developed the so called M-estimators. It is 

very desirable for an estimator to be robust and have bounded influence function. 

M-estimators, however, implicitly censor certain sample observations which most 

practitioners do not appreciate. Tiku and Surucu suggested a modification to Tiku’s 

MMLEs. The new MMLEs are robust and have bounded influence functions. In 
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fact, these new estimators are overall more efficient than M-estimators for long-

tailed symmetric distributions. In this thesis, we have proposed a new modification 

to MMLEs. The resulting estimators are robust and have bounded influence 

functions. We have also shown that they can be used not only for long-tailed 

symmetric distributions but for skew distributions as well. We have used the 

proposed modification in the context of experimental design and linear regression. 

We have shown that the resulting estimators and the hypothesis testing procedures 

based on them are indeed superior to earlier such estimators and tests. 

 

Key words: robustness, modified maximum likelihood (MML) estimators, non-

normality. 
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ÖZ 

 

 

UYARLAMALI TAHMİN VE HİPOTEZ TESTİ YÖNTEMLERİ 

 

 

Dönmez, Ayça 

Doktora, İstatistik Bölümü 

Tez Yöneticisi: Prof. Dr. Moti Lal Tiku 

 

Mart 2010, 153 sayfa 

 

 

Populasyon parametrelerinin istatistiksel tahmininde yaygın olarak Fisher en çok 

olabilirlik tahminleyicileri (MLEs) kullanılmaktadır. MLEs tutarlı, yansız ve 

etkinlerdir. Ancak birçok durumda hesaplamaya dayalı zorluklardan ötürü elde 

edilemezler. Bu zorlukları aşmak için Tiku uyarlanmış en çok olabilirlik 

tahminleyicileri (MMLEs) kullanılabilir. MMLEs gözlemlerin açık fonksiyonları 

olarak ifade edildiklerinden kolay hesaplanırlar. MMLEs asimptotik olarak 

MLEs’e eşit olmalarının yanında küçük örneklemlerde de eşdeğer etkinliktedirler. 

Ayrıca MLEs ve MMLEs sayısal olarak birbirlerine çok yakındırlar. Herikisinin de 

hesaplanabilmesi için dağılımın fonksiyonel formunun biliniyor olması gerekir. 

Ancak bu makine veri işlemesinde mümkün olmayabilir. Onun yerine esas 

dağılımın geniş bir dağılım ailesinin üyesi olduğunu varsaymak daha makuldür. 

Huber esas dağılımın uzun kuyruklu simetrik dağılım olduğunu varsaymış ve M-

tahminleyicilerini geliştirmiştir. Bir tahminleyici için sağlam oluşu ve 

sınırlandırılmış bir etki fonksiyonuna sahip olması oldukça istenen özelliklerdir. 

Fakat M-tahminleyicilerinin örneklemdeki gözlemleri sansürlüyor oluşu uygulama 

yapanlar için sorun teşkil edebilir. Tiku ve Surucu MMLEs için bir değişiklik 

önermiştir. Yeni MMLEs sağlam olmalarının yanında sınırlandırılmış etki 



vii 

 

fonksiyonlarına da sahiplerdir. Bu yeni tahminleyicilerin uzun kuyruklu simetrik 

dağılımlar için M-tahminleyicilerine kıyasla toplamda daha etkin oldukları 

gözlenmiştir. Bu tez çalışmasında MMLEs için yeni bir değişiklik önerisinde 

bulunduk. Elde edilen tahminleyiciler sağlamdırlar ve sınırlandırılmış etki 

fonksiyonuna sahiplerdir. Bunun yanında yeni tahminleyicilerin yalnızca uzun 

kuyruklu simetrik dağılımlarda değil çarpık dağılımlarda da kullanılabileceğini 

gösterdik. Deneysel tasarım ve doğrusal regresyon alanlarında önerilen değişimi 

kullandık. Elde edilen tahminleyicilerin ve bunlar üzerine kurulmuş hipotez testi 

yöntemlerinin önceki benzerlerinden daha üstün olduğunu gördük. 

 

Anahtar kelimeler: sağlamlık (robustness), uyarlanmış en çok olabilirlik (MML) 
tahmin edicileri, normal olmayan dağılımlar. 
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CHAPTER 1 

 

 

GENERAL METHODS OF ESTIMATION 

 

 

 

Two methods of parameter estimation have numerous applications, namely, 

the method of least squares and the method of maximum likelihood. For estimating 

location and scale parameters, for example, they proceed as follows: 

 

1.1 Least Squares 

 

Let X  be a random variable with mean μ=)(XE  and variance 2)( σ=XV . 

A random sample  

        nxxx ...,,, 21                      (1.1.1) 

is available. The objective is to estimate μ  and σ  (or 2σ ). The least squares 

methodology postulates the model 

)1( niex ii ≤≤+= μ                                       (1.1.2) 

where ie  is a random error with mean 0)( =ieE  and variance 2)( σ=ieV ; 

)1( niei ≤≤ are independent of one another. The least squares estimator of μ  is  

obtained by minimizing the error sum of squares 

( )∑∑
==

−=
n

i
i

n

i
i xe

1

2

1

2 μ .         (1.1.3) 
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That gives 

  
∑
=

==
n

i
ix

n
x

1

1~μ   (the sample mean).        (1.1.4) 

The least squares estimator of 2σ  is defined as  

 
( ) 2

1

2

1

22 )1/()1/(min~ snxxne
n

i
i

n

i
i =−−=−= ∑∑

==

σ  (the sample variance); 

)1( −n is called the df (degree of freedom) of 2s  since 22)1( σ=− sn  constitutes an 

)1( −n  dimesional hyper sphere. It is easy to show that 

μ=)(xE  ,  nxV /)( 2σ=  and 22 )( σ=sE . 

The LSE (least squares estimator) of σ  is s=σ~ . For large n, σ≅)(sE . 

However, 22 )( σ=sE  for all n. 

 

Remark: The only assumption in using the method of least squares is that the mean 

and variance of ie  ( i.e., the mean and variance of the underlying distribution) are 

finite. In that sense, the method is general. 

 If σaeE i =)(  ( abeing a constant), i.e. σμ aXE +=)( , then the LSE of μ  

is obtained by minimizing 

   
( )∑

=

−−
n

i
i ax

1

2σμ .    

That gives, 

                                     σμ ax −=~   (σ  to be replaced by σ~ ),                  (1.1.5) 

and the LSE of the variance 2σ is 

( ) 2

1

22 )1/(~min~ snax
n

i
i =−−−= ∑

=

σμσ .  

Thus, s=σ~  (as before). 
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Comment: While nxV /)( 2σ=  irrespective of the underlying distribution, )(sV  

depends on the distribution. In fact Roy and Tiku (1962) showed that 

      3,
2
11

2
)( 244

2

−=⎟
⎠
⎞

⎜
⎝
⎛ +≅ βλλσ

n
sV ,                  (1.1.6) 

2
242 / μμβ =  being the kurtosis of the underlying distribution; see also Tan and 

Wong (1977). For a normal distribution, 04 =λ . Clearly, the variance of s

increases with 2β . We will show later that even the sample mean x  is inefficient 

when 2β  deviates from 3 by appreciable amounts. It may be noted that no 

distribution can have kurtosis 2β < 1  (Pearson and Tiku, 1970).  

 

1.1.1 Correlated Errors 

 

In (1.1.2) we assume that the errors )1( niei ≤≤  are independent of one 

another (hence, uncorrelated). That is not necessary. We now assume that 

 

0)( =ieE  and 2
21 )...,,,( σΩ=neeeCov ,   

Ω  being an nxn matrix with constant coefficients. In this situation, the LSE of μ  

is obtained by minimizing the generalized dispersion 

ee 1−Ω′ , 

)....,,,( 21 neeee =′ That gives, 

        11/~ 11 −− Ω′Ω′= xxμ .    

The method is very flexible indeed. If  0),( =ji eeCov , 

∑∑
==

=
n

i
i

n

i
ii x

1

2

1

2 )/1()/1(~ σσμ  

a weighted sum with weights inversely proportional to the variances. This result is 

well known. 
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1.2 Maximum Likelihood 

 

Asssume that X  has a location-scale distribution ( )σμσ /)()/1( −xf , i.e., 

the distribution of σμ /)( −= XZ  is free of μ  and σ . The likelihood function 

(joint probability density function) of a random sample is 

∏
=

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛=

n

i

i
n x

fL
1

1
σ
μ

σ
.        (1.2.1) 

The MLEs (maximum likelihood estimators) of μ  and σ  are those values of μ  

and σ  which maximize L  or Lln , there being one-to-one correspondance 

between the two functions since L  is always positive. To maximize Lln  for μ  

and σ , we solve the equations 

        0ln =∂∂ μL  and 0ln =∂∂ σL .       (1.2.2) 

Under very general regularity conditions, essentially existence of first two 

derivatives of Lln  and the third derivative being bounded, the variance-covariance 

matrix of the MLEs μ̂̂  and σ̂̂  is for large n, 

1

222

222

)ln()ln(
)ln()ln(

)ˆ̂,ˆ̂(
−

⎥
⎦

⎤
⎢
⎣

⎡

∂∂−∂∂∂−
∂∂∂−∂∂−

=
σσμ
σμμ

σμ
LELE

LELE
Cov .     (1.2.3) 

Given the functional form f  of the underlying distribution, the MLEs have all the 

Fisherian optimal properties at least asymptotically, i.e., unbiasedness, consistency 

and efficiency. However, MLEs are often computationally intractable. To illustrate 

this assume that the underlying distribution is Logistic 

( ){ } ( ){ }[ ] ∞<<∞−−−+−−= xxxxf ,/exp1/exp1)(
2

σμσμ
σ

.  (1.2.4) 

Here, μ=)(XE  and 22898.3)( σ=XV . The LSEs of μ  and σ  are  

x=μ~  and 2898.3/~ s=σ  (since 2s  estimates the population variance). 
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The maximum likelihood equations for estimating μ  and σ  are 

             ( ) 02ln
1

=−=
∂
∂ ∑

=

n

i
izgnL

σσμ
   and        (1.2.5) 

( ) 021ln
11

=−+−=
∂
∂ ∑∑

==

n

i
ii

n

i
i zgzznL

σσσσ                     
(1.2.6) 

where 

   σμ /)( −= ii xz   and  ( ) ( ) ( )[ ]iii zzzg −+−= exp1exp .      (1.2.7) 

The equations (1.2.5) and (1.2.6) have no explicit solutions. They have to be solved 

by iterations. Software is available to do that, e.g., Press, et al. (1992) and  

Venables and Ripley (2002). 

In general, however, one can encounter difficulties in solving maximum 

likelihood equations by iterations: (i) the iterations may converge to wrong values, 

(ii) the iterations may not converge at all, and (iii) the iterations might locate local 

rather than global maxima due to multiple roots. This is illustrated adequately by  

Puthenpura and Sinha (1986) and Qumsiyeh (2007). Qumsiyeh (2007, pp. 6-10) 

had a random sample of size 100=n  from the logistic distribution (1.2.4). To 

calculate the MLEs of μ  and σ , she used Powell hybrid algorithm. This algorithm 

is a variation of Newton’s method and uses a finite-difference approximation to the 

Jacobian and takes precautions to avoid large steps (More et al., 1980). She started 

the iteration process with 00.1−=μ  and 00.5=σ . The process converged at 23rd 

iteration and gave the MLEs as 

14.0ˆ̂ −=μ  and 05.1ˆ̂ =σ . 

The true values being 1=μ  and 1=σ , these estimates are quite reasonable. 

Qumsiyeh (2007, p.10) introduced 10% outlier in the sample. Started the iteration 

process again with the results in Table 1.1. The process never converged. Also, 

yielded a negative estimate of σ . That is disconcerting. 
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Table 1.1: The starting values of the iteration process 

Iteration 
no. 

μ∂∂ Lln σ∂∂ Lln μ̂  σ̂  

1 10.16 -52.14 -1.00 5.00 
2 10.16 -52.14 -1.00 5.00 
3 10.16 -52.16 -1.00 5.00 
4 −∞  ∞  0.88 -0.08 

 

 To alleviate the computational difficulties with maximum likelihood, Tiku 

(1967, 1968a,b, 1989) and Tiku and Suresh (1992) developed the methodology of 

modified maximum likelihood as follows. 

 

1.3 Modified Maximum Likelihood 

 

Assume that the pdf (probability density function) of X  is 

( )σμσ /)()/1( −xf . The likelihood function is 

∏
=

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛=

n

i

i
n x

fL
1

1
σ
μ

σ
. 

The maximum likelihood equations are 

             ( ) ( ) ( ) ( )zfzfzgzgL n

i
i ′==−=

∂
∂ ∑

=

,01ln
1σμ

   and  

 
( ) 01ln

1

=−−=
∂
∂ ∑

=

n

i
ii zgznL

σσσ
. 

The method of modified maximum likelihood estimation is implemented in three 

steps: (i) the equations are expressed in terms of ordered variates 

)1(/)( )()( nixz ii ≤≤−= σμ , (ii) the functions ( ))(izg  are replaced by linear 

approximations ( ) )()( iiii zzg βα +≅  so that the differences between the two tend to 

zero as n becomes large, and (iii) the resulting equations called maximum 

likelihood equations are solved. They are typically of the form 

        ( ) 0lnln *

=−+=
∂

∂
≅

∂
∂ μσ

σμμ
DKMLL    and                   (1.3.1) 
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           ( )( ) ( )[ ] 01lnln 2
3

*

=−−−−+−=
∂

∂
≅

∂
∂ CBnDKKMLL σσμσμ

σσσ
. (1.3.2) 

 

Therefore, the MMLEs (modified maximum likelihood estimators) are of the form 

σμ DK +=ˆ   (σ  to be replaced by σ̂ )            

and              (1.3.3) 

       ( ){ } nCnBB 24ˆ 2 ++=σ ; 

the divisor n2  may be replaced by )1(2 −nn  as a bias-correction. If the 

distribution is symmetric, 0=D  and K=μ̂  ( is free of σ ) which is a very 

interesting result. 

Notice the form of μ∂∂ ∗Lln  in (1.3.1). Since 

0lnln1lim
0

=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−
∂

∂ ∗

→ μμ
LL

nn
, 

it follows that the MMLE μ̂  is conditionally (σ known) the MVB (minimum 

variance bound) estimator of μ , for large n . Using a similar argument and the 

form of 0ln =∂∂ μL  above, it follows that σ̂  is conditionally (μ  known) the 

MVB estimator of σ  for large n . 

 

 

EXAMPLE 

 

 Consider the situation when a random sample nxxx ...,,, 21  comes from the 

Generalized Logistic distribution (b>0) 

  

( ){ }
( ){ }[ ] ∞<<∞−
−−+
−−

= + x
x
xbxf b ,

/exp1
/exp)( 1σμ
σμ

σ
.       (1.3.4) 

For 1<b , (1.3.4) is negatively skewed. For 1=b , it is the well known Logistic 

Distribution and is symmetric. For 1>b , it is positively skewed. Here, the 
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maximum likelihood equations expressed in terms of the ordered variates 

σμ /)( )()( −= ii xz  (obtained simply by replacing σμ /)( −= ii xz  by )(iz ) are 

( )∑
=

=
+

−=
∂
∂ n

i
izgbnL

1
)( 0)1(ln

σσμ
 

and           

( )∑ ∑
= =

=
+

−+−=
∂
∂ n

i

n

i
iii zgzbznL

1 1
)()()( 0)1(1ln

σσσσ
 

where ( ) ( ){ }zzzg −+−= exp1exp)( . The equations clearly have no explicit 

solutions. In fact, for small or large values of b , the iterations have convergence 

problems. 

To obtain modified likelihood equations, we consider the linear 

approximations (Tiku and Akkaya, 2004) 

         ( ) )1()()( nizzg iiii ≤≤−≅ βα .       (1.3.5) 

The coefficients iα  and iβ  are obtained from Taylor series expansion of ( ))(izg  

about the population quantiles )(it  determined by 

       )1(
1

)(
)(

ni
n

idzzf
it

≤≤
+

=∫
∞−

.        (1.3.6) 

That gives, 

( ) )1/(,1ln /1
)( +=−−= − niqqt i

b
ii ,                              (1.3.7) 

( ) ( )
( ){ }2exp1

expexp1
t

ttt
i

+
++

=α  and     ( )
( ){ } )(2 ,0

exp1
exp

ii tt
t

t
=>

+
=β . 

Realize that as n tends to infinity, )(iz  converges to )(it . Hence, the differences 

( ) ( ) )1()()( nizzg iiii ≤≤−− βα  converge to zero as n tends to infinity. 

Consequently, MLEs and MMLEs are asymptotically equivalent.   
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The modified likelihood equations are 

( )

0)(

)1(lnln

2

1
)(

*

=−+=

−
+

−=
∂

∂
≅

∂
∂ ∑

=

μσ
σ

βα
σσμμ

DKM

zbnLL n

i
iii

    

and                      (1.3.8)   

( )

( )[ ] 0))((1

)1(1lnln

2
3

1
)()(

1
)(

*

=−−−−+−=

−
+

−+−=
∂

∂
≅

∂
∂ ∑∑

==

CBnDKKM

zzbznLL n

i
iiii

n

i
i

σσμσμ
σ

βα
σσσσσ

,  (1.3.9) 

where  mbM )1( += ,  ∑
=

=
n

i
im

1

β ,  mxK
n

i
ii /

1
)( ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

β ,   

ii b α−+=Δ −1)1(  , ∑
=

Δ=
n

i
i mD

1

/ , ∑
=

−Δ+=
n

i
ii KxbB

1
)( )()1(  and   

⎟
⎠

⎞
⎜
⎝

⎛
−+= ∑

=

n

i
ii mKxbC

1

22
)()1( β .  

The solutions of (1.3.8) and (1.3.9) are the following MMLEs: 

σμ ˆˆ DK +=   and   { } nnCBB 24ˆ 2 ++=σ ;      (1.3.10) 

n may be replaced by )1( −nn  as a bias correction. For 1=b , 0=D . 

 For reasons given earlier, μ̂  and σ̂  are conditionally MVB estimators for 

large n. 

 

Comment: MMLEs are known to be asymptotically equivalent to MLEs whenever 

the latter exist. Therefore, they are asymptotically unbiased and their variance-

covariance matrix is given by 1−I , where I  is the Fisher information matrix. A 

rigorous proof of this is given in Bhattacharyya (1985) for censored samples and in 

Vaughan and Tiku (2000) for complete samples (under very general regularity 

conditions). A huge literature is available and compares MMLEs with MLEs and 

concludes: (i) the two are numerically very close to one another, and (ii) MMLEs 

are as efficient as MLEs. See, for example, Schneider (1986), Tan and Tabatabai 

(1988), Tiku et al. (1986), Vaughan (2002), Tiku and Akkaya (2004), and Kantar 

and Senoglu (2008). In fact, the modified maximum likelihood method works very 



10 

 

well when the methods of maximum likelihood or least squares fail. This is 

ilustrated in Puthenpura and Sinha (1986). Qumsiyeh (2007, p.14) had a sample of 

size 100=n  from Generalized Logistic distribution with 5.0=b . The true values 

are 0=μ  and 1=σ . She calculated the MLEs, MMLEs and the LSEs of μ  and σ  

with the following results: 

 

Table 1.2: The MLEs, MMLEs and the LSEs of μ  and σ  of Generalized Logistic 

distribution with 5.0=b ; 100=n . 

  μ   σ   
MLE -2.891 -1.161 
MMLE -0.086 1.074 
LSE -0.200 0.995 

 

 

She concluded that the iterations with maximum likelihood equations can converge 

to wrong values and the method of least squares can give highly biased results. She 

stated that MMLEs are fine in all respects. This agrees with the results of 

Puthenpura and Sinha (1986).  

 

1.3.1 Robustness 

 

 LSEs are not distribution based but MMLEs are (i.e., in calculating them a 

particular distribution is assumed). However, the reality is that the underlying 

distribution is hardly ever known exactly. It is also naive to believe that nothing is 

known about the underlying distribution. There are graphical techniques and 

goodness-of-fit tests available to identify the underlying distribution (Surucu, 2008; 

Tiku and Akkaya 2004, Chapter 9). They may not locate the exact distribution but 

can ascertain distributions in close proximity. On the other hand, a sample might 

contain outliers perhaps due to some misadventure in experimentation. Strong 

outliers can readily be identified by using computer graphics and outlier detection 

procedures (Tiku and Akkaya 2004, Chapter 9).  What is difficult indeed is to 

identify mild outliers in a sample. Situations which cannot be readily distinguished 

from an assumed distribution are called plausible alternatives (Tiku et al., 1986, 
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Preface; Tiku and Akkaya, 2004, Preface). An estimator is called robust if it is fully 

efficient (at any rate for large sample size n) for an assumed distribution and 

maintains high efficiency for plausible alternatives. A fully efficient estimator is 

unbiased and has minimum variance. There is a huge literature investigating the 

efficiency and robustness properties of LSEs and MMLEs; see, for example, Tiku 

and Akkaya (2004), Islam and Tiku (2004), Senoglu (2005), Oral (2006), and Tiku 

et al. (2008). The conclusion is that LSEs are efficient only for normal and near-

normal distributions. They are not, however, robust to deviations from an assumed 

distribution. The MMLEs have excellent efficiency and robustness properties 

although they are somewhat more difficult to compute than the LSEs. To repeat, 

MMLEs are model based, i.e., in computing them a particular distribution is 

assumed. However, they are remarkably efficient and robust to plausible deviations 

from an assumed distribution, and to mild data anomalies. 

 

1.3.2 Machine Data Processing 
 

It is argued (Hampel et al. 1986, Preface) that in machine data processing 

there is no opportunity to explore the nature of the underlying distribution but one 

can rightfully assume that it is, for example, long-tailed symmetric. They define a 

robust estimator to be one which has: (i) high efficiency (whatever the distribution 

is as long as it is long-tailed symmetric) or the sample has outliers (irrespective of 

whether they are mild or strong), and (ii) has high breakdown, i.e., if a number of 

observations are shifted to infinity in either direction, the estimator continues to 

assume finite values and, hence, finite mean (which should preferably be its 

population value, i.e. the estimator be unbiased), and finite variance (preferably not 

much bigger than MVB). 

Consider, for example, the sample mean x . It is efficient only for 

estimating the mean of a normal or near-normal distribution. If an observation is 

shifted to infinity, it will assume an infinite value. Thus, x  is not robust. They 

show that the following M-estimators of the population mean are robust for long-

tailed symmetric distributions. 
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1.4 M-Estimators 

 

Let nxxx ...,,, 21  be a random sample from a long-tailed symmetric 

distribution of the type ( )σμσ /)()/1( −xf . The log-likelihood function for 

estimating μ  is 

      
( ) ( ) ( ) σμρ −=== ∑∑

==
ii

n

i
i

n

i
i xzzzfL ,lnln

11

.            (1.4.1) 

If the functional form of ( )zf  is known, the MLE of μ  (for given σ ) is obtained 

from the equation 

( ) ( ) 011ln
11

==′−=
∂
∂ ∑∑

==

n

i
i

n

i
i zzL ψ

σ
ρ

σμ
.       (1.4.2) 

 

For normal and double exponential 

      ( ) 2/2zezf −∝    and    ( ) )( ∞<<−∞∝ zezf z , 

for example, the ( )zρ  and ( )zψ  functions are given by 

      ( ) ( ) 2

2
12ln

2
1 zz += πρ ,   ( ) zz =ψ  

and 

( ) zz += 2lnρ ,   ( ) ( ) )0(sgn ≠= zzzψ , 

respectively. Writing ( ) ( ) iiiii zzzww ψ== , (1.4.2) can be expressed as 

( ) 0
1

=−∑
=

n

i
ii xw μ

         
(1.4.3) 

which gives          

∑ ∑
= =

=
n

i

n

i
iii wxw

1 1

μ . 

Given σ  and ( )zψ , one may solve (1.4.3) iteratively. 

 



13 

 

However, σ  and ( )zψ  are not known in practice. Huber (1964) proposed ( )zψ  as 

   ( ) ( )⎩
⎨
⎧

>
≤

=
czifzc
czifz

z
sgn

ψ  ,        (1.4.4) 

 

which corresponds to a normal distribution in the middle and double exponential in 

the tails. The popular choice of the c values are 1.345, 1.5 and 2 which correspond 

to roughly 10%, 5% and 2.5% truncation of the tails of a normal distribution 

)1,0(N . Birch and Myers (1982) proposed that σ  be replaced by 

 ( ) 6745.0ii xmedianxmedianmad −= . 

For a normal distribution, mad  is an asymptotically unbiased estimator of σ . In 

the so called Princeton study (Andrews, et al. 1972), sixty five ( )zψ  functions 

were examined. The following three functions were found to be particularly useful. 

Incidentally, they are descending functions, i.e., they decrease with increasing z : 

1. The wave function (Andrews et al., 1972, Andrews, 1974) 

( ) ( )
⎩
⎨
⎧

>
≤

=
.0

sin
π
π

ψ
zif
zifz

z
        

(1.4.5) 

2. The bisquare function (Beaton and Tukey, 1974) 

( ) ( )
⎪⎩

⎪
⎨
⎧

>
≤−

=
.10

11 22

zif
zifzzzψ         (1.4.6) 

3. The piecewise linear function (Hampel, 1974) 

( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤

<≤
−

−
<≤
<≤

=

.0

0

zcif

czbif
bc
zc

bzaifa
azifz

zψ         (1.4.7) 

This results in different estimators for different values of  a, b and c, in fact, 

a large number of them. In an extensive numerical study, Gross (1976) examined 

25 representative estimators (out of 65 studied in Priceton study) of location 
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parameter μ  and scale parameter σ  and concluded that the three descending 

functions ( )zψ  above with certain specified adjusting constants h (named W24, 

BS82 and H22) were generally the most efficient. We reproduce the estimators 

W24, BS82 and H22 from Gross (1976) as follows; see also Tiku (1980): 

     { }ixmedianT =0   and  { }00 TxmedianS i −=    )...,,2,1( ni = . 

W24 
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4.2=h  and summations include only those i for which 

π<iz ,  00 )( ShTxz ii −= . 

BS82 
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σ ,               (1.4.9) 

 

2.8=h  , 00 )( ShTxz ii −= and ( )zψ  is the Beaton-Tukey function given in 

(1.4.6) and ( )zψ ′  is its derivative. 

 

H22 
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where ( )zψ  is the piecewise linear function given in (1.4.7) and ( )zψ ′  is its 

derivative; 25.2=a , 75.3=b  and 15=c . 
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 Extensive simulations have been caried out to explore the efficiency 

properties of M-estimators (1.4.9); see, for example, the Princeton study, Tiku 

(1980) and Dunnett (1982). 

The conclusions are that 

(a) for long-tailed symmetric distributions, the M-estimators of μ  are unbiased 

and have very good efficiency, but 

(b) the M-estimators of σ  can have substantial downward bias, even 

asymptotically. 

 

1.4.1 Influence Function 

 

 Hampel (1974) introduced the concept of ‘influence function’, equivalently 

‘breakdown’, to ascertain the robustness of an estimator. Observations in a sample 

are shifted in either direction to infinity and its effect on the estimator ascertained. 

If an estimator assumes infinite values (and, consequently, its mean and variance 

are infinite), the estimator is non-robust. Apparently, the sample mean is non-

robust but the sample median is robust. However, the sample median is not 

efficient other than for extreme distributions like Cauchy. Nevertheless, one has to 

aim for high efficiency when only a small portion of observations are shifted to 

infinity to ascertain robustness. In that regard, the M-estimators (1.4.9) are robust. 

Incidentally, empirical influence function is a graphical plot of the values an 

estimator assumes when an observation(s) in a random sample is shifted (in either 

direction) to infinity (Hampel et al. 1986, p.93). A smooth (bounded) plot 

establishes robustness of an estimator. M-estimators have bounded influence 

functions and so have the following estimators based on censored samples. 
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1.5 Trimmed Mean and Variance 

 

Let  

)()2()1( ... nxxx ≤≤≤           (1.5.1) 

be the order statistics of a random sample of size n. Deleting r smallest and r 

largest observations, Tukey defined the following estimators: 

∑
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)(2

1μ̂   

and               (1.5.2) 
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2/1

1

2
)(

2
)1(

2
)( ˆˆˆ

12
1ˆ ⎥
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⎬
⎫

⎩
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+=
−+
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TrnTrTiT xxrx

rn
μμμσ . 

The estimators Tμ̂  and Tσ̂  have bounded influence functions as long as not 

more than r observations are shifted in either direction to infinity.  

 Taking [ ]nr 1.05.0 +=  (integer value), in comprehensive simulation 

studies, Tiku (1980) and Dunnett (1982) showed that Tμ̂  and Tσ̂  are as efficient as 

M-estimators for long-tailed symmetric distributions with finite variances and in 

situations when the sample contains mild outliers. For extreme situations, e.g. the 

underlying distribution is Cauchy or the sample has a considerable number of 

strong outliers, taking [ ]nr 3.05.0 +=  renders Tμ̂  and Tσ̂ as efficient as M-

estimators. The estimator Tσ̂ , like the M-estimators of σ , can have substantial 

downward bias. 
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1.6 Estimators Based on Censored Normal Samples 

 

Tiku et al. (1986, p. 22-23) have an interesting result. They show that if the 

tails of a long-tailed symmetric distribution are truncated, the resulting truncated 

distribution has 2
242 / μμβ =  closer to 3 (kurtosis of a normal distribution) 

although its variance is understandably less than that of the untruncated 

distribution. Consider, for example, the family of long-tailed symmetric 

distributions 

( ) ( )
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( )
∞<<∞−⎥
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⎣

⎡ −
+

−ΓΓ
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=
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x
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x
p
p

k
xf

p

,1
2/12/1

1
2

2

σ
μ

σ
;    (1.6.1) 

32 −= pk , 2≥p . Note that μ=)(XE  and 2)( σ=XV . Now, consider the 

truncated distribution 

           ( ) ( ) 00

2

;,1 zzzxz
k
zzf

p

T <<−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∝

−

σμ .                  (1.6.2) 

Tiku et al. (1986, p.23) give the following values of the standard deviation 2μ  

and the kurtosis *
2β  of (1.6.2): 

 

Table 1.3: The standard deviation and the kurtosis of the truncated distribution. 

2/5=p     2/7=p    ∞=p (normal)  

0z   2μ   *
2β       0z   2μ   *

2β     0z   2μ   *
2β    

∞  1 ∞  ∞  1 6 ∞  1 3 
2.650 0.837 3.32 2.566 0.886 3.04 2.326 0.935 2.54 
1.508 0.657 2.46   1.586 0.716 2.36  1.645 0.789 2.19 

 

They noticed that nearly 10% truncation of either tail brings the distribution close 

to normal so far as its kurtosis is concerned. Since truncation of tails is equivalent 

to censoring the extreme observations in a sample, they considered the censored 

sample 

)()2()1( ...,,, rnrr xxx −++ .                 (1.6.3) 
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Assuming that the underlying distribution is normal ),( 2σμN , they determined 

the efficiency and robustness properties of the MMLEs based on (1.6.3). They are 

                    
( ) ββμ rrnmmxxrx

rn

ri
rnri 2)2(,ˆ

1
)()1()( +−=
⎭
⎬
⎫

⎩
⎨
⎧

++= ∑
−

+=
−+  

and               (1.6.4) 

       { } ( ) rnAAAACBB 2,124ˆ 2 −=−++=σ ; 

      ( ))1()( +− −= rrn xxrB α  and ( ) ( ) ( ){ }∑
−

+=
−+ −+−+−=

rn

ri
rnri xxrxC

1

2
)(

2
)1(

2
)( ˆˆˆ μμβμ . 

The coefficients α  and β  in (1.6.4) are calculated from the following equations: 

  

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
−−=

q
tft

q
tfβ     and   ( ) t

q
tf βα −= ;       (1.6.5) 

nrq /= ,  ( ) ( ) ( )2exp2 22/1 ttf −= −π   and t is the value such that 

  
( ) ( ) qdzz

it

=−∫
∞−

−
)(

2exp2 22/1π .  

The estimators μ̂  and σ̂  above were initially obtained by Tiku (1967). With 

[ ]nr 1.05.0 += , Tiku (1980) and Dunnett (1982) showed that for long-tailed 

symmetric distributions with a finite variance, μ̂  and σ̂  above are as efficient as 

M-estimators. Like M-estimators, however, σ̂  can have considerable downward 

bias. For extreme distributions with infinite variance (e.g. Cauchy) μ̂  and σ̂  with 

[ ]nr 3.05.0 +=  in (1.6.4) are competitive with M-estimators. 

 

1.6.1 Random Censoring 

 

 It is clear from equations (1.4.9) that a ‘random’ number of extreme 

observations in a sample are censored to calculate the M-estimators. A similar 

mechanism can be implemented to calculate MMLEs (1.6.4) as follows (Tiku, 

1980). 
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In (1.6.4) – (1.6.5), replace nrq /=  by nrq /** =  where 

[ ]
[ ]⎪

⎩

⎪
⎨

⎧

>+
≤<+

=
=

1.0/3.05.0
1.0/01.05.0

0/0

*

*

*

*

nkifn
nkifn

nkif
r

            

 (1.6.1.1) 

*k  is the number of values of 

{ } )1(~
0 nixmedianxz iii ≤≤−= σ  

which exceed 3.0, { }ii xmedianx −= 483.1~
0σ . Denote the resulting MMLEs by 

*μ̂  and *σ̂ , i.e., the estimators (1.6.4) with nrq /=  replaced by nrq /** = . It 

may be noted that 0
~σ  is asymptotically unbiased if the distribution is normal. 

 As for  ( μ̂ , σ̂ ), Tiku (1980) carried out extensive simulations to study the 

efficiencies of  ( *μ̂ , *σ̂ ). He showed that even for situations of extreme type, *μ̂  

is overall more efficient than the M-estimators of μ , and *σ̂  has overall less bias 

than the M-estimators of σ . Consider, for example, the following models: 

Outlier models: (1) )9,0(&),0()( 2
1

2
1 σσ NrNrn −  

    (2)  [ ]nrNrNrn 2.05.0,)100,0(&),0()( 1
2

1
2

1 +=− σσ  

    (3)  Student’s t with 2 df, (4) Cauchy, (5) Slash (Normal/Cauchy). 

We reproduce his results in Table 1.4; 1=σ  without loss of generality, 20=n . 

 

Table 1.4: The results of MML, W24 and H22 estimators under different 

distribution models. 

Model 
Estimator (1) (2) (3) (4) (5) 

Mean Wσ̂   1.33 1.39 1.37 1.80 2.53 

Hσ̂  1.32 1.38 1.36 1.79 2.51 
*σ̂  1.15 1.26 1.15 1.41 2.09 

Variance  Wμ̂  0.098 0.105 0.106 0.185 0.362 

Hμ̂  0.097 0.104 0.105 0.183 0.359 

   *μ̂  0.092 0.113 0.095 0.167 0.329 
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Because of the randomness of *q , however, it is difficult to derive the distribution 

of ** ˆˆ σμn . Like the M-estimators, this restricts the use of *μ̂  and *σ̂ primarily 

to estimation of location and scale parameters. 

The question is whether the estimators (1.3.10) can be formulated such that 

they can be used for all sorts of say long-tailed symmetric distributions or when a 

sample has mild to strong outliers, and be at least as efficient as the M-estimators. 

The purpose of this thesis is to develop such estimators. They are particularly 

useful for machine data processing when a statistician has no opportunity to 

investigate the nature of the underlying distribution. Admitedly, such situations are 

very common in practice. 

 

1.7 Hypothesis Testing 

 

So far we have talked about parameter estimation, particularly of the location 

and scale parameters. Another important problem is that of hypothesis testing. 

Given a random sample nxxx ...,,, 21  one wants to test, for example, the null 

hypothesis 0:0 =μH . The statistic that is used most often is Student’s t: 

sxnt /= .         (1.7.1) 

If the underlying distribution is normal ( )2,σμN , the null distribution of t is 

Student’s t with 1−= nν  degrees of freedom. To test 0H  against 0:1 >μH , if the 

computed value of t  is greater than ( )να−1t , 0H  is rejected at α  percent 

significance level. The non-null distribution of t is noncentral t with 1−= nν  

degrees of freedom and non-centrality parameter ( )22 σμλ n= . The t-test is UMP 

(uniformly most powerful). 
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Several authors investigated the effect of non-normality on the Type I error 

and power of the t-test. Most prominent among them are Gayen (1949) and 

Srivastava (1958). Both these authors assumed that the underlying distribution is 

Edgeworth series, ( ) σμ−= xz : 

                   
( ) ( ) ( ) ( ) ( )zzHzHzHzf φλλλ

⎭
⎬
⎫

⎩
⎨
⎧ +++= 6

2
44433 72

1
24
1

6
11

           
(1.7.2) 

where 2/3
233 μμλ =  and ( ) 32

244 −= μμλ  are the standardized third and fourth 

cumulants, ( ) ( ) ( ) ( )∞<<∞−−= − zzz 2exp2 22/1πφ , and ( )zHr  is the thr  

Hermite polynomial. They obtained the exact null distribution of t and its power 

function. For various combinations of values of ( )43 ,λλ , they calculated the exact 

values of the Type I error and power. Although Gayen’s and Srivastava’s work had 

great deal of mathematical charm but it failed to be conclusive, the reason being the 

limitation of the Edgeworth series; Barton and Dennis (1952) showed that the 

Edgeworth series is a genuine probability density function only for a small range of 

values of ( )43 ,λλ . Therefore, Gayen’s and Srivastava’s work had validity only for 

near-normal distributions. For small departures from normality, both Type I error 

and power of the t-test are not affected in any substantial way. 

 Tiku (1964; 1971a,b) introduced a different approach which is not restricted 

like Gayen’s and Srivastava’s. He developed the sampling distributions of 2s

(sample variance), 2t  and ANOVA F statistics in terms of Laguerre polynomials 

and Gamma density functions. Thus, he calculated the Type I error and power for a 

much broader range of non-normal distributions than was possible with Gayen’s 

and Srivastava’s approach. He concluded that non-normality 

(a) does not affect the Type I error to a remarkable degree, but 

(b) has a substantial downward effect on the power. 

What is, therefore, needed are test procedures that are robust (both in terms of Type 

I error and power) to departures from normality and to data anomalies, e.g., 

outliers. In this thesis, we develop such procedures by using modified maximum 

likelihood estimators and variants of them. 
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CHAPTER 2 

 

 

REVISED MODIFIED MAXIMUM LIKELIHOOD ESTIMATION 

 

 

 

In machine data processing, there is no opportunity to ascertain the nature of 

the underlying distribution but one may be justified in assuming that it is a long-

tailed symmetric distribution (Hampel et al., 1986, Preface). The MMLEs (1.3.3) 

are model based, i.e., in calculating them, a particular distribution is assumed. One 

may, for example, assume that the underlying distribution is one of the long-tailed 

symmetric family 

  
( ) ( )

( )
∞<<∞−⎥

⎦

⎤
⎢
⎣

⎡ −
+

−
=

−

x
k

x
pk

xf
p

,1
2/1,2/1

11
2

2

σ
μ

βσ
;        (2.1) 

32 −= pk , 2≥p  and ( ) ( ) ( ) ( )bababa +ΓΓΓ=,β . It may be noted that 

μ=)(XE  and 2)( σ=XV . For a given ( )2≥p , the MMLEs of μ  and σ  are 

    
( ) mx

n

i
ii∑

=

=
1

ˆ βμ  ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

n

i
im

1
β  and ( ){ } ( )124ˆ 2 −++= nnCnBBσ     (2.2) 

where                    

      
∑
=

−=
n

i
ii xkpB

1
)( )ˆ()/2( μα  and ( )∑

=

−=
n

i
ii xkpC

1

2
)( ˆ)/2( μβ . 

The coefficients iα  and iβ  are given by (Islam and Tiku, 2004, Equation (4.5)) 

     ( ) ( ) ( ) ( ){ }223 /11/1 iii tktk +=α    and  ( ) ( ){ }22/111 ii tk+=β ;         (2.3) 

( )( ) )1()( nizEt ii ≤≤= . These coefficients are essentially obtained from Taylor 

series expansions. Tables of )(it  and the variances of ( )iz  and the covariances of 
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( ) ( )( )ji zz ,  are given in Tiku and Kumra (1981) for 10)5(.2=p and 20≤n . For 

10≥n , however, )(it  may be calculated from (as a close approximation to the true 

values)  

( )
)1(

1
1

2/1,2/1
1 )( 2

ni
n

idz
k
z

pk

it p

≤≤
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

− ∫
∞−

−

β
.         (2.4) 

An IMSL subroutine is available to evaluate (2.4). For a given p , μ̂  and σ̂  are 

known to be as efficient as the MLEs whenever the latter are authentic. However, 

the MLEs are not readily available since they are analytically and computationally 

too involved as said earlier. 

 With p  chosen to be 3 or 3.5, μ̂  and σ̂  are remarkably robust to long-

tailed symmetric distributions having finite variances and to situations when a 

sample contains mild outliers or other mild data anomalies (Tiku and Akkaya, 

2004; Oral, 2006; Tiku et al., 2008). For machine data processing, however, long-

tailed symmetric distributions need to be inclusive of extreme distributions like 

Cauchy and also to situations when a sample contains strong outliers and other 

strong data anomalies (Hampel et al., 1986). In this thesis, we develop such 

estimators. 

 What we show first, following Tiku and Surucu (2009), is that when iα  

and iβ  in (2.3) are estimated from a given sample, the resulting estimators xμ̂  and 

xσ̂  have very high breakdown and are overall more efficient than the M-estimators 

mentioned earlier. To estimate the coefficients iα  and iβ  )1( ni ≤≤ , as in Huber 

(1981), let 

 { }ixmedianT =0   and  { }00 483.1 TxmedianS i −=    )1( ni ≤≤ .       (2.5) 

Realize that 0T  is an unbiased estimator of μ  (for symmetric distributions) and 0S  

is asymptotically an unbiased estimator of σ (for a normal distribution). 

Obviously, )(it  in (2.3) can be estimated by ( ) 00)()(
~ STxt ii −= . We also write 

( ) 00
~ STxt ii −= . Since complete sums are invariant to ordering, 
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Note: It may be noted that xμ̂
 
is a nonlinear function and so is xσ̂ .  

Remark: As with M-estimators, the only assumption for using xμ̂  and xσ̂  is that 

the underlying distribution is long-tailed symmetric. Their asymptotic properties 

are given in Appendix A. Realize that the coefficient iν  in the above expression for 

B  has been obtained from iα  by equating 2~
it  to its expected value which is 1 

(almost) for 5.16=p  as chosen in the next section. This is necessary to have a 

bounded influence function. 

 

2.1 Choice of k 

 

 As pointed out by Tiku and Surucu (2009), if we choose k  very large, 

)1( niwi ≤≤  essentially reduce to 1 and xμ̂  reduces to the sample mean x  

which, although fully efficient for a normal distribution, has zero breakdown and is 

not efficient (and robust) for long-tailed symmetric distributions or even to 

moderate outliers in a sample. On the other hand, if we choose k  small, xμ̂  and 

xσ̂  are enormously inefficient for normal and near-normal distributions. The 

choice ( )5.1630 == pk  turns out to be a good compromise. We denote the 

corresponding MMLEs by MML30. The emprical influence functions of xμ̂  and 
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xσ̂  are given in Figure 2.1 and Figure 2.2, respectively. They illustrate high 

breakdown of MML30; see also Tiku and Surucu (2009). This was to be expected 

since the associated terms in the expressions for w , xμ̂ , B  and C  tend to 0, 

respectively, as the thi  observation ix  is shifted (in either direction) to infinity. 

 Tiku and Surucu (2009) estimator of μ  is exactly the same as in (2.6) but 

their estimator of σ  is 

wxw
n

i
xii∑

=

−
1

2)ˆ(13.1 μ .        (2.1.1) 

 

 
Figure 2.1: Empirical influence function of xμ̂  for 5.3=p  ( 10=n ). 
 
  
 

 
Figure 2.2: Empirical influence function of xσ̂  for 5.3=p  ( 10=n ). 
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2.2 Efficiency and Robustness 

 

 To evaluate the efficiency and robustness of MML30 given in (2.6)-(2.8), 

we consider a normal distribution and a very broad range of long-tailed symmetric 

distributions and samples containing data anomalies as follows, see also Tiku and 

Surucu (2009), μ  taken to be zero without any loss of generality: 

(1) Normal ),0( 2σN              

The family (2.1) with 

(2) 5=p , (3) 5.3=p , (4) 5.2=p , (5) 2=p  

Outlier models: )( rn −  ix  come from ),0( 2σN and r  (we do not know 

which) come from 

(6) )4,0( 2σN ,  (7) )16,0( 2σN ; [ ]nr 1.05.0 +=  (integer value). 

Mixture models: 

(8) )4,0(10.0),0(90.0 22 σσ NN + ,  (9) )16,0(10.0),0(90.0 22 σσ NN +  

(10) Student’s t distribution with 2 df,  

(11) Cauchy distribution,  

(12) Slash (Normal/Uniform) distribution 

Models (1)-(9) have finite mean and variance, (10) has finite mean but non-existent 

variance, and (11)-(12) have non-existent mean and variance. 
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2.3 Simulations 

 

 We generated [ ]nN /000,100=  (integer value) samples (consisting of 

independently distributed observations) of size n from each of the models (1)-(12). 

The observations generated from models (6)-(9) were divided by suitable constants 

to make their variances equal to 2σ . From the resulting N  values of MML30 and 

W24 (one of the most efficient estimators of μ  and σ ), we computed their means 

and variances. They are given in Table 2.1 and Table 2.2. For the normal 

distribution, xμ̂  is a little less efficient than wμ̂ . For models (2)-(9), xμ̂  is overall 

more efficient than wμ̂ . For models (10)-(12), xμ̂  is considerably more efficient 

than wμ̂ . Realizing that xμ̂  also has high breakdown, there does not seem to be 

any advantage in using the highly acclaimed M-estimators of μ . 

 

Table 2.1: Simulated* values of ( )xVarn μσ ˆ)/( 2  and ( )wVarn μσ ˆ)/( 2 .  

n = 10 n = 20 n = 50 n = 100 
Model xμ̂  wμ̂  xμ̂  wμ̂  xμ̂  wμ̂  xμ̂  wμ̂  

1 1.064 1.030 1.057 1.022 1.034 1.005 1.022 1.002 
2 0.945 0.949 0.936 0.945 0.963 0.969 0.945 0.959 
3 0.905 0.922 0.871 0.898 0.878 0.908 0.895 0.928 
4 0.761 0.798 0.748 0.798 0.731 0.778 0.722 0.769 
5 0.574 0.626 0.555 0.605 0.548 0.600 0.539 0.594 
6 0.962 0.963 0.953 0.950 0.917 0.923 0.945 0.952 
7 0.553 0.589 0.550 0.587 0.545 0.580 0.553 0.592 
8 0.946 0.945 0.940 0.943 0.934 0.939 0.940 0.948 
9 0.586 0.632 0.566 0.610 0.575 0.619 0.564 0.601 

10 2.273 2.620 2.099 2.411 1.985 2.302 1.956 2.278 
11 4.869 6.389 3.973 5.171 3.341 4.307 3.285 4.238 
12 8.917 11.274 7.595 9.410 7.118 8.789 6.577 8.105 

Sum/12 1.946 2.311 1.737 2.029 1.631 1.893 1.579 1.830 
Tiku-Surucu 1.901 2.252 1.728 2.009 1.600 1.863 1.597 1.827 

*Means are not given since both estimators are unbiased 
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Table 2.2: Simulated values of  Mean)/1( σ and Variance)/( 2σn of  xσ̂  and wσ̂ . 

n = 10 n = 50 n = 100 
Mean Variance Mean Variance Mean Variance 

Model xσ̂  wσ̂  xσ̂  wσ̂  xσ̂ wσ̂ xσ̂  wσ̂  xσ̂  wσ̂  xσ̂  wσ̂  

1 0.92 0.93 0.579 0.545 0.97 0.99 0.531 0.521 0.97 1.00 0.531 0.525 

2 0.90 0.91 0.649 0.637 0.93 0.96 0.631 0.656 0.94 0.97 0.591 0.615 

3 0.87 0.88 0.678 0.687 0.91 0.94 0.661 0.696 0.91 0.94 0.636 0.680 

4 0.81 0.82 0.682 0.701 0.84 0.87 0.660 0.714 0.84 0.88 0.650 0.707 

5 0.71 0.72 0.652 0.688 0.73 0.76 0.582 0.640 0.74 0.77 0.587 0.646 

6 0.89 0.89 0.594 0.587 0.93 0.96 0.544 0.554 0.93 0.96 0.538 0.552 

7 0.72 0.71 0.464 0.466 0.75 0.76 0.435 0.463 0.75 0.76 0.448 0.478 

8 0.90 0.90 0.652 0.651 0.93 0.96 0.624 0.646 0.93 0.96 0.592 0.622 

9 0.72 0.72 0.707 0.771 0.75 0.76 0.646 0.705 0.75 0.76 0.629 0.684 

10 1.42 1.43 3.269 3.522 1.44 1.49 2.906 3.231 1.44 1.50 2.885 3.243 

11 2.06 2.08 14.003 15.840 1.94 2.03 9.091 10.809 1.93 2.03 8.939 10.610

12 2.85 2.85 24.422 27.047 2.75 2.84 15.821 18.464 2.73 2.83 14.704 17.215

Sum/12 1.15 1.15 3.946 4.345 1.16 1.19 2.761 3.175 1.16 1.20 2.644 3.048 

Tiku-Surucu 1.15  1.15 3.853  4.034 1.20  1.19 3.059  3.097 1.21  1.20 3.111  3.127 

 

 

MMLEs are clearly as good as M-estimators or better; see also Tiku and 

Surucu (2009). They are advantageous for two reasons: overall, (i) they have 

smaller bias, and (ii) they have smaller variance. MMLEs developed here are 

essentially as good as those of Tiku and Surucu (2009). In fact, the MMLE of σ  
developed here has a little less bias, and smaller mean square error. Like Tiku-

Surucu estimators, our estimators have bounded influence functions. They are, 

therefore, as good as M-estimators or better and at least as good as Tiku-Surucu 

estimators. 

 

2.4 Iterated MML30 

 

 In the expression for the weight iw  in (2.8), we used 0T  and 0S  as initial 

estimators of μ  and σ , respectively. The question is whether replacing 0T  and 

0S  by other estimators can result in improved efficiencies. In that regard, we first 

calculate xμ̂  and xσ̂  iteratively as follows: 
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Initially, we use 0T  and 0S  and calculate μ̂  and σ̂ . We replace 0T  and 0S  

by μ̂  and σ̂ , respectively, and calculate the new μ̂  and σ̂ . We repeat the process 

one more time and calculate μ̂  and σ̂  and regard them as the desired MMLEs. 

Thus, the MMLEs are computed in two iterations besides computing them initally 

by using 0T  and 0S . 

Given below are the simulated variances of μ̂  for the twelve models 

considered in Table 2.3. 

 

Table 2.3: Simulated values of ( )μσ ˆ)/( 2 Varn  with two iterations. 

Model n = 10 n = 20 n = 50 n = 100 
1 1.025 1.035 1.004 1.013 
2 0.939 0.938 0.943 0.922 
3 0.907 0.899 0.865 0.874 
4 0.777 0.744 0.737 0.748 
5 0.618 0.582 0.561 0.570 
6 0.925 0.933 0.927 0.925 
7 0.579 0.575 0.563 0.558 
8 0.930 0.947 0.923 0.928 
9 0.628 0.598 0.584 0.569 

10 2.560 2.351 2.276 2.232 
11 6.492 5.067 4.534 4.246 
12 12.306 9.325 8.572 8.141 

Sum/12 2.391 1.999 1.874 1.810 
  

   

Increasing the iteration number does not have a significant effect on the 

results for models (1)-(9) all of which have finite moments. However, for models 

(10)-(12) which do not have finite moments, the variances are increased. Therefore, 

we conclude that iterations do not necessarily improve the results. This is in 

agreement with Huber’s findings (Hampel et. al 1986, p.105). 
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2.5 Initial Estimators Based on Censored Samples 

 

 Obviously, estimators based on samples with extereme observations 

censored will not be subject to tail-effects (i.e., long-tails of a distribution or 

outliers in a sample) and can, therefore, make satisfactory initial estimators of μ  

and σ . Consider the censored sample 

            )()2()1( ... rnrr xxx −++ ≤≤≤    ( [ ]nr 3.05.0 += )      (2.5.1) 

and assume that the underlying distribution is normal ),( 2σμN . The MMLEs of 

μ  and σ  are (Tiku, 1967) 
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0 −=−++=σ ; 

 

      ( ))1()( +− −= rrn xxrB α ,  ( ) ( ) ( ){ }∑
−

+=
−+ −+−+−=

rn

ri
rnri xxrxC

1

2
0)(

2
0)1(

2
0)( ˆˆˆ μμβμ , 

7733.0=α  and 7355.0=β . 

Replacing 0T  and 0S  by 0μ̂  and 0σ̂ , respectively, the means and variances of the 

resulting one-step MMLEs μ̂  and σ̂  in (2.6) are given in Table 2.4 and Table 2.5. 

The means of μ̂  are not given because it is an unbiased estimator of μ  for models 

(1)-(12) in section 2.2. It can be seen that the results are no better than those 

obtained by using 0T  and 0S  initially. 
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Table 2.4: Simulated values of ( )μσ ˆ)/( 2 Varn , using 0μ̂  and 0σ̂  initially. 

Model n = 10 n = 20 n = 50 n = 100 
1 1.059 1.028 1.031 0.985 
2 0.963 0.950 0.943 0.983 
3 0.917 0.877 0.911 0.947 
4 0.764 0.784 0.816 0.870 
5 0.594 0.572 0.603 0.679 
6 0.964 0.944 0.948 1.002 
7 0.574 0.598 0.653 0.723 
8 0.974 0.959 0.953 0.974 
9 0.603 0.615 0.653 0.725 

10 2.251 2.297 2.510 2.832 
11 5.870 4.752 5.080 5.998 
12 10.294 9.151 9.861 11.821 

Sum/12 2.152 1.961 2.080 2.378 
 

             

Table 2.5: Simulated values of  ( )σσ ˆMean)/1(  and ( )σσ ˆ)/( 2 Varn . 

n = 10 n = 50 n = 100 
Model Mean Variance Mean Variance Mean Variance 

1 0.91 0.663 1.01 0.534 1.03 0.534 
2 0.87 0.706 0.99 0.702 1.02 0.731 
3 0.86 0.788 0.98 0.795 1.01 0.879 
4 0.79 0.785 0.93 0.905 0.97 1.057 
5 0.69 0.707 0.83 0.849 0.88 1.095 
6 0.87 0.677 1.00 0.622 1.02 0.684 
7 0.70 0.574 0.87 0.729 0.92 0.937 
8 0.88 0.732 1.00 0.721 1.02 0.795 
9 0.71 0.784 0.87 1.139 0.92 1.531 

10 1.37 3.596 1.71 4.725 1.86 6.628 
11 1.98 15.261 2.52 16.813 2.91 23.387 
12 2.75 25.234 3.55 30.798 4.10 43.080 

Sum/12 1.12 4.209 1.35 4.944 1.47 6.778 
                            

 When we compare Table 2.4 with Table 2.1 and Table 2.5 with Table 2.2, 

we observe an overall increase in the variances of the estimators. However, when 

the results of the mean of sigma are examined, it can be seen that the bias is 

reduced for models with finite variances. This might or might not be 

inconsequential for practical purpose. 
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2.6 Populations with Finite Mean and Variance 

 

 If the underlying distribution is known to be long-tailed symmetric with 

finite variance as in most situations, iν  in (2.7) may be taken to be equal to its 

original value, namely, 

( ) 3~
iii tkw=ν . 

We give the simulated values of the mean and variance of the resulting MMLE of 

sigma in Table 2.6. 

 

Table 2.6: Simulated values of  ( )σσ ˆMean)/1(  and ( )σσ ˆVar)/( 2n , where 

( ) 3~
iii tkw=ν .    

n = 10 n = 50 n = 100 
Model Mean Variance Mean Variance Mean Variance 

1 0.98 0.553 1.00 0.529 1.00 0.503 
2 0.96 0.712 0.98 0.681 0.98 0.641 
3 0.95 0.815 0.97 0.791 0.97 0.775 
4 0.92 1.105 0.93 0.953 0.93 0.954 
5 0.84 1.181 0.84 1.064 0.85 1.070 
6 0.97 0.639 0.98 0.613 0.98 0.600 
7 0.88 0.947 0.88 0.857 0.88 0.839 
8 0.96 0.734 0.98 0.698 0.98 0.702 
9 0.88 1.504 0.88 1.400 0.88 1.417 

Sum/9 0.93 0.910 0.94 0.843 0.94 0.833 
* 0.83 0.629 0.86 0.590 0.86 0.578 

* Are the values for σ̂ (developed in this chapter) 
 

The MMLE of sigma has smaller bias for models with finite variances. However, 

the variance of the estimator is increased. This is a very common phenomenon, 

however. 

 From the point of view of having bounded influence functions, the MMLEs 

given in (2.6)-(2.8) are adventageous. We use them in further development of the 

subject matter. 
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CHAPTER 3 

 

 

SKEW DISTRIBUTIONS 

 

 

 

Consider the family of skew distributions represented by the Generalized 

Logistic (b>0)  

                      

( ){ }
( ){ }[ ] ∞<<∞−
−−+
−−

= + x
x

xbxf b ,
/exp1

/exp)( 1σμ
σμ

σ
,         (3.1) 

where μ  is location, σ  is scale and b is shape parameter. Note that different 

values of b characterize different types of distributions; b<1, b=1 (called Logistic 

Distribution) and b>1 respectively denotes negatively skewed, symmetric and 

positively skewed distributions.  

Tiku and Akkaya (2004) give the mean and the variance of Generalized 

Logistic distribution in terms of psi-function (also called digamma function) 

(.)/(.)(.) ΓΓ′=Ψ , where (.)Γ is the gamma function: 

         )1()()( Ψ−Ψ= bzE  and )1()()( Ψ′+Ψ′= bzVar  

for . The values of )(bΨ  and )(bΨ′  are tabulated in Tiku and 

Akkaya (2004) as follows: 
 

 

Table 3.1: Values of the psi-function )(bΨ . 

b 0.5 1 2 4 6 8 
)(bΨ  -1.9635 -0.5772 0.4228 1.2561 1.7061 2.0156 
)(bΨ′  4.9348 1.6449 0.6449 0.2838 0.1813 0.1331 

 

 

 

( ) σμ /−= xz
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Since μ  is the location parameter and σ  is the scale parameter, the mean 

of an observation x from Generalized Logistic distribution is 

[ ])1()()( Ψ−Ψ+= bxE σμ            (3.2) 

while the variance of  x  is 

[ ])1()()( 2 Ψ′+Ψ′= bxVar σ .         (3.3) 

The values of its skewness and kurtosis are given below: 

 

Table 3.2: The values of the skewness and kurtosis of generalized logistic 

distribution with shape parameter b. 

b = 0.5 1 2 4 6 
Skewness 2/3

23 / μμ  -0.855 0.000 0.511 0.868 0.961 
Kurtosis 2

24 / μμ  5.400 4.200 4.333 4.758 4.951 
  
 

Given a random sample nxxx ,...,, 21 , the likelihood function is 

( ){ }
( ){ }[ ] 1

1 /exp1
/exp1

+
= −−+

−−
⎟
⎠
⎞

⎜
⎝
⎛∝ Π b

i

i
n

i

n

x
x

L
σμ
σμ

σ
 .         (3.4) 

The maximum likelihood equations expressed in terms of the standardized ordered 

variates ( ) σμ /)()( −= ii xz  are 

∑
=

=
+

−=
n

i
izgbn

d
Ld

1
)( 0)()1(ln

σσμ
 

and                  (3.5) 

∑ ∑
= =

=
+

−+−=
n

i

n

i
iii zgzbzn

d
Ld

1 1
)()()( 0)()1(1ln

σσσσ
; 

)1/(1)1/()( zzz eeezg +=+= −− .  

 These equations have no explicit solutions. To obtain modified maximum 

likelihood equations, we linearize )( )(izg : 

)()( )( iiii zzg βα −≅ ,   ni ≤≤1 ;                      (3.6) 

iα  and iβ  are obtained from the first two terms of a Taylor series expansion. That 

gives; )(itt = : 

( ) ( )2)exp(1/)exp()exp(1 tttti +++=α  and ( )2)exp(1/)exp( tti +=β .   (3.7) 
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Here, we use the approximate values of )(it  for 10>n ,  

)1ln( /1
)( −−== − b

ii qtt ,  ( )1/ += niqi ,   ni ≤≤1 .          (3.8) 

Balakrishnan and Leung (1988) tabulated the true values of { })()( ii zEt =  for 

15≤n . However, using the approximate values does not alter the efficiencies of 

the resulting estimators in any substantial way (Tiku and Akkaya, 2004). 

Incorporating (3.6) in (3.5) gives the modified maximum likelihood 

equations (Tiku and Akkaya, 2004): 

         0)()1(lnln
2

*

=−+
+

=≅ μσ
σμμ

DKmb
d

Ld
d

Ld
 

and                  (3.9) 
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−Δ+=
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ii KxbB

1
)( )()1(  and           (3.11)

( )∑∑
==

−+=⎟
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⎞
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⎝

⎛
−+=

n

i
ii

n

i
ii KxbmKxbC

1

2
)(

1

22
)( )1()1( ββ .                   (3.12) 

The solutions of (3.9) are the MMLEs: 

σμ ˆˆ DK +=   and  ( ){ } ( )124ˆ 2 −++= nnCnBBσ  .        (3.13) 

 

Remark: For a given b, the estimators μ̂  and σ̂  have negligible bias and are 

highly efficient for all sample sizes. Asymptotically, they are unbiased and fully 

efficient. They are also robust to plausible deviations from an assumed distribution 

in the family (3.1) and to moderate data anomalies; see for example, Senoglu and 

Tiku (2001). 

 

 

 

 



36 

 

3.1 Unspecified Shape Parameter 

 

In machine data processing, it might not be possible to specify b. Now, the 

only assumption we make is that the underlying distribution is one of (3.1). We 

proceed as follows: 

 As usual, we write 

                { }ixmedianT =0   and  { }00 483.1 TxmedianS i −=    )1( ni ≤≤ .  

For b=1 (logistic distribution which is symmetric), 0T  and 0S  are particularly good 

initial estimators of the median and the standard deviation ( )σ12Ψ′ . 

 

3.2 Unknown b 

 
Since we do not know the value of the shape parameter b, we estimate 

(b+1) from a given sample. We also estimate )(it ’s and hence, iα ’s and iβ ’s in 

(3.7). 

 The initial estimates of  )(it  are  

       ( ) 00)()( /~ STxt ii −=    ( ni ≤≤1 );        (3.2.1) 

hence, the initial estimates of iα  and iβ , iα~  and iβ
~

 respectively, are obtained by 

replacing )(it  by )(
~

it  ( ni ≤≤1 ). 

 To estimate 1)1( −+b  and  )1( +b  in  (3.10)- (3.12), we note that   

( ) ( ) )(
111

1
2 σμ−=

+
=

+
=⎟

⎠
⎞

⎜
⎝
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∞

∞−
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−

− xz
b
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e
e

e
E bz

z

z .    (3.2.2) 

Writing 

       ( ) ( )iii zzz
i eeew −+=+= 111 ,          (3.2.3) 

( ) ( )1)/1(
1

+=
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=

bbwnEwE
n

i
i . An initial estimate of ( )1+bb  is  

      
∑
=

=
n

i
iwnw

1

~)/1(~ ,   ( ) ( ))()()(
~~~

111~ iii ttt
i eeew −+=+= .      (3.2.4) 
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Thus,  

w~1− is an initial estimator of 1)1( −+b  

and               (3.2.5) 

( )w~11 −  is an initial estimator of )1( +b . 

 

Remark: Since iw~  are bounded between 0 and 1, w~1−  and ( )w~11 −  converge to 

their expected values 1)1( −+b  and )1( +b , respectively, very quickly with 

increasing n . 

The MMLEs are calculated by replacing iα  by iα~ , iβ  by iβ
~

, 1)1( −+b  by 

)~1( w−  and )1( +b  by  ( )w~11 −  in (3.10)-(3.12). Since complete sums are 

invariant to ordering, (3.10)-(3.12) can be written in terms of ix  and it
~

 simply by 

droping the ordered symbol ‘( )’ on them. The estimates are calculated from five 

iterations starting with 0T  and 0S . Calculation show that no more than five 

iterations are needed for the estimates to stabilize sufficiently. Here, more than two 

iterations are required for estimates to stabilize sufficiently because the underlying 

distributions are skewed. It may be noted that μ̂  is estimating the population 

median σμ )12ln( /1 −− b
 and σ̂  is estimating the population scale parameter σ . 

 

3.3 Simulations  

 
To study the properties of these new estimators, we carried out 

comprehensive simulation studies based on N=[100.000/n] Monte Carlo runs. 

Random samples were generated for a given b in (3.1), and N estimates of the 

median and scale computed. Random observations ix  ( ni ≤≤1 ) generated when 

1≠b  were multiplied by ( ) ( ) ( ){ }[ ] 2/11/12 Ψ′+Ψ′Ψ′ b  so that the variances of ix  are 

always the same as when b = 1 (logistic distribution), i.e., ( ) 212 σΨ′ = 22898.3 σ . It 

may be noted that μ̂  is then estimating the scaled median 

    { } ( ) ( ) ( ){ }[ ] 2/1/1 1/12)12ln( Ψ′+Ψ′Ψ′−−= bmedianScaled b σμ ;       (3.3.1) 
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μ  is taken to be zero without loss of generality, and σ̂  is estimating the scale 

parameter σ  which is taken to be 1 without loss of generality. If one wants to 

estimate the median, not the scaled median, the x-observations need not be 

multiplied by ( ) ( ) ( ){ }[ ] 2/11/12 Ψ′+Ψ′Ψ′ b . 

 The means and variances of the N estimates of the scaled median and the 

scale parameter are given in Table 3.3. It is pleasing to notice that the new MMLEs 

have negligible bias in spite of the fact that )(it  ( ni ≤≤1 ) and 1)1( −+b  are 

estimated from a given sample. 

 

Table 3.3: Simulated values of means and variances of the MMLEs μ̂  and σ̂ ; 

( ) ( ) ( ){ }[ ] 0,1/12)12ln( 2/1/1 =Ψ′+Ψ′Ψ′−−= μσbmedianScaled b   without loss of 

generality. 

b = 0.5 b = 1 
Scaled median = -0.777 Scaled median = 0 

n  = 10 20  50 100 10 20 50 100 
( )μσ ˆMean)1(  -0.813 -0.808 -0.786 -0.780 -0.003 0.000 0.000 0.000
( )μσ ˆVar)( 2n  3.273 3.263 3.207 3.344 3.553 3.642 3.428 3.357
( )σσ ˆMean)1(  0.936 0.947 0.948 0.949 0.982 0.990 0.996 1.001
( )σσ ˆVar)( 2n  0.751   0.717  0.704  0.739 0.755  0.733   0.759   0.785

b = 2 b = 4 
Scaled median = 1.056 Scaled median = 2.174 

n  = 10 20 50 100 10 20 50 100 
( )μσ ˆMean)1(  1.083 1.069 1.071 1.066 2.211 2.194 2.185 2.179
( )μσ ˆVar)( 2n  3.573 3.678 3.935 3.876 3.717 3.708 3.874 3.913
( )σσ ˆMean)1(  0.994 1.003 1.008 1.015 0.993 1.001 1.008 1.014
( )σσ ˆVar)( 2n  0.813   0.806  0.765  0.800 0.857  0.821   0.831   0.809

b = 6 b = 8 
Scaled median = 2.819 Scaled median = 3.268 

n  = 10 20 50 100 10 20 50 100 
( )μσ ˆMean)1(  2.845 2.826 2.815 2.815 3.312 3.287 3.283 3.272
( )μσ ˆVar)( 2n  3.567 3.580 3.724 3.731 3.709 3.711 3.780 3.989
( )σσ ˆMean)1(  0.984 0.996 1.006 1.006 0.996 1.004 1.008 1.009
( )σσ ˆVar)( 2n  0.874   0.804  0.827  0.845 0.923  0.868   0.878   0.840
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The estimators μ̂  and σ̂  work very well and are unbiased (almost) for each 

shape parameter (unknown to us) and sample size. 

The results above are very promising indeed and extend Huber type work to 

skew distributions. Huber M-estimation is not applicable to skew distributions. It 

may be noted that the MMLEs above have bounded influence functions since for 

any k, 

( ) ( ){ } 011lim 22
→+=+ −−

∞→

ttkttk

t
eeteet ,       (3.3.2) 

k  being 1 or 2 in our situation. See Appendix B for details. 

 

3.4 Least Square Estimators 

 

For b = 1, the LSE of the median is x with variance 

    ( ) 22 290.312)( σσ =Ψ′=xnV . 

For 10=n , the relative efficiency of the new MMLE (which does not 

assume any knowledge of b) is  

   100(Variance of x / Variance of MMLE) = 93% 

which is indeed a promising result; for n = 100, it is 98%. 

 For  1=b , the LSE of σ  is ( )12/ Ψ′s  with asymptotic variance (Roy and 

Tiku, 1962) 

⎟
⎠
⎞

⎜
⎝
⎛ + 4

2

2
11

2
λσ

n
, 324 −= βλ .        (3.4.1) 

For 1=b , 2.42 =β . For 100=n , the value of this variance is 0.80. The 

corresponding variance of the new MMLE σ̂  is 0.785 (Table 3.3). Again, the 

result is very promising.  

 

Comment: The method may extend to other skew distributions. That needs further 

study. 
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Remark: We give below the variances of the LSE ( ) ( )1/ Ψ′+Ψ′ bs  of σ  for  

n = 100 calculated from (3.4.1); b assumed known: 

 

b = 0.5 1 2 4 6 
Variancen )/( 2σ  1.100 0.800 0.833 0.940 0.988 

 

These may be compared with the corresponding values in Table 3.3. The MMLEs 

are not only more efficient than the LSEs but no knowledge of b is needed in 

calculating the former. 

 

Remark: The LSE of the population median is 0T . Given in Table 3.4 are the 

simulated means and variances of  0T  and 483.100 SS =∗  (proposed by Huber as 

an initial estimator). It can be seen that 0T  and ∗
0S  have negligible bias. However, 

0T  and ∗
0S  are jointly much less efficient than the LSEs we now propose. It can be 

seen that 0T  and ∗
0S  are good only as initial estimators. 

 

Table 3.4: Simulated means and variances of  0T  and 483.100 SS =∗ . 

n = 10 n = 20 

0T    
∗
0S  0T   

∗
0S  

b Mean nxVar Mean nxVar Mean nxVar Mean nxVar 
0.5 -0.812 3.370 0.977 1.500 -0.795 3.504 1.015 1.622 
1 -0.008 3.672 1.024 1.551 -0.002 3.772 1.069 1.672 
2 1.088 3.783 1.035 1.569 1.066 3.882 1.079 1.711 
4 2.215 3.785 1.027 1.542 2.193 3.966 1.064 1.678 
6 2.838 3.809 1.014 1.518 2.827 3.987 1.054 1.697 
8 3.305 3.919   1.016 1.600  3.287 4.116  1.062 1.737 

  n = 50 n = 100 

0T    
∗
0S  0T   

∗
0S  

b Mean nxVar Mean nxVar Mean nxVar Mean nxVar 
0.5 -0.789 3.642 1.022 1.692 -0.780 3.798 1.031 1.756 
1 -0.005 4.038 1.085 1.768 -0.011 4.285 1.096 1.760 
2 1.062 4.202 1.097 1.779 1.057 4.295 1.113 1.722 
4 2.165 4.373 1.089 1.823 2.177 4.403 1.105 1.844 
6 2.806 4.019 1.082 1.787 2.812 4.215 1.086 1.807 
8 3.276 4.468   1.079 1.831  3.273 4.249  1.090 1.664 
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Proposal: The proposed LSE of the scaled population median 

                         ( ){ } ( ) ( ) ( ){ }[ ] 2/1/1 1/1212ln Ψ′+Ψ′Ψ′−− bb σμ   

is 

          ( ) ( )[ ] ( ) ( )( ) ( ) ( ) ( ){ }[ ] 2/11/121/1~ Ψ′+Ψ′Ψ′Ψ′+Ψ′Ψ−Ψ−= bbsbxμ ;   (3.4.2) 

μ  may be taken to be zero without loss of generality. The LSE of σ  is given on 

the previous page. Note that (3.4.2) is similar in form to μ̂  in (3.13). It is not 

possible to derive the variance of this estimator analytically because the ),( sxCov

is difficult to determine even asymptotically.  

 

 

3.5 Comparison of MMLEs and Proposed LSEs 

 

In this section, we let shape parameter b be unknown for the calculation of 

both the MMLEs and LSEs. We will estimate the unknown shape parameter b from 

(3.2.5) and incorporate it in our computations. The results of our simulations are 

given in Table 3.5 and Table 3.6 with sample sizes 10=n  and 20=n , 

respectively. True values of the scaled population median are given in Table 3.3. It 

may be noted that  

( ) ( )∑
∞

=

−−+=Ψ′
1

21
i

did
         

(3.5.1) 

while ( )dΨ  is computed by using FORTRAN subroutine ‘psi’ in IMSL/LIBRARY 

Special Functions. 

It can be seen that the LSEs have larger bias than the MMLEs. Overall, the 

MMLEs are considerably more efficient (jointly) than the LSEs. This is very 

interesting indeed. Moreover, unlike the MMLEs, the LSEs do not have bounded 

influence functions; see Appendix B. That is a rerious drawback in the context of 

robustness. 
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Table 3.5: Simulated values of means and variances of the MMLEs and LSEs;

0=μ  and 1=σ  without loss of generality, 10=n . 

 

n = 10 Median Scale Median Scale 
MMLE LSE MMLE LSE MMLE LSE MMLE LSE 

b = 0.5 b = 1 
Mean -0.812 -0.910 0.936 0.927 0.001 -0.003 0.983 0.961 
nxVar 3.271 3.092 0.748 0.809 3.462 3.338* 0.793 0.803 

b = 2 b = 4 
Mean 1.077 1.109 0.997 0.977 2.207 2.246 0.987 0.972 
nxVar 3.654 3.641 0.822 0.881 3.710 3.845 0.824 0.928 

b = 6 b = 8 
Mean 2.845 2.883 0.986 0.973 3.311 3.347 0.989 0.977 
nxVar 3.577 3.757 0.861 0.984 3.645 3.844 0.857 0.989 

* For b known, the variance of the LSE is 3.290. 
 

 

 

Table 3.6: Simulated values of means and variances of the MMLEs and LSEs;

0=μ  and 1=σ  without loss of generality, 20=n . 

 

n = 20 Median Scale Median Scale 
MMLE LSE MMLE LSE MMLE LSE MMLE LSE 

b = 0.5 b = 1 
Mean -0.797 -0.913 0.944 0.952 0.001 -0.002 0.992 0.981 
nxVar 3.263 3.118 0.744 0.903 3.567 3.469 0.740 0.783 

b = 2 b = 4 
Mean 1.063 1.107 1.006 0.995 2.191 2.246 1.005 1.001 
nxVar 3.650 3.706 0.778 0.878 3.730 3.975 0.846 1.032 

b = 6 b = 8 
Mean 2.826 2.884 1.000 1.000 3.292 3.349 0.998 1.000 
nxVar 3.694 4.000 0.840 1.049 3.615 3.969 0.868 1.105 

 

 

Comment: Another way of estimating the shape parameter b would be to calculate 

μ̂  and σ̂  for a series of values of b and choose that value (of b) which maximizes 

(Tiku and Akkaya, 2010) 

( ){ } σσμμ ˆ,ˆln1 ==Ln .         (3.5.2) 
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This procedure is computationally more involved and will be considered in future 

research. Apparently, it might not yield substantially better results than those 

obtained by using w~  in the estimation of b. This is because w~  is bounded between 

0 and 1 and converges to its expected value very quickly as the sample size n 

increases. 
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CHAPTER 4 

 

 

ANALYSIS OF VARIANCE IN EXPERIMENTAL DESIGN 

 

 

 

 Experimental design is a very important area not only for applied but also 

for theoretical studies in statistics. The traditional assumption of normality of 

course leads to the development of an enormous amount of theory related to 

experimental design. The normality assumption makes it possible to test treatment 

effects by defining Fisher F-statistics. However, non-normal distributions occur 

more frequently in practice. In statistical literature, one can find many studies 

dealing with non-normal data in experimental design and the effects of non-

normality on the F-statistics (Geary, 1947; Gayen, 1950; Srivastava, 1959; Tiku, 

1964; Donaldson, 1968; Tiku 1971b; Spjøtvoll and Aastveit, 1980; Tan and Tiku, 

1999, Senoglu and Tiku, 2001). In this chapter specifically we extend analysis of 

variance procedures given in Senoglu and Tiku (2001) to non-normal data in a 

single factor experimental design. In later chapters we extend the methodology to 

more complex data structures. In particular, our method makes it possible to extend 

Senoglu and Tiku (2002) results to situations where the shape parameters (of the 

assumed Generalized Logistic) in blocks are different and unknown. This is a very 

important advance because Senoglu and Tiku (2002) assume that shape parameters 

are different but known. It may be noted that different shape parameters create non-

identical blocks, perceived to be a very difficult problem for statistical analyses. 
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4.1 One-Way Classification 

 

Consider the one-way classification model 

         ),,2,1;,,2,1( njaiey ijiij KK ==++= γμ ,      (4.1.1) 

where μ  is a constant and iγ  is the effect due to thi  treatment (or block). This is a 

balanced design since  the number of observations in each block, n, is the same. 

Without loss of generality, we assume that it is a fixed effects model and 0
1

=∑
=

a

i
iγ . 

Different types of distribution families for the errors ije  are studied in the 

following subsections. In each of them, the errors ije  are assumed to be iid. It may 

be noted that our method readily extends to situations where the number of 

observations in blocks are unequal (unbalanced design). In this thesis, we will 

confine ourselves to balanced designs. 

 

4.1.1 Normal Distribution 

 

We first assume that ije  are iid normal ),0( 2σN . The likelihood function is 
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The MLEs are solutions of the equations 0ln =∂∂ μL , 0ln =∂∂ iL γ

),,2,1( ai K= and 0ln =∂∂ σL . They are 

..
ˆ̂ y=μ , ...
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1 1
.. 1 . All these estimators are unbiased; 

.iy  and ..y  are also the MVB estimators. 

 Fisher decomposition of the total sum of squares is 
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or 

      
222
errorblockT SSS += . 

The sums of squares 2
blockS  and 2

errorS  on the right hand side are called ‘block’ and 

‘error’ sums of squares, respectively. Under the normality assumption, 22 σblockS is 

distributed as chi-sqaure with )1( −a  degrees of freedom if the null hypothesis 

0: 210 ==== aH γγγ L  

is true; )1(2 −naSerror  is independently distributed as chi-sqaure with )1( −na  

degrees of freedom. These results lead to Fisher F statistic 
22
errorblock ssF =  

where 

           )1(22 −= aSs blockblock  and )1(22 −= naSs errorerror  

are called ‘block’ and ‘error’ mean sums of squares, respectively. Large values of F 

lead to the rejection of 0H  in favor of 1H , 

        0 oneleast At :1 ≠iH γ )1( ai ≤≤ . 

The null distribution of F is central F with 11 −= aν  and )1(2 −= naν degrees of 

freedom. Under 1H , the distribution of F is non-central F with ),( 21 νν  degrees of 

freedom and non-centrality parameter 

         
.

1

222 ∑
=

=
a

i
in σγλ  

A Laguerre series expansion which is computationally straightforward is developed 

in Tiku (1965). See also Tiku (1985a,b). 

Writing ii γμμ +=  in the linear function 

       
∑∑
==

=
a

i
ii

a

i
ii

11
μγ ll ,

 

iμ  is estimated by ( )∑
=

=
n

j
iji yny

1
. 1 ; .iy  is unbiased and ( ) nyVar i

2
. σ= . The 

estimators .iy )1( ai ≤≤  are mutually independent. 
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Under 0H , every linear contrast is zero. To test that a particular linear 

contrast 

     
,0,

11
∑∑
==

=
a

i
i

a

i
ii ll μ

 
is zero, the test statistic is 

( )∑∑
==

=
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i
i
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i
ii nyt

1

2

1
.

ˆ̂ ll σ . 

The null distribution of t is Student’s t with )1( −= naν degrees of freedom.  

 

Remark: If the distribution is a known location-scale distribution, Senoglu and 

Tiku (2001) worked out MMLEs of iμ )1( ai ≤≤  and σ . They showed that the 

corresponding variance-ratio statistic is similar to the F statistic above. Our aim 

here is to develop methodology which can be used in machine data processing in 

the context of experimental design. In such a situation, the only information is that 

the underlying distribution is of certain types, e.g., long-tailed symmetric. 

 

 

4.1.2 Long-Tailed Symmetric Family 

 

 Suppose that ije  are iid and distrubuted as one of the distributions in the 

family  
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32 −= pk , 2≥p  and ( ) ( ) ( ) ( )bababa +ΓΓΓ=,β . Note that μ=)(eE  and 
2)( σ=eV . For this family, the likelihood function L  of the observations 

)1,1( njaiyij ≤≤≤≤  is 
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The likelihood equations for estimating μ , iγ   )1( ai ≤≤ and σ  are 

           
( ) 02ln

1 1
==

∂
∂ ∑∑

= =
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i
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j
ijzg

k
pL

σμ
                (4.1.2.2) 

( ) 02ln
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==
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pL

σγ
     (4.1.2.3) 

and 

         ( ) 02ln
1 1

=+−=
∂
∂ ∑∑

= =

a

i

n

j
ijij zgz

k
pNL

σσσ
    (4.1.2.4) 

where the function ( )zg  is given by 

    ( ) ( )kzzzg 21+= .      (4.1.2.5) 

 In order to solve the equations (4.1.2.2)-(4.1.2.5) to obtain the MLEs, a+1 

number of equations have to be iterated simultaneously. This is a difficult and time 

consuming task and there can be problems of convergence as stated before. 

Therefore, we will utilize the MMLEs in our analysis. 

 If we let )()2()1( niii yyy ≤≤≤ K  )1( ai ≤≤  be the order statistics of the n 

observations )1( njyij ≤≤  in the thi  block, then  

    ( ) ),,2,1;,,2,1(/)()( njaiyz ijiji KK ==−−= σγμ             

are ordered ijz  variates. After replacing ijz  by )( jiz  and using the linear 

approximation 

         ( ) )1()()( njzzg jijjji ≤≤+≅ βα               

where (replacing 3
)( jt  by )( jt  in jα  for reasons given earlier) 

( )
( ){ }22

)(

)(

11

1

j

j
j

tk

tk

+
=α  and 

( ){ }22
)(11

1

j

j
tk+

=β , { })()( jij zEt =       

we obtain the modified likelihood equations 0ln * =∂∂ μL , 0ln * =∂∂ iL γ ,

0ln * =∂∂ σL . One may like to drop the ordering on )( jt  and )( jiy  since the 

ordering of )( jiz can be disregarded as complete sums are invariant to ordering. 

This has also been explained in Chapter 2.  

Remember that we proposed ( ) ( )niSTxt ii ,,1,/~
00 K=−=  as the initial 

estimate of )(it  in Chapter 2, where there exists only one block. When the block 
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number is more than one, however, we need a modification since we have 

{ }iji ymedianT =0   and  { }iiji TymedianS 00 483.1 −=
 

)1( ai ≤≤  for each block. 

In the present situation:  

( ) iiijij STyt 00
~ −= .                  

 

The initial estimates of jα  and jβ , respectively, are obtained by replacing 

jt  by ijt~  ( ni ≤≤1 ). The resulting jα  and jβ  coefficients will be denoted by ijα~  

and ijβ~ , respectively. 

The explicit solutions of the modified likelihood equations are the MMLEs 

of μ , iγ   )1( ai ≤≤ and σ : 
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Note that, as in Chapter 2, ( )5.1630 == pk . 

A more conveniant form of the  MMLE of σ  is 

a
a

i
i∑

=

=
1

2ˆˆ σσ ,      (4.1.2.8) 

 

where ( ){ } ( )124ˆ 2 −++= nnCnBB iiiiσ , iB  and iC  )1( ai ≤≤ are given in 

(4.1.2.7). Note that 2σ̂  given in (4.1.2.8) is advantageous because it has the same 

form as the corresponding LSE, namely, 

( ) assss a
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2
2
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nyys
n

j
iiji  )1( ai ≤≤ . 

We will use it in rest of this chapter. 
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Note that the LSEs of μ  and iγ  )1( ai ≤≤  are, respectively, 

       
( )∑∑

= =

=
a

i

n

j
ijyN

1 1
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and  μμγ ~~~

. −= ii           (4.1.2.9) 

where naN =  and ( )∑
=

==
n

j
ijii yny

1
.. 1~μ . 

 

4.1.2.1 Efficiency and Robustness 

 

To evaluate the efficiency and robustness of the MMLEs given in (4.1.2.6), we 

consider a normal distribution and a very broad range of long-tailed symmetric 

distributions and samples containing data anomalies as follows: 

(1) Normal ),0( 2σN          

The family (4.1.2.1) with 

(2) 5=p , (3) 5.3=p , (4) 5.2=p , (5) 2=p  

Outlier models: )( rn −  ix  come from ),0( 2σN and r  (we do not know 

which) come from 

(6) )4,0( 2σN ,  (7) )16,0( 2σN ; [ ]nr 1.05.0 +=  (integer value). 

Mixture models: 

(8) )4,0(10.0),0(90.0 22 σσ NN + ,  (9) )16,0(10.0),0(90.0 22 σσ NN +  

(10) Student’s t distribution with 2 df  (degrees of freedom),  

(11) Cauchy distribution,  

(12) Slash (Normal/Uniform) distribution 

Note that, models (1)-(9) have finite mean and variance, (10) has finite mean but 

non-existent variance, and (11)-(12) have non-existent mean and variance, as said 

earlier. 
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From the resulting N  values of the MMLEs and LSEs, we computed their 

means and variances. The results of MMLEs are given in Table 4.1 while those of 

LSEs are given in Table 4.2.  

 

Table 4.1: Simulated values of Mean)/1( σ and *Variance)/( 2σn  of MMLEs μ̂ , 

σ̂ , )1(ˆ aii ≤≤γ  and the summation of iγ̂ ’s )1( ai ≤≤  for long tail symmetric 

family; 10=n . 

Model μ̂  σ̂  1γ̂  2γ̂  3γ̂  4γ̂  ∑
=

a

i
i

1
γ̂  

1 -0.001 0.949 0.006 -0.004 0.002 -0.004 0.000 
[0.270] [0.146] [0.799] [0.805] [0.768] [0.811] 

2 -0.002 0.922 0.001 0.000 -0.005 0.004 0.000 
[0.245] [0.173] [0.697] [0.730] [0.724] [0.728] 

3 -0.001 0.894 -0.003 0.001 -0.005 0.007 0.000 
[0.227] [0.185] [0.678] [0.666] [0.658] [0.655] 

4 0.000 0.839 -0.002 0.002 -0.001 0.000 0.000 
[0.195] [0.197] [0.555] [0.557] [0.561] [0.557] 

5 0.001 0.740 0.001 0.001 -0.004 0.002 0.000 
[0.143] [0.185] [0.428] [0.437] [0.430] [0.425] 

6 0.001 0.913 0.000 -0.003 -0.001 0.003 0.000 
[0.240] [0.151] [0.705] [0.721] [0.728] [0.702] 

7 0.000 0.741 -0.001 0.003 -0.002 0.001 0.000 
[0.139] [0.123] [0.421] [0.408] [0.430] [0.422] 

8 0.001 0.917 0.004 -0.001 -0.002 0.000 0.000 
[0.243] [0.171] [0.751] [0.722] [0.724] [0.713] 

9 0.001 0.757 -0.001 0.002 -0.002 0.001 0.000 
[0.152] [0.208] [0.449] [0.446] [0.451] [0.454] 

10 0.001 1.495 0.001 -0.003 0.000 0.003 0.000 
[0.558] [1.028] [1.697] [1.643] [1.685] [1.682] 

11 -0.002 2.248 0.004 -0.006 0.005 -0.003 0.000 
[1.232] [5.340] [3.548] [3.546] [3.728] [3.549] 

12 -0.002 3.076 0.011 -0.016 0.020 -0.014 0.000 
[2.211] [9.003] [6.387] [6.619] [6.664] [6.712] 

 

* Variances are given in brackets 
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Table 4.2: Simulated values of Mean)/1( σ and *Variance)/( 2σn  of LSEs μ~ , σ~ , 

)1(~ aii ≤≤γ  and the summation of iγ
~ ’s )1( ai ≤≤  for long tail symmetric family; 

10=n . 

Model μ~  σ~  1
~γ  2

~γ  3
~γ  4

~γ  ∑
=

a

i
i

1

~γ  

1 0.000 0.994 -0.007 0.001 0.003 0.002 0.002 
[0.245] [0.140] [0.764]  [0.755] [0.752] [0.746] 

2 -0.001 0.989 0.000 0.000 0.002 -0.002 -0.002 
[0.251] [0.197] [0.754] [0.739] [0.756] [0.742] 

3 0.000 0.984 -0.004 -0.005 0.007 0.002 0.002 
[0.248] [0.271] [0.757] [0.765] [0.759] [0.737] 

4 0.000 0.973 -0.001 -0.001 0.002 0.000 0.000 
[0.253] [0.518] [0.764] [0.731] [0.747] [0.762] 

5 -0.001 0.930 0.004 0.000 -0.004 0.000 0.000 
[0.245] [1.212] [0.750] [0.738] [0.725] [0.706] 

6 -0.003 0.991 -0.001 0.001 -0.003 0.002 0.002 
[0.248] 0.192 0.734 0.750 0.748 0.763 

7 0.000 0.973 -0.004 0.003 0.000 0.002 0.002 
[0.251] [0.476] [0.743] [0.762] [0.735] [0.747] 

8 0.000 0.989 -0.003 0.000 0.003 0.000 0.000 
[0.248] [0.220] [0.732] [0.774] [0.752] [0.754] 

9 0.000 0.968 -0.004 0.001 0.004 0.000 0.000 
[0.252] [0.657] [0.739] [0.771] [0.755] [0.759] 

10 -0.004 2.534 -0.004 0.011 0.004 -0.011 -0.011 
[3.261] [66.172] [10.506] [9.164] [8.409] [10.627] 

11 -1.758 100.241 18.039 -1.767 -17.001 0.729 0.729 
[3.37E+06] [1.35E+08] [1.92E+07] [3.97E+06] [138E+07] [3.56E+06] 

12 -1.629 47.405 1.922 -0.770 2.119 -3.271 -3.271 
[1.92E+05] [7.66E+06] [2.24E+05] [2.77E+05] [2.28E+05] [1.57E+06] 

 

* Variances are given in brackets 

 
 

When the efficiencies of LSEs and MMLEs are compared, the estimators 

obtained by the method of MML are observed to be on the whole enormously more 

efficient than the LSEs and give less baised results as well. For the models (10)-

(12) with non-existance variance, the differences between MMLEs and LSEs 

become very striking. The summation of iγ̂ ’s )1( ai ≤≤  is zero for each model, 

however, the summation of iγ
~ ’s fails to be zero for models (10)-(12). Furthermore, 

the variances of the LSEs explode for distributions (10)-(12) because their 



53 

 

influence functions, unlike the MMLEs, are not bounded. This is disastrous for 

machine data processing.  
 

 

4.1.2.2 Linear Contrasts 

  

Besides the overall block differences being examined by the variance ratio 

F statistics, it is advisable to construct linear contrasts to capture comparison of 

different combinations of block means. In this chapter we consider the linear 

contrast 

( ) ∑∑∑
===

=+===
a

i
iii

a

i
ii

a

i
ii

111
0, lll γμμμγη ,            (4.1.2.2.1) 

where we assume without loss of generality that η  is a standardized linear contrast, 

i.e., ∑
=

=
a

i
i

1

2 1l ; )1( aii ≤≤l  are constant coefficients. In order to construct all the 

possible ( )1−a  standardized orthogonal linear constrasts, we use Helmert 

transformation: 

( ) 2211 μμη −=  

( ) 62 3212 μμμη −+=              (4.1.2.2.2) 

M 

    ( ) ( )1)1(1211 −−−+++= −− aaa aaa μμμμη K . 

 

Note that, two contrasts ∑
=

=
a

i
ii

1
11 μη l  and ∑

=

=
a

i
ii

1
22 μη l  are orthogonal if 

∑
=

=
a

i
ii

1
21 0ll . The constrasts in (4.1.2.2.2) are all orthogonal to one another and to 

the mean vector  

    ( ) aaμμμ +++ K21 . 

The LSE of the linear contrast η  is obtained by replacing ii γμμ +=   in 

(4.1.2.2.1) by iy )1( ai ≤≤ :      

∑
=

=
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i
ii y

1

~ lη . 
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Here, the variance of iy ’s )1( ai ≤≤  is n2σ  which is estimated by ns 2  and 2s  

is the pooled sample variance: 

( ) ( )[ ]∑∑ ∑
= = =

=−−=
a

i

n

j

a

i
iiij asnayys

1 1 1

222 1 . 

For independent (or uncorrelated) iy ’s )1( ai ≤≤ , the variance of η~  is 
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since  η  is a standardized linear contrast. 

The MMLE of η  is  

∑
=

=
a

i
ii

1

ˆˆ μη l , 

and the variance of η̂  is 
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for independent (or uncorrelated) iμ̂ ’s )1( ai ≤≤ .   

 

4.1.2.3 Hypothesis Testing  

 

  In order to study the differences between block means, our hypothesis to 

test is 0:0 =ηH  against .0: ≠= dHa η  

The distribution of the test statistic based on the LSEs, ( )snt η~= , is 

Student’s t with df )1( −= nav  under the null hypothesis if the distribution of  

)1,1( njaieij ≤≤≤≤  is normal. 

 We define the test statistic ( )ηη ˆˆ VarT =  by using the MMLEs. While 

the null-distribution of T  is )1,0(N  for large n, it is referred to Student’s t with 

)1( −= nav  df  for small n.  

In general, the non-null distribution of both test statistics, t
 
and T , are 

referred to noncentral Student’s t with )1( −= nav  df and noncentrality parameter 

( )22 σηλ n= . 
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For illustration, we do hypothesis testing with standardized orthogonal 

linear constrasts for four blocks, i.e., 4=a . Linear constrasts, obtained by Helmert 

transformation, are 

( ) 2211 μμη −=               (4.1.2.3.1) 

( ) 62 3212 μμμη −+=              (4.1.2.3.2) 

and 

( ) ( )323 43213 μμμμη −++= .            (4.1.2.3.3) 

The test statistic for testing 0:0 =cH η  is 

( )c

c
c Var

T
η

η
ˆ

ˆ
=

 
, 3,2,1=c .             (4.1.2.3.4) 

Large values of cT  lead to the rejection of 0H  in favor of 0:1 >cH η , 3,2,1=c . 

Since 0ln * =∂∂ μL  is asymptotically equivalent to 0ln =∂∂ μL  and has 

the form 
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)1( ai ≤≤ ,  

the estimator i

n

j
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~)(ˆ βσμ  is conditionally (σ known) the MVB 

estimator of ii γμμ +=ˆ  and is normally distributed with variance 
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Therefore, the variance of cη̂  is 
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since the blocks are independent. Of course, the above results apply when n is large 

in which case ( )nmi  is a constant in the limit when n tends to infinity. 
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The test statistics for testing 0:0 =cH η  versus 0: >caH η  becomes 

 

( )∑
=

=
a

i i

ci
c

nm
k

pn
T

1

2

2ˆ

lσ
η

 
, 3,2,1=c ;            (4.1.2.3.5) 

 

σ  to be raplaced by σ̂  . The MVB estimator of iμ )1( ai ≤≤  is 
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2
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12/3 σμ
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=
pnp

ppMVB i .             (4.1.2.3.6) 

 

Note that we take 5.16=p  and 30=k , as in Chapter 2. 

Rejection probabilities of the test statistics for testing 

0:
against03:

3

432130

>
=−++=

η
μμμμη

aH
H

 

 

for different iμ ’s ( )41 ≤≤ i  with samples from the distributions (1)-(12) in section 

4.1.2.1 are obtained by simulation. We generated [ ]nnn /000,100=  (integer value) 

samples (consisting of independently distributed observations) of size n=10 from 

each of the models (1)-(12). The observations generated from models (6)-(9) were 

divided by suitable constants to make their variances equal to 2σ . Different 

number of iterations (e.g. 2, 3 and 5 iterations) were carried out. We observed that 

three iterations are enough to give stable results. The rejection probabilites using 

the test statistics with estimated MVB 

( ) ( )( )
( )

2ˆ
2/1

12/3ˆ σμ
−

+−
=

pnp
ppBVM i

 

are given in Table 4.3 and Table 4.4, respectively. Without loss of generality, σ is 

taken to be 1 and the Type I error is assumed to be 0.05. 
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Table 4.3: Values of the power for long-tailed symmetric family estimators in 

which σ̂  is directly used to calculate the test statistics under different values of μ ; 

10=n . 

  iμ   

Model 
0.0 0.2 0.4 0.6 0.8 1.0 

LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE
  1* 0.045 0.052 0.17 0.19 0.41 0.44 0.69 0.71 0.89 0.90 0.98 0.98 
2 0.046 0.052 0.18 0.20 0.42 0.44 0.69 0.72 0.89 0.91 0.97 0.98 
3 0.047 0.054 0.18 0.20 0.42 0.45 0.70 0.73 0.89 0.91 0.97 0.98 
4 0.045 0.050 0.18 0.21 0.43 0.49 0.71 0.77 0.90 0.93 0.97 0.99 
5 0.041 0.049 0.18 0.23 0.46 0.56 0.75 0.84 0.91 0.96 0.97 0.99 
6 0.047 0.051 0.17 0.18 0.40 0.44 0.67 0.71 0.87 0.90 0.96 0.97 
7 0.046 0.042 0.14 0.16 0.33 0.38 0.57 0.65 0.78 0.85 0.90 0.95 
8 0.046 0.049 0.17 0.19 0.41 0.45 0.67 0.71 0.87 0.90 0.96 0.97 
9 0.040 0.042 0.13 0.16 0.32 0.38 0.55 0.63 0.76 0.82 0.89 0.93 

10 0.133 0.041 0.23 0.10 0.34 0.21 0.47 0.36 0.59 0.52 0.72 0.69 
11 0.292 0.032 0.33 0.06 0.37 0.11 0.42 0.16 0.46 0.25 0.50 0.34 
12 0.320 0.036 0.34 0.05 0.38 0.08 0.41 0.12 0.44 0.16 0.48 0.23 

 
   * The power values of the normal theory test are little bit smaller only because it s Type I error is   
smaller than the cT -test. It should, in fact, be little  bit larger for a common Type I error. 
 

 

Table 4.4: Values of the power for long-tailed symmetric family estimators in 

which ( )iBVM μˆ  is used to calculate the test statistics under different values of μ ; 

10=n . 

  iμ   

Model 
0.0 0.2 0.4 0.6 0.8 1.0 

LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE
1 0.049 0.056 0.17 0.19 0.41 0.43 0.69 0.69 0.89 0.89 0.98 0.98 
2 0.048 0.052 0.17 0.19 0.42 0.44 0.70 0.72 0.89 0.91 0.97 0.98 
3 0.048 0.054 0.17 0.19 0.41 0.45 0.71 0.74 0.89 0.91 0.97 0.98 
4 0.044 0.048 0.18 0.21 0.43 0.50 0.71 0.78 0.90 0.94 0.97 0.99 
5 0.041 0.048 0.17 0.23 0.45 0.57 0.74 0.85 0.91 0.97 0.97 0.99 
6 0.046 0.053 0.16 0.17 0.41 0.45 0.68 0.72 0.88 0.90 0.96 0.98 
7 0.045 0.043 0.14 0.15 0.33 0.39 0.57 0.65 0.78 0.86 0.91 0.96 
8 0.047 0.050 0.17 0.18 0.41 0.45 0.67 0.71 0.87 0.90 0.96 0.97 
9 0.044 0.043 0.14 0.17 0.31 0.37 0.56 0.66 0.77 0.85 0.89 0.95 

10 0.134 0.042 0.22 0.11 0.34 0.22 0.47 0.38 0.60 0.56 0.72 0.72 
11 0.289 0.040 0.33 0.07 0.37 0.11 0.42 0.21 0.45 0.31 0.50 0.42 
12 0.312 0.033 0.35 0.06 0.38 0.09 0.41 0.14 0.45 0.20 0.47 0.27 



58 

 

Since distributions (10)-(12) have infinite variance, μ  has to be very large 

for the non-centrality parameter ( )2σηn  to be appreciably greater than zero to 

yield a value of the power greater than the Type I error. Therefore, for distributions 

(10)-(12), we took 0.2,6.1,2,1,8.0,4.0,0.0=μ . The test based on LSEs had 

enormously large Type I error. For sake of comparison, we obtained their 95% 

points by simulation. The critical value of LSEs is 2.5 for model (10), 6.0 for 

model (11), and 7.0 for model (12). The results obtained with these critical values 

are tabulated in Table 4.5. 

 

Table 4.5: Values of the power with simulated critical values using LSEs; 10=n . 

  iμ   

Model 
0.0 0.4 0.8 1.2 1.6 2.0 

LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE
10 0.052 0.042 0.17 0.21 0.39 0.52 0.65 0.81 0.83 0.94 0.91 0.98 
11 0.052 0.034 0.06 0.10 0.08 0.25 0.09 0.46 0.12 0.65 0.16 0.78 
12 0.053 0.031 0.06 0.09 0.07 0.17 0.08 0.29 0.08 0.46 0.10 0.60 

 

 

Although the Type I error of the test using the LSEs is now 0.05, the power values 

are considerably less than the values for the MMLEs. Using LSEs is in vain unless 

the distributions are normal or near-normal. 

The test statistics for testing  

)3,2,1(0:
against0: 3210

=≠
===

coneleastatH
H

ca η
ηηη

             
(4.1.2.3.7)

 

can be obtained with MMLEs and LSEs, respectively, as 
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The statistics (4.1.2.3.8) and (4.1.2.3.9) are distributed as chisquare with 1 df. Thus, 
2T  is distributed as 2

3χ . 

 

Table 4.6: Values of the power for testing 0: 3210 === ηηηH  with long-tailed 

symmetric family; 10=n .  

 

  iμ   

Model 
0.0 0.2 0.4 0.6 0.8 1.0 

LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE
1 0.042 0.054 0.18 0.20 0.59 0.60 0.92 0.91 0.99 0.99 1.00 1.00 
2 0.042 0.053 0.18 0.20 0.59 0.62 0.91 0.92 0.99 1.00 1.00 1.00 
3 0.037 0.047 0.18 0.21 0.59 0.62 0.93 0.94 0.99 1.00 1.00 1.00 
4 0.037 0.041 0.18 0.22 0.61 0.67 0.92 0.94 0.99 1.00 1.00 1.00 
5 0.035 0.048 0.19 0.26 0.65 0.76 0.93 0.97 0.99 1.00 1.00 1.00 
6 0.041 0.047 0.17 0.19 0.56 0.60 0.90 0.92 0.99 0.99 1.00 1.00 
7 0.027 0.032 0.12 0.15 0.45 0.51 0.81 0.87 0.96 0.98 0.99 1.00 
8 0.039 0.045 0.17 0.19 0.57 0.61 0.90 0.92 0.99 0.99 1.00 1.00 
9 0.033 0.033 0.13 0.15 0.45 0.52 0.80 0.86 0.96 0.97 0.99 1.00 

10 0.274 0.036 0.33 0.08 0.48 0.24 0.67 0.47 0.83 0.72 0.91 0.87 
11 0.726 0.028 0.75 0.04 0.76 0.10 0.79 0.20 0.81 0.33 0.85 0.49 
12 0.791 0.024 0.79 0.04 0.80 0.07 0.82 0.12 0.84 0.19 0.86 0.29 

 

 

Results obtained by using MMLEs are enormously superior and no 

knowledge of p in (4.1.2.1) as such is assumed. This is indeed very advantageous 

for machine data processing, and also theoretically. It is interesting to note that the 

emprical values of the Type I error are smaller than the presumed value for extreme 

non-normal symmetric distributions. Therefore, the corresponding values of the 

power will be larger than those in the tables above when the Type I errors are 0.05.  

 

Remark: The above methods are readily applicable to situations when the shape 

parameter p does not have the same value from block to block. This is due to the 

fact that we are estimating the coefficients iα  and ( )nii ≤≤1β  from each block.  
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4.1.3 Generalized Logistic Distribution 

 

We now assume that the errors ije  in (4.1.1) are iid and its distributions is a 

member of the family of  Generalized Logistic (b > 0) 

    

( )
( ){ } ∞<<∞−
−+

−
= + e

e
ebef b ,

/exp1
/exp)( 1σ
σ

σ
,         (4.1.3.1) 

where σ  is scale and b is a shape parameter.  
The likelihood function L  for the one-way classification fixed effects 

model is 
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To estimate μ , iγ   )1( ai ≤≤ and σ , the following likelihood equations 

are obtained: 
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(4.1.3.4) 

and the function ( )zg  is given by 

( ) ( )zz eezg −− += 1 .       

 

 In order to derive MLEs, one should solve the likelihood equations (4.1.3.2) 

to (4.1.3.4). However, the involvement of the function ( )zg  makes it difficult to 

work out solutions. 

By linearizing ( )zg  as before, i.e., 

   ( ) )1()()( njzzg jijjji ≤≤+≅ βα ;               (4.1.3.5) 

            ( ) ( )211 ttt
j eete +++=α , ( )21 tt

j ee +=β , { })()( jij zEtt == , (4.1.3.6) 
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and incorporating (4.1.3.5) and (4.1.3.6) in likelihood equations (4.1.3.2)-(4.1.3.4), 

we obtain the modified likelihood equations 0ln * =∂∂ μL , 0ln * =∂∂ iL γ  and 

0ln * =∂∂ σL  as in Senoglu and Tiku (2001). Here, 

( ) ),,2,1;,,2,1(/)()( njaiyz ijiji KK ==−−= σγμ , 

are the ordered variates and )()2()1( niii yyy ≤≤≤ K  )1( ai ≤≤  are the order 

stastistics of the n observations. 

The values of )( jt  can be estimated as in Chapter 3. In this case, however, 

we replace )( jt  by )( jit  since we have { }iji ymedianT =0   and  

{ }iiji TymedianS 00 483.1 −=
 

)1( ai ≤≤ for each block: 

( ) iijiji STyt 00)()(
~ −= .               

Therefore, the initial estimates of jα  and jβ , respectively, are obtained by 

replacing )( jt  by )(
~

jit  ( ni ≤≤1 ) and denoted by ijα~  and ijβ~ , respectively. 

 The modified maximum likelihood equations can be written as 
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The equations (4.1.3.7)-(4.1.3.9) have explicit solutions while (4.1.3.2)-

(4.1.3.4) do not, and the solutions are the MMLEs, 
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As explained earlier, it is more convenient to take  

a
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i
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2ˆˆ σσ ,              (4.1.3.13) 

 

where ( ){ } ( )124ˆ 2 −++−= nnCnBB iiiiσ , iB  and iC  )1( ai ≤≤ are as in 

(4.1.3.11) and (4.1.3.12), respectively. 

Note that for each block, )1( +b  is initially estimated by ( )iw~11 −

)1( ai ≤≤ :  

      
∑
=

=
n

j
iji wnw

1

~)/1(~ ,  ( ) ( ))()()(
~~~

111~ jijiji ttt
ij eeew −+=+=    ainj ≤≤≤≤ 1,1 . 

See section 3.2 for details.  

We generated [ ]nnn /000,100=  (integer value) random samples of size 

10=n  from generalized logistic family with various shape parameter values in 

order to study the MMLEs in (4.1.3.10)-(4.1.3.13). From the resulting nn  values 

of MMLEs, we computed their means and variances which are given in Table 4.8. 

For 1≠b , the random observations were multiplied by ( ) ( ) ( ){ }[ ] 2/11/12 Ψ′+Ψ′Ψ′ b  
in order to make the variances the same as the variance of logistic distribution (b = 

1), which is equal to ( ) 212 σΨ′ = 22898.3 σ . As explained in Chapter 3, μ̂  is 

estimating the scaled median while σ̂  is estimating the scale parameter σ  which 

is taken to be 1 without loss of generality. Note that the scaled median is 

( ) ( ) ( ){ }[ ] 2/1/1 1/12)12ln( Ψ′+Ψ′Ψ′−− bb   (4.1.3.14) 

where μ  is taken to be zero without loss of generality. The values of the scaled 

median in (4.1.3.14) are given in Table 4.7 
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Table 4.7: The values of scaled median for different shape parameters. 

Model Scaled 
Median 

b = 0.5 -0.777 
b = 1 0.000 
b = 2 1.056 
b = 4 2.174 
b = 6 2.819 
b = 8 3.268 

 

Table 4.8: Simulated values of Mean)/1( σ and *Variance)/( 2σn  of MMLEs μ̂ , 

σ̂ , )1(ˆ aii ≤≤γ  and the summation of iγ̂ ’s )1( ai ≤≤  for generalized logistic 

family; 10=n . 

Model μ̂  σ̂  1γ̂  2γ̂  3γ̂  4γ̂  ∑
=

a

i
i

1
γ̂  

b = 0.5 -0.815 0.965 0.005 -0.007 -0.001 0.005 0.002 
[0.793] [0.200] [2.457] [2.459] [2.454] [2.413] 

b = 1 -0.005 1.012 0.008 0.003 -0.002 0.004 0.013 
[0.861] [0.211] [2.653] [2.576] [2.616] [2.594] 

b = 2 1.076 1.024 0.004 -0.004 0.018 0.004 0.022 
[0.900] [0.225] [2.682] [2.692] [2.773] [2.715] 

b = 4 2.208 1.028 0.004 0.009 0.010 0.004 0.027 
[0.908] [0.235] [2.733] [2.801] [2.791] [2.780] 

b = 6 2.857 1.022 0.018 -0.002 0.007 0.005 0.029 
[0.915] [0.235] [2.747] [2.700] [2.770] [2.766] 

b = 8 3.308 1.024 0.005 0.011 0.000 0.014 0.029 
[0.882] [0.245] [2.738] [2.728] [2.790] [2.766] 

 

* Variances are given in brackets 

 

Although we do not assume a given value for the shape parameter b, the 

MMLEs are unbiased (almost) in estimating the scaled median and shape 

parameter. Remember that we are using a fixed effects model where 0
1

=∑
=

a

i
iγ  

without loss of generality . The MMLEs iγ̂  )1( ai ≤≤ satisfy this condition 

(almost). Note that the x-observations need not be multiplied by 

( ) ( ) ( ){ }1/12 Ψ′+Ψ′Ψ′ b  if one wants to estimate the median rather than the scaled-

median. 
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4.1.3.1 Linear Contrasts and Hypothesis Testing  

 

To study linear contrasts, we assume four blocks ( 4=a ) and use Helmert 

transformation in order to construct standardized orthogonal linear constrasts: 

( ) 2211 μμη −=  

( ) 62 3212 μμμη −+=   and 

( ) 323 43213 μμμμη −++= .  

The test statistics for testing  

           0:0 =cH η    against   0: >caH η ,  3,2,1=c          (4.1.3.1.1)  

is 
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As before, the above results are true asymptotically because nmin ∞→
lim  is a 

constant in the limit. 

Since the blocks are independent, the variance of cη̂  ( 3,2,1=c ) is 
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( )06/26/16/12 −=l  and 

 ( ))32/(3)32/(1)32/(1)32/(12 −=l .  

However, since we are estimating )1( +b  for each block by ( )iw~11 −

)1( ai ≤≤ , we have 
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 Therefore, the test statistics for testing 0:0 =cH η  versus 0: >caH η  

becomes 
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, 3,2,1=c ;            (4.1.3.1.4) 

σ  is replaced by σ̂ . 

The power results under different alternatives for testing 0:0 =cH η  against 

0: >caH η , ( )3,2,1=c  with 0.05 Type I error are tabulated in Tables 4.9-4.11. 

 

Table 4.9: Values of the power for testing 0: 10 =ηH  under different alternatives 

for distributions with different shape parameters b. 

n = 10 iμ   
Model 0.0 0.2 0.4 0.6 0.8 1.0 
b = 0.5 0.056 0.11 0.19 0.30 0.43 0.57 
b = 1 0.057 0.14 0.27 0.44 0.63 0.79 
b = 2 0.060 0.16 0.34 0.55 0.75 0.89 
b = 4 0.063 0.18 0.39 0.61 0.82 0.93 
b = 6 0.064 0.19 0.39 0.64 0.83 0.94 
b = 8 0.063 0.20 0.40 0.64 0.84 0.94 
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Table 4.10: Values of the power for testing 0: 20 =ηH  under different alternatives 

for distributions with different shape parameters b. 

n = 10 iμ   
Model 0.0 0.2 0.4 0.6 0.8 1.0 
b = 0.5 0.059 0.12 0.23 0.36 0.52 0.66 
b = 1 0.063 0.16 0.31 0.53 0.73 0.88 
b = 2 0.061 0.2 0.4 0.66 0.85 0.95 
b = 4 0.059 0.21 0.47 0.72 0.89 0.97 
b = 6 0.061 0.22 0.47 0.73 0.91 0.97 
b = 8 0.058 0.22 0.48 0.76 0.91 0.98 

 

 

Table 4.11: Values of the power for testing 0: 30 =ηH  under different alternatives 

for distributions with different shape parameters b. 

n = 10 iμ   
Model 0.0 0.2 0.4 0.6 0.8 1.0 
b = 0.5 0.063 0.10 0.15 0.23 0.33 0.44 
b = 1 0.061 0.13 0.22 0.34 0.49 0.64 
b = 2 0.059 0.14 0.28 0.44 0.62 0.76 
b = 4 0.062 0.16 0.31 0.50 0.67 0.82 
b = 6 0.065 0.16 0.32 0.52 0.70 0.84 
b = 8 0.061 0.16 0.33 0.53 0.72 0.85 

 

 It is observed that under 0:0 =kH η  ( 3,2,1=k ), we obtained power values 

slightly greater than the Type I error. Therefore, it is decided to obtain the 95% 

point for 0: 30 =ηH  by simulation and the results are given in Table 4.12. 

 

Table 4.12: Values of the power for testing 0: 30 =ηH  with simulated critical 

values. 

n = 10 iμ   
Model 0.0 0.2 0.4 0.6 0.8 1.0 
b = 0.5 0.051 0.09 0.14 0.20 0.29 0.41 
b = 1 0.051 0.11 0.20 0.31 0.45 0.61 
b = 2 0.054 0.12 0.24 0.41 0.58 0.74 
b = 4 0.051 0.14 0.28 0.46 0.64 0.80 
b = 6 0.050 0.14 0.29 0.47 0.67 0.81 
b = 8 0.054 0.15 0.29 0.48 0.68 0.83 
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When Table 4.11 and 4.12 are compared, a decrease in power values under 

0: 3 >ηaH  is observed which is expected. However, it should be noted that the 

decrease is very small. In addition, note that the critical value obtained by 

simulation is 1.80, which is very close to the original 95% point. 

The test statistic for testing  

.3,2,10:
against0: 3210

=≠
===

coneleastatH
H

ca η
ηηη

                   
(4.1.3.1.5)

 

can be formulated by using MMLEs:  

2
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2
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2 TTTT ++= .                         (4.1.3.1.6) 
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,   3,2,1=c .            (4.1.3.1.7) 

Since 2
cT ’s ( 3,2,1=c ) are distributed as chisquare with 1 df, the test statistic 2T  is 

distributed as 2
3χ . Table 4.13 shows the power values of the test (4.1.3.1.5)  by 

using 2T  given in (4.1.3.1.6). 

 

Table 4.13: The table of power values for the test 0: 3210 === ηηηH  with 

generalized logistic family estimators.  

 n = 10 iμ   
Model 0.0 0.2 0.4 0.6 0.8 1.0 
b = 0.5 0.049 0.07 0.12 0.20 0.34 0.49 
b = 1 0.055 0.09 0.19 0.36 0.59 0.79 
b = 2 0.061 0.10 0.25 0.50 0.76 0.91 
b = 4 0.059 0.13 0.29 0.58 0.83 0.95 
b = 6 0.063 0.13 0.31 0.61 0.85 0.97 
b = 8 0.064 0.13 0.32 0.62 0.85 0.97 

 

 

It can be seen that 2T  provides a powerful test and is succesful in attaining 

the presumed Type I error (almost). It is important to note that the generalized 

logistic has considerable amount of skewness for 4≥b  (Tiku an Akkaya, 2004, 

Appendix 2D). Therefore, increasing the sample size will result in more accurate 

approximations, especially for 4≥b . 
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4.1.3.2 Non-Identical Blocks  

 

 In some real life situatitions, the errors ),,2,1( njeij K=  in the thi  block 

might come from Generalized Logistic with shape parameter ib  and scale 

parameter σ . The shape parameters )1( aibi ≤≤  are not necessarily equal. 
Senoglu and Tiku (2002) assumed that all ib  are known and gave a solution to 

estimate and test the block effects. Our method extends to the situation when 

)1( aibi ≤≤ are not known because it uses the estimators of the shape parameters 

and not their true values. The test is exactly the same as (4.1.3.1.6), 2
cT  being the 

statistic (4.1.3.1.7) . The only restriction is that all )1( aibi ≤≤  are either 1≥  or 

1≤ . 

 

4.2 Two-Way Classification and Interaction 

 

Consider the two-way classification model 

)1,1;1( nlcjaiey ijlijjiijl ≤≤≤≤≤≤++++= τδγμ ,     (4.2.1) 

where μ  is a constant, iγ  is the effect due to thi   block, jδ  is the effect due to thj   

column, and ijτ  is the interaction between the thi   block  and thj   column . The 

random errors ijle  are iid. Without loss of generality, we assume that it is a fixed 

effects model where  

0
1 111
∑ ∑∑∑
= ===

====
c

j

c

j
ij

a

i
iji

a

i
i ττδγ .                   (4.2.2) 

In the following subsections, various types of distribution families are assumed for 

the random errors ijle  in order to study the estimators. 
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4.2.1 Normal Distribution 

 

Traditionally, ijle  have been assumed to be iid normal ),0( 2σN , where the 

likelihood function is 

( ){ }∏∏∏
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Solving the maximum likelihood equations 0ln =∂∂ μL , 0ln =∂∂ iL γ

),,2,1( ai K= , 0ln =∂∂ jL δ ),,2,1( cj K=  and 0ln =∂∂ σL  leads to the 

following MLEs: 
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The main interest in two-way classification with interaction is to test the 

null hypotheses 

iH i ∀= ,0:01 γ ,  jH j ∀= ,0:02 δ  and ji,H ij ∀= ,0:03 τ . 

Fisher decomposition of the total sum of squares is 
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or 
22222
errorninteractiocolumnblockT SSSSS +++= . 

They are instrumental in constructing the test statistics. Note that 2
blockS  , 2

columnS ,

2
ninteractioS  and 2

errorS  on the right hand side are the sums of squares due to ‘blocks’, 

‘columns’, ‘interactions’ and ‘error’, respectively. If ijle  are iid normal ),0( 2σN , 

then 22 σblockS , 22 σcolumnS  and 22 σninteractioS  are distributed as chi-sqaure with 

)1( −a , )1( −c  and )1)(1( −− ca  degrees of freedoms under the null hypotheses 

0: 2101 ==== aH γγγ L , 

0: 2102 ==== cH δδδ L , 
0: 121103 ==== acH τττ L , 

respectively. Since )1(2 −nacSerror  is independently distributed as chi-sqaure with 

)1( −nac  degrees of freedom when errors are normal, the test statistics to test 

3,2,1,0 =kH k  are respectively 

22
1 errorblock ssF = ,  

22
2 errorcolumn ssF = ,  

22
3 errorninteractio ssF =  

where 

)1(22 −= aSs blockblock , )1(22 −= cSs columncolumn  and )1(22 −= nacSs errorerror  
are called ‘block’, ‘column’ and ‘error’ mean sums of squares, respectively. Large 

values of F lead to the rejection of 3,2,1,0 =kH k  , respectively, in favor of 

0:11 ≠i one least AtH γ )1( ai ≤≤ , 

0:12 ≠j one least AtH δ )1( cj ≤≤ , 

0:13 ≠ij one least AtH τ . 

 

The null distributions of the test statistics is central F with the denominator 

degrees of freedom =2ν )1( −nac . The numerator degrees of freedom 1ν  of 1F  is 

)1( −a , of 2F  is )1( −c  and of 3F  is )1)(1( −− ca . Under the alternatives, the 
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distributions of the test statistics ( )3,2,1, =kFk  are non-central F with ),( 21 νν  

degrees of freedom and non-centrality parameter 
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1 1

222
3 στλ  for 3F . 

 

4.2.2 Long-Tailed Symmetric Family 

 

Assuming that the distribution of error terms in (4.2.1) belongs to long-

tailed symmetric family, we obtain the following likelihood function: 
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( ) ),,2,1;,,2,1;,,2,1(/ nlcjaiyez ijjiijijij KKK ===−−−−== στδγμσ ,

acnN = . 

 

The likelihood equations for estimating μ , iγ   )1( ai ≤≤ , jδ )1( cj ≤≤ , 

ijτ  and σ are 
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and 
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   ( ) 02ln
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l
ijij zgz

k
pNL

σσσ
               (4.2.2.6) 

where the function ( )zg  is given by 

    ( ) ( )kzzzg 21+= .      (4.2.2.7) 

Due to the intractability of the equations (4.2.2.2) to (4.2.2.6) which have 

no explicit solutions, we utilize the MMLEs obtained as follows: 

The linear approximations we consider are 

   ( ) )1;1;1()()( nlcjaizzg lijijlijllij ≤≤≤≤≤≤+≅ βα       (4.2.2.8) 

where 
  ( )

( ){ }22
)(
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lij
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ijl

tk
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+
=α  and

( ){ }22
)(11

1

lij

ijl
tk+

=β , { })()( lijlij zEt =  )30( =k . (4.2.2.9) 

 

Incorporating (4.2.2.9) in (4.2.2.2)-(4.2.2.7) gives the modified likelihood 

equations 0ln * =∂∂ μL , 0ln * =∂∂ iL γ  and 0ln * =∂∂ σL . 

We disregard the ordering of ijlz  as before and take 

( ) ),,1(/~
00 njSTyt ijijijlijl K=−=  as the initial estimate of ijlt , where 

{ }ijlij ymedianT =0   and  { }ijijlij TymedianS 00 483.1 −=
 

)1;1( cjai ≤≤≤≤  for 

the thji ),(  cell.  

The initial estimates of ijlα  and ijlβ  are obtained by replacing ijlt  by ijlt~ , 

and the resulting coefficients are denoted by ijlα~  and ijlβ~ , respectively. 

The resulting MMLEs of μ , iγ   )1( ai ≤≤ , jδ )1( cj ≤≤ , ijτ  and σ  are 
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Note that, as in previous chapters, ( )5.1630 == pk  . 

A more convenient form of the  MMLE of σ  is 
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where ( ){ } ( )124ˆ 2 −++= nnCnBB ijijijijσ , ijB  and ijC  )1;1( cjai ≤≤≤≤  

are given in (4.2.2.12). Notice that σ̂  given in (4.2.2.13) has the same form as the 

corresponding LSE, namely, 
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 The LSEs of μ , iγ   )1( ai ≤≤ jδ )1( cj ≤≤ and ijτ  are 
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4.2.2.1 Efficiency and Robustness 

 

In order to study the efficiency and robustness of MMLEs given in (4.2.2.10), 

(4.2.2.11) and (4.2.2.13), we use the distributions (1)-(12) given in section 4.1.2.1. 

The MMLEs and LSEs are computed and their means and variances are given in 

Table 4.14 and Table 4.15. Note that no iteration is done for calculating the 

MMLEs. We have 3 blocks and 3 columns in our design. The sample size n in 

each cell is taken to be 4 in Table 4.14 while it is 8 in Table 4.15.  

 

Table 4.14: Simulated values of Mean)/1( σ and *Variance)/( 2σn  of MMLEs μ̂

, σ̂ , 11τ̂  and LSEs μ~ , σ~ , 11
~τ  for long tail symmetric family; 4=n . 

 

Model μ̂  μ~  σ̂  σ~  11τ̂  11
~τ  

1 -0.001 -0.001 0.927 0.989 0.003 0.004 
[0.121] [0.112] [0.077] [0.071] [0.487] [0.443] 

2 0.001 0.001 0.910 0.987 0.002 0.004 
[0.110] [0.110] [0.094] [0.101] [0.443] [0.440] 

3 -0.001 0.000 0.897 0.985 0.003 0.004 
[0.106] [0.110] [0.108] [0.134] [0.421] [0.442] 

4 0.000 0.000 0.853 0.971 -0.004 -0.003 
[0.092] [0.112] [0.125] [0.260] [0.376] [0.462] 

5 -0.001 0.001 0.772 0.926 0.002 0.003 
[0.073] [0.110] [0.133] [0.562] [0.289] [0.434] 

6 0.000 0.001 0.926 0.990 -0.001 0.000 
[0.123] [0.113] [0.078] [0.073] [0.490] [0.445] 

7 -0.001 -0.001 0.928 0.991 0.001 0.001 
[0.121] [0.113] [0.079] [0.074] [0.485] [0.443] 

8 -0.002 -0.001 0.907 0.985 -0.002 -0.002 
[0.107] [0.107] [0.095] [0.107] [0.452] [0.444] 

9 -0.002 -0.002 0.796 0.965 -0.003 -0.004 
[0.077] [0.111] [0.160] [0.293] [0.307] [0.451] 

10 0.001 0.013 1.666 2.552 0.007 0.008 
[0.329] [2.631] [1.167] [68.397] [1.292] [11.964] 

11 0.004 -0.814 3.709 35.668 0.026 -0.001 
[0.27E+01] [0.17E+05] [0.11E+03] [0.59E+06] [0.10E+02] [0.59E+05]

12 0.002 -9.064 4.638 112.461 0.004 19.968 
[0.32E+01] [0.39E+07] [0.99E+02] [0.14E+09] [0.14E+02] [0.16E+08]

 

* Variances are given in brackets 
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Table 4.15: Simulated values of Mean)/1( σ and *Variance)/( 2σn  of MMLEs μ̂

, σ̂ , 11τ̂  and LSEs μ~ , σ~ , 11
~τ  for long tail symmetric family; 8=n . 

 

Model μ̂  μ~  σ̂  σ~  11τ̂  11
~τ  

1 0.001 0.001 0.950 0.997 0.002 0.001 
[0.117] [0.109] [0.068] [0.063] [0.484] [0.454] 

2 -0.001 0.000 0.922 0.993 0.000 0.000 
[0.108] [0.112] [0.083] [0.095] [0.442] [0.461] 

3 0.000 0.001 0.900 0.992 0.001 0.003 
[0.101] [0.110] [0.087] [0.125] [0.408] [0.448] 

4 0.001 0.003 0.844 0.981 0.000 -0.001 
[0.084] [0.112] [0.094] [0.281] [0.344] [0.442] 

5 0.000 0.001 0.749 0.946 0.000 0.000 
[0.065] [0.106] [0.092] [0.615] [0.262] [0.434] 

6 -0.002 -0.002 0.912 0.996 0.001 0.001 
[0.105] [0.112] [0.070] [0.090] [0.422] [0.450] 

7 -0.001 0.000 0.725 0.982 0.003 0.001 
[0.058] [0.110] [0.057] [0.211] [0.235] [0.441] 

8 0.001 0.001 0.919 0.994 -0.001 0.000 
[0.107] [0.112] [0.080] [0.100] [0.427] [0.434] 

9 0.000 0.000 0.764 0.979 0.002 0.000 
[0.068] [0.112] [0.105] [0.315] [0.274] [0.444] 

10 0.001 0.002 1.534 2.686 -0.001 -0.004 
[0.270] [1.537] [0.564] [49.181] [1.031] [6.068] 

11 0.001 -0.022 2.452 50.489 0.001 1.065 
[0.62E+00] [0.58E+05] [0.45E+01] [0.42E+07] [0.24E+01] [0.77E+05]

12 0.003 0.839 3.286 103.073 0.000 -4.894 
[0.11E+01] [0.55E+06] [0.65E+01] [0.39E+08] [0.43E+01] [0.29E+07]

 

* Variances are given in brackets 

  

As expected, the variance decreases by about half when we increase the 

sample size from 4 to 8. 

After comparing LSEs and MMLEs, it can be seen that the estimators 

obtained by the method of MML are on the whole considerably more efficient than 

the LSEs. While the variances and the means of the LSEs explode for distributions 

(10)-(12) with non-existance variance, MMLEs give much more stable results for 

the same scenarios because of their bounded influence functions.  
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4.2.3 Generalized Logistic Distribution 

 

Suppose that the distribution of error terms in (4.2.1) is a member of 

generalized logistic family. The likelihood function is 
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where ( ) στδγμσ /ijjiijijij yez −−−−== )1;1;1( nlcjai ≤≤≤≤≤≤  and 

acnN =  . 

The likelihood equations to estimate μ , iγ   )1( ai ≤≤ , jδ )1( cj ≤≤ , ijτ  

and σ  are  
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where the function ( )zg  is 

( ) ( )zz eezg −− += 1 .      (4.2.3.7) 

 

The solutions of the equations (4.2.3.2)-(4.2.3.6) are the MLEs. However, 

these equations have no explicit solutions because of the non-linear function ( )zg . 

Although solving them by iteration is possible, Barnett (1966), Lee et al. (1980) 

and Vaughan (1992) show that iteration may lead to multiple roots, 

nonconvergence (especially when data contains outliers; see Puthenpura and Sinha 

(1986) for details), or convergence to wrong values.  
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As in Senoglu and Tiku (2001), we propose modified likelihood equations 

0ln * =∂∂ μL , 0ln * =∂∂ iL γ , 0ln * =∂∂ jL δ , 0ln * =∂∂ ijL τ  and 

0ln * =∂∂ σL  which are obtained after linearizing ( )zg : 

    ( ) )()( lijijlijllij zzg βα −≅ ;     (4.2.3.8) 

         ( ) ( )211 ttt
ijl eete +++=α , ( )21 tt

ijl ee +=β , { })()( lijlij zEtt == , (4.2.3.9) 
( ) στδγμ /)()( ijjilijlij yz −−−−=  )1;1;1( nlcjai ≤≤≤≤≤≤ . 

Here, )(lijz  are the ordered variates and )()2()1( nijijij yyy ≤≤≤ K  

)1;1( cjai ≤≤≤≤  are the order stastistics of the n observations in each cell.  

The values of )(lijt  are estimated as in section 4.1.3, however, in this case 

we replace )(
~

jit  by )(
~

lijt  since we have { }ijlij ymedianT =0   and  

{ }ijijlij TymedianS 00 483.1 −=
 

)1;1( cjai ≤≤≤≤  for each cell: 

( ) ijijljilij STyt 00)()(
~ −= .   (4.2.3.10) 

Thus, replacing ijlt  by ijlt~ , the initial estimates of ijlα  and ijlβ  are obtained 

and they are denoted by ijlα~  and ijlβ~ , respectively. 

The modified likelihood equations obtained by linearizing ( )zg  have 

explicit solutions and the solutions are the MMLEs, 

∑∑∑∑
= == =

Δ−=
a

i

c

j
ij

a

i

c

j
ij m

1 11 1
... ˆˆ σμμ , ..... ˆˆˆ μμγ −= ii , ..... ˆˆˆ μμδ −= jj ,  (4.2.3.11)

........ ˆˆˆˆˆ μμμμτ +−−= jiijij  and ( ){ } ( )NCNBB 24ˆ 2 ++−=σ   (4.2.3.12) 

where      
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1
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2

1
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ijlijijlij ybC μβ ,              (4.2.3.13) 
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 ( ) 11~ −+−=Δ bijlijl α , ∑
=

Δ=Δ
n

l
ijlij

1  
and  ∑

=

=
n

l
ijlijm

1

~β . 

Writing ( ){ } ( )124ˆ 2 −++= nnCnBB ijijijijσ , ijB  and ijC   ;1( ai ≤≤

)1 cj ≤≤  in (4.2.3.13), a more convenient form of the MMLE of σ  can be 

obtained: 

ca
a

i

c

j
ij∑∑

= =

=
1 1

2ˆˆ σσ ,               (4.2.3.14) 

For each thji ),(  cell, )1( +b  is initially estimated by ( )ijw~11 − :  

     
∑
=

=
n

l
ijlij wnw

1

~)/1(~ ,  ( ) ( ))()()(
~~~

111~ lijlijlij ttt
ijl eeew −+=+=    )1;1( cjai ≤≤≤≤ . 

See section 3.2 for details.  

Note that since complete sums are invariant to ordering, we can ignore the 

ordering. 

 

4.2.3.1 Efficiency and Robustness 

 

We study the efficiency and robustness of the MMLEs of a two-way 

classification model with interaction whose error comes from generalized logistic 

family with various shape parameters. In order to do this, we carried out simulation 

studies based on N=[100.000/n] Monte Carlo runs. The means and variances of the 

MMLEs are given in Table 4.16 where the sample size for each cell n is taken to 

be 4 and in Table 4.17 where n is 8. We do this with 3 blocks and 3 columns. The 

number of iterations is 5. The results for block and column effects being essentially 

the same as the block effects in one-way classification, the variances of the 

corresponding estimators are not reproduced. 

Random errors ijle  )1;1;1( nlcjai ≤≤≤≤≤≤  generated when 1≠b  were 

multiplied by ( ) ( ) ( ){ }[ ] 2/11/12 Ψ′+Ψ′Ψ′ b  so that the variances of ijle  are always the 

same as when b = 1 (logistic distribution), i.e., ( ) 212 σΨ′ = 22898.3 σ  where σ  is 

taken to be one without loss of generality.  
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Table 4.16: Simulated values of Mean)/1( σ and *Variance)/( 2σn  of MMLEs σ̂  

and 11τ̂  for generalized logistic family; 4=n . 

Model σ̂  11τ̂  

b = 0.5 1.012 -0.001 
[0.119] [1.460] 

b = 1 1.046 0.002 
[0.115] [1.563] 

b = 2 1.061 0.001 
[0.127] [1.591] 

b = 4 1.064 0.007 
[0.139] [1.601] 

b = 6 1.063 0.006 
[0.142] [1.566] 

b = 8 1.066 0.007 
[0.147] [1.583] 

 

* Variances are given in brackets 

 

Table 4.17: Simulated values of Mean)/1( σ and *Variance)/( 2σn  of MMLEs σ̂  

and 11τ̂  for generalized logistic family; 8=n . 
 

 

 

Model σ̂  11τ̂  
b = 0.5 0.976 -0.007 

[0.096] [1.439] 
b = 1 1.020 0.007 

[0.098] [1.557] 
b = 2 1.034 0.014 

[0.102] [1.596] 
b = 4 1.034 0.004 

[0.109] [1.632] 
b = 6 1.030 0.010 

[0.112] [1.612] 
b = 8 1.035 0.006 

[0.117] [1.607] 
 

* Variances are given in brackets 

 

The estimators σ̂  and 11τ̂  are unbiased (almost) for each shape parameter 

(unknown to us). When we compare the results with different sizes, it is observed 

that increasing the sample size from 4=n  to 8=n  reduces the variances by about 

one-half, especially of ijτ̂ . 
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CHAPTER 5 

 

 

ROBUST LINEAR REGRESSION 

 

 

 

 In many practical situations, a variable Y depends on another variable X. 

However, Y cannot be measured exactly and is subject to a measurement error but 

X can supposedly be measured without error. For example, Y is the blood pressure 

of an elderly person and X is his/her age. A very important statistical problem is to 

model the dependence of Y on X. Usually, a functional relationship 

( ) exy +=η              (5.1) 

is assumed; ( )xη  is a mathematical function involving certain unknown parameters 

and e is a random error having a particular distribution. Given a random sample 

( ) ( )nixy ii ≤≤1, , the problem is to estimate the unknown parameters in (5.1). The 

situation which occurs most often in practice is that ( )xη  is linear. The equation 

     exy ++= 10 θθ                     (5.2) 

is called a linear regression model. Experimental data ( ) ( )nixy ii ≤≤1,  is 

available which supposedly follows this model. Thus, 

niexy iii ≤≤++= 1,10 θθ ;          (5.3) 

( )niei ≤≤1  are assumed to be iid with mean zero and unknown variance 2σ . In 

certain situations, ie  will have nonzero mean; we will consider those situations 

later. 
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To estimate 0θ , 1θ  and 2σ (or σ ), a very popular method is least squares 

estimation. The error sum of squares 

( )∑∑
==

−−=
n

i
ii

n

i
i xye

1

2
10

1

2 θθ  

is minimized with respect to 0θ  and 1θ . This, in particular, gives the LSE (least 

square estimator) of 1θ  as 

( ) ( )∑∑
==

−−=
n

i
i

n

i
ii xxyxx

1

2

1
1

~θ .          (5.4) 

It is easy to show that 

( ) ( )∑
=

−=
n

i
i xxVar

1

22
1

~ σθ .           (5.5) 

Akkaya and Tiku (2008) point out that 1
~θ  is very vulnerable to the design 

( )nxxx ,,, 21 K . If, for example, an outlier occurs in the design, ( )∑
=

−
n

i
i xx

1

2  will 

become very large in which case 1
~θ  will appear to be very efficient. That is 

nonsensical. To rectify the situation, they proposed the reparametrized model 

nieuy iii ≤≤++= 1,10 θθ ,          (5.6) 

where ( ) sxxu ii −= , ( )∑
=

=
n

i
ixnx

1
/1

 
and ( )∑

=

−=
n

i
i xxsn

1

22 . 

We will show that the LSEs, and other estimators we develop in this 

chapter, are invariant to location and scale of the design. That is, if ix  are replaced 

by ibxa +  ( )ni ≤≤1 , the estimators and their variances (and covariances) remain 

unchanged, a and b being constants. 

 The LSEs of 0θ  and 1θ  are now obtained by minimizing  

( )∑
=

−−
n

i
ii uy

1

2
10 θθ . 
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That gives 

                               y=0
~θ  and ∑∑

==

=
n

i
i

n

i
ii uyu

1

2

1
1

~θ   ⎟
⎠

⎞
⎜
⎝

⎛
=∑

=

n

i
i nu

1

2 .         (5.7) 

The LSE of  2σ  is obtained by minimizing ∑
=

n

i
ie

1

2 , 

 
{ } ( )2~~

1

2
1

2 −−−= ∑
=

nuyy
n

i
ii θσ   (bias corrected).          (5.8) 

        It is very easy to verify that the LSEs  (5.7) - (5.8) are invariant to location and 

scale of the design. It may be noted that 

( ) nVar 2
0

~ σθ =
 
and ( ) nVar 2

1
~ σθ = .           

Both variances do not depend on the design which is a very useful result. 

 As said earlier, σ~  is unbiased (asymptotically) and  

( ) 3,
2
11

2
~ 2

2444

2

−=⎟
⎠
⎞

⎜
⎝
⎛ +≅ μμλλσσ

n
Var

 
;          (5.9) 

2
24 μμ  is the kurtosis of the underlying distribution. Note that (5.9) is also 

invariant to the design. 

 The only assumption for deriving LSEs is that the random errors 

)1( niei ≤≤  are iid with mean zero and variance 2σ . Suppose that the common 

distribution of ie  is known. We can then try to obtain the MLEs (maximum 

likelihood estimators) of 0θ , 1θ  and σ . 

 Assuming that )1( niei ≤≤  are iid normal ( )2,0 σN , the likelihood 

function is 

( )
⎭
⎬
⎫

⎩
⎨
⎧

−−−⎟
⎠
⎞

⎜
⎝
⎛∝ ∑

=

n

i
ii

n

uyL
1

22
10 2exp1 σθθ

σ
.       (5.10) 

 

Solving the maximum likelihood equations 0ln 0 =∂∂ θL , 0ln 1 =∂∂ θL   
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and 0ln =∂∂ σL  gives the MLEs 0
ˆ̂θ , 1

ˆ̂θ  and σ̂̂ . In this case, i.e. when ie  are 

normal ( )2,0 σN , the MLEs and LSEs are identical. The Fisher information matrix 

is 

⎥
⎥
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⎥
⎥
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⎤

⎢
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⎢
⎢
⎢

⎣

⎡

=

2

2

2

200

00

00

σ

σ

σ

n

n

n

I ;         (5.11) 

 
1−I  gives the asymptotic variances as  

nVar 2
0

ˆ̂ σθ ≅⎟
⎠
⎞⎜

⎝
⎛ , nVar 2

1
ˆ̂ σθ ≅⎟
⎠
⎞⎜

⎝
⎛  and ( ) nVar 2ˆ̂ 2σσ ≅ .       (5.12) 

 

In the present situation, however, the first two variances are exact for all n 

as said earlier. In fact, 0
ˆ̂θ  and 1

ˆ̂θ  are the MVB estimators. This follows from the 

fact that 

⎟
⎠
⎞⎜

⎝
⎛ −=

∂
∂

002
0

ˆ̂ln θθ
σθ
nL  and ⎟

⎠
⎞⎜

⎝
⎛ −=

∂
∂

112
1

ˆ̂ln θθ
σθ
nL . 

 

Remark: When the distribution of the random error e is non-normal, MLEs are 

generally elusive. Therefore, we utulize modified maximum likelihood estimation 

as follows.  

 

5. 1 Long-Tailed Symmetric Distributions 

 

Consider the simple linear regression model (5.6) with random error e 

having one the distributions in the long-tailed symmetric family 

( ) ( ) ∞<<∞−⎥
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32 −= pk , 2≥p . It may be noted that 0)( =eE  and 2)( σ=eV . For 21 <≤ p , 

)(eV  does not exist in which case σ  is a scale parameter. Writing 

( ) σθθ 01 −−= iii uyz  )1( ni ≤≤  and ( ) ( )kzzzg 21+=  , we have the following 

maximum likelihood equations; ( ) sxxu ii −= : 

( ) 02ln
10

==
∂
∂ ∑

=

n

i
izg

k
pL

σθ
         (5.1.1) 

( ) 02ln
11

==
∂
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=

n

i
ii zgu

k
pL

σθ
         (5.1.2) 

and 

( ) 02ln
1

=+−=
∂
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=

n

i
ii zgz

k
pnL

σσσ
.             (5.1.3) 

 

The likelihood equations (5.1.1) - (5.1.3) do not have explicit solutions 

since ( )zg  is a nonlinear function. Vaughan (1992) and Tiku and Suresh (1992) 

showed that (5.1.1) has multiple roots for all ∞<p , hence, calculation of MLEs is 

problematic. Tiku et al. (2001) proposed modified maximum likelihood estimation 

as an alternative and showed that MMLEs have all the desirable properties; see also 

Islam and Tiku (2004) and Akkaya and Tiku (2008) who derive MMLEs for 

parameters in a multiple linear regression model. Their estimators, however, do not 

have bounded influence functions. 

Here, we derive MMLEs which have bounded influence functions. We 

obtain such MMLEs by using the linear approximations 

( ) )1()()( nizzg iiii ≤≤+≅ βα        (5.1.4) 

where  

( )
( ){ }22

)(

)(

11

1

i

i
i

tk

tk

+
=α  and 

( ){ }22
)(11

1

i

i
tk+

=β ,                   (5.1.5) 

          { })()( ii zEt =  )30( =k .        

Here, we define ( ) σθ0)()( −= ii wz  and [ ] [ ]iii uyw 1)( θ−= )1( ni ≤≤  where )(iz  are 

the ordered variates and [ ] [ ]( )ii uy ,  are the concomitants of )(iz . 
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In order to estimate )(it , we propose its initial estimator as 

[ ] [ ]

0

10
)(

~
S

uTTy
t ii

i

−−
=          (5.1.6) 

where  

{ }lrmedianT =1 ; 
ll
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1

  
)11( −≤≤ nl       (5.1.7) 

is the initial estimator of the regression coefficient 1θ ,  

{ }iwmedianT ~
0 = , iii uTyw 1

~ −=  )1( ni ≤≤ ,      (5.1.8) 

is the initial estimator of the intercept 0θ  and 

{ }00
~483.1 TwmedianS i −=

       
(5.1.9) 

is the initial estimator of σ . These initial estimators were obtained by noticing that 

( ) ( ) ( )11111 −≤≤−−= ++ niuuyyE iiiiθ . 

Since complete sums are invariant to ordering, we use it
~  rather than )(

~
it . 

Replacing it  by it
~

 leads to the initial estimates of iα  and iβ . They are iα~  and 

iβ
~ , respectively. Also, (5.1.4) can be written as 

( ) )1(~~ nizzg iiii ≤≤+≅ βα .     (5.1.10) 

The solutions of the resulting modified likelihood equations are the 

following MMLEs: 

  uy ˆˆˆˆ
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The calculation of the MMLEs proceeds in two steps. In the first step, we 

obtain the initial estimates (5.1.6) - (5.1.10) and use them to calculate the initial 

MMLEs. In the second step, we use these initial MMLEs to calculate (5.1.6) and 

then we use (5.1.5) to obtain the final MMLEs. 

 

5.1.1 Simulations 

 

To evaluate the efficiency and robustness of the MMLEs given in (5.1.11), 

we use the models (1)-(12) given in section 2.2 with 0=μ . In addition, the LSEs 

given in (5.7) and (5.8) are computed for the same models. Without loss of 

generality, we assume that 00 =θ , 11 =θ , 1=σ . We generated [ ]nN /000,100=  

(integer value) samples of independently distributed random errors of size n from 

each of the models (1)-(12). Note that models (1)-(9) have finite variance, (10) has 

finite mean but non-existent variance, and (11)-(12) have non-existent mean and 

variance. The random errors generated from models (6)-(9) were divided by 

suitable constants to make their variances equal to 2σ . The nonstochastic 

independent variables ix ’s )1( ni ≤≤  were generated from a uniform distribution. 

They were standardized by replacing ix  with ( ) sxxu ii −= ( )ni ≤≤1 . From the 

resulting N  values of the MMLEs and LSEs, we computed their means and 

variances. They are given in Table 5.1, Table 5.2 and Table 5.3 with sample sizes 

10=n , 20=n  and 50=n , respectively.  
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Table 5.1: Simulated values of  Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of parameters in a simple linear regression model; 10=n . 

 

Model 0θ̂  0
~θ  1̂θ  1

~θ  σ̂  σ~  

1 0.000 0.000 0.986 1.000 0.920 0.971 
  [1.079] [1.011] [1.073] [1.014] [0.671] [0.611] 
2 0.000 0.001 0.985 1.003 0.890 0.963 
  [1.000] [1.012] [1.001] [1.000] [0.746] [0.813] 
3 0.001 0.000 0.982 0.996 0.871 0.951 
  [0.935] [0.988] [0.987] [1.013] [0.803] [0.970] 
4 -0.005 -0.004 0.986 1.004 0.818 0.930 
  [0.829] [1.023] [0.883] [1.019] [0.849] [1.528] 
5 0.002 0.002 0.980 0.995 0.723 0.870 
  [0.647] [0.977] [0.743] [1.035] [0.816] [2.482] 
6 -0.004 -0.003 0.992 1.005 0.878 0.961 
  [0.940] [0.978] [0.901] [0.954] [0.654] [0.754] 
7 -0.002 0.002 0.993 1.004 0.708 0.931 
  [0.561] [1.010] [0.525] [0.910] [0.547] [1.593] 
8 0.002 0.002 0.988 1.003 0.888 0.958 
  [0.975] [0.984] [1.006] [0.994] [0.756] [0.827] 
9 -0.001 -0.001 0.981 0.999 0.738 0.897 
  [0.687] [0.998] [0.784] [1.004] [0.926] [1.947] 

10 -0.005 -0.001 0.975 1.003 1.475 2.157 
  [2.670] [0.112E+02] [3.050] [0.929E+01] [4.502] [0.680E+02]

11 0.010 1.621 0.962 1.124 2.367 18.793 
  [9.358] [0.663E+05] [14.110] [0.576E+05] [37.321] [0.671E+06]

12 -0.001 -1.559 0.965 -0.308 3.187 31.428 
  [15.019] [0.298E+06] [22.223] [0.687E+05] [56.555] [0.326E+07]
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Table 5.2: Simulated values of  Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of parameters in a simple linear regression model; 20=n . 

 

Model 0θ̂  0
~θ  1̂θ  1

~θ  σ̂  σ~  

1 0.000 0.001 0.991 0.999 0.950 0.985 
  [1.070] [1.022] [1.035] [0.987] [0.589] [0.548] 
2 0.001 0.002 0.989 0.998 0.922 0.983 
  [0.989] [1.027] [1.003] [1.020] [0.678] [0.773] 
3 0.001 0.000 0.992 1.001 0.893 0.972 
  [0.886] [0.980] [0.942] [1.032] [0.724] [1.002] 
4 -0.002 -0.002 0.995 1.002 0.835 0.951 
  [0.781] [0.994] [0.795] [0.996] [0.758] [1.709] 
5 -0.002 0.002 0.991 0.996 0.736 0.911 
  [0.594] [1.076] [0.611] [0.979] [0.694] [4.434] 
6 -0.001 -0.001 0.990 0.997 0.917 0.979 
  [0.929] [0.983] [0.956] [0.999] [0.611] [0.724] 
7 -0.001 0.001 0.992 1.000 0.751 0.955 
  [0.563] [0.989] [0.586] [1.027] [0.536] [1.729] 
8 0.001 0.000 0.992 1.000 0.918 0.978 
  [0.955] [0.995] [0.966] [1.005] [0.686] [0.835] 
9 0.000 0.002 0.993 1.002 0.751 0.943 
  [0.616] [1.015] [0.627] [1.000] [0.769] [2.303] 

10 0.006 0.012 0.989 1.001 1.475 2.330 
  [2.273] [0.114E+02] [2.489] [0.104E+02] [3.780] [0.116E+03]

11 0.006 0.004 0.980 2.621 2.172 31.342 
  [4.793] [0.321E+06] [5.404] [0.280E+06] [15.907] [0.645E+07]

12 -0.008 -10.142 0.999 15.256 3.010 67.401 
  [9.266] [0.122E+08] [11.171] [0.426E+08] [29.130] [0.211E+09]
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Table 5.3: Simulated values of  Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of parameters in a simple linear regression model; 50=n .  

Model 0θ̂  0
~θ  1̂θ  1

~θ  
σ̂  σ~  

1 -0.001 -0.001 0.997 1.000 0.969 0.996 
  [1.054] [1.015] [1.042] [1.006] [0.540] [0.514] 
2 0.000 0.000 0.997 1.000 0.935 0.993 
  [0.963] [1.026] [0.934] [0.971] [0.638] [0.801] 
3 0.002 0.002 0.996 0.999 0.906 0.987 
  [0.893] [1.025] [0.891] [1.001] [0.678] [1.091] 
4 -0.002 -0.002 0.997 1.000 0.843 0.977 
  [0.738] [0.990] [0.759] [0.981] [0.681] [2.143] 
5 0.000 -0.002 0.996 0.998 0.740 0.943 
  [0.548] [0.990] [0.579] [0.975] [0.618] [5.304] 
6 -0.001 -0.001 0.998 1.000 0.931 0.993 
  [0.950] [1.004] [0.850] [0.866] [0.576] [0.745] 
7 0.002 0.002 0.999 1.000 0.751 0.983 
  [0.552] [0.994] [0.476] [0.678] [0.459] [1.934] 
8 0.000 0.000 0.998 1.000 0.932 0.992 
  [0.947] [1.000] [0.947] [0.998] [0.625] [0.835] 
9 -0.002 -0.003 0.999 1.002 0.754 0.974 
  [0.558] [0.983] [0.584] [1.015] [0.691] [2.661] 

10 0.001 0.008 0.991 1.001 1.465 2.589 
  [2.082] [0.153E+02] [2.172] [0.163E+02] [3.185] [0.430E+03]

11 -0.002 6.445 0.988 5.921 2.032 88.917 
  [3.792] [0.154E+08] [4.208] [0.349E+08] [11.834] [0.752E+09]

12 0.004 -4.074 0.990 3.365 2.855 78.031 
  [7.465] [0.258E+07] [8.044] [0.168E+07] [19.197] [0.130E+09]

 

 

The results show that MMLEs are enormously more efficient than the LSEs 

other than for the normal distribution in which case they are a little less efficient. 

Both MMLEs and LSEs of 0θ  and 1θ  are unbiased for models (1)-(10); see also 

Appendix C. For models (11) and (12), however, the LSEs are not even unbiased. 

For model (10), the variances of the LSEs 0
~θ  and 1

~θ  are much larger than the 

corresponding MMLEs  although they are unbiased. 

The above results are very promising because the only assumption we make 

is that the underlying distribution is long-tailed symmetric including distributions 

as extreme as Cauchy. 
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5.2 Generalized Logistic  

 

Let the random error in the simple linear regression model (5.6) come from 

generalized logistic distribution 
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( ){ } ∞<<∞−
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−
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e
ebef b ,

/exp1
/exp)( 1σ
σ

σ
,      (5.2.1) 

where σ  is scale and b is shape parameter.  
The likelihood function L  in terms of ( ) σθθ 01 −−= iii uyz  )1( ni ≤≤  is  
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Writing ( ) ( )zz eezg −− += 1 , we estimate  0θ , 1θ  and σ  by using the 

following maximum likelihood equations: 

( ) ( ) 01ln
10

=
+

−=
∂
∂ ∑

=

n

i
izgbnL

σσθ
,        (5.2.2) 

( ) ( ) 011ln
111

=
+

−=
∂
∂ ∑∑

==

n

j
ii

n

i
i zgubuL

σσθ
 and      (5.2.3) 
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i zgzbznL

σσσσ
.      (5.2.4) 

We utilize the method of modified maximum likelihood estimation to solve 

these intractable equations. Islam et al (2001) derived the MMLEs for a generalized 

logistic distribution. We extend their study by assuming an unknown shape 

parameter; Islam et al (2001) assume that the shape parameter is known. 

We initially estimate )1( +b  by ( )iw~11 − )1( ni ≤≤  where 

∑
=

=
n

i
iwnw

1

~)/1(~ ,  ( ) ( )iii ttt
i eeew

~~~
111~ −+=+=     ni ≤≤1 . 

Refer to section 3.2 for details.  

Note that Taylor series expansion of ( )zg  is used to work out MMLEs as 

before: 

        ( ) )1()()( nizzg ijii ≤≤+≅ βα         (5.2.5) 

where 

          ( ) ( )211 ttt
i eete +++=α , ( )21 tt

i ee +=β , { })()( ii zEtt == , ni ≤≤1 . 
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To estimate )(it , we use )(
~

it  as an initial estimator,  
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)11( −≤≤ nl       (5.2.7) 

is the initial estimator of the regression coefficient 1θ   ,  

{ }imedianT ϑ~0 = ; iii uTy 1
~

−=ϑ  )1( ni ≤≤        (5.2.8) 

is the initial estimator of the intercept 0θ  and 

{ }00
~483.1 TmedianS i −= ϑ

                   
(5.2.9) 

is the initial estimator of σ  and [ ] [ ]( )ii uy ,  are the concomitants of the ordered 

variates [ ] [ ]( ) σθθ /01)( −−= iii uyz  )1( ni ≤≤ . 

Since complete sums are invariant to ordering, we use it
~  rather than )(

~
it . 

We replace it  by it
~

 and get the initial estimates of iα  and iβ  denoted by iα~  and 

iβ
~ , respectively. 

  The resulting MMLEs are 

( )σθθ ˆˆˆˆˆ
10 muy Δ+−= , σθ ˆ1̂ DK +=        (5.2.10) 

and ( ){ } ( )( )224ˆ 2 −++= nnCnBBσ        (5.2.11) 
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It may be noted that 0θ̂  is estimating  

0θτ = + scaled median of the error distribution.  
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The calculation of the MMLEs proceed in three steps. In the first step, we 

calculate the MMLEs by using the initial estimates (5.2.6) - (5.2.9). In the second 

step, we use these MMLEs to calculate (5.2.6). Then, we calculate the MMLEs 

(5.2.10) and (5.2.11). Third, we use these new MMLEs to do the fourth iteration 

and obtain the final MMLEs. 

 

 

5.2.1 Simulations 

 

In this section, we study the efficiency and robustness of the MMLEs given 

in (5.2.10) and (5.2.11) by generating [ ]nN /000,100=  (integer value) samples of 

independently distributed random errors ie  of size n  from generalized logistic 

distribution with different values of the shape parameter b; ie  were multiplied by 

( ) ( ) ( ){ }[ ] 2/1112 Ψ′+Ψ′Ψ′ b . Without any loss of generality, we assume that 00 =θ ,

11 =θ  and 1=σ . The nonstochastic values ix ’s )1( ni ≤≤  are generated from 

uniform distribution and ( ) sxxu ii −= . The means and variances of the resulting 

N  values of MMLEs are given in Table 5.4, Table 5.5 and Table 5.6 with sample 

sizes 10=n , 20=n  and 50=n , respectively.  

It may be noted that τ̂  and τ~  are estimating -0.777, 0, 1.056, 2.174, 2.819, 

and 3.268 for b = 0.5, 1, 2, 4, 6 and 8, respectively. 
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Table 5.4: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of parameters in a simple linear regression model for 

generalized logistic distribution with shape parameter b; 10=n . 

b τ̂  τ~  1̂θ  1
~θ  

σ̂  σ~  

0.5 -0.851 -0.906 0.989 0.996 0.941 1.003 
[3.403] [3.481] [2.974] [3.299] [0.853] [0.862] 

1 0.001 -0.001 0.998 1.003 0.978 1.030 
[3.579] [3.576] [3.186] [3.326] [0.862] [0.816] 

2 1.118 1.150 0.991 0.996 0.994 1.046 
[3.823] [3.792] [3.144] [3.312] [0.895] [0.888] 

4 2.245 2.296 0.996 1.001 0.985 1.042 
[3.719] [3.717] [3.063] [3.263] [0.915] [0.964] 

6 2.897 2.953 0.989 0.994 0.984 1.041 
[3.712] [3.709] [2.995] [3.211] [0.947] [0.998] 

8 3.359 3.419 0.999 1.004 0.983 1.044 
[3.741] [3.745] [3.016] [3.234] [0.951] [1.013] 

 

 

Table 5.5: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of parameters in a simple linear regression model for 

generalized logistic distribution with shape parameter b; 20=n . 
b τ̂  τ~  1̂θ  1

~θ  
σ̂  σ~  

0.5 -0.826 -0.904 0.997 0.997 0.950 1.000 
[3.389] [3.519] [2.877] [3.294] [0.808] [0.904] 

1 0.004 0.001 0.996 0.996 0.990 1.023 
[3.749] [3.764] [3.034] [3.247] [0.807] [0.819] 

2 1.088 1.141 0.998 0.999 1.000 1.035 
[3.857] [3.862] [3.165] [3.359] [0.818] [0.867] 

4 2.227 2.307 1.007 1.007 0.999 1.041 
[3.839] [3.841] [3.103] [3.347] [0.852] [0.986] 

6 2.863 2.951 0.995 0.998 0.990 1.035 
[3.780] [3.835] [2.986] [3.281] [0.872] [1.029] 

8 3.328 3.422 1.000 1.002 1.000 1.046 
  [3.764] [3.812] [2.998] [3.327] [0.873] [1.041] 
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Table 5.6: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of parameters in a simple linear regression model for 

generalized logistic distribution with shape parameter b; 50=n .  
b τ̂  τ~  1̂θ  1

~θ  
σ̂  σ~  

0.5 -0.801 -0.891 0.999 1.000 0.950 1.001 
[3.253] [3.335] [2.785] [3.333] [0.751] [0.927] 

1 -0.004 -0.003 0.999 0.999 0.998 1.028 
[3.590] [3.561] [3.004] [3.265] [0.761] [0.814] 

2 1.072 1.135 0.998 0.998 1.008 1.038 
[3.785] [3.739] [3.083] [3.324] [0.798] [0.892] 

4 2.196 2.293 1.001 1.001 1.008 1.047 
[3.806] [3.784] [2.969] [3.298] [0.831] [1.033] 

6 2.829 2.934 0.999 0.999 1.001 1.044 
[3.801] [3.751] [2.863] [3.193] [0.825] [1.050] 

8 3.294 3.405 1.000 0.999 1.005 1.049 
  [3.878] [3.860] [2.925] [3.307] [0.863] [1.119] 

  

 The MMLEs are seen to be enormously more efficient (jointly) than the 

LSEs besides having negligible bias. The results are very interesting from 

theoretical and practical considerations. It may be noted that the MMLEs have 

bounded influence functions. For illustration, the emprical influence function of 1̂θ  
is given below. 

 

 

Figure 5.1: Emprical influence function of 1̂θ  for long-tailed symmetric 
distribution, p = 3.5. 
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CHAPTER 6 

 

 

ROBUST MULTIPLE LINEAR REGRESSION 

 

 

 

This chapter expands our findings on simple linear regression model to 

multiple linear regression model 

eXY += *θ                         (6.1) 

where 
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( )niei ≤≤1  are iid errors with mean zero and unknown variance 2σ , X is a 

nonstochastic design matrix consisting of q+1 explanatory variables which have no 

linear relationship with each other, Y is a vector of observed responses and θ  is a 

vector of parameters to be estimated. 

 The commonly used least squares estimation method minimizes the error 

sum of squares ee′  and this results in closed-form least square estimators (LSEs) 

of θ  and σ , namely, 

( ) YXXX ′′= −1*~θ  and                         (6.2)
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1 . 

However, Puthenpura and Sinha (1986) show that these LSEs are not efficient if 

the data is very noisy. Additionally, Islam and Tiku (2004) show that the 

efficiencies of these LSEs are low for non-normal error distributions and generally 

decrease as n increases. 

 Note that the variance-covariance matrix of the estimator *~θ  is 

( ) ( ) 21*~ σθ −′= XXCov . 

Akkaya and Tiku (2008)  point out that the variances (and covariances) of 

LSEs are too vulnerable to design anomalies. To rectify the situation, they propose 

a reparametrized multiple linear regression model 

eUY ++= θθ01                         (6.3) 

where 
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The LSEs of the model (6.3) become 

y=0
~θ , ( ) YUUU ′′= −1~θ  and                        (6.4) 

es=σ~ ;
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since ( )∑
=

==
n

i
ijj unu

1

01 . The variance-covariance matrix of the estimator θ~  is 

( ) ( ) 21~ σθ −′= UUCov , 

while the variances of 0
~θ  and σ~ are as follows: 

                                               ( ) nVar 2
0

~ σθ =  
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Var ,           

as said earlier. The estimator 0
~θ  is uncorrelated with σ~ when the distribution of 

random errors is symmetric. 

Akkaya and Tiku (2008) show that the parameters jθ~  ( )qj ≤≤1  are 

invariant to location and scale of ijx  ( )ni ≤≤1  and so are 0
~θ  and σ~. That is, if 

ijx  are replaced by ijjj xba + ( )ni ≤≤1 , ja  and jb  being constants, the values of 

0
~θ , jθ~  and σ~ do not change neither do their covariances and variances. 

When )1( niei ≤≤  are iid normal ( )2,0 σN , LSEs are identical to the 

MLEs and are fully efficient. Here, we are interested in developing estimators 

which have high efficiencies and have bounded influence functions. To do that we 

proceed as follows. 

 

6. 1 Long-Tailed Symmetric Distributions 

 

Assume that the errors )1( niei ≤≤  have one of the distributions in the 

family 
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The maximum likelihood equations are 
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Since the likelihood equations (6.1.1)-(6.1.3) are intractable, we utilize the 

modified maximum likelihood method by using the linear approximations 

( ) )1()()( nizzg iiii ≤≤+≅ βα ;                   (6.1.4) 
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        { })()( ii zEt =  )30( =k .        

In order to find appropriate initial estimate of )(it , we take jθ ( )qj ≤≤1  all 

equal; say θ& . This is motivated by the fact that a priori there is no reason to 

believe that one design variable is more important than others. Thus, (6.3) can a 

priori be expressed as 
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An initial estimate of )(it  is, therefore, 
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is an initial estimator of θ& ,  
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is an initial estimator of the intercept 0θ  and 
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(6.1.9) 
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is an initial estimator of σ ; [ ] [ ]( )ii vy ,  are the concomitants of the ordered variates

[ ] [ ]( ) σθθ /0)( −−= iii vyz &  )1( ni ≤≤ . 

 

 The motivation for the initial estimate 1T  is that ( )llll
& vvyy −=− ++ 11 θ

)11( −≤≤ nl . Since complete sums are invariant to ordering, we can drop the 

ordering and use it
~  rather than )(

~
it . After using the initial estimate of it ,  
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we obtain the initial estimates of iα  and iβ ; iα~  and iβ
~ , respectively. 

The modified likelihood estimators obtained as in the previous chapter are 
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We calculate the MMLEs in two steps: First, we assume that all jθ

( )qj ≤≤1  are equal and calculate the MMLEs 00θ̂ , 0
ˆ

jθ  ( )qj ≤≤1  and 0σ̂  from 

(6.1.10). Second, we use these MMLEs to calculate  
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which lead us to the final MMLEs. 
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6.1.1 Simulations 

 

To study the efficiency and robustness of the MMLEs (6.1.11)-(6.1.12), we 

consider the twelve distributions in section 2.2 with 0=μ . The LSEs (6.4)-(6.5) 

are also computed for the same models. Models (1)-(9) have finite mean and 

variance, while model (10) has finite mean but non-existent variance, and models 

(11)-(12) have non-existent mean and variance. The random errors generated from 

models (6)-(9) were divided by suitable constants to make their variances equal to 
2σ . We generated the nonstochastic design variables ijx ’s ( )qjni ≤≤≤≤ 1,1  

from a uniform distribution and, for illustration, we consider 4=q  explanatory 

variables. We generated [ ]nN /000,100=  (integer value) samples of 

independently distributed random errors of size n  from each of the models (1)-

(12). Without loss of generality, we take 00 =θ , 1=jθ ( )qj ≤≤1 , 1=σ . From the 

resulting N  values of the MMLEs and LSEs, we computed their means and 

variances. The results are given in Table 6.1-Table 6.2 with 20=n  and Table 6.3-

Table 6.4 with 50=n . 
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Table 6.1: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of 0θ , 1θ  and σ  in multiple linear regression model where 

random errors are assumed to come from a long tailed symmetric family; 20=n . 

 

Model 0θ̂  0
~θ

 1̂θ  1
~θ  

σ̂  σ~  

1 0.001 0.002 0.997 0.998 0.977 0.986 
[1.053] [1.040] [1.076] [1.084] [0.654] [0.657] 

2 -0.003 -0.002 0.999 0.999 0.951 0.976 
[0.966] [1.010] [0.977] [1.026] [0.756] [0.858] 

3 0.003 0.002 1.001 1.002 0.936 0.972 
[0.918] [1.003] [1.018] [1.115] [0.858] [1.137] 

4 -0.001 -0.001 1.001 1.002 0.888 0.956 
[0.843] [1.029] [0.815] [1.001] [0.941] [1.851] 

5 -0.002 -0.003 1.003 1.003 0.796 0.910 
[0.636] [0.981] [0.671] [1.087] [0.906] [3.365] 

6 0.000 0.000 1.000 1.000 0.956 0.984 
[0.931] [0.985] [1.156] [1.306] [0.704] [0.847] 

7 -0.003 -0.002 0.998 0.999 0.815 0.958 
[0.584] [0.987] [0.908] [1.723] [0.712] [1.914] 

8 -0.002 -0.002 1.004 1.004 0.950 0.974 
[0.964] [1.003] [1.006] [1.067] [0.776] [0.899] 

9 -0.002 -0.003 0.995 0.995 0.811 0.932 
[0.661] [0.992] [0.703] [1.034] [1.098] [2.359] 

10 -0.005 -0.003 1.004 1.019 1.640 2.340 
[2.718] [0.108E+02] [3.035] [0.119E+02] [5.323] [0.105E+03]

11 -0.001 -6.954 0.998 -5.305 2.598 55.561 
[6.962] [0.460E+07] [7.658] [0.488E+07] [27.628] [0.792E+08]

12 0.007 -7.376 1.006 -1.841 3.529 60.486 
  [12.488] [0.350E+07] [14.649] [0.145E+07] [46.957] [0.783E+08]
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Table 6.2: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of 2θ , 3θ  and 4θ  in multiple linear regression model where 

random errors are assumed to come from a long tailed symmetric family; 20=n . 

 

Model 2θ̂  2
~θ  3̂θ  3

~θ
 4θ̂  4

~θ  

1 1.004 1.003 1.002 1.002 1.000 1.000 
[1.031] [1.042] [1.027] [1.037] [1.037] [1.041] 

2 0.995 0.995 0.995 0.995 1.000 0.999 
[1.006] [1.060] [0.982] [1.038] [0.983] [1.034] 

3 1.004 1.004 0.998 0.997 1.000 1.000 
[0.988] [1.101] [0.957] [1.059] [0.933] [1.030] 

4 0.999 0.997 1.003 1.002 0.997 0.997 
[0.849] [1.067] [0.828] [1.031] [0.840] [1.056] 

5 1.005 1.005 0.998 0.998 1.000 1.000 
[0.682] [1.066] [0.640] [1.054] [0.642] [1.018] 

6 0.998 0.999 0.998 0.999 0.995 0.996 
[0.980] [1.063] [0.799] [0.814] [0.957] [1.042] 

7 1.001 1.001 1.000 1.000 0.996 0.996 
[0.648] [1.089] [0.435] [0.476] [0.655] [1.108] 

8 1.000 1.000 0.997 0.997 1.004 1.004 
[0.983] [1.047] [1.004] [1.063] [0.979] [1.040] 

9 0.999 0.999 1.000 1.000 0.998 0.997 
[0.675] [1.034] [0.685] [1.032] [0.683] [1.010] 

10 0.999 0.996 0.998 0.987 1.011 1.003 
[3.029] [0.109E+02] [2.862] [0.998E+01] [2.749] [0.116E+02]

11 1.010 9.419 1.001 -8.504 0.992 -3.960 
[7.966] [0.627E+07] [7.223] [0.920E+07] [7.524] [0.312E+07]

12 1.009 -3.692 1.019 6.233 0.996 5.328 
  [14.804] [0.212E+07] [12.739] [0.330E+07] [13.103] [0.112E+07]
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Table 6.3: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of 0θ , 1θ  and σ  in multiple linear regression model where 

random errors are assumed to come from a long tailed symmetric family; 50=n . 

 

Model 0θ̂  0
~θ

 1̂θ  1
~θ  

σ̂  σ~  

1 0.004 0.004 0.998 0.998 0.972 0.993 
  [0.997] [0.986] [1.080] [1.078] [0.562] [0.565] 
2 0.002 0.002 1.000 0.999 0.951 0.992 
  [0.922] [0.980] [1.006] [1.060] [0.638] [0.762] 
3 -0.006 -0.004 1.004 1.004 0.933 0.993 
  [0.942] [1.067] [1.014] [1.173] [0.699] [1.139] 
4 -0.004 -0.006 0.998 0.999 0.877 0.978 
  [0.767] [0.988] [0.848] [1.084] [0.794] [2.064] 
5 0.003 0.003 1.001 1.001 0.777 0.935 
  [0.596] [0.955] [0.624] [1.090] [0.722] [4.803] 
6 -0.005 -0.005 0.998 0.997 0.947 0.991 
  [0.911] [0.983] [1.090] [1.189] [0.565] [0.747] 
7 -0.003 -0.004 0.998 0.997 0.787 0.969 
  [0.575] [0.995] [0.833] [1.457] [0.527] [1.866] 
8 0.005 0.006 1.000 1.000 0.947 0.993 
  [0.957] [1.012] [1.045] [1.125] [0.655] [0.885] 
9 -0.002 0.000 1.002 1.005 0.800 0.983 
  [0.595] [1.037] [0.676] [1.143] [0.930] [2.797] 

10 -0.004 0.007 0.997 1.021 1.585 2.757 
  [2.297] [0.478E+02] [2.661] [0.378E+02] [3.843] [0.207E+04]

11 -0.006 -0.206 0.995 1.567 2.386 34.902 
  [5.105] [0.299E+05] [5.605] [0.120E+05] [17.809] [0.145E+07]

12 0.004 1.638 1.006 1.329 3.266 65.861 
  [8.954] [0.432E+06] [9.799] [0.922E+06] [31.050] [0.209E+08]
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Table 6.4: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of 2θ , 3θ  and 4θ  in multiple linear regression model where 

random errors are assumed to come from a long tailed symmetric family; 50=n . 

 

Model 2θ̂  2
~θ  3̂θ  3

~θ
 4θ̂  4

~θ  

1 1.000 1.000 1.000 1.000 0.999 0.999 
  [1.067] [1.074] [1.191] [1.196] [1.058] [1.058] 
2 1.004 1.003 0.999 0.998 1.001 1.000 
  [0.946] [1.011] [0.976] [1.037] [0.993] [1.068] 
3 0.996 0.995 1.005 1.006 1.003 1.003 
  [0.958] [1.081] [1.008] [1.157] [0.934] [1.065] 
4 1.001 1.000 0.999 0.999 0.999 0.999 
  [0.812] [1.033] [0.772] [1.000] [0.878] [1.134] 
5 1.000 1.005 0.998 1.000 1.002 1.001 
  [0.618] [1.107] [0.620] [0.973] [0.642] [1.075] 
6 1.003 1.003 1.001 1.000 0.998 0.998 
  [0.905] [0.971] [1.071] [1.140] [1.302] [1.485] 
7 0.995 0.996 0.996 0.994 0.995 0.994 
  [0.595] [0.988] [0.754] [1.348] [1.030] [2.051] 
8 0.998 0.996 1.002 1.003 0.997 0.998 
  [1.031] [1.118] [1.055] [1.150] [1.038] [1.121] 
9 1.003 1.005 1.004 1.004 0.997 0.997 
  [0.614] [1.031] [0.619] [1.050] [0.649] [1.103] 

10 0.997 0.981 0.998 1.031 0.999 0.999 
  [2.516] [0.389E+02] [2.342] [0.396E+02] [2.591] [0.219E+02]

11 1.011 0.683 1.005 0.698 0.992 0.921 
  [5.719] [0.334E+05] [6.129] [0.352E+05] [5.271] [0.200E+05]

12 1.008 2.221 0.983 -0.410 1.001 -1.680 
  [9.216] [0.193E+06] [9.570] [0.706E+06] [10.117] [0.678E+06]

 

As in simple linear regression, MMLEs are observed to be considerably 

more efficient than the LSEs except for the normal distribution in which case they 

are a little less efficient. For models (10)-(12), the variances of the LSEs are much 

larger than the MMLEs. Regarding the bias, MMLEs and LSEs of 0θ  and θ  are 

both unbiased for models (1)-(10). However, the LSEs are not even unbiased for 

models (11) and (12). MMLEs are unbiased (almost) for all distributions (1)-(12) 

and have finite variances. This is because they have bounded influence functions; 

see Appendix C. 
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6.2 Generalized Logistic Distributions 

 

Consider now the situation when errors have one of the distributions in the 

family  
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where σ  is scale and b is shape parameter.  
 The maximum likelihood equations are 
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To work out the MMLEs, we use as usual the linear approximation 

( ) )1()()( nizzg iiii ≤≤+≅ βα ;       (6.2.4) 

          ( ) ( )211 ttt
i eete +++=α , ( )21 tt
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Since we do not know the value of  b, we estimate )1( +b  by ( )iw~11 −
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Refer to section 3.2 for details.  
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As in case of long tailed symmetric family, we assume jθ ( )qj ≤≤1  are 

all equal to find an initial estimate of )(it : 
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is the initial estimator of θ&,  
 

{ }iwmedianT ~
0 = , iii vTyw 1

~ −=  )1( ni ≤≤ ,      (6.2.8) 

 

is the initial estimator of the intercept 0θ  and 

 

{ }00
~483.1 TwmedianS i −=

       
(6.2.9) 

is the initial estimator of σ ; [ ] [ ]( )ii vy ,  are the concomitants of the ordered variates

[ ] [ ]( ) σθθ /0)( −−= iii vyz &  )1( ni ≤≤ . 

Dropping the ordering symbol,  
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Replacing it  by it
~ , we obtain the initial estimates of iα  and iβ , namely, iα~  and 

iβ
~ . 

The solutions obtained by using the linear approximation 

( ) )1(~~ nizzg iiii ≤≤+≅ βα  are the following MMLEs: 
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where 
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Here, 0θ̂  is estimating  

0θτ = + scaled median of the error distribution. 

In order to be able to compare LSEs and MMLEs, we define the LSEs of 0θ  and 

σ  respectively as follows: 

( ) ( ){ }στ ~1~ Ψ−Ψ−= by  and
  

( ) ( )1~ Ψ′+Ψ′= bseσ .    (6.2.13)
 

Therefore, τ̂  and τ~  are estimating -0.777, 0, 1.056, 2.174, 2.819, and 3.268 for  

b = 0.5, 1, 2, 4, 6 and 8, respectively.
 
 

We calculate the MMLEs in three steps: First, we obtain the initial MMLEs 

00θ̂ , 0
ˆ

jθ  ( )qj ≤≤1  and 0σ̂  by assuming that all jθ ( )qj ≤≤1  are equal. Second, 

we use these initial MMLEs to calculate  

0

1
000

ˆ

ˆˆ
~

σ

θθ ∑
=

−−
=

q

j
ijji

i

uy
t  

and the new MMLEs. Finally, we use these new MMLEs to carry out one more 

iteration and obtain the final MMLEs. 
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6.2.1 Simulations 

 

To study the efficiency and robustness of the MMLEs (6.2.11)-(6.2.12), we 

generated [ ]nN /000,100=  (integer value) samples of independently distributed 

random errors ie  of size n  from generalized logistic distribution for the shape 

parameter b = 0.5, 1, 2, 4, 6 and 8. Remember that different values of b 

characterize different types of distributions. When b<1 and b>1, the distribution 

becomes negatively skewed and positively skewed, respectively, while for b=1, the 

distribution becomes symmetric and is the well known logistic distribution. The 

random errors ie  were multiplied by ( ) ( ) ( ){ }[ ] 2/1112 Ψ′+Ψ′Ψ′ b . Without loss of 

generality, we assume that 00 =θ , 1=jθ ( )qj ≤≤1  and 1=σ . We generated the 

nonstochastic design variables ijx ’s ( )qjni ≤≤≤≤ 1,1  from a uniform 

distribution and, for illustration,  4=q  explanatory variables are considered. The 

LSEs (6.4) and (6.2.13) are also calculated for different values of shape parameter 

b. The means and variances of the resulting N  values of MMLEs and LSEs are 

given in Table 6.5-Table 6.6 with 20=n  and Table 6.7-Table 6.8 with 50=n .  

 

Table 6.5: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of τ , 1θ  and σ  in a multiple linear regression model for 

generalized logistic distribution with shape parameter b; 20=n . 

b τ̂  τ~  1̂θ  1
~θ  

σ̂  σ~  

0.5 -0.853 -0.906 0.982 0.985 0.945 0.948 
[3.319] [3.430] [3.103] [3.418] [0.890] [1.030] 

1 -0.003 -0.004 0.996 0.997 0.987 0.977 
[3.434] [3.471] [3.249] [3.442] [0.897] [0.940] 

2 1.090 1.126 0.995 0.997 1.000 0.990 
[3.629] [3.616] [3.745] [3.968] [0.970] [1.037] 

4 2.245 2.299 0.985 0.997 0.999 0.991 
[3.764] [3.785] [3.284] [3.513] [0.983] [1.101] 

6 2.885 2.945 1.001 1.005 0.987 0.985 
[3.749] [3.790] [3.113] [3.364] [0.978] [1.146] 

8 3.350 3.412 1.002 0.993 0.990 0.989 
  [3.664] [3.705] [3.893] [3.963] [1.031] [1.203] 
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Table 6.6: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of 2θ , 3θ  and 4θ  in a multiple linear regression model for 

generalized logistic distribution with shape parameter b; 20=n . 

b 2θ̂  2
~θ  3̂θ  3

~θ
 4θ̂  4

~θ  

0.5 0.989 0.986 1.005 0.998 0.994 0.997 
[2.981] [3.327] [2.990] [3.356] [3.042] [3.417] 

1 1.004 1.002 0.994 0.994 0.995 0.993 
[3.585] [3.825] [3.279] [3.409] [3.473] [3.661] 

2 0.996 0.996 1.004 1.004 1.011 1.010 
[3.353] [3.522] [3.776] [4.071] [3.362] [3.587] 

4 0.996 0.995 1.002 1.000 1.011 1.009 
[4.630] [4.983] [3.557] [3.822] [5.128] [5.541] 

6 0.998 1.005 1.003 1.011 0.996 0.993 
[3.205] [3.454] [3.334] [3.613] [3.127] [3.405] 

8 0.988 0.994 0.990 0.991 1.001 1.005 
  [3.989] [4.364] [5.757] [5.577] [4.940] [5.036] 

 

 

Table 6.7: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of τ , 1θ  and σ  in a multiple linear regression model for 

generalized logistic distribution with shape parameter b; 50=n . 
b τ̂  τ~  1̂θ  1

~θ  
σ̂  σ~  

0.5 -0.804 -0.886 0.984 0.982 0.948 0.966 
[3.371] [3.391] [2.728] [3.174] [0.767] [1.023] 

1 0.006 0.003 1.007 1.005 0.987 0.985 
[3.780] [3.741] [3.465] [3.700] [0.775] [0.839] 

2 1.089 1.143 1.008 1.009 1.010 1.007 
[3.930] [3.773] [3.109] [3.379] [0.830] [0.995] 

4 2.204 2.290 0.996 0.999 1.008 1.013 
[3.750] [3.693] [3.031] [3.400] [0.866] [1.108] 

6 2.853 2.949 0.998 0.996 1.002 1.010 
[3.727] [3.769] [3.626] [4.011] [0.867] [1.135] 

8 3.291 3.391 1.011 1.009 1.002 1.014 
  [3.605] [3.519] [3.127] [3.552] [0.900] [1.187] 
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Table 6.8: Simulated values of Mean)/1( σ and Variance)/( 2σn (in brackets) of  

MMLEs and LSEs of 2θ , 3θ  and 4θ  in a multiple linear regression model for 

generalized logistic distribution with shape parameter b; 50=n . 
b 2θ̂  2

~θ  3̂θ  3
~θ

 4θ̂  4
~θ  

0.5 0.995 0.997 0.997 0.998 0.994 0.997 
[2.804] [3.264] [3.017] [3.511] [3.200] [3.686] 

1 1.007 1.007 0.999 1.000 1.004 1.004 
[3.085] [3.439] [3.118] [3.367] [3.502] [3.754] 

2 0.999 0.997 0.997 1.000 0.996 0.997 
[3.243] [3.533] [2.975] [3.114] [3.249] [3.420] 

4 1.003 1.003 1.002 1.004 0.998 0.998 
[2.992] [3.415] [2.976] [3.300] [3.115] [3.422] 

6 1.010 1.007 1.000 1.004 0.996 0.993 
[3.033] [3.382] [3.832] [4.186] [4.624] [5.136] 

8 0.998 0.994 0.995 0.994 1.005 1.001 
  [2.976] [3.321] [3.010] [3.389] [3.157] [3.596] 

 

 

The results match those for simple linear regression model. Both the 

MMLEs and LSEs are unbiased (almost). However, the MMLEs are more efficient. 

They have also bounded influence functions; see Appendix C. 
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CHAPTER 7 

 

 

APPLICATIONS 

 

 

 

In this chapter, we consider a few real life data sets to illustrate the 

usefulness of the MMLEs developed in this thesis. We examined a large number of 

data sets given in Hand et al. (1994); some of them are reproduced in Tiku and 

Akkaya (2004). We found very few data sets which can appropriately be modeled 

by a normal distribution. This agrees with the findings of Pearson (1931), Geary 

(1947), Elveback et al. (1970) and Spjøtvoll and Aastveit (1980). We consider data 

sets which have specifically long-tailed symmetric or skew distributions. It is 

known that locating the underlying distribution exactly from a sample is not 

possible. However, by locating a distribution in reasonable proximity to the true 

distribution, MMLEs are known to give very good results for estimating the 

parameters of the underlying distribution (Tiku, 1967, 1968a,b, 1980; Tiku et. al, 

1986, Islam et. al, 2001; Tiku et al, 2001). Constructing Q-Q plots or using 

goodness-of-fit tests help in identifying the shape parameter of the underlying 

distribution. Such techniques have been used in Tiku and Akkaya (2004). 
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Example 7.1: Cushny and Peebles prolongation of sleep data 

 

The data of Cushny and Peebles (1905) measure the prolongation of sleep 

by two soporofic drugs as ordered differences: 

y : 0.0   0.8   1.0   1.2   1.3   1.3   1.4   1.8   2.4   4.6. 

Under the normality assumption, the ideal estimates of the population mean 

and standard deviation are 

58.1=y  and 230.1=s . 

However, Tiku and Akkaya (2004) show that normality assumption is not valid for 

this data. Both Shapiro-Wilk test and Q-Q plot support this conclusion. Since the 

Shapiro-Wilk test statistic is calculated as 

781.0=W  

and is smaller than the 5% significance level 0.830, normality assumption is not 

appropriate. Surucu’s (2008) test of normality is in agreement with that of Shapiro-

Wilk. With the help of Q-Q plots, Tiku and Akkaya (2004) concluded that the 

Generalized Logistic with b = 8 is a plausible model for this data.  

We simply assume that the data comes from the family of Generalized 

Logistic distributions and calculate the new MMLEs μ̂  and σ̂  given in Chapter 3. 

Note that μ̂  is estimating the median 

              { }σμ )12ln( /1 −−= bmedian  

while σ̂  is estimating the scale parameter σ .             

We also calculated the corresponding LSEs as follows: 

   ( ) ( ){ }σμ ~1ˆ~ Ψ−Ψ−= by   and ( ) ( )1ˆ~ Ψ′+Ψ′= bsσ  

where b̂ is the estimator of the shape parameter b given by ( ){ }1~1
1
−−

−
w  (see 

Section 3.2 for details).  

The results are given below: 

μ̂  

μ~  σ̂  σ~  

1.301 1.427 0.615 0.710 
 

 It is observed that the LSEs and MMLEs are in league. We have already 

illustrated that μ̂  has smaller bias than μ~  and the MMLEs are jointly more 

efficient tahn the LSEs. 
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Example 7.2: Box-Cox data 

 

The Box and Cox (1964, p.220) data forms a 3x4 factorial experiment with 

four observations ( )41,41,31 ≤≤≤≤≤≤ ljixijl  for each combination of two 

factors. In this experiment, the survival times (10 hour units) of 48 animals exposed 

to two factors are recorded. One factor has 3 levels depending on the type of poison 

used while the other represents a treatment with 4 different levels. The allocation of 

animals is completely randomized. 

 

Table 7.1: Box-Cox data. 

Treatment 
Poison A B C D 

I 

0.31 0.82 0.43 0.45 
0.45 1.10 0.45 0.71 
0.46 0.88 0.63 0.66 
0.43 0.72 0.76 0.62 

II 

0.36 0.92 0.44 0.56 
0.29 0.61 0.35 1.02 
0.40 0.49 0.31 0.71 
0.23 1.24 0.40 0.38 

III 

0.22 0.30 0.23 0.30 
0.21 0.37 0.25 0.36 
0.18 0.38 0.24 0.31 
0.23 0.29 0.22 0.33 

 

  

The Box-Cox data is known to have interaction (Schrader and McKean, 

1977, p.889 and Brown, 1975). However, the F statistic based on the LSEs does not 

reject the hypothesis of “no interaction effects” although the data is known to have 

interaction. This perhaps results from the wrongful assumption of normality.  

With the help of a Q-Q plot of the residuals, Senoglu and Tiku (2001) 

concluded that the underlying distribution is Generalized Logistic with shape 

parameter b = 0.5. In addition, they applied multi-sample goodness-of-fit test based 

on sample spacings of Tiku (1988, pp. 2382–83) and concluded that the assumption 

of the Generalized Logistic with b = 0.5 is not rejected at 10% significance level.  
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However, we do not assume any particular pre-determined value of b. We estimate 

it from the data. The assumed two-way classification fixed effects model is 

 

( )41,41,31 ≤≤≤≤≤≤++++= ljiey ijlijjiijl τδγμ . 

 

The new MMLEs given in section 4.2.3 and the LSEs of the parameters in 

this two-way classification fixed effects model are calculated and given below:   

 

Table 7.2: The Adaptive MMLEs and the LSEs of Box-Cox data. 

 

μ̂  μ~  σ̂  σ~  

0.476 0.475 0.092 0.084 
 

 

Treatment jδ̂  jδ~  

1 -0.145 -0.153 Poison iγ̂  iγ
~

 

2 0.178 0.184 1 0.144 0.142 
3 -0.091 -0.089 2 0.050 0.057 
4 0.056 0.058 3 -0.199 -0.199 

∑
=

=
4

1j
jδ  0.000 0.000 ∑

=

=
3

1i
iγ  -0.002 0.000 

 

Treatment 
A B C D 

Posion τ̂  τ~  τ̂  τ~  τ̂  τ~  τ̂  τ~  

I -0.031 -0.034 0.046 0.058 0.013 0.021 -0.027 -0.045 
II -0.055 -0.056 0.057 0.067 -0.059 -0.068 0.047 0.057 
III 0.085 0.090 -0.120 -0.125 0.049 0.048 -0.013 -0.013 

=∑
=

3

1i
ijτ  -0.001 0.000 -0.017 0.000 0.003 0.000 0.007 0.000 

 

 

Again, the modified maximum likelihood and the least squares estimates are 

close to one another. The former are, however, more precise since thay are jointly 

more efficient. 
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Example 7.3: Brownlee’s stack loss data 

 

Brownlee (1965, p. 454) presented the following data obtained from 21 

days of operation of a plant for the oxidation of ammonia to nitric acid. 

 

Table 7.3: Brownlee’s stack loss data. 

 

 

The response variable y, called “stack loss”, is 10 times the percentage of 

the ingoing ammonia to the plant that is lost. A linear model is assumed, that is, 

( )2013322110 ≤≤++++= jeuuuy jjjjj θθθθ , 

( ) ( )3,2,1=−= isxxu iiijij ; 

1x  is “air flow” representing the rate of operation of the plant, 2x  is the 

temperature of the cooling water circulated through the coils in the absorption 

tower for the nitric acid, and 3x  is the concentration of acid circulating.  

Air Flow 
 

1x  

Water  
Temperature 

2x  

Acid 
Concentration

3x  

Stack loss 
 

y  

80 27 89 42 
80 27 88 37 
75 25 90 37 
62 24 87 28 
62 22 87 18 
62 23 87 18 
62 24 93 19 
62 24 93 20 
58 23 87 15 
58 18 80 14 
58 18 89 14 
58 17 88 13 
58 18 82 11 
58 19 93 12 
50 18 89 8 
50 18 86 7 
50 19 72 8 
50 19 79 8 
50 20 80 9 
56 20 82 15 
70 20 91 15 
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 Examining the Q-Q plot of the residuals obtained by using the LSEs (see 

Andrews, 1974, p.530), it is seen that the smallest residual corresponding to the 

observation ( )91,20,70,15 321 ==== xxxy  is grossly anomalous. In fact, 

Andrews (1974) stated that after exclusion of this observation, the probability plot 

of residuals does not show any significant anomalies. Therefore, it is decided not to 

include this observation and base the estimation on the remaning n = 20 

observations. The Q-Q plot of the 20 residuals indicates a long-tailed symmetric 

distribution. As a plausible value for the shape parameter p, Tiku and Akkaya 

(2004) suggest p = 2  which maximizes L̂ln , where L̂  is the value of L with 

parameters equated to the corresponding MMLEs. We do not assume any particular 

value of p and calculate the MMLEs (6.1.11)-(6.1.12) and LSEs (6.4)-(6.5) given 

in Chapter 6. They are given below: 

 

Table 7.4: The Adaptive MMLEs and the LSEs of Browlee’s stack loss data. 

  MMLE LSE 

0θ  17.436 17.650 

1θ  
8.077 7.915 

2θ  
2.611 2.573 

3θ  -0.771 -0.562 
σ  2.392 2.569 

 

 

It can be seen that the LSEs and MMLEs are close to one another. 

However, the MMLE of 3θ  indicates a more potent effect of the acid concentration. 

The latter are, however, more precise as shown in Chapter 6. 
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CHAPTER 8 

 

 

CONCLUSION 

 

 

 

In this thesis, following Tiku and Surucu (2009), we have given a new 

innovation to MMLEs so that we can use them for machine data processing. They 

have bounded influence functions and we will call them “new” MMLEs. The 

question arises how good are these estimators as compared to the “old” MMLEs 

given below for ready reference. 

For the long-tailed symmetric family (2.1), the old MMLEs of μ  and σ  

are 

 

         
( ) ( )∑

=

=
n

i
ii xm

1
0 1ˆ βμ  ⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

n

i
im

1

β  and ( ){ } nCnBB 24ˆ 2
0 ++=σ ;    (8.1) 

                 ∑
=

−=
n

i
ii xkpB

1
0)( )ˆ()/2( μα  and ( )∑

=

−=
n

i
ii xkpC

1

2
0)( ˆ)/2( μβ . 

The coefficients iα  and iβ  are given by 

       ( ) ( ) ( ) ( ){ }223 /11/2 iii tktk +=α    and  ( ) ( ){ } ( ) ( ){ }222 /11/11 iii tktk +−=β .     (8.2) 

If 01 <β , iα  and iβ  are replaced by ∗
iα  and ∗

iβ  respectively: 

 

      ( ) ( ) ( ) ( ){ }223 /11/1 iii tktk +=∗α    and  ( ) ( ){ }22/111 ii tk+=∗β ;         (8.3) 

 

this is done to ensure that σ̂  is always real and positive. Also, the divisor n2  in 

(8.1) may be replaced by ( )12 −nn  as a bias correction. Here, we have used the 

divisor n2  as in Tiku et. al (2009).  
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 Tiku and his collaborators (Tiku and Akkaya, 2010; Tiku et al., 2009; Islam 

and Tiku, 2009; Tiku and Senoglu, 2009; Tiku et al., 2008; Akkaya and Tiku, 

2008) contend that for an assumed distribution (having finite variance) and its 

plausible alternatives, the old MMLEs have no or negligible bias and are highly 

efficient (in terms of having smaller variances). Assume that the underlying 

distribution is long-tailed symmetric (2.1) with 5.3=p . Out of the twelve models 

considered in section 2.2, plausible alternatives would be  

    (1), (2), (3) is the true model, (4), (6) and (8).         (8.4) 

 

Given in Table 8.1 are the simulated values (based on [ ]n000,100  Monte 

Carlo runs) of the means and variances of the MMLEs of μ  and σ . From these 

values, we conclude that for an assumed distribution (having finite variance) and its 

plausible alternatives, one should prefer the old MMLEs because (i) both 0μ̂  and 

0σ̂  have no or negligible bias and (ii) 0μ̂  is as efficient as the new μ̂ . The new σ̂  

has of course smaller variance but, unfortunately, it inherits substantial bias. 

Correcting for bias would pose no problem if it was known but it is not because the 

exact distribution is not known. 
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Table 8.1: Means and nxVariances of the new and old MMLEs. 

μ  σ  

Mean Variance Mean Variance 
Model New Old New Old New Old New Old 

n = 10 1 -0.01 -0.01 1.06 1.03 0.93 1.04 0.58 0.64 
2 0.00 0.00 0.95 0.94 0.90 1.03 0.66 0.80 
3 0.00 0.00 0.90 0.90 0.87 1.01 0.69 0.94 
4 0.00 -0.01 0.77 0.81 0.81 0.97 0.69 1.20 
6 0.00 0.00 0.95 0.94 0.89 1.02 0.59 0.73 
8 0.00 0.00 0.95 0.95 0.89 1.02 0.63 0.79 

n = 20 1 -0.01 -0.01 1.01 1.01 0.96 1.06 0.56 0.64 
2 0.00 0.00 0.94 0.93 0.92 1.03 0.65 0.77 
3 0.00 0.00 0.90 0.90 0.89 1.01 0.64 0.81 
4 0.00 0.00 0.75 0.77 0.83 0.97 0.65 1.10 
6 0.00 0.00 0.98 0.97 0.92 1.03 0.57 0.67 
8 0.00 0.00 0.91 0.91 0.92 1.03 0.64 0.77 

n = 50 1 0.00 0.00 1.08 1.08 0.97 1.08 0.54 0.63 
2 0.00 0.00 0.94 0.94 0.93 1.05 0.66 0.82 
3 0.00 0.00 0.87 0.89 0.90 1.03 0.67 0.96 
4 0.00 0.00 0.73 0.78 0.84 0.99 0.68 1.32 
6 0.00 0.00 0.96 0.95 0.93 1.05 0.56 0.71 
8 0.00 0.00 0.93 0.93 0.93 1.05 0.60 0.78 

n = 100 1 0.00 0.00 1.01 1.00 0.97 1.07 0.53 0.63 
2 0.00 0.00 0.88 0.88 0.94 1.05 0.61 0.72 
3 0.00 0.00 0.92 0.93 0.91 1.02 0.67 0.86 
4 0.00 0.00 0.70 0.73 0.84 0.98 0.68 1.29 
6 0.00 0.00 0.96 0.96 0.94 1.04 0.54 0.64 
8 0.00 0.00 0.90 0.89 0.94 1.04 0.60 0.71 

 

 Consider now the models (5), (7), (9), (10), (11), and (12) which represent 

strong deviations from the assumed distribution ( 5.3=p in (2.1)). Given in Table 

8.2 are the simulated values similar to those in Table 8.1 . We reproduce the values 

only for 10=n  and 50 for conciseness. Realize that the models (5), (7) and (9) 

have finite variances, model (10) has finite mean but nonexistent variance and 

models (11) and (12) have nonexistent means and variances. It is clear that the old 

MMLEs should not be used for models (10)-(12). For models (5), (7) and (9), the 

old MMLEs may be used: 0μ̂  is unbiased and 0σ̂  has negligible bias although, as 

compared to the new MMLEs, 0μ̂  has somewhat larger variances and 0σ̂  has 
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substantially larger variances. But, the new MMLE σ̂  has substantial bias. For 

machine data processing, however, the new MMLEs should be used with the clear 

understanding that σ̂  can have substantial bias particularly for distributions of 

extreme type. If efficient estimation of only the location parameter μ  is intended, 

the new MMLE μ̂  should always be used. It is indeed pleasing to note that the new 

MMLEs are overall more efficient than Huber M-estimators. 

 

Table 8.2: Means and nxVariances of the new and old MMLEs for models 

representing strong deviations from the assumed distribution. 

μ  σ  

Mean Variance Mean Variance 
Model New Old New Old New Old New Old 

n = 10 5 0.00 0.00 0.58 0.67 0.71 0.90 0.62 1.95 
7 0.00 0.00 0.55 0.64 0.72 0.94 0.47 1.19 
9 0.00 0.00 0.59 0.70 0.72 0.92 0.68 1.64 

10 0.00 0.01 2.18 4.80 1.41 2.17 3.34 * 
11 0.01 -0.12 4.77 * 2.07 16.21 14.15 * 
12 0.00 0.51 9.53 * 2.85 25.05 23.97 * 

n = 50 5 0.00 0.00 0.57 0.68 0.73 0.94 0.55 1.89 
7 0.00 0.00 0.53 0.61 0.75 0.95 0.42 1.03 
9 0.00 0.00 0.57 0.65 0.75 0.94 0.59 1.63 

10 0.00 -0.01 2.00 3.10 1.44 2.24 2.85 * 
11 0.00 0.02 3.59 * 1.95 22.23 9.44 * 
12 0.01 0.17 7.15 * 2.77 29.77 16.66 * 

* Represents a very large value. 

 

To test the null hypothesis 0:0 =μH , the test statistics based on the old and 

new MMLEs are 

000 ˆˆ σμmT =  and σμ ˆˆmT =            (8.5) 

respectively; m2σ  is the minimum variance bound for estimating μ ; for 5.3=p , 

nm 167.1= . Large values of 0T  (and T ) lead to the rejection of 0H  in favor of 

0:1 >μH . 
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 Since 0μ̂  is a linear function of order statistics and 0σ̂  converges to its 

expected value ( )0σ̂E  as n becomes large, the asymptotic null distribution of 0T  is 

normal with mean zero. Its asymptotic standard deviation is 

        
( )

( ){ }2
0

0
0 ˆ

ˆ
167.1

σ
μ

E
Varn

SD = .           (8.6) 

 The asymptotic null distribution of T  is also normal because σ̂  converges 

to its expected value and μ̂  is the mean of bounded iid variables. Under 0H , 

( ) 0=TE . The standard deviation of T  is 

        ( )
( ){ }2ˆ

ˆ
σ
μ

E
VarnSD = .                       (8.7) 

 The percentage points of the null distributions of 0T  and T  can be 

approximated by those of normal )1,0(N  if 0SD  and SD  are 1 (or close to 1). 

Given below are the values of the standard deviations of T  and  0T  , respectively. 

 

Table 8.3: The values of the standard deviations of T  and  0T ; SD  and 0SD , 

respectively. 

n = 20 n = 50 n = 100 
Model SD  0SD  SD  0SD  SD  0SD  

1 1.05 1.02 1.07 1.04 1.04 1.01 
2 1.05 1.01 1.04 1.00 1.00 0.97 
3 1.07 1.01 1.04 0.99 1.05 1.02 
4 1.04 0.98 1.02 0.96 1.00 0.94 
5 1.01 0.92 1.03 0.95 1.00 0.92 
6 1.08 1.03 1.05 1.00 1.04 1.02 
7 1.00 0.90 0.97 0.98 0.99 0.93 
8 1.04 1.00 1.04 0.99 1.01 0.98 
9 1.02 0.93 1.01 0.93 0.98 0.91 

10 1.04 * 0.98 * 0.96 * 
11 0.98 * 0.97 * 0.94 * 
12   0.99 *  0.97 *  0.96 * 
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The normal distribution )1,0(N does indeed provide accurate approximations to 

the percentage points for 20≥n . For 20<n , Student’s t distribution with 1−n  

degrees of freedom provides accurate approximations to the percentage points of 

the null distributions of 0T  and T ; see also Tiku and Surucu (2009).  

 Simulations and asymptotic mathematics reveals that for an assumed long-

tailed symmetric distribution (having finite variance) and its plausible alternatives, 

the 0T  test has somewhat higher power than T  test. For others (e.g., those 

considered in Table 8.2), the T  test is somewhat more powerful. In machine data 

processing, however, the T  test should be used. 

 For the skew family of Generalized Logistic distributions, we have also 

given a new innovation to the method of MML estimation. The method includes 

estimation of the shape parameter from bounded emprical functions. We have 

shown that the resulting estimators are more efficient than the least squares 

estimators. This approach can perhaps be extended to other families of skew 

distributions. That will be the subject matter of future research. 

 Besides single sample estimation and hypothesis testing, we have extended 

the above methods to experimental design (one-way and two-way classification) 

and linear and multiple linear regression. We believe that the methods can be 

extended to more complex data structures, e.g., time series, autoregression, 

multivariate data, etc.  
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APPENDIX A 

 

 

THE ASYMPTOTIC PROPERTIES OF xμ̂  AND xσ̂  

 

 

 

 To evaluate the asymptotic properties of xμ̂ , we first note that as n  tends to 

infinity, nw /  converges to its expected value (assuming that the variance of X  is 

finite). To evaluate the expected value of w  and the variance of xμ̂ , we first note 

that  
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Asymptotically, ( ) μ=≅ 00 TET  for symmetric distributions. Consider the situation 
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Clearly, ( ) μμ =xE ˆ . This follows from symmetry.  
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We conclude that xμ̂  is more efficient than the sample mean x  for the family  

(1.6.1). This is a very interesting result. Since 2B  is much smaller than nC and 

0≅nCB , nCx ≅
2σ̂ . Therefore, 
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For 5.16=p , (A.4) assumes the value σ96.0 . 

When ( ) σ≠0SE , the expressions for ( )xV μ̂  and ( )2ˆ xE σ  can be obtained from the 

equation although the algebra is a little bit involved, 
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For Tiku - Surucu estimator (2.1.1), 

( ) ( )
( ) .

2
1

2
1

2
1

1
1
2
1

ˆ σσσ
+

=
⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

⎟
⎠
⎞

⎜
⎝
⎛ −

≅
p

p

pp

pp
p

p
E x         (A.6) 

For 5.16=p , (A.6) assumes the value σ99.0 . 
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APPENDIX B 

 

 

EMPRICAL INFLUENCE FUNCTION OF THE MMLEs 

 

 

 

To show that the estimators developed in Chapter 3 have bounded influence 

functions, we simply have to show that the thi  terms in the expressions for m , iΔ , 

K , D , B  and C  tend to zero as ix  (equivalently, it
~ ) tends to infinity.  

From equation (3.3.2), it immediately follows that iα~  and iβ
~

 tend to zero 

as it
~  tends to infinity, Now,  

0~11
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n

i
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nn
α  as ∞→it

~  because 1~ →iw . 

Because of equation (3.3.2), and iw~  being bounded between 0 and 1, all the thi  

terms mentioned above tend to zero as it
~  tends to ∞  (or  ∞− ). 

Given in Figure B.1 is the emprical influence function of xμ̂  for 

illustration. It confirms the high breakdown of xμ̂ . 
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Figure B.1: Emprical influence function of xμ̂ , b = 0.5. 
 

 

Remark: It may be noted that 0T  and 0S  also have bounded influence functions. 

However, because of the low joint efficiency, they cannot be prefered over the 

MMLEs developed in Chapter 3. 
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APPENDIX C 

 

 

THE ASYMPTOTIC PROPERTIES OF THE MMLEs 

 

 

 

Lemma: For large n, the MMLEs are unbiased.  

Proof: If 1̂θ  and 2θ̂  are statistics calculated from a random sample of size n, then 

for large n (Kendall and Stuart, 1968) 
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Consider the MMLEs given in (5.1.11) and note that for large ( )10≥p  

            μ≅0T  and σ≅0S ,           (C.2) 

because long tailed symmetric p-family is indistinguishable from normal ( )1,0N  

for 10≥p . Now, 
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and (see equation A.4 in Appendix A) 
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Lemma: For large n, the variance of 1̂θ  is 
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Proof: For large n, 
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Using the fact that ii zβ  is a symmetric function over ( )∞∞− ,  and, for large n, 
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Thus, 
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from equations (A.2)-(A.6) in Appendix A. 
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The estimator 1̂θ  is considerably more efficient than the LSE 1
~θ , particulary for 

large n.  
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APPENDIX D 

 

 

FORTRAN PROGRAM CALCULATING THE MMLEs AND THE 

PROPOSED LSEs OF GENERALIZED LOGISTIC DISTRIBUTION FOR 

ONE SAMPLE CASE 

 

 

 
c************************************************************************* 
c Written by  Ayca DONMEZ, 2009, Ankara  
c************************************************************************* 
c------------------------------------------------------------------------- 
c Calculates the LSEs and MMLEs of GL (Generalized Logistic) distribution 
c for different b values, where b is unknown. The MML estimators of GL  
c with one block case is studied. The sample size is n. The samples are  
c generated from GL with mu=0.0, sigma=1.0 and b=0.5, 1,2,4,6,8.       
c------------------------------------------------------------------------- 
 use numerical_libraries 
 
c     Declaration of the variables and arrays 
 
 parameter n=10 
 parameter nn=floor(100000/(n*1.0)) 
 parameter sigma=1.0, mu=0.0 
 parameter iteration=5 
 parameter dpsii1=1.6449 
 
 real y(n), resultMML(3) 
 real T0,S0, preS0(n),median_preS0 
 real mu_0, sigma_0 
 real correction 
 
 real muMML(nn), sigmaMML(nn) 
 real mean_muhatMML, mean_sigmaMML 
 real var_muhatMML, var_sigmaMML 
 
 real xbardot(nn), s2(nn) 
 real mutilda(nn), sigmatilda(nn) 
 real mean_mutilda, mean_sigmatilda 
 real var_mutilda, var_sigmatilda 
 
 real estb, estbponeinvm(nn) 
 real Ezestb, Vzestb 
 
c     Declaration of the functions 
      real GL_rnd, GL_invcdf, GL_MML_iteration 
      real mymean, mysort, mymedian, variance, psidash  
 
 do l=1,6 
 
  if (l==1) then 
   b=0.5 
  elseif (l==2) then 
   b=1.0 
  elseif (l==3) then 
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   b=2.0 
  elseif (l==4) then 
   b=4.0 
  elseif (l==5) then 
   b=6.0 
  elseif (l==6) then 
   b=8.0 
  endif 
 
  Ez=psi(b)-psi(1.0) 
  Vz=psidash(b)+psidash(1.0) 
  correction=sqrt(Vz/(2.0*psidash(1.0))) 
 
c Loop for simulation runs, 100 k 
       do 100 k=1,nn 
 
   call GL_rnd(mu,sigma,b,n,y) 
  
c   T0 is equal to median of y_i`s: 
   call mymedian(n,y,T0) 
 
c   S0=1.483*median{|y_i-T0|} 
   do j=1,n 
     preS0(j)=abs(y(j)-T0) 
   enddo 
 
   call mymedian(n,preS0,median_preS0) 
 
   S0=1.483*median_preS0 
  
   mu_0=T0 
   sigma_0=S0 
  
c   Iteration loop 200, ii 
   do 200 ii=1,iteration 
 
    call GL_MML_iteration(y,n,mu_0,sigma_0,resultMML) 
 
    mu_0=resultMML(1) 
    sigma_0=resultMML(2) 
 
c   End of iteration loop 200, ii 
200   continue 
 
   muMML(k)=resultMML(1)/correction 
   sigmaMML(k)=resultMML(2)/correction 
 
   estbponeinvm(k)=resultMML(3) 
c   Note that estbponeinvm is the estimator of 1/(b+1).  
c   However, we need estimator of b: 
   estb=1/estbponeinvm(k)-1.0 
   Ezestb=psi(estb)-psi(1.0) 
   Vzestb=psidash(estb)+psidash(1.0) 
 
   xbardot(k)=mymean(y,n) 
   s2(k)=variance(y,n,0) 
 
   sigmatilda(k)=sqrt(s2(k)/Vzestb)/correction 
   mutilda(k)=xbardot(k)-Ezestb*sigmatilda(k) 
   mutilda(k)=mutilda(k)/correction 
 
c  End of simulation runs, 100 k     
100  continue 
 
 mean_muhatMML=mymean(muMML,nn) 
 mean_sigmaMML=(1/sigma)*mymean(sigmaMML,nn) 
 mean_mutilda=mymean(mutilda,nn) 
 mean_sigmatilda=(1/sigma)*mymean(sigmatilda,nn) 
 mean_estbponeinv=mymean(estbponeinvm,nn) 
 
 var_muhatMML=(n/(sigma**2.0))*variance(muMML,nn,1)  
 var_sigmaMML=(n/(sigma**2.0))*variance(sigmaMML,nn,1)  
 var_mutilda=(n/(sigma**2.0))*variance(mutilda,nn,1)  
 var_sigmatilda=(n/(sigma**2.0))*variance(sigmatilda,nn,1)  
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1000 FORMAT (A6,F7.3,A5,A6,F7.3,A5) 
1111 FORMAT (A10,I3,A7,F3.1) 
 
 print 1111, 'n  = ',n,'  b = ',b               
 print*, '------------------------------------------' 
 print*, '_____muhatMML_________sigmahatMML________' 
 print 1000,  ' ',mean_muhatMML,' ','     ', mean_sigmaMML 
 print 1000,  '  [',var_muhatMML,']  ', '  [',var_sigmaMML,']   ' 
 print*, '------------------------------------------' 
 print*, '_____mutildaLSE______sigmatildaLSE_______' 
 print 1000,  ' ',mean_mutilda,' ','     ', mean_sigmatilda, ' ' 
 print 1000, '  [',var_mutilda,']  ', '  [',var_sigmatilda,']  ' 
 print*, '******************************************' 
 
c End of l loop for b.  
 enddo 
 
 stop 
 end 
 
c------------------------------------------------------------------------- 
c Calculates the MML estimator of mu for GL (Generalized Logistic) 
c distribution. y is assumed to be a column vector.   
c-------------------------------------------------------------------------  
 subroutine GL_MML_iteration(y,n,mu_0,sigma_0,output) 
 
 integer n 
       
 real y(n), output(3), mu_0, sigma_0 
 real sory(n), t(n), tt, te 
 real bet(n), alf(n), del(n) 
 real mm,KK,DD,BB,CC 
 real SIGdot, MUdot, estbponeinv 
 
 estbponeinv=0.0 
 do 21 i=1,n 
  t(i)=(y(i)-mu_0)/sigma_0 
  tt=t(i) 
  te=exp(t(i)) 
  estbponeinv=estbponeinv+(te/(1.0+te)) 
  alf(i)=(1.0+te+tt*te)/((1.0+te)**2.0) 
  bet(i) = te/((1.0+te)**2.0) 
21 continue 
 
c estbponeinv is the estimator of b/(b+1) 
 estbponeinv=estbponeinv/(n*1.0) 
c To make estb be the estimator of 1/(b+1), we need: 
 estbponeinv=(1.0-estbponeinv) 
 
 do j=1,n 
  del(j)=alf(j)-estbponeinv 
 enddo 
 
 mm=sum(bet) 
 DD=sum(del) 
 KK=dot_product(bet,y) 
    
 KK=KK/mm 
 DD=DD/mm 
 
 BB=0.0 
 CC=0.0 
 do 25 j=1,n 
  BB=BB+(1.0/estbponeinv)*del(j)*(y(j)-KK) 
  CC=CC+(1.0/estbponeinv)*bet(j)*((y(j)-KK)**2.0) 
25 continue 
 
 SIGdot=-BB+sqrt(BB**2.0+4.0*n*CC) 
 SIGdot=SIGdot/(2.0*sqrt(n*(n-1.0))) 
 MUdot=KK-DD*SIGdot 
 
 output(1)=MUdot 
 output(2)=SIGdot 
 output(3)=estbponeinv 
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 return 
 end 
c------------------------------------------------------------------------- 
c Calculates the derivative of psi(x) function with respect to x. It can 
c be estimated by a summation over i from zero to nfinity of the component  
c  1/(i+x-1)^2 
c Note that psi is already defined in Fortran with a real input. e.g. psi(2.0) 
c------------------------------------------------------------------------- 
 real function psidash(x) 
 
 real x 
 integer n 
 
 psidash=0.0 
 do i=1,10000 
  psidash=psidash+1/((i+x-1.0)**2.0) 
 enddo 
 
 return 
 end 
c------------------------------------------------------------------------- 
c Calculates mean of the array x of size n 
c------------------------------------------------------------------------- 
 real function mymean(x,n) 
 
 real x(n), sumx 
 integer n 
 
 sumx=sum(x) 
 mymean=sumx/(1.0*n) 
 
 return 
 end 
c------------------------------------------------------------------------- 
c Calculates the variance of the array x of size n 
c------------------------------------------------------------------------- 
 real function variance(x,n,true) 
c t=1 for dividing n, and t=0 for dividing n-1. 
 
 real x(n),mu, ss 
 integer n, true 
 real mymean 
 
 mu=mymean(x,n) 
 ss=0.0 
 do i=1,n 
    ss=ss+((x(i)-mu)**2.0) 
 enddo 
 variance=ss/(1.0*n-1.0) 
 
 if (true==1) then 
 variance=ss/(1.0*n) 
 endif 
 
 return 
 end 
c------------------------------------------------------------------------- 
c Sorts the data in array 'x' as ascending order and stores this   
c sorted data in 'sortedx'. 
c------------------------------------------------------------------------- 
 subroutine mysort(n,x,sortedx,true) 
c t=1 for descending order t=0 for ascending order 
 real x(n),sortedx(n), ascen(n) 
 integer n, true 
  
      do i=1,n 
        sortedx(i)=x(i) 
 enddo 
 
c Ascending order 
      do i=1,n 
        do j=i+1,n 
          if(sortedx(i)>=sortedx(j)) then 
            dummy=sortedx(i) 
       sortedx(i)=sortedx(j) 
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       sortedx(j)=dummy 
          endif 
   enddo 
 enddo 
 
 if (true==1) then 
c Descending order 
      do i=1,n 
        ascen(i)=sortedx(n-i+1) 
 enddo  
 sortedx=ascen 
 endif 
  
 return 
 end 
c------------------------------------------------------------------------- 
c Calculates the median of the data in array 'x' and stores this   
c median in 'med'. 
c------------------------------------------------------------------------- 
 subroutine mymedian(n,x,med) 
 
 real x(n),sortedx(n),med 
 integer n,half  
      real mysort 
   
 call mysort(n,x,sortedx,0) 
 
 half = floor(n/2.0) 
 med = sortedx(half+1) 
 
 if (2*half == n ) then       
 med = (sortedx(half)+med)/2.0 
 endif 
 
 return 
 end 
c------------------------------------------------------------------------- 
c Generates n number ofrandom numbers from GL (Generalized Logistic 
c Distribution) with parameters mu, sigma and b.  
c-------------------------------------------------------------------------  
 subroutine GL_rnd(mu,sigma,b,n,y) 
 
 real mu,sigma,b,u(n),y(n) 
 integer n 
 
 call rnun(n,u) 
 
 do i=1,n 
  y(i)=-sigma*log((1.0/u(i))**(1.0/b)-1.0)+mu 
 enddo 
  
 return 
 end 
c------------------------------------------------------------------------- 
c Generates the inverse cdf of a n number of a GL (Generalized Logistic 
c Distribution) where F(y) = alpha. The parameters of the distribution  
c are mu, sigma and b.  
c-------------------------------------------------------------------------  
 real function GL_invcdf(mu,sigma,b,alpha) 
  
 real mu,sigma,b,alpha,y 
 
 y=mu-sigma*log(alpha**(-1.0/b)-1.0) 
 GL_invcdf=y 
 
 return 
 end 
c------------------------------------------------------------------------- 
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APPENDIX E 

 

 

FORTRAN PROGRAM CALCULATING THE MMLEs OF THE 

PARAMETERS OF MULTIVARIATE LINEAR REGRESSION FOR 

LONG-TAILED SYMMETRIC DISTRIBUTION  

 

 

 
 
c************************************************************************* 
c Written by  Ayca DONMEZ, 2009, Ankara  
c************************************************************************* 
c------------------------------------------------------------------------- 
c Calculates the MMLEs and LSEs of multiple linear regression 
c Y=theta0+theta*U+e where e is assumed to come from the 
c distribution family of Long-Tailed Symmetric (LTS) with p>=2. 
c To evaluate the efficiency and robustness, different secenarios 
c are considered: 
c     Scenario No.1: N(0,sigma^2) 
c     Scenario No.2: LTS(mu, sigma, p) p=5.0 
c     Scenario No.3: LTS(mu, sigma, p) p=3.5 
c     Scenario No.4: LTS(mu, sigma, p) p=2.5 
c     Scenario No.5: LTS(mu, sigma, p) p=2.0 
c Outlier Models: 
c     Scenario No.6: (n-r) xi come from N(0,sigma^2) and  
c    r(we do not know which) come from N(0,4*sigma^2) 
c     Scenario No.7: (n-r) xi come from N(0,sigma^2) and  
c    r(we do not know which) come from N(0,16*sigma^2)  
c Mixture Models: 
c     Scenario No.8: 0.90*N(0,sigma^2)+0.10*N(0,4*sigma^2) 
c     Scenario No.9: 0.90*N(0,sigma^2)+0.10*N(0,16*sigma^2) 
c     Scenario No.10: Student's t distr. with 2 dof. 
c     Scenario No.11: Cauchy distribution 
c     Scenario No.12: Slash (Normal/Uniform) distribution  
c------------------------------------------------------------------------- 
 use numerical_libraries 
 
c     Declaration of the variables and arrays 
 parameter n = 20 
 parameter nn = floor(100000/(n*1.0)) 
 parameter mu = 0.0, sigma = 1.0 
 parameter q = 4 
 parameter rtheta0 = 0.0 
 parameter iteration = 2 
 
 real rtheta(q,1), mUrtheta(n,1),Urtheta(n) 
 real ybar, xj(n), xbar(q), s2(q), s(q) 
 real su(n), msu(n,1) 
 real y(n), my(n,1), x(n,q), u(n,q), er(n)  
 real r(n-1), w(n) 
 
 integer scenario 
 real p, cc, rr, urn(n), nor(n), correction 
 real S0, preS0(n),median_preS0 
 real resultMML(q+2) 
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 real tu(q,n),tuy(q,1),uu(q,q), invuu(q,q) 
 
 real theta0,sigma_0,thetaa, theta(q) 
 real mtheta(q,1),tmtheta(1,q),mUtheta(n,1), Utheta(n) 
 real theta0MML(nn), thetaMML(nn,q), sigmaMML(nn) 
 real mean_theta0MML,mean_thetaMML(q),mean_sigmaMML 
 real var_theta0MML,var_thetaMML(q),var_sigmaMML 
  
 real mUthetaLSE(n,1),UthetaLSE(n),presigmaLSE(n) 
 real theta0tildaLSE,thetatildaLSE(q),sigmatildaLSE 
 real mthetatildaLSE(q,1) 
 real theta0LSE(nn), thetaLSE(nn,q), sigmaLSE(nn) 
 real mean_theta0LSE,mean_thetaLSE(q),mean_sigmaLSE 
 real var_theta0LSE,var_thetaLSE(q),var_sigmaLSE 
 
c     Declaration of the functions 
       real LTS_rnd, LTS_invcdf, LTS_Regmulti_MML_iteration 
       real mymean, mysort, mymedian, variance 
 
 
1111 FORMAT (A5,I3,A6,I3,A15,I2) 
 print 1111, ' n =',n,' q =',q,'  iteration =',iteration  
 print*, '----------------------------------------------------' 
 
 do jj=1,q  
 
  rtheta(jj,1)=1.0 
    
  call rnun(n,xj) 
  x(:,jj)=xj 
  xbar(jj)=sum(xj)/(n*1.0) 
  s2(jj)=variance(xj,n,1) 
  s(jj)=sqrt(s2(jj)) 
 
   do j=1,n 
    u(j,jj)=(x(j,jj)-xbar(jj))/s(jj) 
   enddo     
 enddo 
  
 su=sum(u,2)  
 do j=1,n 
  msu(j,1)=su(j) 
 enddo 
 mUrtheta=matmul(u,rtheta) 
 do j=1,n 
  Urtheta(j)=mUrtheta(j,1) 
 enddo 
 
 do k=1,12 
 
       scenario=k 
       correction=0.0 
 
       do 100 h=1,nn 
 
  if (scenario.EQ.1) then 
c  'Scenario No.1: N(0,sigma^2)'   
    call rnnor(n,er) 
    do j=1,n 
   er(j)=mu+sigma*er(j) 
    enddo 
 
  elseif (scenario.EQ.2) then 
c  'Scenario No.2: LTS(mu, sigma, p) p=5.0'   
   p=5.0 
   call LTS_rnd(mu,sigma,p,n,er) 
  elseif (scenario.EQ.3) then 
c  'Scenario No.3: LTS(mu, sigma, p) p=3.5' 
   p=3.5 
   call LTS_rnd(mu,sigma,p,n,er) 
  elseif (scenario.EQ.4)then 
c  'Scenario No.4: LTS(mu, sigma, p) p=2.5'    
   p=2.5 
   call LTS_rnd(mu,sigma,p,n,er) 
  elseif (scenario.EQ.5) then 
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c  'Scenario No.5: LTS(mu, sigma, p) p=2.0'   
   p=2.0 
   call LTS_rnd(mu,sigma,p,n,er) 
  elseif (scenario.EQ.6) then 
c  'Scenario No.6: (n-r) ei come from N(0,sigma^2) and  
c             r(we do not know which) come from N(0,4*sigma^2)' 
  
c     To generate outliers first r of n observations are rescaled  
c     by multiplying sample units with a constant c (c=2 or c=4)  
c     to have observations from N(0,c*sigma). Note that the selection  
c     of the first r units does not matter since the sample is  
c     originally generated randomly. 
  
    call rnnor(n,er) 
    do j=1,n 
   er(j)=mu+sigma*er(j) 
    enddo 
 
   cc=2.0 
   rr=int(0.5+0.1*n) 
     do j=1,rr 
    er(j)=cc*er(j) 
     enddo   
   correction=(rr*(cc**2.0)+(n-rr))/(n*(1.0)) 
  
  elseif (scenario.EQ.7) then 
c  'Scenario No.7: (n-r) xi come from N(0,sigma^2) and  
c               r(we do not know which) come from N(0,16*sigma^2^)'  
  
    call rnnor(n,er) 
    do j=1,n 
   er(j)=mu+sigma*er(j) 
    enddo 
 
   cc=4.0 
   rr=int(0.5+0.1*n) 
     do j=1,rr 
    er(j)=cc*er(j) 
     enddo   
  correction=(rr*(cc**2.0)+(n-rr))/(n*(1.0)) 
 
  elseif (scenario.EQ.8) then 
c  'Scenario No.8: 0.90*N(0,sigma^2)+0.10*N(0,4*sigma^2)' 
  
   call rnnor(n,er) 
   call rnun(n,urn) 
   cc=2.0 
     do j=1,n 
    if (urn(j).GT.0.90) then 
     er(j)=cc*er(j) 
    endif 
     enddo 
   correction=(0.90*n+0.10*n*(cc**2.0))/(n*(1.0)) 
 
  elseif (scenario.EQ.9) then 
c  'Scenario No.9: 0.90*N(0,sigma^2)+0.10*N(0,16*sigma^2)' 
 
   call rnnor(n,er) 
   call rnun(n,urn) 
   cc=4.0 
     do j=1,n 
    if (urn(j).GT.0.90) then 
     er(j)=cc*er(j) 
    endif 
     enddo 
   correction=(0.90*n+0.10*n*(cc**2.0))/(n*(1.0)) 
 
  elseif (scenario.EQ.10) then    
c  'Scenario No.10: Student s t with 2 dof' 
    call rnstt(n,2.0,er) 
  
  elseif (scenario.EQ.11) then 
c  'Scenario No.11: Cauchy distribution' 
  
   call rnchy(n,er) 
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  elseif (scenario.EQ.12) then 
c  'Scenario No.12: Slash (Normal/uniform) distribution' 
 
c   To generate slash distribution, a random number 'nor' 
c   from N(0,1) and a random number 'u' from U(0,1)  
c   are generated. The desired random number will be the  
c   result of nor divided by u. This operation will be 
c   repeated n times. 
   call rnnor(n,nor) 
   call rnun(n,urn) 
    do j=1,n 
     er(j)=nor(j)/urn(j) 
    enddo 
 
  endif 
 
c  The outlier and mixture models should be bias corrected  
c  for sigma. 'correction' variable is defined as 0.0 at the   
c  begining of the loop of scenarios (k) and it is only used  
c  in outlier and mixture models (Scenario No.6 to No.9). 
c  The corrections for sigmaMML are: 
  if (correction.GT.0.0) then 
   do j=1,n 
    er(j)=er(j)/sqrt(correction) 
   enddo 
  endif 
 
  do j=1,n 
   y(j)=rtheta0+Urtheta(j)+er(j) 
   my(j,1)=y(j) 
  enddo 
 
  do j=1,(n-1) 
   r(j)=(y(j+1)-y(j))/(su(j+1)-su(j)) 
  enddo 
 
c  Initial estimator of theta: 
  call mymedian(n-1,r,thetaa) 
 
  theta=thetaa 
  
  do j=1,n 
   w(j)=y(j)-thetaa*su(j) 
  enddo  
 
  call mymedian(n,w,theta0) 
  
  do j=1,n 
    preS0(j)=abs(w(j)-theta0) 
  enddo 
 
  call mymedian(n,preS0,median_preS0) 
 
c  S0=1.483*median{|y_j-theta1*x_j-theta0|} 
  S0=1.483*median_preS0 
 
  sigma_0=S0 
 
  do ll=1,iteration 
 
   call LTS_Regmulti_MML_iteration(y,u,n,q,theta0,theta, 
     &   sigma_0,resultMML) 
 
   theta0=resultMML(1)   
   theta=resultMML(2:(q+1)) 
   sigma_0=resultMML(q+2) 
 
  enddo 
 
   theta0MML(h)=resultMML(1) 
   thetaMML(h,:)=resultMML(2:(q+1)) 
   sigmaMML(h)=resultMML(q+2) 
 
  ybar=sum(y) 
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  ybar=ybar/(n*1.0) 
 
  tu=transpose(u)  
  uu=matmul(tu,u)  
  tuy=matmul(tu,my) 
 
  CALL LINRG (q,uu,q,invuu,q) 
  mthetatildaLSE=matmul(invuu,tuy)  
  mUthetaLSE=matmul(u,mthetatildaLSE) 
  
  UthetaLSE=mUthetaLSE(:,1) 
  thetatildaLSE=mthetatildaLSE(:,1) 
 
  theta0tildaLSE=ybar 
 
  sigmatildaLSE=0.0 
  do j=1,n 
   sigmatildaLSE=sigmatildaLSE+ 
     &  (y(j)-ybar-UthetaLSE(j))**2.0 
  enddo 
 
  sigmatildaLSE=sqrt(sigmatildaLSE/(n-q-1.0)) 
 
   theta0LSE(h)=theta0tildaLSE 
   thetaLSE(h,:)=thetatildaLSE 
   sigmaLSE(h)=sigmatildaLSE 
 
c End of simulation runs nn 
100 continue 
 
 mean_theta0MML=mymean(theta0MML,nn)  
 do jj=1,q 
  mean_thetaMML(jj)=mymean(thetaMML(:,jj),nn) 
  var_thetaMML(jj)=(n/(sigma**2.0))*variance(thetaMML(:,jj),nn,1)  
 enddo  
 mean_sigmaMML=(1/sigma)*mymean(sigmaMML,nn)  
 
 var_theta0MML=(n/(sigma**2.0))*variance(theta0MML,nn,1)  
 var_sigmaMML=(n/(sigma**2.0))*variance(sigmaMML,nn,1)  
 
 
 mean_theta0LSE=mymean(theta0LSE,nn)  
 do jj=1,q 
  mean_thetaLSE(jj)=mymean(thetaLSE(:,jj),nn) 
  var_thetaLSE(jj)=(n/(sigma**2.0))*variance(thetaLSE(:,jj),nn,1)  
 enddo  
  mean_sigmaLSE=(1/sigma)*mymean(sigmaLSE,nn)  
 
 var_theta0LSE=(n/(sigma**2.0))*variance(theta0LSE,nn,1)  
 var_sigmaLSE=(n/(sigma**2.0))*variance(sigmaLSE,nn,1)  
 
 print*, '______________theta0_______________theta1_________ 
     &______sigma______'  
      print*, 'Model_____MML_______LSE________MML________LSE____ 
     &___MML_______LSE__'  
 
1100 FORMAT (I5,F10.3,F10.3,F11.3,F11.3,F10.3,F10.3) 
1200 FORMAT (I5,F10.3,F11.3,F13.3,F13.3,F13.3,F12.3) 
2100 FORMAT (A9,F6.3,A1,A4,F5.3,A1,A4,F6.3,A1,A4,F6.3,A1,A4,F5.3,A1, 
     &A4,F5.3,A1) 
2200 FORMAT (A9,F6.3,A1,A4,E9.3,A1,A4,F6.3,A1,A4,E9.3,A1,A4,F6.3,A1, 
     &A4,E9.3,A1) 
  
 if (k.LT.10) then 
 print 1100,k,mean_theta0MML,mean_theta0LSE,mean_thetaMML(1), 
     &mean_thetaLSE(1),mean_sigmaMML,mean_sigmaLSE 
 print 2100, '[',var_theta0MML,']','[',var_theta0LSE,']', 
     &'[',var_thetaMML(1),']','[',var_thetaLSE(1),']','[',var_sigmaMML 
     &,']','[',var_sigmaLSE,']' 
 else 
 print 1200,k,mean_theta0MML,mean_theta0LSE,mean_thetaMML(1), 
     &mean_thetaLSE(1),mean_sigmaMML,mean_sigmaLSE   
 print 2200, '[',var_theta0MML,']','[',var_theta0LSE,']', 
     &'[',var_thetaMML(1),']','[',var_thetaLSE(1),']','[',var_sigmaMML 
     &,']','[',var_sigmaLSE,']' 
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 endif 
 print*, '------------------------------------------' 
 
 
1110 FORMAT (A5,F11.3,F11.3,F11.3) 
 
 print*,'______________theta2_______________theta3_________ 
     &______theta4______' 
 print*, 'Model_____MML_______LSE________MML________LSE____ 
     &___MML_______LSE__' 
 
 if (k.LT.10) then 
 print 1100,k,mean_thetaMML(2),mean_thetaLSE(2),mean_thetaMML(3), 
     &mean_thetaLSE(3),mean_thetaMML(4),mean_thetaLSE(4) 
 print 2100, '[',var_thetaMML(2),']','[',var_thetaLSE(2),']', 
     &'[',var_thetaMML(3),']','[',var_thetaLSE(3),']', 
     &'[',var_thetaMML(4),']','[',var_thetaLSE(4),']' 
 else 
 print 1200,k,mean_thetaMML(2),mean_thetaLSE(2),mean_thetaMML(3), 
     &mean_thetaLSE(3),mean_thetaMML(4),mean_thetaLSE(4)  
 print 2200, '[',var_thetaMML(2),']','[',var_thetaLSE(2),']', 
     &'[',var_thetaMML(3),']','[',var_thetaLSE(3),']', 
     &'[',var_thetaMML(4),']','[',var_thetaLSE(4),']' 
 endif 
 print*, '------------------------------------------' 
 
c End of scenario loop k  
 enddo 
 
 stop 
 end 
 
c------------------------------------------------------------------------- 
c Calculates the MML estimators of mu and sigma for LTS (Long-Tailed  
c Symetric) distribution with p>=2.   
c-------------------------------------------------------------------------  
 subroutine LTS_Regmulti_MML_iteration(y,u,n,q,theta0,theta 
     &,sigma_0,output) 
 
    integer n, q   
 real pp, kk,output(q+2) 
 real theta0, theta(q), sigma_0 
 real mtheta(q,1),mUtheta(n,1), Utheta(n) 
 real y(n), u(n,q) 
 real t(n),bet(n),alf(n),m,betxy(n),betuu(q) 
 real ybar, ubar(q) 
 real sB, sC, BB, CC, thetaMMLubar 
 real theta0MML,thetaMML(q), sigmahatMML  
 
 real my(n,1), mbet(n,n), malf(n,n), mone(n,1) 
 real stu(n,q),tstu(q,n), tumbet(q,n), tumbetu(q,q) 
 real tumbety(q,1), invtumbetu(q,q) 
 real tumalf(q,n), tumalfmone(q,1) 
 real msK(q,1), msD(q,1), sK(q), sD(q) 
 real presigmaa(n,q), presigma(n) 
  
c In order to make MML estimation free of p, we put p=16.5, k=30,  
 pp= 16.5 
 kk = 30 
 
 mbet=0.0 
 malf=0.0 
 
 do j=1,n 
  my(j,1)=y(j) 
  mone(j,1)=1.0 
 enddo 
 
 mtheta(:,1)=theta 
 mUtheta=matmul(u,mtheta)  
 
  do j=1,n 
   Utheta(j)=mUtheta(j,1)  
  enddo 
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 do j=1,n 
     t(j) = (y(j)-theta0-Utheta(j))/sigma_0 
  bet(j) = 1.0/((1+t(j)**2.0/kk)**2.0) 
  alf(j) =((1.0/kk)*t(j))/((1.0+((t(j)**2.0)/kk))**2.0) 
  betxy(j)=bet(j)*y(j) 
 enddo 
 
  m = sum(bet) 
 do jj=1,q 
  betuu(jj)=dot_product(bet,u(:,jj)) 
  ubar(jj)=betuu(jj)/m 
 enddo  
   
   ybar=sum(betxy)/m 
 
   do j=1,n 
    mbet(j,j)=bet(j) 
    malf(j,j)=alf(j) 
   enddo 
    
 
 do jj=1,q 
 do j=1,n 
 stu(j,jj)=u(j,jj)-ubar(jj)  
 enddo 
 enddo 
 
 
 tstu=transpose(stu)  
 tumbet=matmul(tstu,mbet)  
 tumbetu=matmul(tumbet,stu)  
 tumbety=matmul(tumbet,my)  
 
 CALL LINRG (q,tumbetu,q,invtumbetu,q) 
 
 msK=matmul(invtumbetu,tumbety)  
 tumalf=matmul(tstu,malf)  
 tumalfmone=matmul(tumalf,mone) 
 msD=matmul(invtumbetu,tumalfmone)  
 
 do jj=1,q 
  sK(jj)=msK(jj,1) 
  sD(jj)=msD(jj,1) 
 enddo 
 
 do jj=1,q 
 do j=1,n 
  presigmaa(j,jj)=sK(jj)*stu(j,jj) 
 enddo 
 enddo 
 
 presigma=sum(presigmaa,2) 
 
   sB=0.0 
   sC=0.0 
       
   do j=1,n 
  sB=sB+alf(j)*(y(j)-ybar-presigma(j)) 
  sC=sC+bet(j)*(y(j)-ybar-presigma(j))**2.0 
   enddo 
 
 BB=((2*pp)/kk)*sB 
 CC=((2*pp)/kk)*sC 
 
 sigmahatMML = (BB+sqrt((BB**2.0)+4*n*CC))/(2.0*sqrt(n*(n-q-1.0)))    
 
 do jj=1,q 
    thetaMML(jj)=sK(jj)+sD(jj)*sigmahatMML 
 enddo 
 
 thetaMMLubar=dot_product(thetaMML,ubar)  
 theta0MML=ybar-thetaMMLubar 
 
 output(1)=theta0MML 
 do jj=1,q 
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    output(jj+1)=thetaMML(jj) 
 enddo 
  
 output(q+2)=sigmahatMML 
 
 return 
 end 
c------------------------------------------------------------------------- 
c Generates n number of random numbers from LTS (Long-Tailed Symmetric 
c Distribution) with parameters mu, sigma and p where it is assumed  
c that p>=2 
c-------------------------------------------------------------------------  
 subroutine LTS_rnd(mu,sigma,p,n,y) 
 
 real mu,sigma,p,kk,vv,x(n),y(n) 
 integer n 
 
 kk=2*p-3.0 
 vv=2*p-1.0 
 
 call rnstt(n,vv,x) 
 
 do i=1,n 
  y(i)=sigma*sqrt(kk/vv)*x(i)+mu 
 enddo 
  
 return 
 end 
c------------------------------------------------------------------------- 
c Calculates mean of the array x of size n 
c------------------------------------------------------------------------- 
 real function mymean(x,n) 
 
 real x(n), sumx 
 integer n 
 
 sumx=sum(x) 
 mymean=sumx/(1.0*n) 
 
 return 
 end 
c------------------------------------------------------------------------- 
c Calculates the variance of the array x of size n 
c------------------------------------------------------------------------- 
 real function variance(x,n,true) 
c t=1 for dividing n, and t=0 for dividing n-1. 
c     Declaration of the variables and arrays 
 
 real x(n),mu, ss 
 integer n, true 
 
c     Declaration of functions 
 real mymean 
 
 mu=mymean(x,n) 
 
 ss=0.0 
 do i=1,n 
  ss=ss+((x(i)-mu)**2.0) 
 enddo 
 
 variance=ss/(1.0*n-1.0) 
 
 if (true==1) then 
  variance=ss/(1.0*n) 
 endif 
 
 return 
 end 
c------------------------------------------------------------------------- 
c Sorts the data in array 'x' as ascending order and stores this   
c sorted data in 'sortedx'. 
c------------------------------------------------------------------------- 
 subroutine mysort(n,x,sortedx,true) 
c t=1 for descending order t=0 for ascending order 
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c     Declaration of the variables and arrays 
 real x(n),sortedx(n), ascen(n) 
 integer n, true 
  
      do i=1,n 
        sortedx(i)=x(i) 
 enddo 
 
c Ascending order 
      do i=1,n 
        do j=i+1,n 
          if(sortedx(i)>=sortedx(j)) then 
            dummy=sortedx(i) 
       sortedx(i)=sortedx(j) 
       sortedx(j)=dummy 
          endif 
   enddo 
 enddo 
 
 if (true==1) then 
c Descending order 
      do i=1,n 
        ascen(i)=sortedx(n-i+1) 
 enddo  
 sortedx=ascen 
 endif 
  
 return 
 end 
c------------------------------------------------------------------------- 
c Calculates the median of the data in array 'x' and stores this   
c median in 'med'. 
c------------------------------------------------------------------------- 
      subroutine mymedian(n,x,med) 
c     Declaration of the variables and arrays 
 real x(n),sortedx(n),med,half 
 integer n  
 
c     Declaration of the functions 
      real mysort 
   
 call mysort(n,x,sortedx,0) 
 
 half = floor(n/2.0); 
 med = sortedx(half+1); 
 
 if (2*half == n ) then       
 med = (sortedx(half)+med)/2.0 
 endif 
 
 return 
 end 
c------------------------------------------------------------------------- 
c Generates the inverse cdf of LTS (Long-Tailed Symmetric Distribution) 
c where F(y) = alpha. The parameters of the distribution are 
c mu, sigma and p where p>=2.  
c-------------------------------------------------------------------------  
 real function LTS_invcdf(mu,sigma,p,alpha) 
  
 real mu,sigma,p,alpha,y 
  
 kk=2.0*p-3.0 
 vv=2.0*p-1.0 
 
 Tinv=tin(alpha,vv) 
 y=((sigma*Tinv)/sqrt(vv/kk))+mu 
 LTS_invcdf=y 
 
 return 
 end  
c------------------------------------------------------------------------- 
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