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ABSTRACT

ADAPTIVE ESTIMATION AND HYPOTHESIS TESTING METHODS

Doénmez, Ayca
Ph. D., Department of Statistics
Supervisor: Prof. Dr. Moti Lal Tiku

March 2010, 153 pages

For statistical estimation of population parameters, Fisher’s maximum
likelihood estimators (MLEs) are commonly used. They are consistent, unbiased
and efficient, at any rate for large n. In most situations, however, MLEs are elusive
because of computational difficulties. To alleviate these difficulties, Tiku’s
modified maximum likelihood estimators (MMLESs) are used. They are explicit
functions of sample observations and easy to compute. They are asymptotically
equivalent to MLEs and, for small n, are equally efficient. Moreover, MLEs and
MMLEs are numerically very close to one another. For calculating MLEs and
MMLEzs, the functional form of the underlying distribution has to be known. For
machine data processing, however, such is not the case. Instead, what is reasonable
to assume for machine data processing is that the underlying distribution is a
member of a broad class of distributions. Huber assumed that the underlying
distribution is long-tailed symmetric and developed the so called M-estimators. It is
very desirable for an estimator to be robust and have bounded influence function.
M-estimators, however, implicitly censor certain sample observations which most
practitioners do not appreciate. Tiku and Surucu suggested a modification to Tiku’s

MMLEs. The new MMLEs are robust and have bounded influence functions. In

v



fact, these new estimators are overall more efficient than M-estimators for long-
tailed symmetric distributions. In this thesis, we have proposed a new modification
to MMLEs. The resulting estimators are robust and have bounded influence
functions. We have also shown that they can be used not only for long-tailed
symmetric distributions but for skew distributions as well. We have used the
proposed modification in the context of experimental design and linear regression.
We have shown that the resulting estimators and the hypothesis testing procedures

based on them are indeed superior to earlier such estimators and tests.

Key words: robustness, modified maximum likelihood (MML) estimators, non-

normality.
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UYARLAMALI TAHMIN VE HIiPOTEZ TESTi YONTEMLERI

Doénmez, Ayca
Doktora, statistik Boliimii

Tez Yoneticisi: Prof. Dr. Moti Lal Tiku

Mart 2010, 153 sayfa

Populasyon parametrelerinin istatistiksel tahmininde yaygin olarak Fisher en ¢ok
olabilirlik tahminleyicileri (MLEs) kullanilmaktadir. MLEs tutarli, yansiz ve
etkinlerdir. Ancak bir¢ok durumda hesaplamaya dayali zorluklardan otiirii elde
edilemezler. Bu zorluklar1 asmak i¢in Tiku uyarlanmis en c¢ok olabilirlik
tahminleyicileri (MMLESs) kullanilabilir. MMLEs goézlemlerin agik fonksiyonlari
olarak ifade edildiklerinden kolay hesaplanirlar. MMLEs asimptotik olarak
MLEs’e esit olmalarinin yaninda kii¢iik 6rneklemlerde de esdeger etkinliktedirler.
Ayrica MLEs ve MMLEs sayisal olarak birbirlerine ¢ok yakindirlar. Herikisinin de
hesaplanabilmesi i¢in dagilimin fonksiyonel formunun biliniyor olmasi gerekir.
Ancak bu makine veri islemesinde miimkiin olmayabilir. Onun yerine esas
dagilimin genis bir dagilim ailesinin iiyesi oldugunu varsaymak daha makuldiir.
Huber esas dagilimin uzun kuyruklu simetrik dagilim oldugunu varsaymis ve M-
tahminleyicilerini ~ gelistirmistir. Bir tahminleyici i¢in saglam olusu ve
siirlandirilmis bir etki fonksiyonuna sahip olmasi oldukga istenen 6zelliklerdir.
Fakat M-tahminleyicilerinin 6rneklemdeki gézlemleri sansiirliiyor olusu uygulama
yapanlar ic¢in sorun teskil edebilir. Tiku ve Surucu MMLEs i¢in bir degisiklik

Onermistir. Yeni MMLEs saglam olmalarinin yaninda sinirlandirilmis  etki

vi



fonksiyonlara da sahiplerdir. Bu yeni tahminleyicilerin uzun kuyruklu simetrik
dagilimlar i¢in M-tahminleyicilerine kiyasla toplamda daha etkin olduklari
gozlenmistir. Bu tez calismasinda MMLEs i¢in yeni bir degisiklik Onerisinde
bulunduk. FElde edilen tahminleyiciler saglamdirlar ve sinirlandirilmis etki
fonksiyonuna sahiplerdir. Bunun yaninda yeni tahminleyicilerin yalnizca uzun
kuyruklu simetrik dagilimlarda degil carpik dagilimlarda da kullanilabilecegini
gosterdik. Deneysel tasarim ve dogrusal regresyon alanlarinda onerilen degisimi
kullandik. Elde edilen tahminleyicilerin ve bunlar {izerine kurulmus hipotez testi

yontemlerinin 6nceki benzerlerinden daha iistiin oldugunu gordiik.

Anahtar kelimeler: saglamlik (robustness), uyarlanmis en ¢ok olabilirlik (MML)

tahmin edicileri, normal olmayan dagilimlar.
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CHAPTER 1

GENERAL METHODS OF ESTIMATION

Two methods of parameter estimation have numerous applications, namely,
the method of least squares and the method of maximum likelihood. For estimating

location and scale parameters, for example, they proceed as follows:

1.1 Least Squares

Let X be a random variable with mean E(X) = x and variance V(X) =o".

A random sample

X5 Xy5eee X, (1.1.1)
is available. The objective is to estimate & and O (or o). The least squares
methodology postulates the model

x;=u+e, (1<i<n) (1.1.2)

. . . 2
where e, is a random error with mean E(e,)=0 and variance V(e,)=0";

e; (1<i < n)are independent of one another. The least squares estimator of 1 is

obtained by minimizing the error sum of squares

n

ief = (x, - ). (1.1.3)

i=1



That gives

H=X= lel. (the sample mean). (1.1.4)

nio

The least squares estimator of o is defined as

6’ = minZef /(n—-1)= Z(xl. - )?)2 /(n—1) = s> (the sample variance);

i=1 i=1
(n—1)is called the df (degree of freedom) of s> since (n—1)s* = constitutes an
(n—1) dimesional hyper sphere. It is easy to show that
EX)=p, V(x)=0c’/n and E(s*)=0".

The LSE (least squares estimator) of o is & =s. For large n, E(s)=o.

However, E(s*)=o’ forall n.

Remark: The only assumption in using the method of least squares is that the mean

and variance of e, (i.e., the mean and variance of the underlying distribution) are

finite. In that sense, the method is general.

If E(e;) =ao (abeing a constant), i.e. E(X)= u+ao, then the LSE of u
is obtained by minimizing

n

(v, ~p-ac).

i=1
That gives,

fi=x—aoc (O tobereplaced by 7), (1.1.5)

and the LSE of the variance o’ is
G’ = minZ(xl. —fi—ac) (n-1)=s.
i=1

Thus, 6 =5 (as before).



Comment: While V' (X) =0 /n irrespective of the underlying distribution, ¥ (s)

depends on the distribution. In fact Roy and Tiku (1962) showed that
o’ 1
Vis)=2=—I|1+=4, |, 4, =5,-3, (1.1.6)
2n 2

B, = u, /11> being the kurtosis of the underlying distribution; see also Tan and
Wong (1977). For a normal distribution, A, =0. Clearly, the variance of s
increases with f,. We will show later that even the sample mean X is inefficient
when [, deviates from 3 by appreciable amounts. It may be noted that no

distribution can have kurtosis f,< 1 (Pearson and Tiku, 1970).

1.1.1 Correlated Errors

In (1.1.2) we assume that the errors e, (1<i<n) are independent of one

another (hence, uncorrelated). That is not necessary. We now assume that

E(e,)=0 and Cov(e,,e,,....e,) =Q0c",

() being an 7nxn matrix with constant coefficients. In this situation, the LSE of u

is obtained by minimizing the generalized dispersion
e'Qle,
e'=(e,e,,...,e, ). That gives,
H=x'Q7" ' x/1'Q™".

The method is very flexible indeed. If CowWe,;,e;) =0,

a= i(l/af)xi i(l/af)
in1 in1

a weighted sum with weights inversely proportional to the variances. This result is

well known.



1.2 Maximum Likelihood

Asssume that X has a location-scale distribution (1/0)f ((x— L)/ O'), ie.,
the distribution of Z =(X — )/ o is free of 4 and o . The likelihood function

(joint probability density function) of a random sample is

_ l T X T H
L—(Gj l_l[f( ] (1.2.1)

o

The MLEs (maximum likelihood estimators) of ¢ and O are those values of u

and o which maximize L or InL, there being one-to-one correspondance
between the two functions since L is always positive. To maximize InL for u

and O, we solve the equations
0InL/ou=0 and dInL/dc=0. (1.2.2)

Under very general regularity conditions, essentially existence of first two

derivatives of In L and the third derivative being bounded, the variance-covariance

matrix of the MLEs ,l:l and & is for large n,

~E(@*InL/ou’) —E@InL/oudc)]

—E@*InL/ouds) -E@*InL/oc?) (1.2.3)

Cow(i1,6) = [

Given the functional form f of the underlying distribution, the MLEs have all the

Fisherian optimal properties at least asymptotically, i.e., unbiasedness, consistency
and efficiency. However, MLEs are often computationally intractable. To illustrate

this assume that the underlying distribution is Logistic

2

() =~ expl=(x—u)/ a}/ [l +expl-(x-p)/ol] , —o<x<w. (1.24)
o
Here, E(X)=pu and V(X)=3.2898c". The LSEs of ¢ and O are

Zi=x and G =5/+/3.2898 (since s° estimates the population variance).



The maximum likelihood equations for estimating ¢ and O are

olnL n 2

= ——— . :0 d 1.2.5
o U;g(zl) an (1.2.5)
olnL n 1 2

—__ .- = , = 1.2.
Y. o*+0',Z:1:Z’ O_;zlg(zl) 0 (1.2.6)

where
z=(x-wlo and glz)=exp(-z)/l+exp(-2). (127

The equations (1.2.5) and (1.2.6) have no explicit solutions. They have to be solved
by iterations. Software is available to do that, e.g., Press, et al. (1992) and
Venables and Ripley (2002).

In general, however, one can encounter difficulties in solving maximum
likelihood equations by iterations: (i) the iterations may converge to wrong values,
(1) the iterations may not converge at all, and (iii) the iterations might locate local
rather than global maxima due to multiple roots. This is illustrated adequately by
Puthenpura and Sinha (1986) and Qumsiyeh (2007). Qumsiyeh (2007, pp. 6-10)
had a random sample of size n=100 from the logistic distribution (1.2.4). To
calculate the MLEs of x and o, she used Powell hybrid algorithm. This algorithm
is a variation of Newton’s method and uses a finite-difference approximation to the
Jacobian and takes precautions to avoid large steps (More et al., 1980). She started
the iteration process with z# =-1.00 and o =5.00. The process converged at 23rd

iteration and gave the MLEs as

/52—0.14 and & =1.05.

The true values being p#=1 and o =1, these estimates are quite reasonable.

Qumsiyeh (2007, p.10) introduced 10% outlier in the sample. Started the iteration
process again with the results in Table 1.1. The process never converged. Also,

yielded a negative estimate of o . That is disconcerting.



Table 1.1: The starting values of the iteration process

Iteration

OlnL/ou dlnL/oo yoi G
no.
1 10.16 -52.14 -1.00 5.00
2 10.16 -52.14 -1.00 5.00
3 10.16 -52.16 -1.00 5.00
4 -0 0 0.88 -0.08

To alleviate the computational difficulties with maximum likelihood, Tiku
(1967, 1968a,b, 1989) and Tiku and Suresh (1992) developed the methodology of

modified maximum likelihood as follows.

1.3 Modified Maximum Likelihood

Assume that the pdf (probability density function) of X s
(1/0) f((x— )/ &). The likelihood function is

(o T(%5%)

The maximum likelihood equations are

n

>glz)=0, glz)=r'(z)/f(z) and

olmL 1
ou O =

OlnL n 1
=———— , )=0.
= G;zlg(z,)

The method of modified maximum likelihood estimation is implemented in three
steps: (i) the equations are expressed in terms of ordered variates
zy =(x, —w)/o (1<i<n), (ii) the functions g(z(i)) are replaced by linear
approximations g(zm ) = a; + f,z; so that the differences between the two tend to

zero as N becomes large, and (iii) the resulting equations called maximum

likelihood equations are solved. They are typically of the form

oinfk ¢lnk :M(KJrDa—y):O and (1.3.1)
ou ou o

6



OolnL :alnL* _L
oo oo o

[M(K—,u)(K+Da—,u)—(na2 —BO‘—C)]= 0.(1.3.2)

Therefore, the MMLESs (modified maximum likelihood estimators) are of the form
[=K+Do (0 tobereplaced by &)

and (1.3.3)
o= {B+1/iB2 +4nCi}/2n;

the divisor 2n may be replaced by 2,/n(n—1) as a bias-correction. If the
distribution is symmetric, D=0 and 4=K ( is free of ) which is a very

interesting result.

Notice the form of d1nL"/du in (1.3.1). Since

. 1|0lnL" oOlInL
lim — - =0,
n—0 n 8/1 8/,1

it follows that the MMLE /4 is conditionally (o known) the MVB (minimum
variance bound) estimator of x, for large ». Using a similar argument and the
form of dlnL/0u=0 above, it follows that & is conditionally (4 known) the

MYVB estimator of o for large n.

EXAMPLE

Consider the situation when a random sample x,,x,,...,x, comes from the

Generalized Logistic distribution (5>0)

. _b exp{—(x— u)/ o}
S o [1+exp{-(x—u)/af]""’

—0<x <0, (1.3.4)

For b<1, (1.3.4) is negatively skewed. For b=1, it is the well known Logistic

Distribution and is symmetric. For b>1, it is positively skewed. Here, the

7



maximum likelihood equations expressed in terms of the ordered variates

2y = (x;) — #)/ o (obtained simply by replacing z, = (x, — u)/ o by z,) are

ou o

OlnL _n (b+1)ig(z(-))=

and

olnL b+1
e _Z Zu) ~ ( u )Z Zin& ( (z))

oo o o5

where g(z) = exp(— z)/ { 1+ exp(— Z)} The equations clearly have no explicit

solutions. In fact, for small or large values of b, the iterations have convergence

problems.

To obtain modified likelthood equations, we consider the linear

approximations (Tiku and Akkaya, 2004)
g(z(i));ai—ﬂiz(i) (1<i<n). (1.3.5)

The coefficients o, and S, are obtained from Taylor series expansion of g(zm)
about the population quantiles 7 ;) determined by

Uiy

| @M =— (Zi<n). (13.6)
That gives,
Liy = _ln(%_l/b —1), q; =il(n+1), (1.3.7)
eSS e,

Realize that as 72 tends to infinity, z,, converges to ;. Hence, the differences
g(z(i))—(ai -5, z(i)) (1<i<mn) converge to zero as 7 tends to infinity.

Consequently, MLEs and MMLE:s are asymptotically equivalent.



The modified likelihood equations are

olnL _olnlL _n_ (0+)h B
ou - ou & o IZ_:‘(% 'Biz(i))

M and (1.3.8)
:?(K‘FDO'—ILI):O

oL _omL _ n 13 (b+Dy
oo oo o o—; @) o ; (z)( =B (1))

_ %[M(K (K +Do— )~ (n0> —Bo—C)|=0 Y
where M =(b+1)m, m= Zn:ﬁi , K =[iﬂix(i)j/m,
i1 i1
A=b+)"-a, , D :iAi /m, B= (b+1)iAi(x(i) ~K) and
i1 )
C=(b+1)(iﬂ[x(2[) —szj.
)
The solutions of (1.3.8) and (1.3.9) are the following MMLEs:
A=K+D6 and 6={B+VB +4nC |/2n; (1.3.10)

n may be replaced by+/n(n—1) as a bias correction. For b=1, D=0.

For reasons given earlier, 4 and & are conditionally MVB estimators for

large n.

Comment: MMLEs are known to be asymptotically equivalent to MLEs whenever

the latter exist. Therefore, they are asymptotically unbiased and their variance-

covariance matrix is given by /', where I is the Fisher information matrix. A
rigorous proof of this is given in Bhattacharyya (1985) for censored samples and in
Vaughan and Tiku (2000) for complete samples (under very general regularity
conditions). A huge literature is available and compares MMLEs with MLEs and
concludes: (i) the two are numerically very close to one another, and (ii)) MMLEs
are as efficient as MLEs. See, for example, Schneider (1986), Tan and Tabatabai
(1988), Tiku et al. (1986), Vaughan (2002), Tiku and Akkaya (2004), and Kantar

and Senoglu (2008). In fact, the modified maximum likelihood method works very
9



well when the methods of maximum likelihood or least squares fail. This is

ilustrated in Puthenpura and Sinha (1986). Qumsiyeh (2007, p.14) had a sample of
size =100 from Generalized Logistic distribution with 5=0.5. The true values
are 1 =0 and o=1. She calculated the MLEs, MMLEs and the LSEs of x# and O

with the following results:

Table 1.2: The MLEs, MMLE:s and the LSEs of x and 0 of Generalized Logistic

distribution with b=0.5; n=100.

H o
MLE -2.891 -1.161
MMLE  -0.086 1.074
LSE -0.200 0.995

She concluded that the iterations with maximum likelihood equations can converge
to wrong values and the method of least squares can give highly biased results. She
stated that MMLEs are fine in all respects. This agrees with the results of
Puthenpura and Sinha (1986).

1.3.1 Robustness

LSEs are not distribution based but MMLEs are (i.e., in calculating them a
particular distribution is assumed). However, the reality is that the underlying
distribution is hardly ever known exactly. It is also naive to believe that nothing is
known about the underlying distribution. There are graphical techniques and
goodness-of-fit tests available to identify the underlying distribution (Surucu, 2008;
Tiku and Akkaya 2004, Chapter 9). They may not locate the exact distribution but
can ascertain distributions in close proximity. On the other hand, a sample might
contain outliers perhaps due to some misadventure in experimentation. Strong
outliers can readily be identified by using computer graphics and outlier detection
procedures (Tiku and Akkaya 2004, Chapter 9). What is difficult indeed is to
identify mild outliers in a sample. Situations which cannot be readily distinguished

from an assumed distribution are called plausible alternatives (Tiku et al., 1986,
10



Preface; Tiku and Akkaya, 2004, Preface). An estimator is called robust if it is fully
efficient (at any rate for large sample size 7) for an assumed distribution and
maintains high efficiency for plausible alternatives. A fully efficient estimator is
unbiased and has minimum variance. There is a huge literature investigating the
efficiency and robustness properties of LSEs and MMLEs; see, for example, Tiku
and Akkaya (2004), Islam and Tiku (2004), Senoglu (2005), Oral (2006), and Tiku
et al. (2008). The conclusion is that LSEs are efficient only for normal and near-
normal distributions. They are not, however, robust to deviations from an assumed
distribution. The MMLEs have excellent efficiency and robustness properties
although they are somewhat more difficult to compute than the LSEs. To repeat,
MMLEs are model based, i.e., in computing them a particular distribution is
assumed. However, they are remarkably efficient and robust to plausible deviations

from an assumed distribution, and to mild data anomalies.

1.3.2 Machine Data Processing

It is argued (Hampel et al. 1986, Preface) that in machine data processing
there is no opportunity to explore the nature of the underlying distribution but one
can rightfully assume that it is, for example, long-tailed symmetric. They define a
robust estimator to be one which has: (i) high efficiency (whatever the distribution
is as long as it is long-tailed symmetric) or the sample has outliers (irrespective of
whether they are mild or strong), and (ii) has high breakdown, i.e., if a number of
observations are shifted to infinity in either direction, the estimator continues to
assume finite values and, hence, finite mean (which should preferably be its
population value, i.e. the estimator be unbiased), and finite variance (preferably not

much bigger than MVB).

Consider, for example, the sample mean x . It is efficient only for
estimating the mean of a normal or near-normal distribution. If an observation is
shifted to infinity, it will assume an infinite value. Thus, X is not robust. They
show that the following M-estimators of the population mean are robust for long-

tailed symmetric distributions.

11



1.4 M-Estimators

Let x,,x,,..,x, be a random sample from a long-tailed symmetric
distribution of the type (1/0)f ((x—,u)/ O'). The log-likelihood function for
estimating 4 is

n

lnL:i:lnf(z,»)=z,0(zi), Z :(xi_,u)/a' (1.4.1)

i=l1

If the functional form of f (z) is known, the MLE of x (for given O) is obtained

from the equation

w(z,)=0. (1.4.2)

For normal and double exponential
f(z)oce_zz/2 and f(z)oce‘z‘ (—o<z <),

for example, the p(z) and v (Z) functions are given by
1 1,
p(z) = Eln(27r)+ EZ , l//(z) =z

and

p(z)=1n2+|z, w(z)=sgn(z) (z#0),

respectively. Writing w, = w, (z) =y, (z,)/z, , (1.4.2) can be expressed as
Zn:wi(xi—y)zo (1.4.3)
p
which gives
i S
P =

Given O and !,//(Z) , one may solve (1.4.3) iteratively.

12



However, 0 and l//(z) are not known in practice. Huber (1964) proposed (Z) as
) i |ef<e
V/(Z)_{csgn(z) if |z|>c’ (144)

which corresponds to a normal distribution in the middle and double exponential in
the tails. The popular choice of the ¢ values are 1.345, 1.5 and 2 which correspond
to roughly 10%, 5% and 2.5% truncation of the tails of a normal distribution

N(0,1). Birch and Myers (1982) proposed that o be replaced by
mad = median| X, —median(xl.)| / 0.6745.

For a normal distribution, mad is an asymptotically unbiased estimator of o . In
the so called Princeton study (Andrews, et al. 1972), sixty five l//(Z) functions
were examined. The following three functions were found to be particularly useful.

Incidentally, they are descending functions, i.e., they decrease with increasing |z| :

1. The wave function (Andrews et al., 1972, Andrews, 1974)

B sin(z)  if |z| <z
i//(z)—{ 0 i o> (1.4.5)
2. The bisquare function (Beaton and Tukey, 1974)
2(1—22)2 if |Z|Sl
= 1.4.6
v (2) { . g o1 (1.4.6)
3. The piecewise linear function (Hampel, 1974)
|z| if 0< |Z| <a
a if a< |Z| <b
=J o_ 1.4.7
'//(Z) c |z| if bS|Z|<c ( )
c—b
0 if ¢< |z| )

This results in different estimators for different values of a, b and ¢, in fact,
a large number of them. In an extensive numerical study, Gross (1976) examined

25 representative estimators (out of 65 studied in Priceton study) of location

13



parameter 4 and scale parameter 0 and concluded that the three descending

functions l//(Z) above with certain specified adjusting constants /2 (named W24,

BS82 and H22) were generally the most efficient. We reproduce the estimators
W24, BS82 and H22 from Gross (1976) as follows; see also Tiku (1980):

T, = median{x, } and S, =median{|xi -T, |} (i=12,..,n).
W24

n n

Zsin(zi ) ZSinz(zi )

f, =T, +(hS))tan™ | =—| and 6, =(hS,)|n | , (148)

> cos(z, ) _ [z coslz, ))2

i=1

h=2.4 and summations include only those i for which

|z,| <7, z,=(x, ~T,)/hS, .

BS82
r 1/2
2v(z) >wvi(z)
fy =T,y +(hS))=—— and 6, = (hS,) | n ——| , (1.4.9)

Sw(z) Svte )f

h=82 , z,=(x,—T,)/hS, and ¥ (z) is the Beaton-Tukey function given in

(1.4.6) and l//'(z) is its derivative.

H22

r 1/2

ZV/(Zi) gl/lz(zi)

fiy =Ty +S, - ——— and 6, =,

Sy(z) (Zw( )jz

: (1.4.10)

where l//(Z) is the piecewise linear function given in (1.4.7) and l//'(z) is its

derivative; a =2.25, b=3.75 and c=15.
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Extensive simulations have been caried out to explore the efficiency
properties of M-estimators (1.4.9); see, for example, the Princeton study, Tiku

(1980) and Dunnett (1982).
The conclusions are that

(a) for long-tailed symmetric distributions, the M-estimators of z are unbiased

and have very good efficiency, but

(b) the M-estimators of O can have substantial downward bias, even

asymptotically.

1.4.1 Influence Function

Hampel (1974) introduced the concept of ‘influence function’, equivalently
‘breakdown’, to ascertain the robustness of an estimator. Observations in a sample
are shifted in either direction to infinity and its effect on the estimator ascertained.
If an estimator assumes infinite values (and, consequently, its mean and variance
are infinite), the estimator is non-robust. Apparently, the sample mean is non-
robust but the sample median is robust. However, the sample median is not
efficient other than for extreme distributions like Cauchy. Nevertheless, one has to
aim for high efficiency when only a small portion of observations are shifted to
infinity to ascertain robustness. In that regard, the M-estimators (1.4.9) are robust.
Incidentally, empirical influence function is a graphical plot of the values an
estimator assumes when an observation(s) in a random sample is shifted (in either
direction) to infinity (Hampel et al. 1986, p.93). A smooth (bounded) plot
establishes robustness of an estimator. M-estimators have bounded influence

functions and so have the following estimators based on censored samples.
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1.5 Trimmed Mean and Variance

Let

Xay SXg) Seee S X, (1.5.1)

be the order statistics of a random sample of size n. Deleting » smallest and r

largest observations, Tukey defined the following estimators:

and (1.5.2)
1 . 1/2
o, = {m{zl(xu) = fy )2 tr [(x(r+l) — fiy )2 + (x(n—r) — )2 ]H '

The estimators /2, and &, have bounded influence functions as long as not

more than » observations are shifted in either direction to infinity.

Taking r=[0.5+0.1n] (integer value), in comprehensive simulation

studies, Tiku (1980) and Dunnett (1982) showed that f, and &, are as efficient as

M-estimators for long-tailed symmetric distributions with finite variances and in
situations when the sample contains mild outliers. For extreme situations, e.g. the

underlying distribution is Cauchy or the sample has a considerable number of

strong outliers, taking r=[0.5+0.3n] renders /I, and &, as efficient as M-

estimators. The estimator &, like the M-estimators of O, can have substantial

downward bias.
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1.6 Estimators Based on Censored Normal Samples

Tiku et al. (1986, p. 22-23) have an interesting result. They show that if the
tails of a long-tailed symmetric distribution are truncated, the resulting truncated
distribution has f, = 1,/ u; closer to 3 (kurtosis of a normal distribution)
although its variance is understandably less than that of the untruncated
distribution. Consider, for example, the family of long-tailed symmetric

distributions

_ 1 I(p) (e-p) " .
f(x)_m/z r(uz)r(i-uz){” ka‘j } ,  —o<x<ow; (L6.1)

k=2p-3, p>2. Note that E(X)=u and V(X)=o". Now, consider the

truncated distribution
Z2 7
fT(z)oc[l+7J , z=(x—u)o; —zy,<z<z,. (1.6.2)

Tiku et al. (1986, p.23) give the following values of the standard deviation 4/ £,

and the kurtosis S, of (1.6.2):

Table 1.3: The standard deviation and the kurtosis of the truncated distribution.

p=5/2 p=7/2 p =0 (normal)

ER NI Zg NI zg NP
o 1 o 0 1 6 0 1 3
2.650 0.837 3.32 2.566 0.886 3.04 2.326 0.935 2.54
1.508 0.657 2.46 1.586 0.716 2.36 1.645 0.789 2.19

They noticed that nearly 10% truncation of either tail brings the distribution close
to normal so far as its kurtosis is concerned. Since truncation of tails is equivalent
to censoring the extreme observations in a sample, they considered the censored

sample

Xira1ys Xra2ys =00 Xnpy - (1.6.3)
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Assuming that the underlying distribution is normal N(u, o), they determined

the efficiency and robustness properties of the MMLEs based on (1.6.3). They are
f= { 2 X 1B (¥ + X )}/m» m=(n=2r)+2rf

i=r+l

and (1.6.4)

6 =\B+B +44C |/ 2JA(A-T), A=n-2r;

n—r

B= ra(x(n_r) —x(m)) and C = Z(x(l.) - ,&)2 + r/i’{ (x(m) - ,&)2 + (x(H) —,[1)2 }
i=r+l
The coefficients & and £ in (1.6.4) are calculated from the following equations:

ﬂz—f(t){t—f(t)} and a:M_ﬂt; (1.6.5)
q q q

g=r/n, f(t) (27[)_1/2 exp(—tz/Z) and ¢ is the value such that

iy

(2z)""? Iexp(— 22/2)dz =q.

—00

The estimators /2 and & above were initially obtained by Tiku (1967). With
r=[0.5+0.1n], Tiku (1980) and Dunnett (1982) showed that for long-tailed
symmetric distributions with a finite variance, £ and & above are as efficient as

M-estimators. Like M-estimators, however, & can have considerable downward

bias. For extreme distributions with infinite variance (e.g. Cauchy) £ and & with

r= [0.5 + O.3n] in (1.6.4) are competitive with M-estimators.

1.6.1 Random Censoring

It is clear from equations (1.4.9) that a ‘random’ number of extreme
observations in a sample are censored to calculate the M-estimators. A similar
mechanism can be implemented to calculate MMLEs (1.6.4) as follows (Tiku,

1980).
18



In (1.6.4) —(1.6.5), replace g =r/n by ¢" =7 /n where

0 if k' /n=0
r'=1[05+0.1n] if 0<k’/n<0.1
[0.5+0.3n] if k'/n>0.1
k™ is the number of values of
|zi|=|xi—median{xi}|/50 (1<i<n)

(1.6.1.1)

which exceed 3.0, &, = 1.483| X, — median{ X; }| . Denote the resulting MMLEs by

[ and &, i.e., the estimators (1.6.4) with ¢ =r/n replaced by ¢ =7 /n. It

may be noted that &, is asymptotically unbiased if the distribution is normal.

As for (ft, &), Tiku (1980) carried out extensive simulations to study the

efficiencies of (4", & ). He showed that even for situations of extreme type,

is overall more efficient than the M-estimators of 4, and &  has overall less bias

than the M-estimators of 0. Consider, for example, the following models:

Outlier models: (1) (n—7)N(0,6°) & r,N(0,95°)

(2) (n—r)N(0,6%) & r,N(0,1006>), r =[0.5+02n]

(3) Student’s ¢ with 2 df, (4) Cauchy, (5) Slash (Normal/Cauchy).

We reproduce his results in Table 1.4; o =1 without loss of generality, n=20.

Table 1.4: The results of MML, W24 and H22 estimators under different

distribution models.

Model
Estimator (1) 2) 3) 4 (5)
Mean oW 1.33 1.39 1.37 1.80 2.53
oy 1.32 1.38 1.36 1.79 2.51
G 1.15 1.26 1.15 1.41 2.09
Variance Ly 0.098 0.105 0.106 0.185 0.362
Uy 0.097 0.104 0.105 0.183 0.359
,[1* 0.092 0.113 0.095 0.167 0.329
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Because of the randomness of ¢, however, it is difficult to derive the distribution

of \/; o / 6" . Like the M-estimators, this restricts the use of A" and & primarily

to estimation of location and scale parameters.

The question is whether the estimators (1.3.10) can be formulated such that
they can be used for all sorts of say long-tailed symmetric distributions or when a
sample has mild to strong outliers, and be at least as efficient as the M-estimators.
The purpose of this thesis is to develop such estimators. They are particularly
useful for machine data processing when a statistician has no opportunity to
investigate the nature of the underlying distribution. Admitedly, such situations are

very common in practice.

1.7 Hypothesis Testing

So far we have talked about parameter estimation, particularly of the location
and scale parameters. Another important problem is that of hypothesis testing.

Given a random sample x,,x,,..,x, one wants to test, for example, the null

hypothesis H, : 1 = 0. The statistic that is used most often is Student’s t:

t=+Inx/s. (1.7.1)
If the underlying distribution is normal N ( ,u,az), the null distribution of 7 is
Student’s t with Vv =n—1 degrees of freedom. To test H, against H, : >0, if the
computed value of ¢ is greater than ¢, (v), H, is rejected at & percent
significance level. The non-null distribution of ¢ is noncentral t with v=n—1

degrees of freedom and non-centrality parameter A° = n(,u/ 6)2. The t-test is UMP

(uniformly most powerful).
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Several authors investigated the effect of non-normality on the Type I error
and power of the t-test. Most prominent among them are Gayen (1949) and

Srivastava (1958). Both these authors assumed that the underlying distribution is

Edgeworth series, z = (x - y) o:

1 1 1,
f(z):{1+gl3H3(z)+a24H4(z)+7—214H6(z)}¢(z) (17.2)

3/2

where 4, = i, / M, " and A, = (,u4 / ,uzz)—3 are the standardized third and fourth

cumulants, ¢(z)=(27z)""" exp(— 2*/)2 ) (~o<z<w), and H,(z) is the r”
Hermite polynomial. They obtained the exact null distribution of ¢ and its power
function. For various combinations of values of (4,,4, ), they calculated the exact
values of the Type I error and power. Although Gayen’s and Srivastava’s work had
great deal of mathematical charm but it failed to be conclusive, the reason being the
limitation of the Edgeworth series; Barton and Dennis (1952) showed that the
Edgeworth series is a genuine probability density function only for a small range of
values of (,,4,). Therefore, Gayen’s and Srivastava’s work had validity only for
near-normal distributions. For small departures from normality, both Type I error

and power of the t-test are not affected in any substantial way.

Tiku (1964; 1971a,b) introduced a different approach which is not restricted
like Gayen’s and Srivastava’s. He developed the sampling distributions of s°

(sample variance), t> and ANOVA F statistics in terms of Laguerre polynomials
and Gamma density functions. Thus, he calculated the Type I error and power for a
much broader range of non-normal distributions than was possible with Gayen’s

and Srivastava’s approach. He concluded that non-normality
(a) does not affect the Type I error to a remarkable degree, but
(b) has a substantial downward effect on the power.

What is, therefore, needed are test procedures that are robust (both in terms of Type
I error and power) to departures from normality and to data anomalies, e.g.,
outliers. In this thesis, we develop such procedures by using modified maximum

likelihood estimators and variants of them.
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CHAPTER 2

REVISED MODIFIED MAXIMUM LIKELIHOOD ESTIMATION

In machine data processing, there is no opportunity to ascertain the nature of
the underlying distribution but one may be justified in assuming that it is a long-
tailed symmetric distribution (Hampel et al., 1986, Preface). The MMLEs (1.3.3)
are model based, i.e., in calculating them, a particular distribution is assumed. One
may, for example, assume that the underlying distribution is one of the long-tailed

symmetric family

1 1 (x—,u)2 - Cw o
f(x)_m/z ,6’(1/2,}9—1/2){14_ } , <x<ow;  (21)

k=2p-3, p>2 and pla,b)=T(a)[(b)/T(a+b). It may be noted that

E(X)=pu and V(X)=0c".Foragiven p (Z 2), the MMLEs of ¢ and O are

i=Yp x([)/m [m Y j and & = {B+(B> +4nC)}/ 2n(n-1) (2)
= =
where
B=(2 p/k)lZ::a[ (X, — &) and C=(2 p/k)lZ:: Bilx, —a) .
The coefficients a, and f3, are given by (Islam and Tiku, 2004, Equation (4.5))
o, =(UR)E 1+ and B =1/{1+ /8 [ 2.3)

to=E (z(i)) (1<i<n). These coefficients are essentially obtained from Taylor

series expansions. Tables of 7, and the variances of z; and the covariances of
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(z(l.),z(j)) are given in Tiku and Kumra (1981) for p =2 (.5)10and n<20. For
n>10, however, ¢ iy may be calculated from (as a close approximation to the true
values)

4y

. l_ |
ﬁﬁ(l/zp = jin—j dz=—— (1<i<n). (2.4)

An IMSL subroutine is available to evaluate (2.4). For a given p, & and & are
known to be as efficient as the MLEs whenever the latter are authentic. However,
the MLEs are not readily available since they are analytically and computationally
too involved as said earlier.

With p chosen to be 3 or 3.5, & and & are remarkably robust to long-
tailed symmetric distributions having finite variances and to situations when a
sample contains mild outliers or other mild data anomalies (Tiku and Akkaya,
2004; Oral, 2006; Tiku et al., 2008). For machine data processing, however, long-
tailed symmetric distributions need to be inclusive of extreme distributions like
Cauchy and also to situations when a sample contains strong outliers and other
strong data anomalies (Hampel et al., 1986). In this thesis, we develop such
estimators.

What we show first, following Tiku and Surucu (2009), is that when o,
and £, in (2.3) are estimated from a given sample, the resulting estimators 4z, and

&, have very high breakdown and are overall more efficient than the M-estimators

mentioned earlier. To estimate the coefficients «, and B, (1<i<n), as in Huber

(1981), let
T, = median{x, } and S, :1.483median{|x[ -7, |} (1<i<n). (2.5

Realize that 7| is an unbiased estimator of  (for symmetric distributions) and S
is asymptotically an unbiased estimator of O (for a normal distribution).

Obviously, ¢, in (2.3) can be estimated by 7 W = (x(l) )/ S, - We also write

7 =(x - )/ S, - Since complete sums are invariant to ordering,
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Q. =iwl. xi/w (W=Zn:wij and 6 = {B+\/iBZ +4nCi}/2q/nin—l). (2.6)

i=1

B= (2p/k)i:l/i(xi —f,) (Vi :(Wi /k)tNi )’
i1

and (2.7)

C=@p/BY wlx, - i1, )
i=1

w,.l/{u]l{(xfs_on]} (1<i<n). (2.8)

Note: It may be noted that /_ is a nonlinear function and so is &, .

Remark: As with M-estimators, the only assumption for using 4 and & is that
the underlying distribution is long-tailed symmetric. Their asymptotic properties
are given in Appendix A. Realize that the coefficient v, in the above expression for
B has been obtained from «, by equating tN,.2 to its expected value which is 1

(almost) for p =16.5 as chosen in the next section. This is necessary to have a

bounded influence function.

2.1 Choice of k

As pointed out by Tiku and Surucu (2009), if we choose k very large,

w, (1<i<n) essentially reduce to 1 and z reduces to the sample mean Xx

which, although fully efficient for a normal distribution, has zero breakdown and is

not efficient (and robust) for long-tailed symmetric distributions or even to

moderate outliers in a sample. On the other hand, if we choose & small, f_ and

6. are enormously inefficient for normal and near-normal distributions. The

X

choice k=30(p=16.5) turns out to be a good compromise. We denote the

corresponding MMLEs by MML30. The emprical influence functions of 4 and
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6, are given in Figure 2.1 and Figure 2.2, respectively. They illustrate high

breakdown of MML30; see also Tiku and Surucu (2009). This was to be expected

since the associated terms in the expressions for w, i, B and C tend to 0,

respectively, as the i” observation x, is shifted (in either direction) to infinity.

Tiku and Surucu (2009) estimator of # is exactly the same as in (2.6) but

their estimator of O is

2.1.1)
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Figure 2.1: Empirical influence function of £, for p =3.5 (n=10).
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Figure 2.2: Empirical influence function of &, for p =3.5 (n=10).
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2.2 Efficiency and Robustness

To evaluate the efficiency and robustness of MML30 given in (2.6)-(2.8),
we consider a normal distribution and a very broad range of long-tailed symmetric
distributions and samples containing data anomalies as follows, see also Tiku and

Surucu (2009), i taken to be zero without any loss of generality:
(1) Normal N(0,57%)
The family (2.1) with
) p=5,0) p=35,@ p=25,05 p=2

Outlier models: (n—r) x, come from N(0,c°)and » (we do not know

which) come from

(6) N(0,467), (7) N(0,1657) ; r=[0.5+0.1n] (integer value).
Mixture models:

(8) 0.90N(0,6%) +0.10N(0,457) , (9) 0.90N(0,6°) +0.10N(0,165°)
(10) Student’s ¢ distribution with 2 df,
(11) Cauchy distribution,
(12) Slash (Normal/Uniform) distribution

Models (1)-(9) have finite mean and variance, (10) has finite mean but non-existent

variance, and (11)-(12) have non-existent mean and variance.
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2.3 Simulations

We generated N =[100,000/ n] (integer value) samples (consisting of

independently distributed observations) of size 7 from each of the models (1)-(12).

The observations generated from models (6)-(9) were divided by suitable constants

to make their variances equal to ¢* . From the resulting N values of MML30 and

W24 (one of the most efficient estimators of ¢ and 0'), we computed their means
and variances. They are given in Table 2.1 and Table 2.2. For the normal

distribution, /£, is a little less efficient than 4, . For models (2)-(9), &, is overall
more efficient than £ . For models (10)-(12), 4, is considerably more efficient
than £, . Realizing that £ also has high breakdown, there does not seem to be

any advantage in using the highly acclaimed M-estimators of .

Table 2.1: Simulated* values of (n/c*)Var{ f1.) and (n/c*War fz,).
n=10 n=20 n=>50 n=100
Model i A, i Ay i A, A, A
1.064 1.030 1.057 1.022 1.034 1.005 1.022 1.002

—_—

2 0.945 0.949 0.936 0.945 0.963 0.969 0.945 0.959
3 0.905 0.922 0.871 0.898 0.878 0.908 0.895 0.928
4 0.761 0.798 0.748 0.798 0.731 0.778 0.722 0.769
5 0.574 0.626 0.555 0.605 0.548 0.600 0.539 0.594
6 0.962 0.963 0.953 0.950 0.917 0.923 0.945 0.952
7 0.553 0.589 0.550 0.587 0.545 0.580 0.553 0.592
8 0.946 0.945 0.940 0.943 0.934 0.939 0.940 0.948
9 0.586 0.632 0.566 0.610 0.575 0.619 0.564 0.601
10 2.273 2.620 2.099 2411 1.985 2.302 1.956 2.278
11 4.869 6.389 3.973 5.171 3.341 4.307 3.285 4.238

12 8917 11.274 7.595 9.410 7.118 8.789 6.577 8.105
Sum/12 1.946 2311 1.737 2.029 1.631 1.893 1.579 1.830
Tiku-Surucu  1.901 2.252 1.728 2.009 1.600 1.863 1.597 1.827

*Means are not given since both estimators are unbiased
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Table 2.2: Simulated values of (1/0)Meanand (n/o?)Varianceof &, and &, .

n=10 n=>50 n=100
Mean Variance Mean Variance Mean Variance
Model O-x O-w Gx Gw Gx Gw Gx Gw Gx Gw Gx Gw

—_—

092 093 0579 0545 097 099 0531 0521 097 1.00 0.531 0.525

2 090 091 0.649 0.637 093 096 0.631 0.656 094 0.97 0591 0.615
3 087 088 0.678 0.687 091 094 0661 0.696 091 094 0.636 0.680
4 0.81 0.82 0.682 0.701 0.84 0.87 0.660 0.714 0.84 0.88 0.650 0.707
5 071 072 0.652 0.688 0.73 0.76 0.582 0.640 0.74 0.77 0.587 0.646
6 0.89 0.89 0.594 0587 093 096 0544 0.554 093 096 0.538 0.552
7 072 0.71 0.464 0466 0.75 0.76 0435 0463 0.75 0.76 0448 0478
8 090 090 0.652 0.651 093 096 0.624 0.646 093 0.96 0.592 0.622
9 072 072 0.707 0.771 0.75 0.76 0.646 0.705 0.75 0.76 0.629 0.684
10 142 143 3269 3522 144 149 2906 3231 144 150 2.885 3.243
11 2.06 2.08 14.003 15.840 194 2.03 9.091 10.809 193 2.03 8939 10.610
12 2.85 2.85 24422 27.047 275 284 15821 18464 2.73 2.83 14.704 17.215

Sum/12 .15 1.15 3946 4345 116 1.19 2761 3.175 1.16 120 2.644 3.048
Tiku-Surucu  1.15 1.15 3.853 4.034 120 1.19 3.059 3.097 121 120 3.111 3.127

MMLEs are clearly as good as M-estimators or better; see also Tiku and
Surucu (2009). They are advantageous for two reasons: overall, (i) they have
smaller bias, and (ii) they have smaller variance. MMLEs developed here are
essentially as good as those of Tiku and Surucu (2009). In fact, the MMLE of &
developed here has a little less bias, and smaller mean square error. Like Tiku-
Surucu estimators, our estimators have bounded influence functions. They are,
therefore, as good as M-estimators or better and at least as good as Tiku-Surucu

estimators.

2.4 Iterated MML30

In the expression for the weight w, in (2.8), we used 7|, and S, as initial
estimators of u# and O, respectively. The question is whether replacing 7,, and
S, by other estimators can result in improved efficiencies. In that regard, we first

calculate jz, and & iteratively as follows:
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Initially, we use 7, and S, and calculate /& and & . We replace 7, and S,
by /1 and &, respectively, and calculate the new £ and & . We repeat the process

one more time and calculate /2 and & and regard them as the desired MMLEs.

Thus, the MMLEs are computed in two iterations besides computing them initally

by using 7, and S .

Given below are the simulated variances of 4 for the twelve models

considered in Table 2.3.

Table 2.3: Simulated values of (n/ az)Var(ﬁ) with two iterations.

Model n=10 n=20 n=>50 n=100
1.025 1.035 1.004 1.013

—

2 0.939 0.938 0.943 0.922
3 0.907 0.899 0.865 0.874
4 0.777 0.744 0.737 0.748
5 0.618 0.582 0.561 0.570
6 0.925 0.933 0.927 0.925
7 0.579 0.575 0.563 0.558
8 0.930 0.947 0.923 0.928
9 0.628 0.598 0.584 0.569
10 2.560 2.351 2.276 2.232
11 6.492 5.067 4.534 4.246

12 12.306 9.325 8.572 8.141
Sum/12 2.391 1.999 1.874 1.810

Increasing the iteration number does not have a significant effect on the
results for models (1)-(9) all of which have finite moments. However, for models
(10)-(12) which do not have finite moments, the variances are increased. Therefore,
we conclude that iterations do not necessarily improve the results. This is in

agreement with Huber’s findings (Hampel et. al 1986, p.105).
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2.5 Initial Estimators Based on Censored Samples

Obviously, estimators based on samples with extereme observations
censored will not be subject to tail-effects (i.e., long-tails of a distribution or

outliers in a sample) and can, therefore, make satisfactory initial estimators of u

and o . Consider the censored sample

Xirsty SX(pag) Seee S X0, (r= [0.5 +0.3n ]) (2.5.1)

and assume that the underlying distribution is normal N(x,o”) . The MMLEs of
u and O are (Tiku, 1967)

Hy = { nz_’ix(i) + rﬁ(x(m) T X )}/m, m=n=2r+2rfs

i=r+l

and (2.5.2)

6, = {B+\/B2 +4AC}/2JA(A—1), A=n-2r;

B= ra(‘x(n—r) _x(r+1))= C= ,i(x(i) = fy )2 + rﬁ{ ('x(r+1) = f, )2 + ('x(nfr) = )2 },

i=r+l
a=0.7732and B =0.7355.

Replacing 7, and S, by z, and G,, respectively, the means and variances of the
resulting one-step MMLEs fZ and & in (2.6) are given in Table 2.4 and Table 2.5.

The means of £ are not given because it is an unbiased estimator of & for models
(1)-(12) in section 2.2. It can be seen that the results are no better than those

obtained by using 7}, and S, initially.
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Table 2.4: Simulated values of (n/c?)Var(f), using 2, and &, initially.

Model n=10 n=20 n=>50 n=100
1.059 1.028 1.031 0.985

[

2 0.963 0.950 0.943 0.983
3 0.917 0.877 0911 0.947
4 0.764 0.784 0.816 0.870
5 0.594 0.572 0.603 0.679
6 0.964 0.944 0.948 1.002
7 0.574 0.598 0.653 0.723
8 0.974 0.959 0.953 0.974
9 0.603 0.615 0.653 0.725
10 2.251 2.297 2.510 2.832
11 5.870 4.752 5.080 5.998

12 10.294 9.151 9.861 11.821
Sum/12 2.152 1.961 2.080 2.378

Table 2.5: Simulated values of (1/ G)Mean(é') and (n/ az)Var(&).

n=10 n=>50 n=100
Model Mean Variance Mean Variance Mean Variance
0.91 0.663 1.01 0.534 1.03 0.534

—

2 0.87 0.706 0.99 0.702 1.02 0.731
3 0.86 0.788 0.98 0.795 1.01 0.879
4 0.79 0.785 0.93 0.905 0.97 1.057
5 0.69 0.707 0.83 0.849 0.88 1.095
6 0.87 0.677 1.00 0.622 1.02 0.684
7 0.70 0.574 0.87 0.729 0.92 0.937
8 0.88 0.732 1.00 0.721 1.02 0.795
9 0.71 0.784 0.87 1.139 0.92 1.531
10 1.37 3.596 1.71 4.725 1.86 6.628
11 1.98 15.261 2.52 16.813 291 23.387

12 2.75 25.234 3.55 30.798 4.10 43.080
Sum/12  1.12 4.209 1.35 4.944 1.47 6.778

When we compare Table 2.4 with Table 2.1 and Table 2.5 with Table 2.2,
we observe an overall increase in the variances of the estimators. However, when
the results of the mean of sigma are examined, it can be seen that the bias is
reduced for models with finite variances. This might or might not be

inconsequential for practical purpose.
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2.6 Populations with Finite Mean and Variance

If the underlying distribution is known to be long-tailed symmetric with

finite variance as in most situations, v, in (2.7) may be taken to be equal to its

original value, namely,

We give the simulated values of the mean and variance of the resulting MMLE of

sigma in Table 2.6.

Table 2.6: Simulated values of

Vi :(Wi/k)?i}'

(1/0)Mean(6) and (n/o”)Var(G), where

V= (Wz’/k)?i3-
n=10 n=150 n=100
Model Mean Variance Mean Variance Mean Variance
1 0.98 0.553 1.00 0.529 1.00 0.503
2 0.96 0.712 0.98 0.681 0.98 0.641
3 0.95 0.815 0.97 0.791 0.97 0.775
4 0.92 1.105 0.93 0.953 0.93 0.954
5 0.84 1.181 0.84 1.064 0.85 1.070
6 0.97 0.639 0.98 0.613 0.98 0.600
7 0.88 0.947 0.88 0.857 0.88 0.839
8 0.96 0.734 0.98 0.698 0.98 0.702
9 0.88 1.504 0.88 1.400 0.88 1.417
Sum/9 0.93 0.910 0.94 0.843 0.94 0.833
* 0.83 0.629 0.86 0.590 0.86 0.578

* Are the values for & (developed in this chapter)

The MMLE of sigma has smaller bias for models with finite variances. However,

the variance of the estimator is increased. This is a very common phenomenon,

however.

From the point of view of having bounded influence functions, the MMLEs

given in (2.6)-(2.8) are adventageous. We use them in further development of the

subject matter.
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CHAPTER 3

SKEW DISTRIBUTIONS

Consider the family of skew distributions represented by the Generalized

Logistic (b>0)

_ b epl-(-p)/o} e
f(x)_a [1+exp{-(x—u)/ a}]""’ s G-

where 4 is location, 0 1is scale and b is shape parameter. Note that different
values of b characterize different types of distributions; <1, b=1 (called Logistic
Distribution) and b>1 respectively denotes negatively skewed, symmetric and
positively skewed distributions.

Tiku and Akkaya (2004) give the mean and the variance of Generalized
Logistic distribution in terms of psi-function (also called digamma function)
Y()=T'()/T(.), where I'(.)is the gamma function:

E(z)=Y()-Y¥Y(1) and Var(z)=Y'(b)+¥'(1)
for z=(x—,u)/ o. The values of W(b) and W'(b) are tabulated in Tiku and
Akkaya (2004) as follows:

Table 3.1: Values of the psi-function W(b).

b 0.5 1 2 4 6 8
WY(b) -1.9635 -0.5772 0.4228 1.2561 1.7061 2.0156
V') 49348 1.6449 0.6449 0.2838 0.1813 0.1331
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Since u is the location parameter and O 1is the scale parameter, the mean
of an observation x from Generalized Logistic distribution is
E(x) = u+0 [¥(b)-¥()] (3.2)
while the variance of x is
Var(x) = o* [¥'(b)+ ¥'(1)]. (3.3)

The values of its skewness and kurtosis are given below:

Table 3.2: The values of the skewness and kurtosis of generalized logistic

distribution with shape parameter b.

b= 0.5 1 2 4 6

3/2

Skewness p; / u5 -0.855  0.000 0.511 0.868 0.961
Kurtosis 1, / 43 5.400 4.200 4.333 4.758 4.951

Given a random sample x,,x,,...,x,, the likelihood function is

oc I . eXp{—(X,-—ﬂ)/O'}
’ (aj 1_11 [1+exp{-(x, —u)/a}]"™"

The maximum likelihood equations expressed in terms of the standardized ordered

(3.4)

variates z,) = ( Xy — )/G are

dinL _n (b+l)z( 1= 0
(l)

du
and (3.5
dinL n (b+1)
do :_g ;; W~ sz (z4)) =03

g(z)y=e7/(1+e7)=1/(1+¢€").
These equations have no explicit solutions. To obtain modified maximum
likelihood equations, we linearize g(z,)):
g(zy)za,— Bz, 1<i<n; (3.6)
o, and S, are obtained from the first two terms of a Taylor series expansion. That
gives; 1 =1,
= (1+exp@) +texp(®))/(1+exp@))’ and B =exp)/(1+exp@))’. (3.7)
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Here, we use the approximate values of 7, for n>10,
t=t, =—In(g;"" 1), g, =i/(n+1), 1<i<n. (3.8)
Balakrishnan and Leung (1988) tabulated the true values of 7 ZE{Z([)} for

n<15. However, using the approximate values does not alter the efficiencies of
the resulting estimators in any substantial way (Tiku and Akkaya, 2004).

Incorporating (3.6) in (3.5) gives the modified maximum likelihood
equations (Tiku and Akkaya, 2004):

dinL _dInL _(b+Dm

K+Do—1)=0
du  dy = &
and (3.9)
LD o - Bo )+ (K - (K + Do )] =0
where

m=2.5 K:@ﬂf%»j/m’ D=3 A m, 8 =(b+D)" e, (310

B=(b+1)) A(x, —-K) and (3.11)
i=1

C=(b+ 1)(iﬁ[x5) —szj —(b+ l)iﬂi(xm ~K) . (3.12)

i=1

The solutions of (3.9) are the MMLEs:

ji=K+Dé and &:{B+1/i32+4nci} 2yn(n—1) . (3.13)

Remark: For a given b, the estimators & and & have negligible bias and are

highly efficient for all sample sizes. Asymptotically, they are unbiased and fully
efficient. They are also robust to plausible deviations from an assumed distribution

in the family (3.1) and to moderate data anomalies; see for example, Senoglu and

Tiku (2001).
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3.1 Unspecified Shape Parameter

In machine data processing, it might not be possible to specify . Now, the
only assumption we make is that the underlying distribution is one of (3.1). We
proceed as follows:

As usual, we write
T, = median{x, } and S, =1.483median{|xi -7, |} (1<i<n).
For b=1 (logistic distribution which is symmetric), 7, and S, are particularly good

initial estimators of the median and the standard deviation 2%¥'(1)c .

3.2 Unknown b

Since we do not know the value of the shape parameter b, we estimate

(b+1) from a given sample. We also estimate 7, s and hence, a,’s and f,’s in
(3.7).

The initial estimates of ¢, are

~

i =, -~ s, (<i<n; (3.2.1)
hence, the initial estimates of «, and f,, &, and ﬁi respectively, are obtained by
replacing 7, by ZN([) (1<i<n).

To estimate (b+1)"" and (b+1) in (3.10)- (3.12), we note that

E( 12J=T( ¢ =t o(x-u)o). (22

l+e 2 1+e‘z)”+2 T b+l
Writing
w,=e[(1+e* )=1/(1+e7), (323)

1

E(w)= E{(l/n)zn: wl} =b/(b+1). An initial estimate of b/ (b +1 ) is
i=1

S, W= /(1re )=1/1+e™). (324
i=1
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Thus,
1—w is an initial estimator of (b +1)"'
and (3.2.5)

1/(1- ) is an initial estimator of (b +1).

Remark: Since #, are bounded between 0 and 1, 1-w and 1/ (1 —ﬁ) converge to
their expected values (h+1)"' and (b+1), respectively, very quickly with
increasing » .

The MMLEs are calculated by replacing o, by &, 3, by ﬁi , (b+1)7" by
(1-w) and (b+1) by 1/(1 - %) in (3.10)-(3.12). Since complete sums are
invariant to ordering, (3.10)-(3.12) can be written in terms of x, and 7, simply by

droping the ordered symbol ‘( )’ on them. The estimates are calculated from five

iterations starting with 7, and S§,. Calculation show that no more than five

iterations are needed for the estimates to stabilize sufficiently. Here, more than two

iterations are required for estimates to stabilize sufficiently because the underlying

distributions are skewed. It may be noted that 4 is estimating the population

median ¢ —In(2""” —=1)o and & is estimating the population scale parameter O .

3.3 Simulations

To study the properties of these new estimators, we carried out
comprehensive simulation studies based on N=[100.000/n] Monte Carlo runs.

Random samples were generated for a given b in (3.1), and N estimates of the

median and scale computed. Random observations x, (1<7<n) generated when
b #1 were multiplied by [2%'(1)/{¥'(b)+¥'(1)}]'* so that the variances of x, are
always the same as when b = 1 (logistic distribution), i.e., 2%¥'(1)oc>=3.2898c7. It
may be noted that # is then estimating the scaled median

Scaled median= {,u ~InQ2"" 1) G}[2‘P'(l)/{‘1"(b) +P "% 330
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M is taken to be zero without loss of generality, and & is estimating the scale

parameter 0 which is taken to be 1 without loss of generality. If one wants to

estimate the median, not the scaled median, the x-observations need not be
multiplied by [2¥'(1)/{®'(p)+¥'(1)}]">.
The means and variances of the N estimates of the scaled median and the

scale parameter are given in Table 3.3. It is pleasing to notice that the new MMLEs

have negligible bias in spite of the fact that 7, (1<i<n) and (b+1)7" are

estimated from a given sample.

Table 3.3: Simulated values of means and variances of the MMLEs £ and &;

Scaled median=—In2"" —1)[2¥'(1)/{¥'(6)+¥'(1)}] * o, £=0 without loss of

generality.
b=0.5 b=1
Scaled median = -0.777 Scaled median = 0
= 10 20 50 100 10 20 50 100
(/o)Mean(it) 0813 -0808 -0786 -0780 -0.003 0000 0000  0.000
(n/a’ WVarll) 3273 3263 3207 3344 3553 3642 3428 3357
(/o)Mean(6) 0936 0947 0948 0949 0982 0990 0996 1001
(n/o”)Var(6) 0751 0717 0704 0739 0755 0733 0759 0785
b=2 b=4
Scaled median = 1.056 Scaled median =2.174
n = 10 20 50 100 10 20 50 100

1.083  1.069 1.071 1.066 2211 2194 2.185 2179

2 A
(n/c®)Var(Z) 3573 3678 3935 3876 3717 3708 3874 3913
) 0994 1003 1008 1015 0993 1001 1.008 1014

2 A
(”/O' )Var(G) 0.813 0.806 0.765 0.800 0.857 0.821 0.831  0.809

b=06 b=8
Scaled median = 2.819 Scaled median = 3.268
= 10 20 50 100 10 20 50 100
) 2.845 2.826 2815 2.815 3.312 3.287 3.283 3.272
(”/O-2 )Var( A) 3.567 3.580 3.724 3.731 3.709 3.711 3.780  3.989
) 0.984  0.996 1.006 1.006 0.996 1.004 1.008 1.009

2 A
(n/O' )Var(O') 0.874 0.804 0.827 0.845 0923 0.868 0.878 0.840
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The estimators /& and & work very well and are unbiased (almost) for each

shape parameter (unknown to us) and sample size.

The results above are very promising indeed and extend Huber type work to
skew distributions. Huber M-estimation is not applicable to skew distributions. It
may be noted that the MMLEs above have bounded influence functions since for

any k,
lim{ e’ /(14 f =tte /(147 ] |> 0, (332)

Mﬂoo

k being 1 or 2 in our situation. See Appendix B for details.

3.4 Least Square Estimators

For b =1, the LSE of the median is x with variance
nV(x)=2¥"'(1)o* =3.2900".
For n=10, the relative efficiency of the new MMLE (which does not
assume any knowledge of b) is
100(Variance of x / Variance of MMLE) = 93%

which is indeed a promising result; for n = 100, it is 98%.
For b=1, the LSE of & is s/4/2¥'(1) with asymptotic variance (Roy and
Tiku, 1962)

2
”—(1%44], A =p, 3. (3.4.1)

2n
For b=1, f,=42. For n=100, the value of this variance is 0.80. The

corresponding variance of the new MMLE & is 0.785 (Table 3.3). Again, the

result is very promising.

Comment: The method may extend to other skew distributions. That needs further

study.
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Remark: We give below the variances of the LSE s/ P'(b)+ ‘P'(li of o for

n =100 calculated from (3.4.1); b assumed known:

b= 0.5 1 2 4 6
(n/o*)Variance 1100  0.800  0.833 0940  0.988

These may be compared with the corresponding values in Table 3.3. The MMLEs

are not only more efficient than the LSEs but no knowledge of b is needed in

calculating the former.

Remark: The LSE of the population median is 7,. Given in Table 3.4 are the

simulated means and variances of 7, and S; =S,/1.483 (proposed by Huber as

an initial estimator). It can be seen that 7, and S; have negligible bias. However,

T, and S, are jointly much less efficient than the LSEs we now propose. It can be

seen that 7, and S, are good only as initial estimators.

Table 3.4: Simulated means and variances of T, and S, =S, /1.483.

n=10 n=20
T, S T, So
b Mean nxVar Mean nxVar Mean nxVar Mean nxVar
0.5 -0.812  3.370 0.977 1.500 -0.795  3.504 1.015 1.622
1 -0.008  3.672 1.024  1.551 -0.002  3.772 1.069 1.672
2 1.088 3.783 1.035 1.569 1.066 3.882 1.079 1.711
4 2.215 3.785 1.027 1.542 2.193 3.966 1.064 1.678
6 2.838 3.809 1.014 1.518 2.827 3.987 1.054 1.697
8 3.305 3.919 1.016  1.600 3.287 4.116 1.062  1.737
n=1>50 n=100
T, So 7, So
b Mean nxVar Mean nxVar Mean #nxVar Mean nxVar
0.5 -0.789  3.642 1.022  1.692 -0.780  3.798 1.031 1.756
1 -0.005 4.038 1.085 1.768 -0.011  4.285 1.096 1.760
2 1.062 4.202 1.097 1.779 1.057 4.295 1.113  1.722
4 2.165 4373 1.089 1.823 2.177 4.403 1.105 1.844
6 2.806 4.019 1.082  1.787 2.812 4215 1.086  1.807
8 3.276 4.468 1.079  1.831 3.273 4.249 1.090 1.664
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Proposal: The proposed LSE of the scaled population median
-t 1)o | R )/ (¥ )+ v 1))
is
i = (- [(0) - w0 s )+ ) | R ()W () + W] 5 342)
4 may be taken to be zero without loss of generality. The LSE of & is given on

the previous page. Note that (3.4.2) is similar in form to £ in (3.13). It is not
possible to derive the variance of this estimator analytically because the Cov (X, s)

is difficult to determine even asymptotically.

3.5 Comparison of MMLEs and Proposed LSEs

In this section, we let shape parameter b be unknown for the calculation of
both the MMLESs and LSEs. We will estimate the unknown shape parameter b from
(3.2.5) and incorporate it in our computations. The results of our simulations are
given in Table 3.5 and Table 3.6 with sample sizes n=10 and n=20,
respectively. True values of the scaled population median are given in Table 3.3. It

may be noted that
)=>(i+d-1) (3.5.1)
i=l

while LI’(a’) is computed by using FORTRAN subroutine ‘psi’ in IMSL/LIBRARY
Special Functions.

It can be seen that the LSEs have larger bias than the MMLESs. Overall, the
MMLEs are considerably more efficient (jointly) than the LSEs. This is very
interesting indeed. Moreover, unlike the MMLESs, the LSEs do not have bounded
influence functions; see Appendix B. That is a rerious drawback in the context of

robustness.
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Table 3.5: Simulated values of means and variances of the MMLEs and LSEs;

#=0 and o =1 without loss of generality, n=10.

n=10 Median Scale Median Scale
MMLE LSE MMLE LSE MMLE LSE MMLE LSE
b=0.5 b=1
Mean -0.812 -0.910 0.936 0.927 0.001 -0.003 0.983 0.961
nxVar 3.271 3.092 0.748 0.809 3.462 3.338%* 0.793 0.803
b=2 b=4
Mean 1.077 1.109 0.997 0.977 2.207 2.246 0.987 0.972
nxVar 3.654 3.641 0.822 0.881 3.710 3.845 0.824 0.928
b=6 b=38

Mean 2.845 2.883 0.986 0.973 3.311 3.347 0.989 0.977
nxVar 3.577 3.757 0.861 0.984 3.645 3.844 0.857 0.989

* For b known, the variance of the LSE is 3.290.

Table 3.6: Simulated values of means and variances of the MMLEs and LSEs;

#=0 and o =1 without loss of generality, n=20.

n=20 Median Scale Median Scale
MMLE LSE MMLE LSE MMLE LSE MMLE LSE
b=0.5 b=1
Mean -0.797 -0.913 0.944 0.952 0.001 -0.002 0.992 0.981
nxVar 3.263 3.118 0.744 0.903 3.567 3.469 0.740 0.783
b=2 b=4
Mean 1.063 1.107 1.006 0.995 2.191 2.246 1.005 1.001
nxVar 3.650 3.706 0.778 0.878 3.730 3.975 0.846 1.032
b=6 b=38

Mean 2.826 2.884 1.000 1.000 3.292 3.349 0.998 1.000
nxVar 3.694 4.000 0.840 1.049 3.615 3.969 0.868 1.105

Comment: Another way of estimating the shape parameter » would be to calculate
£ and & for a series of values of b and choose that value (of ») which maximizes

(Tiku and Akkaya, 2010)
(Yn{InL}, . .. (3.5.2)
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This procedure is computationally more involved and will be considered in future
research. Apparently, it might not yield substantially better results than those
obtained by using w in the estimation of b. This is because w is bounded between
0 and 1 and converges to its expected value very quickly as the sample size n

increases.
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CHAPTER 4

ANALYSIS OF VARIANCE IN EXPERIMENTAL DESIGN

Experimental design is a very important area not only for applied but also
for theoretical studies in statistics. The traditional assumption of normality of
course leads to the development of an enormous amount of theory related to
experimental design. The normality assumption makes it possible to test treatment
effects by defining Fisher F-statistics. However, non-normal distributions occur
more frequently in practice. In statistical literature, one can find many studies
dealing with non-normal data in experimental design and the effects of non-
normality on the F-statistics (Geary, 1947; Gayen, 1950; Srivastava, 1959; Tiku,
1964; Donaldson, 1968; Tiku 1971b; Spjetvoll and Aastveit, 1980; Tan and Tiku,
1999, Senoglu and Tiku, 2001). In this chapter specifically we extend analysis of
variance procedures given in Senoglu and Tiku (2001) to non-normal data in a
single factor experimental design. In later chapters we extend the methodology to
more complex data structures. In particular, our method makes it possible to extend
Senoglu and Tiku (2002) results to situations where the shape parameters (of the
assumed Generalized Logistic) in blocks are different and unknown. This is a very
important advance because Senoglu and Tiku (2002) assume that shape parameters
are different but known. It may be noted that different shape parameters create non-

identical blocks, perceived to be a very difficult problem for statistical analyses.
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4.1 One-Way Classification

Consider the one-way classification model
Yy =pty+e, (=12,...,a;j=12,..,n), 4.1.1)
where 4 is a constant and y, is the effect due to i” treatment (or block). This is a

balanced design since the number of observations in each block, 7, is the same.

Without loss of generality, we assume that it is a fixed effects model and Z 7, =0.

i=1

Different types of distribution families for the errors e; are studied in the

following subsections. In each of them, the errors e; are assumed to be iid. It may

be noted that our method readily extends to situations where the number of
observations in blocks are unequal (unbalanced design). In this thesis, we will

confine ourselves to balanced designs.

4.1.1 Normal Distribution

We first assume that e, are iid normal N (0,0°) . The likelihood function is

o4 ook b er ]

=1 j=1
The MLEs are solutions of the equations OlnL/du=0,0InL/dy, =0

(i=1,2,...,a)and 0lnL/0c =0. They are

L=%,7. =y, -y (I1<i<a) and

(y(,' _)_/i.)z/a(n_l)zisiz/a

a n
i=1 j=1

where ¥, =(1/ n)zn: yyand y = (1/an )Za: Zn: y, - All these estimators are unbiased;

Jj=1 i=l j=1
y; and y are also the MVB estimators.

Fisher decomposition of the total sum of squares is

DACEENEDNCESIES H LN,

i=l j=1 i=1 j=I
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or
) 2
ST _Sblock+S

error *

The sums of squares S,f,ock and S_. . on the right hand side are called ‘block’ and

‘error’ sums of squares, respectively. Under the normality assumption, S, , / o’ is
distributed as chi-sqaure with (a —1) degrees of freedom if the null hypothesis
Hyipy=y,==y,=0

is true; S’ /a(n—l) is independently distributed as chi-sqaure with a(n—1)

error

degrees of freedom. These results lead to Fisher F statistic

2 2
F= Sblack /Serror

where

Slflack = szlock/(a - 1) and Sz = S2 /Cl(l’l - 1)

error error

are called ‘block’ and ‘error’ mean sums of squares, respectively. Large values of F

lead to the rejection of H |, in favor of H,,
H, :Atleastoney, #0 (1<i<a).
The null distribution of F is central F with v, =a—1 and v, = a(n—1)degrees of

freedom. Under H,, the distribution of F is non-central F with (v,,v,) degrees of

freedom and non-centrality parameter
A= nny/az.
i=1

A Laguerre series expansion which is computationally straightforward is developed
in Tiku (1965). See also Tiku (1985a,b).

Writing x4, = p+ y, in the linear function
thyt :ZE,‘/J[ )
i=1 i=1
u,; is estimated by 3, =(1/n)} y,; ¥, is unbiased and Var()_/i.):az/n. The
j=1

estimators y, (1 <i<a) are mutually independent.
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Under H,, every linear contrast is zero. To test that a particular linear

contrast
Zfi His gi =0,
i=1 i

is zero, the test statistic is

The null distribution of ¢ is Student’s t with v = a(n —1) degrees of freedom.

Remark: If the distribution is a known location-scale distribution, Senoglu and

Tiku (2001) worked out MMLEs of x, (1<i<a) and 0. They showed that the

corresponding variance-ratio statistic is similar to the F statistic above. Our aim
here is to develop methodology which can be used in machine data processing in
the context of experimental design. In such a situation, the only information is that

the underlying distribution is of certain types, e.g., long-tailed symmetric.

4.1.2 Long-Tailed Symmetric Family

Suppose that e; are iid and distrubuted as one of the distributions in the

}

family

1 1 e |
f(e)_m/% ﬂ(l/Z,p—1/2)|:l+k02} , -—w<e<w; (4.1.2.1)

k=2p-3, p>2 and p(a,b)=T(a)T(h)/T(a+b). Note that E(e)=u and
V(e)=oc. For this family, the likelihood function L of the observations

y; I€i<a,1<j<n)is

1 N a n Z2 P
Lo (—j 1+-=+ ;
O/ “ia j= k

N=an, z, :e,.j/a:(yij —,u—;/l.)/a (i=12,..,a;j=12,....n).
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The likelihood equations for estimating 4, y, (1<i<a)and O are

Oln L 2pzzg( =0 4.122)
6# i=l j=1
OolnlL
4.1.2.3
5 O_kZ g(z,)=0 (4.1.2.3)
and
oL __N_2p ey
oo o o*kzzzyg( ) 4124

i=l j=1

where the function g(z) is given by

g(z):z/(1+zz/k). (4.1.2.5)

In order to solve the equations (4.1.2.2)-(4.1.2.5) to obtain the MLEs, a+1
number of equations have to be iterated simultaneously. This is a difficult and time
consuming task and there can be problems of convergence as stated before.

Therefore, we will utilize the MMLE:s in our analysis.

If we let y,4) SV S-S Yy, (1<i<a) be the order statistics of the n
observations y; (1<j<n) inthe i ™ block, then
Zy(j) (yl(/) ,u—y,.)/a @i=12,...,a; j=12,...,n)
are ordered z; variates. After replacing z; by 2z, and using the linear

approximation
g(zi(j))E a; +ﬁjzi(j) (I1<j<n)
where (replacing tf 4y by t;, in a; for reasons given earlier)

), 1 ]
a;= {1+(1/k) (,)} and /3, = {1+(1/k) m} Ly = { z(n}

we obtain the modified likelihood equations OlnL’ /o= 0,8lnL*/67/i =0

olnL /60':0. One may like to drop the ordering on f; and y,; since the

ordering of z,; can be disregarded as complete sums are invariant to ordering.

This has also been explained in Chapter 2.

Remember that we proposed 7 =(x, —7,)/S,,(i=1,...,n) as the initial
estimate of 7, in Chapter 2, where there exists only one block. When the block
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number is more than one, however, we need a modification since we have
T, =medianly, | and S, =1483median{|y, T, |} (1<i<a) for cach block.

In the present situation:

th; :(yij _T()i)/Sol"

The initial estimates of &, and f3;, respectively, are obtained by replacing
t; by t; (1<i<n). The resulting o ; and f; coefficients will be denoted by ¢
and ﬁN’ij , respectively.

The explicit solutions of the modified likelihood equations are the MMLEs
of 4, y, (I1<i<a)and O:

ﬁ:iﬁi,/a, 7.=f —jit and &:{B+1/iB2+4NCi}/(2N) (4.1.2.6)
i=1

where

20 . 2D G N
B, ==£ @ (yij_lui.)’ Ci:_p U-(yl-j—,u,,) ’ (4.12.7)
k j=1 k J=1
l[lz = (l/mt) Eyyy and mz = Nij
Jj=l j=1

Note that, as in Chapter 2, k =30 (p = 16.5).

A more conveniant form of the MMLE of O is
6= /Z&f/a, (4.1.2.8)
i=1

where &, = {Bi +,/iBi2 +4nC, i}/21/n(n—li , B, and C, (1<i<a)are given in

(4.1.2.7). Note that & given in (4.1.2.8) is advantageous because it has the same

form as the corresponding LSE, namely,

n

s? =(S12+S22+...+S§) a; s’ :Z(yij —)71._)2/(;1—1) (I<i<a).

J=1

We will use it in rest of this chapter.
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Note that the LSEs of @ and y, (1<i<a) are, respectively,

a n

H=(/N)Y.> y, and 7, =/ — [ (4.1.2.9)

i=1 j=1

where N=an and i, =y, = (l/n)Z”: Yy -
j=1

4.1.2.1 Efficiency and Robustness

To evaluate the efficiency and robustness of the MMLEs given in (4.1.2.6), we
consider a normal distribution and a very broad range of long-tailed symmetric

distributions and samples containing data anomalies as follows:
(1) Normal N(0,5%)
The family (4.1.2.1) with
(2) p=5,3) p=35,4) p=25,(5 p=2

Outlier models: (n—7) x, come from N(0,0°)and r (we do not know

which) come from

(6) N(0,45>), (7) N(0,16¢2) ; r=[0.5+0.1n] (integer value).
Mixture models:

(8) 0.90N(0,5%) +0.10N(0,457) , (9) 0.90N(0,5°) +0.10N(0,1657)
(10) Student’s ¢ distribution with 2 df (degrees of freedom),
(11) Cauchy distribution,
(12) Slash (Normal/Uniform) distribution

Note that, models (1)-(9) have finite mean and variance, (10) has finite mean but
non-existent variance, and (11)-(12) have non-existent mean and variance, as said

earlier.
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From the resulting N values of the MMLEs and LSEs, we computed their
means and variances. The results of MMLEs are given in Table 4.1 while those of

LSEs are given in Table 4.2.

Table 4.1: Simulated values of (I/c)Meanand (n/c”)Variance* of MMLEs /i,
6, 7. (1<i<a) and the summation of 7,’s (1<i<a) for long tail symmetric

family; n=10.

Model A o 7 Vs 7 74 21:7;,

1 -0.001 0.949 0.006 -0.004 0.002 -0.004 0.000
[0270]  [0.146] [0.799]  [0.805]  [0.768]  [0.811]

2 -0.002 0.922 0.001 0.000 -0.005 0.004 0.000
[0245] [0.173] [0.697] [0.730]  [0.724]  [0.728]

3 -0.001 0.894 -0.003 0.001 -0.005 0.007 0.000
[0227]  [0.185] [0.678] [0.666] [0.658]  [0.655]

4 0.000 0.839 -0.002 0.002 -0.001 0.000 0.000
[0.195] [0.197] [0.555] [0.557] [0.561]  [0.557]

5 0.001 0.740 0.001 0.001 -0.004 0.002 0.000
[0.143]  [0.185] [0.428] [0437] [0.430]  [0.425]

6 0.001 0.913 0.000 -0.003 -0.001 0.003 0.000
[0240] [0.151] [0.705] [0.721]  [0.728]  [0.702]

7 0.000 0.741 -0.001 0.003 -0.002 0.001 0.000
[0.139]  [0.123] [0.421] [0.408] [0.430]  [0.422]

8 0.001 0917 0.004 -0.001 -0.002 0.000 0.000
[0243]  [0.171] [0.751] [0.722] [0.724]  [0.713]

9 0.001 0.757 -0.001 0.002 -0.002 0.001 0.000
[0.152]  [0.208] [0.449] [0.446] [0.451]  [0.454]

10 0.001 1.495 0.001 -0.003 0.000 0.003 0.000
[0558]  [1.028] [1.697] [1.643] [1.685] [1.682]

11 -0.002 2.248 0.004 -0.006 0.005 -0.003 0.000
[1232] [5.340] [3.548] [3.546] [3.728]  [3.549]

12 -0.002 3.076 0.011 -0.016 0.020 -0.014 0.000

[2211]  [9.003] [6.387] [6.619] [6.664]  [6.712]

* Variances are given in brackets
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Table 4.2: Simulated values of (1/o)Meanand (n/c*)Variance * of LSEs [, &,

7, (1<i<a) and the summation of 7,’s (1<i<a) for long tail symmetric family;

n=10.
Model ,LN! o 771 772 773 774 21‘471
1 0.000 0.994 -0.007 0.001 0.003 0.002 0.002
[0.245] [0.140] [0.764] [0.755] [0.752] [0.746]
2 -0.001 0.989 0.000 0.000 0.002 -0.002 -0.002
[0.251] [0.197] [0.754] [0.739] [0.756] [0.742]
3 0.000 0.984 -0.004 -0.005 0.007 0.002 0.002
[0.248] [0.271] [0.757] [0.765] [0.759] [0.737]
4 0.000 0.973 -0.001 -0.001 0.002 0.000 0.000
[0.253] [0.518] [0.764] [0.731] [0.747] [0.762]
5 -0.001 0.930 0.004 0.000 -0.004 0.000 0.000
[0.245] [1.212] [0.750] [0.738] [0.725] [0.706]
6 -0.003 0.991 -0.001 0.001 -0.003 0.002 0.002
[0.248] 0.192 0.734 0.750 0.748 0.763
7 0.000 0.973 -0.004 0.003 0.000 0.002 0.002
[0.251] [0.476] [0.743] [0.762] [0.735] [0.747]
8 0.000 0.989 -0.003 0.000 0.003 0.000 0.000
[0.248] [0.220] [0.732] [0.774] [0.752] [0.754]
9 0.000 0.968 -0.004 0.001 0.004 0.000 0.000
[0.252] [0.657] [0.739] [0.771] [0.755] [0.759]
10 -0.004 2.534 -0.004 0.011 0.004 -0.011 -0.011
[3.261] [66.172] [10.506] [9.164] [8.409] [10.627]
11 -1.758 100.241 18.039 -1.767 -17.001 0.729 0.729
[3.37E+06] [1.35E+08] [1.92E+07] [3.97E+06] [138E+07] [3.56E+06]
12 -1.629 47.405 1.922 -0.770 2.119 -3.271 -3.271

[1.92E+05] [7.66E+06] [2.24E+05] [2.77E+05] [2.28E+05] [1.57E+06]

* Variances are given in brackets

When the efficiencies of LSEs and MMLEs are compared, the estimators
obtained by the method of MML are observed to be on the whole enormously more
efficient than the LSEs and give less baised results as well. For the models (10)-

(12) with non-existance variance, the differences between MMLEs and LSEs

become very striking. The summation of 7,’s(1<i<a) is zero for each model,
however, the summation of ¥;’s fails to be zero for models (10)-(12). Furthermore,
the variances of the LSEs explode for distributions (10)-(12) because their
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influence functions, unlike the MMLEs, are not bounded. This is disastrous for

machine data processing.

4.1.2.2 Linear Contrasts

Besides the overall block differences being examined by the variance ratio
F statistics, it is advisable to construct linear contrasts to capture comparison of
different combinations of block means. In this chapter we consider the linear

contrast

=Xl ri= 0 (g=u+y) D 0,=0, 4.12.2.1)
im1 im1

i=1

where we assume without loss of generality that 7 is a standardized linear contrast,

Le., 2€ 2 =1; ¢, (1<i<a) are constant coefficients. In order to construct all the

i=l1
possible (a—l) standardized orthogonal linear constrasts, we use Helmert

transformation:

m :(/J1 _/‘2)/‘/5

7, =, + 1, —2u,)/6 (4.122.2)
Moo = (0t + gy 4ot —(a=p,) [Jala—1).

Note that, two contrasts 7, =ZE M, and 7, =2€ ,; 4; are orthogonal if
i=1 i=1

ZZ i 05, = 0. The constrasts in (4.1.2.2.2) are all orthogonal to one another and to

i=1
the mean vector
(gt + 11+ p1,) fa.
The LSE of the linear contrast 77 is obtained by replacing x4, = +y, in

(4.122.1)by 3, (1<i<a):



Here, the variance of ¥,’s (1<i<a) is o*/n which is estimated by s*/n and s°

is the pooled sample variance:

s® :ii(yij _J_’i)z/ [a(n—l)]:gsiz/a.

i=1 j=1

For independent (or uncorrelated) y,’s (1<i < a), the variance of 77 is

Var Z g Var Z /.

since 77 is a standardized linear contrast.

The MMLE of 7 is

[

ﬁ = éi /[ll s
i=1
and the variance of 7 is
Var Zﬂ Var Zﬂ V., Var u,) V.o o’

for independent (or uncorrelated) /,’s (1<i<a).

4.1.2.3 Hypothesis Testing

In order to study the differences between block means, our hypothesis to

testis H,:n =0 against H, :np=d #0.

The distribution of the test statistic based on the LSEs, t=+n (77 /S), is
Student’s t with df v=a(n—1) under the null hypothesis if the distribution of
e;,(1<i<a,1< j<n) is normal.

We define the test statistic 7 = ﬁ/ \/W by using the MMLEs. While

the null-distribution of 7' is N(0,1) for large n, it is referred to Student’s t with

v=a(n—1) df for small n.

In general, the non-null distribution of both test statistics, £ and 7 , are

referred to noncentral Student’s t with v=a(n—1) df and noncentrality parameter
A=n(y/o) .
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For illustration, we do hypothesis testing with standardized orthogonal
linear constrasts for four blocks, i.e., @ =4. Linear constrasts, obtained by Helmert

transformation, are

m o= —m)/N2 4.12.3.1)

1, = + 11, —21,)/6 4.12.32)
and

7 = + 41y + 11 =3, (243). 4.123.3)

The test statistic for testing H, :77, =0 is

T =" =123, (4.1.2.3.4)

Jrar(5,)

Large values of T, lead to the rejection of H, in favorof H,:n, >0, ¢=1,2,3.

Since dInL’/du =0 is asymptotically equivalent to dInL/0u =0 and has

the form

olnL" 2pm, . . LS
= L \O)— U. :O, .= . lS | < 5
a/,[i sz {ILII( ) lLll} mz jzz;ﬁy ( l a)

the estimator ,[zi(a):z ,E’I.j Yiih /mi is conditionally (o known) the MVB

J=1

estimator of /1, = y+ y, and is normally distributed with variance

. k o’
Var(u, =—F———,1<i<a.
ar(f1,(0)) 2p(m fn) n L=a
Therefore, the variance of 77, is
Var(7,)=31 zVar([z)—G—z—Za: 2 c=1,23
c P ci i n 2p P (ml/l’l) > PRt

since the blocks are independent. Of course, the above results apply when 7 is large

in which case (m, /n) is a constant in the limit when » tends to infinity.
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The test statistics for testing H, : 17, =0 versus H, :n, >0 becomes

: (4.1.2.3.5)

O to be raplaced by & . The MVB estimator of y, (1<i<a) is

_(p=3/2)(p+1) ,
MVB(u,)= 12 O (4.12.3.6)

Note that we take p =16.5 and k =30, as in Chapter 2.
Rejection probabilities of the test statistics for testing

Hyimy=p +py, + 4, =31, =0 against
H, :n,>0

for different u,’s (l <i< 4) with samples from the distributions (1)-(12) in section

4.1.2.1 are obtained by simulation. We generated nn = [100,000/ n ] (integer value)
samples (consisting of independently distributed observations) of size #7=10 from
each of the models (1)-(12). The observations generated from models (6)-(9) were
divided by suitable constants to make their variances equal to o’. Different
number of iterations (e.g. 2, 3 and 5 iterations) were carried out. We observed that
three iterations are enough to give stable results. The rejection probabilites using
the test statistics with estimated MVB

MPB( )= 2 n;?; 2_)1(7 2+) Ope

are given in Table 4.3 and Table 4.4, respectively. Without loss of generality, o is

taken to be 1 and the Type I error is assumed to be 0.05.
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Table 4.3: Values of the power for long-tailed symmetric family estimators in

which & is directly used to calculate the test statistics under different values of 1 ;

n=10.

Hi

0.0 0.2 0.4 0.6 0.8 1.0
Model LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE

1* 0.045 0.052 0.17 0.19 041 044 069 071 089 090 098 0.98

2 0.046 0.052 0.18 020 042 044 069 072 089 091 097 098
3 0047 0.054 0.18 020 042 045 070 073 089 091 097 098
4 0.045 0.050 0.18 021 043 049 071 077 090 093 097 099
5 0041 0.049 0.18 023 046 056 075 084 091 096 097 0.99
6 0.047 0.051 0.17 0.18 040 044 0.67 071 087 090 09 097
7 0.046 0.042 0.14 0.16 033 038 057 0.65 078 085 090 0095
& 0.046 0.049 0.17 0.19 041 045 067 071 087 090 096 097
9 0.040 0.042 0.13 0.16 032 038 055 063 076 082 089 093
10 0.133 0.041 023 0.10 034 021 047 036 059 052 072 0.69
11 0292 0.032 033 006 037 011 042 0.16 046 025 050 034

12 0320 0.036 034 0.05 038 0.08 041 0.12 044 0.16 048 0.23

* The power values of the normal theory test are little bit smaller only because it s Type I error is
smaller than the 7, -test. It should, in fact, be little bit larger for a common Type I error.

Table 4.4: Values of the power for long-tailed symmetric family estimators in
which MT}B(,u,.) is used to calculate the test statistics under different values of

n=10.

Hi

0.0 0.2 0.4 0.6 0.8 1.0
Model LSE  MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE

—_—

0.049 0.056 0.17 0.19 041 043 069 069 089 089 098 0.98

2 0048 0.052 0.17 0.19 042 044 070 0.72 0.89 091 097 098
3 0.048 0.054 0.17 0.19 041 045 071 074 089 091 097 098
4 0044 0.048 0.18 021 043 050 071 0.78 090 094 097 099
5 0.041 0.048 0.17 023 045 057 074 085 091 097 097 099
6 0.046 0.053 0.16 0.17 041 045 0.68 0.72 088 090 096 098
7 0.045 0.043 0.14 0.15 033 039 057 065 078 086 091 096
8 0.047 0.050 0.17 0.18 041 045 0.67 071 087 090 096 097
9 0.044 0.043 0.14 0.17 031 037 056 0.66 077 085 0.89 0095
10 0.134 0.042 022 0.11 034 022 047 038 060 056 072 0.72
11 0289 0.040 033 0.07 037 0.11 042 021 045 031 050 042
12 0312 0.033 035 0.06 038 0.09 041 0.14 045 020 047 0.27
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Since distributions (10)-(12) have infinite variance, ¢ has to be very large

for the non-centrality parameter n(f]/ 0')2 to be appreciably greater than zero to
yield a value of the power greater than the Type I error. Therefore, for distributions
(10)-(12), we took u=0.0,0.4,0.8,1,2,1.6,2.0. The test based on LSEs had
enormously large Type I error. For sake of comparison, we obtained their 95%
points by simulation. The critical value of LSEs is 2.5 for model (10), 6.0 for
model (11), and 7.0 for model (12). The results obtained with these critical values
are tabulated in Table 4.5.

Table 4.5: Values of the power with simulated critical values using LSEs; n=10.

Hi

0.0 0.4 0.8 1.2 1.6 2.0
Model LSE  MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE

10 0.052 0.042 0.17 021 039 052 065 081 083 094 091 098
11 0.052 0.034 0.06 0.10 0.08 025 0.09 046 0.12 065 0.16 0.78
12 0.053 0.031 0.06 0.09 0.07 0.17 0.08 029 008 046 0.10 0.60

Although the Type I error of the test using the LSEs is now 0.05, the power values
are considerably less than the values for the MMLEs. Using LSEs is in vain unless
the distributions are normal or near-normal.

The test statistics for testing

H,:n =n,=n,=0 against

(4.1.2.3.7)
H, :atleast onen, #0 (c=123)
can be obtained with MMLESs and LSEs, respectively, as
T> =T} +T) +T; and
=t +1; +1,
where
2
T - 21’; — and (4.12.38)
MVB(u)| 3 La
2, )
~\ 2
2 =n(l) . c=12.3. (4.1.2.3.9)
s



The statistics (4.1.2.3.8) and (4.1.2.3.9) are distributed as chisquare with 1 df. Thus,

T? is distributed as y7 .

Table 4.6: Values of the power for testing H, :7, =71, =71, =0 with long-tailed

symmetric family; #=10.

0.0 0.2 0.4 0.6 0.8 1.0
Model LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE LSE MMLE
1 0.042 0.054 0.18 020 059 060 092 091 099 099 1.00 1.00
2 0.042 0.053 0.18 020 059 062 091 092 099 1.00 1.00 1.00
3 0.037 0.047 0.18 021 059 062 093 094 099 1.00 1.00 1.00
4 0.037 0.041 0.18 022 061 067 092 094 099 1.00 1.00 1.00
5 0.035 0.048 0.19 026 065 076 093 097 099 1.00 1.00 1.00
6 0041 0.047 0.17 0.19 056 0.60 090 092 099 099 1.00 1.00
7 0.027 0.032 0.12 0.15 045 051 081 087 09 098 099 1.00
& 0.039 0.045 0.17 0.19 057 061 090 092 099 099 1.00 1.00
9 0033 0.033 0.13 0.15 045 052 080 086 096 097 099 1.00
10 0274 0.036 033 0.08 048 024 067 047 083 072 091 0.7
11 0726 0.028 0.75 0.04 0.76 0.10 0.79 020 0.81 033 085 0.49
12 0791 0.024 079 0.04 080 0.07 082 0.12 084 0.19 086 0.29

Results obtained by using MMLEs are enormously superior and no

knowledge of p in (4.1.2.1) as such is assumed. This is indeed very advantageous

for machine data processing, and also theoretically. It is interesting to note that the

emprical values of the Type I error are smaller than the presumed value for extreme

non-normal symmetric distributions. Therefore, the corresponding values of the

power will be larger than those in the tables above when the Type I errors are 0.05.

Remark: The above methods are readily applicable to situations when the shape

parameter p does not have the same value from block to block. This is due to the

fact that we are estimating the coefficients a, and S, (1<i <n) from each block.
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4.1.3 Generalized Logistic Distribution

We now assume that the errors e; in (4.1.1) are iid and its distributions is a

member of the family of Generalized Logistic (b > 0)

_b exp(—e/o)
Je)= o {l+exp(~e/o)}""’

—o<e<w, (4.1.3.1)

where O 1is scale and b is a shape parameter.
The likelihood function L for the one-way classification fixed effects

model is

1) (o eXp(—Z,j) .
L“(aj iy rexp (-2, )}
Zij-:(yy’_ﬂ_yi)/o-'

To estimate u#, y, (1<i<a)and O, the following likelihood equations

are obtained:

alnL =l_(b+1) a_ _n g(zy_)zo’ (41.32)
ou o) o ‘T3
8111L n (b+1) n
o i)=0> 4133
87,- o o j=1g(2”) ( )
alnL N 1 a n (b+l) a n
o o i~ g(z,)=0 (4134
oo o o 2.2 2 2. ZUg(ZU) ( )

and the function g(z) is given by

g(z)=e~ (1 +e’z).

In order to derive MLEs, one should solve the likelihood equations (4.1.3.2)
to (4.1.3.4). However, the involvement of the function g(z) makes it difficult to
work out solutions.

By linearizing g(z) as before, i.e.,

g(zi(_j))E a;,+ Pz, (<j<n); (4.1.3.5)

a, :(1+e’ +te’)/(1+e’)2, B =e’/(1+e’)2, 1=t :E{Z[U)}, (4.1.3.6)
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and incorporating (4.1.3.5) and (4.1.3.6) in likelihood equations (4.1.3.2)-(4.1.3.4),
we obtain the modified likelihood equations dInL’/ou=0, 6lnL*/67[ =0 and

Oln L*/(?J =0 as in Senoglu and Tiku (2001). Here,
Ziy (yl(/) ,u—]/[)/O' @=L2,...,a; j=12,...,n),
are the ordered variates and Y, <V, <...<)y,, (1<i<a) are the order

stastistics of the n observations.

The values of # ;) can be estimated as in Chapter 3. In this case, however,
we replace ¢, by ¢, since we have T = median{yij } and
So; = 1.483mea’ian{‘ Vi =Ty ‘} (1<i < a) for each block:

lip = (yzm 0i )/SOi :
Therefore, the initial estimates of & ; and /3, respectively, are obtained by

replacing 7 ;) by f,( 7 (1<i<n)and denoted by 0! and ﬂ , respectively.

The modified maximum likelihood equations can be written as

dinL _olnL N (b+1)& S (~ =
T =By zi)=0 4137
du ou o o ‘TS (a’f B; Zl(/)) ) ( )
dInL _olnL n (b+1)&(~ =
07, 0y, o o = (aif TP Zi(j)): 0 and (4.1.3.8)
dinL dlnL’ N 1&L (b+1) &
do ) do :_;+; i=l j=1 “i” o ;;ZW)( 'BIJ Zl(f)) 0. (4.1.3.9)

The equations (4.1.3.7)-(4.1.3.9) have explicit solutions while (4.1.3.2)-
(4.1.3.4) do not, and the solutions are the MMLEs,

= (1/m) y mi, , V=M —fand &= {—B+1/iB2 +4NCi}/(2N), (4.1.3.10)

i=1

n a

A:Za:iAij, ;= —(b+)7, m, —ZEI," m:Zmi,

i=1 j=1 J=1 =l
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B=Y8,C=>C,, B =0+1)>4,(y, k) (4.13.11)
i=1 i=1 J=1
n ~ 2 n ~
c, =p+0)> B, (v, -K) = (b+1){z,3ijyi(j)2 ~mK} } (4.1.3.12)
Jj=1 J=1

K, = (l/mi)Zﬁijyi(j) and /1, = (l/mi %Zﬁyyi(/‘) _&ZAy}-
j=1 J=1 J=1

As explained earlier, it is more convenient to take

6= /Z&f/a, (4.1.3.13)
i=1

where &, = {—Bi +\/iBl.2 +4nC, i}/21/nin—1), B, and C, (1<i<a)are as in
(4.1.3.11) and (4.1.3.12), respectively.

Note that for each block, (b+1) is initially estimated by 1/ (1—%@)

(1<i<a):
T =Y, wl.j:e’Nf<f>/(1+e’Nf‘f))=1/(1+e*’7<f>) 1<j<n, 1<i<a.
=l

See section 3.2 for details.
We generated nnz[lO0,000/ n] (integer value) random samples of size
n=10 from generalized logistic family with various shape parameter values in

order to study the MMLEs in (4.1.3.10)-(4.1.3.13). From the resulting nn values

of MMLEs, we computed their means and variances which are given in Table 4.8.
For b#1, the random observations were multiplied by [2¥'(1)/{¥'(p)+¥'(1)}]"*
in order to make the variances the same as the variance of logistic distribution (b =
1), which is equal to 2‘{"(1)02 =3.28980". As explained in Chapter 3, 4 is

estimating the scaled median while & is estimating the scale parameter & which

is taken to be 1 without loss of generality. Note that the scaled median is

~InQ"* =2 (1)/{¥'(6)+ ' (1)}] (4.1.3.14)

where £ is taken to be zero without loss of generality. The values of the scaled
median in (4.1.3.14) are given in Table 4.7
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Table 4.7: The values of scaled median for different shape parameters.

Model I\S/[Cejiliea(xil
b=0.5 -0.777
b=1 0.000
b=2 1.056
b=4 2.174
b=6 2.819
b=28 3.268

Table 4.8: Simulated values of (1/c)Meanand (n/c”)Variance* of MMLEs /i,

6, 7, (1£i<a) and the summation of 7,’s (1<i<a) for generalized logistic

family; n=10.
R a

Model y2 o 7;1 7;2 V3 7?4 21:7;1

b=0.5 -0.815 0.965 0.005  -0.007 -0.001 0.005 0.002
[0.793] [0200]  [2.457] [2459] [2.454] [2.413]

b=1 -0.005 1.012 0.008 0.003 -0.002  0.004 0.013
[0.861] [0211]  [2.653] [2576] [2.616] [2.594]

b=2 1.076 1.024 0.004 -0.004 0.018 0.004 0.022
[0.900] [0225]  [2.682] [2.692] [2.773] [2.715]

b=4 2.208 1.028 0.004 0.009 0.010 0.004 0.027
[0.908] [0235]  [2.733] [2.801] [2.791] [2.780]

b=6 2.857 1.022 0.018  -0.002  0.007 0.005 0.029
[0.915] [0235]  [2.747] [2.700] [2.770] [2.766]

b=8 3.308 1.024 0.005 0.011 0.000 0.014 0.029
[0.882] [0245]  [2738] [2.728] [2.790] [2.766]

* Variances are given in brackets

Although we do not assume a given value for the shape parameter b, the

MMLEs are unbiased (almost) in estimating the scaled median and shape

parameter. Remember that we are using a fixed effects model where 271' =0
i=1

without loss of generality . The MMLEs 7, (1<i<a)satisfy this condition

(almost). Note that the x-observations need not be multiplied by

V29'(1)/{®'(p)+ (1)} if one wants to estimate the median rather than the scaled-

median.
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4.1.3.1 Linear Contrasts and Hypothesis Testing

To study linear contrasts, we assume four blocks (@ =4) and use Helmert

transformation in order to construct standardized orthogonal linear constrasts:

m o=, — ,)/N2
1, = (4, + 41, — 241, )/\/6 and
7y = (ot + 4y + 11y =3, )/ 243
The test statistics for testing
H,:n =0 against H,:7, >0, c=1,23  (413.11)
is

7,
I.=———,c=123. 4.13.1.2
) e

Since dInL’/du =0 is asymptotically equivalent to dInL/0u =0 and has

the form

olnL  m(b+1), . . n
= 2 {,ui(a)—,ul.}zo, m; = i
G,ui o j=1

the estimator /(o) = (1/ m, ){Z ﬁN’ij Vi — O'z Aij} is conditionally (o known) the
J=l J=l

MYVB estimator of j1, = ¢+ 7, and is normally distributed with variance

(o)L
Var(f ()= (m, /n)(b+1) n

As before, the above results are true asymptotically because limm, /n is a
n—w

constant in the limit.

Since the blocks are independent, the variance of 77, (¢ =1,2,3) is

a 2 1 N f '2
Var(,)=> 0. Var(a, == )
(7.) Z:, () p (b+1);(m,-/n)

where Elz(l/\/z ~1/42 0 O),
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~(/v6 146 -2/46 0)and
6 =(/V3) @) 1B -31243))

However, since we are estimating (b+1) for each block by 1/ (I—V_T/i)

(1<i<a), we have

Var (i o’ Z d _n:V /)j) (4.13.1.3)

i=1

Therefore, the test statistics for testing H,:n, =0 versus H, :7n. >0

becomes

T _ i, ! c=1,23; (4.13.1.4)

O isreplaced by & .

The power results under different alternatives for testing H, : 77, =0 against

H,:n, >0, (c=1,2,3) with 0.05 Type I error are tabulated in Tables 4.9-4.11.

Table 4.9: Values of the power for testing H : 77, =0 under different alternatives

for distributions with different shape parameters b.

n=10 Hi

Model 0.0 0.2 0.4 0.6 0.8 1.0
b=0.5 0.056 0.11 0.19 0.30 0.43 0.57
b=1 0.057 0.14 0.27 0.44 0.63 0.79
b=2 0.060 0.16 0.34 0.55 0.75 0.89
b=4 0.063 0.18 0.39 0.61 0.82 0.93
b=6 0.064 0.19 0.39 0.64 0.83 0.94
b=38 0.063 0.20 0.40 0.64 0.84 0.94
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Table 4.10: Values of the power for testing H, : 77, = 0 under different alternatives

for distributions with different shape parameters b.

n=10 Hi

Model 0.0 0.2 0.4 0.6 0.8 1.0
b=0.5 0.059 0.12 0.23 0.36 0.52 0.66
b=1 0.063 0.16 0.31 0.53 0.73 0.88
b=2 0.061 0.2 0.4 0.66 0.85 0.95
b=4 0.059 0.21 0.47 0.72 0.89 0.97
b=6 0.061 0.22 0.47 0.73 091 0.97
b=28 0.058 0.22 0.48 0.76 0.91 0.98

Table 4.11: Values of the power for testing H, : 77, = 0 under different alternatives

for distributions with different shape parameters b.

n=10 Hi

Model 0.0 0.2 0.4 0.6 0.8 1.0
b=0.5 0.063 0.10 0.15 0.23 0.33 0.44
b=1 0.061 0.13 0.22 0.34 0.49 0.64
b=2 0.059 0.14 0.28 0.44 0.62 0.76
b=4 0.062 0.16 0.31 0.50 0.67 0.82
b=6 0.065 0.16 0.32 0.52 0.70 0.84
b=28 0.061 0.16 0.33 0.53 0.72 0.85

It is observed that under H:77, =0 (k=1,2,3), we obtained power values

slightly greater than the Type I error. Therefore, it is decided to obtain the 95%

point for H : 77, =0 by simulation and the results are given in Table 4.12.

Table 4.12: Values of the power for testing /:7, =0 with simulated critical

values.

n=10 Hi

Model 0.0 0.2 0.4 0.6 0.8 1.0
b=0.5 0.051 0.09 0.14 0.20 0.29 041
b=1 0.051 0.11 0.20 0.31 0.45 0.61
b=2 0.054 0.12 0.24 0.41 0.58 0.74
b=4 0.051 0.14 0.28 0.46 0.64 0.80
b=6 0.050 0.14 0.29 0.47 0.67 0.81
b=8 0.054 0.15 0.29 0.48 0.68 0.83
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When Table 4.11 and 4.12 are compared, a decrease in power values under
H, :n, >0 is observed which is expected. However, it should be noted that the
decrease is very small. In addition, note that the critical value obtained by
simulation is 1.80, which is very close to the original 95% point.

The test statistic for testing

H,:n =n,=n,=0 against

(4.1.3.1.5)
H, :at least onen, #0 c¢=1,2,3.
can be formulated by using MMLEs:
T° =T +T] +T;. (4.1.3.1.6)
where
ni? (@ a—wye |
T2 =—1¢ e , ¢=1,23. 4.13.1.7
S 4131)

Since TC2 ’s (¢ =1,2,3) are distributed as chisquare with 1 df; the test statistic 7~ is
distributed as ;(32 . Table 4.13 shows the power values of the test (4.1.3.1.5) by

using T given in (4.1.3.1.6).

Table 4.13: The table of power values for the test H,:n, =71, =1, =0 with

generalized logistic family estimators.

n=10 Hi

Model 0.0 0.2 0.4 0.6 0.8 1.0
b=0.5 0.049 0.07 0.12 0.20 0.34 0.49
b=1 0.055 0.09 0.19 0.36 0.59 0.79
b=2 0.061 0.10 0.25 0.50 0.76 0.91
b=4 0.059 0.13 0.29 0.58 0.83 0.95
b=6 0.063 0.13 0.31 0.61 0.85 0.97
bh=8 0.064 0.13 0.32 0.62 0.85 0.97

It can be seen that T° provides a powerful test and is succesful in attaining
the presumed Type I error (almost). It is important to note that the generalized
logistic has considerable amount of skewness for b>4 (Tiku an Akkaya, 2004,
Appendix 2D). Therefore, increasing the sample size will result in more accurate

approximations, especially for b>4.
67



4.1.3.2 Non-Identical Blocks

In some real life situatitions, the errors e; (j =1,2,...,n) in the i" block
might come from Generalized Logistic with shape parameter b, and scale
parameter 0. The shape parameters b, (1<i<a) are not necessarily equal.
Senoglu and Tiku (2002) assumed that all b, are known and gave a solution to

estimate and test the block effects. Our method extends to the situation when

b. (1<i < a)are not known because it uses the estimators of the shape parameters

and not their true values. The test is exactly the same as (4.1.3.1.6), TC2 being the

statistic (4.1.3.1.7) . The only restriction is that all b, (1<i<a) are either 21 or

<I.

4.2 Two-Way Classification and Interaction

Consider the two-way classification model
Yy =Mty +0,+r;+e,; (1<i<a;1<j<cl<I<n), (42.1)
where u is a constant, y, is the effect due to i” block, & is the effect due to ;"
column, and7; is the interaction between the i * block and j” column . The

random errors e.

; are iid. Without loss of generality, we assume that it is a fixed

effects model where

i7i=i5i=ir,,=ir,, =0. (4.2.2)
i=1 Jj=1 i=1 j=1

In the following subsections, various types of distribution families are assumed for

the random errors e;; in order to study the estimators.
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4.2.1 Normal Distribution

Traditionally, e;; have been assumed to be iid normal N (0,0°), where the

likelihood function is

anl ¢ .
Lm(;j A ,HeXp{_(y@/l_ﬂ—%—é-—f,-j)z/202}.

Solving the maximum likelihood equations dInL/du=0, dInL/dy, =0
(i=12,...,a), 0InL/05, =0 (j=12,...,c) and OInL/0c =0 leads to the
following MLEs:

i yg,', _yi.. _J_/.j. +J_/ and

A a c n 5 a ¢

"2 — 2

o = (ysz - yy) ac(n—1) s; fac
i=l j=1 =1 i

where y, =(1/cn)

j=1 I=1

ESY

n

Vi 18
i=1 I=1

the mean of the j” column, ¥, =(1/n)} y,, is the mean of the (i, /)" cell and
I=1

7. =Wacn)y 3>

i

y, is the mean of the i” block, y , = (1/an)

Vi is the overall mean.
1

117

L Jj=

The main interest in two-way classification with interaction is to test the
null hypotheses

Hy :y,=0,Vi, Hy,:6,=0,Vjand Hy,:7,=0,Vij.

Fisher decomposition of the total sum of squares is



or

2 2 2 2 2
ST =S block +S column + Sinteractim + Serror :
They are instrumental in constructing the test statistics. Note that S,f,ock , S folumn,

S . and S on the right hand side are the sums of squares due to ‘blocks’,

‘columns’, ‘interactions’ and ‘error’, respectively. If e, are iid normal N 0,0%),

2 2 2 2 2 2 . . . .
then S, ., / o, S / o” and S, .o / o” are distributed as chi-sqaure with

(a—1), (c—1) and (a —1)(c —1) degrees of freedoms under the null hypotheses

H01:7/1:72:"':7/a205
H,:6,=0,=-=0,=0,
Hy,:t,=1,=+=1,=0,

ac

respectively. Since S_.,. / ac(n—1) is independently distributed as chi-sqaure with

ac(n—1) degrees of freedom when errors are normal, the test statistics to test

H,,, k=123 are respectively

2 2
E - Sblock/serror s

2 2
F,=s

column/| * error >

F,=s; / s?
3 7 Pinteractinn | © error

where

Slflock = szlock/(a - 1) H Sczolumn = Sczolumn/(c - 1) and S2 = S2 /aC(}’Z - 1)

error error

are called ‘block’, ‘column’ and ‘error’ mean sums of squares, respectively. Large

values of F'lead to the rejection of H,, k =1,2,3 , respectively, in favor of
H, :Atleastoney, #0 (1<i<a),
H,, :Atleastoned; #0 (1< j<c),

H,, :Atleastonetr; #0.

The null distributions of the test statistics is central F with the denominator

degrees of freedom Vv, = ac(n —1). The numerator degrees of freedom v, of Fj is

(a-1), of F, is (c—1) and of F, is (a—1)(c—1). Under the alternatives, the
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distributions of the test statistics F, ,(k =1, 2,3) are non-central F with (v,,v,)

degrees of freedom and non-centrality parameter

Ai= cnzalyf/az for F},
i=1

A= anZé‘f /0'2 for F, and
j=1

:niir;/az for F,.

i=1 j=1

4.2.2 Long-Tailed Symmetric Family

Assuming that the distribution of error terms in (4.2.1) belongs to long-

tailed symmetric family, we obtain the following likelihood function:

=l j=1 ="

e T

Zij=el.j/0'=(y,.j—y—}/l.—5j—rij)/0' (i=L2...,a;j=12,...,c;

N =acn.

(4.2.2.1)

b ")n)7

The likelihood equations for estimating x, y, (1<i<a), 0 s (A<j<0),

7, and O are

/j i=l j=1 I=1
aah;,L pr I;g( z,)=0.
aéﬁf%éég(zyl):o,
T = a(z,)=0,

and
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(4.2.2.2)

(4.2.2.3)

(4.2.2.4)

(4.2.2.5)



%:_EH_PZZZZUg(Zy):o (4.2.2.6)

where the function g(z) is given by

g(z):z/(lJrzz/k). (4.2.2.7)
Due to the intractability of the equations (4.2.2.2) to (4.2.2.6) which have
no explicit solutions, we utilize the MMLEs obtained as follows:

The linear approximations we consider are

g(zij(,)); Ay + Pz (Si<al<j<cgl<li<n) (42228)

where

(V&) nd B = 1

a, = ndf, = by = Elzy | (k=30). (4.22.9)
SRR (V3 R R (173 ’

Incorporating (4.2.2.9) in (4.2.2.2)-(4.2.2.7) gives the modified likelihood
equations dln L /6u=0,0InL /dy, =0 and dInL /oo =0.

We disregard the ordering of z;,, as Dbefore and take

ijl

tNiﬂ =(yij, _Tog)/Sog (j=L...,n) as the initial estimate of ¢ where

il >

= 1.483median{| y, ~T,, || (1<i<a;l<j<c) for

03

T

05

= median{ Vi } and S

05

the (i, /)" cell.

The initial estimates of ¢, and /3, are obtained by replacing 7, by Zﬂ ,

~

and the resulting coefficients are denoted by ., and ﬁ[ﬂ , respectively.

il
The resulting MMLEs of 4, y, (1<i<a), d; (1<j<c), 7, and O are

a

’&:ZEmifﬁiﬁ Zimg/ P 7;1‘ :l[li.. _:&9 é:j =1[l,j, —[I, (42210)

i=1 j=1 i=l j=1

2=, —f, —fi, +fand 6= {B +(B° +4Nci}/(2N) (4.2.2.11)

where
B=>>B,,C= C; s
i=1 j=I i=1 j=1
2p & ASY: ’
B, :7[7 ay, (yijl _[‘fj.)’ Cy i ijl(yijl _f[‘u) ’ (4.2.2.12)
=1 =1



th/luu zmg > /&] =Zlmijl[lii'/.zlm” ,
'[IU = (l/ml/ )zﬁljlyyl and mg/ = Zﬁiﬂ .
=1 =1

Note that, as in previous chapters, k =30 ( p= 16.5) )

A more convenient form of the MMLE of O is

a (4
A )
o= EEO‘U ac,
i=l j=1

(4.2.2.13)

where & :{Bl.j +1/iBij2 +4nC, i}/21/n(n—l), B, and C; (1<i<a;l<j<c)

are given in (4.2.2.12). Notice that & given in (4.2.2.13) has the same form as the

corresponding LSE, namely,

(4.2.2.14)

where
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4.2.2.1 Efficiency and Robustness

In order to study the efficiency and robustness of MMLEs given in (4.2.2.10),
(4.2.2.11) and (4.2.2.13), we use the distributions (1)-(12) given in section 4.1.2.1.
The MMLEs and LSEs are computed and their means and variances are given in
Table 4.14 and Table 4.15. Note that no iteration is done for calculating the
MMLEs. We have 3 blocks and 3 columns in our design. The sample size # in
each cell is taken to be 4 in Table 4.14 while it is 8 in Table 4.15.

Table 4.14: Simulated values of (1/o)Meanand (n/oc*)Variance* of MMLEs /I

, 6,7, and LSEs i, 0, 7,, for long tail symmetric family; n=4.

~ A ~

Model 7, u o o 7, 7,
1 -0.001 -0.001 0.927 0.989 0.003 0.004
[0.121] [0.112] [0.077] [0.071] [0.487] [0.443]

2 0.001 0.001 0.910 0.987 0.002 0.004
[0.110] [0.110] [0.094] [0.101] [0.443] [0.440]

3 -0.001 0.000 0.897 0.985 0.003 0.004
[0.106] [0.110] [0.108] [0.134] [0.421] [0.442]

4 0.000 0.000 0.853 0.971 -0.004 -0.003
[0.092] [0.112] [0.125] [0.260] [0.376] [0.462]

5 -0.001 0.001 0.772 0.926 0.002 0.003
[0.073] [0.110] [0.133] [0.562] [0.289] [0.434]

6 0.000 0.001 0.926 0.990 -0.001 0.000
[0.123] [0.113] [0.078] [0.073] [0.490] [0.445]

7 -0.001 -0.001 0.928 0.991 0.001 0.001
[0.121] [0.113] [0.079] [0.074] [0.485] [0.443]

8 -0.002 -0.001 0.907 0.985 -0.002 -0.002
[0.107] [0.107] [0.095] [0.107] [0.452] [0.444]

9 -0.002 -0.002 0.796 0.965 -0.003 -0.004
[0.077] [0.111] [0.160] [0.293] [0.307] [0.451]

10 0.001 0.013 1.666 2.552 0.007 0.008
[0.329] [2.631] [1.167]  [68.397]  [1.292]  [11.964]

11 0.004 0.814 3.709 35.668 0.026 -0.001
[0.27E+01] [0.17E+05] [0.11E+03] [0.59E+06] [0.10E+02] [0.59E+05]

12 0.002 -9.064 4.638 112.461 0.004 19.968

[0.32E+01] [0.39E+07] [0.99E+02] [0.14E+09] [0.14E+02] [0.16E+08]

* Variances are given in brackets

74



Table 4.15: Simulated values of (1/c)Meanand (n/c”)Variance* of MMLEs /I

, 6,7, and LSEs i1, &, 7,, for long tail symmetric family; n=8.

Model [ i o o 7, T,
1 0.001 0.001 0.950 0.997 0.002 0.001
[0.117] [0.109] [0.068] [0.063] [0.484] [0.454]

2 -0.001 0.000 0.922 0.993 0.000 0.000
[0.108] [0.112] [0.083] [0.095] [0.442] [0.461]

3 0.000 0.001 0.900 0.992 0.001 0.003
[0.101] [0.110] [0.087] [0.125] [0.408] [0.448]

4 0.001 0.003 0.844 0.981 0.000 -0.001
[0.084] [0.112] [0.094] [0.281] [0.344] [0.442]

5 0.000 0.001 0.749 0.946 0.000 0.000
[0.065] [0.106] [0.092] [0.615] [0.262] [0.434]

6 -0.002 -0.002 0.912 0.996 0.001 0.001
[0.105] [0.112] [0.070] [0.090] [0.422] [0.450]

7 -0.001 0.000 0.725 0.982 0.003 0.001
[0.058] [0.110] [0.057] [0.211] [0.235] [0.441]

8 0.001 0.001 0.919 0.994 -0.001 0.000
[0.107] [0.112] [0.080] [0.100] [0.427] [0.434]

9 0.000 0.000 0.764 0.979 0.002 0.000
[0.068] [0.112] [0.105] [0.315] [0.274] [0.444]

10 0.001 0.002 1.534 2.686 -0.001 -0.004
[0.270] [1.537] [0.564]  [49.181]  [1.031] [6.068]

11 0.001 -0.022 2.452 50.489 0.001 1.065
[0.62E+00] [0.58E+05] [0.45E+01] [0.42E+07] [0.24E+01] [0.77E+05]

12 0.003 0.839 3.286 103.073 0.000 -4.894

[0.11E+01] [0.55E+06] [0.65E+01] [0.39E+08] [0.43E+01] [0.29E+07]

* Variances are given in brackets

As expected, the variance decreases by about half when we increase the
sample size from 4 to 8.

After comparing LSEs and MMLEs, it can be seen that the estimators
obtained by the method of MML are on the whole considerably more efficient than
the LSEs. While the variances and the means of the LSEs explode for distributions
(10)-(12) with non-existance variance, MMLEs give much more stable results for

the same scenarios because of their bounded influence functions.
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4.2.3 Generalized Logistic Distribution

Suppose that the distribution of error terms in (4.2.1) is a member of

generalized logistic family. The likelihood function is

(Y T o s w2

i=l j=1 I=1 {1+exp(z

where zij=eij/0'=(yi,—,u—}/i—5j—ry)/a(lgiga;lﬁjﬁc;lﬁlﬁn) and

N=acn .

The likelihood equations to estimate x, y, (1<i<a), ; (1< j<c), 7,

and O are
lL N 1 4G &
OlnL (b+ ZZ g(z,)=0, (42.32)
a,u =l j=1 =1
Oln L e (b+1) Z y ¢(z,)=0, (4.2.33)
oy, 7=l =1

dlnL b+1) &
L:ﬂ_ﬂ g(z,)=0, (4.2.3.4)

55]- o O =l =l

olmL _n _(b+1)3 (z,)=o0, (4.2.3.5)
Grij o o 5
alnL:_ﬁ_'_l a c n Zl (b+l) a n_ _n Zl[g( ll):O (4236)
oo O O == o i:1,:11:1j !
where the function g(z) 1s
glz)=c7/(1+e7). (4.2.3.7)

The solutions of the equations (4.2.3.2)-(4.2.3.6) are the MLEs. However,
these equations have no explicit solutions because of the non-linear function g(z).
Although solving them by iteration is possible, Barnett (1966), Lee et al. (1980)
and Vaughan (1992) show that iteration may lead to multiple roots,
nonconvergence (especially when data contains outliers; see Puthenpura and Sinha

(1986) for details), or convergence to wrong values.
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As in Senoglu and Tiku (2001), we propose modified likelihood equations
olnL'fou=0, 0InL[dy,=0, oL /d5,=0, oL /or,=0  and

dInL’' /6o =0 which are obtained after linearizing g(z):

g( Zii ) =y — :Bijlzij(z); (4.2.3.8)

2 2
oy = (1+e’ +te' )/(1 +et) , By = e’/(l +et) L=t = E{Zij(,)}, (4.2.3.9)
i =Wy — =7, =6, —7,)o (<i<al<j<cl<i<n).
Here, z,, are the ordered variates and V;; <V;o) <.V,
(1<i<a;1<j<c) are the order stastistics of the n observations in each cell.

The values of L) are estimated as in section 4.1.3, however, in this case

~

we replace tNi(j) by ¢, since we have T,

= medl’an{ Vi } and
‘} (1<i<a;1< j<c) for each cell:

T =0 =Ty )/ Sos - (4.2.3.10)

and f3;, are obtained

S, = 1.483median| y,, -

0!/

Thus, replacing ¢, by t,], , the initial estimates of ¢,

and they are denoted by @, and ﬂ ;> respectively.

ijl
The modified likelihood equations obtained by linearizing g(z) have

explicit solutions and the solutions are the MMLEs,

i=p —6Y A [Ny F= i RS = A, R, (42301

i=1 j=I i=1 j=I

T, =f; —f, —f; +ji_and &= {—B+1/i32 +4NCi}/(2N) (4.2.3.12)

where
B:a cBij’C:a cCij’
i=1 j=l1 i=1 j=1
n 2
B, =(b+1)> A, (v - 22)s C; (b+1) B (vier =) - (4.2.3.13)
=1

C [
:Zmijﬂzf Zm] s M= Zm,]ﬂ,j/ )
= =

N

=ZZmi/ﬁf/. szi/"'&u (l/mu) I/lyl/(l)’

i=1 j=1 i=1 j=1 I=1
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Ay = dy ~(b+1)", A, = ZAUI and m; = Zﬁz// :
=1 =1

Writing &, ={B,.j (B, +4nc, i}/Zw/n(n—l), B, and C; (1<i<a;
1<j<c) in (42.3.13), a more convenient form of the MMLE of O can be

obtained:

&= Za‘;/ac : (4.2.3.14)
=1 j=1
For each (i, /)" cell, (b+1) is initially estimated by 1/ (l — ﬁj ):

ﬁjz(l/n)g%,, iy = fllaem )= 1/llve™) a<i<aizj<e).

See section 3.2 for details.
Note that since complete sums are invariant to ordering, we can ignore the

ordering.

4.2.3.1 Efficiency and Robustness

We study the efficiency and robustness of the MMLEs of a two-way
classification model with interaction whose error comes from generalized logistic
family with various shape parameters. In order to do this, we carried out simulation
studies based on N=[100.000/n] Monte Carlo runs. The means and variances of the
MMLEs are given in Table 4.16 where the sample size for each cell 7 is taken to
be 4 and in Table 4.17 where 7 is 8. We do this with 3 blocks and 3 columns. The
number of iterations is 5. The results for block and column effects being essentially
the same as the block effects in one-way classification, the variances of the

corresponding estimators are not reproduced.

Random errors e; (1<i<a;1< j<c¢;1<1<n) generated when b#1 were

multiplied by [2¥'(1)/{¥'(b)+¥'(1)}]"* so that the variances of e,

;i are always the

same as when b = 1 (logistic distribution), i.e., 2‘1"(1)0223.289802 where O is

taken to be one without loss of generality.
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Table 4.16: Simulated values of (1/o)Meanand (n/c*)Variance* of MMLEs &

and 7,, for generalized logistic family; n=4.

~ A

Model o T,
b=0.5 1.012 -0.001
[0.119] [1.460]
b=1 1.046 0.002
[0.115] [1.563]
b=2 1.061 0.001
[0.127] [1.591]
b=4 1.064 0.007
[0.139] [1.601]
b=6 1.063 0.006
[0.142] [1.566]
b=38 1.066 0.007

[0.147]  [1.583]

* Variances are given in brackets

Table 4.17: Simulated values of (1/o)Meanand (n/oc”)Variance* of MMLEs &

and 7,, for generalized logistic family; 7=38.

Model o f“
b=0.5 0.976 -0.007
[0.096] [1.439]
b=1 1.020 0.007
[0.098] [1.557]
b=2 1.034 0.014
[0.102] [1.596]
b=4 1.034 0.004
[0.109] [1.632]
b=6 1.030 0.010
[0.112] [1.612]
b=38 1.035 0.006

[0.117]  [1.607]

* Variances are given in brackets

The estimators & and 7,, are unbiased (almost) for each shape parameter
(unknown to us). When we compare the results with different sizes, it is observed
that increasing the sample size from # =4 to n =38 reduces the variances by about

one-half, especially of fij .
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CHAPTER 5

ROBUST LINEAR REGRESSION

In many practical situations, a variable Y depends on another variable X.
However, Y cannot be measured exactly and is subject to a measurement error but
X can supposedly be measured without error. For example, Y is the blood pressure
of an elderly person and X is his/her age. A very important statistical problem is to

model the dependence of Y on X. Usually, a functional relationship
y=77(x)+e (5.1)

1s assumed; n(x) 1s a mathematical function involving certain unknown parameters
and e is a random error having a particular distribution. Given a random sample

(v,,x,) (1<i<n), the problem is to estimate the unknown parameters in (5.1). The

situation which occurs most often in practice is that n(x) is linear. The equation
y=6,+0x+e (5.2)
is called a linear regression model. Experimental data (y,,x,) (1<i<n) is
available which supposedly follows this model. Thus,
v, =6,+6x,+e,, 1<i<n; (5.3)

2

e (1 <i< n) are assumed to be iid with mean zero and unknown variance o~ . In

certain situations, e, will have nonzero mean; we will consider those situations

later.
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To estimate 6,, 6, and o’ (or 0), a very popular method is least squares
estimation. The error sum of squares

Zeiz ZZ(% -6, —0,x, )2
i1 i=1

is minimized with respect to 8, and 6,. This, in particular, gives the LSE (least

square estimator) of &, as

7 =3 (x, %)y, / $ (v, 5. (5.4)

It is easy to show that
Var(g1 ): o’ Zn:(xi -x). (5.5)
i=1

Akkaya and Tiku (2008) point out that 671 is very vulnerable to the design

(xl,xz,...,xn). If, for example, an outlier occurs in the design, Z(xi —)_c)2 will
i=1

become very large in which case 51 will appear to be very efficient. That is
nonsensical. To rectify the situation, they proposed the reparametrized model

Vv, =0,+0u,+e,, 1<i<n, (5.6)

where u, =(x, = x)/s, x=(1/n)>_x, and ns* = (x, -x)" .
i=1 i=1
We will show that the LSEs, and other estimators we develop in this
chapter, are invariant to location and scale of the design. That is, if x, are replaced

by a+bx; (1 <i< n), the estimators and their variances (and covariances) remain

unchanged, a and b being constants.

The LSEs of 6, and 6, are now obtained by minimizing

n

Z(J’i -0, _91“1')2 .

i=1
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That gives
é;) :y and 51 = Zuiyi Zulz [Zulz :nJ. (5-7)
i=1 i=1 i=1

The LSE of o is obtained by minimizing ) _e;,

i=l1

n

5'=> {yi ~y-0,u, }2 /(n —2) (bias corrected). (5.8)

i=1
It is very easy to verify that the LSEs (5.7) - (5.8) are invariant to location and
scale of the design. It may be noted that

Var(go): o*/n and Val{é)z o’/n.
Both variances do not depend on the design which is a very useful result.
As said earlier, & is unbiased (asymptotically) and

.o (1
Var(U)EZ—H(HE@j, Ay = w3 =3 (5.9)

My / 1, is the kurtosis of the underlying distribution. Note that (5.9) is also

invariant to the design.

The only assumption for deriving LSEs is that the random errors

e, (1<i<n) are iid with mean zero and variance o . Suppose that the common
distribution of e, is known. We can then try to obtain the MLEs (maximum

likelihood estimators) of 6, , 6, and O .

Assuming that e, (1<i<mn) are iid normal N(O,O'Z), the likelihood

function is

Loc(lj exp{— y (v, —ﬁo—Hlui)z/Zaz}. (5.10)

Solving the maximum likelihood equations d1n /06, =0,0InL/66, =0
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A A
A~

and 0InL/dc =0 gives the MLEs 6, , 6, and & . In this case, i.e. when e, are

normal N ( 0,0 ), the MLEs and LSEs are identical. The Fisher information matrix

18

n
— 0 0
62
n
o o
— G -

17" gives the asymptotic variances as

Var( é‘)j =c?/n, Var( élj =~ ¢’ /n and Var(é‘); of2n.  (5.12)

In the present situation, however, the first two variances are exact for all n

as said earlier. In fact, éo and él are the MVB estimators. This follows from the

fact that

Remark: When the distribution of the random error e is non-normal, MLEs are
generally elusive. Therefore, we utulize modified maximum likelihood estimation

as follows.

5.1 Long-Tailed Symmetric Distributions

Consider the simple linear regression model (5.6) with random error e

having one the distributions in the long-tailed symmetric family

1 1 e |’
= 1 — .
) ok ﬁ(l/Z,p—l/Z){Jrkaz} ’ rres
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k=2p-3, p>2.1It may be noted that E(e)=0 and V(e)=c’. For 1< p<2,
V(e) does not exist in which case O is a scale parameter. Writing
z,=(y,—6u, -6,)/c (1<i<n)and g(z)= z/(1+ zz/k) , we have the following

maximum likelihood equations; u, = (x, —X)/s :

OlnL 2p

=& =0 5.1.1
50, Gk;g(z,) (5.1.1)
OlnL 2p
2 _ )=0 5.1.2
00,  ok& ug(z) (5-12)

and

OlnL n 2p3

=—— 4+ == . )=0. 5.1.3
Py U+0k;Z,g(z,) (5.1.3)

The likelihood equations (5.1.1) - (5.1.3) do not have explicit solutions
since g(z) is a nonlinear function. Vaughan (1992) and Tiku and Suresh (1992)
showed that (5.1.1) has multiple roots for all p <o, hence, calculation of MLEs is

problematic. Tiku et al. (2001) proposed modified maximum likelihood estimation
as an alternative and showed that MMLESs have all the desirable properties; see also
Islam and Tiku (2004) and Akkaya and Tiku (2008) who derive MMLEs for
parameters in a multiple linear regression model. Their estimators, however, do not
have bounded influence functions.

Here, we derive MMLEs which have bounded influence functions. We

obtain such MMLEs by using the linear approximations
glzy)za, +Bz, (<i<n) (5.1.4)
where

a, =M and B, S S (5.1.5)

{1+ (), | SRRV
ty =Elz,} (k=30).
Here, we define z;, = (w(i) -6, )/ o and W, =y —Ou (1<i<n) where z, are

the ordered variates and (y[i],u[i]) are the concomitants of z ;).
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In order to estimate ;) , we propose its initial estimator as

~ Y~ Ty =Ty,

Ly = 5 (5.1.6)
where
T, = median{r,}; r, =221 =YL (1<r<n-1) (5.1.7)
Upg — U,
is the initial estimator of the regression coefficient 6,
T, = median{W,}, W, =y, =T, u, 1<i<n), (5.1.8)
is the initial estimator of the intercept 6, and
S, = 1.483median{| W, T, |} (5.1.9)

is the initial estimator of 0 . These initial estimators were obtained by noticing that
0, =E(y.,—v)(u,, —u) (1<i<n-1).

Since complete sums are invariant to ordering, we use 7, rather than tNU).
Replacing #, by 7, leads to the initial estimates of &, and f,. They are &, and
,E ., respectively. Also, (5.1.4) can be written as

glz)=a +Bz (1<i<n). (5.1.10)

The solutions of the resulting modified likelihood equations are the

following MMLE:s:

0,=y-0ir, =K +Dé and &:{B+,/i32 +4nci}/(2 n n—z)) (5.1.11)
where Kzzn:/i’(u —u) Zﬂ(u —u) , D:Zn:a[(u[ —ft) Zn:ﬁ’[(u[ —ﬁ)z,
i=1 i=l1
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The calculation of the MMLEs proceeds in two steps. In the first step, we
obtain the initial estimates (5.1.6) - (5.1.10) and use them to calculate the initial
MMLEs. In the second step, we use these initial MMLEs to calculate (5.1.6) and
then we use (5.1.5) to obtain the final MMLEs.

5.1.1 Simulations

To evaluate the efficiency and robustness of the MMLEs given in (5.1.11),
we use the models (1)-(12) given in section 2.2 with g =0. In addition, the LSEs

given in (5.7) and (5.8) are computed for the same models. Without loss of
generality, we assume that 6, =0,0, =1, o=1. We generated N = [100,000/ n]
(integer value) samples of independently distributed random errors of size 7 from
each of the models (1)-(12). Note that models (1)-(9) have finite variance, (10) has

finite mean but non-existent variance, and (11)-(12) have non-existent mean and

variance. The random errors generated from models (6)-(9) were divided by
suitable constants to make their variances equal to o’. The nonstochastic
independent variables x,’s (1 <i < n) were generated from a uniform distribution.
They were standardized by replacing x, with u, = (x, —X)/s (1 <i< n) From the

resulting N values of the MMLEs and LSEs, we computed their means and

variances. They are given in Table 5.1, Table 5.2 and Table 5.3 with sample sizes

n=10, n=20 and n =350, respectively.
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Table 5.1: Simulated values of (1/c)Meanand (n/o”)Variance(in brackets) of

MMLEs and LSEs of parameters in a simple linear regression model; n=10.

Model éo 50 él 51 o o

1 0.000 0.000 0.986 1.000 0.920 0.971
[1.079]  [1.011] [1.073] [1.014] [0.671] [0.611]

2 0.000 0.001 0.985 1.003 0.890 0.963
[1.000]  [1.012] [1.001] [1.000] [0.746] [0.813]

3 0.001 0.000 0.982 0.996 0.871 0.951
[0935]  [0.988] [0.987] [1.013] [0.803] [0.970]

4 -0.005 -0.004 0.986 1.004 0.818 0.930
[0829]  [1.023] [0.883] [1.019] [0.849] [1.528]

5 0.002 0.002 0.980 0.995 0.723 0.870
[0.647]  [0.977] [0.743] [1.035] [0.816] [2.482]

6 -0.004 -0.003 0.992 1.005 0.878 0.961
[0.940]  [0.978] [0.901] [0.954] [0.654] [0.754]

7 -0.002 0.002 0.993 1.004 0.708 0.931
[0.561]  [1.010] [0.525] [0.910] [0.547] [1.593]

8 0.002 0.002 0.988 1.003 0.888 0.958
[0975]  [0.984] [1.006] [0.994] [0.756] [0.827]

9 -0.001 -0.001 0.981 0.999 0.738 0.897
[0.687]  [0.998] [0.784] [1.004] [0.926] [1.947]

10 -0.005 -0.001 0.975 1.003 1.475 2.157
[2.670] [0.112E+02] [3.050] [0.929E+01] [4.502]  [0.680E+02]

11 0.010 1.621 0.962 1.124 2.367 18.793
[9.358] [0.663E+05] [14.110] [0.576E+05] [37.321] [0.671E+06]

12 -0.001 -1.559 0.965 -0.308 3.187 31.428
[15.019] [0.298E+06] [22.223] [0.687E+05] [56.555]  [0.326E+07]
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Table 5.2: Simulated values of (1/c)Meanand (n/o”)Variance(in brackets) of

MMLEs and LSEs of parameters in a simple linear regression model; 7= 20.

Model éo QNO él 9~1 o o

1 0.000 0.001 0.991 0.999 0.950 0.985
[1.070] [1.022] [1.035] [0.987] [0.589] [0.548]

2 0.001 0.002 0.989 0.998 0.922 0.983
[0.989] [1.027] [1.003] [1.020] [0.678] [0.773]

3 0.001 0.000 0.992 1.001 0.893 0.972
[0.886] [0.980] [0.942] [1.032] [0.724] [1.002]

4 -0.002 -0.002 0.995 1.002 0.835 0.951
[0.781] [0.994] [0.795] [0.996] [0.758] [1.709]

5 -0.002 0.002 0.991 0.996 0.736 0.911
[0.594] [1.076] [0.611] [0.979] [0.694] [4.434]

6 -0.001 -0.001 0.990 0.997 0917 0.979
[0.929] [0.983] [0.956] [0.999] [0.611] [0.724]

7 -0.001 0.001 0.992 1.000 0.751 0.955
[0.563] [0.989] [0.586] [1.027] [0.536] [1.729]

8 0.001 0.000 0.992 1.000 0918 0.978
[0.955] [0.995] [0.966] [1.005] [0.686] [0.835]

9 0.000 0.002 0.993 1.002 0.751 0.943
[0.616] [1.015] [0.627] [1.000] [0.769] [2.303]

10 0.006 0.012 0.989 1.001 1.475 2.330
[2273] [0.114E+02] [2.489] [0.104E+02] [3.780]  [0.116E+03]

11 0.006 0.004 0.980 2.621 2.172 31.342
[4.793] [0321E+06] [5.404] [0.280E+06] [15.907] [0.645E+07]

12 -0.008 -10.142 0.999 15.256 3.010 67.401
[9.266]  [0.122E+08] [11.171] [0.426E+08] [29.130] [0.211E+09]
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Table 5.3: Simulated values of (1/c)Meanand (n/o”)Variance(in brackets) of

MMLEs and LSEs of parameters in a simple linear regression model; 7 =350.

~

Model éo 50 él 6 1o} o
1 -0.001 -0.001 0.997 1.000 0.969 0.996
[1.054] [1.015] [1.042] [1.006] [0.540] [0.514]
2 0.000 0.000 0.997 1.000 0.935 0.993
[0.963] [1.026] [0.934] [0.971] [0.638] [0.801]
3 0.002 0.002 0.996 0.999 0.906 0.987
[0.893] [1.025] [0.891] [1.001] [0.678] [1.091]
4 -0.002 -0.002 0.997 1.000 0.843 0.977
[0.738] [0.990] [0.759] [0.981] [0.681] [2.143]
5 0.000 -0.002 0.996 0.998 0.740 0.943
[0.548] [0.990] [0.579] [0.975] [0.618] [5.304]
6 -0.001 -0.001 0.998 1.000 0.931 0.993
[0.950] [1.004] [0.850] [0.866] [0.576] [0.745]
7 0.002 0.002 0.999 1.000 0.751 0.983
[0.552] [0.994] [0.476] [0.678] [0.459] [1.934]
8 0.000 0.000 0.998 1.000 0.932 0.992
[0.947] [1.000] [0.947] [0.998] [0.625] [0.835]
9 -0.002 -0.003 0.999 1.002 0.754 0.974
[0.558] [0.983] [0.584] [1.015] [0.691] [2.661]
10 0.001 0.008 0.991 1.001 1.465 2.589
[2.082] [0.153E+02] [2.172] [0.163E+02] [3.185]  [0.430E+03]
11 -0.002 6.445 0.988 5921 2.032 88.917
[3.792]  [0.154E+08] [4.208] [0.349E+08] [11.834] [0.752E+09]
12 0.004 -4.074 0.990 3.365 2.855 78.031

[7.465] [0.258E+07]  [8.044]  [0.168E+07] [19.197]  [0.130E+09]

The results show that MMLESs are enormously more efficient than the LSEs

other than for the normal distribution in which case they are a little less efficient.
Both MMLEs and LSEs of 6, and 6, are unbiased for models (1)-(10); see also
Appendix C. For models (11) and (12), however, the LSEs are not even unbiased.
For model (10), the variances of the LSEs 50 and 51 are much larger than the
corresponding MMLESs although they are unbiased.

The above results are very promising because the only assumption we make

is that the underlying distribution is long-tailed symmetric including distributions

as extreme as Cauchy.
89



5.2 Generalized Logistic

Let the random error in the simple linear regression model (5.6) come from

generalized logistic distribution

f(e)=£ exp(-e/o)

- , 5.2.1
o {l+exp(-e/o)}™’ rres® ( )

where o is scale and b is shape parameter.
The likelihood function L in terms of z, = (y, —Qu, —6,)/c (1<i<n) is

() T ey

Writing g(z)=e"z/(l+e"z), we estimate 6,, 6 and o by using the

following maximum likelihood equations:

oL _n_ (b+1)3 2(z)=0, (5.2.2)
890 o o i=1
oL 1¢&  (h+1)

s, - g(z,)=0 and 523
) G;u, = > u,g(z,)=0 an (5.2.3)

olnL  n 1Y h+1)g
= 2

z.g(z)=0. (5.2.4)
oo o o‘5 o ‘I

We utilize the method of modified maximum likelihood estimation to solve
these intractable equations. Islam et al (2001) derived the MMLEs for a generalized
logistic distribution. We extend their study by assuming an unknown shape

parameter; Islam et al (2001) assume that the shape parameter is known.

We initially estimate (b+1) by 1/(1=%,) (1<i <n) where
F=WmYw, w=e/lire’)=1/ll+e") 1<i<n,
i=1

Refer to section 3.2 for details.

Note that Taylor series expansion of g(z) is used to work out MMLESs as

before:
glzy)za, +B,z, (<i<n) (5.2.5)

where

a, :(1+el +tel)/(1+e’)2, B, :e’/(lJre’)2 =1, =E{Z(i)}, 1<i<n.

90



To estimate ¢, , we use tN(i) as an initial estimator,

~ =T, — Ty,
7, =2 o (5.2.6)
S
where
T, = median{r, }; r, YTV 1<i<n-1) (5.2.7)
Uy — Uy
is the initial estimator of the regression coefficient 6, ,
T, = medz'am‘gi}; 5[ =y, —Tu, (1<i<n) (5.2.8)
is the initial estimator of the intercept 6, and
S, = 1.483median{‘ 3-T, \} (5.2.9)

is the initial estimator of o and (y[i],u[i]) are the concomitants of the ordered
variates ;) = (y[i] —Gup -6, )/0' (I<i<n).
Since complete sums are invariant to ordering, we use 7, rather than l‘N(i).
We replace ¢, by 7 and get the initial estimates of ¢, and S, denoted by &, and
ﬂN,. , respectively.
The resulting MMLEs are

0, =y -0 +(A/m)é, 6, =K + D6 (5.2.10)

and & = {BJMNBZ +4nci}/ 2Jn(n-2)) (5.2.11)

where K :iﬂi(ui —ﬁ)yl. Zn:ﬁi(ui —ﬁ)z , D:iAi(ui —ﬁ)/iﬂi(ui —ﬁ)z )

i=1

B=(p+)3 Ay, -5 -K(u,-2)}, c =+ B v -5 - K (u,-)f

Jj=1 Jj=1
A=) —a, A=Y, 5=y |38 andi=> pu, |3 B .
i=1 i=1 i=l i

It may be noted that éo is estimating

7 = ¢, + scaled median of the error distribution.



The calculation of the MMLESs proceed in three steps. In the first step, we
calculate the MMLEs by using the initial estimates (5.2.6) - (5.2.9). In the second
step, we use these MMLEs to calculate (5.2.6). Then, we calculate the MMLESs
(5.2.10) and (5.2.11). Third, we use these new MMLEs to do the fourth iteration
and obtain the final MMLEs.

5.2.1 Simulations

In this section, we study the efficiency and robustness of the MMLESs given
in (5.2.10) and (5.2.11) by generating N = [100,000/ n] (integer value) samples of
independently distributed random errors e, of size n from generalized logistic

distribution with different values of the shape parameter b; e, were multiplied by

[29'(1)/{%'(b)+P'(1)}]"*. Without any loss of generality, we assume that 6, =0,
0, =1 and o=1. The nonstochastic values x,’s (1<i<n) are generated from
uniform distribution and u, = (x, — x)/s . The means and variances of the resulting

N values of MMLEs are given in Table 5.4, Table 5.5 and Table 5.6 with sample
sizes n =10, n=20 and n =50, respectively.

It may be noted that 7 and 7 are estimating -0.777, 0, 1.056, 2.174, 2.819,
and 3.268 for b =0.5, 1, 2, 4, 6 and 8, respectively.
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Table 5.4: Simulated values of (I1/o)Meanand (n/c”)Variance(in brackets) of

MMLEs and LSEs of parameters in a simple linear regression model for

generalized logistic distribution with shape parameter b; n=10.

b ¢ T 6, 0, & o
0.5 -0.851 -0.906 0.989 0.996 0.941 1.003
[3.403]  [3.481] [2.974] [3.299]  [0.853]  [0.862]
1 0.001 -0.001 0.998 1.003 0.978 1.030
[3.579]  [3.576]  [3.186]  [3.326]  [0.862]  [0.816]
2 1.118 1.150 0.991 0.996 0.994 1.046
[3.823]  [3.792]  [3.144]  [3.312]  [0.895]  [0.888]
4 2.245 2.296 0.996 1.001 0.985 1.042
[3.719]  [3.717]  [3.063]  [3.263]  [0.915]  [0.964]
6 2.897 2.953 0.989 0.994 0.984 1.041
[3.712]  [3.709]  [2.995]  [3.211]  [0.947]  [0.998]
8 3.359 3.419 0.999 1.004 0.983 1.044

[3.741]  [3.745]  [3.016] [3.234]  [0.951]  [1.013]

Table 5.5: Simulated values of (I1/o)Meanand (n/c”)Variance(in brackets) of

MMLEs and LSEs of parameters in a simple linear regression model for

generalized logistic distribution with shape parameter b; n =20.

b ¢ 7 6, 0, % G
0.5 -0.826 -0.904 0.997 0.997 0.950 1.000
[3.389]  [3.519]  [2.877]  [3.294]  [0.808]  [0.904]
1 0.004 0.001 0.996 0.996 0.990 1.023
[3.749]  [3.764]  [3.034]  [3.247]  [0.807]  [0.819]
2 1.088 1.141 0.998 0.999 1.000 1.035
[3.857]  [3.862]  [3.165]  [3.359]  [0.818]  [0.867]
4 2.227 2.307 1.007 1.007 0.999 1.041
[3.839]  [3.841] [3.103]  [3.347] [0.852]  [0.986]
6 2.863 2.951 0.995 0.998 0.990 1.035
[3.780]  [3.835]  [2.986]  [3.281]  [0.872]  [1.029]
8 3.328 3.422 1.000 1.002 1.000 1.046

[3.764]  [3.812]  [2.998]  [3.327]  [0.873]  [1.041]
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Table 5.6: Simulated values of (I1/o)Meanand (n/o”)Variance(in brackets) of

MMLEs and LSEs of parameters in a simple linear regression model for

generalized logistic distribution with shape parameter b; n =50.

b ¢ T 6, 0, & o
0.5 -0.801 -0.891 0.999 1.000 0.950 1.001
[3.253]  [3.335]  [2.785]  [3.333]  [0.751]  [0.927]
1 -0.004 -0.003 0.999 0.999 0.998 1.028
[3.590]  [3.561]  [3.004] [3.265]  [0.761]  [0.814]
2 1.072 1.135 0.998 0.998 1.008 1.038
[3.785]  [3.739]  [3.083]  [3.324]  [0.798]  [0.892]
4 2.196 2.293 1.001 1.001 1.008 1.047
[3.806]  [3.784]  [2.969]  [3.298]  [0.831]  [1.033]
6 2.829 2.934 0.999 0.999 1.001 1.044
[3.801]  [3.751] [2.863]  [3.193]  [0.825]  [1.050]
8 3.294 3.405 1.000 0.999 1.005 1.049
[3.878]  [3.860]  [2.925]  [3.307]  [0.863]  [1.119]

The MMLEs are seen to be enormously more efficient (jointly) than the

LSEs besides having negligible bias. The results are very interesting from

theoretical and practical considerations. It may be noted that the MMLEs have

bounded influence functions. For illustration, the emprical influence function of 6,

is given below.
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Figure 5.1: Emprical influence function of él for long-tailed symmetric

distribution, p = 3.5.
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CHAPTER 6

ROBUST MULTIPLE LINEAR REGRESSION

This chapter expands our findings on simple linear regression model to

multiple linear regression model

Y=X0 +e
where
Wi Loxy, X, - X, 0,
Y = y:z ,X: 1 X.zl x.zz x?q ’0*= 9:1* and e =
Vi Lt DX X Xy % (g+D)x1

(6.1)

n _Inxl

e, (1<i<n) are iid errors with mean zero and unknown variance o, X is a

nonstochastic design matrix consisting of g+1 explanatory variables which have no

linear relationship with each other, Y is a vector of observed responses and & is a

vector of parameters to be estimated.

The commonly used least squares estimation method minimizes the error

sum of squares €'e and this results in closed-form least square estimators (LSEs)

of 8 and o, namely,

=(XX)"' XY and

G = i{yi—f—i@*(xi,—fj)}z/n—q—l);

i=1 =1
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n

X, = (l/n)ixy. and y=(1/n)> ..

i=1

However, Puthenpura and Sinha (1986) show that these LSEs are not efficient if

the data is very noisy. Additionally, Islam and Tiku (2004) show that the

efficiencies of these LSEs are low for non-normal error distributions and generally

decrease as n increases.

Note that the variance-covariance matrix of the estimator 8 is

Cov(g*)=(X'X)_10'2.

Akkaya and Tiku (2008) point out that the variances (and covariances) of

LSEs are too vulnerable to design anomalies. To rectify the situation, they propose

a reparametrized multiple linear regression model

Y=16,+U0 +e
where
1 Uy Up Uy,
1= 1 U= Uy ”:22 Uy, o,
1 Uy Uy -

n

s? =(1/n)

i=1

The LSEs of the model (6.3) become

(e, -% P (1gi<m1<j<gq).

(6.3)
i~ [N
, X, =—)» x, and
s, J n; ij
(6.4)

c=5,; sj:i{yi—y—iéju”} %n—q—l) (6.5)

n ~
since u; = (1/ ”)Z u,; = 0. The variance-covariance matrix of the estimator € is

i=1
C0v(§)= vuy'e?,
while the variances of 670 and & are as follows:
Var(§0)= 02/71
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2
Var(5)= Z—
n

1
(1"'524)’ Ay ::U4/:U22 -3,

as said earlier. The estimator 6, is uncorrelated with & when the distribution of

random errors is symmetric.
Akkaya and Tiku (2008) show that the parameters 67]. (IS Jj< q) are

invariant to location and scale of x; (1 <i< n) and so are 6, and &. That is, if

x,; are replaced by a; +bjxl.j (1 <i< n), a; and bj being constants, the values of

~

6,, 6, and G do not change neither do their covariances and variances.

When e, (1<i<n) are 1id normal N (0,0'2), LSEs are identical to the

MLEs and are fully efficient. Here, we are interested in developing estimators
which have high efficiencies and have bounded influence functions. To do that we

proceed as follows.

6. 1 Long-Tailed Symmetric Distributions

Assume that the errors e, (1<i<n) have one of the distributions in the

family
f(e):abzﬂ(uz,;_uz{“kizr, 0 <e<o:
k=2p-3, p>2.
The maximum likelihood equations are
aah;f =i—§§g<4>=0 (6.1.1)
aalz_f:%?vg(zfﬁo (1<j<q) (6.1.2)

and
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Ol _ n, 205 o(z)=0 (6.1.3)

oo o ok*g
where
(ZJ/ el)= /() =l s,
j=1

n

X, Z(I/H)Zn:xij and s, =\/(1/n)z(x,.j -x, ) (1<i<nm1<j<gq).

i=l1
Since the likelihood equations (6.1.1)-(6.1.3) are intractable, we utilize the

modified maximum likelihood method by using the linear approximations

glzy)za+Bz, (<i<n); (6.1.4)

1/k)t..
ai=L@22 and f = ————. 6.1.5)
{1+ @/K)e2, } {1+ k)2 |
ty =Elz, | (k=30).
In order to find appropriate initial estimate of 7., we take 0, (l <Jj< q) all

equal; say 0. This is motivated by the fact that a priori there is no reason to
believe that one design variable is more important than others. Thus, (6.3) can a

priori be expressed as

u, (1<i<n).

y,=6,+0v, +e,; v, = i

9
J=1

An initial estimate of 7, is, therefore,

Zi) — y[i]_TO _Tlv[i] (616)
SO
where
T, = mediantr,}, r, =220 (1<0<n-1) (6.1.7)
Vi = Ve
is an initial estimator of & ,
T, = median{W,}, w, = y, =T, v, 1<i<n), (6.1.8)
is an initial estimator of the intercept 6, and
S, = 1.483 median{| W, - T, |} (6.1.9)
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1S an initial estimator of o ; (y[i],v[i]) are the concomitants of the ordered variates

Z(i) =(y[i]—éV[i]—00)/O' (ISZSI’I)

The motivation for the initial estimate 7 is that y,, —y, = 6"(\/(+1 —v()
(1</<n-1). Since complete sums are invariant to ordering, we can drop the
ordering and use 7, rather than tN(,.). After using the initial estimate of 7,

Z:M (6.1.10)
SO

we obtain the initial estimates of ¢, and f,; &, and ,Ei , respectively.

The modified likelihood estimators obtained as in the previous chapter are

. )
0, =y->.0,u;,, 0=K+D& and (6.1.11)
J=1

&:{B+1/i32+4nci}/(2 n(n—q-1)) (6.1.12)

where
q 2 N\ ’
Bzz_pzai{yi_)%_szMij}’ C= ]fzﬂi{yi_)ﬁ_szMij} ’
j=1

K=(Mom)'(MoY)=(K,) . D=(MoM)'(Mar)=(D,) .

gxl ’

M, =u, —z?j, M= (Mij) , P = diag(ﬁ,.)m, a= diag(a,.)m,

nxq

)_A}: By ’21:5; andﬁj:iﬂiuij iﬂi(lﬁiﬁn,lﬁjﬁq).
; i=1 i=1 i=1

We calculate the MMLEs in two steps: First, we assume that all Qj

(1 <j< q) are equal and calculate the MMLEs éoo, 0 0 (1 <j< q) and &, from
(6.1.10). Second, we use these MMLEs to calculate
~ q ~
Vi =0y — Z '91'0”17

~ =1
t = —!
o)

i

which lead us to the final MMLEs.
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6.1.1 Simulations

To study the efficiency and robustness of the MMLEs (6.1.11)-(6.1.12), we
consider the twelve distributions in section 2.2 with £ =0. The LSEs (6.4)-(6.5)

are also computed for the same models. Models (1)-(9) have finite mean and
variance, while model (10) has finite mean but non-existent variance, and models
(11)-(12) have non-existent mean and variance. The random errors generated from

models (6)-(9) were divided by suitable constants to make their variances equal to
o’ . We generated the nonstochastic design variables x;’s (1 <i<nl<j< q)
from a uniform distribution and, for illustration, we consider g =4 explanatory
variables. We generated N = [100,000/ n] (integer value) samples of
independently distributed random errors of size n from each of the models (1)-
(12). Without loss of generality, we take 6, =0,6, =1 (1 <j< q), o =1. From the
resulting N values of the MMLEs and LSEs, we computed their means and

variances. The results are given in Table 6.1-Table 6.2 with » =20 and Table 6.3-
Table 6.4 with n=>50.
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Table 6.1: Simulated values of (I/c)Meanand (n/o”)Variance(in brackets) of

MMLEs and LSEs of 6,, 6, and o in multiple linear regression model where

random errors are assumed to come from a long tailed symmetric family; n =20.

Model éo 50 él 5{ & 152

1 0.001 0.002 0.997 0.998 0.977 0.986
[1.053] [1.040] [1.076] [1.084] [0.654] [0.657]

2 -0.003 -0.002 0.999 0.999 0.951 0.976
[0.966] [1.010] [0.977] [1.026] [0.756] [0.858]

3 0.003 0.002 1.001 1.002 0.936 0.972
[0.918] [1.003] [1.018] [1.115] [0.858] [1.137]

4 -0.001 -0.001 1.001 1.002 0.888 0.956
[0.843] [1.029] [0.815] [1.001] [0.941] [1.851]

5 -0.002 -0.003 1.003 1.003 0.796 0910
[0.636] [0.981] [0.671] [1.087] [0.906] [3.365]

6 0.000 0.000 1.000 1.000 0.956 0.984
[0.931] [0.985] [1.156] [1.306] [0.704] [0.847]

7 -0.003 -0.002 0.998 0.999 0.815 0.958
[0.584] [0.987] [0.908] [1.723] [0.712] [1.914]

8 -0.002 -0.002 1.004 1.004 0.950 0.974
[0.964] [1.003] [1.006] [1.067] [0.776] [0.899]

9 -0.002 -0.003 0.995 0.995 0.811 0.932
[0.661] [0.992] [0.703] [1.034] [1.098] [2.359]

10 -0.005 -0.003 1.004 1.019 1.640 2.340
[2.718]  [0.108B+02] [3.035] [0.119E+02] [5323]  [0.105E+03]

11 -0.001 -6.954 0.998 -5.305 2.598 55.561
[6.962] [0.460E+07] [7.658] [0.488E+07] [27.628] [0.792E+08]

12 0.007 -7.376 1.006 -1.841 3.529 60.486
[12.488] [0.350E+07] [14.649] [0.145E+07] [46.957] [0.783E+08]
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Table 6.2: Simulated values of (I1/o)Meanand (n/c”)Variance(in brackets) of

MMLEs and LSEs of 6,, € and 6, in multiple linear regression model where

random errors are assumed to come from a long tailed symmetric family; n =20.

Model 0, 0, 0, 6, 0, 0,

1 1.004 1.003 1.002 1.002 1.000 1.000
[1.031] [1.042] [1.027] [1.037] [1.037] [1.041]

2 0.995 0.995 0.995 0.995 1.000 0.999
[1.006] [1.060] [0.982] [1.038] [0.983] [1.034]

3 1.004 1.004 0.998 0.997 1.000 1.000
[0.988] [1.101] [0.957] [1.059] [0.933] [1.030]

4 0.999 0.997 1.003 1.002 0.997 0.997
[0.849] [1.067] [0.828] [1.031] [0.840] [1.056]

5 1.005 1.005 0.998 0.998 1.000 1.000
[0.682] [1.066] [0.640] [1.054] [0.642] [1.018]

6 0.998 0.999 0.998 0.999 0.995 0.996
[0.980] [1.063] [0.799] [0.814] [0.957] [1.042]

7 1.001 1.001 1.000 1.000 0.996 0.996
[0.648] [1.089] [0.435] [0.476] [0.655] [1.108]

8 1.000 1.000 0.997 0.997 1.004 1.004
[0.983] [1.047] [1.004] [1.063] [0.979] [1.040]

9 0.999 0.999 1.000 1.000 0.998 0.997
[0.675] [1.034] [0.685] [1.032] [0.683] [1.010]

10 0.999 0.996 0.998 0.987 1.011 1.003
[3.029]  [0.109E+02]  [2.862]  [0.998E+01]  [2.749]  [0.116E+02]

11 1.010 9.419 1.001 -8.504 0.992 -3.960
[7.966]  [0.627E+07]  [7.223]  [0.920E+07]  [7.524]  [0.312E+07]

12 1.009 3.692 1.019 6.233 0.996 5.328
[14.804] [0.212E+07] [12.739] [0.330E+07] [13.103] [0.112E+07]
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Table 6.3: Simulated values of (I/o)Meanand (n/o”)Variance(in brackets) of

MMLEs and LSEs of 6,, 6, and o in multiple linear regression model where

random errors are assumed to come from a long tailed symmetric family; 7 =50.

Model éo 50 él 5{ & 152

1 0.004 0.004 0.998 0.998 0.972 0.993
[0.997] [0.986] [1.080] [1.078] [0.562] [0.565]

2 0.002 0.002 1.000 0.999 0.951 0.992
[0.922] [0.980] [1.006] [1.060] [0.638] [0.762]

3 -0.006 -0.004 1.004 1.004 0.933 0.993
[0.942] [1.067] [1.014] [1.173] [0.699] [1.139]

4 -0.004 -0.006 0.998 0.999 0.877 0.978
[0.767] [0.988] [0.848] [1.084] [0.794] [2.064]

5 0.003 0.003 1.001 1.001 0.777 0.935
[0.596] [0.955] [0.624] [1.090] [0.722] [4.803]

6 -0.005 -0.005 0.998 0.997 0.947 0.991
[0.911] [0.983] [1.090] [1.189] [0.565] [0.747]

7 -0.003 -0.004 0.998 0.997 0.787 0.969
[0.575] [0.995] [0.833] [1.457] [0.527] [1.866]

8 0.005 0.006 1.000 1.000 0.947 0.993
[0.957] [1.012] [1.045] [1.125] [0.655] [0.885]

9 -0.002 0.000 1.002 1.005 0.800 0.983
[0.595] [1.037] [0.676] [1.143] [0.930] [2.797]

10 -0.004 0.007 0.997 1.021 1.585 2.757
[2297] [0.478E+02] [2.661] [0378E+02] [3.843]  [0.207E+04]

11 -0.006 -0.206 0.995 1.567 2.386 34.902
[5.105] [0.299E+05] [5.605] [0.120E+05] [17.809] [0.145E+07]

12 0.004 1.638 1.006 1.329 3.266 65.861
[8.954]  [0.432E+06]  [9.799]  [0.922E+06] [31.050] [0.209E-+08]
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Table 6.4: Simulated values of (I1/o)Meanand (n/o”)Variance(in brackets) of

MMLEs and LSEs of 6,, € and 6, in multiple linear regression model where

random errors are assumed to come from a long tailed symmetric family; n =50.

Model 0, 0, 0, 6, 0, 0,
1 1.000 1.000 1.000 1.000 0.999 0.999
[1.067] [1.074] [1.191] [1.196] [1.058] [1.058]
2 1.004 1.003 0.999 0.998 1.001 1.000
[0.946] [1.011] [0.976] [1.037] [0.993] [1.068]
3 0.996 0.995 1.005 1.006 1.003 1.003
[0.958] [1.081] [1.008] [1.157] [0.934] [1.065]
4 1.001 1.000 0.999 0.999 0.999 0.999
[0.812] [1.033] [0.772] [1.000] [0.878] [1.134]
5 1.000 1.005 0.998 1.000 1.002 1.001
[0.618] [1.107] [0.620] [0.973] [0.642] [1.075]
6 1.003 1.003 1.001 1.000 0.998 0.998
[0.905] [0.971] [1.071] [1.140] [1.302] [1.485]
7 0.995 0.996 0.996 0.994 0.995 0.994
[0.595] [0.988] [0.754] [1.348] [1.030] [2.051]
8 0.998 0.996 1.002 1.003 0.997 0.998
[1.031] [1.118] [1.055] [1.150] [1.038] [1.121]
9 1.003 1.005 1.004 1.004 0.997 0.997
[0.614] [1.031] [0.619] [1.050] [0.649] [1.103]
10 0.997 0.981 0.998 1.031 0.999 0.999
[2.516]  [0.389E+02]  [2.342]  [0.396E+02]  [2.591]  [0.219E+02]
11 1.011 0.683 1.005 0.698 0.992 0.921
[5.719]  [0.334E+05]  [6.129]  [0.352E+05]  [5.271]  [0.200E+05]
12 1.008 2.221 0.983 -0.410 1.001 -1.680

[9.216]  [0.193E+06]  [9.570]  [0.706E+06] [10.117]  [0.678E+06]

As in simple linear regression, MMLEs are observed to be considerably
more efficient than the LSEs except for the normal distribution in which case they
are a little less efficient. For models (10)-(12), the variances of the LSEs are much

larger than the MMLEs. Regarding the bias, MMLEs and LSEs of 8, and 6 are

both unbiased for models (1)-(10). However, the LSEs are not even unbiased for
models (11) and (12). MMLEs are unbiased (almost) for all distributions (1)-(12)
and have finite variances. This is because they have bounded influence functions;

see Appendix C.
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6.2 Generalized Logistic Distributions

Consider now the situation when errors have one of the distributions in the

family
re=; a f:f;_(f/;i)}bﬂ ,  Tee<e,
where o is scale and b is shape parameter.
The maximum likelihood equations are
%:g_@gg(zi):o, (6.2.1)
aalg?:égu!j—(bgl)guyg(zi)zo (1<j<q) (6.2.2)

and

i=l1

X z(l/n)ixii and s, =\/(l/n)i(xij -x,) (1<i<nm1<j<gq).

To work out the MMLEs, we use as usual the linear approximation

elzy)za, + Bz, (<i<n); (6.2.4)
a, =(l+e’ +te’)/(l+et)2, B, :e’/(1+e’)2 =1, =E{Z(i)}, 1<i<n.
Since we do not know the value of b, we estimate (b+1) by l/ (l—ﬁ)

(1<i<n) where
Ty, w=e /el )=1fl+eT) 1<i<n. (625

Refer to section 3.2 for details.
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As in case of long tailed symmetric family, we assume 6, (1 <j< q) are

all equal to find an initial estimate of 7, :

~  ya-T,-Tyvy | z .
Al ; S =, (1<i<n) (6.2.6)
0 J=
where
_ . . _ Yo =V _
T, = median{r,}; r, == —2L (1<0<n-1) (6.2.7)
Vi =V
is the initial estimator of 9,
T, = median{W,}, w, = y, =T, v, 1<i<n), (6.2.8)
is the initial estimator of the intercept 6, and
S, =1.483median{| W, - T, |} (6.2.9)

is the initial estimator of o ; (y [i],v[i]) are the concomitants of the ordered variates
Z(i) = (y[l] —G‘V[i] —00)/0' (1 <i< I’l)

Dropping the ordering symbol,
~_yi—T, =Ty,

t

6.2.10
; 5. ( )

Replacing ¢, by 7 , we obtain the initial estimates of «, and f,, namely, @, and

~

B,

The solutions obtained by wusing the linear approximation

g( )E ﬁ (1<i < n) are the following MMLEs:

q
y=>0u, +(A/m)é, 0=K +Dé& and (6.2.11)

Jj=1

&:{B+1/i32+4nci}/(2 n(n—q-1)) (6.2.12)

where
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2
n . q n N q
B:(b-l-l)ZAl{yl _)_}_ZK_,'M;)}’ C:(b+1)2ﬂz {yz _y_szMij} )
i=l J=1 i=l j=1
j)qxl’

I
S

K=(Mom)'(M0Y)=(K,) . D=(MOM)'(MAY)
M, =u; —it;, M= (sz)nxq’ p = diag(p;),,

A =+ —a, A=Y A, , A=diag(A,),,

i=1

5= 4y /Y5 andi =S pu, [ p (1<i<nl<j<q).
i=1 i=1 i=1 i=1

A

Here, 6, is estimating
7 = 6, + scaled median of the error distribution.

In order to be able to compare LSEs and MMLESs, we define the LSEs of §, and

o respectively as follows:

7=y5-{¥(b)-Y(1)}& and &=5,/ ¥ (B)+¥().  (6.2.13)
Therefore, 7 and 7 are estimating -0.777, 0, 1.056, 2.174, 2.819, and 3.268 for
b=0.5,1,2,4, 6 and 8, respectively.
We calculate the MMLEs in three steps: First, we obtain the initial MMLEs
éoo, éjo (1 <j< q) and &, by assuming that all 6’j (1 <j< q) are equal. Second,

we use these initial MMLESs to calculate

. Q.
Vi =6 — 2‘910“47
j=1

O,

and the new MMLEs. Finally, we use these new MMLEs to carry out one more
iteration and obtain the final MMLEs.
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6.2.1 Simulations

To study the efficiency and robustness of the MMLESs (6.2.11)-(6.2.12), we

generated N = [100,000/ n] (integer value) samples of independently distributed
random errors e, of size n from generalized logistic distribution for the shape

parameter b = 0.5, 1, 2, 4, 6 and 8. Remember that different values of b
characterize different types of distributions. When »<1 and 5>1, the distribution
becomes negatively skewed and positively skewed, respectively, while for b=1, the

distribution becomes symmetric and is the well known logistic distribution. The
random errors e, were multiplied by [2‘}"(1)/ {‘P'(b)+ ‘P'(l)}]m. Without loss of
generality, we assume that 6, =0,6, =1 (1 <j< q) and o =1. We generated the
nonstochastic design variables x,’s (1 <i<nl<j Sq) from a uniform

distribution and, for illustration, g =4 explanatory variables are considered. The
LSEs (6.4) and (6.2.13) are also calculated for different values of shape parameter
b. The means and variances of the resulting N values of MMLEs and LSEs are

given in Table 6.5-Table 6.6 with n =20 and Table 6.7-Table 6.8 with n=50.

Table 6.5: Simulated values of (I1/o)Meanand (n/o*)Variance(in brackets) of
MMLEs and LSEs of 7, 6, and o in a multiple linear regression model for

generalized logistic distribution with shape parameter b; n=20.

A ~

b 7 7 6, 6, & &
0.5 0.853  -0.906  0.982 0.985 0.945 0.948
[3.319]  [3.430]  [3.103]  [3.418]  [0.890]  [1.030]
1 0.003  -0.004  0.996 0.997 0.987 0.977
[3.434] [3471] [3.249] [3.442] [0.897]  [0.940]
2 1.090 1.126 0.995 0.997 1.000 0.990
[3.629]  [3.616] [3.745]  [3.968]  [0.970]  [1.037]
4 2.245 2.299 0.985 0.997 0.999 0.991
[3.764]  [3.785]  [3.284]  [3.513]  [0.983]  [1.101]
6 2.885 2.945 1.001 1.005 0.987 0.985
[3.749]  [3.790]  [3.113]  [3.364]  [0.978]  [1.146]
8 3.350 3412 1.002 0.993 0.990 0.989

[3.664]  [3.705]  [3.893]  [3.963]  [1.031]  [1.203]
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Table 6.6: Simulated values of (I/c)Meanand (n/c”)Variance(in brackets) of

MMLEs and LSEs of 6,, 6 and 6, in a multiple linear regression model for

generalized logistic distribution with shape parameter b; n=20.

A ~ A ~ A ~

b 0, 0, o, o, 0, 0,
0.5 0.989 0.986 1.005 0.998 0.994 0.997
[2.981]  [3.327] [2.990] [3.356]  [3.042]  [3.417]
1 1.004 1.002 0.994 0.994 0.995 0.993
[3.585]  [3.825] [3.279] [3.409]  [3.473]  [3.661]
2 0.996 0.996 1.004 1.004 1.011 1.010
[3.353]  [3.522] [3.776] [4.071] [3.362]  [3.587]
4 0.996 0.995 1.002 1.000 1.011 1.009
[4.630]  [4.983] [3.557] [3.822]  [5.128]  [5.541]
6 0.998 1.005 1.003 1.011 0.996 0.993
[3.205]  [3.454] [3.334] [3.613] [3.127]  [3.405]
8 0.988 0.994 0.990 0.991 1.001 1.005

[3.989]  [4.364]  [5.757]  [5.577]  [4.940]  [5.036]

Table 6.7: Simulated values of (1/c)Meanand (n/o*)Variance(in brackets) of
MMLEs and LSEs of 7, 6, and o in a multiple linear regression model for

generalized logistic distribution with shape parameter b; n = 50.

b ¢ 7 6, 0, % G
0.5 -0.804 -0.886 0.984 0.982 0.948 0.966
[3.371]  [3.391]  [2.728]  [3.174]  [0.767]  [1.023]
1 0.006 0.003 1.007 1.005 0.987 0.985
[3.780]  [3.741]  [3.465]  [3.700]  [0.775]  [0.839]
2 1.089 1.143 1.008 1.009 1.010 1.007
[3.930] [3.773]  [3.109]  [3.379]  [0.830]  [0.995]
4 2.204 2.290 0.996 0.999 1.008 1.013
[3.750]  [3.693]  [3.031]  [3.400]  [0.866]  [1.108]
6 2.853 2.949 0.998 0.996 1.002 1.010
[3.727]  [3.769]  [3.626]  [4.011]  [0.867]  [1.135]
8 3.291 3.391 1.011 1.009 1.002 1.014

[3.605] [3.519] [3.127] [3.552]  [0.900]  [1.187]
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Table 6.8: Simulated values of (I/o)Meanand (n/o”)Variance(in brackets) of
MMLEs and LSEs of 6,, 6 and 6, in a multiple linear regression model for

generalized logistic distribution with shape parameter b; n = 50.

A ~ A ~ A ~

b 0, 0, o, o, 0, 0,
0.5 0.995 0.997 0.997 0.998 0.994 0.997
[2.804] [3.264] [3.017] [3.511]  [3.200]  [3.686]
1 1.007 1.007 0.999 1.000 1.004 1.004
[3.085]  [3.439] [3.118] [3.367]  [3.502]  [3.754]
2 0.999 0.997 0.997 1.000 0.996 0.997
[3.243]  [3.533] [2.975] [3.114]  [3.249]  [3.420]
4 1.003 1.003 1.002 1.004 0.998 0.998
[2.992]  [3.415] [2.976] [3.300]  [3.115]  [3.422]
6 1.010 1.007 1.000 1.004 0.996 0.993
[3.033]  [3.382] [3.832] [4.186]  [4.624]  [5.136]
8 0.998 0.994 0.995 0.994 1.005 1.001

[2.976] [3.321] [3.010] [3.389] [3.157] [3.596]

The results match those for simple linear regression model. Both the
MMLEs and LSEs are unbiased (almost). However, the MMLESs are more efficient.

They have also bounded influence functions; see Appendix C.
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CHAPTER 7

APPLICATIONS

In this chapter, we consider a few real life data sets to illustrate the
usefulness of the MMLEs developed in this thesis. We examined a large number of
data sets given in Hand et al. (1994); some of them are reproduced in Tiku and
Akkaya (2004). We found very few data sets which can appropriately be modeled
by a normal distribution. This agrees with the findings of Pearson (1931), Geary
(1947), Elveback et al. (1970) and Spjetvoll and Aastveit (1980). We consider data
sets which have specifically long-tailed symmetric or skew distributions. It is
known that locating the underlying distribution exactly from a sample is not
possible. However, by locating a distribution in reasonable proximity to the true
distribution, MMLEs are known to give very good results for estimating the
parameters of the underlying distribution (Tiku, 1967, 1968a,b, 1980; Tiku et. al,
1986, Islam et. al, 2001; Tiku et al, 2001). Constructing Q-Q plots or using
goodness-of-fit tests help in identifying the shape parameter of the underlying
distribution. Such techniques have been used in Tiku and Akkaya (2004).
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Example 7.1: Cushny and Peebles prolongation of sleep data

The data of Cushny and Peebles (1905) measure the prolongation of sleep

by two soporofic drugs as ordered differences:
y:00 0.8 1.0 1.2 13 13 14 1.8 24 4.e.

Under the normality assumption, the ideal estimates of the population mean

and standard deviation are
y=1.58 and s =1.230.
However, Tiku and Akkaya (2004) show that normality assumption is not valid for
this data. Both Shapiro-Wilk test and Q-Q plot support this conclusion. Since the
Shapiro-Wilk test statistic is calculated as
W =0.781

and is smaller than the 5% significance level 0.830, normality assumption is not
appropriate. Surucu’s (2008) test of normality is in agreement with that of Shapiro-
Wilk. With the help of Q-Q plots, Tiku and Akkaya (2004) concluded that the
Generalized Logistic with b = 8 is a plausible model for this data.

We simply assume that the data comes from the family of Generalized

Logistic distributions and calculate the new MMLEs f and & given in Chapter 3.
Note that /2 is estimating the median

median = {,u —In(2"" -1) 0}
while & is estimating the scale parameter o .

We also calculated the corresponding LSEs as follows:

fi=5-\W(b)-w()[& and &=/ (5)+w)

where b is the estimator of the shape parameter b given by {(1 —%)_l —1} (see

Section 3.2 for details).

The results are given below:

~n ~ s ~

H H o (o
1.301 1.427 0.615 0.710

It is observed that the LSEs and MMLEs are in league. We have already
illustrated that 4 has smaller bias than zi and the MMLEs are jointly more

efficient tahn the LSEs.
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Example 7.2: Box-Cox data

The Box and Cox (1964, p.220) data forms a 3x4 factorial experiment with
four observations x, (1 <i<3,1<j<4,1<]< 4) for each combination of two
factors. In this experiment, the survival times (10 hour units) of 48 animals exposed
to two factors are recorded. One factor has 3 levels depending on the type of poison

used while the other represents a treatment with 4 different levels. The allocation of

animals is completely randomized.

Table 7.1: Box-Cox data.

Treatment
Poison A B C D

0.31 0.82 0.43 0.45

I 0.45 1.10 0.45 0.71
0.46 0.88 0.63 0.66

0.43 0.72 0.76 0.62

0.36 0.92 0.44 0.56

I 0.29 0.61 0.35 1.02
0.40 0.49 0.31 0.71

0.23 1.24 0.40 0.38

0.22 0.30 0.23 0.30

i 0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31

0.23 0.29 0.22 0.33

The Box-Cox data is known to have interaction (Schrader and McKean,
1977, p.889 and Brown, 1975). However, the F statistic based on the LSEs does not
reject the hypothesis of “no interaction effects” although the data is known to have
interaction. This perhaps results from the wrongful assumption of normality.

With the help of a Q-Q plot of the residuals, Senoglu and Tiku (2001)
concluded that the underlying distribution is Generalized Logistic with shape
parameter b = 0.5. In addition, they applied multi-sample goodness-of-fit test based
on sample spacings of Tiku (1988, pp. 2382-83) and concluded that the assumption

of the Generalized Logistic with 5 = 0.5 is not rejected at 10% significance level.
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However, we do not assume any particular pre-determined value of 5. We estimate

it from the data. The assumed two-way classification fixed effects model is

Va=H+Y,+6, +1,+e, (1<i<3,1<j<4,1<1<4).

The new MMLEs given in section 4.2.3 and the LSEs of the parameters in

this two-way classification fixed effects model are calculated and given below:

Table 7.2: The Adaptive MMLEs and the LSEs of Box-Cox data.

A~ ~ ~

M M o o
0.476 0.475 0.092 0.084
Treatment 5‘ j 5‘ ;
1 0145 -0.153 Poison Vi 2
2 0.178 0.184 1 0.144 0.142
3 -0.091 -0.089 2 0.050 0.057
4 0.056 0.058 3 -0.199 -0.199
4 3
251‘ = 0.000 0.000 271‘ = -0.002 0.000
Jj=1 i=1
Treatment
A B C D
Posion T T T T T T T T
I -0.031 -0.034 0.046 0.058 0.013 0.021 -0.027  -0.045
11 -0.055 -0.056 0.057 0.067 -0.059  -0.068 0.047 0.057
111 0.085 0.090 -0.120  -0.125 0.049 0.048 -0.013  -0.013
3
ZTU = -0.001 0.000 -0.017 0.000 0.003 0.000 0.007 0.000

Again, the modified maximum likelihood and the least squares estimates are
close to one another. The former are, however, more precise since thay are jointly

more efficient.
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Example 7.3: Brownlee’s stack loss data

Brownlee (1965, p. 454) presented the following data obtained from 21

days of operation of a plant for the oxidation of ammonia to nitric acid.

Table 7.3: Brownlee’s stack loss data.

Air Flow Water Acid Stack loss
Temperature Concentration
X X, X3 y
80 27 89 42
80 27 38 37
75 25 90 37
62 24 87 28
62 22 87 18
62 23 87 18
62 24 93 19
62 24 93 20
58 23 87 15
58 18 80 14
58 18 89 14
58 17 38 13
58 18 82 11
58 19 93 12
50 18 89 8
50 18 86 7
50 19 72 8
50 19 79 8
50 20 80 9
56 20 82 15
70 20 91 15

The response variable y, called “stack loss”, is 10 times the percentage of

the ingoing ammonia to the plant that is lost. A linear model is assumed, that is,
Y, =6,+0u,; +0,u,, +0u,, +e, (1< <20),
u; = (xij —)_ci)/ s, (i =1,2,3);

x, is “air flow” representing the rate of operation of the plant, x, is the

temperature of the cooling water circulated through the coils in the absorption

tower for the nitric acid, and x; is the concentration of acid circulating.
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Examining the Q-Q plot of the residuals obtained by using the LSEs (see
Andrews, 1974, p.530), it is seen that the smallest residual corresponding to the
observation (y=15,x, =70,x, =20,x, =91) is grossly anomalous. In fact,
Andrews (1974) stated that after exclusion of this observation, the probability plot
of residuals does not show any significant anomalies. Therefore, it is decided not to
include this observation and base the estimation on the remaning n = 20
observations. The Q-Q plot of the 20 residuals indicates a long-tailed symmetric

distribution. As a plausible value for the shape parameter p, Tiku and Akkaya

(2004) suggest p = 2 which maximizes ln]:, where L is the value of L with
parameters equated to the corresponding MMLEs. We do not assume any particular
value of p and calculate the MMLEs (6.1.11)-(6.1.12) and LSEs (6.4)-(6.5) given
in Chapter 6. They are given below:

Table 7.4: The Adaptive MMLESs and the LSEs of Browlee’s stack loss data.

MMLE LSE

17.436 17.650
8.077 7.915
2.611 2.573

-0.771 -0.562
2.392 2.569

ST S

It can be seen that the LSEs and MMLEs are close to one another.

However, the MMLE of &, indicates a more potent effect of the acid concentration.

The latter are, however, more precise as shown in Chapter 6.
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CHAPTER 8

CONCLUSION

In this thesis, following Tiku and Surucu (2009), we have given a new
innovation to MMLESs so that we can use them for machine data processing. They
have bounded influence functions and we will call them “new” MMLEs. The
question arises how good are these estimators as compared to the “old” MMLEs
given below for ready reference.

For the long-tailed symmetric family (2.1), the old MMLEs of x# and O

arc

n

iy =(1m)Y. B x [m =Zn‘,/3ij and 6, = {B+1/i32 +4nci} 2n; (8.1)

i=l
B= (Zp/k)zai(x([) — fi,) and C = (Zp/k)Zﬂi(x(i) _1&0>2 .
i=1 i=1
The coefficients &, and S, are given by
o, =/ K)i, 1+ (U | and B ={1-(UK) {1+ . 382)

If §,<0, «, and p, are replaced by ¢, and f; respectively:

o =(UR)E 1+ UK and B =1/{1+U/K)R ) (8.3)

this is done to ensure that & is always real and positive. Also, the divisor 27 in
(8.1) may be replaced by 2,/n(n —1) as a bias correction. Here, we have used the

divisor 2n as in Tiku et. al (2009).
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Tiku and his collaborators (Tiku and Akkaya, 2010; Tiku et al., 2009; Islam
and Tiku, 2009; Tiku and Senoglu, 2009; Tiku et al., 2008; Akkaya and Tiku,
2008) contend that for an assumed distribution (having finite variance) and its
plausible alternatives, the old MMLEs have no or negligible bias and are highly
efficient (in terms of having smaller variances). Assume that the underlying

distribution is long-tailed symmetric (2.1) with p =3.5. Out of the twelve models

considered in section 2.2, plausible alternatives would be

(1), (2), (3) is the true model, (4), (6) and (8). (8.4)

Given in Table 8.1 are the simulated values (based on [100,000/ n] Monte
Carlo runs) of the means and variances of the MMLEs of x# and o . From these
values, we conclude that for an assumed distribution (having finite variance) and its
plausible alternatives, one should prefer the old MMLEs because (i) both £, and
&, have no or negligible bias and (ii) z, is as efficient as the new /. The new &

has of course smaller variance but, unfortunately, it inherits substantial bias.
Correcting for bias would pose no problem if it was known but it is not because the

exact distribution is not known.
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Table 8.1: Means and nxVariances of the new and old MMLEs.

H o
Mean Variance Mean Variance
Model New Oold New Old New Old  New Old
n=10 1 -0.01  -0.01 1.06  1.03 0.93 1.04  0.58 0.64

2 0.00 0.00 095 094 0.90 1.03  0.66 0.80
3 0.00 0.00 090 0.90 0.87 1.01 0.69 094
4 0.00 -0.01  0.77 0.81 0.81 097  0.69 1.20
6 0.00 0.00 095 094 0.89 1.02 059 073
8 0.00 0.00 095 095 0.89 .02 0.63 0.79

n=20 1 -0.01  -0.01 1.01 1.01 0.96 1.06 056  0.64
2 0.00 0.00 094 093 0.92 1.03 065 0.77
3 0.00 0.00 090 0.90 0.89 1.01 0.64 0.1
4 0.00 0.00 0.75 0.77 0.83 097 0.65 1.10
6 0.00 0.00 098 097 0.92 1.03 057  0.67
8 0.00 0.00 091 0091 0.92 1.03 064 0.77
n=>50 1 0.00 0.00 1.08  1.08 0.97 1.08 054 0.63
2 0.00 0.00 094 094 0.93 1.05 0.66 0.82
3 0.00 0.00 0.87 0.89 0.90 1.03  0.67 0.96
4 0.00 0.00 0.73  0.78 0.84 099 0.68 1.32
6 0.00 0.00 096 095 0.93 1.05 056  0.71
8 0.00 0.00 093 093 0.93 1.05  0.60 0.78
n=100 0.00 0.00 1.01  1.00 0.97 1.07  0.53 0.63

1

2 0.00 0.00 0.88 0.88 0.94 1.05  0.61 0.72
3 0.00 0.00 092 093 0.91 1.02  0.67 0.86
4 0.00 0.00 0.70  0.73 0.84 098 0.68 1.29
6 0.00 0.00 096 0.96 0.94 1.04 054  0.64
8 0.00 0.00 090 0.89 0.94 1.04 060 0.71

Consider now the models (5), (7), (9), (10), (11), and (12) which represent
strong deviations from the assumed distribution ( p =3.5in (2.1)). Given in Table
8.2 are the simulated values similar to those in Table 8.1 . We reproduce the values
only for n =10 and 50 for conciseness. Realize that the models (5), (7) and (9)
have finite variances, model (10) has finite mean but nonexistent variance and
models (11) and (12) have nonexistent means and variances. It is clear that the old
MMLEs should not be used for models (10)-(12). For models (5), (7) and (9), the
old MMLEs may be used: z, is unbiased and ¢, has negligible bias although, as

compared to the new MMLEs, /i, has somewhat larger variances and &, has
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substantially larger variances. But, the new MMLE & has substantial bias. For
machine data processing, however, the new MMLESs should be used with the clear
understanding that & can have substantial bias particularly for distributions of
extreme type. If efficient estimation of only the location parameter x is intended,
the new MMLE & should always be used. It is indeed pleasing to note that the new

MMLEs are overall more efficient than Huber M-estimators.

Table 8.2: Means and nxVariances of the new and old MMLEs for models

representing strong deviations from the assumed distribution.

H o
Mean Variance Mean Variance
Model New Old New Old New Old New Old
n=10 5 0.00 0.00 0.58 0.67 0.71 0.90 062 195
7 0.00 0.00 0.55 0.64 072 094 047 1.19
9 0.00 0.00 0.59 0.70 072 092 0.68 1.64
10 0.00 0.01 2.18 4.80 1.41 2.17 3.34 *
11 0.01 -0.12 477 * 207 1621 14.15 *
12 0.00 0.51 9.53 * 2.85 2505 23.97 *
n=>50 5 0.00 0.00 0.57 0.68 0.73 0.94 0.55 1.89
7 0.00 0.00 0.53 0.61 0.75 0.95 042 1.03
9 0.00 0.00 0.57 0.65 0.75 0.94 059 1.63
10 0.00 -0.01 2.00 3.10 144 224 2.85 *
11 0.00 0.02 3.59 * 1.95 2223 9.44 *
12 0.01 0.17 7.15 * 2.77 29.77 16.66 *
* Represents a very large value.
To test the null hypothesis H, : £ = 0, the test statistics based on the old and
new MMLEs are

T, =m ji,/6, andT =m f1/6 (8.5)

respectively; o/m is the minimum variance bound for estimating #; for p=3.5,

m=1.167n. Large values of 7, (and T) lead to the rejection of H, in favor of

H, :u>0.
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Since 1, is a linear function of order statistics and &, converges to its
expected value E( &0) as n becomes large, the asymptotic null distribution of 7 is

normal with mean zero. Its asymptotic standard deviation is

SD, =\/1.167”VL(”°). (8.6)

{£(5,)°

The asymptotic null distribution of 7 is also normal because & converges

to its expected value and £ is the mean of bounded iid variables. Under H,,

E(T ) = 0. The standard deviation of T 1is

sp- |MVarls) (‘? : (8.7)
{E(5)}

The percentage points of the null distributions of 7; and 7 can be
approximated by those of normal N(0,1) if SD, and SD are 1 (or close to 1).

Given below are the values of the standard deviations of 7 and T , respectively.

Table 8.3: The values of the standard deviations of 7 and 7;; SD and SD,,

respectively.
n=20 n=150 n =100

Model  SD  SD, SD 8D, SD  SD,
1 1.05 1.02 1.07 1.04 1.04 1.01
2 1.05 1.01 1.04 1.00 1.00 0.97
3 1.07 1.01 1.04 0.99 1.05 1.02
4 1.04 0.98 1.02 0.96 1.00 0.94
5 1.01 0.92 1.03 0.95 1.00 0.92
6 1.08 1.03 1.05 1.00 1.04 1.02
7 1.00 0.90 0.97 0.98 0.99 0.93
8 1.04 1.00 1.04 0.99 1.01 0.98
9 1.02 0.93 1.01 0.93 0.98 0.91
10 1.04 * 0.98 * 0.96 *
11 0.98 * 0.97 * 0.94 *
12 0.99 * 0.97 * 0.96 *
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The normal distribution N(0,1) does indeed provide accurate approximations to

the percentage points for n>20. For n <20, Student’s t distribution with n—1
degrees of freedom provides accurate approximations to the percentage points of

the null distributions of 7, and T ; see also Tiku and Surucu (2009).

Simulations and asymptotic mathematics reveals that for an assumed long-
tailed symmetric distribution (having finite variance) and its plausible alternatives,

the 7; test has somewhat higher power than 7 test. For others (e.g., those

considered in Table 8.2), the T test is somewhat more powerful. In machine data

processing, however, the T test should be used.

For the skew family of Generalized Logistic distributions, we have also
given a new innovation to the method of MML estimation. The method includes
estimation of the shape parameter from bounded emprical functions. We have
shown that the resulting estimators are more efficient than the least squares
estimators. This approach can perhaps be extended to other families of skew

distributions. That will be the subject matter of future research.

Besides single sample estimation and hypothesis testing, we have extended
the above methods to experimental design (one-way and two-way classification)
and linear and multiple linear regression. We believe that the methods can be
extended to more complex data structures, e.g., time series, autoregression,

multivariate data, etc.
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APPENDIX A

THE ASYMPTOTIC PROPERTIES OF /. AND &,

To evaluate the asymptotic properties of j_, we first note that as » tends to

infinity, w/n converges to its expected value (assuming that the variance of X is

finite). To evaluate the expected value of w and the variance of 4, we first note
that
1Y 1 (. 1 N
[[14—2*| d==Vkr| ST j--|/T(;) (=D (A.1)
S\ k 2 2
Asymptotically, 7, = E (T o ) = u for symmetric distributions. Consider the situation

when asymptotically S, = E (SO ) = o . For the family (1.6.1),

0 o ~(p+2)
lim- £ w, = () j(ulzz] dz

k

TERia l _l —0
Jﬁ[zjr(” 2j (A2)

:(p—;j(p+;j/p(p+l).

Clearly, E ( . ) = u . This follows from symmetry.

Now

n[E(w/n)] :
_o’ pp+l) I'(p) N - Z
' (P‘; 2(p+32 «/?F(;)r[p_;jjw [1 k j d



and

Thus,

(A.3)

o) plp+) =

(P2 321 )

4

2
(o2
n

We conclude that 4 is more efficient than the sample mean x for the family
(1.6.1). This is a very interesting result. Since B* is much smaller than nC and

B/\nC =0, 62 = C/n. Therefore,

© —(p+D) ® —-(p+2)
=c’2p Fp) I 1+—2° dz— | [ 1+—2° dz
o el
2 P 2
:p—1/2 2,
p+1 ’

. Ip—1/2 g
E ( . ); % o (lower bound since & is some what greater than C/n). (A.4)
p+

For p =16.5, (A.4) assumes the value 0.96c .

When E(S,)# o, the expressions for V() and E(é'f ) can be obtained from the

equation although the algebra is a little bit involved,

2(8,)= g(0)+(S, ~o)g (S s, - (A.5)
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For Tiku - Surucu estimator (2.1.1),

)

For p=16.5, (A.6) assumes the value 0.99c .

G~ (p_;) plp+1) _|p (A6)
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APPENDIX B

EMPRICAL INFLUENCE FUNCTION OF THE MMLEs

To show that the estimators developed in Chapter 3 have bounded influence

functions, we simply have to show that the i” terms in the expressions for m, A,,

K, D, B and C tend to zero as x, (equivalently, 7 ) tends to infinity.

From equation (3.3.2), it immediately follows that &, and Ei tend to zero

as 7, tends to infinity, Now,

SN U ~ =~
A_:Z ———Ww, r—a, = 0 as t, > o because w, > 1.
= U l l l

Because of equation (3.3.2), and ﬁ, being bounded between 0 and 1, all the i”
terms mentioned above tend to zero as 7, tends to « (or — o).
Given in Figure B.l is the emprical influence function of 4  for

illustration. It confirms the high breakdown of /.
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Figure B.1: Emprical influence function of 4z _,b=0.5.

Remark: It may be noted that 7, and S, also have bounded influence functions.

However, because of the low joint efficiency, they cannot be prefered over the

MMLEs developed in Chapter 3.
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APPENDIX C

THE ASYMPTOTIC PROPERTIES OF THE MMLEs

Lemma: For large n, the MMLESs are unbiased.

Proof: If 6, and 6, are statistics calculated from a random sample of size n, then

for large n (Kendall and Stuart, 1968)

el b |=E19) (C.1)
6,) E(6,

Consider the MMLEs given in (5.1.11) and note that for large p (Z 10)
I,=u and S, =0, (C.2)
because long tailed symmetric p-family is indistinguishable from normal N (0,1)

for p>10. Now,

1

<)

£

Since E(f,) (1<i<n) are all equal, it follows that E (ﬁ )E u =0. Similarly,

) ﬁinluﬁ(ﬂi), E(m)=Y E(5).

E(6, )=E(3)=0, ED)=0,E(6 )=E(K)=6 (C3)
and (see equation A.4 in Appendix A)

E(&)E\/(Zp/k)E(C)/n =6\/(2p/k)E(wizi2) (wl. =(l+zz/k)72, z, =el./0)

o /p_—l/z = 0960 for p=16.5;
p+1

this is, in fact, a lower bound since 6> > (2p/k)C/n.

1
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Lemma: For large n, the variance of 6, is

(p—3/2)(p—1/2)(p+1/2)(p+3/2)z”:u2

p(p+1)(p+2)(p+3) i=1 i 0.2 (C 4)
(p-1/2)(p+1/2)& 4 (p-1/2) ' '
p(p+1) Zu R

Proof: For large n,
E(8, )%E[Zﬂ,—u,-y,- j/E[Zﬂ,-uf ]
i=1 i=1

. P . —
smce u = —Z S, u, converges to its expected value u =0. Now,
m -

Eiﬂiuiyi :Eiﬂi”;(go +6u, +O_Zi) (Z; = ei/o-)
p p

= ali B’ + ai Pz, since (1/n)i pu, =u=u=0
i=l i=1 i=1

and

EZﬂi(ui—ﬁy ~EY fu}. (C.5)

[iﬂiuizij Zn:ﬂiuizi

+200E| =

i=1

Using the fact that Sz, is a symmetric function over (— 00, OO) and, for large n,

E(él/éz)z E(él) E(éz) we have

E(K?)= 07 +02{E[Zn:ﬂiuizlJ /E(Z,Buzj } (C.6)
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Thus,

Var(6, )= O-Z{E(iﬂiuizijz/E(Zn:ﬁiusz} (C.7)

(p—3/2)(p—l/2)(p+1/2)(p+3/2)z”:u2

_ plp+1)(p+2)(p+3) i
(p-172)(p+1/2) o (p-1/2) (.
o)) M EEu

from equations (A.2)-(A.6) in Appendix A.
For p = w, (C.4) reduces to

o’ Zuf =c’/n.
i=l1
For p=16.5, (C.4) reduces to

i 2
j= 2 i 2 o
=l o’ = =0’ =0.75—.

0.9420 u! +0.9403 ¥ Y u,u, o.940(iuf '

i=1 i#] =

0.705iu[2 0.705iu.2

The estimator él is considerably more efficient than the LSE 51, particulary for

large n.
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APPENDIX D

FORTRAN PROGRAM CALCULATING THE MMLEs AND THE
PROPOSED LSEs OF GENERALIZED LOGISTIC DISTRIBUTION FOR
ONE SAMPLE CASE

(¢)

Written by Ayca DONMEZ, 2009, Ankara

00

Calculates the LSEs and MMLEs of GL (Generalized Logistic) distribution
for different b values, where b is unknown. The MML estimators of GL
with one block case is studied. The sample size is n. The samples are
generated from GL with mu=0.0, sigma=1.0 and b=0.5, 1,2,4,6,8.

use numerical_libraries

0O000

(¢]

c Declaration of the variables and arrays

parameter n=10

parameter nn=Floor(100000/(n*1.0))
parameter sigma=1.0, mu=0.0
parameter iteration=5

parameter dpsiil=1.6449

real y(n), resultMML(3)

real T0,SO, preSO(n),median_preS0O
real mu_0, sigma_ O

real correction

real muMML(nn), sigmaMML(nn)
real mean_muhatMML, mean_sigmaMML
real var_muhatMML, var_sigmaMML

real xbardot(nn), s2(nn)

real mutilda(nn), sigmatilda(nn)
real mean_mutilda, mean_sigmatilda
real var_mutilda, var_sigmatilda

real estb, estbponeinvm(nn)
real Ezestb, Vzestb

c Declaration of the functions
real GL_rnd, GL_invcdf, GL_MML_iteration
real mymean, mysort, mymedian, variance, psidash

do I=1,6
if (I==1) then
b=0.5
elseif (1==2) then
b=1.0

elseif (1==3) then
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b=2.0
elseif (I1==4) then

b=4.0
elseif (I1==5) then

b=6.0
elseif (I1==6) then

b=8.0
endif

Ez=psi(b)-psi(1.0)
Vz=psidash(b)+psidash(1.0)
correction=sqrt(Vz/(2.0*psidash(1.0)))

C Loop for simulation runs, 100 k
do 100 k=1,nn

call GL_rnd(mu,sigma,b,n,y)

c TO is equal to median of y_i"s:
call mymedian(n,y,TO)

c S0=1.483*median{]y_i-TO|}
do j=1,n
preS0(j)=abs(y({d)-T0)
enddo

call mymedian(n,preS0O,median_preS0)
S0=1.483*median_preS0O

mu_0=TO
sigma_0=S0

c Iteration loop 200, ii
do 200 i1i=1,iteration

call GL_MML_iteration(y,n,mu_0O,sigma_0,resultvML)

mu_O=resultvML (1)
sigma_O=resultMML(2)

c End of iteration loop 200, ii
200 continue

muMML(K)=resultMML(1)/correction
sigmaMML(k)=resultMML(2)/correction

estbponeinvm(k)=resultvML(3)
c Note that estbponeinvm is the estimator of 1/(b+1).
c However, we need estimator of b:
estb=1/estbponeinvm(k)-1.0
Ezestb=psi(estb)-psi(1.0)
Vzestb=psidash(estb)+psidash(1.0)

Xbardot(k)=mymean(y,n)
s2(k)=variance(y,n,0)

sigmatilda(k)=sqrt(s2(k)/Vzestb)/correction
mutilda(k)=xbardot(k)-Ezestb*sigmatilda(k)
mutilda(k)=mutilda(k)/correction

Cc End of simulation runs, 100 k
100 continue

mean_muhatMML=mymean(muMML,nn)
mean_sigmaMML=(1/sigma)*mymean(sigmaMML,nn)
mean_muti lda=mymean(mutilda,nn)
mean_sigmatilda=(1/sigma)*mymean(sigmatilda,nn)
mean_estbponeinv=mymean(estbponeinvm,nn)

var_muhatMML=(n/(sigma**2.0))*variance(muMML,nn,1)
var_sigmaMML=(n/ (sigma**2.0))*variance(sigmaMML,nn, 1)
var_mutilda=(n/(sigma**2.0))*variance(mutilda,nn,1)
var_sigmatilda=(n/(sigma**2.0))*variance(sigmatilda,nn,1)
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1000 FORMAT (A6,F7.3,A5,A6,F7.3,A5)
1111 FORMAT (A10,13,A7,F3.1)

print 1111, *n = ",n," b = ",b

print*, "--e e "
print*, - muhatMML sigmahatMML -
print 1000, " ",mean_muhatMMmL,® *,* *, mean_sigmaMML
print 1000, * [",var_muhatMML,*] =, * [",var_sigmaMML, "] -
print*, "--e e "
print*, - mutildaLSE sigmatildaLSE -
print 1000, * ",mean_mutilda,® *," *, mean_sigmatilda, " *
print 1000, * [",var_mutilda,"] *, * [",var_sigmatilda,"] -~
print*, * -
c End of 1 loop for b.
enddo
stop
end
C _________________________________________________________________________
c Calculates the MML estimator of mu for GL (Generalized Logistic)
C distribution. y is assumed to be a column vector.
C _________________________________________________________________________
subroutine GL_MML_iteration(y,n,mu_0,sigma_0,output)
integer n
real y(n), output(3), mu_O, sigma_O
real sory(n), t(n), tt, te
real bet(n), alf(n), del(n)
real mm,KK,DD,BB,CC
real SIGdot, MUdot, estbponeinv
estbponeinv=0.0
do 21 i=1,n
t(1)=(y(i)-mu_0)/sigma_0
tt=t(i)
te=exp(t(i))
estbponeinv=estbponeinv+(te/(1.0+te))
alf(i)=(1.0+te+tt*te)/((1.0+te)**2.0)
bet(i) = te/((1.0+te)**2.0)
21 continue
c estbponeinv is the estimator of b/(b+1)
estbponeinv=estbponeinv/(n*1.0)
c To make estb be the estimator of 1/(b+1), we need:

estbponeinv=(1.0-estbponeinv)

do j=1,n
del(jJ)=alf(j)-estbponeinv
enddo

mm=sum(bet)
DD=sum(del)
KK=dot_product(bet,y)

KK=KK/mm
DD=DD/mm

BB=0.0
CC=0.0
do 25 j=1,n
BB=BB+(1.0/estbponeinv)*del (J)*(y(()-KK)
CC=CC+(1.0/estbponeinv)*bet()*((y()-KK)**2.0)
25 continue

S1Gdot=-BB+sqrt(BB**2_0+4.0*n*CC)
S1Gdot=S1Gdot/ (2.0*sqrt(n*(n-1.0)))
MUdot=KK-DD*S1Gdot

output(l)=MUdot

output(2)=SI1Gdot
output(3)=estbponeinv
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0O000

return

end

Calculates the derivative of psi(x) function with respect to x. It can

be estimated by a summation over i from zero to nfinity of the component
1/7(i+x-1)"2

Note that psi is already defined in Fortran with a real input. e.g. psi(2.0)

real function psidash(x)

real x
integer n

psidash=0.0

do 1=1,10000
psidash=psidash+1/((i+x-1.0)**2.0)

enddo

return
end

real function mymean(x,n)

real x(n), sumx
integer n

sumx=sum(x)
mymean=sumx/(1.0*n)

return
end

real function variance(x,n,true)
t=1 for dividing n, and t=0 for dividing n-1.

real x(n),mu, ss
integer n, true
real mymean

mu=mymean(Xx,n)

ss=0.0

do i=1,n
ss=ss+((x(i)-mu)**2.0)

enddo

variance=ss/(1.0*n-1.0)

if (true==1) then
variance=ss/(1.0*n)
endif

return

end

Sorts the data iIn array "x" as ascending order and stores this
sorted data in "sortedx”.

subroutine mysort(n,Xx,sortedx,true)

c t=1 for descending order t=0 for ascending order

real x(n),sortedx(n), ascen(n)
integer n, true

do i=1,n
sortedx(1)=x(i)
enddo

c Ascending order

do i=1,n
do j=i+l,n
if(sortedx(i)>=sortedx(j)) then
dummy=sortedx(i)
sortedx(i)=sortedx(j)
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sortedx(j)=dummy
endif
enddo
enddo

if (true==1) then
Descending order

do i=1,n
ascen(i)=sortedx(n-i+1)
enddo
sortedx=ascen
endif

return

end

Calculates the median of the data in array "x" and stores this
median in "med-.

subroutine mymedian(n,x,med)

real x(n),sortedx(n),med
integer n,half
real mysort

call mysort(n,Xx,sortedx,0)

half = floor(n/2.0)
med = sortedx(half+1)

if (2*half == n ) then
med = (sortedx(half)+med)/2.0
endif

return
end

Generates n number ofrandom numbers from GL (Generalized Logistic
Distribution) with parameters mu, sigma and b.

subroutine GL_rnd(mu,sigma,b,n,y)

real mu,sigma,b,u(n),y(n)
integer n

call rnun(n,u)

do i=1,n
y(i)=-sigma*log((1.0/u(i))**(1.0/b)-1.0)+mu
enddo

return
end

Generates the inverse cdf of a n number of a GL (Generalized Logistic
Distribution) where F(y) = alpha. The parameters of the distribution
are mu, sigma and b.

real function GL_invcdf(mu,sigma,b,alpha)

real mu,sigma,b,alpha,y

y=mu-sigma*log(alpha**(-1.0/b)-1.0)
GL_invcdf=y

return
end
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APPENDIX E

FORTRAN PROGRAM CALCULATING THE MMLEs OF THE
PARAMETERS OF MULTIVARIATE LINEAR REGRESSION FOR

o000

O000000000000000O000O0O0

(@]

LONG-TAILED SYMMETRIC DISTRIBUTION

Written by Ayca DONMEZ, 2009, Ankara

Calculates the MMLEs and LSEs of multiple linear regression
Y=thetaO+theta*U+e where e is assumed to come from the
distribution family of Long-Tailed Symmetric (LTS) with p>=2.
To evaluate the efficiency and robustness, different secenarios
are considered:

Scenario No.1: N(O,sigma”2)

Scenario No.2: LTS(mu, sigma, p) p=5.0
Scenario No.3: LTS(mu, sigma, p) p=3.5
Scenario No.4: LTS(mu, sigma, p) p=2.5
Scenario No.5: LTS(mu, sigma, p) p=2.0

Outlier Models:
Scenario No.6: (n-r) xi come from N(O,sigma”2) and

r(we do not know which) come from N(O,4*sigma™2)

Scenario No.7: (n-r) xi come from N(O,sigma”™2) and

r(we do not know which) come from N(O,16*sigma”2)

Mixture Models:
Scenario No.8: 0.90*N(0,sigman2)+0.10*N(0,4*sigma”2)
Scenario No.9: 0.90*N(0,sigman2)+0.10*N(0,16*sigma”2)
Scenario No.10: Student®s t distr. with 2 dof.
Scenario No.11l: Cauchy distribution
Scenario No.12: Slash (Normal/Uniform) distribution

use numerical_libraries

Declaration of the variables and arrays
parameter n = 20
parameter nn = floor(100000/(n*1.0))
parameter mu = 0.0, sigma = 1.0
parameter q = 4
parameter rtheta0 = 0.0
parameter iteration = 2

real rtheta(q,1l), mUrtheta(n,l),Urtheta(n)
real ybar, xj(n), xbar(q), s2(q), s(q)
real su(n), msu(n,l1l)

real y(n), my(n,1), x(n,q), u(n,q), er(n)
real r(n-1), w(n)

integer scenario

real p, cc, rr, urn(n), nor(n), correction
real SO, preSO(n),median_preS0O

real resultMML(g+2)
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real tu(q,n),tuy(q,1l),uu(q,q), invuu(qg,q)

real thetaO,sigma_O,thetaa, theta(q)

real mtheta(q,1),tmtheta(l,q),mUtheta(n,1l), Utheta(n)
real thetaOMML(nn), thetaMML(nn,q), sigmaMML(nn)

real mean_thetaOMML,mean_thetaMML(q) ,mean_sigmaMML
real var_thetaOMML,var_thetaMML(q),var_sigmaMML

real mUthetalSE(n,1),UthetalLSE(n),presigmaLSE(n)
real thetaOtildalLSE,thetatildaLSE(q),sigmatildalLSE
real mthetatildalLSE(q,1)

real thetaOLSE(nn), thetalSE(nn,q), sigmalLSE(nn)
real mean_thetaOLSE,mean_thetalLSE(Q) ,mean_sigmalLSE
real var_thetaOLSE,var_thetalSE(q),var_sigmalLSE

c Declaration of the functions
real LTS_rnd, LTS_invcdf, LTS Regmulti_MML_iteration
real mymean, mysort, mymedian, variance

1111 FORMAT (A5,13,A6,13,A15,12)
print 1111, * n =",n," q =",q, iteration =",iteration
print*, *-—— o b i it i b b i i i i i -

do jj=1.,q
rtheta(jj,1)=1.0

call rnun(n,xj)
x(=,31)=x3
xbar(§j)=sum(xj)/(n*1.0)
s2(jJj)=variance(xj,n,1)
s(i)=sart(s2(id)

do j=1,n
u@.Jiid=xxA.Ji)-xbar(did)/sGi)
enddo
enddo

su=sum(u,2)

do j=1,n
msu(j,1)=su()

enddo

mUrtheta=matmul (u, rtheta)

do j=1,n
Urtheta(j)=mUrtheta(j,1)

enddo

do k=1,12

scenario=k
correction=0.0

do 100 h=1,nn

if (scenario.EQ.1) then
c "Scenario No.1: N(O,sigman2)*
call rnnor(n,er)
do j=1,n
er(jJ)=mu+sigma*er(j)
enddo

elseif (scenario.EQ.2) then
c "Scenario No.2: LTS(mu, sigma, p) p=5.0"
p=5.0
call LTS _rnd(mu,sigma,p,n,er)
elseif (scenario.EQ.3) then
c *Scenario No.3: LTS(mu, sigma, p) p=3.5"
p=3.5
call LTS rnd(mu,sigma,p,n,er)
elseif (scenario.EQ.4)then
c "Scenario No.4: LTS(mu, sigma, p) p=2.5"
p=2.5
call LTS _rnd(mu,sigma,p,n,er)
elseif (scenario.EQ.5) then
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00

O0O00O0

"Scenario No.5: LTS(mu, sigma, p) p=2.0"
p=2.0
call LTS rnd(mu,sigma,p,n,er)
elseif (scenario.EQ.6) then
"Scenario No.6: (n-r) ei come from N(O,sigma”2) and
r(we do not know which) come from N(O,4*sigman2)*

To generate outliers first r of n observations are rescaled

by multiplying sample units with a constant c (c=2 or c=4)

to have observations from N(O,c*sigma). Note that the selection
of the first r units does not matter since the sample is
originally generated randomly.

call rnnor(n,er)

do j=1,n
er(jJ)=mu+sigma*er(j)

enddo

cc=2.0
rr=int(0.5+0.1*n)
do j=1,rr
er(J)=cc*er(g)
enddo
correction=(rr*(cc**2.0)+(n-rr))/(n*(1.0))

elseif (scenario.EQ.7) then
"Scenario No.7: (n-r) xi come from N(O,sigma”2) and
r(we do not know which) come from N(O,16*sigma™2")*

call rnnor(n,er)

do j=1,n
er(jJ)=mu+sigma*er(j)

enddo

cc=4.0
rr=int(0.5+0.1*n)
do j=1,rr
er(jJ)=cc*er(g)
enddo
correction=(rr*(cc**2.0)+(n-rr))/(n*(1.0))

elseif (scenario.EQ.8) then
“Scenario No.8: 0.90*N(0,sigman2)+0.10*N(0,4*sigman2)"

call rnnor(n,er)
call rnun(n,urn)

cc=2.0
do j=1,n
if (urn(J)-GT.0.90) then
er(jJ)=cc*er(j)
endif
enddo

correction=(0.90*n+0.10*n*(cc**2.0))/(n*(1.0))

elseif (scenario.EQ.9) then
"Scenario No.9: 0.90*N(0,sigman2)+0.10*N(0,16*sigman2)"

call rnnor(n,er)
call rnun(n,urn)

cc=4.0
do j=1,n
if (urn(J)-GT.0.90) then
er(jJ)=cc*er(j)
endif
enddo

correction=(0.90*n+0.10*n*(cc**2.0))/(n*(1.0))
elseif (scenario.EQ.10) then
"Scenario No.10: Student s t with 2 dof*
call rnstt(n,2.0,er)

elseif (scenario.EQ.11) then
"Scenario No.11l: Cauchy distribution®

call rnchy(n,er)
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elseif (scenario.EQ.12) then
"Scenario No.12: Slash (Normal/uniform) distribution®

To generate slash distribution, a random number “nor
from N(0,1) and a random number “u® from U(0,1)
are generated. The desired random number will be the

result of nor divided by u. This operation will be

repeated n times.

endif

call rnnor(n,nor)
call rnun(n,urn)
do j=1,n
er(J)=nor(g)/urn(g)

enddo

The outlier and mixture models should be bias corrected
for sigma. "correction® variable is defined as 0.0 at the
begining of the loop of scenarios (k) and it is only used
in outlier and mixture models (Scenario No.6 to No.9).
The corrections for sigmaMML are:

if (correction.GT.0.0) then

do j=1,n
er(J)=er(j)/sqrt(correction)

enddo

endif

do j=1,n
y()=rthetaO+Urtheta(j)+er(J)
my(d,1)=y()

enddo

do j=1,(n-1)
r@)=(yg+1-yG))/(su@+1)-su@@))

enddo

Initial estimator of theta:

call mymedian(n-1,r,thetaa)

theta=thetaa

do j=1,n

enddo

w(()=y()-thetaa*su(j)

call mymedian(n,w,theta0)

do j=1,n
presS0(j)=abs(w(j)-theta0l)

enddo

call mymedian(n,preSO,median_preS0)

S0=1.483*median{]y_j-thetal*x_j-thetaO|}
S0=1.483*median_preS0O

sigma_0=S0

do Il=1,iteration

enddo

call LTS _Regmulti_MML_iteration(y,u,n,q,theta0, theta,
sigma_0, resultMML)

thetaO=resul tMML(1)
theta=resultMML(2: (q+1))
sigma_O=resultMML(gq+2)

thetaOMML(h)=resul tMML(1)
thetaMML(h, :)=resultMML(2: (g+1))
sigmaMML(h)=resul tMML(q+2)

ybar=sum(y)
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ybar=ybar/(n*1.0)

tu=transpose(u)
uu=matmul (tu,u)
tuy=matmul (tu,my)

CALL LINRG (qg,uu,q,invuu,q)
mthetatildaLSE=matmul (invuu, tuy)
mUthetalSE=matmul (u,mthetatildaLSE)

UthetalSE=mUthetalSE(:,1)
thetatildaLSE=mthetatildalLSE(:,1)

thetaOtildaLSE=ybar

sigmatildalLSE=0.0
do j=1,n
sigmatildaLSE=sigmatildalLSE+
& (y(d)-ybar-UthetalLSE(j))**2.0
enddo

sigmatildaLSE=sqgrt(sigmatildaLSE/(n-g-1.0))

thetaOLSE(h)=thetaOtildalLSE
thetalSE(h, :)=thetatildaLSE
sigmaLSE(h)=sigmatildaLSE

c End of simulation runs nn
100 continue

mean_thetaOMML=mymean(thetaOMML,nn)
do jj=1.q
mean_thetaMML(Jj)=mymean(thetaMML(:,jj),nn)
var_thetaMML(j)=(n/(sigma**2_.0))*variance(thetaVML(:,jj),nn,1)
enddo
mean_sigmaMML=(1/sigma)*mymean(sigmaMML,nn)

var_thetaOMML=(n/(sigma**2_0))*variance(thetaOMML,nn,1)
var_sigmaMML=(n/ (sigma**2.0))*variance(sigmaMML,nn, 1)

mean_thetaOLSE=mymean(thetaOLSE,nn)
do jj=1,q
mean_thetalSE(jj)=mymean(thetalLSE(:,jj),nn)
var_thetalLSE(jJj)=(n/(sigma**2._.0))*variance(thetaLSE(:,jj),nn,1)
enddo
mean_sigmaLSE=(1/sigma)*mymean(sigmaLSE,nn)

var_thetaOLSE=(n/(sigma**2.0))*variance(thetaOLSE,nn,1)
var_sigmaLSE=(n/(sigma**2.0))*variance(sigmaLSE,nn,1)

print*, - thetal thetal
& sigma "
print*, “Model MML. LSE MML. LSE
& MML. LSE__*

1100 FORMAT (15,F10.3,F10.3,F11.3,F11.3,F10.3,F10.3)

1200 FORMAT (15,F10.3,F11.3,F13.3,F13.3,F13.3,F12.3)

2100 FORMAT (A9,F6.3,A1,A4,F5.3,A1,A4,F6.3,A1,A4,F6.3,A1,A4,F5.3,A1,
&A4,F5.3,A1)

2200 FORMAT (A9,F6.3,A1,A4,E9.3,A1,A4,F6.3,A1,A4,E9.3,A1,A4,F6.3,A1,
&A4,E9.3,A1)

if (k.LT.10) then

print 1100,k,mean_thetaOMML ,mean_thetaOLSE,mean_thetaMML(1),
&mean_thetal SE(1) ,mean_sigmaMML,mean_sigmalLSE

print 2100, "[",var_thetaOMML,"]","[",var_thetaOLSE,"]",
&"[*",var_thetaMML(1),"]","[",var_thetalLSE(1),"]1","[",var_sigmaMML
&,"]","[",var_sigmalLSE, "]"

else

print 1200, k,mean_thetaOMML,mean_thetaOLSE,mean_thetaMML(1),
&mean_thetalLSE(1) ,mean_sigmaMML ,mean_sigmalLSE

print 2200, "[",var_thetaOMML,"]","[",var_thetaOLSE,"]",
&"[",var_thetaMML(1),"]","[",var_thetalSE(1),"]","[",var_sigmaMML
&,"]1","[",var_sigmaLSE,"]"
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1110 FORMAT (A5,F11.3,F11.3,F11.3)

print*,* theta2 theta3
& theta4 -

print*, “Model MML LSE MML LSE
& MML LSE__ "

if (k.LT.10) then

print 1100, k,mean_thetaMML(2) ,mean_thetal SE(2),mean_thetaVML(3),
&mean_thetalSE(3),mean_thetaMML(4) ,mean_thetalLSE(4)

print 2100, "[",var_thetaWML(2),"]","[",var_thetalSE(2),"]",
&"[",var_thetaMML(3),"]","[",var_thetalLSE(3),"]",
&"[",var_thetaMML(4),"]","[",var_thetalLSE(4),"]"

else

print 1200,k,mean_thetaMML(2) ,mean_thetal SE(2),mean_thetaVMML(3),
&mean_thetal SE(3),mean_thetaMML(4) ,mean_thetal SE(4)

print 2200, "[",var_thetawML(2),"]","[",var_thetalSE(2),"]",
&"[*",var_thetaMML(3),"]","[",var_thetalLSE(3),"]1",
&"[*,var_thetaMML(4),"]","[",var_thetalLSE(4),"]"

endif
print*, "o -
c End of scenario loop k
enddo
stop
end
C _________________________________________________________________________
c Calculates the MML estimators of mu and sigma for LTS (Long-Tailed
c Symetric) distribution with p>=2.
C _________________________________________________________________________
subroutine LTS_Regmulti_MML_iteration(y,u,n,q,theta0, theta
&,sigma_0,output)
integer n, g
real pp, kk,output(g+2)
real thetaO, theta(q), sigma_O
real mtheta(q,1),mUtheta(n,1l), Utheta(n)
real y(n), u(n,q)
real t(n),bet(n),alf(n),m,betxy(n),betuu(q)
real ybar, ubar(q)
real sB, sC, BB, CC, thetaMMLubar
real thetaOMML,thetaMML(q), sigmahatMML
real my(n,1), mbet(n,n), malf(n,n), mone(n,1)
real stu(n,q),tstu(q,n), tumbet(q,n), tumbetu(q,q)
real tumbety(q,1l), invtumbetu(q,q)
real tumalf(q,n), tumalfmone(q,1)
real msK(qg,1), msD(q,1), sK(q), sD(q)
real presigmaa(n,q), presigma(n)
c In order to make MML estimation free of p, we put p=16.5, k=30,
pp= 16.5
kk = 30
mbet=0.0
malf=0.0
do j=1,n
my(G L. 1D=y()

mone(j,1)=1.0
enddo

mtheta(:,1l)=theta
mUtheta=matmul (u,mtheta)

do j=1,n

Utheta(j)=mUtheta(j,1)
enddo
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do j=1,n
t(d) = (y()-thetaO-Utheta(j))/sigma_0O
bet(j) = 1.0/((1+t(j)**2.0/kk)**2_0)
alf() =((1.0/KK)*t())/(Q.0+((t(G)**2.0)/kk))**2.0)
betxy()=bet(G)*y(d)

enddo

m = sum(bet)

do jj=1.,q
betuu(jj)=dot_product(bet,u(:,jj))
ubar(jj)=betuu(@j)/m

enddo

ybar=sum(betxy)/m

do j=1,n
mbet(J,j)=bet(g)
malf(.j)=alfQ)
enddo

do jj=1,q

do j=1,n
stu(,Ji)=uG.ji)-ubar(gid
enddo

enddo

tstu=transpose(stu)
tumbet=matmul (tstu,mbet)
tumbetu=matmul (tumbet, stu)
tumbety=matmul (tumbet,my)

CALL LINRG (q,tumbetu,q, invtumbetu,q)

msK=matmul (invtumbetu, tumbety)
tumalf=matmul (tstu,malf)
tumalfmone=matmul (tumalf,mone)
msD=matmul (invtumbetu, tumalfmone)

do jj=1.q
sKj)=msK(j.,1)
sD(j)=msD((j.1)
enddo

do jj=1,q
do j=1,n
presigmaa( ,ji)=sKGi)*stu(.ij)
enddo
enddo

presigma=sum(presigmaa,?2)

sB=0.0
sC=0.0

do j=1,n
sB=sB+alf(§J)*(y({)-ybar-presigma(j))
sC=sC+bet()*(y()-ybar-presigma(j))**2.0
enddo

BB=((2*pp)/kk)*sB
CC=((2*pp)/kk)*sC

sigmahatMML = (BB+sqrt((BB**2.0)+4*n*CC))/(2.0*sqrt(n*(n-q-1.0)))
do jj=1.,q

thetaMML(Jj)=sK@Jj)+sbD((j)*sigmahatMML
enddo

thetaMMLubar=dot_product(thetaMML,ubar)
thetaOMML=ybar-thetaMMLubar

output(l)=thetaOMML
do jj=1.,q
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output(Jj+1)=thetaMML(j)
enddo

output(g+2)=sigmahatMML

return

end

Generates n number of random numbers from LTS (Long-Tailed Symmetric
Distribution) with parameters mu, sigma and p where it is assumed
that p>=2

subroutine LTS_rnd(mu,sigma,p,n,y)

real mu,sigma,p,kk,vv,x(n),y(n)
integer n

kk=2*p-3.0
vv=2*p-1.0
call rnstt(n,vv,x)

do i=1,n
y(i)=sigma*sqrt(kk/vv)*x(i)+mu
enddo

return
end

real function mymean(x,n)

real x(n), sumx
integer n

sumx=sum(x)
mymean=sumx/(1.0*n)

return
end

real function variance(x,n,true)
t=1 for dividing n, and t=0 for dividing n-1.
Declaration of the variables and arrays

real x(n),mu, ss
integer n, true

Declaration of functions
real mymean

mu=mymean(Xx,n)

ss=0.0

do i1=1,n
ss=ss+((xX(1)-mu)**2_.0)

enddo

variance=ss/(1.0*n-1.0)

if (true==1) then
variance=ss/(1.0*n)
endif

return

end

Sorts the data iIn array "x" as ascending order and stores this
sorted data in "sortedx”.

subroutine mysort(n,Xx,sortedx,true)

t=1 for descending order t=0 for ascending order
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C

Declaration of the variables and arrays
real x(n),sortedx(n), ascen(n)
integer n, true

do i=1,n
sortedx(i)=x(i)
enddo

Ascending order
do i=1,n
do j=i+l,n
if(sortedx(i)>=sortedx(j)) then
dummy=sortedx(i)
sortedx(i)=sortedx(j)
sortedx(j)=dummy
endif
enddo
enddo

if (true==1) then
Descending order

do i=1,n
ascen(i)=sortedx(n-i+1)
enddo
sortedx=ascen
endif

return
end
Calculates the median of the data in array "x" and stores this
median in "med”.
subroutine mymedian(n,Xx,med)
Declaration of the variables and arrays
real x(n),sortedx(n),med,half
integer n

Declaration of the functions
real mysort

call mysort(n,x,sortedx,0)

half = floor(n/2.0);
med = sortedx(half+1);

if (2*half == n ) then
med = (sortedx(half)+med)/2.0
endif

return

end

Generates the inverse cdf of LTS (Long-Tailed Symmetric Distribution)
where F(y) = alpha. The parameters of the distribution are

mu, sigma and p where p>=2.

real function LTS_invcdf(mu,sigma,p,alpha)
real mu,sigma,p,alpha,y

kk=2.0*p-3.0

vww=2.0*p-1.0

Tinv=tin(alpha,vv)
y=((sigma*Tinv)/sqrt(vv/kk))+mu
LTS_invcdf=y

return
end
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