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ABSTRACT 

DYNAMIC CHARACTERISTICS AND PERFORMANCE 
ASSESSMENT OF REINFORCED CONCRETE STRUCTURAL 

WALLS 

Kazaz, İlker 

Ph.D., Department of Civil Engineering 

Supervisor: Prof. Dr. Polat Gülkan 

 

February 2010, 379 pages 

 

 

 

 The analytical tools used in displacement based design and assessment procedures 

require accurate strain limits to define the performance levels. Additionally, recently 

proposed changes to modeling and acceptance criteria in seismic regulations for both 

flexure and shear dominated reinforced concrete structural walls proves that a 

comprehensive study is required for improved limit state definitions and their 

corresponding values. This is due to limitations in the experimental setups, such that most 

previous tests used a single actuator at the top of the wall, which does not reflect the actual 

loading condition, and infeasibility of performing tests of walls of actual size in actual 

structural configuration. This study utilizes a well calibrated finite element modeling tool to 

investigate the relationship between the global drift, section rotation and curvature, and 

local concrete and steel strains at the extreme fiber of rectangular structural walls. 

Functions defining more exact limits of modeling parameters and acceptance criteria for 
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rectangular reinforced concrete walls were developed. This way a strict evaluation of the 

requirements embedded in the Turkish Seismic Code and other design guidelines has 

become possible. Several other aspects of performance evaluation of structural walls were 

studied also. Accurate finite element modeling strategies and analytical models of wall and 

frame-wall systems were developed for seismic response calculations. The models are able 

to calculate both the static and dynamic characteristics of wall type buildings efficiently. 

Seismic responses of wall type buildings characterized with increasing wall area in the plan 

were analyzed under design spectrum compatible normal ground motions.  

 

 

Keywords: Structural Walls, Performance Limits, Strain, Plastic Rotation, Plastic Hinge 

Length, Finite Element Modeling, Turkish Seismic Design Code, Seismic Demand, Period 

Formula, Frame-wall Interaction, Approximate Methods 
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ÖZ. 

BETONARME PERDELERİN DİNAMİK ÖZELLİKLERİ VE 
PERFORMANS DEĞERLENDİRMESİ 

Kazaz, İlker 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Polat Gülkan 

 

Şubat 2010, 379 sayfa 

 

 

 

 Yer değiştirmeye dayalı tasarım ve değerlendirme yöntemlerinde kullanılan analitik 

araçlarla performans düzeyini tanımlamak için doğru gerilme değerlerine ihtiyaç 

duyulmaktadır. Ayrıca son zamanlarda yönetmeliklerde hem kesme ve hem de eğilme etkisi 

altındaki betonarme perdelerin modelleme ve kabul kriterleri için önerilen değişiklikler de 

hasar sınır durumlarının tanımlanması ve karşı gelen gerilme değerlerinin belirlenmesi için 

kapsamlı bir çalışmaya ihtiyaç duyulduğunu göstermektedir. Bu durum sınırların 

belirlenmesinde kullanılan deneysel düzeneklerin yetersizliğinden kaynaklanmaktadır. 

Birçok deney perdeye tepe noktasından uygulanan tek bir yüklemeyle gerçekleştirilmekte 

ve gerçek boyutlarda ve yapı içinde gerçek konumundaki etkilere maruz elemanlar üzerinde 

deneyler kolaylıkla yapılamamaktadır. Bu çalışma çok iyi kalibre edilmiş bir sonlu 

elemanlar modelleme programını kullanarak dikdörtgen kesitli betonarme perdelerin global 

ötelenme, kesit dönmesi ve eğriliği ve perde uçlarındaki beton ve çelik gerilmeleri 

arasındaki ilişkiyi incelemektedir. Dikdörtgen kesitli perde elemanları için mevcut 
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değerlerden daha doğru olduğuna inanılan modelleme parametreleri ve kabul kriteri 

fonksiyonları teklif edilmektedir. Türk Deprem Şartnamesi ve bazı diğer hesap 

kılavuzlarında verilen şekil değiştirme ile ilgili hükümlerin geçerliği irdelenmektedir. Bu 

çalışmada yapısal duvarların performans değerlendirmesine dair birçok konu da 

irdelenmiştir. Perde ve perde-çerçeve sistemler için sismik hesaplarda kullanılmak üzere 

sonlu eleman modelleme stratejileri ve analitik hesap yöntemleri geliştirilmiştir. Geliştirilen 

modeller perdeli yapıların hem dinamik hem de statik özelliklerini etkin bir şekilde 

hesaplamaktadır. Plan alanına göre perde alanı arttırımı esas alınarak, perdeli yapıların 

doğrusal olmayan sismik hesapları tasarım tepki spektrumuyla uyumlu yer hareketi 

kayıtları kullanılarak zaman tanım alanında hesap yöntemi ile gerçekleştirilmiştir.  

 

 

Anahtar Kelimeler: Yapısal Perde, Performans Limitleri, Birim Gerilme, Sonlu Elemanlar 

Yöntemi, Plastik Dönme, Plastik Mafsal Yöntemi, Türk Deprem Yönetmeliği, Sismik 

Talep, Periyot Formülü, Perde-Çerçeve Etkileşimi, Yaklaşık Metodlar 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

Structural walls are used extensively in low- and moderate- rise buildings to resist 

lateral loads induced by wind or earthquakes. Unlike other structural members such as 

beams and columns when robust structural walls were utilized in the structural system to 

resist the lateral earthquake loads, they dominate the response of the entire structure. The 

seismic performance of many buildings, therefore, closely linked to the behavior of the 

reinforced concrete walls. 

Understanding behavior of structural walls requires experimental as well as 

analytical investigations. Nearly all the conclusion and derivations on structural walls come 

from the tests of isolated shear walls of variable aspect ratios (squat to slender walls), 

defined as the ratio of height to the length of the wall (Hw/Lw). Although vast amount of 

experimental and analytical information is available on the behavior of structural walls 

tested and simulated under severe earthquake loading conditions, due to limitations in the 

experimental setups, such that most previous tests used a single actuator at the top of the 

wall and did not simulate well the actual moment distribution expected in a multi-story 

system subjected to seismic loading, and inability of analytical models especially to include 

the critical shear-flexure interaction effects entails this study to undertake the analytical 

investigation of structural walls. Additionally, previous research has evaluated the seismic 

response of walls, few studies have specifically focused on the performance (or damage) of 

structural wall systems.  

After the 90s due to increased interest in performance-based earthquake engineering, 

a significant amount of research has been conducted on performance-based seismic design 
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or limit-states design procedures that have the simple aim of specifying structural 

performance for predefined seismic intensity levels. Structural walls have also been 

investigated extensively in this process (Wallace, 1994; Kowalsky, 2001; Paulay, 2002, 

Priestley et al., 2007). The general aim in these studies is to establish a relation between the 

expected displacement demands (drift ratio limits, ductility demand) on the building system 

to the local deformations on the wall cross section (curvatures and rotation), the magnitude 

and distribution of wall normal strain. The analytical methods adopted in these studies that 

assumed linear distribution of wall curvature and other simplified modeling assumptions 

requires reinvestigation of such elements under flexural, shear and combined loading 

actions that is induced by the seismic action. As an example to this situation, the strain 

distribution in concrete at the base of a rectangular wall specimen used in the model 

verification by Orakcal (2004) were shown in Figure 1.1. Even though analytical 

predictions obtained by an improved version of the Multiple-Vertical-Line-Element Model 

(MVLEM) agree well with the measured response in average, the model requires extensive 

calibration. It is also obvious from the figure that the plain sections do not remain plane any 

more in large inelastic action and the analytical predictions significantly underestimate the 

concrete strain at the extreme compression fiber. This situation leads to anticipation of 

unconservative deformation capacities of reinforced concrete members when displacement 

based design and assessment are utilized in the evaluation of such members. For instance, 

the modeling and acceptance criteria in the recently enforced Turkish Seismic Design Code 

(TSC, 2007) lay down concrete compressive and steel tensile strain limits in the 

performance assessment of concrete members, but the correctness of these values has not 

been extensively checked.  

The recent efforts that aim to enhance the accuracy and reliability of wall provisions 

also justify the necessity of this study. Such an example is a newly completed standard, 

ASCE/SEI 41-06 (2006), Seismic Rehabilitation of Existing Buildings, which proposes 

changes to acceptance and modeling criteria for walls controlled by both flexure and shear 

in FEMA 356 (2000). The main goal of proposed changes to wall provisions of ASCE/SEI 

41 (Section 6.7) was to update the modeling and acceptance parameters for walls to make 

them more consistent with experimental results (ASCE/SEI 41 update, 2007). 

 



 3

 
Figure 1.1 Comparison of predicted and measured average concrete strains at the base 

of the wall at applied peak top roof drifts (adopted from Orakcal, 2004) 
 

 

Analytical procedures are widely used in performance evaluation of reinforced 

concrete structures and components. However, state-of-the-art of structural wall modeling 

underlines the inadequacy of traditional strategies in obtaining reliable wall response. In the 

last decades the international benchmark studies that were organized to investigate the 

modeling problems on structural walls revealed the inadequacy of the various modeling 

techniques used in structural walls. The first is the Seismic Shear Wall International 

Standard Problem (SSWISP) conducted by NUPEC (Nuclear Power Engineering 

Corporation of Japan) in between 1995 and 1996 (OECD/NEA/CSNI, 1996). The results of 

each experiment were presented to research community for blind prediction under different 

benchmark projects. The participants were asked to predict the measured global response 

quantities such as displacements, forces, moments, accelerations as well as local quantities 

like rebar strains at different levels to figure out the local weaknesses during the course of 

dynamic experiments. To achieve capturing local as well as global behavior necessitates the 

use of finite element methodology. The results of this benchmark led the research 

community to question accuracy of stress analyses methods due to inadequate ability in 

predicting both the peak strength and ductility response of structural walls under seismic 

actions. Many distinguished experts in the field fell short in predicting the response. The 

variation of predictions on the structural ductility was very significant and ranges from 35 

to 180 percent of the displacement recorded by NUPEC. Figure 1.2 summarizes the results 

of the participants.  
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Figure 1.2 Predictions on NUPEC wall by the participants,  

(a) Strength, (b) Displacement 
 

 

The second benchmark project that also has inspired this study is named as “Safety 

Significance of Near-Field Earthquakes” organized by International Atomic Energy Agency 

(IAEA) in between 2002 and 2005 (Kazaz et al., 2006a). The same tendency in excessive 

variation of predicted seismic deformations was also valid in this project especially when 

the blind prediction of the response was asked. Figure 1.3 presents the maximum 

displacement response blind predictions (results were not known to the participants) of 

CAMUS wall of participants under a given earthquake record. In a blind prediction exercise 

there is significant difficulty in predicting the displacements. It must be mentioned that the 

best estimations were obtained by teams that used solid continuum elements in the finite 

element discretization of the shear wall. Information about the experimental programs of 

these walls and the development of their accurate finite element models are described in 

Chapter 2. 

The difficulties with predicting ductility and strength, as it became obvious in these 

benchmark projects, has stimulated this study to investigate reliable modeling criteria of 

structural walls and to evaluate the validity of procedures and displacement limits used in 

the performance assessment of this type of structures. 

The accurate prediction of deformation demands of any structural system is important 

from various aspects including: 

• Judging the validity of applied design in proportioning the reinforcement and the 

dimensions whether it is adequate in satisfying the imposed deformation demands. 

• Quantification of seismic demands to assess the damaging potential of ground 

motions on wall type structural systems. 
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• Assessment of the performance of existing structures under code specified 

performance criteria. 

• Improving the effectiveness and accuracy of displacement based design and 

assessment procedures by examining proposed plastic rotation and strain limits.  
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Figure 1.3 Maximum displacement predictions of CAMUS wall 

 

 

The merit of this research will be the utilization of current non-linear finite element 

analyses (NLFEA) procedures in the field of earthquake engineering to investigate the 

seismic behavior of reinforced concrete structural walls. NLFEA can serve as a tool in the 

reliable assessment of the strength and behavior of structures in cases where it is expensive 

and labor intensive to carry out experimentation, especially dynamically. Vecchio (1998) 

explains the relevance and value of non-linear finite element procedures for analysis and 

design of reinforced concrete structures as well as the reasons for caution when applying 

them. One of the most important reasons for a cautious attitude towards NLFEA procedures 

in the field of structural engineering is the reliable modeling of non-linear behavior of 

reinforced concrete, particularly in shear critical conditions which is the case most of the 

times in the analysis of structural walls. It was observed that any procedure or modeling 

strategy that is well suited to a certain structure or loading condition can perform poorly in 
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another case. Different problems can require different element formulation, constitutive 

material laws, load application and finite element mesh generation. 

In summary, detailed and comprehensive analytical investigation of structural walls 

is required to find out: 

1. Limitations due to load application and scale of the experimental setup, and 

2. Limitations in the analytical approaches used in the evaluation of structural walls. 

1.2 REVIEW OF PREVIOUS STUDIES 

The subject tiers of this study is composed several items each of which has its own 

specific literature. The relevant literature of each main topic is covered in related chapter. 

In this introduction part, only a general literature review is given with regards to modeling 

and performance assessment of structural walls. 

1.2.1 Analytical Modeling of RC Structural Walls  

Various analytical models based on different approaches have been proposed to 

predict the inelastic response of RC structural walls. The modeling strategies of RC 

structural walls can be classified in two major groups: 

• Macroscopic models: These models are phenomenological in nature and tend to 

simulate the global behavior of the entire large-sized wall element by means of an 

analogous structural idealization (Colotti, 1993). The derivations are based on observed test 

results, so usually valid only for specific conditions upon which the derivation of the model 

is based (Vulcano and Bertero, 1987).  

There are three main types of macro-models being used for reinforced concrete 

structural walls. These are the equivalent beam-column element model, the equivalent truss 

element model, and the vertical line element model. The beam-column elements 

extensively used to model reinforced concrete members. The behavior of the element is 

characterized traditionally by the elasto-plastic force-deflection (moment-rotation) response 

lumped at the hinges developing at member ends. Introduction of fiber section formulation 

into beam-column element provided considerable flexibility and ease in the use of the 

element (Taucer et al., 1991), yet could not solve the problems related to inadequate shear 

behavior, which is crucial in the modeling of structural walls (Vulcano and Bertero, 1987). 

Another limitation of the beam elements is that the rotations occur around the point lying 
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on the centroidal axis of the wall impeding the fluctuation of the neutral axis. The 

equivalent truss element model, also named as strut-and-tie model, depends on the inclined 

compression struts that are parallel to the direction of cracking. Although the procedure 

yields conservative estimates of the strength when compared with test evidence (ASCE-

ACI Committee 445, 1998), it is not accurate and limited to monotonic loading because of 

difficulties in defining the structural topology and the properties of the truss elements under 

cyclic loading.  

Vertical line element models are specifically developed for the analysis reinforced 

concrete shear walls. This model was originally proposed by Kabeyasawa et al. (1984) on 

the basis of the experimentally observed behavior of a seven-story RC frame-wall structural 

system. The model shown in Figure 1.4(a) is idealized a wall member as three vertical line 

elements with infinitely rigid beams at the top and bottom floor levels. Axial springs at 

each side and a rotational spring at the center are for representing flexural behavior, while 

the horizontal spring is for modeling shear behavior. Element still assumes uniform 

distribution of curvature (plane sections remains plane after deformation). The hysteretic 

behavior of the elements constituting the wall model is simulated by adopting empirical 

relations developed on the basis of experimental studies (Vulcano, 1992).  

Different versions of model was developed basically changing the number of axial 

springs. The increase in the number of springs is also reflected in the name of the model by 

evolving from three vertical line element model (TVLEM) to multiple vertical line element 

model (MVLEM). Vulcano et al. (1988) removing the rotational spring in the center stated 

that to obtain an improved estimation of flexural behavior at least four axial springs will be 

used in the model. Linde (1993) proposed a simpler model with three axial springs and one 

horizontal spring and developed kinematic formulation of the model. Recently, Orakcal et 

al. (2004) proposed a new version of MVLEM in which the only difference being in the 

behavior of the nonlinear springs as shown on the model in Figure 1.4(b). The modeling 

approach involves implementing refined hysteretic uniaxial stress-strain laws instead of 

simplified force-deformation rules to track nonlinear responses. By this way the analytical 

responses are directly related to physical material behavior (stress-strain curve) and provide 

a more robust modeling approach, where model improvements result from improvement in 

constitutive models and refinement in the spatial resolution of the discrete model. 

An inherent shortcoming of MVLM models is that the shear and flexural 

displacement components of the wall are described independently. Although model 
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effectively calculates the flexural response, shear response is not adequately described, 

particularly for high shear stresses. It is known experimentally (Vallenas et al., 1979) that 

the behavior of walls is strongly influenced by interaction between axial force, flexure and 

shear.  

 

 

 

a) Three Vertical Line Element Model 
(TVLEM) (Kabeyasawa et al., 1984) 

b) Multiple Vertical Line Element Model 
(MVLEM) (Orakcal et al., 2004) 

 
Figure 1.4 Idealization of a wall member 

 

 

• Microscopic models: These models are based on discretization of the continuum 

through finite element procedures by the application of solid mechanics principals.  Stress 

and strain is calculated at every point of the material. There exist various shell and solid 

elements implemented in finite element codes with different element formulations affecting 

the accuracy of the simulation results (ASCE-ACI, 1993). Special features of finite element 

analysis applied to reinforced concrete may include constitutive relationships, failure 

theories, multi-axial stress theories, modeling of reinforcement, behavior on the interface 

between reinforcement and concrete, crack representation, mechanisms of shear transfer, 

cyclic and dynamic loading effects, and the time-dependent effects of creep, shrinkage, and 

temperature variation. It is criticized that in practice the use of nonlinear finite element 

analysis for the investigation of the strength and deformation properties of reinforced 

concrete structural walls is restricted to the analysis of isolated and coupled walls due to 

very long computation times and complexities involved in the analysis.  
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Cervenka and Gerstle (1972) were first to make a finite element study of the several 

shear panels which Cervenka (1970) had tested experimentally. A large number of 

sophisticated constitutive models that can successfully capture behavior at the material 

level have been developed, as summarized in state-of-the-art reports by ASCE-ACI (1982, 

1993) and CEB (1996). Ayoub and Filippou (1998) and Kwak and Kim (2004a) described 

the implementation of an orthotropic concrete constitutive model in the finite-element 

analysis of reinforced concrete shear walls. The emphasis was on the evaluation of the 

effect of orthotropic model parameters on the monotonic load-displacement relation of 

shear panels and walls under different stress states. Less has been reported on the successful 

application of these material models to predict the behavior of structural components under 

cyclic loading. 

With the advancement of modeling techniques and computational power, more 

successful cyclic loading analyses of reinforced concrete have been conducted in the 

nineties. These include simulations of shear test panels designed to have a uniform stress 

state for the verification of constitutive models (Schnobrich et al. 1991; Stevens et al. 1991; 

Rose et al. 1999, Palermo and Vecchio, 2004; Kwak and Kim, 2004b), and simulations of 

structural members (Okamura and Maekawa 1991; Sittipunt and Wood 1995; Elmorsi et al. 

1998; Vecchio, 1999). These models demonstrated reasonable agreement with experimental 

results. 

A significant research milestone in the field of constitutive modeling of members 

subjected to shear and torsion is the development of the compression field theory (CFT) 

(Collins and Mitchell, 1980). The CFT assumes that after cracking, there will be no tensile 

stresses in the concrete. Test on reinforced concrete elements (Vecchio and Collins, 1986; 

Belarbi and Hsu, 1994) demonstrated that even after extensive cracking, tensile stresses still 

existed in the cracked concrete and that these stresses significantly increased the ability of 

cracked concrete to resist shear stresses. The modified compression field theory (MCFT) 

(Vecchio and Collins, 1986) is a further development of the CFT that accounts for the 

influence of the tensile stresses in the cracked concrete. It is recognized that the local 

stresses in both the concrete and the reinforcement vary form point to point in the cracked 

concrete, with high reinforcement stresses but low concrete tensile stresses occurring at 

crack locations. A somewhat different procedure to account for tensile stresses in 

diagonally cracked concrete has been developed by Hsu and his coworkers at the University 

of Houston (Belarbi and Hsu, 1994, 1995). The procedure is called the rotating angle 
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softened-truss model (RA-STM). Like the MCFT, this method assumes that the inclination 

of the principal stress direction, θ, in the cracked concrete coincides with the principal 

strain direction. For typical elements this angle will decrease as the shear is increased. 

Hence the name “rotating angle” was given (ASCE-ACI Committee 445, 1998). 

Vecchio (1989) developed a two-dimensional nonlinear finite-element program for 

reinforced concrete membrane elements based on the modified compression field theory. 

Selby and Vecchio (1997) expanded the applicability of the modified compression field 

theory for general three-dimensional analysis of reinforced concrete solids for the solution 

of problems in which confinement and lateral expansion effects are important. Recently, 

Palermo and Vecchio (2007) presented nonlinear finite-element analyses results of several 

reinforced concrete shear wall experiments using well-established MCFT analysis method. 

The emphasis is on the simplest form of modeling available for continuum FE analysis, 

utilizing low-powered elements and smearing of the material properties.  

Kwan and Billington (2001) evaluated the reliability of material models available in 

commercial, nonlinear finite-element codes or models that may be easily implemented or 

modified within such codes. Lefas and Kotsovos (1990) using a reliable finite element 

program investigated the influence of several parameters on the observed behavior and 

strength characteristics of structural walls. Among the parameters investigated in the study 

were the arrangement and amount of vertical and horizontal reinforcement, the detailing of 

edge members, the height to length ratio, the axial load and concrete strength. The 

reliability of the NLFE analysis systems had been tested by comparing analytical 

predictions with published information obtained experimentally (Barda et al., 1977; 

Cardenas et al., 1980; Oesterle et al., 1980; Maier and Thurlimann, 1985; Wiranidata and 

Saatcioglu., 1986) for a wide range of RC structural walls.   

1.2.2 Performance Assessment and Limits of Structural Walls   

The foundation of performance-based design concepts are established in three 

documents: SEAOC Vision 2000 (1995); ATC 40 (1996); and FEMA 273 (1996) (later 

FEMA 356, 2000). The documents attempted to develop procedures that can be used as 

seismic provisions in building codes (Ghobarah, 2001). FEMA 356 (2000) and ASCE/SEI 

41 (2006) documents incorporate rational evaluation procedures for structural displacement 

capacities corresponding to specific performance criteria. The limits defined in terms of 

chord rotations and story drifts based on the results of experimental studies were adjusted to 
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conform to mathematical modeling approaches used in nonlinear static (pushover analysis) 

and dynamic (time-history analysis) procedures. In the ATC 40 (1996) document, 

performance-based design refers to the methodology in which structural criteria are 

expressed in terms of achieving a performance objective. The document is limited to 

concrete buildings and emphasizes the use of the capacity spectrum method (Freeman et al., 

1975). The procedure involves determining the capacity and demand spectra. To construct 

the capacity spectrum, the force–displacement curve of a structure is determined using 

nonlinear static (pushover) analysis. The forces and displacements are converted to spectral 

accelerations and spectral displacements using a substitute SDOF system (Gülkan and 

Sozen, 1974; Shibata and Sozen, 1976). 

In the last decade based on the knowledge inherited from the documents listed above 

in relation to performance-based earthquake engineering, direct displacement-based design 

have matured to a stage where seismic assessment of existing structures or design of new 

structures can be carried out to ensure that particular deformation-based criteria are met 

(Priestley, 2000). Within this scope several researches had been conducted for the 

improvement of the displacement based design procedures. Wallace and Moehle (1992) 

investigated the ductility and detailing requirements at the boundary elements of structural 

walls via developing an analytical procedure that is based on comparing directly the 

expected displacement capacities and displacement demands for the building. The seismic 

displacement demand is obtained using the analytical procedure developed by Sozen 

(1989). Then the calculated deformation demand is related to local deformations 

(curvatures and rotations at the base of the wall) utilizing plastic hinge analysis method 

developed for cantilever members by Park and Paulay (1975). Wallace (1994) introduced 

the same analytical framework with minor modifications for the displacement based design 

of RC shear walls. By this way the structural response in terms of displacement is related to 

strain-based limit state, which in turn is assumed to be related to the level of damage. 

Especially in the last decade the pioneering work in the field of displacement-based 

design were mostly conducted by Priestley and his coworkers (Priestley, 1993; Priestley 

and Kowalsky, 1998; Sullivan et al., 2006; Priestley et al., 2007). It has been found possible 

to express the yield and ultimate curvatures of different reinforced concrete structural 

members by simple expression based on moment-curvature responses obtained from 

sectional analysis. Combining these findings with simplified analysis approach based on the 

concept of plastic hinge of length Lp, several expression in regards to deformation limits 
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were derived for different structural members and shear walls as well. The procedure found 

wide spread application on structural walls due to availibilty of these members as isolated 

cantilevers.  

Paulay (2002) redefined some traditionally used structural properties employed in the 

simplified plastic hinge analysis by exemplifying on a sample frame-wall structure. 

Kowalsky (2001) investigated 1997 Uniform Building Code (ICBO, 1997) from the 

perspective of achieving performance-based earthquake engineering of structural wall 

buildings. It is shown that although strain limits are present in the 1997 UBC, the drift ratio 

limits generally govern design. The conflict between assumed force reduction factors and 

actual ductility demand at the design limit state controlled by drift is also explored. Sullivan 

et al. (2006) described the essentials of a direct displacement-based design of frame-wall 

structures. The effect of link beams connects from frames directly on to the ends of walls is 

emphasized.   

In addition to these studies that were concentrated on defining limit states for design 

and assessment, several other studies were performed to investigate the seismic 

performance of structural wall buildings and to compare the static analysis results with 

dynamic analysis results (Mwafy, 2000; Tremblay et al., 2001). Mwafy (2000) investigated 

the relationship between the lateral capacity, the design force reduction factor, the ductility 

level and the overstrength factor of reinforced concrete frame-wall buildings. The lateral 

capacity and the overstrength factor were estimated by means of inelastic static pushover as 

well as time-history collapse analysis. Kim (2004) investigated the performance of 

reinforced concrete shear wall buildings designed under current codes and standards of 

practice and to propose a rational procedure for determining the Response Modification 

Factor, R. Kazaz et al. (2006b) analyzed a well calibrated finite element model of 5-story 

shear wall test specimen under a suite of ground motions for validating the accuracy of 

capacity spectrum method in estimating the actual performance of shear walls. It was found 

that the existing expressions for the equivalent viscous damping lead to underestimation of 

seismic deformation demands on isolated structural walls. Seneviratna and Krawinkler 

(1997) used plastic hinge rotation demands at the base as a measure of structural damage, 

and empirical relationships were provided to estimate these demands from spectral 

displacements of the first mode SDOF system.  
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1.3 OBJECT AND SCOPE 

Reinforced concrete provisions such as in FEMA356 and ASCE/SEI 41 include 

modeling parameters and numerical acceptance criteria for both flexure and shear 

controlled wall members. The criteria are defined in terms of plastic hinge rotations and 

total drift ratios for the governing behavior modes of flexure (ductile members) and shear 

(brittle members), respectively. Strain limits are defined for concrete in compression and 

steel in tension at serviceability and damage-control limit states as a vital component of 

direct displacement-based design procedures. The recently enacted Turkish Seismic Code 

(2007) specifies limiting strain values associated with different performance levels. On one 

side deformations are specified in relation to global parameters such as drifts, and on the 

other local damage indicators are used to determine the performance. When results of 

nonlinear pushover analyses are evaluated according to either of the acceptance criteria 

whether the local and global response will correspond to similar performance states is 

debatable because little calibration has been made and field data has been totally ignored. 

This study utilizes a well calibrated finite element modeling tool to investigate the 

relationship between the global drift, section rotation and curvature, and local concrete and 

steel strains at the extreme fiber of rectangular structural walls. The validity of finite 

element modeling strategy has been verified with simulations of various shear wall test 

results. Pushover analyses of isolated structural walls under inverted triangular and uniform 

load patterns have been performed. The parameters of the investigation were the axial load 

ratio, cross section length, wall height and flexural reinforcement ratio. Functions defining 

more exact limits of modeling parameters and acceptance criteria for rectangular reinforced 

concrete walls will be developed. As an indicator of the damage state of the wall, strains at 

the compressive and tensile boundaries of the wall will be related to performance criteria.  

Additionally, the performance of structural walls designed according to current 

seismic code specifications will be investigated by conducting nonlinear time history 

analyses with recorded ground motions as seismic input. Seismic deformation demands, 

defined as inter-story drift in the global sense, curvature ductility at the section and strain at 

the boundaries as local measures, will be investigated as a function of amount of shear 

walls in the system.  
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1.4 ORGANIZATION OF THE STUDY 

This study has been built on multi-tiered investigations. Several aspects of the 

modeling and performance assessment issues on shear walls have been covered in detail. 

The accuracy of the assessment procedure depends on modeling assumptions and analytical 

framework, which incorporates the mathematical discretization of the structure, 

quantification of seismic demands and effective treatment of utilized analytical procedures. 

All the shortcomings due to these effects should be identified.  

Chapter 2 is devoted to the description of the finite elements and materials models to 

model the concrete and steel and verification of the finite element modeling strategy for 

structural walls by comparing the simulated response with the measured response of several 

wall specimens that are available in the literature. Essentials of finite element modeling of 

reinforced concrete structural walls will be given with aspects of material and geometric 

nonlinearities to be used in comprehensive parametric studies.  

In Chapter 3, the procedures for the ground motion selection for nonlinear time 

history analyses available in the literature are considered and seismic intensity measures 

that depend on the frequency content characteristic of ground motions are defined. To 

quantify the seismic demands on wall type structures, intensity measures will be defined in 

terms of response spectral representations of input ground motions. It is displayed that the 

presented ground motion intensity measures correlates well with the calculated seismic 

deformation demands. The ground motions to be used as seismic input in the analyses are 

selected in this chapter.  

Chapter 4 is devoted to establishing an analytical framework for the parametric 

investigation of shear walls. The elements of presented framework  is composed of 

development of simple lumped-parameter structural models of wall and frame-wall systems 

for NLFEA, determination of the parameters that affect the shear wall response and 

identification of procedures to include these effects in the analyses. Simple analytical 

procedures used in the analyses of bearing wall and frame-wall structures are investigated 

and isolated wall models representative of global structural effects in both types of 

structural configurations are developed. A thorough investigation of these simplified 

models is necessary in order to determine the parameters of the study. The models are also 

used to derive useful information about the dynamic and static characteristics of wall type 

structures.  

Chapter 5 presents the results of analyses carried out on the finite element models of 
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the isolated walls to investigate the available deformation limits in FEMA 356 (2000) and 

TSC (2007). A parametric study taking in to account wall length and height, so as wall 

aspect ratio, axial load level and the amount boundary element reinforcement as parameters 

is conducted. The results of nonlinear static analyses were used to indentify several issues 

related to performance assessment of structural walls. Typical plastic hinge lengths that 

must be used in plastic hinge analyses of cantilever walls are determined and an equation is 

proposed for its calculation. The calculated rotations are compared with FEMA limits and 

new limits are established. For the newly established performance levels curvature and drift 

limits are presented. The strain limits corresponding to these performance levels are also 

determined. Finally the extreme fiber concrete and steel strains corresponding to rotation 

limits in FEMA 356 are determined and compared with the strain limits in TSC.  

In Chapter 6, synthesizing all the information obtained from the previous steps 

regarding the ground motion and the structural modeling aspects, dynamic time history 

analysis of generic frame-wall structures are performed to investigate the seismic 

deformation demands on wall type structures. The calculated seismic deformation demands 

are evaluated on the basis of performance limits defined in FEMA 356 provisions.  

Chapter 7 is a summary and recapture of the principal conclusions of the study. 
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CHAPTER 2 

VERIFICATION OF THE FINITE ELEMENTS AND 
NONLINEAR PROCEDURE FOR ANALYSIS 

2.1 INTRODUCTION  

In this study ANSYS finite element program was used to simulate the static and 

dynamic behavior of seismic load bearing structural walls. Towards this end, it must be 

asserted that any other finite element code can in principle be used in the simulations, and 

the conclusions and methods would be very similar. However, each code has its own 

special features in terms of element types and material models, and needs to be used 

properly. Users of these powerful tools must be familiar with the capabilities of the 

elements formulated and implemented specifically for the analyses of reinforced concrete 

structures and at least the general theory of the finite element method and constitutive 

material laws. 

In this context the objective of this chapter is to ascertain the adequacy of familiar 

monotonic plastic material models in predicting the response of shear-critical members as 

the name of the investigated structural members implies and discuss any modifications for 

improved results within ANSYS code. 

This chapter is devoted to extensive simulation studies in order to create reliable 

finite element models of shear walls in ANSYS program. Comparing the measured and 

simulated response of several shear wall experiments, different aspects of material and 

finite element modeling issues will be discussed and addressed in consideration with 

simulation of concrete with ANSYS. The results of shear wall tests that were conducted by 

different researchers previously have been used in this study. The specimens in these tests 

were subjected to different types of loading conditions such as monotonically increasing 
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static loading, quasi-static cyclic loading and seismic loading on a shake table. The results 

of simulation process are used to establish guidelines of finite element modeling and 

analysis of shear walls using ANSYS, which is extremely important in the upcoming 

parametric study in Chapter 4 for obtaining reliable and meaningful results from the 

analysis. All the efforts in this section are to achieve the following objectives: 

• To develop nonlinear finite element models that can predict the response of flexural 

and/or shear dominated shear wall components under different loading conditions. 

• To investigate the local stress and strain conditions resulting from these diverse 

combination of behavior types and loading conditions. 

• To highlight different aspect of finite element modeling of concrete structures with 

ANSYS program since although ANSYS is widely used in research, no study, even 

ANSYS own manual, provides a comprehensive guidelines about its capabilities 

and disabilities about the analyses of reinforced concrete.  

Especially in the last decade with the advent of personal computers, codes that 

incorporate NLFEA procedures become daily analyses tools of most engineers. A particular 

segment of the technical literature is devoted to studies where ANSYS has been the 

principal instrument for analysis. 

Mirmiran et al. (2000) tested carbon fiber wrapped cylinders subjected to uniaxial 

compression and performed the numerical analyses with ANSYS software. Kachlakev 

(2002) used ANSYS to study the effects of shear strengthening of deficient beams by 

comparing the behaviors of two full-scale reinforced concrete beams (a reinforced concrete 

beam with no shear stirrups; and a reinforced concrete beam externally reinforced with 

Glass Fiber Reinforced Polymer (GFRP) on both sides of the beam). Three-dimensional 

finite element models are developed using a smeared cracking approach for the concrete 

and three dimensional layered elements for the FRP composites. Similarly, Santhakumar et 

al. (2004) presented the results of numerical study to simulate the behavior of CFRP 

(Carbon Fiber Reinforced Polymer) retrofitted reinforced concrete (RC) using ANSYS. 

Thomas and Ramaswamy (2006) reported the details of the finite element analysis of 

eleven shear critical partially prestressed concrete T-beams having steel fibers over partial 

or full depth. The ANSYS model accounted for the nonlinear phenomenon, such as, bond-

slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress 

transfer across the cracked blocks of the concrete and load sustenance through the bridging 

of steel fibers at crack interface. Chansawat (2003) used ANSYS in simulating the behavior 
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of full-scale reinforced concrete beams strengthened with glass and carbon-fiber reinforced 

polymer laminates for shear and flexure. It was reported that the analysis results agree well 

with those from the experiments. The predicted crack patterns at failure strongly resemble 

the failure modes observed for the full-scale tests. Chansawat et al. (2006) performed three-

dimensional nonlinear finite element analyses of the Horsetail Creek Bridge strengthened 

with fiber-reinforced polymers using ANSYS to examine the structural behavior. 

Binici (2003) conducted finite element analyses of 15 slab specimens, strengthened 

with CFRP laminates and subjected to shear and combined shear and moment transfer 

experimentally, in ANSYS to provide further insight to the mechanics of load transfer, 

cracking and local stress conditions. 

Sigfússon (2001) investigated the seismic capacity of low-rise residential shear wall 

buildings in Iceland by using ANSYS. Li (2004) simulated the tested response of 

unreinforced masonry (URM) walls strengthened with near surface mounted FRP (fiber 

reinforced polymer) bars for improving the structural behavior. Kazaz et al. (2006) using 

ANSYS simulated the seismic response of a 5-story reinforced concrete shear wall 

specimen on shake table subjected to progressive damage under sequential application of 

ground motions. Farvashany et al. (2008) built and loaded seven large-scale high-strength 

concrete (HSC) shear wall specimens to failure under in plane constant axial load and 

increasing horizontal loads. The test specimens were approximately 1/3 scale of a prototype 

wall. The experimental results of walls tested in this research as well as those reported by 

other researchers were compared with the ultimate resistance predicted by an interactive 

event simulator developed in ANSYS. 

2.2 FINITE ELEMENTS AND CONCRETE MATERIAL MODEL 

Finite element models of the experimental specimens and analytical structures are 

generated using the solid, bar and beam finite elements from ANSYS element library. 

Detailed description of these finite elements and concrete material models used in this study 

are given in APPENDICES A and B, respectively. Key aspects of the element formulation 

that influence the calculated results are identified. These items include the shear locking, 

extra shape function and shear transfer coefficients. In this chapter accurate determination 

of the values to be assigned to these parameters and inclusion in finite element models are 

studied by simulating the results of experimental specimens.  The plasticity models that can 

be used to model concrete compressive behavior in ANSYS are discussed in APPENDIX 
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B. For that purpose essential expressions used to define von Mises, Drucker-Prager and 

multilinear plasticity models are given for the sake of accurate determination of the material 

constants. The damage mechanics of concrete behavior is discussed in relation to five 

parameter Willam-Warnke concrete model.  

2.2.1 Combined Material Model 

The concrete constitutive model making use of two yield surfaces by combining any 

of the plasticity models described in APPENDIX B for compressive loading and Willam-

Warnke (CONC) model for tensile loading regimes can be adopted.  

In ANSYS when plasticity based models are combined with the Willam-Warnke 

concrete material option (CONC), the plasticity check is done before the cracking and 

crushing checks. Yielding or cracking of any material point within the model is evaluated 

on the basis of principal stresses. This assumption leads the condition of the problem to 

reduce a plane stress situation approximately.  In Figure 2.1 material models that were 

described above is plotted on the same graph in order to visualize what the combined yield 

surface will be look like. In view of this and simplification of the problem to a plane stress 

condition, it is obvious from Figure 2.1 that in the quadrants for tension-tension and 

tension-compression the Willam-Warnke model will prevail until the cracking of concrete. 

Upon cracking a plane of weakness will form orthogonal to the crack direction which 

reduces the principal stress at this direction to zero as the solution converges. Following the 

stress relaxation upon cracking in the quadrant tension-compression both models will 

interact. In the quadrant compression-compression purely plastic behavior will be valid. 

This explanation leads to the following conclusion. Considering the crack concrete with 

zero tensile stress in the direction perpendicular to crack face, the equivalent stress 

calculation depends totally on the compressive strength of concrete for σ2=0. While 

selecting the material parameters for Drucker-Prager material model to be used in 

combination with Willam-Warnke concrete model in ANSYS for biaxial stress state, it 

must be ensured that these parameters result in close estimation of the actual compressive 

strength of concrete (fc). This is to say that when either a state of tension-compression or 

compression-compression exists it is more correct to model the concrete plasticity with 

equi-biaxial yield surface defined by Eq. (B.19), which is given in APPENDIX B, in squat 

shear wall analysis since this equation is valid in compressive regime. The surface defined 

by Eq. (B.22) approximates the von Mises yield surface. 
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Figure 2.1 Trace of the five parameter Willam-Warnke, two parameter Drucker-Prager and 

one parameter von Mises material models in biaxial stress space 
 

2.2.2 Compressive Envelope Curves for Concrete in Compression 

When full stress-strain curve of concrete is not determined from material tests or it is 

required to determine the stress-strain curve of confined concrete, the analytical curves 

proposed by different researchers can be used.  Depending on the characteristic 

compressive strength value (fck), concrete stress-strain relation curve for confined and 

unconfined concrete can be determined. For the ascending branch of plain concrete 

Hognestad (1951) parabola can be used.  Since the von Mises plasticity model depends on 

elasto-plastic representation of the material behavior curve, the nonlinear stress-strain curve 

of the concrete in uniaxial compression is bilinearized as given in Figure 2.2. The limiting 

compressive stress fc
” is taken to be the average compressive stress equal to 0.85fc 

(Swammy and Qaureshi, 1974). Due to bilinearization the concrete modulus of elasticity 

reduces. The elastic modulus of the concrete can be calculated by ckc fE 4770=  as 

proposed by ACI 318-08 (2008). 

For the case of Drucker-Prager model inserting fc and fbc into Eqs. (B.20) and (B.21), 

parameters of Drucker-Prager yield surface are calculated as α and τo, respectively. The 

yield surface has the same pattern as plotted in Figure 2.1 utilizing Eq. (B.22). It is now 

required to express these parameters in terms of Mohr-Coulomb parameters, c and φ.  Since 
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Drucker-Prager model in ANSYS uses outer cone approximation, using Eq. (B.15) these 

parameters for the cohesion and the friction angle are calculated.  

For multi-linear plasticity model (MISO), the material base curve was represented 

with five line segments (more segments can be defined) as shown in Figure 2.2. This is the 

only model that can be used to represent the strain-softening branch of concrete stress strain 

curve. When confinement is applied to concrete both strength and ductility enhancement is 

obtained. To quantify the effect of confinement on concrete various analytical confined 

concrete models were proposed in the literature (Sheikh and Uzumeri, 1982; Park et al., 

1982; Mander et al., 1988, Saatcioglu and Razvi, 1990; Martinez-Rueda and Elnashai, 

1997). The models proposed by Mander et al. (1988) and Saatcioglu and Razvi (1990) is 

given in APPENDIX C. 
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Figure 2.2 Bilinearized and multilinear uniaxial stress-strain curves of concrete  

 

2.2.3 Cyclic Response of Concrete Material Model and SOLID65 Element  

The behavior SOLID65 element under cyclic loading was investigated. Multilinear 

isotropic plasticity model with a descending branch for concrete in compression is 

combined with Willam-Warnke failure criterion in tension to simulate the behavior of a 

200x200x200 mm cubic concrete block as shown in Figure 2.3. The idealization in material 

behavior like elastic unloading may not be a suitable approach for modeling the cyclic 

behavior of concrete since concrete exhibits stiffness degradation under cyclic loading 

(Mirmiran et al., 2000). Nevertheless, for small-to-medium range plasticity of concrete in 

compression as will be shown later simulations gives satisfactory results.  
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Figure 2.3 Rectangular cross-section of a column Cubic element, material properties and 
cyclic loading history 

 

 

The displacement load history displayed in Figure 2.3 was applied at the top nodes of 

the cubic element, which is constrained at the base nodes appropriately to prevent any 

reaction against lateral spreading. Effect of ESF (Extra shape functions) on element 

behavior was investigated. The stress-strain output calculated at the top and bottom nodes 

are summarized in Figure 2.4. As seen in Figure 2.4(a) when ESF is turned off a constant 

strain distribution assumed with the element. When the block compressed 2.4 mm at the 

ultimate cycle imposing a strain of -2.4/200 = -0.012, this strain is constant within the 

element at both integration points. In the case where ESF’s are utilized, deformation 

localizes at either top or bottom nodes depending on the loading type. While for cyclic load 

history strain localizes at the top node as displayed in Figure 2.4(b), for static compressive 

loading significant crushing takes places at the bottom material points as seen in Figure 

2.4(c).  

The average stress-strain output at the element centroid is plotted in Figure 2.5 for the 

cases where ESF is activated and deactivated using element options. The unloading and 

reloading stiffness is same as the initial stiffness of the material curve. The average stress-

strain curve obtained by utilizing ESF displays more rapid strength degradation tendency 

compared to curve without ESF. This is very similar to localized failure phenomena 

observed in experimental studies on stress-strain curve of concrete under compression. 

Experimental studies (Bazant, 1989; Lertsrisakulrat et al., 2001; Watanabe et al., 2004) 

displayed that three (or two) different zones develops on the concrete cylindrical specimens 

subjected to axial compression, failure zone, a transition zone and an unloading zone. The 

failure pattern depends on the aspect ratio of the specimens. Different stress-strain curve is 
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defined for each zone. The average stress strain curve is obtained by combining the curves 

for each segment. In the experiments, a stress-local strain curve measured in the no-crack 

zone (unloading zone) exhibited unloading behavior until the end of the loading test as 

shown in Figure 2.4(c) for top node. 

The behavior modes displayed in Figure 2.4(b) and (c) evolve when softening 

property in the material curves is defined. If bilinear isotropic plasticity is utilized for the 

behavior of concrete in compression, or more explicitly if no softening is considered in 

concrete, using ESF should not matter to response, constant strain output is obtained at each 

material point within the element. 

 

 

Bottom node

-30

-25

-20

-15

-10

-5

0

5

-2.0E-02 -1.5E-02 -1.0E-02 -5.0E-03 0.0E+00 5.0E-03

Strain

St
re

ss
 (M

Pa
)

Element response
Material model

 

Top node
-30

-25

-20

-15

-10

-5

0

5

-2.0E-02 -1.5E-02 -1.0E-02 -5.0E-03 0.0E+00 5.0E-03

Strain

St
re

ss
 (M

Pa
)

 
(a) Extra displacement shapes formulation turned off 
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(b) Extra displacement shapes formulation turned on  
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(c) Static compression loading with ESF turned on  

Figure 2.4 Effect of ESF on the stress-strain response output at the top and bottom nodes of 
cubic concrete element (Thin line displays the material curve input to the program) 
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Figure 2.5 Average stress-strain calculated within the element by averaging the stress-strain 

response at the bottom and top nodes  
 
 

2.3 STEEL MATERIAL MODEL 

In the design of reinforced concrete structures, rebar properties do not need to be 

known exactly. ASTM A615 only requires that that the yield stress of Grade 60 bars needs 

to be exceed 424 MPa (60 ksi). For analyses purpose, e.g. finite element analyses, an actual 

value of the yield stress is needed to be provided for a more accurate prediction of actual 

structural response.  

The typical stress-strain relationship for the reinforcing steel obtained from uniaxial 

tests displays that steel has definite yield point and a significant yield plateau. Strain 

hardening starts at the end of this plateau. The most important properties of the σ-ε curve of 

the reinforcing steel are (a) the yield strength (fsy), (b) the ultimate strength (fsu), and (c) 

ultimate strain capacity (εsu). The monotonic steel response may be defined by a few 

material parameters as identified in Figure 2.6. In this figure E is the elastic modulus, εsh is 

the strain at which strain hardening initiates.  

A review of tests on reinforcing bars conforming ASTM specifications (1999) was 

conducted by Malvar and Crawford (1998). It was shown that there is a significant 

variability in strain data defining the borderlines of different regions on the stress-strain 

curve given in Figure 2.6. It was also reported that the measured strains of same grade but 

different dimension bars are also different.  
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TS 500 (2003) states that the reinforcement should satisfy the requirements of TS 708. 

It was required in TSC (2007) that reinforcing steel with strength exceeding that of S420 

shall not be used reinforced concrete structural elements. The rupture strain of 

reinforcement to be used shall not be less than 10%. The mechanical properties of bars 

made of S420 steel is given as 420 MPa for yield strength, 550 MPa for ultimate strength 

and minimum strain of 0.1 at the rupture in TSC.  
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Figure 2.6 Typical stress-strain curve for ASTM A615 Grade 60 steel 

 

 

Response of reinforcing steel subjected to reversed cyclic loading exhibits isotropic 

strain hardening, characterized by increasing strength under increasing inelastic strain 

demand (Lowes, 1999). It was experimentally (Vallenas, 1979; Ma et al.) found that the 

yielding strength is higher in compression than tension.  

In an effort to summarize all the foregoing discussions, Figure 2.7 is plotted, defining 

the simplified steel stress-strain curve to be used in the analyses. Using the typical stress-

strain curves representing ASTM A615 Grade 60 and S420 (BÇ-III) reinforcing bars, a 

bilinear stress-strain curve was fitted to these curves ignoring the yield plateau. For general 

engineering applications, the elasto-plastic constitutive relationship, either with or without 

strain hardening, is normally adopted for ductile reinforcing steel (Powanusorn, 2003). 

Uniaxial behavior of longitudinal and transverse steels was modeled with a bilinear 

isotropic hardening using von Mises yield criterion based on this curve. Modulus elasticity 

of the steel material was taken as 200000 MPa. The yield stress and tangent modulus at the 
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strain hardening is taken as 420 MPa and 2000 MPa, respectively. Using a strain hardening 

stiffness helps achieving a better convergence behavior.  

The steel model used in this study does not consider any modifications or adaptations 

to take into account bar fracture and slip between steel and concrete due to deterioration of 

bond. Nevertheless, in a simulation example at the end of this chapter application of bond-

slip in finite element analyses is displayed. In regions of variably oriented loading or 

relatively high shear loading, critical shear and diagonal tension may develop in wall 

members. The formation of a significant diagonal-tension crack activates resistance to 

vertical shear by dowel action in the main longitudinal reinforcement, subsequent aggregate 

interlock along the diagonal crack, and resistance in vertical stirrups (Chen, 1982). This 

loading of the cracked reinforced concrete volume is referred to as shear friction, and 

activation of reinforcement perpendicular to the bar axis at a crack surface is referred to as 

dowel action (Lowes, 1999). Most research into the shear-friction response of reinforced 

concrete elements indicates that even for this type of loading axial rather than dowel action 

dominates the response of the reinforcement perpendicular to the crack surface (Laible et 

al., 1977; Paulay and Loeber, 1977). While most researchers agree on this, there are studies 

that suggest the dowel action of reinforcing steel may not be negligible and may contribute 

between twenty-five and thirty-five percent of the slip resistance at a crack surface 

(Hofbeck et al., 1969). In the current investigation, nonlinear shear behavior due to the 

dowel action of reinforcing steel is neglected and reinforcing steel is modeled as an uniaxial 

element. 
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Figure 2.7 Stress-strain diagram of reinforcing steel used in the analyses 
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2.3.1 Modeling of Bar Buckling  

For walls with moderate amounts of boundary longitudinal reinforcement, ties are 

required to inhibit buckling. Cyclic load reversals may lead to buckling of boundary 

longitudinal reinforcement even in cases where the demands on the boundary of the wall do 

not require special boundary elements. Additionally, the confined concrete models are 

applicable only if premature buckling of longitudinal reinforcement is prevented. Buckling 

of the reinforcement also affects the drift capacity of reinforced concrete sections.  

Dhakal and Maekawa (2002), Gil-Martin et al. (2008), Berry and Eberhard (2005) are 

among the researches recently studied the subject.  Dhakal and Maekawa (2002) proposed a 

unique relationship between the average stress and average strain of reinforcing bars 

including the effect of buckling. They found that the average compressive stress-strain 

relationship including the softening in the post-buckling range can be completely described 

in terms of the product of square root of yield strength (fy) and the slenderness ratio, L/D, of 

the reinforcing bar. L is the unconfined length of the longitudinal reinforcement between 

the two transverse reinforcement and D is the diameter of the longitudinal bar.  

The general layout of the proposed average monotonic compressive stress-strain 

model is sketched in Figure 2.8. An intermediate point (ε*,σ*) is established, after which a 

constant negative stiffness equal to 0.02Es, is assumed until the average stress becomes 

equal to 0.2fy. to make model applicable to bars with all types of material model, the stress 

at and before the intermediate point are normalized with respect to the stress computed 

from the point wise stress-strain relationship at  the corresponding strain value. The 

following equations relating the average compressive stress with the average compressive 

strain of reinforcing bar are proposed: 
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Here , σl and σl* are the point wise stresses corresponding to ε (current strain) and ε* 

(strain at intermediate point), respectively. Similarly, εy and Es are the yielding strain and 

Young’s modulus of the reinforcing bars. The coordinates of the intermediate point (ε*,σ*) 

can be calculated by 
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The coefficient a takes the value of 1.0 for linear hardening bars and 0.75 for 

perfectly elasto-plastic bars.  

 

 

 
Figure 2.8 Schematic representation of proposed model (Dhakal and Maekawa, 2002) 

 
 
 
The bar buckling model is utilized in some static analyses case in this chapter and in 

parametric study in Chapter 5. The steel material model for the longitudinal bars at the 

boundary elements of compression region of shear walls is calibrated in accordance with 

the model presented here. 

2.3.2 Effect of Tension Stiffening  

It is well known that behavior of reinforcing steel bars surrounded by concrete is 

different than the bare steel bars. The stress-strain curve of a mild bar tested in a bare 

condition exhibits a long plateau after yielding. However, the average stress-strain curve of 

mild steel bars embedded in concrete does not show such a yield plateau. The apparent 

yield stress is lower than the yield stress of a bare bar.  Belarbi and Hsu (1994) based on 
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experimental data from reinforced concrete panels proposed a simple bilinear material law 

for steel bars embedded in concrete. The parameters affecting the average stress-strain 

curve of steel bars embedded in concrete found to be the surrounding concrete tensile 

strength (fctk), the volumetric ratio of the embedded steel with respect to surrounding 

concrete core volume and the yield strength of the steel (fy). Figure 2.9 summarizes the 

necessary equations for bilinear model to modify the stress-strain relation of reinforcing 

steel and an example curve with fy = 420, fctk = 2 MPa and ρs=0.01. 

 

 

 
Figure 2.9 Average stress-strain relation of steel embedded in concrete 

 
 

2.4 CAUSES OF WALL RESISTANCE AND FAILURE MECHANISM 

The behavior of a shear walls can be governed by purely flexural or shear effects, or 

a combination of these two effects. The principal source of energy dissipation in a laterally 

loaded cantilever wall should be the yielding of the flexural reinforcement in the plastic 

hinge regions, normally at the base of the wall (Paulay, 1986). To achieve this behavior, 

shear walls must be designed according to shear strength that yields lateral shear strength 

higher than that required to develop flexural yielding in the vertical boundary reinforcement 

of the walls. Nevertheless, there are cases where the governing behavior modes leading to 

failure change due to large shear wall cross section area. 
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The walls characterized by small height-to-width ratio are encountered in low-rise 

buildings or in the lower stories of medium to high-rise buildings. Walls having height-to-

width ratio less than two is classified as squat walls. The flexural moment capacity of these 

walls may be very large, even when a minimum amount of vertical reinforcement used. 

Due to small height, very large lateral forces must be applied on the wall to develop the 

flexural strength at the base. However, until the flexural mechanism is actuated significant 

shear actions may be introduced. Web concrete crushing, diagonal tension or compression 

and sliding shear are the failure modes observed due to squatness. Diagonal tension or 

diagonal compression is identified as the most common failure modes observed in squat 

shear walls. Diagonal tension failure occurs when insufficient horizontal shear 

reinforcement is placed in the web section of the wall. Diagonal compression failure occurs 

when the shear stress on the web is large. In the latter case, the concrete in the toe region 

crashes, followed by a sliding shear plane extending along the base of the wall (Palermo 

and Vecchio, 2002). Lefas and Kotsovos (1990) stated that it is the strength of the 

compressive zone that is the main contributor to shear resistance and not the “cracked” 

concrete in regions subjected to predominantly tensile stress conditions. When it comes to 

modeling of these elements, the effects of these response modes become more pronounced. 

Figure 2.10 illustrates schematically the shear resistance mechanism at the lower part 

of the compressive zone of a shear walls. If two extreme conditions observed in structural 

walls are considered, which is flexure dominated behavior as observed in slender walls and 

shear controlled failure modes due to squatness in shear walls, following generalization can 

be done about the properties of the material model for concrete.  

The response of concrete in the compression region of flexure controlled shear wall 

can be represented with uni-axial stress-strain relation of concrete. An enhancement in the 

compressive strength of concrete at this region due to confinement effect around the wall 

boundary element can be also taken in to account. This kind of flexural behavior, which 

consists of initial yielding of the reinforcement in tension with subsequent plasticity of the 

concrete in compression, has many successful applications (Cervenka, 1972; Sittipunt and 

Wood; 1995; Kazaz et al., 2006). Even in some applications neglecting the plasticity of 

concrete in compression, i.e. only considering the cracking of concrete and yielding of 

reinforcement, has yielded adequate prediction of the actual response (Franklin, 1970).  
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Figure 2.10 Schematic representation of failure mechanism of the walls 
 

 

On the other hand at high shear to moment situations accompanied by nominal axial 

stress as observed in squat walls, starting from very early stages of loading diagonal tension 

and compression would have developed on the web wall. The concrete stress in the web 

zone was high. The flow of compressive stresses diagonally resulted in maximum 

compressive stresses and strains to occur at the compression toe located at the lower left 

part of the web wall.   A biaxial tension-compression situation (situations likely to produce 

shear mechanisms) develops at this region as shown in Figure 2.11. Vecchio and Collins 

(1986, 1993) based on extensive experimental studies on shear panels showed that 

compressive strength of concrete subjected to biaxial tension-compression decreases. The 

principal compressive stress in concrete was found to be a function not only of the principal 

compressive strain but also of the co-existing principal tensile strain. More clearly, cracked 

concrete subjected to high tensile strains in the direction normal to the compression is softer 

and weaker than concrete in a standard cylinder test, see Figure 2.11. Vecchio and Collins 

(1986) introduced a softening factor as a function of principal tensile and compressive 
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strain to decrease this peak compressive stress and strain of unconfined concrete for 

simplified shear design. This factor has the form: 
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where ε1 is the principal tensile strain and taken as positive, fc2max is the softened peak 

compressive strength. It is obvious that increasing ε1 will reduce β. The stress-strain 

relationship of concrete is given by 
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and the effective modulus of elasticity due to weakening is 
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Figure 2.11 Stress strain curve for cracked concrete in compression 

 

 

Compressive stress strain relationship of diagonally cracked concrete can be modified 

in one of two ways (Vecchio and Collins, 1986; Belarbi and Hsu, 1995; ASCE-ACI 

Committee 445, 1998). The loading can be assumed to be proportional, causing both the 

principal compressive strain, ε3, and the principal tensile strain, ε1, to increase 
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simultaneously. Modifications were made to both the peak stress and the strain at peak 

stress. This method is suitable for static-monotonic analyses, since the initial stiffness is not 

affected. In the second case, it is assumed that concrete was sequentially subjected to 

extensive tensile strains first and than the principal compressive strain is increased. While 

this second case is not a realistic situation for concrete under monotonic loading, it is a 

better approach for concrete that has already cracked or under cyclic loading. Only the 

stresses are modified in the second case. 

Kwan and Billington (2001) utilizing a commercial finite element code investigated 

the effects of various nonlinear material models and their associated parameters on the 

cyclic response of reinforced concrete structural members. A significant outcome of their 

research is that although the adopted material models are able to represent flexure 

dominated behavior well, they can only indicate when shear-dominated hysteretic behavior 

is likely. They stated that further improvements are required in modeling cyclic shear 

deterioration in concrete constitutive model in order to capture the shear dominated 

behavior. 

This indicates that analyses and design of reinforced concrete members under shear 

and torsional effects requires special treatment of concrete material properties and laws. 

Rational and realistic models for response governed by shear are few and seem not to have 

gained excessive application in finite element practice (Vecchio and Collins, 1986; Belarbi 

and Hsu, 1995; Hsu and Zhu, 2002). Moreover, results of several prediction exercises 

revealed the inadequacy of customary analysis procedures for such elements 

(OECD/NEA/CSNI, 1996). 

2.5 NONLINEAR TIME HISTORY ANALYSES PROCEDURE IN ANSYS 

In the nonlinear transient dynamic analysis solution phase we encountered some 

problems related to ANSYS software.  Direct application of ground motion is not possible 

within the program. The only form of acceleration input is to create acceleration field acting 

on all the nodes of model. Thus, the structural response of the model to the base excitation 

is calculated using the concept of effective earthquake forces (Chopra, 2000).  Lumping 

masses at the floor levels for the wall, the absolute floor displacement vector, ut, under the 

ground displacement ug is computed from Eq. (2.8) (Figure 2.12(a)).  
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ut(t) =  u(t) + ug(t).1                                                                (2.8) 
 

where 1 is a vector of order N with each element equal to unity and in general terms called 

influence vector (ι) that represents the displacements of the masses resulting from the static 

application of a unit ground displacement. For external dynamic forces Fi(t) the general 

form of the equation of dynamic equilibrium can be written in the form: 
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In the earthquake (base) excitation case, F(t) = 0 since no external dynamic force is 

applied and the equation of dynamic equilibrium becomes 
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Figure 2.12 (a) Lumped mass system, (b) Ground excitation, (c) Effective earthquake 
forces 

 

 

Comparing Eq. (2.9) with Eq. (2.10) shows that the equations of motion for the 

structure subjected to ground acceleration, )(tug&&  in Figure 2.12(b) and externally applied 

dynamic load, )(. tum gi &&  in Figure 2.12(c) at the level of each mass are one and the same. 
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The accelerations calculated with Eq. (2.10) are relative accelerations; so for computing the 

total acceleration related to any mass, Eq. (2.8) must be utilized. 

In view of the discussions presented above, acceleration data is entered in the form of 

an array to the program before the start of solution, and in the solution phase for each time 

integration step (∆t), corresponding acceleration is called in from the array within a small 

loop covering the whole time history data points. Due to application of this acceleration 

field at any particular instant, all the masses are multiplied with the ground acceleration 

value and the resulting force is applied to the structure as an external dynamic loading, 

which is the right hand side term in Eq. (2.10). For the given instant governing equations of 

motion are solved statically including the time integration effects in the calculations. In the 

ANSYS program Newmark and HHT (Hilber et al., 1977) time integration methods can be 

employed for the solution of the equations of motion that are in the same form as Eq. 

(2.10).  In nonlinear analysis the stiffness matrix [K] is a function of unknown 

displacements, so Newton-Raphson Procedure, which is an iterative method to solve 

nonlinear equations, is also used. 

In particular, it is desirable to have a controllable numerical damping in the higher 

frequency modes, since using finite elements to discretize the spatial domain, the results of 

these higher frequency modes are less accurate. However, the addition of high frequency 

numerical damping should not incur a loss of accuracy nor introduce excessive numerical 

damping in the important low frequency modes. In the full transient analysis, the HHT time 

integration method (Chung and Hulbert, 1993) has the desired property for the numerical 

damping.  The Newmark parameters are related to the four input parameters α, δ, αf, and 

αm used in the HHT method as follows 
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where γ is the amplitude decay parameter. In ANSYS either the four input parameters 

should be input or they should be defined using γ only. When the amplitude decay 

parameter (γ) equals to zero, method reduces to constant average acceleration. If both αm 
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and αf are zero when using this alternative, the HHT method is same as Newmark method.  

For the value of amplitude decay parameter Broderick et al. (1994) tried the values in the 

range of 0.1 and 0.3 and concluded that γ = 0.1 provides the desired numerical damping to 

eliminate the higher mode noise especially observed in the force and acceleration responses 

of the model.  

The numerical damping is useful in eliminating the high frequency noise, however to 

account for the energy dissipation due to many different effects such as material damping, 

joint friction and radiation damping at the support viscous damping should be defined also. 

The viscous damping is input by means of Rayleigh damping constants ([C] = α[M] + 

β[K]); i.e. it was assumed that both mass- and stiffness-proportional damping was present 

in the system (Chopra, 2000). 

2.6 ACCURACY AND VERIFICATION BY SHEAR WALL TEST RESULTS 

To ascertain the adequacy of finite elements and associated material models 

described above in the analyses of structural walls, a series of shear wall experiments were 

modeled. The wall specimens in these experiments are representative of typical shear walls 

in terms of aspect ratio, reinforcement amount, axial load ratio and loading conditions. 

Different loading schemes, monotonic and cyclic static, dynamic loading, were employed 

in these tests, so as to make it possible to investigate the effect different loading types in 

finite element analyses. During the course of numerical simulations of each shear wall 

experiments different aspects of finite element modeling issues and used solid finite 

element and material models are discussed. The purpose of this extensive treatment for 

aligning experiment and analysis is to build confidence for the deep-cutting critique and 

revised recommendations that will form the basis of Chapter 5.  

The analyses of walls that are carried out in this thesis are briefly summarized below.  

• CAMUS wall: 1/3 scale 5-story lightly reinforced concrete shear wall was tested on 

shaking table under sequential application of ground motions of increasing amplitude 

(Combescure, 2002). 

• NUPEC wall: Large scale 1-story H shaped squat wall was tested on shaking table 

under sequential application of ground motions of increasing amplitude 

(OECD/NEA/CSNI, 1996). The specimen is proved to be very useful in identifying 

the shear dominated effects in squat walls as well the dynamic properties.  
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• Walls tested by Lefas et al. (1990): Thirteen large scale wall models were tested 

under the combined action of a constant axial and a horizontal load monotonically 

increasing to failure. 

• Portland Cement Association (PCA) structural walls (Oesterle et al. 1976): 1/3 scale 

isolated reinforced concrete walls representative of full-size walls subjected to cyclic 

load of increasing amplitude. 

• Wall tested by Thomsen and Wallace (1995): Rectangular slender wall designed 

using a displacement-based design methodology tested under cyclic loading. 

In the simulations several issues and problems related to finite element analyses of 

reinforced concrete structures are addressed. These problems are related to element 

technology of SOLID65 and material models used to model concrete. Strategies and 

procedures are proposed for the solution of these problems. In the following sections 

detailed explanations of finite element modeling of these walls and comparison of 

calculated and measured response are given.  

2.6.1 CAMUS Wall: IAEA Benchmark Project (CAMUS Experiment) 

The investigation seismic response of CAMUS wall utilizing NLFEA has been 

conducted under the IAEA (International Atomic Energy Agency) CRP (Coordinated 

Research Project) “Safety Significance of Near-Field Earthquakes”. The detailed 

explanation of numerical simulations of CAMUS wall can be found in Kazaz et al. (2006a). 

Only the best estimate results will be given here. The experimental program consisted of 

testing a model with scale 1/3 representative of a 5- story reinforced concrete building on 

the major Azalee shaking table of Commissariat a l’Energie Atomique (CEA) in the Saclay 

Nuclear Center, France. The specimen, named CAMUS1, had a total mass of 36 tons with 

the additional masses attached to it. Walls have no openings and are linked by square slabs 

measuring 1.7mx1.7m. A heavily reinforced concrete footing allows the anchorage to the 

shaking table. The total height of the model is 5.10 m. Walls have thickness of 6 cm.  The 

dimensions of the different parts and the mass distribution are shown in the sketches given 

in Figure 2.13. 
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Figure 2.13 View of the CAMUS specimen and sketch of the walls and masses 
(Combescure, 2002), (units are in cm) 

 

 

 

The specimen has reinforcement details that follow the French PS92 seismic design 

code (Combescure, 2002) with minor adaptation in order to increase the shear safety factor. 

The distribution and the detailing of the reinforcement are quite different from those in 

conventional design practice where generally mesh reinforcement is used in the web along 

with the main longitudinal reinforcement at wall ends.  The longitudinally reinforced 

regions through the 1.7 m wide walls are two edge regions in 10 cm width and the central 

region with 30 cm width. The amount of reinforcement decreases gradually as it goes to 

upper stories. The addition of central reinforcement is to limit the risk of sliding shear 

failure.  For transverse reinforcement, bars with 3-mm diameter were used at a spacing of 6 

cm along the height of the wall where longitudinal reinforcement is used. The amount of 

steel at each level and details of reinforcement in elevation are shown in Figure 2.14. 

The acceleration waveform of the ground motions are given in Figure 2.15. It is 

worth noting that these ground motions were applied sequentially to the same specimen so 

any accumulation of inelasticity from previous runs was retained in the subsequent runs. 
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Level Edge of the wall (mm2) Center of the wall (mm2) 

1 289.4 138 
2 188.9 138 
3 94.4 110.2 
4 28.3 78.4 
5 15.9 78.4 
6 15.9 Nothing 

Level 2 

Level 1 

Level 3 

Level 4 

Level 5 

Level 6 10 cm 60 cm 30 cm 10 cm60 cm 

Configuration of edge and central reinforcement φ3 / 6 mm 
as stirrup 

 
 

Figure 2.14 The amount and detailing of reinforcement in elevation of single wall 
 

 

Ground motions used in the loading program
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Figure 2.15 Nice and San Francisco signals used in the experiments 
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2.6.1.1 Steel and Concrete Material Models  

In the light of the experimental results, the compressive and tensile strength and the 

modulus of elasticity of the concrete were taken as 35 MPa, 3.8 MPa and 30 000 MPa, 

respectively. The stress-strain curve of the concrete in compression was represented with 

three segments as a multilinear isotropic hardening material as shown in Figure 2.16. In 

nonlinear analysis of reinforced concrete, the shear transfer coefficient must be assumed. 

For closed cracks (βc), the coefficient is assumed to be 1.0, while for open cracks (βt) it 

should be in the suggested range of 0.05 to 0.5, rather than 0.0, to prevent numerical 

difficulties (Hemmaty, 1998). A value of 1.0 was used for the open cracks, which resulted 

in acceptably accurate predictions. It will be shown later than this value can vary 

significantly depending on the element formulation. Only one bilinear curve was used to 

represent the material property of the four different reinforcing bars. The yield stress was 

taken as 500 MPa (an average value) at 0.002-strain value and the stress at the failure is 

assumed to be 525 MPa with 0.34 % strain hardening. 

 

 

 
Figure 2.16 Material behavior of concrete 

 
 

2.6.1.2 Modeling of the Specimen 

The modeling work of CAMUS wall has been discussed in great detail in Kazaz et al. 

(2006). The results of this modeling study especially useful in displaying the effect of 

boundary condition modeling on the response of test structures. The flexibility of the 

shaking table and the connectivity of the shear wall specimen to the shaking table found to 
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have significant influence on the dynamic properties of the test specimen, which made them 

vital components of the model.  

Using the symmetry of the model only one wall was modeled. The shake table was 

modeled as rigid beam with equivalent mass and support stiffness. The table and walls were 

modeled with element SOLID65. The masses of each story were lumped uniformly at the 

level of each floor by using special mass elements, MASS21. The solid beam below the 

wall in Figure 2.17 that models the shaking table was found to be adequate. The wall 

foundation was not fully anchored to the table at its base (Figure 2.18); the anchorage was 

provided in the middle of basement for a partial length only, approximately 1/3 of the wall 

length. At the two ends, the gap between the wall and table can be described as a contact 

surface problem. This region was filled with elastic mortar with unknown properties. At the 

two ends, steel anchor bars with 36 mm diameter were used to provide additional fixity to 

the wall.  

 

 

 
 

Figure 2.17 The models created in ANSYS 
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The system was found to be more flexible than assumed. Once the wall is pushed in 

one direction one pair of steel bars becomes ineffective and the other pair acts only in 

tension.  So the tension-only spar element, LINK10, is considered to be appropriate to 

model the steel bars. As shown in Figure 2.18, the four inclined steel rods that connect the 

mock-up to the shaking table were modeled with LINK10, which is a three-dimensional 

spar element, having the unique feature of a bilinear stiffness matrix resulting in uniaxial 

tension-only (or compression-only) property.  The tension-only option was activated in 

order not to allow any stiffness contribution when the element was in compression. 

 

 

  
Figure 2.18 Modeling of boundary conditions 

 

 

In the numerical model vertical rods supporting the shaking table were included and 

assigned a stiffness to capture the measured vertical frequencies. For these rods, a spring 

element, COMBIN14, was used. The elastic constant of each spring element was taken as K 

= 400 MN/m (in accordance with the experimentally measured response) in the numerical 

computations. The contact surface between the wall and table was discretized with spring 

elements, COMBIN14, having elastic stiffness of 20000 N/mm. At the free ends of the wall 

these springs were placed between the wall and table. These springs significantly influence 

the first mode natural frequency of the system. While assigning zero stiffness to these 

springs leads to a first natural frequency of 7.1 Hz, assuming very rigid stiffness, i.e. fixed 

wall-table connection leads system dynamic response to be around 8.1 Hz.  These contact 

spring elements are also crucial for other purposes because without them or when their 
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stiffness is below a certain limit, sliding shear failure initiates on the plane of wall just 

vertically above the rigidly connected region under high lateral loads.  

2.6.1.3 Modal and Static Analyses 

Several different boundary conditions were applied to the model and the first bending 

and vertical modes were computed as tabulated in Table 2.1.  As evidenced from the results 

contained in Table 2.1, both boundary conditions exert considerable influence on the modal 

response of the model. The flexibility of the connection between the table and the wall 

affects the first mode significantly but has minor influence on the vertical mode. In the light 

of all these preliminary analyses it was realized that creating a model incorporating both 

boundary conditions in the table base and table-wall connection is vital for reproducing the 

experimental results as close as possible. 

Surprisingly, the static analysis results indicated that the table supporting system 

flexibility has negligible effect on the load deformation pattern. On the other hand, 

flexibility of the table-wall connection region appears to be a significant factor influencing 

the initial stiffness and post elastic behavior of the load-deformation relation. 

The model was first subjected to statically applied inverted triangular lateral load at 

the level of each floor to simulate first mode response. Pushover curve that presents base 

shear force versus top displacement (roof) for one of the two walls (left wall) is given in 

Figure 2.19. The limiting point where the structure reached the state of instability due to 

excessive damage corresponds to the limit that indicates the capacity of the model. The 

computed and experimentally measured maximum response quantities for each dynamic 

run are also plotted on Figure 2.19. The pushover curve is a powerful tool to visualize the 

global nonlinear behavior of the structures, and it provides very useful hints about the 

global behavior of the test specimen in the absence of more elaborate analyses such as 

nonlinear time history analyses. Examination of Figure 2.19 reveals good agreement 

between the capacity curve of structure and the peak global response obtained from the 

dynamic tests. The information presented in Figure 2.19 reveals that the structure remained 

in the elastic range under the ground motion applied in Run 2 whereas all other cases 

resulted in inelastic behavior of varying degrees. Needless to say, the largest deformation 

was measured in Run 5 not Run 3, the strongest shaking intensity, due to sequential 

application of ground motions. This figure displays also the results of the time history 

analyses, which are discussed next. 
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Table 2.1 Modal Frequencies (Hz) due to different boundary conditions 
 

Boundary Conditions 1st Bending 
Mode 

2nd Bending 
Mode 

3rd Bending 
Mode 

1st Vertical 
Mode 

Support & Connection 
Flexible 7.275 32.664 54.856 22.685 

Fixed Support & Flexible 
Connection 7.858 36.483 - 42.270 

Flexible Support & Rigid 
Connection 8.080 33.095 57.405 22.872 

Fixed Support & Rigid 
Connection 8.868 38.609 - 43.397 

Fixed Based Wall 9.190 39.991 - 44.704 

 

 

For Runs 3 and 5, while the calculated peak displacements are in good agreement 

with the measured quantities, the calculated base shear is larger, especially for Run3, than 

the measured ones. As discussed previously, the measured base shears are in some sense 

calculated, i.e. they are computed from the measured accelerations by multiplying them 

with the floor masses above certain wall section. Besides, the effect of additional vertical 

force generated in the dynamic test as a result of opening and closing of cracks was not 

included in the calculation of measured base shear. However, it is fundamentally known 

that as the axial load increases on a section, the moment and shear capacity also changes 

(increasing when the axial load level is low).  It is known that in Run 3 and 5, the vertical 

force on the base section of the wall nearly doubles both in traction and compression due to 

opening and closing of the cracks on the wall. This miscalculation of the measured base 

shear force is considered to be the primary reason of the discrepancy between the calculated 

and measured global response for Run 3 and Run 5. So it was decided to perform two more 

pushover cases; one is for the triangular load case in which the effective mass of the system 

was increased 1.6 times (geffective = 1.6g) due to vertical excitation (to show the effect of the 

axial force on the response) and the other one is representative of the uniform (rectangular) 

loading that is considered as an upper bound case for the load path. The increased effective 

mass is calculated as the total maximum vertical force at the base (the measured axial 

compression at Level 1 in Run 3 plus the weight of the structure (165 kN)) divided by the 

weight of the structure (270 kN/165kN). The resulting load-deformation curves are 

presented in Figure 2.19. The results support the expectations; the effect of both vertical 
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force and load pattern is very significant on the load-deformation curve. This situation 

again proves the complexity of the problem and the necessity of comprehensive analysis. 
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Figure 2.19 Pushover curve of a single wall  

 

2.6.1.4 Time History Analyses 

The reference acceleration histories measured on the shaking table were applied to 

the model at the level of the shaking table. Time history analyses were carried out only for 

strong motion duration of the given ground motion records. The analyses for Runs 1-5 were 

carried out in a sequential order to represent the actual loading history. Top displacement 

was measured from the node at the top corner of the model. The shear forces at different 

levels of the structure were calculated by taking the sum of horizontal forces (y-component) 

of elements at a section. The bending moments were calculated by taking moments of 

vertical force components (z-component) of elements at a section about the center of 

section. This damping was input by means of Rayleigh damping constants; i.e. it was 

assumed that both mass- and stiffness-proportional damping was present in the system. The 

first two modes each with 2 percent damping were used to define α and β. 

Time histories for top horizontal displacement, shear force and bending moment at 

level 1 (base of the shear wall), moment-curvature relationship at the base of wall, strains in 
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the external rebars for Runs 1 to 5 were computed and are summarized in Figure 2.20. The 

corresponding test measurements are also superimposed on the numerical plots. There is a 

fairly good match between the experimental (measured) and computed (calculated) results. 

These comparisons revealed the adequacy of the model for the purpose of simulating an 

experiment realistically by means of analytical tools.  

2.6.1.5 Local Results 

Time history results of several parameters were derived from the computational phase 

including accelerations and external rebar strains on each level. The damage progress, in 

other words the crack development started from the base of the structure as hairline cracks 

and moved to the upper levels. As it was expected from the ground motions and evident 

from the experimental and computed results, non-linearity becomes pronounced 

significantly first in Run 3. The moment-curvature relations plotted for the four levels in 

Figure 2.21 show that the second, third and fourth floor levels deformed into non-linear 

range after Run 3.   

In Figure 2.22, the strain concentrations in different regions of the wall computed 

during Run3 are shown. Due to progressive cracking of concrete and yielding of 

reinforcement under sequentially applied increasing seismic excitations, the system 

deformed further. This preliminary damage accumulation is the reason why the test 

specimen has exhibited such large deformations in Run 4 opposing the expectations. Run5 

is the ultimate loading applied to the specimen that led to excessive damage and failure of 

reinforcement at different sections. The special design of steel allowing the damage to 

spread among different stories rather than localizing it to a particular section of the wall 

helped the structure survive such an intense sequential loading history. Yielding of the 

reinforcement occurred in the stories 1 to 4, but it was excessive in the lower two stories.  It 

is evident that in the regions where the longitudinal steel is reduced, larger deformations 

were observed. The number of rebars changes at 10 cm below each story level along the 

height of the wall. For this reason, the cracks on the wall initiate from these interruption 

regions and progress diagonally between the stories. Smeared crack model that is used to 

model and detect the damage, the location of the damage and to some degree the level of 

damage experienced by the structure gave reasonable results when handled carefully. The 

main crack pattern shown in Figure 2.24 at the end of testing program supports this 

statement. 
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Figure 2.20 Comparison of experimentally measured and numerically calculated global 
response parameters, such as displacement, base shear and bending moment 
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Figure 2.21 Moment-curvature relationship of levels 1-2-3-4 after Run3 

 

 

  
Figure 2.22 Strain distribution and crack pattern developed in the model in Run3 
 

 

Since strains at a section or a point are the indicators of damage experienced, 

examining the strains measured on the external rebars from the experimental phase and 

comparing them with the calculated ones reveals the damage pattern and location in the 

structure. Level 3 seemed to be the most critical section as evidenced by the experimental 

results. In the computations very high strains, denoting excessive damage, were obtained at 

levels 2, 3 and 4.  The comparison of strains measured on the external rebars for Run3 and 

5 is given in Figure 2.23 and Figure 2.24. During the ultimate Run5, the steel yielded at all 

sections, and this was accompanied by the failure of the longitudinal reinforcement at level 
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3. The strains obtained from the simulations showed the same deformation tendency with 

an exception that the computed strains could not reach the failure limit (2.5 percent) at level 

3 but at level 4. So, in experimental stage while the failure initiated at level 3, in the model 

the first failure indication was observed at level 4. But this is within our expectations since 

we know that the measured strains at upper levels (3 and 4) is very high and there is a slight 

difference between these strains showing that initiation of failure at a level is a matter of 

instant.  Another difference in our computations from the measured ones is that, the 

computed steel strains at level 2 are much greater than the experimental ones in Run5.  This 

can be explained within the experimental procedure itself and the instrumentation of the 

wall, as all the experimental measurements were made on the left wall, while it is known 

that the main crack pattern that was observed on the right wall at the end of the testing 

program was different than that on the left (Figure 2.24). It is known, at least by visual 

inspection that, there was an excessive damage on right wall at level 2 indicating high 

strains, which agrees with the computations. The local results (strains) that were computed 

agree well with the crack pattern on the right wall. 

After the failure of reinforcing bars at level 3 in Run5, the response of the system 

changed drastically. Natural period of the system increased to more than double (from 

0.137 sec to approximately 0.3 sec) due to stiffness degradation in the system. This is a big 

challenge from the modeling point of view. The analytical model and the material laws we 

employed in the analysis is not equipped to retrieve a failure situation in the reinforcing 

bars. This is probably the reason why the maximum experimental top displacement (43.3 

mm) could not be captured in the computations (36 mm) of Run 5 as good as the previous 

cases (Figure 2.20(d)). The FE model and the assigned non-linear material properties can be 

improved to retrieve such a failure situation by adopting bond slip occurring between the 

concrete and rebars and spalling of concrete due to degradation in quality.  

In order to observe the effect of the concrete cracking on the loading history, Run4 

was performed on the virgin, uncracked structure. The results were as shown in Figure 

2.25. While the cracked model reached a top displacement of 13.2 mm, the virgin model 

could only reach a translation of 6.35 mm at the top. This exercise not only proved the 

significance of concrete cracking and yielding of reinforcement on the behavior, but also 

verified the reliability of the numerical model and the software used. 
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Figure 2.23 Strain time histories compared with experimental ones for Run3 at levels 2&4 
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Figure 2.24 Maximum strains computed at each level compared with experimental ones for 

Run5 and main crack patterns on right and left wall 
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Figure 2.25 Effect of cracking of concrete and yielding of steel on the top displacement 
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2.6.2 NUPEC Shear Wall  

In order to shed light on the behavior of squat shear walls, the response of a large- 

scale flanged shear wall structure tested on a shaking table in Japan is re-examined here 

using simple plasticity models combined with the tensile cracking criterion for concrete. 

The shear wall specimen was a part of experimental program carried out by NUPEC 

(Nuclear Power Engineering Corporation) in the early 1990s to study the seismic design 

and performance of shear walls in nuclear reactor buildings (OECD/NEA/CSNI, 1996). It 

was a single story flanged shear wall with hw/lw = 0.67. In the experiment it was observed 

that the wall response was dominated by shear effects and significant strength loss led to 

the failure of the specimen as a result of sliding shear developed near the base of the web 

wall. The structure has been investigated by other researchers (Vecchio, 1998; 

OECD/NEA/CSNI, 1996).  

Analyses and design of reinforced concrete members under shear and torsional 

effects requires special treatment of concrete material properties and laws. Rational and 

realistic models for response governed by shear are few and seem not to have gained 

excessive application in finite element practice (Vecchio and Collins, 1986; Belarbi and 

Hsu, 1995). Moreover, results of several prediction exercises revealed the inadequacy of 

customary analysis procedures for such elements (OECD/NEA/CSNI, 1996). 

Following this introduction, the geometrical and the material properties and the 

loading program of the NUPEC specimen are described briefly and its finite element 

discretization is explained. Several static analyses under monotonically increasing lateral 

loads are carried out to identify the most effective material constants. Static analyses 

proved to be crucial for material identification and were important in providing insight for 

the behavior of the structure before attempting complicated nonlinear time history analyses. 

Finally effectiveness of the utilized plasticity models is verified by re-calculating the 

measured seismic response of the specimen. 

2.6.2.1 Specimen Description: 

The Nuclear Power Engineering Corporation of Japan (NUPEC) conducted an 

extensive experimental investigation for the seismic safety of nuclear facilities in the early 

1990s. For this purpose, two full-scale flanged shear walls (ISP shear walls) were subjected 

to a series of seismic excitations on a shaking table. Two specimens (U-1 and U-2) with the 
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same design specification were prepared and tested by applying the same input signals in 

order to ascertain the reproducibility of the test. The specimen used for the analyses in this 

article was code-named U1 (OECD/NEA/CSNI, 1996). 

Figure 2.26 shows the dimensions of the test specimens. The web wall had a 

thickness of 75 mm, a flange wall center to center length of 3000 mm, the clear height of 

2020 mm, and a shear span ratio of 0.8. The flange walls were 100 mm thick and 2980 mm 

long. The steel percentage in the web was 1.2%, both horizontally and vertically. D6 bars 

(deformed bar, nominal diameter 6.35 mm) at a spacing of 70 mm were used in the web 

wall both for the vertical and horizontal reinforcement. D6 bars at 175 mm spacing are used 

for the vertical reinforcement of the flange walls. As an exception, D6 bars at 70mm 

spacing were used for the vertical reinforcement at the intersections of the web wall and the 

flange walls. Additional lead weights were fixed at the upper and lower surfaces of the top 

slab as shown in Figure 2.26. The total additional weight was 92.9 t, and the total weight of 

the specimen including the top slab amounted to 122.0 t. 
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Figure 2.26 Dimensions of the specimen, [Kitada et al., 2000] 
 

2.6.2.2 Seismic Input Motion: 

The objective of the vibration test program was to identify the dynamic response 

characteristics of the specimens ranging from their elastic state to their inelastic ultimate 

state by applying input accelerations at increasing amplitudes. The seismic tests were 

carried out by applying artificial earthquake motions that had flat acceleration controlled 

region over the frequencies ranging from 14 to 4 Hz (0.07-0.25 s period) corresponding to 
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the initial frequency (13.2 Hz) and softened response frequencies, in order to avoid any 

response amplification induced by changes in the stiffness of the specimen by shifting to 

higher response regions of the spectrum.  In the test, the specimens were excited in only 

one horizontal direction. The vibration test-runs were executed with five input acceleration 

levels. These runs were executed as RUN-1 to RUN-5 sequentially by increasing input 

acceleration levels of the same artificial wave. The 5 percent damped acceleration response 

spectra of the input motions RUN-4 and RUN-5 are given in Figure 2.27. Their spectral 

similarity is noted. For the detailed description of the structure, material properties, loading 

program and structural response reference to OECD (1996) and Kitada et al. (1996) is 

made. 

 

 

 

Figure 2.27 Five percent damped response spectrum of input acceleration for RUN-4 and -5 
 
 

2.6.2.3 Test Results 

The measured fundamental frequency of the specimen prior to the loading program 

was around 13.2 Hz. Upon sequential application of the seismic excitations and due to 

resulting continuous degradation on the mechanical properties of the structure, measured 

fundamental frequency reduced to approximately 7 Hz before final loading (RUN-5) when 

extensive damage in the structure was caused. Table 2.2 shows the change of natural 

frequency and the equivalent viscous damping ratio observed. 

The visual state of cracks for the specimen after the final step (RUN-5) is shown in 

Figure 2.28. Initial shear cracks at the mid portion of the web wall were observed after 
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RUN-2 and horizontal cracks of the flange walls were observed after RUN-4. The sliding 

shear failure occurred 30 cm above the bottom of the web wall in Run-5 resulting in 

significant loss of in the strength and stiffness of the specimen. 

 

Table 2.2 Change of frequency and equivalent viscous damping ratio 
 

Test Frequency (Hz) Equivalent damping ratio (%) 
Before RUN-1 13.2 1.1 
Before RUN-3 11.3 2.5 
Before RUN-4 9.9 3.0 
Before RUN-5 7.7 4.0 
  

 

 
Right Flange Web Left Flange 

 

Figure 2.28 Visual observations of cracks and final web crushing failure of the wall 
(OECD/NEA/CSNI, 1996) 

 
 

2.6.2.4 Finite Element Modeling 

To effectively use the computer resources a model representing half of the specimen 

was created and symmetry boundary conditions were applied, see Figure 2.29. The element 

SOLID65 represents the web, flanges, base and top slabs. The LINK8 element is used to 

model reinforcement discretely. Concrete elements with 200x200x37.5 mm dimension were 

used in the web wall. The reinforcement mesh in the wall has a grid spacing of 70x70 mm. 

In order to produce coinciding nodes for concrete and rebar elements due to mesh density, 

the original reinforcement mesh at 70 mm spacing was replaced by a grid where the bars 

are configured at 200 mm spacing. The rebar areas were recalculated to keep the total 

percentage of reinforcement unchanged as 1.2 percent. This is equivalent to using smeared 

reinforcement modeling since the contribution of smeared reinforcement within the solid 
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element is evaluated at nodes via integration points. As shown later no difference arises in 

the predicted response between the adopted stratagem and the smeared reinforcement 

model. When a concrete panel is reinforced by a dense reinforcing mesh and the change of 

internal forces from one bar to the next is very small, their net effect may be considered as 

“smeared”. For monotonic loading conditions this modeling technique was found to be 

effective. However, in order to calculate rebar stresses accurately, discrete reinforcement 

modeling was preferred in model generation. Modeling the reinforcement as discrete and 

smeared had its effect on the load deformation response.  

 

 

 

 
Figure 2.29 Finite element model and the reinforcement grid of full and reduced NUPEC 

wall specimen 
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The additional masses are modeled with point mass elements (MASS21) that are 

assigned to mid section nodes of the top slab. The effect of gravity force is kept constant 

during the analyses. The lateral load is distributed equally to the mid section nodes of the 

top slab in the horizontal direction. 

2.6.2.5 Calculation of the Material Parameters: 

Bilinear isotropic work hardening plasticity (BISO) is utilized for the material model 

of the steel reinforcement. The modulus of elasticity and yield strength used for steel is 

184,400 MPa and 384 MPa, respectively. In the analyses the strain hardening of the steel is 

attributed a value of 1 % (Esp=0.01Es) to achieve better convergence. 

The concrete material properties were provided by NUPEC. The experimental 

concrete stress-strain curve was used to determine the constants of the material models 

mentioned above. The uni-axial compressive strength of the concrete (fc) was taken as 28.6 

MPa, the mean value of the concrete cylinder tests, and the tensile strength as 2.4 MPa. The 

initial modulus of elasticity and the Poisson’s ratio were 22,900 MPa and 0.2, respectively. 

Since the von Mises plasticity models depend on elasto-plastic representation of the 

material behavior curve, the nonlinear stress-strain curve of the concrete in uniaxial 

compression is bilinearized as given in Figure 2.30. The limiting compressive stress fc
” is 

taken to be the average compressive stress equal to 0.85fc corresponding to 23.8 MPa. Due 

to bilinearization the concrete modulus of elasticity reduces to 20,700 MPa. Using this 

value the first mode frequency of the model was calculated as 12.9 Hz, which is very close 

to measured fundamental frequency of the specimen given in Table 2.2. After model 

generation, modal analysis becomes crucial to verify the correctness of the finite element 

model. 

For the case of Drucker-Prager model, inserting fc=23.8 MPa and fbc=1.2fc into Eqs. 

(B.20) and (B.21), parameters of Drucker-Prager yield surface are calculated as α = 0.0825 

and τo = 11.78 MPa, respectively. The yield surface has the same pattern as plotted in 

Figure 2.1 utilizing Eq. (B.22). It is now required to express these parameters in terms of 

Mohr-Coulomb parameters, c and φ.  Since Drucker-Prager model in ANSYS uses outer 

cone approximation, using Eq. (B.16) these parameters are calculated as 9.72 MPa and 

11.54o for the cohesion and the friction angle, respectively. For multi-linear plasticity 

model (MISO), the material base curve was represented with five line segments as shown in 
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Figure 2.30. This is the only model that can be used to represent the strain-softening branch 

of concrete stress strain curve. 
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Figure 2.30 Bilinearized and multilinear uniaxial stress-strain curves of concrete 
 

2.6.2.6 Finite Element Model Calibration: Mesh Size and Element Options  

At the beginning it was emphasized that finite element analyses results are 

significantly affected by the adopted constitutive material laws. However, this statement is 

valid given that the effects due to numerical discretization are negligible. The properties of 

the model such as the mesh density and the element characteristics are also important 

aspects of the nonlinear finite element analysis procedure. SOLID65 element has been 

instrumented with several features to increase the accuracy of the calculations and 

overcome restriction due to element behavior. However, these are case sensitive properties 

and needed to be calibrated depending on the application.  

Rarely is the first FE analysis satisfactory. After trial runs differences between the 

calculations must be clarified. Since the displacement field within the element is calculated 

using linear interpolation functions and 2x2x2 Gauss-quadrature integration scheme, it must 

be ensured that the mesh used is sufficiently fine to capture the behavior accurately. An 

extra model that is composed of concrete elements 70x70x37.5 mm in size was created as 

shown in Figure 2.31, and the reinforcing bars were discretized in their actual amount and 

location to check the mesh size dependency of the results. Moreover, the eight-noded solid 

element exhibits shear locking, which is a defect associated with the linear element 

interpolation functions that contain no quadratic terms resulting in spurious shear strain. 

Element is excessively stiff to display the bending modes of displacement, if the finite 
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element mesh is not fine enough. The "incompatible modes" formulation for modeling 

bending was invoked to avoid shear locking in the model. In ANSYS theory manual the 

formulas are referred as “extra shape functions (ESF)”. Mesh size dependency and shear 

transfer effects were also investigated. 

The multilinear plasticity model with strain-softening behavior as plotted in Figure 

2.30 was used in the calculations. The models were loaded by prescribed displacements at 

the mid section nodes of the top slab in all the analyses. The effect of gravity force is kept 

constant during the analyses.  The Newton-Raphson method with line search and adaptive 

descent iterations was used in all computations. 

 

 

   
Figure 2.31 Finite element meshes 

 

 

The comparison of results of the three models was given in Figure 2.32(a). It is seen 

that there is a considerable difference between the results of the fine and coarse mesh 

models (when no ESF utilized) in terms of both displacements and forces at the peak level. 

However, the coarse model utilizing extra element shapes is in good agreement with the 

fine mesh model curve giving a slightly higher ultimate displacement limit to strength 

degradation. The reported values for experimentally observed drift ratio limits on squat 

walls at the peak load is in the range of 0.007~0.008 (Duffy et al., 1994). The calculated 

displacements are less than (0.005~0.007) the given limits. The initial stiffness of the 

models were found to be 837, 780 and 798 kN/mm for coarse mesh with no ESF, fine mesh 

with no ESF and coarse mesh with ESF, respectively. Since the three curves approximately 

have the same global stiffness until crushing strain is exceeded, the differences in the peak 

range indicate to a mesh size problem in local modeling. As it was stated previously, the 
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finite element solutions are known to have spurious sensitivity to the mesh size and have 

difficulty when the softening property in the post-peak response is used in constitutive 

models. 

The ISP wall has a large flexural capacity and adequate horizontal reinforcement to 

develop diagonal compression failure under monotonic loading. Plastic behavior in 

compression was observed to develop in the zone near the base of the wall. Analyses results 

indicated that the strains calculated in the compression region of fine mesh model are larger 

than the strains in coarse model at the same location. As the size of element in fine mesh is 

nearly three times smaller than the element in coarse mesh, the strains are much more 

sensitive to nodal deformations from which they are calculated. Consequently, smaller 

elements detect the softening earlier than the larger ones. Since the global behavior is 

affected by local response in the compression zone of the web wall, mesh density in the 

localized damage region significantly affects the accuracy of the results. 
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Figure 2.32 Numerical prediction of load-deflection response of the specimen indicating the 

influence of a) mesh size, b) shear transfer coefficient of concrete, and c) reinforcement 
modeling 



 60

Preliminary analyses also displayed that numerical values assigned to shear transfer 

coefficients for open (βt) and closed (βc) cracks can play a significant role on the load-

deflection response of the model. A shear transfer coefficient, βt, is used to introduce a 

shear strength reduction factor for loading conditions which induce sliding (shear) across 

the crack face. Typical shear transfer coefficients range from 0.0 to 1.0, with 0.0 

representing a smooth crack (complete loss of shear transfer) and 1.0 representing a rough 

crack (no loss of shear transfer). In line with previous studies (Hemmaty, 1998) values of 

0.2 and 1.0 were adopted as shear transfer coefficients for open and closed cracks, 

respectively. The effect of shear transfer coefficient is obvious in Figure 2.32(b). 

In Figure 2.32(c), the comparison of analytical prediction of load-deflection response 

of the specimen indicating the influence of reinforcement modeling as discrete and smeared 

form is given. It is seen from this figure that both modeling strategy yields equivalent 

responses for monotonically increasing loads.  

It was decided that the adopted mesh size of the coarse model in Figure 2.31 and 

solid finite elements with extra element shapes formulation in the model is appropriate for 

further analysis purposes.  

2.6.2.7 Calculation of NUPEC Wall- Static Case  

The force displacement response of the NUPEC wall was calculated by using the 

three plasticity models described above. The finite element model plotted in Figure 2.31 

was used in the analyses. ESF were included in element interpolation functions. Shear 

transfer coefficients for open and closed cracks were taken as 0.2 and 1.0, respectively. A 

displacement controlled loading scheme was adopted. Displacement was applied on the 

mid-section node of the top slab. The calculated response curves are presented in Figure 

2.33. Given in this figure is also the load-displacement backbone curve plotted as an outer 

envelope to the five experimental hysteresis curves. For DP and VM models the 

calculations were stopped when net section yielding had occurred resulting in large 

displacements for small increments of load.  

For all the material models, the ultimate displacement at the peak load of the 

specimen was calculated in the range of 10 mm, which is 16 percent smaller than the 

displacement value at the initiation of strength degradation in the experimental response 

curve. All curves are very similar. It is displayed in the Figure 2.33 that the calculated 

response curves slightly underestimate the actual response over a certain region after the 
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cracking load is exceeded (Fcr ≈ 600 kN). Tests on reinforced concrete elements (Vecchio 

and Collins, 1986; Bentz, 2005) have demonstrated that even after extensive cracking, 

tensile stresses may still exist in the cracked concrete and that these stresses significantly 

increase the ability of the cracked concrete to resist shear stresses. Since the cracking was 

handled by reducing the tensile stresses in the crack plane to zero i.e. tension stiffening is 

ignored, this led to such an underestimation. 

Comparison of the predicted and experimentally measured response revealed that 

beyond 6 mm roof drift the predicted response overestimates the measurement. This is 

within expectations since the response obtained from monotonically increasing static 

loading was compared with a response that is cyclic in nature, which may cause stiffness 

and strength deterioration in concrete. In order to capture the experimentally measured 

response, it is required either to modify the finite element model or calibrate the material 

model to incorporate the effects of load history and concrete mechanics. 
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Figure 2.33 Comparison of calculated load-deflection curves with the experimental 

dynamic back bone curve plotted against the hysteretic curves of the five experiments 
 

 

At this point, the analytical response of the specimen will be investigated a little bit in 

detail. A snapshot of the principal strains from the analyses phase when the top slab 

displacement is approximately 5.5 mm is displayed in Figure 2.34. The tensile strain 

developed at the lower left region of the web wall is around 0.004. The inclination angle of 
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the principal compressive strains (ε3) is approximately 45 degrees. Tracking the ratio of 

principal tensile strain to principal tensile stress (ε1/ε3) from the analysis results at the 

compression region, the curves in Figure 2.35 showing the (ε1/ε3) ratio with respect to 

increasing deformation were obtained for the results of three plasticity models. Under 

increasing shear forces, both the principal compressive strain, ε3, and the principal tensile 

strain, ε1, increases proportionally. Prior to yield of the reinforcement, the ratio ε1/ε3 

remains reasonably constant for the three cases. For the range of interest all three curve 

yields a ratio of approximately -2. 

 

 

    
(a) plastic strains (b) total strains 

Figure 2.34 Vector plot displaying the direction of principal strains developed in the web at 
top displacement of 5.5 mm  
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Figure 2.35 The ratio of principal tensile strain to principal tensile stress (ε1/ε3) during the 

analysis at the compression region 
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As also was supported in Figure 2.35, the ratio (ε1/ε3) remains reasonably constant 

prior to yield of reinforcement. Modifications were made to both the peak stress and the 

strain at peak stress. Distributing the (ε1/ε3) ratio, Eq. (2.5) yields a stress softening factor β 

≈ 0.72. The original and modified stress-strain curves of concrete were plotted in Figure 

2.36. The concrete peak stress has a value of fc2 = 20.5 MPa (0.72x28.6 MPa). For the 

bilinear case this reduces to (fc2)ave = 17.5 MPa by applying the factor of 0.85. However, it 

will be shown next that a reduction in concrete stiffness must be taken into account for 

accurate prediction of response in the dynamic analyses. The modulus of elasticity of the 

softened concrete reduces to approximately 15,000 MPa (0.72x20700 MPa). 
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Figure 2.36 Concrete stress-strain curve for original and softened states 

 

 

For von Mises and multilinear plasticity material models the softened curves given in 

Figure 2.36 is used in the analyses. Assuming the concrete strength as 17.5 MPa and the 

stress state biaxial, the new set of material constants for the DP model can be calculated as 

7.144 MPa and 11.54o for the cohesion (c) and the friction angle (φ), respectively. The 

load-deflection curves calculated with softened material models were given in Figure 2.37. 

For multilinear plasticity, the softened material curve designated as MLP1 in Figure 2.36 

was used firstly. In Figure 2.37 it is seen that the load-deflection curve calculated with 
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MLP1 model experiences a premature softening. The softened multilinear curve in the yield 

plateau is extended to intersect with the descending branch of the original curve, which 

corresponds to softened multilinear curve designated as MLP2 in Figure 2.36. Such a 

modification in the descending branch of stress-strain curve was also proposed by Hsu and 

Zhu (2001) based on the long yield plateau observed in panel tests. Now the multilinear 

plasticity model can successfully mark the location where the strength degradation started 

in the experimental curve in Figure 2.37.  

There was a problem in calculation of the descending branch of the load-deflection 

curve. The solution has experienced significant convergence problems. Nevertheless, 

considering the drift at 100 percent of ultimate load as the most appropriate definition of 

ultimate drift limit from engineering point of view, the results provides considerable insight 

on the displacement capacity of the specimen.  
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Figure 2.37 Recalculated load-deflection curves plotted in comparison with the backbone 

curve plotted against the hysteretic curves of the five experiments 
 
 
 

The plastic shear strain plot in the plane of web wall at the last step of loading 

displays the sliding shear failure mode observed in the experiment can also be reproduced 

in the calculations. In Figure 2.38, after concrete failure is initiated at the tip, it spreads 

horizontally to the base of the web. The situation is much more severe in the experiment 

due to cyclic nature of the loading that causes diagonal cracking in both directions and 
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generating softening at both lower tips of the web wall. Crushing of the web concrete 

spreads rapidly over the entire length of the wall. Diagonal compression failure results in 

dramatic and irrecoverable loss of strength. 

 
 
 

 
Figure 2.38 Plastic shear strain developed initiation of sliding shear at the base of the web 

wall. 
 

 

2.6.2.8 Dynamic Analyses 

The derivation of the most correct material parameters was discussed in detail in the 

above sections. It was displayed that compression softening has a significant impact on 

accurate estimation of dynamic load-deformation envelope of the structure. Adopting the 

reduced bilinear curve for von Mises and Drucker-Prager plasticity with material properties 

of fc=17.5 and Ec=20,700 MPa in Figure 2.36, nonlinear time history analyses were carried 

out. Five table motions were applied on the model sequentially. The damping ratio for each 

analysis was specified with Rayleigh damping constants (alpha and beta) that yielded the 

values given in Table 2.2. The dynamic analyses procedure described in Section 2.5 was 

utilized. 

The computed top slab displacement and horizontal acceleration response were 

plotted in Figure 2.39 and Figure 2.40, respectively. Accelerations were converted to inertia 
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forces.  For the sake of brevity, only the nonlinear time history results obtained in RUN-5 

were discussed here, because the preceding tests had resulted in elastic to moderately 

inelastic response on the structure only, and the simulations were insensitive to material 

models and their parameters until the conclusion of RUN-4. In Figure 2.39(c), two 

displacement response curves were calculated and plotted for RUN-5. In the first case 

response was calculated by using the bilinear elasto-plastic curve with elastic modulus Ec = 

20,700 MPa as described above. Significant variance was observed between the 

experimental and predicted response as the displacement level of 5 mm was exceeded. This 

must be attributed to inadequacy of the material model in accounting for the past damage 

history that cause reduction in the stiffness of the model. In ANSYS stiffness degradation is 

due only to cracking of concrete. The plasticity models can not be used to model stiffness 

and strength degradation of concrete directly. To account for stiffness degradation, the 

stress-strain curve used in this last analysis was altered with one with the same yield 

strength (fc = 17.5 MPa) but with a reduced modulus of Ec = 15,000 MPa. It is important to 

note here that cracks and plastic actions developed in the model during the previous loading 

history were stored as initial conditions for the finite element model. Not only significant 

enhancement was provided but also the experimentally measured response was replicated 

quite well. In Figure 2.41 the hysteric response calculated in RUN-5 was compared with the 

experiment. These yield very similar patterns. Cumulative dissipated energy in measured 

and calculated hysteresis loops was also plotted in Figure 2.41 to display the good matching 

more clearly. In Figure 2.42, total strain developed at the tip of the outer face of the flange-

web wall intersection during RUN-5 was plotted. 

The analysis was interrupted due to non-convergence several times in RUN-5. Since 

the displacement level of 12 mm was surpassed when strength degradation was observed 

(see Figure 2.37), it was decided to terminate the execution. The analysis could not be 

continued. This point was very close to the time where the saturation of the instruments 

initiated in the experiment due to failure of the specimen. 

In Table 2.3 the predicted response maximum values were tabulated. The values in 

parentheses are the experimental counterparts of the calculated values. 

It can be concluded that by analyzing a preliminary simplified model, useful insight 

could be gained into the behavior. Preliminary nonlinear static analyses helped in 

understanding the various aspects of the nonlinear dynamic response before going through 

the final nonlinear transient dynamic analysis. 
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Figure 2.39 Displacements measured and calculated on top slab 
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Figure 2.40 Accelerations measured and calculated on top slab 
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Figure 2.41 Hysteresis and cumulative dissipated energy comparison plots for RUN-5 
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Figure 2.42 Comparison of strain in the outer face of the flange-web wall intersection 

developed in RUN-5 
 

 

Table 2.3 Summary of computed time history results 
 

Top slab horizontal 
response acceleration and 
inertial force 

Top slab 
horizontal 
response 
displacement 

Horizontal  
rebar strain in 
web wall 
(x10-6) 

Vertical rebar strain in flange 
wall bottom 
(x10-6) 

 

g kN mm  Left flange Right flange 
RUN1 0.19 (0.21) 231 (253) 0.29  (0.29) 20 (9) 146 (45) 143 (-37) 
RUN2 0.38 (0.41) 460 (485) 0.55  (0.58) 35 (24) -89 (-92) -90 (-72) 
RUN2D 0.57 (0.62) 683 (739) 1.26  (1.05) 437 (126) -99 (-159) -100 (-125) 
RUN3 0.70 (0.72) 840 (856) 1.87  (1.63) 562 (679) -186 (-222) -77 (144) 
RUN4 0.91 (0.90) 977 (1069) 3.61  (3.72) 605 (1021) 765 (1036) 924 (893) 
RUN5a 1.46 (1.37) 1743 (1628) 15.72 (15.0) 2646 (>5000) 2999 (2632) 3123 (2885) 

aAnalysis stopped due to non-convergent solution. 
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2.6.3 PCA Rectangular Walls (Oesterle et al., 1978) 

Two specimens with rectangular cross sections from the first series of tests conducted 

by PCA (Portland Cement Association) in mid seventies to investigate the behavior of large 

isolated reinforced concrete walls were analyzed here. Controlled variables in the first 

series of tests were the wall cross-sectional shape, amount of flexural reinforcement and 

confinement levels in boundary elements. 

Test specimens were approximately 1/3 scale representations of full-size walls. The 

walls had a height of 4.57 m and length of 1.9 m. The thickness of the walls was 102 mm. 

The boundary region was taken to extend 190 mm from each end of the wall. Two walls 

differ only in terms of amount of the flexural reinforcement at the boundary regions. The 

ratio of flexural reinforcement area to gross concrete area of boundary element in the first 

wall, referred as R1 in the Oesterle et al. (1976), was 0.0147. The second wall, R2, had 

reinforcement ratio of 0.04 at the boundary elements. In both of the walls the amount of 

vertical and horizontal reinforcement in the web was 0.0025 and 0.0031, respectively. 

While wall R2 had very well confined boundary elements (ρs = 0.02) in the lower 1.83 m of 

the wall height, wall R1 was constructed with no confinement.  

As a part of experimental program, reversing loads were being applied to isolated 

walls. No axial load was applied in this series of test.  Each specimen was loaded as a 

vertical cantilever with forces applied through the top slab. The test specimens were loaded 

in a series of increments.  

The finite element models of the specimens are shown in Figure 2.43. Two models with 

fine and coarse meshes created in order to check the mesh size dependency. Both walls 

have the same reinforcement detailing as displayed with the reinforcement cage in Figure 

2.43. Concrete was descriticized with SOLID65 elements. Reinforcement was modeled 

discretely with LINK8 elements. 

Concrete strength of 45 MPa, an experimentally given average value for both 

specimens, was adopted in the analyses. The experimental Young modulus of 28000 MPa 

was also used in the analyses. The stress-strain curves for confined and unconfined concrete 

were developed in accordance with APPENDIX C. Multilinear isotropic work hardening 

plasticity was used to define the curves. Although bars of different sizes with slightly 

different yield strengths and post-yield characteristics (strain and stress at rupture) were 

employed in the experimental specimens, a fixed bilinear kinematic hardening plasticity 
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model with 500 MPa yield strength, 200000 MPa of elastic modulus and strain hardening 

stiffness of 0.0075Es was used for all the steel material.  

 

 

 
Figure 2.43 Finite element models of PCA R1 and R2 rectangular walls 

 

 

Static analyses of wall R1 was performed by taking into account different aspects of 

element technology and finite element modeling as defined in the preceding sections. The 

result of these analyses was summarized in Figure 2.44. As seen in the figure, to get the 

closest results with respect the experimentally measured ones ESF should be turned on in 

the SOLID65. Analysis without ESF in SOLID65 yielded overly stiff response especially 

after the global yielding of the wall. For the model without ESF only it was possible to get 

results close to experimental ones when the shear transfer coefficient, βt, in the model was 

taken close to zero. At first sight this was attributed to shear locking phenomena. However, 

as the resultant load-displacement curve of fine model has displayed, indicated with curve 

number 1 in Figure 2.44, no improvement in the post yield stiffness of the model was 

observed with regards to coarse model. It is expected that as the mesh becomes finer the 

effect of shear locking will diminish. Checking the model in detail, the strain distribution 

along the height of the wall provided a prognosis to the situation. 
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Figure 2.44 Result of static analyses of wall R1 in comparison with experimental hysteresis 

curve 
 

 

The contour plots of vertical strain after the analyses in models 2, 4 and 7 in 

reference to Figure 2.44, at 1.5 mm (initiation of flexural cracking), 20 mm (initiation of 

global yielding) and 100 mm (excessive deformation range) of displacement levels are 

given in Figure 2.45. The first thing noticed especially at the third column of the Figure 

2.45 is the shift in the location of the concentration of yielding in the tensile boundary 

region along the wall height. For the three models under consideration, up to global 

yielding while the yielding starts and progresses at a section very close to base, in the 

model without ESF (βt = 0.2), Figure 2.45(a), after the global yield level is exceeded the 

yielding shifts upwards. Since the moment capacity of section is constant and the lever arm 

of the top applied force reduces due to shift in the location of yield section, a larger force is 

calculated. 
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(a) Model without ESF formulation and βt = 0.2. 

 
(b) Model with ESF formulation and βt = 0.2. 

 
(c) Model without ESF formulation and βt = 0.02. 

 
Figure 2.45 Distribution of vertical strain (nodal averaging) in the boundary elements of R1 

model for different finite element characteristics  



 74

The situation can be verified with simple sectional analyses. The tested wall has very 

simple geometry and loading. The moment capacity of the section at the initial yielding and 

ultimate load was calculated as 378 kN.m and 552 kN.m for the given reinforcement 

detailing and material properties. For the given geometry and loading, assuming that the 

yielding occurs at the base of wall, the peak load that the wall can sustain is calculated as 

552/4.57 = 120.8 kN, which is very close to experimentally measured peak load capacity of 

the wall (118.3 kN). However, due to reduction in the moment arm as a result of shear 

locking phenomena nearly two times larger base shear capacity can be obtained. 

Monotonic and cyclic static FE analyses of R2 wall were performed. In Figure 2.46 

results of three models with different assumptions are plotted together with the 

experimental load-deflection envelope curve. The displacement capacity at the ultimate 

load predicted quite well for all models. As observed in the case of R1, the model without 

ESF and βt = 0.15 yielded stiffer response than the experimental one after global yielding of 

the wall. For this case, while at the ultimate displacement level the strength was calculated 

35 percent larger than the actual strength of R2 wall, the deviation in the R1 wall was much 

larger, approximately 93 percent. For lightly reinforced slender walls (where flexural 

response governs) and low axial load ratios ESF should be turned on. Figure 2.47 displays 

the comparison of calculated hysteretic response with the experimental one. Both the static 

and cyclic analyses provide good estimates of the experimental response. 
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Figure 2.46 Result of static analyses of wall R2 in comparison with experimental hysteresis 

curve 
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Figure 2.47 Comparison of calculated hysteretic response with the experimental one. 

 

2.6.4 Thomsen and Wallace (1995) Rectangular Wall  

The wall specimen with rectangular cross section (RW2) tested by Thomsen and 

Wallace (1995) and later used by Orakcal (2004) to calibrate and asses the proposed 

analytical shear wall model is analyzed. The wall was 3.66 m tall and 102 mm thick. Well-

detailed boundary elements were provided at the edges of the wall over the bottom 1.22 m 

of the wall. In Figure 2.48 the detailing of the reinforcement in the cross section is shown. 

The volumetric ratio of the longitudinal reinforcement in the boundary element is 

approximately 0.033. The average compressive strength of concrete at the time of testing 

was measured to be 42.8 MPa. The longitudinal bars was type of Grade 60 (fy = 414 MPa). 

Detailed material properties can be found in Orakcal (2004). The specimen was loaded 

cyclically by hydraulic actuators at the top. An axial stress of approximately 0.075Agfc was 

maintained throughout the duration of the test. 

The finite element model of the wall specimen is displayed in Figure 2.49. The actual 

longitudinal reinforcements (8 - #3, Abar = 73.1 mm2) in the boundary elements was 

discretized with 6 equivalent rebar (Abar = 97.5 mm2) that gives the same amount of 

reinforcement in the boundary element. In the model, SOLID65 and LINK8 elements were 

used for concrete and reinforcing bars, respectively. This is done to provide coincident 

nodes between the concrete and bar elements for the used mesh pattern. Using the material 



 76

constants and cross sectional details provided above and utilizing the procedures described 

in the proceeding sections, analytical material curves for concrete and steel were calculated 

and incorporated into the finite element model. The material curves are plotted in Figure 

2.49(b).  

 

 

 
Figure 2.48 Wall cross sectional view (Orakcal, 2004) 

 

 

Monotonic and cyclic static analyses were performed on the finite element model. 

The model is loaded with a prescribed displacement at the top mid node. By this way not 

only a better convergence behavior was obtained but also the initiation of the strength 

degradation in the load –deformation response can be detected. With force controlled 

loading schemes the behavior can not be tracked after the ultimate strength point. The effect 

of ESF and shear transfer coefficient on the load-deformation response of the wall was also 

checked on this model. The results of static analyses including these effects were displayed 

in Figure 2.50. In this figure calculated load-deformation curves are plotted together with 

the experimental cyclic response envelope curve for comparison. As studied and verified in 

the case of PCA wall specimens, in the analysis case where the elements with EFS were 

used and βt was taken as 0.2 and in the analysis case where no ESF was used and βt  = 0.02 

was assumed, the predicted load deflection curves are very similar and very close to the 

experimental one. The point where the strength degradation initiates was also predicted 

with a reasonable error. The predictions with the model without ESF overestimated the 

ultimate load capacity 22 percent, where the error is smaller compared to PCA wall case. 

The better performance is attributed to existence of axial load on the specimen as discussed 

previously.  
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Figure 2.49 (a) Finite element model and reinforcement mesh of the RW2 specimen, (b) 
steel and confined concrete material models 

 

 

Using the finite element model utilizing no ESF in the SOLID 65 element options 

and with a minor shear transfer coefficient, cyclic load analysis was performed. While the 

multilinear curves with descending branch after the peak strain can be effectively used to 

define concrete stress-strain relation in static analyses, a bilinear curve is preferred in cyclic 

analysis to improve the convergence. It is worth to mention that analysis with ESF was 

conducted but significant convergence problems even at very early stages of the 

nonlinearity were encountered in cyclic loading. It is recommend here that in the analyses 

that includes reversing loads, when SOLID65 was used in the FE model the ESF will be 

turned off. In deed under loads cyclic in nature it is difficult to perform analyses with 

SOLID65 either with ESF is on or off when significant inelastic actions exist in the 

problem. Nevertheless it is possible to get a solution in the cases where no ESF was utilized 

by relaxing the convergence criteria when convergence problems encountered. The result of 

analysis is plotted in Figure 2.51. The agreement in the predicted and measured responses 

even surprised the author. This situation is attributed to fact that the analyses of the 

structural wall performed here is a slender flexural member with reasonable amount of axial 

load nearly without any shear effect, behavior of which can be predicted easily.  
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Figure 2.50 Static analyses results compared with cyclic envelope curve 
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Figure 2.51 Comparison measured and calculated response of RW2. The measured 

response was corrected for pedestal movement, so as the applied displacement loading was 
adjusted accordingly. 
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The local response was also predicted with reasonable accuracy as well. Figure 2.52 

displays the contour plot of vertical strain, stress and crack pattern at top deflection of 80 

mm. The orientation of cracks indicates to flexural response. First flexural cracks develop 

and they are inclined at the web representing the stress state. As it can be remembered the 

concrete strength is taken to be 42.8 MPa, but the vertical stress plot in Figure 2.52 

indicates to a stress level of 63.6 MPa. This situation can be attributed to the enhancement 

in the strength of concrete at the boundary element due to multi-axial stress state. Figure 

2.53 compares the analytical and experimental curvature distribution at the base of the wall 

at drift levels of 1 and 2 percent. The predictions aggress reasonably well with the 

experimental ones even at very high deformations. An important observation in regards to 

this figure is the inadequacy of the “plane section remains plane” assumption in estimating 

the concrete strains at the extreme fiber at the compression region of flexural members. 

While the experimental result indicate to a concrete compressive strain of 0.012 at drift of 

%2 and finite element analysis predicted this accurately, the undistorted section assumption 

(Euler beam) yields only 0.005 strain value for the same level of tension steel strain (εs = 

0.03). This leads to a great underestimation in evaluating the damage of concrete at the 

compression zone. 

 

 

 
Figure 2.52 Distribution of vertical stress and strain at roof displacement of 80 mm (at %2.2 

drift) 
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Figure 2.53 Comparison of measured (measured by LVDT’s over a 229 mm gauge length) 

and calculated concrete strain at the base of the wall 
 

2.6.5 Walls Tested by Vallenas et al. (1978) 

Vallenas et al. (1978) presented the results of eight earthquake simulation tests on 1/3 

scale RC wall sub-assemblage model specimens. In the experimental program Vallenas et 

al. tested four three-story wall specimens, two of which were framed wall and the other two 

were rectangular walls and after incipient failure, all the specimens were repaired and 

retested. The aim was to understand and model the behavior of reinforced concrete 

structural walls subjected to high shear earthquake loading conditions. The specimens 

represented the lower portion of the shear walls of wall-frame structural systems of ten- and 

seven-story buildings. Walls are designed to resist the total lateral load in the buildings.  

Dimensions of the specimens correspond to one-third the dimensions of the walls existing 

in the designed prototype buildings. The experiments simulated, in a pseudo-static manner, 

the dynamic loading conditions which could be induced in sub-assemblages of buildings 

during actual earthquake shaking. In the proceeding analytical work, analytical models for 

the behavior of structural walls under high shear stresses are presented. These models 

consider a breakdown of the overall deformations into three components: flexural, shear, 
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and fixed end deformations. It was reported that the damage to the walls was concentrated 

on the first story. It included crushing of the concrete in the panel, buckling of the wall and 

column reinforcement, and, after rupturing of the confining reinforcement, crushing of the 

concrete in the column under compression and shear. Damage also included large residual 

tensile cracks, especially in the boundary elements. 

The rectangular wall was 3.047 m high and had a length of 2.142 m. Thickness of the 

wall was 114 mm. Over the 279 mm length at the edges, boundary elements were formed. 

The volumetric ratio of the longitudinal reinforcement in the boundaries was 0.05. The 

amount of reinforcing steel in the vertical and horizontal direction was 0.0028.  The 

rectangular wall investigated here was loaded monotonically. The typical sub-assemblage 

of a rectangular wall designed in a seven-story building is shown in Figure 2.54(a) together 

with the main geometric dimensions. The critical loading condition applied on the structure, 

as displayed in Figure 2.54(a), corresponds to response spectrum analysis of entire building 

using the ground motion of the 1971 San Fernando earthquake. The simplified loads were 

normalized to the ultimate moment capacity of the wall. The axial load in the walls kept 

constant. The test set up employed in this study is one of the most realistic one that was 

used in the experimental programs on shear walls as far as to the knowledge of the author. 

Finite element of the model is displayed in Figure 2.54(b). Reinforcement was 

assumed to be smeared in the element volume. Extra displacement shapes option was 

turned on in the SOLID65 element formulation. Shear transfer coefficient was taken as 0.2.  

The concrete strength reported as 28 MPa. The confined concrete stress-strain curves that 

were calculated in accordance with the models described previously was given in Figure 

2.55. As seen, hoops used at 34 mm spacing significantly enhanced the deformation 

capacity of the boundary element. Although such ductile stress-strain behavior curves were 

calculated for the boundary elements in compression, a more conservative curve compared 

to Mander et al. (1988) and Saatcioglu and Razvi (1992) models were adopted. Indeed 

whether concrete may sustain such levels of deformations is a questionable issue but 

beyond the target of this study. 

 Using the loading configuration shown in Figure 2.54(a), load-deformation response 

of the model was calculated and plotted in Figure 2.56. As done in the test, when the 

displacement at the top is 37 mm the model is unloaded and after reloading at the 

displacement of 56 mm the analyses ended due to “negative tangent stiffness matrix” error 

as a result of Newton-Raphson algorithm can no more track the nonlinear material curves in 
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the softening regime. An interesting observation in Figure 2.56 is the occurrence of zigzags 

(small drops in the load) on the load-deformation curves nearly at the same time for both 

measured and predicted responses. At 25.5, 37 and 55 mm displacement these fluctuations 

were observed. The specimen was severely damaged at the end of experiment. The concrete 

lost its integrity, the reinforcing steel at the boundary has ruptured and out of plane 

buckling of the wall occurred by the end of test. The critical point in the response of 

specimen is where the unloading took place due to stability problem in the wall.  
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Figure 2.54 (a) Loading conditions of sub-assemblage rectangular structural wall, (b) Finite 

element model of the specimen 
 

 

Interpretation of stress and strains in NLFEA requires sound understanding of the 

deformations from the experimental phase. Most of the time strains from FE analysis tend 

to overestimate the real word strains. The wall tested by Vallenas et al. (1978) provides a 

good example of such a situation, so it will be investigated in detail in order to legalize the 

strain calculations performed here. The strain distributions depicted from the analyses of 

Vallenas et al. (1978) wall specimen is displayed in Figure 2.57. The contour plots are 

given for top displacement level of ~37 mm (drift of %1.26). For the same level of 

deflection in the experiment it was reported that the failure was initiated by the un-
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symmetric spalling of the concrete cover at the boundary element in compression and at 

this point the average strains at the base of the boundary element was recorded as 0.00298 

and 0.0047 by two clip gages installed at the region. As seen in Figure 2.57 the predicted 

vertical strains at the toe of compression strut are in the order of 0.028 and 0.015 in terms 

of element and nodal outputs, respectively, where the elements results are calculated at the 

integration points and the nodal results average the component tensor or vector data at 

nodes used by more than one element. There is a significant difference between the 

predicted and experimental values. Is it so or a new perspective is required to evaluate the 

strains? Most of the time experimental strain measurements are obtained by using 

displacement readings that are derived by measuring rather a long distance between two 

points on the specimen if they were not obtained from localized strain gage readings. The 

difference between the initial and final readings divided by the gage length yields the 

average strain in the region along the gage length. This may lead to significant 

misinterpretations of the actual strains since the effect of localization is ignored.  

In the experimental program, the strain measurement were obtained by a pair of clip 

gages mounted near the centerline of the edge columns as displayed in Figure 2.58 

(Vallenas et al., 1979 and Wang et al., 1975). The small dots shown in this figure represent 

the steel pins embedded inside the concrete. The deformation measured between two 

adjacent pins divided by the original distance between these two pins gives the average 

concrete strain between them. As shown in the lower corner of Figure 2.58, the lower end 

of the clip gage K11 was mounted on the pin embedded inside the column, 25 mm away 

form the footing. The lower end of the clip gage C11 was attached to the surface of the 

footing. The gage configurations are displayed more clearly at the sectional view at the left 

corner of the Figure 2.58. The strain readings by K11 and C11 were 0.00298 and 0.0047 

respectively. The gage lengths of C11 and K11 were 355 and 381 mm, respectively, so the 

average concrete strains calculated over these lengths. The difference between the readings 

in gages K11 and C11 primarily represent either the concrete strains at the boundary 

element over the 25 mm length from the surface of the footing or occurred as a result of 

measurement error. Assuming that the measurements were taken correctly then the concrete 

compressive strain calculated over the 25 mm length region laying between the lower ends 

of gages K11 and C11 is approximately 0.029, which is calculated as, 
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Figure 2.55 Confined concrete stress-strain relation 
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Figure 2.56 Analytical and experimental load-deformation curves of the specimen tested by 

Vallenas et al. (1979) 
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Figure 2.57 Contour plots of stress and strains, crack pattern and principal strains 
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Figure 2.58 External instrumentation of the wall specimen tested by Vallenas et al. (1978) 

 

 

The calculated strain value is very close to the strain output at the integration point of 

the element at the bottom compressive corner. The problem may be also elaborated starting 

from finite element analyses results and progressing towards experimental results as well 

by evaluating the finite element analyses results in the same manner as done in the 

experiments. If the strain outputs from the finite elements over the gage length are 

averaged, the strain corresponding to measurement of C11 (0.0047) becomes 0.00522. The 

finite element analyses results calculated at the element center (average) at the outer edge 

and center line of the boundary element (column) is plotted in Figure 2.59 along the height 

of first story column. The strain distribution displayed in the figure indicates to a very 

severe crushing situation especially at the lowest 150 mm region of the wall. Since the wall 

boundaries are very well confined (hoop at 34 mm spacing, ρs = 0.01) the specimen can 

sustain such levels of concrete compression strains. The deformed shapes from the analyses 

phase and test taken by photogrammetric methods are compared in Figure 2.60. Both 

patterns have significant resemblances. The strains recorded by gages K11 and C11 at the 

failure were reported to be 0.0072 and 0.0097. 

 



 87

0

143

286

429

572

714

857

1000

1143

-0.025 -0.02 -0.015 -0.01 -0.005 0

Compressive strain

H
ei

gh
t (

m
m

)

Column center

Column edge

Gage length 
(381 mm)

 
Figure 2.59 Compressive strain distribution along the boundary element in the first story 

 

 

 
Figure 2.60 Deformed shapes depicted from experimental and analyses phases 

 

2.6.6 Walls Tested by Lefas et al. (1990) 

2.6.6.1 Experimental Program 

The experimental work involved the testing of 13 structural walls with constant 

thickness and rectangular cross section. Two types of walls were tested in the program with 

respect to aspect ratio (h/l), where Type I walls had h/l = 1 and Type II had h/l = 2. 

Drawings displaying the dimensions and the arrangement of vertical and horizontal 

reinforcement of two types of walls were given in Figure 2.61. Table 2.4 gives the 
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properties of reinforcement bars. In Table 2.5 amount of main flexural, confinement and 

web reinforcement is presented for each wall. 

Three levels of axial load corresponding to 0.0, 0.1 and 0.2 of the uni-axial 

compressive strength of the wall cross section were adopted in the testing program. These 

load levels assumed to be representative of the amount of axial load at the base of the wall 

of a single story, a medium-height and a high-rise building, respectively. First the total 

constant axial load was applied and then the specimen was incrementally loaded with 

horizontal load. The experiment was force-controlled. The tests were not continued after 

the ultimate strength level exceeded. 

 

 

 
Figure 2.61 Geometry and reinforcement details of Type I and II wall specimens 

 

 

Table 2.4 Properties of reinforcement bars 
 

Steel type Yield strength, 
fsy (MPa) 

Ultimate strength, fsu 
(Mpa) 

8 mm high-tensile bar 470 565 
6.25 mm high-tensile bar 520 610 
4 mm mild-steel bar 420 490 
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Table 2.5 Experimental data of walls tested in the program 
 

Reinforcement percentage (%) Axial load Specimen 
ρhorz ρvert ρflex ρconf 

fck
 

(MPa) P (kN) P / fckbl 
SW11 1.1 2.4 3.1 1.2 44.5 0 0.0 
SW12 1.1 2.4 3.1 1.2 45.6 230 0.1 
SW13 1.1 2.4 3.1 1.2 34.5 355 0.2 
SW14 1.1 2.4 3.1 1.2 35.8 0 0.0 
SW15 1.1 2.4 3.1 1.2 36.8 185 0.1 
SW16 1.1 2.4 3.1 1.2 43.9 460 0.2 
SW17 0.37 2.4 3.1 1.2 41.1 0 0.0 
SW21 0.8 2.5 3.3 0.9 36.4 0 0.0 
SW22 0.8 2.5 3.3 0.9 43.0 182 0.1 
SW23 0.8 2.5 3.3 0.9 40.6 343 0.2 
SW24 0.8 2.5 3.3 0.9 41.1 0 0.0 
SW25 0.8 2.5 3.3 0.9 38.6 325 0.2 
SW26 0.4 2.5 3.3 0.9 25.3 0 0.0 

 
 

2.6.6.2 Finite Element Models and Analyses 

The finite element models of the Type I and Type II walls are shown in Figure 2.62. 

Using the material properties given in Table 2.5, material curves for confined and 

unconfined concrete were calculated. As seen in Figure 2.63, which is plotted for Type I 

walls, the calculated confinement effect provides insignificant ductility to the concrete after 

the peak strength. The tensile strength of concrete was taken as 10 percent of the 

compressive strength. For the material of steel, a bilinear curve was calculated by taking 

into account the tension stiffening as outlined in Section 2.4.2. The yield strength of 8 mm 

and 6.25 mm tensile bars was reduced from 470 MPa to 425 MPa and from 520 MPa to 445 

MPa, respectively. At first stage reinforcement was modeled as smeared in the element 

volume. The models only consist of SOLID65 elements. ESF was allowed in the element 

formulation.  

In all experiments, the top slab acted as the distributor of the applied vertical and 

horizontal loads. The vertical load was applied first on the models. Succeeding horizontal 

load was applied as nodal forces to the nodes lying on the surface of right side of the top 

slab. The load-deformation response curves for Type I and Type II walls are displayed in 

Figure 2.64 and Figure 2.65, respectively. The response of Type II walls was predicted with 

a reasonable accuracy. However, as seen in Figure 2.64 the calculated results overestimate 
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the experimentally measured response of Type II walls. The finite element analyses that 

were conducted by Kotsovos et al. (1992) for the same group of wall specimens has also 

indicted to stiffer response of the numerical model, which was attributed time-dependent 

effects in the course of the loading history. Since a few minutes were waited to take 

readings and mark the progress of damage on the wall, a drop in the load can be observed 

during testing. Kotsovos et al. (1992) modified the response curves to incorporate these 

effects, but still a stiffer nonlinear response was calculated. The results presented in Figure 

2.64  and referred as “bond-slip model” is discussed next. 

 
 

 
Figure 2.62 Finite element models of the Type I and II walls 

 

 

0

10

20

30

40

50

60

0.000 0.005 0.010 0.015 0.020
Strain (ε c ) 

S
tre

ss
 (M

Pa
)

Unconfined concrete (SW13,14,15)
Confined concrete(SW13,14,15)
Unconfined concrete (SW11,12,16,17)
Confined concrete (SW11,12,16,17)

 
Figure 2.63 Concrete material curves for Type I walls 
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Figure 2.64 Load-deformation response of Type I walls 
 

 

 



 92

 

 

SW21

0
20
40
60
80

100
120
140
160
180

0 4 8 12 16 20 24
Displacement (mm)

Lo
ad

 (k
N

)

Experiment
Calculated

SW22

0
20
40
60
80

100
120
140
160
180

0 4 8 12 16 20 24
Displacement (mm)

Lo
ad

 (k
N

)

Experiment
Calculated

 

SW23

0
20
40

60
80

100
120

140
160
180

0 4 8 12 16 20 24
Displacement (mm)

Lo
ad

 (k
N

)

Experiment
Calculated

SW24

0
20

40
60
80

100
120
140

160
180

0 4 8 12 16 20 24
Displacement (mm)

Lo
ad

 (k
N

)

Experiment
Calculated

 

SW25

0
20

40
60

80
100

120
140

160
180

0 4 8 12 16 20 24
Displacement (mm)

Lo
ad

 (k
N

)

Experiment
Calculated

Premature experimental 
failure of specimen was 
reported

SW26

0
20

40
60

80
100

120
140

160
180

0 4 8 12 16 20 24
Displacement (mm)

Lo
ad

 (k
N

)

Experiment
Calculated

 
 

Figure 2.65 Load-deformation responses of Type II walls 
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2.6.6.3 Finite Element Modeling with Bond-slip 

This study considered that bond-slip between the concrete and steel might have 

caused to such a response. A new finite element model with discrete reinforcement and 

bond-slip elements was constructed.  

As described schematically in Figure 2.66, the discrete bond-slip elements between 

the nodes of steels element, modeled with LINK8 elements, and concrete were discretized 

using COMBIN39 nonlinear spring elements. This kind of approach was adopted by Ngo 

and Scordelis (1967) and Thomas and Ramaswamy (2006), previously. The bond-slip 

behavior of COMBIN39 elements were defined with Mirza and Houde’s (1979) bond-slip 

model. Mirza and Houde (1979) conducted tension tests on a typical steel bar embedded 

into concrete as shown in Figure 2.67 by keeping the concrete area (Ac) and rebar diameter 

(d), i.e. steel area (As), as variables. In a tension test the force in the steel bar is transferred 

progressively to the concrete by bond stresses. When the tensile stresses at a certain 

distance from ends exceed the tensile strength of concrete, cracks develops in the concrete. 

If the length of concrete prism between newly formed cracks is longer than the stable crack 

spacing, same conditions as before develop, resulting in new cracks.  As the result of 

experiments, Mirza and Houde (1979) proposed the following relation between the steel 

stress and average bond-slip  

 
( ) 32 /0003684.0 1

k
sc

k
ss AAfk⋅=∆                                           (2.12) 

 
where, ∆S is the average bond slip (mm), fs is the instantaneous stress in the rebar (MPa), As 

is the area of the rebar and Ac effective concrete area surrounding the rebar. The influence 

of the steel stress was noted to be almost linear (k2 was found to vary between 1.0 and 1.2). 

For simplicity, k2 was set equal to 1.0 and the value of k3 was found to be 0.33. The 

corresponding k1 coefficient can be computed using Eq. (2.13) or can be taken as 0.2 

mm/MPa. 

 
1527

1 10774.110645.610690.5 −−− ⋅+⋅+⋅= ss ffk                           (2.13) 
 

The slip-steel stress relation for different reinforcing steel bars used in the specimen 

was calculated in accordance with the described model. The steel stresses were converted to 

force multiplying by the steel area since COMBIN39 admits force-deformation data as 

described in Section A.3.4. As seen in Figure 2.64, the correlation of predictions with 
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experimental results improved significantly. The implementation of bond-slip model to 

ANSYS reinforced concrete analyses was demonstrated for comprehensiveness of the 

study, otherwise no bond-slip behavior is anticipated for the rest of analyses that will be 

conducted. 

 

 

 
Figure 2.66 Finite element model of Type I walls with bond-slip 

 

 

 

 
Figure 2.67 Development of crack in concrete in a tension test 

 

    

2.6.6.4 Local Results 

The steel strains were measured during the experiment. The strain gages were 

implemented on the vertical rebars at the boundary elements at the base level of the wall, 

just above the footing. Lefas et al. (1990) reported that the vertical reinforcement exhibited 
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considerable post-yield deformations prior to failure. The strains measured at the base of 

the walls on the vertical rebars in the compressive and tensile boundary elements are 

plotted in Figure 2.68.  
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Figure 2.68 Comparison of analytical and experimental strains at the base of the wall 
 
 

 

The strains presented by Lefas et al. (1990) and obtained here from the simulations 

agree well for the tension case. In general, the calculated compressive concrete strains 

overestimate the measured compressive steel strains as seen in Figure 2.68. For example, 

the compressive strain in the external rebar (gauge 4) of SW17 reported to be 

approximately 0.0045 at the ultimate, where as the calculated concrete strain is 0.013 

approximately. Moreover, the compressive steel strains at the ultimate for Type I walls (h/l 

= 1) were smaller than the strains reported for Type II walls (h/l = 2). It is known that the 

main resisting mechanism to the applied lateral load in the squat walls is the development 

of diagonal compression strut depressing on the boundary element on the compression side. 

However, pictures that were presented in the paper displaying the state of damage of the 
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wall at the end of tests conflicts with damage indicated by the measured strains. As 

displayed in Figure 2.69, the compressive region of Type I walls exhibits severe spalling 

and crushing damage during the test compared to Type II walls. Such a discrepancy 

between the measured and calculated strains might have been due to an interruption in the 

data acquisition as a result of damage to strain gages or due to buckling of the 

reinforcement, which is evident in Figure 2.69, but nothing was declared about such 

situations by Lefas et al. (1990) in their paper. The compressive strut is evident in the 

Figure 2.70, resulting in triaxial stress state at the compressive boundary element.  

 

 

 
Figure 2.69 Damaged walls; Type I walls experiences more damage than Type II walls at 

the compression zone (adopted from Lefas et al, 1990) 
 



 97

 

Figure 2.70 Vertical strain and principal compressive stress plot at the ultimate load of 
SW17. The compressive strut is evident in the figure, resulting in triaxial stress state at the 
compressive boundary element. The concrete compressive strength is reported to be 41.1 

MPa for this specimen.  
 

 

2.7 LESSONS LEARNED FROM SIMULATION STUDIES 

2.7.1 Meshing  

A finite element mesh consisting of 12-20 elements along the length of the wall 

proved to yield satisfactory results. For slender walls this number may be reduced to 10 

when ESF functions are utilized. Meshes consisting of more than 15 and 20 elements along 

the length of the wall should be considered fine mesh for slender and squat walls 

respectively. Along the height of the wall the length of elements can be larger than 

horizontal element edge length without violating aspect ratio rule. The ratio of lengths of 

edges of a brick element should not be larger than two in general.  

When ESF functions are utilized in the SOLID65 element formulation, fine meshes 

may lead to localization of crushing damage (softening) at particular elements leading 

premature failure indication in the model. When fine mesh is used in the model, ESF should 

be turned off. For slender walls (H/L > 3) when ESF are turned off, for the shear transfer 

coefficient for open cracks a value very close to zero should be adopted. This number may 

be zero, but may cause convergence problems. For squat walls a value equal to 0.2 for shear 

transfer coefficient may be used.  
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2.7.2 Convergence Problems  

Significant convergence problems in the solution of nonlinear problems may be 

experienced in ANSYS due to excessive cracking and crushing (softening regime after peak 

strength) of concrete. Several convergence–enhancement tools, such as automatic time 

steeping, line search, adaptive decent, is available in ANSYS program to help the solution 

of nonlinear problems. To overcome convergence problems either the load is applied in 

small increments or the force and displacement convergence criteria is loosened or both are 

done simultaneously. If the amplitude of the applied load is within the likely limits of the 

member capacity, this should improve the convergence significantly. Simple hand 

calculations or analyses should be performed to estimate magnitude of the applied loads. 

For example, if the model is loaded with displacements, the drift ratio that will be 

experienced by the model is in the range of 1-3% depending on the aspect ratio of the wall 

(slender or squat). Similarly, moment capacity calculated from sectional analyses can be 

used to determine the amplitude of applied lateral loading. 

If increasing the number of substeps does not work, convergence criteria may be 

loosened. In most of the analyses performed here, the default force based convergence 

criterion created convergence problems after onset of first cracking. The convergence norm, 

against which the unbalanced forces are checked, is calculated within the program as 

NORM = VALUE x TOLER. The parameters are input with CNVTOL command.  The 

default value of VALUE is the SRSS of the applied loads (or, for applied displacements, of 

the Newton-Raphson restoring forces). Tolerance, TOLER, about VALUE defaults to 0.005 

(0.5%) for force and moment, and 0.05 (5%) for displacement when rotational DOFs are 

not present. In the analyses performed in this study the default values are suppressed and 

according to adopted N-mm units system the VALUE and TOLER adjusted such that they 

yield force and displacement norms (F_NORM and D_NORM) equal to 5000~10000 N and 

0.015~0.025 mm respectively.  An example command line read as 

CNVTOL,F,1E6,0.0075,2 

CNVTOL,U,10,0.002,2 

These norms were found to be satisfactory in overcoming cracking related 

convergence problems. If the solution still does not converge, after checking the 

displacement and force convergence norms that are reported after each equilibrium 

iterations in the output window the criteria for the problematic one may be loosened further.  

Another way to handle convergence issue is using multiple load step files 
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corresponding to each region on the curve. With multi-frame restart option this method also 

improves convergence.  

2.7.3 Static Analysis Procedure  

The second problematic region on the load deformation curve is the peak load region. 

When the peak load capacity of the member is reached, under force type loading analysis 

can not be continued into softening regime. A pushover algorithm that allows tracking the 

force-deformation response after the ultimate strength level was developed utilizing 

multiple load step analyses procedure. The procedure uses four load steps. The actions in 

each load step summarized below. 

LS1: Apply the vertical load (Fvert). TIME will be equal 1.0 by default at the end of 

load step. The ANSYS program uses time as a tracking parameter in all static and transient 

analyses, whether they are or are not truly time-dependent. The advantage of this is that you 

can use one consistent "counter" or "tracker" in all cases, eliminating the need for analysis-

dependent terminology. For example, if the analyses stop at TIME = 0.65 due to any reason 

before the full load step is finished, this means 65% percent of the load is applied.  

LS2: Apply the lateral forces of any pattern on the model (Fhorz). The applied load 

should be larger than the peak load capacity of the model. The analysis stops when the 

applied load is very close to ultimate strength of the structure. Analysis may be restarted 

several times in this load step until it is ensured that the model can not sustain any more 

load increment.  Enter the postprocessor and read the time of the last converged substep 

(eg., TIME = 1.783) and the value of displacement at a node at the top or roof of the model 

(∆top).   

LS3: This is a dummy load step to change the loading scheme from force-controlled 

to displacement-controlled one. The applied horizontal load is reduced by a factor (TIME-

1), where TIME is obtained from the last converged step of LS2. This will reduce the 

applied load to the level of the last converged step [Fpeak = Fhorz x (TIME-1)]. After issuing 

restart command apply the reduced forces to the previously loaded nodes and apply the roof 

displacement (∆top) as displacement loading at a node where it was read. The solution is 

same as the last converged substep of LS2. TIME becomes 2.0 after the solution of this 

step. The displacement boundary condition was introduced at the top of the structure.   

LS4: Scale the ∆top with a factor 2-5 or more depending on the expected displacement 



 100

capacity of the member and apply it again to the same node as displacement loading. The 

imposed displacement boundary condition at the top while ensures the pushover to 

propagate in the prescribed direction also acts as a tuner by adjusting the level of applied 

lateral load as well. A support reaction that may be positive or negative depending on the 

increasing or decreasing tendency in the load deformation curve develops at the node of 

prescribed displacement. This means if the peak strength of the model is not reached, load 

continues to increase. At this load step the magnitude of lateral load may be taken as the 

same as in previous step or reduced further 0 to 15 percent [factor x Fhorz x (TIME-1)] 

depending on the expected behavior in the post-peak regime. For squat walls a reduction 

helps convergence since after peak strength, gradual strength degradation occurs.  A loose 

convergence criteria and enough number of substeps should be preferred in this load step.  

The pushover procedure outlined here is utilized in the parametric studies conducted 

in Chapter 5 and Chapter 6. Under force controlled loading scheme the analyses provide 

results only for a limited ductility or drift range without such a procedure. 
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CHAPTER 3 

GROUND MOTION EVALUATION AND SELECTION 

3.1 INTRODUCTION 

Seismic performance investigation of structures requires the use of recorded natural 

ground motions or their artificially produced representatives for use in nonlinear time 

history analyses. Due to complex interrelation between the energy dissipation properties of 

structures and the dynamic characteristics of seismic ground motions, the quality and 

adequacy of results of inelastic dynamic analyses depends strongly on the 

comprehensiveness of the employed ground motion data set, as much as it depends on the 

mathematical modeling of the structural and material behavior. This stipulates the necessity 

of a reliable ground motion intensity measures for the ground motion selection criteria and 

evaluation of its damage potential to bridge the gap between the seismic loading and 

structural response. 

Earthquake ground motion selection for nonlinear time history analysis is a subject 

that has aroused interest in the research community especially in the last decade, after the 

number of well recorded earthquakes increased and high quality data obtained from these 

recordings. One another reason that gave boost to research on ground motion selection is 

the rapid development in the field of performance based earthquake engineering that is 

applied in design and assessment. However, the results presented by different researchers 

displayed that there is still lack of a common criterion reached for the ground motion 

selection. This is mainly due to variations in the characteristics of ground motion records 

that compose the data sets or bins used by different researchers, since each based the 

selection on different criteria. For example, the ground motions data sets can be formed 

according to a particular scenario earthquake that takes into account magnitude-distance 
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(M-R) relation (selection in terms of geophysical parameters), or alternatively considering 

the ground motion characteristics such as peak ground acceleration (PGA) or peak ground 

velocity (PGV) (selection in terms of strong-motion parameters). Even the distinctions in 

approaches can lead to different emphasis at the outputs, to be applicable in engineering 

practice they should have results that indicate to a common point. So it is required to find 

out the common sides of used criterions in ground motion selection, reflecting the 

engineering judgment of the experts of the field, so as to offer a unified approach for the 

ground motion selection.  

When an earthquake occurs, the amplitude, phasing (seismic waves arrive to a site 

like trains, with different frequencies arriving at different times), and frequency content of 

the shaking depend strongly both on source characteristics (e.g., magnitude, rupture 

mechanism, fault plane orientation with respect to site, occurrence or non-occurrence of 

surface rupture) (Stewart et al., 2001) and the properties (stiffness, strength, layering) of the 

soil or rock strata between the recording site and the source (Newmark and Hall, 1969). 

Due to all these counted reasons, each ground motion recorded at a particular site displays 

different characteristics in terms of amplitude (peak ground acceleration – PGA and peak 

ground velocity – PGV), frequency content (existence of different wave components in the 

composition of record) and phasing of the arriving waves. When all these parameters are 

considered it is unlikely that any one record will be adequate to account for the seismic 

hazard. For instance, response predictions calculated from ground motions with similar 

intensity defined in terms of single intensity measure like PGA or spectral acceleration at 

the fundamental period (Sa(T1)) of the structure resulted in significant variability. It is 

usually necessary to examine a group of records. Several intensity measures were proposed 

to identify the damage potential of a ground motion due to any one of these seismic 

parameters.  

It was well identified from seismic response studies of engineering structures that the 

structural damage is caused mainly by three important seismic parameters: the amplitude 

and the frequency content of the seismic ground motion, and the duration of the strong 

ground shaking. When inelastic response of multi-degree of freedom (MDOF) structural 

systems is considered several researchers (Derecho et al., 1978b; Anderson and Bertero, 

1987; Tso et al., 1993; Seneviratna and Krawinkler, 1997; Medina and Krawinkler, 2003) 

agreed that what matters to increased structural damage among any two ground motion with 

the same intensity (either in terms of ground motion parameters such as peak ground 
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acceleration (PGA) or spectral acceleration at the fundamental period of the  structure, 

Sa(T1)) is the frequency content of the ground motion. Following from this fact, different 

researchers (Zhu et al, 1988b; Stewart et al., 2001; Cordova et al., 2000; Baker and Cornell, 

2005) have concluded that the nonlinear response of structures is strongly dependent on the 

phasing of the input ground motion and on the detailed shape (frequency content) of its 

spectrum, things that are closely related to magnitude (M) of the earthquake and site-to-

source distance (R). 

Seneviratna and Krawinkler (1997) stated that due to inherent variability of the input 

ground motions, the demand estimation and related response modification factors need to 

be computed using a statistical analysis of the inelastic dynamic response of MDOF 

systems to a suite of ground motions with reasonably similar frequency content. This 

requires the introduction of a criterion to identify the frequency content among different 

ground motions.  

In this study, particularly, ground motion frequency content has been considered to 

be the most significant factor contributing to inelastic response of reinforced concrete 

structures for ground motion with similar intensity. In the following sections, methods for 

identifying the frequency content of the ground motion discussed and its effect on nonlinear 

response of SDOF and MDOF systems is evaluated. 

3.2 FREQUENCY CONTENT OF A RECORDED EARTHQUAKE GROUND 
MOTION  

3.2.1 Geophysical Parameters Effecting Frequency Content  

Most accepted method for the ground motion classification procedure is to use 

magnitude-distance bins that represent different earthquake scenarios, for example, a large 

earthquake (M>6.7) occurring at a far distance (R>35km) from the site of the structure. 

Ground motions are selected so as to match the elastic response spectra (probabilistic 

hazard response spectrum) at a particular damping ratio to represent the potential seismic 

hazard defined by the characteristics of the site and source. 

Wide range of frequency wave components exist in the composition of any recorded 

ground motion time-history. The power attained to these wave components at different 

frequencies varies due to a number of geophysical parameters as accounted above resulting 

in different spectral shapes. The geophysical parameters that influence the shape of the 
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spectrum (frequency content) mainly are the earthquake magnitude (M), path effects both in 

terms of source-to-site distance (R) and travel path geology, and the local geological 

conditions at the recording site. A ground motion accelerogram composed of wave 

components with limited frequency range has its destructive power on the structures whose 

natural periods coincides with the predominant period of the record (Kazaz et al., 2006b). 

These types of records generally exhibit large amplitude (PGA) high frequency oscillations. 

On the other hand, an accelerogram rich in broad band of frequencies with moderate level 

amplitude can constitute significant seismic hazard for a wide range of structural periods. 

Figure 3.1 displaying the theoretical acceleration source spectrum model proposed by 

Atkinson and Silva (2000) illustrates the amplification of wave components in different 

frequencies due to increasing earthquake magnitude especially in the low frequency 

content.  

Additionally local site conditions may play significant effect on frequency content of 

the recorded ground motion. The differences in the shape of earthquake response spectra 

for different geological conditions such as rock and soils sites have been identified long 

time ago (Seed et al., 1976; Mohraz, 1976; Newmark and Hall, 1982) and entered the 

design codes of many countries. This effect displays itself as an amplification or 

deamplification of particular wave components due to soil nonlinearity especially in softer 

soils with the level of input motion, rather than a change in the content of these waves. 

Local site conditions affect peak ground amplitude values.  
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Figure 3.1 Acceleration source spectrum model by Atkinson and Silva (2000) 
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Among many of the studies available Sabetta and Pugliese (1996) declares the 

dependence of spectral shape (frequency content) on magnitude (M) and nearly 

independence on distance (R). Magnitude is a source parameter and the primary factor that 

determines the frequency composition of radiating waves. Distance is the parameter that 

causes the attenuation of the amplitude of ground motion and has negligible effect on the 

frequency content.  In support of this statement, Figure 3.2 shows the normalized spectral 

shapes, using the spectral acceleration attenuation equation proposed by Boore and 

Atkinson (2008) and constructed from median values predicted for different magnitude, 

distance and site class categories. It is clear from the figure that while magnitude and site 

classification significantly affect the frequency content (Figure 3.2(a) and Figure 3.2(b)), 

source-to-site distance has only minor effect on the spectral shape (Figure 3.2(c)). 
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Figure 3.2 Response spectral shapes normalized to the ordinate at 0.2 s  
a) for soil sites at 10 km from earthquakes of magnitude 5, 6 and 7, b) for magnitude 7 

earthquake at 10 km from the source on different soil profiles represented with shear wave 
velocities and c) for magnitude 7 earthquake at distances 5, 10 and 50 km from the site. 

Boore and Atkinson (2008) spectral attenuation model was used. 
 

3.2.2 Magnitude-distance Dependence of Spectral Shape and Demand Predictions  

Even though the strong influence of earthquake magnitude on the frequency content 

and duration of the ground motion very well identified, in some of seismic response studies 

performed by significant researches (Shome et al., 1998; Medina and Krawinkler, 2003, 

Iervolino and Cornell, 2005), it was concluded that ground motions selected either 

arbitrarily or carefully from narrow magnitude-distance bins defining the scenario seismic 

hazard do not affect the median demand prediction provided that the records are scaled to 



 106

match the elastic median response spectrum of the bin at the fundamental period of the 

structure. 

Naturally it is expected that nonlinear response measures from a suite of records 

display wide dispersion even the ground motions used were chosen from a narrow 

magnitude and distance interval. Shome et al. (1998) stated that, upon their quest to answer 

the question whether scaled records will produce different nonlinear structural response 

statistics than those of unscaled records of the same “intensity”, using ground-motion bins 

of narrow magnitude and distance interval that were normalized (or scaled) to the bin-

median spectral acceleration at the fundamental period of the structure (i.e. Sa(T1)) reduces 

the dispersion about median DM predictions compared to unscaled bins (or sets) with the 

same median damage measures. Moving from this point forward, the most efficient strategy 

proposed for nonlinear demand prediction from a given event (M and R) is to first use an 

available attenuation relation to estimate the median spectral acceleration defining the 

seismic intensity and then to scale the ground motions to the same magnitude of the spectral 

acceleration of the considered period before carrying out the nonlinear analysis. They also 

compared the results of the proposed scaling procedure with that of alternative scaling 

measures and declared the superiority of the proposed method over the alternatives. They 

also found that the dispersion in the central tendency of the demand measure is significantly 

large when the scaling methods based on peak ground motion characteristics. The most 

significant hindrance for the generalization of their results is that their derivations depend 

strictly on the study of a single MDOF structure which is a simplified stick model. Another 

crucial conclusion of their study is that upon proper scaling of ground motions the number 

of runs required the estimate the median response can be reduced by a factor of about 4. 

Medina and Krawinkler (2003), declaring the dependence of ground motion 

frequency content on magnitude and distance, stated that records must be selected in 

narrow magnitude and distance bins for the scenario earthquake defining certain hazard 

level in order to reduce bias in the calculated demands. They used ‘ordinary ground 

motions’ that are exempt from abnormal characteristics such as the ones posed by near fault 

ground motion records like directivity-induced velocity pulses.  They assumed that the 

spectral acceleration at the first mode period of the structure (Sa(T1)) (more specifically, the 

pseudo-spectral acceleration) is the primary ground motion intensity measure (IM). 

However, they observed that even records are chosen in relatively narrow bins, large 

dispersion in frequency content still observed. The median spectral shapes for the ground 
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motion bins are comparable as shown in Figure 3.3 and dispersion is rather insensitive to 

the magnitude-distance combination (bin), but is large at all periods except the scaling 

period (Sa(T1)). Following from this fact, they concluded that the effect of frequency 

content on the prediction of demand is dominated by the dispersion of spectral values rather 

than the median shape of the spectrum. 
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Figure 3.3 Median spectral shapes of four M-R bins, all the ground motions scaled to same 

PGA. 
 

 

Recently, Iervolino and Cornell (2005) in their study addressing the question of 

selection and amplitude scaling of accelerograms for predicting the nonlinear seismic 

response of structures investigated the characteristics that should be taken into account in 

accelerograms selection, efficient ways of scaling of records in order to get scenario (target) 

intensity, and the sufficient size of record sets to obtain reliable demand measures. They 

also took into consideration the structural period and backbone sensitivity in nonlinear 

demand prediction. The ground motions selected for the study was organized under two 

general groups, the target set and arbitrary set, each having five sub-bins. The arbitrary set 

records were selected simply at random from a catalog with a comparatively wide 

magnitude and distance range. The target sets for the record selection study were designed 

to be representative of a specific scenario event (M and R) that might be the realistic threat 

to a particular site, here a moment magnitude 7 at 20 km, defined as the closest distance to 
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fault rupture. All the records were from 5 events in the magnitude range of 6.7 to 7.4 and in 

the narrow distance range of 20 ± 5 km.  As done in the previous studies (Shome et al. 

1998), for each structure considered, these records in the sample target sets were scaled to 

their overall median spectral acceleration at the first-mode period.  

Depending on the results calculated, Iervolino and Cornell (2005) stated that M and R 

play at most only minor roles in affecting nonlinear displacements of structures and found 

no consistent evidence to suggest that it is necessary to take great care in the selection of 

records with respect to such factors, a general conclusion quantified in various ways in the 

studies of Shome et al. (1998), Carballo and Cornell (2000), Medina and Krawinkler 

(2003), and Jalayer (2003). This is to say nonlinear structural displacements are insensitive 

to R and the slightly sensitive to M. It was also mentioned that, cases that may display 

some sensitivity to magnitude include tall buildings with important second-mode effects 

and very short period systems. 

As seen, except the well established attenuation phenomena of the ground motion 

amplitude as moving far away from the source, no clear indiscrimination can be made on 

the frequency content and the duration of strong ground motion depending on the 

magnitude and distance. In fact, a ground motion intensity measure when evaluated from 

the structural engineer point of view must be instructive in terms of possible earthquake 

loads applied on the structure rather than its seismological properties. Iervolino and Cornell 

(2005) states that “Lack of knowledge of the influence of seismological parameters on the 

structural response has driven the seismologists to be prudent and assume that all features 

(magnitude, faulting style, etc.) matter to structural response, and so they do their best to 

provide records accordingly”. That is to say priority must be given to the consequences 

(PGA, PGV, Sa(T1)) of the earthquake event  in ground motion selection rather than it’s 

causes (M and R).  

3.2.3 A Key to the Frequency Content: Response Spectrum 

There are several ways to identify the frequency content of a ground motion. Ground 

motion frequency content can be solely determined independent on structural 

characteristics such as Fourier spectrum analyses or it can be determined coherently 

together with the dynamic properties of structures utilizing spectral analyses of single-

degree-of-freedom oscillators. It was widely accepted (Rathje et al., 1998; Cordova et al., 

2001; Baker and Cornell, 2005) that significance of frequency content can be best identified 
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through the use of acceleration response spectrum of a ground motion record since it 

incorporates the knowledge of the structure. It is also admitted that frequency content of 

ground motion is reflected in the shape of acceleration response spectrum (Baker and 

Cornell, 2005 and 2006). 

In order to understand why spectral shape could affect the structural response, it is 

compulsory to understand the response of a MDOF structure ranging from elastic to 

inelastic stage. Elastic response of MDOF structure is characterized by the first mode 

period and quantified in terms of spectral acceleration calculated at this period (Sa(T1)). 

However besides several parameters, inelastic behavior of multi-degree-of-freedom 

structures exposed to earthquake base excitations is governed by two major phenomenons, 

which are namely reduction in stiffness as a result of degradation in the mechanical 

properties of the structure due to reversed cyclic excursions and excitation of higher modes 

contributing to dynamic response. While the former leads to lengthening of the structural 

period resulting in softer response with increased displacement demands, the later causes 

alterations in the inertia force distribution resulting in increased base shear demand. Under 

continues inelastic yield excursions Kazaz and Yakut (2006) displayed that fundamental 

vibration period of a shear wall structure can increase to a value that is two times of the 

initial. Thus, given two records with the same Sa(T1) value, the record with higher Sa 

values at periods other than T1 will tend to cause larger displacement demands in inelastic 

systems. It will be shown that response of MDOF structures is highly sensitive to peaks and 

valleys on the acceleration response spectra. 

In Figure 3.4(a), elastic acceleration response spectrum for Ito-Oki EW component 

record (PGA is 0.198g) used in analyses of CAMUS wall and its scaled forms are given. 

Roof displacements obtained from nonlinear time history analysis results yielded 1.78 mm, 

6.22 mm, 11.39 mm and 25.01 mm top displacements for peak ground accelerations of 

0.198g, 0.386g, 0.482g and 0.578g, respectively. Increasing PGA 25 percent (from 0.382g 

to 0.482g) caused 83 percent increase in global displacement, whereas increasing it 50 

percent (from 0.382g to 0.578g) resulted in 300 percent increase in global response. The 

explanation for this situation is that as the intensity of the ground motion increases, the 

elongation in the period ( Tf ) also increases due to increased level of inelastic 

deformations. Due to shift in the fundamental elastic period ( Ti ), the system moves to high 

amplitude acceleration region and is exposed to larger earthquake forces. For yielding 

systems, when ground motions conforming to the above description were encountered and 
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the yield level was exceeded, global deformation demands increased dramatically. If the 

yield path or elongation path of the period coincides with the ascending leg of the spectrum, 

this means significant deformations can be induced on the structure depending on the base 

shear strength. ( η=Vy/W ). Meantime, if elongation path is on the descending leg of the 

spectrum, although the fundamental period ( Ti ) can coincide with very high spectral 

accelerations, unexpectedly low global responses can be obtained depending on the slope of 

spectrum along the yield path.  

The ground motion Run2 and its scaled forms are good examples of the situation 

described above, and the illustration made for the Ito-Oki case is also done for Run2 in 

Figure 3.4(b). Note that, for nearly the same level of PGA the linear deformation potential 

of the Run2 record is larger than Ito-Oki ground motion. Two ground motions have PGA of 

0.578g and 0.6g, and spectral acceleration of 0.748g and 1.216g at the fundamental period 

of the structure, Sa(Ti),  for Ito-Oki and Run2 records, respectively. But the inelastic 

deformations obtained from two cases were totally different; revealing that the structure 

subjected to Run 2 motion scaled to 0.6g remained almost linear (∆top=6.70 mm) after the 

excitation, where as significant inelasticity was imposed on the structure in Ito-Oki case 

(∆top=25.01 mm).  

As the above example demonstrated, during nonlinear dynamic analysis initial 

frequency of the system decreased from 7.2 Hz to 6~3 Hz depending on the level of 

inelastic deformations attained by the structure due to intensity of the applied ground 

motion. It is obvious that different ground motions will yield different spectral shapes. The 

slope of the spectrum can be positive (ascending) or negative (descending) beyond the 

initial period of the structure as seen in Figure 3.4. An ascending spectrum is expected to 

yield larger inelastic demand on the structure compared to a descending one, even if the 

spectral acceleration corresponding to elastic period of the structure is smaller for 

ascending type spectrum. 
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Acceleration Response Spectrum for Ito-Oki EW record
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(a) Ito-Oki EW record 

Acceleration Response Spectrum for Run 2 and scaled forms
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(b) Run2 

Figure 3.4 Effect of period elongation on structural response 
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Previously, Derecho et al. (1978b) in a parametric study on a 20-story isolated 

cantilever structural wall investigated various structural and ground motion parameters in 

terms of their effects on the dynamic inelastic response of isolated walls. Among the 

structural parameters considered are fundamental period (T1), yield level (My or Vy), yield 

stiffness ratio (α), character of the hysteretic force-displacement loop (reloading and 

unloading stiffness) damping, stiffness and strength taper, and degree of base fixity. Also 

considered are the three parameters characterizing strong-motion accelerograms: duration, 

intensity, and frequency content. Doing so, they aimed to identify the most significant 

variables that gave way to calculation of estimate of strength and deformation demands in 

critical regions of structural walls as affected by the significant parameters.  

For input motions they selected a small number of accelerograms from among the 

recorded and artificially generated accelerograms in a previous study by Derecho et al. 

(1978a). In that preceding study, the accelerogram classification was performed in terms of 

the general features of its velocity spectra relative to the initial fundamental period of the 

structure.  They classified ground motions into three groups according to shape of velocity 

response spectrum. A “ peaking (0)” classification indicates that the 5%-damped velocity 

response spectrum for this accelerogram shows a pronounced peak at or close to the 

fundamental period of the structure  considered (in this case, T1 = 1.4 sec.). A “peaking (+)” 

classification indicates that the peak in the velocity spectrum occurs at a period value 

greater than that of the fundamental period of the structure. A “broad-band” classification 

refers to an accelerogram with a 5%-damped velocity spectrum which remains more or less 

flat over a region extending from the fundamental period of the structure to at least one 

second greater. 

All the structures analyzed were subjected to 10 seconds of ground motion. 

Housner’s (1959) “spectral intensity” measure, defined as the area under the 5%-damped 

relative velocity response spectrum between periods of 0.1 and 3.0 seconds, was used to 

normalize the input motions multiplying by a factor to yield spectrum intensity equal to 

some percentage of reference spectrum intensity, SIref. The reference spectrum intensity 

used was that corresponding to the first 10 seconds of the NS component of the 1940 El 

Centro record (SIref = 178 cm). Velocity spectrum of normalized ground motions are 

displayed in Figure 3.5. 

Recognizing that the extent of yielding is a function of the earthquake intensity, the 

yield level of the structure, and the frequency characteristics of the input motion, it was 
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stated that these factors must be considered in selecting an input motion for a given 

structure to obtain a reasonable estimate of the maximum response. For the same intensity 

and duration of the ground motion, significant increases in response can result from an 

input motion having the appropriate frequency characteristics relative to the period and 

yield level of the structure. It was stated that when significant yielding that would 

appreciably alter the effective period of vibration is expected in a structure, an input motion 

with a velocity spectrum of the “broad band ascending” type is likely to produce more 

severe deformation demands than other types of motion of the same intensity and duration. 

For cases where only nominal yielding is expected, “peaking” accelerograms tend to 

produce more severe deformations. The considerations are important in determining near-

maximum, or in specifying input motions for use in the analysis of particular types of 

structures.   
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Figure 3.5 Velocity response spectrum of ground motions used in the study of Derecho et 
al. (1978) describing the characteristics of the ground motions according to spectral shape.  

 

 

It was found that the effect of ground motion duration was not too significant on the 

response and its major effect is to increase the cumulative inelastic plastic deformations. 

They notified that shear force fluctuates more rapidly compared to the moment at the base 
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of the wall or deformation at the top, which is an indication of the greater sensitivity of the 

shear force to higher modes of response. Because of this, the maximum base shear force is 

strongly dependent on the ground motion. The criticality of response with respect to shear 

will depend on the relationship of the frequency characteristics of the input motion to the 

significant higher effective mode frequencies of the yielded structure.  

3.3 METHODS TO IDENTIFY THE SPECTRAL SHAPE 

In the view of above discussion, it is seen that evaluating the frequency content of a 

seismic ground motion is a two sided issue; one is due to characteristics of a specific 

earthquake (magnitude, faulting type, source distance, etc.) each accelerogram has its own 

inherent frequency nature, and complementary to this fact structural response is directly 

related to the frequency content of ground motion through the dynamic properties (natural 

vibration period) of the structure. So, ground motion frequency content can be solely 

determined independent on structural characteristics or by utilizing spectral analyses of 

single-degree-of-freedom oscillators, it can be determined coherently together with the 

dynamic properties of structures. Three procedures become more pronounced at this stage 

to analyze the frequency content: 

• Fourier spectrum: The ground motions can be expressed as a sum of harmonic 

(sinusoidal) waves with different frequencies and arrivals (phases). The Fourier amplitude 

spectrum (FAS) is capable of displaying the frequency content of the ground motion. 

A Fourier spectrum where the amplitudes are accumulated in a narrow band of 

frequencies implies that the motion has a dominant frequency (period) that can produce a 

smooth, almost sinusoidal time history. Meanwhile, a broadband spectrum corresponds to a 

motion that contains distinct frequencies producing a more jagged irregular time history. 

For any given time series (f(t)) with finite duration (td), Fourier spectrum is 
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with the Fourier phase angle 
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• Elastic response spectrum: Under a postulated ground motion, a plot of the absolute 

peak values of response quantities (acceleration, velocity and displacement) as a function of 

vibration period (or frequency) of a SDOF system for a fixed viscous damping ratio, ξ, is 

called elastic response spectrum. 

Spectral intensity measures are the most widely used intensity indicators to determine 

the damageability of a ground motion since they incorporate the structural characteristics to 

the decision process.  

• From amplitude parameters, ground motion acceleration to velocity ratio (A/V). 

Next a spectral intensity measure will be introduced. Then it will be displayed that 

A/V ratio defined in terms of ground motion parameters can be used to differentiate the 

ground motions according to frequency content.  

3.4 A SPECTRAL INTENSITY MEASURE FOR DEMAND PREDICTION 

Researchers like Malhotra (2002) and Cordova et al. (2000) stated that seismic 

hazard intensity measures quantified on the basis of acceleration response spectrum 

ordinate of the first mode structural period may result in significantly different inelastic 

response, depending on the slope of the spectra at lengthened periods, such as the situation 

illustrated in Figure 3.4. Cordova et al. (2000) proposed a second intensity parameter to 

account for the spectral shape (or frequency content) as the ratio of spectral accelerations at 

two periods, first mode period (T1) and longer period (Tf) that represents the inelastic 

(damaged) structure. While, the spectral acceleration at the first mode period, Sa(T1), 

correlates well with the level of elastic structural response reflecting the spectral intensity, 

the parameter RSa = [Sa(Tf)/Sa(T1)] reflect the spectral shape so as the damage potential in 

the inelastic phase of the response. However, the parameter is sensitive to peaks and valleys 

in the spectrum, which reduces the reliability of the proposed intensity measure. 
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Kazaz et al. (2006b) investigated the seismic performance of CAMUS wall described 

in the previous chapter by performing nonlinear time-history analysis under a suite of 

ground motions of diverse intensity. The result of these analyses led to several useful and 

interesting observations. In parallel to findings of the previous researchers, it is seen that 

ground motions that have an increasing spectral trend beyond the fundamental period of the 

structure, produced higher seismic demands as compared to decreasing or broad trends.  It 

can be proposed that the shape of the response spectrum along the period elongation path 

(increasing or decreasing trend in the spectral acceleration) reveals the damage potential or 

severity of the seismic demand in view of seismic capacity of the structure. There exist 

several spectral intensity measures that quantify the damage potential of ground motions 

(Housner, 1959; Martínez-Rueda, 1998). Housner proposed a spectral intensity defined as 

the area under the velocity spectrum over a period range from 0.1 to 2.5 s. 
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In analogy with Housner’s equation [Eq. (3.4)], for short-to-medium period range of 

the spectrum and for stiff structural walls, following relation for the new intensity measure 

was proposed relying on the hypothetical acceleration response spectra plotted in Figure 3.6 

(Kazaz and Yakut, 2006): 
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Eq. (3.5) calculates the area below the acceleration response spectrum between the 

fundamental period (Ti) and calculated elongated period (Tf). Normalizing the calculated 

area by dividing to the area below the yield base acceleration level (Ay), a dimensionless 

intensity measure can be obtained, which is given by Eq. (3.6).  
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By utilizing response frequency analysis, the softened period (apparent response 

period) of the CAMUS wall structure was calculated for each ground motion case from the 

calculated top acceleration and displacement response. When the softened period was 
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plotted against the damage index (Id: global top displacement) a perfect correlation was 

obtained. A linear trend was observed between the damage experienced by the structure and 

elongation in the fundamental mode period (Figure 3.7) which may be attributed to 

dynamic behavior of shear-wall type structures. Figure 3.7 also supports the findings of the 

previous research, Lestuzzi et al.(2004) and Brun et al. (2003), that the final stiffness 

reduces to 30~15 percent of the initial stiffness due to structural deterioration for shear 

walls. Depending on these analyses results, the upper limit for the period elongation of 

medium height shear walls can be taken as Tf 
max ≈ 2Ti. 

 

 

 

 

 

 

 

 

 

 
Figure 3.6 Pictorial description of the spectral intensity measure Ia 
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Figure 3.7 Correlation of elongated period normalized with respect to initial period with 

selected Damage Index. 
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In Figure 3.8, the proposed intensity measure (Ia) was calculated by using the 

elongated periods for each dynamic analyses cases and plotted against the damage index, Id, 

top displacement.  It sis seen that the proposed spectral intensity measure is useful in 

comparative evaluation of damage potential of ground motions. 

As it is understood from the above explanations, the impediment of the proposed 

procedure is the estimation of the softened period that will hold for the effective period of 

SDOF system. If no knowledge of the lengthened period exists a value equal to 2Ti can be 

adopted or the value of Tf can be calculated using the procedures defined in the works of 

Kazaz and Yakut (2006) and Kadas et al. (2008). Improved spectral intensity formulations 

that were tested for wide range of structural configurations are available in Kadas et al. 

(2008).  

This spectral intensity measure is especially useful in getting a notion about the 

possible level of inelasticity that the system will experience when there is a number of 

candidate ground motions available to be used as seismic input in nonlinear time history 

analyses, so reducing the number of ground motions by evaluating their severity for the 

structure under consideration.  
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Figure 3.8 Correlation of the intensity measure with the top displacement 
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3.5 A/V RATIO 

In the earlier earthquake engineering practice, the maximum horizontal ground 

acceleration is the parameter usually specified for design and a realistic estimate of the 

ground velocity is obtained from the mean V/A ratios of the group with the larger peak 

ground acceleration. Together with appropriate amplification factors peak ground 

acceleration and velocity is used to construct the elastic design spectrum (Newmark and 

Hall, 1982). This philosophy was adopted in some design codes like 1985 Canadian Code 

to construct the elastic design spectrum (Basham et al., 1985). At this point it has to be 

mentioned that in the research literature both terminologies of A/V and V/A ratio were 

adopted in several studies. Nevertheless, for the sake of consistency through the text and to 

provide the reader with instant comparison among the values presented, the terminology 

acceleration to velocity ratio (A/V) and units of (s-1) is used while referring to results in 

different studies, even (V/A) and different units were used in the original study.  

3.5.1 Past Research on A/V Ratio 

In earthquake engineering literature, A/V is generally used to emphasize the effect of 

local soil conditions on the ground motion parameters (Mohraz et. al, 1972; Mohraz, 1976; 

Seed et al., 1976; Zhu et al., 1988a). In the early seventies the Unites States Atomic Energy 

Commission funded a comprehensive study conducted by Mohraz et al. (1972) for 

Newmark Consulting Engineering Services to investigate the vertical and horizontal elastic 

response spectra for nuclear facilities. In this study V/A ratio was calculated and averaged 

for rock and alluvium sites using recorded ground motion time history of two horizontal 

and one vertical component from fourteen earthquakes. The average values obtained for 

A/V ratio were 13.79 and 8.05 for rock and alluvium sites respectively.  

Later in a significant study by Mohraz (1976), the effects of geological conditions on 

the elastic spectra and also on the ground motion parameters, such as peak ground 

acceleration (A), velocity (V) and displacement (D) and A/V ratio were investigated. 

Mohraz considered four site conditions: alluvium deposits, rock deposits, sites with less 

than 10 m of alluvium underlain by rock deposits, and sites located on 10 m to 60 m of 

alluvium underlain by rock deposits. This classification was done due to only a few stations 

shear wave velocities estimates were available at the instant of the study. A total of 54 

earthquake records (three components from each record) from 46 stations in 16 seismic 
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events were considered in that study. Mohraz performed a detailed statistical study on the 

ratios of the ground motion parameters and the average A/V values calculated for each of 

the four site conditions for the group with the larger peak ground acceleration were found to 

be 7.57, 14.30, 10.44 and 11.70 respectively for the sites classified above. The values 

indicate that the A/V ratio for rock sites is substantially higher than those for alluvium. The 

ratios for the two alluvium layers underlain by rock are between those for rock and 

alluvium. Although the calculated average A/V ratio for two alluvial sites underlain by rock 

are close, sites with thicker alluvium layer produced larger A/V ratio which is opposite to 

expectations. However, investigation of the records composing these two site class data 

bins explains the situation. The records from stations on less than 10 m of alluvium 

underlain by rock deposits were all from San Fernando earthquake (1971) with Mw=6.5. On 

the other side, the half of the records from stations on 10 to 60 m of alluvium underlain by 

rock deposits were recorded in events with magnitude smaller than 6. Since smaller event 

are richer in high frequency content affecting A much more than V, the A/V ratio 

calculated from small earthquakes posses larger values. So the discrepancy above arises 

from this situation, for which any explanation brought by Mohraz (1976). These findings 

give the clues how magnitude of earthquake and site geology affects the A/V ratio. 

Contemporaneously Seed et al. (1976) studied the influence of local geological 

conditions on the attenuation of peak accelerations and peak velocities with increasing 

distance from the source of energy release for earthquakes with a magnitude of about 6.5 

occurring in the western part of the United States. Three site categories classified as: rock 

sites, where rock was considered to be shale-like or sounder in characteristics, as evidenced 

by a shear-wave velocity greater than about 760 m/s, stiff soil conditions, where rock as 

defined above was overlain by less than about 45 m of stiff clay, sand and gravel, deep 

cohesionless soil conditions where rock as defined above was overlain at least 76 m of 

generally cohesionless soils. They investigated the relationships between the A/V ratio for 

different geological conditions and distances from the source of energy release. The results 

indicted that while there is some variation in the A/V ratio with distance from source, the 

values of this ratio vary considerably with local geological conditions. The calculated A/V 

ratio for rock, stiff soil conditions and deep cohesionless soils took the values 14.85, 8.58 

and 7.02 respectively. The degree of agreement between these results of independent 

studies was noteworthy. The results of these studies were presented in Table 3.1. 
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Depending on the results presented in Table 3.1, it can be said that the A/V ratios 

from different studies characterizing rock and soft soil sites are quite similar. These values 

are representative of an event approximately 6.5 in magnitude. A/V ratio for the sites of soil 

deposits with varying thickness underlain by rock formations is difficult to determine. 

 
 

Table 3.1 Ground motion acceleration to velocity ratio from different studies 
 

Based on Mohraz et al. (1972) 
Site condition Rock Alluvium   
A/V (s-1) 13.79 8.05   

Based on Mohraz (1976) 
Site condition Rock Less than 10 m alluvium 

underlain by rocks 
10 to 60 m alluvium 
underlain by rocks 

Alluvium 

A/V (s-1) 14.30 10.44 11.70 7.57 
Based on Seed et al. (1976) 

Site condition Rock Stiff soil conditions Deep cohesionless soils  
A/V (s-1) 14.85 8.58 7.02  

 

 

A/V ratio was also used to identify the characteristic period (where constant 

acceleration and constant velocity plateaus meet) of impulsive and harmonic type ground 

motions (Seed et al., 1976; Shimazaki and Sözen, 1984; Tso et al., 1992; Sucuoğlu and 

Nurtuğ, 1995). In these studies the differences in predominant period of the ground motions 

were attributed mainly to different geological conditions indicated by larger A/V values for 

rock sites and smaller A/V ratios for soil sites. However, even the ground motions were 

selected among the ground motions recorded on similar geological conditions in order to 

minimize the influence of local geological conditions on ground motion characteristics, 

there is still significant variation observed in the A/V ratio (Zhu et al., 1988a). So before 

further elaborating the effect of A/V ratio on the structural damage, the parameters that 

contribute to A/V ratio must be identified clearly.  

Sucuoğlu et al. (1998) investigated the effect of A/V ratio together with the effective 

duration of ground motion on the damage potential of strong ground motions and concluded 

that these two basic ground motion intensity parameters significantly influence the damage 

potential of earthquake ground motions. They also argued that these two parameters were 

not represented appropriately by the spectral definitions of earthquake excitations in 

seismic design codes. 
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Acceleration to velocity ratio (A/V) has been extensively studied particularly as a 

measure of the frequency content of the ground motion. Zhu et al. (1988a) discussed the 

significance of A/V ratio as a parameter for ground motion characterization from a 

seismological point of view. Tso et al. (1992) have concluded that this ratio provides 

indications of the dynamic characteristics of earthquake ground motion. It was also 

concluded that the A/V ratio of ground motions correlates well with the magnitude-

epicentral distance relationship of motion and gives an indication of the relative frequency 

content and duration of ground motion.  

Local geological condition also has an effect on the A/V ratio with the lowest value 

for deep cohesionless soil, higher for stiff soil and the highest for rock. In terms of 

structural responses, this ratio reflects information regarding the significant frequency 

content of the input earthquake motions. 

The logic lying behind the A/V ratio is that, relative highness of velocity with respect 

to acceleration is an indication of existence of long period wave components that reflects 

the magnitude and frequency content of the earthquake and cause structural damage since 

natural period of medium to long period structures can overlap periods of these waves 

resulting in dynamic amplification of displacements.  

The destructiveness of apparent pulses in acceleration and velocity traces of recorded 

ground motions has been long ago identified by different researchers. Long acceleration 

pulses which yield large ground velocities lead to significant structural response (Hudson, 

1979). Anderson and Bertero (1987) pointed out that wide acceleration pulses are especially 

damaging, if the time duration of the pulse is large compared with the natural period of the 

structure. 

In favor of these findings, Kazaz et al. (2006b) analyzed the nonlinear behavior of an 

isolated shear wall through dynamic investigation and observed that ground motions with 

evident acceleration pulse produce significantly larger displacements than the ground 

motion with very large PGA and highly irregular high frequency accelerogram. It was also 

reported that ground motions with larger predominant period causes larger displacement 

demands on short period systems. 

Sucuoğlu and Nurtuğ (1995) stated that ground motion records with a dominant 

acceleration pulse usually possess high V/A ratio. If the peak ground velocity is reached 

immediately following the dominant acceleration pulse in the accelerogram, then the V/A 

ratio indicates the average duration of the pulse. It is related to the duration of dominant 
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acceleration pulse in impulsive ground motions and dominant acceleration period in nearly 

harmonic ground motion records. The coherent long-period waves cause the PGV/PGA 

ratio to become larger, thus making the constant acceleration part of response spectra 

longer. 

Akkar and Özen (2005) compared it with other ground motion intensity measures to 

estimate the structural damage. They investigated the influence of peak ground velocity on 

deformation demands of SDOF systems. Total of 60 ground motions were used in that 

research. The ground motions were recorded on firm sites (site class C and D according 

IBC 2000). Ground motions are grouped in three bins that were organized with respect to 

different PGV velocity ranges. The bins are organized such that the first bin is composed of 

records with PGV less than 20 cm/s, second bin consist records with PGV ranging from 20 

to 40 cm/s and in the third group the ground motions have PGV ranging from 40-60 cm/s.  

They calculated the correlation coefficient between the spectral displacement and 

PGV, so as PGA and PGA/PGV ratio at period Ti for a spectral period range of 0.1-4 s. 

They concluded that PGV has much better performance as a ground motion intensity 

measure in decreasing the dispersion in deformation demands due to record-to-record 

variability compared to both PGA and PGA/PGV ratio. However, they misinterpreted a 

very significant point in the evaluation of A/V. While both PGA and PGV are ground 

motion amplitude parameters and PGV in some sense reveals information about the 

frequency content of ground motion (large PGV indicates wide acceleration pulses), 

PGA/PGV ratio only tells about the frequency content of the ground motion (e.g., 

(PGA=150 cm/s2)/(PGV=15 cm/s)=10 s-1 or (PGA=450 cm/s2)/(PGV=45 cm/s)=10 s-1). As 

calculated both ground motions have the same acceleration to velocity ratio, but they are far 

different in terms of destructive power. So, their conclusion is disputable. . 

3.5.2 Limits of A/V Ranges 

Due to large dispersion in the peak ground motion amplitude values, even if they 

were recorded at the same seismic event, the calculated acceleration to velocity ratio value 

can vary significantly. Relying on two previously conducted studies, the limits of A/V 

ranges are identified. Zhu et al. (1988a) stated that review of the previous studies and 

examination of earthquake records reveal the three categories of earthquake ground motions 

may be identified, 
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a) ‘normal’ ground motions having significant energy content over a broad range of 

frequencies and exhibiting a highly irregular acceleration pattern; 

b) ground motions exhibiting large amplitude, high frequency oscillations in the strong-

motion phase of the motion; 

c) ground motions containing a few severe, long duration acceleration pulses. 

Depending on this classification of ground motions, Zhu et al. (1988a) selected 36 

horizontal ground motions from western United States earthquakes and categorized them in 

three groups each containing 12 ground motions based on their A/V ratio. A/V ranges 

defining each group is presented in Table 3.2. 

 
 

Table 3.2 Limits of A/V ranges due to Zhu et al. (1988a) 
 

 Bin A/V range 
Normal A/V range 0.8 g/m/s ≤ A/V  ≤ 1.2 g/m/s 
High A/V range < 1.2 g/m/s 
Low A/V range > 0.8 g/m/s 

 

 

The highly irregular acceleration pattern in ground motions of the first category 

would generally result in intermediate A/V ratios and acceleration spectra similar to the 

standard design spectrum defined by Newmark and Hall (1982) that is generally associated 

with so-called ‘normal’ severe earthquake ground motions at moderate distances from the 

causative fault. Therefore, A/V ratio is a useful, yet simple, parameter to distinguish 

‘abnormal’ ground motions from ‘normal’ ground motions. This classification disregards 

any implication of earthquake magnitude on A/V ratio. 

Meskouris et al. (1991), regarding damage potential of ground motions according to 

characteristics such as strong motion duration, central period and quotient of maximum 

ground acceleration to maximum ground velocity, has proposed a classification of probable 

records into one of the three types (S, M, and L) as given in Table 3.3. L-type motions (low 

frequency, long duration, high energy) are characterized by a great number of load reversals 

and accordingly high demands on nonlinear reserves, while S-type records (high frequency, 

short duration, and low energy) do not pose as serious a threat to structural integrity.  

While for S- and M-type excitations usual response spectrum based design and 

analysis techniques in conjunction with detailing requirements are sufficient, the damage 



 125

evaluation of important buildings subject to L-type excitations should be investigated by 

nonlinear direct integration.  

The A/V classification performed by these previous researchers only establish 

general limits to evaluate the damage potential due to this classification, noticing Meskouris 

et al. (1991) provides information about the duration of the ground motion also. However, 

A/V ratio can be classified to represent the seismic intensity of a particular seismic hazard 

scenario taking into consideration of magnitude and site effects. At the rest of this study all 

the efforts will be due to achieve this task. 

 
 

Table 3.3 Proposed classification of ground motions by Meskouris et al. (1991) 
 

 S-Type M-type L-type 
Duration td (s) < 10 10 < td < 15  > 15 
Central Period To (s) < 1.0 1.0 < To < 1.2  > 1.2 
Ag / Vg (g/m/s) <  1.0 0.8 to 1.2  < 0.8 

 

3.5.3 Identification of A/V Ratio due to Magnitude and Site Effects 

In previous section limits were established on A/V ranges to interpret the severity of 

any ground motion due to frequency content. How these limits conform to the available 

ground motion data is a matter of issue. It is given that for a given site and earthquake 

source, the three parameters that can vary are magnitude, distance and frequency content. If 

we decompose these parameters to an individual level we get the following picture. The 

spectral shape (frequency) content is dependent on magnitude and nearly independent on 

distance. However, local site conditions may play significant effect on frequency content of 

the recorded ground motion and affect both PGA and PGV. Since the maximum ground 

velocity is a much more stable parameter with a more determinate upper bound than the 

maximum ground acceleration (Newmark and Hall, 1969) and the integration process tends 

to dilute high-frequency components of the motion and enhance low-frequency 

components, A/V ratio calculated from these parameters will be more sensitive to PGA.  

Two significant and vital issues arise at this point due to complex relation between 

the earthquake magnitude and site amplification, the lingering uncertainty as to whether the 

degree of amplification varies with the level of input motion and the influence of frequency 
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content of ground motions on site amplification. Without entering too much into the field of 

seismologist, an answer will be sought.  

In order to shed more light on this issue a simple statistical analyses conducted and 

interesting conclusions derived. From COSMOS web site ground motion information 

including magnitude (M), distance (R), shear wave velocity at the upper 30 m of the site 

(Vs-30), PGA and PGV values are downloaded. Data of 2584 strong ground motion 

horizontal components from 99 earthquakes of magnitudes ranging from 4 to 7.9 is 

downloaded. This data was subjected to a simple statistical evaluation. Figure 3.9(a) 

displays increasing trend in the amplitude of ground motion with the increasing earthquake 

magnitude. In Figure 3.9(b) the amplitude of ground motion is plotted with respect to 

closest distance to fault rupture displaying the attenuation effect of distance.  
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Figure 3.9 Histograms of data downloaded from COSMOS site showing the relation of 

PGA and PGV with M and R. 

a) 

b) 
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Naming the three parameters affecting the frequency content of ground motion as 

magnitude, site to source distance and geological conditions at the site, the relation of these 

parameters with frequency content as defined by A/V ratio in this study is plotted in Figure 

3.10. Figure 3.10(a) gives the plot of A/V ratio against magnitude showing the magnitude 

dependence of frequency content. Figure 3.10(b) displays the A/V ratio plotted against the 

distance. Although it is not reflected so powerful in the figure, the trend in densely clouded 

data points displays a slightly decreasing trend. This trend can be attributed to the fact that 

the attenuation of velocity with distance is generally slower than the attenuation of 

acceleration and as the distance increase the high frequency content filters out leading to 

more stable A/V ratio. Therefore, the A/V ratio would be low for ground motions at a large 

distance from a major earthquake; and it would be high for motions near an earthquake 

source. In Figure 3.10(c), the variation of A/V ratio with shear wave velocity is plotted. 

Shear wave velocity is used to define the site class. From this figure no clear discrimination 

can be made with regards the influence of site geology on frequency content of the ground 

motion except the reality that there is a significant variation. 

It is obvious that these figures inherit crude statistical information, however 

reminding that the intention in plotting these figures is not to display an exact relation, it’s 

rather to declare a tendency observed between the frequency content of ground motion 

defined in terms of A/V ratio and magnitude.  From these figures it is possible to declare 

the pronounced affect of earthquake magnitude on the frequency content. However, to 

throw more light on this blurred subject, combining Figure 3.10(a) and Figure 3.10(c) into a 

figure will be beneficial.  In Figure 3.11, A/V ratio is disaggregated in to bins classified 

with shear wave velocity and plotted with respect to magnitude. Serving to this purpose 

ground motions were sorted into the 5 categories according to Vs-30 values as defined by 

Choi and Stewart (2005). The ranges defined by Choi and Stewart (2005) essentially match 

the NEHRP site categories, except that NEHRP C and D are subdivided into three bins 

(Chv, CD and Dlv) to better capture the variation of site nonlinearity with Vs-30. Being not so 

obvious, Figure 3.11 reveals the hidden information with regards to site effect. The trend 

lines fitted to data displays that as the site get stiffer the A/V ratio increases. Despite this 

observation, the dispersion in the data is significant. 

In the ground motion selection, no restrictions were put on the amplitude of the 

ground motion (neither PGA nor PGV), since as the inspection of the naturally recorded 

ground motions will reveal both PGA and PGV can display significant variation even 
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though they are recorded during a particular seismic event at a certain distance from the 

focus. At this point, to eliminate this variability, seismologist developed predictive 

equations to calculate the attenuated values of both ground motion amplitude parameters 

(PGA, PGV) and accordingly spectral ordinates (SA, SV, SD) as one moves away from the 

source for a particular earthquake magnitude.  
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Figure 3.10 Effect of magnitude, distance, soil profile on frequency content defined in 

terms of A/V ratio  
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Figure 3.11 A/V ratio disaggregated into magnitude and site information. 

 

 

Ground motion attenuation relationships provide estimates of intensity measures that 

typically apply for broadly defined site conditions such as rock or soil. Actual conditions at 

strong motion recording sites are highly variable with respect to local ground conditions, 

possible basin effects, and surface topography, and hence estimates from attenuation 

relationships necessarily represent averaged values across the range of possible site 

conditions (Stewart et al., 2001). Recently Akkar and Bommer (2007a-b) developed 

equations for the prediction of PGV and PGA using the strong motion database from the 

seismically active areas of Europe and the Middle East. Using these equations, first PGA 

and PGV are calculated for stiff and soft soil sites for varying magnitude and distance 

combinations. Then dividing the calculated amplitude values each other A/V ratio is 

calculated as a function of magnitude and distance. In Figure 3.12, the predicted A/V ratio 

for closest distance of 5 and 30 km is plotted on the same figure with the mean values of 

A/V ratios calculated for each event downloaded from COSMOS site. The predicted A/V 

curves for rock and soil sites agree well with the upper and lower bounds of mean A/V. It is 

displayed that A/V ratio, i.e. frequency content of ground motion, is affected only 

insignificantly by the source-to-distance but significantly by the magnitude of earthquake. 

Nevertheless, for smaller magnitude events there is evidence that distance influence the 

frequency content of ground motions. 

 



 130

0

5

10

15

20

25

30

5 5.5 6 6.5 7 7.5 8
Magnitude 

A
/V

 (1
/s

)

Event based Mean
Magnitude based Mean
R=5 km (Stiff soil)
R=30 km (Stiff soil)
R=5 km (Rock)
R=30 km (Rock)

 
Figure 3.12 Magnitude dependence of A/V ratio 

 

 

The following conclusions can be derived from the data presented here. A/V ratio is a 

simple yet effective parameter in ground motion frequency content identification. A/V ratio 

displaying a decreasing tendency with increasing magnitude reveals the existence of long 

period wave components, which can be very damaging for medium to long period 

structures. However, it must not be missed out that A/V ratio does not reveal any 

information about the amplitude of the ground motion, i.e. two ground motion 

accelerograms recorded far- and near-field of the causative fault may have similar A/V 

ratios, but they will have totally different ground motion amplitudes. The term ‘near-field’ 

is not used to represent the disputed ‘near-fault’ term that produces abnormal ground 

motions. Maybe the most important observation from this figure is the requirement to 

establish certain limits on the A/V ratio as function of magnitude. Considering the 

classification in Table 3.2, ground motions in normal range are produced by moderate-to-

large magnitude earthquakes. For instance, ground motions selected from an event with 

magnitude 6.7 must have A/V value equal to approximately 8 s-1 with a certain standard 

deviation such as ±2. Finally, when a ground motion selected considering any one of the 

amplitude parameters either PGA or PGV, the other one must be checked if it is within the 

limits imposed by A/V ratio. This procedure will assure the incorporation of the effect of 

frequency content directly to the selection criteria. 
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3.6 GROUND MOTION DATA SETS 

Next to validate the general observations and trends on A/V, ground motions used in 

serious studies were investigated. Ground motion sets from previous research (Akkar and 

Özen, 2005; Medina and Krawinkler, 2003; Iervolino and Cornell, 2005; Zhu et al., 1988a) 

was reanalyzed and used to investigate the central tendency and dispersion in the demand 

predictions of SDOF systems. The originally formed ground motion bins reflecting the 

selection criteria of the researchers were reorganized according to frequency content.  

General characteristics of the ground motion data sets and the conclusions from the 

previous studies are summarized briefly next. 

3.6.1 Data Characteristics of the Ground Motions Used in This Study 

In none of the studies till today the ground motions are selected considering the 

frequency content directly. For statistical analyses the data sets used by four different 

research studies was used. The selection criteria, number of ground motions, bin data used 

in these studies is summarized in Table 3.4.  Total number of ground motions records is 

228. There are only 15 ground motions used in common. So the combined ground motion 

data set includes 213 distinct records. Data is gathered from both COSMOS and PEER 

ground motion sites. 

The four data sets composed by different researchers are analyzed for magnitude and 

acceleration to velocity ratio relation, and plotted in Figure 3.13. The ground motion data 

set used by Akkar and Özen (2005) reveals the same tendency between the magnitude and 

A/V ratio as it was exposed above figures except 3 data points above A/V=25 level. They 

used a wider magnitude interval than the other studies. Medina and Krawinkler (2003) used 

a data composed of ‘ordinary’ ground motions records in magnitude range of 5.8 to 6.9. 

The scatter in data is not as wide as observed in Akkar and Ozen (2005). Narrow magnitude 

distance selection criteria used by Iervolino and Cornell (2005) displays its effect on the 

narrower scatter in observed in A/V ratio. Moreover, the decreasing tendency of A/V ratio 

with increasing magnitude is also observed here although a narrow magnitude interval 

selected. The data set composed by Zhu et al. is dominated by the ground motion records 

from San Fernando earthquake of magnitude 6.6 occurred in 1971. 26 out of 36 ground 

motions were recorded during San Fernando earthquake. A significant deficiency of their 

selection is that they used ground motions recoded on both rock and stiff soil. In Figure 
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3.14, it is displayed how rock site effects the A/V ratio. Their study is the only one that uses 

rock site records. It is reported by Boore and Joyner (1997) that the amplifications on rock 

sites can be in excess of 3.5 at high frequencies, in contrast to the amplifications of less 

than 1.2 on very hard rock sites. It can be also concluded from the figure that ground 

motions from soil sites reflect the characteristic frequency content of an earthquake due to 

magnitude better than rock sites, A/V ratio of approximately 6.5, a reasonable average for 

such an earthquake. 
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Figure 3.13 Magnitude-A/V relation of ground motions in different data bins 
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Table 3.4 Characteristics of the ground motion data sets 
 

Bins 

Study 

Total 
number of 

ground 
motions 

Ground 
motion 

classification 
criteria 

Bin name 
No. of ground 
motions in  the 
bin 

Scaling methods 

Low A/V (< 0.8 g/m/s ) 12 
Normal A/V (0.8 g/m/s < A/V < 1.2 g/m/s) 12 Zhu et al. (1988) 36 A/V ratio 
High A/V ( > 1.2 g/m/s) 12 

Ground motions were scaled to 0.2 
g peak ground acceleration 

PGV < 20 cm/s 20 
20 cm/s < PGV < 40 cm/s 20 Akkar and Ozen 

(2005) 60 PGV 
40 cm/s < PGV < 60 cm/s 20 

No scaling  

Large Magnitude-Short Distance Bin, 
LMSR,  
(6.5 < Mw < 7.0, 13 km < R < 30 km), 

20 

Large Magnitude-Long Distance Bin, 
LMLR,  
(6.5 < Mw < 7.0, 30 km < R < 60 km), 

20 

Small Magnitude-Short Distance Bin, 
SMSR,  
(5.8 < Mw < 6.5, 13 km < R < 30 km), 

20 

Medina and 
Krawinkler (2003) 80 M-R bins 

Small Magnitude-Long Distance Bin, 
SMLR,  
(5.8 < Mw < 6.5, 30 km < R < 60 km), 

20 

All ground motions are scaled to a 
common spectral acceleration at 
pre-selected period or period of the 
system used 

Iervolino and Cornell 
(2005) 52 

M-R and 
arbitrary 
selection 

All the records are from 5 events in the 
magnitude range of 6.7 to 7.4 and in the 
narrow distance range of 20 ± 5 km.   

52 

For each structure, the records in 
the target sets are scaled to their 
overall median spectral 
acceleration at the first mode-
period. 
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Figure 3.14 A/V ratio of ground motions from 1971 San Fernando earthquake of magnitude 

6.6 plotted for rock and stiff soil sites.  
 

3.6.2 Spectral Characteristics of the Used Databases 

All the ground motions are scaled to the same PGA level of 0.4g to investigate the 

spectral shape. The mean 5 percent damped mean spectrum and coefficient of variation in 

each period are calculated for the used ground motions data sets for both the original 

classification and the acceleration to velocity ratio based classification. The results are 

presented in Figure 3.15 to Figure 3.16. At first sight, it is clearly seen in these figures that 

low A/V ratio group ground motions yield mean spectra with larger acceleration controlled 

plateau, whereas it is narrowest for the ground motions in the high A/V ratio group.  As it is 

explained previously low A/V is an indication of existence of low frequency wave 

components in the accelerogram which is disclosed in the spectrum at medium to long 

periods. Classification of ground motion records based on PGV proposed by Akkar and 

Özen (2005) is also useful parameter in ground motion frequency content identification. It 

was reported that PGV correlates well with the earthquake magnitude and since it is 

calculated from the accelerogram by direct integration, it reveals the apparent or hidden 

pulses that are low amplitude but long duration or inversely high amplitude but short 

duration, in manner acting like a magnifier, the frequency content information of the 

ground motion. Given that the ground motions are scaled to same PGA level, A/V ratio 

based ground motion classification gives less dispersion. 
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Figure 3.15 Mean spectrum of ground motions in the Akkar and Özen’s (2005) database 

classified in PGV and A/V based bins. 
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Figure 3.16 Mean spectrum of ground motions in the Iervolino and Cornell (2005) database 

classified in A/V based bins. 
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Figure 3.17 Mean spectrum of ground motions in the Medina and Krawinkler’s (2003) 

database classified in M-R (Magnitude-distance) and A/V based bins. 
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Figure 3.18 Mean spectrum of ground motions in the Zhu et al. (1988) database classified 

in A/V based bins. 
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3.7 EFFECT OF FREQUENCY CONTENT ON SEISMIC DEMAND 
EVALUATION OF SDOF SYSTEMS 

In order to investigate the dependence of seismic demand on frequency content of 

ground motions classified in terms of A/V ratio SDOF analyses were performed. A bilinear 

elasto-plastic hysteresis model with %3 strain hardening and period dependent strength 

factors (η=Vy/W) are used. As it is declared at the beginning of this study, the intent of this 

study is to identify the frequency content as a major seismic intensity measure. Moving 

from this hypothesis, it is not desired to investigate a whole possible set of systems with 

same elastic period and varying strengths. Based on field observations, traditional R-µ-T 

relations avoided and only a representative strength factor is used for each period on 

condition that at least moderate seismic demands will be applied on the SDOF system.  

This is to say a constant strength factor is associated with each period (η-T relation). The η-

T relation used in this study was calculated from the database used by Akkar et al. (2005) to 

determine the fragility functions for low- and mid-rise ordinary reinforced concrete 

buildings. The field data consists of 32 sample buildings representing the general 

characteristics of two- to five-story substandard reinforced concrete buildings that 

constitute the most vulnerable construction type in Turkey as well as several other countries 

prone to earthquakes. In that study, conducting pushover analyses lateral stiffness, strength 

and deformation capacities of these building were determined. Using the results of 

pushover analyses strength of each structural configuration is identified. The plot of period 

versus corresponding strength factor is given in Figure 3.19. At this point, it is crucial to 

point out that neither the building stock inventory is representative of all structures nor the 

calculated period dependent strength factors covers the whole set of possible structural 

strengths. The purpose is to determine the effect of frequency content on yielding systems 

and do this as simple as possible by producing only relevant outputs. Strength factors 

derived from two other studies (Mwafy, 2000; Kadas, 2006) performed on generic 

reinforced concrete frames and frame-wall systems are also introduced in to the same 

figure. The generic frames used in these studies displays much higher strength compared to 

database used, even higher than expected. However, to experience moderate or higher level 

of ductility demands it is decided that the calculated η-T curve is appropriate for obtaining 

the expected outputs. Traditional maximum displacement ductility is used as a structural 

damage indicator for SDOF systems. 
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Figure 3.19 Period dependent strength factors derived from damaged building inventory 

during 1999 Duzce earthquake  
 

 
Following the traditional way, ground motions were normalized to the same peak 

acceleration of 0.4g. This scaling resulted in significantly different energy content over the 

moderate and long period ranges for the three groups of chosen earthquake records with 

different A/V ranges. The limits of A/V ranges used to group ground motions were given in 

Table 3.2. As a result, this classification led to substantial differences in the maximum 

displacement ductility demands among the three groups of accelerograms as displayed in 

Figure 3.20. Excitation using the low A/V range group of records leads to the greatest 

ductility demand. Therefore, the common practice of specifying seismic design forces 

based on peak site acceleration does not lead to consistent control over structural damage 

for earthquake ground motions in the different A/V ranges.  

Alternatively the ground motions were normalized to a common peak ground 

velocity of 50 cm/s. The calculated displacement ductility demands for each group of A/V 

ratio is presented in Figure 3.21. Scaling ground motions in this way to the same PGV 

resulted in ductility demands similar to PGA scaling for normal A/V group ground motions, 

where as significantly different ductility demands obtained in the low and high A/V group 

ground motions. Agreement in the normal A/V group results can be attributed to the fact 

that used scaling levels for PGA and PGV yield an A/V ratio of 8 s-1, which is roughly 

represent the normal ground motions.  
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Figure 3.20 Effect of A/V based ground motion classification on the mean ductility demand 

spectrum of generalized SDOF systems.Ground motions are scaled to 0.4g PGA level. 
 

 
 Akkar&Özen (2005) Iervolino&Cornell (2005) Medina&Kraw inkler (2003) Zhu et al. (1988)

 

High A/V ratio

0

2

4

6

8

10

0 1 2 3
Period (s)

D
uc

til
ity

 ra
tio

 ( 
µ

 ) Normal A/V ratio

0 1 2 3
Period (s)

Low A/V ratio

0 1 2 3
Period (s)

 
Figure 3.21 Effect of A/V based ground motion classification on the mean ductility demand 
spectrum of generalized SDOF systems. Ground motions are scaled to 50 cm/s PGV level 

 

 

Effect of PGA and PGV scaling on mean ductility demands obtained for different 

A/V groups is displayed in Figure 3.22 by combining all the databases used in this study. 

An interesting observation in regard to results of inelastic SDOF system analyses with 

different peak ground amplitude scaling techniques is that the ratio between the 

displacement ductility calculated by PGA scaling and PGV scaling yields a constant value 

over the entire range of periods for each A/V group. This ratio obtained for each A/V group 

is plotted in Figure 3.23. This ratio is sensitive to A/V ratio of the scaling, i.e. ratio of the 

PGA and PGV levels used in two scaling techniques. The A/V ratio of the scaling is (400 

cm/s2) / (50 cm/s) = 8.0 s-1. When the A/V ratio of the two scaling techniques is in 

agreement with the A/V ratio of the ground motion data set, the two scaling methods yield 
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similar inelastic displacement demands. In the case analyzed here, since the A/V ratio of 

the normal ground motions is 9.6, the ratio of inelastic displacements obtained form PGA 

scaling and PGV scaling should be in the order of 0.83 (8.0/9.6), which agrees with the 

value in Figure 3.23. Similarly for low and high A/V group ground motions this ratio is 

calculated as 8.0/6.2=1.29 and 8.0/16.4=0.49, respectively and again in agreement with the 

curves in Figure 3.23. In the light of this useful observation, Table 3.5 presents typical 

factors that can be used to convert ductility ratios or displacements obtained from PGA 

scaling to PGV scaling by multiplying the values obtained from PGA scaled ground 

motions with this factor. 
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Figure 3.22 Effect of PGA and PGV scaling on mean ductility demands obtained for 

different A/V groups, represented with the group mean A/V value rather than the group 
name, by combining all the databases used in this study. 
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Figure 3.23 Ratio of ductility values calculated for different A/V groups by using PGA 

scaling and PGV scaling 



 141

Table 3.5 Typical factors that can be used to convert ductility ratios or displacements 
obtained from PGA scaling to PGV scaling  

 
A/V of scaling A/V = 6.2 A/V = 9.6 A/V = 16.4 

6.20 1.00 0.65 0.38 
9.60 1.55 1.00 0.59 

16.40 2.65 1.71 1.00 
 

3.8 SELECTION OF GROUND MOTIONS 

The general aim in ground motion selection is to match the elastic response spectra at 

a particular damping ratio to represent the potential seismic hazard defined by the 

characteristics of the site and source. In the current design codes, design earthquake is 

specified in the form of smoothed acceleration response spectrum and the intensity of the 

ground excitation is adjusted with only one parameter, peak ground horizontal acceleration, 

PGA. In engineering practice damage potential of ground motion is evaluated on the basis 

of peak ground acceleration (PGA) and scaling of ground motions are done accordingly. 

More precisely, acceleration response spectra display the maximum ground acceleration 

(effective peak acceleration, EPA) that creates maximum response, and its shape reflects 

the frequency content of excitation which is assumed to be influenced only from the soil 

characteristics at the recording site, even though it is well established that the spectral shape 

is strongly influenced by earthquake magnitude and, to a much lesser extent, by source-to-

site distance (Bommer and Pinho, 2006). This statement supports the idea that PGA is alone 

adequate to display the potential of damageability of a ground motion. However, there are 

studies that impoverish this idea.  

Akkar and Gülkan (2002) examined the records from Kocaeli earthquake (17 August 

1999, Mw 7.4) and Bolu–Düzce earthquake (12 November 1999, Mw 7.2), to determine 

whether they provide clues about the extensive damage on the housing stock in the 

epicentral region. They reported that peaks of 0.3–0.4g from event 1 seem to be 

inconsistent with the structural performance, but so is the 0.8g peak recorded during event 2 

in Bolu, where the percentage of collapsed buildings was much less than in Izmit (Kocaeli). 

They found the clues of damage in frequency content characteristics of the two 

earthquakes. They stated that the component with larger ground velocity correlate better 

with the component with larger drift demand and the period of the peak velocity pulse 

matches the structural period where the drift demand is the largest. The fact that ground 
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motions from the Kocaeli earthquake have lower A/V ratio than Düzce earthquake could be 

added to these observations. 

Another reason that was put forward for the inconvenience of peak ground motion 

parameters as intensity measures arouse in the scaling issue. Previous studies (Nau and 

Hall, 1984; Shome and Cornell, 1998) have indicated that the use of PGA or PGV to 

scaling earthquake records is to be discouraged compared with other normalization methods 

such as the spectral intensity method. This is because scaling procedures based on peak 

record values do not provide consistent results over the entire range of periods of 

engineering significance. 

Iervolino and Cornell (2005), to form ground motion sets strong enough to 

investigate the scaling, introduced a strong ground motion criteria as those ones with the 

maximum average spectral acceleration at the four periods (0.1, 0.85, 1.5, and 4 sec). The 

objective of using this average was to reduce the likelihood of selecting records that happen 

to be unduly strong at one period and due to there being a large peak in its spectrum.  Such 

records would be present if the selection were done structure-by-structure seeking the 

strongest records based on the spectrum at a single period.  Among records scaled to a 

common single spectral acceleration level, a record with such a peak will generally cause 

lower nonlinear response for structures with that natural period; the common explanation is 

that as it “softens” it drifts into a regime of lower input energy (Mwafy, 2000; Kazaz and 

Yakut, 2006). Based on the responses of the models to sets of records that are 

comparatively strong and records that are arbitrarily selected and then scaled up to match 

the strength of the stronger records, Iervolino and Cornell (2005) has found no compelling 

evidence that such scaling induces bias in the response estimation. This scaling conclusion 

reaches to scale factors as high as 4 and ductility up to 6. 

Critics have also been raised against spectral scaling methods. Naeim and Lew 

(1995) have concluded that the indiscriminate use of spectrum-compatible accelerograms 

may lead to exaggeration of displacement demand and energy input. 

Nevertheless, it was displayed that A/V ratio is an effective parameter in identifying 

the frequency content and spectral shape, in this way reflecting the damage potential of 

ground motions on condition that they were scaled to same intensity, here PGA. It was 

revealed in Figures 3.15-18 that as far as the ground motions are collected in proper bins 

reflecting the frequency content (A/V bins in that case), scaling with PGA do not introduce 

any inconsistency in the calculation of mean response spectrum of particular bin. 
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Now it will be displayed that as far as the ground motions are classified according to 

frequency content that is represented with three A/V ranges as defined in Table 3.2, scaling 

with PGA or scaling to match target spectrum do not matters. They lead to similar scale 

factors. 

It is necessary to scale the applied ground motion time histories to an intensity level 

for direct and logical evaluation and comparison of their damage potential in terms of 

predefined ground motion intensity measures. This will also help identification of the 

required intensity, frequency content and the duration of the ground acceleration time 

histories to be used for the seismic hazard analyses in performance based earthquake 

engineering. 

In the preparation of suites of acceleration time-series to be used as input to dynamic 

analyses it is generally sought  that the records match with the shape of a target spectrum 

(elastic design spectrum most of the time). In order to implement searches that will produce 

records likely to meet the spectral matching criteria, or at least to do so with a minimum of 

manipulation of the records, it is useful to have a tool that allows records to be searched on 

the basis of the spectral ordinates. Ambraseys et al. (2004) discussed on such a matching 

criteria that is included in the new European strong-motion data CD-ROM. The records are 

searched by matching the spectral shape to the shape of the design spectrum. The search is 

based on the average root-mean-square deviation of the observed spectrum from the target 

design spectrum: 
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where N is the number of periods at which the spectral shape is specified, SAo(Ti) is the 

spectral acceleration from the record at period Ti, SAs(Ti) is the target spectral acceleration 

at the same period; PGAo and PGAs are the peak ground acceleration of the record and the 

zero-period anchor point of the target spectrum, respectively. The smaller the value of Drms 

the closer the match between the shape of the record and target spectrum is. Smaller values 

of Drms can be specified if the spectral matching is being done at short rather than longer 

spectral response periods (Bommer and Acevedo, 2004). 

Assuming the ground motion spectrums should match the elastic response spectra of 

TSC (2007) that has a 10% probability of exceedance in 50 years defined on Z3 site class 

with PGA of 0.4g, the Drms values are calculated for the ground motions in database to 
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measure degree of spectral matching. Bommer and Acevedo (2004) reported that values of 

Drms of the order of 0.15 were needed for matching ordinates in the period range of 0.4-0.8 

second, where as values as low as 0.06-0.07 could be used for matching the spectral 

ordinates from 0.1 to 0.3 seconds. In this study, periods used to calculate the Drms values 

ranges from 0.3 to 0.8 seconds.  Somerville (2005) defined the levels of spectral matching 

as 

• No spectral matching, which may leave critical peaks and troughs that strongly 

determine nonlinear response – OK when using many records. 

• “Loose” spectral matching, which makes the response spectrum approximately follow 

a smooth target spectrum but leaving peaks and troughs – OK when using a few records. 

• “Tight” spectral matching, which makes a smooth response spectrum that lacks peaks 

and troughs but conforms to a smooth uniform hazard spectrum – OK when using 1 record 

- minimizes variability but may introduce bias. 

In this study “loose’ spectral matching that does not involve any modification of the 

shape of the response spectrum is adopted. Tight spectral matching is not preferred because 

it modifies the ground motion time-history and produces time histories that are artificially 

broadband and do not have peaks or troughs in their response spectra. Such peaks and 

troughs are characteristic of actual ground motions, and nonlinear response of structures is 

sensitive as described on CAMUS wall specimen previously.  

Two different scaling factors are calculated to match the target spectrum. In the first 

scaling method PGA of the ground motion is scaled to match the spectral ordinate at the 

zero second period (PGAo = 0.4g) of the target spectrum. Second approach calculates a 

scale factor defined as the average of the ratio of spectral ordinates of target and matching 

spectrums at periods 0.1 s, 0.4 s and 0.85 s. Comparison of the two scale factors is given in 

Figure 3.24 for the four databases used here. SFSpect yields 25 percent lager scale factors 

than SFPGA for the range of scale factors 0 to 3.5. The best correlation between the two scale 

factors was observed in Iervolino and Cornell’s (2005) database due to narrow ranges in the 

selection criteria. This can be attributed to the fact that the ground motions in that bin are 

from large magnitude earthquakes at a moderate distance from the site, a situation that is in 

agreement with our target scenario event spectrum.  Figure 3.24 also indicates that due to 

poor correlation between the two scale factors beyond 3, this value can be assumed to be 

the upper limit for scaling. 
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After all, the following criteria were introduced to select the most suitable ground 

motions that conform to elastic design spectrum. It is assumed that 

• A/V ratio should be smaller than 10 s-1. 

• Drms should be lower than 0.3. 

• Scale factors applied to match the spectra is lower than 3. 

 

 

 

0.0

2.0

4.0

6.0

8.0

10.0

SF
Sp

ec
t

Iervolino &Cornell (2005)
0.0

2.0

4.0

6.0

8.0

10.0
SF

Sp
ec

t

Akkar&Özen (2005)

0.0

2.0

4.0

6.0

8.0

10.0

0.0 2.0 4.0 6.0 8.0 10.0
SFPGA

SF
Sp

ec
t

Medina&Krawinkler (2003)

 

0.0

2.0

4.0

6.0

8.0

10.0

0.0 2.0 4.0 6.0 8.0 10.0
SFPGA

SF
Sp

ec
t

Zhu et al. (1988)

 
Figure 3.24 Correlation between the two scale factors for each database used here 
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3.8.1 Selected Ground Motions  

Using the criteria introduced above, 215 ground motions are screened for finding the 

spectrum compatible ones. 23 ground motions obeying the given limitation were found. 

Among these 23 ground motions, 10 of them selected to be used as seismic input for time-

history analyses. The catalog data of these ground motions were presented in Table 3.6. The 

acceleration, velocity and displacement response spectra of these scaled ground motions 

were presented in Figure 3.25, Figure 3.26 and Figure 3.27 respectively.  In Table 3.7 peak 

ground values of strong motions were given for both original and scaled forms together 

with applied scale factors. SFSpect is used to scale the ground motions. Acceleration and 

velocity spectrum intensities were also tabulated in Table 3.7. 

Ground motions yielded an average A/V ratio of 8.2 with standard deviation of 1.0. 

This value corresponds to lower limit of normal ground motions displaying that the selected 

ground motions carries a frequency content that should be dangerous for medium period 

range structures.  The ground motions have nearly uniformly distributed peak ground 

values, yielding values of 480.1 cm/s2 and 58.9 cm/s in the mean for acceleration and 

velocity, respectively. The peak values are higher than the values given for mean-plus-one-

standard-deviation response spectrum that is compatible with El Centro ground motion, 

which are 313 cm/s2 and 33.1 cm/s for acceleration and velocity, respectively. 1940 El 

Centro earthquake record has been used for long time as a standard for evaluating the 

earthquake ground motions. Derecho et al. (1978b) used 1.5 times the velocity spectrum 

intensity, SIref = 178 cm/s, of this record as reference to scale the ground motion. This 

scaling procedure yielded a spectrum intensity of 267 cm/s that corresponds to the intensity 

of broad band ascending ground motions according to their classification. As seen in Tablo 

3.6, the ground motions (ground motion No. 1, 2, 3 and 8) that conforms to their 

classification nearly posses the same intensity (VSI ~ 250 cm/s) in this study. The scaled 

ground acceleration and velocity time series of the selected ground motions are given in 

APPENDIX D. 
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Table 3.6 Catalog data of the selected ground motions 
 

No Earthquake Year Mw Station 
R 

(km) 
PGA 

(cm/s2) 
PGV 
(cm/s) 

1 Imperial Valley 1979 6.5 Keystone Rd., El Centro Array #2 16.2 309 32.7 
2 Kocaeli 1999 7.4 Duzce 17.1 308 50.7 
3 Northridge 1994 6.7 Los Angeles, Brentwood V.A. Ho. 23.1 182 24.0 
4 Northridge 1994 6.7 Pacoima-Kagel Canyon  10.6 424 50.9 
5 Whittier Narrows 1987 6.1 7420 Jaboneria, Bell Gardens 16.4 216 28.0 
6 Cape Mendocino 1992 7.1 89324 Rio Dell Overpass - FF 18.5 378 43.9 
7 Northridge 1994 6.7 24389 LA - Century City CC North 25.7 218 25.2 
8 Northridge 1994 6.7 24283 Moorpark - Fire Sta. 28 189 20.2 
9 Loma Prieta 1989 6.9 Hollister Differential Array 25.8 274 35.6 
10 Northridge 1994 6.7 LA - Fletcher Dr. 29.5 235 26.2 

 

 

 

Table 3.7 Scale and spectral matching factors, corresponding peak ground values and 
spectral intensity measures 

 
 Unscaled  Scaled 

No PGA 
(cm/s2)

PGV 
(cm/s) SFSpec SFPGA Drms 

PGA 
(cm/s2) 

PGV 
(cm/s) 

A/V 
(s-1) 

ASI1 

(cm/s) 
VSI2 

(cm) 
1 309 32.7 1.77 1.27 0.23 547 58 9.5 574.1 246.6 
2 308 50.7 1.52 1.27 0.17 469 77 6.1 421.5 245.5 
3 182 24.0 2.69 2.15 0.16 490 65 7.6 447.6 251.8 
4 424 50.9 1.20 0.93 0.09 507 61 8.3 388.3 205.2 
5 216 28.0 1.98 1.82 0.26 428 55 7.7 376.0 185.8 
6 378 43.9 1.43 1.04 0.18 541 63 8.6 448.4 218.9 
7 218 25.2 2.11 1.80 0.27 460 53 8.6 381.4 228.2 
8 189 20.2 2.56 2.07 0.23 486 52 9.4 498.8 239.9 
9 274 35.6 1.47 1.43 0.29 404 52 7.7 402.8 205.3 

10 235 26.2 2.00 1.67 0.21 470 52 8.8 411.3 172.8 
     Average 480.1 58.9 8.2   
     Std.  (±) 45.14 7.95 1.00   

1ASI: Acceleration Spectrum Intensity 
2VSI: Velocity Spectrum Intensity 
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Figure 3.25 Acceleration response spectra of the selected ground motions 
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Figure 3.26 Velocity response spectra of the selected ground motions 
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Figure 3.27 Displacement response spectra of the selected ground motions 

 

3.9 CONCLUDING REMARKS 

All the ongoing discussion above is to display that the different intensity measures 

based on geophysical parameters, seismological parameters and structural parameters when 

evaluated from structural response point of view indicates to a common point; what matters 

to structural response is the frequency content of ground motion given that the amplitude of 

the motion is high enough to drive the structure into inelastic range. Spectral shape is a key 

to the nonlinear response. As displayed previously by others and as demonstrated here, the 

ascending trend in the spectrum (acceleration and velocity) beyond the fundamental period 

of the structure is a good indicator for the damageability of the ground motion record. A 

measure to evaluate this potential was presented in Section 3.4. 

Another intensity measure calculated from peak ground motion parameters 

acceleration to velocity A/V ratio is foreseen as a simple yet effective parameter that might 

be used to determine the frequency content of ground motions and differentiate it due to 

magnitude and soil effect. A/V ratio can be classified to represent the seismic intensity of a 

particular seismic hazard scenario taking into consideration of magnitude and site effects. 

While the indiscrimination of the frequency content of a ground motion record due to 
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magnitude was obvious, the effect of local site response due to soil nonlinearity on the 

frequency content as implied by A/V ratio could not be illuminated thoroughly.   

Theoretically, A/V ratio should take larger values as the site becomes stiffer for a particular 

earthquake magnitude. In a recent study by Yenier (2009), the limitations of point-source 

stochastic simulations were investigated in terms of fundamental geophysical parameters. 

Within this context synthetic ground motions were generated for various magnitude (5.0 ≤  

Mw ≤  7.5), source-to-site distance (1 km ≤  RJB ≤  100 km), faulting style (shallow dipping 

and strike-slip) and site class (soft, stiff and rock) bins. In Figure 3.28, the A/V ratios 

calculated from these ground motions grouped in soft, stiff and rock site bins according to 

NEHRP site classification are plotted for earthquake magnitude. This figure reveals the 

hidden information in regard to Figure 3.11, the effect of local site conditions on the A/V 

ratio. This subject left at this point for future studies.  

In Section 3.7 the effect of frequency content of earthquake record on inelastic 

displacement demands on SDOF systems was investigated. It was displayed that for the 

ground motions scaled to same PGA amplitude low frequency ground motions produced 

highest inelastic displacement demands.  Effects of scaling based on peak ground values, 

PGA and PGV, were investigated and it was observed that there is a consistent relation 

between the ductility demands calculated from the two scaling techniques.  For the same 

group of ground motions, the ratio of mean inelastic displacements calculated from these 

ground motions by applying PGA scaling and PGV scaling can be evaluated from the ratio 

of the scaling (A/Vscaling = PGAscaling level / PGVscaling level ) and the mean A/Vgroup ratio of the 

group of records. 

In Section 3.8 scaling issue was discussed. It was displayed that for the level of 

scaling up to factor of 3, the PGA scaling and scaling due to spectral matching at periods  

of 0.1 s, 0.4 s and 0.85 s produces similar scaling factors. Indeed the scale factors produced 

with PGA scaling can be up to 25% lower than scaling factors obtained from spectral 

matching. For achieving spectral matching between the target and matching spectrums at 

the listed periods, an upper limit of 0.3 can be adopted for the Drms values, which display 

the goodness of matching. 10 of the 23 ground motions records conforming to limitations 

defined were selected for use in time-history analyses.  
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Figure 3.28 Effect of earthquake magnitude and site effect on the A/V ratio (Yenier, 2009) 
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CHAPTER 4 

PARAMETERS AND PROCEDURES OF THE ANALYTICAL 
FRAMEWORK 

4.1 INTRODUCTION 

This chapter is devoted to establish an analytical framework for the parametric 

investigation of shear walls. The elements of presented framework  is composed of 

development of simple lumped-parameter structural models of wall and frame-wall systems 

for NLFEA, determination of the parameters that affect the shear wall response and 

identification of procedures to include these effects in the analyses. The parameters 

affecting the wall response are not only related to characteristics wall properties like length 

(Lw), height (Hw), axial load ratio (P/Po), but also 3D structural interaction effects arising 

from differences between the dominant deformation modes of walls and accommodating 

structural type (eg. frame-wall interaction). These effects are required to be included in the 

analyses. 

The use of NLFEA for the investigation of the deformations (damage) of structural 

walls at the micro level (strains) requires simplified modeling techniques to account for 3D 

global effects in the finite element descritization of the shear walls. In a FE model a wall 

can be composed of thousands of elements and nodes since 3D continuum finite elements 

are used. It is neither feasible nor logical to model the entire wall system or frame-wall 

structure in such type of parametric analyses.  Simple analytical procedures used in the 

analyses of bearing wall and frame-wall structures were investigated and isolated wall 

models representative of global structural effects in both types of structural configurations 

were developed. A thorough investigation of these simplified models is necessary in order 
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to determine the parameters of the study. The models can be used to derive useful 

information about the dynamic and static characteristics of wall type structures.  

4.1.1 Types of Concrete Shear Wall Buildings 

Structural walls are one of the most commonly used lateral-load resisting systems. 

The recent code rules nearly lay down a condition to use the minimum amount of shear 

walls in large portion of newly constructed reinforced concrete structures. The buildings 

consisting of shear walls as lateral load resisting system can be constructed with different 

technologies and structural forms used in these buildings to carry vertical and lateral loads 

can lead to different behavior types.  Although the general definition of “concrete shear 

wall building” is used to hold for variety of buildings types that relies on shear walls as 

primary lateral load resisting system (FEMA 356 - Table 10-2 Description of Building 

Types), the evaluation of damage to a building requires an understanding on the part of the 

engineer of the way in which it supports gravity loads, resists earthquake forces, and 

accommodates related displacements (FEMA 306). According to their behavior under 

horizontal seismic actions, Eurocode8 and TSC 2007 propose similar classifications for 

concrete buildings in terms of structural types. The systems with concrete shear walls were 

classified as (according to TSC 2007 description given in Table 2-5): 

 
“… (1.2) Buildings in which seismic loads are fully resisted by 

coupled structural walls...................................................... 
(1.3) Buildings in which seismic loads are fully resisted by 
solid structural walls........................................................... 
(1.4) Buildings in which seismic loads are jointly resisted 
by frames and solid and/or coupled structural walls............” 
 
Obviously it is not possible to talk about a unique structural type that can be used as a 

basis to infer conclusions about the behavior of structural walls by using it in the structural 

analysis. In addition to purpose of providing the necessary lateral load resistance and 

displacement control over the height of the structure, structural wall can be also designed to 

compose the vertical load carrying system of the entire system. Depending on these 

explanations, shear wall buildings can be classified into two broad groups: 

1. Shear/Flexural lateral load resisting buildings. 

2. Bearing wall buildings 

where typical plan views of such type of buildings are as displayed in Figure 4.1.  
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 Frame – Wall Building (Plan) 

 
  Bearing Wall Building (Plan) 

 
 

Figure 4.1 Comparison of typical frame-wall and bearing wall building configurations 
 

 
 

First category structures utilize both frames and walls to resist earthquake actions in 

parallel. This particular form of structure is commonly known as frame-wall structure or 

dual system structure. In this structural form, frames and walls share the total base shear 

due to applied lateral load on the structure in different proportions. Dynamic behavior of 

dual systems is considerably different from pure frame or wall structures. Such differences 

in dynamic behavior are attributed to the interaction that takes place between the frames 

and walls. As being different than frame-wall design where structural walls are primarily 

designed for lateral load resistance, walls in bearing wall buildings are also designed to 

carry vertical forces. 

In United States the common type of concrete shear wall building consists of shear 

wall – flat plate floor systems. Typical plan drawing of such type of buildings located at site 

in downtown Los Angeles, which is a high seismic region, is shown in Figure 4.2 (Kim, 

2004). The lateral load resisting systems of the building are special reinforced concrete 

shear walls for the transverse direction and special moment resisting frames for the 

longitudinal direction. The eight shear walls are located at the core in the center of the 

building plan and along each side. The walls are located at column lines so as not to disturb 



 155

architectural elements. They are also architectural elements themselves that serve as either 

elevator cores or stairways. Most of the gravity load is carried by a flat-plate floor system, 

with no beams, to columns that transfer gravity load down through slab. 

 

 

 
Figure 4.2 Typical US construction of shear wall building (adapted from Kim, 2004). 

 

 
 

Box systems are extensively used in countries like Turkey, China, Japan, New 

Zealand and Chile in high seismicity prone regions.  In Turkey shear wall dominant 

buildings constructed by using a tunnel form system (i.e., box system), so called tunnel 

form buildings, utilize all wall and slab elements as primary load carrying and transferring 

members (Balkaya and Kalkan, 2004). Riddle et al. (1987) reports the wall-to-plan area 

ratio in the range of 4-5% for moderate rise Chilean bearing wall buildings.  In general 

lateral stiffness or strength of structures including structural walls is related with the total 

wall area in plan. In regards to typical wall area, defined as the ratio of total wall to floor 

area, Wallace and Moehle (1992) argues that the U.S. construction for concrete buildings 5- 

to 20-strories tall relies on frames or combined frame-wall systems to resist lateral loads, 

and the total wall to plan area is typically in the order of 1% for these structures. 
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4.1.2 Differences in the Behavior Modes of Shear Walls  

The inherent free and forced deflected shapes of a cantilever wall and a frame are 

quite different as shown in Figure 4.3. An isolated structural wall is actually a cantilever of 

which behavior is controlled by bending moments. The total deflection calculated at the tip 

of the cantilever is composed of both flexural and shear deformations, but only a minor part 

due to shear. The amount shear deformation is related to height to width (Hw/Lw) ratio of the 

structural wall. On the other hand, even though the beam and column members composing 

the frame are relatively slender compared to a structural wall, the beam-to-column stiffness 

ratio, ρ, controlling the relative joint rotation in building systems due to the beam to column 

flexural stiffness contributions at the story levels determines the dominant behavior type 

(Blume, 1968). This parameter controls the degree of participation of lateral flexural and 

shear deformations in moment-resisting frame building. The general form of ρ is given by 

 

∑
∑=

column

beam

lI
lI
)/(
)/(

ρ                                                   (4.1) 

 
where )/( lI  represents the rigidity of a member, which is the ratio of member’s section 

moment of inertia to the member’s length. When realistic values of ρ, derived from regular 

reinforced concrete frames with uniform lateral stiffness along the height, is considered, a 

modal deflected shape in the first mode as shown in Figure 4.3(a) is obtained (Akkar et al., 

2005). The mode shape for ρ = 0 represents pure flexural behavior. As ρ increases, the 

behavior is controlled by both shear and flexural displacements. When ρ = ∞, the structure 

acts as a shear frame.  

A wall located in any of the structural forms mentioned above will be in an 

interaction with the structural system causing different behavior modes. The failure 

mechanism of the wall not only depends on the geometry of the cross section, but also on 

the way the wall is loaded (FEMA 306). If the wall is subjected to a large moment which 

produces yielding with low shear, the mechanism will be completely different than if 

loaded with low moment but large shear. The way the wall undergoes inelastic 

deformations will determine the path of force redistribution, and entirely dominate the 

subsequent response of the building (Charney and Bertero, 1982). For instance, in frame-

wall systems relative rigidity of frame has significant effect on deformation and strength 

characteristics of structural walls (Vallenas et al., 1978; Kayal, 1986).  
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(a) 
Rigid frames, primarily 
shear mode deformation 

∆frame 

(b) 
Shear wall, primarily 
bending mode deformation

∆wall ∆structure 

(c) 
Frame-wall, shear-flexure 

mode deformation 
 

Figure 4.3 Deformation modes of frame-wall structures 
 

 

4.2 SIMPLIFIED PROCEDURES FOR THE ANALYSES OF SHEAR WALLS 

The elastic and inelastic behavior and the failure mechanism of reinforced concrete 

frame-wall systems (dual systems) were investigated by different researchers in an 

approximate manner by replacing the structure with a system of idealized mechanical 

models. The name “frame-wall interaction force” was given to the forces developing in the 

rigid link beams connecting the wall and frame components of the mathematical model 

developed and widely used for analyzing frame-wall systems as shown in Figure 4.4 (Khan 

and Sbarounis, 1964; Emori and Schnobrich, 1981; Charney and Bertero, 1982; Scarlat, 

1995). The method involves the floor by floor interaction of planar panels consisting of 

walls, or frames, or both. The lateral loading is usually distributed between the component 

structures in proportion to their rigidities at each story. A simple elastic frame-wall model 

that takes into account the interaction effects was first proposed by Khan and Sbarounis 

(1964). An iterative procedure was developed in that study to calculate the lateral 

displacements and forces in the system. The model proposed by Kahn and Sbarounis (1964) 

depends on the equivalent dual structure concept in which the frames were replaced by an 
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equivalent one-bay frame where each column in the story is assigned the half of the total 

stiffness of the columns in that story. In the same way, the structural walls were replaced by 

an equivalent structural wall. Equivalent frame and wall is connected with rigid connection 

bars ensuring equal horizontal deflections as shown in Figure 4.4.   

 
 

 

SW2SW1 Frame SW*Frame* 

wS(x) wB(x)
q(x) 

≈ 

w(x) 

 
Figure 4.4 Frame wall interaction model after Khan and Sbarounis (1964) 

 

 

Macleod (1971) developed and proposed another method based on a number of 

simplifying assumptions as a practical design tool for designing a regular building of 

average height. Heidebrecht and Smith (1973) derived the differential equation governing 

the response of frame-wall system based on an analogy to shear-flexure beam. The closed 

form solution to this equation can be used to calculate the lateral displacements, bending 

moments, and shear forces under static triangular, uniform and a point top lateral load. 

Design curves for displacement, moment and shear force distribution over the non-

dimensional height of the structure for different frame rigidities were presented in their 

study. MacGregor et al. (1972) proposed a simplified equivalent frame-wall model that was 

divided into the frame system and the wall system in which the properties of all same type 

of members were lumped into a single member in a story, such as frame beams spanning 

between two adjacent columns, link beams linking the shear walls to the columns and all 

the shear walls by a single wall having as stiffness and plastic moment capacity equal to the 

sum of the stiffnesses and plastic moment capacities of the individual walls. The moment 

rotation relationship for the individual frame members were idealized as elastic-plastic for 

beams and columns and elastic-strain hardening for the shear walls. 
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Emori and Schnobrich (1981) presented three mechanical cantilever beam models 

that were studied by previously and can be used to idealize the structural wall: (1) a 

concentrated spring model (Otani, 1974); (2) a multiple spring model (Takayanagi and 

Schnobrich, 1976); and (3) a layered model. The concentrated spring model consists of a 

flexible elastic line element over the beam length, and a nonlinear rotational spring element 

at the restrained end of the beam, as shown in Figure 4.5(a). The multiple spring model is a 

line element model composed of a number of springs in series connected by rigid links. 

Each subelement may have different values of inelastic properties. The layered model 

shown in Figure 4.5(c) is a modification or alteration of the concentrated spring model.  

Instead of the nonlinear spring, a layered cross section of length Lp is assigned to the end of 

the cantilever beam, so the inelastic flexural action of the cantilever beam is calculated 

explicitly allowing the contribution of the effect of axial load. The length Lp is chosen as 

the region where major inelastic action is expected. The entire frame-wall system is 

therefore idealized as a plane structure composed of two components. One of the systems is 

the isolated wall. The second system is a substitute frame structure which models the two 

parallel rigid frames as a frame substructure. 

Miranda (1999) adopting the equivalent continuum shear-flexure beam model 

developed by Heidebrecht and Stafford Smith (1973) calculated the seismic lateral 

deformation demands in multistory buildings under generalized lateral static loads. Later, 

Miranda and Akkar (2006) derived the generalized interstory drift spectrum, which extends 

the drift spectrum to buildings that do not deform laterally like pure shear beams as 

proposed by Iwan (1997), using the same continuous model that consists of a combination 

of a flexural beam and a shear beam. Miranda and Reyes (2002) used the same formulation 

to estimate the maximum lateral drift demands in multistory buildings with nonuniform 

lateral stiffness primarily responding in the fundamental mode when subjected to 

earthquake loads.  

Sozen (1989) developed a simple analytical tool to calculate the displacement 

response of shear wall buildings for a given earthquake strong motion. The study 

concerning with the observed behavior of reinforced concrete shear wall buildings in Vina 

del Mar during March 1985 Chile earthquake, the model did not suggest that its results 

should be identical to individual response of large inventory of shear wall buildings, but it 

was rather intended to show that certain dominant structural properties have led to observed 

damage on the buildings. 



 160

 

Elastic Beam 

Spring P 

(a) 

Springs P 

(b) 

Elastic Beam 

Layered 
Section 

P 

Lp 
Inelastic Zone 

(c) 

Cantilever Beam Models Curvature Distribution (Idealized) 

Inelastic curvature 

Elastic curvature 

 
Figure 4.5 Mechanical models used by Emori and Schnobrich (1981) in modeling shear 

walls to investigate the inelastic behavior of concrete frame-wall structures: 
 (a) Concentrated Spring Model; (b) Multiple Spring Model; (c) Layered Model. 

 

 

This study focus on two simplified procedures among the studies summarized above 

for the analyses of structural wall buildings. The models are the isolated cantilever wall 

model as described by Sozen (1989) and the shear-flexure beam continuum model of 

Heidebrecht and Stafford Smith (1973). While the former applies to wall dominant 

structures responding in cantilever mode, the later can be used to model frame-wall 

systems. Both methods are developed for linear analysis purposes, but here procedures are 

implemented to extend the range of their applicability to nonlinear range.   
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4.2.1 Isolated Wall Model 

The expression for the fundamental period of a cantilever beam of uniform cross 

section and uniformly distributed mass is (Clough and Penzien, 1993), 

 

EI
mHT

4

52.3
2π

=      (4.2) 

 
where  

m = mass per unit height  

H = Total height  

I = Moment of inertia of cross section 

Depending on the assumption that the fundamental period of a building, where 

flexural behavior of structural walls dominates the lateral load response, can be 

approximated by analysis of an equivalent cantilever, Sozen (1989) derived the following 

equation to calculate the fundamental period of an uniform concrete cantilever having 

rectangular cross section and supporting regularly distributed floor load (Figure 4.6) as 
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in which N = number of floors; w = unit floor weight including tributary wall height; hs = 

mean story height; Ec = concrete modulus of elasticity; Hw = wall height; and p = wall 

index, ratio of wall area to floor plan area for the walls aligned in the direction the period is 

calculated ( p = Σ Aw / Af, where Aw = Lwtw, Lw is the wall length, tw is the wall thickness, 

and Af is the floor plan area of a typical floor of the building). For cracked section the 

number in front of the expression given in Eq. (4.3) shall be taken as 8.8.  

The expression in Eq. (4.3) can be further simplified by introducing typical values of w 

= 10.0 kPa (1.02 t/m2), hs = 300 cm, g = 981 cm/s2 and Ec = 25,000 MPa (these are the 

typical values adopted in study, so the coefficient in this study may differ from the ones in 

other works) and assuming uncracked section as  
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As seen in Eq. (4.4), it is possible to express the fundamental period of structural wall 

buildings in terms of three nondimensional parameter: the slenderness ratio of the primary 

walls (Hw/Lw), the number of stories (N), and the wall index, p (the ratio of wall are to floor 

area). 

 

              
Figure 4.6 Generic shear wall building models  

 

  

4.2.1.1 Roof Drift of Wall Type Structures 

The procedure presented by Sozen (1989) exploited by Wallace and Moehle (1992), 

Wood (1991), Riddell and Vasquez (1992), and Gülkan and Utkutuğ (2003) in later studies 

to investigate the roof drift demands in shear wall buildings. In a series of technical papers, 

Wallace presented the general guidelines of a displacement-based analytical procedure for 

the seismic design of reinforced concrete shear walls (Wallace, 1994; Wallace, 1995a-b). 

The aim of the procedure is to relate the global and local deformations. The procedure uses 

a computed strain distribution to determine requirements for transverse reinforcement at 

wall boundaries for concrete confinement and to restrain buckling of reinforcement.  
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A step forward after the derivation of Eq. (4.3) is the definition of a ground motion in 

terms of displacement response spectrum. In the derivation of spectral displacement 

demands, Wallace (1994) utilized the expression in ATC-3-06 for the spectral acceleration 

for elastic response. Assuming high seismicity (a seismic coefficient Av=0.4 representing 

the effective peak acceleration of the ground) and firm soil site as the site class, the elastic 

spectral displacement for 5% damping was computed as  

 
sTcmTSd 585.00.0)(25 2 ≤≤= LLL      

TscmTSd <= 585.0)(15 LLL    (4.5) 
 

Finally for a shear wall building, the elastic displacement calculated for a single 

degree of freedom oscillator is related to the roof displacement of the actual multi degree of 

freedom structure by using a factor of 1.5. The roof drift (roof displacement divided by 

building height, δu/Hw) is computed by multiplying Eq. 4.5(a-b) by 1.5 and dividing by the 

building (or wall) height, Hw,  
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The roof drift is expressed in terms of the wall aspect ratio (Hw/Lw) and wall index, p, 

by substituting the spectral displacement and the cracked stiffness period T as given in Eq. 

(4.5) and Eq. (4.3) with front multiplier of 8.8, respectively, into the Eq. (4.6) as 
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Again substituting the typical values introduced above into the expression in Eq. 

(4.7), we get for the mean drift ratio 
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Wallace (1994) stated that the roof drift ratio obtained should tend to be conservative 

because the cracked stiffness period is based on half the gross-section stiffness and the 

“typical” values are selected to produce a high drift estimate. For Eq. (4.7), depending on 

different seismic spectral displacement definition Sozen’s work (1989) yields a front 
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multiplier of 0.25 for the same material and mass characteristics assigned above.  Eq. (4.8) 

is plotted for several aspect ratios as shown in Figure 4.7.  

In the most basic form, the isolated shear wall model shown in Figure 4.6(a) can be 

used as a base model in the NLFEA analyses of structural walls. However, Eq. (4.4) should 

not be interpreted as a magical formula that gives good results for the period estimation of 

structures where structural walls are encountered. Certain limitations in regards to aspect 

ratio of the walls and mass assignment needed to be identified for the determination of 

dynamic attributes of structural walls. Indeed the period formula given in Eq. (4.4) has a 

very restricted applicability.  
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Figure 4.7 Estimate of the roof drift for wall type structures 

 

 

Then the global deformations imposed on the structure are related to local 

deformation on the wall cross section by using well-established procedures to account for 

the distribution of elastic and inelastic deformations over the height of a structural 

cantilever wall. Based on the model of Figure 4.8, which assumes triangular load 

distribution, the displacements at the top of the wall can be computed as  
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where δy = displacement resulting form elastic deformations; θpHw = displacements 

resulting from inelastic deformations; φy = yield curvature (curvature at first yield of the 

wall boundary reinforcement); φu = ultimate curvature; and Lp and θp = plastic hinge length 

and rotation, respectively. For low values of axial load and low steel ratios, the yield 

curvature can be approximated by  
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Figure 4.8 Relationship between global and local deformations 

 

 

The value of φy increases with increasing steel ratios and axial load. Assuming the 

plastic hinge is half the wall length (Lp = 0.5Lw) and using the relation in Eq. (4.10), the 

deformations imposed on a wall can be derived in terms of the ultimate curvature times the 

wall length (Wallace and Moehle, 1992) as 
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If Eq. (4.9) is substituted in Eq. (4.11), the deformation imposed at the base of the 

wall can be expressed directly in terms of the building configuration as 
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Now the detailing requirements such as the concrete confinement required at the 

boundary element can be evaluated by comparing directly the deformations imposed on the 

wall cross section with the available flexural deformation capacity of the wall cross section. 

It was assumed that the wall has rectangular cross section and uniformly distributed 

reinforcement plus boundary steel. Axial load is centered on the wall web. The longitudinal 

tension and compression reinforcement is assumed to develop a stress of αmfy and γfy, 

respectively, to account for possible material over strength and strain hardening (assumed 

values are α = 1.5 and γ = 1.25). By considering the equilibrium requirement on a 

rectangular wall cross section, wall deformation capacity is estimated by the relation 
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where εc,max = extreme fiber concrete compressive strain; ρ = As/twLw = tension steel 

reinforcing ratio; ρ΄ = As΄/twLw = the compression steel reinforcing ratio; ρ˝ = As˝/twLw = the 

distributed steel reinforcing ratio; fy = nominal yield stress of the reinforcement; fc = the 

compressive strength of the concrete; αm and γ = factors to account for reinforcement 

overstrength and strain hardening; P = wall axial load; Lw = wall length; and tw = web 

thickness. The equation is valid for rectangular, T-shaped and L-shaped (flanged) walls. A 

similar expression was also derived for barbell-shaped walls. 

For symmetrically reinforced rectangular wall sections, assuming fc = 25 MPa, fy = 

420 MPa, the extrapolation of above Eq. (4.13) results in following extreme fiber maximum 

compressive strain curves as shown in Figure 4.9 for different parameters. The concrete 

compressive strain at the extreme fiber increases as the slenderness of wall increase (larger 

Hw/Lw ratio).  
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Figure 4.9 Compressive concrete strain at the extreme confined boundary  

 

4.2.1.2 Global Ductility Estimation 

Using moment-curvature analyses of cantilever shear walls Kowalsky and Priestly 

(1998) has shown that yield curvature, serviceability curvature, and ultimate (damage-

control) curvature are insensitive to variations of axial load ratio, longitudinal 

reinforcement ratio, and distribution of longitudinal reinforcement. This implies that the 

ratio of neutral axis depth (depth to extreme compression fiber) to wall length is essentially 

constant for a given strain limit state defined by both concrete compression and steel strain 

limits. For example, if εcu = 0.018 and εs = 0.06, the neutral axis depth ratio becomes 0.2 

(cu=0.2Lw). The results were used to determine available displacement ductility factors for 

walls of different aspect ratios and drift limits. They stated that drift capacity will generally 

exceed code levels of permissible drift, and that code drift limits will normally restrict, 

sometimes severely, the design displacement ductility factor. 

Later in a similar framework that was used by Wallace (1994), Kowalsky (2001) 

examined the seismic provisions of the 1997 Uniform Building Code (ICBO, 1997) from 

perspective of achieving performance-based earthquake engineering of structural wall 

buildings. Through the use of design examples and dynamic inelastic time history analysis 

he concluded that a hybrid design procedure that achieves a performance-based engineering 

with a force-based approach to specify and control damage in the design process as 

described in 1997 UBC is not possible. It was also reported that although strain limits are 

present in the 1997 UBC, the drift ratio limits generally govern the design.  
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Priestly and Kowalsky (1998) related the curvature ductility (µφ) of the cross section 

to the displacement ductility (µ∆) at an effective height of 2/3 the total wall height by the 

expression 
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Since they claimed that the drift ratio based on the concrete ultimate extreme 

compression fiber strain of 0.015 will rarely govern the design, they proposed the following 

relation to calculate the displacement ductility demand based on the maximum allowable 

drift limits of θmax = 0.02 and 0.025. 
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The relation given in Eq. (4.15) is plotted in Figure 4.10 for displacement ductility 

versus aspect ratio for two values of allowable drift ratio.  
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Figure 4.10 Drift limit Ductility levels (Priestley and Kowalsky, 1998) 
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4.2.1.3 Period of Wall Type Structures (Cantilever Systems)  

First of all it is necessary to identify the typical values of periods of shear wall 

buildings, in order to talk about the range of applicability of the formulas. Figure 4.11 

presents the relation between the number of stories and period of shear wall buildings 

extracted from measured and analytical response of shear wall buildings as performed by 

different researchers (Wallace and Moehle, 1992; Goel and Chopra, 1998; Lee et al., 2000; 

Balkaya and Kalkan, 2003). Except the data from Balkaya and Kalkan (2003) all the 

information given in Figure 4.11 belong the measured response of real life structures. The 

data by Wallace and Moehle (1992) comes from Chilean shear wall buildings from the city 

of Vina del Mar as also used by Sozen (1989). These buildings have a wall index of 3% in 

average and 2% as the lowest. Data by Lee et al. (2000) is from the measured periods of 

Korean tunnel-form buildings with wall index of 2% approximately. Balkaya and Kalkan 

(2003) calculated the periods of 80 different tunnel-form building configurations that are 

typically applied in Turkey by using three-dimensional finite-element modeling. The 

average ratios of total wall to floor areas in these buildings are 2-3%. The data from Goel 

and Chopra (1998) covers the measured periods of buildings during eight California 

earthquakes starting with 1971 San Fernando and ending with the 1994 Northridge 

earthquake. These buildings have wall indexes ranging from 0.3% to 3%. 
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Figure 4.11 Period versus height relation of shear wall buildings 
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What is noticed at first glance in Figure 4.11 is that the presented data correlates well 

with the well-known approximate relationship between fundamental period and number of 

stories of shear wall buildings, N/20. These buildings have wall indexes larger than 2%. 

The outlier points lying on 0.15N line are from Goel and Chopra’s (1998) building 

inventory. These buildings have special features in terms of structural systems such as flat-

plate system with core walls or vertical irregularities in the plan.  For example, one of the 

outliers, the 8-story CSULA Administration Building with reinforced concrete slab, beams 

and column as vertical load carrying system and concrete shear walls except between levels 

1 and 2 where concrete and steel columns are used as lateral force resisting system, poses a 

very large fundamental period (T1 = 1.62 s) due to very soft 1st-story, which has height of 

7.26 m as shown in Figure 4.12. Above the 1st-story, the ratio of area of walls in the 

transverse direction to the floor area is 1.6%, which indeed is an adequate wall index to 

provide the lateral stiffness.  

 

 
Figure 4.12Los Angeles – 8-story CSULA Administration Building 

 

 

For further augmenting our understanding on the subject lets assume 4-, 8- and 12-

story cantilever wall structures composed of 3, 5 and 8 m walls in length with story height 

of 3 m. The periods calculated by using Eq. (4.4) for different wall and building height 

combinations yielding different aspect ratios for isolated shear walls are plotted in Figure 

4.13.  Restricting the applicable range of calculated period between 0.05N and 0.1N it can 

be concluded that the formula given by Eq. (4.4) yields meaningful results for aspect ratios 

only up to 5 for a very large portion of wall index spectra ( p>0.005). As the aspect ratio 
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(slenderness ratio) increases the wall index required to provide adequate stiffness also 

increases. However, as the 12-story case displayed by no means it is logical to assume an 

isolated wall model with a wall length of 3 m in buildings taller than 10-story, which 

corresponds to slenderness ratios larger than 10.  

Evidence to such situation was provided by Riddell and Vasquez (1992). They were 

using Eq. (4.4) and the average amount of wall area of 3%, i.e. p=0.03, for the Chilean 

buildings, calculated the fundamental period of the generic building as 
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Then combining Eq. (4.16) with the approximate relationship between fundamental 

period and number of stories, T=0.05N, a typical slenderness was found as 4, or, for a more 

flexible building with T=0.075N as 6. This limitation should be considered as a rule of 

thumb of the Sozen’s formula while using it. It is obvious that if smaller wall index (p) is 

adopted in Eq. (4.16), much smaller wall aspect ratios (Hw/Lw) are required to obtain logical 

period values. 
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Figure 4.13  Periods calculated for range of wall indexes as a function of wall aspect ratio  

 

 

This conclusion is important because isolated cantilever idealization of structural 

walls is a widely used tool (may be the only) in the seismic response assessment of 

structural walls. Indeed such an idealization of structures carries risks since 3D originated 

force mechanism build-up in structures due to frame-wall, wall-to-wall and wall-to-slab 

interactions are all ignored. No structure acts as cantilever unless it is so. Additionally 

higher mode effects causing amplification in the shear and moments along the height of the 
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walls should come into scene more easily leading to illogically conservative dynamic 

amplification factors, when such models violating the aspect ratio rule is adopted in 

analytical studies. The modal mass participating in the first mode of a cantilever is smaller 

than the frame-wall or coupled wall structure.   

4.2.2 Frame-Wall Model: Continuum Approach 

The walls can seldom exist in such an idealized configuration described above. If 

tunnel-form structures are disregarded, since this study excludes them due to distinct load 

resisting characteristics, walls mostly exist in structures in combination with moment 

resisting frames. Frame-wall structures can be composed of either (i) structures with walls 

and frames connected by floor slabs, or (ii) structures with link-beams extending from 

frames directly to the ends of the walls. The interaction between the frames and walls of 

structures with link beams is more significant than in the classical form of frame-wall 

structure in which the frames are parallel to the walls, i.e. walls are located inside a frame 

(Sullivan et al., 2006). The shear and moment transferred from beams can significantly 

change the moment profile causing a reduction in the inflection height of the wall. The 

beam shear forces transferred from both side of the wall affect the axial load on the wall. If 

the problem is idealized by assuming beams of equal strength and equal length that are 

framing to the wall from both side, the axial load will not be affected by the beam shears 

since they will cancel out. However, the beam shears from both sides will form a moment 

couple which has to be added to moments transferred from beams. Additional 3D effects 

such as transverse beams’ shear forces also contributes to the moments created by the 

framing shear wall beams as shown in Figure 4.14, a deformed shape view taken from the 

analyses results of a five-story reinforced concrete frame-wall.  

The distribution of the applied lateral load between these two systems in proportion 

to their relative lateral stiffness and based on the assumptions of small deformations and 

linear elasticity can lead to serious errors.  Because of the inherent difference between the 

deflected shapes of these two particular systems under lateral loading, frame-wall 

interaction generally results in reduced lateral displacements at upper floors affecting the 

distribution of wall moment over the height of the building (Wallace, 1994). Contrarily, 

over the lower floor levels frame-wall interaction results in an increase in the slope of the 

moment diagram, and thus an increased shear demand on the wall compared with cantilever 

walls.  
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Figure 4.14 Deformed shape of a frame-wall structure displaying the pattern of 

displacements and rotations for frame and wall components. 
  

 

Frame wall-interaction poses a serious problem for reinforced concrete structural 

walls especially in situations where the frame part of the structural system becomes stiffer 

as compared to the walls. Kayal (1986) investigated the effect of wall-column stiffness 

ratio, defined as the ratio of the flexural rigidities of the shear wall and the column 

(EIw/EIc), among with additional parameters such as the ratio of beam and column stiffness, 

load ratio (lateral to vertical load). One of the significant conclusions emerged from this 

study is that nonlinear idealization of the flexural characteristics of shear walls became 

more pronounced when shear walls are located in stiff frames since the actual characteristic 

of shear walls, which is “shear behavior” has to be activated.  

In similarity with the isolated cantilever flexural beam used to model structural wall 

buildings responding primarily in flexure mode, continuum method utilizing combined 

shear-flexural beam formulation for the analysis of frame-wall and coupled wall systems 

can be used to investigate the frame-wall interaction problem. Dating back to the 1960s a 

significant amount of work has been conducted on the continuum approach for the static 

and dynamic analysis of planar structures consisting of interacting frames and shear walls. 

Initially the method evolved as a simple yet effective and reliable hand calculation method 

for the proportioning of structural members in design offices (Heidebrecht and Stafford 

Smith, 1973). Although in his discussion of the article by Heidebrecht and Stafford Smith 

(1973), Rosman (1973) claimed that the method had been developed much more 

completely by himself earlier (Rosman, 1968), this study takes the work of Heidebrecht and 

Stafford Smith (1973) as its basis. Lately it has been widely used to calculate the dynamic 

properties of tall buildings and used in studies that deal with the behavior of variety of 



 174

structures. The method can be easily programmed allowing a reduction in the idealization 

burden without going through detailed structural modeling by representing each structure 

with only one parameter (αH) (Miranda and Reyes, 2002).  

Since in the shear-flexure beam method, the multistory structure is modeled as an 

equivalent continuum structure composed of a flexural cantilever (accounts for shear walls) 

and a shear cantilever (accounts for frames), the forces and moments in the actual structure 

are assumed distributed along the continua. The continuum model for equivalent shear-

flexure beam is given in Figure 4.15. It has to be noted that the beam moments acting on 

the walls were disregarded in the frame component since they do not have any influence on 

the lateral deformation. In the figure, q(x) and m(x) represents the action of interaction 

forces and beam moments transferred on the shear wall, respectively. The subscripts, B and 

S, refer to the flexural and shear beams, respectively. Although it is possible to assume the 

action of horizontal forces on the wall as distributed, a concentrated top interaction force is 

required to maintain the deformation compatibility and force equilibrium between the 

flexural and shear beams. This is why a point load of magnitude Q was included in the 

model shown in Figure 4.15.  

 

 

 
Figure 4.15 Mathematical model of shear-flexural beam, interconnected frame and shear 

wall (equal deflections at each story levels) 
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The rigid floor diaphragm provides nearly equal translations at all points of the floor 

area, however this doesn’t necessitates the rotations at member ends be the same also. As 

shown in Figure 4.15, the deformations of frames and walls when individually considered 

are same. While the floor diaphragms exhibit very small rotations, the rotations on wall 

component accumulate as moved upwards and cause additional curves on the beams joining 

to the wall, especially at the uplift side, if the shift of the neutral axis is considered. So, the 

mathematical model of a shear-flexure beam used to calculate the response a frame-wall 

structure will have equal deformations through the continua, but the sectional rotations of 

each particular member will be different and calculated in accordance with the shear 

deformation beam theory. 

Heidebrecht and Stafford Smith (1973), ignoring the moments transferred from 

beams to walls, gave the governing equation of the combination beam shown in Figure 4.15 

by 
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=−α      (4.17) 

 
where )()()( xwxwxw SB +=  is the distributed lateral loading function and 

 

EI
GA

=2α      (4.18) 

 
in which GA and EI are the shear and flexural rigidities, respectively. While EI represents 

the flexural rigidity of all the flexural members in the systems, interpretation of shear 

rigidity GA being different represents the interstory horizontal shear force required to give a 

unit horizontal shearing deformation over the 1-story height as explained in APPENDIX E. 

A complete derivation of Eq. (4.17) is given in APPENDIX E. The main parameter that 

determines the dominant deformation mode of a shear-flexure beam is the parameter αH. 

Miranda and Reyes (2002) classified deflected shapes of the structural systems based on 

this parameter. According to this classification, the deflected shape of structures composed 

of structural walls as lateral load resisting system can usually be approximated by using 

values of αH between 0 and 2. The deflected shape of dual systems or braced systems can 

be calculated by values of αH typically between 1.5 and 6. For buildings composed of only 

moment-resisting frames the values of αH between 5 and 20 can be used.  
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A tall structural wall can be considered as vertical cantilever beam, with zero 

deflection and rotation at the base and free at the top, so the boundary conditions that apply 

to the solution of the differential equation are y(0) = y′(0) = M(H) = V(H) = 0, where H is 

the height of the structure. The shear force in the shear component (frame) is calculated as 

dx
dyGAxVS =)(       (4.19) 

so the shear force at the base of this member becomes zero, which is not correct. The design 

curves for normalized frame and wall shear forces that were derived for different αH values 

were plotted in Figure 4.16.  
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Figure 4.16 Shearing force on flexural (VB) and shear (VF) components for uniformly 

loaded beam. Regardless of relative rigidities of frame and wall components, at the base the 
entire base shear is attracted by flexural component  

 

 

The discussion by Coull (1973) of Heidebrecht and Stafford Smith (1973) refers to 

this issue without any proposal for the solution of the problem. This problem has been often 

disregarded since it was assumed that the frame members tend to carry much less horizontal 

load than the wall in the lower levels, so its omission introduces only a minor error in the 

calculations (Coull, 1973). However, there are cases where frames carry a significant 
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amount of the total base shear. It is also known that the amount of base shear assigned to 

each component of a dual system on the basis of elastic properties changes considerably 

after cracking and as a result of progressive yielding in the members, which increase the 

tendency of frames to carry additional load. Another fact that affects the base shear 

distribution between the frame and wall components and is disregarded in the analysis of 

shear walls is the fixed-end assumption. Due to very large moments induced on the 

foundations of shear walls may rotate, which causes reduction in the shear force in part of 

the shear wall. A continuum formulation that takes into account foundation flexibility on 

the interaction between shear walls and frames was presented by Toutanji (1997), but since 

taking this effect in to account should pose the risk of digressing the subject, fixed based 

assumption is adopted. 

In APPENDIX E derivations of a new shear-flexure beam formula introducing the 

two refinements into the otherwise well-known formulation for wall-frame systems is 

given. One is the correction of the shear force boundary condition at the base of the wall, 

and the other is the additional distributed moment transferred from link beam ends. The 

primary components of the new formulation are illustrated in Figure 4.17. Referring to 

Figure 4.17, the structure is assumed to be composed of lower and upper substructures 

above and below the contra-flexure height of the base story columns. The governing 

equations for both substructure is derived accordingly and using the extra boundary 

conditions arising from displacement and force compatibilities at the contra-flexure height, 

the expression for displacement, shear and moment along the height of the wall are 

obtained. The method can be used for cases with uniform and non-uniform stiffness along 

the height of the structure. The expressions for direct estimation of displacement, rotation, 

shear and moment profiles along the wall are derived for triangular and uniform loading for 

uniform stiffness case. For non-uniform stiffness case transfer matrix method with 

necessary modifications in the matrices is adopted. The new formula for the primary 

substructure (upper part) reads as  
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η holds for the equivalent flexural rigidity of beams framing to wall. This term is especially 

increase the accuracy of the calculations in cases where the transverse beams have 

substantial flexural capacity so increase the flexural resistance of the wall by the reactions 

from transverse beams. Although the governing equation seems to be the same with the 

previous version, Eq. (4.17), the differences lie in the added beam flexural rigidity term and 

the nonzero boundary conditions applicable to solution of this equation as given in Eqs. 

(E.36) to (E.38). The expressions for the distribution of displacement, shear and moment 

along the height of the walls in frame-wall system are given through Eqs. (E.41) to (E.44).  
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Figure 4.17 Primary components of improved formulation 

 

 

Now readily available, to show the effectiveness of the new formulation by using the 

structural configurations shown in Figure 4.18, the share of the walls and frames from the 

total base shear is calculated for different amounts of wall in the system. Columns are 

0.6x0.6 m and beams are 0.6x0.4 m. By replacing the columns with structural walls on the 
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central axis in the longitudinal direction, different frame-wall stiffness ratios are obtained. 

Two, four and six structural walls in 3 and 5 m length were placed at these locations. 

Structure is assumed to have 10-stories and height of 30 m. Load was applied uniformly 

along the height. The normalized wall and frame shear spectrum were calculated and 

plotted in Figure 4.19. The main difference of the plots presented in Figure 4.19 from the 

ones shown in Figure 4.16 is that the shear force at the base of both members is calculated 

correctly. Additional verification examples can be found in APPENDIX E. 
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Figure 4.18 Floor plans consisting two, four and six shear walls 
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Figure 4.19 Normalized frame (a) and wall (b) forces for different frame to wall ratios 

under uniform lateral load. (The notations in parentheses in the legend refer to number of 
walls and their lengths. For instance, “6WL5” means there are total of six walls, each 5 m 

in length, in the system)  
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4.2.2.1  Period Formula for Frame-Wall and Wall Type Structures 

The basic mathematical model of the shear-flexure beam can also be used to 

determine the dynamic properties of a tall building structure consisting of uniform shear 

walls and frames. In Heidebrecht and Stafford Smith (1973) the equation governing the free 

vibration of shear-flexure beam is given by  
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and ρd is the mass per unit volume of the uniform structure.  

The solution of the differential equation given in Eq. (4.22) is available in 

Timoshenko and Goodier (1970), and Heidebrecht and Stafford Smith (1973) calculates the 

natural frequencies as 
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in which λoH takes the values of 1.875, 4.694, 7.855, 10.996 and 14.137 for the first five 

modes respectively as defined in Timoshenko and Goodier (1970) and ωo is the natural 

frequency of a flexural beam with the same mass and stiffness properties, as given by  

 
2
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The α value is calculated in accordance with Eq. (4.21) and H should be taken as the 

total height of the building, since the dynamic solution for the new formulation is not done 

in this study. The first natural period of frame-wall systems can be obtained by using T = 

2π/ω  as 
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and introducing necessary modifications like Af =Aw/p = (Lw.tw) / p and I = Lw

3.tw/12, and 

rearranging we get 
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Upon distribution of typical values used for Eq. (4.4), Eq. (4.27) takes the form in 

resemblance with Eq. (4.4) 
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This equation is a more general form as compared to Eq. (4.4) and yields more 

reliable and realistic period estimations for various types of shear wall buildings with the 

incorporation αH term.   

4.3 PARAMETERS OF STUDY 

Several analytical parametric studies were conducted on structural walls to 

investigate their deformation and strength properties. The parameters (variables) of these 

research studies were evaluated to form the parameter set of this study. Unlike the one 

carried out here, which makes use of nonlinear finite element analysis for the investigation 

of the strength and deformation of reinforced concrete structural walls in both micro and 

macro level, most of the previous analytical studies conducted on structural walls relies on 

the lump plasticity modeling of structural walls, which can be legitimized within the scope 

of these studies. The primary interest of these studies is the global response parameters, 

such as the drift or plastic rotation and shear strength of the walls.  

Wallace and Moehle (1992) and Wallace (1994) studied the ductility and detailing 

requirements at the boundaries of structural walls with simplified analytical procedure of 

Sozen (1989) described above.  Priestly and Kowalsky (1998) investigated drift and 

ductility capacity of rectangular structural walls. Kowalsky (2001) examined the ways of 

implementing displacement based design perspectives of structural walls into traditional 

force based design code (ICBO, 1997) by relating the strain limit states to a particular drift 

ratio. 

Kongoli et al. (1999) devised a parametric analytical study that adopted the number 

of walls in a frame-wall building as the fundamental parameter for discussing the effects of 

walls on the response of frame-wall buildings. This ratio was further quantified as the base 
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shear coefficients of frames wand walls defined as yield strength divided by the total 

weight of the building.   

Lefas and Kotsovos (1990) conducted an analytical work based on the use of a 

reliable finite element program to investigate the influence of several parameters that affect 

the behavior and strength characteristics of walls, such as arrangement and amount of 

vertical and horizontal reinforcement, the detailing of the edge members, the aspect ratio, 

the axial load and concrete strength. 

Derecho et al. (1978a), Derecho and Corley (1984), Ghosh and Markevicius, (1991), 

Seneviratna and Krawinkler (1997), Amaris (2002), Rutenberg and Nsieri, (2006), Celep 

and Aydinoglu (2006) are others that was conducted parametric investigation on shear 

walls for different purposes. 

When all these studies were examined, the primary variables affecting wall response 

were found to be  

• the ratio of wall cross sectional area to floor-plan area, 

• fundamental period, 

• shape of the structural wall cross-section, 

• the wall aspect ratio (Hw / Lw) and configuration in the plan, 

• the wall axial load (P/fc/Aw), 

• percentage of the longitudinal reinforcement (ρb), and 

• degree of confinement of compression zone concrete. 

In the light of discussion that summarizes the outcomes of the previous parametric 

research on structural walls, it was decided that the primary variables of the parametric 

study should be 

• Wall aspect ratio (Hw / Lw ):  Walls of 3, 5 and 8 m in length that are located in four-, 

eight- and twelve-story structures were analyzed. A constant inter-story height of 3 m was 

accounted for each structure. Each pair of wall length (Lw) and building height (Hw) 

corresponds to different wall aspect ratios which are 1.5, 2.4, 3.0, 4.0, 4.5, 4.8, 7.2, 8.0 and 

12.0.  Height to length ratio of walls significantly affects the behavior modes of the walls. 

As the height-to-length ratio decreases shear effects become more pronounced.  

• Wall axial load ratio (P/fc/Aw): The common range of axial load ratios in practice with 

cantilever walls is reported to be in the range 15.0)/(0 ≤≤ cw fAP  for short-to-medium 

height buildings (Priestley et al., 2007). For simple calculation it can be assumed that each 
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wall resist 1~1.25% axial load ratio per story (Kowalsky, 2001). The axial load ratios used 

in the parametric study are 0.02, 0.05, 0.1, 0.15 and 0.25. 

• Wall boundary element longitudinal reinforcement ratio (ρb): The flexural wall 

reinforcement ratio, defined as the ratio of total longitudinal steel area (As) in the boundary 

element to the area of boundary region (Awb), in typical rectangular shear wall sections is in 

the range of 04.0005.0 ≤≤ bρ . Four different values of boundary element reinforcement 

ratio were used. These are 0.005, 0.01, 0.02 and 0.04. By changing the amount of flexural 

reinforcement strength of the wall is adjusted to reflect different design strength reduction 

factors (R). 

• Concrete strength: For all the walls analyzed in the current study, concrete 

compressive characteristic strength (fc) was taken as 25 MPa. Selection of this value can be 

attributed to two reasons. First of all, since the result of this study is desired to be applicable 

in the civil engineering industry, on the basis of the ready-mix concrete production statistics 

of the recent years in Turkey, it was observed that grade C25 (fc = 25 MPa) concrete 

compose more than 35% of the concrete production in recent years. In Table 1, Turkey 

concrete industry’s production for last 8 years is given according to percentage of the 

produced concrete grade with respect to total production. 

Secondly, results of previous experimental and parametric studies (Lefas et al., 1990) 

displayed that concrete strength has negligible influence on strength and deformation 

characteristics of reinforced concrete structural walls governed by flexure and only minor 

effect on walls under flexure-shear combined actions. Depending on the results of 13 large-

scale panel tests with varying concrete compressive strength Lefas et al. (1990) concluded 

that the strength and deformational response of the walls were found to be independent of 

the uniaxial concrete strength within a range of 30 to 55 MPa. 

However, behavior of squat walls is governed by shear and Lefas and Kotsovos 

(1990) stated that it is the strength of compressive zone that is the main contributor to shear 

resistance and not the “cracked” concrete in regions subjected to predominantly tensile 

stress conditions. In Chapter 2, the effect of concrete compressive strength was displayed 

on the response of shear dominated squat wall. Nevertheless, since in a multi-story 

reinforced concrete shear wall building or frame-wall buildings, the shear effects are not as 

pronounced as in the experiments due to high aspect ratio (Hw/Lw), a single value can be 

adopted for concrete strength. 
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Table 4.1 Turkey’s concrete production percentages for different concrete grades* 

 

Year C 14 
(%) 

C 16 - 18 
(%) 

C 20 
(%) 

C 25 
(%) 

C 30 + 
(%) 

Total 
(%) 

1998 24.4 45.4 18 8.1 4.1 100 
1999 22.7 35.9 27.6 10.3 3.3 99.8 
2000 11.5 25.1 41.3 13.2 4.9 96 
2001 7 21.3 47.9 18 5.8 100 
2002 5.9 21.1 46.9 19.2 6.9 100 
2003 4.6 14.7 39.6 25.4 15.7 100 
2004 3.3 10.3 40.6 30.7 15.1 100 
2005 3.2 8.4 31.2 42.1 15.1 100 
2006 2.92 7.66 35.09 36.56 17.77 100 
2007 2.85 5.58 26.95 35.25 29.37 100 

*Türkiye Hazır Beton Birligi, “2007 Yılı Hazır Beton Sektörü İstatistikleri” 

 

4.4 PROTOTYPE FRAME-WALL STRUCTURE  

In this section prototype frame-wall structure that is used to identify the static and 

dynamic characteristics of structural walls and to display the limitations of the employed 

analytical procedures is introduced. The general plan configuration shown in Figure 4.20(a) 

is used for all the prototype frame-wall structures. The structure is composed of nine 3-bay 

frames in the transverse direction and three 8-bay frames in the longitudinal direction. By 

increasing the number of walls allocated into the central bay in the transverse direction 

different frame-wall arrangements are obtained as shown in Figure 4.20. By this way 

different wall indexes are obtained. Later using the stiffness properties of these buildings 

single wall-equivalent frame models that depend mainly on a specific wall length and a 

wall index is developed. The purpose is to reduce the size of the finite element models and 

to create a workable framework for the parametric investigation as will be discussed in 

detail in Chapter 6.  

In this study shear wall of lengths 3, 5 and 8 meters were handled. The building 

heights that were considered to determine the aspect ratio of the shear walls consists of 4, 8 

and 12 story structures. The interstory height is considered to be constant along the height 

of the building, which is 3 m. 
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Figure 4.20 Plan view of frame-wall configurations 

 

 

Assuming the dimensions of the columns are 0.6x0.6 m and the beams are 0.6x0.4 m, 

the distribution of normalized shear force, moment and displacement distribution on wall 

component of frame-wall structures for the combination of wall length and number of 

stories is plotted in Figure 4.21 to Figure 4.23. Robust beam and column elements were 

used to assure the desired frame-wall interaction develops effectively. Each graph contains 

seven curves each represented with an αH value. The αH term effectively characterizes the 

dominant behavior mode of the frame-wall structures. αH values in the graphs are related 
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to number of walls in the system, where in the descending order each value correspond to 

the structural systems with 1, 2, 3, 4, 5, 7 and 9 walls. Although these figures display the 

normalized results of linear static analyses with elastic properties (Ec=25000 MPa) they 

reveal very useful information about the likely distribution of forces and deformations on 

structural walls of different properties. The following conclusions can be derived from 

these figures. 

• The maximum shear along the wall occurs at the base story under equivalent static 

lateral load. More interestingly, for the same structural member configuration and plan, the 

base shear ratio between the walls and frames changes only slightly (decreases) as the 

number of stories increases. This can be explained in reference to model describing the 

lower portion (below the contra flexure height of base story columns) of the frame-wall 

model presented in Figure E.8 of APPENDIX E.  Eq. (E.25) states that for the same level of 

deflection at the contraflexure height the column shears should be same regardless of the 

building height for structures with the same plan and member configuration and dimension. 

The slight decrement in the shear ratio of frames and walls as the height increase is due to 

shift in the location of contraflexure height and the change in the moment profile of the 

walls. 

• The walls are very effective in resisting lateral loads especially in 4-story buildings. 

For example, two-8 m long wall or three- or four-5 m long walls are adequate to resist all 

the shear force imposed on a building with nearly 800 m2 floor area. This corresponds to a 

wall index of 0.0025 approximately. 3 m long walls are not as much effective as 5 and 8 m 

long walls in carrying lateral load. A linear distribution of shear force on the shear walls 

can be assumed in such structures. For the structures with same plan and member 

configuration and dimension, while the base shear carried by the wall relative to the total 

base shear remains insensitive to the increasing number of stories, the effectiveness of walls 

in carrying lateral loads in the upper stories significantly drops as the number of stories and 

rigidity of frames relative to the walls increase.   

• The relative strength of walls and frames should not be interpreted in terms of shear 

calculated at the base of the structure since in systems where walls are weaker than frames 

the wall shear may reduce rapidly as moved to upper stories. For mid-rise structures (4-15 

stories high) where frames share more than 40% of the total base shear, the maximum 

frame shear that occurs at mid-stories (2-5) may be 2 to 2.5 times larger than it is at the 

base of the structure. 
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Figure 4.21 Normalized shear force distribution on shear walls obtained from the analysis 
of the prototype structure with Lw= 3, 5, 8 m (each column respectively) for 4-, 8- and 12-

stories (each row respectively).  
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Figure 4.22 Normalized bending moment distribution on shear walls obtained from the 
analysis of the prototype structure with Lw= 3, 5, 8 m (each column respectively) for 4-, 8- 

and 12-stories (each row respectively).  
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Figure 4.23 Normalized lateral displacement distribution on shear walls obtained from the 
analysis of the prototype structure with Lw= 3, 5, 8 m (each column respectively) for 4-, 8- 

and 12-stories (each row respectively).  
 



 190

• As the frame-wall interaction effects develop (as frames become stronger) the 

inflection height on the walls drops. The moment and shear resistance of 3 m long walls 

drops significantly as the building height increases, so it has to be disputed that shear wall 

members with lengths shorter than 3 m should be considered as wall or not depending on 

the height of the structure.  

• The last columns of Figure 4.21, Figure 4.22 and Figure 4.23 tell that even minimum 

amount of walls was provided in the system by using Lw = 8 m walls, they dominate the 

entire force and displacement response of the system. This observation suggests that not the 

quantity but the quality of the structural walls should be sought in the system to evaluate all 

the necessary strength and deformation characteristics. For the values of αH parameter 

smaller than 2, walls dominates the behavior of the system. For the values of αH parameter 

larger than 6, frames dominates the behavior of the system. 

Using Eq. (4.28) fundamental vibration period of prototype structures was calculated. 

The results were plotted in Figure 4.24(a). After a limiting αH value, which is inversely 

proportional to the wall index (p), estimated periods of frame-wall structures converge to 

the values given by 0.1N at the upper bound. The formula predicted periods of prototype 

structures were also compared with more exact values calculated in SAP2000 program by 

employing the finite element models of the structures. As seen in Figure 4.24(b) both 

predictions agree quite well. 
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Figure 4.24 a) Fundamental period of prototype structures predicted using Eq. 4.28, b) 

Comparison of periods predicted with Eq. 4.28 and calculated by using the finite element 
method 
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In Figure 4.25 relation between the wall index and the behavior factor αH is plotted 

for different wall lengths and building heights. This figure suggests that the wall stiffness 

(taken into account through wall length) is the primary factor affecting the global behavior 

of frame-wall structures. As the αH decreases system behavior is governed by the walls. 

The same base curve in the form of N.c.xb is used to define relation between the wall index 

and behavior factor, where N is the story number. For particular wall length and plan 

configuration coefficients b and c are constant regardless of the building height, where 

height of the building is measured above the inflection height of the base story columns. 
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Figure 4.25 Relation between the wall index (p) and behavior factor αH 
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The data presented in Figure 4.26 represents different frame-wall structures that were 

obtained by changing the dimensions of wall and frame elements in the plan shown in 

Figure 4.20, so several structural system scenarios such as weak frame-strong wall and vice 

versa were included. When more exact value of αH obtained by calculations is not 

available, the average relation between the total flexural rigidity of walls in the system, EIw, 

and αH for 4-, 8- and 12-story frame-wall structures derived under combination of different 

beam, column and wall member rigidities and given in Figure 4.26 can be used. The 

equations for the curve-fits to the data were classified according to the number of stories 

(wall height). 

To emphasize one more time, the purpose of this efforts is to draw the outline of the 

procedure that allows structural walls to be analyzed in an isolated form yet taking into 

account all the interaction effect such that the wall exists at their actual configuration in a 

3D structure. 
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Figure 4.26 The average relation between the total flexural rigidity of walls, EIw, in the 

system and αH 
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4.5 DESIGN OF WALL SYSTEMS FOR PARAMETRIC STUDY 

In a parametric study, values of variables can be determined in one of two ways. The 

values of a variable can be taken as either constant numbers ranging from minimum to 

maximum values that can be possibly attained by the variable or the values required being 

determined after a design process since they are affected by other variables of the system. 

This study utilizes both methods in the determination of variable sets. For instance, the 

effect of boundary element longitudinal reinforcement amount on the deformation capacity 

of a reinforced concrete wall member can be calculated considering constant values of 

volumetric ratio of longitudinal reinforcement such as ρb = 0.005, 0.01, 0.02 and 0.04. 

However, to obtain realistic estimation of seismic deformation demands on a wall structure 

a relation between dynamic characteristics and strength requirements must be established 

which requires particular reinforcement detailing application on wall. In frame-wall 

systems the stiffness and strength must be proportioned systematically among wall and 

frame components for the sake of reliability of obtained results. The strength assignments 

of frame and wall components are achieved by using linear continuum theory.  

A simple yet straight-forward design procedure, which incorporates the newly 

derived formulation of frame-wall continuum model, is developed to quantify the seismic 

shear force distribution among the wall and frame components of the generic frame-wall 

models and to calculate the amount of flexural reinforcement at the boundary elements of 

the walls. The procedure also establishes a relation between the wall index and the seismic 

capacity of the structure so may answer the question for the minimum amount of shear 

walls required to provide the necessary resistance to control the seismic drift demands.  

Using the knowledge produced on dynamic and static characteristic of frame-wall 

structures, variations in stiffness and yielding strength along the height of the generic single 

wall-equivalent frame structure models are calculated. The static equivalent triangular 

lateral load pattern specified in the Turkish Seismic Code (TSC, 2007) is used in the 

loading of the continuum model. The yielding strength was distributed over the stories so 

that all stories yield simultaneously under the static design earthquake forces.  

The created frame-wall model is characterized by a particular wall index and 

behavior factor, αH. The stages of model construction can be defined as follows 

1. Select a wall length (Lw) and wall index (p). 

2. Decide the number of stories (N). 
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3. Compute the behavior factor (αH) using the selected wall index value and relations 

presented in Figure 4.25. 

4. Compute the period of vibration. The fundamental period of structure (T1) is 

determined by utilizing Eq. (4.4) for isolated cantilever wall and Eq. (4.28) for frame-wall 

structures.  

5. For an assumed or given wall index (p) the floor area per wall is calculated as 

wwf tpLA =  for predetermined wall dimensions. In this study a constant wall thickness (tw) 

that is equal to 0.25 m is adopted for all the rectangular walls. 

6. The story masses are calculated on the basis of ms = Af .(1 t/m2). 

 

The design procedure is described stepwise in the following sentences. 

Step 1: Spectral acceleration coefficient  

Using the calculated period based on uncracked section properties, spectral 

acceleration coefficient, A(T1), is calculated according to spectral shape given in TSC 2007 

and assuming local site class Z3 (firm soil) in seismic zone 1 (Effective ground acceleration 

coefficient, Ao = 0.4). 

Step 2: Total Equivalent Seismic Load  

Total equivalent seismic load (base shear) acting on the entire frame-wall structure is 

obtained by 

 

R
TAWVt

)( 1=      (4.29) 

 
where W is the total weight of the structure calculated as NAfw. Here N is the total number 

of stories, Af is the floor area per floor and w is the story weight per unit floor area with a 

typical value of 1 t/m2. R is the seismic load reduction factor (structural behavior factor) 

given as 6 and 7 for buildings in which seismic loads are fully resisted by solid structural 

walls and seismic loads are jointly resisted by frames and solid and/or coupled structural 

walls, respectively, for high ductility systems. For the sake of simplicity and consistency 

among the analyses results, a constant R equal to 6 is adopted in this study for both 

structural systems.  

Step 3: Calculation of wall base bending moment and shear  

Using the expressions derived for moment and shear in the new frame-wall 

continuum model given in APPENDIX E, the share of the frames and walls from the total 
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shear along the height of the structure is calculated. The total base shear (Vt) is used to 

calculate the magnitude of the triangularly distributed lateral load applied along the shear-

flexure beam model using Eq. 4.30.  
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Having all the necessary values (w1, Vo= Vt, αH, EIw) in hand, the bending moment at 

the base of the wall can be calculated using the expression derived in APPENDIX E, which 

is  
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After calculating moment at the base of the wall we have all the necessary 

information to calculate the force and displacement quantities along the height of the 

building. The shear force on the wall components can be calculated using 
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Distribution of shear force among the frame and wall components of a dual system is 

not constant in all stages of the nonlinear seismic action. As displayed in Figure 4.27 the 

redistribution of base shear between the frame and wall components of a dual system 

changes with the impending inelastic actions, such as cracking, yielding that takes place in 

each primary lateral load resisting components (Emori and Schnobrich, 1981). The 

reduction in the wall base shear may constitute an amount of 10-15 % after cracking and 

30-50% after yielding of the walls with respect to initial elastic state base shear distribution. 

This situation may cause problems especially in dual systems where frames contributes to 

the overall lateral resistance more than 25% since they are not designed for this excess 

shear force arising after redistribution of forces. So, for such systems in the calculation of 

member forces and moments cracked section stiffness should be used. 
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Figure 4.27 Redistribution of base shear between wall and columns of frame-wall structure. 

 

 

Step 4: Design bending moment envelope 

After the frame and wall shears and wall moment at the base of the structure is 

determined, using the principles of capacity design method reinforcement detailing and 

strength assignment of wall and frame components can be achieved. 

Considering the moment demands that arise during the dynamic response, a linear 

bending moment envelope is recommended to be used in design rather than bending 

moment diagrams resulting from code-specified equivalent lateral forces as shown in 

Figure 4.28 (Paulay and Priestley, 1992). This takes into account the contribution of higher 

modes to the bending moment along the wall. Additionally from the base of wall in a region 

that has a height equal to wall length Lw a constant moment distribution is assumed 

considering the tension shift effect.  

Due to uncertainty in the material strengths and strain hardening behavior of vertical 

flexural reinforcement, the maximum flexural strength, Mo that could be developed in the 

walls has to be anticipated. The overstrength moment (Mo) develop at the base of the wall, 

should be taken into account as λMN, where λ is the overstrength factor due to strength 

enhancement of the constituent materials. This is an important property that must be 

accounted for in the design when large ductility demands are imposed on the structure. As 

higher resistance will be offered by the structure than anticipated when design forces were 

established, it is expected that ductility demands will reduce (Paulay and Priestley, 1992, 

Amaris, 2002).  
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The height of critical region, Hcr, above the base of the wall may be estimated as 

⎥
⎦

⎤
⎢
⎣

⎡
=

6
,max w

wcr
H

LH but not greater than 2Lw. It is also recommended that the critical wall 

height should not be less than one story height, hs, for structures less than 6 stories and 2hs 

for structures higher than 7 stories. 
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Figure 4.28 Design envelope for bending moments in slender cantilever walls a) Based on 

design moment equal to nominal moment, recommended by EC8 and TSC 2007 design 
codes b) Considering the material overstrength (λ), Paulay and Priestley (1992). 
 

  

Step 5: Calculation of flexural reinforcement at the boundary 

 The moment distributions given in Figure 4.28 should be also used for the 

curtailment of the vertical reinforcement. The demand for flexural reinforcement in a 

cantilever wall is not proportional to the bending moment demand, because axial 

compression is also present. Even the amount of flexural reinforcement is maintained 

constant with height, the flexural capacity of the section will reduce with height because the 

axial compression effects become smaller. Following formula can be used to calculate the 

moment capacity of rectangular walls designed according to TSC 2007.  

 

( ) ( ) )751.0872.16(27501300411610182850 +−+−=
o

wbwwy P
PLLM ρ   (4.33) 
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where the units of Mwy is kN-m and Lw is m. For this formula to be valid, it was assumed 

that the length of boundary elements is 0.2Lw at the edges and flexural reinforcement was 

distributed uniformly in the boundary element. The percentage of vertical web 

reinforcement is a constant value equal to minimum value 0.0025 and concrete compressive 

strength is 25 MPa. Thickness of the wall was assumed to be 0.25 m.  

Using the design bending moment calculated with Eq. (4.31), and since the length of 

the wall element is known, the detailing of the main flexural reinforcement in the boundary 

element all along the height can be achieved easily. 

Turkish earthquake code states that the ratio of the flexural reinforcement at the 

boundary edge regions to the gross sectional concrete area should be larger than 0.001. This 

value is 0.002 in the critical height. If the boundary element length is assumed to be 0.2Lw, 

then this limitation produces a longitudinal reinforcement ratio of 0.01 in the boundary 

column, which corresponds to the minimum reinforcement requirement in columns.  

Step 6: Shear Safety of Structural Walls 

In TSC 2007 and Eurocode8 shear forces obtained from the analysis (Vd) is amplified 

with a factor of βv=1.5 to account for possible increase in shear forces after yielding at the 

base of primary seismic wall due to higher mode effects. TSC 2007 also requires an 

increase in the design shear force considering the increased moment capacity due to 

material over strength as described in Step 4 and Figure 4.28. The over strength factor is 

calculated as the ratio of the flexural strengths of sections at the ultimate to the yield 

curvatures (λ = Mu/My).  The design shear force Ve satisfying the specified requirements is 

calculated as 

 
dve VV λβ=      (4.34) 

 
The factored design shear force will be smaller than the shear strength of wall cross 

sections, Vr , calculated by Eq.(4.35). 

 
( )ydshctdchr ffAV ρ+= 65.0     (4.35) 

 
The amount of shear reinforcement satisfying the condition Vr > Ve is calculated with 

specified material strengths.   

Step 7: Reinforcement Requirements at Wall End Zones 

In TSC 2007 the amount of transverse reinforcement for the confinement of boundary 

elements at wall end zones along the critical wall height is calculated with 
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ytk

ckw
sh f

fst
A 05.0=     (4.36) 

 
Vertical spacing of hoops and/or cross ties shall not be more than half the wall 

thickness and 100 mm, nor shall it be less than 50 mm. 

4.6 FINITE ELEMENT MODELING OF STRUCTURAL WALLS 

4.6.1 Generic Frame-Wall Model 

While for linear analysis the continuum shear-flexure beam model yields satisfactory 

result, to carry out the nonlinear analysis the continuum is required to be descriticized with 

finite elements.  A discrete nonlinear type of simplified frame-wall models presented in 

Figures 4.4 and 4.15 is developed for the finite element analysis. The developed finite 

element model of a typical frame-wall system is displayed in Figure 4.29.  The model is 

composed of solid, beam, mass and constraint elements. The wall component is modeled 

with SOLID65 elements. The reinforcement is assumed to be smeared in the element 

volume. In Figure 4.29 the different colors at the edge regions of the wall represent the 

confined boundary elements. The slab extrusions (flanges) at story levels were modeled to 

take into account the shear mechanism that develops in shear dominated walls (especially 

ones with larger wall length, Lw) due to interruption of shear flow by the slabs.  

The link beams that transmit significant amount of moment on walls, especially as 

the building height increases, were also modeled. An equivalent moment-curvature relation 

that takes into account the extra moments transferred on wall due to actual beam end 

moments and produced by shear couples from tension and compression sides of the wall 

were assigned for the behavior of these beams. The beams were assumed to be axially rigid 

and no shear deformation was considered. 

Each story was modeled with column elements with idealized story distortion angle-

shear force relation. Although beam elements (BEAM188) were used to model columns of 

the frames, they are shear springs actually.  

MASS21 elements were used to assign appropriate masses at the story levels. In 

vertical the masses were adjusted to yield a vertical load ratio of 1.25% per story. The 

horizontal mass is calculated by multiplying the tributary area of a single wall and 

equivalent frame model shown in Figure 4.29 with 1 t/m2. The tributary area is calculated 
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as a function of αH-p relation presented in Figure 4.25. The procedure was explicitly 

defined in Section 4.4.  

When both solid continuum elements and beam elements were used at the same time 

in the model, transition between these elements leads problems. Many times a spider web 

of line elements or constraint equations was used to simplify the transition between the 

solids and beams. In ANSYS beam and link elements work well for large rotations, but real 

constants should be applied to input large stiffness values as well as cross sectional and 

inertia properties. The MPC184 elements use the beam/link approach, but take care of the 

stiffness and cross sectional properties automatically. The MPC184 elements are created 

between a “master” node in space, typically where the link beams frames to wall, and the 

desired nodes on the solid elements of the wall. There are two options for MPC184: rigid 

link behavior (default, translational DOFs only) and rigid beam behavior (translational plus 

rotational DOFs). Rigid beam option is utilized. 

 
 

 
Figure 4.29 Finite element model of the generic frame-wall model 
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4.6.2 Member Force-Deformation Models 

Since the material properties of solid elements were input in the form of stress-strain 

curves no additional data is required to define the wall behavior. The definition and 

properties of input material were discussed in great detail in Chapter 2. 

To define the behavior of beam elements generalized nonlinear section properties 

was used. By this way the load deformation behavior of beam elements can be assigned in 

the form of force-distortion angle (F-γ) or moment-curvature (M-φ) relation. For the link 

beams a bilinear moment-curvature relation, as shown in Figure 4.30, was used. The yield 

curvature of link beams is calculated by the relation given by Priestley et al. (2007), 

 

b

y
by h

ε
φ 7.1=      (4.37) 

 
where εy is the yield strain of the reinforcement and hb is the depth of the beam. For the 

materials and geometries adopted in this study (εy = 0.0021 and hb  = 0.6 m) beam curvature 

at yield takes the value of 0.006 rad/m approximately, which also agrees with the moment-

curvature analyses of typical beam sections. The yield moment of beams (My) is obtained 

from the elastic analyses of the model structure under code base shear demand distributed 

as triangular load over the height of the structure.  

 

 

 

 

 

 

 

 

 

 

Figure 4.30 Idealized moment-curvature relation of link beams 
 

 

The story distortion angle (story drift) – shear force relation is idealized with a 

trilinear skeleton curve as displayed in Figure 4.31. The first bent represents the effect of 

φby = 0.006 rad/m 
φ 

My 

M 

EIeff 

0.01EIeff 
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the cracking and the second one yielding of the story. Analyses results of typical frame–

wall structure indicate that yielding of walls and the frames occur at different levels of 

lateral drift. Priestley (2003), from analysis of typical reinforced concrete beam sections, 

stated that the current design practice, which assumes beam stiffness is equal to a constant 

fraction of gross section stiffness, is inappropriate, since effective beam yield curvature can 

be considered constant, when non-dimensionalized by beam depth and yield strain, 

indicating that beam stiffness is proportional to strength.  A simple expression for yield 

drift of frames, θyFrame, was proposed and was calibrated by comparing with results of a 

large number of beam/column sub-assemblage experiments. The frame yield drift is given 

as, 

b

yb
yFrame h

l ε
θ

5.0
=                                                       (4.38) 

 
where lb is the average beam length and hb is the average depth of the beams at the level of 

interest. The global yield displacement of the structures is largely determined by the 

yielding of beams. As given above, yield displacement of beams depends on their span, 

member depths, and material properties.   

When typical values were used (εy = 0.0021, hb  = 0.6 m, lb  = 5 m) Eq. (4.38) yields 

story drift of 0.875%. Aschheim (2002) based on the capacity curves of 4-, 8-, 12-, and 20-

story reinforced concrete frames designed presented by Gupta and Kunnath (2000) stated 

that the roof yields drift range between 0.5 and 0.6% regardless of the number of stories. 

For the story rotational angle (interstory drift ratio) at yielding a value equal to 0.67% was 

adopted by Kongoli et al. (1999) as proposed by Akiyama (1987). 

In the light of this discussion, the characteristics values used to define the skeleton 

story drift-shear curves were fixed. The yield story distortion (γy) was assumed to be 0.75% 

and the cracking was assumed to take place at an angle of 0.075%. The cracking load 

assumed to be 1/3 of the story yield shear. The characteristics values used to define the 

force-deformation behavior of frames and link beams was assigned on the basis of lateral 

static earthquake load analysis specified in TSC 2007. The yield strength was distributed 

over the stories so that all would yield simultaneously under the static design earthquake 

forces. Distribution of the initial elastic stiffness over the stories was determined so that all 

would undergo the same yield deflection (drift angle at yielding was set at 1/150) under the 

specified design load. 
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The parameters of the shear force-drift relation were input via generalized beam cross 

section as in the case of link beams. For dynamic analysis, a vertex oriented hysteresis 

model (while reloading targets yield drift or distortion) was used for both link beams and 

story shear beams.  

 
 

 
 

Figure 4.31 Idealized story shear-story drift (distortion) relation 
 

4.6.3 Isolated Wall models 

As emphasized many times at different places of this chapter, isolated wall models 

are the primary research tools in experimental and analytical investigation of structural 

walls despite the limitations of the model. Cantilever models of structural walls composed 

of solid finite elements was created. The models were displayed in Figure 4.32(a). A 

reduced model, which is computationally efficient, was developed and used in analyses to 

investigate the relation between the local and global deformation demands. In this model by 

adjusting the lever arm of the applied shear force different moment-shear ratios can be 

obtained. Changing the primary variables such as the steel amount, axial load ratio and 

aspect ratio of the walls analyses can be conducted. The model is displayed in Figure 

4.32(b).  

Each model developed here is intended to be used in different types of analyses for 

different purposes. The developed wall finite element models and the purpose of their 

development can be summarized as follows.  

γy = 0.0075 rad γ 

Vy 

V 

GA1 

γcrk = γy /10 

GA2 

0.01GA1 

Vy/3 
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Generic frame-wall model: This model is used in time history analyses to investigate 

the seismic deformation demands under code specified seismic actions. The model allows 

realizing all the frame-wall interaction effects in the analyses. 

Isolated wall model: The simplified mechanical models of cantilever walls are used 

widely to estimate global drift demands. Local curvature demands are related to global 

ductility and strains. The reliability of such procedures is validated by using this model. 

Reduced wall model: This model is used in parametric studies to investigate the 

relation between the wall drifts, section rotations and curvatures, since it is computationally 

efficient model.  

 

                    

Figure 4.32 Finite element models of cantilever walls 
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CHAPTER 5 

PERFORMANCE LIMITS OF STRUCTURAL WALLS 

5.1 INTRODUCTION  

Provisions for performance assessment of reinforced concrete structures, such as 

FEMA356 and ASCE/SEI 41, include modeling parameters and numerical acceptance 

criteria for both flexure and shear controlled wall members at specific limit states to 

estimate the performance of components and structures. The criteria are defined in terms of 

plastic hinge rotations and total drift ratios for the governing behavior modes of flexure 

(ductile members) and shear (brittle members), respectively. Strain limits are defined for 

concrete in compression and steel in tension at serviceability and damage-control limit 

states as a vital component of direct displacement-based design procedures (Priestley et al., 

2007). The recently revised Turkish Seismic Code (TSC, 2007) specifies limiting strain 

values associated with different performance levels. On one side deformations are specified 

in relation to global parameters, and on the other side local damage indicators in terms of 

strain limits are used to determine the expected performance. When results of nonlinear 

pushover analyses are evaluated according to either of the acceptance criteria whether the 

local and global response will imply similar performance states is a matter that must be 

established because calibration of the requirements is lacking. 

Another criticism raised against the rotations associated with different limit states is 

that they are lower than the actual rotations expected to develop in actual reinforced 

concrete sections. So, it is postulated that the given limits may be unduly conservative. In a 

way this is a direct consequence of adaptations performed for the plastic hinge analyses 

method employed in the codes. Since in daily application of structural analysis the moment-

curvature relation of a section is calculated with section analysis method using the plane 
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section hypothesis, the limiting plastic rotations in codes were adjusted to conform to the 

resulting plastic rotations calculated by multiplying the assumed plastic hinge length and 

plastic curvature rather than the actual rotations. These problems will be investigated in this 

chapter that forms the crux of this dissertation. The principal tool is the nonlinear finite 

element analysis for reinforced concrete structural components that has been thoroughly 

verified by the benchmark problems presented in Chapter 2. An extension is made to 

dynamic response calculations in Chapter 6. This chapter deals with statically applied 

monotonic effects only. 

5.2 CODE PERFORMANCE LIMITS 

5.2.1 FEMA 356 Performance Limits and Proposed ASCE/SEI 41 Revisions 

A performance level describes a limiting damage condition which may be considered 

likely to be brought into concrete existence for a given building under seismically induced 

deformations. In FEMA 356 (2000) three discrete Structural Performance Levels and two 

intermediate Structural Performance Ranges are defined as shown in Figure 5.1 to identify 

the performance level of a building. Limiting values of modeling parameters and numerical 

acceptance criteria are specified to determine the performance. The discrete Performance 

Levels are Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). 

The intermediate Structural Performance Ranges are designated as Damage Control Range 

and the Limited Safety Range. Acceptance criteria for performance within the Damage 

Control Structural Performance Range are to be obtained by interpolating the acceptance 

criteria provided for the Immediate Occupancy and Life Safety Structural Performance 

Levels. Acceptance criteria for performance within the Limited Safety Structural 

Performance Range are obtained by interpolating the acceptance criteria provided for the 

Life Safety and Collapse Prevention Structural Performance Levels.  

As indicated in Figure 5.1, at the Collapse Prevention  level (CP) member deformation 

capacities are taken at ultimate strength (CEB, 1997) or at lateral displacement demand at 

which the lateral force resisting capability of the structure  begins to rapidly degrade 

(Hamburger, 1997) for primary components. At the Life Safety level (LS), member 

deformation capacities are reduced by a (safety) factor of 4/3 over those applying at 

Collapse Prevention. 
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Figure 5.1 Structural Performance Levels 

 

 

FEMA 356 states that monotonic load-deformation relationships for analytical models 

that represent shear walls and wall elements should be in accordance with the generalized 

relation shown in Figure 5.2. Depending on the behavior modes of shear walls different 

displacement criteria are used for the evaluation of the deformation capacity of shear walls. 

For walls having inelastic behavior under lateral loading that is governed by flexure, the 

rotation (θ ) over the plastic hinging region at the end of member will be used as shown in 

Figure 5.3(a). The figure defines the behavior under monotonically increasing 

deformations. The hinge rotation at point B in Figure 5.2 corresponds to the yield point θy 

and shall be calculated in accordance with 
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where: 

My = yield moment capacity of the shear wall or wall segment 

Ec = concrete modulus  

I = member moment of inertia for cracked section 

Lp = assumed plastic hinge length 

For reinforced concrete components, equivalent plastic-hinge length can be assumed 

as equal to one-half the member depth (Park and Paulay, 1975). FEMA 356 states that the 

value of Lp shall be set equal to 0.5 times the flexural depth of the element for analytical 
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models of shear walls, but less than one story height. A similar estimate is applied to walls 

in Section 6.8.2.2 of FEMA 273 (1997), where Lp is “set equal to one half the flexural 

depth, but less than one story height.” The 1997 UBC (ICBO, 1997) states that Lp “shall be 

established on the basis of substantiated test data or may be alternatively taken as 0.5Lw.” 

Based on research specifically applicable to walls, the equivalent plastic-hinge length, Lp, 

can be set at 0.2 times the wall length, Lw, plus 0.07 times the moment-to-shear ratio (also 

known as shear span), M/V (Paulay and Priestley, 1992). Equivalent plastic-hinge length, 

as calculated above, is used to relate plastic curvature to plastic rotation and tip 

displacement. The actual zone of nonlinear behavior may extend beyond the equivalent 

plastic-hinge zone. 
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Figure 5.2 Generalized component force deformation relations for concrete elements 

 

 

 
  Figure 5.3 Deformation types of shear walls 
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For shear walls whose inelastic response is controlled by shear, the x-axis defining 

the load-deformation relation in Figure 5.2(b) will be taken as the lateral drift. For multi-

story shear walls the drift shall be the story drift. 

Values for the variables a, b, c, d and e, that are required to define the location of 

performance points C, D, and E in Figure 5.2(a) and Figure 5.2(b) , are given in Table 6-18 

and Table 6-19 in FEMA 356. Table 5.1 and Table 5.2 summarize these modeling 

parameters and numerical acceptance criteria for flexure and shear controlled shear walls 

and wall elements, respectively. FEMA 356 adopts the ACI 318 (2008) requirements for 

the definition of a confined boundary. Linear interpolation between tabulated values shall 

be used if the member under analysis has conditions that are between the limits given in the 

tables. To eliminate the difficulties with the linear interpolation, the following functions 

have been derived to calculate the plastic hinge rotation limits related to each performance 

level for both conforming and nonconforming members whose response is controlled by 

flexure.  

 

Immediate Occupancy:  

Conforming members v
P
P

o
p 005.0015.0007875.0 −−=θ  (5.2a)

Nonconforming members 
o

p P
P00667.0002667.0 −=θ  (5.2b)

Life Safety:  

Conforming members v
P
P

o
p 01.003.001575.0 −−=θ  (5.3a)

Nonconforming members v
P
P

o
p 002.001667.0006417.0 −−=θ  (5.3b)

Collapse Prevention:  

Conforming members v
P
P

o
p 018.003667.0023.0 −−=θ  (5.4a)

Nonconforming members v
P
P

o
p 006.003.001225.0 −−=θ  (5.4b)

 

In the above equations, P/Po is the axial load ratio and v is the member maximum 

average shear stress normalized with respect to cf  calculated as 

cww fLt
V

v max=      (5.5) 
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where Vmax is the maximum shear force carried by the member. Since the knowledge 

inherited in normalized shear stress expression given in Eq. (5.5) covers the parameters that 

affect the wall response significantly, normalized shear is a useful parameter that 

discriminates the distinct behavior modes of wall response.  

 
 

Table 5.1 Modeling Parameters and Numerical Acceptance Criteria for Nonlinear 
Procedures-Members Controlled by Flexure  

 
Acceptable Plastic Hinge 
Rotation (radians) 

Plastic Hinge 
Rotation 
(radians) 

Residual 
strength 
ratio Performance Level 

 

a b c IO LS CP 
Shear walls and wall segments 

'

' )(

cww

yss

flt

PfAA +−  
'

cww flt

Shear  Confined 
boundary 

      

≤ 0.10 ≤ 0.25 Yes 0.015 0.020 0.75 0.005 0.010 0.015 
≤ 0.10 ≥ 0.50 Yes 0.010 0.015 0.40 0.004 0.008 0.010 
≥ 0.25 ≤ 0.25 Yes 0.009 0.012 0.60 0.003 0.006 0.009 
≥ 0.25 ≥ 0.50 Yes 0.005 0.010 0.30 0.0015 0.003 0.005 
≤ 0.10 ≤ 0.25 No 0.008 0.015 0.60 0.002 0.004 0.008 
≤ 0.10 ≥ 0.50 No 0.006 0.010 0.30 0.002 0.004 0.006 
≥ 0.25 ≤ 0.25 No 0.003 0.005 0.25 0.001 0.002 0.003 
≥ 0.25 ≥ 0.50 No 0.002 0.004 0.20 0.001 0.001 0.002 

 

 

Table 5.2 Modeling Parameters and Numerical Acceptance Criteria for Nonlinear 
Procedures-Members Controlled by Shear  

 
Acceptable Total Drift 
Ratio (%) 

Total Drift 
Ratio (%) 

Residual 
strength 
ratio Performance Level 

 

d e c IO LS CP 
Shear walls and wall segments 
All shear walls and wall segments 0.75 2.0 0.40 0.40 0.60 0.75 

 

 

A newly completed standard, ASCE/SEI 41-06 (2006), Seismic Rehabilitation of 

Existing Buildings, proposes changes to acceptance and modeling criteria for walls 

controlled by both flexure and shear in FEMA 356 (2000), and aims to enhance the 

accuracy and reliability of wall provisions. The main goal of the proposed changes to wall 

provisions of ASCE/SEI 41 (Section 6.7) was to update the modeling and acceptance 

parameters for walls to make them more consistent with experimental results (ASCE/SEI 
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41-06 update, 2007). For shear dominated wall members the proposed changes include 

subdividing the one category in FEMA, which encompasses all walls regardless of axial 

load, into two categories; one for walls with low axial loads and another for walls with 

significant axial load demands. For flexural walls the values for parameters a and b 

specified in Tables 6.18 and 6.20 in FEMA 356 were found to be very conservative 

(EERI/PEER, 2006) compared with experimental results on walls subjected to intermediate 

levels of shear stress (between cf25.0  and cf4.0 , MPa). The limiting average shear 

stress was increased from cf25.0  to cf33.0 , MPa to obtain a better match with 

experimental results (ASCE/SEI 41 update, 2007). 

Using the results of recently completed experimental research (Hidalgo et al., 2002, 

EERI/PEER, 2006) ASCE/SEI Committee proposed changes to acceptance and modeling 

criteria for walls controlled by shear. While FEMA 356 classifies all shear controlled 

members in one category as given in Table 5.2, ASCE 41 subdivides shear-controlled walls 

into two categories; one for walls with low axial loads and another for walls with 

significant axial load demands as given in Table 5.3. Depending on very limited number of 

experimental studies (EERI/PEER, 2006), it was decided that for axial loads equal to or 

greater than 0.05fc’Ag shear controlled wall members exhibit reduced deformation and 

residual strength capacity. The backbone curve in Figure 5.2(b) used to model shear 

controlled members is replaced by the load deformation relationship given in Figure 5.4. 

The gradual degradation in the stiffness of shear controlled wall members was taken into 

account more realistically by this modification as investigated for the NUPEC wall 

specimen in Section 2.7.2.   

 

 

Table 5.3 Modeling Parameters and Numerical Acceptance Criteria for Nonlinear 
Procedures-Members Controlled by Shear as proposed in ASCE/SEI 41  

 
Acceptable Total 
Drift Ratio (%) 

Total Drift Ratio (%) Strength 
ratio 

Performance Level 

 

d c g c f IO LS CP 
Shear walls and wall segments 

05.0
)(

'

'

≤
+−

cww
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flt

PfAA  1.0 2.0 0.4 0.2 0.6 0.4 0.75 1.0 

05.0
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'

'

>
+−

cww
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flt

PfAA  0.75 1.0 0.4 0.0 0.6 0.4 0.55 0.75 
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  Figure 5.4 Modified load-deformation relationship for members controlled by shear in 

ASCE/SEI 41. 
 

5.2.2 TSC 2007 Strain Limits  

Turkish Seismic Code (2007) specifies strain limits to evaluate the performance of 

reinforced concrete members. Depending on the analysis tool, concrete compression and 

steel tension strain demands at a member section extreme fibers can be obtained directly (if 

the fiber section modeling technique is used) or must be transformed from member 

sectional rotations, which are obtained from pushover analyses or time history analyses (if 

generalized load-deformation models were used in the member modeling). When the later 

case holds the plastic rotations obtained at the member plastic hinge locations are used for 

calculating the plastic curvature demands at these critical sections followed by the 

calculation of total curvature, φt, by adding the yield curvature, φy. 

p

p
p l

θ
φ = ; ypt φφφ +=     (5.6) 

Concrete compressive strains and steel tensile strain demands corresponding to the 

calculated total curvature demand at the plastic regions are calculated from the moment-

curvature diagrams obtained by conventional sectional analyses of the critical section. 

Moment-curvature diagrams of the critical sections are obtained by using appropriate 

stress-strain rules for concrete and steel. Finally, the calculated strain demands are 

compared with the damage limits given below to determine the member damage states. 

Concrete and steel strain limits at the fibers of a cross section for minimum damage 

limit (MN) 
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(εcu)MN = 0.0035 ;   (εs)MN = 0.010   (5.7) 
 

Concrete and steel strain limits at the fibers of a cross section for safety limit (SF) 
 

(εcg)SF = 0.004 + 0.0095 (ρs/ρsm) ≤ 0.0135 ;  (εs)SF = 0.040   (5.8) 
 
Concrete and steel strain limits at the fibers of a cross section for collapse limit (CL) 
 

(εcg)CL = 0.004 + 0.013 (ρs/ρsm) ≤ 0.018 ;  (εs)CL = 0.060   (5.9) 
 

In Eqs. (5.7) to (5.9), εcu is the concrete strain at the outer fiber, εcg is the concrete 

strain at the outer fiber of the confined core, εs is the steel strain and (ρs/ρsm) is the ratio of 

existing confinement reinforcement at the section to the confinement required by the Code. 

In a radical break with tradition TSC has annexes that explain to code users how concrete 

and steel may be modeled by referring to particular material formulations. This approach is 

excessively vulnerable to improper treatment of different models by engineers who are not 

adequately familiar with nonlinear response of reinforced concrete components. 

The limits utilized in TSC (2007) are mostly based on the studies and proposals of 

Priestley and his colleagues (Priestley et al., 2007). Priestley et al. (1996 and 2007) 

proposed strain limits for tension and compression in relation to serviceability and damage-

control limit states to be used in moment-curvature analysis. Damage-control limit state 

corresponds to the collapse prevention performance level in TSC (2007) and will be 

discussed further in detail here since the evaluation of finite element analysis results 

depends significantly on these limits.  

a) Damage-Control Tension Strain Limit: Priestley et al. (2007) suggest that it is not 

appropriate to use the εsu, the strain at maximum stress of the reinforcing steel found from 

monotonic testing, as the maximum permissible tension strain for moment-curvature 

analysis. The reasons are: 

• Under cyclic loading, the successive compressive and tensile reversal causes a 

reduction in the effective ultimate tensile strain that will be attained by the bar at 

failure.  

• Reinforcing bars subjected to high tensile strains prior to compressive loading become 

more susceptible to buckling. This buckling typically occurs before the previously 

developed flexural cracks are closed, and while the bars are still subject to tensile strain 

but compressive stress. This endangers low-cycle fatigue of the reinforcing bar at levels 

of tensile strain significantly below εsu. 
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• Finally, slip between the reinforcing steel and concrete at the critical section, and 

tension-shift effects result in reinforcement strain levels being lower than predicted by a 

“plane section” hypothesis. 

Based on these considerations, the ultimate curvature of the section analyzed should 

be based on a steel tension strain limit of εs = 0.6εsu. 

b) Damage-control Compression Strain: Priestley et al. (2007), assuming that the 

useful limit for confined concrete in compression is determined by the fracture of the 

transverse reinforcement confining the core derived the following expression by equating 

the strain energies of the concrete and confining steel absorbed in a unit volume of core 

concrete. 

cc

suyws
cu f

f ερ
ε

4.1
004.0 +=     (5.10) 

 
The equation was defined previously in APPENDIX C while explaining the Mander 

et al.’s (1988) concrete model. In the equation fyw is the yield strength of transverse steel, ρs 

is the volumetric ratio of boundary element transverse reinforcement, fcc is the compressive 

strength (peak stress) of confined concrete. Priestley et al. (2007) state that although Eq. 

(5.10) is approximate, it agrees well with the ultimate compressive strains measured in 

experiments (Mander et al., 1988). They state that the actual effective ultimate compression 

strains under combined axial force and flexure exceeds the predicted values by a factor of 

about 1.3 to 1.6. This degree of conservatism was found to be satisfactory for structures 

designed for damage control limit state.  

5.2.3 Concrete Strain Limits in Reinforced Concrete   

At this point it is useful to discuss concrete strain limits allowed in design and 

assessment of reinforced concrete structures.  

In UBC 1997 it was declared that under no circumstances should designs be 

permitted in which compressive strains exceed 0.015. In portions, where compressive 

strains exceed 0.003, boundary zone requirements shall be met. 

ACI 318-02 states in Section 10.2.3 that for members under axial load and flexure 

maximum usable strain at extreme concrete compression fiber shall be assumed equal to 

0.003. Moreover, in the accompanying commentary it was noted that from tests it is 

observed that εcult varies from 0.003 to higher than 0.008 under special conditions. It was 
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also cautioned that, the strain at which ultimate moments are developed is usually about 

0.003 to 0.004 for members of normal proportions and materials. 

While defining usable compressive strain limits for components without confining 

transverse reinforcement under flexural and axial loads, FEMA 356 defines the maximum 

strain at the extreme concrete compression fiber as 0.002 in nearly pure compression and 

0.005 for other types of stress states unless larger strains are substantiated by experimental 

evidence and approved. For confined concrete, in the determination of maximum usable 

compressive strains the limits should conform to the limitations imposed by fracture of 

transverse reinforcement, buckling of longitudinal reinforcement, and degradation of 

component resistance at large deformation levels. Maximum compressive strains in 

longitudinal reinforcement shall not exceed 0.02, and maximum tensile strains in 

longitudinal reinforcement shall not exceed 0.05. 

 In previous studies, a limiting compressive strain of 0.004 has been suggested 

(Paulay, 1986; Wallace and Moehle, 1992) for no special transverse reinforcement required 

to confine concrete and found to yield favorable comparison with the test results of isolated 

walls. At this strain, only a minor deterioration in the cover concrete at wall boundary was 

reported (Wallace and Moehle, 1992). In addition, no effect of this deterioration on the 

overall structural integrity is noted. Therefore, Wallace (1995a), states that if the maximum 

wall compression strain is less than 0.004, no special transverse reinforcement may be 

required for concrete confinement. It is clear that, the maximum fiber strain at the 

extremities of a wall will be function of the displacements induced by earthquake ground 

motion excitation.  

5.3 METHOD OF ANALYSIS TO INVESTIGATE THE PERFORMANCE 
LIMITS 

5.3.1 Finite Element Model and Parameters of the Analytical Investigation  

5.3.1.1 Parameters 

Within the analytical framework described in the previous chapter, the results from a 

parametric study conducted to determine the relation between the local and global 

deformation demands will be presented here. The idealized cantilever models described in 

the previous chapter were used in the analyses. The variables of the parametric study have 
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been also discussed in Chapter 4 and are summarized below. The schematic description of 

these variables is given in Figure 5.5. The parameters are 

• Wall length (Lw): 3 m, 5 m and 8 m. 

• Effective shear span (Lv): 5 m, 6 m, 9 m, 15 m, 24 m.  

• Wall boundary element longitudinal reinforcement ratio (ρb): 0.5, 1, 2, 4 percent. 

• Wall axial load ratio at the base (P/fc/Aw): 0.02, 0.05, 0.1, 0.15, 0.5. 

 

 

 
  Figure 5.5 Illustration of variables of the parametric study 

 

 

In the design of walls that were used for the parametric study, the design procedure 

defined in Section 4.4.1 was employed. Concrete strength was taken as 25 MP for all cases. 

Wall boundary elements were assumed to extend over a region of 0.2Lw at the edges. For 

any given combination of above parameters the wall yield moment (Mwy) is calculated 

using Eq. (4.33), where the section yield capacity is only function of wall length (Lw), ratio 

of boundary element longitudinal reinforcement area to the boundary region cross section 

area (ρb) and axial load ratio (P/Po). In the following step, using the specified shear span 

length (Lv) the design shear force is calculated (Vd=Mwy/ Lv ). The ratio of the horizontal 

and vertical web reinforcement is assumed to be nominally 0.0025. If the factored shear 

force (Ve=λVd) exceeds the shear safety limit calculated with Eq. (4.35), the required 

amount of web horizontal reinforcement is recalculated employing the same equation. 

Since codes specify that the amount of vertical reinforcement should not be less than the 

horizontal reinforcement in the web, the same steel ratio of web reinforcement is used in 

Lv 

V 

ρb 

Lw 

P/fc/Aw 
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the vertical as well. The design shear force is factored only for flexural over-strength. The 

amplification in the base shear due to higher mode effects was disregarded. Base shear 

amplification is studied in the following chapter. 

5.3.1.2 Boundary element confinement 

The deformation capacity of structural walls is controlled by the level of confinement 

in the boundary elements. TSC (2007) and ACI 318-08 (2008) calculates the amount of 

transverse reinforcement that is required at the wall boundaries with similar expressions. 

The expression in TSC was given in Eq. (4.36) as ytkckcsh ffbsA 05.0= . This is 2/3 of the 

amount of transverse reinforcement used to confine the column elements. The same 

equation with a multiplier of 0.09 is given in ACI 318. In the models analyzed here the 

boundary region length were taken as 0.2Lw and the thickness of the walls as tw = 250 mm 

(bc = 200 mm). The yield strength of the longitudinal and transverse reinforcement was 

assumed to be 420 MPa. The boundary element transverse reinforcement calculated 

according to TSC was φ8/150 (assuming fy = 420 MPa). Since TSC states that vertical 

spacing of hoops and/or crossties shall not be more than half the wall thickness and 100 

mm, nor shall it be less than 50 mm, as transverse reinforcement φ8/100 is used. If the ACI 

318 had governed the design, φ8 hoops at 85 mm spacing would have been required as 

confinement steel at the boundary elements. In conclusion wall boundaries can be 

considered as well confined for TSC and adequately confined for ACI 318. Obviously 

confinement should be considered among the variables of the parametric study, but since 

this would increase the analysis permutations significantly, the study will be limited to 

confined members.  

It has been recently reported (ASCE/SEI41, 2006) that behavior of walls not fully 

conforming to ACI 318 is adequately represented by modeling and acceptance criteria for 

conforming elements in Tables 6.18 (Table 5.1) and 6.20 of FEMA 356. ASCE/SEI 41 has 

revised  the definition of a confined boundary from that having transverse reinforcement 

conforming to ACI 318-08 to include boundary elements in which the amount of transverse 

reinforcement exceeds 75% of that required in ACI 318-08, and spacing of transverse 

reinforcement does not exceed 8db for the purpose of evaluating the behavior of walls. In 

the proposed changes it also is permitted to take modeling parameters and acceptance 

criteria as 80% of confined values where boundary elements have at least 50% of the 
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requirements given in ACI 318, and spacing of transverse reinforcement does not exceed 

8db. Otherwise, boundary elements must be considered as not confined. 

The stress strain curves of the confined concrete for different vertical reinforcement 

and boundary length combinations are given in Figure 5.6. As seen in the figures the 

modified Kent and Park model (1982) indicates a lower deformability at the wall 

boundaries. Although the Saatcioglu and Razvi (1992) and Mander et.al (1988) models 

produce similar curves, former yields a more realistic behavior in the descending part of the 

stress-strain curve as discussed in APPENDIX C.  
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  Figure 5.6 Stress-strains of confined region 
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Figure 5.6 (Continued) Stress-strains of confined region 
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5.3.1.3 Finite Element Models  

Trial analysis of cantilever walls under uniform and inverted triangular load patterns 

displayed that even when cracking may extend up to mid-height of the wall, significant 

steel yielding extends over only lower one or two stories. The upper stories can be 

effectively treated as a cracked beam. Using this analogy a finite element model is 

developed to reduce the computation time. As shown in the model in Figure 5.7, the first 

two stories of the cantilever wall was discreticized with solid continuum elements 

(SOLID65) whereas the upper stories is modeled with BEAM188 which is based on 

Timoshenko beam theory. The nonconformance between the nodal degree of freedoms of 

beam (d.o.f.’s: ux, uy, uz, θx, θy, θz) and solid (d.o.f.’s: ux, uy, uz)  elements was overcome by 

providing the transition with constraint element MPC184 by utilizing the rigid beam option. 

BEAM188 takes into account the shear deformations. As described in Section 4.5.2, to 

define the behavior of beam elements generalized nonlinear section properties were used. 

The load deformation behavior of beam elements was assigned in the form of bilinear 

force-distortion angle (F-γ) and moment-curvature (M-φ) relation. The initial flexural 

rigidity was taken as 0.5EIw. This model proved to be adequate since all the response 

parameters under investigation is concentrated at the lower stories. 

 

 
  Figure 5.7 Reduced finite element model of cantilever walls 
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5.3.2 Calculated Response Parameters  

The benefit of NLFEA lies in the fact that several response parameters in either 

global or local scale can be calculated accurately. At every point of the model strains and 

stresses can be obtained numerically and checked through graphics. Additionally crack 

pattern and strains calculated on the model reveal the governing behavior mode of the 

specimen. 

5.3.2.1 Deformation Components 

Calculation of the global and interstory drift demands on shear walls as an indicator 

of structural damage are not the same as the drift calculations on frames. A distinction is 

required between the two measures of interstory distortion. In shear wall buildings, 

interstory drift is not an appropriate measure of damage since significant portion of the 

global drift results from the rigid body rotation of lower stories. As shown in Figure 5.8, in 

isolated structural walls, that exhibit predominantly cantilever flexure type behavior, the 

interstory “tangential deviation”, (i.e., the deviation or horizontal displacement of a point 

on the axis of the wall at a given floor level measured from the tangent to the wall axis at 

the floor immediately below it), rather than the “interstory displacement”, provides a better 

measure of the distortion that the wall experiences. In fact, the tangential deviations vary in 

the same manner as, and are directly reflected in, the bending moments that are induced by 

the lateral deflection of the wall.  

 

 
 Interstory 
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Floor level, i-1 
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  Figure 5.8 Computation of lateral drift of cantilever walls 



 222

The above figure can be used to describe the required calculations of interstory 

displacements and rotations for flexure dominated shear walls. However, in the calculation 

of shear deformations that results from significant shear actions like diagonal tension and 

compression on the web a different scheme is required. The procedure described in Figure 

5.9 (Oesterle et. al, 1976) utilizes shear distortion angles in the calculation of the shear 

deformation component of the total deformation. The flexural component of the 

displacement can be calculated by subtracting the displacement components corresponding 

to diagonal and sliding shear from the total lateral displacement.  

Another component of the deformation that has not been accounted for is due to 

slippage/pull-out of vertical bars from the foundation and bond slip. These deformation 

components have been neglected in all the analyses carried out in this study. 
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  Figure 5.9 Computation of shear deformation component of the wall lateral displacement 

 

 

5.3.2.2 Forces and Moments 

In the finite element model shear force along a section is calculated by summing the 

horizontal nodal forces along the faces of the elements lying on that section. The 

summation can be done on the faces of elements lying along both sides of the section. Only 

the sign of the force will change.  The bending moments are calculated by summing the 

moments of each element nodal force normal to the section surface around the section 

center.  
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5.3.2.3 Strain Measurements 

Vertical strains at compression and tension boundary extremities of the wall were 

evaluated. Although stress and strain results can be obtained at element integration points 

or as average values at nodes in ANSYS, the vertical strains were computed by using the 

nodal vertical displacements. The vertical strain is calculated by dividing the difference 

between the vertical displacements at successive nodes to the distance between these nodes. 

These strains pair-wise in a row were used to calculate the curvature distribution along the 

height of the wall. Using both the tensile steel strain profile along the edge and the 

curvature distribution along the height of the wall the length of plastic zone (Lpz) is 

determined. Figure 5.10 provides the visual description about the location of the calculated 

strains.  

At the lower 1 m of the each story (three elements in height) the vertical strains are 

extracted along the length of wall in the horizontal direction row-wise also. Using the strain 

distributions along the row neutral axis depth, c, is investigated.  

 
 

 
  Figure 5.10 Locations of calculated strain quantities 

 

5.3.2.4 Curvatures and Rotations  

Curvatures were calculated in two different ways. The first type of curvature is 

calculated over a region of three element height at the base of the wall, which is 
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approximately 1 m in height as shown in Figure 5.10. This curvature is an average value 

that can be used to get an estimate of the wall curvature when the actual curvature can not 

be obtained due to difficulties in the interpretation of extent of plastification over the wall 

height. The second type of curvatures is row curvatures that are computed from average 

element strains calculated at the same height (in the same row) at the two wall ends. These 

curvatures can be used to determine the spread of plasticity along the wall. 

Rotations are calculated from the nodal vertical displacements along each end of the 

wall by using the triangulation calculations. The height over which the rotations are 

calculated depends on the spread of plasticity, which is discussed in detail in Section 5.4. 

5.3.3 Results of FEM Analyses  

In the light of FEM analysis several useful observations are made. Through Figures 

F.1 to F.14 in APPENDIX F, force-displacement responses of the analyzed walls are 

presented. The analyses are grouped according to the wall length (Lw) and effective shear 

span length (Lv). The vertical axis representing the shear force capacity of the walls is 

normalized with respect to cfww Lt . The second floor drift ratio is used to display the 

deformation capacity of the analyzed walls. As discussed previously in Section 5.3.2.1 and 

displayed in Figure 5.7, roof drift of cantilever walls is not a meaningful measure to 

investigate the deformation capacity of structural walls. Additionally, the base stories are 

the most critical regions when the deformability of the walls is considered. By this way the 

deformation components can be directly compared with code specified values. 2nd floor 

displacements were preferred over 1st floor values, because the total drift composed of shear 

and flexural deformation components can be calculated more representatively over two 

story height due to excessive diagonal cracking and localized damage at the base story.  

The presented data provides significant information about the deformation capacity of the 

structural walls. The summary of relations between the normalized shear capacity and 

ultimate deformation capacity of walls is given in Figure 5.11. The drift capacity of walls 

further decomposed into flexural and shear components were also presented in this figure. 

The shear stress limits used to arrange the plastic rotation limits in FEMA 356 were 

superposed on the graph. ACI 318-08 states that the normalized shear carried by a wall 

member should not exceed 0.66 cf .   
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  Figure 5.11 Ultimate drift capacities of wall models 
 

 

As displayed in Figure 5.11(d) wall length significantly affects the deformation 

capacity of walls. Figure 5.12 reveals the effect of axial load ratio, the second important 

parameter, on the deformability of walls. As the wall length and axial load ratio increases 

deformation capacity of walls reduces. The FEMA normalized shear stress limits used to 

differentiate between the flexural and shear type of behavior correlates with the data 

presented here. For walls with ν < 0.25 flexural type behavior governs. The drift capacities 

of walls that respond in flexural mode range from 2.5 to 6 percent depending on the level of 

axial load. Structural walls can exhibit significant displacement ductility capacity as seen in 

Figure 5.12(b). In codes, such as FEMA306 and FEMA356, the ductility capacity of 

members is classified as either low, moderate, or high. The following approximate 

relationship presented in Table 5.4 can be assumed for the classification. However, as seen 

in Figure 5.12(b) for low-to-moderate levels of axial load ratio the ultimate displacement 

ductility capacity of members may reach a value of 10 to 25. The ductility limits that were 

specified in codes seem to be too low and require to be adjusted for wall members. 
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Table 5.4 Classification of Displacement Ductility in FEMA 356 
 

Displacement Ductility Classification  
µ∆ < 2 Low Ductility 
2 ≤ µ∆ ≤ 4 (5)* Moderate Ductility 
µ∆ > 4 (5)* High Ductility 
*Limits used in FEMA 306 
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  Figure 5.12 Effect of axial load level on the ultimate a) drift, and b) displacement ductility 

(µdispl) capacities of wall models. 
 

 

The ratio of shear deformation (∆s) to the total deformation (∆t) with respect to 

increasing shear capacity is displayed in Figure 5.13(a). The shear deformation may 

constitute a significant portion of the total deformation even though the shear stress carried 

by the walls is very low. The data in the figure points out that the shear deformations must 

be taken into account while modeling the lower stories of shear walls.  Using the 

parameters that govern the response of shear walls an equation is derived to estimate the 

drift capacity of shear walls with moderately confined boundary elements. The equation 

from a regression analysis reads as 

 

( ) )exp( w
B

b LDCADR ⋅−⋅−⋅= νρ    (5.11) 
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where A, B, C and D are coefficients defined in Table 5.5 as a function of axial load ratio, 

ρb is the boundary element reinforcement ratio, ν is the normalized shear stress and Lw is 

the wall length. The predictions are compared with the finite element results in Figure 

5.13(b). 

 

 

Table 5.5 Coefficients of Eq. (5.11) to calculate the ultimate drift capacity of walls  
 

P/Po A B C D 
≤ 0.10 0.127 0.175 1.026 0.075 
= 0.15 0.085 0.118 0.981 0.074 
= 0.25 0.041 0.081 0.713 0.054 

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

∆
s 

/ ∆
t

Ds/Dt
Dtot
P/Po ≤ 0.10
P/Po ≥ 0.15

cww fLt
Shear

a)  

R2 = 0.8672

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Calculated Drift (%)

Pr
ed

ic
te

d 
D

ri
ft

 (%
)

b)  
  Figure 5.13 a) Ratio of shear component of displacement to the total displacement, b) 

comparison of calculated drift ratios predicted with Eq. (5.11)  
 

 

It may be argued that the degrading effect of cyclic loading regimes on the stiffness 

and strength of reinforced concrete was not considered in the analysis.  Past experimental 

studies have shown that the overall deformation under cycling loading may be at least 75% 

of the deformation reached under monotonic loading. This is due to deterioration of 

concrete, and the development of cyclic failure mechanisms associated with the load history 

and characteristics of the specimens. Vallenas et al. (1979) proposed that as a general rule 

the overall deformation capacity under a realistic ground motion could be expected to be 
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over 75% of the deformation capacity under monotonic loading conditions. In this 

perspective, it may be useful and necessary to reduce the ultimate deformations obtained 

from the monotonic static analysis by a factor of 0.75~0.8. 

Impropriety of conventional sectional analysis method in case of members under high 

shear condition is clearly revealed in the comparison of the vertical and principal 

compressive strain plots in Figure 5.14(b) and Figure 5.14(c). In flexure controlled member 

(Case2) the vertical strain and principal compressive strain distributions indicate to 

concentration of compressive strains at the edge of the wall. However, in the case of shear 

controlled member (Case1) while the vertical strain plot shows that only a limited region at 

the edge of the wall is under compression, the principal compressive strain plot indicates 

that the region under compression extends nearly over two thirds of wall length. Obviously 

these compressive strains are inclined, resulting from the compression strut action. Shear 

strain plots in Figure 5.14(d) indicate diagonal cracking in a flexural member and sliding 

shear failure above the base of a shear controlled member.  

Accurate calculation of the spread of plasticity along the height of the wall is 

essential in deriving the plastic hinge length. Several factors such as the level of shear stress 

carried by the member, length of the wall plays fundamental role on the length of plastic 

hinge region. The effect of boundary element reinforcement on the spread of plasticity 

along the wall is displayed in Figure 5.15. The percentage of boundary element 

reinforcement takes the values of 0.5, 1, 2 and 4% in each figure. As seen in Figure 5.15, in 

lightly reinforced walls (ρb = 0.005~0.01) the flexural cracks concentrate at specific 

locations along the edge of wall.  At the highest location, the flexural cracks rotate and turn 

into inclined shear cracks over the web region. As seen in Figure 5.16 both flexural and 

shear cracks are evident on the wall.  
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 Case 1, Lv = 5 m, ν = 0.70√fc Case 2, Lv = 24 m, ν = 0.17√fc 
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  Figure 5.14 Contour plots displaying the distribution of a) Horizontal displacement b) 
Vertical strain c) Principal compressive strain d) Shear strain in the web 

 



 230

ρb = 0.005, Lw = 5m, P/Po = 0.10, ν = 0.22√fc ρb = 0.01, Lw = 5m, P/Po = 0.10, ν = 0.26√fc 

  
ρb = 0.02, Lw = 5m, P/Po = 0.10, ν = 0.33√fc ρb = 0.04, Lw = 5m, P/Po = 0.10, ν = 0.50√fc 

  

 
 

  Figure 5.15 Effect of boundary element reinforcement on the spread of plasticity 
 

 

As the amount of boundary element longitudinal reinforcement increase the cracking 

spreads over the edge of the wall along the plastic zone. Flexural cracks form a uniform 

pattern along the edge. The cracks that are initiated as flexural cracks directly propagate 

into the web as inclined shear cracks. Rather than a distinct shear crack passing diagonally 

through the web region, a diffused pattern of shear cracks appears on the lower half of the 

wall separated by the diagonal line as seen in Figure 5.16(d). In this case the wall is under 

high shear stress, and significant amount of this stress is concentrated at the compression 

boundary element. If the load was cyclic in nature, the load reversals would give rise to 

same situation in both boundaries. This weakens the base section and leads to sliding shear 

failure.  
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a) ρb = 0.005, Lw = 5m, P/Po = 0.10, ν = 0.22√fc b) ρb = 0.01, Lw = 5m, P/Po = 0.10, ν = 0.26√fc 

   
c) ρb = 0.02, Lw = 5m, P/Po = 0.10, ν = 0.33√fc d) ρb = 0.04, Lw = 5m, P/Po = 0.10, ν = 0.50√fc 

  

 
 

  Figure 5.16 Effect of boundary element reinforcement on diagonal cracking and shear 
strain  

 

5.4 PLASTIC HINGE ANALYSIS 

Although advanced analyses tools and procedures are currently available to 

determine the seismic response of RC structural walls, the plastic hinge method and 

analyses derived from it (Park and Paulay, 1975) are still used extensively in the seismic 

design and assessment of structural walls to estimate the inelastic displacement capacity. 

Macro-modeling techniques most frequently used in the seismic assessment of structures 

also require the moment-rotation relation to be assigned to plastic hinges at member ends. 

The method is especially appealing for structural wall buildings, because it is simple and 

most of the time it is possible to idealize a wall member inside the building as isolated 

cantilevers as displayed in Figure 5.17. In the plastic hinge analyses the tip displacement of 
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a cantilever is obtained as the sum of its yield displacement, ∆y, and plastic displacement 

component, ∆p. While the yield displacement is calculated by double integrating the 

curvature distribution along the cantilever, plastic displacement component is calculated by 

multiplying the height of the cantilever by the plastic rotation, θp, at the base as expressed 

in Eq. (5.12).  

( ) ( )ppy
y

py LHL
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5.0
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2

−−+=∆+∆=∆ φφ
φ

   (5.12) 

 

The term, (φ-φy)Lp, in Eq. (5.12) refers to the plastic rotation θp and is based on the 

governing assumption that the plastic curvature is lumped in the center of  the equivalent 

plastic hinge length, Lp. The actual physical length over which the plasticity spreads may be 

larger and referred as plastic hinge region, Lpz. The plastic hinge length that yields accurate 

plastic rotation can be easily determined from experimental data. Eq. (5.12) may be used to 

calculate the equivalent plastic hinge length from this data. This implies that if physical 

hinge length is unknown, inaccurate values of φp and Lp can be combined to yield an 

accurate value of θp. 

 

 

 
 

  Figure 5.17 Definition of plastic hinge length (Park and Paulay, 1975) 
 

 

Previous research has confirmed that in reinforced concrete members the spread of 

plasticity in the plastic hinge region is influenced by three distinct phenomena: moment 

gradient, tension shift and strain penetration. The term “moment gradient” reflects the fact 

that the transition between yield moment and ultimate moment in a member is proportional 
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to the member’s shear span. Therefore, a member with a shorter shear span has a smaller 

spread of plasticity. Occasionally the spread of plasticity (damage) on the member occurs 

over a larger region than anticipated by the effect of moment gradient. This is due to 

“tension shift” that can be described as the tendency of flexural tensile forces (steel tension 

forces) to decrease only minimally over a certain distance above the base of a wall until 

these forces can be transferred to the compression zone by adequately inclined struts (Hines 

et al., 2004). Additionally, strains near the base are significantly affected by the inclined 

flexure-shear cracks of the wall. As a consequence of the fanned crack pattern the 

compressive strains in the concrete are larger and the tensile strains in the reinforcement 

smaller than strains obtained from (plane) section analysis (Dazio et al., 2009, see Figure 

1.1). These effects contravene the plane sections remain plane assumption. Hence, 

experimentally derived strains cannot be directly compared to strains obtained from section 

analysis. Although it is considered that the yielding takes place at the fixed end of member 

above the footing, the inelasticity in the longitudinal bars may extend some distance into 

the footing, which is referred as “strain penetration”. The wall lifts off the footing as a 

result of accumulation of strains inside the footing. This deformation component at the base 

of the wall is named the fixed end rotation.  

5.4.1 Discussion on the Components of Plastic Hinge Analysis  

Relating the local deformation demands (strains) of the wall to the curvatures so as to 

flexural deformations requires correct interpretation of plastic hinge length or spread of 

plasticity along the member. Moreover, violation of the plane section remains plane after 

deformation hypothesis due to concentration of compression strains at the section of 

maximum moments at the base of the wall precludes a direct comparison of the base 

curvatures calculated from experimentally measured strains or strains obtained from FEM 

models such as here, or the curvatures obtained from moment-curvature based section 

analysis. It was stated previously that the methods based on section analysis, which are 

used to assess the force-displacement behavior of reinforced concrete members, generally 

provides conservative estimates of the structural performance levels. Curvature is the 

primary parameter used in the design and assessment of structural walls. Base curvature 

calculated in the plastic hinge length may provide a more appropriate means of linking 

local deformations measured experimentally (or as here results of FE analysis) at the base 

of the wall to the results from moment-curvature analysis. To do this plastic hinge length is 
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required. The plastic rotations calculated above the plastic hinge length should be 

compatible with the modeling and acceptance criteria values tabulated in FEMA 356.  

In experimental and analytical studies the length of the region (zone) over which the 

plasticity (damage) spreads should be discriminated from the plastic hinge length, which is 

a notional tool used to calculate the tip displacement of cantilever. Generally the length of 

plastic zone is larger than the value assigned to plastic hinge. It is an assignment because it 

does not matter what value is used for the plastic hinge length as long as it yields correct 

estimation of deformations.  

Two different methods can be employed to evaluate the length of the plastic zone, 

Lpz. In the first method tensile strain profile along the edge reinforcement is used to 

determine the yielding region. It is assumed that when the bar strain at the extreme fiber 

reaches εs = 0.003 yielding takes place in the section (Kim, 2004). This limit is consistent 

with previously proposed bar strains to determine the section yielding. In members with 

more than one layer of vertical reinforcement, not all the tensile reinforcement yields 

simultaneously. The force displacement diagram does not indicate overall yielding until the 

middle reinforcement in the tensile boundary element yields. At limiting strain of εs = 0.06, 

the tensile strain profiles along the two story high region at the base are plotted in Figure 

5.18 for walls with different lengths using the finite element analyses results. The plasticity 

spreads over much larger regions along the height of wall as the length of the wall 

increases. As the wall length increases they become more susceptible to shear effects 

leading to diagonal cracking, so as to increase the size of the damaged zone as opposed to 

concentrated flexural cracking at the base. The kink that can be clearly observed in the 

0.2hs level on the average tensile strain profile locates the position of the flexural 

deformation concentration on the wall. The anomaly on the strain profiles in the first story 

level is due to interrupting effect of the floor slab, and should be disregarded for a better 

interpretation of the message in the figure.  

In the second method curvature profile computed from element strains calculated at 

the same height (in the same row as displayed in Figure 5.10) at the two wall ends can be 

used to determine the spread of plasticity along the wall. The limiting yield curvature can 

be calculated by the expression proposed by Priestley et al. (2007) 

w

y
wy L

ε
φ 2=      (5.13) 
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where εy is the yield strain of the reinforcement and Lw is the wall length. The calculated 

curvature profiles are plotted in Figure 5.19. Again the limiting tensile strain of 0.06 is 

used. Parallel to observations made in the tensile strain profiles, it is seen that damage 

extends over much larger region in walls with longer section lengths. 
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  Figure 5.18 Tensile strain profiles along the tensile edge of the walls, all analyses 
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  Figure 5.19 Curvature profiles along the height of the walls 
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The shortcomings of this procedure in case of inclined flexure-shear cracks were 

discussed in Section 5.3.3. Two different methods, each used for specimens with 

predominantly flexural cracking and for members exhibiting diagonal shear cracking at the 

hinging region, were presented by Oesterle et al. (1976) to determine the effective curvature 

distribution. Experimental studies (Dazio et al., 2009) have shown that within the plastic 

zone of the test units the curvature profiles were approximately linear in case of lightly 

reinforced wall members (flexural behavior). So the curvature calculated at the very bottom 

of the wall can be considered as the wall base curvature. Hence, to determine the base 

curvature a best-fit linear curvature profile over the height of the plastic zone Lpz was 

determined and extrapolated to the base of the wall as shown in Figure 5.17 previously and 

will be discussed in Figure 5.24 in greater detail. 

5.4.1.1 Determination of Wall Yield Curvature 

Yield curvature is a significant parameter that is used in the design of structural walls 

and is required to determine the spread of plasticity along the length of the wall. Paulay and 

Priestley (1992) stated that because ductility in design is based on the relationship between 

ductility and force reduction factors and the required ductility in design in reinforced 

concrete structures is evaluated on the basis of elastoplastic or bilinear approximation to the 

actual structural force-displacement response, in reinforced concrete sections ductility 

should be assessed on the basis of idealized elastoplastic or bilinear approximation of 

moment-curvature relation. As a result of bilinear idealization the yield curvature may not 

coincide with the first yield of the reinforcement or the actual global yield of the section, 

particularly in shear wall sections where the flexural reinforcement is distributed along the 

boundary element.  

Paulay and Priestley (1992) and Priestley et al. (2007) defined an equivalent yield 

curvature, φy= (My/M′y)φ′y, that is obtained by factoring the yield curvature corresponding to 

the first yield of the tensile reinforcement at the extreme fiber (εy =0.0021) for elasto-plastic 

idealization of load-deformation curves. The coefficient is defined as the ratio of the 

equivalent yield moment (My) to the yield moment at first yield (My’). Here My holds for the 

nominal yield moment (MN) that is defined as the moment where the extreme fiber strain in 

compression reaches 0.004 or extreme tension strain reaches 0.015, whichever occurs first. 

The bilinear curve is obtained by drawing the first line from origin to the point on the curve 

where the reinforcement yields for the first time extending up to the nominal yield moment. 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V2Y-4VV1B95-1&_mathId=mml293&_user=691352&_cdi=5715&_rdoc=1&_acct=C000038698&_version=1&_userid=691352&md5=2ca083de8a8bbf12522efc33ae2d0104
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The second line connects the first line at the top to ultimate point on the moment-curvature 

curve. The bilinearization procedure is illustrated in Figure 5.20. 
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  Figure 5.20 Example moment-curvature curve for wall section with Lw = 5m, initial 

section of moment-curvature response  
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  Figure 5.21 Correlation of Eq. (5.13) with FE analysis results 

 

 

The yield curvatures obtained from the bilinearization of moment-curvature relations 

using the finite element analyses results are plotted in Figure 5.21. The curvature used in 
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the moment-curvature relationship is the average curvature calculated over a 1 m high 

region above the base section. This effective length used to calculate curvatures was found 

to be in good agreement with the curvatures calculated with the described procedures. The 

presented data validates Eq. (5.13). It is found that the most significant parameter affecting 

the wall yield curvature is the wall length. 

5.4.1.2 Plastic Region and Plastic Hinge Length 

In view of the preceding discussion, the plastic zone length is calculated using the 

second method described above, i.e. the uppermost location where the yield curvature is 

encountered on the curvature profile was accepted as the plastic zone length, Lpz. The 

calculated plastic zone lengths at the ultimate response point are plotted in Figure 5.22. It is 

found that the spread of plasticity is strongly affected by the shear carried by the member 

and the wall length. While the plastic zone is constrained to first story in 3 m wide walls, it 

may extends over 2 stories height in 5 and 8 m wide walls as shown in Figure 5.22. Figure 

5.22 also displays that the spread of plasticity along the wall decreases as the shear carried 

by the member increases. The plastic zone length normalized with respect to wall length is 

found to be slightly sensitive to boundary element reinforcement ratio, but it is significantly 

affected by the wall length as shown in Figure 5.23. The axial load level has also a slight 

reducing effect on the spread of plasticity along the wall. 
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  Figure 5.22 Variation of actual plastic zone length with normalized shear  
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  Figure 5.23 Variation of normalized plastic zone length with normalized shear arranged 

for a) wall length, b) boundary element reinforcement  
 

 

As a second step, the base curvatures and rotations were calculated over the identified 

plastic zone lengths. The rotations, which are assumed to represent the rotation of the base 

section, were calculated just above the plastic zone length by using the vertical 

displacements calculated at tensile and compressive edges in the same row. The sketch in 

Figure 5.24 illustrates the calculation of the base section curvature and rotation. The 

ultimate base rotation capacity of wall specimens with respect to normalized shear force is 

plotted in Figure 5.25(a). The base curvature is calculated in two different ways to ensure 

the accuracy in the calculation of this parameter, since all the performance criteria and 

assessment procedure depends on it. φb1 was obtained by using the moment-area theorem. 

Since the rotation above the plastic zone is known (θb) by integrating the curvature profile, 

which is assumed to be linear, along the plastic zone (length Lpz), φb1 is obtained as 2θb/Lpz. 

φb2 was obtained by fitting a best line to the curvature profile along the plastic zone length. 

The intercept of the best fit line equation at the base level was adopted as φb2. The 

comparison of the two curvatures is displayed in Figure 5.25(c). The two methods of 

curvature calculation yielded very similar results. The base curvatures used in this study are 

those calculated by best line fit method, i.e. φb = φb2. The ultimate curvature capacity of 

wall specimens is plotted in Figure 5.25(b). 
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  Figure 5.24 Schematic descriptions of base curvature and rotation calculation 
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  Figure 5.25 a) Ultimate base rotation, b) ultimate base curvature, plotted as a function of 

normalized shear force c) comparison of different base curvature schemes ultimate 
curvature results 
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As discussed in detail above, assuming a linear curvature profile over the height of 

the plastic zone length provides a consistent relation between the curvature (φb) and rotation 

(θb) that are adopted as the deformation attributes of the base section as described in Figure 

5.24. Since the plastic hinge analysis is based on the condition that θp=Lp.φp as illustrated in 

Figure 5.26, the plastic hinge length is Lp = 0.5Lpz in the light of above discussion 

(θb=0.5Lpz.φb). Hines et al. (2004) and Dazio et al. (2009) reached a similar expression that 

reads as 

sppzp LLL += 5.0     (5.14) 

where Lsp characterizes the contribution of strain penetration to the top displacement. The 

relation between the plastic zone length and shear stress was investigated in Figure 5.22 and 

Figure 5.23.  

 

 

 
  Figure 5.26 Plastic hinge analysis 

 

 

The relation given in Eq. (5.14) for the calculation of the plastic hinge length can be 

verified by using Eq. (5.12). All the components of Eq. (5.12) are available to calculate the 

plastic hinge length. As discussed previously, the plastic hinge length calculated in this way 

is in a sense inaccurate, because it does not need to be in parallel with the actual spread of 

plasticity along the wall as long because it yields accurate estimation of wall displacements. 

However there is a consistent relation between the two lengths. The plastic hinge length 

calculated in two different ways and normalized with respect to plastic zone length was 

plotted as a function normalized shear in Figure 5.27(a). The procedure used to obtain Lp by 
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substituting required values in Eq. (5.12) resulted in Lp = 0.4Lpz. It can be assumed that the 

plastic hinge length can be taken as the 40%~50% of region where plasticity spreads over 

the member. The plastic hinge length obtained by rearranging Eq. (5.12) is normalized with 

respect to wall length and plotted in Figure 5.27(b) as a function of shear stress. Other than 

the trend line which can be fitted to the relation on the figure, the data reveals that plastic 

hinge length is not a function of wall length multiplied with constant (such as Lp = 0.5Lw) 

as assumed by many codes and reported by other research..   
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  Figure 5.27 Plastic hinge length calculated as a function of a) plastic zone length, b) wall 
length. 

  

 

An improved expression can be derived by regression analysis to calculate the plastic 

hinge length by using the variables of the parametric study. The plastic hinge length is 

found to be sensitive to the wall length and height, and axial load ratio. The proposed 

plastic hinge equation is given as 
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in which Lw, Hw and Lp are in meters. The comparison of predictions with the simulation 

results are displayed in Figure 5.28. If typical story height is assumed to be 3 m, Figure 
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5.28 tells that the plastic hinge length is bounded within the first story height for low-to 

medium height walls.  
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  Figure 5.28 Comparison of plastic hinge length predicted by Eq. 5.15 with finite element 

simulation results 
 

5.4.2 Relating Section Analysis Results with FEM Results 

As discussed in the preceding sections, base curvature is the most appropriate means 

of establishing a relation between experimental and analysis results. The drift and rotation 

of the actual model (FEM model) corresponding to a given limit state can be related to the 

strains obtained from section analysis at equal curvatures. This way, a direct comparison of 

local and global deformation limits can be established. Comparison of typical moment-

curvature relations obtained from section analyses and finite element analyses is shown in 

Figure 5.29. The curves agree in the initial segment and in terms of moment capacities, but 

the ultimate curvature capacities obtained from the two different analyses differ 

significantly. The ratio of ultimate curvatures obtained from section and finite element 

analyses are plotted as a function of normalized shear stress in Figure 5.30. It is seen from 

the figure that the sectional analysis results deviate from the finite element analysis results 

significantly in terms of curvature capacities as the wall length and the shear on the member 

increase. In most of the cases the sectional analysis results overestimate the deformation 
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capacity of walls, which may lead to unconservative assessment of the structural walls. 

Even when section analyses indicate very large deformation capacities, the limiting value 

for the curvatures is adopted as the capacities obtained from FEM analysis in this study.  
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  Figure 5.29 Comparison of typical moment-curvature relationships obtained from section 

and FEM analysis (Lw = 5 m) 
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  Figure 5.30 Difference between the ultimate curvature capacities obtained from section 

and FEM analysis 
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5.5 EXPERIMENTAL DAMAGE PARAMETERS 

There are a vast amount of experimental studies carried on shear walls to identify their 

structural characteristics and behavior, and dominant failure modes. These experiments 

were either carried at full scale, few story (generally one or two) wall components or scaled 

representative components and multistory walls. Static loads cyclic or monotonic in nature 

were applied. Figure 5.31 shows drift capacities versus maximum observed shear stress of 

walls tested by different researchers. Detailed information for each specimen in this figure 

is provided in Table G.1 of APPENDIX G. The test parameters of these structural walls 

were section shapes (rectangular, barbell, and flange shape), details of reinforcement 

distribution (concentrated or uniform distribution of longitudinal vertical reinforcement, 

and distribution of horizontal reinforcement), shear span ratio, existence of boundary 

element, ratio of axial load, etc. The experimental database covers wide range of test 

parameters and provides a good basis for the comparison with the range of applicability of 

the results of analyses cases here.  
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  Figure 5.31 Maximum shear stress versus drift capacity relation of walls 

 

 

As seen in Figure 5.31 the data produced in this study and the results of experimental 

studies show similar trends in the drift capacities under increasing shear stress condition. 

This supports the assertion that the analysis results here can be assumed to be representative 



 246

for structural walls, either tested in the lab or existing in buildings. A drift ratio of 1·5% can 

be considered as an allowable limit value against a design earthquake in seismic provisions 

for the flexure controlled members. Thus, it is judged that most structural walls have 

satisfactory deformation capacities irrespective of the test variables (Han et al., 2002).  

5.6 INVESTIGATION OF PERFORMANCE LIMITS  

In this section the findings and results obtained from analyses up to this point are 

synthesized for comparison with the performance limits used to define modeling parameters 

and acceptance criteria in guidelines. The walls analyzed here represent the conforming 

members. The data presented about the deformation criteria here includes curvatures, drift 

ratios and strains in addition to rotations. With reference to Figure 5.1, the deformation 

limits at three performance levels are investigated. These are the immediate occupancy 

(IO), life safety (LS) and collapse prevention (CP) performance levels. For the collapse 

prevention performance level the ultimate point on the load deflection curve is selected. 

The ultimate point corresponds to initiation of strength degradation or rupture of tensile 

reinforcement or buckling of reinforcement at the compressive zone. Life safety is taken at 

the deformation level that is 75% of the collapse prevention level. The immediate 

occupancy level is calculated as the point on the load-deflection curve whichever of the 

concrete compressive strain and steel tensile strains at the extreme fibers reaches 0.0035 

and 0.01 first, respectively. These strains are from the section analysis. The variables 

affecting the deformation limits was primarily considered as the normalized shear stress (ν) 

in the wall as defined in Eq. (5.5) and axial load ratio (P/Po). These variables were 

considered in order to achieve uniformity with FEMA 356. Whenever additional 

parameters are required to define the data, they are included in the analyses.  

Although FEMA 356 investigates structural walls under two groups as flexure 

controlled and shear controlled members, in this study the entire data was analyzed in the 

same bin. The clear trends observed in the data plotted in the preceding sections suggest 

that the whole range of wall behavior can be represented with a unique relation. ASCE/SEI 

41 states that walls should be considered slender (normally controlled by flexure) if their 

aspect ratio (height/length) is greater than 3.0, and short or squat (normally controlled by 

shear) if their aspect ratio is less than 1.5. No such discrimination was used in this study. It 

will be shown that the expressions derived from regression analysis cover the entire 

behavior range satisfactorily.  
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5.6.1 Plastic Rotation Limits 

The plastic rotations calculated above the plastic zone are plotted in Figure 5.32. 

Two vertical lines shown in Figure 5.32 correspond to values of limiting shear stress 

criteria for which the plastic rotation limits are specified for conforming members in FEMA 

356 as defined by Eq. (5.4-a). Eq. (5.2) to (5.4) take the limiting plastic rotations values at 

the points given in FEMA and directly calculate the plastic rotation either within or outside 

of the region bounded by the limits without the need for interpolation. The solid lines 

displaying the FEMA limits are calculated for constant axial load ratios of 0.10 and 0.25.  
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  Figure 5.32 Calculated plastic rotations at specified performance levels  
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Figure 5.32 shows that the limits given in FEMA 356 are very conservative in 

comparison to limits calculated in this study for life safety and collapse prevention 

performance limits. The FEMA 356 curve defined for 10% axial load level defines the 

lower bound of the database. Typical ranges of normalized shear stress demand on 

structural walls are obtained from the design stage of the frame-wall structures investigated 

in the previous chapter and plotted in Figure 5.33. Design forces were obtained according 

to TSC 2007. The figure can be used to determine the useful range of normalized shear 

stress defined on the horizontal axis of Figure 5.32. Since most of the walls in Figure 5.33 

are considered as slender according to definition in FEMA 356 and ASCE/SEI 41 (Hw/Lw > 

3), the shear stress on walls ranges between 0.2-0.6 cf  when it is assumed that the typical 

values of wall index (p) ranges from 0.005 to 0.01 in buildings. In the range 0.2-0.6 cf  

the factor of safety in the given limits is around 2 to 3.  
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  Figure 5.33 Typical normalized shear stress demands on walls as a function of wall index  

 

 

A general expression is derived through regression analysis to calculate the rotation 

limits at collapse prevention performance level. The expression is in the same form as Eq. 

(5.11). The coefficients A, B, C and D that are adjusted for the calculation of plastic 

rotations are defined in Table 5.6 as a function of axial load ratio. The predictions were 

compared with the finite element results in Figure 5.34. The corresponding FEMA 356 

limits were also plotted in the same figure. As seen in the figure the predicted values agree 

quite well with the finite element analyses results. If the predicted values are reduced by a 

factor of 0.75 the limits for life safety performance level is obtained.  



 249

Table 5.6 Coefficients of Eq. (5.11) to calculate the collapse prevention plastic rotation 
limit of structural walls with conforming boundary elements  

 
P/Po A B C D 
≤ 0.10 0.183 0.220 1.814 0.071 
= 0.15 0.117 0.148 1.779 0.066 
= 0.25 0.046 0.037 1.485 0.037 
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  Figure 5.34 Correlation of predicted plastic rotations with analysis results  

 

5.6.2 Total Curvature Limits  

Although codes enforce the use of plastic rotations as assessment criteria, the section 

curvature may be a more appropriate means of drawing performance limits since curvature 

is the direct product of simple section analyses. This way, the uncertainty due to plastic 

hinge length assumption is eliminated. The total curvature performance limits obtained 

from the analyses are plotted in Figure 5.35. If desired the plastic curvatures can be 

obtained by the yield curvature calculated using Eq. (5.13). The scatter in the curvature data 

is more than the plastic rotation data presented in Figure 5.32. The data is classified for 

axial load level and wall length to distinguish the effect of these parameters on the scatter 

of curvature data. As seen in the second column of Figure 5.35 the wall length provides a 

much better classification parameter when compared to axial load.   

. 
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  Figure 5.35 Calculated total curvatures at specified performance levels classified for a) 
Axial load level (first column), b) Wall length (second column) 
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5.6.3 Drift Limits 

Drift ratio is the primary deformation criterion in shear controlled (squat) walls. In 

slender walls the drift ratio or, more correctly, the tangential interstory drift ratio, defined in 

Figure 5.8, should be interpreted as a secondary performance criterion when compared to 

rotations and curvatures because a significant percentage of the displacement in the upper 

stories is due to rotations at the base stories. Nevertheless, it should not be ignored that in 

frame-wall systems strong frame - weak wall interaction effects may gave rise to significant 

interstory displacement demands in the upper stories where it becomes crucial to know the 

damage state limits to assess the performance of the wall components. 

The drift limits calculated at the second story level at different performance levels 

are plotted in Figure 5.36(a) as a function of normalized shear stress resisted by the wall. 

The drift ratios presented here should be interpreted as story drift. According to Figure 

5.36(a), for drift values below 0.5% in average no damage is anticipated on the wall 

components. For flexural walls (ν < 0.25 cf ) and walls under combined flexure and shear 

action (0.25 cf < ν < 0.6 cf ) the lower bound of story drift can be taken as 1% and 

1.5% for life safety and collapse prevention performance levels, respectively, even under 

very high axial load conditions. Under moderate conditions (ν < 0.5 cf  and P/Po < 0.10) 

the limiting story drift values can be extended to 1.5% and 2.5% for life safety and collapse 

prevention performance levels, respectively. These limits should be interpreted as the 

interstory drift ratio. The roof drift at these performance levels may take a little higher 

value. The story drift at collapse prevention performance level can be obtained by using Eq. 

(5.11). The life safety story drift limit can be taken as the 75% of the collapse prevention of 

the limit.  

Wall length should be always considered as a significant constraint on the 

deformation limits of structural walls. A wall with 8 m length can seldom achieve a story 

drift of 2.5% in the most optimal conditions, i.e. under very low axial load and unit shear, 

as adopted by Sullivan et al. (2006). The drift limits categorized with respect to wall length 

is plotted in Fig. 5.36(b). As seen in Fig. 5.36, increased wall length and axial load ratio 

significantly reduce the deformation capacity of structural walls. 
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  Figure 5.36 Drift ratio performance limits plotted as a function of a) axial load ratio (first 
column), b) wall length (second column) 
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5.7 COMPARISON OF TSC STRAIN LIMITS WITH ROTATION LIMITS 

Up to this point performance limits with regard to rotations, curvatures and 

displacements were calculated and presented. The section extreme fiber compression and 

tension strains at these limit states are used frequently in the design and assessment of 

reinforced concrete members (Priestley et al., 2007; TSC, 2007). The extreme fiber strains 

in compression and tension at specified limit states are plotted in Figure 5.37 and Figure 

5.38, respectively. The plots include strains obtained from section (εSEC) and finite element 

(εFEM) analyses superposed on the same figure to visualize the differences.  The right set of 

frames gives the ratio of finite element analysis to section analysis strain ratios (εFEM/εSEC). 

This ratio is useful in evaluating the actual strains at the boundaries.  

The first observation related to Figure 5.37 is that at the given limit states the section 

analysis strains are significantly lower than finite element analyses strains. The εFEM/εSEC 

ratio takes the values 1.6, 1.8 and 2.1 for IO, LS and CP performance levels respectively. 

Priestley et al. (2007) specified the range of this ratio as 1.3 to 1.6 replacing the strains 

from finite element analyses with experimental strains, i.e. the ratio was defined as 

εEXP/εSEC. The difference may be due to two reasons. The ratio given by Priestley is 

applicable to column data and the strain measured in experiment varies significantly 

depending on the location of the measurement and gage length used to calculate the strain.  

The TSC limits were also superposed on the same figure. Since the transverse 

reinforcement at the boundary elements of the finite element models conform adequately to 

TSC requirements as discussed previously, the TSC limits plotted in the figures can be 

taken as the upper bound values of strains allowed at the specified performance levels. The 

methodology adopted in this study allows the direct comparison of strain limits specified in 

TSC and section analyses results. The limit state strains obtained from section analyses are 

significantly lower than the limits defined in TSC (2007), so as given by Priestley et al. 

(2007). The analyses results clearly indicate that if the limits given in TSC are used as 

acceptance criteria in the assessment of reinforced concrete shear walls, they will yield 

unduly unconservative performance estimations of the structural walls.  
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  Figure 5.37 Extreme compression fiber strains at calculated limit states for section and 
finite element analyses 
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  Figure 5.38 Extreme tension steel fiber strains at calculated limit states for section and 
finite element analyses 
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The compressive strains at different limit states obtained from section analyses and 

specified by the TSC are compared in Figure 5.39. The difference between the two 

formulations is defined by the ratio εSEC/εTSC. As seen in the figure, for most of the data 

points in the database the ratio is significantly lower than unity. The reason for this is 

certainly related to the modeling used in establishing the limit states in the requirements. It 

is demonstrated in Figure 5.30 that in general the ultimate curvature capacities of wall 

sections obtained from section analyses is larger than the ultimate curvatures obtained from 

FE analyses. In this study, ultimate curvature obtained from FE analysis is assumed as the 

ultimate curvature capacity of the section. In keeping with this, the limit states derived by 

running statistical analysis on the data from sectional analyses in codes should inevitably 

yield larger strain limits than the results presented here. It should be also admitted that the 

scarcity of comprehensive strain data measured in experiments impedes the improvement of 

such limits.  Therefore, the results presented in this study should be considered to be more 

reliable because the shortfalls of the section analyses in determining the deformations of 

walls have been demonstrated throughout the text. The data in Figure 5.31 reinforces this 

assertion. Experimental and finite element results indicate the same ultimate deformations 

limits.  
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Figure 5.40 illustrates the variation of compressive and tensile strain limits 

corresponding to plastic rotation limits in FEMA 356 against the normalized shear stress. 

As shown in Figure 5.40(b), the FEMA 356 equivalent compressive strains associated with 

each performance level are significantly lower than the strain limits specified in TSC. If the 

compressive strains are adapted to FEMA 356, they will take the values of 0.0035, 0.005 

and 0.0075 in average for immediate occupancy, life safety and collapse prevention 

performance levels, respectively. For flexure controlled members even much lower limits 

apply. Although FEMA 356 equivalent tensile strains are also lower than TSC limits, the 

difference is not as large as that observed in compressive strains. 

5.8 SHEAR STRENGTH  

The nominal shear strength of reinforced concrete walls designed to resist seismic 

loads is defined in current design guidelines. The two quantities used to define nominal 

shear strength are the contribution of the web reinforcement and the contribution of 

concrete. TSC and ACI-318 employ quite similar expressions to calculate the nominal shear 

strength of walls. The TSC expression reads as 

 

( )ydtctdwn ffAV ρ+= 65.0     (5.17) 

 

where fctd and fyd are the factored design cracking strength of concrete and the yield strength 

of reinforcement, respectively. The nominal shear strength of walls presented in ACI 318-

08 is 

( )ytccwn ffAV ρα +=      (5.18) 

 

where fc and fy are the characteristic compressive strength of concrete and yield strength of 

steel reinforcement, respectively.  The coefficient αc is 0.25 for Hw / Lw ≤ 1.5, is 0.17 for 

Hw / Lw  ≥ 2.0, and varies linearly between 0.25 and 0.17 for Hw / Lw between 1.5 and 2.0. 

In both equations, ρt is the ratio of area of distributed reinforcement parallel to the plane of 

Aw to gross concrete area perpendicular to that reinforcement. 
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  Figure 5.40 Variation of a) FEMA 356 plastic rotations and b) compressive, c) tensile 
strain limits adapted to FEMA 356 plastic rotation limits for conforming members with the 

normalized shear stress 
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The ratio of maximum shear force (Vmax) obtained from the finite element analysis to 

the nominal shear strength (Vn) defined by Eqs. (5.17) and (5.18) is plotted as a function of 

normalized shear stress in Figure 5.411. Keeping in mind that the shear safety of the walls 

was adjusted according to TSC, it is seen that the shear strength calculated using the code 

formulation yields conservative estimates of the shear strength of walls for ν > ~0.4 cf . 

The linear trend in the initial portion of Figure 5.41 suggests that structural walls subjected 

to shear stress levels less than 0.4 cf are not critical in terms of shear. Most of the data 

points in this region come from the walls that failed in flexure due to large wall slenderness 

ratio. Even though much less web shear reinforcement is required in most cases, the code 

minimum ρt = 0.25% was used in this region. The Vmax calculated for flexural failure are 

much lower than the corresponding shear capacity of the members. This is the main reason 

of the observed behavior in this region. As expected the ACI-318-05 expression gives 

slightly less conservative estimation of the shear strength, because the nominal shear 

strength calculated using ACI expression yields larger values compared to the TSC 

equation.    
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5.9 DISCUSSION OF RESULTS  

The analyses results displayed that the deformation capacity of shear wall members 

with confined boundary elements is larger than the limits given in FEMA 356 provisions. It 

is seen that FEMA 356 yields very conservative estimations of the structural performance. 

On the other hand, if the strain based performance criteria defined in TSC 2007 or as 

suggested by Priestley et al. (2007) is used in the determination of structural performance, 

unconservative estimations of performance are obtained for reinforced concrete rectangular 

walls. In reference to trends observed in Figure 5.32 and Figure 5.37 it can be concluded 

that plastic rotation is more stable parameter than the strains to establish the limit states of 

reinforced concrete members. The dispersion in the strain data in Figure 5.37 indicates that 

this measure of deformation is much more sensitive to member dimension, material 

properties, reinforcement amount and the level of axial load than the plastic rotations. So, 

as will be proposed next this study promotes the use of plastic rotations as performance 

limits in the assessment of reinforced concrete shear wall members.  

The proposed limits for the modeling parameters and the acceptance criteria for shear 

wall members controlled by flexure are shown in Figure 5.42 and tabulated in Table 5.7. 

These limits, alternative to Table 6.18 in FEMA 356, apply to conforming members. The 

limits are derived as a function of normalized shear stress (ν) and axial load level (P/Po) for 

different ranges of these variables in order to obtain more accurate representation of plastic 

rotation limits at the specified performance levels. Limits in relation to mid range axial load 

levels (P/Po = 0.15) are also introduced to increase the accuracy of the assessment 

procedure. The numbers written in parenthesis in bold letters in Table 5.7 is an adaptation 

for the FEMA 356 provisions. If the FEMA 356 provisions’ format, as given in Table 5.1 

previously, is preferred in the presentation of performance limits (such that limits only 

defined at specific ν and P/Po values), while the underlined number corresponds to the 

existing FEMA 356 limit at the specified shear stress and axial load condition, the left side 

number is the value proposed by this study. 

As seen in Figure 5.42 the proposed values correspond to lower bound limit of the 

results set. When more accurate values of the plastic rotation limits are required, Eq. (5.11) 

together with the coefficients defined in Table 5.6 can be employed to calculate plastic 

rotations at collapse prevention limit state. The limit obtained through Eq. (5.11) should be 

greater than the limit given in Table 5.7. If the limits obtained by this way are reduced by 

multipliying with a factor of 0.75, life safety performance criteria is obtained. 
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  Figure 5.42 Lower bound plastic rotation limits at different performance levels  
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Table 5.7 The proposed modeling parameters and acceptance criteria for shear wall 
members controlled by flexure  

    
  IO LS CP 

ν ≤ 0.25 0.004 - 0.01ν  
(0.0015 / 0.005)§ 

0.02 - 0.028ν 
(0.013 / 0.01) 

0.025 - 0.02ν 
(0.02 / 0.015) 

0.25 < ν ≤ 0.50 0.0015 0.016 - 0.012ν 0.025 - 0.02ν 

P/
P o

 <
= 

0.
10

 

0.50 > ν 0.0015 
(0.0015 / 0.004) 

0.016 - 0.012ν 
(0.01 / 0.008) 

0.025 - 0.02ν 
(0.015 / 0.01) 

ν ≤ 0.25 0.004 - 0.004ν 0.02 - 0.032ν 0.025 - 0.032ν 

0.25 < ν ≤ 0.50 0.004 - 0.004ν 0.016 - 0.016ν 0.022 - 0.02ν 

P/
P o

 =
 0

.1
5 

0.50 > ν 0.0025 - 0.001ν 0.011 - 0.006ν 0.019 - 0.014ν 

ν ≤ 0.25 0.004 - 0.004ν 
(0.003 / 0.003) 

0.02 - 0.04ν 
(0.01 / 0.006) 

0.02 - 0.02ν 
(0.015 / 0.009) 

0.25 < ν ≤ 0.50 0.004 - 0.004ν 0.012 - 0.008ν 0.02 - 0.02ν 

P/
P o

 >
= 

0.
25

 

0.50 > ν 0.0025 - 0.001ν 
(0.0015 / 0.0015) 

0.012 - 0.008ν 
(0.008 / 0.003) 

0.016 - 0.012ν 
(0.01 / 0.005) 

§(This study / FEMA 356) 
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CHAPTER 6 

SEISMIC PERFORMANCE OF STRUCTURAL WALL 
BUILDINGS  

6.1 INTRODUCTION  

This chapter is devoted to investigation of seismic performance of structural wall 

buildings. The seismic demand characterized by the code spectrum compatible ground 

motions are applied on a set of generic frame-wall buildings that represents broad range of 

frame-wall combinations of relative strength. The effectiveness of walls in the structural 

system is characterized by wall index. This way behavior modes from purely flexure 

(cantilever model) to shear dominated (strong frame - weak wall systems) can be simulated. 

The purpose of the analysis in this chapter is to investigate the following parameters: 

• The effect of wall amount (represented by wall index, p) on the deformation 

demands of reinforced concrete structures. The measures are the global roof drift ratio (DR) 

and maximum interstory drift ratio (MIDR). 

• The performance of wall elements by evaluating the base rotations and strains with 

respect to code specified limits and the limits found in Chapter 5. 

• The shear force to be used in the design of the walls to avoid shear failure. The 

amplification in the shear profile along the wall during a dynamic action due to higher 

mode effects has impelled codes to account for this excess shear in the design by a 

magnification factor (βv) applied to design base shear obtained from static analysis (EC8, 

TSC 2007). The amplification of shear demand along the wall, especially at the base, has 

been recognized some time ago (Derecho et al., 1978b; Derecho and Corley, 1984). Several 

factors and expressions have been proposed to consider this amplification in the design 

stage (Paulay and Priestley, 1992; Ghosh and Markevicius, 1992; Seneviratna and 
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Krawinkler, 1997; Amaris, 2002; Rutenberg and Nsieri, 2006; Celep and Aydinoglu, 2006). 

Although there is a significant amount of work conducted on the base shear amplification 

factor, the presented results indicate significant variability on the proposed amplification 

values and expressions. This is particularly due to quantity (number) and quality (frequency 

content and amplitude) of the ground motion records used in the analysis and the structural 

idealization of wall models investigated in these studies. The ground motion database used 

in this study is carefully selected to represent the code specified seismic demand.  

Using the stiffness and dynamic characteristics of the prototype frame-wall structures 

that were introduced in Chapter 4, the strength and stiffness characteristics of single wall-

equivalent frame models that were created for the finite element analyses as shown in 

Figure 4.29 are determined. Each model is characterized with a particular wall index and 

αH parameter. Dynamic time history analyses are conducted on these models to investigate 

the aforementioned issues.  

6.2 GENERIC SINGLE WALL-EQUIVALENT FRAME MODELS PRODUCED 
BY USING CHARACTERISTICS OF PROTOTYPE FRAME-WALL 
STRUCTURES  

It is considered that the generic equivalent frame- single wall models cover a wall 

index range of 0.002 to 0.02. Models that represent 4, 8 and 12 story structures are 

developed. The primary variables in creating a model is the wall length (Lw) ,height (Hw), 

and wall index (p). Instead of wall height number of stories (N) can be used as well. The 

design procedure described in Section 4.5 is utilized. Table 6.1 to 6.3 summarize the 

complete set of parameters that emerge from the design process and are used to define wall-

frame models.  

The values for frame design shear force (Vf) and the boundary element longitudinal 

reinforcement ratio (ρb) in these tables require an explanation. The calculated frame shear 

force at the base story decreases considerably as the wall index (amount of wall) increases. 

This is directly related to elastic analysis employed in the design. Elastic lateral load 

analyses have demonstrated that nearly the entire lateral load resistance of frame-wall 

buildings is provided by the structural walls as the wall index increases in the system. The 

generic-frame wall structures that are composed of a single wall and equivalent frame 

system seem to require no frames to resist lateral loads as the wall index increases. If the 

frame component is ignored, the system resembles a cantilever wall and this situation 
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engenders significant changes in the load resisting mechanism. Although walls are stiff 

elements and has a limiting effect on the deformations when elastic action is considered, in 

the inelastic range after plastic hinge formation at the base of the wall, system behavior 

changes completely to lead to significant deformation demands. This may have profound 

effects on the behavior of dual systems (Lu, 2002). Because of the rigid-body displacement 

of such walls, rotations along the height of the wall, of the same order as that at the 

foundation, will be introduced at every level. If the interaction effects are ignored, this will 

diminish the drift controlling effect of structural walls.  

Although design analysis results point to negligible effect of frame elements in 

seismic resistance, in reality there usually exist a considerable number of frame elements 

(columns) in the system (considering prototype structures in Figure 4.20). Figure 6.1 

displays the variation of number of columns per wall as the number of walls (wall index) 

increase in the prototype structure shown in Figure 4.20.  These columns contribute to the 

lateral strength of the system even though the minimum requirements of the code governs 

their design (minimum amount of longitudinal reinforcement in a column is (ρb)min = 0.01). 

This excess strength is not foreseen by the elastic analysis used in the design. So the frame 

forces calculated in Tables 6.1 to 6.3 should be adjusted in view of nonlinear analysis 

results where this substantial lateral strength is mobilized. One of the consequences of this 

situation is that the actual force reduction factor (R) in the system may turn out to be 

smaller than the one intended initially in the design of frame-wall systems.  

In the light of above discussion an approximate rule may be developed for a “typical” 

situation. If it is considered that the minimum column dimension is 0.5x0.5 m2 and 

minimum reinforcement amount is used ((ρb)min = 0.01), the moment capacity of columns is 

found as 256, 305 and 345 kN-m for 5%, 10% and 15% axial load levels, respectively. If 

the contra flexure height is assumed to occur at the mid height of the column, the column 

shears are found as 170, 203 and 230 kN for the same set of axial load levels, respectively. 

Considering that two columns supplement a wall in the system, the minimum story yield 

shear force due to columns for generic frame-wall structures are calculated as 340, 406 and 

460 kN for 4-, 8- and 12-story structures, respectively. If the frame shear found from elastic 

analysis is lower than the values given above they are replaced with these ones. Figure 6.1 

is in favor of such a correction in frame shear. The relation between the number of columns 

per wall as the wall index increases in the system is derived for the prototype structures 

described in Chapter 4. It is clear that when the number of columns is considered the 
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provided shear capacity is greater than that the elastic design forces on frame component 

have indicated. The story yield strength is not constant along the height of the structure. It 

is distributed to the upper stories in proportion to design forces resulting from code static 

lateral load pattern as shown in Figure 4.21 previously. 
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Figure 6.1 Relation between the wall index and number of columns per single wall 

extracted from prototype structures  
 

 

The second explanation is with regards to longitudinal boundary element 

reinforcement, ρb. As seen in the Tables 6.1 to 6.3 the required boundary element 

reinforcement decreases as the wall index increases and it seems to take negative values 

after some point. This situation stems from design procedure defined in Section 4.5 of 

Chapter 4. As the wall index increases in the system the design moment of walls decreases 

significantly. The reinforcement ratio calculated by inserting the design moment into Eq. 

(4.33) then takes negative values, because the moment is smaller than the section capacity 

that is obtained with minimum reinforcement. In such case code specifies the use of 

minimum amount of ρb = 0.01 as in the column elements. In this study the minimum 

boundary element longitudinal reinforcement is set to be ρb = 0.005, which is lower than the 

code limit. 
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Table 6.1 Strength and stiffness characteristics of frame-wall models developed for dynamic analysis, 4-story structure 
 

Lw 
(m) 

Hw 
(m) Ns Hw/Lw p (%) αH Te   (s) Af (m2) Vb (kN) R 

Vb/R 
(kN) 

Mw   
(kN-m) Vw (kN) 

Vf   
(kN) Vw/Vb P/Po Po (kN) ρb ρsh 

Mbeam 
(kN-m)

Kframe 
(kN/m)

Kbeam 
kN-m 
rad 

3 12 4 4 0.2 2.85 0.39 375 14715 6 2453 6138 1341 1111 0.55 0.05 938 0.0263 0.0031 902 49381 225381 
3 12 4 4 0.4 2.02 0.35 188 7358 6 1226 4431 886 340 0.72 0.05 938 0.0154 0.0025 706 15128 176554 
3 12 4 4 0.6 1.65 0.32 125 4905 6 818 3515 654 164 0.80 0.05 938 0.0096 0.0025 598 7279 149525 
3 12 4 4 0.8 1.43 0.29 94 3679 6 613 2938 517 96 0.84 0.05 938 0.0059 0.0025 523 4267 130830 
3 12 4 4 1.0 1.28 0.28 75 2943 6 491 2535 428 63 0.87 0.05 938 0.0034 0.0025 467 2796 116728 
3 12 4 4 1.2 1.17 0.26 63 2453 6 409 2236 364 44 0.89 0.05 938 0.0014 0.0025 422 1969 105570 
3 12 4 4 1.4 1.08 0.25 54 2102 6 350 2004 318 33 0.91 0.05 938 0.0000 0.0025 386 1458 96462 
3 12 4 4 1.6 1.01 0.23 47 1839 6 307 1817 281 25 0.92 0.05 938 -0.0012 0.0025 355 1121 88859 
3 12 4 4 1.8 0.95 0.22 42 1635 6 273 1663 253 20 0.93 0.05 938 -0.0022 0.0025 330 887 82401 
3 12 4 4 2.0 0.90 0.22 38 1472 6 245 1535 229 16 0.93 0.05 938 -0.0030 0.0025 307 718 76840 
5 12 4 2.4 0.2 1.53 0.34 625 24525 6 4088 17061 2739 1349 0.67 0.05 1563 0.0243 0.0045 992 59934 247949 
5 12 4 2.4 0.4 1.13 0.27 313 12263 6 2044 11000 1680 364 0.82 0.05 1563 0.0114 0.0025 671 16187 167646 
5 12 4 2.4 0.6 0.94 0.23 208 8175 6 1363 8185 1200 163 0.88 0.05 1563 0.0054 0.0025 514 7236 128507 
5 12 4 2.4 0.8 0.83 0.21 156 6131 6 1022 6542 931 91 0.91 0.05 1563 0.0019 0.0025 419 4028 104680 
5 12 4 2.4 1.0 0.75 0.19 125 4905 6 818 5457 760 57 0.93 0.05 1563 -0.0005 0.0025 354 2539 88498 
5 12 4 2.4 1.2 0.70 0.18 104 4088 6 681 4686 642 39 0.94 0.05 1563 -0.0021 0.0025 307 1734 76741 
5 12 4 2.4 1.4 0.65 0.16 89 3504 6 584 4109 556 28 0.95 0.05 1563 -0.0033 0.0025 307 1253 76741 
5 12 4 2.4 1.6 0.61 0.15 78 3066 6 511 3659 490 21 0.96 0.05 1563 -0.0043 0.0025 307 944 76741 
5 12 4 2.4 1.8 0.58 0.15 69 2685 5.9 456 3312 439 17 0.96 0.05 1563 -0.0050 0.0025 307 737 76741 
5 12 4 2.4 2.0 0.56 0.14 63 2349 5.7 413 3038 400 13 0.97 0.05 1563 -0.0056 0.0025 307 592 76741 
8 12 4 1.5 0.2 0.84 0.26 1000 39240 6 6540 39936 5300 1240 0.81 0.05 2500 0.0259 0.0060 1002 55126 250614 
8 12 4 1.5 0.4 0.66 0.19 500 19620 6 3270 22573 2976 294 0.91 0.05 2500 0.0096 0.0025 573 13077 143295 
8 12 4 1.5 0.6 0.57 0.16 333 13080 6 2180 15799 2056 124 0.94 0.05 2500 0.0033 0.0025 405 5495 101174 
8 12 4 1.5 0.8 0.51 0.14 250 9375 5.7 1654 12317 1587 67 0.96 0.05 2500 0.0000 0.0025 317 2982 79349 
8 12 4 1.5 1.0 0.47 0.13 200 7064 5.3 1345 10193 1303 42 0.97 0.05 2500 -0.0020 0.0025 264 1863 65960 
8 12 4 1.5 1.2 0.44 0.11 167 5615 4.9 1137 8721 1108 29 0.97 0.05 2500 -0.0034 0.0025 226 1267 56619 
8 12 4 1.5 1.4 0.42 0.11 143 4631 4.7 986 7636 966 21 0.98 0.05 2500 -0.0044 0.0025 199 914 49707 
8 12 4 1.5 1.6 0.40 0.10 125 3922 4.5 872 6802 857 15 0.98 0.05 2500 -0.0052 0.0025 177 688 44374 
8 12 4 1.5 1.8 0.38 0.09 111 3390 4.3 783 6140 771 12 0.98 0.05 2500 -0.0058 0.0025 161 536 40125 
8 12 4 1.5 2.0 0.37 0.09 100 2978 4.2 710 5601 701 10 0.99 0.05 2500 -0.0063 0.0025 147 428 36656 

 
Lw = wall length; Hw = wall height; Ns = number of stories; Hw/Lw = aspect ratio of wall; p = wall index; αH = behavior factor; Te = elastic period of structure; Af =  floor area per wall; Vb = 
unfactored total equivalent seismic base shear; R= force reduction factor; Mw = wall design bending moment; Vw = wall base shear; Vf = frame base shear; Po = axial load; ρb = ratio of total boundary 
element longitudinal reinforcement area to boundary region area; ρsh = web reinforcement; Mbeam = total bending effect of beams framing to walls; K =initial stiffness of beam and frame elements 
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Table 6.2 Strength and stiffness characteristics of frame-wall models developed for dynamic analysis, 8-story structure 
 

Lw 
(m) 

Hw 
(m) Ns Hw/Lw p (%) αH Te   (s) Af (m2) Vb (kN) R 

Vb/R 
(kN) 

Mw   
(kN-m) Vw (kN) 

Vf   
(kN) Vw/Vb P/Po Po (kN) ρb ρsh 

Mbeam 
(kN-m)

Kframe 
(kN/m)

Kbeam 
kN-m 
rad 

3 24 8 8 0.2 6.44 0.78 375 23905 6 3984 10831 1990 1995 0.50 0.1 1875 0.0495 0.0061 1895 88653 473812 
3 24 8 8 0.4 4.56 0.75 188 12261 6 2044 8385 1388 655 0.68 0.1 1875 0.0339 0.0033 1587 29113 396773 
3 24 8 8 0.6 3.73 0.73 125 8369 6 1395 7000 1063 332 0.76 0.1 1875 0.0250 0.0025 1405 14738 351174 
3 24 8 8 0.8 3.23 0.71 94 6417 6 1069 6111 866 203 0.81 0.1 1875 0.0194 0.0025 1279 9023 319848 
3 24 8 8 1.0 2.89 0.69 75 5242 6 874 5487 735 138 0.84 0.1 1875 0.0154 0.0025 1186 6153 296614 
3 24 8 8 1.2 2.64 0.68 63 4455 6 743 5021 641 101 0.86 0.1 1875 0.0124 0.0025 1114 4497 278482 
3 24 8 8 1.4 2.45 0.66 54 3891 6 649 4658 571 78 0.88 0.1 1875 0.0101 0.0025 1055 3449 263800 
3 24 8 8 1.6 2.29 0.65 47 3467 6 578 4365 516 62 0.89 0.1 1875 0.0082 0.0025 1006 2741 251573 
3 24 8 8 1.8 2.16 0.63 42 3135 6 522 4123 472 50 0.90 0.1 1875 0.0067 0.0025 965 2238 241163 
3 24 8 8 2.0 2.05 0.62 38 2868 6 478 3918 436 42 0.91 0.1 1875 0.0054 0.0025 929 1868 232143 
5 24 8 4.8 0.2 3.46 0.81 625 38638 6 6440 31873 3963 2477 0.62 0.1 3125 0.0494 0.0078 2182 110089 545447 
5 24 8 4.8 0.4 2.55 0.72 313 21190 6 3532 23725 2759 772 0.78 0.1 3125 0.0321 0.0045 1701 34323 425164 
5 24 8 4.8 0.6 2.14 0.66 208 15121 6 2520 19662 2136 384 0.85 0.1 3125 0.0234 0.0028 1459 17074 364720 
5 24 8 4.8 0.8 1.88 0.62 156 11987 6 1998 17161 1764 233 0.88 0.1 3125 0.0181 0.0025 1305 10372 326217 
5 24 8 4.8 1.0 1.71 0.58 125 9810 6 1635 15053 1480 155 0.91 0.1 3125 0.0136 0.0025 1166 6869 291413 
5 24 8 4.8 1.2 1.57 0.55 104 8175 6 1363 13231 1255 108 0.92 0.1 3125 0.0097 0.0025 1039 4799 259774 
5 24 8 4.8 1.4 1.47 0.53 89 7007 6 1168 11835 1088 80 0.93 0.1 3125 0.0067 0.0025 940 3535 235001 
5 24 8 4.8 1.6 1.39 0.51 78 6131 6 1022 10726 961 61 0.94 0.1 3125 0.0044 0.0025 860 2709 214958 
5 24 8 4.8 1.8 1.32 0.49 69 5450 6 908 9821 860 48 0.95 0.1 3125 0.0024 0.0025 793 2138 198338 
5 24 8 4.8 2.0 1.26 0.47 63 4905 6 818 9066 779 39 0.95 0.1 3125 0.0008 0.0025 737 1729 184291 
8 24 8 3 0.2 1.90 0.77 1000 64287 6 10715 88149 8199 2515 0.77 0.1 5000 0.0651 0.0110 2623 111786 655652 
8 24 8 3 0.4 1.48 0.62 500 38443 6 6407 63718 5650 757 0.88 0.1 5000 0.0422 0.0066 1944 33645 486065 
8 24 8 3 0.6 1.29 0.53 333 26160 6 4360 47449 4023 337 0.92 0.1 5000 0.0269 0.0039 1473 14961 368137 
8 24 8 3 0.8 1.16 0.48 250 19620 6 3270 37634 3085 185 0.94 0.1 5000 0.0177 0.0025 1181 8229 295358 
8 24 8 3 1.0 1.07 0.44 200 15696 6 2616 31307 2500 116 0.96 0.1 5000 0.0117 0.0025 991 5154 247764 
8 24 8 3 1.2 1.01 0.41 167 13080 6 2180 26865 2101 79 0.96 0.1 5000 0.0075 0.0025 856 3508 213965 
8 24 8 3 1.4 0.95 0.38 143 11211 6 1869 23563 1812 57 0.97 0.1 5000 0.0044 0.0025 754 2530 188611 
8 24 8 3 1.6 0.91 0.36 125 9810 6 1635 21005 1592 43 0.97 0.1 5000 0.0020 0.0025 675 1904 168832 
8 24 8 3 1.8 0.87 0.34 111 8720 6 1453 18963 1420 33 0.98 0.1 5000 0.0001 0.0025 612 1480 152938 
8 24 8 3 2.0 0.84 0.33 100 7848 6 1308 17292 1281 27 0.98 0.1 5000 -0.0015 0.0025 559 1181 139869 

 
Lw = wall length; Hw = wall height; Ns = number of stories; Hw/Lw = aspect ratio of wall; p = wall index; αH = behavior factor; Te = elastic period of structure; Af =  floor area per wall; Vb = 
unfactored total equivalent seismic base shear; R= force reduction factor; Mw = wall design bending moment; Vw = wall base shear; Vf = frame base shear; Po = axial load; ρb = ratio of total boundary 
element longitudinal reinforcement area to boundary region area; ρsh = web reinforcement; Mbeam = total bending effect of beams framing to walls; K =initial stiffness of beam and frame elements 
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Table 6.3 Strength and stiffness characteristics of frame-wall models developed for dynamic analysis, 12-story structure 
  

Lw 
(m) 

Hw 
(m) Ns Hw/Lw p (%) αH Te   (s) Af (m2) Vb (kN) R 

Vb/R 
(kN) 

Mw   
(kN-m) Vw (kN) 

Vf   
(kN) Vw/Vb P/Po Po (kN) ρb ρsh 

Mbeam 
(kN-m)

Kframe 
(kN/m)

Kbeam 
kN-m 
rad 

3 36 12 12 0.2 10.04 1.14 375 26325 6 4387 12181 2135 2253 0.49 0.15 2813 0.0513 0.0067 2204 100117 550931 
3 36 12 12 0.4 7.11 1.13 188 13318 6 2220 9476 1476 744 0.66 0.15 2813 0.0340 0.0037 1877 33056 469129 
3 36 12 12 0.6 5.81 1.11 125 8977 6 1496 7923 1119 377 0.75 0.15 2813 0.0241 0.0025 1670 16766 417472 
3 36 12 12 0.8 5.04 1.10 94 6804 6 1134 6911 903 231 0.80 0.15 2813 0.0177 0.0025 1522 10260 380437 
3 36 12 12 1.0 4.51 1.08 75 5498 6 916 6193 759 157 0.83 0.15 2813 0.0131 0.0025 1409 6982 352135 
3 36 12 12 1.2 4.12 1.07 63 4627 6 771 5651 657 114 0.85 0.15 2813 0.0097 0.0025 1318 5089 329598 
3 36 12 12 1.4 3.81 1.06 54 4004 6 667 5226 580 88 0.87 0.15 2813 0.0069 0.0025 1244 3890 311113 
3 36 12 12 1.6 3.57 1.05 47 3536 6 589 4881 520 69 0.88 0.15 2813 0.0047 0.0025 1182 3082 295605 
3 36 12 12 1.8 3.36 1.03 42 3172 6 529 4595 472 56 0.89 0.15 2813 0.0029 0.0025 1129 2508 282360 
3 36 12 12 2.0 3.19 1.02 38 2880 6 480 4353 433 47 0.90 0.15 2813 0.0014 0.0025 1084 2086 270882 
5 36 12 7.2 0.2 5.39 1.24 625 41210 6 6868 36123 4076 2792 0.59 0.15 4688 0.0521 0.0081 2598 124093 649541 
5 36 12 7.2 0.4 3.98 1.15 313 21921 6 3654 26687 2790 864 0.76 0.15 4688 0.0320 0.0046 2011 38395 502795 
5 36 12 7.2 0.6 3.33 1.08 208 15280 6 2547 21913 2121 426 0.83 0.15 4688 0.0218 0.0028 1708 18921 426958 
5 36 12 7.2 0.8 2.93 1.04 156 11885 6 1981 18974 1724 257 0.87 0.15 4688 0.0156 0.0025 1515 11403 378709 
5 36 12 7.2 1.0 2.66 1.00 125 9813 6 1635 16952 1462 173 0.89 0.15 4688 0.0112 0.0025 1378 7691 344567 
5 36 12 7.2 1.2 2.45 0.96 104 8410 6 1402 15458 1276 125 0.91 0.15 4688 0.0081 0.0025 1275 5574 318755 
5 36 12 7.2 1.4 2.29 0.93 89 7394 6 1232 14300 1137 96 0.92 0.15 4688 0.0056 0.0025 1193 4246 298335 
5 36 12 7.2 1.6 2.16 0.90 78 6623 6 1104 13369 1028 75 0.93 0.15 4688 0.0036 0.0025 1127 3355 281637 
5 36 12 7.2 1.8 2.05 0.88 69 6016 6 1003 12599 941 61 0.94 0.15 4688 0.0020 0.0025 1071 2726 267635 
5 36 12 7.2 2.0 1.96 0.86 63 5525 6 921 11950 870 51 0.94 0.15 4688 0.0006 0.0025 1023 2265 255659 
8 36 12 4.5 0.2 2.96 1.29 1000 63779 6 10630 97624 7918 2712 0.74 0.15 7500 0.0679 0.0105 3047 120515 761796 
8 36 12 4.5 0.4 2.31 1.09 500 36615 6 6102 69481 5300 802 0.87 0.15 7500 0.0415 0.0060 2227 35664 556632 
8 36 12 4.5 0.6 2.00 0.97 333 26727 6 4455 56578 4065 390 0.91 0.15 7500 0.0293 0.0039 1847 17315 461739 
8 36 12 4.5 0.8 1.81 0.89 250 21481 6 3580 48847 3347 233 0.93 0.15 7500 0.0221 0.0027 1616 10352 403875 
8 36 12 4.5 1.0 1.67 0.83 200 18184 6 3031 43566 2874 156 0.95 0.15 7500 0.0171 0.0025 1455 6944 363729 
8 36 12 4.5 1.2 1.57 0.78 167 15899 6 2650 39668 2537 113 0.96 0.15 7500 0.0134 0.0025 1335 5010 333695 
8 36 12 4.5 1.4 1.48 0.74 143 14211 6 2368 36638 2283 86 0.96 0.15 7500 0.0106 0.0025 1240 3801 310084 
8 36 12 4.5 1.6 1.41 0.71 125 12906 6 2151 34194 2084 67 0.97 0.15 7500 0.0083 0.0025 1163 2992 290862 
8 36 12 4.5 1.8 1.36 0.68 111 11864 6 1977 32169 1923 55 0.97 0.15 7500 0.0064 0.0025 1099 2423 274800 
8 36 12 4.5 2.0 1.31 0.65 100 11009 6 1835 30455 1790 45 0.98 0.15 7500 0.0048 0.0025 1044 2006 261106 

 
Lw = wall length; Hw = wall height; Ns = number of stories; Hw/Lw = aspect ratio of wall; p = wall index; αH = behavior factor; Te = elastic period of structure; Af =  floor area per wall; Vb = 
unfactored total equivalent seismic base shear; R= force reduction factor; Mw = wall design bending moment; Vw = wall base shear; Vf = frame base shear; Po = axial load; ρb = ratio of total boundary 
element longitudinal reinforcement area to boundary region area; ρsh = web reinforcement; Mbeam = total bending effect of beams framing to walls 
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6.2.1 Static Analysis on Generic Models with Elastic Properties 

The relation between the wall index and vibration period is plotted in Figure 6.2. 

Based on the periods calculated and tabulated in Tables 6.1 to 6.3 and plotted in Figure 6.2 

equivalent static seismic base shear is calculated according to the procedure defined 

previously in Section 4.5. Using triangular load pattern, static analyses was performed with 

reduced cracked section stiffness properties. No reduction was applied on the seismic base 

shear. The roof displacement was calculated using the expression given in Eq. (E.38) in 

APPENDIX E and normalized with respect to building height. The variation of roof drift 

with wall index is plotted in Figure 6.3. 
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Figure 6.2 Change in the period of frame-wall system as a function of the amount of walls 

per floor area 
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Figure 6.3 Drift of frame-wall system with an increase in the amount of walls per floor area 

 

 

Although based on linear analyses useful observations emerge from the data 

presented in these figures. With reference to Figure 6.2, in low rise buildings (4-story) the 

wall amount provides significant stiffness improvement in the system regardless of 

comprising walls length as reflected in the reduction of fundamental vibration period. As 

the number of stories increase effect of wall length rather than the increased wall index 

become more pronounced in increasing the rigidity of the system. The effect of increased 

wall area in controlling the drift demands on frame wall-systems is displayed in Figure 6.3. 

It is seen in the figure that walls with larger length provide much better control and 

reduction on the drift demands. In reducing the seismic drift demands it is not the wall 

amount (area) but the stiffness provided by the increased moment of inertia that is more 

effective. So in the design using robust walls (Lw > 5m) should provide better control on the 
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seismic drift demands. This is another argument against the use of “wall columns” that is 

common in Turkish practice. 

The required boundary element reinforcement as function of strength reduction 

factors R = 4 and 6 is plotted in Figure 6.4. Increasing the strength reduction factor 

significantly increases the amount of boundary element flexural reinforcement required to 

resist the seismic moments even though the existing wall amount is quite large. These 

observations are valid for systems where walls only interact with frames in the direction of 

excitation. When wall-to-wall interaction exists (such as the case of coupled walls) the 

picture may change. For walls in low rise  buildings (N = 4) designed as high ductility 

systems (R=6), when the wall index exceeds 0.5% the required amount of boundary 

element longitudinal reinforcement is satisfied with the minimum amount of 1% as 

specified in the code.  
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Figure 6.4 Boundary element reinforcement as a function of p and R 
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6.2.2 Nonlinear Dynamic Analysis of Generic Frame-Wall Models  

Using the finite element model displayed in Figure 4.29 and the member strength and 

stiffness properties tabulated in Tables 6.1 to 6.3, nonlinear time history analyses were 

conducted. The nonlinear force-defromation relations were employed as defined in Section 

4.6 of Chapter 4. As seismic input the ground motion data set composed of ten design 

spectrum compatible natural records were applied to the finite element models. The 

response parameters under investigation are plotted in Figure 6.5 to Figure 6.10. These 

parameters include maximum roof drift, maximum interstory drift, base rotation, base shear 

amplification factor and maximum compressive strain at the extreme fiber of the base 

section.  The response parameters are mainly plotted as a function of wall index to see the 

effect of wall amount on these parameters.  

Before commencing further, the key to the notation used on figures is given. As an 

example in “L3S4”, L3 indicates to wall with 3 m length and S4 refers to 4-story structure. 

The other labels should be read accordingly.  

 Figure 6.5 displays the maximum roof drift of model frame-wall structures. No 

profound effect of increased wall area is observed on the drift demands except for 4-story 

structures. For 8- and 12-story structures the mean drift reduces from 1% to 0.75% as the 

wall index increase from 0.2% to 2%. Although the reduction is not so significant 

considering the increase in the wall area, it can be seen that better control over the roof drift 

is achieved. For wall indexes greater than 0.75% the scatter of data around the mean drift 

ratio due to ground motion variability decreases significantly. The increased wall area 

affects significantly the seismic deformation demand on 4-story structures. The drift 

demands reduce from approximately 1.5% to below 0.5% as the wall area increases. 

Producing the same wall area in the system using larger walls also improves the drift 

control over 4-story structures. For the same wall index no effect of wall length on the drift 

demands is observed on 8 and 12-story structures. The trend between the wall index and the 

drift ratio observed in Figure 6.5 does not agree with the elastic analysis results plotted in 

Figure 6.3. Elastic analyses indicate much better control on the drift as the wall index 

increases. The difference may be attributed to change in the behavior of wall systems after 

formation of plastic hinge at the wall base.   

The maximum interstory drift ratios (MIDR) are plotted in Figure 6.6. The figures 

indicate to same trends observed in the roof drift ratios (DR) in Figure 6.5, the only 

difference being the maximum interstory drift is generally 25 to 50 percent larger than the 
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maximum roof drift in the 8- and 12-story models. The mean seismic MIDR decrease from 

1.5% to 0.75% as the wall index increases from 0.2% to 2%. For wall indexes larger than 

0.5% the MIDR is in the order of 1% or less. 

Figure 6.7 presents the dynamic amplification at the base of the walls. The base shear 

amplification factor is calculated as  

 
staticdynamicv VV=β      (6.1) 

 
The static wall base shear is calculated by performing pushover analysis under code-

specified equivalent static lateral load. Dynamic shear is the maximum value observed 

during the response history data. It is seen that the dynamic amplification decreases from 

approximately 1.5 to 1.15 as the wall index in the system increase. The increased wall 

index indicates reduced frame-wall interaction effects on the walls. TSC 2007 specifies that 

in the systems where the seismic force is completely carried by reinforced concrete 

structural walls the dynamic amplification factor can be taken as 1.0. This observation is in 

agreement with the code specification. However, there is one additional reason for this 

reduction observed in the dynamic amplification factor. As discussed in Section 6.2 in the 

design of frame-wall models due to code specified requirements and constructional 

restrictions the actual strength of the structure is higher than the strength calculated from 

elastic analysis. The structure happened to be designed for a lower force reduction factor 

than R= 6. It can be concluded that the dynamic amplification is also a function of expected 

inelasticity in the systems. The effect of force reduction factor is displayed in Figure 6.12 

and will be discussed in the following sections. 

Figure 6.8 displays the maximum plastic rotations calculated at the base of the walls 

as a function of wall index. Figure 6.9 displays only the mean base rotation plotted for wall 

index for more clear depiction of this type of deformation demand. The FEMA 356 rotation 

limits are also superposed on the same figure to facilitate estimating the likely performance 

of walls located in different structural systems. Before evaluating the results calculation of 

FEMA 356 limits is discussed. The limits for each model structure are calculated using 

normalized shear stress (ν) and the axial load ratio (P/Po) on the wall element. The 

normalized shear stress is calculated according to Eq. (5.5) by factoring the design shear 

force of wall for flexural over-strength factor (φo = 1.25) and the dynamic amplification 

factor (βv =1.5) as specified by the code. Eqs (5.2) to (5.4) are used to calculate the 

performance limits for immediate occupancy (IO), life safety (LS), collapse prevention 
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(CP). As seen in Figure 6.9 the calculated FEMA 356 plastic rotation limits indicate very 

low deformability at the base of the walls for low wall index systems (p < 0.5%) especially 

for 8- and 12-story structures. This is due to high shear stress carried by the walls in this 

range of wall indexes. Above p = 0.5% nearly all walls in all systems assure at least life 

safety (LS) performance state.  

The maximum compressive strains at the extreme fiber of wall base section are 

plotted in Figure 6.10. The pronounced effect of high shear stress is quite obvious on the 

increased strain demand in low wall index structures. The frame-wall interaction results in 

an increase in the slope of the moment profile along the lower stories of the wall, and thus 

increase the level of shear stress that must be resisted by the wall compared with cantilever 

walls. The base stories of walls in frame-wall structures with p < 0.5 % resemble squat wall 

in terms of loading conditions, so they inhabit very low deformation capacity ( lower than 

0.01 drift ratio) and most of the damage concentrates in the compression zone leading to 

concrete crushing and loss of concrete integrity at this region. The behavior of wall under 

high shear was discussed in Chapters 2 and 5 previously. As seen in Figure 6.10, concrete 

compressive strains in low wall index frame-wall structures are much higher than the limit 

allowed for design (εc = 0.0035), so it can be concluded that while allocating walls together 

with frames a minimum requirement must be sought on the amount of walls with respect to 

the total floor area. The limiting value can be recommended as p = 0.5%.   
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Figure 6.5 Variation of maximum roof drift with wall index and number of stories 
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Figure 6.6 Variation of maximum interstory drift ratio with wall index and number of stories  
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Figure 6.7 Variation of base shear amplification factor (βv) with wall index and number of stories   
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Figure 6.8 Maximum plastic rotation calculated at the base of the wall 
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Figure 6.9 Comparison of mean base rotation demand at the wall base with FEMA 356 performance limits 
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Figure 6.10 Maximum compressive strain at the base section and TSC 2007 strain limits
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6.3 DYNAMIC AMPLIFICATION FACTOR  

The code equivalent triangular lateral load pattern that represents the distribution of 

inertia forces along the building height locates the center of inertial forces at approximately 

heff = 0.7Hw above the base. Thereafter, the formation of the plastic hinge at the base of the 

wall, introduces the contribution of higher modes of vibration, and the centroid of inertia 

forces over the height of the building may be in a significantly lower elevation than that 

predicted by the conventional static analysis method. The dynamic amplification factor is 

introduced into the design of structural walls to take into account this excess shear resulting 

from higher mode effects. It is known from structural dynamics that the contribution of 

higher modes to shear will increase as the number of stories increases. Depending on this 

argument Paulay and Priestley (1992) stated that the contribution of higher modes to shear 

will increase as the fundamental period of the structure increases since the period is 

proportional to the number of stories. The fundamental mechanism behind the shear 

amplification resulting from higher mode effects is the hinging of the wall base. This means 

that the criteria to be considered in the assessing the order of amplification should be 

associated with the level of nonlinearity in the systems.  This in turn makes the force or 

strength reduction factor (R) as the most important variable in investigating dynamic 

amplification.  

Earthquake resistant design codes employ expressions and constants to account the 

for the dynamic shear amplification in the design of walls. New Zealand 3101 (Standards 

New Zealand 2006) is one of the earliest codes that have included empirical amplifiers for 

wall shear. The expression for the dynamic shear amplification is given as 

 
109.0 Nv +=β      (6.2a) 

 
for buildings up to six stories, and 

 
303.1 Nv +=β      (6.2b) 

 
for buildings over six stories, where N is the number of stories. Eq. (6.2b) is valid for N<15 

and the limiting value of amplification factor is given as βv < 1.8.  

Eurocode 8 adopts the equation initially proposed by Keintzel (1990) 
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wherein γRd = 1.2 is a factor to account for overstrength due to steel strain-hardening, MRd 

is the design flexural resistance at the base of the wall and MEd the corresponding moment 

from analysis, T1 is the fundamental period of vibration of the building, Tc is the upper limit 

period of the constant spectral acceleration region of the EC8 spectrum, and Se(T) is the 

ordinate of the elastic response spectrum. The equation is intended to account for the effects 

of both overstrength due to the development of a single plastic hinge at the base and higher 

modes (second term within the square root). The design envelope of shear forces is given in 

Figure 6.10.  

TSC 2007 adopts a constant value for the dynamic amplification factor, βv = 1.5. 

Ghosh (1992) suggested the following equation giving the maximum dynamic base 

shear in isolated walls subjected to seismic excitation that is represented with the 1940 El 

Centro NS record (this record exhibited a peak ground acceleration of 0.33g) 

 
wyg HMgxWV 67.025.0 maxmax += &&     (6.4) 

 
where W is the total weight and maxgx&&  is the peak ground acceleration.  

 

 

 
Figure 6.11 Design envelope of the shear forces in the walls of a dual system in EC8 
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Using the analysis results a new expression for the calculation of dynamic shear 

amplification is proposed. The calculated mean amplification factors at the base of wall are 

plotted as a function of wall index (p), strength reduction factor (R) and number of stories 

(N) in Figure 6.12. As seen in the figure, all of the parameters display a certain level of 

correlation with the dynamic amplification factor.  As the number of stories and strength 

reduction factor increase, the amplification factors increase as well. Wall index is inversely 

proportional with amplification factor. At first sight it is considered that all three 

parameters influence the dynamic amplification. However, when the relation between the 

wall index (p) is plotted against the strength reduction factor (R) as in Figure 6.13 it is 

understood that the increased wall index leads to lower strength reduction factors as 

discussed in Section 6.2. These two parameters are the one and same in this study. So wall 

index is not a true parameter and may be ignored.  
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Figure 6.12 Variation of dynamic amplification factor with a) wall index, b) number of 

stories, c) strength reduction factor 
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Figure 6.13 Relation between the strength reduction factor and wall index 

 

 

A regression analysis is performed using the parameters R and N to estimate the βv. 

Figure 6.12(c) suggests that the data must be investigated in two separate bins, because of 

the different linear trends observed on the left and right side of R=2 value. Using linear 

regression analysis method following expressions is proposed for the calculation of 

dynamic shear amplification factor   

 
21.001.095.0 >++= RforRNvβ    (6.5a) 

 
( )( ) 201.015.011 ≤+−+= RforNRvβ    (6.5b) 

 
The comparison of predictions with the calculated amplification factors is plotted in 

Figure 6.14. The equation tells that the primary variable affecting the amplification factor is 

the expected level of nonlinearity in the system reflected by R. The number of stories or 

fundamental period is of secondary importance. Of course the regression analysis here 

cover number of stories up to 12 and structural period of 1.5 s at maximum. Beyond this 

limit the significance of these parameters may change, but we refrain from commenting on 

that. 
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Figure 6.14 Comparison of predicted dynamic amplification factor by Eq. (6.5) with 

analysis results 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 SUMMARY  

In this dissertation, seismic performance of structural walls has been investigated by 

evaluating the shortcomings of the existing seismic performance limits that are specified in 

certain codes as modeling and acceptance criteria for their seismic performance. The 

validity of strains over conventional drift and rotation limits in use of performance limits 

has been an area of focus. The seismic performance investigation of reinforced concrete 

structures requires certain level of accuracy and reliability in structural modeling and 

ground motion selection aspects, so these topics have been covered thoroughly in separate 

chapters. Verification of the finite element code used in the modeling and analysis of 

structural walls constitutes a significant tier of this study because reinforced concrete 

deformation limits can be only interrogated analytically if the utilized tool is able to 

estimate the actual strength and deformation capacity of reinforced concrete members 

accurately. In this work ANSYS finite element program has been used to analyze shear wall 

models. Realistic reduced finite element models of frame-wall structures have been 

developed to include structural interaction effects to the analysis process. 

Results of several shear wall experiments conducted under dynamic, static cyclic and 

static monotonic loading conditions are used to establish the material and finite element 

aspects of nonlinear finite element analysis procedures. Calibration of concrete material 

model under different stress conditions, ranging from flexure to shear critical, is discussed 

in detail. The effect of solid finite element options, which is available in the ANSYS 

program, on the accuracy of calculated results is investigated by simulating the test results. 

Experimentally measured displacements, forces and strains are graphically compared with 
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calculated values.  The benchmark results are such that full confidence in the problem 

outputs is achieved. 

The ground motions to be used as input in dynamic analysis have been selected from 

the four natural ground motion datasets that had been assembled by different researchers. 

Frequency content of ground motion is considered as the most significant parameter in 

selecting the ground motions. An existing and a newly developed ground motion intensity 

measures are used to identify the frequency content of the ground motion.  The new 

spectral intensity measure is based on period elongation and area below the acceleration 

response spectrum. A/V ratio defined as the ratio of peak ground acceleration to velocity 

ratio is also used to describe the frequency content of the ground motion. The effect of 

frequency content on SDOF system deformation demands is analyzed using ground motion 

data sets classified according to A/V ratio. Ten out of 228 ground motions that conform to 

the frequency content of normal ground motions (A/V ≈ 8 s-1) and yield code design 

spectrum compatible spectral shapes are selected for time history analyses.   

The inadequacy of experimental setups used in the shear wall tests hinders the 

inclusion of 3D structural effects on the wall response. The actual loading conditions that 

develop during a dynamic event cannot be represented entirely either. An analytical 

framework that incorporates the selection of design parameters affecting wall response and 

accounts for significant interaction effects is developed to analyze structural walls in 

isolated form. Typically, finite element models of structural walls are discreticized with 

thousands of elements and nodes, so computationally efficient generic single wall-

equivalent frame models reduced from real prototype frame-wall structure are required for 

use in finite element analyses.  A straightforward design process based on linear shear-

flexure beam continuum theory is developed. Derivation of an improved formulation for the 

shear-flexure beam model is presented.  

While FEMA 356 relies on plastic rotations to be used as modeling parameters and 

numerical acceptance criteria for nonlinear procedures, TSC 2007 uses concrete and steel 

strains for the performance evaluation of reinforced concrete members. A parametric study 

including wall length, building height, axial load ratio, boundary element longitudinal 

reinforcement ratio as variables is conducted on model walls. Static analyses on isolated 

cantilever wall models are performed to determine the deformation limits of reinforced 

concrete conforming wall members in terms of drift, rotation and strains. Using the force-

displacement responses obtained from analyses immediate occupancy, life safety and 



 289

collapse prevention performance limits are determined. The FEMA 356 rotation limits and 

TSC 2007 strain limits are compared with the finite element analysis results. The limits 

defined in both documents are also crosschecked to examine the consistency among them. 

Expressions for drift and rotation are proposed to calculate the collapse prevention limit 

state. A thorough examination on the components of plastic hinge analysis is performed in 

parallel to investigation of performance limits. A discrete procedure is developed to 

establish the relation between the section responses obtained from experiments or 

equivalent methods and conventional section analysis. An expression is derived for the 

calculation of plastic hinge length. Reliance on simple calculations for strain is shown to 

produce false performance expectations. 

Finally, the seismic performance of structural walls under different stress conditions 

represented with varying wall index (amount) in frame-wall systems is analyzed by 

performing nonlinear time history analysis. The generic frame-wall models is designed for 

strength reduction factor of R = 6. Ten design spectrum compatible ground motions are 

applied on each model. The deformation demands such as maximum roof drift and 

interstory drift ratio, base rotation and maximum compressive strain at the boundary 

element is compared with FEMA 356 and TSC 2007 performance limits. The dynamic 

amplification in the wall shear resulting form higher mode effects is investigated by 

comparing the seismic shear calculated at the base of wall during dynamic analysis with the 

one obtained from pushover analysis utilizing triangular lateral load pattern. A simple 

expression for the calculation of dynamic shear amplification is proposed.  

7.2 CONCLUSIONS  

The following conclusions in regards to seismic performance assessment of structural 

walls are reached on the basis of the results obtained in this study. 

• Nonlinear finite element analysis procedures can be effectively used to calculate 

distinct response modes of shear walls ranging from flexure to shear dominated behavior. 

The deformation and strength characteristics of reinforced concrete structural walls can be 

calculated within reasonable accuracy. However, finite element programs, commercial or 

developed for research purposes, must be verified against benchmark problems as 

performed here for ANSYS code. The calibration of material models for each particular 

case is described in detail. The low order finite elements displaying shear locking 
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behavior should be used with extensive care in regards to element options and mesh 

density in the model. 

• The frequency content of a ground motion should be considered as an important 

parameter in the selection of ground motions to be used as input in nonlinear dynamic 

analysis. Two measures are used to determine the frequency content of a ground motion. 

A new spectral intensity measure (Ia) that is calculated as the area blow the acceleration 

response spectrum between the elastic fundamental period (Ti) and the elongated period 

(Tf) reflecting the effect of damage on the structure are found to correlate well with 

calculated seismic deformation demands. The second intensity measure is the A/V ratio. 

For the ground motions that has the same peak ground amplitude, the one that has lower 

A/V ratio found to be more destructive. It is also demonstrated that A/V ratio initially 

used to emphasize the effect of local soil conditions on the ground motion parameters also 

correlates well with the earthquake magnitude. Large earthquakes have lower A/V ratio 

reflecting the existence of low frequency wave components in the composition of the 

record. Most ground motions (design spectrum compatible) have A/V ratio of 

approximately 8 s-1. Use of ground motions with low A/V ratio in time history analysis 

may cause overestimation of seismic demand. A/V is more useful in classifying ground 

motions data sets rather than selecting a single motion.   

• A/V ratio may provide considerable insight in reducing discrepancies related to ground 

motion scaling based on peak ground amplitude parameters (PGA and PGV). If the 

ground motions classified in low, high and normal A/V ratio bins according to limits 

defined in this study are scaled to the same PGA, the highest deformation demands are 

obtained from low A/V ratio bin. If the scaling is done for the same PGV level, the 

highest deformation demands are obtained from high A/V ratio bin and lowest from the 

low A/V ratio bin. An interesting observation in regards to scaling of ground motions by 

peak ground amplitude values is that assuming the ground motions in a data set has 

narrow range of (A/V)set ratios, it does not matter whether the ground motions are scaled 

to same PGA or PGV level, similar mean deformation demands is obtained from both 

type scaling as far as the PGA/PGV ratio calculated using PGA and PGV values, for 

which the ground motions are scaled, yields an acceleration to velocity ratio in the same 

order of the data set’s (A/V)set ratio. Factors that can be used to convert mean deformation 
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demands among PGA and PGV based scaling procedures are derived as a function of A/V 

ratio of the data set and PGA/PGV ratio of the scaling.   

•  Derivation of a new shear-flexure beam formula introducing the two refinements into 

the otherwise well-known formulation for wall-frame systems is given. One is the 

correction of the shear force boundary condition at the base of the wall, and the other is 

the additional distributed moment transferred from link beam ends. The displacement, 

shear and moment profile along the wall calculated using the new formulation compares 

very favorably with finite element solutions.  

• The methodology developed in this study for the parametric investigation of structural 

walls is one of the most comprehensive one available in the literature. Unlike the existing 

procedures utilizing simple isolated cantilever models, finite element models of generic 

frame-wall structures that can take into account structural interaction effects resulting 

from frames and link beams are developed. A design process is devised to calculate the 

required reinforcement at the boundary and web of walls.   

• The plastic rotation limits given in FEMA 356 for conforming shear wall members 

controlled by flexure seem to yield very conservative estimations of structural 

performance. The existing plastic hinge rotation limits are in general lower than the limits 

found in this study in the order of two or more, especially for life safety and collapse 

prevention performance levels. The shear stress level (ν) and axial load ratio (P/Po) that 

are used to calculate the plastic hinge rotation limits or to interpolate between the values 

effectively differentiates the deformation modes of structural walls. The proposed change 

to the limiting average shear stress value for flexural dominated response (increased from 

cf25.0  to cf33.0 ) by ASCE/SEI committee does not introduce a significant 

improvement to performance evaluation of the structural walls in this range. Instead of 

this change this study proposes to keep the shear stress limit as defined in FEMA 356  and 

increase the allowable plastic rotation for walls under low shear and normal stress  (ν 

< cf25.0  and P/Po < 0.1). In this range walls has considerable plastic rotation capacity, 

0.02 rad < θp < 0.06 rad.  

• The calculated plastic hinge rotations display significant scatter above the lower 

limiting value of 0.02 radians for low shear stress conditions. It is seen that the scatter 
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depends on the wall length. Although the shear stress incorporates the wall length in its 

calculation, it falls short in representing the deformation limits in case of low unit shear 

stress conditions. Walls with shorter length (slender walls) can exhibit very high plastic 

rotations in this range. So it may be proposed that in the low shear stress range the plastic 

hinge rotation performance limits should be based on slenderness of the wall.  

• In the existing form the strain limits defined in TSC 2007 yield unconservative 

estimations for the performance assessment of structural walls. The local deformation 

demands obtained from finite element analysis is related to strains obtained from section 

analysis by means of base curvature. The compressive strains calculated at life safety and 

collapse prevention performance levels indicate strain values lower than specified in code 

nearly for all cases analyzed here. The limits defined in TSC 2007 are required to be 

adjusted for reinforced concrete rectangular walls. The actual compressive strains (finite 

element analysis results) are greater than the code specified limits.  

• If the compressive strain limits in TSC 2007 are adapted to FEMA 356, under low to 

moderate stress conditions (ν < cf50.0 ) they take the values of 0.0035, 0.005 and 

0.0075 for average upper bound limit of compressive strains at immediate occupancy, life 

safety and collapse prevention performance levels, respectively. These results for walls 

would raise concern for columns and other critical members. 

• The plastic hinge length can be taken as the half of the height of the region over which 

the plasticity spreads on the wall (Lp = 0.5Lpz). As the wall length increases the spread of 

plasticity along the wall increases as well. As the shear stress increases the length of 

plastic zone decreases. The data reveals that plastic hinge length is mainly a function of 

wall length but is not a constant percentage of it (such as Lp = 0.5Lw) as assumed by many 

codes and reported by other research. The proposed Eq. (5.15) calculates the plastic hinge 

length within reasonable accuracy.  

• Dynamic analysis results have demonstrated that when frame-wall systems resist 

lateral earthquake effects critical deformation demands may arise at the base of the walls 

for low wall index (ratio of total wall area to the floor area in plan) systems. In addition to 

the interaction between the frames and walls at story levels, the shear and moment 

transferred from link beams extending from frames directly to the ends of the walls can 
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significantly change the moment profile causing a reduction in the inflection height of the 

wall and increase in the slope of the moment curve. The resulting high shear stress 

conditions at the lower stories lead to limited deformability of wall members. When walls 

are assessed according to limits defined in FEMA 356, it is seen that these walls can 

seldom survive the design earthquake without major damage. It is proposed that in the 

design of dual systems where frames and walls are connected by link beams, the 

minimum value of wall index should be 0.5%. Above p = 0.5% nearly all walls in all 

systems assure at least life safety (LS) performance state. 

• The increased wall index leads to reduction in the top story and interstory 

displacement demands. The calculated roof drifts are in the order of 0.75-1.25%. 

However, the actual reduction effect of increased wall area is observed on the dispersion 

of the deformation demands. As the wall amount in the system increases the dispersion in 

the calculated roof drift due to ground motion uncertainty decreases considerably.  

• It is found that the dynamic amplification of shear forces along the height of the 

building is a function of expected level of nonlinearity and number of stories (N). Since 

the desired level of nonlinearity in structural systems is introduced at the design stage by 

force (or strength) reduction factor, R, an expression [Eq.(6.5)] using R and N as 

parameters is proposed to calculate the dynamic amplification factor. 

• In frame-wall structures the actual strength of the system after the code minimum 

reinforcement requirements has been provided may be larger than initial strength 

assignment. The strength assignment based on linear analysis with elastic member 

stiffness should be avoided in such cases since wall stiffness is much larger than the sum 

of column stiffnesses. A pushover analysis is required to determine the actual distribution 

of forces among each primary component for design verification.  

7.3 RECOMMENDATIONS FOR FUTURE STUDIES 

• This study focus on the investigation of deformation limits of conforming reinforced 

concrete shear wall members. The same methodology should be applied for the 

investigation nonconforming members. The parameter set used in the modeling of shear 

walls can be extended to investigate the influence other parameters as well.  
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• An extension can be made to investigation of framed-walls (barbell shape) and 

irregular shaped walls (T-, U-, H-shaped walls). This is important for walls where shear 

center location is strain-level dependent. 

• Torsional effects have been disregarded in this study. The experimental studies 

investigating the torsional behavior of reinforced concrete shear walls are also very rare. 

Since the finite element and material models are also calibrated for shear critical 

conditions, the effect of torsion on the deformation capacity should be investigated. 

• The modified shear-flexure beam formulation can be developed further to calculate the 

simple capacity curves of frame-wall systems. The results have shown that the significant 

stages in the frame-wall system response are the hinging of the wall base, yielding of 

beams framing to wall and the yielding of the frame. Characterizing each stage as a point 

on the capacity curve, the formulation can be adjusted by developing relevant 

mathematical models of these stages to calculate three or four point pushover curve. The 

procedure can be very useful in quick earthquake loss estimation procedures where total 

or inter-story drift are needed. 
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APPENDIX A 

DESCRIPTION OF THE FINITE ELEMENTS  
 

 

 

1. Introduction 

ANSYS is equipped with a special element SOLID65 that can be used in the 3-D 
modeling of reinforced concrete solids with or without reinforcing bars. In this study, 
structural walls have been modeled with this element. The reinforcing bars can be modeled 
either in a smeared manner by using the special rebar feature of the SOLID65 or can be 
modeled discretely using the three dimensional truss element LINK8. Additionally, 
MASS21 element is used to introduce mass to the system.  In the following sections basic 
formulation and special features of these elements are described.  
 

2. SOLID65 Element Description 

Element SOLID65 has eight nodes with three translational degrees of freedom at 
each node. The solid element is capable of cracking (in three orthogonal directions) in 
tension and crushing in compression and also undergoing plastic deformations. If cracking 
occurs at an integration point, the cracking is modeled through an adjustment of material 
properties that effectively treats the cracking as a “smeared band” of cracks, rather than 
discrete cracks. The concrete material was assumed to be initially isotropic (ANSYS). Up 
to three different rebar specifications may be defined. Ties and stirrups can also be modeled 
by making use of this property. The rebars can carry tension and compression, but not 
shear. They are also capable of plastic deformation and creep. The geometry, node 
locations and the coordinate system for this element are shown in Figure A.1. 

 
The eight-noded isoparametric brick element, SOLID65, employs linear interpolation 

functions for the geometry and displacements with eight integration points (2x2x2). The 
interpolation function for this element is given as follows: 

 

)1)(1)(1(
8
1 ζηξ ±±±=iN ,                    where i∈1,…,8.          (A.1) 
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Depending on the given shape functions, the nodal displacements (ui, vi, wi) 
calculated at the nodes are interpolated at any point (ξ, η, ζ) within the element as 

 
882211 NuNuNuu +++= K   

882211 NvNvNvv +++= K  (A.2)

882211 NwNwNww +++= K   
 

The displacement field in the element is calculated at the integration points by 
utilizing a variable integration scheme (Gauss quadrature) of 2x2x2.  

 
 

 
 
Figure A.1 SOLID65 geometry from ANSYS user manual (ANSYS, 2005) 
 
 
 
2.1. Shear Locking and Extra Displacement Shapes: 

Suppose that the surface of a block of material is divided into large number of small 
cubic elements with faces respectively parallel to the three coordinate planes as shown in 
Figure A.2.  When this material is subjected to a pure bending moment, while the edges of 
these elements in the horizontal plane experience a curved shape change, the vertical edges 
remain straight. However, all the faces remains at 90o to each other after deformation, so it 
is concluded that γxy = γxz = 0 and thus τxy = τxz = 0. Since the deformations involved do not 
require any interaction between the elements of a given transverse cross section σy, σz, τyz 
must be zero on the surface of the member. 

 
When the continuum given in Figure A.2 is discretized with first order solid finite 

elements such as the SOLID65 discussed here, the deformed pattern of the same material 
block under pure bending moment should be as the one shown in Figure A.3. All the 
dashed lines remain straight, but the angle A can no longer stay 90o. This is due to linear 
interpolation functions used for the element that leads to constant strain distribution within 
the element. The deformed pattern of the material block embodies that within the volume of 
material the strain energy of the elements is generating shear deformation instead of 
bending deformation. The artificial shearing stresses introduced to the material cause the 
element to become stiff under pure bending moment. Wrong displacements, false stresses, 
and spurious natural frequencies develop because of this phenomenon called shear locking.  
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A remedy for this problem is to add bending modes to element displacement fields. 
ANSYS provides "incompatible modes" formulation (also referred to as "extra shapes") for 
modeling bending applications because the eight-node solid element exhibits shear locking 
as the four-node plane element.  

 
 

 

 
Figure A.2 Deformed shape of a material under pure bending 

 

 

 
Figure A.3 Deformed shape of a material discretized with SOLID65 under pure bending 

 
 
If the problem is predominantly bulk deformation, then you may choose to turn extra 

shapes off to reduce CPU/storage requirements and enhance convergence. However, doing 
so precludes the ability to model any bending. In such a case number of element in the 
bending direction must be increased. For structural analyses, this corner noded element 
with extra shape functions will often yield an accurate solution in a reasonable amount of 
computer time. Considering the extra shape functions (ESF), the displacement field is 
calculated as  

 
)1()1()1( 2

7
2

2
2

1882211 ζηξ −+−+−++++= aaaNuNuNuu K   

)1()1()1( 2
8

2
4

2
3882211 ζηξ −+−+−++++= aaaNvNvNvv K  (A.3)

)1()1()1( 2
9

2
6

2
5882211 ζηξ −+−+−++++= aaaNwNwNww K   

 
where the nine ai  are generalized d.o.f. or they may also be called as “nodeless” d.o.f. 
(Cook et al., 2001). The ai are not associated with any node nor are they connected to d.o.f 
of any other element. Physically, displacement modes associated with the ai are 
displacements relative to the displacement field dictated by the summations in Eq. (A.3). 
 

The elements with extra shape functions called “incompatible” because of the 
behavior illustrated in Figure A.4. With the loading shown in Figure A.4(b), a gap appears 
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between elements. If the forces are reversed, elements would overlap.  
 
No gaps or overlaps appear in a physical continuum. Why then do incompatible 

elements provide a satisfactory model? It is because repeated mesh refinement causes 
elements to approach a state of constant strain. Initially straight lines, such as sides of 
undeformed elements, remain straight when deformation is such as to produce a state of 
constant strain. Thus an FE model composed of elements with extra shape functions (ESF) 
allows exact results to be approached as the mesh is refined. Convergence may be “from 
above” because a coarse mesh of elements with ESF may be overly flexible. In contrast, 
elements without ESF converge “from below” because they are always too stiff (or at best 
exact, in a field of constant strain) (Cook et al., 2001).  
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Figure A.4 Shear locking on the element  (a) Displacement modes u = (1-η2)a2 + (1-
ζ2)a8  and v = (1-ξ2)a3 + (1-ζ2)a8  (b) Elements with extra displacement shapes 
suppressed, no incompatibility between adjacent elements but having shear locking 
defect. (c) Elements with extra displacement shapes included, incompatibility between 
adjacent elements. 
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2.2 Assumptions and Restrictions: 

The basic assumptions of the material model are as follows: 
 

1. The concrete material is assumed to be initially isotropic.  
 
The symmetric material stiffness matrix [DC] for concrete is given by 
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where E is the Modulus of Elasticity and υ  is the Poisson’s ratio for concrete. 
 

2. Whenever the reinforcement capability of the element is used, the reinforcement is 
assumed to be “smeared” throughout the element. The reinforcement was entered as 
volumetric ratio of that element, defined as the rebar volume divided by the total element 
volume. In the formulation of stress-strain matrix, D, the relation given in Eq. (A.5) is used. 
The amount of reinforcement is used as a modification factor that calibrates the concrete’s 
strain-stress matrix.  
 

∑ ∑
= =

+−=
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i DVDVD

1 1
].[])[1(][                                    (A.5) 

 
In this equation, NR denotes the number of different reinforcing materials, DC is the 

stress-strain matrix of the concrete and DR (given in Eq. (A.6)) is the stress-strain matrix of 
reinforcement material, Vi

R is the ratio of the volume of reinforcing material “i” to the total 
volume of the element. 
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In Eq. (A.6), Ei
r is the Young’s modulus of reinforcement type i.  It may be seen that 

the only nonzero stress component is r
xxσ , the axial stress in the xi

r direction of 
reinforcement type i. The orientation of the reinforcement i within the element is depicted 
in Figure A.5. The element coordinate system is denoted by (X, Y, Z,) and (xi

r, yi
r ,zi

r) 
describes the coordinate system for reinforcement type i.  

 
 

 
Figure A.5 Reinforcement orientation 

 
 

Since the reinforcement material matrix is defined in coordinates aligned in the 
direction of reinforcement orientation, it is necessary to construct a transformation of the 
form 

 

[ ] [ ] [ ] [ ]r
i

rTr
i

R TDTD =                                           (A.7) 
 

in order to express the material behavior of the reinforcement in global coordinates. 
 

3. Cracking is permitted in three orthogonal directions at each integration point.  
 

4. If cracking occurs at an integration point, the cracking is modeled through an 
adjustment of material properties which effectively treats the cracking as a “smeared band” 
of cracks, rather than discrete cracks. Once a crack occurs at an integration point, a plane of 
weakness is introduced in the direction normal to the crack face to modify the stress-strain 
relation of concrete.  
 

The stress-strain relation of concrete in tension and the strength of cracked condition 
are explained in Figure A.6. In this figure ft is the uniaxial tensile cracking strength and E is 
the modulus of elasticity of concrete. After cracking, a certain amount of stress relaxation 
can be included in the element stress formulation with the constant Tc which defaults to 0.6. 
Rt is the secant slope defined as shown. It diminishes to zero as the solution converges. The 
stress relaxation after cracking is an option in the element formulation, so can be included 
or excluded when desired. But, including a certain amount of stress relaxation can help to 
achieve a better convergence behavior. Surpassing the tensile relaxation will equal Rt to 0. 
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Figure A.6 Tensile behavior of concrete 

 
 

Also, a shear transfer coefficient βt is introduced which represents a shear strength 
reduction factor for those subsequent loads which induce sliding (shear) across the crack 
face. The stress-strain relations for a material that has cracked in one direction only 
become: 
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where the superscript ck signifies that the stress-strain relationship refers to a coordinate 
system parallel to the principal stress directions with xck being perpendicular to the crack 
direction. As can be observed from Eq. (A.8), the material stress-strain relationship is 
modified by Rt in the direction perpendicular to cracking, and by βt for the shear terms. The 
term βt represents the shear that can be transferred across a crack due to friction, aggregate 
interlock or dowel action. If the crack closes, then all the compressive stress normal to the 
crack plane are transmitted across the crack and only a shear transfer coefficient βc for a 
closed crack is introduced. Then the corresponding stress-strain relationship for concrete 
with a closed crack takes the following form: 
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The stress-strain relations for concrete that has cracked in two directions are:  
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If both directions reclose,  
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The stress-strain relation for concrete that has cracked in all three directions are: 
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The transformation of [ ]ck
cD  to element coordinates has the form 

 

[ ] [ ] [ ][ ]ckck
c

Tck
c TDTD =                                        (A.13) 

 
where the terms composing [ ]ckT  are the components of the principal direction vectors. 
 

5. In addition to cracking and crushing, the concrete may also undergo plasticity, with 
the Drucker-Prager failure surface being most commonly used. In this case, the plasticity is 
done before the cracking and crushing checks.  
 
 

3. Other Elements 

Different elements, which are nonlinear in nature, were used in the model 
construction serving to different modeling purposes. The general characteristics of these 
elements are explained briefly below.  

 
 
3.1. MASS21 

MASS21 is a point element having up to six degrees of freedom: translations in the 
nodal x, y, and z directions and rotations about the nodal x, y, and z axes. A different mass 
and rotary inertia may be assigned to each coordinate direction. 

 
 
3.2. LINK8 and LINK10 

The 3-D bar element is a uniaxial tension-compression element with three degrees of 
freedom at each node: translations in the nodal x, y, and z directions. It is used when the 
reinforcing bars are modeled discretely. Plasticity, stress stiffening, and large deflection 
capabilities are included. 

A special version of LINK8 is LINK10 that is a 3-D spar element having the unique 
feature of a bilinear stiffness matrix resulting in a uniaxial tension-only (or compression-
only) element. With the tension-only option, the stiffness is removed if the element goes 
into compression (simulating a slack cable or slack chain condition). 
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3.3. COMBIN14 

COMBIN14 has longitudinal or torsional capability in 1-D, 2-D, or 3-D applications. 
The longitudinal spring-damper option is a uniaxial tension-compression element with up to 
three degrees of freedom at each node: translations in the nodal x, y, and z directions. No 
bending or torsion is considered. The torsional spring-damper option is a purely rotational 
element with three degrees of freedom at each node: rotations about the nodal x, y, and z 
axes. No bending or axial loads are considered. 

 
 
3.4. COMBIN39 

COMBIN39 is a unidirectional element with nonlinear generalized force-deflection 
capability that can be used in any analysis. The element has longitudinal or torsional 
capability in 1-D, 2-D, or 3-D applications. The longitudinal option is a uniaxial tension-
compression element with up to three degrees of freedom at each node: translations in the 
nodal x, y, and z directions. No bending or torsion is considered. The torsional option is a 
purely rotational element with three degrees of freedom at each node: rotations about the 
nodal x, y, and z axes. No bending or axial loads are considered. 

 
The element is defined by two node points and a generalized force-deflection curve 

as shown in Figure A.7. The points on this curve (D1, F1, etc.) represent force (or moment) 
versus relative translation (or rotation) for structural analyses. The force-deflection curve 
should be input such that deflections are increasing from the third (compression) to the first 
(tension) quadrants. Adjacent deflections should not be nearer than 1E-7 times total input 
deflection range. The last input deflection must be positive. Segments tending towards 
vertical should be avoided. If the force-deflection curve is exceeded, the last defined slope 
is maintained, and the status remains equal to the last segment number. If the compressive 
region of the force-deflection curve is explicitly defined (and not reflected), then at least 
one point should also be at the origin (0,0) and one point in the first (tension) quadrant. 
Element can unload along same loading curve or along line parallel to slope at origin of 
loading curve depending on the application. 

 
 

 
Figure A.7 COMBIN39 geometry (ANSYS manual) 
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3.5. BEAM188 

BEAM188 is a linear (2-node) or a quadratic beam element in 3-D as shown in 
Figure A.8. BEAM188 has six or seven degrees of freedom at each node. These include 
translations in the x, y, and z directions and rotations about the x, y, and z directions. A 
seventh degree of freedom (warping magnitude) can also be considered. The beam element 
is based on Timoshenko beam theory, which is a first order shear deformation theory: 
transverse shear strain is constant through the cross-section; that is, cross-sections remain 
plane and undistorted after deformation.  
 
 

 
 

Figure A.8 BEAM188 element geometry and integration stations (ANSYS) 

 
 

BEAM188/BEAM189 can be associated with either of these cross section types: 
 

• Standard library section types or user meshes which define the geometry of the 
beam cross section. The material of the beam is defined either as an element 
attribute (MAT), or as part of section buildup (for multi-material cross sections). 

 
• Generalized beam cross sections, where the relationships of generalized stresses to 

generalized strains are input directly. 
  

When using nonlinear general beam sections, neither the geometric properties nor the 
material is explicitly specified. The nonlinear general beam section is an abstract cross 
section type that allows you to define axial, flexural, torsional, and transverse shear 
behavior as a function of axial strain, bending curvature, twist, and transverse shear strains. 
Generalized stress implies the axial force, bending moments, torque, and transverse shear 
forces. Similarly, generalized strain implies the axial strain, bending curvatures, twisting 
curvature, and transverse shear strains. This is an abstract method for representing cross 
section behavior; therefore, input often consists of experimental data or the results of other 
analyses. The behavior of beam elements is governed by the generalized-stress/generalized-
strain relationship of the form: 
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where 

N = Axial force 
M1 = Bending moment in plane XZ 
M2 = Bending moment in plane XY 
τ = Torque 
S1 = Transverse shear force in plane XZ 
S2 = Transverse shear force in plane XY 
ε = Axial strain 
κ1 = Curvature in plane XZ 
κ2 = Curvature in plane XY 
χ = Twist of the cross section 
γ1 = Transverse shear strain in plane XZ 
γ2 = Transverse shear strain in plane XY 
AE(ε,T) = Axial stiffness as a function of axial strain and temperature 
I1

E(κ1,T) = Flexural rigidity as a function of curvature and temperature in plane XZ 
I2

E(κ2,T) = Flexural rigidity as a function of curvature and temperature in plane XY 
JG(χ,T) = Torsional rigidity, as a function of torsion and temperature 
A1

G(γ1,T) = Shear stiffness as a function of shear strain and temperature in plane XZ 
A2

G(γ2,T) = Shear stiffness as a function of shear strain and temperature in plane XY 
T is the current temperature 
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APPENDIX B 

CONCRETE MATERIAL MODELS  
 
 
 

1. Introdcution 

Complexity of concrete response under various loading regimes (uniaxial, biaxial or 
multi-axial) has been manifested long time ago (Chen, 1982). Due to highly nonlinear 
nature of concrete material including cracking, crushing, tension stiffening, compression 
softening and bond-slip, accuracy of response modeling of reinforced concrete structures 
and components is strongly dependent on the material models. The nonlinear response of 
reinforced concrete is caused by two major material effects, cracking of the concrete and 
the plasticity of the reinforcement and of the compression concrete. The tensile cracking 
reduces the stiffness of the concrete and is usually the major contributor to the nonlinear 
behavior of reinforced concrete structures, like walls, panels and shells, where the stress is 
predominantly the biaxial tension-compression type. For these structures, accurate 
modeling of cracking behavior of concrete is undoubtedly the most important factor (Chen, 
1982). 

 
ANSYS offers different material options to be used together with the solid reinforced 

concrete element.  In the program, five parameter Willam-Warnke (1975) criterion was 
implemented to be used together with the SOLID65 element. The model assumes linear 
elastic stress-strain relationship until crushing. This is actually a failure surface. When used 
without a plasticity law it underestimates the deformation capacity of concrete because it 
neglects the slight nonlinearity in ascending branch and the post-crushing strength of 
concrete in compression (Barbosa and Ribiero, 1998). ANSYS offers a number of rate 
independent kinematic and isotropic hardening plasticity options that can be used with the 
concrete element to model the compression behavior. The Drucker-Prager plasticity model 
(DP), von Mises bilinear (BISO) and multi-linear isotropic work hardening plasticity 
(MISO) are combined with the tensile failure criteria of Willam-Warnke material model 
(CONC). The notation given in parenthesis is used to refer to plasticity models here as 
defined in ANSYS. These plasticity models require further discussion, especially the 
Drucker-Prager model, because parameters used to describe them differ for different 
loading conditions (stress states), since a combined yield surface is used. 
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2. Willam-Warnke Failure Criterion 

The general characteristics of the failure surface of concrete can be determined by 
experiments. Experimental results indicate that the failure curve in the deviatoric plane has 
the following general characteristics (Chen, 1982) 

 
1. The failure curve is smooth. 

2. The failure curve is convex, at least for compressive stresses. 

3. The failure curve’s cross-sectional shape has threefold symmetry. 

4. The failure curve is nearly triangular for tensile and small compressive stresses 
(corresponding to small ξ values near the π plane), and becomes increasingly bulged 
(more circular) for higher compressive stresses (corresponding to the increase of ξ 
values or high hydrostatic pressures). 

It follows from these conditions that, shape of a failure surface in a three dimensional 
(Haigh-Westergaard) stress space can be best described by its cross sectional shapes in the 
deviatoric planes and its meridians in the meridian planes (planes containing the hydrostatic 
axis with θ = constant). In Figure B.1, the general geometrical representation of the failure 
surface was given depending on the characteristics listed above. 
 
 
 

 
Figure B.1 Failure surface in 3-dimensional stress space 

 
 
The concrete material model predicts the failure of brittle materials. Both cracking 

and crushing failure modes are accounted for. The criterion for failure of concrete due to a 
multiaxial stress state can be expressed in the form (Willam and Warnke, 1975): 
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where F is a function of the principal stress state (σxp, σyp, σzp- principal stresses in principal 
directions), S is the failure surface (to be discussed) expressed in terms of principal stresses 
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and five input parameters ft, fc, fcb, f1 and f2 defined in Table B.1 and fc is the uniaxial 
compressive strength of concrete. If Eq. (B.1) is satisfied, the material will crack or crush. 
 
 

Table B.1 Determination of the parameters of Willam-Warnke model 
 

Test '/ cm fσ  '/ cm fτ  θ, deg ),( θσ mr  

1. '
1 tf=σ  '

3
1

tf  '

15
2

tf  0 '

3
2

tt fr =  

2. '
32 bcf−== σσ  '

3
2

bcf−  '

15
2

bcf  0 '

3
2

bct fr =  

3. ),( 111 rf ξ−=  1ξ−  1r  0 '
15 ct frr =  

4. '
3 cf−=σ  

3
1  

15
2  60 '

3
2

ct fr =  

5. ),( 222 rf ξ−=  2ξ−  2r  60 '
25 cc frr =  

 
 
 

A total of five input stress parameters are required to define the failure surface in 
function S, which are uniaxial tensile strength, uniaxial compressive strength, biaxial 
compressive strength, strength from triaxial compression test, and strength from triaxial 
extension test. The failure surface is as shown in Figure B.1 in the principal stress space. It 
can be observed that the failure surface has curved meridians (parabola in this case) and 
presents symmetry on the deviatoric plane as seen in Figure B.2. 

 
\ 
 

 
Figure B.2 Failure surface on the deviatoric plane 

 
 

This cone shaped surface shown in Figure B.1 can be defined by two quadratic 
curves, one on the tension meridian plane, rt(σm) (where o0=θ ), and the other, on the 
compression meridian plane, rc(σm) (where o60=θ ) as shown in Eq. (B.2). 
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By this way, the variations of the average shear stresses, τmt and τmc, along the tensile 

(θ = 0°) and compressive (θ = 60°) meridians, respectively, are approximated by second-
order parabolic expression in terms of the average normal stress, σm where 
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3
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1 Iiizyxm ==++= σσσσσ                                 (B.3) 

 
represents the mean stress or the pure hydrostatic stress. 

 
Any point between the tension and compression curves can be interpolated from the 

assumed elliptical polar equation, r(θ), on the deviatoric plane. The radius of the cone, r, is 
determined by substituting the calculated values of rt and rc into Eq. (B.4). 
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The angle of similarity or the Lode angle, θ, is defined as the angle between the 

deviatoric component of stress vector and the projection of σ3 axis on the deviatoric plane 
(Figure B.2) and is given by: 
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where σi (i = 1–3) is the principal normal stress in the ith direction. 

 
As the failure surface exhibits three-fold symmetry, it suffices to define this equation 

for a sector between 0° and 60°. In this manner, the entire surface is completely defined. By 
expressing Eq. (B.4) in terms of cartesian coordinates, the three principal stresses at failure 
are obtained from Eq. (B.6). 
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Since Eq. (B.6) is defined in the domain of 0 < θ < 360° while Eq. (B.4) is only valid 
for 0 < θ < 60°, it is necessary to convert any angle of similarity outside the latter range to 
an equivalent angle within this range before substituting into Eq. (B.4). 

 
Through the use of Eq. (B.4), the failure surface can be degenerated for the purpose 

of analyzing biaxial load cases by considering the intersection of the surface with any of the 
three principal planes. Due to the threefold symmetry of the failure surface, the biaxial 
failure envelopes on the three planes are identical. The biaxial failure envelope obtained 
from the experimental data presented by Kupfer et al. (1969) is depicted in Figure B.3. 
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Figure B.3 Biaxial failure envelope degenerated from 3D failure surface. For Willam-
Warnke model, 1.0== ctt fff , high compressive stress point on tensile meridian 

)53.0,97.1(),( 11 =rξ , and high compressive stress point for on compressive meridian 
)63.0,58.1(),( 22 =rξ  

 
 
 

If the failure criterion of Willam-Warnke is not combined with a plasticity rule, the 
behavior of concrete is linear up to crushing and once the crushing stresses are reached 
element stiffness contribution to the global stiffness diminishes to zero resulting in a 
premature failure due to strength loss (ANSYS). The uniaxial stress-strain relation is 
plotted in Figure B.4. So it is recommended that combining the failure criterion with a 
plasticity rule will give better results. 
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Figure B.4 Uniaxial behavior in Willam-Warnke criterion in ANSYS. 
 
 
 

3. Von Mises Yield Criterion 

In early finite element applications of concrete to simulate the behavior in 
compression, the von Mises plasticity model with isotropic hardening (BISO “ANSYS” 
designation), kinematic hardening or combined hardening was widely used. The von Mises 
yield criteria with isotropic hardening defined as: 

 
( ) 02 =−= pJF εσ                                                    (B.7) 

 
where J2 is the second stress invariant which can be expressed in the principal stress space 
as 
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In Eq. (B.7) σ(εp) is the hardening stress as a function of equivalent plastic strain, εp 

which is expressed as follows: 
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where p

ijε  is the plastic part of the corresponding strain component. Since this model is 
independent of the magnitude of the hydrostatic stresses, it may not be a suitable plasticity 
model for concrete in high compression (Han and Chen, 1988). The use of BISO material 
model in ANSYS is quite straightforward, since the model is directly calibrated with 
concrete strength in compression (fc) and post elastic modulus (Ecp) of the bilinear curve. 
This model is also used for the modeling of reinforcing steel. 
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4. Drucker-Prager Plasticity Model 

The second material model available in ANSYS for modeling compressive behavior 
of granular materials is the Drucker-Prager yield criterion. In this study special emphasize 
is given to Drucker-Prager model since determination of its parameters is not as simple as 
bilinear isotropic hardening plasticity model for accurate response prediction of concrete 
response.  A smooth approximation to the Mohr-Coulomb surface was proposed by 
Drucker and Prager (1952) is a simple modification of the von Mises yield criterion in the 
form 

 
0),( 02121 =−+= τα JIJIf                                            (B.10) 

 
in which α  and 0τ  are positive material parameters. 3211 σσσ ++=I  is the first 

invariant of the stress tensor and J2 is given in Eq. (2.8). Or identically, using 31I=ξ  
and 22Jr =  for clear geometric interpretation of the stress state and the yield surface can 
be represented as 
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where r is the deviatoric and ξ is the hydrostatic components of stress tensor. 

 
The Drucker-Prager criterion represents moderately well the response of plain 

concrete subjected to multiaxial compression and provides a smooth yield surface. 
Comparison of the Drucker-Prager criterion with experimental data shows that while the 
criterion may be used to represent the response of concrete subjected to multiaxial 
compression, the model overestimates the capacity of concrete subjected to compression-
tension or tension-tension type loading (Lowes, 1999). 

 
In ANSYS the input parameters of Drucker-Prager criterion (α and 0τ ) are 

interpreted in terms of c and φ of the Mohr-Coulomb (MC) model. Parameter c is called the 
cohesion and φ is the angle of internal friction. The general expression for Mohr-Coulomb 
criterion is given by 
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Characteristic strengths values at uniaxial tensile and compressive failure of concrete 

is defined with the following relations in Mohr-Coulomb stress, 
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DP constants can be related to MC constants c and φ in several ways. The size of the 

cone of Drucker-Prager criterion can be adjusted to either surround the Mohr-Coulomb 
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hexagon from the vertices corresponding to compressive meridians or tensile meridians as 
shown in Figure B.5. 

 

 
 

Figure B.5 Drucker-Prager criterion matched to Mohr-Coulomb failure surface 

 
 

In the case of three dimensional matching, if the two failure surface decided to meet 
on the compressive meridian which can be followed from Figure B.6, the two sets of 
material constants are related by 
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If the tensile meridian is used similarly 
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Figure B.6 Meridian representation in deviatoric stress vs. hydrostatic stress plane (a) 

Mohr-Coulomb and (b) Drucker-Prager yield surfaces 
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Variation in concrete response under various load regimes leads to different 
definitions of material constants at each regime. To relate the Drucker-Prager constants α 
and 0τ  with the Mohr-Coulomb constants c and φ in the biaxial stress space, two points 
from material tests are required. 

 
Under plane stress condition (σ2 = 0), the invariants of the stress tensor can be 

expressed as 311 σσ +=I  and 3/)( 31
2

3
2

12 σσσσ −+=J . Considering the uniaxial 
compression and tension tests and biaxial compression test conditions, the values of 
principal stresses, invariants I1 and J2, and Haigh-Westergaard coordinates ξ, r and θ are 
listed in Table B.2. 

 
For the case of Drucker-Prager criterion, substituting the values at peak stress under 

uniaxial compression (fc) and tension (ft) and solving for the model parameters (Eq.’s 
(B.13) and (B.14)) we get 
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Under the plane stress condition, the criterion in Eq. (B.10) can be presented in the 

form 
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Table B.2 Principal stresses, stress invariants, and Haigh-Westergaard coordinates at failure 
 

Stress state σ1 σ3 I1 J2 ξ r θ, deg. 
Uniaxial tension ft 0 ft 32

tf  3tf  3/2tf  0 
Uniaxial 
compression 0 -fc -fc 32

cf  3cf−  3/2cf  60 

Equibiaxial 
compression -fbc -fbc -2fbc 32

bcf  32 bcf−  3/2bcf  0 

 
 

Depending on the ratio ct ff / , Eq. (B.19) can be an ellipse, parabola or hyperbola. 
By matching the uniaxial strengths in tension and in compression, we would obtain quite a 
reasonable approximation of the actual failure envelope in the quadrants that correspond to 
biaxial tension and to tension-compression. However, the equibiaxial strength in the 
compression-compression quadrant becomes infinite as ct ff /  ratio decreases. On the other 
hand, a good approximation in the biaxial compression range can be obtained by matching 
the uniaxial and equibiaxial compressive (fbc) strengths (Jirasek and Bazant, 2001). This 
leads to 
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Similar to Eq. (B.19), under plane stress, the criterion can be expressed in the form as 

given below to give a better approximation in the compressive region 
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5. Multilinear Work Hardening Plasticity Models (MISO and MKIN) 

The greatest shortcomings of the BISO and DP plasticity models used to model 
concrete in compression is due to fact that while the concrete softening can not be modeled 
with the former, neither hardening nor softening can be modeled with the latter model.   To 
model the descending branch of the concrete stress-strain curve multi-linear plasticity 
models available in ANSYS material library can be used. The Multilinear Isotropic 
Hardening (MISO) option is similar to the bilinear isotropic hardening option, except that a 
multilinear curve is used instead of a bilinear curve. 

 
When the softening property in the post-peak response is used in constitutive models, 

the finite element solutions are known to have spurious sensitivity to the mesh size and 
have difficulty in converging since low order elements such as the one used here is utilized 
in the finite element analysis (Maekawa et al., 2003; Cervenka et al., 2005; Bazant and 
Jirasek, 2001). Additionally, NLFEA analysis under force type loading can not track the 
softening branch of the stress-strain curve after the ultimate (peak) force level of the model 
is reached. To achieve convergence after the ultimate load capacity of reinforced concrete 
member displacement controlled loading is applied. 
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APPENDIX C 

CONCRETE MODELS FOR CONFINED CONCRETE 
 

 
 

1. Model by Mander et al. (1988)  
 
Due to wide recognition and since the recent version of TSC (2007) recommends the 

use of it, the confined concrete model proposed by Mander et al. (1988) is adopted in this 
study. Modeling of the confined concrete is essential in order to enable accurate modeling 
of critical (plastic hinge) zones up to very large deformations for the evaluation of ductility 
demand. 

 
For monotonic loading, the compressive concrete stress fc is given by the Popovics 

(1973) curve expressed as 
 

r
cc

c
xr

xrf
f

+−
=

1
                                                  (C.1) 

 
where the parameters of Eq. (C.1) are defined by Eqs. (C.2) through (C.7) as 
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where λc is the confinement factor, fco is the compressive strength of unconfined concrete, 
fcc is the compressive strength (peak stress) of confined concrete, εc is the longitudinal 
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concrete strain, εco (~0.002) is the strain at unconfined stress fco, εcc is the strain at 
maximum concrete stress fcc, Ec is the initial modulus of elasticity of concrete and Esec is the 
secant modulus of elasticity of concrete at peak stress.  

 
The confinement factor can be calculated as 
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The effective confinement strength, fe, can be calculated as the average of values in 

two perpendicular directions for rectangular cross sections as: 
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In these equations fyw is the yield strength of transverse steel, ρx and ρy are the ratio 
of the volume of transverse reinforcement in two directions to the volume of concrete core 
measured to outside of stirrups, and ke is the confinement effectiveness coefficient given as, 
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where ai is the distance between the axes of longitudinal reinforcements, bo and ho are the 
distance between the axis of transverse reinforcement confining the concrete core, s is 
transverse reinforcement vertical spacing, As is the area of longitudinal reinforcement.  

 
The maximum compressive strain in the extreme fiber of confined concrete can be 

calculated from (Paulay and Priestly, 1992) 
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where ρs is the volumetric ratio of transverse reinforcement and calculated as ρs = ρx + ρy in 
rectangular sections.  

 
The model is valid only within a certain range of confinement steel; otherwise the 

results are not realistic or valid. Also there is a deficiency in the model regarding the 
descending part of the confined concrete stress-strain curve. The experimental results 
(Martirossyan and Xiao, 1996) show that some modifications as proposed by Martirossyan 
and others are required to make it more realistic.  Also, as already mentioned, the model 
may be applied only for a confinement range for which f'l  is between zero and about 2.3; 
otherwise the method will not yield realistic behavior. 
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2. Saatcioglu and Razvi (1992) Model 
 
Another model proposed by Saatcioglu and Razvi (1992) to construct a stress-strain 

relationship for confined concrete remedy to the problem in the descending (softening) part 
of the curve in the Mander et al. (1988) model. The model consists of a parabolic ascending 
branch, followed by a linear descending branch. Lateral reinforcement in the sense of 
equivalent uniform lateral pressure in both circular and rectangular columns was used to 
develop the model characteristics for the strength and ductility of the confined concrete. 
The model has been compared with different types of column tests, including circular, 
square, and rectangular, as well as welded wire fabric. Spirals, rectilinear hoops, and cross 
ties have been used as lateral reinforcement in confined columns. The following expression 
is suggested for the parabolic ascending portion 
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The expressions to calculate necessary parameters in constructing the ascending 

branch of stress-strain curve are given below in consideration with a rectangular section 
plotted in Figure C.1. 
 
 
 

 
Figure C.1 Rectangular cross-section of a column 

 
 

Eqs. (C.13) and (C.14) calculates the average uniform lateral pressures in x and y 
directions together with the reduction factor, k2, applied to reduce average pressures since 
these values results in overestimation of the actual effect of lateral pressure.  
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The average lateral pressure in Eq. (C.13) and (C.14) is in MPa; k2 = 1.0 for spirally 
reinforced circular columns as well as square columns with closely spaced lateral and 
laterally supported longitudinal reinforcement; and α = the angle between the transverse 
reinforcement and bc, and is equal to 90o if the transverse reinforcement is perpendicular to 
bc. bcy and bcy are measured center to center of perimeter hoop, and slx and sly is the spacing 
between the laterally supported longitudinal reinforcement in x and y directions, 
respectively, as defined in Figure C.1. s is the center to center spacing between the ties. The 
overall equivalent uniform pressure obtained by combining the equivalent pressures in x 
and y directions can be established by 
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The triaxial strength of concrete in terms of uniaxial strength and lateral confinement 

pressure is given by   
 

lecocc fkff 1
'' +=     (C.16) 

 
where fcc and fco are the confined and unconfined strengths of concrete in a member, 
respectively. Coefficient 1k varies with different values of lateral pressure fle. Based on the 
test data, a relationship between these two parameters has been established as: 
 

 ( ) 17.0
1 7.6 −= lefk     (C.17) 

 
where fle is the uniform confining pressure in MPa. Finally, the following expression was 
proposed to calculate K.  
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The strain corresponding to the peak stress of confined concrete (fcc) is denoted as ε1 

and is calculated as similar to that found by previous researchers (Balmer 1949; Mander et 
al. 1988): 
 

  ( )K51011 += εε     (C.19) 
 

In the above equation, ε01 is the strain corresponding to the peak stress of unconfined 
concrete, which should be determined under the same rate of loading used for the confined 
concrete. In the absence of experimental data the value 0.002 may be appropriate for ε01. 
This concludes the first part of the model, i.e., the ascending branch of the stress-strain 
curve.  

 
The descending branch of the curve is linear and connects the points ( 1,ccf ε′ ) and 

( 850.85 ,ccf ε′ ) on the plane of the stress-strain curve. The value of strain corresponding to 
85% of confined concrete strength is calculated as: 
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   085185 260 ερεε +=     (C.20) 
 
where ρ  is the volumetric ratio of transverse reinforcement and is expressed as:  
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and ε085 is the strain corresponding to 85% of the strength level beyond the peak stress of 
unconfined concrete. Again it should be determined under the same rate of loading as for 
the confined concrete specimen. If no test data are available the value 0.0038 might be 
used. 
 

The equation for the descending branch is 
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APPENDIX D 

TIMES SERIES OF SELECTED CROUND MOTIONS 
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Figure D.1  The scaled ground acceleration and velocity time series of selected ground 

motion #1. 
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Figure D.2 The scaled ground acceleration and velocity time series of selected ground 

motion #2. 
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Figure D.3 The scaled ground acceleration and velocity time series of selected ground 

motion #3. 
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Figure D.4 The scaled ground acceleration and velocity time series of selected ground 

motion #4. 
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Figure D.5 The scaled ground acceleration and velocity time series of selected ground 

motion #5. 
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Figure D.6 The scaled ground acceleration and velocity time series of selected ground 

motion #6. 
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Figure D.7 The scaled ground acceleration and velocity time series of selected ground 

motion #7. 
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Figure D.8 The scaled ground acceleration and velocity time series of selected ground 

motion #8. 
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Figure D.9 The scaled ground acceleration and velocity time series of selected ground 

motion #9. 
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Figure D.10 The scaled ground acceleration and velocity time series of selected ground 

motion #10. 
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APPENDIX E 

AN IMPROVED FRAME-SHEAR WALL MODEL: 

CONTINUUM APPROACH 
 

1. Introduction 
 

The governing equation of the combination beam in Figure 4.15 is given by 
 

EI
xw

dx
yd

dx
yd )(

2

2
2

4

4
=− α      (E.1) 

 
where w(x) is the distributed lateral loading function and 
 

EI
GA

=2α      (E.2) 

 
in which GA and EI are the shear and flexural rigidities, respectively. 

A tall structural wall can be considered as vertical cantilever beam, with zero 
deflection and rotation at the base and free at the top, so the boundary conditions that apply 
to the solution of the differential equation are y(0) = y′(0) = M(H) = V(H) = 0, where H is 
the height of the structure. The shear force in the shear component (frame) is calculated as 

 

dx
dyGAxVS =)(      (E.3) 

 
so the shear force at the base of this member becomes zero, which is not correct.  

Frame-wall structures can be composed of either (i) walls and frames connected by 
floor slabs, or (ii) link-beams extending from frames directly to the ends of the walls. The 
interaction between the frames and walls of structures with link beams is more significant 
than the form of frame-wall structure where walls and frames connected by floor slabs. The 
shear and moment transferred from beams can significantly change the moment profile 
causing a reduction in the inflection height of the wall. The beam shear forces transferred 
from both side of the wall affect the axial load on the wall. If the problem is idealized by 
assuming beams of equal strength and equal length that frame into the wall from both sides, 
the axial load will not be affected by the beam shears since they will cancel out. However, 
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the beam shears from both sides will form a moment couple which must be added to 
moments transferred from beams. Additional 3D effects such as transverse beams shear 
forces also contribute to the moments created by the link beams connecting to shear wall.  

This article introduces the two refinements into the otherwise well-known 
formulation for wall-frame systems. One is the correction of the shear force boundary 
condition at the base of the wall, and the other is the additional distributed moment 
transferred from link beam ends. 

Before presenting the details of mathematical model of the continuum model dealing 
with the items defined above, the stress resultant-displacement relations derived from 
flexural and shear beam theories will be given next. Then following the derivation of the 
differential equations for the deflection of the combined beam, the findings will be verified 
on a sample frame-wall structure. 

 
2. Stress resultant-displacement relations 
 
Each component in a frame-wall system is forced to deflect in a hybrid mode that is 

different from their inherent deflected shapes due to frame-wall interaction effects acting 
through the floor diaphragms. Individually considered, the inherent deflected shapes of 
frame and shear wall components of a dual system can be represented with beams 
deforming dominantly in shear and bending modes, respectively. While Euler-Bernoulli 
beam theory serves well for calculating the elastic deflection of most of the beams 
assuming pure bending moment, Timoshenko beam theory, a refined version of the former, 
considers the deflections due to transverse shear, which is the case in deep beams or 
sandwich beams with low shear modulus. The difference between these fundamental beam 
theories lies in that, while in the Euler-Bernoulli beam its is assumed that plane cross 
sections perpendicular to the neutral axis of the beam remain plane and perpendicular to the 
neutral axis after deformation, in the Timoshenko beam plane sections remain plane but not 
necessarily normal to the longitudinal axis after deformation, thus causing a nonzero 
transverse shear strain. The illustration in Figure E.1 can be used to describe this 
phenomenon graphically. 
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Euler-Bernoulli Beam 

y

x

)(x
dx
dy ψ=  
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)(x
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dy ψ≠  

x

y 

 
Figure E.1 Schematic representation of deflections according to two fundamental beam 

theories 
 
 

Figure E.2 displays the element of a beam used in deriving the relationships 
between loads, shear forces and bending moments. All loads and stress resultants are shown 
in their positive directions. In a real structure the forces and moments occur at floor levels 
at discrete locations, which cause the finite increments (step changes) in shear and moment. 
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However, since a continuum medium is assumed to be exist between two beam 
components, the loads are also assumed to be distributed along the members, so increment 
in V and M can be considered infinitesimal, denoted by dV and dM, respectively. 
Considering the equilibrium in the y direction yields, 

 

)(xw
dx
dV

−=                                                           (E.4) 

 
where w(x) is the lateral load on the beam. Then, summing up the moments about the z axis 
at the left end of the beam element of length dx gives 
 

)()( xmxV
dx

dM
+−=                                                       (E.5) 

 
where m(x) describes the action  of distributed moments. 
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Figure E.2 Element of beam used in deriving the relationships between loads, shear forces 
and bending moments 

 
 

Considering these fundamental relationship and a prismatic beam of length L, cross-
sectional area A, second moment of area I, elastic modulus of E, and shear modulus of 
rigidity G under any transverse loading action of w(x) and distributed bending moment 
m(x), according to the Euler-Bernoulli beam, the stress-displacement relations are given by 
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where EI is the flexural rigidity and ψ  is the rotation of the beam section. 

According to Timoshenko beam theory, the stress-displacement relations are given 
by the following, 
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dx
dEIM ψ

=   and ⎟
⎠
⎞

⎜
⎝
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dx
dyxGAKV s )(ψ                (E.8, 9) 

 
where GA represents the shear rigidity and KS is the shear correction coefficient. 
 
 

3. Mathematical model for frame-wall interaction problem 
 

In the classical formulation, an equivalent shear stiffness term (GA) that is based on 
the deformed pattern of the frame components is defined. This stiffness depends on the 
frame member stiffnesses, the frame configuration and the rigidity of joints, as shown in 
Figure E.3.  

In reference to model in Figure E.4, the contribution of the single column to the total 
GA parameter of the equivalent shear-flexure beam is given by (Heidebrecht and Stafford 
Smith, 1973) 
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in which Ih = moment of inertia of column; h = story height; b1, b2 = total lengths of 
adjacent beams; Ib1, Ib2 = moment of inertia of corresponding beams. E is the modulus of 
elasticity of the concrete material. The total GA contribution of a planar frame is the 
arithmetic sum of the GA terms for each of the columns in a typical story of the frame. 
 
 
 

 
 

Figure E.3 Modeling of “shearing” behavior in frame 
 
 
In the deformed representation of one-story beam column assembly of a multi-bay 

frame shown in Figure E.3, it is assumed that the points of contraflexure occur at midheight 
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of the columns and at midspan of the beams. On the other hand, the restraining system of 
base story columns below the point of contraflexure is different and the members deform in 
flexure as shown in Figure E.4. It is assumed here that the entire structure consists of two 
substructures. The part above the contraflexure point of the base columns is named as 
Substructure 1 and the below portion as Substructure 2.  Section forces at contraflexure 
points of the columns (hcc) are displayed in Figure E.4. The portion of the columns and 
shear walls below the contraflexure height can be modeled as cantilevers with point loads 
applied at the tip. However, since the height to width ratio (hcc / lw) of the shear wall 
segment will be very low, Timoshenko beam theory taking into account shear effects will 
be a better choice to model the shear walls in this region. Figure E.5 displays the ratio of 
the flexural deformation to total deformation of a cantilever beam with variable height to 
length ratios under different loading conditions. It is seen in this figure that for typical 
height to length ratios of shear walls at the ground story (hcc/lw < 1) the contribution of 
shearing deformations to total deformation can constitute a significant share. Unless 
columns cross sectional dimensions are of a level that invokes shear effects significantly, 
they can be modeled using classical beam theory.  

 
 

 
Figure E.4 Section forces on the base story columns and shear walls at the point of column 

contraflexure 
 
 
Considering the frame and wall components individually under a distributed lateral 

load applied on the entire structure, the interaction forces that contribute to the lateral 
deformations are beam axial forces (coupled with slab forces) for frame component and 
floor interaction forces and moments transferred from beams for wall component. In the 
present method, the multistory structure will be modeled as an equivalent continuum 
structure composed of a flexural cantilever and a shear cantilever, the forces and moments 
in the actual structure will be assumed distributed along the continua. The continuum model 
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for equivalent shear flexure beam is shown in Figure E.6. It has to be noted that the beam 
moments acting on the walls were disregarded in the frame component since they do not 
have any influence on the lateral deformation. In this figure, q(x) and m(x) represent the 
action of interaction forces and beam moments transferred on the shear wall, respectively. 
The subscripts, B and S, refer to the flexural and shear beams, respectively. Although it was 
assumed that the action of horizontal forces on the wall as distributed, a concentrated 
interaction force at the top is required to maintain the deformation compatibility and force 
equilibrium between the flexural and shear beams. A point load of magnitude Q is therefore 
included in the model shown in Figure E.6.  
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Figure E.5 Ratio of flexural deformation to total deformation on the base of a structural 

wall 
 
 

3.1. Differential Equation of Substructure 1 
 
The formula derived by Heidebrecht and Stafford Smith (1973) will be modified 

further to take into account the effects of link beams on shear walls. The differential 
equations governing the behavior of two types of beam, referring to Figure E.6, are: For 
flexural component, assuming uniform stiffness height wise and using Eq. (E.4) and (E.7) 
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and for shear (frame component) using Eq. (E.4) and (E.9) and ignoring shear correction 
factor, 
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in which subscripts, B and S, refer to flexural and shear beams, respectively. 
In multistory structures consisting of tall slender frames, the axial deformations in 

the exterior columns of the frame will cause the floor diaphragms to rotate, which will 
contribute to the rotations of the elastic curve [ψS (x)].  A generalized theory for tall 
building structures, allowing for axial deformations of columns was proposed by Stafford 
Smith et al. (1984). However, the effect of such a situation is minor and limited to few 
structures, so that the rotation of floor slab is assumed to be zero along the height of the 
structure in this study [ψS (x) = 0].   

Eqs. (E.11) and (E.12) are the governing equations of the flexural (shear wall) and 
shear (frame) components of the shear-flexure combination member, respectively. Adding 
these equations, the differential equation governing the response of frame-shear wall 
system under prescribed lateral load, w(x), is obtained as 
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Figure E.6 Mathematical model of shear-flexural beam, interconnected frame and shear 

wall (equal deflections at each story levels) 
 
 

 
3.1.1. Effect of link beams 

 
Eq. (E.13) contains the first derivative of the distributed moment. The distributed 

beam moment resulting from the beam end moments and shear forces can be calculated 
using the free body diagram in Figure E.7. The rotation angle at the ends of link beams is 
the sum of joint and chord rotations. Slope deflection equations are used to calculate the 
beam end moments on the tension and compression side of the shear wall as given in Eq. 
(E.14). 

 



 353

( )
( ) ⎪

⎪
⎭

⎪
⎪
⎬

⎫

−++=

+++=

F
ijr

j
r

i
r

b

i
bi

r

F
ijl

i
l

j
l

b

j
bj

l

M
l
EI

M

M
l
EI

M

φθθ

φθθ

32
2

32
2

                               (E.14) 

 
The beam end joint rotation at the wall side will be equal to the wall rotation, 

w
i
r

j
l θθθ == , from compatibility. It is also assumed that the beam end rotations at the 

column side can be equated to beam end rotation at the wall side, w
j

r
i
l θθθ == . For a 

known value of neutral axis depth, c, the beam chord rotation due to uplift of the wall end is 
calculated as 
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φ =                                                       (E.15) 

where γ is the ratio of length of the tension (crack) region, measured from the neutral axis 
to extreme tension fiber, to the wall length. For the linear analysis here γ is 0.5. 

Distributing the calculated values in Eq. (E.14) yields 
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Figure E.7 Deformed configuration of shear wall beam assembly to derive the transmitted 
beam moments and distributed moment. 

 
 
On the uplift side of the wall the beam flange and on the drop side of the wall the 

beam bottom are in tension, so flexural rigidities of beams in Eqs. (E.14) and (E.16) can be 
different while calculating Ml and Mr taking into account flanges if cracking is considered. 
These values can be calculated separately or an average value can be taken. For linear 
analysis, which assumes uncracked section, this does not matter, because the flexural 
rigidity is equal in both positive and negative bending directions.  
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Assuming beam rotations are equal at both ends, the beam end moments on the 
column side can be calculated accordingly. Then the beam end shear force transferred to the 
wall can be calculated as 
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Distributing the related expressions and summing the moments transmitted from 

beams and calculating the moment created by beam shears at the centerline of the wall axis, 
the net moment acting on the wall at the ith story is obtained as 
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Considering equal beam length on both sides of the wall and an equal flexural 

rigidity at all ends of the beams (EIb), which can taken as the average of flexural rigidities 
of a flanged section calculated when bent in two directions taking into account the cracking, 

and inserting
dx
dy

w =θ , Eq. (E.18) can be written in open form as  
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Assuming this moment is uniformly distributed in between two half story heights (h), 

the expression giving the distributed moment is obtained as 
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Using the same analogy, the distributed moment action of beams in such a case 

where only one beam frames to the shear wall can be written as  
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Inserting the relations obtained in Eqs. (E.20) and (E.21) into the governing 

differential equation given in Eq. (E.13) of the combined beam and rearranging, we have 
the expression  
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3.2. Response of Substructure 2 
 

The mathematical model describing the essential elements of the base story is given 
in Figure E.8. This figure represents the portion of the structure below the contraflexure 
height (hcc). In multistory structures while the point of contraflexure can be taken at the 
midheight of columns and midspan of beams above the ground story, the contraflexure 
point of the base story columns (hcc) does not develop at the midheight and moreover it is 
not constant for every structure. The contraflexure point of corner columns is also different 
from the interior columns’ in the same structure. For a while the discussion on this issue 
will be postponed until the essential derivations of the new method are completed. The total 
column shear and the total wall shear are represented with Vc and Vw and they do not vary 
along the height of the base story. While the column moments are zero at this height, wall 
moment is equal to Mw.  
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Figure E.8 Model of the base story 

 
 
In Figure E.8, the flexural (EIw and EIc) and shear rigidities (GAw) are the sum of 

member rigidities that are of same type at the base story. From Figure E.8(a) the following 
relationship can be written using the Euler-Bernoulli beam theory  
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Integrating twice and using the prescribed boundary conditions at the base the 

deflection curve is calculated as   
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The total base shear is the sum of wall and column shears, so the column shear can 

be represented as woc VVV −=  alternatively. Then Eq. (E.25) becomes 
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Taking into account shear deformations and using Figure E.8(b), the shear wall 

component stress-displacements relations become 
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Integrating Eq. (E.27) once and using the boundary condition oy′=)0(ψ  for the 

rotation of wall cross section we obtain, 
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Introducing Eq. (E.30) into the shear expression in Eq. (E.29) and rearranging, the 

slope of the deflection curve becomes 
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Integrating and using the boundary condition oyy =)0( , the deflection curve of the 

shear wall is calculated as 
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The only unknowns in Eqs. (E.26) and (E.32) are MBo and Vw, the moment at the base 

of the shear wall and the wall shear force, respectively. The total base shear, Vo, is the sum 
of the applied lateral load at the base level. The force on the shear wall can be obtained in 
terms of MBo and Vo, if the resulting displacements calculated at the contraflexure height on 
columns and walls are related to each other as  

 
)()( ccwccc hyhy=β      (33) 

 
In the following β is taken as 1. Assuming displacement and rotation boundary 

conditions is applicable to both columns and walls, the relation defined in Eq. (E.33) yields 
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where f is expressed as 
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After the wall shear force (Fw) is distributed into the expressions for the 

displacement, rotation and bending moment on the wall, we have 
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4. Solution of the governing differential equation for uniform stiffness 
along the height 

 
For the case of a uniformly distributed load of intensity wo, the solution for Eq. 

(E.22) can be written in the form 
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where the coefficients  c1, c2, c3 and c4 are the coefficients of the homogenous solution. 
These coefficients can be found by using the following boundary conditions 
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where the subscripts B and S refer to the flexural and shear beams components, 
respectively. The interval of the solution is )(0 1 cchHHx −=≤≤ . The superscript, “*”, is 
used to differentiate the boundary conditions that apply to the junction between two 
substructures from those that apply to Substructure 2 at the base.  

The expressions for displacement, rotation, bending moment and shear force on the 
wall component then become 
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Equilibrium requires that the moment should be zero at the free end of each of the 

components of the shear-flexure cantilever, we can write 
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Using the compatibility condition at the junction between the two substructures, *

oy′  

and *
BoM can be calculated from Eq. (E.37) and (E.38) at x = hcc. After inserting the 

calculated expressions in Eq. (E.45) and rearranging, the bending moment at the wall base 
can be derived as 
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Here Vo can be written alternatively as woH1 for uniformly loaded cantilever beam. 

Once the bending moment at the base of the wall is obtained, all the quantities at any point 
of the both substructures can be calculated by using the derived expressions because all the 
expressions depend only on MBo. Using Eq. (E.34) the shear force on the wall at the base 
story can be calculated accordingly. The expression for wall base moment and relations for 
displacement, rotation, wall bending moment and shear force is derived and given at the 
end of this Appendix for the case of triangular load distribution. 
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4.1. The contraflexure height in base story columns (hcc) 
 

For typical frame wall structures, double curvature can be assumed for columns and 
beams with a fixed point of contraflexure. Single curvature can be assumed for walls, with 
some moment gradient along the member. A common choice will locate the point of 
contraflexure between 55% and 65% of the storey height above the base. As the system 
behavior approaches the flexural mode (αH→0), the contraflexure height moves away from 
the base. There are cases where the behavior of lower story columns is dominated by 
cantilever action. This occurs when the columns are considerably stiffer than the beams that 
frame into it. In such case the contraflexure point can move to upper story columns.  

When the derived expressions are used to calculate the shear profile in any of the 
components, the transition between the substructures should be smooth. The easiest way of 
estimating the contraflexure height is to perform graphical solution. The wall shear force 
calculated at the base of the substructure 1 (upper part of the model) should be equal to or 
slightly less than that calculated at the base substructure given in Eq. (E.34). In Figure E.9 
for a structural system with αH = 3.81, the location of contraflexure height is determined 
by trial and error. The ratio of contraflexure height at base story column to the base story 
height (hcc / hbasestroy) was found approximately as 0.75, so that the force compatibility is 
provided at the junction. It has to be notified that this procedure should not be perceived as 
a trial-and error method, it is a graphical solution since each structure is characterized by a 
unique (hcc / hbasestroy) ratio. An interesting observation with regard to Figure E.9 is that the 
location of contraflexure height does not influence the distribution of displacement and 
moment along the height and the shear distribution at the upper substructure. Since the 
expression for the base substructure is not expressed in dimensionless form, which is to say 
the response can only be calculated for specific values of EIw, EIc and GAw, a general 
expression for hcc / hbasestroy ratio can not be derived. 
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Figure E.9 Graphical determination of column contraflexure height for a specific case (αH 
= 3.81, EI = 8.0825E+10 Nm2, GAw = 1.594E+10 N, GA = 8.315E+8 N, EIb = 2.384E+8 
Nm2) 
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5. Calculation of the response through the continua by transfer matrix 
method in consideration with nonuniform stiffness and arbitrary 
loading 

 
The two principal deficiencies noted in the formulation given in Heidebrecht and 

Stafford Smith (1973) are that the moments from link beams were not considered and  zero 
rotation condition, 0' =oy , imposed at the base leads to frame shear calculated by Eq. 
(E.3) to vanish. Both of these deficiencies can be eliminated by incorporating beam 
moment effects into Eq. (E.22) and developing a new formulation for the base story that 
now yields nonzero frame shear at the base.  

In case of nonuniform stiffness and lateral loads that do not have regular pattern 
along the height of the structure, obtaining a closed form solution from Eq. (E.22) becomes 
difficult. In such cases, the transfer matrix method adopted by Heidebrecht and Stafford 
Smith (1973) provides an elegant way of solving the problem. A nonuniform building is 
considered to consist of a number of uniform segments. The shear and flexural rigidities 
and intensity of loading may change from segment to segment but must be uniform in the 
segment.  The basic expression defining the deflection of a particular segment is of the 
same form as Eq. (E.39).  For known values of boundary conditions defined in terms of the 
displacement, rotation, bending moment and shear at the base of the segment, values of 
these quantities can be calculated anywhere  within the segment using the derivatives of Eq. 
(E.39): 

 
*)0( oyy =    (E.47a)

*')0(
oy

dx
dy

=  
   (E.47b)

*)0( BoB MM =  (E.47c)
*)0( oVV =  (E.47d)

 
If the expressions defining the displacement, rotation and bending moment are 

arranged and put in matrix form, they define the state vector of these quantities at any 
position in the segment which can be written in the form 
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The matrices [T(x)] and {B(x)} are known quantities for any value of x in the 

segment. The quantities wo and *
oV , representing the intensity of the uniform lateral loading 

in the segment and the shear force at the base of the segment, can be calculated by static 
equilibrium for any segment in the structure.  

A different formulation was derived for the bottom segment (Substructure 2), which 
is measured from the base to the contraflexure height of the columns, the transfer matrices 
used for this segment are obtained from Eqs. E.36-E.37-E.38:  
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Starting from the bottom segment, with boundary conditions given in Eq. (E.47 a-b-

c-d), the conditions can be calculated at the other end of the segment using Eq. (E.48). For 
two adjacent segments compatibility conditions imply that the boundary conditions 
calculated at the upper end of the bottom segment become the base boundary conditions for 
the top segment to start. If this sequence is followed from base to top of the structure for 
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each segment, the following recursive relationships result: 
 

[ ] [ ][ ]1−= nnn TTT       (E.54) 
[ ] [ ] [ ] [ ]nnnn BBTB += −1       (E.55) 
for { } [ ][ ] [ ]non BzTz +=       (E.56) 
and { } [ ] [ ] [ ]nnnn BzTz += −1     (E.57) 

 
in which {zn}=the state vector at the top of the nth segment, and {zo} = the state vector at the 
base of the structure. If the bottom substructure consists of only one segment, the matrices 
{Bo(0)} , [To(0)], {B1(hcc)} , [T1(hcc)] are calculated using Eqs. (E.52) and (E.53). 

Assuming a clamped (fixed) base structure, the boundary conditions at the base of 
the structure to start with are known except the bending moment (MBo) at the base of the 
flexural component. For a structure of N segments, using the final equation, which has the 
same form as Eq. (E.55), the unknown parameter MBo can be calculated.  As the 
displacement and rotation at the very base and MB(H1) are all zero, the third row of the 
matrices yields 
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in which 

3NB is the third element of the vector { }NB  and 
33NT is the (3,3) element of matrix 

[ ]NT . 
Once MBo has been computed, the state vector {zo} is known, and Eq. (E.57) can be 

applied successively to each segment to determine the state vectors at each segment 
boundary. Eq. (E.48) can then be used to evaluate the state vector {z(x)} at any position, x, 
within any segment.  

 
 
6. Numerical examples  
 
6.1. Uniform Structure 
 
In order to verify the accuracy and effectiveness of the proposed procedure, ten-story 

prototype frame-wall structure was created. A general plan view is shown in Figure E.10. 
The structure consists of three-bay frames, (frames A, B and C) parallel to the loading 
direction, and four two-bay frames, (frames 1, 2, 3 and 4) in the perpendicular direction. 
The span widths are 6.0, 5.0 and 6.0 m, respectively in the longitudinal direction, and 6.0 m 
each in the transverse direction. Frame B has a shear wall in the central bay continuous 
from the first to the tenth story. While the height of ground story is 3.75 m, the story height 
for the stories above is 3 m yielding a total height of 30.75 m. 

The columns are 0.6mx0.6m and the wall is 5mx0.3m in plan dimensions. Beams are 
0.6 m in depth and 0.3 m in width. Four different cases are designed for analysis purposes. 
In some cases, the slab contribution to the beam resistance is considered, so flanged beam 
cross section was used. In these cases flange width was taken as 1.2 m. While the structures 
in Cases 1, 3 and 4 consist of flanged beams, Case 2 structure is composed of rectangular 
beams. The wall in Case 4 is 3mx0.3m. By changing member cross sectional properties and 
the pattern of the lateral loads both approximate and exact stiffness matrix method 
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structural analyses of the systems were carried out. The analysis cases with different 
member properties and applied loading are summarized in Table E.1. The modulus of 
elasticity of the concrete (E) was taken as 25’000 MPa and the shear modulus is assumed to 
be equal to G=0.425E.  

The flexural component of the shear-flexure beam in this analysis consists of the shear 
wall (Iw=3.125 m4).  The shear component consist of the frames A, B and C. Joints A2&A3 
and C2&C3 are framed by two beams and joints A1&A4, B1&B4 and C1&C4 are framed 
from only one side in the direction of loading. The contribution of single joint to the GA 
parameter of the equivalent shear flexure beam is calculated and tabulated in Table E.2.  
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Figure E.10 General plan view and frame properties 
 
 
 

Table E.1 Member rigidities used in different analyses cases  

Cases EIc (Nm2) EIw 
(Nm2) 

EIb 
(Nm2) 

GAw (N) EI (Nm2) GA (N) η (N) αH Loading 

Case 1 2.700E9 7.813E10 2.384E8 1.594E10 8.083E10 8.315E8 4.127E8 3.815 
3.119* 

Triangular
w=720 
kN/m  

Case 2 2.700E9 7.813E10 1.350E8 1.594E10 8.083E10 5.280E8 2.338E8 2.985 
2.485* 

Triangular
w=720 
kN/m  

Case 3 2.700E9 7.813E10 2.384E8 1.594E10 8.083E10 8.315E8 4.127E8 3.815 
3.119* 

Uniform 
w=355 
kN/m  

Case 4 2.700E9 1.688E10 2.384E8 9.563E9 1.958E10 8.315E8 4.127E8 7.752 
6.337* 

Triangular
w=720 
kN/m  

*The values are calculated according to Heidebrecht and Stafford Smith (1973). 
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Table E.2 Contribution of single joint to the GA parameter of the equivalent shear-flexure 
beam. Units in Newtons 

 Joints A2&3 and B2&3 Joints A1&4, B1&4 and 
C1&4 Total 

GA (Case 1,3&4) 1.100E+08 6.510E+07 8.315E+08 
GA (Case 2) 7.200E+07 4.000E+07 5.280E+08 

 
 

The results of the analyzed cases are given in Figure E.11 and used for the 
verification of proposed method in comparison with the results of Heidebrecht and Stafford 
Smith (1973) and those calculated with more exact finite element method. It is clearly seen 
in these figures that the present method not only provides improved estimates over the 
results of the method due to Heidebrecht and Stafford-Smith, but also calculates the wall 
shear at the base accurately. The new method provides far better results in terms of shear 
force distribution in the system compared with the previous method, especially when the 
relative rigidity of frames increases.  

 
 
6.2. Nonuniform Structure 
 
The performance of the proposed method was also checked for a nonuniform 

structure. The same model with abrupt changes in the stiffness along the height of the 
structure was considered. The structure has the same plan form given in Figure E.10 but the 
first four stories consist of 0.6mx0.6m columns and 5m long and 0.3m thick shear walls. 
The beams are rectangular with 0.7mx0.4m in dimension up to the fifth story. Stories from 
five to ten consist of 0.45mx0.45m columns and 3mx0.25m shear walls. The beams are 
weaker at these stories, with dimensions of 0.5mx0.3m. Such an arrangement results in 
three distinct stiffness regions along the height.  The first region reaches to 11.25 m height, 
corresponding to mid-height of the fourth story. A story height region between the fourth 
and fifth stories midheights provides a transition region. Above 14.25 m the final stiffness 
region starts. The global flexural (EI) and shear rigidity (GA) terms at the transition region 
were taken as the average of upper and bottom part values. A triangular load distribution 
that totals 16’500 kN at the base is applied. The computed displacement profile, shear force 
and bending of the nonuniform structure are plotted in Figure E.12.  

As seen in Figure E.12, the displacement profile was calculated accurately. In terms 
of moment distribution, while the presented method and former method by Heidebrecht and 
Stafford Smith (1973) yield the same profile due to weak beams at the upper stories, at the 
lower stories the present method provides far better predictions because the effects of link 
beams are considered. The share of walls from the total base shear is also calculated 
accurately. Abrupt changes occur in the shear force profile since the stiffness changes 
drastically from one stiffness region to another.  
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Figure E.11 Comparison of displacements, wall shear forces and bending moments 
calculated using different methods. Uniform stiffness was assumed along the height.  



 366

0

3

6

9

12

15

18

21

24

27

30

33

0.00 0.10 0.20 0.30 0.40 0.50

Lateral Displacement (m)

H
ei

gh
t (

m
)

Stifness matrix
method
Heidebrecht and
Stafford Smith (1973)
Proposed method

0

3

6

9

12

15

18

21

24

27

30

33

-50000 0 50000 100000 150000 200000

Wall moment (kN.m)

H
ei

gh
t (

m
)

Stiffness matrix method

Heidebrecht and Stafford
Smith (1973)
Proposed method

0

3

6

9

12

15

18

21

24

27

30

33

-5000 0 5000 10000 15000 20000

Wall shear force (kN)

H
ei

gh
t (

m
)

Stifness matrix
method
Heidebrecht and
Stafford Smith (1973)
Proposed method

 
Figure E.12 Comparison of displacements, wall shear forces and bending moments 

calculated with different methods for nonuniform stiffness.  
 

 
7. Displacement, rotation and stress resultants for triangular load, 

uniform structure  
 

Although the lateral load is applied on the entire beam, only the portion acting on the 
Substructure 1 is considered. This yields the following lateral load distribution applied on 
the continuum model 

 

)()( 1
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The expressions for displacement, rotation, bending moment and shear force on the 

wall component for triangular distribution of lateral loads are 
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where *

oy′  and *
BoM can be calculated from Eq. (E.37) and (E.38) at x = hcc. The bending 

moment at the base of the shear wall for triangular load distribution is given as  
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where for a given intensity of lateral load (w1), Vo can be expressed as  
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APPENDIX F 

FORCE-DEFORMATION RELATIONS OF WALL SPECIMENS 
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Figure F.1 Force-displacement relations of wall models (Lw = 3 m; Lv = 5 m) 
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Figure F.2 Force-displacement relations of wall models (Lw = 3 m; Lv = 6 m) 
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Figure F.3 Force-displacement relations of wall models (Lw = 3 m; Lv = 9 m) 
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Figure F.4 Force-displacement relations of wall models (Lw = 3 m; Lv = 15 m) 
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Figure F.5 Force-displacement relations of wall models (Lw = 5 m; Lv = 5 m) 
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Figure F.6 Force-displacement relations of wall models (Lw = 5 m; Lv = 6 m) 
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Figure F.7 Force-displacement relations of wall models (Lw = 5 m; Lv = 9 m) 
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Figure F.8 Force-displacement relations of wall models (Lw = 5 m; Lv = 15 m) 
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Figure F.9 Force-displacement relations of wall models (Lw = 5 m; Lv = 24 m) 
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Figure F.10 Force-displacement relations of wall models (Lw = 8 m; Lv = 5 m) 
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Figure F.11 Force-displacement relations of wall models (Lw = 8 m; Lv = 6 m) 
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Figure F.12 Force-displacement relations of wall models (Lw = 8 m; Lv = 9 m) 

 

P/Po = 0.02
P/Po = 0.05
P/Po = 0.10
P/Po = 0.15
P/Po = 0.25

Lw = 8m ; ρb = 0.01 ; M/V = 15m

2nd floor drift ratio (%)

0 1 2 3 4

N
or

m
al

iz
ed

 S
he

ar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Lw = 8m ; ρb = 0.02 ; M/V = 15m

N
or

m
al

iz
ed

 S
he

ar

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Lw = 8m ; ρb = 0.005 ; M/V = 15m

2nd floor drift ratio (%)

0 1 2 3 4

Lw = 8m ; ρb = 0.04 ; M/V = 15m

 
Figure F.13 Force-displacement relations of wall models (Lw = 8 m; Lv = 15 m) 
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Figure F.14 Force-displacement relations of wall models (Lw = 8 m; Lv = 24 m) 
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APPENDIX G 

SHEAR WALL EXPERIMENTS 
 

Table G.1 Roof Drift and shear stress of test specimens by other researchers 

Reference 
Hw 
(m) 

Lw 
(m) 

tw 
(mm)

P/Po 
(%) 

Vmax 
(kN) 

fc 
(Mpa)

ν* 
(Mpa) Hw/Lw 

δu 
(mm) 

δu/Hw  
(%) 

Corley et al. (1981) 4.57 1.905 102 7.0 182.4 24.4 0.19 2.4 76.4 1.67 
Corley et al. (1981) 4.57 1.905 102 7.5 92.6 22.7 0.10 2.4 76.4 1.67 
Corley et al. (1981) 4.57 1.905 102 14.1 263.1 21.8 0.29 2.4 78.2 1.71 
Corley et al. (1981) 4.57 1.905 102 7.9 313.8 49.3 0.23 2.4 132.1 2.89 
Corley et al. (1981) 4.57 1.905 102 9.3 302.2 42 0.24 2.4 130.8 2.86 
Corley et al. (1981) 4.57 1.905 102 8.9 309.7 44.1 0.24 2.4 138.1 3.02 
Corley et al. (1981) 4.57 1.905 102 8.6 223.1 45.6 0.17 2.4 126.6 2.77 
Corley et al. (1981) 4.57 1.905 102 0.4 265.2 38.5 0.22 2.4 50.7 1.11 
Corley et al. (1981) 4.57 1.905 102 7.6 275.2 45.5 0.21 2.4 101.5 2.22 
Corley et al. (1981) 5.49 1.905 102 1.0 103.2 23.3 0.11 2.88 126.7 2.31 
Morgan et al. (1986) 4.38 1.575 57 4.9 35.4 31.7 0.07 2.78 66.1 1.51 
Oesterle et al., 1978 4.57 1.905 102 0.4 39.0 44.7 0.03 2.4 103.3 2.26 
Oesterle et al., 1978 4.57 1.905 102 0.4 66.2 46.4 0.05 2.4 133.5 2.92 
Oesterle et al., 1978 4.57 1.905 102 0.3 84.9 53 0.06 2.4 132.1 2.89 
Oesterle et al., 1978 4.57 1.905 102 0.3 213.4 53.6 0.15 2.4 103.8 2.27 
Oesterle et al., 1978 4.57 1.905 102 0.3 93.5 47.3 0.07 2.4 179.7 3.93 
Oesterle et al., 1978 4.57 1.905 102 0.3 104.3 45 0.08 2.4 317.3 6.94 
Oesterle et al., 1978 4.57 1.905 102 0.3 235.4 45.3 0.18 2.4 126.6 2.77 
Vallenas et al. (1979) 3.06 2.388 102 7.8 344.9 34.8 0.24 1.28 173.3 5.67 
Vallenas et al. (1979) 3.09 2.413 102 7.3 284.5 33.4 0.20 1.28 74.7 2.42 
Wang et al. (1975) 3.06 2.388 102 7.9 343.4 34.5 0.24 1.28 107.0 3.5 
Wang et al. (1975) 3.06 2.388 102 7.6 348.8 35.6 0.24 1.28 51.0 1.67 
Wang et al. (1975) 3.06 2.388 102 7.5 321.1 35.9 0.22 1.28 68.8 2.25 
Wang et al. (1975) 3.09 2.413 102 7.0 274.7 34.5 0.19 1.28 72.0 2.33 
Oesterle (1986) 4.57 1.905 102 0.3 227.8 53.7 0.16 2.4 127.1 2.78 
Oesterle (1986) 4.57 1.905 102 0.4 251.0 41.7 0.20 2.4 101.5 2.22 
Oesterle (1986) 4.57 1.905 102 5.9 133.4 27.9 0.13 2.4 101.5 2.22 
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Table G.1 (Continued) Roof Drift and shear stress of test specimens by other researchers 
 

Reference 
Hw 
(m) 

Lw 
(m) 

tw 
(mm)

P/Po 
(%) 

Vmax 
(kN) 

fc 
(Mpa)

ν* 
(Mpa) Hw/Lw 

δu 
(mm) 

δu/Hw   
(%) 

Thomsen&Wallace (1995)  3.82 1.22 102 7.0 65.8 43.7 0.08 3.13 83.6 2.19 
Thomsen&Wallace (1995)  3.82 1.22 102 10.0 69.3 31 0.10 3.13 82.5 2.16 
Han et al. (2002) 2.00 1.50 200 10.0 442.90 34.2 0.25 1.3 80.9 4.05 
Han et al. (2002) 2.00 1.50 200 10.0 573.30 34.5 0.33 1.3 55.9 2.80 
Han et al. (2002) 2.00 1.50 200 10.0 321.40 36.9 0.18 1.3 59.6 2.98 
Shiu et al. (1981) 5.49 1.91 101.6 1.0 349.3 23.3 0.37 2.9 152.6 2.78 
Ali and Wigth (1991) 3.56 1.22 76.2 7.4 160.6 34.0 0.30 2.9 106.8 3.00 
Ali and Wigth (1991) 3.56 1.22 76.2 9.3 166.4 32.3 0.31 2.9 53.4 1.50 
Ali and Wigth (1991) 3.56 1.22 76.2 9.1 169.5 33.0 0.32 2.9 53.4 1.50 
Ali and Wigth (1991) 3.56 1.22 76.2 8.8 163.3 34.2 0.30 2.9 53.4 1.50 
Carvajal&Pollner (1983) 1.55 0.50 101.6 8.4 36.9 28.1 0.14 3.1 62.1 4.00 
Carvajal&Pollner (1983) 1.55 0.50 101.6 8.3 34.3 28.2 0.13 3.1 62.1 4.00 
Carvajal&Pollner (1983) 1.55 0.50 101.6 9.2 28.5 25.6 0.11 3.1 62.1 4.00 
Carvajal&Pollner (1983) 1.55 0.50 101.6 8.2 28.0 28.7 0.10 3.1 50.0 3.22 
Carvajal&Pollner (1983) 1.55 0.50 101.6 11.3 27.1 20.8 0.12 3.1 34.9 2.25 
Lefas&Kotsovos (1990) 1.3 0.65 65 0.0 117.7 30.1 0.51 2.0 20.9 1.61 
Lefas&Kotsovos (1990) 1.3 0.65 65 0.0 115.8 35.2 0.46 2.0 22.2 1.71 
Lefas&Kotsovos (1990) 1.3 0.65 65 0.0 111 53.6 0.36 2.0 24.5 1.88 
Lefas&Kotsovos (1990) 1.3 0.65 65 0.0 111.5 49.2 0.38 2.0 25.0 1.92 
Lefas et al. (1990) 0.75 0.75 70 0.0 260 52.3 0.68 1.0 8.3 1.10 
Lefas et al. (1990) 0.75 0.75 70 10.0 340 53.6 0.88 1.0 8.9 1.18 
Lefas et al. (1990) 0.75 0.75 70 20.0 330 40.6 0.99 1.0 8.9 1.18 
Lefas et al. (1990) 0.75 0.75 70 0.0 265 42.1 0.78 1.0 11.2 1.49 
Lefas et al. (1990) 0.75 0.75 70 10.0 320 43.3 0.93 1.0 8.1 1.07 
Lefas et al. (1990) 0.75 0.75 70 20.0 355 51.7 0.94 1.0 5.8 0.77 
Lefas et al. (1990) 0.75 0.75 70 0.0 247 48.3 0.68 1.0 10.8 1.43 
Lefas et al. (1990) 1.3 0.65 65 0.0 127 42.8 0.46 2.0 20.6 1.59 
Lefas et al. (1990) 1.3 0.65 65 10.0 150 50.6 0.50 2.0 15.3 1.18 
Lefas et al. (1990) 1.3 0.65 65 20.0 180 47.8 0.62 2.0 13.2 1.01 
Lefas et al. (1990) 1.3 0.65 65 0.0 120 48.3 0.41 2.0 18.1 1.39 
Lefas et al. (1990) 1.3 0.65 65 20.0 150 45 0.53 2.0 9.5 0.73 
Lefas et al. (1990) 1.3 0.65 65 0.0 123 30.1 0.53 2.0 20.9 1.61 

 
*v is the member maximum average shear stress normalized with respect to cf  calculated as 

cww fLt
V

v max=  
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