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ABSTRACT

DYNAMIC CHARACTERISTICS AND PERFORMANCE
ASSESSMENT OF REINFORCED CONCRETE STRUCTURAL
WALLS

Kazaz, {lker
Ph.D., Department of Civil Engineering
Supervisor: Prof. Dr. Polat Giilkan

February 2010, 379 pages

The analytical tools used in displacement based design and assessment procedures
require accurate strain limits to define the performance levels. Additionally, recently
proposed changes to modeling and acceptance criteria in seismic regulations for both
flexure and shear dominated reinforced concrete structural walls proves that a
comprehensive study is required for improved limit state definitions and their
corresponding values. This is due to limitations in the experimental setups, such that most
previous tests used a single actuator at the top of the wall, which does not reflect the actual
loading condition, and infeasibility of performing tests of walls of actual size in actual
structural configuration. This study utilizes a well calibrated finite element modeling tool to
investigate the relationship between the global drift, section rotation and curvature, and
local concrete and steel strains at the extreme fiber of rectangular structural walls.

Functions defining more exact limits of modeling parameters and acceptance criteria for
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rectangular reinforced concrete walls were developed. This way a strict evaluation of the
requirements embedded in the Turkish Seismic Code and other design guidelines has
become possible. Several other aspects of performance evaluation of structural walls were
studied also. Accurate finite element modeling strategies and analytical models of wall and
frame-wall systems were developed for seismic response calculations. The models are able
to calculate both the static and dynamic characteristics of wall type buildings efficiently.
Seismic responses of wall type buildings characterized with increasing wall area in the plan

were analyzed under design spectrum compatible normal ground motions.

Keywords: Structural Walls, Performance Limits, Strain, Plastic Rotation, Plastic Hinge
Length, Finite Element Modeling, Turkish Seismic Design Code, Seismic Demand, Period

Formula, Frame-wall Interaction, Approximate Methods
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BETONARME PERDELERIN QiNAMiK OZELLIKLERI VE
PERFORMANS DEGERLENDIRMESI

Kazaz, Ilker
Doktora, insaat Mithendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Polat Giilkan

Subat 2010, 379 sayfa

Yer degistirmeye dayali tasarim ve degerlendirme yontemlerinde kullanilan analitik
araglarla performans diizeyini tanimlamak icin dogru gerilme degerlerine ihtiyag
duyulmaktadir. Ayrica son zamanlarda yonetmeliklerde hem kesme ve hem de egilme etkisi
altindaki betonarme perdelerin modelleme ve kabul kriterleri igin 6nerilen degisiklikler de
hasar sinir durumlarimin tanimlanmasi ve kars1 gelen gerilme degerlerinin belirlenmesi igin
kapsamli bir c¢aligmaya ihtiya¢ duyuldugunu gostermektedir. Bu durum simirlarin
belirlenmesinde kullanilan deneysel diizeneklerin yetersizliginden kaynaklanmaktadir.
Birgok deney perdeye tepe noktasindan uygulanan tek bir yiikklemeyle gergeklestirilmekte
ve gercek boyutlarda ve yapi i¢inde gergek konumundaki etkilere maruz elemanlar {izerinde
deneyler kolaylikla yapilamamaktadir. Bu calisma ¢ok iyi kalibre edilmis bir sonlu
elemanlar modelleme programini kullanarak dikdortgen kesitli betonarme perdelerin global
Otelenme, kesit donmesi ve egriligi ve perde uglarindaki beton ve celik gerilmeleri

arasindaki iligkiyi incelemektedir. Dikdortgen kesitli perde elemanlart i¢in mevcut
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degerlerden daha dogru olduguna inanilan modelleme parametreleri ve kabul kriteri
fonksiyonlar1 teklif edilmektedir. Tiirk Deprem Sartnamesi ve bazi diger hesap
kilavuzlarinda verilen sekil degistirme ile ilgili hiikiimlerin gecgerligi irdelenmektedir. Bu
caligmada yapisal duvarlarin performans degerlendirmesine dair birgok konu da
irdelenmistir. Perde ve perde-cerceve sistemler icin sismik hesaplarda kullanilmak iizere
sonlu eleman modelleme stratejileri ve analitik hesap yontemleri gelistirilmistir. Gelistirilen
modeller perdeli yapilarin hem dinamik hem de statik Ozelliklerini etkin bir sekilde
hesaplamaktadir. Plan alanina gdre perde alami arttirnmi esas alinarak, perdeli yapilarin
dogrusal olmayan sismik hesaplar1 tasarim tepki spektrumuyla uyumlu yer hareketi

kayitlar1 kullanilarak zaman tanim alaninda hesap yontemi ile gerceklestirilmistir.

Anahtar Kelimeler: Yapisal Perde, Performans Limitleri, Birim Gerilme, Sonlu Elemanlar
Yontemi, Plastik Donme, Plastik Mafsal Yontemi, Tirk Deprem Yonetmeligi, Sismik

Talep, Periyot Formiilii, Perde-Cergeve Etkilesimi, Yaklasik Metodlar
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Structural walls are used extensively in low- and moderate- rise buildings to resist
lateral loads induced by wind or earthquakes. Unlike other structural members such as
beams and columns when robust structural walls were utilized in the structural system to
resist the lateral earthquake loads, they dominate the response of the entire structure. The
seismic performance of many buildings, therefore, closely linked to the behavior of the
reinforced concrete walls.

Understanding behavior of structural walls requires experimental as well as
analytical investigations. Nearly all the conclusion and derivations on structural walls come
from the tests of isolated shear walls of variable aspect ratios (squat to slender walls),
defined as the ratio of height to the length of the wall (H,/L,,). Although vast amount of
experimental and analytical information is available on the behavior of structural walls
tested and simulated under severe earthquake loading conditions, due to limitations in the
experimental setups, such that most previous tests used a single actuator at the top of the
wall and did not simulate well the actual moment distribution expected in a multi-story
system subjected to seismic loading, and inability of analytical models especially to include
the critical shear-flexure interaction effects entails this study to undertake the analytical
investigation of structural walls. Additionally, previous research has evaluated the seismic
response of walls, few studies have specifically focused on the performance (or damage) of
structural wall systems.

After the 90s due to increased interest in performance-based earthquake engineering,

a significant amount of research has been conducted on performance-based seismic design



or limit-states design procedures that have the simple aim of specifying structural
performance for predefined seismic intensity levels. Structural walls have also been
investigated extensively in this process (Wallace, 1994; Kowalsky, 2001; Paulay, 2002,
Priestley et al., 2007). The general aim in these studies is to establish a relation between the
expected displacement demands (drift ratio limits, ductility demand) on the building system
to the local deformations on the wall cross section (curvatures and rotation), the magnitude
and distribution of wall normal strain. The analytical methods adopted in these studies that
assumed linear distribution of wall curvature and other simplified modeling assumptions
requires reinvestigation of such elements under flexural, shear and combined loading
actions that is induced by the seismic action. As an example to this situation, the strain
distribution in concrete at the base of a rectangular wall specimen used in the model
verification by Orakcal (2004) were shown in Figure 1.1. Even though analytical
predictions obtained by an improved version of the Multiple-Vertical-Line-Element Model
(MVLEM) agree well with the measured response in average, the model requires extensive
calibration. It is also obvious from the figure that the plain sections do not remain plane any
more in large inelastic action and the analytical predictions significantly underestimate the
concrete strain at the extreme compression fiber. This situation leads to anticipation of
unconservative deformation capacities of reinforced concrete members when displacement
based design and assessment are utilized in the evaluation of such members. For instance,
the modeling and acceptance criteria in the recently enforced Turkish Seismic Design Code
(TSC, 2007) lay down concrete compressive and steel tensile strain limits in the
performance assessment of concrete members, but the correctness of these values has not
been extensively checked.

The recent efforts that aim to enhance the accuracy and reliability of wall provisions
also justify the necessity of this study. Such an example is a newly completed standard,
ASCE/SEI 41-06 (2006), Seismic Rehabilitation of Existing Buildings, which proposes
changes to acceptance and modeling criteria for walls controlled by both flexure and shear
in FEMA 356 (2000). The main goal of proposed changes to wall provisions of ASCE/SEI
41 (Section 6.7) was to update the modeling and acceptance parameters for walls to make

them more consistent with experimental results (ASCE/SEI 41 update, 2007).
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Figure 1.1 Comparison of predicted and measured average concrete strains at the base
of the wall at applied peak top roof drifts (adopted from Orakcal, 2004)

Analytical procedures are widely used in performance evaluation of reinforced
concrete structures and components. However, state-of-the-art of structural wall modeling
underlines the inadequacy of traditional strategies in obtaining reliable wall response. In the
last decades the international benchmark studies that were organized to investigate the
modeling problems on structural walls revealed the inadequacy of the various modeling
techniques used in structural walls. The first is the Seismic Shear Wall International
Standard Problem (SSWISP) conducted by NUPEC (Nuclear Power Engineering
Corporation of Japan) in between 1995 and 1996 (OECD/NEA/CSNI, 1996). The results of
each experiment were presented to research community for blind prediction under different
benchmark projects. The participants were asked to predict the measured global response
quantities such as displacements, forces, moments, accelerations as well as local quantities
like rebar strains at different levels to figure out the local weaknesses during the course of
dynamic experiments. To achieve capturing local as well as global behavior necessitates the
use of finite element methodology. The results of this benchmark led the research
community to question accuracy of stress analyses methods due to inadequate ability in
predicting both the peak strength and ductility response of structural walls under seismic
actions. Many distinguished experts in the field fell short in predicting the response. The
variation of predictions on the structural ductility was very significant and ranges from 35
to 180 percent of the displacement recorded by NUPEC. Figure 1.2 summarizes the results

of the participants.
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The second benchmark project that also has inspired this study is named as “Safety
Significance of Near-Field Earthquakes” organized by International Atomic Energy Agency
(IAEA) in between 2002 and 2005 (Kazaz et al., 2006a). The same tendency in excessive
variation of predicted seismic deformations was also valid in this project especially when
the blind prediction of the response was asked. Figure 1.3 presents the maximum
displacement response blind predictions (results were not known to the participants) of
CAMUS wall of participants under a given earthquake record. In a blind prediction exercise
there is significant difficulty in predicting the displacements. It must be mentioned that the
best estimations were obtained by teams that used solid continuum elements in the finite
element discretization of the shear wall. Information about the experimental programs of
these walls and the development of their accurate finite element models are described in
Chapter 2.

The difficulties with predicting ductility and strength, as it became obvious in these
benchmark projects, has stimulated this study to investigate reliable modeling criteria of
structural walls and to evaluate the validity of procedures and displacement limits used in
the performance assessment of this type of structures.

The accurate prediction of deformation demands of any structural system is important
from various aspects including:

e Judging the validity of applied design in proportioning the reinforcement and the
dimensions whether it is adequate in satisfying the imposed deformation demands.
e Quantification of seismic demands to assess the damaging potential of ground

motions on wall type structural systems.



e Assessment of the performance of existing structures under code specified
performance criteria.
e Improving the effectiveness and accuracy of displacement based design and

assessment procedures by examining proposed plastic rotation and strain limits.
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Figure 1.3 Maximum displacement predictions of CAMUS wall

The merit of this research will be the utilization of current non-linear finite element
analyses (NLFEA) procedures in the field of earthquake engineering to investigate the
seismic behavior of reinforced concrete structural walls. NLFEA can serve as a tool in the
reliable assessment of the strength and behavior of structures in cases where it is expensive
and labor intensive to carry out experimentation, especially dynamically. Vecchio (1998)
explains the relevance and value of non-linear finite element procedures for analysis and
design of reinforced concrete structures as well as the reasons for caution when applying
them. One of the most important reasons for a cautious attitude towards NLFEA procedures
in the field of structural engineering is the reliable modeling of non-linear behavior of
reinforced concrete, particularly in shear critical conditions which is the case most of the
times in the analysis of structural walls. It was observed that any procedure or modeling

strategy that is well suited to a certain structure or loading condition can perform poorly in



another case. Different problems can require different element formulation, constitutive
material laws, load application and finite element mesh generation.
In summary, detailed and comprehensive analytical investigation of structural walls
is required to find out:
1. Limitations due to load application and scale of the experimental setup, and

2. Limitations in the analytical approaches used in the evaluation of structural walls.

1.2 REVIEW OF PREVIOUS STUDIES

The subject tiers of this study is composed several items each of which has its own
specific literature. The relevant literature of each main topic is covered in related chapter.
In this introduction part, only a general literature review is given with regards to modeling

and performance assessment of structural walls.

1.2.1  Analytical Modeling of RC Structural Walls

Various analytical models based on different approaches have been proposed to
predict the inelastic response of RC structural walls. The modeling strategies of RC
structural walls can be classified in two major groups:

e Macroscopic models: These models are phenomenological in nature and tend to
simulate the global behavior of the entire large-sized wall element by means of an
analogous structural idealization (Colotti, 1993). The derivations are based on observed test
results, so usually valid only for specific conditions upon which the derivation of the model
is based (Vulcano and Bertero, 1987).

There are three main types of macro-models being used for reinforced concrete
structural walls. These are the equivalent beam-column element model, the equivalent truss
element model, and the vertical line element model. The beam-column elements
extensively used to model reinforced concrete members. The behavior of the element is
characterized traditionally by the elasto-plastic force-deflection (moment-rotation) response
lumped at the hinges developing at member ends. Introduction of fiber section formulation
into beam-column element provided considerable flexibility and ease in the use of the
element (Taucer et al., 1991), yet could not solve the problems related to inadequate shear
behavior, which is crucial in the modeling of structural walls (Vulcano and Bertero, 1987).

Another limitation of the beam elements is that the rotations occur around the point lying



on the centroidal axis of the wall impeding the fluctuation of the neutral axis. The
equivalent truss element model, also named as strut-and-tie model, depends on the inclined
compression struts that are parallel to the direction of cracking. Although the procedure
yields conservative estimates of the strength when compared with test evidence (ASCE-
ACI Committee 445, 1998), it is not accurate and limited to monotonic loading because of
difficulties in defining the structural topology and the properties of the truss elements under
cyclic loading.

Vertical line element models are specifically developed for the analysis reinforced
concrete shear walls. This model was originally proposed by Kabeyasawa et al. (1984) on
the basis of the experimentally observed behavior of a seven-story RC frame-wall structural
system. The model shown in Figure 1.4(a) is idealized a wall member as three vertical line
elements with infinitely rigid beams at the top and bottom floor levels. Axial springs at
each side and a rotational spring at the center are for representing flexural behavior, while
the horizontal spring is for modeling shear behavior. Element still assumes uniform
distribution of curvature (plane sections remains plane after deformation). The hysteretic
behavior of the elements constituting the wall model is simulated by adopting empirical
relations developed on the basis of experimental studies (Vulcano, 1992).

Different versions of model was developed basically changing the number of axial
springs. The increase in the number of springs is also reflected in the name of the model by
evolving from three vertical line element model (TVLEM) to multiple vertical line element
model (MVLEM). Vulcano et al. (1988) removing the rotational spring in the center stated
that to obtain an improved estimation of flexural behavior at least four axial springs will be
used in the model. Linde (1993) proposed a simpler model with three axial springs and one
horizontal spring and developed kinematic formulation of the model. Recently, Orakcal et
al. (2004) proposed a new version of MVLEM in which the only difference being in the
behavior of the nonlinear springs as shown on the model in Figure 1.4(b). The modeling
approach involves implementing refined hysteretic uniaxial stress-strain laws instead of
simplified force-deformation rules to track nonlinear responses. By this way the analytical
responses are directly related to physical material behavior (stress-strain curve) and provide
a more robust modeling approach, where model improvements result from improvement in
constitutive models and refinement in the spatial resolution of the discrete model.

An inherent shortcoming of MVLM models is that the shear and flexural

displacement components of the wall are described independently. Although model



effectively calculates the flexural response, shear response is not adequately described,
particularly for high shear stresses. It is known experimentally (Vallenas et al., 1979) that
the behavior of walls is strongly influenced by interaction between axial force, flexure and

shear.
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Figure 1.4 Idealization of a wall member

e Microscopic models: These models are based on discretization of the continuum
through finite element procedures by the application of solid mechanics principals. Stress
and strain is calculated at every point of the material. There exist various shell and solid
elements implemented in finite element codes with different element formulations affecting
the accuracy of the simulation results (ASCE-ACI, 1993). Special features of finite element
analysis applied to reinforced concrete may include constitutive relationships, failure
theories, multi-axial stress theories, modeling of reinforcement, behavior on the interface
between reinforcement and concrete, crack representation, mechanisms of shear transfer,
cyclic and dynamic loading effects, and the time-dependent effects of creep, shrinkage, and
temperature variation. It is criticized that in practice the use of nonlinear finite element
analysis for the investigation of the strength and deformation properties of reinforced
concrete structural walls is restricted to the analysis of isolated and coupled walls due to

very long computation times and complexities involved in the analysis.



Cervenka and Gerstle (1972) were first to make a finite element study of the several
shear panels which Cervenka (1970) had tested experimentally. A large number of
sophisticated constitutive models that can successfully capture behavior at the material
level have been developed, as summarized in state-of-the-art reports by ASCE-ACI (1982,
1993) and CEB (1996). Ayoub and Filippou (1998) and Kwak and Kim (2004a) described
the implementation of an orthotropic concrete constitutive model in the finite-element
analysis of reinforced concrete shear walls. The emphasis was on the evaluation of the
effect of orthotropic model parameters on the monotonic load-displacement relation of
shear panels and walls under different stress states. Less has been reported on the successful
application of these material models to predict the behavior of structural components under
cyclic loading.

With the advancement of modeling techniques and computational power, more
successful cyclic loading analyses of reinforced concrete have been conducted in the
nineties. These include simulations of shear test panels designed to have a uniform stress
state for the verification of constitutive models (Schnobrich et al. 1991; Stevens et al. 1991;
Rose et al. 1999, Palermo and Vecchio, 2004; Kwak and Kim, 2004b), and simulations of
structural members (Okamura and Maekawa 1991; Sittipunt and Wood 1995; Elmorsi et al.
1998; Vecchio, 1999). These models demonstrated reasonable agreement with experimental
results.

A significant research milestone in the field of constitutive modeling of members
subjected to shear and torsion is the development of the compression field theory (CFT)
(Collins and Mitchell, 1980). The CFT assumes that after cracking, there will be no tensile
stresses in the concrete. Test on reinforced concrete elements (Vecchio and Collins, 1986;
Belarbi and Hsu, 1994) demonstrated that even after extensive cracking, tensile stresses still
existed in the cracked concrete and that these stresses significantly increased the ability of
cracked concrete to resist shear stresses. The modified compression field theory (MCFT)
(Vecchio and Collins, 1986) is a further development of the CFT that accounts for the
influence of the tensile stresses in the cracked concrete. It is recognized that the local
stresses in both the concrete and the reinforcement vary form point to point in the cracked
concrete, with high reinforcement stresses but low concrete tensile stresses occurring at
crack locations. A somewhat different procedure to account for tensile stresses in
diagonally cracked concrete has been developed by Hsu and his coworkers at the University

of Houston (Belarbi and Hsu, 1994, 1995). The procedure is called the rotating angle



softened-truss model (RA-STM). Like the MCFT, this method assumes that the inclination
of the principal stress direction, &, in the cracked concrete coincides with the principal
strain direction. For typical elements this angle will decrease as the shear is increased.
Hence the name “rotating angle” was given (ASCE-ACI Committee 445, 1998).

Vecchio (1989) developed a two-dimensional nonlinear finite-element program for
reinforced concrete membrane elements based on the modified compression field theory.
Selby and Vecchio (1997) expanded the applicability of the modified compression field
theory for general three-dimensional analysis of reinforced concrete solids for the solution
of problems in which confinement and lateral expansion effects are important. Recently,
Palermo and Vecchio (2007) presented nonlinear finite-element analyses results of several
reinforced concrete shear wall experiments using well-established MCFT analysis method.
The emphasis is on the simplest form of modeling available for continuum FE analysis,
utilizing low-powered elements and smearing of the material properties.

Kwan and Billington (2001) evaluated the reliability of material models available in
commercial, nonlinear finite-element codes or models that may be easily implemented or
modified within such codes. Lefas and Kotsovos (1990) using a reliable finite element
program investigated the influence of several parameters on the observed behavior and
strength characteristics of structural walls. Among the parameters investigated in the study
were the arrangement and amount of vertical and horizontal reinforcement, the detailing of
edge members, the height to length ratio, the axial load and concrete strength. The
reliability of the NLFE analysis systems had been tested by comparing analytical
predictions with published information obtained experimentally (Barda et al., 1977;
Cardenas et al., 1980; Oesterle et al., 1980; Maier and Thurlimann, 1985; Wiranidata and

Saatcioglu., 1986) for a wide range of RC structural walls.

1.2.2 Performance Assessment and Limits of Structural Walls

The foundation of performance-based design concepts are established in three
documents: SEAOC Vision 2000 (1995); ATC 40 (1996); and FEMA 273 (1996) (later
FEMA 356, 2000). The documents attempted to develop procedures that can be used as
seismic provisions in building codes (Ghobarah, 2001). FEMA 356 (2000) and ASCE/SEI
41 (2006) documents incorporate rational evaluation procedures for structural displacement
capacities corresponding to specific performance criteria. The limits defined in terms of

chord rotations and story drifts based on the results of experimental studies were adjusted to
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conform to mathematical modeling approaches used in nonlinear static (pushover analysis)
and dynamic (time-history analysis) procedures. In the ATC 40 (1996) document,
performance-based design refers to the methodology in which structural criteria are
expressed in terms of achieving a performance objective. The document is limited to
concrete buildings and emphasizes the use of the capacity spectrum method (Freeman et al.,
1975). The procedure involves determining the capacity and demand spectra. To construct
the capacity spectrum, the force—displacement curve of a structure is determined using
nonlinear static (pushover) analysis. The forces and displacements are converted to spectral
accelerations and spectral displacements using a substitute SDOF system (Giilkan and
Sozen, 1974; Shibata and Sozen, 1976).

In the last decade based on the knowledge inherited from the documents listed above
in relation to performance-based earthquake engineering, direct displacement-based design
have matured to a stage where seismic assessment of existing structures or design of new
structures can be carried out to ensure that particular deformation-based criteria are met
(Priestley, 2000). Within this scope several researches had been conducted for the
improvement of the displacement based design procedures. Wallace and Moehle (1992)
investigated the ductility and detailing requirements at the boundary elements of structural
walls via developing an analytical procedure that is based on comparing directly the
expected displacement capacities and displacement demands for the building. The seismic
displacement demand is obtained using the analytical procedure developed by Sozen
(1989). Then the calculated deformation demand is related to local deformations
(curvatures and rotations at the base of the wall) utilizing plastic hinge analysis method
developed for cantilever members by Park and Paulay (1975). Wallace (1994) introduced
the same analytical framework with minor modifications for the displacement based design
of RC shear walls. By this way the structural response in terms of displacement is related to
strain-based limit state, which in turn is assumed to be related to the level of damage.

Especially in the last decade the pioneering work in the field of displacement-based
design were mostly conducted by Priestley and his coworkers (Priestley, 1993; Priestley
and Kowalsky, 1998; Sullivan et al., 2006; Priestley et al., 2007). It has been found possible
to express the yield and ultimate curvatures of different reinforced concrete structural
members by simple expression based on moment-curvature responses obtained from
sectional analysis. Combining these findings with simplified analysis approach based on the

concept of plastic hinge of length L, several expression in regards to deformation limits
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were derived for different structural members and shear walls as well. The procedure found
wide spread application on structural walls due to availibilty of these members as isolated
cantilevers.

Paulay (2002) redefined some traditionally used structural properties employed in the
simplified plastic hinge analysis by exemplifying on a sample frame-wall structure.
Kowalsky (2001) investigated 1997 Uniform Building Code (ICBO, 1997) from the
perspective of achieving performance-based earthquake engineering of structural wall
buildings. It is shown that although strain limits are present in the 1997 UBC, the drift ratio
limits generally govern design. The conflict between assumed force reduction factors and
actual ductility demand at the design limit state controlled by drift is also explored. Sullivan
et al. (2006) described the essentials of a direct displacement-based design of frame-wall
structures. The effect of link beams connects from frames directly on to the ends of walls is
emphasized.

In addition to these studies that were concentrated on defining limit states for design
and assessment, several other studies were performed to investigate the seismic
performance of structural wall buildings and to compare the static analysis results with
dynamic analysis results (Mwafy, 2000; Tremblay et al., 2001). Mwafy (2000) investigated
the relationship between the lateral capacity, the design force reduction factor, the ductility
level and the overstrength factor of reinforced concrete frame-wall buildings. The lateral
capacity and the overstrength factor were estimated by means of inelastic static pushover as
well as time-history collapse analysis. Kim (2004) investigated the performance of
reinforced concrete shear wall buildings designed under current codes and standards of
practice and to propose a rational procedure for determining the Response Modification
Factor, R. Kazaz et al. (2006b) analyzed a well calibrated finite element model of 5-story
shear wall test specimen under a suite of ground motions for validating the accuracy of
capacity spectrum method in estimating the actual performance of shear walls. It was found
that the existing expressions for the equivalent viscous damping lead to underestimation of
seismic deformation demands on isolated structural walls. Seneviratna and Krawinkler
(1997) used plastic hinge rotation demands at the base as a measure of structural damage,
and empirical relationships were provided to estimate these demands from spectral

displacements of the first mode SDOF system.
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1.3 OBJECT AND SCOPE

Reinforced concrete provisions such as in FEMA356 and ASCE/SEI 41 include
modeling parameters and numerical acceptance criteria for both flexure and shear
controlled wall members. The criteria are defined in terms of plastic hinge rotations and
total drift ratios for the governing behavior modes of flexure (ductile members) and shear
(brittle members), respectively. Strain limits are defined for concrete in compression and
steel in tension at serviceability and damage-control limit states as a vital component of
direct displacement-based design procedures. The recently enacted Turkish Seismic Code
(2007) specifies limiting strain values associated with different performance levels. On one
side deformations are specified in relation to global parameters such as drifts, and on the
other local damage indicators are used to determine the performance. When results of
nonlinear pushover analyses are evaluated according to either of the acceptance criteria
whether the local and global response will correspond to similar performance states is
debatable because little calibration has been made and field data has been totally ignored.

This study utilizes a well calibrated finite element modeling tool to investigate the
relationship between the global drift, section rotation and curvature, and local concrete and
steel strains at the extreme fiber of rectangular structural walls. The validity of finite
element modeling strategy has been verified with simulations of various shear wall test
results. Pushover analyses of isolated structural walls under inverted triangular and uniform
load patterns have been performed. The parameters of the investigation were the axial load
ratio, cross section length, wall height and flexural reinforcement ratio. Functions defining
more exact limits of modeling parameters and acceptance criteria for rectangular reinforced
concrete walls will be developed. As an indicator of the damage state of the wall, strains at
the compressive and tensile boundaries of the wall will be related to performance criteria.

Additionally, the performance of structural walls designed according to current
seismic code specifications will be investigated by conducting nonlinear time history
analyses with recorded ground motions as seismic input. Seismic deformation demands,
defined as inter-story drift in the global sense, curvature ductility at the section and strain at
the boundaries as local measures, will be investigated as a function of amount of shear

walls in the system.
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1.4 ORGANIZATION OF THE STUDY

This study has been built on multi-tiered investigations. Several aspects of the
modeling and performance assessment issues on shear walls have been covered in detail.
The accuracy of the assessment procedure depends on modeling assumptions and analytical
framework, which incorporates the mathematical discretization of the structure,
quantification of seismic demands and effective treatment of utilized analytical procedures.
All the shortcomings due to these effects should be identified.

Chapter 2 is devoted to the description of the finite elements and materials models to
model the concrete and steel and verification of the finite element modeling strategy for
structural walls by comparing the simulated response with the measured response of several
wall specimens that are available in the literature. Essentials of finite element modeling of
reinforced concrete structural walls will be given with aspects of material and geometric
nonlinearities to be used in comprehensive parametric studies.

In Chapter 3, the procedures for the ground motion selection for nonlinear time
history analyses available in the literature are considered and seismic intensity measures
that depend on the frequency content characteristic of ground motions are defined. To
quantify the seismic demands on wall type structures, intensity measures will be defined in
terms of response spectral representations of input ground motions. It is displayed that the
presented ground motion intensity measures correlates well with the calculated seismic
deformation demands. The ground motions to be used as seismic input in the analyses are
selected in this chapter.

Chapter 4 is devoted to establishing an analytical framework for the parametric
investigation of shear walls. The elements of presented framework is composed of
development of simple lumped-parameter structural models of wall and frame-wall systems
for NLFEA, determination of the parameters that affect the shear wall response and
identification of procedures to include these effects in the analyses. Simple analytical
procedures used in the analyses of bearing wall and frame-wall structures are investigated
and isolated wall models representative of global structural effects in both types of
structural configurations are developed. A thorough investigation of these simplified
models is necessary in order to determine the parameters of the study. The models are also
used to derive useful information about the dynamic and static characteristics of wall type
structures.

Chapter 5 presents the results of analyses carried out on the finite element models of
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the isolated walls to investigate the available deformation limits in FEMA 356 (2000) and
TSC (2007). A parametric study taking in to account wall length and height, so as wall
aspect ratio, axial load level and the amount boundary element reinforcement as parameters
is conducted. The results of nonlinear static analyses were used to indentify several issues
related to performance assessment of structural walls. Typical plastic hinge lengths that
must be used in plastic hinge analyses of cantilever walls are determined and an equation is
proposed for its calculation. The calculated rotations are compared with FEMA limits and
new limits are established. For the newly established performance levels curvature and drift
limits are presented. The strain limits corresponding to these performance levels are also
determined. Finally the extreme fiber concrete and steel strains corresponding to rotation
limits in FEMA 356 are determined and compared with the strain limits in TSC.

In Chapter 6, synthesizing all the information obtained from the previous steps
regarding the ground motion and the structural modeling aspects, dynamic time history
analysis of generic frame-wall structures are performed to investigate the seismic
deformation demands on wall type structures. The calculated seismic deformation demands
are evaluated on the basis of performance limits defined in FEMA 356 provisions.

Chapter 7 is a summary and recapture of the principal conclusions of the study.
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CHAPTER 2

VERIFICATION OF THE FINITE ELEMENTS AND
NONLINEAR PROCEDURE FOR ANALYSIS

2.1 INTRODUCTION

In this study ANSYS finite element program was used to simulate the static and
dynamic behavior of seismic load bearing structural walls. Towards this end, it must be
asserted that any other finite element code can in principle be used in the simulations, and
the conclusions and methods would be very similar. However, each code has its own
special features in terms of element types and material models, and needs to be used
properly. Users of these powerful tools must be familiar with the capabilities of the
elements formulated and implemented specifically for the analyses of reinforced concrete
structures and at least the general theory of the finite element method and constitutive
material laws.

In this context the objective of this chapter is to ascertain the adequacy of familiar
monotonic plastic material models in predicting the response of shear-critical members as
the name of the investigated structural members implies and discuss any modifications for
improved results within ANSY'S code.

This chapter is devoted to extensive simulation studies in order to create reliable
finite element models of shear walls in ANSYS program. Comparing the measured and
simulated response of several shear wall experiments, different aspects of material and
finite element modeling issues will be discussed and addressed in consideration with
simulation of concrete with ANSYS. The results of shear wall tests that were conducted by
different researchers previously have been used in this study. The specimens in these tests

were subjected to different types of loading conditions such as monotonically increasing
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static loading, quasi-static cyclic loading and seismic loading on a shake table. The results
of simulation process are used to establish guidelines of finite element modeling and
analysis of shear walls using ANSYS, which is extremely important in the upcoming
parametric study in Chapter 4 for obtaining reliable and meaningful results from the
analysis. All the efforts in this section are to achieve the following objectives:

e To develop nonlinear finite element models that can predict the response of flexural
and/or shear dominated shear wall components under different loading conditions.

e To investigate the local stress and strain conditions resulting from these diverse
combination of behavior types and loading conditions.

e To highlight different aspect of finite element modeling of concrete structures with
ANSYS program since although ANSYS is widely used in research, no study, even
ANSYS own manual, provides a comprehensive guidelines about its capabilities
and disabilities about the analyses of reinforced concrete.

Especially in the last decade with the advent of personal computers, codes that
incorporate NLFEA procedures become daily analyses tools of most engineers. A particular
segment of the technical literature is devoted to studies where ANSYS has been the
principal instrument for analysis.

Mirmiran et al. (2000) tested carbon fiber wrapped cylinders subjected to uniaxial
compression and performed the numerical analyses with ANSYS software. Kachlakev
(2002) used ANSYS to study the effects of shear strengthening of deficient beams by
comparing the behaviors of two full-scale reinforced concrete beams (a reinforced concrete
beam with no shear stirrups; and a reinforced concrete beam externally reinforced with
Glass Fiber Reinforced Polymer (GFRP) on both sides of the beam). Three-dimensional
finite element models are developed using a smeared cracking approach for the concrete
and three dimensional layered elements for the FRP composites. Similarly, Santhakumar et
al. (2004) presented the results of numerical study to simulate the behavior of CFRP
(Carbon Fiber Reinforced Polymer) retrofitted reinforced concrete (RC) using ANSYS.
Thomas and Ramaswamy (2006) reported the details of the finite element analysis of
eleven shear critical partially prestressed concrete T-beams having steel fibers over partial
or full depth. The ANSYS model accounted for the nonlinear phenomenon, such as, bond-
slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress
transfer across the cracked blocks of the concrete and load sustenance through the bridging

of steel fibers at crack interface. Chansawat (2003) used ANSYS in simulating the behavior
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of full-scale reinforced concrete beams strengthened with glass and carbon-fiber reinforced
polymer laminates for shear and flexure. It was reported that the analysis results agree well
with those from the experiments. The predicted crack patterns at failure strongly resemble
the failure modes observed for the full-scale tests. Chansawat et al. (2006) performed three-
dimensional nonlinear finite element analyses of the Horsetail Creek Bridge strengthened
with fiber-reinforced polymers using ANSY'S to examine the structural behavior.

Binici (2003) conducted finite element analyses of 15 slab specimens, strengthened
with CFRP laminates and subjected to shear and combined shear and moment transfer
experimentally, in ANSYS to provide further insight to the mechanics of load transfer,
cracking and local stress conditions.

Sigfusson (2001) investigated the seismic capacity of low-rise residential shear wall
buildings in Iceland by using ANSYS. Li (2004) simulated the tested response of
unreinforced masonry (URM) walls strengthened with near surface mounted FRP (fiber
reinforced polymer) bars for improving the structural behavior. Kazaz et al. (2006) using
ANSYS simulated the seismic response of a 5-story reinforced concrete shear wall
specimen on shake table subjected to progressive damage under sequential application of
ground motions. Farvashany et al. (2008) built and loaded seven large-scale high-strength
concrete (HSC) shear wall specimens to failure under in plane constant axial load and
increasing horizontal loads. The test specimens were approximately 1/3 scale of a prototype
wall. The experimental results of walls tested in this research as well as those reported by
other researchers were compared with the ultimate resistance predicted by an interactive

event simulator developed in ANSYS.

2.2 FINITE ELEMENTS AND CONCRETE MATERIAL MODEL

Finite element models of the experimental specimens and analytical structures are
generated using the solid, bar and beam finite elements from ANSYS element library.
Detailed description of these finite elements and concrete material models used in this study
are given in APPENDICES A and B, respectively. Key aspects of the element formulation
that influence the calculated results are identified. These items include the shear locking,
extra shape function and shear transfer coefficients. In this chapter accurate determination
of the values to be assigned to these parameters and inclusion in finite element models are
studied by simulating the results of experimental specimens. The plasticity models that can

be used to model concrete compressive behavior in ANSYS are discussed in APPENDIX
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B. For that purpose essential expressions used to define von Mises, Drucker-Prager and
multilinear plasticity models are given for the sake of accurate determination of the material
constants. The damage mechanics of concrete behavior is discussed in relation to five

parameter Willam-Warnke concrete model.

2.2.1 Combined Material Model

The concrete constitutive model making use of two yield surfaces by combining any
of the plasticity models described in APPENDIX B for compressive loading and Willam-
Warnke (CONC) model for tensile loading regimes can be adopted.

In ANSYS when plasticity based models are combined with the Willam-Warnke
concrete material option (CONC), the plasticity check is done before the cracking and
crushing checks. Yielding or cracking of any material point within the model is evaluated
on the basis of principal stresses. This assumption leads the condition of the problem to
reduce a plane stress situation approximately. In Figure 2.1 material models that were
described above is plotted on the same graph in order to visualize what the combined yield
surface will be look like. In view of this and simplification of the problem to a plane stress
condition, it is obvious from Figure 2.1 that in the quadrants for tension-tension and
tension-compression the Willam-Warnke model will prevail until the cracking of concrete.
Upon cracking a plane of weakness will form orthogonal to the crack direction which
reduces the principal stress at this direction to zero as the solution converges. Following the
stress relaxation upon cracking in the quadrant tension-compression both models will
interact. In the quadrant compression-compression purely plastic behavior will be valid.
This explanation leads to the following conclusion. Considering the crack concrete with
zero tensile stress in the direction perpendicular to crack face, the equivalent stress
calculation depends totally on the compressive strength of concrete for o,=0. While
selecting the material parameters for Drucker-Prager material model to be used in
combination with Willam-Warnke concrete model in ANSYS for biaxial stress state, it
must be ensured that these parameters result in close estimation of the actual compressive
strength of concrete (f.). This is to say that when either a state of tension-compression or
compression-compression exists it is more correct to model the concrete plasticity with
equi-biaxial yield surface defined by Eq. (B.19), which is given in APPENDIX B, in squat
shear wall analysis since this equation is valid in compressive regime. The surface defined

by Eq. (B.22) approximates the von Mises yield surface.
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Figure 2.1 Trace of the five parameter Willam-Warnke, two parameter Drucker-Prager and
one parameter von Mises material models in biaxial stress space

2.2.2 Compressive Envelope Curves for Concrete in Compression

When full stress-strain curve of concrete is not determined from material tests or it is
required to determine the stress-strain curve of confined concrete, the analytical curves
proposed by different researchers can be used. Depending on the characteristic
compressive strength value (fz), concrete stress-strain relation curve for confined and
unconfined concrete can be determined. For the ascending branch of plain concrete
Hognestad (1951) parabola can be used. Since the von Mises plasticity model depends on
elasto-plastic representation of the material behavior curve, the nonlinear stress-strain curve
of the concrete in uniaxial compression is bilinearized as given in Figure 2.2. The limiting
compressive stress f. is taken to be the average compressive stress equal to 0.85f

(Swammy and Qaureshi, 1974). Due to bilinearization the concrete modulus of elasticity
reduces. The elastic modulus of the concrete can be calculated by E,. =4770,/f, as
proposed by ACI 318-08 (2008).

For the case of Drucker-Prager model inserting f. and f;. into Egs. (B.20) and (B.21),
parameters of Drucker-Prager yield surface are calculated as « and 7, respectively. The
yield surface has the same pattern as plotted in Figure 2.1 utilizing Eq. (B.22). It is now

required to express these parameters in terms of Mohr-Coulomb parameters, ¢ and ¢. Since
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Drucker-Prager model in ANSYS uses outer cone approximation, using Eq. (B.15) these
parameters for the cohesion and the friction angle are calculated.

For multi-linear plasticity model (MISO), the material base curve was represented
with five line segments (more segments can be defined) as shown in Figure 2.2. This is the
only model that can be used to represent the strain-softening branch of concrete stress strain
curve. When confinement is applied to concrete both strength and ductility enhancement is
obtained. To quantify the effect of confinement on concrete various analytical confined
concrete models were proposed in the literature (Sheikh and Uzumeri, 1982; Park et al.,
1982; Mander et al., 1988, Saatcioglu and Razvi, 1990; Martinez-Rueda and Elnashai,
1997). The models proposed by Mander et al. (1988) and Saatcioglu and Razvi (1990) is
given in APPENDIX C.
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Figure 2.2 Bilinearized and multilinear uniaxial stress-strain curves of concrete

2.2.3 Cyclic Response of Concrete Material Model and SOLID65 Element

The behavior SOLID65 element under cyclic loading was investigated. Multilinear
isotropic plasticity model with a descending branch for concrete in compression is
combined with Willam-Warnke failure criterion in tension to simulate the behavior of a
200x200x200 mm cubic concrete block as shown in Figure 2.3. The idealization in material
behavior like elastic unloading may not be a suitable approach for modeling the cyclic
behavior of concrete since concrete exhibits stiffness degradation under cyclic loading
(Mirmiran et al., 2000). Nevertheless, for small-to-medium range plasticity of concrete in

compression as will be shown later simulations gives satisfactory results.
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Figure 2.3 Rectangular cross-section of a column Cubic element, material properties and
cyclic loading history

The displacement load history displayed in Figure 2.3 was applied at the top nodes of
the cubic element, which is constrained at the base nodes appropriately to prevent any
reaction against lateral spreading. Effect of ESF (Extra shape functions) on element
behavior was investigated. The stress-strain output calculated at the top and bottom nodes
are summarized in Figure 2.4. As seen in Figure 2.4(a) when ESF is turned off a constant
strain distribution assumed with the element. When the block compressed 2.4 mm at the
ultimate cycle imposing a strain of -2.4/200 = -0.012, this strain is constant within the
element at both integration points. In the case where ESF’s are utilized, deformation
localizes at either top or bottom nodes depending on the loading type. While for cyclic load
history strain localizes at the top node as displayed in Figure 2.4(b), for static compressive
loading significant crushing takes places at the bottom material points as seen in Figure
2.4(c).

The average stress-strain output at the element centroid is plotted in Figure 2.5 for the
cases where ESF is activated and deactivated using element options. The unloading and
reloading stiffness is same as the initial stiffness of the material curve. The average stress-
strain curve obtained by utilizing ESF displays more rapid strength degradation tendency
compared to curve without ESF. This is very similar to localized failure phenomena
observed in experimental studies on stress-strain curve of concrete under compression.
Experimental studies (Bazant, 1989; Lertsrisakulrat et al., 2001; Watanabe et al., 2004)
displayed that three (or two) different zones develops on the concrete cylindrical specimens
subjected to axial compression, failure zone, a transition zone and an unloading zone. The

failure pattern depends on the aspect ratio of the specimens. Different stress-strain curve is
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defined for each zone. The average stress strain curve is obtained by combining the curves

for each segment. In the experiments, a stress-local strain curve measured in the no-crack

zone (unloading zone) exhibited unloading behavior until the end of the loading test as

shown in Figure 2.4(c) for top node.

The behavior modes displayed in Figure 2.4(b) and (c) evolve when softening

property in the material curves is defined. If bilinear isotropic plasticity is utilized for the

behavior of concrete in compression, or more explicitly if no softening is considered in

concrete, using ESF should not matter to response, constant strain output is obtained at each

material point within the element.
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Figure 2.4 Effect of ESF on the stress-strain response output at the top and bottom nodes of
cubic concrete element (Thin line displays the material curve input to the program)
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2.3 STEEL MATERIAL MODEL

In the design of reinforced concrete structures, rebar properties do not need to be
known exactly. ASTM A615 only requires that that the yield stress of Grade 60 bars needs
to be exceed 424 MPa (60 ksi). For analyses purpose, e.g. finite element analyses, an actual
value of the yield stress is needed to be provided for a more accurate prediction of actual
structural response.

The typical stress-strain relationship for the reinforcing steel obtained from uniaxial
tests displays that steel has definite yield point and a significant yield plateau. Strain
hardening starts at the end of this plateau. The most important properties of the c-€ curve of
the reinforcing steel are (a) the yield strength (fy), (b) the ultimate strength (f,), and (c)
ultimate strain capacity (&s,). The monotonic steel response may be defined by a few
material parameters as identified in Figure 2.6. In this figure E is the elastic modulus, &, is
the strain at which strain hardening initiates.

A review of tests on reinforcing bars conforming ASTM specifications (1999) was
conducted by Malvar and Crawford (1998). It was shown that there is a significant
variability in strain data defining the borderlines of different regions on the stress-strain
curve given in Figure 2.6. It was also reported that the measured strains of same grade but

different dimension bars are also different.
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TS 500 (2003) states that the reinforcement should satisfy the requirements of TS 708.
It was required in TSC (2007) that reinforcing steel with strength exceeding that of S420
shall not be used reinforced concrete structural elements. The rupture strain of
reinforcement to be used shall not be less than 10%. The mechanical properties of bars
made of S420 steel is given as 420 MPa for yield strength, 550 MPa for ultimate strength

and minimum strain of 0.1 at the rupture in TSC.
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Figure 2.6 Typical stress-strain curve for ASTM A615 Grade 60 steel

Response of reinforcing steel subjected to reversed cyclic loading exhibits isotropic
strain hardening, characterized by increasing strength under increasing inelastic strain
demand (Lowes, 1999). It was experimentally (Vallenas, 1979; Ma et al.) found that the
yielding strength is higher in compression than tension.

In an effort to summarize all the foregoing discussions, Figure 2.7 is plotted, defining
the simplified steel stress-strain curve to be used in the analyses. Using the typical stress-
strain curves representing ASTM A615 Grade 60 and S420 (BC-III) reinforcing bars, a
bilinear stress-strain curve was fitted to these curves ignoring the yield plateau. For general
engineering applications, the elasto-plastic constitutive relationship, either with or without
strain hardening, is normally adopted for ductile reinforcing steel (Powanusorn, 2003).
Uniaxial behavior of longitudinal and transverse steels was modeled with a bilinear
isotropic hardening using von Mises yield criterion based on this curve. Modulus elasticity

of the steel material was taken as 200000 MPa. The yield stress and tangent modulus at the
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strain hardening is taken as 420 MPa and 2000 MPa, respectively. Using a strain hardening
stiffness helps achieving a better convergence behavior.

The steel model used in this study does not consider any modifications or adaptations
to take into account bar fracture and slip between steel and concrete due to deterioration of
bond. Nevertheless, in a simulation example at the end of this chapter application of bond-
slip in finite element analyses is displayed. In regions of variably oriented loading or
relatively high shear loading, critical shear and diagonal tension may develop in wall
members. The formation of a significant diagonal-tension crack activates resistance to
vertical shear by dowel action in the main longitudinal reinforcement, subsequent aggregate
interlock along the diagonal crack, and resistance in vertical stirrups (Chen, 1982). This
loading of the cracked reinforced concrete volume is referred to as shear friction, and
activation of reinforcement perpendicular to the bar axis at a crack surface is referred to as
dowel action (Lowes, 1999). Most research into the shear-friction response of reinforced
concrete elements indicates that even for this type of loading axial rather than dowel action
dominates the response of the reinforcement perpendicular to the crack surface (Laible et
al., 1977; Paulay and Loeber, 1977). While most researchers agree on this, there are studies
that suggest the dowel action of reinforcing steel may not be negligible and may contribute
between twenty-five and thirty-five percent of the slip resistance at a crack surface
(Hofbeck et al., 1969). In the current investigation, nonlinear shear behavior due to the
dowel action of reinforcing steel is neglected and reinforcing steel is modeled as an uniaxial

element.
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Figure 2.7 Stress-strain diagram of reinforcing steel used in the analyses
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2.3.1 Modeling of Bar Buckling

For walls with moderate amounts of boundary longitudinal reinforcement, ties are
required to inhibit buckling. Cyclic load reversals may lead to buckling of boundary
longitudinal reinforcement even in cases where the demands on the boundary of the wall do
not require special boundary elements. Additionally, the confined concrete models are
applicable only if premature buckling of longitudinal reinforcement is prevented. Buckling
of the reinforcement also affects the drift capacity of reinforced concrete sections.

Dhakal and Maekawa (2002), Gil-Martin et al. (2008), Berry and Eberhard (2005) are
among the researches recently studied the subject. Dhakal and Maekawa (2002) proposed a
unique relationship between the average stress and average strain of reinforcing bars
including the effect of buckling. They found that the average compressive stress-strain
relationship including the softening in the post-buckling range can be completely described
in terms of the product of square root of yield strength (f;) and the slenderness ratio, L/D, of
the reinforcing bar. L is the unconfined length of the longitudinal reinforcement between
the two transverse reinforcement and D is the diameter of the longitudinal bar.

The general layout of the proposed average monotonic compressive stress-strain
model is sketched in Figure 2.8. An intermediate point (£*,0%) is established, after which a
constant negative stiffness equal to 0.02Es, is assumed until the average stress becomes
equal to 0.2f,. to make model applicable to bars with all types of material model, the stress
at and before the intermediate point are normalized with respect to the stress computed
from the point wise stress-strain relationship at the corresponding strain value. The
following equations relating the average compressive stress with the average compressive

strain of reinforcing bar are proposed:

N oe-¢ .
1= 1—0-* . L, fore, <e<e 2.1
g o, \¢ —¢&
c>202f; 0:0*—0.02ES(8—5*); for e>¢ (2.2)

Here , oy and o;* are the point wise stresses corresponding to ¢ (current strain) and £*
(strain at intermediate point), respectively. Similarly, &, and E, are the yielding strain and
Young’s modulus of the reinforcing bars. The coordinates of the intermediate point (&*,0*)

can be calculated by
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The coefficient a takes the value of 1.0 for linear hardening bars and 0.75 for

&' fe, =7 (2.3)

perfectly elasto-plastic bars.
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Figure 2.8 Schematic representation of proposed model (Dhakal and Maekawa, 2002)

The bar buckling model is utilized in some static analyses case in this chapter and in
parametric study in Chapter 5. The steel material model for the longitudinal bars at the
boundary elements of compression region of shear walls is calibrated in accordance with

the model presented here.

2.3.2 Effect of Tension Stiffening

It is well known that behavior of reinforcing steel bars surrounded by concrete is
different than the bare steel bars. The stress-strain curve of a mild bar tested in a bare
condition exhibits a long plateau after yielding. However, the average stress-strain curve of
mild steel bars embedded in concrete does not show such a yield plateau. The apparent

yield stress is lower than the yield stress of a bare bar. Belarbi and Hsu (1994) based on
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experimental data from reinforced concrete panels proposed a simple bilinear material law
for steel bars embedded in concrete. The parameters affecting the average stress-strain
curve of steel bars embedded in concrete found to be the surrounding concrete tensile
strength (fiy), the volumetric ratio of the embedded steel with respect to surrounding
concrete core volume and the yield strength of the steel (f;). Figure 2.9 summarizes the
necessary equations for bilinear model to modify the stress-strain relation of reinforcing

steel and an example curve with f, = 420, f.« = 2 MPa and p,=0.01.
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Figure 2.9 Average stress-strain relation of steel embedded in concrete

2.4 CAUSES OF WALL RESISTANCE AND FAILURE MECHANISM

The behavior of a shear walls can be governed by purely flexural or shear effects, or
a combination of these two effects. The principal source of energy dissipation in a laterally
loaded cantilever wall should be the yielding of the flexural reinforcement in the plastic
hinge regions, normally at the base of the wall (Paulay, 1986). To achieve this behavior,
shear walls must be designed according to shear strength that yields lateral shear strength
higher than that required to develop flexural yielding in the vertical boundary reinforcement
of the walls. Nevertheless, there are cases where the governing behavior modes leading to

failure change due to large shear wall cross section area.
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The walls characterized by small height-to-width ratio are encountered in low-rise
buildings or in the lower stories of medium to high-rise buildings. Walls having height-to-
width ratio less than two is classified as squat walls. The flexural moment capacity of these
walls may be very large, even when a minimum amount of vertical reinforcement used.
Due to small height, very large lateral forces must be applied on the wall to develop the
flexural strength at the base. However, until the flexural mechanism is actuated significant
shear actions may be introduced. Web concrete crushing, diagonal tension or compression
and sliding shear are the failure modes observed due to squatness. Diagonal tension or
diagonal compression is identified as the most common failure modes observed in squat
shear walls. Diagonal tension failure occurs when insufficient horizontal shear
reinforcement is placed in the web section of the wall. Diagonal compression failure occurs
when the shear stress on the web is large. In the latter case, the concrete in the toe region
crashes, followed by a sliding shear plane extending along the base of the wall (Palermo
and Vecchio, 2002). Lefas and Kotsovos (1990) stated that it is the strength of the
compressive zone that is the main contributor to shear resistance and not the “cracked”
concrete in regions subjected to predominantly tensile stress conditions. When it comes to
modeling of these elements, the effects of these response modes become more pronounced.

Figure 2.10 illustrates schematically the shear resistance mechanism at the lower part
of the compressive zone of a shear walls. If two extreme conditions observed in structural
walls are considered, which is flexure dominated behavior as observed in slender walls and
shear controlled failure modes due to squatness in shear walls, following generalization can
be done about the properties of the material model for concrete.

The response of concrete in the compression region of flexure controlled shear wall
can be represented with uni-axial stress-strain relation of concrete. An enhancement in the
compressive strength of concrete at this region due to confinement effect around the wall
boundary element can be also taken in to account. This kind of flexural behavior, which
consists of initial yielding of the reinforcement in tension with subsequent plasticity of the
concrete in compression, has many successful applications (Cervenka, 1972; Sittipunt and
Wood; 1995; Kazaz et al., 2006). Even in some applications neglecting the plasticity of
concrete in compression, i.e. only considering the cracking of concrete and yielding of

reinforcement, has yielded adequate prediction of the actual response (Franklin, 1970).
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Figure 2.10 Schematic representation of failure mechanism of the walls

On the other hand at high shear to moment situations accompanied by nominal axial
stress as observed in squat walls, starting from very early stages of loading diagonal tension
and compression would have developed on the web wall. The concrete stress in the web
zone was high. The flow of compressive stresses diagonally resulted in maximum
compressive stresses and strains to occur at the compression toe located at the lower left
part of the web wall. A biaxial tension-compression situation (situations likely to produce
shear mechanisms) develops at this region as shown in Figure 2.11. Vecchio and Collins
(1986, 1993) based on extensive experimental studies on shear panels showed that
compressive strength of concrete subjected to biaxial tension-compression decreases. The
principal compressive stress in concrete was found to be a function not only of the principal
compressive strain but also of the co-existing principal tensile strain. More clearly, cracked
concrete subjected to high tensile strains in the direction normal to the compression is softer
and weaker than concrete in a standard cylinder test, see Figure 2.11. Vecchio and Collins

(1986) introduced a softening factor as a function of principal tensile and compressive
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strain to decrease this peak compressive stress and strain of unconfined concrete for

simplified shear design. This factor has the form:

pofom .1 (2.5)
£ 08+170g

where g is the principal tensile strain and taken as positive, fom. 18 the softened peak
compressive strength. It is obvious that increasing & will reduce f. The stress-strain

relationship of concrete is given by

2
ch = chmax ' 2[8_%J - {g_vzj (26)
& &

c c

and the effective modulus of elasticity due to weakening is

2
Ec _ fc2max (2.7)
&

c
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Figure 2.11 Stress strain curve for cracked concrete in compression

Compressive stress strain relationship of diagonally cracked concrete can be modified
in one of two ways (Vecchio and Collins, 1986; Belarbi and Hsu, 1995; ASCE-ACI
Committee 445, 1998). The loading can be assumed to be proportional, causing both the

principal compressive strain, &;, and the principal tensile strain, &, to increase
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simultaneously. Modifications were made to both the peak stress and the strain at peak
stress. This method is suitable for static-monotonic analyses, since the initial stiffness is not
affected. In the second case, it is assumed that concrete was sequentially subjected to
extensive tensile strains first and than the principal compressive strain is increased. While
this second case is not a realistic situation for concrete under monotonic loading, it is a
better approach for concrete that has already cracked or under cyclic loading. Only the
stresses are modified in the second case.

Kwan and Billington (2001) utilizing a commercial finite element code investigated
the effects of various nonlinear material models and their associated parameters on the
cyclic response of reinforced concrete structural members. A significant outcome of their
research is that although the adopted material models are able to represent flexure
dominated behavior well, they can only indicate when shear-dominated hysteretic behavior
is likely. They stated that further improvements are required in modeling cyclic shear
deterioration in concrete constitutive model in order to capture the shear dominated
behavior.

This indicates that analyses and design of reinforced concrete members under shear
and torsional effects requires special treatment of concrete material properties and laws.
Rational and realistic models for response governed by shear are few and seem not to have
gained excessive application in finite element practice (Vecchio and Collins, 1986; Belarbi
and Hsu, 1995; Hsu and Zhu, 2002). Moreover, results of several prediction exercises
revealed the inadequacy of customary analysis procedures for such elements

(OECD/NEA/CSNI, 1996).

2.5 NONLINEAR TIME HISTORY ANALYSES PROCEDURE IN ANSYS

In the nonlinear transient dynamic analysis solution phase we encountered some
problems related to ANSYS software. Direct application of ground motion is not possible
within the program. The only form of acceleration input is to create acceleration field acting
on all the nodes of model. Thus, the structural response of the model to the base excitation
is calculated using the concept of effective earthquake forces (Chopra, 2000). Lumping
masses at the floor levels for the wall, the absolute floor displacement vector, u', under the

ground displacement u, is computed from Eq. (2.8) (Figure 2.12(a)).
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u'(t) = u(t) + ug(?).1 (2.8)

where 1 is a vector of order N with each element equal to unity and in general terms called
influence vector (z) that represents the displacements of the masses resulting from the static
application of a unit ground displacement. For external dynamic forces Fj(?) the general

form of the equation of dynamic equilibrium can be written in the form:

[M]. {3 +[C]{uy +[K ] {uy = {F(0)} 2.9)

In the earthquake (base) excitation case, F(z) = 0 since no external dynamic force is

applied and the equation of dynamic equilibrium becomes

[M].{ii} +[C].{u} + [ K] {u} = —[M].{l}.iig ) (2.10)
my — —my,* iig (t)
All the levels have -
the same mass .
m=m i=12.5 . = —m; *ii, (1)
—_—
m, — -m* iig (®)
u& () Stationary base
(a) (b) (©)

Figure 2.12 (a) Lumped mass system, (b) Ground excitation, (c) Effective earthquake
forces

Comparing Eq. (2.9) with Eq. (2.10) shows that the equations of motion for the

structure subjected to ground acceleration, i, () in Figure 2.12(b) and externally applied

dynamic load, m; i, (¢) in Figure 2.12(c) at the level of each mass are one and the same.

34



The accelerations calculated with Eq. (2.10) are relative accelerations; so for computing the
total acceleration related to any mass, Eq. (2.8) must be utilized.

In view of the discussions presented above, acceleration data is entered in the form of
an array to the program before the start of solution, and in the solution phase for each time
integration step (At), corresponding acceleration is called in from the array within a small
loop covering the whole time history data points. Due to application of this acceleration
field at any particular instant, all the masses are multiplied with the ground acceleration
value and the resulting force is applied to the structure as an external dynamic loading,
which is the right hand side term in Eq. (2.10). For the given instant governing equations of
motion are solved statically including the time integration effects in the calculations. In the
ANSYS program Newmark and HHT (Hilber et al., 1977) time integration methods can be
employed for the solution of the equations of motion that are in the same form as Eq.
(2.10). In nonlinear analysis the stiffness matrix [K] is a function of unknown
displacements, so Newton-Raphson Procedure, which is an iterative method to solve
nonlinear equations, is also used.

In particular, it is desirable to have a controllable numerical damping in the higher
frequency modes, since using finite elements to discretize the spatial domain, the results of
these higher frequency modes are less accurate. However, the addition of high frequency
numerical damping should not incur a loss of accuracy nor introduce excessive numerical
damping in the important low frequency modes. In the full transient analysis, the HHT time
integration method (Chung and Hulbert, 1993) has the desired property for the numerical
damping. The Newmark parameters are related to the four input parameters «, d, o and

a,, used in the HHT method as follows

1 2
a=—(1+

Z1+7)

6=l+y
2 2.11)

P e 4
F=

am:l_3}/
2

where y is the amplitude decay parameter. In ANSYS either the four input parameters
should be input or they should be defined using y only. When the amplitude decay

parameter () equals to zero, method reduces to constant average acceleration. If both a,
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and oy are zero when using this alternative, the HHT method is same as Newmark method.
For the value of amplitude decay parameter Broderick et al. (1994) tried the values in the
range of 0.1 and 0.3 and concluded that y = 0.1 provides the desired numerical damping to
eliminate the higher mode noise especially observed in the force and acceleration responses
of the model.

The numerical damping is useful in eliminating the high frequency noise, however to
account for the energy dissipation due to many different effects such as material damping,
joint friction and radiation damping at the support viscous damping should be defined also.
The viscous damping is input by means of Rayleigh damping constants ([C] = a[M] +
BIK]); i.e. it was assumed that both mass- and stiffness-proportional damping was present

in the system (Chopra, 2000).

2.6 ACCURACY AND VERIFICATION BY SHEAR WALL TEST RESULTS

To ascertain the adequacy of finite elements and associated material models
described above in the analyses of structural walls, a series of shear wall experiments were
modeled. The wall specimens in these experiments are representative of typical shear walls
in terms of aspect ratio, reinforcement amount, axial load ratio and loading conditions.
Different loading schemes, monotonic and cyclic static, dynamic loading, were employed
in these tests, so as to make it possible to investigate the effect different loading types in
finite element analyses. During the course of numerical simulations of each shear wall
experiments different aspects of finite element modeling issues and used solid finite
element and material models are discussed. The purpose of this extensive treatment for
aligning experiment and analysis is to build confidence for the deep-cutting critique and
revised recommendations that will form the basis of Chapter 5.

The analyses of walls that are carried out in this thesis are briefly summarized below.

e CAMUS wall: 1/3 scale 5-story lightly reinforced concrete shear wall was tested on
shaking table under sequential application of ground motions of increasing amplitude

(Combescure, 2002).

e NUPEC wall: Large scale 1-story H shaped squat wall was tested on shaking table
under sequential application of ground motions of increasing amplitude

(OECD/NEA/CSNI, 1996). The specimen is proved to be very useful in identifying

the shear dominated effects in squat walls as well the dynamic properties.
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e Walls tested by Lefas et al. (1990): Thirteen large scale wall models were tested
under the combined action of a constant axial and a horizontal load monotonically
increasing to failure.

e Portland Cement Association (PCA) structural walls (Oesterle et al. 1976): 1/3 scale
isolated reinforced concrete walls representative of full-size walls subjected to cyclic
load of increasing amplitude.

e Wall tested by Thomsen and Wallace (1995): Rectangular slender wall designed
using a displacement-based design methodology tested under cyclic loading.

In the simulations several issues and problems related to finite element analyses of
reinforced concrete structures are addressed. These problems are related to element
technology of SOLID65 and material models used to model concrete. Strategies and
procedures are proposed for the solution of these problems. In the following sections
detailed explanations of finite element modeling of these walls and comparison of

calculated and measured response are given.

2.6.1 CAMUS Wall: IAEA Benchmark Project (CAMUS Experiment)

The investigation seismic response of CAMUS wall utilizing NLFEA has been
conducted under the TAEA (International Atomic Energy Agency) CRP (Coordinated
Research Project) “Safety Significance of Near-Field Earthquakes”. The detailed
explanation of numerical simulations of CAMUS wall can be found in Kazaz et al. (2006a).
Only the best estimate results will be given here. The experimental program consisted of
testing a model with scale 1/3 representative of a 5- story reinforced concrete building on
the major Azalee shaking table of Commissariat a I’Energie Atomique (CEA) in the Saclay
Nuclear Center, France. The specimen, named CAMUSI, had a total mass of 36 tons with
the additional masses attached to it. Walls have no openings and are linked by square slabs
measuring 1.7mx1.7m. A heavily reinforced concrete footing allows the anchorage to the
shaking table. The total height of the model is 5.10 m. Walls have thickness of 6 cm. The
dimensions of the different parts and the mass distribution are shown in the sketches given

in Figure 2.13.
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Figure 2.13 View of the CAMUS specimen and sketch of the walls and masses
(Combescure, 2002), (units are in cm)

The specimen has reinforcement details that follow the French PS92 seismic design
code (Combescure, 2002) with minor adaptation in order to increase the shear safety factor.
The distribution and the detailing of the reinforcement are quite different from those in
conventional design practice where generally mesh reinforcement is used in the web along
with the main longitudinal reinforcement at wall ends. The longitudinally reinforced
regions through the 1.7 m wide walls are two edge regions in 10 cm width and the central
region with 30 cm width. The amount of reinforcement decreases gradually as it goes to
upper stories. The addition of central reinforcement is to limit the risk of sliding shear
failure. For transverse reinforcement, bars with 3-mm diameter were used at a spacing of 6
cm along the height of the wall where longitudinal reinforcement is used. The amount of
steel at each level and details of reinforcement in elevation are shown in Figure 2.14.

The acceleration waveform of the ground motions are given in Figure 2.15. It is
worth noting that these ground motions were applied sequentially to the same specimen so

any accumulation of inelasticity from previous runs was retained in the subsequent runs.
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$3/6 mm Configuration of edge and central reinforcement
as stirrup

Longitudinal Reinforcement amount at each level
Level  Edge of the wall (mm’) Center of the wall (mm”)

1 289.4 138
2 188.9 138
3 94.4 110.2
4 28.3 78.4
5 15.9 78.4
6 15.9 Nothing

Figure 2.14 The amount and detailing of reinforcement in elevation of single wall
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Figure 2.15 Nice and San Francisco signals used in the experiments
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2.6.1.1 Steel and Concrete Material Models

In the light of the experimental results, the compressive and tensile strength and the
modulus of elasticity of the concrete were taken as 35 MPa, 3.8 MPa and 30 000 MPa,
respectively. The stress-strain curve of the concrete in compression was represented with
three segments as a multilinear isotropic hardening material as shown in Figure 2.16. In
nonlinear analysis of reinforced concrete, the shear transfer coefficient must be assumed.
For closed cracks (B.), the coefficient is assumed to be 1.0, while for open cracks (B) it
should be in the suggested range of 0.05 to 0.5, rather than 0.0, to prevent numerical
difficulties (Hemmaty, 1998). A value of 1.0 was used for the open cracks, which resulted
in acceptably accurate predictions. It will be shown later than this value can vary
significantly depending on the element formulation. Only one bilinear curve was used to
represent the material property of the four different reinforcing bars. The yield stress was
taken as 500 MPa (an average value) at 0.002-strain value and the stress at the failure is

assumed to be 525 MPa with 0.34 % strain hardening.

Gc
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£:70.002  £=0.0035

Compressive behavior of concrete

Figure 2.16 Material behavior of concrete

2.6.1.2 Modeling of the Specimen

The modeling work of CAMUS wall has been discussed in great detail in Kazaz et al.
(2006). The results of this modeling study especially useful in displaying the effect of
boundary condition modeling on the response of test structures. The flexibility of the

shaking table and the connectivity of the shear wall specimen to the shaking table found to
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have significant influence on the dynamic properties of the test specimen, which made them
vital components of the model.

Using the symmetry of the model only one wall was modeled. The shake table was
modeled as rigid beam with equivalent mass and support stiffness. The table and walls were
modeled with element SOLID65. The masses of each story were lumped uniformly at the
level of each floor by using special mass elements, MASS21. The solid beam below the
wall in Figure 2.17 that models the shaking table was found to be adequate. The wall
foundation was not fully anchored to the table at its base (Figure 2.18); the anchorage was
provided in the middle of basement for a partial length only, approximately 1/3 of the wall
length. At the two ends, the gap between the wall and table can be described as a contact
surface problem. This region was filled with elastic mortar with unknown properties. At the
two ends, steel anchor bars with 36 mm diameter were used to provide additional fixity to

the wall.

I Shear wall (SOLIDGS5)

Inclined steel rods to
connect the wall to shale

table (LINK10) \

SHAKE TABLE (30LIDAS)

Thale wall contact surface
dizcretized with COMBIN14
elements

Fo . Vertical rods supporting
shake table (COMBIN14)

Figure 2.17 The models created in ANSYS
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The system was found to be more flexible than assumed. Once the wall is pushed in
one direction one pair of steel bars becomes ineffective and the other pair acts only in
tension. So the tension-only spar element, LINK10, is considered to be appropriate to
model the steel bars. As shown in Figure 2.18, the four inclined steel rods that connect the
mock-up to the shaking table were modeled with LINK10, which is a three-dimensional
spar element, having the unique feature of a bilinear stiffness matrix resulting in uniaxial
tension-only (or compression-only) property. The tension-only option was activated in

order not to allow any stiffness contribution when the element was in compression.

Figure 2.18 Modeling of boundary conditions

In the numerical model vertical rods supporting the shaking table were included and
assigned a stiffness to capture the measured vertical frequencies. For these rods, a spring
element, COMBIN14, was used. The elastic constant of each spring element was taken as K
=400 MN/m (in accordance with the experimentally measured response) in the numerical
computations. The contact surface between the wall and table was discretized with spring
elements, COMBIN14, having elastic stiffness of 20000 N/mm. At the free ends of the wall
these springs were placed between the wall and table. These springs significantly influence
the first mode natural frequency of the system. While assigning zero stiffness to these
springs leads to a first natural frequency of 7.1 Hz, assuming very rigid stiffness, i.e. fixed
wall-table connection leads system dynamic response to be around 8.1 Hz. These contact

spring elements are also crucial for other purposes because without them or when their
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stiffness is below a certain limit, sliding shear failure initiates on the plane of wall just

vertically above the rigidly connected region under high lateral loads.
2.6.1.3 Modal and Static Analyses

Several different boundary conditions were applied to the model and the first bending
and vertical modes were computed as tabulated in Table 2.1. As evidenced from the results
contained in Table 2.1, both boundary conditions exert considerable influence on the modal
response of the model. The flexibility of the connection between the table and the wall
affects the first mode significantly but has minor influence on the vertical mode. In the light
of all these preliminary analyses it was realized that creating a model incorporating both
boundary conditions in the table base and table-wall connection is vital for reproducing the
experimental results as close as possible.

Surprisingly, the static analysis results indicated that the table supporting system
flexibility has negligible effect on the load deformation pattern. On the other hand,
flexibility of the table-wall connection region appears to be a significant factor influencing
the initial stiffness and post elastic behavior of the load-deformation relation.

The model was first subjected to statically applied inverted triangular lateral load at
the level of each floor to simulate first mode response. Pushover curve that presents base
shear force versus top displacement (roof) for one of the two walls (left wall) is given in
Figure 2.19. The limiting point where the structure reached the state of instability due to
excessive damage corresponds to the limit that indicates the capacity of the model. The
computed and experimentally measured maximum response quantities for each dynamic
run are also plotted on Figure 2.19. The pushover curve is a powerful tool to visualize the
global nonlinear behavior of the structures, and it provides very useful hints about the
global behavior of the test specimen in the absence of more elaborate analyses such as
nonlinear time history analyses. Examination of Figure 2.19 reveals good agreement
between the capacity curve of structure and the peak global response obtained from the
dynamic tests. The information presented in Figure 2.19 reveals that the structure remained
in the elastic range under the ground motion applied in Run 2 whereas all other cases
resulted in inelastic behavior of varying degrees. Needless to say, the largest deformation
was measured in Run 5 not Run 3, the strongest shaking intensity, due to sequential
application of ground motions. This figure displays also the results of the time history

analyses, which are discussed next.
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Table 2.1 Modal Frequencies (Hz) due to different boundary conditions

st . nd . rd . st .
Boundary Conditions 1" Bending 2"" Bending 3™ Bending 1 Vertical

Mode Mode Mode Mode
Support & Connection 7275 32.664 54.856 22.685
Flexible

Fixed Support & Flexible = ¢5¢ 36.483 ; 42.270
Connection

Flexible Support & Rigid 8.080 33.095 57.405 22.872
Connection

Fixed Support & Rigid 8.868 38.609 ] 43397
Connection

Fixed Based Wall 9.190 39.991 ] 44.704

For Runs 3 and 5, while the calculated peak displacements are in good agreement
with the measured quantities, the calculated base shear is larger, especially for Run3, than
the measured ones. As discussed previously, the measured base shears are in some sense
calculated, i.e. they are computed from the measured accelerations by multiplying them
with the floor masses above certain wall section. Besides, the effect of additional vertical
force generated in the dynamic test as a result of opening and closing of cracks was not
included in the calculation of measured base shear. However, it is fundamentally known
that as the axial load increases on a section, the moment and shear capacity also changes
(increasing when the axial load level is low). It is known that in Run 3 and 5, the vertical
force on the base section of the wall nearly doubles both in traction and compression due to
opening and closing of the cracks on the wall. This miscalculation of the measured base
shear force is considered to be the primary reason of the discrepancy between the calculated
and measured global response for Run 3 and Run 5. So it was decided to perform two more
pushover cases; one is for the triangular load case in which the effective mass of the system
was increased 1.6 times (Zefrective = 1.6g) due to vertical excitation (to show the effect of the
axial force on the response) and the other one is representative of the uniform (rectangular)
loading that is considered as an upper bound case for the load path. The increased effective
mass is calculated as the total maximum vertical force at the base (the measured axial
compression at Level 1 in Run 3 plus the weight of the structure (165 kN)) divided by the
weight of the structure (270 kN/165kN). The resulting load-deformation curves are
presented in Figure 2.19. The results support the expectations; the effect of both vertical
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force and load pattern is very significant on the load-deformation curve. This situation

again proves the complexity of the problem and the necessity of comprehensive analysis.
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Figure 2.19 Pushover curve of a single wall

2.6.1.4 Time History Analyses

The reference acceleration histories measured on the shaking table were applied to
the model at the level of the shaking table. Time history analyses were carried out only for
strong motion duration of the given ground motion records. The analyses for Runs 1-5 were
carried out in a sequential order to represent the actual loading history. Top displacement
was measured from the node at the top corner of the model. The shear forces at different
levels of the structure were calculated by taking the sum of horizontal forces (y-component)
of elements at a section. The bending moments were calculated by taking moments of
vertical force components (z-component) of elements at a section about the center of
section. This damping was input by means of Rayleigh damping constants; i.e. it was
assumed that both mass- and stiffness-proportional damping was present in the system. The
first two modes each with 2 percent damping were used to define a and f.

Time histories for top horizontal displacement, shear force and bending moment at

level 1 (base of the shear wall), moment-curvature relationship at the base of wall, strains in
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the external rebars for Runs 1 to 5 were computed and are summarized in Figure 2.20. The
corresponding test measurements are also superimposed on the numerical plots. There is a
fairly good match between the experimental (measured) and computed (calculated) results.
These comparisons revealed the adequacy of the model for the purpose of simulating an

experiment realistically by means of analytical tools.

2.6.1.5 Local Results

Time history results of several parameters were derived from the computational phase
including accelerations and external rebar strains on each level. The damage progress, in
other words the crack development started from the base of the structure as hairline cracks
and moved to the upper levels. As it was expected from the ground motions and evident
from the experimental and computed results, non-linearity becomes pronounced
significantly first in Run 3. The moment-curvature relations plotted for the four levels in
Figure 2.21 show that the second, third and fourth floor levels deformed into non-linear
range after Run 3.

In Figure 2.22, the strain concentrations in different regions of the wall computed
during Run3 are shown. Due to progressive cracking of concrete and yielding of
reinforcement under sequentially applied increasing seismic excitations, the system
deformed further. This preliminary damage accumulation is the reason why the test
specimen has exhibited such large deformations in Run 4 opposing the expectations. Run5
is the ultimate loading applied to the specimen that led to excessive damage and failure of
reinforcement at different sections. The special design of steel allowing the damage to
spread among different stories rather than localizing it to a particular section of the wall
helped the structure survive such an intense sequential loading history. Yielding of the
reinforcement occurred in the stories 1 to 4, but it was excessive in the lower two stories. It
is evident that in the regions where the longitudinal steel is reduced, larger deformations
were observed. The number of rebars changes at 10 cm below each story level along the
height of the wall. For this reason, the cracks on the wall initiate from these interruption
regions and progress diagonally between the stories. Smeared crack model that is used to
model and detect the damage, the location of the damage and to some degree the level of
damage experienced by the structure gave reasonable results when handled carefully. The
main crack pattern shown in Figure 2.24 at the end of testing program supports this

statement.
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Figure 2.20 Comparison of experimentally measured and numerically calculated global
response parameters, such as displacement, base shear and bending moment
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Figure 2.21 Moment-curvature relationship of levels 1-2-3-4 after Run3

Figure 2.22 Strain distribution and crack pattern developed in the model in Run3

Since strains at a section or a point are the indicators of damage experienced,
examining the strains measured on the external rebars from the experimental phase and
comparing them with the calculated ones reveals the damage pattern and location in the
structure. Level 3 seemed to be the most critical section as evidenced by the experimental
results. In the computations very high strains, denoting excessive damage, were obtained at
levels 2, 3 and 4. The comparison of strains measured on the external rebars for Run3 and
5 is given in Figure 2.23 and Figure 2.24. During the ultimate Run5, the steel yielded at all

sections, and this was accompanied by the failure of the longitudinal reinforcement at level
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3. The strains obtained from the simulations showed the same deformation tendency with
an exception that the computed strains could not reach the failure limit (2.5 percent) at level
3 but at level 4. So, in experimental stage while the failure initiated at level 3, in the model
the first failure indication was observed at level 4. But this is within our expectations since
we know that the measured strains at upper levels (3 and 4) is very high and there is a slight
difference between these strains showing that initiation of failure at a level is a matter of
instant. Another difference in our computations from the measured ones is that, the
computed steel strains at level 2 are much greater than the experimental ones in Run5. This
can be explained within the experimental procedure itself and the instrumentation of the
wall, as all the experimental measurements were made on the left wall, while it is known
that the main crack pattern that was observed on the right wall at the end of the testing
program was different than that on the left (Figure 2.24). It is known, at least by visual
inspection that, there was an excessive damage on right wall at level 2 indicating high
strains, which agrees with the computations. The local results (strains) that were computed
agree well with the crack pattern on the right wall.

After the failure of reinforcing bars at level 3 in Run5, the response of the system
changed drastically. Natural period of the system increased to more than double (from
0.137 sec to approximately 0.3 sec) due to stiffness degradation in the system. This is a big
challenge from the modeling point of view. The analytical model and the material laws we
employed in the analysis is not equipped to retrieve a failure situation in the reinforcing
bars. This is probably the reason why the maximum experimental top displacement (43.3
mm) could not be captured in the computations (36 mm) of Run 5 as good as the previous
cases (Figure 2.20(d)). The FE model and the assigned non-linear material properties can be
improved to retrieve such a failure situation by adopting bond slip occurring between the
concrete and rebars and spalling of concrete due to degradation in quality.

In order to observe the effect of the concrete cracking on the loading history, Run4
was performed on the virgin, uncracked structure. The results were as shown in Figure
2.25. While the cracked model reached a top displacement of 13.2 mm, the virgin model
could only reach a translation of 6.35 mm at the top. This exercise not only proved the
significance of concrete cracking and yielding of reinforcement on the behavior, but also

verified the reliability of the numerical model and the software used.
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2.6.2 NUPEC Shear Wall

In order to shed light on the behavior of squat shear walls, the response of a large-
scale flanged shear wall structure tested on a shaking table in Japan is re-examined here
using simple plasticity models combined with the tensile cracking criterion for concrete.
The shear wall specimen was a part of experimental program carried out by NUPEC
(Nuclear Power Engineering Corporation) in the early 1990s to study the seismic design
and performance of shear walls in nuclear reactor buildings (OECD/NEA/CSNI, 1996). It
was a single story flanged shear wall with £,//, = 0.67. In the experiment it was observed
that the wall response was dominated by shear effects and significant strength loss led to
the failure of the specimen as a result of sliding shear developed near the base of the web
wall. The structure has been investigated by other researchers (Vecchio, 1998;
OECD/NEA/CSNI, 1996).

Analyses and design of reinforced concrete members under shear and torsional
effects requires special treatment of concrete material properties and laws. Rational and
realistic models for response governed by shear are few and seem not to have gained
excessive application in finite element practice (Vecchio and Collins, 1986; Belarbi and
Hsu, 1995). Moreover, results of several prediction exercises revealed the inadequacy of
customary analysis procedures for such elements (OECD/NEA/CSNI, 1996).

Following this introduction, the geometrical and the material properties and the
loading program of the NUPEC specimen are described briefly and its finite element
discretization is explained. Several static analyses under monotonically increasing lateral
loads are carried out to identify the most effective material constants. Static analyses
proved to be crucial for material identification and were important in providing insight for
the behavior of the structure before attempting complicated nonlinear time history analyses.
Finally effectiveness of the utilized plasticity models is verified by re-calculating the

measured seismic response of the specimen.
2.6.2.1 Specimen Description:

The Nuclear Power Engineering Corporation of Japan (NUPEC) conducted an
extensive experimental investigation for the seismic safety of nuclear facilities in the early
1990s. For this purpose, two full-scale flanged shear walls (ISP shear walls) were subjected

to a series of seismic excitations on a shaking table. Two specimens (U-1 and U-2) with the
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same design specification were prepared and tested by applying the same input signals in
order to ascertain the reproducibility of the test. The specimen used for the analyses in this
article was code-named U1 (OECD/NEA/CSNI, 1996).

Figure 2.26 shows the dimensions of the test specimens. The web wall had a
thickness of 75 mm, a flange wall center to center length of 3000 mm, the clear height of
2020 mm, and a shear span ratio of 0.8. The flange walls were 100 mm thick and 2980 mm
long. The steel percentage in the web was 1.2%, both horizontally and vertically. D6 bars
(deformed bar, nominal diameter 6.35 mm) at a spacing of 70 mm were used in the web
wall both for the vertical and horizontal reinforcement. D6 bars at 175 mm spacing are used
for the vertical reinforcement of the flange walls. As an exception, D6 bars at 70mm
spacing were used for the vertical reinforcement at the intersections of the web wall and the
flange walls. Additional lead weights were fixed at the upper and lower surfaces of the top
slab as shown in Figure 2.26. The total additional weight was 92.9 t, and the total weight of

the specimen including the top slab amounted to 122.0 t.
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Figure 2.26 Dimensions of the specimen, [Kitada et al., 2000]

2.6.2.2 Seismic Input Motion:

The objective of the vibration test program was to identify the dynamic response
characteristics of the specimens ranging from their elastic state to their inelastic ultimate
state by applying input accelerations at increasing amplitudes. The seismic tests were
carried out by applying artificial earthquake motions that had flat acceleration controlled

region over the frequencies ranging from 14 to 4 Hz (0.07-0.25 s period) corresponding to
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the initial frequency (13.2 Hz) and softened response frequencies, in order to avoid any
response amplification induced by changes in the stiffness of the specimen by shifting to
higher response regions of the spectrum. In the test, the specimens were excited in only
one horizontal direction. The vibration test-runs were executed with five input acceleration
levels. These runs were executed as RUN-1 to RUN-5 sequentially by increasing input
acceleration levels of the same artificial wave. The 5 percent damped acceleration response
spectra of the input motions RUN-4 and RUN-5 are given in Figure 2.27. Their spectral
similarity is noted. For the detailed description of the structure, material properties, loading
program and structural response reference to OECD (1996) and Kitada et al. (1996) is

made.

Acceleration (g

Feriod (sec)

Figure 2.27 Five percent damped response spectrum of input acceleration for RUN-4 and -5

2.6.2.3 Test Results

The measured fundamental frequency of the specimen prior to the loading program
was around 13.2 Hz. Upon sequential application of the seismic excitations and due to
resulting continuous degradation on the mechanical properties of the structure, measured
fundamental frequency reduced to approximately 7 Hz before final loading (RUN-5) when
extensive damage in the structure was caused. Table 2.2 shows the change of natural
frequency and the equivalent viscous damping ratio observed.

The visual state of cracks for the specimen after the final step (RUN-5) is shown in

Figure 2.28. Initial shear cracks at the mid portion of the web wall were observed after
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RUN-2 and horizontal cracks of the flange walls were observed after RUN-4. The sliding
shear failure occurred 30 cm above the bottom of the web wall in Run-5 resulting in

significant loss of in the strength and stiffness of the specimen.

Table 2.2 Change of frequency and equivalent viscous damping ratio

Test Frequency (Hz) Equivalent damping ratio (%)
Before RUN-1 13.2 1.1
Before RUN-3 11.3 2.5
Before RUN-4 9.9 3.0
Before RUN-5 7.7 4.0

Right Flange Web Left Flange

Figure 2.28 Visual observations of cracks and final web crushing failure of the wall
(OECD/NEA/CSNI, 1996)

2.6.2.4 Finite Element Modeling

To effectively use the computer resources a model representing half of the specimen
was created and symmetry boundary conditions were applied, see Figure 2.29. The element
SOLIDG65 represents the web, flanges, base and top slabs. The LINKS element is used to
model reinforcement discretely. Concrete elements with 200x200x37.5 mm dimension were
used in the web wall. The reinforcement mesh in the wall has a grid spacing of 70x70 mm.
In order to produce coinciding nodes for concrete and rebar elements due to mesh density,
the original reinforcement mesh at 70 mm spacing was replaced by a grid where the bars
are configured at 200 mm spacing. The rebar areas were recalculated to keep the total
percentage of reinforcement unchanged as 1.2 percent. This is equivalent to using smeared

reinforcement modeling since the contribution of smeared reinforcement within the solid
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element is evaluated at nodes via integration points. As shown later no difference arises in

the predicted response between the adopted stratagem and the smeared reinforcement

model. When a concrete panel is reinforced by a dense reinforcing mesh and the change of

internal forces from one bar to the next is very small, their net effect may be considered as

“smeared”. For monotonic loading conditions this modeling technique was found to be

effective. However, in order to calculate rebar stresses accurately, discrete reinforcement

modeling was preferred in model generation. Modeling the reinforcement as discrete and

smeared had its effect on the load deformation response.

Figure 2.29 Finite element model and the reinforcement grid of full and reduced NUPEC

wall specimen
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The additional masses are modeled with point mass elements (MASS21) that are
assigned to mid section nodes of the top slab. The effect of gravity force is kept constant
during the analyses. The lateral load is distributed equally to the mid section nodes of the

top slab in the horizontal direction.
2.6.2.5 Calculation of the Material Parameters:

Bilinear isotropic work hardening plasticity (BISO) is utilized for the material model
of the steel reinforcement. The modulus of elasticity and yield strength used for steel is
184,400 MPa and 384 MPa, respectively. In the analyses the strain hardening of the steel is
attributed a value of 1 % (Es,=0.01Ej) to achieve better convergence.

The concrete material properties were provided by NUPEC. The experimental
concrete stress-strain curve was used to determine the constants of the material models
mentioned above. The uni-axial compressive strength of the concrete (f.) was taken as 28.6
MPa, the mean value of the concrete cylinder tests, and the tensile strength as 2.4 MPa. The
initial modulus of elasticity and the Poisson’s ratio were 22,900 MPa and 0.2, respectively.
Since the von Mises plasticity models depend on elasto-plastic representation of the
material behavior curve, the nonlinear stress-strain curve of the concrete in uniaxial
compression is bilinearized as given in Figure 2.30. The limiting compressive stress f. is
taken to be the average compressive stress equal to 0.85f. corresponding to 23.8 MPa. Due
to bilinearization the concrete modulus of elasticity reduces to 20,700 MPa. Using this
value the first mode frequency of the model was calculated as 12.9 Hz, which is very close
to measured fundamental frequency of the specimen given in Table 2.2. After model
generation, modal analysis becomes crucial to verify the correctness of the finite element
model.

For the case of Drucker-Prager model, inserting f;=23.8 MPa and f;=1.2f. into Egs.
(B.20) and (B.21), parameters of Drucker-Prager yield surface are calculated as & = 0.0825
and 7, = 11.78 MPa, respectively. The yield surface has the same pattern as plotted in
Figure 2.1 utilizing Eq. (B.22). It is now required to express these parameters in terms of
Mohr-Coulomb parameters, ¢ and ¢. Since Drucker-Prager model in ANSYS uses outer
cone approximation, using Eq. (B.16) these parameters are calculated as 9.72 MPa and
11.54° for the cohesion and the friction angle, respectively. For multi-linear plasticity

model (MISO), the material base curve was represented with five line segments as shown in
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Figure 2.30. This is the only model that can be used to represent the strain-softening branch

of concrete stress strain curve.
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Figure 2.30 Bilinearized and multilinear uniaxial stress-strain curves of concrete

2.6.2.6 Finite Element Model Calibration: Mesh Size and Element Options

At the beginning it was emphasized that finite element analyses results are
significantly affected by the adopted constitutive material laws. However, this statement is
valid given that the effects due to numerical discretization are negligible. The properties of
the model such as the mesh density and the element characteristics are also important
aspects of the nonlinear finite element analysis procedure. SOLID65 element has been
instrumented with several features to increase the accuracy of the calculations and
overcome restriction due to element behavior. However, these are case sensitive properties
and needed to be calibrated depending on the application.

Rarely is the first FE analysis satisfactory. After trial runs differences between the
calculations must be clarified. Since the displacement field within the element is calculated
using linear interpolation functions and 2x2x2 Gauss-quadrature integration scheme, it must
be ensured that the mesh used is sufficiently fine to capture the behavior accurately. An
extra model that is composed of concrete elements 70x70x37.5 mm in size was created as
shown in Figure 2.31, and the reinforcing bars were discretized in their actual amount and
location to check the mesh size dependency of the results. Moreover, the eight-noded solid
element exhibits shear locking, which is a defect associated with the linear element
interpolation functions that contain no quadratic terms resulting in spurious shear strain.

Element is excessively stiff to display the bending modes of displacement, if the finite
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element mesh is not fine enough. The "incompatible modes" formulation for modeling
bending was invoked to avoid shear locking in the model. In ANSYS theory manual the
formulas are referred as “extra shape functions (ESF)”. Mesh size dependency and shear
transfer effects were also investigated.

The multilinear plasticity model with strain-softening behavior as plotted in Figure
2.30 was used in the calculations. The models were loaded by prescribed displacements at
the mid section nodes of the top slab in all the analyses. The effect of gravity force is kept
constant during the analyses. The Newton-Raphson method with line search and adaptive

descent iterations was used in all computations.

Figure 2.31 Finite element meshes

The comparison of results of the three models was given in Figure 2.32(a). It is seen
that there is a considerable difference between the results of the fine and coarse mesh
models (when no ESF utilized) in terms of both displacements and forces at the peak level.
However, the coarse model utilizing extra element shapes is in good agreement with the
fine mesh model curve giving a slightly higher ultimate displacement limit to strength
degradation. The reported values for experimentally observed drift ratio limits on squat
walls at the peak load is in the range of 0.007~0.008 (Dufty et al., 1994). The calculated
displacements are less than (0.005~0.007) the given limits. The initial stiffness of the
models were found to be 837, 780 and 798 kN/mm for coarse mesh with no ESF, fine mesh
with no ESF and coarse mesh with ESF, respectively. Since the three curves approximately
have the same global stiffness until crushing strain is exceeded, the differences in the peak

range indicate to a mesh size problem in local modeling. As it was stated previously, the



finite element solutions are known to have spurious sensitivity to the mesh size and have
difficulty when the softening property in the post-peak response is used in constitutive
models.

The ISP wall has a large flexural capacity and adequate horizontal reinforcement to
develop diagonal compression failure under monotonic loading. Plastic behavior in
compression was observed to develop in the zone near the base of the wall. Analyses results
indicated that the strains calculated in the compression region of fine mesh model are larger
than the strains in coarse model at the same location. As the size of element in fine mesh is
nearly three times smaller than the element in coarse mesh, the strains are much more
sensitive to nodal deformations from which they are calculated. Consequently, smaller
elements detect the softening earlier than the larger ones. Since the global behavior is
affected by local response in the compression zone of the web wall, mesh density in the

localized damage region significantly affects the accuracy of the results.
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Figure 2.32 Numerical prediction of load-deflection response of the specimen indicating the

influence of a) mesh size, b) shear transfer coefficient of concrete, and c) reinforcement
modeling
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Preliminary analyses also displayed that numerical values assigned to shear transfer
coefficients for open () and closed () cracks can play a significant role on the load-
deflection response of the model. A shear transfer coefficient, B, is used to introduce a
shear strength reduction factor for loading conditions which induce sliding (shear) across
the crack face. Typical shear transfer coefficients range from 0.0 to 1.0, with 0.0
representing a smooth crack (complete loss of shear transfer) and 1.0 representing a rough
crack (no loss of shear transfer). In line with previous studies (Hemmaty, 1998) values of
0.2 and 1.0 were adopted as shear transfer coefficients for open and closed cracks,
respectively. The effect of shear transfer coefficient is obvious in Figure 2.32(b).

In Figure 2.32(c), the comparison of analytical prediction of load-deflection response
of the specimen indicating the influence of reinforcement modeling as discrete and smeared
form is given. It is seen from this figure that both modeling strategy yields equivalent
responses for monotonically increasing loads.

It was decided that the adopted mesh size of the coarse model in Figure 2.31 and
solid finite elements with extra element shapes formulation in the model is appropriate for

further analysis purposes.
2.6.2.7 Calculation of NUPEC Wall- Static Case

The force displacement response of the NUPEC wall was calculated by using the
three plasticity models described above. The finite element model plotted in Figure 2.31
was used in the analyses. ESF were included in element interpolation functions. Shear
transfer coefficients for open and closed cracks were taken as 0.2 and 1.0, respectively. A
displacement controlled loading scheme was adopted. Displacement was applied on the
mid-section node of the top slab. The calculated response curves are presented in Figure
2.33. Given in this figure is also the load-displacement backbone curve plotted as an outer
envelope to the five experimental hysteresis curves. For DP and VM models the
calculations were stopped when net section yielding had occurred resulting in large
displacements for small increments of load.

For all the material models, the ultimate displacement at the peak load of the
specimen was calculated in the range of 10 mm, which is 16 percent smaller than the
displacement value at the initiation of strength degradation in the experimental response
curve. All curves are very similar. It is displayed in the Figure 2.33 that the calculated

response curves slightly underestimate the actual response over a certain region after the
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cracking load is exceeded (F.; = 600 kN). Tests on reinforced concrete elements (Vecchio
and Collins, 1986; Bentz, 2005) have demonstrated that even after extensive cracking,
tensile stresses may still exist in the cracked concrete and that these stresses significantly
increase the ability of the cracked concrete to resist shear stresses. Since the cracking was
handled by reducing the tensile stresses in the crack plane to zero i.e. tension stiffening is
ignored, this led to such an underestimation.

Comparison of the predicted and experimentally measured response revealed that
beyond 6 mm roof drift the predicted response overestimates the measurement. This is
within expectations since the response obtained from monotonically increasing static
loading was compared with a response that is cyclic in nature, which may cause stiffness
and strength deterioration in concrete. In order to capture the experimentally measured
response, it is required either to modify the finite element model or calibrate the material

model to incorporate the effects of load history and concrete mechanics.
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Figure 2.33 Comparison of calculated load-deflection curves with the experimental
dynamic back bone curve plotted against the hysteretic curves of the five experiments

At this point, the analytical response of the specimen will be investigated a little bit in
detail. A snapshot of the principal strains from the analyses phase when the top slab
displacement is approximately 5.5 mm is displayed in Figure 2.34. The tensile strain

developed at the lower left region of the web wall is around 0.004. The inclination angle of
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the principal compressive strains (&) is approximately 45 degrees. Tracking the ratio of
principal tensile strain to principal tensile stress (gi/e;) from the analysis results at the
compression region, the curves in Figure 2.35 showing the (g,/e3) ratio with respect to
increasing deformation were obtained for the results of three plasticity models. Under
increasing shear forces, both the principal compressive strain, €;, and the principal tensile
strain, g, increases proportionally. Prior to yield of the reinforcement, the ratio &/e;
remains reasonably constant for the three cases. For the range of interest all three curve

yields a ratio of approximately -2.
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Figure 2.34 Vector plot displaying the direction of principal strains developed in the web at
top displacement of 5.5 mm
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Figure 2.35 The ratio of principal tensile strain to principal tensile stress (€;/¢;) during the
analysis at the compression region
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As also was supported in Figure 2.35, the ratio (g,/e;) remains reasonably constant
prior to yield of reinforcement. Modifications were made to both the peak stress and the
strain at peak stress. Distributing the (€,/¢g;) ratio, Eq. (2.5) yields a stress softening factor S
~ 0.72. The original and modified stress-strain curves of concrete were plotted in Figure
2.36. The concrete peak stress has a value of £, = 20.5 MPa (0.72x28.6 MPa). For the
bilinear case this reduces to (f.»).. = 17.5 MPa by applying the factor of 0.85. However, it
will be shown next that a reduction in concrete stiffness must be taken into account for
accurate prediction of response in the dynamic analyses. The modulus of elasticity of the

softened concrete reduces to approximately 15,000 MPa (0.72x20700 MPa).
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Figure 2.36 Concrete stress-strain curve for original and softened states

For von Mises and multilinear plasticity material models the softened curves given in
Figure 2.36 is used in the analyses. Assuming the concrete strength as 17.5 MPa and the
stress state biaxial, the new set of material constants for the DP model can be calculated as
7.144 MPa and 11.54° for the cohesion (c) and the friction angle (¢), respectively. The
load-deflection curves calculated with softened material models were given in Figure 2.37.
For multilinear plasticity, the softened material curve designated as MLP1 in Figure 2.36

was used firstly. In Figure 2.37 it is seen that the load-deflection curve calculated with
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MLP1 model experiences a premature softening. The softened multilinear curve in the yield
plateau is extended to intersect with the descending branch of the original curve, which
corresponds to softened multilinear curve designated as MLP2 in Figure 2.36. Such a
modification in the descending branch of stress-strain curve was also proposed by Hsu and
Zhu (2001) based on the long yield plateau observed in panel tests. Now the multilinear
plasticity model can successfully mark the location where the strength degradation started
in the experimental curve in Figure 2.37.

There was a problem in calculation of the descending branch of the load-deflection
curve. The solution has experienced significant convergence problems. Nevertheless,
considering the drift at 100 percent of ultimate load as the most appropriate definition of
ultimate drift limit from engineering point of view, the results provides considerable insight

on the displacement capacity of the specimen.
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Figure 2.37 Recalculated load-deflection curves plotted in comparison with the backbone
curve plotted against the hysteretic curves of the five experiments

The plastic shear strain plot in the plane of web wall at the last step of loading
displays the sliding shear failure mode observed in the experiment can also be reproduced
in the calculations. In Figure 2.38, after concrete failure is initiated at the tip, it spreads
horizontally to the base of the web. The situation is much more severe in the experiment

due to cyclic nature of the loading that causes diagonal cracking in both directions and
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generating softening at both lower tips of the web wall. Crushing of the web concrete
spreads rapidly over the entire length of the wall. Diagonal compression failure results in

dramatic and irrecoverable loss of strength.
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Figure 2.38 Plastic shear strain developed initiation of sliding shear at the base of the web
wall.

2.6.2.8 Dynamic Analyses

The derivation of the most correct material parameters was discussed in detail in the
above sections. It was displayed that compression softening has a significant impact on
accurate estimation of dynamic load-deformation envelope of the structure. Adopting the
reduced bilinear curve for von Mises and Drucker-Prager plasticity with material properties
of ;=17.5 and E.=20,700 MPa in Figure 2.36, nonlinear time history analyses were carried
out. Five table motions were applied on the model sequentially. The damping ratio for each
analysis was specified with Rayleigh damping constants (alpha and beta) that yielded the
values given in Table 2.2. The dynamic analyses procedure described in Section 2.5 was
utilized.

The computed top slab displacement and horizontal acceleration response were

plotted in Figure 2.39 and Figure 2.40, respectively. Accelerations were converted to inertia
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forces. For the sake of brevity, only the nonlinear time history results obtained in RUN-5
were discussed here, because the preceding tests had resulted in elastic to moderately
inelastic response on the structure only, and the simulations were insensitive to material
models and their parameters until the conclusion of RUN-4. In Figure 2.39(c), two
displacement response curves were calculated and plotted for RUN-5. In the first case
response was calculated by using the bilinear elasto-plastic curve with elastic modulus E. =
20,700 MPa as described above. Significant variance was observed between the
experimental and predicted response as the displacement level of 5 mm was exceeded. This
must be attributed to inadequacy of the material model in accounting for the past damage
history that cause reduction in the stiffness of the model. In ANSYS stiftness degradation is
due only to cracking of concrete. The plasticity models can not be used to model stiffness
and strength degradation of concrete directly. To account for stiffness degradation, the
stress-strain curve used in this last analysis was altered with one with the same yield
strength (f. = 17.5 MPa) but with a reduced modulus of E.= 15,000 MPa. It is important to
note here that cracks and plastic actions developed in the model during the previous loading
history were stored as initial conditions for the finite element model. Not only significant
enhancement was provided but also the experimentally measured response was replicated
quite well. In Figure 2.41 the hysteric response calculated in RUN-5 was compared with the
experiment. These yield very similar patterns. Cumulative dissipated energy in measured
and calculated hysteresis loops was also plotted in Figure 2.41 to display the good matching
more clearly. In Figure 2.42, total strain developed at the tip of the outer face of the flange-
web wall intersection during RUN-5 was plotted.

The analysis was interrupted due to non-convergence several times in RUN-5. Since
the displacement level of 12 mm was surpassed when strength degradation was observed
(see Figure 2.37), it was decided to terminate the execution. The analysis could not be
continued. This point was very close to the time where the saturation of the instruments
initiated in the experiment due to failure of the specimen.

In Table 2.3 the predicted response maximum values were tabulated. The values in
parentheses are the experimental counterparts of the calculated values.

It can be concluded that by analyzing a preliminary simplified model, useful insight
could be gained into the behavior. Preliminary nonlinear static analyses helped in
understanding the various aspects of the nonlinear dynamic response before going through

the final nonlinear transient dynamic analysis.
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Figure 2.39 Displacements measured and calculated on top slab
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Figure 2.40 Accelerations measured and calculated on top slab
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Figure 2.42 Comparison of strain in the outer face of the flange-web wall intersection
developed in RUN-5

Table 2.3 Summary of computed time history results

Top slab horizontal Top slab Horizontal Vertical rebar strain in flange

response acceleration and |horizontal rebar strain in |wall bottom

inertial force response web wall (x10)

displacement |(x10°)
g kN mm Left flange | Right flange

RUNI 0.19(0.21) | 231(253) | 0.29 (0.29) 20 (9) 146 (45) 143 (-37)
RUN2 | 0.38(0.41) | 460 (485) | 0.55 (0.58) 35(249) -89 (-92) -90 (-72)
RUN2D | 0.57 (0.62) | 683 (739) | 1.26 (1.05) 437 (126) -99 (-159) -100 (-125)
RUN3 0.70 (0.72) | 840 (856) | 1.87 (1.63) 562 (679) -186 (-222) =77 (144)
RUN4 | 0.91(0.90) | 977 (1069) | 3.61 (3.72) | 605 (1021) 765 (1036) 924 (893)
RUNS5" | 1.46 (1.37) [1743 (1628)| 15.72 (15.0) |2646 (>5000)| 2999 (2632) | 3123 (2885)

“Analysis stopped due to non-convergent solution.
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2.6.3 PCA Rectangular Walls (Oesterle et al., 1978)

Two specimens with rectangular cross sections from the first series of tests conducted
by PCA (Portland Cement Association) in mid seventies to investigate the behavior of large
isolated reinforced concrete walls were analyzed here. Controlled variables in the first
series of tests were the wall cross-sectional shape, amount of flexural reinforcement and
confinement levels in boundary elements.

Test specimens were approximately 1/3 scale representations of full-size walls. The
walls had a height of 4.57 m and length of 1.9 m. The thickness of the walls was 102 mm.
The boundary region was taken to extend 190 mm from each end of the wall. Two walls
differ only in terms of amount of the flexural reinforcement at the boundary regions. The
ratio of flexural reinforcement area to gross concrete area of boundary element in the first
wall, referred as R1 in the Oesterle et al. (1976), was 0.0147. The second wall, R2, had
reinforcement ratio of 0.04 at the boundary elements. In both of the walls the amount of
vertical and horizontal reinforcement in the web was 0.0025 and 0.0031, respectively.
While wall R2 had very well confined boundary elements (p; = 0.02) in the lower 1.83 m of
the wall height, wall R1 was constructed with no confinement.

As a part of experimental program, reversing loads were being applied to isolated
walls. No axial load was applied in this series of test. Each specimen was loaded as a
vertical cantilever with forces applied through the top slab. The test specimens were loaded
in a series of increments.

The finite element models of the specimens are shown in Figure 2.43. Two models with
fine and coarse meshes created in order to check the mesh size dependency. Both walls
have the same reinforcement detailing as displayed with the reinforcement cage in Figure
2.43. Concrete was descriticized with SOLID65 elements. Reinforcement was modeled
discretely with LINKS elements.

Concrete strength of 45 MPa, an experimentally given average value for both
specimens, was adopted in the analyses. The experimental Young modulus of 28000 MPa
was also used in the analyses. The stress-strain curves for confined and unconfined concrete
were developed in accordance with APPENDIX C. Multilinear isotropic work hardening
plasticity was used to define the curves. Although bars of different sizes with slightly
different yield strengths and post-yield characteristics (strain and stress at rupture) were

employed in the experimental specimens, a fixed bilinear kinematic hardening plasticity
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model with 500 MPa yield strength, 200000 MPa of elastic modulus and strain hardening
stiffness of 0.0075E was used for all the steel material.

Figure 2.43 Finite element models of PCA R1 and R2 rectangular walls

Static analyses of wall R1 was performed by taking into account different aspects of
element technology and finite element modeling as defined in the preceding sections. The
result of these analyses was summarized in Figure 2.44. As seen in the figure, to get the
closest results with respect the experimentally measured ones ESF should be turned on in
the SOLID65. Analysis without ESF in SOLID65 yielded overly stiff response especially
after the global yielding of the wall. For the model without ESF only it was possible to get
results close to experimental ones when the shear transfer coefficient, B;, in the model was
taken close to zero. At first sight this was attributed to shear locking phenomena. However,
as the resultant load-displacement curve of fine model has displayed, indicated with curve
number 1 in Figure 2.44, no improvement in the post yield stiffness of the model was
observed with regards to coarse model. It is expected that as the mesh becomes finer the
effect of shear locking will diminish. Checking the model in detail, the strain distribution

along the height of the wall provided a prognosis to the situation.
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Figure 2.44 Result of static analyses of wall R1 in comparison with experimental hysteresis
curve

The contour plots of vertical strain after the analyses in models 2, 4 and 7 in
reference to Figure 2.44, at 1.5 mm (initiation of flexural cracking), 20 mm (initiation of
global yielding) and 100 mm (excessive deformation range) of displacement levels are
given in Figure 2.45. The first thing noticed especially at the third column of the Figure
2.45 is the shift in the location of the concentration of yielding in the tensile boundary
region along the wall height. For the three models under consideration, up to global
yielding while the yielding starts and progresses at a section very close to base, in the
model without ESF (£ = 0.2), Figure 2.45(a), after the global yield level is exceeded the
yielding shifts upwards. Since the moment capacity of section is constant and the lever arm
of the top applied force reduces due to shift in the location of yield section, a larger force is

calculated.
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(c) Model without ESF formulation and £ = 0.02.

Figure 2.45 Distribution of vertical strain (nodal averaging) in the boundary elements of R1
model for different finite element characteristics
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The situation can be verified with simple sectional analyses. The tested wall has very
simple geometry and loading. The moment capacity of the section at the initial yielding and
ultimate load was calculated as 378 kN.m and 552 kN.m for the given reinforcement
detailing and material properties. For the given geometry and loading, assuming that the
yielding occurs at the base of wall, the peak load that the wall can sustain is calculated as
552/4.57 = 120.8 kN, which is very close to experimentally measured peak load capacity of
the wall (118.3 kN). However, due to reduction in the moment arm as a result of shear
locking phenomena nearly two times larger base shear capacity can be obtained.

Monotonic and cyclic static FE analyses of R2 wall were performed. In Figure 2.46
results of three models with different assumptions are plotted together with the
experimental load-deflection envelope curve. The displacement capacity at the ultimate
load predicted quite well for all models. As observed in the case of R1, the model without
ESF and g, = 0.15 yielded stiffer response than the experimental one after global yielding of
the wall. For this case, while at the ultimate displacement level the strength was calculated
35 percent larger than the actual strength of R2 wall, the deviation in the R1 wall was much
larger, approximately 93 percent. For lightly reinforced slender walls (where flexural
response governs) and low axial load ratios ESF should be turned on. Figure 2.47 displays
the comparison of calculated hysteretic response with the experimental one. Both the static

and cyclic analyses provide good estimates of the experimental response.
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Figure 2.46 Result of static analyses of wall R2 in comparison with experimental hysteresis
curve
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Figure 2.47 Comparison of calculated hysteretic response with the experimental one.

2.6.4 Thomsen and Wallace (1995) Rectangular Wall

The wall specimen with rectangular cross section (RW2) tested by Thomsen and
Wallace (1995) and later used by Orakcal (2004) to calibrate and asses the proposed
analytical shear wall model is analyzed. The wall was 3.66 m tall and 102 mm thick. Well-
detailed boundary elements were provided at the edges of the wall over the bottom 1.22 m
of the wall. In Figure 2.48 the detailing of the reinforcement in the cross section is shown.
The volumetric ratio of the longitudinal reinforcement in the boundary element is
approximately 0.033. The average compressive strength of concrete at the time of testing
was measured to be 42.8 MPa. The longitudinal bars was type of Grade 60 (f, = 414 MPa).
Detailed material properties can be found in Orakcal (2004). The specimen was loaded
cyclically by hydraulic actuators at the top. An axial stress of approximately 0.0754,f. was
maintained throughout the duration of the test.

The finite element model of the wall specimen is displayed in Figure 2.49. The actual
longitudinal reinforcements (8 - #3, Ay = 73.1 mmz) in the boundary elements was
discretized with 6 equivalent rebar (Ayy = 97.5 mm?®) that gives the same amount of
reinforcement in the boundary element. In the model, SOLID65 and LINKS8 elements were
used for concrete and reinforcing bars, respectively. This is done to provide coincident

nodes between the concrete and bar elements for the used mesh pattern. Using the material
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constants and cross sectional details provided above and utilizing the procedures described
in the proceeding sections, analytical material curves for concrete and steel were calculated
and incorporated into the finite element model. The material curves are plotted in Figure

2.49(b).
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Figure 2.48 Wall cross sectional view (Orakcal, 2004)

Monotonic and cyclic static analyses were performed on the finite element model.
The model is loaded with a prescribed displacement at the top mid node. By this way not
only a better convergence behavior was obtained but also the initiation of the strength
degradation in the load —deformation response can be detected. With force controlled
loading schemes the behavior can not be tracked after the ultimate strength point. The effect
of ESF and shear transfer coefficient on the load-deformation response of the wall was also
checked on this model. The results of static analyses including these effects were displayed
in Figure 2.50. In this figure calculated load-deformation curves are plotted together with
the experimental cyclic response envelope curve for comparison. As studied and verified in
the case of PCA wall specimens, in the analysis case where the elements with EFS were
used and [3; was taken as 0.2 and in the analysis case where no ESF was used and 3; = 0.02
was assumed, the predicted load deflection curves are very similar and very close to the
experimental one. The point where the strength degradation initiates was also predicted
with a reasonable error. The predictions with the model without ESF overestimated the
ultimate load capacity 22 percent, where the error is smaller compared to PCA wall case.
The better performance is attributed to existence of axial load on the specimen as discussed

previously.
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Figure 2.49 (a) Finite element model and reinforcement mesh of the RW2 specimen, (b)
steel and confined concrete material models

Using the finite element model utilizing no ESF in the SOLID 65 element options
and with a minor shear transfer coefficient, cyclic load analysis was performed. While the
multilinear curves with descending branch after the peak strain can be effectively used to
define concrete stress-strain relation in static analyses, a bilinear curve is preferred in cyclic
analysis to improve the convergence. It is worth to mention that analysis with ESF was
conducted but significant convergence problems even at very early stages of the
nonlinearity were encountered in cyclic loading. It is recommend here that in the analyses
that includes reversing loads, when SOLID65 was used in the FE model the ESF will be
turned off. In deed under loads cyclic in nature it is difficult to perform analyses with
SOLID65 either with ESF is on or off when significant inelastic actions exist in the
problem. Nevertheless it is possible to get a solution in the cases where no ESF was utilized
by relaxing the convergence criteria when convergence problems encountered. The result of
analysis is plotted in Figure 2.51. The agreement in the predicted and measured responses
even surprised the author. This situation is attributed to fact that the analyses of the
structural wall performed here is a slender flexural member with reasonable amount of axial

load nearly without any shear effect, behavior of which can be predicted easily.
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Figure 2.50 Static analyses results compared with cyclic envelope curve
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Figure 2.51 Comparison measured and calculated response of RW2. The measured
response was corrected for pedestal movement, so as the applied displacement loading was
adjusted accordingly.
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The local response was also predicted with reasonable accuracy as well. Figure 2.52
displays the contour plot of vertical strain, stress and crack pattern at top deflection of 80
mm. The orientation of cracks indicates to flexural response. First flexural cracks develop
and they are inclined at the web representing the stress state. As it can be remembered the
concrete strength is taken to be 42.8 MPa, but the vertical stress plot in Figure 2.52
indicates to a stress level of 63.6 MPa. This situation can be attributed to the enhancement
in the strength of concrete at the boundary element due to multi-axial stress state. Figure
2.53 compares the analytical and experimental curvature distribution at the base of the wall
at drift levels of 1 and 2 percent. The predictions aggress reasonably well with the
experimental ones even at very high deformations. An important observation in regards to
this figure is the inadequacy of the “plane section remains plane” assumption in estimating
the concrete strains at the extreme fiber at the compression region of flexural members.
While the experimental result indicate to a concrete compressive strain of 0.012 at drift of
%?2 and finite element analysis predicted this accurately, the undistorted section assumption
(Euler beam) yields only 0.005 strain value for the same level of tension steel strain (g5 =
0.03). This leads to a great underestimation in evaluating the damage of concrete at the
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Figure 2.53 Comparison of measured (measured by LVDT’s over a 229 mm gauge length)
and calculated concrete strain at the base of the wall

2.6.5 Walls Tested by Vallenas et al. (1978)

Vallenas et al. (1978) presented the results of eight earthquake simulation tests on 1/3
scale RC wall sub-assemblage model specimens. In the experimental program Vallenas et
al. tested four three-story wall specimens, two of which were framed wall and the other two
were rectangular walls and after incipient failure, all the specimens were repaired and
retested. The aim was to understand and model the behavior of reinforced concrete
structural walls subjected to high shear earthquake loading conditions. The specimens
represented the lower portion of the shear walls of wall-frame structural systems of ten- and
seven-story buildings. Walls are designed to resist the total lateral load in the buildings.
Dimensions of the specimens correspond to one-third the dimensions of the walls existing
in the designed prototype buildings. The experiments simulated, in a pseudo-static manner,
the dynamic loading conditions which could be induced in sub-assemblages of buildings
during actual earthquake shaking. In the proceeding analytical work, analytical models for
the behavior of structural walls under high shear stresses are presented. These models

consider a breakdown of the overall deformations into three components: flexural, shear,
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and fixed end deformations. It was reported that the damage to the walls was concentrated
on the first story. It included crushing of the concrete in the panel, buckling of the wall and
column reinforcement, and, after rupturing of the confining reinforcement, crushing of the
concrete in the column under compression and shear. Damage also included large residual
tensile cracks, especially in the boundary elements.

The rectangular wall was 3.047 m high and had a length of 2.142 m. Thickness of the
wall was 114 mm. Over the 279 mm length at the edges, boundary elements were formed.
The volumetric ratio of the longitudinal reinforcement in the boundaries was 0.05. The
amount of reinforcing steel in the vertical and horizontal direction was 0.0028. The
rectangular wall investigated here was loaded monotonically. The typical sub-assemblage
of a rectangular wall designed in a seven-story building is shown in Figure 2.54(a) together
with the main geometric dimensions. The critical loading condition applied on the structure,
as displayed in Figure 2.54(a), corresponds to response spectrum analysis of entire building
using the ground motion of the 1971 San Fernando earthquake. The simplified loads were
normalized to the ultimate moment capacity of the wall. The axial load in the walls kept
constant. The test set up employed in this study is one of the most realistic one that was
used in the experimental programs on shear walls as far as to the knowledge of the author.

Finite element of the model is displayed in Figure 2.54(b). Reinforcement was
assumed to be smeared in the element volume. Extra displacement shapes option was
turned on in the SOLID65 element formulation. Shear transfer coefficient was taken as 0.2.
The concrete strength reported as 28 MPa. The confined concrete stress-strain curves that
were calculated in accordance with the models described previously was given in Figure
2.55. As seen, hoops used at 34 mm spacing significantly enhanced the deformation
capacity of the boundary element. Although such ductile stress-strain behavior curves were
calculated for the boundary elements in compression, a more conservative curve compared
to Mander et al. (1988) and Saatcioglu and Razvi (1992) models were adopted. Indeed
whether concrete may sustain such levels of deformations is a questionable issue but
beyond the target of this study.

Using the loading configuration shown in Figure 2.54(a), load-deformation response
of the model was calculated and plotted in Figure 2.56. As done in the test, when the
displacement at the top is 37 mm the model is unloaded and after reloading at the
displacement of 56 mm the analyses ended due to “negative tangent stiffness matrix” error

as a result of Newton-Raphson algorithm can no more track the nonlinear material curves in
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the softening regime. An interesting observation in Figure 2.56 is the occurrence of zigzags
(small drops in the load) on the load-deformation curves nearly at the same time for both
measured and predicted responses. At 25.5, 37 and 55 mm displacement these fluctuations
were observed. The specimen was severely damaged at the end of experiment. The concrete
lost its integrity, the reinforcing steel at the boundary has ruptured and out of plane
buckling of the wall occurred by the end of test. The critical point in the response of

specimen is where the unloading took place due to stability problem in the wall.
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Figure 2.54 (a) Loading conditions of sub-assemblage rectangular structural wall, (b) Finite
element model of the specimen

Interpretation of stress and strains in NLFEA requires sound understanding of the
deformations from the experimental phase. Most of the time strains from FE analysis tend
to overestimate the real word strains. The wall tested by Vallenas et al. (1978) provides a
good example of such a situation, so it will be investigated in detail in order to legalize the
strain calculations performed here. The strain distributions depicted from the analyses of
Vallenas et al. (1978) wall specimen is displayed in Figure 2.57. The contour plots are
given for top displacement level of ~37 mm (drift of %1.26). For the same level of

deflection in the experiment it was reported that the failure was initiated by the un-
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symmetric spalling of the concrete cover at the boundary element in compression and at
this point the average strains at the base of the boundary element was recorded as 0.00298
and 0.0047 by two clip gages installed at the region. As seen in Figure 2.57 the predicted
vertical strains at the toe of compression strut are in the order of 0.028 and 0.015 in terms
of element and nodal outputs, respectively, where the elements results are calculated at the
integration points and the nodal results average the component tensor or vector data at
nodes used by more than one element. There is a significant difference between the
predicted and experimental values. Is it so or a new perspective is required to evaluate the
strains? Most of the time experimental strain measurements are obtained by using
displacement readings that are derived by measuring rather a long distance between two
points on the specimen if they were not obtained from localized strain gage readings. The
difference between the initial and final readings divided by the gage length yields the
average strain in the region along the gage length. This may lead to significant
misinterpretations of the actual strains since the effect of localization is ignored.

In the experimental program, the strain measurement were obtained by a pair of clip
gages mounted near the centerline of the edge columns as displayed in Figure 2.58
(Vallenas et al., 1979 and Wang et al., 1975). The small dots shown in this figure represent
the steel pins embedded inside the concrete. The deformation measured between two
adjacent pins divided by the original distance between these two pins gives the average
concrete strain between them. As shown in the lower corner of Figure 2.58, the lower end
of the clip gage K11 was mounted on the pin embedded inside the column, 25 mm away
form the footing. The lower end of the clip gage C11 was attached to the surface of the
footing. The gage configurations are displayed more clearly at the sectional view at the left
corner of the Figure 2.58. The strain readings by K11 and C11 were 0.00298 and 0.0047
respectively. The gage lengths of C11 and K11 were 355 and 381 mm, respectively, so the
average concrete strains calculated over these lengths. The difference between the readings
in gages K11 and C11 primarily represent either the concrete strains at the boundary
element over the 25 mm length from the surface of the footing or occurred as a result of
measurement error. Assuming that the measurements were taken correctly then the concrete
compressive strain calculated over the 25 mm length region laying between the lower ends
of gages K11 and C11 is approximately 0.029, which is calculated as,

(381x0.0047 — 355 % 0.00298)

&= =0.0293
25
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Figure 2.56 Analytical and experimental load-deformation curves of the specimen tested by
Vallenas et al. (1979)
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Figure 2.58 External instrumentation of the wall specimen tested by Vallenas et al. (1978)

The calculated strain value is very close to the strain output at the integration point of
the element at the bottom compressive corner. The problem may be also elaborated starting
from finite element analyses results and progressing towards experimental results as well
by evaluating the finite element analyses results in the same manner as done in the
experiments. If the strain outputs from the finite elements over the gage length are
averaged, the strain corresponding to measurement of C11 (0.0047) becomes 0.00522. The
finite element analyses results calculated at the element center (average) at the outer edge
and center line of the boundary element (column) is plotted in Figure 2.59 along the height
of first story column. The strain distribution displayed in the figure indicates to a very
severe crushing situation especially at the lowest 150 mm region of the wall. Since the wall
boundaries are very well confined (hoop at 34 mm spacing, p, = 0.01) the specimen can
sustain such levels of concrete compression strains. The deformed shapes from the analyses
phase and test taken by photogrammetric methods are compared in Figure 2.60. Both
patterns have significant resemblances. The strains recorded by gages K11 and C11 at the

failure were reported to be 0.0072 and 0.0097.
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2.6.6 Walls Tested by Lefas et al. (1990)
2.6.6.1 Experimental Program

The experimental work involved the testing of 13 structural walls with constant
thickness and rectangular cross section. Two types of walls were tested in the program with
respect to aspect ratio (h/l), where Type I walls had h/l = 1 and Type II had h/l = 2.
Drawings displaying the dimensions and the arrangement of vertical and horizontal

reinforcement of two types of walls were given in Figure 2.61. Table 2.4 gives the
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properties of reinforcement bars. In Table 2.5 amount of main flexural, confinement and
web reinforcement is presented for each wall.

Three levels of axial load corresponding to 0.0, 0.1 and 0.2 of the uni-axial
compressive strength of the wall cross section were adopted in the testing program. These
load levels assumed to be representative of the amount of axial load at the base of the wall
of a single story, a medium-height and a high-rise building, respectively. First the total
constant axial load was applied and then the specimen was incrementally loaded with
horizontal load. The experiment was force-controlled. The tests were not continued after

the ultimate strength level exceeded.
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Figure 2.61 Geometry and reinforcement details of Type I and II wall specimens

Table 2.4 Properties of reinforcement bars

Steel type Yield strength, Ultimate strength, f;,
£, (MPa) (Mpa)

8 mm high-tensile bar 470 565

6.25 mm high-tensile bar 520 610

4 mm mild-steel bar 420 490
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Table 2.5 Experimental data of walls tested in the program

Specimen Reinforcement percentage (%) fex Axial load
Phorz Prert Phiex Peonf (MPa) P (kN) P/ fckbl
SWI11 1.1 24 3.1 1.2 44.5 0 0.0
SW12 1.1 24 3.1 1.2 45.6 230 0.1
SW13 1.1 2.4 3.1 1.2 34.5 355 0.2
SW14 1.1 2.4 3.1 1.2 35.8 0 0.0
SW15 1.1 24 3.1 1.2 36.8 185 0.1
SW16 1.1 24 3.1 1.2 43.9 460 0.2
SW17 0.37 2.4 3.1 1.2 41.1 0 0.0
SW21 0.8 2.5 33 0.9 36.4 0 0.0
SW22 0.8 2.5 33 0.9 43.0 182 0.1
SW23 0.8 2.5 33 0.9 40.6 343 0.2
SW24 0.8 2.5 33 0.9 41.1 0 0.0
SW25 0.8 2.5 33 0.9 38.6 325 0.2
SW26 0.4 2.5 33 0.9 25.3 0 0.0

2.6.6.2 Finite Element Models and Analyses

The finite element models of the Type I and Type II walls are shown in Figure 2.62.
Using the material properties given in Table 2.5, material curves for confined and
unconfined concrete were calculated. As seen in Figure 2.63, which is plotted for Type I
walls, the calculated confinement effect provides insignificant ductility to the concrete after
the peak strength. The tensile strength of concrete was taken as 10 percent of the
compressive strength. For the material of steel, a bilinear curve was calculated by taking
into account the tension stiffening as outlined in Section 2.4.2. The yield strength of 8 mm
and 6.25 mm tensile bars was reduced from 470 MPa to 425 MPa and from 520 MPa to 445
MPa, respectively. At first stage reinforcement was modeled as smeared in the element
volume. The models only consist of SOLID65 elements. ESF was allowed in the element
formulation.

In all experiments, the top slab acted as the distributor of the applied vertical and
horizontal loads. The vertical load was applied first on the models. Succeeding horizontal
load was applied as nodal forces to the nodes lying on the surface of right side of the top
slab. The load-deformation response curves for Type I and Type II walls are displayed in
Figure 2.64 and Figure 2.65, respectively. The response of Type Il walls was predicted with

a reasonable accuracy. However, as seen in Figure 2.64 the calculated results overestimate
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the experimentally measured response of Type II walls. The finite element analyses that
were conducted by Kotsovos et al. (1992) for the same group of wall specimens has also
indicted to stiffer response of the numerical model, which was attributed time-dependent
effects in the course of the loading history. Since a few minutes were waited to take
readings and mark the progress of damage on the wall, a drop in the load can be observed
during testing. Kotsovos et al. (1992) modified the response curves to incorporate these
effects, but still a stiffer nonlinear response was calculated. The results presented in Figure

2.64 and referred as “bond-slip model” is discussed next.

T
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Figure 2.62 Finite element models of the Type I and II walls
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Figure 2.63 Concrete material curves for Type I walls
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Figure 2.64 Load-deformation response of Type I walls
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Figure 2.65 Load-deformation responses of Type II walls
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2.6.6.3 Finite Element Modeling with Bond-slip

This study considered that bond-slip between the concrete and steel might have
caused to such a response. A new finite element model with discrete reinforcement and
bond-slip elements was constructed.

As described schematically in Figure 2.66, the discrete bond-slip elements between
the nodes of steels element, modeled with LINKS elements, and concrete were discretized
using COMBIN39 nonlinear spring elements. This kind of approach was adopted by Ngo
and Scordelis (1967) and Thomas and Ramaswamy (2006), previously. The bond-slip
behavior of COMBIN39 elements were defined with Mirza and Houde’s (1979) bond-slip
model. Mirza and Houde (1979) conducted tension tests on a typical steel bar embedded
into concrete as shown in Figure 2.67 by keeping the concrete area (A.) and rebar diameter
(d), i.e. steel area (A;), as variables. In a tension test the force in the steel bar is transferred
progressively to the concrete by bond stresses. When the tensile stresses at a certain
distance from ends exceed the tensile strength of concrete, cracks develops in the concrete.
If the length of concrete prism between newly formed cracks is longer than the stable crack
spacing, same conditions as before develop, resulting in new cracks. As the result of
experiments, Mirza and Houde (1979) proposed the following relation between the steel

stress and average bond-slip

A, =0.0003684 -k, f*2(4,/ 4,)" (2.12)

where, Ag is the average bond slip (mm), f; is the instantaneous stress in the rebar (MPa), A
is the area of the rebar and A, effective concrete area surrounding the rebar. The influence
of the steel stress was noted to be almost linear (k, was found to vary between 1.0 and 1.2).
For simplicity, k, was set equal to 1.0 and the value of k; was found to be 0.33. The
corresponding k; coefficient can be computed using Eq. (2.13) or can be taken as 0.2

mm/MPa.

ky =5.690-1077 £, +6.645-107° f, +1.774-107! (2.13)

The slip-steel stress relation for different reinforcing steel bars used in the specimen
was calculated in accordance with the described model. The steel stresses were converted to
force multiplying by the steel area since COMBIN39 admits force-deformation data as

described in Section A.3.4. As seen in Figure 2.64, the correlation of predictions with
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experimental results improved significantly. The implementation of bond-slip model to
ANSYS reinforced concrete analyses was demonstrated for comprehensiveness of the
study, otherwise no bond-slip behavior is anticipated for the rest of analyses that will be

conducted.
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Figure 2.66 Finite element model of Type I walls with bond-slip

O = fu

o Oy
Ns |<—<—<—Ct<—<—>—>—>—i—>¢—>-> Ns

|

1. 2" crack

Figure 2.67 Development of crack in concrete in a tension test

2.6.6.4 Local Results

The steel strains were measured during the experiment. The strain gages were
implemented on the vertical rebars at the boundary elements at the base level of the wall,

just above the footing. Lefas et al. (1990) reported that the vertical reinforcement exhibited
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considerable post-yield deformations prior to failure. The strains measured at the base of

the walls on the vertical rebars in the compressive and tensile boundary elements are

plotted in Figure 2.68.
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Figure 2.68 Comparison of analytical and experimental strains at the base of the wall

The strains presented by Lefas et al. (1990) and obtained here from the simulations

agree well for the tension case. In general, the calculated compressive concrete strains

overestimate the measured compressive steel strains as seen in Figure 2.68. For example,

the compressive strain in the external rebar (gauge 4) of SWI17 reported to be

approximately 0.0045 at the ultimate, where as the calculated concrete strain is 0.013

approximately. Moreover, the compressive steel strains at the ultimate for Type I walls (h/I

= 1) were smaller than the strains reported for Type II walls (h/1 = 2). It is known that the

main resisting mechanism to the applied lateral load in the squat walls is the development

of diagonal compression strut depressing on the boundary element on the compression side.

However, pictures that were presented in the paper displaying the state of damage of the
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wall at the end of tests conflicts with damage indicated by the measured strains. As
displayed in Figure 2.69, the compressive region of Type I walls exhibits severe spalling
and crushing damage during the test compared to Type II walls. Such a discrepancy
between the measured and calculated strains might have been due to an interruption in the
data acquisition as a result of damage to strain gages or due to buckling of the
reinforcement, which is evident in Figure 2.69, but nothing was declared about such
situations by Lefas et al. (1990) in their paper. The compressive strut is evident in the

Figure 2.70, resulting in triaxial stress state at the compressive boundary element.
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Figure 2.69 Damaged walls; Type I walls experiences more damage than Type II walls at
the compression zone (adopted from Lefas et al, 1990)
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Figure 2.70 Vertical strain and principal compressive stress plot at the ultimate load of
SW17. The compressive strut is evident in the figure, resulting in triaxial stress state at the
compressive boundary element. The concrete compressive strength is reported to be 41.1
MPa for this specimen.

2.7 LESSONS LEARNED FROM SIMULATION STUDIES

271 Meshing

A finite element mesh consisting of 12-20 elements along the length of the wall
proved to yield satisfactory results. For slender walls this number may be reduced to 10
when ESF functions are utilized. Meshes consisting of more than 15 and 20 elements along
the length of the wall should be considered fine mesh for slender and squat walls
respectively. Along the height of the wall the length of elements can be larger than
horizontal element edge length without violating aspect ratio rule. The ratio of lengths of
edges of a brick element should not be larger than two in general.

When ESF functions are utilized in the SOLID65 element formulation, fine meshes
may lead to localization of crushing damage (softening) at particular elements leading
premature failure indication in the model. When fine mesh is used in the model, ESF should
be turned off. For slender walls (H/L > 3) when ESF are turned off, for the shear transfer
coefficient for open cracks a value very close to zero should be adopted. This number may
be zero, but may cause convergence problems. For squat walls a value equal to 0.2 for shear

transfer coefficient may be used.
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2.7.2 Convergence Problems

Significant convergence problems in the solution of nonlinear problems may be
experienced in ANSY'S due to excessive cracking and crushing (softening regime after peak
strength) of concrete. Several convergence—enhancement tools, such as automatic time
steeping, line search, adaptive decent, is available in ANSYS program to help the solution
of nonlinear problems. To overcome convergence problems either the load is applied in
small increments or the force and displacement convergence criteria is loosened or both are
done simultaneously. If the amplitude of the applied load is within the likely limits of the
member capacity, this should improve the convergence significantly. Simple hand
calculations or analyses should be performed to estimate magnitude of the applied loads.
For example, if the model is loaded with displacements, the drift ratio that will be
experienced by the model is in the range of 1-3% depending on the aspect ratio of the wall
(slender or squat). Similarly, moment capacity calculated from sectional analyses can be
used to determine the amplitude of applied lateral loading.

If increasing the number of substeps does not work, convergence criteria may be
loosened. In most of the analyses performed here, the default force based convergence
criterion created convergence problems after onset of first cracking. The convergence norm,
against which the unbalanced forces are checked, is calculated within the program as
NORM = VALUE x TOLER. The parameters are input with CNVTOL command. The
default value of VALUE is the SRSS of the applied loads (or, for applied displacements, of
the Newton-Raphson restoring forces). Tolerance, TOLER, about VALUE defaults to 0.005
(0.5%) for force and moment, and 0.05 (5%) for displacement when rotational DOFs are
not present. In the analyses performed in this study the default values are suppressed and
according to adopted N-mm units system the VALUE and TOLER adjusted such that they
yield force and displacement norms (F NORM and D_NORM) equal to 5000~10000 N and
0.015~0.025 mm respectively. An example command line read as

CNVTOL,F,1E6,0.0075,2

CNVTOL,U,10,0.002,2

These norms were found to be satisfactory in overcoming cracking related
convergence problems. If the solution still does not converge, after checking the
displacement and force convergence norms that are reported after each equilibrium
iterations in the output window the criteria for the problematic one may be loosened further.

Another way to handle convergence issue is using multiple load step files
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corresponding to each region on the curve. With multi-frame restart option this method also

improves convergence.

2.7.3 Static Analysis Procedure

The second problematic region on the load deformation curve is the peak load region.
When the peak load capacity of the member is reached, under force type loading analysis
can not be continued into softening regime. A pushover algorithm that allows tracking the
force-deformation response after the ultimate strength level was developed utilizing
multiple load step analyses procedure. The procedure uses four load steps. The actions in
each load step summarized below.

LS1: Apply the vertical load (F,e). TIME will be equal 1.0 by default at the end of
load step. The ANSYS program uses time as a tracking parameter in all static and transient
analyses, whether they are or are not truly time-dependent. The advantage of this is that you
can use one consistent "counter" or "tracker" in all cases, eliminating the need for analysis-
dependent terminology. For example, if the analyses stop at TIME = 0.65 due to any reason
before the full load step is finished, this means 65% percent of the load is applied.

LS2: Apply the lateral forces of any pattern on the model (Fyor,). The applied load
should be larger than the peak load capacity of the model. The analysis stops when the
applied load is very close to ultimate strength of the structure. Analysis may be restarted
several times in this load step until it is ensured that the model can not sustain any more
load increment. Enter the postprocessor and read the time of the last converged substep
(eg., TIME = 1.783) and the value of displacement at a node at the top or roof of the model
(Acop)-

LS3: This is a dummy load step to change the loading scheme from force-controlled
to displacement-controlled one. The applied horizontal load is reduced by a factor (T/IME-
1), where TIME is obtained from the last converged step of LS2. This will reduce the
applied load to the level of the last converged step [Fpeak = Forz X (TIME-1)]. After issuing
restart command apply the reduced forces to the previously loaded nodes and apply the roof
displacement (A,) as displacement loading at a node where it was read. The solution is
same as the last converged substep of LS2. TIME becomes 2.0 after the solution of this
step. The displacement boundary condition was introduced at the top of the structure.

LS4: Scale the A, with a factor 2-5 or more depending on the expected displacement
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capacity of the member and apply it again to the same node as displacement loading. The
imposed displacement boundary condition at the top while ensures the pushover to
propagate in the prescribed direction also acts as a tuner by adjusting the level of applied
lateral load as well. A support reaction that may be positive or negative depending on the
increasing or decreasing tendency in the load deformation curve develops at the node of
prescribed displacement. This means if the peak strength of the model is not reached, load
continues to increase. At this load step the magnitude of lateral load may be taken as the
same as in previous step or reduced further 0 to 15 percent [factor X Fio, x (TIME-1)]
depending on the expected behavior in the post-peak regime. For squat walls a reduction
helps convergence since after peak strength, gradual strength degradation occurs. A loose
convergence criteria and enough number of substeps should be preferred in this load step.
The pushover procedure outlined here is utilized in the parametric studies conducted
in Chapter 5 and Chapter 6. Under force controlled loading scheme the analyses provide

results only for a limited ductility or drift range without such a procedure.
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CHAPTER 3

GROUND MOTION EVALUATION AND SELECTION

3.1 INTRODUCTION

Seismic performance investigation of structures requires the use of recorded natural
ground motions or their artificially produced representatives for use in nonlinear time
history analyses. Due to complex interrelation between the energy dissipation properties of
structures and the dynamic characteristics of seismic ground motions, the quality and
adequacy of results of inelastic dynamic analyses depends strongly on the
comprehensiveness of the employed ground motion data set, as much as it depends on the
mathematical modeling of the structural and material behavior. This stipulates the necessity
of a reliable ground motion intensity measures for the ground motion selection criteria and
evaluation of its damage potential to bridge the gap between the seismic loading and
structural response.

Earthquake ground motion selection for nonlinear time history analysis is a subject
that has aroused interest in the research community especially in the last decade, after the
number of well recorded earthquakes increased and high quality data obtained from these
recordings. One another reason that gave boost to research on ground motion selection is
the rapid development in the field of performance based earthquake engineering that is
applied in design and assessment. However, the results presented by different researchers
displayed that there is still lack of a common criterion reached for the ground motion
selection. This is mainly due to variations in the characteristics of ground motion records
that compose the data sets or bins used by different researchers, since each based the
selection on different criteria. For example, the ground motions data sets can be formed

according to a particular scenario earthquake that takes into account magnitude-distance
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(M-R) relation (selection in terms of geophysical parameters), or alternatively considering
the ground motion characteristics such as peak ground acceleration (PGA) or peak ground
velocity (PGV) (selection in terms of strong-motion parameters). Even the distinctions in
approaches can lead to different emphasis at the outputs, to be applicable in engineering
practice they should have results that indicate to a common point. So it is required to find
out the common sides of used criterions in ground motion selection, reflecting the
engineering judgment of the experts of the field, so as to offer a unified approach for the
ground motion selection.

When an earthquake occurs, the amplitude, phasing (seismic waves arrive to a site
like trains, with different frequencies arriving at different times), and frequency content of
the shaking depend strongly both on source characteristics (e.g., magnitude, rupture
mechanism, fault plane orientation with respect to site, occurrence or non-occurrence of
surface rupture) (Stewart et al., 2001) and the properties (stiffness, strength, layering) of the
soil or rock strata between the recording site and the source (Newmark and Hall, 1969).
Due to all these counted reasons, each ground motion recorded at a particular site displays
different characteristics in terms of amplitude (peak ground acceleration — PGA and peak
ground velocity — PGV), frequency content (existence of different wave components in the
composition of record) and phasing of the arriving waves. When all these parameters are
considered it is unlikely that any one record will be adequate to account for the seismic
hazard. For instance, response predictions calculated from ground motions with similar
intensity defined in terms of single intensity measure like PGA or spectral acceleration at
the fundamental period (Sa(T;)) of the structure resulted in significant variability. It is
usually necessary to examine a group of records. Several intensity measures were proposed
to identify the damage potential of a ground motion due to any one of these seismic
parameters.

It was well identified from seismic response studies of engineering structures that the
structural damage is caused mainly by three important seismic parameters: the amplitude
and the frequency content of the seismic ground motion, and the duration of the strong
ground shaking. When inelastic response of multi-degree of freedom (MDOF) structural
systems is considered several researchers (Derecho et al., 1978b; Anderson and Bertero,
1987; Tso et al., 1993; Seneviratna and Krawinkler, 1997; Medina and Krawinkler, 2003)
agreed that what matters to increased structural damage among any two ground motion with

the same intensity (either in terms of ground motion parameters such as peak ground
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acceleration (PGA) or spectral acceleration at the fundamental period of the structure,
Sa(T,)) is the frequency content of the ground motion. Following from this fact, different
researchers (Zhu et al, 1988b; Stewart et al., 2001; Cordova et al., 2000; Baker and Cornell,
2005) have concluded that the nonlinear response of structures is strongly dependent on the
phasing of the input ground motion and on the detailed shape (frequency content) of its
spectrum, things that are closely related to magnitude (M) of the earthquake and site-to-
source distance (R).

Seneviratna and Krawinkler (1997) stated that due to inherent variability of the input
ground motions, the demand estimation and related response modification factors need to
be computed using a statistical analysis of the inelastic dynamic response of MDOF
systems to a suite of ground motions with reasonably similar frequency content. This
requires the introduction of a criterion to identify the frequency content among different
ground motions.

In this study, particularly, ground motion frequency content has been considered to
be the most significant factor contributing to inelastic response of reinforced concrete
structures for ground motion with similar intensity. In the following sections, methods for
identifying the frequency content of the ground motion discussed and its effect on nonlinear

response of SDOF and MDOF systems is evaluated.

3.2 FREQUENCY CONTENT OF A RECORDED EARTHQUAKE GROUND
MOTION

3.2.1 Geophysical Parameters Effecting Frequency Content

Most accepted method for the ground motion classification procedure is to use
magnitude-distance bins that represent different earthquake scenarios, for example, a large
earthquake (M>6.7) occurring at a far distance (R>35km) from the site of the structure.
Ground motions are selected so as to match the elastic response spectra (probabilistic
hazard response spectrum) at a particular damping ratio to represent the potential seismic
hazard defined by the characteristics of the site and source.

Wide range of frequency wave components exist in the composition of any recorded
ground motion time-history. The power attained to these wave components at different
frequencies varies due to a number of geophysical parameters as accounted above resulting

in different spectral shapes. The geophysical parameters that influence the shape of the
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spectrum (frequency content) mainly are the earthquake magnitude (M), path effects both in
terms of source-to-site distance (R) and travel path geology, and the local geological
conditions at the recording site. A ground motion accelerogram composed of wave
components with limited frequency range has its destructive power on the structures whose
natural periods coincides with the predominant period of the record (Kazaz et al., 2006b).
These types of records generally exhibit large amplitude (PGA) high frequency oscillations.
On the other hand, an accelerogram rich in broad band of frequencies with moderate level
amplitude can constitute significant seismic hazard for a wide range of structural periods.
Figure 3.1 displaying the theoretical acceleration source spectrum model proposed by
Atkinson and Silva (2000) illustrates the amplification of wave components in different
frequencies due to increasing earthquake magnitude especially in the low frequency
content.

Additionally local site conditions may play significant effect on frequency content of
the recorded ground motion. The differences in the shape of earthquake response spectra
for different geological conditions such as rock and soils sites have been identified long
time ago (Seed et al., 1976; Mohraz, 1976; Newmark and Hall, 1982) and entered the
design codes of many countries. This effect displays itself as an amplification or
deamplification of particular wave components due to soil nonlinearity especially in softer
soils with the level of input motion, rather than a change in the content of these waves.

Local site conditions affect peak ground amplitude values.
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Figure 3.1 Acceleration source spectrum model by Atkinson and Silva (2000)
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Among many of the studies available Sabetta and Pugliese (1996) declares the
dependence of spectral shape (frequency content) on magnitude (M) and nearly
independence on distance (R). Magnitude is a source parameter and the primary factor that
determines the frequency composition of radiating waves. Distance is the parameter that
causes the attenuation of the amplitude of ground motion and has negligible effect on the
frequency content. In support of this statement, Figure 3.2 shows the normalized spectral
shapes, using the spectral acceleration attenuation equation proposed by Boore and
Atkinson (2008) and constructed from median values predicted for different magnitude,
distance and site class categories. It is clear from the figure that while magnitude and site
classification significantly affect the frequency content (Figure 3.2(a) and Figure 3.2(b)),

source-to-site distance has only minor effect on the spectral shape (Figure 3.2(c)).
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Figure 3.2 Response spectral shapes normalized to the ordinate at 0.2 s
a) for soil sites at 10 km from earthquakes of magnitude 5, 6 and 7, b) for magnitude 7
earthquake at 10 km from the source on different soil profiles represented with shear wave
velocities and c) for magnitude 7 earthquake at distances 5, 10 and 50 km from the site.
Boore and Atkinson (2008) spectral attenuation model was used.

3.2.2 Magnitude-distance Dependence of Spectral Shape and Demand Predictions

Even though the strong influence of earthquake magnitude on the frequency content
and duration of the ground motion very well identified, in some of seismic response studies
performed by significant researches (Shome et al., 1998; Medina and Krawinkler, 2003,
Iervolino and Cornell, 2005), it was concluded that ground motions selected either
arbitrarily or carefully from narrow magnitude-distance bins defining the scenario seismic

hazard do not affect the median demand prediction provided that the records are scaled to
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match the elastic median response spectrum of the bin at the fundamental period of the
structure.

Naturally it is expected that nonlinear response measures from a suite of records
display wide dispersion even the ground motions used were chosen from a narrow
magnitude and distance interval. Shome et al. (1998) stated that, upon their quest to answer
the question whether scaled records will produce different nonlinear structural response
statistics than those of unscaled records of the same “intensity”, using ground-motion bins
of narrow magnitude and distance interval that were normalized (or scaled) to the bin-
median spectral acceleration at the fundamental period of the structure (i.e. Sa(T;)) reduces
the dispersion about median DM predictions compared to unscaled bins (or sets) with the
same median damage measures. Moving from this point forward, the most efficient strategy
proposed for nonlinear demand prediction from a given event (M and R) is to first use an
available attenuation relation to estimate the median spectral acceleration defining the
seismic intensity and then to scale the ground motions to the same magnitude of the spectral
acceleration of the considered period before carrying out the nonlinear analysis. They also
compared the results of the proposed scaling procedure with that of alternative scaling
measures and declared the superiority of the proposed method over the alternatives. They
also found that the dispersion in the central tendency of the demand measure is significantly
large when the scaling methods based on peak ground motion characteristics. The most
significant hindrance for the generalization of their results is that their derivations depend
strictly on the study of a single MDOF structure which is a simplified stick model. Another
crucial conclusion of their study is that upon proper scaling of ground motions the number
of runs required the estimate the median response can be reduced by a factor of about 4.

Medina and Krawinkler (2003), declaring the dependence of ground motion
frequency content on magnitude and distance, stated that records must be selected in
narrow magnitude and distance bins for the scenario earthquake defining certain hazard
level in order to reduce bias in the calculated demands. They used ‘ordinary ground
motions’ that are exempt from abnormal characteristics such as the ones posed by near fault
ground motion records like directivity-induced velocity pulses. They assumed that the
spectral acceleration at the first mode period of the structure (Sa(T;)) (more specifically, the
pseudo-spectral acceleration) is the primary ground motion intensity measure (IM).
However, they observed that even records are chosen in relatively narrow bins, large

dispersion in frequency content still observed. The median spectral shapes for the ground
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motion bins are comparable as shown in Figure 3.3 and dispersion is rather insensitive to
the magnitude-distance combination (bin), but is large at all periods except the scaling
period (Sa(T;)). Following from this fact, they concluded that the effect of frequency
content on the prediction of demand is dominated by the dispersion of spectral values rather

than the median shape of the spectrum.

LMSR: Large Magnitude-Short Distance, 6.5 <M, <7.0,13 km <R <30 km
LMLR: Large Magnitude-Long Distance, 6.5 <M, < 7.0, 30 km <R <60 km
SMSR: Small Magnitude-Short Distance, 5.8 <M, < 6.5, 13 km <R < 30 km
SMLR: Small Magnitude-Long Distance, 5.8 <M, < 6.5, 30 km <R < 60 km
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Figure 3.3 Median spectral shapes of four M-R bins, all the ground motions scaled to same
PGA.

Recently, Iervolino and Cornell (2005) in their study addressing the question of
selection and amplitude scaling of accelerograms for predicting the nonlinear seismic
response of structures investigated the characteristics that should be taken into account in
accelerograms selection, efficient ways of scaling of records in order to get scenario (target)
intensity, and the sufficient size of record sets to obtain reliable demand measures. They
also took into consideration the structural period and backbone sensitivity in nonlinear
demand prediction. The ground motions selected for the study was organized under two
general groups, the target set and arbitrary set, each having five sub-bins. The arbitrary set
records were selected simply at random from a catalog with a comparatively wide
magnitude and distance range. The target sets for the record selection study were designed
to be representative of a specific scenario event (M and R) that might be the realistic threat

to a particular site, here a moment magnitude 7 at 20 km, defined as the closest distance to
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fault rupture. All the records were from 5 events in the magnitude range of 6.7 to 7.4 and in
the narrow distance range of 20 + 5 km. As done in the previous studies (Shome et al.
1998), for each structure considered, these records in the sample target sets were scaled to
their overall median spectral acceleration at the first-mode period.

Depending on the results calculated, Iervolino and Cornell (2005) stated that M and R
play at most only minor roles in affecting nonlinear displacements of structures and found
no consistent evidence to suggest that it is necessary to take great care in the selection of
records with respect to such factors, a general conclusion quantified in various ways in the
studies of Shome et al. (1998), Carballo and Cornell (2000), Medina and Krawinkler
(2003), and Jalayer (2003). This is to say nonlinear structural displacements are insensitive
to R and the slightly sensitive to M. It was also mentioned that, cases that may display
some sensitivity to magnitude include tall buildings with important second-mode effects
and very short period systems.

As seen, except the well established attenuation phenomena of the ground motion
amplitude as moving far away from the source, no clear indiscrimination can be made on
the frequency content and the duration of strong ground motion depending on the
magnitude and distance. In fact, a ground motion intensity measure when evaluated from
the structural engineer point of view must be instructive in terms of possible earthquake
loads applied on the structure rather than its seismological properties. Iervolino and Cornell
(2005) states that “Lack of knowledge of the influence of seismological parameters on the
structural response has driven the seismologists to be prudent and assume that all features
(magnitude, faulting style, etc.) matter to structural response, and so they do their best to
provide records accordingly”. That is to say priority must be given to the consequences
(PGA, PGV, Sa(T))) of the earthquake event in ground motion selection rather than it’s
causes (M and R).

3.2.3 A Key to the Frequency Content: Response Spectrum

There are several ways to identify the frequency content of a ground motion. Ground
motion frequency content can be solely determined independent on structural
characteristics such as Fourier spectrum analyses or it can be determined coherently
together with the dynamic properties of structures utilizing spectral analyses of single-
degree-of-freedom oscillators. It was widely accepted (Rathje et al., 1998; Cordova et al.,

2001; Baker and Cornell, 2005) that significance of frequency content can be best identified
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through the use of acceleration response spectrum of a ground motion record since it
incorporates the knowledge of the structure. It is also admitted that frequency content of
ground motion is reflected in the shape of acceleration response spectrum (Baker and
Cornell, 2005 and 2006).

In order to understand why spectral shape could affect the structural response, it is
compulsory to understand the response of a MDOF structure ranging from elastic to
inelastic stage. Elastic response of MDOF structure is characterized by the first mode
period and quantified in terms of spectral acceleration calculated at this period (Sa(T))).
However besides several parameters, inelastic behavior of multi-degree-of-freedom
structures exposed to earthquake base excitations is governed by two major phenomenons,
which are namely reduction in stiffness as a result of degradation in the mechanical
properties of the structure due to reversed cyclic excursions and excitation of higher modes
contributing to dynamic response. While the former leads to lengthening of the structural
period resulting in softer response with increased displacement demands, the later causes
alterations in the inertia force distribution resulting in increased base shear demand. Under
continues inelastic yield excursions Kazaz and Yakut (2006) displayed that fundamental
vibration period of a shear wall structure can increase to a value that is two times of the
initial. Thus, given two records with the same Sa(T,) value, the record with higher Sa
values at periods other than T; will tend to cause larger displacement demands in inelastic
systems. It will be shown that response of MDOF structures is highly sensitive to peaks and
valleys on the acceleration response spectra.

In Figure 3.4(a), elastic acceleration response spectrum for Ito-Oki EW component
record (PGA is 0.198g) used in analyses of CAMUS wall and its scaled forms are given.
Roof displacements obtained from nonlinear time history analysis results yielded 1.78 mm,
6.22 mm, 11.39 mm and 25.01 mm top displacements for peak ground accelerations of
0.198g, 0.386g, 0.482g and 0.578g, respectively. Increasing PGA 25 percent (from 0.382g
to 0.482¢g) caused 83 percent increase in global displacement, whereas increasing it 50
percent (from 0.382g to 0.578g) resulted in 300 percent increase in global response. The
explanation for this situation is that as the intensity of the ground motion increases, the
elongation in the period ( Ty ) also increases due to increased level of inelastic
deformations. Due to shift in the fundamental elastic period ( T; ), the system moves to high
amplitude acceleration region and is exposed to larger earthquake forces. For yielding

systems, when ground motions conforming to the above description were encountered and
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the yield level was exceeded, global deformation demands increased dramatically. If the
yield path or elongation path of the period coincides with the ascending leg of the spectrum,
this means significant deformations can be induced on the structure depending on the base
shear strength. ( n=V,/W ). Meantime, if elongation path is on the descending leg of the
spectrum, although the fundamental period ( T; ) can coincide with very high spectral
accelerations, unexpectedly low global responses can be obtained depending on the slope of
spectrum along the yield path.

The ground motion Run2 and its scaled forms are good examples of the situation
described above, and the illustration made for the Ito-Oki case is also done for Run2 in
Figure 3.4(b). Note that, for nearly the same level of PGA the linear deformation potential
of the Run2 record is larger than Ito-Oki ground motion. Two ground motions have PGA of
0.578g and 0.6g, and spectral acceleration of 0.748g and 1.216g at the fundamental period
of the structure, Sa(T;), for Ito-Oki and Run2 records, respectively. But the inelastic
deformations obtained from two cases were totally different; revealing that the structure
subjected to Run 2 motion scaled to 0.6g remained almost linear (A,p=6.70 mm) after the
excitation, where as significant inelasticity was imposed on the structure in Ito-Oki case
(Ap=25.01 mm).

As the above example demonstrated, during nonlinear dynamic analysis initial
frequency of the system decreased from 7.2 Hz to 6~3 Hz depending on the level of
inelastic deformations attained by the structure due to intensity of the applied ground
motion. It is obvious that different ground motions will yield different spectral shapes. The
slope of the spectrum can be positive (ascending) or negative (descending) beyond the
initial period of the structure as seen in Figure 3.4. An ascending spectrum is expected to
yield larger inelastic demand on the structure compared to a descending one, even if the
spectral acceleration corresponding to elastic period of the structure is smaller for

ascending type spectrum.
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Previously, Derecho et al. (1978b) in a parametric study on a 20-story isolated
cantilever structural wall investigated various structural and ground motion parameters in
terms of their effects on the dynamic inelastic response of isolated walls. Among the
structural parameters considered are fundamental period (T)), yield level (M, or Vy), yield
stiffness ratio (a), character of the hysteretic force-displacement loop (reloading and
unloading stiffness) damping, stiffness and strength taper, and degree of base fixity. Also
considered are the three parameters characterizing strong-motion accelerograms: duration,
intensity, and frequency content. Doing so, they aimed to identify the most significant
variables that gave way to calculation of estimate of strength and deformation demands in
critical regions of structural walls as affected by the significant parameters.

For input motions they selected a small number of accelerograms from among the
recorded and artificially generated accelerograms in a previous study by Derecho et al.
(1978a). In that preceding study, the accelerogram classification was performed in terms of
the general features of its velocity spectra relative to the initial fundamental period of the
structure. They classified ground motions into three groups according to shape of velocity
response spectrum. A “ peaking (0)” classification indicates that the 5%-damped velocity
response spectrum for this accelerogram shows a pronounced peak at or close to the
fundamental period of the structure considered (in this case, T; = 1.4 sec.). A “peaking (+)”
classification indicates that the peak in the velocity spectrum occurs at a period value
greater than that of the fundamental period of the structure. A “broad-band” classification
refers to an accelerogram with a 5%-damped velocity spectrum which remains more or less
flat over a region extending from the fundamental period of the structure to at least one
second greater.

All the structures analyzed were subjected to 10 seconds of ground motion.
Housner’s (1959) “spectral intensity” measure, defined as the area under the 5%-damped
relative velocity response spectrum between periods of 0.1 and 3.0 seconds, was used to
normalize the input motions multiplying by a factor to yield spectrum intensity equal to
some percentage of reference spectrum intensity, Sl.r. The reference spectrum intensity
used was that corresponding to the first 10 seconds of the NS component of the 1940 El
Centro record (Sls = 178 cm). Velocity spectrum of normalized ground motions are
displayed in Figure 3.5.

Recognizing that the extent of yielding is a function of the earthquake intensity, the

yield level of the structure, and the frequency characteristics of the input motion, it was
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stated that these factors must be considered in selecting an input motion for a given
structure to obtain a reasonable estimate of the maximum response. For the same intensity
and duration of the ground motion, significant increases in response can result from an
input motion having the appropriate frequency characteristics relative to the period and
yield level of the structure. It was stated that when significant yielding that would
appreciably alter the effective period of vibration is expected in a structure, an input motion
with a velocity spectrum of the “broad band ascending” type is likely to produce more
severe deformation demands than other types of motion of the same intensity and duration.
For cases where only nominal yielding is expected, “peaking” accelerograms tend to
produce more severe deformations. The considerations are important in determining near-

maximum, or in specifying input motions for use in the analysis of particular types of

structures.
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Figure 3.5 Velocity response spectrum of ground motions used in the study of Derecho et
al. (1978) describing the characteristics of the ground motions according to spectral shape.

It was found that the effect of ground motion duration was not too significant on the
response and its major effect is to increase the cumulative inelastic plastic deformations.

They notified that shear force fluctuates more rapidly compared to the moment at the base
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of the wall or deformation at the top, which is an indication of the greater sensitivity of the
shear force to higher modes of response. Because of this, the maximum base shear force is
strongly dependent on the ground motion. The criticality of response with respect to shear
will depend on the relationship of the frequency characteristics of the input motion to the

significant higher effective mode frequencies of the yielded structure.

3.3 METHODS TO IDENTIFY THE SPECTRAL SHAPE

In the view of above discussion, it is seen that evaluating the frequency content of a
seismic ground motion is a two sided issue; one is due to characteristics of a specific
earthquake (magnitude, faulting type, source distance, etc.) each accelerogram has its own
inherent frequency nature, and complementary to this fact structural response is directly
related to the frequency content of ground motion through the dynamic properties (natural
vibration period) of the structure. So, ground motion frequency content can be solely
determined independent on structural characteristics or by utilizing spectral analyses of
single-degree-of-freedom oscillators, it can be determined coherently together with the
dynamic properties of structures. Three procedures become more pronounced at this stage
to analyze the frequency content:

o Fourier spectrum: The ground motions can be expressed as a sum of harmonic
(sinusoidal) waves with different frequencies and arrivals (phases). The Fourier amplitude
spectrum (FAS) is capable of displaying the frequency content of the ground motion.

A Fourier spectrum where the amplitudes are accumulated in a narrow band of
frequencies implies that the motion has a dominant frequency (period) that can produce a
smooth, almost sinusoidal time history. Meanwhile, a broadband spectrum corresponds to a
motion that contains distinct frequencies producing a more jagged irregular time history.

For any given time series (f(¢)) with finite duration (t4), Fourier spectrum is

F(w) = f F (e dt (3.1)
0

and the Fourier amplitude is

12

ty 2 ty 2
|Fiw)|= { j f(l)cosa)t} { j f(t)sina)t} (3.2)
0 0
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with the Fourier phase angle

jf £ (¢)sin wtdt
0 J (3.3)

p(io) =

f f(t)cos wtdt
0

e FElastic response spectrum: Under a postulated ground motion, a plot of the absolute
peak values of response quantities (acceleration, velocity and displacement) as a function of
vibration period (or frequency) of a SDOF system for a fixed viscous damping ratio, &, is
called elastic response spectrum.

Spectral intensity measures are the most widely used intensity indicators to determine
the damageability of a ground motion since they incorporate the structural characteristics to
the decision process.

o From amplitude parameters, ground motion acceleration to velocity ratio (A/V).

Next a spectral intensity measure will be introduced. Then it will be displayed that
A/V ratio defined in terms of ground motion parameters can be used to differentiate the

ground motions according to frequency content.

3.4 A SPECTRAL INTENSITY MEASURE FOR DEMAND PREDICTION

Researchers like Malhotra (2002) and Cordova et al. (2000) stated that seismic
hazard intensity measures quantified on the basis of acceleration response spectrum
ordinate of the first mode structural period may result in significantly different inelastic
response, depending on the slope of the spectra at lengthened periods, such as the situation
illustrated in Figure 3.4. Cordova et al. (2000) proposed a second intensity parameter to
account for the spectral shape (or frequency content) as the ratio of spectral accelerations at
two periods, first mode period (T,) and longer period (Ty) that represents the inelastic
(damaged) structure. While, the spectral acceleration at the first mode period, Sa(T)),
correlates well with the level of elastic structural response reflecting the spectral intensity,
the parameter Rs, = [Sa(Tg)/Sa(T;)] reflect the spectral shape so as the damage potential in
the inelastic phase of the response. However, the parameter is sensitive to peaks and valleys

in the spectrum, which reduces the reliability of the proposed intensity measure.
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Kazaz et al. (2006b) investigated the seismic performance of CAMUS wall described
in the previous chapter by performing nonlinear time-history analysis under a suite of
ground motions of diverse intensity. The result of these analyses led to several useful and
interesting observations. In parallel to findings of the previous researchers, it is seen that
ground motions that have an increasing spectral trend beyond the fundamental period of the
structure, produced higher seismic demands as compared to decreasing or broad trends. It
can be proposed that the shape of the response spectrum along the period elongation path
(increasing or decreasing trend in the spectral acceleration) reveals the damage potential or
severity of the seismic demand in view of seismic capacity of the structure. There exist
several spectral intensity measures that quantify the damage potential of ground motions
(Housner, 1959; Martinez-Rueda, 1998). Housner proposed a spectral intensity defined as

the area under the velocity spectrum over a period range from 0.1 to 2.5 s.

2.5s
Iy = j Sy (T, &)dT (3.4)

T=0.1s
In analogy with Housner’s equation [Eq. (3.4)], for short-to-medium period range of
the spectrum and for stiff structural walls, following relation for the new intensity measure
was proposed relying on the hypothetical acceleration response spectra plotted in Figure 3.6

(Kazaz and Yakut, 2006):

Iy
I, = j Sa(T,&)dT (3.5)
T

i

Eq. (3.5) calculates the area below the acceleration response spectrum between the
fundamental period (T;) and calculated elongated period (Tf). Normalizing the calculated
area by dividing to the area below the yield base acceleration level (Ay), a dimensionless

intensity measure can be obtained, which is given by Eq. (3.6).

Ty

1
1, =— | Sa(T,&)dT 3.6
a (Tf—Ti)Ayil“( £) (3.6)

By utilizing response frequency analysis, the softened period (apparent response
period) of the CAMUS wall structure was calculated for each ground motion case from the

calculated top acceleration and displacement response. When the softened period was
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plotted against the damage index (I: global top displacement) a perfect correlation was
obtained. A linear trend was observed between the damage experienced by the structure and
elongation in the fundamental mode period (Figure 3.7) which may be attributed to
dynamic behavior of shear-wall type structures. Figure 3.7 also supports the findings of the
previous research, Lestuzzi et al.(2004) and Brun et al. (2003), that the final stiffness
reduces to 30~15 percent of the initial stiffness due to structural deterioration for shear
walls. Depending on these analyses results, the upper limit for the period elongation of

medium height shear walls can be taken as T~ 2T;.
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In Figure 3.8, the proposed intensity measure (l,) was calculated by using the
elongated periods for each dynamic analyses cases and plotted against the damage index, I,
top displacement. It sis seen that the proposed spectral intensity measure is useful in
comparative evaluation of damage potential of ground motions.

As it is understood from the above explanations, the impediment of the proposed
procedure is the estimation of the softened period that will hold for the effective period of
SDOF system. If no knowledge of the lengthened period exists a value equal to 2T; can be
adopted or the value of T; can be calculated using the procedures defined in the works of
Kazaz and Yakut (2006) and Kadas et al. (2008). Improved spectral intensity formulations
that were tested for wide range of structural configurations are available in Kadas et al.
(2008).

This spectral intensity measure is especially useful in getting a notion about the
possible level of inelasticity that the system will experience when there is a number of
candidate ground motions available to be used as seismic input in nonlinear time history
analyses, so reducing the number of ground motions by evaluating their severity for the

structure under consideration.
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3.5 A/VRATIO

In the earlier earthquake engineering practice, the maximum horizontal ground
acceleration is the parameter usually specified for design and a realistic estimate of the
ground velocity is obtained from the mean V/4 ratios of the group with the larger peak
ground acceleration. Together with appropriate amplification factors peak ground
acceleration and velocity is used to construct the elastic design spectrum (Newmark and
Hall, 1982). This philosophy was adopted in some design codes like 1985 Canadian Code
to construct the elastic design spectrum (Basham et al., 1985). At this point it has to be
mentioned that in the research literature both terminologies of A/V and V/A ratio were
adopted in several studies. Nevertheless, for the sake of consistency through the text and to
provide the reader with instant comparison among the values presented, the terminology
acceleration to velocity ratio (A/V) and units of (s™') is used while referring to results in

different studies, even (V/A) and different units were used in the original study.

3.5.1 Past Research on A/V Ratio

In earthquake engineering literature, A/V is generally used to emphasize the effect of
local soil conditions on the ground motion parameters (Mohraz et. al, 1972; Mohraz, 1976;
Seed et al., 1976; Zhu et al., 1988a). In the early seventies the Unites States Atomic Energy
Commission funded a comprehensive study conducted by Mohraz et al. (1972) for
Newmark Consulting Engineering Services to investigate the vertical and horizontal elastic
response spectra for nuclear facilities. In this study V/A ratio was calculated and averaged
for rock and alluvium sites using recorded ground motion time history of two horizontal
and one vertical component from fourteen earthquakes. The average values obtained for
A/V ratio were 13.79 and 8.05 for rock and alluvium sites respectively.

Later in a significant study by Mohraz (1976), the effects of geological conditions on
the elastic spectra and also on the ground motion parameters, such as peak ground
acceleration (A), velocity (V) and displacement (D) and A/V ratio were investigated.
Mohraz considered four site conditions: alluvium deposits, rock deposits, sites with less
than 10 m of alluvium underlain by rock deposits, and sites located on 10 m to 60 m of
alluvium underlain by rock deposits. This classification was done due to only a few stations
shear wave velocities estimates were available at the instant of the study. A total of 54

earthquake records (three components from each record) from 46 stations in 16 seismic
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events were considered in that study. Mohraz performed a detailed statistical study on the
ratios of the ground motion parameters and the average A/V values calculated for each of
the four site conditions for the group with the larger peak ground acceleration were found to
be 7.57, 14.30, 10.44 and 11.70 respectively for the sites classified above. The values
indicate that the A/V ratio for rock sites is substantially higher than those for alluvium. The
ratios for the two alluvium layers underlain by rock are between those for rock and
alluvium. Although the calculated average A/V ratio for two alluvial sites underlain by rock
are close, sites with thicker alluvium layer produced larger A/V ratio which is opposite to
expectations. However, investigation of the records composing these two site class data
bins explains the situation. The records from stations on less than 10 m of alluvium
underlain by rock deposits were all from San Fernando earthquake (1971) with M,=6.5. On
the other side, the half of the records from stations on 10 to 60 m of alluvium underlain by
rock deposits were recorded in events with magnitude smaller than 6. Since smaller event
are richer in high frequency content affecting A much more than V, the A/V ratio
calculated from small earthquakes posses larger values. So the discrepancy above arises
from this situation, for which any explanation brought by Mohraz (1976). These findings
give the clues how magnitude of earthquake and site geology affects the A/V ratio.
Contemporaneously Seed et al. (1976) studied the influence of local geological
conditions on the attenuation of peak accelerations and peak velocities with increasing
distance from the source of energy release for earthquakes with a magnitude of about 6.5
occurring in the western part of the United States. Three site categories classified as: rock
sites, where rock was considered to be shale-like or sounder in characteristics, as evidenced
by a shear-wave velocity greater than about 760 m/s, stiff soil conditions, where rock as
defined above was overlain by less than about 45 m of stiff clay, sand and gravel, deep
cohesionless soil conditions where rock as defined above was overlain at least 76 m of
generally cohesionless soils. They investigated the relationships between the A/V ratio for
different geological conditions and distances from the source of energy release. The results
indicted that while there is some variation in the A/V ratio with distance from source, the
values of this ratio vary considerably with local geological conditions. The calculated A/V
ratio for rock, stiff soil conditions and deep cohesionless soils took the values 14.85, 8.58
and 7.02 respectively. The degree of agreement between these results of independent

studies was noteworthy. The results of these studies were presented in Table 3.1.
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Depending on the results presented in Table 3.1, it can be said that the A/V ratios
from different studies characterizing rock and soft soil sites are quite similar. These values
are representative of an event approximately 6.5 in magnitude. A/V ratio for the sites of soil

deposits with varying thickness underlain by rock formations is difficult to determine.

Table 3.1 Ground motion acceleration to velocity ratio from different studies

Based on Mohraz et al. (1972)

Site condition Rock Alluvium
AV (s7) 13.79 8.05
Based on Mohraz (1976)
Site condition Rock Less than 10 m alluvium 10 to 60 m alluvium Alluvium
underlain by rocks underlain by rocks
AV (57) 14.30 10.44 11.70 7.57
Based on Seed et al. (1976)
Site condition Rock Stiff soil conditions Deep cohesionless soils
AV (s7) 14.85 8.58 7.02

A/V ratio was also used to identify the characteristic period (where constant
acceleration and constant velocity plateaus meet) of impulsive and harmonic type ground
motions (Seed et al., 1976; Shimazaki and Sozen, 1984; Tso et al., 1992; Sucuoglu and
Nurtug, 1995). In these studies the differences in predominant period of the ground motions
were attributed mainly to different geological conditions indicated by larger A/V values for
rock sites and smaller A/V ratios for soil sites. However, even the ground motions were
selected among the ground motions recorded on similar geological conditions in order to
minimize the influence of local geological conditions on ground motion characteristics,
there is still significant variation observed in the A/V ratio (Zhu et al., 1988a). So before
further elaborating the effect of A/V ratio on the structural damage, the parameters that
contribute to A/V ratio must be identified clearly.

Sucuoglu et al. (1998) investigated the effect of A/V ratio together with the effective
duration of ground motion on the damage potential of strong ground motions and concluded
that these two basic ground motion intensity parameters significantly influence the damage
potential of earthquake ground motions. They also argued that these two parameters were
not represented appropriately by the spectral definitions of earthquake excitations in

seismic design codes.
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Acceleration to velocity ratio (A/V) has been extensively studied particularly as a
measure of the frequency content of the ground motion. Zhu et al. (1988a) discussed the
significance of A/V ratio as a parameter for ground motion characterization from a
seismological point of view. Tso et al. (1992) have concluded that this ratio provides
indications of the dynamic characteristics of earthquake ground motion. It was also
concluded that the A/V ratio of ground motions correlates well with the magnitude-
epicentral distance relationship of motion and gives an indication of the relative frequency
content and duration of ground motion.

Local geological condition also has an effect on the A/V ratio with the lowest value
for deep cohesionless soil, higher for stiff soil and the highest for rock. In terms of
structural responses, this ratio reflects information regarding the significant frequency
content of the input earthquake motions.

The logic lying behind the A/V ratio is that, relative highness of velocity with respect
to acceleration is an indication of existence of long period wave components that reflects
the magnitude and frequency content of the earthquake and cause structural damage since
natural period of medium to long period structures can overlap periods of these waves
resulting in dynamic amplification of displacements.

The destructiveness of apparent pulses in acceleration and velocity traces of recorded
ground motions has been long ago identified by different researchers. Long acceleration
pulses which yield large ground velocities lead to significant structural response (Hudson,
1979). Anderson and Bertero (1987) pointed out that wide acceleration pulses are especially
damaging, if the time duration of the pulse is large compared with the natural period of the
structure.

In favor of these findings, Kazaz et al. (2006b) analyzed the nonlinear behavior of an
isolated shear wall through dynamic investigation and observed that ground motions with
evident acceleration pulse produce significantly larger displacements than the ground
motion with very large PGA and highly irregular high frequency accelerogram. It was also
reported that ground motions with larger predominant period causes larger displacement
demands on short period systems.

Sucuoglu and Nurtug (1995) stated that ground motion records with a dominant
acceleration pulse usually possess high V/A ratio. If the peak ground velocity is reached
immediately following the dominant acceleration pulse in the accelerogram, then the V/A

ratio indicates the average duration of the pulse. It is related to the duration of dominant
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acceleration pulse in impulsive ground motions and dominant acceleration period in nearly
harmonic ground motion records. The coherent long-period waves cause the PGV/PGA
ratio to become larger, thus making the constant acceleration part of response spectra
longer.

Akkar and Ozen (2005) compared it with other ground motion intensity measures to
estimate the structural damage. They investigated the influence of peak ground velocity on
deformation demands of SDOF systems. Total of 60 ground motions were used in that
research. The ground motions were recorded on firm sites (site class C and D according
IBC 2000). Ground motions are grouped in three bins that were organized with respect to
different PGV velocity ranges. The bins are organized such that the first bin is composed of
records with PGV less than 20 cm/s, second bin consist records with PGV ranging from 20
to 40 cm/s and in the third group the ground motions have PGV ranging from 40-60 cm/s.

They calculated the correlation coefficient between the spectral displacement and
PGV, so as PGA and PGA/PGYV ratio at period T; for a spectral period range of 0.1-4 s.
They concluded that PGV has much better performance as a ground motion intensity
measure in decreasing the dispersion in deformation demands due to record-to-record
variability compared to both PGA and PGA/PGV ratio. However, they misinterpreted a
very significant point in the evaluation of A/V. While both PGA and PGV are ground
motion amplitude parameters and PGV in some sense reveals information about the
frequency content of ground motion (large PGV indicates wide acceleration pulses),
PGA/PGV ratio only tells about the frequency content of the ground motion (e.g.,
(PGA=150 cn/s*)/(PGV=15 cm/s)=10 s or (PGA=450 cm/s*)/(PGV=45 cm/s)=10 s). As
calculated both ground motions have the same acceleration to velocity ratio, but they are far

different in terms of destructive power. So, their conclusion is disputable. .

3.5.2 Limits of A/V Ranges

Due to large dispersion in the peak ground motion amplitude values, even if they
were recorded at the same seismic event, the calculated acceleration to velocity ratio value
can vary significantly. Relying on two previously conducted studies, the limits of A/V
ranges are identified. Zhu et al. (1988a) stated that review of the previous studies and
examination of earthquake records reveal the three categories of earthquake ground motions

may be identified,

123



a) ‘mormal’ ground motions having significant energy content over a broad range of
frequencies and exhibiting a highly irregular acceleration pattern;
b) ground motions exhibiting large amplitude, high frequency oscillations in the strong-
motion phase of the motion;
¢) ground motions containing a few severe, long duration acceleration pulses.
Depending on this classification of ground motions, Zhu et al. (1988a) selected 36
horizontal ground motions from western United States earthquakes and categorized them in
three groups each containing 12 ground motions based on their A/V ratio. A/V ranges

defining each group is presented in Table 3.2.

Table 3.2 Limits of A/V ranges due to Zhu et al. (1988a)

Bin A/V range
Normal A/V range 0.8 g/m/s<A/V <1.2 g/m/s
High A/V range <1.2 g/m/s
Low A/V range > (.8 g/m/s

The highly irregular acceleration pattern in ground motions of the first category
would generally result in intermediate A/V ratios and acceleration spectra similar to the
standard design spectrum defined by Newmark and Hall (1982) that is generally associated
with so-called ‘normal’ severe earthquake ground motions at moderate distances from the
causative fault. Therefore, A/V ratio is a useful, yet simple, parameter to distinguish
‘abnormal’ ground motions from ‘normal’ ground motions. This classification disregards
any implication of earthquake magnitude on A/V ratio.

Meskouris et al. (1991), regarding damage potential of ground motions according to
characteristics such as strong motion duration, central period and quotient of maximum
ground acceleration to maximum ground velocity, has proposed a classification of probable
records into one of the three types (S, M, and L) as given in Table 3.3. L-type motions (low
frequency, long duration, high energy) are characterized by a great number of load reversals
and accordingly high demands on nonlinear reserves, while S-type records (high frequency,
short duration, and low energy) do not pose as serious a threat to structural integrity.

While for S- and M-type excitations usual response spectrum based design and

analysis techniques in conjunction with detailing requirements are sufficient, the damage
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evaluation of important buildings subject to L-type excitations should be investigated by
nonlinear direct integration.

The A/V classification performed by these previous researchers only establish
general limits to evaluate the damage potential due to this classification, noticing Meskouris
et al. (1991) provides information about the duration of the ground motion also. However,
A/V ratio can be classified to represent the seismic intensity of a particular seismic hazard
scenario taking into consideration of magnitude and site effects. At the rest of this study all

the efforts will be due to achieve this task.

Table 3.3 Proposed classification of ground motions by Meskouris et al. (1991)

S-Type M-type L-type
Duration tg4 (s) <10 10<t4<15 >15
Central Period T, (s) <1.0 1.0<T,<1.2 >1.2
A,/ V, (g/m/s) < 1.0 0.8to0 1.2 <0.8

3.5.3 Identification of A/V Ratio due to Magnitude and Site Effects

In previous section limits were established on A/V ranges to interpret the severity of
any ground motion due to frequency content. How these limits conform to the available
ground motion data is a matter of issue. It is given that for a given site and earthquake
source, the three parameters that can vary are magnitude, distance and frequency content. If
we decompose these parameters to an individual level we get the following picture. The
spectral shape (frequency) content is dependent on magnitude and nearly independent on
distance. However, local site conditions may play significant effect on frequency content of
the recorded ground motion and affect both PGA and PGV. Since the maximum ground
velocity is a much more stable parameter with a more determinate upper bound than the
maximum ground acceleration (Newmark and Hall, 1969) and the integration process tends
to dilute high-frequency components of the motion and enhance low-frequency
components, A/V ratio calculated from these parameters will be more sensitive to PGA.

Two significant and vital issues arise at this point due to complex relation between
the earthquake magnitude and site amplification, the lingering uncertainty as to whether the

degree of amplification varies with the level of input motion and the influence of frequency
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content of ground motions on site amplification. Without entering too much into the field of
seismologist, an answer will be sought.

In order to shed more light on this issue a simple statistical analyses conducted and
interesting conclusions derived. From COSMOS web site ground motion information
including magnitude (M), distance (R), shear wave velocity at the upper 30 m of the site
(Vs30), PGA and PGV values are downloaded. Data of 2584 strong ground motion
horizontal components from 99 earthquakes of magnitudes ranging from 4 to 7.9 is
downloaded. This data was subjected to a simple statistical evaluation. Figure 3.9(a)
displays increasing trend in the amplitude of ground motion with the increasing earthquake
magnitude. In Figure 3.9(b) the amplitude of ground motion is plotted with respect to

closest distance to fault rupture displaying the attenuation effect of distance.
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Figure 3.9 Histograms of data downloaded from COSMOS site showing the relation of
PGA and PGV with M and R.
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Naming the three parameters affecting the frequency content of ground motion as
magnitude, site to source distance and geological conditions at the site, the relation of these
parameters with frequency content as defined by A/V ratio in this study is plotted in Figure
3.10. Figure 3.10(a) gives the plot of A/V ratio against magnitude showing the magnitude
dependence of frequency content. Figure 3.10(b) displays the A/V ratio plotted against the
distance. Although it is not reflected so powerful in the figure, the trend in densely clouded
data points displays a slightly decreasing trend. This trend can be attributed to the fact that
the attenuation of velocity with distance is generally slower than the attenuation of
acceleration and as the distance increase the high frequency content filters out leading to
more stable A/V ratio. Therefore, the A/V ratio would be low for ground motions at a large
distance from a major earthquake; and it would be high for motions near an earthquake
source. In Figure 3.10(c), the variation of A/V ratio with shear wave velocity is plotted.
Shear wave velocity is used to define the site class. From this figure no clear discrimination
can be made with regards the influence of site geology on frequency content of the ground
motion except the reality that there is a significant variation.

It is obvious that these figures inherit crude statistical information, however
reminding that the intention in plotting these figures is not to display an exact relation, it’s
rather to declare a tendency observed between the frequency content of ground motion
defined in terms of A/V ratio and magnitude. From these figures it is possible to declare
the pronounced affect of earthquake magnitude on the frequency content. However, to
throw more light on this blurred subject, combining Figure 3.10(a) and Figure 3.10(c) into a
figure will be beneficial. In Figure 3.11, A/V ratio is disaggregated in to bins classified
with shear wave velocity and plotted with respect to magnitude. Serving to this purpose
ground motions were sorted into the 5 categories according to V3 values as defined by
Choi and Stewart (2005). The ranges defined by Choi and Stewart (2005) essentially match
the NEHRP site categories, except that NEHRP C and D are subdivided into three bins
(Chy, CD and Dy,) to better capture the variation of site nonlinearity with V0. Being not so
obvious, Figure 3.11 reveals the hidden information with regards to site effect. The trend
lines fitted to data displays that as the site get stiffer the A/V ratio increases. Despite this
observation, the dispersion in the data is significant.

In the ground motion selection, no restrictions were put on the amplitude of the
ground motion (neither PGA nor PGV), since as the inspection of the naturally recorded

ground motions will reveal both PGA and PGV can display significant variation even
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though they are recorded during a particular seismic event at a certain distance from the
focus. At this point, to eliminate this variability, seismologist developed predictive
equations to calculate the attenuated values of both ground motion amplitude parameters
(PGA, PGV) and accordingly spectral ordinates (SA, SV, SD) as one moves away from the

source for a particular earthquake magnitude.
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Figure 3.11 A/V ratio disaggregated into magnitude and site information.

Ground motion attenuation relationships provide estimates of intensity measures that
typically apply for broadly defined site conditions such as rock or soil. Actual conditions at
strong motion recording sites are highly variable with respect to local ground conditions,
possible basin effects, and surface topography, and hence estimates from attenuation
relationships necessarily represent averaged values across the range of possible site
conditions (Stewart et al., 2001). Recently Akkar and Bommer (2007a-b) developed
equations for the prediction of PGV and PGA using the strong motion database from the
seismically active areas of Europe and the Middle East. Using these equations, first PGA
and PGV are calculated for stiff and soft soil sites for varying magnitude and distance
combinations. Then dividing the calculated amplitude values each other A/V ratio is
calculated as a function of magnitude and distance. In Figure 3.12, the predicted A/V ratio
for closest distance of 5 and 30 km is plotted on the same figure with the mean values of
A/V ratios calculated for each event downloaded from COSMOS site. The predicted A/V
curves for rock and soil sites agree well with the upper and lower bounds of mean A/V. It is
displayed that A/V ratio, i.e. frequency content of ground motion, is affected only
insignificantly by the source-to-distance but significantly by the magnitude of earthquake.
Nevertheless, for smaller magnitude events there is evidence that distance influence the

frequency content of ground motions.
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Figure 3.12 Magnitude dependence of A/V ratio

The following conclusions can be derived from the data presented here. A/V ratio is a
simple yet effective parameter in ground motion frequency content identification. A/V ratio
displaying a decreasing tendency with increasing magnitude reveals the existence of long
period wave components, which can be very damaging for medium to long period
structures. However, it must not be missed out that A/V ratio does not reveal any
information about the amplitude of the ground motion, i.e. two ground motion
accelerograms recorded far- and near-field of the causative fault may have similar A/V
ratios, but they will have totally different ground motion amplitudes. The term ‘near-field’
is not used to represent the disputed ‘near-fault’ term that produces abnormal ground
motions. Maybe the most important observation from this figure is the requirement to
establish certain limits on the A/V ratio as function of magnitude. Considering the
classification in Table 3.2, ground motions in normal range are produced by moderate-to-
large magnitude earthquakes. For instance, ground motions selected from an event with
magnitude 6.7 must have A/V value equal to approximately 8 s with a certain standard
deviation such as +2. Finally, when a ground motion selected considering any one of the
amplitude parameters either PGA or PGV, the other one must be checked if it is within the
limits imposed by A/V ratio. This procedure will assure the incorporation of the effect of

frequency content directly to the selection criteria.
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3.6 GROUND MOTION DATA SETS

Next to validate the general observations and trends on A/V, ground motions used in
serious studies were investigated. Ground motion sets from previous research (Akkar and
Ozen, 2005; Medina and Krawinkler, 2003; Iervolino and Cornell, 2005; Zhu et al., 1988a)
was reanalyzed and used to investigate the central tendency and dispersion in the demand
predictions of SDOF systems. The originally formed ground motion bins reflecting the
selection criteria of the researchers were reorganized according to frequency content.

General characteristics of the ground motion data sets and the conclusions from the

previous studies are summarized briefly next.

3.6.1 Data Characteristics of the Ground Motions Used in This Study

In none of the studies till today the ground motions are selected considering the
frequency content directly. For statistical analyses the data sets used by four different
research studies was used. The selection criteria, number of ground motions, bin data used
in these studies is summarized in Table 3.4. Total number of ground motions records is
228. There are only 15 ground motions used in common. So the combined ground motion
data set includes 213 distinct records. Data is gathered from both COSMOS and PEER
ground motion sites.

The four data sets composed by different researchers are analyzed for magnitude and
acceleration to velocity ratio relation, and plotted in Figure 3.13. The ground motion data
set used by Akkar and Ozen (2005) reveals the same tendency between the magnitude and
A/V ratio as it was exposed above figures except 3 data points above A/V=25 level. They
used a wider magnitude interval than the other studies. Medina and Krawinkler (2003) used
a data composed of ‘ordinary’ ground motions records in magnitude range of 5.8 to 6.9.
The scatter in data is not as wide as observed in Akkar and Ozen (2005). Narrow magnitude
distance selection criteria used by lervolino and Cornell (2005) displays its effect on the
narrower scatter in observed in A/V ratio. Moreover, the decreasing tendency of A/V ratio
with increasing magnitude is also observed here although a narrow magnitude interval
selected. The data set composed by Zhu et al. is dominated by the ground motion records
from San Fernando earthquake of magnitude 6.6 occurred in 1971. 26 out of 36 ground
motions were recorded during San Fernando earthquake. A significant deficiency of their

selection is that they used ground motions recoded on both rock and stiff soil. In Figure
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3.14, it is displayed how rock site effects the A/V ratio. Their study is the only one that uses
rock site records. It is reported by Boore and Joyner (1997) that the amplifications on rock
sites can be in excess of 3.5 at high frequencies, in contrast to the amplifications of less
than 1.2 on very hard rock sites. It can be also concluded from the figure that ground
motions from soil sites reflect the characteristic frequency content of an earthquake due to
magnitude better than rock sites, A/V ratio of approximately 6.5, a reasonable average for

such an earthquake.
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Table 3.4 Characteristics of the ground motion data sets

Total Ground Bins
Study number of motion No. of ground Scaling methods
ground classification Bin name motions in the
motions criteria bin

Low A/V (<0.8 g/m/s) 12 .

Zhu et al. (1988) 36 A/Vratio | Normal A/V (0.8 g/m/s < A/V < 1.2 g/m/s) 12 Gr"u‘f{d m"“‘(’lns Welre St‘?aled 0.2
High A/V (> 1.2 g/mis) B g peak ground acceleration
PGV <20 cmv/s 20

élg(‘gr) and Ozen 60 PGV 20 cm/s < PGV < 40 cm/s 20 No scaling
40 cm/s < PGV <60 cm/s 20
Large Magnitude-Short Distance Bin,
LMSR, 20
(6.5 <Mw <7.0, 13 km <R <30 km),
Large Magnitude-Long Distance Bin,
LMLR, 20 All ground motions are scaled to a

Medina and 80 M-R bins (6.5 <Mw < 7.0, 30 km <R <60 km), common spectral acceleration at

Krawinkler (2003) Small Magnitude-Short Distance Bin, pre-selected period or period of the
SMSR, 20 system used
(5.8 <Mw <6.5, 13 km <R <30 km),
Small Magnitude-Long Distance Bin,
SMLR, 20
(5.8 <Mw < 6.5, 30 km <R < 60 km),

For each structure, the records in
lervolino and Cornell M-R and All the records are from 5 events in the the target sets are scaled to their
(2005) 52 arbitrary magnitude range of 6.7 to 7.4 and in the 52 overall median spectral

selection narrow distance range of 20 + 5 km. acceleration at the first mode-

period.
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Figure 3.14 A/V ratio of ground motions from 1971 San Fernando earthquake of magnitude
6.6 plotted for rock and stiff soil sites.

3.6.2 Spectral Characteristics of the Used Databases

All the ground motions are scaled to the same PGA level of 0.4g to investigate the
spectral shape. The mean 5 percent damped mean spectrum and coefficient of variation in
each period are calculated for the used ground motions data sets for both the original
classification and the acceleration to velocity ratio based classification. The results are
presented in Figure 3.15 to Figure 3.16. At first sight, it is clearly seen in these figures that
low A/V ratio group ground motions yield mean spectra with larger acceleration controlled
plateau, whereas it is narrowest for the ground motions in the high A/V ratio group. As itis
explained previously low A/V is an indication of existence of low frequency wave
components in the accelerogram which is disclosed in the spectrum at medium to long
periods. Classification of ground motion records based on PGV proposed by Akkar and
Ozen (2005) is also useful parameter in ground motion frequency content identification. It
was reported that PGV correlates well with the earthquake magnitude and since it is
calculated from the accelerogram by direct integration, it reveals the apparent or hidden
pulses that are low amplitude but long duration or inversely high amplitude but short
duration, in manner acting like a magnifier, the frequency content information of the
ground motion. Given that the ground motions are scaled to same PGA level, A/V ratio

based ground motion classification gives less dispersion.
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Figure 3.15 Mean spectrum of ground motions in the Akkar and Ozen’s (2005) database
classified in PGV and A/V based bins.
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Figure 3.16 Mean spectrum of ground motions in the Iervolino and Cornell (2005) database
classified in A/V based bins.
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Figure 3.17 Mean spectrum of ground motions in the Medina and Krawinkler’s (2003)
database classified in M-R (Magnitude-distance) and A/V based bins.
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Figure 3.18 Mean spectrum of ground motions in the Zhu et al. (1988) database classified
in A/V based bins.
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3.7 EFFECT OF FREQUENCY CONTENT ON SEISMIC DEMAND
EVALUATION OF SDOF SYSTEMS

In order to investigate the dependence of seismic demand on frequency content of
ground motions classified in terms of A/V ratio SDOF analyses were performed. A bilinear
elasto-plastic hysteresis model with %3 strain hardening and period dependent strength
factors (17=V,/W) are used. As it is declared at the beginning of this study, the intent of this
study is to identify the frequency content as a major seismic intensity measure. Moving
from this hypothesis, it is not desired to investigate a whole possible set of systems with
same elastic period and varying strengths. Based on field observations, traditional R-z~T
relations avoided and only a representative strength factor is used for each period on
condition that at least moderate seismic demands will be applied on the SDOF system.
This is to say a constant strength factor is associated with each period (n-T relation). The n-
T relation used in this study was calculated from the database used by Akkar et al. (2005) to
determine the fragility functions for low- and mid-rise ordinary reinforced concrete
buildings. The field data consists of 32 sample buildings representing the general
characteristics of two- to five-story substandard reinforced concrete buildings that
constitute the most vulnerable construction type in Turkey as well as several other countries
prone to earthquakes. In that study, conducting pushover analyses lateral stiffness, strength
and deformation capacities of these building were determined. Using the results of
pushover analyses strength of each structural configuration is identified. The plot of period
versus corresponding strength factor is given in Figure 3.19. At this point, it is crucial to
point out that neither the building stock inventory is representative of all structures nor the
calculated period dependent strength factors covers the whole set of possible structural
strengths. The purpose is to determine the effect of frequency content on yielding systems
and do this as simple as possible by producing only relevant outputs. Strength factors
derived from two other studies (Mwafy, 2000; Kadas, 2006) performed on generic
reinforced concrete frames and frame-wall systems are also introduced in to the same
figure. The generic frames used in these studies displays much higher strength compared to
database used, even higher than expected. However, to experience moderate or higher level
of ductility demands it is decided that the calculated n-T curve is appropriate for obtaining
the expected outputs. Traditional maximum displacement ductility is used as a structural

damage indicator for SDOF systems.
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Figure 3.19 Period dependent strength factors derived from damaged building inventory
during 1999 Duzce earthquake

Following the traditional way, ground motions were normalized to the same peak
acceleration of 0.4g. This scaling resulted in significantly different energy content over the
moderate and long period ranges for the three groups of chosen earthquake records with
different A/V ranges. The limits of A/V ranges used to group ground motions were given in
Table 3.2. As a result, this classification led to substantial differences in the maximum
displacement ductility demands among the three groups of accelerograms as displayed in
Figure 3.20. Excitation using the low A/V range group of records leads to the greatest
ductility demand. Therefore, the common practice of specifying seismic design forces
based on peak site acceleration does not lead to consistent control over structural damage
for earthquake ground motions in the different A/V ranges.

Alternatively the ground motions were normalized to a common peak ground
velocity of 50 cm/s. The calculated displacement ductility demands for each group of A/V
ratio is presented in Figure 3.21. Scaling ground motions in this way to the same PGV
resulted in ductility demands similar to PGA scaling for normal A/V group ground motions,
where as significantly different ductility demands obtained in the low and high A/V group
ground motions. Agreement in the normal A/V group results can be attributed to the fact
that used scaling levels for PGA and PGV yield an A/V ratio of 8 s, which is roughly

represent the normal ground motions.
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Figure 3.20 Effect of A/V based ground motion classification on the mean ductility demand
spectrum of generalized SDOF systems.Ground motions are scaled to 0.4g PGA level.
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Figure 3.21 Effect of A/V based ground motion classification on the mean ductility demand
spectrum of generalized SDOF systems. Ground motions are scaled to 50 cm/s PGV level

Effect of PGA and PGV scaling on mean ductility demands obtained for different
A/V groups is displayed in Figure 3.22 by combining all the databases used in this study.
An interesting observation in regard to results of inelastic SDOF system analyses with
different peak ground amplitude scaling techniques is that the ratio between the
displacement ductility calculated by PGA scaling and PGV scaling yields a constant value
over the entire range of periods for each A/V group. This ratio obtained for each A/V group
is plotted in Figure 3.23. This ratio is sensitive to A/V ratio of the scaling, i.e. ratio of the
PGA and PGV levels used in two scaling techniques. The A/V ratio of the scaling is (400
cm/s”) / (50 cm/s) = 8.0 s'. When the A/V ratio of the two scaling techniques is in

agreement with the A/V ratio of the ground motion data set, the two scaling methods yield
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similar inelastic displacement demands. In the case analyzed here, since the A/V ratio of
the normal ground motions is 9.6, the ratio of inelastic displacements obtained form PGA
scaling and PGV scaling should be in the order of 0.83 (8.0/9.6), which agrees with the
value in Figure 3.23. Similarly for low and high A/V group ground motions this ratio is
calculated as 8.0/6.2=1.29 and 8.0/16.4=0.49, respectively and again in agreement with the
curves in Figure 3.23. In the light of this useful observation, Table 3.5 presents typical
factors that can be used to convert ductility ratios or displacements obtained from PGA

scaling to PGV scaling by multiplying the values obtained from PGA scaled ground

motions with this factor.
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Figure 3.22 Effect of PGA and PGV scaling on mean ductility demands obtained for
different A/V groups, represented with the group mean A/V value rather than the group
name, by combining all the databases used in this study.
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Figure 3.23 Ratio of ductility values calculated for different A/V groups by using PGA
scaling and PGV scaling
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Table 3.5 Typical factors that can be used to convert ductility ratios or displacements
obtained from PGA scaling to PGV scaling

A/V of scaling A/V=062 A/V=9.6 A/V=164
6.20 1.00 0.65 0.38
9.60 1.55 1.00 0.59
16.40 2.65 1.71 1.00

3.8 SELECTION OF GROUND MOTIONS

The general aim in ground motion selection is to match the elastic response spectra at
a particular damping ratio to represent the potential seismic hazard defined by the
characteristics of the site and source. In the current design codes, design earthquake is
specified in the form of smoothed acceleration response spectrum and the intensity of the
ground excitation is adjusted with only one parameter, peak ground horizontal acceleration,
PGA. In engineering practice damage potential of ground motion is evaluated on the basis
of peak ground acceleration (PGA) and scaling of ground motions are done accordingly.
More precisely, acceleration response spectra display the maximum ground acceleration
(effective peak acceleration, EPA) that creates maximum response, and its shape reflects
the frequency content of excitation which is assumed to be influenced only from the soil
characteristics at the recording site, even though it is well established that the spectral shape
is strongly influenced by earthquake magnitude and, to a much lesser extent, by source-to-
site distance (Bommer and Pinho, 2006). This statement supports the idea that PGA is alone
adequate to display the potential of damageability of a ground motion. However, there are
studies that impoverish this idea.

Akkar and Giilkan (2002) examined the records from Kocaeli earthquake (17 August
1999, M,, 7.4) and Bolu—Diizce earthquake (12 November 1999, M,, 7.2), to determine
whether they provide clues about the extensive damage on the housing stock in the
epicentral region. They reported that peaks of 0.3-0.4g from event 1 seem to be
inconsistent with the structural performance, but so is the 0.8g peak recorded during event 2
in Bolu, where the percentage of collapsed buildings was much less than in Izmit (Kocaeli).
They found the clues of damage in frequency content characteristics of the two
earthquakes. They stated that the component with larger ground velocity correlate better
with the component with larger drift demand and the period of the peak velocity pulse

matches the structural period where the drift demand is the largest. The fact that ground
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motions from the Kocaeli earthquake have lower A/V ratio than Diizce earthquake could be
added to these observations.

Another reason that was put forward for the inconvenience of peak ground motion
parameters as intensity measures arouse in the scaling issue. Previous studies (Nau and
Hall, 1984; Shome and Cornell, 1998) have indicated that the use of PGA or PGV to
scaling earthquake records is to be discouraged compared with other normalization methods
such as the spectral intensity method. This is because scaling procedures based on peak
record values do not provide consistent results over the entire range of periods of
engineering significance.

Iervolino and Cornell (2005), to form ground motion sets strong enough to
investigate the scaling, introduced a strong ground motion criteria as those ones with the
maximum average spectral acceleration at the four periods (0.1, 0.85, 1.5, and 4 sec). The
objective of using this average was to reduce the likelihood of selecting records that happen
to be unduly strong at one period and due to there being a large peak in its spectrum. Such
records would be present if the selection were done structure-by-structure seeking the
strongest records based on the spectrum at a single period. Among records scaled to a
common single spectral acceleration level, a record with such a peak will generally cause
lower nonlinear response for structures with that natural period; the common explanation is
that as it “softens” it drifts into a regime of lower input energy (Mwafy, 2000; Kazaz and
Yakut, 2006). Based on the responses of the models to sets of records that are
comparatively strong and records that are arbitrarily selected and then scaled up to match
the strength of the stronger records, lervolino and Cornell (2005) has found no compelling
evidence that such scaling induces bias in the response estimation. This scaling conclusion
reaches to scale factors as high as 4 and ductility up to 6.

Critics have also been raised against spectral scaling methods. Naeim and Lew
(1995) have concluded that the indiscriminate use of spectrum-compatible accelerograms
may lead to exaggeration of displacement demand and energy input.

Nevertheless, it was displayed that A/V ratio is an effective parameter in identifying
the frequency content and spectral shape, in this way reflecting the damage potential of
ground motions on condition that they were scaled to same intensity, here PGA. It was
revealed in Figures 3.15-18 that as far as the ground motions are collected in proper bins
reflecting the frequency content (A/V bins in that case), scaling with PGA do not introduce

any inconsistency in the calculation of mean response spectrum of particular bin.
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Now it will be displayed that as far as the ground motions are classified according to
frequency content that is represented with three A/V ranges as defined in Table 3.2, scaling
with PGA or scaling to match target spectrum do not matters. They lead to similar scale
factors.

It is necessary to scale the applied ground motion time histories to an intensity level
for direct and logical evaluation and comparison of their damage potential in terms of
predefined ground motion intensity measures. This will also help identification of the
required intensity, frequency content and the duration of the ground acceleration time
histories to be used for the seismic hazard analyses in performance based earthquake
engineering.

In the preparation of suites of acceleration time-series to be used as input to dynamic
analyses it is generally sought that the records match with the shape of a target spectrum
(elastic design spectrum most of the time). In order to implement searches that will produce
records likely to meet the spectral matching criteria, or at least to do so with a minimum of
manipulation of the records, it is useful to have a tool that allows records to be searched on
the basis of the spectral ordinates. Ambraseys et al. (2004) discussed on such a matching
criteria that is included in the new European strong-motion data CD-ROM. The records are
searched by matching the spectral shape to the shape of the design spectrum. The search is
based on the average root-mean-square deviation of the observed spectrum from the target

design spectrum:

N 2

o B S-S
where N is the number of periods at which the spectral shape is specified, SA,(Ti) is the
spectral acceleration from the record at period Ti, SA4(Ti) is the target spectral acceleration
at the same period; PGA, and PGA; are the peak ground acceleration of the record and the
zero-period anchor point of the target spectrum, respectively. The smaller the value of Dy
the closer the match between the shape of the record and target spectrum is. Smaller values
of Duys can be specified if the spectral matching is being done at short rather than longer

spectral response periods (Bommer and Acevedo, 2004).
Assuming the ground motion spectrums should match the elastic response spectra of
TSC (2007) that has a 10% probability of exceedance in 50 years defined on Z3 site class

with PGA of 0.4g, the D,y values are calculated for the ground motions in database to
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measure degree of spectral matching. Bommer and Acevedo (2004) reported that values of
Dy of the order of 0.15 were needed for matching ordinates in the period range of 0.4-0.8
second, where as values as low as 0.06-0.07 could be used for matching the spectral
ordinates from 0.1 to 0.3 seconds. In this study, periods used to calculate the D, values
ranges from 0.3 to 0.8 seconds. Somerville (2005) defined the levels of spectral matching
as

* No spectral matching, which may leave critical peaks and troughs that strongly
determine nonlinear response — OK when using many records.

* “Loose” spectral matching, which makes the response spectrum approximately follow
a smooth target spectrum but leaving peaks and troughs — OK when using a few records.

* “Tight” spectral matching, which makes a smooth response spectrum that lacks peaks
and troughs but conforms to a smooth uniform hazard spectrum — OK when using 1 record
- minimizes variability but may introduce bias.

In this study “loose’ spectral matching that does not involve any modification of the
shape of the response spectrum is adopted. Tight spectral matching is not preferred because
it modifies the ground motion time-history and produces time histories that are artificially
broadband and do not have peaks or troughs in their response spectra. Such peaks and
troughs are characteristic of actual ground motions, and nonlinear response of structures is
sensitive as described on CAMUS wall specimen previously.

Two different scaling factors are calculated to match the target spectrum. In the first
scaling method PGA of the ground motion is scaled to match the spectral ordinate at the
zero second period (PGA, = 0.4g) of the target spectrum. Second approach calculates a
scale factor defined as the average of the ratio of spectral ordinates of target and matching
spectrums at periods 0.1 s, 0.4 s and 0.85 s. Comparison of the two scale factors is given in
Figure 3.24 for the four databases used here. SFg. yields 25 percent lager scale factors
than SFpga for the range of scale factors 0 to 3.5. The best correlation between the two scale
factors was observed in Iervolino and Cornell’s (2005) database due to narrow ranges in the
selection criteria. This can be attributed to the fact that the ground motions in that bin are
from large magnitude earthquakes at a moderate distance from the site, a situation that is in
agreement with our target scenario event spectrum. Figure 3.24 also indicates that due to
poor correlation between the two scale factors beyond 3, this value can be assumed to be

the upper limit for scaling.
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After all, the following criteria were introduced to select the most suitable ground

motions that conform to elastic design spectrum. It is assumed that

A/V ratio should be smaller than 10 s,

D,ms should be lower than 0.3.

Scale factors applied to match the spectra is lower than 3.
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Figure 3.24 Correlation between the two scale factors for each database used here
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3.8.1 Selected Ground Motions

Using the criteria introduced above, 215 ground motions are screened for finding the
spectrum compatible ones. 23 ground motions obeying the given limitation were found.
Among these 23 ground motions, 10 of them selected to be used as seismic input for time-
history analyses. The catalog data of these ground motions were presented in Table 3.6. The
acceleration, velocity and displacement response spectra of these scaled ground motions
were presented in Figure 3.25, Figure 3.26 and Figure 3.27 respectively. In Table 3.7 peak
ground values of strong motions were given for both original and scaled forms together
with applied scale factors. SFgy.. is used to scale the ground motions. Acceleration and
velocity spectrum intensities were also tabulated in Table 3.7.

Ground motions yielded an average A/V ratio of 8.2 with standard deviation of 1.0.
This value corresponds to lower limit of normal ground motions displaying that the selected
ground motions carries a frequency content that should be dangerous for medium period
range structures. The ground motions have nearly uniformly distributed peak ground
values, yielding values of 480.1 cm/s* and 58.9 cm/s in the mean for acceleration and
velocity, respectively. The peak values are higher than the values given for mean-plus-one-
standard-deviation response spectrum that is compatible with El Centro ground motion,
which are 313 cm/s® and 33.1 cm/s for acceleration and velocity, respectively. 1940 El
Centro earthquake record has been used for long time as a standard for evaluating the
earthquake ground motions. Derecho et al. (1978b) used 1.5 times the velocity spectrum
intensity, Sl = 178 cm/s, of this record as reference to scale the ground motion. This
scaling procedure yielded a spectrum intensity of 267 cm/s that corresponds to the intensity
of broad band ascending ground motions according to their classification. As seen in Tablo
3.6, the ground motions (ground motion No. 1, 2, 3 and 8) that conforms to their
classification nearly posses the same intensity (VSI ~ 250 cm/s) in this study. The scaled
ground acceleration and velocity time series of the selected ground motions are given in

APPENDIX D.
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Table 3.6 Catalog data of the selected ground motions

R PGA PGV
No Earthquake Year M, Station (km) (cm/s®) (cm/s)
1 Imperial Valley 1979 6.5 Keystone Rd., El Centro Array #2 16.2 309 32.7
2 Kocaeli 1999 7.4 Duzce 17.1 308 50.7
3 Northridge 1994 6.7 Los Angeles, Brentwood V.A. Ho. 23.1 182 24.0
4 Northridge 1994 6.7 Pacoima-Kagel Canyon 10.6 424 50.9
5 Whittier Narrows 1987 6.1 7420 Jaboneria, Bell Gardens 16.4 216 28.0
6 Cape Mendocino 1992 7.1 89324 Rio Dell Overpass - FF 18.5 378 43.9
7  Northridge 1994 6.7 24389 LA - Century City CC North ~ 25.7 218 25.2
8 Northridge 1994 6.7 24283 Moorpark - Fire Sta. 28 189 20.2
9 Loma Prieta 1989 6.9 Hollister Differential Array 25.8 274 35.6
10 Northridge 1994 6.7 LA - Fletcher Dr. 29.5 235 26.2

Table 3.7 Scale and spectral matching factors, corresponding peak ground values and
spectral intensity measures

Unscaled Scaled : i
PGA PGV PGA PGV ANV ASI' VsI
No emist) (emss) SFsvee SFraa  Dems ()2 (cmis) (67 (cmis)  (cm)
1309 327 177 127 023 547 58 95 5741 2466
2 308 507 152 127 017 469 77 61 4215 2455
3182 240 269 215 016 490 65 7.6 4476 2518
4 424 509 120 093  0.09 507 61 83 3883 2052
5 216 280 198 182 026 428 55 77 3760 1858
6 378 439 143 104 0.8 541 63 86 4484 2189
7 218 252 211 180 027 460 53 86 3814 2282
§ 189 202 256 207 023 48 52 94 4988 2399
9 274 356 147 143 029 404 52 77 4028 2053
10 235 262 200 167 021 470 52 88 4113 1728
Average  480.1 58.9 8.2
Std. () 45.14 795  1.00

'ASI: Acceleration Spectrum Intensity

2VSI: Velocity Spectrum Intensity
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Figure 3.25 Acceleration response spectra of the selected ground motions
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Figure 3.26 Velocity response spectra of the selected ground motions
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Figure 3.27 Displacement response spectra of the selected ground motions

3.9 CONCLUDING REMARKS

All the ongoing discussion above is to display that the different intensity measures
based on geophysical parameters, seismological parameters and structural parameters when
evaluated from structural response point of view indicates to a common point; what matters
to structural response is the frequency content of ground motion given that the amplitude of
the motion is high enough to drive the structure into inelastic range. Spectral shape is a key
to the nonlinear response. As displayed previously by others and as demonstrated here, the
ascending trend in the spectrum (acceleration and velocity) beyond the fundamental period
of the structure is a good indicator for the damageability of the ground motion record. A
measure to evaluate this potential was presented in Section 3.4.

Another intensity measure calculated from peak ground motion parameters
acceleration to velocity A/V ratio is foreseen as a simple yet effective parameter that might
be used to determine the frequency content of ground motions and differentiate it due to
magnitude and soil effect. A/V ratio can be classified to represent the seismic intensity of a
particular seismic hazard scenario taking into consideration of magnitude and site effects.

While the indiscrimination of the frequency content of a ground motion record due to

149



magnitude was obvious, the effect of local site response due to soil nonlinearity on the
frequency content as implied by A/V ratio could not be illuminated thoroughly.
Theoretically, A/V ratio should take larger values as the site becomes stiffer for a particular
earthquake magnitude. In a recent study by Yenier (2009), the limitations of point-source
stochastic simulations were investigated in terms of fundamental geophysical parameters.
Within this context synthetic ground motions were generated for various magnitude (5.0 <
M,, < 7.5), source-to-site distance (1 km < Rjg < 100 km), faulting style (shallow dipping
and strike-slip) and site class (soft, stiff and rock) bins. In Figure 3.28, the A/V ratios
calculated from these ground motions grouped in soft, stiff and rock site bins according to
NEHRP site classification are plotted for earthquake magnitude. This figure reveals the
hidden information in regard to Figure 3.11, the effect of local site conditions on the A/V
ratio. This subject left at this point for future studies.

In Section 3.7 the effect of frequency content of earthquake record on inelastic
displacement demands on SDOF systems was investigated. It was displayed that for the
ground motions scaled to same PGA amplitude low frequency ground motions produced
highest inelastic displacement demands. Effects of scaling based on peak ground values,
PGA and PGV, were investigated and it was observed that there is a consistent relation
between the ductility demands calculated from the two scaling techniques. For the same
group of ground motions, the ratio of mean inelastic displacements calculated from these
ground motions by applying PGA scaling and PGV scaling can be evaluated from the ratio
of the scaling (A/Vaiing = PGAgcaling tevel / PG Vicaling 1evet ) and the mean A/V gy, ratio of the
group of records.

In Section 3.8 scaling issue was discussed. It was displayed that for the level of
scaling up to factor of 3, the PGA scaling and scaling due to spectral matching at periods
of 0.1 s, 0.4 s and 0.85 s produces similar scaling factors. Indeed the scale factors produced
with PGA scaling can be up to 25% lower than scaling factors obtained from spectral
matching. For achieving spectral matching between the target and matching spectrums at
the listed periods, an upper limit of 0.3 can be adopted for the D,,s values, which display
the goodness of matching. 10 of the 23 ground motions records conforming to limitations

defined were selected for use in time-history analyses.

150



SOFT NEHRP D (V.30 ~ 180-360 mvs) STIFF NEHRP C (V.59 ~ 360-760 nvs)

70 - 70 -
60 -
—50 -
i"’40
b
<30

OO0 ® OO

B0 00
[o]
sl
U [E
6.0 6.4 6.8 7.2 7.6

Figure 3.28 Effect of earthquake magnitude and site effect on the A/V ratio (Yenier, 2009)
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CHAPTER 4

PARAMETERS AND PROCEDURES OF THE ANALYTICAL
FRAMEWORK

4.1 INTRODUCTION

This chapter is devoted to establish an analytical framework for the parametric
investigation of shear walls. The elements of presented framework is composed of
development of simple lumped-parameter structural models of wall and frame-wall systems
for NLFEA, determination of the parameters that affect the shear wall response and
identification of procedures to include these effects in the analyses. The parameters
affecting the wall response are not only related to characteristics wall properties like length
(L), height (Hy,), axial load ratio (P/P,), but also 3D structural interaction effects arising
from differences between the dominant deformation modes of walls and accommodating
structural type (eg. frame-wall interaction). These effects are required to be included in the
analyses.

The use of NLFEA for the investigation of the deformations (damage) of structural
walls at the micro level (strains) requires simplified modeling techniques to account for 3D
global effects in the finite element descritization of the shear walls. In a FE model a wall
can be composed of thousands of elements and nodes since 3D continuum finite elements
are used. It is neither feasible nor logical to model the entire wall system or frame-wall
structure in such type of parametric analyses. Simple analytical procedures used in the
analyses of bearing wall and frame-wall structures were investigated and isolated wall
models representative of global structural effects in both types of structural configurations

were developed. A thorough investigation of these simplified models is necessary in order
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to determine the parameters of the study. The models can be used to derive useful

information about the dynamic and static characteristics of wall type structures.

4.1.1 Types of Concrete Shear Wall Buildings

Structural walls are one of the most commonly used lateral-load resisting systems.
The recent code rules nearly lay down a condition to use the minimum amount of shear
walls in large portion of newly constructed reinforced concrete structures. The buildings
consisting of shear walls as lateral load resisting system can be constructed with different
technologies and structural forms used in these buildings to carry vertical and lateral loads
can lead to different behavior types. Although the general definition of “concrete shear
wall building” is used to hold for variety of buildings types that relies on shear walls as
primary lateral load resisting system (FEMA 356 - Table 10-2 Description of Building
Types), the evaluation of damage to a building requires an understanding on the part of the
engineer of the way in which it supports gravity loads, resists earthquake forces, and
accommodates related displacements (FEMA 306). According to their behavior under
horizontal seismic actions, Eurocode8 and TSC 2007 propose similar classifications for
concrete buildings in terms of structural types. The systems with concrete shear walls were

classified as (according to TSC 2007 description given in Table 2-5):

“... (1.2) Buildings in which seismic loads are fully resisted by
coupled Structural Walls.............c..ccoovvvveveiieiieiiiiieiiennnn
(1.3) Buildings in which seismic loads are fully resisted by
solid structural walls.............cc..ccoooivoiiiiiiiiiiiiiiee
(1.4) Buildings in which seismic loads are jointly resisted
by frames and solid and/or coupled structural walls............
Obviously it is not possible to talk about a unique structural type that can be used as a
basis to infer conclusions about the behavior of structural walls by using it in the structural
analysis. In addition to purpose of providing the necessary lateral load resistance and
displacement control over the height of the structure, structural wall can be also designed to
compose the vertical load carrying system of the entire system. Depending on these
explanations, shear wall buildings can be classified into two broad groups:
1. Shear/Flexural lateral load resisting buildings.

2. Bearing wall buildings

where typical plan views of such type of buildings are as displayed in Figure 4.1.
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Figure 4.1 Comparison of typical frame-wall and bearing wall building configurations

First category structures utilize both frames and walls to resist earthquake actions in
parallel. This particular form of structure is commonly known as frame-wall structure or
dual system structure. In this structural form, frames and walls share the total base shear
due to applied lateral load on the structure in different proportions. Dynamic behavior of
dual systems is considerably different from pure frame or wall structures. Such differences
in dynamic behavior are attributed to the interaction that takes place between the frames
and walls. As being different than frame-wall design where structural walls are primarily
designed for lateral load resistance, walls in bearing wall buildings are also designed to
carry vertical forces.

In United States the common type of concrete shear wall building consists of shear
wall — flat plate floor systems. Typical plan drawing of such type of buildings located at site
in downtown Los Angeles, which is a high seismic region, is shown in Figure 4.2 (Kim,
2004). The lateral load resisting systems of the building are special reinforced concrete
shear walls for the transverse direction and special moment resisting frames for the
longitudinal direction. The eight shear walls are located at the core in the center of the

building plan and along each side. The walls are located at column lines so as not to disturb
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architectural elements. They are also architectural elements themselves that serve as either
elevator cores or stairways. Most of the gravity load is carried by a flat-plate floor system,

with no beams, to columns that transfer gravity load down through slab.
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Figure 4.2 Typical US construction of shear wall building (adapted from Kim, 2004).

Box systems are extensively used in countries like Turkey, China, Japan, New
Zealand and Chile in high seismicity prone regions. In Turkey shear wall dominant
buildings constructed by using a tunnel form system (i.e., box system), so called tunnel
form buildings, utilize all wall and slab elements as primary load carrying and transferring
members (Balkaya and Kalkan, 2004). Riddle et al. (1987) reports the wall-to-plan area
ratio in the range of 4-5% for moderate rise Chilean bearing wall buildings. In general
lateral stiffness or strength of structures including structural walls is related with the total
wall area in plan. In regards to typical wall area, defined as the ratio of total wall to floor
area, Wallace and Moehle (1992) argues that the U.S. construction for concrete buildings 5-
to 20-strories tall relies on frames or combined frame-wall systems to resist lateral loads,

and the total wall to plan area is typically in the order of 1% for these structures.
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4.1.2 Differences in the Behavior Modes of Shear Walls

The inherent free and forced deflected shapes of a cantilever wall and a frame are
quite different as shown in Figure 4.3. An isolated structural wall is actually a cantilever of
which behavior is controlled by bending moments. The total deflection calculated at the tip
of the cantilever is composed of both flexural and shear deformations, but only a minor part
due to shear. The amount shear deformation is related to height to width (H,/L,,) ratio of the
structural wall. On the other hand, even though the beam and column members composing
the frame are relatively slender compared to a structural wall, the beam-to-column stiffness
ratio, p, controlling the relative joint rotation in building systems due to the beam to column
flexural stiffness contributions at the story levels determines the dominant behavior type
(Blume, 1968). This parameter controls the degree of participation of lateral flexural and

shear deformations in moment-resisting frame building. The general form of pis given by

_ Z([/l)beam

- Z([/l)column (41)

where (I/]) represents the rigidity of a member, which is the ratio of member’s section

moment of inertia to the member’s length. When realistic values of p, derived from regular
reinforced concrete frames with uniform lateral stiffness along the height, is considered, a
modal deflected shape in the first mode as shown in Figure 4.3(a) is obtained (Akkar et al.,
2005). The mode shape for p= 0 represents pure flexural behavior. As p increases, the
behavior is controlled by both shear and flexural displacements. When p = oo, the structure
acts as a shear frame.

A wall located in any of the structural forms mentioned above will be in an
interaction with the structural system causing different behavior modes. The failure
mechanism of the wall not only depends on the geometry of the cross section, but also on
the way the wall is loaded (FEMA 306). If the wall is subjected to a large moment which
produces yielding with low shear, the mechanism will be completely different than if
loaded with low moment but large shear. The way the wall undergoes inelastic
deformations will determine the path of force redistribution, and entirely dominate the
subsequent response of the building (Charney and Bertero, 1982). For instance, in frame-
wall systems relative rigidity of frame has significant effect on deformation and strength

characteristics of structural walls (Vallenas et al., 1978; Kayal, 1986).
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Figure 4.3 Deformation modes of frame-wall structures

4.2 SIMPLIFIED PROCEDURES FOR THE ANALYSES OF SHEAR WALLS

The elastic and inelastic behavior and the failure mechanism of reinforced concrete
frame-wall systems (dual systems) were investigated by different researchers in an
approximate manner by replacing the structure with a system of idealized mechanical
models. The name “frame-wall interaction force” was given to the forces developing in the
rigid link beams connecting the wall and frame components of the mathematical model
developed and widely used for analyzing frame-wall systems as shown in Figure 4.4 (Khan
and Sbarounis, 1964; Emori and Schnobrich, 1981; Charney and Bertero, 1982; Scarlat,
1995). The method involves the floor by floor interaction of planar panels consisting of
walls, or frames, or both. The lateral loading is usually distributed between the component
structures in proportion to their rigidities at each story. A simple elastic frame-wall model
that takes into account the interaction effects was first proposed by Khan and Sbarounis
(1964). An iterative procedure was developed in that study to calculate the lateral
displacements and forces in the system. The model proposed by Kahn and Sbarounis (1964)

depends on the equivalent dual structure concept in which the frames were replaced by an
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equivalent one-bay frame where each column in the story is assigned the half of the total
stiffness of the columns in that story. In the same way, the structural walls were replaced by
an equivalent structural wall. Equivalent frame and wall is connected with rigid connection

bars ensuring equal horizontal deflections as shown in Figure 4.4.
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Figure 4.4 Frame wall interaction model after Khan and Sbarounis (1964)

Macleod (1971) developed and proposed another method based on a number of
simplifying assumptions as a practical design tool for designing a regular building of
average height. Heidebrecht and Smith (1973) derived the differential equation governing
the response of frame-wall system based on an analogy to shear-flexure beam. The closed
form solution to this equation can be used to calculate the lateral displacements, bending
moments, and shear forces under static triangular, uniform and a point top lateral load.
Design curves for displacement, moment and shear force distribution over the non-
dimensional height of the structure for different frame rigidities were presented in their
study. MacGregor et al. (1972) proposed a simplified equivalent frame-wall model that was
divided into the frame system and the wall system in which the properties of all same type
of members were lumped into a single member in a story, such as frame beams spanning
between two adjacent columns, link beams linking the shear walls to the columns and all
the shear walls by a single wall having as stiffness and plastic moment capacity equal to the
sum of the stiffnesses and plastic moment capacities of the individual walls. The moment
rotation relationship for the individual frame members were idealized as elastic-plastic for

beams and columns and elastic-strain hardening for the shear walls.
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Emori and Schnobrich (1981) presented three mechanical cantilever beam models
that were studied by previously and can be used to idealize the structural wall: (1) a
concentrated spring model (Otani, 1974); (2) a multiple spring model (Takayanagi and
Schnobrich, 1976); and (3) a layered model. The concentrated spring model consists of a
flexible elastic line element over the beam length, and a nonlinear rotational spring element
at the restrained end of the beam, as shown in Figure 4.5(a). The multiple spring model is a
line element model composed of a number of springs in series connected by rigid links.
Each subelement may have different values of inelastic properties. The layered model
shown in Figure 4.5(c) is a modification or alteration of the concentrated spring model.
Instead of the nonlinear spring, a layered cross section of length L, is assigned to the end of
the cantilever beam, so the inelastic flexural action of the cantilever beam is calculated
explicitly allowing the contribution of the effect of axial load. The length L, is chosen as
the region where major inelastic action is expected. The entire frame-wall system is
therefore idealized as a plane structure composed of two components. One of the systems is
the isolated wall. The second system is a substitute frame structure which models the two
parallel rigid frames as a frame substructure.

Miranda (1999) adopting the equivalent continuum shear-flexure beam model
developed by Heidebrecht and Stafford Smith (1973) calculated the seismic lateral
deformation demands in multistory buildings under generalized lateral static loads. Later,
Miranda and Akkar (2006) derived the generalized interstory drift spectrum, which extends
the drift spectrum to buildings that do not deform laterally like pure shear beams as
proposed by Iwan (1997), using the same continuous model that consists of a combination
of a flexural beam and a shear beam. Miranda and Reyes (2002) used the same formulation
to estimate the maximum lateral drift demands in multistory buildings with nonuniform
lateral stiffness primarily responding in the fundamental mode when subjected to
earthquake loads.

Sozen (1989) developed a simple analytical tool to calculate the displacement
response of shear wall buildings for a given earthquake strong motion. The study
concerning with the observed behavior of reinforced concrete shear wall buildings in Vina
del Mar during March 1985 Chile earthquake, the model did not suggest that its results
should be identical to individual response of large inventory of shear wall buildings, but it
was rather intended to show that certain dominant structural properties have led to observed

damage on the buildings.
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Figure 4.5 Mechanical models used by Emori and Schnobrich (1981) in modeling shear
walls to investigate the inelastic behavior of concrete frame-wall structures:
(a) Concentrated Spring Model; (b) Multiple Spring Model; (c) Layered Model.
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This study focus on two simplified procedures among the studies summarized above
for the analyses of structural wall buildings. The models are the isolated cantilever wall
model as described by Sozen (1989) and the shear-flexure beam continuum model of
Heidebrecht and Stafford Smith (1973). While the former applies to wall dominant
structures responding in cantilever mode, the later can be used to model frame-wall
systems. Both methods are developed for linear analysis purposes, but here procedures are

implemented to extend the range of their applicability to nonlinear range.
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4.2.1 Isolated Wall Model

The expression for the fundamental period of a cantilever beam of uniform cross

section and uniformly distributed mass is (Clough and Penzien, 1993),

_ 2r mH*
352\ EI

(4.2)

where
m = mass per unit height
H = Total height
I=Moment of inertia of cross section

Depending on the assumption that the fundamental period of a building, where
flexural behavior of structural walls dominates the lateral load response, can be
approximated by analysis of an equivalent cantilever, Sozen (1989) derived the following
equation to calculate the fundamental period of an uniform concrete cantilever having

rectangular cross section and supporting regularly distributed floor load (Figure 4.6) as

H h
T=622wn [ s (4.3)

L, VeE.p

in which N = number of floors; w = unit floor weight including tributary wall height; A, =
mean story height; E. = concrete modulus of elasticity; H, = wall height; and p = wall
index, ratio of wall area to floor plan area for the walls aligned in the direction the period is
calculated ( p = X 4,, / A, where 4,, = L,t,,, L, is the wall length, ¢, is the wall thickness,
and Ay is the floor plan area of a typical floor of the building). For cracked section the
number in front of the expression given in Eq. (4.3) shall be taken as 8.8.

The expression in Eq. (4.3) can be further simplified by introducing typical values of w
=10.0 kPa (1.02 t/m?), &, = 300 cm, g = 981 cm/s® and E,. = 25,000 MPa (these are the
typical values adopted in study, so the coefficient in this study may differ from the ones in

other works) and assuming uncracked section as

T= 0.00216ﬂN |

L, \p

(4.4)
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As seen in Eq. (4.4), it is possible to express the fundamental period of structural wall
buildings in terms of three nondimensional parameter: the slenderness ratio of the primary
walls (H,/L,,), the number of stories (), and the wall index, p (the ratio of wall are to floor

area).

Tributary floor area
A

Figure 4.6 Generic shear wall building models

4.2.1.1 Roof Drift of Wall Type Structures

The procedure presented by Sozen (1989) exploited by Wallace and Moehle (1992),
Wood (1991), Riddell and Vasquez (1992), and Giilkan and Utkutug (2003) in later studies
to investigate the roof drift demands in shear wall buildings. In a series of technical papers,
Wallace presented the general guidelines of a displacement-based analytical procedure for
the seismic design of reinforced concrete shear walls (Wallace, 1994; Wallace, 1995a-b).
The aim of the procedure is to relate the global and local deformations. The procedure uses
a computed strain distribution to determine requirements for transverse reinforcement at

wall boundaries for concrete confinement and to restrain buckling of reinforcement.
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A step forward after the derivation of Eq. (4.3) is the definition of a ground motion in
terms of displacement response spectrum. In the derivation of spectral displacement
demands, Wallace (1994) utilized the expression in ATC-3-06 for the spectral acceleration
for elastic response. Assuming high seismicity (a seismic coefficient A,=0.4 representing
the effective peak acceleration of the ground) and firm soil site as the site class, the elastic

spectral displacement for 5% damping was computed as

S, =25T%--(cm)-----0.0<T <0.585 s
S, =15T---(cm)------0.585 s < T (4.5)

Finally for a shear wall building, the elastic displacement calculated for a single
degree of freedom oscillator is related to the roof displacement of the actual multi degree of
freedom structure by using a factor of 1.5. The roof drift (roof displacement divided by
building height, 6,/H,,) is computed by multiplying Eq. 4.5(a-b) by 1.5 and dividing by the
building (or wall) height, H,,,

o, L5(S;)
H H

w w

(4.6)

The roof drift is expressed in terms of the wall aspect ratio (H,,/L,,) and wall index, p,
by substituting the spectral displacement and the cracked stiffness period 7" as given in Eq.
(4.5) and Eq. (4.3) with front multiplier of 8.8, respectively, into the Eq. (4.6) as

5 H
u _gpw | W (4.7)
H L, \E.ph

w w

N

Again substituting the typical values introduced above into the expression in Eq.

(4.7), we get for the mean drift ratio

S H
o =0.00023— \/I (4.8)
H,, L, \'p

Wallace (1994) stated that the roof drift ratio obtained should tend to be conservative

because the cracked stiffness period is based on half the gross-section stiffness and the
“typical” values are selected to produce a high drift estimate. For Eq. (4.7), depending on

different seismic spectral displacement definition Sozen’s work (1989) yields a front
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multiplier of 0.25 for the same material and mass characteristics assigned above. Eq. (4.8)
is plotted for several aspect ratios as shown in Figure 4.7.

In the most basic form, the isolated shear wall model shown in Figure 4.6(a) can be
used as a base model in the NLFEA analyses of structural walls. However, Eq. (4.4) should
not be interpreted as a magical formula that gives good results for the period estimation of
structures where structural walls are encountered. Certain limitations in regards to aspect
ratio of the walls and mass assignment needed to be identified for the determination of
dynamic attributes of structural walls. Indeed the period formula given in Eq. (4.4) has a

very restricted applicability.
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Figure 4.7 Estimate of the roof drift for wall type structures

Then the global deformations imposed on the structure are related to local
deformation on the wall cross section by using well-established procedures to account for
the distribution of elastic and inelastic deformations over the height of a structural
cantilever wall. Based on the model of Figure 4.8, which assumes triangular load

distribution, the displacements at the top of the wall can be computed as

11 1
8y =8y + O, H = Hy 4~ (= 9,)H, L, (4.9)
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where o0, = displacement resulting form elastic deformations; 6,H, = displacements
resulting from inelastic deformations; ¢, = yield curvature (curvature at first yield of the
wall boundary reinforcement); ¢, = ultimate curvature; and L, and 6, = plastic hinge length
and rotation, respectively. For low values of axial load and low steel ratios, the yield

curvature can be approximated by

4.10
[ I (4.10)
L Roof Displ. (8)
— e

T

Figure 4.8 Relationship between global and local deformations

du by

The value of ¢, increases with increasing steel ratios and axial load. Assuming the
plastic hinge is half the wall length (L, = 0.5L,,) and using the relation in Eq. (4.10), the
deformations imposed on a wall can be derived in terms of the ultimate curvature times the

wall length (Wallace and Moehle, 1992) as

H

w w

$,L, = 0.0025{1 —%%} 420 (4.11)

If Eq. (4.9) is substituted in Eq. (4.11), the deformation imposed at the base of the

wall can be expressed directly in terms of the building configuration as

H H
é,L,, =0.0025 1= 1w 1 0000462 |1 (4.12)
2L, L, \p
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Now the detailing requirements such as the concrete confinement required at the
boundary element can be evaluated by comparing directly the deformations imposed on the
wall cross section with the available flexural deformation capacity of the wall cross section.
It was assumed that the wall has rectangular cross section and uniformly distributed
reinforcement plus boundary steel. Axial load is centered on the wall web. The longitudinal
tension and compression reinforcement is assumed to develop a stress of a,f, and y,,
respectively, to account for possible material over strength and strain hardening (assumed
values are @ = 1.5 and y = 1.25). By considering the equilibrium requirement on a

rectangular wall cross section, wall deformation capacity is estimated by the relation

" 7/ ' a}n y P
p+p = p +
[ m j fC AWfC

L

c

gc,max -

(4.13)

(o.ssm +2p"

where &.,... = extreme fiber concrete compressive strain; p = A4,/t,L, = tension steel
reinforcing ratio; p” = 4, /t,.L,, = the compression steel reinforcing ratio; p” = 4, 7/¢,L,, = the
distributed steel reinforcing ratio; f, = nominal yield stress of the reinforcement; f. = the
compressive strength of the concrete; o, and y = factors to account for reinforcement
overstrength and strain hardening; P = wall axial load; L, = wall length; and t, = web
thickness. The equation is valid for rectangular, T-shaped and L-shaped (flanged) walls. A
similar expression was also derived for barbell-shaped walls.

For symmetrically reinforced rectangular wall sections, assuming f. = 25 MPa, f, =
420 MPa, the extrapolation of above Eq. (4.13) results in following extreme fiber maximum
compressive strain curves as shown in Figure 4.9 for different parameters. The concrete
compressive strain at the extreme fiber increases as the slenderness of wall increase (larger

H,/L, ratio).
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Figure 4.9 Compressive concrete strain at the extreme confined boundary

4.2.1.2 Global Ductility Estimation

Using moment-curvature analyses of cantilever shear walls Kowalsky and Priestly
(1998) has shown that yield curvature, serviceability curvature, and ultimate (damage-
control) curvature are insensitive to variations of axial load ratio, longitudinal
reinforcement ratio, and distribution of longitudinal reinforcement. This implies that the
ratio of neutral axis depth (depth to extreme compression fiber) to wall length is essentially
constant for a given strain limit state defined by both concrete compression and steel strain
limits. For example, if €, = 0.018 and &; = 0.06, the neutral axis depth ratio becomes 0.2
(c.=0.2L,,). The results were used to determine available displacement ductility factors for
walls of different aspect ratios and drift limits. They stated that drift capacity will generally
exceed code levels of permissible drift, and that code drift limits will normally restrict,
sometimes severely, the design displacement ductility factor.

Later in a similar framework that was used by Wallace (1994), Kowalsky (2001)
examined the seismic provisions of the 1997 Uniform Building Code (ICBO, 1997) from
perspective of achieving performance-based earthquake engineering of structural wall
buildings. Through the use of design examples and dynamic inelastic time history analysis
he concluded that a hybrid design procedure that achieves a performance-based engineering
with a force-based approach to specify and control damage in the design process as
described in 1997 UBC is not possible. It was also reported that although strain limits are
present in the 1997 UBC, the drift ratio limits generally govern the design.
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Priestly and Kowalsky (1998) related the curvature ductility (p,) of the cross section
to the displacement ductility (p,) at an effective height of 2/3 the total wall height by the

expression

3L 3L
—143(u, —)2 2w |2 2w 4.14
Ha (,U¢ )4HW( SHWJ ( )
Since they claimed that the drift ratio based on the concrete ultimate extreme
compression fiber strain of 0.015 will rarely govern the design, they proposed the following

relation to calculate the displacement ductility demand based on the maximum allowable

drift limits of @« = 0.02 and 0.025.

H 3L 3L
=1+3/667 0, —0.0015—~ | |=—|1-——*- 4.15
HA |: ( max LW J:I‘I'H ( SHWJ ( )

w

The relation given in Eq. (4.15) is plotted in Figure 4.10 for displacement ductility

versus aspect ratio for two values of allowable drift ratio.
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Figure 4.10 Drift limit Ductility levels (Priestley and Kowalsky, 1998)
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4.2.1.3 Period of Wall Type Structures (Cantilever Systems)

First of all it is necessary to identify the typical values of periods of shear wall
buildings, in order to talk about the range of applicability of the formulas. Figure 4.11
presents the relation between the number of stories and period of shear wall buildings
extracted from measured and analytical response of shear wall buildings as performed by
different researchers (Wallace and Moehle, 1992; Goel and Chopra, 1998; Lee et al., 2000;
Balkaya and Kalkan, 2003). Except the data from Balkaya and Kalkan (2003) all the
information given in Figure 4.11 belong the measured response of real life structures. The
data by Wallace and Moehle (1992) comes from Chilean shear wall buildings from the city
of Vina del Mar as also used by Sozen (1989). These buildings have a wall index of 3% in
average and 2% as the lowest. Data by Lee et al. (2000) is from the measured periods of
Korean tunnel-form buildings with wall index of 2% approximately. Balkaya and Kalkan
(2003) calculated the periods of 80 different tunnel-form building configurations that are
typically applied in Turkey by using three-dimensional finite-element modeling. The
average ratios of total wall to floor areas in these buildings are 2-3%. The data from Goel
and Chopra (1998) covers the measured periods of buildings during eight California
earthquakes starting with 1971 San Fernando and ending with the 1994 Northridge

earthquake. These buildings have wall indexes ranging from 0.3% to 3%.
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Figure 4.11 Period versus height relation of shear wall buildings
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What is noticed at first glance in Figure 4.11 is that the presented data correlates well
with the well-known approximate relationship between fundamental period and number of
stories of shear wall buildings, N/20. These buildings have wall indexes larger than 2%.
The outlier points lying on 0.15N line are from Goel and Chopra’s (1998) building
inventory. These buildings have special features in terms of structural systems such as flat-
plate system with core walls or vertical irregularities in the plan. For example, one of the
outliers, the 8-story CSULA Administration Building with reinforced concrete slab, beams
and column as vertical load carrying system and concrete shear walls except between levels
1 and 2 where concrete and steel columns are used as lateral force resisting system, poses a
very large fundamental period (7} = 1.62 s) due to very soft 1*-story, which has height of
7.26 m as shown in Figure 4.12. Above the 1%-story, the ratio of area of walls in the
transverse direction to the floor area is 1.6%, which indeed is an adequate wall index to

provide the lateral stiffness.

Roof

T @395

2nd Floor
1st Floor

Ground Floor

Figure 4.12Los Angeles — 8-story CSULA Administration Building

For further augmenting our understanding on the subject lets assume 4-, 8- and 12-
story cantilever wall structures composed of 3, 5 and 8 m walls in length with story height
of 3 m. The periods calculated by using Eq. (4.4) for different wall and building height
combinations yielding different aspect ratios for isolated shear walls are plotted in Figure
4.13. Restricting the applicable range of calculated period between 0.05N and 0.1N it can
be concluded that the formula given by Eq. (4.4) yields meaningful results for aspect ratios
only up to 5 for a very large portion of wall index spectra ( p>0.005). As the aspect ratio
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(slenderness ratio) increases the wall index required to provide adequate stiffness also
increases. However, as the 12-story case displayed by no means it is logical to assume an
isolated wall model with a wall length of 3 m in buildings taller than 10-story, which
corresponds to slenderness ratios larger than 10.

Evidence to such situation was provided by Riddell and Vasquez (1992). They were
using Eq. (4.4) and the average amount of wall area of 3%, i.e. p=0.03, for the Chilean

buildings, calculated the fundamental period of the generic building as

T= 0.0125121—::N (4.16)

Then combining Eq. (4.16) with the approximate relationship between fundamental
period and number of stories, T=0.05N, a typical slenderness was found as 4, or, for a more
flexible building with T=0.075N as 6. This limitation should be considered as a rule of
thumb of the Sozen’s formula while using it. It is obvious that if smaller wall index (p) is
adopted in Eq. (4.16), much smaller wall aspect ratios (H,/L,,) are required to obtain logical

period values.
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Figure 4.13 Periods calculated for range of wall indexes as a function of wall aspect ratio

This conclusion is important because isolated cantilever idealization of structural
walls is a widely used tool (may be the only) in the seismic response assessment of
structural walls. Indeed such an idealization of structures carries risks since 3D originated
force mechanism build-up in structures due to frame-wall, wall-to-wall and wall-to-slab
interactions are all ignored. No structure acts as cantilever unless it is so. Additionally

higher mode effects causing amplification in the shear and moments along the height of the

171



walls should come into scene more easily leading to illogically conservative dynamic
amplification factors, when such models violating the aspect ratio rule is adopted in
analytical studies. The modal mass participating in the first mode of a cantilever is smaller

than the frame-wall or coupled wall structure.

4.2.2 Frame-Wall Model: Continuum Approach

The walls can seldom exist in such an idealized configuration described above. If
tunnel-form structures are disregarded, since this study excludes them due to distinct load
resisting characteristics, walls mostly exist in structures in combination with moment
resisting frames. Frame-wall structures can be composed of either (i) structures with walls
and frames connected by floor slabs, or (ii) structures with link-beams extending from
frames directly to the ends of the walls. The interaction between the frames and walls of
structures with link beams is more significant than in the classical form of frame-wall
structure in which the frames are parallel to the walls, i.e. walls are located inside a frame
(Sullivan et al., 2006). The shear and moment transferred from beams can significantly
change the moment profile causing a reduction in the inflection height of the wall. The
beam shear forces transferred from both side of the wall affect the axial load on the wall. If
the problem is idealized by assuming beams of equal strength and equal length that are
framing to the wall from both side, the axial load will not be affected by the beam shears
since they will cancel out. However, the beam shears from both sides will form a moment
couple which has to be added to moments transferred from beams. Additional 3D effects
such as transverse beams’ shear forces also contributes to the moments created by the
framing shear wall beams as shown in Figure 4.14, a deformed shape view taken from the
analyses results of a five-story reinforced concrete frame-wall.

The distribution of the applied lateral load between these two systems in proportion
to their relative lateral stiffness and based on the assumptions of small deformations and
linear elasticity can lead to serious errors. Because of the inherent difference between the
deflected shapes of these two particular systems under lateral loading, frame-wall
interaction generally results in reduced lateral displacements at upper floors affecting the
distribution of wall moment over the height of the building (Wallace, 1994). Contrarily,
over the lower floor levels frame-wall interaction results in an increase in the slope of the
moment diagram, and thus an increased shear demand on the wall compared with cantilever

walls.
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Figure 4.14 Deformed shape of a frame-wall structure displaying the pattern of
displacements and rotations for frame and wall components.

Frame wall-interaction poses a serious problem for reinforced concrete structural
walls especially in situations where the frame part of the structural system becomes stiffer
as compared to the walls. Kayal (1986) investigated the effect of wall-column stiffness
ratio, defined as the ratio of the flexural rigidities of the shear wall and the column
(EL,/EL.), among with additional parameters such as the ratio of beam and column stiffness,
load ratio (lateral to vertical load). One of the significant conclusions emerged from this
study is that nonlinear idealization of the flexural characteristics of shear walls became
more pronounced when shear walls are located in stiff frames since the actual characteristic
of shear walls, which is “shear behavior” has to be activated.

In similarity with the isolated cantilever flexural beam used to model structural wall
buildings responding primarily in flexure mode, continuum method utilizing combined
shear-flexural beam formulation for the analysis of frame-wall and coupled wall systems
can be used to investigate the frame-wall interaction problem. Dating back to the 1960s a
significant amount of work has been conducted on the continuum approach for the static
and dynamic analysis of planar structures consisting of interacting frames and shear walls.
Initially the method evolved as a simple yet effective and reliable hand calculation method
for the proportioning of structural members in design offices (Heidebrecht and Stafford
Smith, 1973). Although in his discussion of the article by Heidebrecht and Stafford Smith
(1973), Rosman (1973) claimed that the method had been developed much more
completely by himself earlier (Rosman, 1968), this study takes the work of Heidebrecht and
Stafford Smith (1973) as its basis. Lately it has been widely used to calculate the dynamic

properties of tall buildings and used in studies that deal with the behavior of variety of
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structures. The method can be easily programmed allowing a reduction in the idealization
burden without going through detailed structural modeling by representing each structure
with only one parameter (aH) (Miranda and Reyes, 2002).

Since in the shear-flexure beam method, the multistory structure is modeled as an
equivalent continuum structure composed of a flexural cantilever (accounts for shear walls)
and a shear cantilever (accounts for frames), the forces and moments in the actual structure
are assumed distributed along the continua. The continuum model for equivalent shear-
flexure beam is given in Figure 4.15. It has to be noted that the beam moments acting on
the walls were disregarded in the frame component since they do not have any influence on
the lateral deformation. In the figure, g(x) and m(x) represents the action of interaction
forces and beam moments transferred on the shear wall, respectively. The subscripts, B and
S, refer to the flexural and shear beams, respectively. Although it is possible to assume the
action of horizontal forces on the wall as distributed, a concentrated top interaction force is

required to maintain the deformation compatibility and force equilibrium between the

flexural and shear beams. This is why a point load of magnitude O was included in the

model shown in Figure 4.15.
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Figure 4.15 Mathematical model of shear-flexural beam, interconnected frame and shear
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The rigid floor diaphragm provides nearly equal translations at all points of the floor
area, however this doesn’t necessitates the rotations at member ends be the same also. As
shown in Figure 4.15, the deformations of frames and walls when individually considered
are same. While the floor diaphragms exhibit very small rotations, the rotations on wall
component accumulate as moved upwards and cause additional curves on the beams joining
to the wall, especially at the uplift side, if the shift of the neutral axis is considered. So, the
mathematical model of a shear-flexure beam used to calculate the response a frame-wall
structure will have equal deformations through the continua, but the sectional rotations of
each particular member will be different and calculated in accordance with the shear
deformation beam theory.

Heidebrecht and Stafford Smith (1973), ignoring the moments transferred from
beams to walls, gave the governing equation of the combination beam shown in Figure 4.15

by

dy  2d’y _w)

4.17
dx* dx*  EI 17
where w(x) = wg(x)+ wg(x) is the distributed lateral loading function and
o2 =G4 (4.18)
EI

in which G4 and EI are the shear and flexural rigidities, respectively. While EI represents
the flexural rigidity of all the flexural members in the systems, interpretation of shear
rigidity G4 being different represents the interstory horizontal shear force required to give a
unit horizontal shearing deformation over the 1-story height as explained in APPENDIX E.
A complete derivation of Eq. (4.17) is given in APPENDIX E. The main parameter that
determines the dominant deformation mode of a shear-flexure beam is the parameter oH.
Miranda and Reyes (2002) classified deflected shapes of the structural systems based on
this parameter. According to this classification, the deflected shape of structures composed
of structural walls as lateral load resisting system can usually be approximated by using
values of aH between 0 and 2. The deflected shape of dual systems or braced systems can
be calculated by values of aH typically between 1.5 and 6. For buildings composed of only

moment-resisting frames the values of aH between 5 and 20 can be used.
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A tall structural wall can be considered as vertical cantilever beam, with zero
deflection and rotation at the base and free at the top, so the boundary conditions that apply
to the solution of the differential equation are y(0) = y(0) = M(H) = V(H) = 0, where H is
the height of the structure. The shear force in the shear component (frame) is calculated as

Vg(x)= GAQ (4.19)
dx

so the shear force at the base of this member becomes zero, which is not correct. The design
curves for normalized frame and wall shear forces that were derived for different aH values

were plotted in Figure 4.16.
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Figure 4.16 Shearing force on flexural (V) and shear (V) components for uniformly
loaded beam. Regardless of relative rigidities of frame and wall components, at the base the
entire base shear is attracted by flexural component

The discussion by Coull (1973) of Heidebrecht and Stafford Smith (1973) refers to
this issue without any proposal for the solution of the problem. This problem has been often
disregarded since it was assumed that the frame members tend to carry much less horizontal
load than the wall in the lower levels, so its omission introduces only a minor error in the

calculations (Coull, 1973). However, there are cases where frames carry a significant
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amount of the total base shear. It is also known that the amount of base shear assigned to
each component of a dual system on the basis of elastic properties changes considerably
after cracking and as a result of progressive yielding in the members, which increase the
tendency of frames to carry additional load. Another fact that affects the base shear
distribution between the frame and wall components and is disregarded in the analysis of
shear walls is the fixed-end assumption. Due to very large moments induced on the
foundations of shear walls may rotate, which causes reduction in the shear force in part of
the shear wall. A continuum formulation that takes into account foundation flexibility on
the interaction between shear walls and frames was presented by Toutanji (1997), but since
taking this effect in to account should pose the risk of digressing the subject, fixed based
assumption is adopted.

In APPENDIX E derivations of a new shear-flexure beam formula introducing the
two refinements into the otherwise well-known formulation for wall-frame systems is
given. One is the correction of the shear force boundary condition at the base of the wall,
and the other is the additional distributed moment transferred from link beam ends. The
primary components of the new formulation are illustrated in Figure 4.17. Referring to
Figure 4.17, the structure is assumed to be composed of lower and upper substructures
above and below the contra-flexure height of the base story columns. The governing
equations for both substructure is derived accordingly and using the extra boundary
conditions arising from displacement and force compatibilities at the contra-flexure height,
the expression for displacement, shear and moment along the height of the wall are
obtained. The method can be used for cases with uniform and non-uniform stiffness along
the height of the structure. The expressions for direct estimation of displacement, rotation,
shear and moment profiles along the wall are derived for triangular and uniform loading for
uniform stiffness case. For non-uniform stiffness case transfer matrix method with
necessary modifications in the matrices is adopted. The new formula for the primary

substructure (upper part) reads as

4 2
4y _g2dy_ W) (4.20)
dx? dx*  EI

where  w(x) = wg(x)+ wg(x)and

az _ GA+7]

o 4.21)
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n holds for the equivalent flexural rigidity of beams framing to wall. This term is especially
increase the accuracy of the calculations in cases where the transverse beams have
substantial flexural capacity so increase the flexural resistance of the wall by the reactions
from transverse beams. Although the governing equation seems to be the same with the
previous version, Eq. (4.17), the differences lie in the added beam flexural rigidity term and
the nonzero boundary conditions applicable to solution of this equation as given in Egs.
(E.36) to (E.38). The expressions for the distribution of displacement, shear and moment

along the height of the walls in frame-wall system are given through Egs. (E.41) to (E.44).
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Figure 4.17 Primary components of improved formulation

Now readily available, to show the effectiveness of the new formulation by using the
structural configurations shown in Figure 4.18, the share of the walls and frames from the
total base shear is calculated for different amounts of wall in the system. Columns are

0.6x0.6 m and beams are 0.6x0.4 m. By replacing the columns with structural walls on the
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central axis in the longitudinal direction, different frame-wall stiffness ratios are obtained.
Two, four and six structural walls in 3 and 5 m length were placed at these locations.
Structure is assumed to have 10-stories and height of 30 m. Load was applied uniformly
along the height. The normalized wall and frame shear spectrum were calculated and
plotted in Figure 4.19. The main difference of the plots presented in Figure 4.19 from the
ones shown in Figure 4.16 is that the shear force at the base of both members is calculated

correctly. Additional verification examples can be found in APPENDIX E.
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Figure 4.18 Floor plans consisting two, four and six shear walls
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Figure 4.19 Normalized frame (a) and wall (b) forces for different frame to wall ratios
under uniform lateral load. (The notations in parentheses in the legend refer to number of
walls and their lengths. For instance, “6WL5” means there are total of six walls, each 5 m

in length, in the system)
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4.2.2.1 Period Formula for Frame-Wall and Wall Type Structures

The basic mathematical model of the shear-flexure beam can also be used to
determine the dynamic properties of a tall building structure consisting of uniform shear
walls and frames. In Heidebrecht and Stafford Smith (1973) the equation governing the free

vibration of shear-flexure beam is given by

4 2 2
d_y_azuz_Lﬁ_y (4.22)
dx? dx? a’ or?
in which
, EI

a =
Pady

(4.23)

and p, is the mass per unit volume of the uniform structure.
The solution of the differential equation given in Eq. (4.22) is available in
Timoshenko and Goodier (1970), and Heidebrecht and Stafford Smith (1973) calculates the

natural frequencies as

2
=0, |1+ (ﬂJ (4.24)
A H

in which A,H takes the values of 1.875, 4.694, 7.855, 10.996 and 14.137 for the first five
modes respectively as defined in Timoshenko and Goodier (1970) and @, is the natural

frequency of a flexural beam with the same mass and stiffness properties, as given by

w, =al,’ (4.25)

o o

The « value is calculated in accordance with Eq. (4.21) and H should be taken as the
total height of the building, since the dynamic solution for the new formulation is not done

in this study. The first natural period of frame-wall systems can be obtained by using 7' =

T 2r _ 27
(e Y [E (1.875}2 1+( atl )2
o T A H pd, | H 1.875

and introducing necessary modifications like A,=A4,/p = (L,.t,) / p and I = LS.t/ 12, and

2n/w as

(4.26)

rearranging we get
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H
r=2m 1201, ! (4.27)

1875V E L, \/p(1.8752+(aH)2)

Upon distribution of typical values used for Eq. (4.4), Eq. (4.27) takes the form in
resemblance with Eq. (4.4)

H 1
T =0.00406—=N
L, \/p(1.8752 +(aH)2)

This equation is a more general form as compared to Eq. (4.4) and yields more

(4.28)

reliable and realistic period estimations for various types of shear wall buildings with the

incorporation aH term.

43 PARAMETERS OF STUDY

Several analytical parametric studies were conducted on structural walls to
investigate their deformation and strength properties. The parameters (variables) of these
research studies were evaluated to form the parameter set of this study. Unlike the one
carried out here, which makes use of nonlinear finite element analysis for the investigation
of the strength and deformation of reinforced concrete structural walls in both micro and
macro level, most of the previous analytical studies conducted on structural walls relies on
the lump plasticity modeling of structural walls, which can be legitimized within the scope
of these studies. The primary interest of these studies is the global response parameters,
such as the drift or plastic rotation and shear strength of the walls.

Wallace and Moehle (1992) and Wallace (1994) studied the ductility and detailing
requirements at the boundaries of structural walls with simplified analytical procedure of
Sozen (1989) described above. Priestly and Kowalsky (1998) investigated drift and
ductility capacity of rectangular structural walls. Kowalsky (2001) examined the ways of
implementing displacement based design perspectives of structural walls into traditional
force based design code (ICBO, 1997) by relating the strain limit states to a particular drift
ratio.

Kongoli et al. (1999) devised a parametric analytical study that adopted the number
of walls in a frame-wall building as the fundamental parameter for discussing the effects of

walls on the response of frame-wall buildings. This ratio was further quantified as the base
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shear coefficients of frames wand walls defined as yield strength divided by the total
weight of the building.

Lefas and Kotsovos (1990) conducted an analytical work based on the use of a
reliable finite element program to investigate the influence of several parameters that affect
the behavior and strength characteristics of walls, such as arrangement and amount of
vertical and horizontal reinforcement, the detailing of the edge members, the aspect ratio,
the axial load and concrete strength.

Derecho et al. (1978a), Derecho and Corley (1984), Ghosh and Markevicius, (1991),
Seneviratna and Krawinkler (1997), Amaris (2002), Rutenberg and Nsieri, (2006), Celep
and Aydinoglu (2006) are others that was conducted parametric investigation on shear
walls for different purposes.

When all these studies were examined, the primary variables affecting wall response
were found to be
e the ratio of wall cross sectional area to floor-plan area,

e fundamental period,

e shape of the structural wall cross-section,

e the wall aspect ratio (H,,/ L,,) and configuration in the plan,
e the wall axial load (P/f./A,),

e percentage of the longitudinal reinforcement (o), and

e degree of confinement of compression zone concrete.

In the light of discussion that summarizes the outcomes of the previous parametric
research on structural walls, it was decided that the primary variables of the parametric
study should be
e Wall aspect ratio (H,, / L ): Walls of 3, 5 and 8 m in length that are located in four-,
eight- and twelve-story structures were analyzed. A constant inter-story height of 3 m was
accounted for each structure. Each pair of wall length (L,) and building height (H,)
corresponds to different wall aspect ratios which are 1.5, 2.4, 3.0, 4.0, 4.5, 4.8, 7.2, 8.0 and
12.0. Height to length ratio of walls significantly affects the behavior modes of the walls.
As the height-to-length ratio decreases shear effects become more pronounced.

e Wall axial load ratio (P/fi/A,): The common range of axial load ratios in practice with

cantilever walls is reported to be in the range 0 < P/(4,,f.) <0.15 for short-to-medium

height buildings (Priestley et al., 2007). For simple calculation it can be assumed that each
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wall resist 1~1.25% axial load ratio per story (Kowalsky, 2001). The axial load ratios used
in the parametric study are 0.02, 0.05, 0.1, 0.15 and 0.25.

e Wall boundary element longitudinal reinforcement ratio (p,): The flexural wall
reinforcement ratio, defined as the ratio of total longitudinal steel area (4;) in the boundary
element to the area of boundary region (4,,), in typical rectangular shear wall sections is in

the range 0f0.005 < p, <0.04. Four different values of boundary element reinforcement

ratio were used. These are 0.005, 0.01, 0.02 and 0.04. By changing the amount of flexural
reinforcement strength of the wall is adjusted to reflect different design strength reduction
factors (R).

e Concrete strength: For all the walls analyzed in the current study, concrete
compressive characteristic strength (f.) was taken as 25 MPa. Selection of this value can be
attributed to two reasons. First of all, since the result of this study is desired to be applicable
in the civil engineering industry, on the basis of the ready-mix concrete production statistics
of the recent years in Turkey, it was observed that grade C25 (f. = 25 MPa) concrete
compose more than 35% of the concrete production in recent years. In Table 1, Turkey
concrete industry’s production for last 8 years is given according to percentage of the
produced concrete grade with respect to total production.

Secondly, results of previous experimental and parametric studies (Lefas et al., 1990)
displayed that concrete strength has negligible influence on strength and deformation
characteristics of reinforced concrete structural walls governed by flexure and only minor
effect on walls under flexure-shear combined actions. Depending on the results of 13 large-
scale panel tests with varying concrete compressive strength Lefas et al. (1990) concluded
that the strength and deformational response of the walls were found to be independent of
the uniaxial concrete strength within a range of 30 to 55 MPa.

However, behavior of squat walls is governed by shear and Lefas and Kotsovos
(1990) stated that it is the strength of compressive zone that is the main contributor to shear
resistance and not the “cracked” concrete in regions subjected to predominantly tensile
stress conditions. In Chapter 2, the effect of concrete compressive strength was displayed
on the response of shear dominated squat wall. Nevertheless, since in a multi-story
reinforced concrete shear wall building or frame-wall buildings, the shear effects are not as
pronounced as in the experiments due to high aspect ratio (Hy/L,,), a single value can be

adopted for concrete strength.

183



Table 4.1 Turkey’s concrete production percentages for different concrete grades’

Cc14 C16-18 C20 C25 Cc30+ Total

Year (%) (%) (%) (%) (%) (%)
1998 24.4 454 18 8.1 4.1 100
1999 22.7 359 27.6 10.3 3.3 99.8
2000 11.5 25.1 41.3 13.2 4.9 96
2001 7 21.3 479 18 5.8 100
2002 5.9 21.1 46.9 19.2 6.9 100
2003 4.6 14.7 39.6 254 15.7 100
2004 3.3 10.3 40.6 30.7 15.1 100
2005 32 8.4 31.2 421 15.1 100
2006 2.92 7.66 35.09 36.56 17.77 100
2007 2.85 5.58 26.95 35.25 29.37 100

"Tiirkiye Hazir Beton Birligi, “2007 Yili Hazir Beton Sektorii Istatistikler”

44 PROTOTYPE FRAME-WALL STRUCTURE

In this section prototype frame-wall structure that is used to identify the static and
dynamic characteristics of structural walls and to display the limitations of the employed
analytical procedures is introduced. The general plan configuration shown in Figure 4.20(a)
is used for all the prototype frame-wall structures. The structure is composed of nine 3-bay
frames in the transverse direction and three 8-bay frames in the longitudinal direction. By
increasing the number of walls allocated into the central bay in the transverse direction
different frame-wall arrangements are obtained as shown in Figure 4.20. By this way
different wall indexes are obtained. Later using the stiffness properties of these buildings
single wall-equivalent frame models that depend mainly on a specific wall length and a
wall index is developed. The purpose is to reduce the size of the finite element models and
to create a workable framework for the parametric investigation as will be discussed in
detail in Chapter 6.

In this study shear wall of lengths 3, 5 and 8 meters were handled. The building
heights that were considered to determine the aspect ratio of the shear walls consists of 4, 8
and 12 story structures. The interstory height is considered to be constant along the height
of the building, which is 3 m.
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Figure 4.20 Plan view of frame-wall configurations

Assuming the dimensions of the columns are 0.6x0.6 m and the beams are 0.6x0.4 m,
the distribution of normalized shear force, moment and displacement distribution on wall
component of frame-wall structures for the combination of wall length and number of
stories is plotted in Figure 4.21 to Figure 4.23. Robust beam and column elements were
used to assure the desired frame-wall interaction develops effectively. Each graph contains
seven curves each represented with an aH value. The o term effectively characterizes the

dominant behavior mode of the frame-wall structures. aH values in the graphs are related
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to number of walls in the system, where in the descending order each value correspond to
the structural systems with 1, 2, 3, 4, 5, 7 and 9 walls. Although these figures display the
normalized results of linear static analyses with elastic properties (E.=25000 MPa) they
reveal very useful information about the likely distribution of forces and deformations on
structural walls of different properties. The following conclusions can be derived from
these figures.

o The maximum shear along the wall occurs at the base story under equivalent static
lateral load. More interestingly, for the same structural member configuration and plan, the
base shear ratio between the walls and frames changes only slightly (decreases) as the
number of stories increases. This can be explained in reference to model describing the
lower portion (below the contra flexure height of base story columns) of the frame-wall
model presented in Figure E.8 of APPENDIX E. Eq. (E.25) states that for the same level of
deflection at the contraflexure height the column shears should be same regardless of the
building height for structures with the same plan and member configuration and dimension.
The slight decrement in the shear ratio of frames and walls as the height increase is due to
shift in the location of contraflexure height and the change in the moment profile of the
walls.

. The walls are very effective in resisting lateral loads especially in 4-story buildings.
For example, two-8 m long wall or three- or four-5 m long walls are adequate to resist all
the shear force imposed on a building with nearly 800 m? floor area. This corresponds to a
wall index of 0.0025 approximately. 3 m long walls are not as much effective as 5 and 8 m
long walls in carrying lateral load. A linear distribution of shear force on the shear walls
can be assumed in such structures. For the structures with same plan and member
configuration and dimension, while the base shear carried by the wall relative to the total
base shear remains insensitive to the increasing number of stories, the effectiveness of walls
in carrying lateral loads in the upper stories significantly drops as the number of stories and
rigidity of frames relative to the walls increase.

o The relative strength of walls and frames should not be interpreted in terms of shear
calculated at the base of the structure since in systems where walls are weaker than frames
the wall shear may reduce rapidly as moved to upper stories. For mid-rise structures (4-15
stories high) where frames share more than 40% of the total base shear, the maximum
frame shear that occurs at mid-stories (2-5) may be 2 to 2.5 times larger than it is at the

base of the structure.
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Figure 4.21 Normalized shear force distribution on shear walls obtained from the analysis
of the prototype structure with L= 3, 5, 8 m (each column respectively) for 4-, 8- and 12-
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Figure 4.23 Normalized lateral displacement distribution on shear walls obtained from the
analysis of the prototype structure with L,= 3, 5, 8 m (each column respectively) for 4-, 8-
and 12-stories (each row respectively).
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o As the frame-wall interaction effects develop (as frames become stronger) the
inflection height on the walls drops. The moment and shear resistance of 3 m long walls
drops significantly as the building height increases, so it has to be disputed that shear wall
members with lengths shorter than 3 m should be considered as wall or not depending on
the height of the structure.
. The last columns of Figure 4.21, Figure 4.22 and Figure 4.23 tell that even minimum
amount of walls was provided in the system by using L,, = 8 m walls, they dominate the
entire force and displacement response of the system. This observation suggests that not the
quantity but the quality of the structural walls should be sought in the system to evaluate all
the necessary strength and deformation characteristics. For the values of aH parameter
smaller than 2, walls dominates the behavior of the system. For the values of aH parameter
larger than 6, frames dominates the behavior of the system.

Using Eq. (4.28) fundamental vibration period of prototype structures was calculated.
The results were plotted in Figure 4.24(a). After a limiting oH value, which is inversely
proportional to the wall index (p), estimated periods of frame-wall structures converge to
the values given by 0.IN at the upper bound. The formula predicted periods of prototype
structures were also compared with more exact values calculated in SAP2000 program by
employing the finite element models of the structures. As seen in Figure 4.24(b) both

predictions agree quite well.
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Figure 4.24 a) Fundamental period of prototype structures predicted using Eq. 4.28, b)
Comparison of periods predicted with Eq. 4.28 and calculated by using the finite element
method
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In Figure 4.25 relation between the wall index and the behavior factor aH is plotted
for different wall lengths and building heights. This figure suggests that the wall stiffness
(taken into account through wall length) is the primary factor affecting the global behavior
of frame-wall structures. As the aH decreases system behavior is governed by the walls.
The same base curve in the form of N.c.x” is used to define relation between the wall index
and behavior factor, where N is the story number. For particular wall length and plan
configuration coefficients b and c are constant regardless of the building height, where

height of the building is measured above the inflection height of the base story columns.
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Figure 4.25 Relation between the wall index (p) and behavior factor aH
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The data presented in Figure 4.26 represents different frame-wall structures that were
obtained by changing the dimensions of wall and frame elements in the plan shown in
Figure 4.20, so several structural system scenarios such as weak frame-strong wall and vice
versa were included. When more exact value of aH obtained by calculations is not
available, the average relation between the total flexural rigidity of walls in the system, E1,,
and aH for 4-, 8- and 12-story frame-wall structures derived under combination of different
beam, column and wall member rigidities and given in Figure 4.26 can be used. The
equations for the curve-fits to the data were classified according to the number of stories
(wall height).

To emphasize one more time, the purpose of this efforts is to draw the outline of the
procedure that allows structural walls to be analyzed in an isolated form yet taking into
account all the interaction effect such that the wall exists at their actual configuration in a

3D structure.
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Figure 4.26 The average relation between the total flexural rigidity of walls, £7,, in the
system and aH
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4.5 DESIGN OF WALL SYSTEMS FOR PARAMETRIC STUDY

In a parametric study, values of variables can be determined in one of two ways. The
values of a variable can be taken as either constant numbers ranging from minimum to
maximum values that can be possibly attained by the variable or the values required being
determined after a design process since they are affected by other variables of the system.
This study utilizes both methods in the determination of variable sets. For instance, the
effect of boundary element longitudinal reinforcement amount on the deformation capacity
of a reinforced concrete wall member can be calculated considering constant values of
volumetric ratio of longitudinal reinforcement such as g, = 0.005, 0.01, 0.02 and 0.04.
However, to obtain realistic estimation of seismic deformation demands on a wall structure
a relation between dynamic characteristics and strength requirements must be established
which requires particular reinforcement detailing application on wall. In frame-wall
systems the stiffness and strength must be proportioned systematically among wall and
frame components for the sake of reliability of obtained results. The strength assignments
of frame and wall components are achieved by using linear continuum theory.

A simple yet straight-forward design procedure, which incorporates the newly
derived formulation of frame-wall continuum model, is developed to quantify the seismic
shear force distribution among the wall and frame components of the generic frame-wall
models and to calculate the amount of flexural reinforcement at the boundary elements of
the walls. The procedure also establishes a relation between the wall index and the seismic
capacity of the structure so may answer the question for the minimum amount of shear
walls required to provide the necessary resistance to control the seismic drift demands.

Using the knowledge produced on dynamic and static characteristic of frame-wall
structures, variations in stiffness and yielding strength along the height of the generic single
wall-equivalent frame structure models are calculated. The static equivalent triangular
lateral load pattern specified in the Turkish Seismic Code (TSC, 2007) is used in the
loading of the continuum model. The yielding strength was distributed over the stories so
that all stories yield simultaneously under the static design earthquake forces.

The created frame-wall model is characterized by a particular wall index and
behavior factor, aH. The stages of model construction can be defined as follows

1. Select a wall length (L) and wall index (p).

2. Decide the number of stories (N).
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3. Compute the behavior factor (aH) using the selected wall index value and relations
presented in Figure 4.25.

4. Compute the period of vibration. The fundamental period of structure (T)) is
determined by utilizing Eq. (4.4) for isolated cantilever wall and Eq. (4.28) for frame-wall
structures.

5. For an assumed or given wall index (p) the floor area per wall is calculated as

Ay = pL,t,, for predetermined wall dimensions. In this study a constant wall thickness (t.)

that is equal to 0.25 m is adopted for all the rectangular walls.

6. The story masses are calculated on the basis of my = 4, .(1 t/m?).

The design procedure is described stepwise in the following sentences.

Step 1: Spectral acceleration coefficient

Using the calculated period based on uncracked section properties, spectral
acceleration coefficient, A4(7}), is calculated according to spectral shape given in TSC 2007
and assuming local site class Z3 (firm soil) in seismic zone 1 (Effective ground acceleration
coefficient, A, = 0.4).

Step 2: Total Equivalent Seismic Load

Total equivalent seismic load (base shear) acting on the entire frame-wall structure is

obtained by

WA

=R

(4.29)
where W is the total weight of the structure calculated as NAsw. Here N is the total number
of stories, Ar is the floor area per floor and w is the story weight per unit floor area with a
typical value of 1 t/m’. R is the seismic load reduction factor (structural behavior factor)
given as 6 and 7 for buildings in which seismic loads are fully resisted by solid structural
walls and seismic loads are jointly resisted by frames and solid and/or coupled structural
walls, respectively, for high ductility systems. For the sake of simplicity and consistency
among the analyses results, a constant R equal to 6 is adopted in this study for both
structural systems.

Step 3: Calculation of wall base bending moment and shear

Using the expressions derived for moment and shear in the new frame-wall

continuum model given in APPENDIX E, the share of the frames and walls from the total
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shear along the height of the structure is calculated. The total base shear (V;) is used to
calculate the magnitude of the triangularly distributed lateral load applied along the shear-
flexure beam model using Eq. 4.30.
2V.H
w = ﬁ (4.30)
(H - hcc)
Having all the necessary values (w;, V,= V,, aH, Ely) in hand, the bending moment at
the base of the wall can be calculated using the expression derived in APPENDIX E, which

18

V,sinh(aH)  V,hy. [ ah, sinh(aH,) + cosh(a)
a 3EI.f 2
- V:I [ahcc cosh(aH ) +sinh(aH,) - aH]
My, = a’H (4.31)
heeB . heeB
1-—=— |ah,. sinh(aH,)+|1- cosh(aH,)
4EI,f 2EI,f

After calculating moment at the base of the wall we have all the necessary
information to calculate the force and displacement quantities along the height of the

building. The shear force on the wall components can be calculated using

V = MBoﬂhczc _ Vohc}’c
Y 2fEI,  3fEI

(4.32)

Distribution of shear force among the frame and wall components of a dual system is
not constant in all stages of the nonlinear seismic action. As displayed in Figure 4.27 the
redistribution of base shear between the frame and wall components of a dual system
changes with the impending inelastic actions, such as cracking, yielding that takes place in
each primary lateral load resisting components (Emori and Schnobrich, 1981). The
reduction in the wall base shear may constitute an amount of 10-15 % after cracking and
30-50% after yielding of the walls with respect to initial elastic state base shear distribution.
This situation may cause problems especially in dual systems where frames contributes to
the overall lateral resistance more than 25% since they are not designed for this excess
shear force arising after redistribution of forces. So, for such systems in the calculation of

member forces and moments cracked section stiffness should be used.
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Figure 4.27 Redistribution of base shear between wall and columns of frame-wall structure.

Step 4: Design bending moment envelope

After the frame and wall shears and wall moment at the base of the structure is
determined, using the principles of capacity design method reinforcement detailing and
strength assignment of wall and frame components can be achieved.

Considering the moment demands that arise during the dynamic response, a linear
bending moment envelope is recommended to be used in design rather than bending
moment diagrams resulting from code-specified equivalent lateral forces as shown in
Figure 4.28 (Paulay and Priestley, 1992). This takes into account the contribution of higher
modes to the bending moment along the wall. Additionally from the base of wall in a region
that has a height equal to wall length L, a constant moment distribution is assumed
considering the tension shift effect.

Due to uncertainty in the material strengths and strain hardening behavior of vertical
flexural reinforcement, the maximum flexural strength, M, that could be developed in the
walls has to be anticipated. The overstrength moment (M,) develop at the base of the wall,
should be taken into account as AMy, where A is the overstrength factor due to strength
enhancement of the constituent materials. This is an important property that must be
accounted for in the design when large ductility demands are imposed on the structure. As
higher resistance will be offered by the structure than anticipated when design forces were
established, it is expected that ductility demands will reduce (Paulay and Priestley, 1992,
Amaris, 2002).
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The height of critical region, H,, above the base of the wall may be estimated as

H
H, = max[Lw,Tw} but not greater than 2L,,. It is also recommended that the critical wall

height should not be less than one story height, h, for structures less than 6 stories and 2hg

for structures higher than 7 stories.

Nominal minimum

a)

Assumed moment
variation

Minimum ideal
moment of resistance
required in design

Moment due to
static lateral

forces
H,,

| Mg =My | l Mg=Mx

Base moment at M, =X My
ideal strength

Figure 4.28 Design envelope for bending moments in slender cantilever walls a) Based on
design moment equal to nominal moment, recommended by EC8 and TSC 2007 design
codes b) Considering the material overstrength (1), Paulay and Priestley (1992).

Step 5: Calculation of flexural reinforcement at the boundary

The moment distributions given in Figure 4.28 should be also used for the
curtailment of the vertical reinforcement. The demand for flexural reinforcement in a
cantilever wall is not proportional to the bending moment demand, because axial
compression is also present. Even the amount of flexural reinforcement is maintained
constant with height, the flexural capacity of the section will reduce with height because the
axial compression effects become smaller. Following formula can be used to calculate the

moment capacity of rectangular walls designed according to TSC 2007.

M., =(182850L, —411610)p, +(1300L,, - 2750)(16.872Pi +0.751) (4.33)

o
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where the units of M,,, is kN-m and L,, is m. For this formula to be valid, it was assumed
that the length of boundary elements is 0.2L,, at the edges and flexural reinforcement was
distributed uniformly in the boundary element. The percentage of vertical web
reinforcement is a constant value equal to minimum value 0.0025 and concrete compressive
strength is 25 MPa. Thickness of the wall was assumed to be 0.25 m.

Using the design bending moment calculated with Eq. (4.31), and since the length of
the wall element is known, the detailing of the main flexural reinforcement in the boundary
element all along the height can be achieved easily.

Turkish earthquake code states that the ratio of the flexural reinforcement at the
boundary edge regions to the gross sectional concrete area should be larger than 0.001. This
value is 0.002 in the critical height. If the boundary element length is assumed to be 0.2L,,
then this limitation produces a longitudinal reinforcement ratio of 0.01 in the boundary
column, which corresponds to the minimum reinforcement requirement in columns.

Step 6: Shear Safety of Structural Walls

In TSC 2007 and Eurocode8 shear forces obtained from the analysis (V) is amplified
with a factor of £,=1.5 to account for possible increase in shear forces after yielding at the
base of primary seismic wall due to higher mode effects. TSC 2007 also requires an
increase in the design shear force considering the increased moment capacity due to
material over strength as described in Step 4 and Figure 4.28. The over strength factor is
calculated as the ratio of the flexural strengths of sections at the ultimate to the yield
curvatures (A = My/M,). The design shear force V. satisfying the specified requirements is

calculated as

Ve =B, AV, (4.34)

The factored design shear force will be smaller than the shear strength of wall cross

sections, V;, calculated by Eq.(4.35).

V, = A4(0.65 foig + P fra ) (4.35)

The amount of shear reinforcement satisfying the condition V, > V, is calculated with
specified material strengths.

Step 7: Reinforcement Requirements at Wall End Zones

In TSC 2007 the amount of transverse reinforcement for the confinement of boundary

elements at wall end zones along the critical wall height is calculated with
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t
A, =005 twSet (4.36)
vtk
Vertical spacing of hoops and/or cross ties shall not be more than half the wall

thickness and 100 mm, nor shall it be less than 50 mm.

4.6 FINITE ELEMENT MODELING OF STRUCTURAL WALLS
4.6.1 Generic Frame-Wall Model

While for linear analysis the continuum shear-flexure beam model yields satisfactory
result, to carry out the nonlinear analysis the continuum is required to be descriticized with
finite elements. A discrete nonlinear type of simplified frame-wall models presented in
Figures 4.4 and 4.15 is developed for the finite element analysis. The developed finite
element model of a typical frame-wall system is displayed in Figure 4.29. The model is
composed of solid, beam, mass and constraint elements. The wall component is modeled
with SOLID65 elements. The reinforcement is assumed to be smeared in the element
volume. In Figure 4.29 the different colors at the edge regions of the wall represent the
confined boundary elements. The slab extrusions (flanges) at story levels were modeled to
take into account the shear mechanism that develops in shear dominated walls (especially
ones with larger wall length, L,)) due to interruption of shear flow by the slabs.

The link beams that transmit significant amount of moment on walls, especially as
the building height increases, were also modeled. An equivalent moment-curvature relation
that takes into account the extra moments transferred on wall due to actual beam end
moments and produced by shear couples from tension and compression sides of the wall
were assigned for the behavior of these beams. The beams were assumed to be axially rigid
and no shear deformation was considered.

Each story was modeled with column elements with idealized story distortion angle-
shear force relation. Although beam elements (BEAM188) were used to model columns of
the frames, they are shear springs actually.

MASS21 elements were used to assign appropriate masses at the story levels. In
vertical the masses were adjusted to yield a vertical load ratio of 1.25% per story. The
horizontal mass is calculated by multiplying the tributary area of a single wall and

equivalent frame model shown in Figure 4.29 with 1 t/m”. The tributary area is calculated
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as a function of af-p relation presented in Figure 4.25. The procedure was explicitly
defined in Section 4.4.

When both solid continuum elements and beam elements were used at the same time
in the model, transition between these elements leads problems. Many times a spider web
of line elements or constraint equations was used to simplify the transition between the
solids and beams. In ANSYS beam and link elements work well for large rotations, but real
constants should be applied to input large stiffness values as well as cross sectional and
inertia properties. The MPC184 elements use the beam/link approach, but take care of the
stiffness and cross sectional properties automatically. The MPC184 elements are created
between a “master” node in space, typically where the link beams frames to wall, and the
desired nodes on the solid elements of the wall. There are two options for MPC184: rigid
link behavior (default, translational DOFs only) and rigid beam behavior (translational plus

rotational DOFs). Rigid beam option is utilized.

MAREZ]
, o—elements

MFPC1E4
elements —*

SOLIDAS
elements

BEAMI1ES
f,f&lements

\

Close-up view

Figure 4.29 Finite element model of the generic frame-wall model
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4.6.2 Member Force-Deformation Models

Since the material properties of solid elements were input in the form of stress-strain
curves no additional data is required to define the wall behavior. The definition and
properties of input material were discussed in great detail in Chapter 2.

To define the behavior of beam elements generalized nonlinear section properties
was used. By this way the load deformation behavior of beam elements can be assigned in
the form of force-distortion angle (F-») or moment-curvature (M-¢) relation. For the link
beams a bilinear moment-curvature relation, as shown in Figure 4.30, was used. The yield

curvature of link beams is calculated by the relation given by Priestley et al. (2007),

y
Ppy = 1.7Z (4.37)
where ¢, is the yield strain of the reinforcement and 4, is the depth of the beam. For the
materials and geometries adopted in this study (g, = 0.0021 and 4, = 0.6 m) beam curvature
at yield takes the value of 0.006 rad/m approximately, which also agrees with the moment-
curvature analyses of typical beam sections. The yield moment of beams (}4,) is obtained
from the elastic analyses of the model structure under code base shear demand distributed

as triangular load over the height of the structure.

0.01EL,

Ely

"¢
&y = 0.006 rad/m

Figure 4.30 Idealized moment-curvature relation of link beams

The story distortion angle (story drift) — shear force relation is idealized with a

trilinear skeleton curve as displayed in Figure 4.31. The first bent represents the effect of
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the cracking and the second one yielding of the story. Analyses results of typical frame—
wall structure indicate that yielding of walls and the frames occur at different levels of
lateral drift. Priestley (2003), from analysis of typical reinforced concrete beam sections,
stated that the current design practice, which assumes beam stiffness is equal to a constant
fraction of gross section stiffness, is inappropriate, since effective beam yield curvature can
be considered constant, when non-dimensionalized by beam depth and yield strain,
indicating that beam stiffness is proportional to strength. A simple expression for yield
drift of frames, 6,rume, Was proposed and was calibrated by comparing with results of a
large number of beam/column sub-assemblage experiments. The frame yield drift is given
as,

0.5,¢,

= 4.38
yFrame hb ( )

where /, is the average beam length and /4, is the average depth of the beams at the level of
interest. The global yield displacement of the structures is largely determined by the
yielding of beams. As given above, yield displacement of beams depends on their span,
member depths, and material properties.

When typical values were used (&, = 0.0021, #, = 0.6 m, /[, =5 m) Eq. (4.38) yields
story drift of 0.875%. Aschheim (2002) based on the capacity curves of 4-, 8-, 12-, and 20-
story reinforced concrete frames designed presented by Gupta and Kunnath (2000) stated
that the roof yields drift range between 0.5 and 0.6% regardless of the number of stories.
For the story rotational angle (interstory drift ratio) at yielding a value equal to 0.67% was
adopted by Kongoli et al. (1999) as proposed by Akiyama (1987).

In the light of this discussion, the characteristics values used to define the skeleton
story drift-shear curves were fixed. The yield story distortion () was assumed to be 0.75%
and the cracking was assumed to take place at an angle of 0.075%. The cracking load
assumed to be 1/3 of the story yield shear. The characteristics values used to define the
force-deformation behavior of frames and link beams was assigned on the basis of lateral
static earthquake load analysis specified in TSC 2007. The yield strength was distributed
over the stories so that all would yield simultaneously under the static design earthquake
forces. Distribution of the initial elastic stiffness over the stories was determined so that all
would undergo the same yield deflection (drift angle at yielding was set at 1/150) under the
specified design load.
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The parameters of the shear force-drift relation were input via generalized beam cross
section as in the case of link beams. For dynamic analysis, a vertex oriented hysteresis
model (while reloading targets yield drift or distortion) was used for both link beams and

story shear beams.
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Figure 4.31 Idealized story shear-story drift (distortion) relation

4.6.3 Isolated Wall models

As emphasized many times at different places of this chapter, isolated wall models
are the primary research tools in experimental and analytical investigation of structural
walls despite the limitations of the model. Cantilever models of structural walls composed
of solid finite elements was created. The models were displayed in Figure 4.32(a). A
reduced model, which is computationally efficient, was developed and used in analyses to
investigate the relation between the local and global deformation demands. In this model by
adjusting the lever arm of the applied shear force different moment-shear ratios can be
obtained. Changing the primary variables such as the steel amount, axial load ratio and
aspect ratio of the walls analyses can be conducted. The model is displayed in Figure
4.32(b).

Each model developed here is intended to be used in different types of analyses for
different purposes. The developed wall finite element models and the purpose of their

development can be summarized as follows.
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Generic frame-wall model: This model is used in time history analyses to investigate
the seismic deformation demands under code specified seismic actions. The model allows
realizing all the frame-wall interaction effects in the analyses.

Isolated wall model: The simplified mechanical models of cantilever walls are used
widely to estimate global drift demands. Local curvature demands are related to global
ductility and strains. The reliability of such procedures is validated by using this model.

Reduced wall model: This model is used in parametric studies to investigate the
relation between the wall drifts, section rotations and curvatures, since it is computationally

efficient model.

Figure 4.32 Finite element models of cantilever walls
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CHAPTER 5

PERFORMANCE LIMITS OF STRUCTURAL WALLS

5.1 INTRODUCTION

Provisions for performance assessment of reinforced concrete structures, such as
FEMA356 and ASCE/SEI 41, include modeling parameters and numerical acceptance
criteria for both flexure and shear controlled wall members at specific limit states to
estimate the performance of components and structures. The criteria are defined in terms of
plastic hinge rotations and total drift ratios for the governing behavior modes of flexure
(ductile members) and shear (brittle members), respectively. Strain limits are defined for
concrete in compression and steel in tension at serviceability and damage-control limit
states as a vital component of direct displacement-based design procedures (Priestley et al.,
2007). The recently revised Turkish Seismic Code (TSC, 2007) specifies limiting strain
values associated with different performance levels. On one side deformations are specified
in relation to global parameters, and on the other side local damage indicators in terms of
strain limits are used to determine the expected performance. When results of nonlinear
pushover analyses are evaluated according to either of the acceptance criteria whether the
local and global response will imply similar performance states is a matter that must be
established because calibration of the requirements is lacking.

Another criticism raised against the rotations associated with different limit states is
that they are lower than the actual rotations expected to develop in actual reinforced
concrete sections. So, it is postulated that the given limits may be unduly conservative. In a
way this is a direct consequence of adaptations performed for the plastic hinge analyses
method employed in the codes. Since in daily application of structural analysis the moment-

curvature relation of a section is calculated with section analysis method using the plane
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section hypothesis, the limiting plastic rotations in codes were adjusted to conform to the
resulting plastic rotations calculated by multiplying the assumed plastic hinge length and
plastic curvature rather than the actual rotations. These problems will be investigated in this
chapter that forms the crux of this dissertation. The principal tool is the nonlinear finite
element analysis for reinforced concrete structural components that has been thoroughly
verified by the benchmark problems presented in Chapter 2. An extension is made to
dynamic response calculations in Chapter 6. This chapter deals with statically applied

monotonic effects only.

5.2 CODE PERFORMANCE LIMITS

5.2.1 FEMA 356 Performance Limits and Proposed ASCE/SEI 41 Revisions

A performance level describes a limiting damage condition which may be considered
likely to be brought into concrete existence for a given building under seismically induced
deformations. In FEMA 356 (2000) three discrete Structural Performance Levels and two
intermediate Structural Performance Ranges are defined as shown in Figure 5.1 to identify
the performance level of a building. Limiting values of modeling parameters and numerical
acceptance criteria are specified to determine the performance. The discrete Performance
Levels are Immediate Occupancy (1O), Life Safety (LS), and Collapse Prevention (CP).
The intermediate Structural Performance Ranges are designated as Damage Control Range
and the Limited Safety Range. Acceptance criteria for performance within the Damage
Control Structural Performance Range are to be obtained by interpolating the acceptance
criteria provided for the Immediate Occupancy and Life Safety Structural Performance
Levels. Acceptance criteria for performance within the Limited Safety Structural
Performance Range are obtained by interpolating the acceptance criteria provided for the
Life Safety and Collapse Prevention Structural Performance Levels.

As indicated in Figure 5.1, at the Collapse Prevention level (CP) member deformation
capacities are taken at ultimate strength (CEB, 1997) or at lateral displacement demand at
which the lateral force resisting capability of the structure begins to rapidly degrade
(Hamburger, 1997) for primary components. At the Life Safety level (LS), member
deformation capacities are reduced by a (safety) factor of 4/3 over those applying at

Collapse Prevention.
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Figure 5.1 Structural Performance Levels

FEMA 356 states that monotonic load-deformation relationships for analytical models
that represent shear walls and wall elements should be in accordance with the generalized
relation shown in Figure 5.2. Depending on the behavior modes of shear walls different
displacement criteria are used for the evaluation of the deformation capacity of shear walls.
For walls having inelastic behavior under lateral loading that is governed by flexure, the
rotation (&) over the plastic hinging region at the end of member will be used as shown in
Figure 5.3(a). The figure defines the behavior under monotonically increasing
deformations. The hinge rotation at point B in Figure 5.2 corresponds to the yield point &,

and shall be calculated in accordance with

0 - (ﬂjL 5.1)
y ECI p '

M, = yield moment capacity of the shear wall or wall segment

where:

E. = concrete modulus
I = member moment of inertia for cracked section
L, = assumed plastic hinge length
For reinforced concrete components, equivalent plastic-hinge length can be assumed
as equal to one-half the member depth (Park and Paulay, 1975). FEMA 356 states that the

value of L, shall be set equal to 0.5 times the flexural depth of the element for analytical
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models of shear walls, but less than one story height. A similar estimate is applied to walls
in Section 6.8.2.2 of FEMA 273 (1997), where L, is “set equal to one half the flexural
depth, but less than one story height.” The 1997 UBC (ICBO, 1997) states that L, “shall be
established on the basis of substantiated test data or may be alternatively taken as 0.5L,.”
Based on research specifically applicable to walls, the equivalent plastic-hinge length, L,
can be set at 0.2 times the wall length, L, plus 0.07 times the moment-to-shear ratio (also
known as shear span), M/V (Paulay and Priestley, 1992). Equivalent plastic-hinge length,
as calculated above, is used to relate plastic curvature to plastic rotation and tip
displacement. The actual zone of nonlinear behavior may extend beyond the equivalent

plastic-hinge zone.
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Figure 5.2 Generalized component force deformation relations for concrete elements
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Figure 5.3 Deformation types of shear walls
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For shear walls whose inelastic response is controlled by shear, the x-axis defining
the load-deformation relation in Figure 5.2(b) will be taken as the lateral drift. For multi-
story shear walls the drift shall be the story drift.

Values for the variables a, b, ¢, d and e, that are required to define the location of
performance points C, D, and E in Figure 5.2(a) and Figure 5.2(b) , are given in Table 6-18
and Table 6-19 in FEMA 356. Table 5.1 and Table 5.2 summarize these modeling
parameters and numerical acceptance criteria for flexure and shear controlled shear walls
and wall elements, respectively. FEMA 356 adopts the ACI 318 (2008) requirements for
the definition of a confined boundary. Linear interpolation between tabulated values shall
be used if the member under analysis has conditions that are between the limits given in the
tables. To eliminate the difficulties with the linear interpolation, the following functions
have been derived to calculate the plastic hinge rotation limits related to each performance
level for both conforming and nonconforming members whose response is controlled by

flexure.

Immediate Occupancy:

P
Conforming members 6, =0.007875 - 0.015; —0.005v (5.2a)
P
Nonconforming members 6, =0.002667 — 000667; (5.2b)
Life Safety:
P
Conforming members 6, =0.01575 - 0-03P— —-0.01v (5.32)
P
Nonconforming members Hp =0.006417 -0.01667 P_ —0.002v (53b)
Collapse Prevention:
P
Conforml'ng members Hp =0.023-0.03667 P_ —-0.018v (54a)
P
Nonconforming members 6, =0.01225 - 0-03P— —0.006v (5.4b)

o

In the above equations, P/P, is the axial load ratio and v is the member maximum
average shear stress normalized with respect to / f. calculated as

|4
max (55)

Lol fe

v =
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where V. is the maximum shear force carried by the member. Since the knowledge
inherited in normalized shear stress expression given in Eq. (5.5) covers the parameters that
affect the wall response significantly, normalized shear is a useful parameter that

discriminates the distinct behavior modes of wall response.

Table 5.1 Modeling Parameters and Numerical Acceptance Criteria for Nonlinear
Procedures-Members Controlled by Flexure

Plastic Hinge | Residual | Acceptable Plastic Hinge
Rotation strength | Rotation (radians)
(radians) ratio Performance Level
a [ b c 10 | LS [ cp
Shear walls and wall segments
(As - A.v')fy +P Shear Confined
7% I fc' ol o boundary
<0.10 <0.25 Yes 0.015 | 0.020 0.75 0.005 0.010 | 0.015
<0.10 >0.50 Yes 0.010 | 0.015 0.40 0.004 0.008 | 0.010
>0.25 <0.25 Yes 0.009 | 0.012 0.60 0.003 0.006 | 0.009
>0.25 >0.50 Yes 0.005 | 0.010 0.30 0.0015 | 0.003 | 0.005
<0.10 <0.25 No 0.008 | 0.015 0.60 0.002 0.004 | 0.008
<0.10 >0.50 No 0.006 | 0.010 0.30 0.002 0.004 | 0.006
>0.25 <0.25 No 0.003 | 0.005 0.25 0.001 0.002 | 0.003
>0.25 >0.50 No 0.002 | 0.004 0.20 0.001 0.001 | 0.002

Table 5.2 Modeling Parameters and Numerical Acceptance Criteria for Nonlinear
Procedures-Members Controlled by Shear

Total Drift | Residual | Acceptable Total Drift
Ratio (%) strength | Ratio (%)
ratio Performance Level
d | e c 10 | Ls | cp
Shear walls and wall segments
All shear walls and wall segments | 075 | 20 | 040 | 040 | 060 | 0.75

A newly completed standard, ASCE/SEI 41-06 (2006), Seismic Rehabilitation of
Existing Buildings, proposes changes to acceptance and modeling criteria for walls
controlled by both flexure and shear in FEMA 356 (2000), and aims to enhance the
accuracy and reliability of wall provisions. The main goal of the proposed changes to wall
provisions of ASCE/SEI 41 (Section 6.7) was to update the modeling and acceptance

parameters for walls to make them more consistent with experimental results (ASCE/SEI
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41-06 update, 2007). For shear dominated wall members the proposed changes include
subdividing the one category in FEMA, which encompasses all walls regardless of axial
load, into two categories; one for walls with low axial loads and another for walls with
significant axial load demands. For flexural walls the values for parameters a and b
specified in Tables 6.18 and 6.20 in FEMA 356 were found to be very conservative
(EERI/PEER, 2006) compared with experimental results on walls subjected to intermediate

levels of shear stress (between 0.25,/f. and 0.4,/ f. , MPa). The limiting average shear

c

stress was increased from 0.25,/f. to 0.33,/f., MPa to obtain a better match with

¢
experimental results (ASCE/SEI 41 update, 2007).

Using the results of recently completed experimental research (Hidalgo et al., 2002,
EERI/PEER, 2006) ASCE/SEI Committee proposed changes to acceptance and modeling
criteria for walls controlled by shear. While FEMA 356 classifies all shear controlled
members in one category as given in Table 5.2, ASCE 41 subdivides shear-controlled walls
into two categories; one for walls with low axial loads and another for walls with
significant axial load demands as given in Table 5.3. Depending on very limited number of
experimental studies (EERI/PEER, 2006), it was decided that for axial loads equal to or
greater than 0.05f:’Ag shear controlled wall members exhibit reduced deformation and
residual strength capacity. The backbone curve in Figure 5.2(b) used to model shear
controlled members is replaced by the load deformation relationship given in Figure 5.4.
The gradual degradation in the stiffness of shear controlled wall members was taken into
account more realistically by this modification as investigated for the NUPEC wall

specimen in Section 2.7.2.

Table 5.3 Modeling Parameters and Numerical Acceptance Criteria for Nonlinear
Procedures-Members Controlled by Shear as proposed in ASCE/SEI 41

Total Drift Ratio (%) | Strength Acceptable Total
ratio Drift Ratio (%)
Performance Level
d | ¢ | g c | f ] 10 | Ls [ cpP
Shear walls and wall segments
A~ A)f, +P
%suos 10| 20 | 04 | 02 ]06]| 04 | 07510
tW wJc
(As - As')fv +P
T>O.OS 075 | 1.0 0.4 0.0 | 0.6 0.4 0.55 | 0.75
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Figure 5.4 Modified load-deformation relationship for members controlled by shear in
ASCE/SEI 41.

5.2.2 TSC 2007 Strain Limits

Turkish Seismic Code (2007) specifies strain limits to evaluate the performance of
reinforced concrete members. Depending on the analysis tool, concrete compression and
steel tension strain demands at a member section extreme fibers can be obtained directly (if
the fiber section modeling technique is used) or must be transformed from member
sectional rotations, which are obtained from pushover analyses or time history analyses (if
generalized load-deformation models were used in the member modeling). When the later
case holds the plastic rotations obtained at the member plastic hinge locations are used for
calculating the plastic curvature demands at these critical sections followed by the

calculation of total curvature, ¢, by adding the yield curvature, ¢,.
¢p=_p; ¢t=¢p+¢y (56)

Concrete compressive strains and steel tensile strain demands corresponding to the
calculated total curvature demand at the plastic regions are calculated from the moment-
curvature diagrams obtained by conventional sectional analyses of the critical section.
Moment-curvature diagrams of the critical sections are obtained by using appropriate
stress-strain rules for concrete and steel. Finally, the calculated strain demands are
compared with the damage limits given below to determine the member damage states.

Concrete and steel strain limits at the fibers of a cross section for minimum damage

limit (MN)
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(&cu)mn = 0.0035 ; (e)vn =0.010 (5.7)
Concrete and steel strain limits at the fibers of a cross section for safety limit (SF)
(8cg)sr = 0.004 +0.0095 (py/psm) < 0.0135 ; (&5)sk = 0.040 (5.8)
Concrete and steel strain limits at the fibers of a cross section for collapse limit (CL)
(ecg)c = 0.004 +0.013 (py/psm) < 0.018 ; (&5)cL = 0.060 (5.9)

In Egs. (5.7) to (5.9), €. 1s the concrete strain at the outer fiber, &, is the concrete
strain at the outer fiber of the confined core, ¢ is the steel strain and (p/ps,) is the ratio of
existing confinement reinforcement at the section to the confinement required by the Code.
In a radical break with tradition TSC has annexes that explain to code users how concrete
and steel may be modeled by referring to particular material formulations. This approach is
excessively vulnerable to improper treatment of different models by engineers who are not
adequately familiar with nonlinear response of reinforced concrete components.

The limits utilized in TSC (2007) are mostly based on the studies and proposals of
Priestley and his colleagues (Priestley et al., 2007). Priestley et al. (1996 and 2007)
proposed strain limits for tension and compression in relation to serviceability and damage-
control limit states to be used in moment-curvature analysis. Damage-control limit state
corresponds to the collapse prevention performance level in TSC (2007) and will be
discussed further in detail here since the evaluation of finite element analysis results
depends significantly on these limits.

a) Damage-Control Tension Strain Limit: Priestley et al. (2007) suggest that it is not
appropriate to use the &, the strain at maximum stress of the reinforcing steel found from
monotonic testing, as the maximum permissible tension strain for moment-curvature
analysis. The reasons are:

e Under cyclic loading, the successive compressive and tensile reversal causes a
reduction in the effective ultimate tensile strain that will be attained by the bar at
failure.

e Reinforcing bars subjected to high tensile strains prior to compressive loading become
more susceptible to buckling. This buckling typically occurs before the previously
developed flexural cracks are closed, and while the bars are still subject to tensile strain
but compressive stress. This endangers low-cycle fatigue of the reinforcing bar at levels

of tensile strain significantly below &,
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e Finally, slip between the reinforcing steel and concrete at the critical section, and
tension-shift effects result in reinforcement strain levels being lower than predicted by a
“plane section” hypothesis.

Based on these considerations, the ultimate curvature of the section analyzed should
be based on a steel tension strain limit of & = 0.6&,.

b) Damage-control Compression Strain: Priestley et al. (2007), assuming that the
useful limit for confined concrete in compression is determined by the fracture of the
transverse reinforcement confining the core derived the following expression by equating
the strain energies of the concrete and confining steel absorbed in a unit volume of core

concrete.

1 ~4ps fngsu

£, =0.004+ (5.10)

cc

The equation was defined previously in APPENDIX C while explaining the Mander
et al.’s (1988) concrete model. In the equation f,,, is the yield strength of transverse steel, p;
is the volumetric ratio of boundary element transverse reinforcement, f;. is the compressive
strength (peak stress) of confined concrete. Priestley et al. (2007) state that although Eq.
(5.10) is approximate, it agrees well with the ultimate compressive strains measured in
experiments (Mander et al., 1988). They state that the actual effective ultimate compression
strains under combined axial force and flexure exceeds the predicted values by a factor of
about 1.3 to 1.6. This degree of conservatism was found to be satisfactory for structures

designed for damage control limit state.

5.2.3 Concrete Strain Limits in Reinforced Concrete

At this point it is useful to discuss concrete strain limits allowed in design and
assessment of reinforced concrete structures.

In UBC 1997 it was declared that under no circumstances should designs be
permitted in which compressive strains exceed 0.015. In portions, where compressive
strains exceed 0.003, boundary zone requirements shall be met.

ACI 318-02 states in Section 10.2.3 that for members under axial load and flexure
maximum usable strain at extreme concrete compression fiber shall be assumed equal to
0.003. Moreover, in the accompanying commentary it was noted that from tests it is

observed that e varies from 0.003 to higher than 0.008 under special conditions. It was
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also cautioned that, the strain at which ultimate moments are developed is usually about
0.003 to 0.004 for members of normal proportions and materials.

While defining usable compressive strain limits for components without confining
transverse reinforcement under flexural and axial loads, FEMA 356 defines the maximum
strain at the extreme concrete compression fiber as 0.002 in nearly pure compression and
0.005 for other types of stress states unless larger strains are substantiated by experimental
evidence and approved. For confined concrete, in the determination of maximum usable
compressive strains the limits should conform to the limitations imposed by fracture of
transverse reinforcement, buckling of longitudinal reinforcement, and degradation of
component resistance at large deformation levels. Maximum compressive strains in
longitudinal reinforcement shall not exceed 0.02, and maximum tensile strains in
longitudinal reinforcement shall not exceed 0.05.

In previous studies, a limiting compressive strain of 0.004 has been suggested
(Paulay, 1986; Wallace and Moehle, 1992) for no special transverse reinforcement required
to confine concrete and found to yield favorable comparison with the test results of isolated
walls. At this strain, only a minor deterioration in the cover concrete at wall boundary was
reported (Wallace and Moehle, 1992). In addition, no effect of this deterioration on the
overall structural integrity is noted. Therefore, Wallace (1995a), states that if the maximum
wall compression strain is less than 0.004, no special transverse reinforcement may be
required for concrete confinement. It is clear that, the maximum fiber strain at the
extremities of a wall will be function of the displacements induced by earthquake ground

motion excitation.

53 METHOD OF ANALYSIS TO INVESTIGATE THE PERFORMANCE
LIMITS

5.3.1 Finite Element Model and Parameters of the Analytical Investigation

5.3.1.1 Parameters

Within the analytical framework described in the previous chapter, the results from a
parametric study conducted to determine the relation between the local and global
deformation demands will be presented here. The idealized cantilever models described in

the previous chapter were used in the analyses. The variables of the parametric study have
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been also discussed in Chapter 4 and are summarized below. The schematic description of
these variables is given in Figure 5.5. The parameters are

e Wall length (Ly): 3 m, 5 m and 8 m.

e Effective shear span (Ly): Sm, 6 m, 9 m, 15 m, 24 m.

e Wall boundary element longitudinal reinforcement ratio (py): 0.5, 1, 2, 4 percent.

e Wall axial load ratio at the base (P/f./Ay): 0.02, 0.05, 0.1, 0.15, 0.5.

Po

P/f/A, ¥ _\\1 L

i "

Figure 5.5 Illustration of variables of the parametric study

In the design of walls that were used for the parametric study, the design procedure
defined in Section 4.4.1 was employed. Concrete strength was taken as 25 MP for all cases.
Wall boundary elements were assumed to extend over a region of 0.2L, at the edges. For
any given combination of above parameters the wall yield moment (My,) is calculated
using Eq. (4.33), where the section yield capacity is only function of wall length (L), ratio
of boundary element longitudinal reinforcement area to the boundary region cross section
area (pp) and axial load ratio (P/P,). In the following step, using the specified shear span
length (L,) the design shear force is calculated (V¢&=M,y/ L, ). The ratio of the horizontal
and vertical web reinforcement is assumed to be nominally 0.0025. If the factored shear
force (Ve=AV4) exceeds the shear safety limit calculated with Eq. (4.35), the required
amount of web horizontal reinforcement is recalculated employing the same equation.
Since codes specify that the amount of vertical reinforcement should not be less than the

horizontal reinforcement in the web, the same steel ratio of web reinforcement is used in
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the vertical as well. The design shear force is factored only for flexural over-strength. The
amplification in the base shear due to higher mode effects was disregarded. Base shear

amplification is studied in the following chapter.
5.3.1.2 Boundary element confinement

The deformation capacity of structural walls is controlled by the level of confinement
in the boundary elements. TSC (2007) and ACI 318-08 (2008) calculates the amount of
transverse reinforcement that is required at the wall boundaries with similar expressions.

The expression in TSC was given in Eq. (4.36) as 4, =0.05s bcfck/fytk . This is 2/3 of the

amount of transverse reinforcement used to confine the column elements. The same
equation with a multiplier of 0.09 is given in ACI 318. In the models analyzed here the
boundary region length were taken as 0.2L,, and the thickness of the walls as t, = 250 mm
(b, = 200 mm). The yield strength of the longitudinal and transverse reinforcement was
assumed to be 420 MPa. The boundary element transverse reinforcement calculated
according to TSC was ¢8/150 (assuming f, = 420 MPa). Since TSC states that vertical
spacing of hoops and/or crossties shall not be more than half the wall thickness and 100
mm, nor shall it be less than 50 mm, as transverse reinforcement $8/100 is used. If the ACI
318 had governed the design, ¢$8 hoops at 85 mm spacing would have been required as
confinement steel at the boundary elements. In conclusion wall boundaries can be
considered as well confined for TSC and adequately confined for ACI 318. Obviously
confinement should be considered among the variables of the parametric study, but since
this would increase the analysis permutations significantly, the study will be limited to
confined members.

It has been recently reported (ASCE/SEI41, 2006) that behavior of walls not fully
conforming to ACI 318 is adequately represented by modeling and acceptance criteria for
conforming elements in Tables 6.18 (Table 5.1) and 6.20 of FEMA 356. ASCE/SEI 41 has
revised the definition of a confined boundary from that having transverse reinforcement
conforming to ACI 318-08 to include boundary elements in which the amount of transverse
reinforcement exceeds 75% of that required in ACI 318-08, and spacing of transverse
reinforcement does not exceed 8, for the purpose of evaluating the behavior of walls. In
the proposed changes it also is permitted to take modeling parameters and acceptance

criteria as 80% of confined values where boundary elements have at least 50% of the
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requirements given in ACI 318, and spacing of transverse reinforcement does not exceed
8db. Otherwise, boundary elements must be considered as not confined.

The stress strain curves of the confined concrete for different vertical reinforcement
and boundary length combinations are given in Figure 5.6. As seen in the figures the
modified Kent and Park model (1982) indicates a lower deformability at the wall
boundaries. Although the Saatcioglu and Razvi (1992) and Mander et.al (1988) models

produce similar curves, former yields a more realistic behavior in the descending part of the

stress-strain curve as discussed in APPENDIX C.
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Figure 5.6 Stress-strains of confined region

218



I, =5m, p=0.005 8 ¢I4boundary — 4y bD;i;"i;‘I‘;f‘] I, =5m, p=0.01 12 $16 boundary — 4, Z;‘\”;’;g"
longitudinal bars . _ longitudinal bars, 5
feo =25 Mpa >4 fo =25 Mpa 34,
Hoops: b,=25 cm| s Hoops: by=25 cml Pt
$8ats =100 mm $8ats =100 mm
spacing xof o A= 25 mm spacing x| e A= 25 mm
1,295 cm 1,295 cm
40 0 40 T
35 4 | £eu ——Mander et al. (1988) 35 | Seu ——Mander et al. (1988)
I /_ —Kent&Park (1982) | /_ — Kent&Park (1982)
301 — Saatcioglu&Razvi (1992) 301 — Saatcioglu&Razvi (1992)
T 25 T s
£ = |
2 20 2 20 1
& 151 | & 15 |
10 | 10 1 |
5 | 5 |
0 . L. . . . . . 0 : L : : : : :
0 001 002 003 004 005 006 007  0.0§ 0 001 002 003 004 005 006 007  0.0§
Strain Strain
Iy =5 m, p=0.02 12 §22 boundary — 4, f"’_""bﬁ;" I, =5m, p=0.04 18 §26 boundary — A, fi\?rih'ﬁf ¢
longitudinal bars, ars, ¢ _ longitudinal bars ars, ¢
fo =25 Mpa 4 foo =25 Mpa ¥4
Hoops: P Hoops: [y
$8ats =100 mm ¢8ats =100 mm
spacing X e e x= 25 mm spacing X e 4 f =25 mm
1,295 cm 1,295 cm
40 T 40 I
35 |/_ Seu —— Mander et al. (1988) 35 | Ecu —— Mander et al. (1988)
| —— Kent&Park (1982) —— Kent&Park (1982)
30 —— Saatcioglu&Razvi (1992) 304 —— Saatcioglu&Razy (1992)
Fos 7o
= H
2 20 | 7 20 -
8 8
& 15 | & 15
|
10 | 10 4 |
5 | 5 1 |
0 : L : : : : : 0 : 1 : : : : :
0 001 002 003 004 005 006 007 00§ 0 001 002 003 004 005 006 007 004
Strain Strain
Distributed Distributed
=8 m, p=0.005 18912 boundary /4, bars, 410 ly=8m,p=0.01 20 ¢I6boundary ,—4, hars, 410
f. —25Mpa longitudinal bars - f. — 25 Mpa longitudinal bars
A
Hoops: b,=25 cm| P Hoops: bu=25 ci
$8ats =100 mm $8ats =100 mm
spacing X e = j=x= 25 mm spacing X = = j-x= 25 mm
© : 1,=160 cm 0 I 1,=160 cm
35 - | £cu ——Mander et al. (1988) 35 | - ——Mander et al. (1988)
I /_ —— Kent&Park (1982) | /_ ——Kent&Park (1982)
301 ——Saatcioglu&Razvi (1992) 301 I —— Saatcioglu&Razvi (1992)

T 251 5 251
£ £
@ 20 { @ 20
g [ g |
& 154 | & 151 |
10 10 A
| |
5 | 5 |
0 l 0 l
0 001 002 003 004 005 006 007 0.4 0 001 002 003 004 005 006 007 0.4
Strain Strain
| —8m =002 21 #22boundary —4, Distributed | —8m p=0.04 30426 boundary — A, Distributed
w , p=0. oo bars, $10 w » p=0. s bars, $10
_ longitudinal bars _ longitudinal bars,
feo =25 Mpa 34, fo =25 Mpa sS4
Hoops: [y Hoops: b,=25 C,,I [ =S
¢ 8ats =100 mm ¢8ats =100 mm
spacing X e = [ x=25 mm spacing X o - r-x: 25 mm
© | 1,=160 cm 0 I 1,=160 cm
35 | /— Ecu —— Mander et al. (1988) 35 | Ecu —— Mander et al. (1988)
I —— Kent&Park (1982) — Kent&Park (1982)
30 —— Saatcioglu&Razy (1992) 304 —— Saatcioglu&Razvi (1992)
S 5254
£ £
o 20 w 20
g | g |
& 15 | & 154 |
10 10
| |
5 | 5 |
0 : L. : : : : : 0 : i : : : : :
0 001 002 003 004 005 006 007  0.0§ 0 001 002 003 004 005 006 007  0.0§
Strain Strain

Figure 5.6 (Continued) Stress-strains of confined region
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5.3.1.3 Finite Element Models

Trial analysis of cantilever walls under uniform and inverted triangular load patterns
displayed that even when cracking may extend up to mid-height of the wall, significant
steel yielding extends over only lower one or two stories. The upper stories can be
effectively treated as a cracked beam. Using this analogy a finite element model is
developed to reduce the computation time. As shown in the model in Figure 5.7, the first
two stories of the cantilever wall was discreticized with solid continuum elements
(SOLID65) whereas the upper stories is modeled with BEAMI188 which is based on
Timoshenko beam theory. The nonconformance between the nodal degree of freedoms of
beam (d.o.f.’s: uy, uy, u,, 04, 0y, 0,) and solid (d.o.f.’s: uy, uy, u,) elements was overcome by
providing the transition with constraint element MPC184 by utilizing the rigid beam option.
BEAM188 takes into account the shear deformations. As described in Section 4.5.2, to
define the behavior of beam elements generalized nonlinear section properties were used.
The load deformation behavior of beam elements was assigned in the form of bilinear
force-distortion angle (F-7) and moment-curvature (M-¢) relation. The initial flexural
rigidity was taken as 0.5El,. This model proved to be adequate since all the response

parameters under investigation is concentrated at the lower stories.

BEAMISS

MPCI184

SOLID65
\ — P

Figure 5.7 Reduced finite element model of cantilever walls
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5.3.2 Calculated Response Parameters

The benefit of NLFEA lies in the fact that several response parameters in either
global or local scale can be calculated accurately. At every point of the model strains and
stresses can be obtained numerically and checked through graphics. Additionally crack
pattern and strains calculated on the model reveal the governing behavior mode of the

specimen.
5.3.2.1 Deformation Components

Calculation of the global and interstory drift demands on shear walls as an indicator
of structural damage are not the same as the drift calculations on frames. A distinction is
required between the two measures of interstory distortion. In shear wall buildings,
interstory drift is not an appropriate measure of damage since significant portion of the
global drift results from the rigid body rotation of lower stories. As shown in Figure 5.8, in
isolated structural walls, that exhibit predominantly cantilever flexure type behavior, the
interstory “tangential deviation”, (i.e., the deviation or horizontal displacement of a point
on the axis of the wall at a given floor level measured from the tangent to the wall axis at
the floor immediately below it), rather than the “interstory displacement”, provides a better
measure of the distortion that the wall experiences. In fact, the tangential deviations vary in
the same manner as, and are directly reflected in, the bending moments that are induced by

the lateral deflection of the wall.

Interstory
displaceme do = h;0;;
Effective interstory de=dg - do
e

deflection, d,

Interstory tangential
deviation, dg

Floor level, i

Floor level, i-1

Figure 5.8 Computation of lateral drift of cantilever walls
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The above figure can be used to describe the required calculations of interstory
displacements and rotations for flexure dominated shear walls. However, in the calculation
of shear deformations that results from significant shear actions like diagonal tension and
compression on the web a different scheme is required. The procedure described in Figure
5.9 (Oesterle et. al, 1976) utilizes shear distortion angles in the calculation of the shear
deformation component of the total deformation. The flexural component of the
displacement can be calculated by subtracting the displacement components corresponding
to diagonal and sliding shear from the total lateral displacement.

Another component of the deformation that has not been accounted for is due to
slippage/pull-out of vertical bars from the foundation and bond slip. These deformation

components have been neglected in all the analyses carried out in this study.

r_'| HI 712%,722%, yave:%
NS & | A _di A, d
TN B _d\6) +d,5,
; Y ave —W
| L. | Ashear =7 aveh

Figure 5.9 Computation of shear deformation component of the wall lateral displacement

5.3.2.2 Forces and Moments

In the finite element model shear force along a section is calculated by summing the
horizontal nodal forces along the faces of the elements lying on that section. The
summation can be done on the faces of elements lying along both sides of the section. Only
the sign of the force will change. The bending moments are calculated by summing the
moments of each element nodal force normal to the section surface around the section

center.
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5.3.2.3 Strain Measurements

Vertical strains at compression and tension boundary extremities of the wall were
evaluated. Although stress and strain results can be obtained at element integration points
or as average values at nodes in ANSYS, the vertical strains were computed by using the
nodal vertical displacements. The vertical strain is calculated by dividing the difference
between the vertical displacements at successive nodes to the distance between these nodes.
These strains pair-wise in a row were used to calculate the curvature distribution along the
height of the wall. Using both the tensile steel strain profile along the edge and the
curvature distribution along the height of the wall the length of plastic zone (L,,) is
determined. Figure 5.10 provides the visual description about the location of the calculated
strains.

At the lower 1 m of the each story (three elements in height) the vertical strains are
extracted along the length of wall in the horizontal direction row-wise also. Using the strain

distributions along the row neutral axis depth, c, is investigated.

Locations of
displacement
measurements, Ay, A,

—— Vertical edge
strains

Edge strain pairs to
calculate the curvature
along a row

hy=3m Region of neutral
axis depth and
average curvature
v calculation

Compression field
calculation

Figure 5.10 Locations of calculated strain quantities

5.3.2.4 Curvatures and Rotations

Curvatures were calculated in two different ways. The first type of curvature is

calculated over a region of three element height at the base of the wall, which is
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approximately 1 m in height as shown in Figure 5.10. This curvature is an average value
that can be used to get an estimate of the wall curvature when the actual curvature can not
be obtained due to difficulties in the interpretation of extent of plastification over the wall
height. The second type of curvatures is row curvatures that are computed from average
element strains calculated at the same height (in the same row) at the two wall ends. These
curvatures can be used to determine the spread of plasticity along the wall.

Rotations are calculated from the nodal vertical displacements along each end of the
wall by using the triangulation calculations. The height over which the rotations are

calculated depends on the spread of plasticity, which is discussed in detail in Section 5.4.

5.3.3 Results of FEM Analyses

In the light of FEM analysis several useful observations are made. Through Figures
F.1 to F.14 in APPENDIX F, force-displacement responses of the analyzed walls are
presented. The analyses are grouped according to the wall length (L,,) and effective shear

span length (L,). The vertical axis representing the shear force capacity of the walls is
normalized with respect to t,, L, /f. . The second floor drift ratio is used to display the

deformation capacity of the analyzed walls. As discussed previously in Section 5.3.2.1 and
displayed in Figure 5.7, roof drift of cantilever walls is not a meaningful measure to
investigate the deformation capacity of structural walls. Additionally, the base stories are
the most critical regions when the deformability of the walls is considered. By this way the
deformation components can be directly compared with code specified values. 2™ floor
displacements were preferred over 1% floor values, because the total drift composed of shear
and flexural deformation components can be calculated more representatively over two
story height due to excessive diagonal cracking and localized damage at the base story.
The presented data provides significant information about the deformation capacity of the
structural walls. The summary of relations between the normalized shear capacity and
ultimate deformation capacity of walls is given in Figure 5.11. The drift capacity of walls
further decomposed into flexural and shear components were also presented in this figure.
The shear stress limits used to arrange the plastic rotation limits in FEMA 356 were

superposed on the graph. ACI 318-08 states that the normalized shear carried by a wall
member should not exceed 0.66 ,/ .. .
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Figure 5.11 Ultimate drift capacities of wall models

As displayed in Figure 5.11(d) wall length significantly affects the deformation
capacity of walls. Figure 5.12 reveals the effect of axial load ratio, the second important
parameter, on the deformability of walls. As the wall length and axial load ratio increases
deformation capacity of walls reduces. The FEMA normalized shear stress limits used to
differentiate between the flexural and shear type of behavior correlates with the data
presented here. For walls with v < 0.25 flexural type behavior governs. The drift capacities
of walls that respond in flexural mode range from 2.5 to 6 percent depending on the level of
axial load. Structural walls can exhibit significant displacement ductility capacity as seen in
Figure 5.12(b). In codes, such as FEMA306 and FEMA356, the ductility capacity of
members is classified as either low, moderate, or high. The following approximate
relationship presented in Table 5.4 can be assumed for the classification. However, as seen
in Figure 5.12(b) for low-to-moderate levels of axial load ratio the ultimate displacement
ductility capacity of members may reach a value of 10 to 25. The ductility limits that were

specified in codes seem to be too low and require to be adjusted for wall members.
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Table 5.4 Classification of Displacement Ductility in FEMA 356

Displacement Ductility Classification
Ha<2 Low Ductility
2< <45 Moderate Ductility
1> 4 (5) High Ductility
"Limits used in FEMA 306

30

o PIP,<0.10
A PIP,20.15

. : ‘&3&% Eﬁogso% N

Ultimate g

0.0 02 04 06 08 10 12 14 16

Shear

twLwy/ fe

o P/P,<0.10
APIP,20.15

00 02 O

4 06 08 1.0 12 14 16
Shear

tw L/ fe

Figure 5.12 Effect of axial load level on the ultimate a) drift, and b) displacement ductility
(taisp1) capacities of wall models.

The ratio of shear deformation (A;) to the total deformation (A,) with respect to

increasing shear capacity is displayed in Figure 5.13(a). The shear deformation may

constitute a significant portion of the total deformation even though the shear stress carried

by the walls is very low. The data in the figure points out that the shear deformations must

be taken into account while modeling the lower stories of shear walls.

Using the

parameters that govern the response of shear walls an equation is derived to estimate the

drift capacity of shear walls with moderately confined boundary elements. The equation

from a regression analysis reads as

DR = A(p, )’ -exp(-C-v—-D-L,)
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where A, B, C and D are coefficients defined in Table 5.5 as a function of axial load ratio,
Py is the boundary element reinforcement ratio, v is the normalized shear stress and L, is
the wall length. The predictions are compared with the finite element results in Figure

5.13(b).

Table 5.5 Coefficients of Eq. (5.11) to calculate the ultimate drift capacity of walls

P/P, A B C D
<0.10 0.127 0.175 1.026 0.075
=0.15 0.085 0.118 0.981 0.074
=0.25 0.041 0.081 0.713 0.054
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Figure 5.13 a) Ratio of shear component of displacement to the total displacement, b)
comparison of calculated drift ratios predicted with Eq. (5.11)

It may be argued that the degrading effect of cyclic loading regimes on the stiffness
and strength of reinforced concrete was not considered in the analysis. Past experimental
studies have shown that the overall deformation under cycling loading may be at least 75%
of the deformation reached under monotonic loading. This is due to deterioration of
concrete, and the development of cyclic failure mechanisms associated with the load history
and characteristics of the specimens. Vallenas et al. (1979) proposed that as a general rule

the overall deformation capacity under a realistic ground motion could be expected to be
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over 75% of the deformation capacity under monotonic loading conditions. In this
perspective, it may be useful and necessary to reduce the ultimate deformations obtained
from the monotonic static analysis by a factor of 0.75~0.8.

Impropriety of conventional sectional analysis method in case of members under high
shear condition is clearly revealed in the comparison of the vertical and principal
compressive strain plots in Figure 5.14(b) and Figure 5.14(c). In flexure controlled member
(Case2) the vertical strain and principal compressive strain distributions indicate to
concentration of compressive strains at the edge of the wall. However, in the case of shear
controlled member (Casel) while the vertical strain plot shows that only a limited region at
the edge of the wall is under compression, the principal compressive strain plot indicates
that the region under compression extends nearly over two thirds of wall length. Obviously
these compressive strains are inclined, resulting from the compression strut action. Shear
strain plots in Figure 5.14(d) indicate diagonal cracking in a flexural member and sliding
shear failure above the base of a shear controlled member.

Accurate calculation of the spread of plasticity along the height of the wall is
essential in deriving the plastic hinge length. Several factors such as the level of shear stress
carried by the member, length of the wall plays fundamental role on the length of plastic
hinge region. The effect of boundary element reinforcement on the spread of plasticity
along the wall is displayed in Figure 5.15. The percentage of boundary element
reinforcement takes the values of 0.5, 1, 2 and 4% in each figure. As seen in Figure 5.15, in
lightly reinforced walls (p, = 0.005~0.01) the flexural cracks concentrate at specific
locations along the edge of wall. At the highest location, the flexural cracks rotate and turn
into inclined shear cracks over the web region. As seen in Figure 5.16 both flexural and

shear cracks are evident on the wall.
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Figure 5.14 Contour plots displaying the distribution of a) Horizontal displacement b)
Vertical strain ¢) Principal compressive strain d) Shear strain in the web
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Figure 5.15 Effect of boundary element reinforcement on the spread of plasticity

As the amount of boundary element longitudinal reinforcement increase the cracking
spreads over the edge of the wall along the plastic zone. Flexural cracks form a uniform
pattern along the edge. The cracks that are initiated as flexural cracks directly propagate
into the web as inclined shear cracks. Rather than a distinct shear crack passing diagonally
through the web region, a diffused pattern of shear cracks appears on the lower half of the
wall separated by the diagonal line as seen in Figure 5.16(d). In this case the wall is under
high shear stress, and significant amount of this stress is concentrated at the compression
boundary element. If the load was cyclic in nature, the load reversals would give rise to
same situation in both boundaries. This weakens the base section and leads to sliding shear

failure.
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Figure 5.16 Effect of boundary element reinforcement on diagonal cracking and shear
strain

5.4 PLASTIC HINGE ANALYSIS

Although advanced analyses tools and procedures are currently available to
determine the seismic response of RC structural walls, the plastic hinge method and
analyses derived from it (Park and Paulay, 1975) are still used extensively in the seismic
design and assessment of structural walls to estimate the inelastic displacement capacity.
Macro-modeling techniques most frequently used in the seismic assessment of structures
also require the moment-rotation relation to be assigned to plastic hinges at member ends.
The method is especially appealing for structural wall buildings, because it is simple and
most of the time it is possible to idealize a wall member inside the building as isolated

cantilevers as displayed in Figure 5.17. In the plastic hinge analyses the tip displacement of
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a cantilever is obtained as the sum of its yield displacement, A,, and plastic displacement
component, 4,. While the yield displacement is calculated by double integrating the
curvature distribution along the cantilever, plastic displacement component is calculated by
multiplying the height of the cantilever by the plastic rotation, 6,, at the base as expressed
in Eq. (5.12).

2

A=A, +A, =¢y§[ +(p—¢,)L,(H-05L,) (5.12)

The term, (¢-¢,)L,, in Eq. (5.12) refers to the plastic rotation 6, and is based on the
governing assumption that the plastic curvature is lumped in the center of the equivalent
plastic hinge length, L,. The actual physical length over which the plasticity spreads may be
larger and referred as plastic hinge region, L,. The plastic hinge length that yields accurate
plastic rotation can be easily determined from experimental data. Eq. (5.12) may be used to
calculate the equivalent plastic hinge length from this data. This implies that if physical
hinge length is unknown, inaccurate values of ¢, and L, can be combined to yield an

accurate value of 6,.

Actual Idealized
Vv distribution distribution
A
Plastic hinge
M length
H Linear best
L,, '
-
“ / I‘T" < 7 :I: % »>
Plastic hinge region, < 7 »

Severely damaged

Figure 5.17 Definition of plastic hinge length (Park and Paulay, 1975)

Previous research has confirmed that in reinforced concrete members the spread of
plasticity in the plastic hinge region is influenced by three distinct phenomena: moment
gradient, tension shift and strain penetration. The term “moment gradient” reflects the fact

that the transition between yield moment and ultimate moment in a member is proportional

232



to the member’s shear span. Therefore, a member with a shorter shear span has a smaller
spread of plasticity. Occasionally the spread of plasticity (damage) on the member occurs
over a larger region than anticipated by the effect of moment gradient. This is due to
“tension shift” that can be described as the tendency of flexural tensile forces (steel tension
forces) to decrease only minimally over a certain distance above the base of a wall until
these forces can be transferred to the compression zone by adequately inclined struts (Hines
et al., 2004). Additionally, strains near the base are significantly affected by the inclined
flexure-shear cracks of the wall. As a consequence of the fanned crack pattern the
compressive strains in the concrete are larger and the tensile strains in the reinforcement
smaller than strains obtained from (plane) section analysis (Dazio et al., 2009, see Figure
1.1). These effects contravene the plane sections remain plane assumption. Hence,
experimentally derived strains cannot be directly compared to strains obtained from section
analysis. Although it is considered that the yielding takes place at the fixed end of member
above the footing, the inelasticity in the longitudinal bars may extend some distance into
the footing, which is referred as “strain penetration”. The wall lifts off the footing as a
result of accumulation of strains inside the footing. This deformation component at the base

of the wall is named the fixed end rotation.

5.4.1 Discussion on the Components of Plastic Hinge Analysis

Relating the local deformation demands (strains) of the wall to the curvatures so as to
flexural deformations requires correct interpretation of plastic hinge length or spread of
plasticity along the member. Moreover, violation of the plane section remains plane after
deformation hypothesis due to concentration of compression strains at the section of
maximum moments at the base of the wall precludes a direct comparison of the base
curvatures calculated from experimentally measured strains or strains obtained from FEM
models such as here, or the curvatures obtained from moment-curvature based section
analysis. It was stated previously that the methods based on section analysis, which are
used to assess the force-displacement behavior of reinforced concrete members, generally
provides conservative estimates of the structural performance levels. Curvature is the
primary parameter used in the design and assessment of structural walls. Base curvature
calculated in the plastic hinge length may provide a more appropriate means of linking
local deformations measured experimentally (or as here results of FE analysis) at the base

of the wall to the results from moment-curvature analysis. To do this plastic hinge length is
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required. The plastic rotations calculated above the plastic hinge length should be
compatible with the modeling and acceptance criteria values tabulated in FEMA 356.

In experimental and analytical studies the length of the region (zone) over which the
plasticity (damage) spreads should be discriminated from the plastic hinge length, which is
a notional tool used to calculate the tip displacement of cantilever. Generally the length of
plastic zone is larger than the value assigned to plastic hinge. It is an assignment because it
does not matter what value is used for the plastic hinge length as long as it yields correct
estimation of deformations.

Two different methods can be employed to evaluate the length of the plastic zone,
L,,. In the first method tensile strain profile along the edge reinforcement is used to
determine the yielding region. It is assumed that when the bar strain at the extreme fiber
reaches & = 0.003 yielding takes place in the section (Kim, 2004). This limit is consistent
with previously proposed bar strains to determine the section yielding. In members with
more than one layer of vertical reinforcement, not all the tensile reinforcement yields
simultaneously. The force displacement diagram does not indicate overall yielding until the
middle reinforcement in the tensile boundary element yields. At limiting strain of & = 0.06,
the tensile strain profiles along the two story high region at the base are plotted in Figure
5.18 for walls with different lengths using the finite element analyses results. The plasticity
spreads over much larger regions along the height of wall as the length of the wall
increases. As the wall length increases they become more susceptible to shear effects
leading to diagonal cracking, so as to increase the size of the damaged zone as opposed to
concentrated flexural cracking at the base. The kink that can be clearly observed in the
0.2hs level on the average tensile strain profile locates the position of the flexural
deformation concentration on the wall. The anomaly on the strain profiles in the first story
level is due to interrupting effect of the floor slab, and should be disregarded for a better
interpretation of the message in the figure.

In the second method curvature profile computed from element strains calculated at
the same height (in the same row as displayed in Figure 5.10) at the two wall ends can be
used to determine the spread of plasticity along the wall. The limiting yield curvature can
be calculated by the expression proposed by Priestley et al. (2007)

&

=22 5.13
Py L (5.13)
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where ¢, is the yield strain of the reinforcement and L,, is the wall length. The calculated
curvature profiles are plotted in Figure 5.19. Again the limiting tensile strain of 0.06 is
used. Parallel to observations made in the tensile strain profiles, it is seen that damage

extends over much larger region in walls with longer section lengths.
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Figure 5.18 Tensile strain profiles along the tensile edge of the walls, all analyses
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Figure 5.19 Curvature profiles along the height of the walls
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The shortcomings of this procedure in case of inclined flexure-shear cracks were
discussed in Section 5.3.3. Two different methods, each used for specimens with
predominantly flexural cracking and for members exhibiting diagonal shear cracking at the
hinging region, were presented by Oesterle et al. (1976) to determine the effective curvature
distribution. Experimental studies (Dazio et al., 2009) have shown that within the plastic
zone of the test units the curvature profiles were approximately linear in case of lightly
reinforced wall members (flexural behavior). So the curvature calculated at the very bottom
of the wall can be considered as the wall base curvature. Hence, to determine the base
curvature a best-fit linear curvature profile over the height of the plastic zone L,, was
determined and extrapolated to the base of the wall as shown in Figure 5.17 previously and

will be discussed in Figure 5.24 in greater detail.
5.4.1.1 Determination of Wall Yield Curvature

Yield curvature is a significant parameter that is used in the design of structural walls
and is required to determine the spread of plasticity along the length of the wall. Paulay and
Priestley (1992) stated that because ductility in design is based on the relationship between
ductility and force reduction factors and the required ductility in design in reinforced
concrete structures is evaluated on the basis of elastoplastic or bilinear approximation to the
actual structural force-displacement response, in reinforced concrete sections ductility
should be assessed on the basis of idealized elastoplastic or bilinear approximation of
moment-curvature relation. As a result of bilinear idealization the yield curvature may not
coincide with the first yield of the reinforcement or the actual global yield of the section,
particularly in shear wall sections where the flexural reinforcement is distributed along the
boundary element.

Paulay and Priestley (1992) and Priestley et al. (2007) defined an equivalent yield
curvature, ¢~ (M,/M")¢’, that is obtained by factoring the yield curvature corresponding to
the first yield of the tensile reinforcement at the extreme fiber (g, =0.0021) for elasto-plastic
idealization of load-deformation curves. The coefficient is defined as the ratio of the
equivalent yield moment (M,) to the yield moment at first yield (M, ’). Here M, holds for the
nominal yield moment (My) that is defined as the moment where the extreme fiber strain in
compression reaches 0.004 or extreme tension strain reaches 0.015, whichever occurs first.
The bilinear curve is obtained by drawing the first line from origin to the point on the curve

where the reinforcement yields for the first time extending up to the nominal yield moment.
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The second line connects the first line at the top to ultimate point on the moment-curvature

curve. The bilinearization procedure is illustrated in Figure 5.20.
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Figure 5.20 Example moment-curvature curve for wall section with L,, = 5m, initial
section of moment-curvature response
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Figure 5.21 Correlation of Eq. (5.13) with FE analysis results

The yield curvatures obtained from the bilinearization of moment-curvature relations

using the finite element analyses results are plotted in Figure 5.21. The curvature used in
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the moment-curvature relationship is the average curvature calculated over a 1 m high
region above the base section. This effective length used to calculate curvatures was found
to be in good agreement with the curvatures calculated with the described procedures. The
presented data validates Eq. (5.13). It is found that the most significant parameter affecting
the wall yield curvature is the wall length.

5.4.1.2 Plastic Region and Plastic Hinge Length

In view of the preceding discussion, the plastic zone length is calculated using the
second method described above, i.e. the uppermost location where the yield curvature is
encountered on the curvature profile was accepted as the plastic zone length, L;,. The
calculated plastic zone lengths at the ultimate response point are plotted in Figure 5.22. It is
found that the spread of plasticity is strongly affected by the shear carried by the member
and the wall length. While the plastic zone is constrained to first story in 3 m wide walls, it
may extends over 2 stories height in 5 and 8 m wide walls as shown in Figure 5.22. Figure
5.22 also displays that the spread of plasticity along the wall decreases as the shear carried
by the member increases. The plastic zone length normalized with respect to wall length is
found to be slightly sensitive to boundary element reinforcement ratio, but it is significantly
affected by the wall length as shown in Figure 5.23. The axial load level has also a slight

reducing effect on the spread of plasticity along the wall.
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Figure 5.22 Variation of actual plastic zone length with normalized shear
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Figure 5.23 Variation of normalized plastic zone length with normalized shear arranged
for a) wall length, b) boundary element reinforcement

As a second step, the base curvatures and rotations were calculated over the identified
plastic zone lengths. The rotations, which are assumed to represent the rotation of the base
section, were calculated just above the plastic zone length by using the vertical
displacements calculated at tensile and compressive edges in the same row. The sketch in
Figure 5.24 illustrates the calculation of the base section curvature and rotation. The
ultimate base rotation capacity of wall specimens with respect to normalized shear force is
plotted in Figure 5.25(a). The base curvature is calculated in two different ways to ensure
the accuracy in the calculation of this parameter, since all the performance criteria and
assessment procedure depends on it. ¢,; was obtained by using the moment-area theorem.
Since the rotation above the plastic zone is known (6,) by integrating the curvature profile,
which is assumed to be linear, along the plastic zone (length L), ¢y is obtained as 26,/L,,.
O, Was obtained by fitting a best line to the curvature profile along the plastic zone length.
The intercept of the best fit line equation at the base level was adopted as ¢y,. The
comparison of the two curvatures is displayed in Figure 5.25(c). The two methods of
curvature calculation yielded very similar results. The base curvatures used in this study are
those calculated by best line fit method, i.e. ¢, = ¢yp. The ultimate curvature capacity of

wall specimens is plotted in Figure 5.25(b).
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curvature results
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As discussed in detail above, assuming a linear curvature profile over the height of
the plastic zone length provides a consistent relation between the curvature (¢,) and rotation
(6y) that are adopted as the deformation attributes of the base section as described in Figure
5.24. Since the plastic hinge analysis is based on the condition that 0,=L,,.¢, as illustrated in
Figure 5.26, the plastic hinge length is L, = 0.5L,, in the light of above discussion
(0,=0.5L,,.¢). Hines et al. (2004) and Dazio et al. (2009) reached a similar expression that
reads as

L,=05L, +L, (5.14)
where Ly, characterizes the contribution of strain penetration to the top displacement. The
relation between the plastic zone length and shear stress was investigated in Figure 5.22 and

Figure 5.23.

Theoretical curvature
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Actual curvature
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Idealized curvature

distribution \
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>

Figure 5.26 Plastic hinge analysis

The relation given in Eq. (5.14) for the calculation of the plastic hinge length can be
verified by using Eq. (5.12). All the components of Eq. (5.12) are available to calculate the
plastic hinge length. As discussed previously, the plastic hinge length calculated in this way
is in a sense inaccurate, because it does not need to be in parallel with the actual spread of
plasticity along the wall as long because it yields accurate estimation of wall displacements.
However there is a consistent relation between the two lengths. The plastic hinge length
calculated in two different ways and normalized with respect to plastic zone length was

plotted as a function normalized shear in Figure 5.27(a). The procedure used to obtain L, by
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substituting required values in Eq. (5.12) resulted in L, = 0.4L,,. It can be assumed that the
plastic hinge length can be taken as the 40%~50% of region where plasticity spreads over
the member. The plastic hinge length obtained by rearranging Eq. (5.12) is normalized with
respect to wall length and plotted in Figure 5.27(b) as a function of shear stress. Other than
the trend line which can be fitted to the relation on the figure, the data reveals that plastic
hinge length is not a function of wall length multiplied with constant (such as L, = 0.5Ly,)

as assumed by many codes and reported by other research..
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Figure 5.27 Plastic hinge length calculated as a function of a) plastic zone length, b) wall
length.

An improved expression can be derived by regression analysis to calculate the plastic
hinge length by using the variables of the parametric study. The plastic hinge length is
found to be sensitive to the wall length and height, and axial load ratio. The proposed

plastic hinge equation is given as

P
L,= 0.4(1 - ?](HWLW )03 (5.15)

o

in which L, Hy, and L, are in meters. The comparison of predictions with the simulation

results are displayed in Figure 5.28. If typical story height is assumed to be 3 m, Figure
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5.28 tells that the plastic hinge length is bounded within the first story height for low-to

medium height walls.
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Figure 5.28 Comparison of plastic hinge length predicted by Eq. 5.15 with finite element
simulation results

5.4.2 Relating Section Analysis Results with FEM Results

As discussed in the preceding sections, base curvature is the most appropriate means
of establishing a relation between experimental and analysis results. The drift and rotation
of the actual model (FEM model) corresponding to a given limit state can be related to the
strains obtained from section analysis at equal curvatures. This way, a direct comparison of
local and global deformation limits can be established. Comparison of typical moment-
curvature relations obtained from section analyses and finite element analyses is shown in
Figure 5.29. The curves agree in the initial segment and in terms of moment capacities, but
the ultimate curvature capacities obtained from the two different analyses differ
significantly. The ratio of ultimate curvatures obtained from section and finite element
analyses are plotted as a function of normalized shear stress in Figure 5.30. It is seen from
the figure that the sectional analysis results deviate from the finite element analysis results
significantly in terms of curvature capacities as the wall length and the shear on the member

increase. In most of the cases the sectional analysis results overestimate the deformation

243



capacity of walls, which may lead to unconservative assessment of the structural walls.
Even when section analyses indicate very large deformation capacities, the limiting value

for the curvatures is adopted as the capacities obtained from FEM analysis in this study.
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Figure 5.29 Comparison of typical moment-curvature relationships obtained from section
and FEM analysis (L, = 5 m)

Figure 5.30 Difference between the ultimate curvature capacities obtained from section
and FEM analysis
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5.5 EXPERIMENTAL DAMAGE PARAMETERS

There are a vast amount of experimental studies carried on shear walls to identify their
structural characteristics and behavior, and dominant failure modes. These experiments
were either carried at full scale, few story (generally one or two) wall components or scaled
representative components and multistory walls. Static loads cyclic or monotonic in nature
were applied. Figure 5.31 shows drift capacities versus maximum observed shear stress of
walls tested by different researchers. Detailed information for each specimen in this figure
is provided in Table G.1 of APPENDIX G. The test parameters of these structural walls
were section shapes (rectangular, barbell, and flange shape), details of reinforcement
distribution (concentrated or uniform distribution of longitudinal vertical reinforcement,
and distribution of horizontal reinforcement), shear span ratio, existence of boundary
element, ratio of axial load, etc. The experimental database covers wide range of test
parameters and provides a good basis for the comparison with the range of applicability of

the results of analyses cases here.
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Figure 5.31 Maximum shear stress versus drift capacity relation of walls

As seen in Figure 5.31 the data produced in this study and the results of experimental
studies show similar trends in the drift capacities under increasing shear stress condition.

This supports the assertion that the analysis results here can be assumed to be representative
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for structural walls, either tested in the lab or existing in buildings. A drift ratio of 1-5% can
be considered as an allowable limit value against a design earthquake in seismic provisions
for the flexure controlled members. Thus, it is judged that most structural walls have

satisfactory deformation capacities irrespective of the test variables (Han et al., 2002).

5.6 INVESTIGATION OF PERFORMANCE LIMITS

In this section the findings and results obtained from analyses up to this point are
synthesized for comparison with the performance limits used to define modeling parameters
and acceptance criteria in guidelines. The walls analyzed here represent the conforming
members. The data presented about the deformation criteria here includes curvatures, drift
ratios and strains in addition to rotations. With reference to Figure 5.1, the deformation
limits at three performance levels are investigated. These are the immediate occupancy
(10), life safety (LS) and collapse prevention (CP) performance levels. For the collapse
prevention performance level the ultimate point on the load deflection curve is selected.
The ultimate point corresponds to initiation of strength degradation or rupture of tensile
reinforcement or buckling of reinforcement at the compressive zone. Life safety is taken at
the deformation level that is 75% of the collapse prevention level. The immediate
occupancy level is calculated as the point on the load-deflection curve whichever of the
concrete compressive strain and steel tensile strains at the extreme fibers reaches 0.0035
and 0.01 first, respectively. These strains are from the section analysis. The variables
affecting the deformation limits was primarily considered as the normalized shear stress (v)
in the wall as defined in Eq. (5.5) and axial load ratio (P/P,). These variables were
considered in order to achieve uniformity with FEMA 356. Whenever additional
parameters are required to define the data, they are included in the analyses.

Although FEMA 356 investigates structural walls under two groups as flexure
controlled and shear controlled members, in this study the entire data was analyzed in the
same bin. The clear trends observed in the data plotted in the preceding sections suggest
that the whole range of wall behavior can be represented with a unique relation. ASCE/SEI
41 states that walls should be considered slender (normally controlled by flexure) if their
aspect ratio (height/length) is greater than 3.0, and short or squat (normally controlled by
shear) if their aspect ratio is less than 1.5. No such discrimination was used in this study. It
will be shown that the expressions derived from regression analysis cover the entire

behavior range satisfactorily.
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5.6.1 Plastic Rotation Limits

The plastic rotations calculated above the plastic zone are plotted in Figure 5.32.
Two vertical lines shown in Figure 5.32 correspond to values of limiting shear stress
criteria for which the plastic rotation limits are specified for conforming members in FEMA
356 as defined by Eq. (5.4-a). Eq. (5.2) to (5.4) take the limiting plastic rotations values at
the points given in FEMA and directly calculate the plastic rotation either within or outside
of the region bounded by the limits without the need for interpolation. The solid lines

displaying the FEMA limits are calculated for constant axial load ratios of 0.10 and 0.25.
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Figure 5.32 Calculated plastic rotations at specified performance levels
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Figure 5.32 shows that the limits given in FEMA 356 are very conservative in
comparison to limits calculated in this study for life safety and collapse prevention
performance limits. The FEMA 356 curve defined for 10% axial load level defines the
lower bound of the database. Typical ranges of normalized shear stress demand on
structural walls are obtained from the design stage of the frame-wall structures investigated
in the previous chapter and plotted in Figure 5.33. Design forces were obtained according
to TSC 2007. The figure can be used to determine the useful range of normalized shear
stress defined on the horizontal axis of Figure 5.32. Since most of the walls in Figure 5.33

are considered as slender according to definition in FEMA 356 and ASCE/SEI 41 (H,/L,, >

3), the shear stress on walls ranges between 0.2-0.6 ,/ ., when it is assumed that the typical

values of wall index (p) ranges from 0.005 to 0.01 in buildings. In the range 0.2-0.6\/f_c

the factor of safety in the given limits is around 2 to 3.

v

A W)

Shear stress,

0.0
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Figure 5.33 Typical normalized shear stress demands on walls as a function of wall index

A general expression is derived through regression analysis to calculate the rotation
limits at collapse prevention performance level. The expression is in the same form as Eq.
(5.11). The coefficients A, B, C and D that are adjusted for the calculation of plastic
rotations are defined in Table 5.6 as a function of axial load ratio. The predictions were
compared with the finite element results in Figure 5.34. The corresponding FEMA 356
limits were also plotted in the same figure. As seen in the figure the predicted values agree
quite well with the finite element analyses results. If the predicted values are reduced by a

factor of 0.75 the limits for life safety performance level is obtained.
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Table 5.6 Coefficients of Eq. (5.11) to calculate the collapse prevention plastic rotation
limit of structural walls with conforming boundary elements

P/P, A B C D
<0.10 0.183 0.220 1.814 0.071
=0.15 0.117 0.148 1.779 0.066
=0.25 0.046 0.037 1.485 0.037

0.08

o Predicted by Eq. (5.11)
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Figure 5.34 Correlation of predicted plastic rotations with analysis results

5.6.2 Total Curvature Limits

Although codes enforce the use of plastic rotations as assessment criteria, the section
curvature may be a more appropriate means of drawing performance limits since curvature
is the direct product of simple section analyses. This way, the uncertainty due to plastic
hinge length assumption is eliminated. The total curvature performance limits obtained
from the analyses are plotted in Figure 5.35. If desired the plastic curvatures can be
obtained by the yield curvature calculated using Eq. (5.13). The scatter in the curvature data
is more than the plastic rotation data presented in Figure 5.32. The data is classified for
axial load level and wall length to distinguish the effect of these parameters on the scatter
of curvature data. As seen in the second column of Figure 5.35 the wall length provides a

much better classification parameter when compared to axial load.
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5.6.3 Drift Limits

Drift ratio is the primary deformation criterion in shear controlled (squat) walls. In
slender walls the drift ratio or, more correctly, the tangential interstory drift ratio, defined in
Figure 5.8, should be interpreted as a secondary performance criterion when compared to
rotations and curvatures because a significant percentage of the displacement in the upper
stories is due to rotations at the base stories. Nevertheless, it should not be ignored that in
frame-wall systems strong frame - weak wall interaction effects may gave rise to significant
interstory displacement demands in the upper stories where it becomes crucial to know the
damage state limits to assess the performance of the wall components.

The drift limits calculated at the second story level at different performance levels
are plotted in Figure 5.36(a) as a function of normalized shear stress resisted by the wall.
The drift ratios presented here should be interpreted as story drift. According to Figure

5.36(a), for drift values below 0.5% in average no damage is anticipated on the wall

components. For flexural walls (v <0.25,/ /. ) and walls under combined flexure and shear

action (0.25./f. <v < 0.6,/f. ) the lower bound of story drift can be taken as 1% and
1.5% for life safety and collapse prevention performance levels, respectively, even under
very high axial load conditions. Under moderate conditions (v < 0.5,/ f. and P/P, < 0.10)

the limiting story drift values can be extended to 1.5% and 2.5% for life safety and collapse
prevention performance levels, respectively. These limits should be interpreted as the
interstory drift ratio. The roof drift at these performance levels may take a little higher
value. The story drift at collapse prevention performance level can be obtained by using Eq.
(5.11). The life safety story drift limit can be taken as the 75% of the collapse prevention of
the limit.

Wall length should be always considered as a significant constraint on the
deformation limits of structural walls. A wall with 8 m length can seldom achieve a story
drift of 2.5% in the most optimal conditions, i.e. under very low axial load and unit shear,
as adopted by Sullivan et al. (2006). The drift limits categorized with respect to wall length
is plotted in Fig. 5.36(b). As seen in Fig. 5.36, increased wall length and axial load ratio

significantly reduce the deformation capacity of structural walls.
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5.7 COMPARISON OF TSC STRAIN LIMITS WITH ROTATION LIMITS

Up to this point performance limits with regard to rotations, curvatures and
displacements were calculated and presented. The section extreme fiber compression and
tension strains at these limit states are used frequently in the design and assessment of
reinforced concrete members (Priestley et al., 2007; TSC, 2007). The extreme fiber strains
in compression and tension at specified limit states are plotted in Figure 5.37 and Figure
5.38, respectively. The plots include strains obtained from section (gsgc) and finite element
(erem) analyses superposed on the same figure to visualize the differences. The right set of
frames gives the ratio of finite element analysis to section analysis strain ratios (erem/€sec)-
This ratio is useful in evaluating the actual strains at the boundaries.

The first observation related to Figure 5.37 is that at the given limit states the section
analysis strains are significantly lower than finite element analyses strains. The ergm/Esgc
ratio takes the values 1.6, 1.8 and 2.1 for 10, LS and CP performance levels respectively.
Priestley et al. (2007) specified the range of this ratio as 1.3 to 1.6 replacing the strains
from finite element analyses with experimental strains, i.e. the ratio was defined as
epxp/€sec. The difference may be due to two reasons. The ratio given by Priestley is
applicable to column data and the strain measured in experiment varies significantly
depending on the location of the measurement and gage length used to calculate the strain.

The TSC limits were also superposed on the same figure. Since the transverse
reinforcement at the boundary elements of the finite element models conform adequately to
TSC requirements as discussed previously, the TSC limits plotted in the figures can be
taken as the upper bound values of strains allowed at the specified performance levels. The
methodology adopted in this study allows the direct comparison of strain limits specified in
TSC and section analyses results. The limit state strains obtained from section analyses are
significantly lower than the limits defined in TSC (2007), so as given by Priestley et al.
(2007). The analyses results clearly indicate that if the limits given in TSC are used as
acceptance criteria in the assessment of reinforced concrete shear walls, they will yield

unduly unconservative performance estimations of the structural walls.
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Figure 5.37 Extreme compression fiber strains at calculated limit states for section and
finite element analyses
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Figure 5.38 Extreme tension steel fiber strains at calculated limit states for section and
finite element analyses
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The compressive strains at different limit states obtained from section analyses and
specified by the TSC are compared in Figure 5.39. The difference between the two
formulations is defined by the ratio esgc/ersc. As seen in the figure, for most of the data
points in the database the ratio is significantly lower than unity. The reason for this is
certainly related to the modeling used in establishing the limit states in the requirements. It
is demonstrated in Figure 5.30 that in general the ultimate curvature capacities of wall
sections obtained from section analyses is larger than the ultimate curvatures obtained from
FE analyses. In this study, ultimate curvature obtained from FE analysis is assumed as the
ultimate curvature capacity of the section. In keeping with this, the limit states derived by
running statistical analysis on the data from sectional analyses in codes should inevitably
yield larger strain limits than the results presented here. It should be also admitted that the
scarcity of comprehensive strain data measured in experiments impedes the improvement of
such limits. Therefore, the results presented in this study should be considered to be more
reliable because the shortfalls of the section analyses in determining the deformations of
walls have been demonstrated throughout the text. The data in Figure 5.31 reinforces this
assertion. Experimental and finite element results indicate the same ultimate deformations

limits.
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Figure 5.39 Ratio of limiting strains obtained from section analyses and specified by the
TSC
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Figure 5.40 illustrates the variation of compressive and tensile strain limits
corresponding to plastic rotation limits in FEMA 356 against the normalized shear stress.
As shown in Figure 5.40(b), the FEMA 356 equivalent compressive strains associated with
each performance level are significantly lower than the strain limits specified in TSC. If the
compressive strains are adapted to FEMA 356, they will take the values of 0.0035, 0.005
and 0.0075 in average for immediate occupancy, life safety and collapse prevention
performance levels, respectively. For flexure controlled members even much lower limits
apply. Although FEMA 356 equivalent tensile strains are also lower than TSC limits, the

difference is not as large as that observed in compressive strains.

5.8 SHEAR STRENGTH

The nominal shear strength of reinforced concrete walls designed to resist seismic
loads is defined in current design guidelines. The two quantities used to define nominal
shear strength are the contribution of the web reinforcement and the contribution of
concrete. TSC and ACI-318 employ quite similar expressions to calculate the nominal shear

strength of walls. The TSC expression reads as
Vi = A4,00.65f,0 + £, f1a) (5.17)

where f.,; and f,, are the factored design cracking strength of concrete and the yield strength
of reinforcement, respectively. The nominal shear strength of walls presented in ACI 318-

08 is
v, = A, a7 +p.f,) (5.18)

where 1. and f, are the characteristic compressive strength of concrete and yield strength of
steel reinforcement, respectively. The coefficient ¢, is 0.25 for Hy, / Ly, < 1.5, is 0.17 for
H,, /L, > 2.0, and varies linearly between 0.25 and 0.17 for H,, / L,, between 1.5 and 2.0.
In both equations, p; is the ratio of area of distributed reinforcement parallel to the plane of

A, to gross concrete area perpendicular to that reinforcement.
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The ratio of maximum shear force (V) obtained from the finite element analysis to
the nominal shear strength (V,,) defined by Eqgs. (5.17) and (5.18) is plotted as a function of
normalized shear stress in Figure 5.411. Keeping in mind that the shear safety of the walls

was adjusted according to TSC, it is seen that the shear strength calculated using the code
formulation yields conservative estimates of the shear strength of walls for v > ~0.4\/f_c .
The linear trend in the initial portion of Figure 5.41 suggests that structural walls subjected
to shear stress levels less than 0.4,/ f. are not critical in terms of shear. Most of the data

points in this region come from the walls that failed in flexure due to large wall slenderness
ratio. Even though much less web shear reinforcement is required in most cases, the code
minimum p; = 0.25% was used in this region. The V.« calculated for flexural failure are
much lower than the corresponding shear capacity of the members. This is the main reason
of the observed behavior in this region. As expected the ACI-318-05 expression gives
slightly less conservative estimation of the shear strength, because the nominal shear

strength calculated using ACI expression yields larger values compared to the TSC

equation.
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Figure 5.41 Variation of the ratio of shear strength calculated in FE analyses to shear
strength calculated using code formulation with the normalized shear stress carried by the
wall
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5.9 DISCUSSION OF RESULTS

The analyses results displayed that the deformation capacity of shear wall members
with confined boundary elements is larger than the limits given in FEMA 356 provisions. It
is seen that FEMA 356 yields very conservative estimations of the structural performance.
On the other hand, if the strain based performance criteria defined in TSC 2007 or as
suggested by Priestley et al. (2007) is used in the determination of structural performance,
unconservative estimations of performance are obtained for reinforced concrete rectangular
walls. In reference to trends observed in Figure 5.32 and Figure 5.37 it can be concluded
that plastic rotation is more stable parameter than the strains to establish the limit states of
reinforced concrete members. The dispersion in the strain data in Figure 5.37 indicates that
this measure of deformation is much more sensitive to member dimension, material
properties, reinforcement amount and the level of axial load than the plastic rotations. So,
as will be proposed next this study promotes the use of plastic rotations as performance
limits in the assessment of reinforced concrete shear wall members.

The proposed limits for the modeling parameters and the acceptance criteria for shear
wall members controlled by flexure are shown in Figure 5.42 and tabulated in Table 5.7.
These limits, alternative to Table 6.18 in FEMA 356, apply to conforming members. The
limits are derived as a function of normalized shear stress (v) and axial load level (P/P,) for
different ranges of these variables in order to obtain more accurate representation of plastic
rotation limits at the specified performance levels. Limits in relation to mid range axial load
levels (P/P, = 0.15) are also introduced to increase the accuracy of the assessment
procedure. The numbers written in parenthesis in bold letters in Table 5.7 is an adaptation
for the FEMA 356 provisions. If the FEMA 356 provisions’ format, as given in Table 5.1
previously, is preferred in the presentation of performance limits (such that limits only
defined at specific v and P/P, values), while the underlined number corresponds to the
existing FEMA 356 limit at the specified shear stress and axial load condition, the left side
number is the value proposed by this study.

As seen in Figure 5.42 the proposed values correspond to lower bound limit of the
results set. When more accurate values of the plastic rotation limits are required, Eq. (5.11)
together with the coefficients defined in Table 5.6 can be employed to calculate plastic
rotations at collapse prevention limit state. The limit obtained through Eq. (5.11) should be
greater than the limit given in Table 5.7. If the limits obtained by this way are reduced by

multipliying with a factor of 0.75, life safety performance criteria is obtained.
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Table 5.7 The proposed modeling parameters and acceptance criteria for shear wall
members controlled by flexure
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CHAPTER 6

SEISMIC PERFORMANCE OF STRUCTURAL WALL
BUILDINGS

6.1 INTRODUCTION

This chapter is devoted to investigation of seismic performance of structural wall
buildings. The seismic demand characterized by the code spectrum compatible ground
motions are applied on a set of generic frame-wall buildings that represents broad range of
frame-wall combinations of relative strength. The effectiveness of walls in the structural
system is characterized by wall index. This way behavior modes from purely flexure
(cantilever model) to shear dominated (strong frame - weak wall systems) can be simulated.
The purpose of the analysis in this chapter is to investigate the following parameters:

e The effect of wall amount (represented by wall index, p) on the deformation
demands of reinforced concrete structures. The measures are the global roof drift ratio (DR)
and maximum interstory drift ratio (MIDR).

e The performance of wall elements by evaluating the base rotations and strains with
respect to code specified limits and the limits found in Chapter 5.

e The shear force to be used in the design of the walls to avoid shear failure. The
amplification in the shear profile along the wall during a dynamic action due to higher
mode effects has impelled codes to account for this excess shear in the design by a
magnification factor (B,) applied to design base shear obtained from static analysis (ECS,
TSC 2007). The amplification of shear demand along the wall, especially at the base, has
been recognized some time ago (Derecho et al., 1978b; Derecho and Corley, 1984). Several
factors and expressions have been proposed to consider this amplification in the design

stage (Paulay and Priestley, 1992; Ghosh and Markevicius, 1992; Seneviratna and
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Krawinkler, 1997; Amaris, 2002; Rutenberg and Nsieri, 2006; Celep and Aydinoglu, 2006).
Although there is a significant amount of work conducted on the base shear amplification
factor, the presented results indicate significant variability on the proposed amplification
values and expressions. This is particularly due to quantity (number) and quality (frequency
content and amplitude) of the ground motion records used in the analysis and the structural
idealization of wall models investigated in these studies. The ground motion database used
in this study is carefully selected to represent the code specified seismic demand.

Using the stiffness and dynamic characteristics of the prototype frame-wall structures
that were introduced in Chapter 4, the strength and stiffness characteristics of single wall-
equivalent frame models that were created for the finite element analyses as shown in
Figure 4.29 are determined. Each model is characterized with a particular wall index and
oH parameter. Dynamic time history analyses are conducted on these models to investigate

the aforementioned issues.

6.2 GENERIC SINGLE WALL-EQUIVALENT FRAME MODELS PRODUCED
BY USING CHARACTERISTICS OF PROTOTYPE FRAME-WALL
STRUCTURES

It is considered that the generic equivalent frame- single wall models cover a wall
index range of 0.002 to 0.02. Models that represent 4, 8 and 12 story structures are
developed. The primary variables in creating a model is the wall length (L) ,height (Hy,),
and wall index (p). Instead of wall height number of stories (N) can be used as well. The
design procedure described in Section 4.5 is utilized. Table 6.1 to 6.3 summarize the
complete set of parameters that emerge from the design process and are used to define wall-
frame models.

The values for frame design shear force (Vy) and the boundary element longitudinal
reinforcement ratio (py) in these tables require an explanation. The calculated frame shear
force at the base story decreases considerably as the wall index (amount of wall) increases.
This is directly related to elastic analysis employed in the design. Elastic lateral load
analyses have demonstrated that nearly the entire lateral load resistance of frame-wall
buildings is provided by the structural walls as the wall index increases in the system. The
generic-frame wall structures that are composed of a single wall and equivalent frame
system seem to require no frames to resist lateral loads as the wall index increases. If the

frame component is ignored, the system resembles a cantilever wall and this situation
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engenders significant changes in the load resisting mechanism. Although walls are stiff
elements and has a limiting effect on the deformations when elastic action is considered, in
the inelastic range after plastic hinge formation at the base of the wall, system behavior
changes completely to lead to significant deformation demands. This may have profound
effects on the behavior of dual systems (Lu, 2002). Because of the rigid-body displacement
of such walls, rotations along the height of the wall, of the same order as that at the
foundation, will be introduced at every level. If the interaction effects are ignored, this will
diminish the drift controlling effect of structural walls.

Although design analysis results point to negligible effect of frame elements in
seismic resistance, in reality there usually exist a considerable number of frame elements
(columns) in the system (considering prototype structures in Figure 4.20). Figure 6.1
displays the variation of number of columns per wall as the number of walls (wall index)
increase in the prototype structure shown in Figure 4.20. These columns contribute to the
lateral strength of the system even though the minimum requirements of the code governs
their design (minimum amount of longitudinal reinforcement in a column is (Pp)min = 0.01).
This excess strength is not foreseen by the elastic analysis used in the design. So the frame
forces calculated in Tables 6.1 to 6.3 should be adjusted in view of nonlinear analysis
results where this substantial lateral strength is mobilized. One of the consequences of this
situation is that the actual force reduction factor (R) in the system may turn out to be
smaller than the one intended initially in the design of frame-wall systems.

In the light of above discussion an approximate rule may be developed for a “typical”
situation. If it is considered that the minimum column dimension is 0.5x0.5 m” and
minimum reinforcement amount is used ((Pp)min = 0.01), the moment capacity of columns is
found as 256, 305 and 345 kN-m for 5%, 10% and 15% axial load levels, respectively. If
the contra flexure height is assumed to occur at the mid height of the column, the column
shears are found as 170, 203 and 230 kN for the same set of axial load levels, respectively.
Considering that two columns supplement a wall in the system, the minimum story yield
shear force due to columns for generic frame-wall structures are calculated as 340, 406 and
460 kN for 4-, 8- and 12-story structures, respectively. If the frame shear found from elastic
analysis is lower than the values given above they are replaced with these ones. Figure 6.1
is in favor of such a correction in frame shear. The relation between the number of columns
per wall as the wall index increases in the system is derived for the prototype structures

described in Chapter 4. It is clear that when the number of columns is considered the
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provided shear capacity is greater than that the elastic design forces on frame component
have indicated. The story yield strength is not constant along the height of the structure. It
is distributed to the upper stories in proportion to design forces resulting from code static

lateral load pattern as shown in Figure 4.21 previously.

# of columns per wall
=
[6)]
|

00 02 04 06 08 10 12 14 16 18 20 22
p - Wall index (%)

Figure 6.1 Relation between the wall index and number of columns per single wall
extracted from prototype structures

The second explanation is with regards to longitudinal boundary element
reinforcement, p,. As seen in the Tables 6.1 to 6.3 the required boundary element
reinforcement decreases as the wall index increases and it seems to take negative values
after some point. This situation stems from design procedure defined in Section 4.5 of
Chapter 4. As the wall index increases in the system the design moment of walls decreases
significantly. The reinforcement ratio calculated by inserting the design moment into Eq.
(4.33) then takes negative values, because the moment is smaller than the section capacity
that is obtained with minimum reinforcement. In such case code specifies the use of
minimum amount of p, = 0.01 as in the column elements. In this study the minimum
boundary element longitudinal reinforcement is set to be p, = 0.005, which is lower than the

code limit.
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Table 6.1 Strength and stiffness characteristics of frame-wall models developed for dynamic analysis, 4-story structure

Kbeam
Ly | Hy Vi/R M, Vi Mpeam | Kgame | KN-m
(m) | (m) | N, |Hy/Ly |p (%) aH |T. (s)|Ar(m*)| V, (kN) | R (kN) | (kN-m) |V, (KN) | (KN) |V./Vy| P/P, [P, (KN) Po Psh (kN-m) | (kN/m) rad
3 12 | 4 4 02 | 2.85 | 039 | 375 14715 6 2453 6138 1341 1111 0.55 | 0.05 | 938 | 0.0263 | 0.0031 902 49381 | 225381
3 12 | 4 4 04 | 2.02 | 035 188 7358 6 1226 4431 886 340 0.72 | 0.05 | 938 | 0.0154 | 0.0025 706 15128 | 176554
3 12 | 4 4 0.6 | 1.65 | 032 | 125 4905 6 818 3515 654 164 0.80 | 0.05 | 938 | 0.0096 | 0.0025 598 7279 | 149525
3 12 | 4 4 0.8 | 143 | 0.29 94 3679 6 613 2938 517 96 0.84 | 0.05 | 938 | 0.0059 | 0.0025 523 4267 | 130830
3 12 | 4 4 1.0 | 1.28 | 0.28 75 2943 6 491 2535 428 63 0.87 | 0.05 | 938 | 0.0034 | 0.0025 467 2796 | 116728
3 12 | 4 4 1.2 | 1.17 | 0.26 63 2453 6 409 2236 364 44 0.89 | 0.05 | 938 | 0.0014 | 0.0025 422 1969 | 105570
3 12 | 4 4 1.4 | 1.08 | 0.25 54 2102 6 350 2004 318 33 091 | 0.05 | 938 | 0.0000 | 0.0025 386 1458 96462
3 12 | 4 4 1.6 | 1.01 | 0.23 47 1839 6 307 1817 281 25 092 | 0.05 | 938 | -0.0012 | 0.0025 355 1121 88859
3 12 | 4 4 1.8 | 0.95 | 0.22 42 1635 6 273 1663 253 20 093 | 0.05 | 938 | -0.0022 | 0.0025 330 887 82401
3 12 | 4 4 2.0 | 090 | 0.22 38 1472 6 245 1535 229 16 093 | 0.05 | 938 | -0.0030 | 0.0025 307 718 76840
5 12 | 4 2.4 0.2 | 1.53 | 034 | 625 24525 6 4088 17061 2739 1349 0.67 | 0.05 | 1563 | 0.0243 | 0.0045 992 59934 | 247949
5 12 | 4 2.4 04 | 1.13 | 0.27 | 313 12263 6 2044 11000 1680 364 0.82 | 0.05 | 1563 | 0.0114 | 0.0025 671 16187 | 167646
5 12 | 4 2.4 0.6 | 094 | 023 | 208 8175 6 1363 8185 1200 163 0.88 | 0.05 | 1563 | 0.0054 | 0.0025 514 7236 | 128507
5 12 | 4 24 0.8 | 0.83 | 0.21 156 6131 6 1022 6542 931 91 091 | 0.05 | 1563 | 0.0019 | 0.0025 419 4028 | 104680
5 12 | 4 24 1.0 | 0.75 | 0.19 | 125 4905 6 818 5457 760 57 0.93 | 0.05 | 1563 | -0.0005 | 0.0025 354 2539 | 88498
5 12 | 4 2.4 1.2 | 0.70 | 0.18 104 4088 6 681 4686 642 39 0.94 | 0.05 | 1563 | -0.0021 | 0.0025 307 1734 | 76741
5 12 | 4 2.4 1.4 | 0.65 | 0.16 89 3504 6 584 4109 556 28 0.95 | 0.05 | 1563 | -0.0033 | 0.0025 307 1253 76741
5 12 | 4 2.4 1.6 | 0.61 | 0.15 78 3066 6 511 3659 490 21 0.96 | 0.05 | 1563 | -0.0043 | 0.0025 307 944 76741
5 12 | 4 24 1.8 | 0.58 | 0.15 69 2685 |59 | 456 3312 439 17 0.96 | 0.05 | 1563 | -0.0050 | 0.0025 307 737 76741
5 12 | 4 24 2.0 | 0.56 | 0.14 63 2349 |57 413 3038 400 13 0.97 | 0.05 | 1563 | -0.0056 | 0.0025 307 592 76741
8 12 | 4 1.5 0.2 | 0.84 | 0.26 | 1000 | 39240 6 6540 39936 5300 1240 0.81 | 0.05 | 2500 | 0.0259 | 0.0060 1002 | 55126 | 250614
8 12 | 4 1.5 0.4 | 0.66 | 0.19 | 500 19620 6 3270 22573 2976 294 091 | 0.05 | 2500 | 0.0096 | 0.0025 573 13077 | 143295
8 12 | 4 1.5 0.6 | 0.57 | 0.16 | 333 13080 6 2180 15799 2056 124 094 | 0.05 | 2500 | 0.0033 | 0.0025 405 5495 [ 101174
8 12 | 4 1.5 0.8 | 0.51 | 0.14 | 250 9375 |5.7] 1654 12317 1587 67 0.96 | 0.05 | 2500 | 0.0000 | 0.0025 317 2982 79349
8 12 | 4 1.5 1.0 | 047 | 0.13 | 200 7064 | 53| 1345 10193 1303 42 0.97 | 0.05 | 2500 | -0.0020 | 0.0025 264 1863 | 65960
8 12 | 4 1.5 1.2 | 044 | 0.11 167 5615 |49 1137 8721 1108 29 0.97 | 0.05 | 2500 | -0.0034 | 0.0025 226 1267 56619
8 12 | 4 1.5 14 | 042 | 0.11 143 4631 | 4.7 986 7636 966 21 0.98 | 0.05 | 2500 | -0.0044 | 0.0025 199 914 49707
8 12 | 4 1.5 1.6 | 040 | 0.10 | 125 3922 |45 872 6802 857 15 0.98 | 0.05 | 2500 | -0.0052 | 0.0025 177 688 44374
8 12 | 4 1.5 1.8 | 038 | 0.09 | 111 3390 |43 | 783 6140 771 12 0.98 | 0.05 | 2500 | -0.0058 | 0.0025 161 536 40125
8 12 | 4 1.5 | 2.0 | 037 | 0.09 | 100 2978 42| 710 5601 701 10 0.99 | 0.05 | 2500 | -0.0063 | 0.0025 147 428 36656

L, = wall length; H,, = wall height; Ny = number of stories; H,/L,, = aspect ratio of wall; p = wall index; aH = behavior factor; T. = elastic period of structure; A; = floor area per wall; V, =
unfactored total equivalent seismic base shear; R= force reduction factor; M,, = wall design bending moment; V,, = wall base shear; Vi = frame base shear; P, = axial load; p, = ratio of total boundary
element longitudinal reinforcement area to boundary region area; py, = web reinforcement; My, = total bending effect of beams framing to walls; K =initial stiffness of beam and frame elements
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Table 6.2 Strength and stiffness characteristics of frame-wall models developed for dynamic analysis, 8-story structure

Kbeam
Ly | Hy Vi/R M, Vi Mpeam | Kgame | KN-m
(m) | (m) | N, |Hy/Ly |p (%) aH |T. (s)|Ar(m*)| V, (kN) | R (kN) | (kN-m) |V, (KN) | (KN) |V./Vy| P/P, [P, (KN) Po Psh (kN-m) | (kN/m) rad
3 24 | 8 8 02 | 644 | 0.78 | 375 23905 6 3984 10831 1990 1995 0.50 0.1 1875 | 0.0495 | 0.0061 1895 88653 | 473812
3 24 | 8 8 0.4 | 456 | 0.75 188 12261 6 2044 8385 1388 655 0.68 0.1 1875 | 0.0339 | 0.0033 1587 | 29113 | 396773
3 24 | 8 8 0.6 | 3.73 | 0.73 125 8369 6 1395 7000 1063 332 0.76 0.1 1875 | 0.0250 | 0.0025 1405 14738 | 351174
3 24 | 8 8 0.8 | 323 | 0.71 94 6417 6 1069 6111 866 203 0.81 0.1 1875 | 0.0194 | 0.0025 1279 9023 | 319848
3 24 | 8 8 1.0 | 2.89 | 0.69 75 5242 6 874 5487 735 138 0.84 | 0.1 1875 | 0.0154 | 0.0025 1186 6153 | 296614
3 24 | 8 8 1.2 | 2.64 | 0.68 63 4455 6 743 5021 641 101 0.86 0.1 1875 | 0.0124 | 0.0025 1114 4497 | 278482
3 24 | 8 8 1.4 | 245 | 0.66 54 3891 6 649 4658 571 78 0.88 0.1 1875 | 0.0101 | 0.0025 1055 3449 | 263800
3 24 | 8 8 1.6 | 2.29 | 0.65 47 3467 6 578 4365 516 62 0.89 0.1 1875 | 0.0082 | 0.0025 1006 2741 | 251573
3 24 | 8 8 1.8 | 2.16 | 0.63 42 3135 6 522 4123 472 50 0.90 0.1 1875 | 0.0067 | 0.0025 965 2238 | 241163
3 24 | 8 8 2.0 | 2.05 | 0.62 38 2868 6 478 3918 436 42 0.91 0.1 1875 | 0.0054 | 0.0025 929 1868 | 232143
5 24 | 8 4.8 0.2 | 346 | 0.81 625 38638 6 6440 31873 3963 2477 0.62 0.1 | 3125 | 0.0494 | 0.0078 2182 | 110089 | 545447
5 24 | 8 4.8 0.4 | 255 | 072 | 313 21190 6 3532 23725 2759 772 0.78 0.1 | 3125 | 0.0321 | 0.0045 1701 34323 | 425164
5 24 | 8 4.8 0.6 | 2.14 | 0.66 | 208 15121 6 2520 19662 2136 384 0.85 0.1 | 3125 | 0.0234 | 0.0028 1459 17074 | 364720
5 24 | 8 4.8 0.8 | 1.88 | 0.62 | 156 11987 6 1998 17161 1764 233 0.88 0.1 | 3125 | 0.0181 | 0.0025 1305 10372 | 326217
5 24 | 8 4.8 1.0 | 1.71 | 0.58 | 125 9810 6 1635 15053 1480 155 0.91 0.1 | 3125 | 0.0136 | 0.0025 1166 6869 | 291413
5 24 | 8 4.8 1.2 | 1.57 | 0.55 104 8175 6 1363 13231 1255 108 0.92 0.1 | 3125 | 0.0097 | 0.0025 1039 4799 | 259774
5 24 | 8 4.8 1.4 | 147 | 0.53 89 7007 6 1168 11835 1088 80 0.93 0.1 | 3125 | 0.0067 | 0.0025 940 3535 | 235001
5 24 | 8 4.8 1.6 | 1.39 | 0.51 78 6131 6 1022 10726 961 61 094 | 0.1 | 3125 | 0.0044 | 0.0025 860 2709 | 214958
5 24 | 8 4.8 1.8 | 1.32 | 0.49 69 5450 6 908 9821 860 48 0.95 0.1 | 3125 | 0.0024 | 0.0025 793 2138 | 198338
5 24 | 8 4.8 2.0 | 1.26 | 047 63 4905 6 818 9066 779 39 0.95 0.1 | 3125 | 0.0008 | 0.0025 737 1729 | 184291
8 24 | 8 3 0.2 | 1.90 | 0.77 | 1000 | 64287 6 | 10715 | 88149 8199 2515 0.77 0.1 | 5000 | 0.0651 | 0.0110 2623 | 111786 | 655652
8 24 | 8 3 04 | 148 | 0.62 | 500 38443 6 6407 63718 5650 757 0.88 0.1 | 5000 | 0.0422 | 0.0066 1944 | 33645 | 486065
8 24 | 8 3 0.6 | 1.29 | 0.53 | 333 26160 6 4360 47449 4023 337 0.92 0.1 | 5000 | 0.0269 | 0.0039 1473 14961 | 368137
8 24 | 8 3 0.8 | 1.16 | 0.48 | 250 19620 6 3270 37634 3085 185 094 | 0.1 | 5000 | 0.0177 | 0.0025 1181 8229 | 295358
8 24 | 8 3 1.0 | 1.07 | 044 | 200 15696 | 6 2616 | 31307 | 2500 116 096 | 0.1 | 5000 | 0.0117 | 0.0025 991 5154 | 247764
8 24 | 8 3 1.2 | 1.01 | 041 167 13080 6 2180 26865 2101 79 0.96 0.1 | 5000 | 0.0075 | 0.0025 856 3508 | 213965
8 24 | 8 3 14 | 095 | 038 | 143 11211 6 1869 23563 1812 57 0.97 0.1 | 5000 | 0.0044 | 0.0025 754 2530 | 188611
8 24 | 8 3 1.6 | 091 | 036 | 125 9810 6 1635 21005 1592 43 0.97 0.1 | 5000 | 0.0020 | 0.0025 675 1904 | 168832
8 24 | 8 3 1.8 | 0.87 | 034 | 111 8720 6 1453 18963 1420 33 098 | 0.1 | 5000 | 0.0001 | 0.0025 612 1480 | 152938
8 24 | 8 3 2.0 | 0.84 | 033 | 100 7848 6 1308 17292 1281 27 098 | 0.1 | 5000 | -0.0015 | 0.0025 559 1181 | 139869

L, = wall length; H,, = wall height; N, = number of stories; H,/L,, = aspect ratio of wall; p = wall index; oH = behavior factor; T, = elastic period of structure; A; = floor area per wall; V, =
unfactored total equivalent seismic base shear; R= force reduction factor; M,, = wall design bending moment; V,, = wall base shear; Vi = frame base shear; P, = axial load; p, = ratio of total boundary
element longitudinal reinforcement area to boundary region area; py, = web reinforcement; My, = total bending effect of beams framing to walls; K =initial stiffness of beam and frame elements
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Table 6.3 Strength and stiffness characteristics of frame-wall models developed for dynamic analysis, 12-story structure

Kbeam
Lw Hv| Vb/R Mw Vf Mheam Kframe kN-m
(m) | (m) | N, [Ho/Ly|p(%)| aH [T (5) |Ac(m)] Vs, (kN) (kN) | (kN-m) |V, (kN) | (kN) |V\/Vy| P/P, P, (KN) v P | (KN-m) | (kN/m) | rad

36 | 12 12 0.2 [10.04 | 1.14 | 375 26325
36 [ 12 12 0.4 | 7.11 | 1.13 | 188 13318
36 | 12 12 0.6 | 581 | I.11 125 8971
36 | 12 12 0.8 | 5.04 | 1.10 94 6804

4387 12181 2135 2253 0.49 | 0.15 | 2813 | 0.0513 | 0.0067 2204 | 100117 | 550931
2220 9476 1476 744 0.66 | 0.15 | 2813 | 0.0340 | 0.0037 1877 | 33056 | 469129
1496 7923 1119 371 0.75 | 0.15 | 2813 | 0.0241 | 0.0025 1670 16766 | 417472
1134 6911 903 231 0.80 | 0.15 | 2813 | 0.0177 | 0.0025 1522 10260 | 380437

36 | 12 12 1.0 | 451 | 1.08 75 5498 916 6193 759 157 0.83 | 0.15 | 2813 | 0.0131 | 0.0025 1409 6982 | 352135
36 | 12 12 1.2 | 412 | 1.07 63 4627 771 5651 657 114 0.85 | 0.15 | 2813 | 0.0097 | 0.0025 1318 5089 [ 329598
36 | 12 12 1.4 | 3.81 | 1.06 54 4004 667 5226 580 88 0.87 | 0.15 | 2813 | 0.0069 | 0.0025 1244 3890 | 311113
36 | 12 12 1.6 | 3.57 | 1.05 47 3536 589 4881 520 69 0.88 | 0.15 | 2813 | 0.0047 | 0.0025 1182 3082 | 295605
36 | 12 12 1.8 | 3.36 | 1.03 42 3172 529 4595 472 56 0.89 | 0.15 | 2813 | 0.0029 | 0.0025 1129 2508 | 282360
36 | 12 12 2.0 | 3.19 | 1.02 38 2880 480 4353 433 47 0.90 | 0.15 | 2813 | 0.0014 | 0.0025 1084 2086 | 270882

36 |12 7.2 0.2 | 539 | 124 | 625 41210
36 | 12| 7.2 0.4 | 398 | 1.15 | 313 21921
36 |12 72 0.6 | 333 | 1.08 | 208 15280
36 |12 72 0.8 [ 293 | 1.04 | 156 11885
36 |12 72 1.0 | 2.66 | 1.00 | 125 9813
36 |12 7.2 1.2 | 245 | 096 | 104 8410
36 | 12| 72 1.4 | 229 | 093 89 7394
36 |12 72 1.6 | 2.16 | 0.90 78 6623
36 |12 72 1.8 | 2.05 | 0.88 69 6016
36 |12 72 2.0 | 1.96 | 0.86 63 5525
36 | 12| 45 0.2 | 296 | 1.29 | 1000 | 63779
36 |12 ] 45 04 | 231 | 1.09 | 500 36615
36 |12 ] 45 0.6 | 2.00 | 097 | 333 26727
36 | 12| 45 0.8 | 1.81 | 0.89 | 250 | 21481
36 |12 45 1.0 | 1.67 | 0.83 | 200 18184
36 | 12| 45 1.2 | 1.57 | 0.78 | 167 15899
36 |12 ] 45 14 | 148 | 0.74 | 143 14211
36 |12 45 1.6 | 141 | 0.71 125 12906
36 | 12| 45 1.8 | 1.36 | 0.68 | 111 11864
36 |12 ] 45 2.0 | 1.31 | 0.65 | 100 11009

6868 36123 4076 2792 0.59 | 0.15 | 4688 | 0.0521 | 0.0081 2598 | 124093 | 649541
3654 26687 2790 864 0.76 | 0.15 | 4688 | 0.0320 | 0.0046 | 2011 38395 | 502795
2547 21913 2121 426 0.83 | 0.15 | 4688 | 0.0218 | 0.0028 1708 18921 | 426958
1981 18974 1724 257 0.87 | 0.15 | 4688 | 0.0156 | 0.0025 1515 11403 | 378709
1635 16952 1462 173 0.89 | 0.15 | 4688 | 0.0112 | 0.0025 1378 7691 | 344567
1402 15458 1276 125 091 | 0.15 | 4688 | 0.0081 | 0.0025 1275 5574 | 318755
1232 14300 1137 96 092 | 0.15 | 4688 | 0.0056 | 0.0025 1193 4246 | 298335
1104 13369 1028 75 093 | 0.15 | 4688 | 0.0036 | 0.0025 1127 3355 | 281637
1003 12599 941 61 094 | 0.15 | 4688 | 0.0020 | 0.0025 1071 2726 | 267635
921 11950 870 51 0.94 | 0.15 | 4688 | 0.0006 | 0.0025 1023 2265 | 255659
10630 | 97624 7918 2712 0.74 | 0.15 | 7500 | 0.0679 | 0.0105 3047 | 120515 | 761796
6102 69481 5300 802 0.87 | 0.15 | 7500 | 0.0415 | 0.0060 | 2227 | 35664 | 556632
4455 56578 4065 390 091 | 0.15 | 7500 | 0.0293 | 0.0039 1847 17315 | 461739
3580 48847 3347 233 093 | 0.15 | 7500 | 0.0221 | 0.0027 1616 10352 | 403875
3031 43566 2874 156 0.95 | 0.15 | 7500 | 0.0171 | 0.0025 1455 6944 | 363729
2650 39668 2537 113 0.96 | 0.15 | 7500 | 0.0134 | 0.0025 1335 5010 | 333695
2368 36638 2283 86 0.96 | 0.15 | 7500 | 0.0106 | 0.0025 1240 3801 | 310084
2151 34194 2084 67 0.97 | 0.15 | 7500 | 0.0083 | 0.0025 1163 2992 | 290862
1977 32169 1923 55 0.97 | 0.15 | 7500 | 0.0064 | 0.0025 1099 2423 | 274800
1835 30455 1790 45 098 | 0.15 | 7500 | 0.0048 | 0.0025 1044 2006 | 261106

oooooooooooooooooooommmmmmmmmmwwwmwwwmmwa
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L, = wall length; H,, = wall height; N, = number of stories; H,/L,, = aspect ratio of wall; p = wall index; oH = behavior factor; T, = elastic period of structure; A; = floor area per wall; V, =
unfactored total equivalent seismic base shear; R= force reduction factor; M,, = wall design bending moment; V,, = wall base shear; Vi = frame base shear; P, = axial load; p, = ratio of total boundary
element longitudinal reinforcement area to boundary region area; py, = web reinforcement; My, = total bending effect of beams framing to walls



6.2.1 Static Analysis on Generic Models with Elastic Properties

The relation between the wall index and vibration period is plotted in Figure 6.2.
Based on the periods calculated and tabulated in Tables 6.1 to 6.3 and plotted in Figure 6.2
equivalent static seismic base shear is calculated according to the procedure defined
previously in Section 4.5. Using triangular load pattern, static analyses was performed with
reduced cracked section stiffness properties. No reduction was applied on the seismic base
shear. The roof displacement was calculated using the expression given in Eq. (E.38) in
APPENDIX E and normalized with respect to building height. The variation of roof drift
with wall index is plotted in Figure 6.3.
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Figure 6.2 Change in the period of frame-wall system as a function of the amount of walls
per floor area
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Figure 6.3 Drift of frame-wall system with an increase in the amount of walls per floor area

Although based on linear analyses useful observations emerge from the data
presented in these figures. With reference to Figure 6.2, in low rise buildings (4-story) the
wall amount provides significant stiffness improvement in the system regardless of
comprising walls length as reflected in the reduction of fundamental vibration period. As
the number of stories increase effect of wall length rather than the increased wall index
become more pronounced in increasing the rigidity of the system. The effect of increased
wall area in controlling the drift demands on frame wall-systems is displayed in Figure 6.3.
It is seen in the figure that walls with larger length provide much better control and
reduction on the drift demands. In reducing the seismic drift demands it is not the wall
amount (area) but the stiffness provided by the increased moment of inertia that is more

effective. So in the design using robust walls (L,, > 5m) should provide better control on the
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seismic drift demands. This is another argument against the use of “wall columns™ that is
common in Turkish practice.

The required boundary element reinforcement as function of strength reduction
factors R = 4 and 6 is plotted in Figure 6.4. Increasing the strength reduction factor
significantly increases the amount of boundary element flexural reinforcement required to
resist the seismic moments even though the existing wall amount is quite large. These
observations are valid for systems where walls only interact with frames in the direction of
excitation. When wall-to-wall interaction exists (such as the case of coupled walls) the
picture may change. For walls in low rise buildings (N = 4) designed as high ductility
systems (R=6), when the wall index exceeds 0.5% the required amount of boundary
element longitudinal reinforcement is satisfied with the minimum amount of 1% as

specified in the code.
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Figure 6.4 Boundary element reinforcement as a function of p and R
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6.2.2 Nonlinear Dynamic Analysis of Generic Frame-Wall Models

Using the finite element model displayed in Figure 4.29 and the member strength and
stiffness properties tabulated in Tables 6.1 to 6.3, nonlinear time history analyses were
conducted. The nonlinear force-defromation relations were employed as defined in Section
4.6 of Chapter 4. As seismic input the ground motion data set composed of ten design
spectrum compatible natural records were applied to the finite element models. The
response parameters under investigation are plotted in Figure 6.5 to Figure 6.10. These
parameters include maximum roof drift, maximum interstory drift, base rotation, base shear
amplification factor and maximum compressive strain at the extreme fiber of the base
section. The response parameters are mainly plotted as a function of wall index to see the
effect of wall amount on these parameters.

Before commencing further, the key to the notation used on figures is given. As an
example in “L3S4”, L3 indicates to wall with 3 m length and S4 refers to 4-story structure.
The other labels should be read accordingly.

Figure 6.5 displays the maximum roof drift of model frame-wall structures. No
profound effect of increased wall area is observed on the drift demands except for 4-story
structures. For 8- and 12-story structures the mean drift reduces from 1% to 0.75% as the
wall index increase from 0.2% to 2%. Although the reduction is not so significant
considering the increase in the wall area, it can be seen that better control over the roof drift
is achieved. For wall indexes greater than 0.75% the scatter of data around the mean drift
ratio due to ground motion variability decreases significantly. The increased wall area
affects significantly the seismic deformation demand on 4-story structures. The drift
demands reduce from approximately 1.5% to below 0.5% as the wall area increases.
Producing the same wall area in the system using larger walls also improves the drift
control over 4-story structures. For the same wall index no effect of wall length on the drift
demands is observed on 8 and 12-story structures. The trend between the wall index and the
drift ratio observed in Figure 6.5 does not agree with the elastic analysis results plotted in
Figure 6.3. Elastic analyses indicate much better control on the drift as the wall index
increases. The difference may be attributed to change in the behavior of wall systems after
formation of plastic hinge at the wall base.

The maximum interstory drift ratios (MIDR) are plotted in Figure 6.6. The figures
indicate to same trends observed in the roof drift ratios (DR) in Figure 6.5, the only

difference being the maximum interstory drift is generally 25 to 50 percent larger than the
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maximum roof drift in the 8- and 12-story models. The mean seismic MIDR decrease from
1.5% to 0.75% as the wall index increases from 0.2% to 2%. For wall indexes larger than
0.5% the MIDR is in the order of 1% or less.

Figure 6.7 presents the dynamic amplification at the base of the walls. The base shear

amplification factor is calculated as

ﬁv = denamic/Vstatic (6.1)

The static wall base shear is calculated by performing pushover analysis under code-
specified equivalent static lateral load. Dynamic shear is the maximum value observed
during the response history data. It is seen that the dynamic amplification decreases from
approximately 1.5 to 1.15 as the wall index in the system increase. The increased wall
index indicates reduced frame-wall interaction effects on the walls. TSC 2007 specifies that
in the systems where the seismic force is completely carried by reinforced concrete
structural walls the dynamic amplification factor can be taken as 1.0. This observation is in
agreement with the code specification. However, there is one additional reason for this
reduction observed in the dynamic amplification factor. As discussed in Section 6.2 in the
design of frame-wall models due to code specified requirements and constructional
restrictions the actual strength of the structure is higher than the strength calculated from
elastic analysis. The structure happened to be designed for a lower force reduction factor
than R= 6. It can be concluded that the dynamic amplification is also a function of expected
inelasticity in the systems. The effect of force reduction factor is displayed in Figure 6.12
and will be discussed in the following sections.

Figure 6.8 displays the maximum plastic rotations calculated at the base of the walls
as a function of wall index. Figure 6.9 displays only the mean base rotation plotted for wall
index for more clear depiction of this type of deformation demand. The FEMA 356 rotation
limits are also superposed on the same figure to facilitate estimating the likely performance
of walls located in different structural systems. Before evaluating the results calculation of
FEMA 356 limits is discussed. The limits for each model structure are calculated using
normalized shear stress (v) and the axial load ratio (P/P,) on the wall element. The
normalized shear stress is calculated according to Eq. (5.5) by factoring the design shear
force of wall for flexural over-strength factor (¢, = 1.25) and the dynamic amplification
factor (B, =1.5) as specified by the code. Eqs (5.2) to (5.4) are used to calculate the

performance limits for immediate occupancy (I10), life safety (LS), collapse prevention
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(CP). As seen in Figure 6.9 the calculated FEMA 356 plastic rotation limits indicate very
low deformability at the base of the walls for low wall index systems (p < 0.5%) especially
for 8- and 12-story structures. This is due to high shear stress carried by the walls in this
range of wall indexes. Above p = 0.5% nearly all walls in all systems assure at least life
safety (LS) performance state.

The maximum compressive strains at the extreme fiber of wall base section are
plotted in Figure 6.10. The pronounced effect of high shear stress is quite obvious on the
increased strain demand in low wall index structures. The frame-wall interaction results in
an increase in the slope of the moment profile along the lower stories of the wall, and thus
increase the level of shear stress that must be resisted by the wall compared with cantilever
walls. The base stories of walls in frame-wall structures with p < 0.5 % resemble squat wall
in terms of loading conditions, so they inhabit very low deformation capacity ( lower than
0.01 drift ratio) and most of the damage concentrates in the compression zone leading to
concrete crushing and loss of concrete integrity at this region. The behavior of wall under
high shear was discussed in Chapters 2 and 5 previously. As seen in Figure 6.10, concrete
compressive strains in low wall index frame-wall structures are much higher than the limit
allowed for design (e, = 0.0035), so it can be concluded that while allocating walls together
with frames a minimum requirement must be sought on the amount of walls with respect to

the total floor area. The limiting value can be recommended as p = 0.5%.
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Figure 6.5 Variation of maximum roof drift with wall index and number of stories
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6.3 DYNAMIC AMPLIFICATION FACTOR

The code equivalent triangular lateral load pattern that represents the distribution of
inertia forces along the building height locates the center of inertial forces at approximately
h. = 0.7H,, above the base. Thereafter, the formation of the plastic hinge at the base of the
wall, introduces the contribution of higher modes of vibration, and the centroid of inertia
forces over the height of the building may be in a significantly lower elevation than that
predicted by the conventional static analysis method. The dynamic amplification factor is
introduced into the design of structural walls to take into account this excess shear resulting
from higher mode effects. It is known from structural dynamics that the contribution of
higher modes to shear will increase as the number of stories increases. Depending on this
argument Paulay and Priestley (1992) stated that the contribution of higher modes to shear
will increase as the fundamental period of the structure increases since the period is
proportional to the number of stories. The fundamental mechanism behind the shear
amplification resulting from higher mode effects is the hinging of the wall base. This means
that the criteria to be considered in the assessing the order of amplification should be
associated with the level of nonlinearity in the systems. This in turn makes the force or
strength reduction factor (R) as the most important variable in investigating dynamic
amplification.

Earthquake resistant design codes employ expressions and constants to account the
for the dynamic shear amplification in the design of walls. New Zealand 3101 (Standards
New Zealand 2006) is one of the earliest codes that have included empirical amplifiers for

wall shear. The expression for the dynamic shear amplification is given as

B, =09+N/10 (6.22)

for buildings up to six stories, and

B, =13+N/30 (6.2b)

for buildings over six stories, where N is the number of stories. Eq. (6.2b) is valid for N<15
and the limiting value of amplification factor is given as 3, < 1.8.

Eurocode 8 adopts the equation initially proposed by Keintzel (1990)
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wherein yrq = 1.2 is a factor to account for overstrength due to steel strain-hardening, Mgqy
is the design flexural resistance at the base of the wall and Mgy the corresponding moment
from analysis, T; is the fundamental period of vibration of the building, T, is the upper limit
period of the constant spectral acceleration region of the EC8 spectrum, and S.(T) is the
ordinate of the elastic response spectrum. The equation is intended to account for the effects
of both overstrength due to the development of a single plastic hinge at the base and higher
modes (second term within the square root). The design envelope of shear forces is given in
Figure 6.10.

TSC 2007 adopts a constant value for the dynamic amplification factor, 3, = 1.5.

Ghosh (1992) suggested the following equation giving the maximum dynamic base
shear in isolated walls subjected to seismic excitation that is represented with the 1940 El

Centro NS record (this record exhibited a peak ground acceleration of 0.33g)

Vinax = 0.25W gy /g + M, J0.6TH,, (6.4)

g max

where W is the total weight and X is the peak ground acceleration.

g max

Kev
2 i shear diagram from analysis
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Figure 6.11 Design envelope of the shear forces in the walls of a dual system in EC8
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Using the analysis results a new expression for the calculation of dynamic shear
amplification is proposed. The calculated mean amplification factors at the base of wall are
plotted as a function of wall index (p), strength reduction factor (R) and number of stories
(N) in Figure 6.12. As seen in the figure, all of the parameters display a certain level of
correlation with the dynamic amplification factor. As the number of stories and strength
reduction factor increase, the amplification factors increase as well. Wall index is inversely
proportional with amplification factor. At first sight it is considered that all three
parameters influence the dynamic amplification. However, when the relation between the
wall index (p) is plotted against the strength reduction factor (R) as in Figure 6.13 it is
understood that the increased wall index leads to lower strength reduction factors as
discussed in Section 6.2. These two parameters are the one and same in this study. So wall

index is not a true parameter and may be ignored.
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A regression analysis is performed using the parameters R and N to estimate the f3,.
Figure 6.12(c) suggests that the data must be investigated in two separate bins, because of
the different linear trends observed on the left and right side of R=2 value. Using linear
regression analysis method following expressions is proposed for the calculation of

dynamic shear amplification factor

B, =0.95+0.01N +0.1R for  R>2 (6.52)
B, =1+(R-1)(0.15+0.01N)  for = R<2 (6.5b)

The comparison of predictions with the calculated amplification factors is plotted in
Figure 6.14. The equation tells that the primary variable affecting the amplification factor is
the expected level of nonlinearity in the system reflected by R. The number of stories or
fundamental period is of secondary importance. Of course the regression analysis here
cover number of stories up to 12 and structural period of 1.5 s at maximum. Beyond this
limit the significance of these parameters may change, but we refrain from commenting on

that.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

71 SUMMARY

In this dissertation, seismic performance of structural walls has been investigated by
evaluating the shortcomings of the existing seismic performance limits that are specified in
certain codes as modeling and acceptance criteria for their seismic performance. The
validity of strains over conventional drift and rotation limits in use of performance limits
has been an area of focus. The seismic performance investigation of reinforced concrete
structures requires certain level of accuracy and reliability in structural modeling and
ground motion selection aspects, so these topics have been covered thoroughly in separate
chapters. Verification of the finite element code used in the modeling and analysis of
structural walls constitutes a significant tier of this study because reinforced concrete
deformation limits can be only interrogated analytically if the utilized tool is able to
estimate the actual strength and deformation capacity of reinforced concrete members
accurately. In this work ANSYS finite element program has been used to analyze shear wall
models. Realistic reduced finite element models of frame-wall structures have been
developed to include structural interaction effects to the analysis process.

Results of several shear wall experiments conducted under dynamic, static cyclic and
static monotonic loading conditions are used to establish the material and finite element
aspects of nonlinear finite element analysis procedures. Calibration of concrete material
model under different stress conditions, ranging from flexure to shear critical, is discussed
in detail. The effect of solid finite element options, which is available in the ANSYS
program, on the accuracy of calculated results is investigated by simulating the test results.

Experimentally measured displacements, forces and strains are graphically compared with
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calculated values. The benchmark results are such that full confidence in the problem
outputs is achieved.

The ground motions to be used as input in dynamic analysis have been selected from
the four natural ground motion datasets that had been assembled by different researchers.
Frequency content of ground motion is considered as the most significant parameter in
selecting the ground motions. An existing and a newly developed ground motion intensity
measures are used to identify the frequency content of the ground motion. The new
spectral intensity measure is based on period elongation and area below the acceleration
response spectrum. A/V ratio defined as the ratio of peak ground acceleration to velocity
ratio is also used to describe the frequency content of the ground motion. The effect of
frequency content on SDOF system deformation demands is analyzed using ground motion
data sets classified according to A/V ratio. Ten out of 228 ground motions that conform to
the frequency content of normal ground motions (A/V = 8 s™) and yield code design
spectrum compatible spectral shapes are selected for time history analyses.

The inadequacy of experimental setups used in the shear wall tests hinders the
inclusion of 3D structural effects on the wall response. The actual loading conditions that
develop during a dynamic event cannot be represented entirely either. An analytical
framework that incorporates the selection of design parameters affecting wall response and
accounts for significant interaction effects is developed to analyze structural walls in
isolated form. Typically, finite element models of structural walls are discreticized with
thousands of elements and nodes, so computationally efficient generic single wall-
equivalent frame models reduced from real prototype frame-wall structure are required for
use in finite element analyses. A straightforward design process based on linear shear-
flexure beam continuum theory is developed. Derivation of an improved formulation for the
shear-flexure beam model is presented.

While FEMA 356 relies on plastic rotations to be used as modeling parameters and
numerical acceptance criteria for nonlinear procedures, TSC 2007 uses concrete and steel
strains for the performance evaluation of reinforced concrete members. A parametric study
including wall length, building height, axial load ratio, boundary element longitudinal
reinforcement ratio as variables is conducted on model walls. Static analyses on isolated
cantilever wall models are performed to determine the deformation limits of reinforced
concrete conforming wall members in terms of drift, rotation and strains. Using the force-

displacement responses obtained from analyses immediate occupancy, life safety and
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collapse prevention performance limits are determined. The FEMA 356 rotation limits and
TSC 2007 strain limits are compared with the finite element analysis results. The limits
defined in both documents are also crosschecked to examine the consistency among them.
Expressions for drift and rotation are proposed to calculate the collapse prevention limit
state. A thorough examination on the components of plastic hinge analysis is performed in
parallel to investigation of performance limits. A discrete procedure is developed to
establish the relation between the section responses obtained from experiments or
equivalent methods and conventional section analysis. An expression is derived for the
calculation of plastic hinge length. Reliance on simple calculations for strain is shown to
produce false performance expectations.

Finally, the seismic performance of structural walls under different stress conditions
represented with varying wall index (amount) in frame-wall systems is analyzed by
performing nonlinear time history analysis. The generic frame-wall models is designed for
strength reduction factor of R = 6. Ten design spectrum compatible ground motions are
applied on each model. The deformation demands such as maximum roof drift and
interstory drift ratio, base rotation and maximum compressive strain at the boundary
element is compared with FEMA 356 and TSC 2007 performance limits. The dynamic
amplification in the wall shear resulting form higher mode effects is investigated by
comparing the seismic shear calculated at the base of wall during dynamic analysis with the
one obtained from pushover analysis utilizing triangular lateral load pattern. A simple

expression for the calculation of dynamic shear amplification is proposed.

7.2  CONCLUSIONS

The following conclusions in regards to seismic performance assessment of structural

walls are reached on the basis of the results obtained in this study.

e Nonlinear finite element analysis procedures can be effectively used to calculate
distinct response modes of shear walls ranging from flexure to shear dominated behavior.
The deformation and strength characteristics of reinforced concrete structural walls can be
calculated within reasonable accuracy. However, finite element programs, commercial or
developed for research purposes, must be verified against benchmark problems as
performed here for ANSYS code. The calibration of material models for each particular

case is described in detail. The low order finite elements displaying shear locking
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behavior should be used with extensive care in regards to element options and mesh

density in the model.

o The frequency content of a ground motion should be considered as an important
parameter in the selection of ground motions to be used as input in nonlinear dynamic
analysis. Two measures are used to determine the frequency content of a ground motion.
A new spectral intensity measure (I,) that is calculated as the area blow the acceleration
response spectrum between the elastic fundamental period (T;) and the elongated period
(Ty) reflecting the effect of damage on the structure are found to correlate well with
calculated seismic deformation demands. The second intensity measure is the A/V ratio.
For the ground motions that has the same peak ground amplitude, the one that has lower
A/V ratio found to be more destructive. It is also demonstrated that A/V ratio initially
used to emphasize the effect of local soil conditions on the ground motion parameters also
correlates well with the earthquake magnitude. Large earthquakes have lower A/V ratio
reflecting the existence of low frequency wave components in the composition of the
record. Most ground motions (design spectrum compatible) have A/V ratio of
approximately 8 s”. Use of ground motions with low A/V ratio in time history analysis
may cause overestimation of seismic demand. A/V is more useful in classifying ground

motions data sets rather than selecting a single motion.

e A/V ratio may provide considerable insight in reducing discrepancies related to ground
motion scaling based on peak ground amplitude parameters (PGA and PGV). If the
ground motions classified in low, high and normal A/V ratio bins according to limits
defined in this study are scaled to the same PGA, the highest deformation demands are
obtained from low A/V ratio bin. If the scaling is done for the same PGV level, the
highest deformation demands are obtained from high A/V ratio bin and lowest from the
low A/V ratio bin. An interesting observation in regards to scaling of ground motions by
peak ground amplitude values is that assuming the ground motions in a data set has
narrow range of (A/V)s ratios, it does not matter whether the ground motions are scaled
to same PGA or PGV level, similar mean deformation demands is obtained from both
type scaling as far as the PGA/PGV ratio calculated using PGA and PGV values, for
which the ground motions are scaled, yields an acceleration to velocity ratio in the same

order of the data set’s (A/V)s ratio. Factors that can be used to convert mean deformation
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demands among PGA and PGV based scaling procedures are derived as a function of A/V

ratio of the data set and PGA/PGYV ratio of the scaling.

e Derivation of a new shear-flexure beam formula introducing the two refinements into
the otherwise well-known formulation for wall-frame systems is given. One is the
correction of the shear force boundary condition at the base of the wall, and the other is
the additional distributed moment transferred from link beam ends. The displacement,
shear and moment profile along the wall calculated using the new formulation compares

very favorably with finite element solutions.

e The methodology developed in this study for the parametric investigation of structural
walls is one of the most comprehensive one available in the literature. Unlike the existing
procedures utilizing simple isolated cantilever models, finite element models of generic
frame-wall structures that can take into account structural interaction effects resulting
from frames and link beams are developed. A design process is devised to calculate the

required reinforcement at the boundary and web of walls.

e The plastic rotation limits given in FEMA 356 for conforming shear wall members
controlled by flexure seem to yield very conservative estimations of structural
performance. The existing plastic hinge rotation limits are in general lower than the limits
found in this study in the order of two or more, especially for life safety and collapse
prevention performance levels. The shear stress level (v) and axial load ratio (P/P,) that
are used to calculate the plastic hinge rotation limits or to interpolate between the values
effectively differentiates the deformation modes of structural walls. The proposed change

to the limiting average shear stress value for flexural dominated response (increased from
0.25,/f. t00.33,/f.) by ASCE/SEI committee does not introduce a significant

improvement to performance evaluation of the structural walls in this range. Instead of
this change this study proposes to keep the shear stress limit as defined in FEMA 356 and

increase the allowable plastic rotation for walls under low shear and normal stress (v
<0.25,/f. and P/P, < 0.1). In this range walls has considerable plastic rotation capacity,

0.02 rad <6, <0.06 rad.

e The calculated plastic hinge rotations display significant scatter above the lower

limiting value of 0.02 radians for low shear stress conditions. It is seen that the scatter
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depends on the wall length. Although the shear stress incorporates the wall length in its
calculation, it falls short in representing the deformation limits in case of low unit shear
stress conditions. Walls with shorter length (slender walls) can exhibit very high plastic
rotations in this range. So it may be proposed that in the low shear stress range the plastic

hinge rotation performance limits should be based on slenderness of the wall.

e In the existing form the strain limits defined in TSC 2007 yield unconservative
estimations for the performance assessment of structural walls. The local deformation
demands obtained from finite element analysis is related to strains obtained from section
analysis by means of base curvature. The compressive strains calculated at life safety and
collapse prevention performance levels indicate strain values lower than specified in code
nearly for all cases analyzed here. The limits defined in TSC 2007 are required to be
adjusted for reinforced concrete rectangular walls. The actual compressive strains (finite

element analysis results) are greater than the code specified limits.

o [f the compressive strain limits in TSC 2007 are adapted to FEMA 356, under low to

moderate stress conditions (v <0.50,/f. ) they take the values of 0.0035, 0.005 and

0.0075 for average upper bound limit of compressive strains at immediate occupancy, life
safety and collapse prevention performance levels, respectively. These results for walls

would raise concern for columns and other critical members.

o The plastic hinge length can be taken as the half of the height of the region over which
the plasticity spreads on the wall (L, = 0.5L,,). As the wall length increases the spread of
plasticity along the wall increases as well. As the shear stress increases the length of
plastic zone decreases. The data reveals that plastic hinge length is mainly a function of
wall length but is not a constant percentage of it (such as L, = 0.5L,,) as assumed by many
codes and reported by other research. The proposed Eq. (5.15) calculates the plastic hinge

length within reasonable accuracy.

e Dynamic analysis results have demonstrated that when frame-wall systems resist
lateral earthquake effects critical deformation demands may arise at the base of the walls
for low wall index (ratio of total wall area to the floor area in plan) systems. In addition to
the interaction between the frames and walls at story levels, the shear and moment

transferred from link beams extending from frames directly to the ends of the walls can
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significantly change the moment profile causing a reduction in the inflection height of the
wall and increase in the slope of the moment curve. The resulting high shear stress
conditions at the lower stories lead to limited deformability of wall members. When walls
are assessed according to limits defined in FEMA 356, it is seen that these walls can
seldom survive the design earthquake without major damage. It is proposed that in the
design of dual systems where frames and walls are connected by link beams, the
minimum value of wall index should be 0.5%. Above p = 0.5% nearly all walls in all

systems assure at least life safety (LS) performance state.

e The increased wall index leads to reduction in the top story and interstory
displacement demands. The calculated roof drifts are in the order of 0.75-1.25%.
However, the actual reduction effect of increased wall area is observed on the dispersion
of the deformation demands. As the wall amount in the system increases the dispersion in

the calculated roof drift due to ground motion uncertainty decreases considerably.

e [t is found that the dynamic amplification of shear forces along the height of the
building is a function of expected level of nonlinearity and number of stories (N). Since
the desired level of nonlinearity in structural systems is introduced at the design stage by
force (or strength) reduction factor, R, an expression [Eq.(6.5)] using R and N as

parameters is proposed to calculate the dynamic amplification factor.

e In frame-wall structures the actual strength of the system after the code minimum
reinforcement requirements has been provided may be larger than initial strength
assignment. The strength assignment based on linear analysis with elastic member
stiffness should be avoided in such cases since wall stiffness is much larger than the sum
of column stiffnesses. A pushover analysis is required to determine the actual distribution

of forces among each primary component for design verification.

7.3 RECOMMENDATIONS FOR FUTURE STUDIES

e This study focus on the investigation of deformation limits of conforming reinforced
concrete shear wall members. The same methodology should be applied for the
investigation nonconforming members. The parameter set used in the modeling of shear

walls can be extended to investigate the influence other parameters as well.
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e An extension can be made to investigation of framed-walls (barbell shape) and
irregular shaped walls (T-, U-, H-shaped walls). This is important for walls where shear
center location is strain-level dependent.

e Torsional effects have been disregarded in this study. The experimental studies
investigating the torsional behavior of reinforced concrete shear walls are also very rare.
Since the finite element and material models are also calibrated for shear critical
conditions, the effect of torsion on the deformation capacity should be investigated.

e The modified shear-flexure beam formulation can be developed further to calculate the
simple capacity curves of frame-wall systems. The results have shown that the significant
stages in the frame-wall system response are the hinging of the wall base, yielding of
beams framing to wall and the yielding of the frame. Characterizing each stage as a point
on the capacity curve, the formulation can be adjusted by developing relevant
mathematical models of these stages to calculate three or four point pushover curve. The
procedure can be very useful in quick earthquake loss estimation procedures where total

or inter-story drift are needed.
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APPENDIX A

DESCRIPTION OF THE FINITE ELEMENTS

1. Introduction

ANSYS is equipped with a special element SOLID65 that can be used in the 3-D
modeling of reinforced concrete solids with or without reinforcing bars. In this study,
structural walls have been modeled with this element. The reinforcing bars can be modeled
either in a smeared manner by using the special rebar feature of the SOLID65 or can be
modeled discretely using the three dimensional truss element LINKS. Additionally,
MASS21 element is used to introduce mass to the system. In the following sections basic
formulation and special features of these elements are described.

2. SOLID65 Element Description

Element SOLID65 has eight nodes with three translational degrees of freedom at
each node. The solid element is capable of cracking (in three orthogonal directions) in
tension and crushing in compression and also undergoing plastic deformations. If cracking
occurs at an integration point, the cracking is modeled through an adjustment of material
properties that effectively treats the cracking as a “smeared band” of cracks, rather than
discrete cracks. The concrete material was assumed to be initially isotropic (ANSYS). Up
to three different rebar specifications may be defined. Ties and stirrups can also be modeled
by making use of this property. The rebars can carry tension and compression, but not
shear. They are also capable of plastic deformation and creep. The geometry, node
locations and the coordinate system for this element are shown in Figure A.1.

The eight-noded isoparametric brick element, SOLID65, employs linear interpolation
functions for the geometry and displacements with eight integration points (2x2x2). The
interpolation function for this element is given as follows:

N, =%(li§)(lin)(li§), where iel,....8. (A.1)
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Depending on the given shape functions, the nodal displacements (u;, v;, w;)
calculated at the nodes are interpolated at any point (&, 1, §) within the element as

u =u1N1 +l/l2N2 +...+u8N8
V:V1N1+V2N2+...+V8N8 (A2)
WZWINI +W2N2 +...+W8N8

The displacement field in the element is calculated at the integration points by
utilizing a variable integration scheme (Gauss quadrature) of 2x2x2.

Figure A.1 SOLID65 geometry from ANSY'S user manual (ANSY'S, 2005)

2.1. Shear Locking and Extra Displacement Shapes:

Suppose that the surface of a block of material is divided into large number of small
cubic elements with faces respectively parallel to the three coordinate planes as shown in
Figure A.2. When this material is subjected to a pure bending moment, while the edges of
these elements in the horizontal plane experience a curved shape change, the vertical edges
remain straight. However, all the faces remains at 90° to each other after deformation, so it
is concluded that y,, = 4, = 0 and thus t,, = 1, = 0. Since the deformations involved do not
require any interaction between the elements of a given transverse cross section Gy, G;, Ty,
must be zero on the surface of the member.

When the continuum given in Figure A.2 is discretized with first order solid finite
elements such as the SOLID65 discussed here, the deformed pattern of the same material
block under pure bending moment should be as the one shown in Figure A.3. All the
dashed lines remain straight, but the angle A can no longer stay 90°. This is due to linear
interpolation functions used for the element that leads to constant strain distribution within
the element. The deformed pattern of the material block embodies that within the volume of
material the strain energy of the elements is generating shear deformation instead of
bending deformation. The artificial shearing stresses introduced to the material cause the
element to become stiff under pure bending moment. Wrong displacements, false stresses,
and spurious natural frequencies develop because of this phenomenon called shear locking.
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A remedy for this problem is to add bending modes to element displacement fields.
ANSYS provides "incompatible modes" formulation (also referred to as "extra shapes") for
modeling bending applications because the eight-node solid element exhibits shear locking
as the four-node plane element.
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Figure A.2 Deformed shape of a material under pure bending
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Figure A.3 Deformed shape of a material discretized with SOLID65 under pure bending

If the problem is predominantly bulk deformation, then you may choose to turn extra
shapes off to reduce CPU/storage requirements and enhance convergence. However, doing
so precludes the ability to model any bending. In such a case number of element in the
bending direction must be increased. For structural analyses, this corner noded element
with extra shape functions will often yield an accurate solution in a reasonable amount of
computer time. Considering the extra shape functions (ESF), the displacement field is
calculated as

u=u Ny +uyNy +...+ugNg +a;(1- ) +ay (1-n°) + a;(1- ¢ %)
V=N, +vysNy +... 4Ny + a3;(1-E) +a,(1-n?) +ag(1-¢?) (A.3)
w=w N, +WyNy +...+ wyNg +as(1-E2) +ag(1-n) +ag(1-¢?)
where the nine a; are generalized d.o.f. or they may also be called as “nodeless” d.o.f.
(Cook et al., 2001). The a; are not associated with any node nor are they connected to d.o.f

of any other element. Physically, displacement modes associated with the a; are
displacements relative to the displacement field dictated by the summations in Eq. (A.3).

The elements with extra shape functions called “incompatible” because of the
behavior illustrated in Figure A.4. With the loading shown in Figure A.4(b), a gap appears

315



between elements. If the forces are reversed, elements would overlap.

No gaps or overlaps appear in a physical continuum. Why then do incompatible
elements provide a satisfactory model? It is because repeated mesh refinement causes
elements to approach a state of constant strain. Initially straight lines, such as sides of
undeformed elements, remain straight when deformation is such as to produce a state of
constant strain. Thus an FE model composed of elements with extra shape functions (ESF)
allows exact results to be approached as the mesh is refined. Convergence may be “from
above” because a coarse mesh of elements with ESF may be overly flexible. In contrast,
elements without ESF converge “from below” because they are always too stiff (or at best
exact, in a field of constant strain) (Cook et al., 2001).

aV. -
e
\ \
a \ \
3 \ : =-- :
1 1 S L =< i
1 1 P S
e VL . v. M ; Y
'
\ ' v '
\ 1 \ 1 P
\ 1 \ i -7 RN
\ . \ N - %,
a [l n \ X, g
< f !
' ' &
1 3 [ ¢
' ' fo---=a
' / z,§ S
s ! N
.7 as .
< 3
F <= T F <« —>F
sy o F sy, I
4 2 , 4 g
. / . ’
, \ A, e A
. \ . - \ ~< .
, \ L ,- \ ~. S
. , “
P N 2 L N N2
F< >, F< >
Ry \ / / \ \ ’ ’
N N /S F. N N T
’ . d-ko s
Jo2F S OF W 2F LN A 2F
\ 7 7 N \ as_ |7 N
A A sl
\ ) P \ \ )/ i \
\ ’ Sl \ \ ’ Sl \
\ SN N \ e N
S0 ‘. 2 ‘.
. ,. PO S
N i \ Dl I \
2F G 7 ‘\ N 2F AN Pt N
’ e i
2 BN I FUTON] 2F
. ’
/< \ \ /< \ o
/ ’ v ’ F 4 N v F
. ’ ’ /
’ 3 . . ~ \ -7
aw \ , A S \ -7
s, N . AN See e
. ,
S, \ . S, y .
B M < ,/\ B W (Y
F< > F Fe=x 7 F
N .
S~ as e

Figure A.4 Shear locking on the element (a) Displacement modes u = (1-n%)a, + (1-
Mas and v = (1-&%a; + (1-C)as (b) Elements with extra displacement shapes
suppressed, no incompatibility between adjacent elements but having shear locking

defect. (c) Elements with extra displacement shapes included, incompatibility between
adjacent elements.
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2.2 Assumptions and Restrictions:

The basic assumptions of the material model are as follows:
1. The concrete material is assumed to be initially isotropic.

The symmetric material stiffness matrix [D] for concrete is given by

[1-v) v v 0 0 0
v (1-v) v 0 0 0
v v (1-v) 0 0 0
[DC]ZL 0 0 0 1=2v) 0 0 (A.4)
1+ v)(1-2v) 2 s
0 0 0 d-20)
2
0 0 0 0 (-20)
L 2

where E is the Modulus of Elasticity and v is the Poisson’s ratio for concrete.

2. Whenever the reinforcement capability of the element is used, the reinforcement is
assumed to be “smeared” throughout the element. The reinforcement was entered as
volumetric ratio of that element, defined as the rebar volume divided by the total element
volume. In the formulation of stress-strain matrix, D, the relation given in Eq. (A.5) is used.
The amount of reinforcement is used as a modification factor that calibrates the concrete’s
strain-stress matrix.

Ng Np
[D]=(1-> 7D 1+ > v D", (A.5)
i=1 i=1

In this equation, Nk denotes the number of different reinforcing materials, D is the
stress-strain matrix of the concrete and D® (given in Eq. (A.6)) is the stress-strain matrix of
reinforcement material, /X is the ratio of the volume of reinforcing material “7” to the total
volume of the element.

ol [E- 0 0 0 0 ofeh £
Ty 0 .00 00 0fey, &y
oL, 0 0 0 0 0 Of|le, A1 1€
o[ 1o 0000 ofe :[Dlg’ (A.6)
Xy Xy Xy
o) 0 000 0 0fe, )
o, L0 0 0 0 0 Ofle, £y,
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In Eq. (A.6), E/ is the Young’s modulus of reinforcement type i. It may be seen that
-

. the axial stress in the x, direction of

the only nonzero stress component is G

reinforcement type i. The orientation of the reinforcement i within the element is depicted
in Figure A.5. The element coordinate system is denoted by (X, Y, Z,) and (x/, y/" ,z/)
describes the coordinate system for reinforcement type i.

Figure A.5 Reinforcement orientation

Since the reinforcement material matrix is defined in coordinates aligned in the
direction of reinforcement orientation, it is necessary to construct a transformation of the

e} =l Tl )] ()

in order to express the material behavior of the reinforcement in global coordinates.
3. Cracking is permitted in three orthogonal directions at each integration point.

4. If cracking occurs at an integration point, the cracking is modeled through an
adjustment of material properties which effectively treats the cracking as a “smeared band”
of cracks, rather than discrete cracks. Once a crack occurs at an integration point, a plane of
weakness is introduced in the direction normal to the crack face to modify the stress-strain
relation of concrete.

The stress-strain relation of concrete in tension and the strength of cracked condition
are explained in Figure A.6. In this figure f; is the uniaxial tensile cracking strength and E is
the modulus of elasticity of concrete. After cracking, a certain amount of stress relaxation
can be included in the element stress formulation with the constant 7. which defaults to 0.6.
R, is the secant slope defined as shown. It diminishes to zero as the solution converges. The
stress relaxation after cracking is an option in the element formulation, so can be included
or excluded when desired. But, including a certain amount of stress relaxation can help to
achieve a better convergence behavior. Surpassing the tensile relaxation will equal R, to 0.
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Figure A.6 Tensile behavior of concrete

Also, a shear transfer coefficient P, is introduced which represents a shear strength
reduction factor for those subsequent loads which induce sliding (shear) across the crack
face. The stress-strain relations for a material that has cracked in one direction only
become:

Rdry) O 0 0 0
£
! 0 0 0
(I-v)
- 0 0 L o 0 o
[Dck]: (1-v) (A.8)
¢ 1
I+ 0 0 % 0 0
0 0 0 0 % 0
0 0 0 0 0 %

where the superscript ck signifies that the stress-strain relationship refers to a coordinate
system parallel to the principal stress directions with x* being perpendicular to the crack
direction. As can be observed from Eq. (A.8), the material stress-strain relationship is
modified by R, in the direction perpendicular to cracking, and by S, for the shear terms. The
term f, represents the shear that can be transferred across a crack due to friction, aggregate
interlock or dowel action. If the crack closes, then all the compressive stress normal to the
crack plane are transmitted across the crack and only a shear transfer coefficient . for a
closed crack is introduced. Then the corresponding stress-strain relationship for concrete
with a closed crack takes the following form:
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[(1-v) v ) 0 0 0
v (-v) v 0 0 0
v (I-v) 0 0 0
1-2
b= E o 0o o & =20y 0 (A.9)
I (1+v)-20) 2 (1-2)
0O 0 0 0 o
2
0 0 0 0 0 B. @
L 2
The stress-strain relations for concrete that has cracked in two directions are:
R _
L 0 0 0 0 0
E
0 & 0 0 0 0
E
0 0 0 0 0
)= o o b 0 (A.10)
2(1+v)
0O 0 0 Py 0
2(1+v)
0O 0 0 0 0 By
L 2(1+v) |
If both directions reclose,
[(1-v) v ) 0 0 0 |
v (-v) v 0 0 0
v (I-v) 0 0 0
1-2
- E 0o o o0 g =2 0 A1)
(1+v)(1-2v) 2 (1-2)
0O 0 0 0 TU 0
0 0 0 0 0 2 (1_—220)

The stress-strain relation for concrete that has cracked in all three directions are:
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e _
L 0 0 0 0 0
E
R
0o —+ o0 0 0 0
E
0 0 1 0 0 0
[ Ck _ ﬂl A 2
Do|=E 0 0 0 0 (A.12)
2(1+0)
0 0 O By
2(1+0)
0 0 O 0 b
L 2(1+v) |

The transformation of [ng ] to element coordinates has the form

[D,]= [T"k ][ [Dg‘k Irck] (A.13)

where the terms composing [T ck ] are the components of the principal direction vectors.

5. In addition to cracking and crushing, the concrete may also undergo plasticity, with
the Drucker-Prager failure surface being most commonly used. In this case, the plasticity is
done before the cracking and crushing checks.

3. Other Elements

Different elements, which are nonlinear in nature, were used in the model
construction serving to different modeling purposes. The general characteristics of these
elements are explained briefly below.

3.1. MASS21

MASS21 is a point element having up to six degrees of freedom: translations in the
nodal x, y, and z directions and rotations about the nodal x, y, and z axes. A different mass
and rotary inertia may be assigned to each coordinate direction.

3.2. LINK8 and LINK10

The 3-D bar element is a uniaxial tension-compression element with three degrees of
freedom at each node: translations in the nodal x, y, and z directions. It is used when the
reinforcing bars are modeled discretely. Plasticity, stress stiffening, and large deflection
capabilities are included.

A special version of LINKS8 is LINK10 that is a 3-D spar element having the unique
feature of a bilinear stiffness matrix resulting in a uniaxial tension-only (or compression-
only) element. With the tension-only option, the stiffness is removed if the element goes
into compression (simulating a slack cable or slack chain condition).
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3.3. COMBIN14

COMBINI14 has longitudinal or torsional capability in 1-D, 2-D, or 3-D applications.
The longitudinal spring-damper option is a uniaxial tension-compression element with up to
three degrees of freedom at each node: translations in the nodal x, y, and z directions. No
bending or torsion is considered. The torsional spring-damper option is a purely rotational
element with three degrees of freedom at each node: rotations about the nodal x, y, and z
axes. No bending or axial loads are considered.

3.4. COMBIN39

COMBIN39 is a unidirectional element with nonlinear generalized force-deflection
capability that can be used in any analysis. The element has longitudinal or torsional
capability in 1-D, 2-D, or 3-D applications. The longitudinal option is a uniaxial tension-
compression element with up to three degrees of freedom at each node: translations in the
nodal x, y, and z directions. No bending or torsion is considered. The torsional option is a
purely rotational element with three degrees of freedom at each node: rotations about the
nodal x, y, and z axes. No bending or axial loads are considered.

The element is defined by two node points and a generalized force-deflection curve
as shown in Figure A.7. The points on this curve (D1, F1, etc.) represent force (or moment)
versus relative translation (or rotation) for structural analyses. The force-deflection curve
should be input such that deflections are increasing from the third (compression) to the first
(tension) quadrants. Adjacent deflections should not be nearer than 1E-7 times total input
deflection range. The last input deflection must be positive. Segments tending towards
vertical should be avoided. If the force-deflection curve is exceeded, the last defined slope
is maintained, and the status remains equal to the last segment number. If the compressive
region of the force-deflection curve is explicitly defined (and not reflected), then at least
one point should also be at the origin (0,0) and one point in the first (tension) quadrant.
Element can unload along same loading curve or along line parallel to slope at origin of
loading curve depending on the application.
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Figure A.7 COMBIN39 geometry (ANSY'S manual)
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3.5. BEAM188

BEAMI18S8 is a linear (2-node) or a quadratic beam element in 3-D as shown in
Figure A.8. BEAMI188 has six or seven degrees of freedom at each node. These include
translations in the x, y, and z directions and rotations about the x, y, and z directions. A
seventh degree of freedom (warping magnitude) can also be considered. The beam element
is based on Timoshenko beam theory, which is a first order shear deformation theory:
transverse shear strain is constant through the cross-section; that is, cross-sections remain
plane and undistorted after deformation.

Element integration staticns
\ (Gauss Paints) for linear siement:
s 4= 8.0

=1

Figure A.8 BEAM188 element geometry and integration stations (ANSYS)

BEAMI188/BEAMI189 can be associated with either of these cross section types:

e Standard library section types or user meshes which define the geometry of the
beam cross section. The material of the beam is defined either as an element
attribute (MAT), or as part of section buildup (for multi-material cross sections).

e Generalized beam cross sections, where the relationships of generalized stresses to
generalized strains are input directly.

When using nonlinear general beam sections, neither the geometric properties nor the
material is explicitly specified. The nonlinear general beam section is an abstract cross
section type that allows you to define axial, flexural, torsional, and transverse shear
behavior as a function of axial strain, bending curvature, twist, and transverse shear strains.
Generalized stress implies the axial force, bending moments, torque, and transverse shear
forces. Similarly, generalized strain implies the axial strain, bending curvatures, twisting
curvature, and transverse shear strains. This is an abstract method for representing cross
section behavior; therefore, input often consists of experimental data or the results of other
analyses. The behavior of beam elements is governed by the generalized-stress/generalized-
strain relationship of the form:
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[N [Ag(s,T) T e
M, IlE(Kl’T) 0 K
M, | If(’fzaT) Ky
r | Jo(7.T) X
Sy 0 A1G(71aT) 71
1S2 ] L AzG(J/zaT)_]z_
where

N = Axial force

M, = Bending moment in plane XZ

M, = Bending moment in plane XY

Tt = Torque

S = Transverse shear force in plane XZ

S, = Transverse shear force in plane XY

€ = Axial strain

k; = Curvature in plane XZ

K, = Curvature in plane XY

x = Twist of the cross section

v1 = Transverse shear strain in plane XZ

v» = Transverse shear strain in plane XY

Ar(e,T) = Axial stiffness as a function of axial strain and temperature

I,%(x,,T) = Flexural rigidity as a function of curvature and temperature in plane XZ
L"(x,,T) = Flexural rigidity as a function of curvature and temperature in plane XY
Je(y, T) = Torsional rigidity, as a function of torsion and temperature

A,%(y,,T) = Shear stiffness as a function of shear strain and temperature in plane XZ
A>%(y,,T) = Shear stiffness as a function of shear strain and temperature in plane XY

T is the current temperature
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APPENDIX B

CONCRETE MATERIAL MODELS

1. Introdcution

Complexity of concrete response under various loading regimes (uniaxial, biaxial or
multi-axial) has been manifested long time ago (Chen, 1982). Due to highly nonlinear
nature of concrete material including cracking, crushing, tension stiffening, compression
softening and bond-slip, accuracy of response modeling of reinforced concrete structures
and components is strongly dependent on the material models. The nonlinear response of
reinforced concrete is caused by two major material effects, cracking of the concrete and
the plasticity of the reinforcement and of the compression concrete. The tensile cracking
reduces the stiffness of the concrete and is usually the major contributor to the nonlinear
behavior of reinforced concrete structures, like walls, panels and shells, where the stress is
predominantly the biaxial tension-compression type. For these structures, accurate
modeling of cracking behavior of concrete is undoubtedly the most important factor (Chen,
1982).

ANSYS offers different material options to be used together with the solid reinforced
concrete element. In the program, five parameter Willam-Warnke (1975) criterion was
implemented to be used together with the SOLID65 element. The model assumes linear
elastic stress-strain relationship until crushing. This is actually a failure surface. When used
without a plasticity law it underestimates the deformation capacity of concrete because it
neglects the slight nonlinearity in ascending branch and the post-crushing strength of
concrete in compression (Barbosa and Ribiero, 1998). ANSYS offers a number of rate
independent kinematic and isotropic hardening plasticity options that can be used with the
concrete element to model the compression behavior. The Drucker-Prager plasticity model
(DP), von Mises bilinear (BISO) and multi-linear isotropic work hardening plasticity
(MISO) are combined with the tensile failure criteria of Willam-Warnke material model
(CONC). The notation given in parenthesis is used to refer to plasticity models here as
defined in ANSYS. These plasticity models require further discussion, especially the
Drucker-Prager model, because parameters used to describe them differ for different
loading conditions (stress states), since a combined yield surface is used.
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2. Willam-Warnke Failure Criterion

The general characteristics of the failure surface of concrete can be determined by
experiments. Experimental results indicate that the failure curve in the deviatoric plane has
the following general characteristics (Chen, 1982)

1. The failure curve is smooth.

2. The failure curve is convex, at least for compressive stresses.

3. The failure curve’s cross-sectional shape has threefold symmetry.
4

The failure curve is nearly triangular for tensile and small compressive stresses
(corresponding to small & values near the 7 plane), and becomes increasingly bulged
(more circular) for higher compressive stresses (corresponding to the increase of &
values or high hydrostatic pressures).

It follows from these conditions that, shape of a failure surface in a three dimensional
(Haigh-Westergaard) stress space can be best described by its cross sectional shapes in the
deviatoric planes and its meridians in the meridian planes (planes containing the hydrostatic
axis with 6= constant). In Figure B.1, the general geometrical representation of the failure
surface was given depending on the characteristics listed above.

AOC3 \
N\ deviatoric plane
\ -
P(0, 50y, ood
.0' 4 /0 \\ - - - .
ST\ <
N N .- \ . .
F - hydrostatic axis
A e 5
> o
/’
meridians

O;

Figure B.1 Failure surface in 3-dimensional stress space

The concrete material model predicts the failure of brittle materials. Both cracking
and crushing failure modes are accounted for. The criterion for failure of concrete due to a
multiaxial stress state can be expressed in the form (Willam and Warnke, 1975):

F _s>0 (B.1)

c

where F'is a function of the principal stress state (Gxp, Gyp, O~ principal stresses in principal
directions), S is the failure surface (to be discussed) expressed in terms of principal stresses
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and five input parameters f,, f., fu, f; and f> defined in Table B.1 and f; is the uniaxial
compressive strength of concrete. If Eq. (B.1) is satisfied, the material will crack or crush.

Table B.1 Determination of the parameters of Willam-Warnke model

Test c,!f. z, ! f. 6, deg r(o,,0)
. 1 -. 2 -, 2 .

' 2 ! - 2 '

2. 0'2 263 :_fbc —Efbc \/%bc 0 = Efbc
3. fi=(-E.7) -5 7 0 r,=SE S,
, 1 ,

4. 03=—/, 3 = 60 =
5. f2:(—§2,F2) _é?z ’72 60 ’2:\/5772]:

A total of five input stress parameters are required to define the failure surface in
function S, which are uniaxial tensile strength, uniaxial compressive strength, biaxial
compressive strength, strength from triaxial compression test, and strength from triaxial
extension test. The failure surface is as shown in Figure B.1 in the principal stress space. It
can be observed that the failure surface has curved meridians (parabola in this case) and
presents symmetry on the deviatoric plane as seen in Figure B.2.

\

Figure B.2 Failure surface on the deviatoric plane

This cone shaped surface shown in Figure B.1 can be defined by two quadratic
curves, one on the tension meridian plane, r(o;,) (where @ =0°), and the other, on the

compression meridian plane, .(g;,) (where 8 =60°) as shown in Eq. (B.2).
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e =< _—=p, +b1—’7+b2{—’7J at = 60° (B.2b)
fc \/gfc fc‘ c

By this way, the variations of the average shear stresses, z,, and 7,,, along the tensile
(6 = 0°) and compressive (8 = 60°) meridians, respectively, are approximated by second-
order parabolic expression in terms of the average normal stress, o, where

1 1
o, =—=(0, +o, +GZ)=§O'I--

1
m g i :Ell (B3)

represents the mean stress or the pure hydrostatic stress.

Any point between the tension and compression curves can be interpolated from the
assumed elliptical polar equation, 7(6), on the deviatoric plane. The radius of the cone, 7, is
determined by substituting the calculated values of 7, and r.. into Eq. (B.4).

2r, (rcz —r? )cos 0+r.(2r, —r, )[4(’%2 —r? )cos2 0 +5r7 —4rr, ]I/Z

r(am > 9) =
4(7"‘.2 - ”12 )cos2 0+(r, —2r )2

(B.4)

The angle of similarity or the Lode angle, 6, is defined as the angle between the
deviatoric component of stress vector and the projection of o3 axis on the deviatoric plane
(Figure B.2) and is given by:

-1 3(o3 —0m)
\/g\/alz +0'22 +0'32 —30'31

6 = cos for o3 20, 20 (B.5)

where o; (i = 1-3) is the principal normal stress in the i" direction.

As the failure surface exhibits three-fold symmetry, it suffices to define this equation
for a sector between 0° and 60°. In this manner, the entire surface is completely defined. By
expressing Eq. (B.4) in terms of cartesian coordinates, the three principal stresses at failure
are obtained from Eq. (B.6).

__ coséd 3 sin@ |
i \/ge '2.9 om |
cos sin
o, |=r(c,,0) — + +|o h ==1 B.6
2 ( m ) \/g 7 m whnere O-m 3 1 ( )
03 2cosd Om
. Vo]
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Since Eq. (B.6) is defined in the domain of 0 < < 360° while Eq. (B.4) is only valid
for 0 < < 60°, it is necessary to convert any angle of similarity outside the latter range to
an equivalent angle within this range before substituting into Eq. (B.4).

Through the use of Eq. (B.4), the failure surface can be degenerated for the purpose
of analyzing biaxial load cases by considering the intersection of the surface with any of the
three principal planes. Due to the threefold symmetry of the failure surface, the biaxial
failure envelopes on the three planes are identical. The biaxial failure envelope obtained
from the experimental data presented by Kupfer et al. (1969) is depicted in Figure B.3.
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Figure B.3 Biaxial failure envelope degenerated from 3D failure surface. For Willam-
Warnke model, f, = f,/f. =0.1, high compressive stress point on tensile meridian

(&,71)=(1.97,0.53) , and high compressive stress point for on compressive meridian
(&,,7)=(1.58,0.63)

If the failure criterion of Willam-Warnke is not combined with a plasticity rule, the
behavior of concrete is linear up to crushing and once the crushing stresses are reached
element stiffness contribution to the global stiffness diminishes to zero resulting in a
premature failure due to strength loss (ANSYS). The uniaxial stress-strain relation is
plotted in Figure B.4. So it is recommended that combining the failure criterion with a
plasticity rule will give better results.
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If the stress exceeds f,
it is assumed that the
material  point  is
crushed.

A

\J

Figure B.4 Uniaxial behavior in Willam-Warnke criterion in ANSYS.

3. Von Mises Yield Criterion

In early finite element applications of concrete to simulate the behavior in
compression, the von Mises plasticity model with isotropic hardening (BISO “ANSYS”
designation), kinematic hardening or combined hardening was widely used. The von Mises
yield criteria with isotropic hardening defined as:

F=\J7,-0ls,)=0 (B.7)

where J; is the second stress invariant which can be expressed in the principal stress space
as

JzZ%[(Ul—az)z+(01—03)2+(02—03)2] (B.3)

In Eq. (B.7) o(g,) is the hardening stress as a function of equivalent plastic strain, ¢,
which is expressed as follows:

(B.9)

where 815 is the plastic part of the corresponding strain component. Since this model is

independent of the magnitude of the hydrostatic stresses, it may not be a suitable plasticity
model for concrete in high compression (Han and Chen, 1988). The use of BISO material
model in ANSYS is quite straightforward, since the model is directly calibrated with
concrete strength in compression (f.) and post elastic modulus (£,,) of the bilinear curve.
This model is also used for the modeling of reinforcing steel.
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4. Drucker-Prager Plasticity Model

The second material model available in ANSYS for modeling compressive behavior
of granular materials is the Drucker-Prager yield criterion. In this study special emphasize
is given to Drucker-Prager model since determination of its parameters is not as simple as
bilinear isotropic hardening plasticity model for accurate response prediction of concrete
response. A smooth approximation to the Mohr-Coulomb surface was proposed by
Drucker and Prager (1952) is a simple modification of the von Mises yield criterion in the
form

Uy Jy)=al, +3JJ, =14 =0 (B.10)

in which a and 7, are positive material parameters. /; = o +0, +03 is the first
invariant of the stress tensor and J; is given in Eq. (2.8). Or identically, using & = [, / V3

and r =,/2J, for clear geometric interpretation of the stress state and the yield surface can
be represented as

f(&r)=v6as +r—215=0 (B.11)

where r is the deviatoric and £ is the hydrostatic components of stress tensor.

The Drucker-Prager criterion represents moderately well the response of plain
concrete subjected to multiaxial compression and provides a smooth yield surface.
Comparison of the Drucker-Prager criterion with experimental data shows that while the
criterion may be used to represent the response of concrete subjected to multiaxial
compression, the model overestimates the capacity of concrete subjected to compression-
tension or tension-tension type loading (Lowes, 1999).

In ANSYS the input parameters of Drucker-Prager criterion (a andz,) are

interpreted in terms of ¢ and ¢ of the Mohr-Coulomb (MC) model. Parameter c is called the
cohesion and ¢ is the angle of internal friction. The general expression for Mohr-Coulomb
criterion is given by

(1+sing)o; —(1-sing)o; =2ccosg. (B.12)

Characteristic strengths values at uniaxial tensile and compressive failure of concrete
is defined with the following relations in Mohr-Coulomb stress,

. 2ccos (B.13)
1+sing

_ 2ccos¢ (B.14)
1—-sing

DP constants can be related to MC constants ¢ and ¢ in several ways. The size of the
cone of Drucker-Prager criterion can be adjusted to either surround the Mohr-Coulomb
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hexagon from the vertices corresponding to compressive meridians or tensile meridians as
shown in Figure B.5.

Figure B.5 Drucker-Prager criterion matched to Mohr-Coulomb failure surface

In the case of three dimensional matching, if the two failure surface decided to meet
on the compressive meridian which can be followed from Figure B.6, the two sets of
material constants are related by

g 2504 rp = —CC088 (B.15)
J3(3-sing) J3(3-sing)
If the tensile meridian is used similarly
- 2S¢ £y = —Dccosd (B.16)
V3(3+sing) V3(3+sing)
r r

A

/
\ Ty = —2\/& cos¢ \ 7, =21,
7 (3+sind) \

o~ .
V‘) :«/Eccot(b
_ 2«/gccos¢

r.
/ “ (3-sing)

(a) (b)
Figure B.6 Meridian representation in deviatoric stress vs. hydrostatic stress plane (a)
Mohr-Coulomb and (b) Drucker-Prager yield surfaces
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Variation in concrete response under various load regimes leads to different
definitions of material constants at each regime. To relate the Drucker-Prager constants o
and 7, with the Mohr-Coulomb constants ¢ and @in the biaxial stress space, two points

from material tests are required.

Under plane stress condition (o = 0), the invariants of the stress tensor can be
expressed as I =o0,+03 andJ, = (0'12 +0'32 —0,03)/3. Considering the uniaxial
compression and tension tests and biaxial compression test conditions, the values of

principal stresses, invariants /; and J,, and Haigh-Westergaard coordinates &, » and @ are
listed in Table B.2.

For the case of Drucker-Prager criterion, substituting the values at peak stress under
uniaxial compression (f.) and tension (f;) and solving for the model parameters (Eq.’s
(B.13) and (B.14)) we get

fc _J(t
=< - B.17
B 17

2.,
-__“JeJt B.18§
NI 19

Under the plane stress condition, the criterion in Eq. (B.10) can be presented in the
form

2+ f

2
4(0‘12+0'32)+[2—3 rRY; Jala3+4(fc—f,)(al+c73)—4fcf, =0 (B.19)

Table B.2 Principal stresses, stress invariants, and Haigh-Westergaard coordinates at failure

Stress state o1 o3 I J; £ r 6, deg.
Uniaxial tension fi 0 f /3 £ /3 fiN2/3 0

Uniaxial s
compression 0 /e Je 123 ~ 1.3 f.N2/3 60
Equibiaxial 5 .

compression e Sre e SR2f3 20 /B £uN2/3 0

Depending on the ratio f, / f,, Eq. (B.19) can be an ellipse, parabola or hyperbola.
By matching the uniaxial strengths in tension and in compression, we would obtain quite a
reasonable approximation of the actual failure envelope in the quadrants that correspond to
biaxial tension and to tension-compression. However, the equibiaxial strength in the
compression-compression quadrant becomes infinite as f, / f,. ratio decreases. On the other
hand, a good approximation in the biaxial compression range can be obtained by matching
the uniaxial and equibiaxial compressive (f.) strengths (Jirasek and Bazant, 2001). This
leads to
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g Jre=Se (B.20)

V32 fye — 1)

fbcfc

o Ihefe (B.21)
B -1

Similar to Eq. (B.19), under plane stress, the criterion can be expressed in the form as
given below to give a better approximation in the compressive region

27, 2 2
(2—31}’0 ](0'12 +0'32)+[3—( fb}c(];;cfc )—8J0103

_z(fbc _fc)(o-l+o-3)+fcfbc =0

(B.22)

c

5. Multilinear Work Hardening Plasticity Models (MISO and MKIN)

The greatest shortcomings of the BISO and DP plasticity models used to model
concrete in compression is due to fact that while the concrete softening can not be modeled
with the former, neither hardening nor softening can be modeled with the latter model. To
model the descending branch of the concrete stress-strain curve multi-linear plasticity
models available in ANSYS material library can be used. The Multilinear Isotropic
Hardening (MISO) option is similar to the bilinear isotropic hardening option, except that a
multilinear curve is used instead of a bilinear curve.

When the softening property in the post-peak response is used in constitutive models,
the finite element solutions are known to have spurious sensitivity to the mesh size and
have difficulty in converging since low order elements such as the one used here is utilized
in the finite element analysis (Maekawa et al., 2003; Cervenka et al., 2005; Bazant and
Jirasek, 2001). Additionally, NLFEA analysis under force type loading can not track the
softening branch of the stress-strain curve after the ultimate (peak) force level of the model
is reached. To achieve convergence after the ultimate load capacity of reinforced concrete
member displacement controlled loading is applied.
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APPENDIX C

CONCRETE MODELS FOR CONFINED CONCRETE

1. Model by Mander et al. (1988)

Due to wide recognition and since the recent version of TSC (2007) recommends the
use of it, the confined concrete model proposed by Mander et al. (1988) is adopted in this
study. Modeling of the confined concrete is essential in order to enable accurate modeling
of critical (plastic hinge) zones up to very large deformations for the evaluation of ductility
demand.

For monotonic loading, the compressive concrete stress f; is given by the Popovics
(1973) curve expressed as

£, =T (C.1)
r—1+x"
where the parameters of Eq. (C.1) are defined by Egs. (C.2) through (C.7) as
Jee =AcSeo (C2)
X=6 [ (C3)
Jee J
Epe = Epp| 1+ 5] =——1 (C.4)
[ (f co
re_te (C5)
Ec - Esec .
E. =5000,/f., (C.6)
See
Egee = . (C.7

where A, is the confinement factor, f., is the compressive strength of unconfined concrete,
fee 1s the compressive strength (peak stress) of confined concrete, €. is the longitudinal
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concrete strain, &, (~0.002) is the strain at unconfined stress f.,, &. is the strain at
maximum concrete stress f., E. is the initial modulus of elasticity of concrete and E,.. is the
secant modulus of elasticity of concrete at peak stress.

The confinement factor can be calculated as

2, =2254 |1+ 7.94;—8 - z;—e— 1.254 (C.8)

The effective confinement strength, f;, can be calculated as the average of values in
two perpendicular directions for rectangular cross sections as:

fex = kepryw ; fey = kepyfyw (C9)

In these equations f,, is the yield strength of transverse steel, px and py are the ratio
of the volume of transverse reinforcement in two directions to the volume of concrete core
measured to outside of stirrups, and k. is the confinement effectiveness coefficient given as,

2 -1
k, = 2l s Y s ) A (C.10)
6b,h, | 26, \ 2k, | boh,

where a; is the distance between the axes of longitudinal reinforcements, b, and h, are the
distance between the axis of transverse reinforcement confining the concrete core, s is
transverse reinforcement vertical spacing, A, is the area of longitudinal reinforcement.

The maximum compressive strain in the extreme fiber of confined concrete can be
calculated from (Paulay and Priestly, 1992)

1-4ps ywEsu

£, =0.004+ (C.11)

cc

where p; is the volumetric ratio of transverse reinforcement and calculated as p; = p + py in
rectangular sections.

The model is valid only within a certain range of confinement steel; otherwise the
results are not realistic or valid. Also there is a deficiency in the model regarding the
descending part of the confined concrete stress-strain curve. The experimental results
(Martirossyan and Xiao, 1996) show that some modifications as proposed by Martirossyan
and others are required to make it more realistic. Also, as already mentioned, the model
may be applied only for a confinement range for which f'; is between zero and about 2.3;
otherwise the method will not yield realistic behavior.
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2. Saatcioglu and Razvi (1992) Model

Another model proposed by Saatcioglu and Razvi (1992) to construct a stress-strain
relationship for confined concrete remedy to the problem in the descending (softening) part
of the curve in the Mander et al. (1988) model. The model consists of a parabolic ascending
branch, followed by a linear descending branch. Lateral reinforcement in the sense of
equivalent uniform lateral pressure in both circular and rectangular columns was used to
develop the model characteristics for the strength and ductility of the confined concrete.
The model has been compared with different types of column tests, including circular,
square, and rectangular, as well as welded wire fabric. Spirals, rectilinear hoops, and cross
ties have been used as lateral reinforcement in confined columns. The following expression
is suggested for the parabolic ascending portion

1

2 112K
fo=foe 2(€—J —(g—j < fuo (C.12)

€] &1

The expressions to calculate necessary parameters in constructing the ascending
branch of stress-strain curve are given below in consideration with a rectangular section
plotted in Figure C.1.

g O
bey Sty
AR
b

cx

Figure C.1 Rectangular cross-section of a column

Egs. (C.13) and (C.14) calculates the average uniform lateral pressures in x and y
directions together with the reduction factor, k,, applied to reduce average pressures since
these values results in overestimation of the actual effect of lateral pressure.

Ay f e sina b \b
fin _ L AsSysina ky, =026 (—XJ o (L <1.0 (C.13)
Sbcy S Sy flx
A sin b b
i :M ky, =0.26 { o | 2o | L <1.0 (C.14)
Sbcx § S[y fly
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The average lateral pressure in Eq. (C.13) and (C.14) is in MPa; k, = 1.0 for spirally
reinforced circular columns as well as square columns with closely spaced lateral and
laterally supported longitudinal reinforcement; and o = the angle between the transverse
reinforcement and b,, and is equal to 90° if the transverse reinforcement is perpendicular to
b.. bey and b, are measured center to center of perimeter hoop, and s;, and sy, is the spacing
between the laterally supported longitudinal reinforcement in x and y directions,
respectively, as defined in Figure C.1. s is the center to center spacing between the ties. The
overall equivalent uniform pressure obtained by combining the equivalent pressures in x
and y directions can be established by

flex = k2xflx
fley = k2yfly

}_} f[g _ flexbcx + fleybcy
bex +bey

(C.15)

The triaxial strength of concrete in terms of uniaxial strength and lateral confinement
pressure is given by

fee = Jeo +H1fic (C.16)

where f.. and f., are the confined and unconfined strengths of concrete in a member,
respectively. Coefficient k, varies with different values of lateral pressure f,.. Based on the
test data, a relationship between these two parameters has been established as:

k =6.7(f,)"" (C.17)

where f}, is the uniform confining pressure in MPa. Finally, the following expression was
proposed to calculate K.

k= ffie (C.18)
Jeo

The strain corresponding to the peak stress of confined concrete (f..) is denoted as &
and is calculated as similar to that found by previous researchers (Balmer 1949; Mander et
al. 1988):

& = &g (1+5K) (C.19)

In the above equation, &) is the strain corresponding to the peak stress of unconfined
concrete, which should be determined under the same rate of loading used for the confined
concrete. In the absence of experimental data the value 0.002 may be appropriate for &;.
This concludes the first part of the model, i.e., the ascending branch of the stress-strain
curve.

The descending branch of the curve is linear and connects the points ( f,., ) and
(0.85f!, &) on the plane of the stress-strain curve. The value of strain corresponding to

85% of confined concrete strength is calculated as:
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885 = 260p8] + 8085 (C20)
where p is the volumetric ratio of transverse reinforcement and is expressed as:

__ 24 (C.21)

* s(bey +b4y)

and &5 1s the strain corresponding to 85% of the strength level beyond the peak stress of
unconfined concrete. Again it should be determined under the same rate of loading as for
the confined concrete specimen. If no test data are available the value 0.0038 might be
used.

The equation for the descending branch is

~ _015(e-¢)
Jo=Jee {1 £,(260p —1)+ g5 } (€-22)
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APPENDIX D

TIMES SERIES OF SELECTED CROUND MOTIONS
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Figure D.1 The scaled ground acceleration and velocity time series of selected ground
motion #1.
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Figure D.2 The scaled ground acceleration and velocity time series of selected ground

motion #2.
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Figure D.3 The scaled ground acceleration and velocity time series of selected ground
motion #3.
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Figure D.4 The scaled ground acceleration and velocity time series of selected ground
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Figure D.5 The scaled ground acceleration and velocity time series of selected ground

motion #5.
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Figure D.6 The scaled ground acceleration and velocity time series of selected ground
motion #6.
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Figure D.7 The scaled ground acceleration and velocity time series of selected ground
motion #7.
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Figure D.8 The scaled ground acceleration and velocity time series of selected ground
motion #8.
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Figure D.9 The scaled ground acceleration and velocity time series of selected ground
motion #9.
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Figure D.10 The scaled ground acceleration and velocity time series of selected ground

motion #10.
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APPENDIX E

AN IMPROVED FRAME-SHEAR WALL MODEL:
CONTINUUM APPROACH

1. Introduction

The governing equation of the combination beam in Figure 4.15 is given by

4 2
Lot
X X

where w(x) is the distributed lateral loading function and

o2 =4 (E.2)

EI
in which G4 and ET are the shear and flexural rigidities, respectively.

A tall structural wall can be considered as vertical cantilever beam, with zero
deflection and rotation at the base and free at the top, so the boundary conditions that apply
to the solution of the differential equation are y(0) = y(0) = M(H) = V(H) = 0, where H is
the height of the structure. The shear force in the shear component (frame) is calculated as

Ve(x)= GAﬂ (E.3)
dx

so the shear force at the base of this member becomes zero, which is not correct.
Frame-wall structures can be composed of either (i) walls and frames connected by
floor slabs, or (ii) link-beams extending from frames directly to the ends of the walls. The
interaction between the frames and walls of structures with link beams is more significant
than the form of frame-wall structure where walls and frames connected by floor slabs. The
shear and moment transferred from beams can significantly change the moment profile
causing a reduction in the inflection height of the wall. The beam shear forces transferred
from both side of the wall affect the axial load on the wall. If the problem is idealized by
assuming beams of equal strength and equal length that frame into the wall from both sides,
the axial load will not be affected by the beam shears since they will cancel out. However,
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the beam shears from both sides will form a moment couple which must be added to
moments transferred from beams. Additional 3D effects such as transverse beams shear
forces also contribute to the moments created by the link beams connecting to shear wall.

This article introduces the two refinements into the otherwise well-known
formulation for wall-frame systems. One is the correction of the shear force boundary
condition at the base of the wall, and the other is the additional distributed moment
transferred from link beam ends.

Before presenting the details of mathematical model of the continuum model dealing
with the items defined above, the stress resultant-displacement relations derived from
flexural and shear beam theories will be given next. Then following the derivation of the
differential equations for the deflection of the combined beam, the findings will be verified
on a sample frame-wall structure.

2. Stress resultant-displacement relations

Each component in a frame-wall system is forced to deflect in a hybrid mode that is
different from their inherent deflected shapes due to frame-wall interaction effects acting
through the floor diaphragms. Individually considered, the inherent deflected shapes of
frame and shear wall components of a dual system can be represented with beams
deforming dominantly in shear and bending modes, respectively. While Euler-Bernoulli
beam theory serves well for calculating the elastic deflection of most of the beams
assuming pure bending moment, Timoshenko beam theory, a refined version of the former,
considers the deflections due to transverse shear, which is the case in deep beams or
sandwich beams with low shear modulus. The difference between these fundamental beam
theories lies in that, while in the Euler-Bernoulli beam its is assumed that plane cross
sections perpendicular to the neutral axis of the beam remain plane and perpendicular to the
neutral axis after deformation, in the Timoshenko beam plane sections remain plane but not
necessarily normal to the longitudinal axis after deformation, thus causing a nonzero
transverse shear strain. The illustration in Figure E.1 can be used to describe this
phenomenon graphically.

Euler-Bernoulli Beam Timoshenko Beam

Figure E.1 Schematic representation of deflections according to two fundamental beam
theories

Figure E.2 displays the element of a beam used in deriving the relationships
between loads, shear forces and bending moments. All loads and stress resultants are shown
in their positive directions. In a real structure the forces and moments occur at floor levels
at discrete locations, which cause the finite increments (step changes) in shear and moment.
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However, since a continuum medium is assumed to be exist between two beam
components, the loads are also assumed to be distributed along the members, so increment
in ¥V and M can be considered infinitesimal, denoted by dV and dM, respectively.
Considering the equilibrium in the y direction yields,

dv

i =—-w(x) (E4)

where w(x) is the lateral load on the beam. Then, summing up the moments about the z axis
at the left end of the beam element of length dx gives

an

=V (x)+m(x) (E.5)
dx

where m(x) describes the action of distributed moments.

=

M +dM

+
QL
<

)

w(x) dx

)

£y
2

(1
N

Figure E.2 Element of beam used in deriving the relationships between loads, shear forces
and bending moments

Considering these fundamental relationship and a prismatic beam of length L, cross-
sectional area A, second moment of area /, elastic modulus of E, and shear modulus of
rigidity G under any transverse loading action of w(x) and distributed bending moment
m(x), according to the Euler-Bernoulli beam, the stress-displacement relations are given by

2 3
M=E Y %Y and v —Er Y (E.6,7)
dx dx? dx’

where E1 is the flexural rigidity and i is the rotation of the beam section.
According to Timoshenko beam theory, the stress-displacement relations are given
by the following,
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M=% and V= —GAKS(W(x) —d—yj (E.8, 9)
dx dx

where GA represents the shear rigidity and K is the shear correction coefficient.

3. Mathematical model for frame-wall interaction problem

In the classical formulation, an equivalent shear stiffness term (GA) that is based on
the deformed pattern of the frame components is defined. This stiffness depends on the
frame member stiffnesses, the frame configuration and the rigidity of joints, as shown in
Figure E.3.

In reference to model in Figure E.4, the contribution of the single column to the total
GA parameter of the equivalent shear-flexure beam is given by (Heidebrecht and Stafford
Smith, 1973)

12E1, 1
R 21,

h(lbl N Isz

by by

in which I, = moment of inertia of column; % = story height; b,, b, = total lengths of
adjacent beams; I, I, = moment of inertia of corresponding beams. £ is the modulus of

elasticity of the concrete material. The total GA contribution of a planar frame is the
arithmetic sum of the GA4 terms for each of the columns in a typical story of the frame.

GA (E.10)

1+

bl/2 . b2/2

Figure E.3 Modeling of “shearing” behavior in frame

In the deformed representation of one-story beam column assembly of a multi-bay
frame shown in Figure E.3, it is assumed that the points of contraflexure occur at midheight
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of the columns and at midspan of the beams. On the other hand, the restraining system of
base story columns below the point of contraflexure is different and the members deform in
flexure as shown in Figure E.4. It is assumed here that the entire structure consists of two
substructures. The part above the contraflexure point of the base columns is named as
Substructure 1 and the below portion as Substructure 2. Section forces at contraflexure
points of the columns (4..) are displayed in Figure E.4. The portion of the columns and
shear walls below the contraflexure height can be modeled as cantilevers with point loads
applied at the tip. However, since the height to width ratio (4. / [,) of the shear wall
segment will be very low, Timoshenko beam theory taking into account shear effects will
be a better choice to model the shear walls in this region. Figure E.5 displays the ratio of
the flexural deformation to total deformation of a cantilever beam with variable height to
length ratios under different loading conditions. It is seen in this figure that for typical
height to length ratios of shear walls at the ground story (4./l, < 1) the contribution of
shearing deformations to total deformation can constitute a significant share. Unless
columns cross sectional dimensions are of a level that invokes shear effects significantly,
they can be modeled using classical beam theory.

Substructure 1

Substructure 2

Figure E.4 Section forces on the base story columns and shear walls at the point of column
contraflexure

Considering the frame and wall components individually under a distributed lateral
load applied on the entire structure, the interaction forces that contribute to the lateral
deformations are beam axial forces (coupled with slab forces) for frame component and
floor interaction forces and moments transferred from beams for wall component. In the
present method, the multistory structure will be modeled as an equivalent continuum
structure composed of a flexural cantilever and a shear cantilever, the forces and moments
in the actual structure will be assumed distributed along the continua. The continuum model
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for equivalent shear flexure beam is shown in Figure E.6. It has to be noted that the beam
moments acting on the walls were disregarded in the frame component since they do not
have any influence on the lateral deformation. In this figure, g(x) and m(x) represent the
action of interaction forces and beam moments transferred on the shear wall, respectively.
The subscripts, B and S, refer to the flexural and shear beams, respectively. Although it was
assumed that the action of horizontal forces on the wall as distributed, a concentrated
interaction force at the top is required to maintain the deformation compatibility and force
equilibrium between the flexural and shear beams. A point load of magnitude Q is therefore

included in the model shown in Figure E.6.

1.2
Uniform Point - - - .M+F (M=10F)
10 o .eeeeescc-scccccccocececa-as
0.8 - u
=) :
< 06,
> (]
0.4 - !
02 4,
0.0 y Uniform load  Point load Moment + Force
0 1 2 3 4 5 6 7 8 9 10
Hy, /1,
Figure E.5 Ratio of flexural deformation to total deformation on the base of a structural
wall

3.1. Differential Equation of Substructure 1

The formula derived by Heidebrecht and Stafford Smith (1973) will be modified
further to take into account the effects of link beams on shear walls. The differential
equations governing the behavior of two types of beam, referring to Figure E.6, are: For
flexural component, assuming uniform stiffness height wise and using Eq. (E.4) and (E.7)

d'y dm
E[d—i}—gz wg(x) —q(x)
X

(E.11)

and for shear (frame component) using Eq. (E.4) and (E.9) and ignoring shear correction

factor,

d 2
GA(% - ZX—EVJ = W (x) +q(x) (E.12)

351



in which subscripts, B and S, refer to flexural and shear beams, respectively.

In multistory structures consisting of tall slender frames, the axial deformations in
the exterior columns of the frame will cause the floor diaphragms to rotate, which will
contribute to the rotations of the elastic curve [ws (x)]. A generalized theory for tall
building structures, allowing for axial deformations of columns was proposed by Stafford
Smith et al. (1984). However, the effect of such a situation is minor and limited to few
structures, so that the rotation of floor slab is assumed to be zero along the height of the
structure in this study [ s (x) = 0].

Egs. (E.11) and (E.12) are the governing equations of the flexural (shear wall) and
shear (frame) components of the shear-flexure combination member, respectively. Adding
these equations, the differential equation governing the response of frame-shear wall
system under prescribed lateral load, w(x), is obtained as

4 2
Y gy _dm) (E.13)
dx* dx? dx
W)= ) -0 0o
D ;' ! ‘ D ws(x)
r) | : 'l ﬁr_) q(X) C](x)
T 1+ 1 N
’.)" I' l' D + H] = H—hcc
’.Jl 'l ’l D
1 I’ 0
75 1 I/ ):D —
':,)A__”\ m(x)
l’ FD’ 1 D
U I R
HZ hcc
Shear-flexure member Flexural component Shear component

Figure E.6 Mathematical model of shear-flexural beam, interconnected frame and shear
wall (equal deflections at each story levels)

3.1.1. Effect of link beams

Eq. (E.13) contains the first derivative of the distributed moment. The distributed
beam moment resulting from the beam end moments and shear forces can be calculated
using the free body diagram in Figure E.7. The rotation angle at the ends of link beams is
the sum of joint and chord rotations. Slope deflection equations are used to calculate the
beam end moments on the tension and compression side of the shear wall as given in Eq.

(E.14).
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- 2EI/ S
M} ==, (29/ +9;+3¢,)+M§
) b (E.14)
M= EL (29;' +6/ +3¢,)—MUF

b

The beam end joint rotation at the wall side will be equal to the wall rotation,

0/ =0’ =0, , from compatibility. It is also assumed that the beam end rotations at the

column side can be equated to beam end rotation at the wall side, 8] =67 =6, . For a

known value of neutral axis depth, ¢, the beam chord rotation due to uplift of the wall end is

calculated as

M (E.15)

¢ = I,
where yis the ratio of length of the tension (crack) region, measured from the neutral axis
to extreme tension fiber, to the wall length. For the linear analysis here yis 0.5.
Distributing the calculated values in Eq. (E.14) yields

. 6EI/

M = —’[1 +ﬂ}9w +ME
I I J
b b

6EI' 1- ) (E.16)
M}{: r 1+(_7/)w HW—Mif
Iy b '
A
S —

1= 1)0u/ 1y b b=(1-)1,0,/ Iy

Figure E.7 Deformed configuration of shear wall beam assembly to derive the transmitted
beam moments and distributed moment.

On the uplift side of the wall the beam flange and on the drop side of the wall the
beam bottom are in tension, so flexural rigidities of beams in Egs. (E.14) and (E.16) can be
different while calculating M; and M, taking into account flanges if cracking is considered.
These values can be calculated separately or an average value can be taken. For linear
analysis, which assumes uncracked section, this does not matter, because the flexural
rigidity is equal in both positive and negative bending directions.
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Assuming beam rotations are equal at both ends, the beam end moments on the
column side can be calculated accordingly. Then the beam end shear force transferred to the
wall can be calculated as

:M;'+M/ wd T _ M+ M)

E.17
L r I (E.17)

/

Distributing the related expressions and summing the moments transmitted from
beams and calculating the moment created by beam shears at the centerline of the wall axis,
the net moment acting on the wall at the i story is obtained as

: ]
M,,,l-zM/+M;+?W(V, +V) (E.18)

Considering equal beam length on both sides of the wall and an equal flexural
rigidity at all ends of the beams (E1), which can taken as the average of flexural rigidities
of a flanged section calculated when bent in two directions taking into account the cracking,

and inserting @,, = % , Eq. (E.18) can be written in open form as
X

EI
Mb,.=6 A WTS PICT A (E.19)
’ lb lb Zb dx

Assuming this moment is uniformly distributed in between two half story heights (%),
the expression giving the distributed moment is obtained as

miy = SEe 1w g e | (E.20)
lb lb dx dx

Using the same analogy, the distributed moment action of beams in such a case
where only one beam frames to the shear wall can be written as

m(x):6EIb T P @:nd—y (E.21)
I,h A 20, Jdx ' dx

Inserting the relations obtained in Egs. (E.20) and (E.21) into the governing
differential equation given in Eq. (E.13) of the combined beam and rearranging, we have
the expression

4 2
dy_g2dy _wa) (E.22)
dx* dx*  El

where  w(x)=wp(x)+ wg(x)and

az _ GA+77

o (E.23)
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3.2. Response of Substructure 2

The mathematical model describing the essential elements of the base story is given
in Figure E.8. This figure represents the portion of the structure below the contraflexure
height (%4.). In multistory structures while the point of contraflexure can be taken at the
midheight of columns and midspan of beams above the ground story, the contraflexure
point of the base story columns (%..) does not develop at the midheight and moreover it is
not constant for every structure. The contraflexure point of corner columns is also different
from the interior columns’ in the same structure. For a while the discussion on this issue
will be postponed until the essential derivations of the new method are completed. The total
column shear and the total wall shear are represented with V. and V,, and they do not vary
along the height of the base story. While the column moments are zero at this height, wall
moment is equal to M,,.

Vihe)=V. VbV, 2
M.(h.)=0 M (ho)= M, M.
X
EI,
GA,,
Ye(0)=y, yu(0)=y,
y’C(hCC):y ,0 y,w(hcc):y ,0
(a) (b)

Figure E.8 Model of the base story

In Figure E.8, the flexural (E£1, and El.) and shear rigidities (GA,,) are the sum of
member rigidities that are of same type at the base story. From Figure E.8(a) the following
relationship can be written using the Euler-Bernoulli beam theory

d*y,

EI
dx?

c (hcc - x) (E24)

c

Integrating twice and using the prescribed boundary conditions at the base the
deflection curve is calculated as

v, (h.x* ,
yc(x):E[C (%_? t Vo X+ Y, (E25)
c

The total base shear is the sum of wall and column shears, so the column shear can
be represented as V. =V, —V,, alternatively. Then Eq. (E.25) becomes
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2 3
yc(x): (Vo _Vw){hccx X

-+ y x4+ E.26
I 5 6} YoX+Y, (E.26)

c

Taking into account shear deformations and using Figure E.8(b), the shear wall
component stress-displacements relations become

ELY v (E.27)
dx
where Mg, =M, (h,.)+V h. (E.28)
dyy
and V() =V, = =G, | () == (E.29)
X

Integrating Eq. (E.27) once and using the boundary condition y(0) =y, for the
rotation of wall cross section we obtain,

()= ——| M LS (E.30)
4 _EI Bo 7 Yo .

w

Introducing Eq. (E.30) into the shear expression in Eq. (E.29) and rearranging, the
slope of the deflection curve becomes

2
v
Dy 1 MBOx—VWx oy (E31)
dx  EI, 2 GA,

Integrating and using the boundary condition y(0) = y,, the deflection curve of the
shear wall is calculated as

2 3
X X X
x) = M, + - V. +y x+ E.32
() 2E1, % (GAW 6EIWJW YoX T Vo (E32)

The only unknowns in Egs. (E.26) and (E.32) are M3, and V,,, the moment at the base
of the shear wall and the wall shear force, respectively. The total base shear, V,, is the sum
of the applied lateral load at the base level. The force on the shear wall can be obtained in
terms of Mjp, and V,, if the resulting displacements calculated at the contraflexure height on
columns and walls are related to each other as

ﬂ:yc(hcc)/yw(hcc) (33)

In the following S is taken as 1. Assuming displacement and rotation boundary
conditions is applicable to both columns and walls, the relation defined in Eq. (E.33) yields
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2 3
V. = MBoﬂhcc _ Vohcc

. (E.34)
2fEI,  3fEI,

where f'is expressed as

_ ﬂhgc _ hz’c _ IBhCC (E 35)
" 6EI. 3EI. GA '

f

w c w

After the wall shear force (F,) is distributed into the expressions for the
displacement, rotation and bending moment on the wall, we have

2 2 3 3 3
h”. V h.
yﬂm=xﬁwm+M&{x “ﬂ( =7 ﬂ— °“[x al ](E%)

J’_ — J—
2EI,  2fEI,\ GA, 6El, || 3/EI, | GA, 6EI,

, , X hczc)c2 Vohg’cx2
Vo) = v+ My, | - P, (E.37)
El, 4f(EI)? ) 6/fEILEI,
2 3
M ()= My, | 1= LB | VoleeX (E.38)
2/EI, | 3fEI

4. Solution of the governing differential equation for uniform stiffness
along the height

For the case of a uniformly distributed load of intensity w,, the solution for Eq.
(E.22) can be written in the form

2
W, X

2Ela?

y1(x) = ¢| + ¢yx + ¢5 cosh(ax) + ¢, sinh(ax) — (E.39)

where the coefficients c¢;, ¢, c; and ¢, are the coefficients of the homogenous solution.
These coefficients can be found by using the following boundary conditions

3100) =y, (he) =y, (E.40a)
dyl (0) _ dyZ (hcc) o
e = iy =y, (E.40b)
Mg (0)=M, (h,)=Mp, (E.40c)
V)=V, (E.40d)

357



where the subscripts B and S refer to the flexural and shear beams components,
respectively. The interval of the solution is 0<x < (H, = H — h,.) . The superscript, “*”, is
used to differentiate the boundary conditions that apply to the junction between two
substructures from those that apply to Substructure 2 at the base.

The expressions for displacement, rotation, bending moment and shear force on the
wall component then become

* ,+ sinh(ox *
yl(x):ya + Yo a()+MBo|:

cosh(ozx)—l}r v [ax—sinh(ax)} +wo{cosh(aoc)—l B x2 } (E.41)

alEl a(n + GA) EI a?t 202

» sinh(owx) N

, x l1-cosh(ax) | w, | sinh(ax) x
=y, cosh(ex)+ M 14 + L — E.42
Vi) = v, cosh(am) + My, T { ey } EI{ T E®a
Mp(x) = y’o*aEI sinh(ox) + M ;o cosh(ax) -V, sinh(ax) +w, {COSh(ng) — 1} (E.43)
a a
* * V

Vg(x)=—y. GAcosh h(ax) — Mg, ﬂsinh(ooc) +——2 17+ GAcosh(ax)]

aEl (n+ GA) (E.44)

w, .
- m [CDC?] + GA SlIlh(ODC)]

Equilibrium requires that the moment should be zero at the free end of each of the
components of the shear-flexure cantilever, we can write

M z(H,)=y" aEI sinh(aH,) + M 3, cosh(aH,) -V, -

sinh(aH ) {cosh(aHl) -1
+w,
a o

}: 0 (E.45)

Using the compatibility condition at the junction between the two substructures, y;)*

and M ;O can be calculated from Eq. (E.37) and (E.38) at x = h.. After inserting the

calculated expressions in Eq. (E.45) and rearranging, the bending moment at the wall base
can be derived as

inh(aH ha
VO{Sm (@H) e F ah,, sinh(aH,) + cosh(aH, )}} _ Yo [cosh(aH ) —1]
M

a 3EIf|2 a’
o = Y iy (E.46)
1-—= \ah,, sinh(aH ) +|1-—— |cosh(aH,)
AEI,f 2EIL, f

Here V, can be written alternatively as w,H, for uniformly loaded cantilever beam.
Once the bending moment at the base of the wall is obtained, all the quantities at any point
of the both substructures can be calculated by using the derived expressions because all the
expressions depend only on Mp,. Using Eq. (E.34) the shear force on the wall at the base
story can be calculated accordingly. The expression for wall base moment and relations for
displacement, rotation, wall bending moment and shear force is derived and given at the
end of this Appendix for the case of triangular load distribution.
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4.1. The contraflexure height in base story columns (hcc)

For typical frame wall structures, double curvature can be assumed for columns and
beams with a fixed point of contraflexure. Single curvature can be assumed for walls, with
some moment gradient along the member. A common choice will locate the point of
contraflexure between 55% and 65% of the storey height above the base. As the system
behavior approaches the flexural mode (aH{—0), the contraflexure height moves away from
the base. There are cases where the behavior of lower story columns is dominated by
cantilever action. This occurs when the columns are considerably stiffer than the beams that
frame into it. In such case the contraflexure point can move to upper story columns.

When the derived expressions are used to calculate the shear profile in any of the
components, the transition between the substructures should be smooth. The easiest way of
estimating the contraflexure height is to perform graphical solution. The wall shear force
calculated at the base of the substructure 1 (upper part of the model) should be equal to or
slightly less than that calculated at the base substructure given in Eq. (E.34). In Figure E.9
for a structural system with o = 3.81, the location of contraflexure height is determined
by trial and error. The ratio of contraflexure height at base story column to the base story
height (Acc / Npasesiroy) Was found approximately as 0.75, so that the force compatibility is
provided at the junction. It has to be notified that this procedure should not be perceived as
a trial-and error method, it is a graphical solution since each structure is characterized by a
unique (fee / Mpasestroy) ratio. An interesting observation with regard to Figure E.9 is that the
location of contraflexure height does not influence the distribution of displacement and
moment along the height and the shear distribution at the upper substructure. Since the
expression for the base substructure is not expressed in dimensionless form, which is to say
the response can only be calculated for specific values of EI,, EIl. and GA,, a general
expression for /. / Mpasesiroy Tatio can not be derived.

10 1.0 1.0
\ hcc / hbasestory hcc / hbasestory
: -—-—-05
0.8 - . 18 - 06 0.8 -
0.7
06 4 o4 0 e 0.8 06 4
T T 0.75 T
x x P
04 4 0.4 - 04 1 hcc/hbases(ory
------- 0.5
0.6
0.2 0.2 - 0.2 - ——--07
------- 0.8
| 0.75
0.0 T T T ? 0.0 T T T 0.0 T T
-0.4 -02 0.0 0.2 04 06 08 1.0 -0.1 0.0 0.1 0.2 0.3 0.4 0.00 0.05 0.10 0.15
Vg (x)/V, Mg(x) / M, Displacement (m)

Figure E.9 Graphical determination of column contraflexure height for a specific case (aH
=3.81, EI = 8.0825E+10 Nm?, GA4,, = 1.594E+10 N, G4 = 8.315E+8 N, EI, = 2.384E+8
Nm?)
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5. Calculation of the response through the continua by transfer matrix
method in consideration with nonuniform stiffness and arbitrary
loading

The two principal deficiencies noted in the formulation given in Heidebrecht and
Stafford Smith (1973) are that the moments from link beams were not considered and zero

rotation condition, y', =0, imposed at the base leads to frame shear calculated by Eq.

(E.3) to vanish. Both of these deficiencies can be eliminated by incorporating beam
moment effects into Eq. (E.22) and developing a new formulation for the base story that
now yields nonzero frame shear at the base.

In case of nonuniform stiffness and lateral loads that do not have regular pattern
along the height of the structure, obtaining a closed form solution from Eq. (E.22) becomes
difficult. In such cases, the transfer matrix method adopted by Heidebrecht and Stafford
Smith (1973) provides an elegant way of solving the problem. A nonuniform building is
considered to consist of a number of uniform segments. The shear and flexural rigidities
and intensity of loading may change from segment to segment but must be uniform in the
segment. The basic expression defining the deflection of a particular segment is of the
same form as Eq. (E.39). For known values of boundary conditions defined in terms of the
displacement, rotation, bending moment and shear at the base of the segment, values of
these quantities can be calculated anywhere within the segment using the derivatives of Eq.
(E.39):

y(o) — y: (E47a)
dy(0) = (E.47b)
— =V

dx
MB (0) — M;O (E47C)
V(0) = Vo* (E.474d)

If the expressions defining the displacement, rotation and bending moment are
arranged and put in matrix form, they define the state vector of these quantities at any
position in the segment which can be written in the form

z0)} = [T}z, }+ 1B} (E.48)
y(x)

dy(x)
where {z(x)} = dx (E.49)

2
P (zx)
dx
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and

_1 sinh(ax)  cosh(ax)—1]
a Ela?
[T (x)] =0 cosh(ax) sinh(ax)
Ela
0 Elasinh(ax)  cosh(ax)

a(n+ GA)

VO
{B(x)}= 1+ GA)

s sinh(ax) +
(24 a

° [sinh(czx) — eox]+
EI

[1 - cosh(ax)] +
El

w

2
Yo {cosh(ax) -1- %:I

0!4

Yo

3 [sinh(ooc) - ooc]

2 [cosh(ax) —1]

(E.50)

(E.51)

The matrices [T(x)] and {B(x)} are known quantities for any value of x in the

segment. The quantities w, and VO* , representing the intensity of the uniform lateral loading

in the segment and the shear force at the base of the segment, can be calculated by static
equilibrium for any segment in the structure.
A different formulation was derived for the bottom segment (Substructure 2), which
is measured from the base to the contraflexure height of the columns, the transfer matrices
used for this segment are obtained from Eqgs. E.36-E.37-E.38:

2
x2 h;,

1 +
2EI,, 2fEIl,

X

X _ x3
GA, 6EI,

2.2
hi.x

[T()]=|0 1

El, 4f(EI,)

VO hC:';C x3
3/EI. | 6EI,

_ X
GA,

{B(x)}=

V k3 x?

o"“cc
6 fEl EI,
V h3x

o "cc

3/EI,

(E.52)

(E.53)

Starting from the bottom segment, with boundary conditions given in Eq. (E.47 a-b-
c-d), the conditions can be calculated at the other end of the segment using Eq. (E.48). For
two adjacent segments compatibility conditions imply that the boundary conditions
calculated at the upper end of the bottom segment become the base boundary conditions for
the top segment to start. If this sequence is followed from base to top of the structure for
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each segment, the following recursive relationships result:

7,]=1r, [T, ] (E.54)
B,]=[7,1[B,.]+[5,] (E.55)
for {z} =T, |[z,]+[B,] (E.56)
and {z,}=[1,][z,,]+[B,] (E.57)

in which {z,}=the state vector at the top of the n™ segment, and {z,} = the state vector at the
base of the structure. If the bottom substructure consists of only one segment, the matrices
{B,(0)} , [T,(0)], {Bi(he)} , [Ti(h.)] are calculated using Eqgs. (E.52) and (E.53).

Assuming a clamped (fixed) base structure, the boundary conditions at the base of
the structure to start with are known except the bending moment (Mj,) at the base of the
flexural component. For a structure of N segments, using the final equation, which has the
same form as Eq. (E.55), the unknown parameter Mjp, can be calculated. As the
displacement and rotation at the very base and Mp(H;) are all zero, the third row of the
matrices yields

My, =—— (E.58)
’ TN33

in which B N 1s the third element of the vector {E N} and T, Ny, 18 the (3,3) element of matrix

7]

Once Mp, has been computed, the state vector {z,} is known, and Eq. (E.57) can be
applied successively to each segment to determine the state vectors at each segment
boundary. Eq. (E.48) can then be used to evaluate the state vector {z(x)} at any position, x,
within any segment.

6. Numerical examples
6.1. Uniform Structure

In order to verify the accuracy and effectiveness of the proposed procedure, ten-story
prototype frame-wall structure was created. A general plan view is shown in Figure E.10.
The structure consists of three-bay frames, (frames A, B and C) parallel to the loading
direction, and four two-bay frames, (frames 1, 2, 3 and 4) in the perpendicular direction.
The span widths are 6.0, 5.0 and 6.0 m, respectively in the longitudinal direction, and 6.0 m
each in the transverse direction. Frame B has a shear wall in the central bay continuous
from the first to the tenth story. While the height of ground story is 3.75 m, the story height
for the stories above is 3 m yielding a total height of 30.75 m.

The columns are 0.6mx0.6m and the wall is 5mx0.3m in plan dimensions. Beams are
0.6 m in depth and 0.3 m in width. Four different cases are designed for analysis purposes.
In some cases, the slab contribution to the beam resistance is considered, so flanged beam
cross section was used. In these cases flange width was taken as 1.2 m. While the structures
in Cases 1, 3 and 4 consist of flanged beams, Case 2 structure is composed of rectangular
beams. The wall in Case 4 is 3mx0.3m. By changing member cross sectional properties and
the pattern of the lateral loads both approximate and exact stiffness matrix method
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structural analyses of the systems were carried out. The analysis cases with different
member properties and applied loading are summarized in Table E.1. The modulus of
elasticity of the concrete (E£) was taken as 25’000 MPa and the shear modulus is assumed to
be equal to G=0.425E.

The flexural component of the shear-flexure beam in this analysis consists of the shear
wall (1,=3.125 m*). The shear component consist of the frames A, B and C. Joints A2&A3
and C2&C3 are framed by two beams and joints A1&A4, B1&B4 and C1&C4 are framed
from only one side in the direction of loading. The contribution of single joint to the GA
parameter of the equivalent shear flexure beam is calculated and tabulated in Table E.2.

i ! ! I 2 m
@ _J‘}__‘_ _._¢|4_4_E4E_4_4J§]_._ _,___|j ..
: B1 :S\L‘zﬁrm : Bl : 6m
_ }----—'i—\“—i' _____ AR .
| n I n I n I
I Byl i ey 1 it I lem
N
| i ! i I i !
@ _ ‘E;}'—'—'"—'—'—Eﬂ‘—‘—"!—‘—‘E]-'—'—"'—'—'—ﬁ-} _.2_._.
! m

6 m 6m

Figure E.10 General plan view and frame properties

Table E.1 Member rigidities used in different analyses cases

Cases El, (Nm?) (ﬁl'nwz) (1511:’2) GA,(N) EI Nm) GA(N) 7(N) oH Loading

Case 1 2.700E9 7.813E10 2.384E8 1.594E10 8.083E10 8.315E8 4.127E8 3.815 Triangular

3.119°  w=720

kN/m
Case2 2.700E9 7.813E10 1.350E8 1.594E10 8.083E10 5.280E8 2.338E8 2.985 Triangular
2485 w=720

kN/m

Case 3 2.700E9 7.813E10 2.384E8 1.594E10 8.083E10 8.315E8 4.127E8 3.815 Uniform
3.119°  w=355

kN/m
Case4 2.700E9 1.688E10 2.384E8 9.563E9 1.958E10 8.315E8 4.127E8 7.752 Triangular
6.337°  w=720

kN/m

“The values are calculated according to Heidebrecht and Stafford Smith (1973).
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Table E.2 Contribution of single joint to the G4 parameter of the equivalent shear-flexure
beam. Units in Newtons

Joints A1&4, B1&4 and

Joints A2&3 and B2&3 Total

C1&4
GA (Case 1,3&4) 1.100E+08 6.510E+07 8.315E+08
GA (Case 2) 7.200E+07 4.000E+07 5.280E+08

The results of the analyzed cases are given in Figure E.11 and used for the
verification of proposed method in comparison with the results of Heidebrecht and Stafford
Smith (1973) and those calculated with more exact finite element method. It is clearly seen
in these figures that the present method not only provides improved estimates over the
results of the method due to Heidebrecht and Stafford-Smith, but also calculates the wall
shear at the base accurately. The new method provides far better results in terms of shear
force distribution in the system compared with the previous method, especially when the
relative rigidity of frames increases.

6.2. Nonuniform Structure

The performance of the proposed method was also checked for a nonuniform
structure. The same model with abrupt changes in the stiffness along the height of the
structure was considered. The structure has the same plan form given in Figure E.10 but the
first four stories consist of 0.6mx0.6m columns and 5m long and 0.3m thick shear walls.
The beams are rectangular with 0.7mx0.4m in dimension up to the fifth story. Stories from
five to ten consist of 0.45mx0.45m columns and 3mx0.25m shear walls. The beams are
weaker at these stories, with dimensions of 0.5mx0.3m. Such an arrangement results in
three distinct stiffness regions along the height. The first region reaches to 11.25 m height,
corresponding to mid-height of the fourth story. A story height region between the fourth
and fifth stories midheights provides a transition region. Above 14.25 m the final stiffness
region starts. The global flexural (E£7) and shear rigidity (GA) terms at the transition region
were taken as the average of upper and bottom part values. A triangular load distribution
that totals 16’500 kN at the base is applied. The computed displacement profile, shear force
and bending of the nonuniform structure are plotted in Figure E.12.

As seen in Figure E.12, the displacement profile was calculated accurately. In terms
of moment distribution, while the presented method and former method by Heidebrecht and
Stafford Smith (1973) yield the same profile due to weak beams at the upper stories, at the
lower stories the present method provides far better predictions because the effects of link
beams are considered. The share of walls from the total base shear is also calculated
accurately. Abrupt changes occur in the shear force profile since the stiffness changes
drastically from one stiffness region to another.
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Figure E.11 Comparison of displacements, wall shear forces and bending moments
calculated using different methods. Uniform stiffness was assumed along the height.
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Figure E.12 Comparison of displacements, wall shear forces and bending moments
calculated with different methods for nonuniform stiffness.

7. Displacement, rotation and stress resultants for triangular load,
uniform structure

Although the lateral load is applied on the entire beam, only the portion acting on the
Substructure 1 is considered. This yields the following lateral load distribution applied on
the continuum model

w(x) = %(x +h,) for 0<x<H, where H =H—h,  (E.59)

The expressions for displacement, rotation, bending moment and shear force on the
wall component for triangular distribution of lateral loads are

+  «sinh(ax) I [cosh(ax) -1

V. .
(X)) =y, +y, ————+Msp, } +—° [ax — sinh(ox)]
a a’El

2
EI
“ . (E.60)
W] . Wl X 2
+ ah, . cosh(ax) +sinh(ex) —a(x + h,. ) |- ————| —+x"h
—5 7 @hec coSh(a2) + sinh(ez) —ar(r+ )] ZaZHEI( 3 ]
yi(x)=y, cosh(ax)+ Mg, smolllé?x) + 2OEI [1 - cosh(ax)]
a
(E.61)
+ 4W—1 [ah,... sinh(eex) + cosh(ax) — 1] - ;V—l (x2 + 2xhcc)
o HEI 2a” HEI
,* . * sinh(ax)
M g (x) =y, Elasinh(ax)+M g, cosh(ax) -V, —————=
(E.62)
+h,.
+ v;/l [ah,, cosh(ax)+sinh(ax)]—M
a’H a"H
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Vi (x)=—y, GAcosh h(ax) — M, ﬂsinh(ax) +V, 77+ GA cosh(ax)
aEl a2El

E.63

a’H(n + GA)

n

[1 - cosh(a) - ath,, sinh(em)] - —517— (x2 4+ 2xh
202 HEI

cc

where y;* and M ;O can be calculated from Eq. (E.37) and (E.38) at x = A.. The bending
moment at the base of the shear wall for triangular load distribution is given as

. 4 .
V, sinh(aH;) 31/50?6} |:ahcc Sn;h(aHl) + cosh(aHl)} - V:IH [ahcc cosh(aH,) + sinh(aH) - aH] (E.64)
a . a .
MBD = < h3 h3
[1 - “E;C’b;[}ahC‘, sinh(aH,) + (1 - 2EL;ﬂfj cosh(aH,)

where for a given intensity of lateral load (w;), V, can be expressed as

E.65
0 20 (E.65)
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APPENDIX F

FORCE-DEFORMATION RELATIONS OF WALL SPECIMENS
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Figure F.1 Force-displacement relations of wall models (L, =3 m; L, =5 m)
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Figure F.3 Force-displacement relations of wall models (L,, =3 m; L,
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Figure F.4 Force-displacement relations of wall models (L, =3 m; L, = 15 m)
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Figure F.5 Force-displacement relations of wall models (L, =5 m; L, =5 m)
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Figure F.7 Force-displacement relations of wall models (L, =5 m; L, =9 m)

2" floor drift ratio (%)

371

2" floor drift ratio (%)




Normalized Shear

Normalized Shear

Normalized Shear

Normalized Shear

0.4

0.3 1

0.0

L, =5m ; p,=0.005 ; M/V =

15m

L, =5m;p,=0.01; M/V = 15m

0 1 2 3 4

2" floor drift ratio (%)

¢ T T T T T

0 1 2 3 4 5 6
2" floor drift ratio (%)

Figure F.8 Force-displacement relations of wall models (L, =5 m; L, = 15 m)
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Figure F.9 Force-displacement relations of wall models (L, =5 m; L, = 24 m)
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Figure F.10 Force-displacement relations of wall models (L, =8 m; L, =5 m)
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Figure F.12 Force-displacement relations of wall models (L, = 8 m; L, =9 m)
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Figure F.14 Force-displacement relations of wall models (L, = 8 m; L, =24 m)
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Table G.1 Roof Drift and shear stress of test specimens by other researchers

APPENDIX G

SHEAR WALL EXPERIMENTS

H,, Ly te | P/Py| Vimax f. A% 8, é,/Hy
Reference (m) | (m) | (mm) | (%) | (kN) | (Mpa) | (Mpa) | H,/Ly, | (mm) | (%)
Corley et al. (1981) 4.57 [1.905| 102 | 7.0 | 1824 | 244 | 0.19 24 76.4 | 1.67
Corley et al. (1981) 4.57 [1.905| 102 | 7.5 | 92.6 | 22.7 | 0.10 2.4 76.4 | 1.67
Corley et al. (1981) 4.57 [1.905| 102 | 14.1 | 263.1 | 21.8 | 0.29 2.4 782 | 1.71
Corley et al. (1981) 4.57 | 1.905] 102 | 7.9 | 313.8 | 49.3 0.23 2.4 132.1 | 2.89
Corley et al. (1981) 4.57 [1.905| 102 | 9.3 | 302.2 42 0.24 2.4 130.8 | 2.86
Corley et al. (1981) 4.57 [1.905| 102 | 8.9 | 309.7 | 44.1 0.24 24 138.1 | 3.02
Corley et al. (1981) 4.57 [1.905| 102 | 8.6 | 223.1 | 456 | 0.17 2.4 126.6 | 2.77
Corley et al. (1981) 4.57 | 1.905] 102 | 04 | 2652 | 385 | 0.22 2.4 50.7 | 1.11
Corley et al. (1981) 4.57 | 1.905] 102 | 7.6 | 2752 | 455 | 0.21 2.4 101.5 | 2.22
Corley et al. (1981) 549 11.905] 102 1.0 | 103.2 | 233 0.11 2.88 | 126.7 | 2.31
Morgan et al. (1986) 438 | 1.575| 57 49 | 354 31.7 | 0.07 | 2.78 | 66.1 1.51
Oesterle et al., 1978 4.57 [ 1.905] 102 | 04 | 39.0 | 44.7 | 0.03 2.4 103.3 | 2.26
Oesterle et al., 1978 4.57 |1.905| 102 | 04 | 66.2 | 464 | 0.05 2.4 133.5 | 2.92
Oesterle et al., 1978 4.57 | 1905| 102 | 0.3 | 84.9 53 0.06 2.4 132.1 | 2.89
Oesterle et al., 1978 4.57 | 1.905] 102 | 0.3 | 2134 | 53.6 | 0.15 2.4 103.8 | 2.27
Oesterle et al., 1978 4.57 [1.905] 102 | 0.3 | 93.5 47.3 0.07 24 179.7 | 3.93
Oesterle et al., 1978 4.57 |1.905] 102 | 0.3 | 1043 45 0.08 24 [3173 | 694
Oesterle et al., 1978 4.57 | 1.905| 102 | 0.3 | 2354 | 453 0.18 2.4 126.6 | 2.77
Vallenas et al. (1979) 3.06 2388 102 | 7.8 | 3449 | 348 | 0.24 1.28 | 1733 | 5.67
Vallenas et al. (1979) 3.09 [2413] 102 | 7.3 | 2845 | 334 | 0.20 1.28 | 747 | 242
Wang et al. (1975) 3.06 |2.388] 102 | 79 | 3434 | 345 0.24 1.28 | 107.0 | 3.5
Wang et al. (1975) 3.06 |2.388] 102 | 7.6 | 3488 | 35.6 | 0.24 1.28 | 51.0 | 1.67
Wang et al. (1975) 3.06 {2388 102 | 7.5 | 321.1 | 359 | 0.22 1.28 | 68.8 | 2.25
Wang et al. (1975) 3.09 |2413] 102 | 7.0 | 2747 | 345 0.19 1.28 | 72.0 | 233
Oesterle (1986) 4.57 [1.905| 102 | 0.3 | 227.8 | 53.7 | 0.16 24 127.1 | 2.78
Oesterle (1986) 4.57 [1.905| 102 | 0.4 | 251.0 | 41.7 | 0.20 2.4 101.5 | 2.22
Oesterle (1986) 4.57 [1.905| 102 | 59 | 1334 | 279 | 0.13 2.4 101.5 | 2.22
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Table G.1 (Continued) Roof Drift and shear stress of test specimens by other researchers

H,, Ly tyw | P/Py| Viax fe v* S, | 8/Hy
Reference (m) | (m) | ((mm) | (%) | (kN) |(Mpa) | Mpa) | H,/Ly | (mm) | (%)
Thomsen&Wallace (1995) | 3.82 | 1.22 | 102 | 7.0 | 658 | 43.7 | 0.08 | 3.13 | 83.6 | 2.19
Thomsen&Wallace (1995) | 3.82 | 1.22 | 102 | 10.0 | 69.3 31 0.10 | 3.13 | 825 | 2.16
Han et al. (2002) 2.00 | 1.50 | 200 | 10.0 |442.90| 342 | 0.25 1.3 80.9 | 4.05
Han et al. (2002) 2.00 | 1.50 | 200 | 10.0 [573.30| 34.5 | 0.33 1.3 55.9 | 2.80
Han et al. (2002) 2.00 | 1.50 | 200 | 10.0 |321.40| 36.9 | 0.18 1.3 59.6 | 2.98
Shiu et al. (1981) 549 [ 191 | 101.6 | 1.0 | 3493 | 233 | 0.37 29 |152.6 | 2.78
Ali and Wigth (1991) 356 | 1221 762 | 74 | 160.6 | 34.0 | 0.30 2.9 [106.8 | 3.00
Ali and Wigth (1991) 356 | 1.22] 762 | 93 | 1664 | 323 | 0.31 2.9 534 | 1.50
Ali and Wigth (1991) 356 | 1.22] 762 | 9.1 | 169.5 | 33.0 | 0.32 2.9 534 | 1.50
Ali and Wigth (1991) 356 | 1.22] 76.2 | 88 | 1633 | 342 | 0.30 2.9 534 | 1.50
Carvajal&Pollner (1983) 1.55 1 0.50 | 101.6 | 8.4 | 369 | 28.1 | 0.14 3.1 62.1 | 4.00
Carvajal&Pollner (1983) 1.55 1050 | 101.6 | 83 | 343 | 282 | 0.13 3.1 62.1 | 4.00
Carvajal&Pollner (1983) 1.55 1050 | 101.6 | 9.2 | 285 | 256 | 0.11 3.1 62.1 | 4.00
Carvajal&Pollner (1983) 1.55 1 0.50 | 101.6 | 82 | 28.0 | 28.7 | 0.10 3.1 50.0 | 3.22
Carvajal&Pollner (1983) 1.55 1 0.50 | 101.6 | 11.3 | 27.1 20.8 | 0.12 3.1 349 | 2.25
Lefas&Kotsovos (1990) 1.3 |1 0.65| 65 0.0 | 117.7 | 30.1 | 0.51 2.0 209 | 1.61
Lefas&Kotsovos (1990) 1.3 |1 0.65| 65 0.0 | 1158 | 352 | 0.46 2.0 222 | 1.711
Lefas&Kotsovos (1990) 1.3 10.65| 65 0.0 111 53.6 | 0.36 2.0 245 | 1.88
Lefas&Kotsovos (1990) 1.3 [0.65| 65 0.0 | 111.5 | 49.2 | 0.38 2.0 250 | 1.92
Lefas et al. (1990) 0.75 1075 | 70 0.0 | 260 52.3 | 0.68 1.0 8.3 1.10
Lefas et al. (1990) 0.75 [ 075 70 |10.0| 340 53.6 | 0.88 1.0 8.9 1.18
Lefas et al. (1990) 0.75 1075 70 ]20.0| 330 40.6 | 0.99 1.0 8.9 1.18
Lefas et al. (1990) 075 1075 | 70 0.0 | 265 42.1 | 0.78 1.0 112 | 149
Lefas et al. (1990) 075 1075 ] 70 |10.0 | 320 433 | 0.93 1.0 8.1 1.07
Lefas et al. (1990) 0.75 [ 075 70 |20.0| 355 51.7 | 0.94 1.0 5.8 0.77
Lefas et al. (1990) 075 1075 70 0.0 | 247 483 | 0.68 1.0 10.8 | 1.43
Lefas et al. (1990) 1.3 |1 0.65| 65 0.0 127 42.8 | 0.46 2.0 20.6 | 1.59
Lefas et al. (1990) 1.3 10.65] 65 |10.0]| 150 50.6 | 0.50 2.0 15.3 1.18
Lefas et al. (1990) 1.3 10.65] 65 |20.0]| 180 47.8 | 0.62 2.0 13.2 | 1.01
Lefas et al. (1990) 1.3 10.65| 65 0.0 120 48.3 | 0.41 2.0 18.1 1.39
Lefas et al. (1990) 1.3 10.65| 65 ]20.0] 150 45 0.53 2.0 9.5 0.73
Lefas et al. (1990) 1.3 10.65| 65 0.0 123 30.1 | 0.53 2.0 209 | 1.61

*y is the member maximum average shear stress normalized with respect to ./ f.. calculated as

V=

v,

max
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