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ABSTRACT 

 

MODELING AND CONTROL OF A HYPER REDUNDANT MANIPULATOR 

 

Bayram, Atilla 

 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M. Kemal Özgören 

 

February 2010, 158 pages    

 

 

The hyper redundant manipulators (HRMs) have excessively large degrees of 

freedom. As a special but practicable subset, the binary HRMs use binary (on-off) 

actuators with only two stable states such as pneumatic cylinders and solenoids. Such 

actuators are simple, cheap, and easy to control. Therefore, a binary HRM has been 

studied in this thesis. The thesis work covers the conceptual design of a spatial binary 

HRM together with its controlled motion simulations. The manipulator consists of 

many modules, each of which has the same constructive characteristics and consists 

of three submodules which are two cascaded variable geometry truss structures 

working in mutually orthogonal planes and a discrete twister. The manipulator is 

assumed to be powered with pneumatic on-off actuators. Because of the discrete 

nature of the binary actuators, a small but continuously actuated manipulator with six 

degrees of freedom is installed as the last module of the HRM in order to compensate 

the discretization errors.  

 

To solve the inverse kinematics problem of the HRM, three methods have been 

presented. These are the spline fitting, the extended spline fitting, and the workspace 

filling methods. The spline fitting method is based on forcing the spine (i.e. the 



 v

center line) of the manipulator to approximate a spatial reference spline which is 

specified as a desired curve. In the extended spline fitting method, the result found in 

the first method is improved by using a genetic algorithm. In the work space filling 

method, the workspace of the manipulator is filled randomly with a sufficiently large 

finite number of discrete configurational samples. If it is desired to have 

concentration on a particular region of the work space, then that region is filled by 

using a genetic algorithm. After the filling stage, the sample closest to the desired 

configuration is determined by a suitable search algorithm.  

 

Finally, in order to simulate the motion of the HRM between two successive 

configurational steps, the equations of motions of the HRM are obtained in terms of 

the pressure forces generated by the binary pneumatic actuators. Then, the necessary 

simulations are carried out to demonstrate the performance of the HRM in some 

typical applications.     

 

Keywords: Hyper redundant manipulator, binary actuation, spline, genetic algorithm. 
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ÖZ 

 

BİR AŞIRI ARTIKSIL MANİPÜLATÖRÜN MODELLENMESİ VE KONTROLÜ 

 

Bayram, Atilla 

 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. M. Kemal Özgören 

 

Şubat 2010, 158 sayfa    

 

 

Aşırı artıksıl manipülatörler (AAM'ler) gereğinden çok fazla serbestlik derecesine 

sahip olan manipülatörlerdir. Bu manipülatörlerin özel fakat uygulanabilir olanları, 

iki konumlu eyleticilerle kontrol edilen ikili AAM'dir. İki konumlu eyleticilere örnek 

olarak solenoitler ve havalı silindirler gösterilebilir. Bu gibi eyleticiler basit ve ucuz 

olup hem de kolay kontrol edilebilirler. Bu yüzden, bu tezde ikili bir AAM üzerinde 

çalışılmıştır. Bu tez çalışması, ikili bir AAM'nin kavramsal tasarımı ile dinamik 

analizini ve hareket benzetimlerini kapsamaktadır. Bu manipülatör, aynı yapısal 

karakteristiğe sahip olan bir çok modülün üst üste eklenmesiyle oluşturulmuştur. Bu 

modüllerin her biri üç adet alt modülden oluşup bunlardan ikisi değişken geometrili 

kafes yapısında olup birbirine dik iki farklı düzlemde hareket etmektedirler. Üçüncü 

alt modül ise burulma hareketi yapmaktadır. Bu manipülatör için iki konumlu havalı 

eyleticilerin kullanıldığı varsayılmaktadır. Bu eyleticilerin ayrık yapısından 

kaynaklanan ayrıklaştırma hatalarını telafi etmek için manipülatörün en son 

modülüne küçük fakat sürekli eyletilen 6 serbestlik dereceli bir manipülatör 

eklenmiştir. 
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Bu aşırı artıksıl manipülatörün ters kinematik problemini çözmek için üç adet 

yöntem önerilmiştir. Bunlar eğriye uydurma, genişletilmiş eğriye uydurma ve 

çalışma uzayı doldurma yöntemleridir. Eğriye uydurma yöntemi, manipülatörün 

omurgasının (merkez çizgisinin) bir uzaysal referans eğrisine yaklaşmasına 

dayandırılmaktadır. Genişletilmiş eğriye uydurma yönteminde ise, birinci yöntemde 

bulunan sonucun bir genetik algoritma ile iyileştirilmesi sağlanmaktadır. Son 

yöntemde ise, manipülatörün çalışma uzayı rasgele bir şekilde ve yeterince fazla 

sayıda manipülatör biçimi örnekleri ile doldurulur. Eğer çalışma uzayının belli bir 

bölgesine odaklanmak istenilirse o zaman bu bölge bir genetik algoritmanın 

kullanımı ile doldurulmaktadır. Bundan sonra, istenilen biçime en yakın örnek, 

uygun bir arama algoritması ile tanımlanmaktadır. 

 

Son olarak, AAM’nin hareketinin benzetimi iki ardışık manipülatör biçimi arasında 

yapılmıştır. Bunun için, manipülatörün hareket denklemleri, eyleticiler tarafından 

üretilen basınç kuvvetleri cinsinden elde edilmiştir. Daha sonra, AAM’nin 

performansını göstermek üzere bazı tipik uygulamalar için gerekli benzetimler 

gerçekleştirilmiştir.  

 

Anahtar Kelimeler: Aşırı artıksıl manipülatör, ikili konumlu eyletilme, spline, 

genetik algoritma. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 

 

 

 

Most of the industrial robot manipulators are traditional ones with 6 or less than 6 

degrees of freedom (DOF). A typical 6 DOF robot manipulator uses three actuated 

DOF for tip point positioning and the other three for hand orientation in order to 

reach any desired point in its workspace with arbitrary orientation. Adding more 

degrees of freedom to a manipulator may sometimes be necessary so as to provide 

enhanced manipulability and flexibility, to avoid singularity and obstacles and to 

optimize the specified performance index. Having more actuated degrees of freedom 

than are required to perform a specified task, a manipulator is called redundant. If the 

number of additional degrees of freedom is too many or infinite, such a manipulator 

is called hyper redundant manipulator. These types of manipulators, an alternative to 

traditional ones in some applications, have very large actuated degrees of freedom. 

Their designs may consist of flexible physical structures, a cascade of modules 

composed of redundantly actuated parallel platforms, or a large number of rigid links 

in series. Hyper redundant manipulators can be classified into three categories 

namely “articulated”, “continuum” and “cascade” as shown in Figure 1.1. An 

articulated manipulator is simply an open kinematics chain such as serpentine or 

snake-like. On the other hand, continuum type of manipulators can exhibit a large 

number of degrees of freedom, but, not all of these degrees of freedom are directly 

actuated, and have no rigid links and joints, and their actuation is distributed over the 

manipulator length. Trunk and tentacle-like devices belong to this category. The third 

group is the cascade manipulators which consist of modules stacked on top of each 

other in serial chain. Such modules are actuated in parallel, and could be variable 
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geometry trusses, closed linkages with or without redundant actuation or 

combination of other closed loop mechanisms. Variable geometry trusses mostly 

used in this category are themselves parallel structures and each of them is a good 

example for demonstrating both kinematics and actuator redundancy. 

 

 

 
 
Figure 1.1 The Categorization of Hyper Redundant Manipulators 

 

 

Hyper redundant manipulators (HRM) have been given a wide variety of names such 

as “swan’s neck”, “tentacle”, “snake-like”, “elephant trunk”, “tensor arm”, “highly 

articulated”, “active cord”, etc. Successfully implemented hyper redundant 

manipulators would offer great advantages in dexterity over non-redundant 

manipulators. For example, they have better performance for obstacle avoidance with 

many actuatable degrees of freedom, they can implement the given tasks though 

some of the actuators fail, and they are used in unknown environments. However, 

some drawbacks limit the use of HRMs. These are the lack of an efficient method for 

the inverse kinematics and motion planning, difficulty in mechanical design and 

some deficiencies in actuator technology. HRMs can be powered with continuous 

actuators such as tendons, DC motors or hydraulic cylinders, and also discrete or 

binary actuators. 

Articulated Continuum Cascade 
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In binary actuation, actuators have only two stable states, such as solenoids or 

pneumatic cylinders. This group is called “discretely actuated hyper redundant” or 

“binary hyper redundant” manipulator. Binary hyper redundant manipulators can be 

used in many applications such as pick-and-place, spot welding, repairing and 

inspection in dangerous and complex areas such as space satellites, nuclear powers, 

bridges. There are some advantages and disadvantages about this type of 

manipulators as follows. 

 

Advantages of binary HRMs: 

• a finite set of stable actuator states 

• much cheaper actuators  

• light weight  

• high repeatability  

• high capacity load to manipulator weight ratio 

• no need for feedback 

• less complexity in computer controlled interfacing 

• allow tasks to be performed even when some actuators fail 

• high ability in obstacle avoidance because of its hyper redundancy 

• new forms of robot locomotion and grasping. 

 

Disadvantages of binary HRMs: 

• non-continuous (discrete) workspace 

• need of more modules with less dimensions to improve its performance 

• complicated structure and more moving parts 

• need of a large amount of computations in inverse kinematics 

• difficulty to control the trajectory between successive configurations. 

 

In this thesis, a 3D hyper redundant manipulator actuated discretely is to be devised 

and controlled by the inverse kinematics methods and an additional continuously 

actuated manipulator. This manipulator consists of many modules stacked on top of 

each other in a long serial chain. Each module has three submodules. The first two 

are binary variable geometry trusses (VGT) and the last one is a discretely rotated 
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submodule. The manipulator structure is very simple and powered with on-off 

pneumatic actuators, each of which is either fully extended or fully contracted. 

Because of the discrete nature of the binary actuators, for fine tuning, a continuously 

actuated manipulator is added as the last module of the HRM. To solve the inverse 

kinematics of this HRM, three methods are offered with respect to the given tasks. 

These are the spline fitting, the extended spline fitting and the workspace filling 

methods. The spline fitting method is based on a spatial reference curve, which is the 

non-uniform rational base spline (NURBS). The second method is the extended 

spline fitting method. It is the combination of the spline fitting method and a genetic 

algorithm. This method generates a solution set consisting of many possible 

configurations rather than one configuration. The best configuration is selected from 

this set in such a way that it supplies all the given criteria which are the minimum 

positional and orientational errors, the shape of the manipulator and the trajectory 

tracking. The third method, which is the workspace filling method, is a stochastic 

search method based on the workspace of the manipulator. Despite the whole 

number of the possible configurations, the workspace involving a finite number of 

the manipulator configurations is generated randomly in this method. If it is desired 

that to have concentration on a particular region, some workspaces with respect to 

the given tasks are filled by using a genetic algorithm. The control of the 

manipulator is based on the values of the joint variables, which are the pneumatic 

on-off actuator lengths represented by “0”s or “1”s, from the inverse kinematics 

analysis and the compensation by the additional continuously actuated part of the 

HRM. Then, the equations of motion of the HRM consisting of rigid bodies are 

developed with the dynamic analysis in terms of the pressure forces generated by the 

binary pneumatic actuators. This analysis is module-based and made recursively, 

which is useful in developing general purpose computer algorithms. As a result of 

the dynamic simulation, the real motion of the HRM is obtained and also it is 

investigated whether this motion upon the given actuator forces can come true or 

not. Finally, the necessary simulations are carried out to demonstrate the 

performance of the HRM in some typical applications.     
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1.1   Literature Survey  

 

The literature survey consists of four subsections. Subsection 1.1.1 provides 

examples of hyper redundant manipulators with modeling and actuation. Subsection 

1.1.2 presents the literature review on examples of binary hyper redundant 

manipulators. Subsection 1.1.3 discusses common approaches for the inverse 

kinematics of redundant and hyper redundant manipulators. Subsection 1.1.4 cites 

some methods for the inverse kinematics of binary hyper redundant manipulators. 

Section 1.2 is related to the contributions of this thesis. 

 

1.1.1   Hyper Redundant Manipulators  

 

Researchers have studied many types of hyper redundant manipulators. Most of them 

are continuously actuated manipulators which are powered with actuators such as DC 

motors or hydraulic cylinders. Although hyper redundant designs were presented 

previously in 1960’s [1], Chirikjian and Burdick used firstly “hyper redundant” term 

in the robotics area [2]. In the literature, there are many types of hyper redundant 

manipulators with respect to their structure or actuation type. The ACM III (active 

cord mechanism) and The ACM VII (The Elastor) are two hyper redundant 

manipulators by Hirose [3]. Another hyper redundant manipulator studied by Hirose 

and his coworkers is The Float Arm [4]. It is actuated with a cable system called M-

drive. One of the famous studies is a 30-DOF planar hyper redundant manipulator by 

Chirikjian and Burdick [5], [6] and [7]. This manipulator consists of 3-DOF variable 

geometry truss (VGT) structures and contains 10 identical modules. Each module has 

prismatic joints which are driven with DC servo motors and screws. As a continuum 

type of manipulator, The Elephant’s Trunk manipulator as shown in Figure 1.2 is 

constructed and tested by Hannan and Walker [8]. The manipulator is composed of a 

serial connection of 16 two DOF joints and it is divided into four actuated parts. 

Each part is driven with a cable servo system. Moreover, many researchers have 

focused on serpentine robots belonging to the articulated category. For example, 

Howie Choset and his coworkers studied some types of serpentine robots at Carnegie 

Mellon University [9] and [10]. Kimura et. al. [11] introduced the hyper redundant 
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manipulator arm test system for a part of the technology of “Orbital Maintenance 

System (OMS)” developed in Japan. This manipulator consists of seven 2-DOF 

modules and is designed for reorbiting and repairing satellites in space.  

 

 

 
 

Figure 1.2 The Elephant’s Trunk Manipulator by Hannan 

 

 

Mark Yim and Chirikjian introduce reconfigurable robots and have used them in 

many applications [12], [13], [14]. Instead of designing modules for specified tasks, 

many copies of one simple module are built to implement various complex tasks. In 

reconfigurable robots, many modules are connected together to form a new system.  

 

1.1.2 Binary Actuated Hyper Redundant Manipulators 

 

Compared to the continuously actuated counterparts, binary manipulators need no 

feedback to control and no complex interfacing between computer and manipulator. 

Also, they are lightweight, robust and have higher repeatability. These manipulators 

generally use actuators with two stable states such as on-off pneumatic cylinders, 

solenoids or shape memory alloys (SMA). In the literature, many different types of 
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discretely actuated hyper redundant manipulators are presented with their 

experimental studies. Some typical studies on them are presented briefly as follows. 

 

• The Koliskor Study: In the former Soviet Union, Koliskor developed discretely 

actuated arms. His study reduces the complexity of the control system and the 

computer interfacing. [15]. 

 

• The planar Binary Robot Manipulator by Chirikjian [16]: Chirikjian is one of the 

famous researchers over the concept of hyper redundant manipulators. He introduced 

a binary actuated planar manipulator as shown in Figure 1.3. This manipulator 

includes five modules stacked on top of each other. Each module consists of 3-bit 

planar VGT structures and is actuated with pneumatic cylinders. The number of 

actuators used is 3 5 15× =  so that its end effecter can reach 152 32768=  points in 2D 

space. This device was developed and tested in the Robot and Protein Kinematics 

Laboratory at Johns Hopkins University. 

 

 
 

Figure 1.3 A 2D Binary VGT Manipulator 
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• The 3D Binary Manipulator by Ebert-Uphoff [17]: The device was also developed 

and tested in the same laboratory at Johns Hopkins University. Figure1.4 shows the 

3D binary manipulator consisting of 6 modules each of which is influenced by the 

Stewart platform. It is attached vertically to the ceiling and has a 3D gripper at the 

end as an end effector. Each module consists of 6 binary pneumatic actuators. 

Therefore, the manipulator configurations can be 6 62 ( 68.7 )billion× ≈  different 

reachable states in 3D space. In the device, the fluid filled pneumatic cylinder is 

attached in parallel to each actuator to function as a dashpot. Thus, the speed of 

actuators and also vibrations are suppressed. 

 

 

 
 

Figure 1.4 A 3D Binary Hyper Redundant Manipulator by Ebert-Uphoff 
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• Discretely Actuated Hyper Redundant (DAHR) Manipulator by Suthakorn [18], 

[19], [20]: The new manipulator design involves 3-bit binary VGT modules stacked 

on top of each other and discretely actuated rotating joint between each module. The 

actuators used in the prototype are the on-off pneumatic cylinders and the discrete 

rotary pneumatic actuators. The prototype as shown in Figure 1.5 consists of three 

modules, each has two parts; 3-bit binary VGT structure and a rotating joint with 16 

steps. Therefore, the manipulator totally has 3 3 32 16 ( 2.1 )million× × ≈  different 

configurations in 3D space. This was also studied at Johns Hopkins University.  

 

 

 
 

Figure 1.5 Discretely Actuated Hyper Redundant (DAHR) Manipulator by Suthakorn 

 

 

• CaPaMan 3 (Cassino Parallel Manipulator Version 3) [21]: This manipulator is a 

discretely actuated spatial parallel manipulator and designed with binary pneumatic 

actuation. The manipulator consists of three modules with 3 DOF parallel 
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manipulators. Each module has three legs composed of slider-crank mechanism. The 

actuation is made with this mechanism. The manipulator shown in Figure 1.6 was 

built and tested at LARM (Laboratory of Robotics and Mechatronics in Cassino 

University-Italy). 

 

 

 
             

Figure 1.6 A Prototype of the 3M-CaPaMan 

 

• The Binary Robotic Articulated Intelligent Device (BRAID) by Sujan and 

Dubowsky [22], [23] and [24]: Instead of using rigid joints and actuators, the hyper 

redundant deployable Binary Robotic Articulated Intelligent Device (BRAID) uses 

muscle type binary actuators and flexure linkages. This device has been simulated in 

manipulation and locomotion. Moreover, the prototype of this manipulator is 

developed and tested in Field and Space Robotics Lab. MIT, Cambridge. The 
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BRAID element is made of a serial chain of parallel stages. Each three DOF stage 

has three flexure based legs made of polyethylene, and muscle type binary actuator 

which is shape memory alloy. The experimental BRAID consists of five parallel 

stages so that the manipulator has totally 15 DOF and 
152 32768=  discrete 

configurations in 3D space. It is shown in Figure 1.7.  

 

 

 
(a) 

 

 
(b) 

 
Figure 1.7 The Basic Design (a) and the Experimental Platform (b) of the BRAID  
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1.1.3 The Inverse Kinematics of Continuously Actuated Hyper Redundant 

Manipulators 

 

The high degree of redundancy in HRMs causes difficulty in the calculation of 

workspaces and inverse kinematics, and the planning of their trajectories. Although 

some conventional methods such as pseudo-inverse or augmented Jakobian inverse 

kinematics methods can be efficient for redundant manipulators, because of the 

larger degrees of freedom, these methods are not efficient for hyper redundant 

manipulators. The methods studying inverse kinematics of HRMs are generally 

based on a spatial curve known as “backbone curve”. A backbone curve is a 

piecewise continuous curve that captures the important macroscopic geometric 

features of a hyper redundant manipulator.  

 

To efficiently solve the inverse kinematics problem, a “modal” approach is 

introduced. In this approach, a set of intrinsic backbone curve shape functions are 

used which are restricted to certain modal forms [25]. The problem reduces to 

determining the time varying backbone curve behavior. In [26], the backbone curve 

is modeled by cubic or quintic piecewise parametric spline segments. The concept of 

constant curvature sections and the use of differential geometry into a modified 

Denavite-Hartenberg procedure is another approach to determine the kinematics 

[27]. Again, the calculus of variations is used to develop differential equations whose 

solution is the optimal backbone curve shape [28]. In all approaches, the bending, 

twisting and extension are taken into consideration. The inverse kinematics of HRMs 

is almost based on a backbone curve, but, only the fitting algorithms may be different 

and construction of backbone curve is different. The criterion for inverse kinematics 

method is to configure the manipulator to adhere to the backbone curve, or discretely 

segmented morphologies fitted to the curve. Minimizing the elastic potential energy 

of the backbone curve which is the elastic cord [29] is another method for 

constructing backbone curve. With the inverse kinematics of HRMs, some studies 

have focused on the trajectory planning, obstacle avoidance and workspace 

generation [5], [30] and [31]. 
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In addition to the motion planning with mathematical tools, some manipulators 

especially locomotion manipulators called snake-like, use sensors for their motion 

controls [32].  In [33], a sensor-based method is used to control a hyper redundant 

manipulator. In this method, the full shape modification and partial shape 

modification work at different sampling rates and at different spatial resolutions. 

These two classes of sensor feedback control methods are responsible for the shape 

changes of the hyper redundant manipulator, and the obstacles and task constraints in 

the environment. These methods have been implemented on a-thirty degrees of 

freedom planar hyper redundant manipulator which has eleven ultrasonic distance 

measurement sensors and twenty infrared proximity sensors. 

 

1.1.4 The Inverse Kinematics of Binary Hyper Redundant Manipulators 

 

Compared to the continuously actuated manipulators, the binary manipulators have 

lower hardware cost. However, there exists a difficulty on the motion planning of 

binary hyper redundant manipulator since the number of configurations grows 

exponentially with the number of actuators. There is a tradeoff in the complexity of 

motion planning software. Position and trajectory control of a manipulator require 

the calculation of its inverse kinematics, but, there is not analytical solution for the 

inverse kinematics of binary hyper redundant manipulators. A number of efforts have 

been made to study the kinematics and control of hyper redundant manipulators with 

binary or discrete actuation. For the binary manipulator with few actuators, the brute 

force search or exhaustive search can be efficient since its workspace requires the 

computational effort of (2 )nO . A manipulator considered with larger number of 

actuators, for example, 50 binary actuators; it can reach 502  distinct possible 

configurations. This makes the brute force search impractical. To avoid exponential 

growth in the configuration search space as the number of actuators grows, the 

combinatorial method is presented for computing the inverse kinematics and 

trajectory planning of binary manipulators [24], [34] and [35]. Changing only a small 

number of configurations at a time, the method reduces the size of search space 

considerably, and produces very smooth motion. Because of the discrete nature, the 

manipulators can only reach finite number of states. Therefore, the workspace and 
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the distribution of the points inside the boundary of this workspace are very 

important tools for the inverse kinematics. The researchers studied many methods to 

generate workspace for this type of manipulators [31], [36], [37], [38] and [39]. The 

methods break up the workspaces into pixels/voxels in the planar/spatial case and, 

calculate how many end effector positions in each of these pixels/voxels are reached. 

In [36], after constructing the workspace of binary manipulator with the workspace 

density algorithm, the inverse kinematics method generate the solution satisfying the 

geometric constraints of the task, and in the second part, the strategies are discussed 

to resolve the remaining redundancy to avoid abrupt transitions between 

configurations. In [39], the concept of the mean of workspace density function is 

used to generate the workspace. The solution of inverse kinematics is based on 

minimization of the metric containing the orientational and positional quantities. 

 

The backbone curve specifying the shape which the manipulator attains is used to 

solve the inverse kinematics of binary manipulators [40]. After solving the inverse 

kinematics for the continuously actuated counterpart of the binary HRM, the suitable 

configuration satisfying the given constraints is selected with respect to minimizing 

an error measure. The error measure includes the sum of the distances between the 

same characteristic points on the continuum model and the possible configuration of 

the binary manipulator. Along the same line, a continuous variable-based 

optimization method for the inverse kinematics method of binary manipulators was 

presented in [41].  In the optimization with gradient-based-search method, the 

distance between the end effector and the target is constrained, and the objective is to 

push the continuous design variables towards the permissible binary values.  

 

Instead of finding actuator length as a joint variable, generally, on-off values 

represented by “0” for fully contracted positions and “1” for fully extended positions 

are searched. All possible configurations would be represented by bit-sequences such 

as 011001…..0110. This can in nature make genetic algorithms to be efficient for 

solving the inverse kinematics of binary HRMs [24], [42], [43] and [44]. Genetic 

algorithms are used as a minimization procedure. The problem is solved by 

minimizing the end effector position error for the given target position. These 
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algorithms are executed to obtain inverse kinematics solution with a small error 

bound and density map of workspace, and also are used to generate the divided 

workspaces for higher density [45]. The details will be discussed in the following 

chapters of this thesis. 

 

Concerning the binary HRMs, another important challenge is following continuous 

trajectories between two successive discrete configurations. The trajectory tracking 

problem is quite different for binary HRMs from that of continuously actuated ones. 

The subject is discussed in [34], [35], [42] and [45]. 

 

1.2   The Contributions of This Thesis  

 

The following paragraphs sum up the contributions of this thesis. 

 

A new 3D binary actuated hyper redundant manipulator with improved modular 

rigidity has been devised which may used in a variety of practical applications. 

 

In addition to the binary actuation, for fine tuning, a continuously actuated 6 DOF 

manipulator (the fine tuning manipulator (FTM)) is added to the HRM as the last 

module. This additional module considerably improves the control accuracy and the 

applicability of the binary HRMs. 

 

In this thesis, new efficient inverse kinematics methods, such as the extended spline 

fitting method and the workspace filling method, have been presented for binary 

HRMs. Unlike the other methods in the literature, which focus only on positional 

error or positional error together with trajectory tracking, the extended spline fitting 

method focuses on four criteria which are the positional error, orientational error, 

desired shape of the manipulator and trajectory tracking. On the other hand, the 

workspace filling method is particularly useful for successive multiple tasks and it 

provides quick configurational options to avoid moving or unexpected obstacles.   
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In this thesis, a simple approach is given for the dynamic analysis of the HRM, 

which by-passes the necessity of computing the structural reaction forces and 

moments. This approach decreases thus the computation burden and simulation time 

considerably.      

 

 

1.3   Organization of This Study 

 

This thesis consists of seven chapters. Chapter 1 gives an introduction and literature 

survey about hyper redundant manipulators. Chapter 2 presents the modeling of the 

hyper redundant manipulator studied in this thesis and gives some modifications to 

improve the performance of the manipulator. Chapter 3 studies the forward 

kinematics and singularity of the HRM. Chapter 4 discusses the three developed 

methods for solving the inverse kinematics of the HRM. In Chapter 5, dynamics 

analysis of the manipulator is performed and discussed. Chapter 6 involves some 

applications of the HRM. Finally, Chapter 7 presents conclusions and suggestions for 

future research.    
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CHAPTER 2 

 
 
 
 

MODELING OF A HYPER REDUNDANT MANIPULATOR 

 
 
 
 
 
 
This section contains a description of modeling and features of a 3-D binary actuated 

hyper redundant manipulator. In this model, the elements of a 2-D binary actuated 

variable geometry truss (VGT) manipulator and the elements of a mechanism with 

only rotational motion about one axis are joined.  

 

At first, the detailed information about the structure of the HRM is given and the way 

it works is discussed. This manipulator consists of many modules stacked on top of 

each other in a long serial chain. A module of the HRM is shown in Figure 2.1. Each 

module of the HRM contains three submodules. The first and second of them are 

VGT structures, and the third one is a mechanism that makes only a single rotational 

motion about one axis. VGT manipulators are themselves parallel structures and this 

kind of structures are suited for demonstrating for both kinematics and actuator 

redundancy. Detailed information about VGTs can be found in [46]. As shown in 

Figure 2.2, the VGT-based submodules used in the HRM have only planar motion in 

their own reference frames. For example, assigning 0F  as the reference frame 

attached to the first platform, the first one can only move in the (0) (0)
2 3u u−G G  plane. The 

second platform, which carries the reference frame 1F , rotates about (0)
1uG  axis and 

translates in the direction of (0)
2uG  and (0)

3uG  relative to the reference frame 0F . Here, 

for the identification of the unit vectors ( )k
iuG , the subscripts 1,2,3 indicate the 

directions of x , y  and z  axes respectively. The superscript ( )k  indicates the 

reference frame number. The second submodule is placed on the top of the first 
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submodule in such a way that its motion takes place only in the (1) (1)
1 3u u−G G  plane. The 

third platform, which carries the third reference frame 2F , rotates about (1)
2uG  and 

translates in the direction of (1)
1uG  and (1)

3uG  relative to the reference frame 1F . Each 

module of the HRM involves three different reference frames. These are 3(n-1)F , 

3(n-1)+1F  and 3(n-1)+2F  which are attached to the base or first platform, the second 

platform and the third platform of each module respectively. Here, n  indicates the 

number of the discretely actuated modules. 

 

 

 
 

Figure 2.1 A Module of the HRM 
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In the last stage of construction of a module, the third submodule placed on top of the 

second submodule makes only rotational motion about the axis (2)
3uG . In fact, this 

third submodule consists of two parts as shown in Figure 2.3. The first part supplies 

the rotational motion in CCW direction whereas the second one supplies the 

rotational motion in CW direction.  

 

 

 
 

Figure 2.2  The Submodule with The Variable Geometry Truss 

 

 

 
 

Figure 2.3 The Submodule for Twisting Motion 
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Because of binary actuation, such a design provides four angular configurations 

denoted by the binary set {00, 10, 01, 11} but they lead to only three distinct 

resultant angular positions denoted by the set { * *, 0,ψ ψ− + } (here, *ψ  is the 

specified value for the twist motion). This is because both of the configurations 00 

and 11 imply zero net rotation. This type of submodule is used to supply a twist 

motion for the HRM. It is assumed that all platforms are connected with rigid links 

and joints.   

               

The HRM is powered with on-off pneumatic cylinders, each of which has either fully 

extended or fully contracted positions. In other words, the actuation type is binary in 

which the actuators have two stable states. This causes the challenge that the motion 

is very jerky. This problem can be eliminated with a damping element. In real 

systems, this damping effect is supplied with placing a dashpot in parallel to one or 

more pneumatic cylinders, but, in the modeling of the HRM, the pneumatic cylinders 

are assumed to have enough damping. The pneumatic actuators are controlled by 

solenoid valves. In pneumatic cylinders, the piston stops suddenly by crashing to the 

cylinder. In some studies in the literature, it is expressed that adding a rubber bumper 

to both end of the piston, the sudden collision can be eliminated. Besides, it is 

expressed also that this helps to avoid wear and tear, and high frequency transients, 

and also helps to ramp the speed up to steady state while the actuator is starting from 

its rest position, and allows for gradual deceleration at the other end. However, using 

a rubber bumper causes undesired deflection of the whole system. Especially, small 

deflections on the actuators towards the base of the manipulator may cause the larger 

errors for the tip point of hyper redundant manipulators.  

 

All actuators on a VGT structure have the same dimensions whereas the actuators on 

the diagonal have different dimensions. The actuators are initially mounted in such a 

way that there exist not any rotations between the reference frames when all 

actuators are at off-positions, but, there are only offsets between the reference 

frames. In a module, the first and second submodules with VGT structure make 

planar motions with respect to their own reference frames, but, they are arranged 

orthogonally with respect to each other, and each of them 3 degrees of freedom. On 
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the other hand, the third submodule has one DOF only. Thus, a module has 7 DOF in 

total for position and orientation of its uppermost platform in 3D space. 

 

The conceptual design of the manipulator is based on two particular notions. The 

hyper redundant manipulator consists of many modules. The size of each module 

decreases with respect to the previous one. So, the manipulator shape becomes like a 

cone as shown in Figure 2.4. In addition to constructing the cone shape assembly, the 

structure of VGT based submodules is set up to be in the shape of a trapezoid rather 

than a parallelogram as shown in Figure 2.5. If the VGT submodule were constructed 

like a parallelogram, then it could be deformed easily because only the reaction 

moments at the bottom would hold the system. However, with the trapezoidal form, 

in addition to the reaction moments, the forces in the links support the system too. In 

the VGT submodules, the two identical nondiagonal actuators are symmetrically 

placed according to the motion planes such as the (0) (0)
2 3u u−G G  and  (1) (1)

1 3u u−G G  planes as 

shown in Figure 2.2. Each pair makes the same motion.  

 

 

 
 

Figure 2.4 The Hyper Redundant Manipulator 
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Figure 2.5 Conversion of VGT Structure from Parallelogram to Trapezoidal 

Configurations 

 

 

The design notions mentioned above are taken into account for the following 

purposes. 

• To improve rigidity, 

• To obtain dynamic stability,  

• To decrease the shear effects due to the lateral forces on the joints, 

• To increase the payload capacity, 

• To have more powerful actuators towards the base. 

 

Due to binary actuation, the end effector of the HRM can reach a finite number of 

positions, i.e. the manipulator can not implement the given tasks (the desired 

positions and orientations) exactly. However, running at discrete states, the error 

between the desired pose and the real pose is most probably inevitable. To eliminate 

these errors, a continuously actuated manipulator is added as the last module of the 

HRM, which functions as a fine tuning manipulator (FTM) with 6 DOF as depicted 

in Figure 2.6. It is used not only for fine tuning but also for tracking the continuous 

trajectory between the discrete configurations.  
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Figure 2.6 The Fine Tuning Manipulator (FTM) Used in the HRM 

 

 

In this chapter, an introduction has been given about the hyper redundant 

manipulator. This involves the modeling, structure, actuation type and modifications 

of the HRM. 
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CHAPTER 3 

 
 
 
 

FORWARD KINEMATICS OF THE HYPER REDUNDANT 

MANIPULATOR 

 
 
 
 
 

 
3.1  Introduction 

 

Forward kinematics is defined as a mapping from the joint space to the task space. In 

other words, forward kinematics finds the position vector of the tip point and the 

orientation matrix of the end effector of a manipulator in terms of the joint variables. 

Note that, here, the position vectors and transformation matrices of each module, the 

workspace for a certain number of possible configurations and also the inverse 

kinematics of the hyper redundant manipulator actuated binary are all based on the 

forward kinematics. All equations in the forward kinematics can be formulated in 

terms of the state of the actuators and dimensions.  

 

Some terminology to be used in this thesis should be clarified. The configuration is 

used to express the stable positions of the HRM or its each module with respect to 

different fully expended or contracted positions of the actuators. For example, a 

sequence [ ]01011101  or [ ]01011................01100111  for the actuators represents a 

configuration of one module or the HRM respectively.  State is used for actuators. 

For example, an actuator state is “0” if it is fully contracted with its minimum length, 

and it is “1”, if it is fully extended with its maximum length. Note that, the term state 

must be distinguished from the actual length of the actuator since the actuator can be 

at any length between its minimum and maximum length at any instant of time. Also, 

the configuration must be distinguished from the pose of the module or manipulator 
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at any instant in time. The term pose is used to refer to the instantaneous position and 

orientation of the module or manipulator between two successive configurations. 

Because of the hyper redundancy, the different configurations belonging to the 

manipulator can reach the same pose.  

 

For the binary HRM studied in this thesis, the calculations depend on the 

configuration sequences of the manipulator. These sequences are constructed from, 

in turn, “0”s or “1”s of each actuator state. For the sake of simplicity, they are made 

as module-based since all modules have the same characteristic structure, except the 

dimensions of each module. 

 

[01100100 11100001..............01000100]
module1 module2 module10

An Example of Configuration Sequence = ��	�
��	�
 ��	�
         

 

To begin the forward kinematics, the kinematics equations for the three submodules 

are obtained and combined for each module. Then, the position vectors and 

transformation matrices from the module kinematics are evaluated for the HRM as in 

a serial robot manipulator. The kinematics equations for each submodule and module 

are derived in the following part. 

 

3.2 The Kinematics of the Submodules   

 

The first submodule is the VGT structure consisting of two platforms and three on-

off pneumatic actuators between them. It has three degrees of freedom: two for 

positioning the center of the upper platform and one for the rotation of the upper 

platform. The first and second VGT submodules can be represented with Figure 3.1. 

This figure shows all the joint variables and the required parameters for the 

kinematics of the first submodule. Here, a Cartesian reference frame, 0F , is located in 

the center of the base platform with the 0z  axis normal to the base. The moving 

reference frame, 1F , is located in the center of the top platform. 1 1 1, ,α β γ  denote the 

passive joint angles between the related actuators and 0y+  axis of the base. The 
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angle measured from the unit vector (0)
2uG  to (1)

2uG  is given by 01θ . This angle denotes 

the rotation of the upper platform about (0) (1)
1 1u u=G G . The position vector of  1F  

relative to 0F  is given as 01rG . 0 1,d d  are constant design parameters. 11 12 13, ,s s s  are 

the joint variables which can be only minimum and maximum joint length. The 

values of these parameters change from module to module. 

 

 

 
 

Figure 3.1 The VGT Submodule 

 

 

By the help of the loop closure equations for the planar VGT, the solution of all the 

related variables is found in closed form in terms of the actuated joint variables 

11 12 13, ,s s s  and the dimensions 0 1,d d . Using the above figure, the two independent 

loop closure equations (LCE) can be written as follows.  
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0 0 0 1 0 1A B B B A B
→ → →

+ =              (LCE 1) 

0 1 1 1 0 1A A A B A B
→ → →

+ =                          (LCE 2)

  

The scalar equations can be written from these loop closure equations as follows.   

 

0 12 1 13 12 cos( ) cos( )d s sγ β+ =                                    (3.1) 

 

12 1 13 1sin( ) sin( )s sγ β=                                            (3.2) 

 

11 1 1 01 13 1cos( ) 2 cos( ) cos( )s d sα θ β+ =                     (3.3) 

 

11 1 1 01 13 1sin( ) 2 sin( ) sin( )s d sα θ β+ =                        (3.4) 

 

In these equations, 11s , 12s  and 13s  are known parameters, whereas 1 1 1, ,α β γ and 01θ  

are unknowns.  

 

Taking the square of Equations (3.1) and (3.2), adding them side by side, the angle 1β  

is eliminated and the angle 1γ  is obtained analytically.  

 

( )2
1 1 1 1atan2 1 ,γ σ ξ ξ= −                     (3.5) 

 

Where 
2 2 2

13 12 0
1 1

0 12

4cos( )
4

s s d
d s

γ ξ− −
= =  and ( ) 2

1 1 1sin 1γ σ ξ= − , 1 1σ = ± . The 

configurations for 1 1σ = +  and 1 1σ = −  are shown in Figure 3.2. 

 

From Equation (3.1), 0 12 1
1 1

13

2 cos( )cos( ) d s
s

γβ λ+
= =  and from Equation (3.2), 

( ) ( )12 1
1 1

13

sin
sin

s
s

γ
β δ= = . 
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( )1 1 1atan2 ,β δ λ=                     (3.6) 

 

After that, rearranging Equations (3.3) and (3.4), and to eliminate the angle 1α , take 

square of these arranged equations and add them side by side. The angle 01θ  can be 

found analytically. 

 

( )2
01 1 2 1 1atan2 1 ,θ β σ κ κ= − −                    (3.7) 

 

Where 
2 2 2

13 1 11
1 01 1 01 01 1 1

1 13

4cos( )cos( ) sin( )sin( ) cos( )
4

s d s
d s

β θ β θ θ β κ+ −
+ = − = =   and 

2
01 1 2 1sin( ) 1θ β σ κ− = −   2 1σ = ±  (The configurations for 2 1σ = +  and 2 1σ = −  

are shown in Figure 3.2) 

 

 

 
 

Figure 3.2 VGT-Mechanism Solutions 
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From Equation (3.3), 13 1 1 01
1 1

11

cos( ) 2 cos( )cos( ) s d n
s

β θα −
= =  and from Equation 

(3.4), 13 1 1 01
1 1

11

sin( ) 2 sin( )sin( ) s d m
s

β θα −
= = , the angle 1α  can be found uniquely as 

 

1 1 1atan2( , )m nα =                     (3.8) 

 

Note that, since the manipulator falls into positional singularity, the terms 11s , 12s  and 

13s  should not be zero. In such a case the terms 1ξ , 1λ , 1δ  and 1κ  become indefinite. 

These conditions are already supplied because of the manipulator design because 11s , 

12s  and 13s   are actuator lengths and between minimum and maximum lengths. That 

is, 11 0s ≠ , 12 0s ≠  and 13 0s ≠ .  

 

Due to the inverse trigonometric terms in Equations (3.5) and (3.7), there are 

multiple solutions for the forward kinematics. Figure 3.2 shows the four possible 

configurations of a VGT submodule in a binary representation of [ ] [ ]11 12 13 010s s s = . 

The solutions in figures (a) and (d) can be referred to as open whereas, the other 

solutions, in which the extension of 11s  crosses 12s , can be classified as closed. The 

only solution valid for this study is the solution “a” for 1 1σ = +  and 2 1σ = + .  

 

After the values of the unknown joint variables are calculated, the position vector 01rG  

can be written with respect to the base reference frame 0F  as.  

01 0 0 0 1 1 1r O A A A AO
→ → → →

= + +  

 

Since the first submodule moves in the (0) (0)
2 3u u−G G  plane, its first component 

becomes zero. Then 01rG  can be written in matrix form relative to 0F  as. 
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01 11 1 1 01 0

11 1 1 01

0
cos( ) cos( )

sin( ) sin( )
r s d d

s d
α θ
α θ

⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥+⎣ ⎦

        (3.9) 

 

Applying the same procedure to the second VGT submodule, all variables related to 

this part can be found in terms of the actuated joint variables and dimensions. 

However, the only two differences are the subscript number and the motion plane. 

For example, the subscript “1” becomes “2” for the second submodule, and the 

motion plane becomes (1) (1)
1 3u u−G G  plane. For the second submodule, 2F  reference 

frame is located in the center of top platform of the second VGT submodule. 12rG  

indicates the position vector of the reference frame 2F  relative to 1F . After the 

replacement of 11 21s s→ , 12 22s s→ , 13 23s s→ , 1 2α α→ , 1 2β β→ , 1 2γ γ→  and 

01 12θ θ→ , the unknown joint variables can be found, and 12rG  can be written in matrix 

form relative to 1F . 

 

21 2 1 12 0

12

21 2 1 12

cos( ) cos( )
0

sin( ) sin( )

s d d
r

s d

α θ

α θ

− − +⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

                (3.10) 

 

Note that, there is no motion in the (1)
2uG  direction, and the rotation of the top 

platform takes place about (1)
2uG  axis.  

 

Finally, the kinematics of the rotational submodule will be investigated in detail. As 

expressed before, this submodule makes rotational motion about only one axis 

relative to its reference frame. This part can be shown as a planar mechanism as 

shown in Figure 3.3.  

 

Here, bO K  indicates the actuator length used in this submodule. bO  is a point on the 

top platform of the second VGT submodule to which an end point of the actuator is 

jointed to this point. tO  is the center point of the first platform for the rotating 



 31

submodule.  Taking the projection of these onto a plane, the equivalent mechanism 

can be obtained as shown in Figure 3.3. The rotation angle in terms of the joint 

variables and dimensions is determined according to this figure. This mechanism has 

one DOF and one independent loop closure equation. The LCE is as follows.  

 

 

 
 

Figure 3.3 The Schematic View of the Rotational (Third) Submodule 

 

 

b b t tO K O M MO O K
→ → → →

= + +  

 

Write the scalar equations from this LCE in the following. 

 

cos( ) 2 cos( )
2 x xr rψρ ζ ψ= − +                 (3.11) 

 

sin( ) 2 sin( )
2 x xr rψρ ζ ψ= + +                 (3.12) 

 

Where ζ  is a constant angle with / 4ζ π= . Rearranging these equations, taking the 

square of them, and adding them side by side to eliminate ζ ψ+ , one obtains   

 

ζ ψ+  

/ 2ψ  

xr  

xr

ρ

Ob 

OtM 

K 
(2)

1uG

(2)
2uG

(2)
3uG
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2 cos( ) sin( )
2 2xr
ψ ψρ ⎛ ⎞= +⎜ ⎟

⎝ ⎠
                 (3.13) 

 

The rotation angle of the third submodule can be found as follows. 

 

( )2
3atan2 , 1ψ χ σ χ= −                  (3.14) 

 

Where, 
2 2

2
4sin( )

4
x

x

r
r

ρψ χ−
= =  and 2

3cos( ) 1ψ σ χ= − , 3 1σ = ± .  

 

For 3 1σ = − , the other mechanism solution is the symmetry of the original 

mechanism with respect to bO M . 

 

Following these calculations, the module-based forward kinematics equations of the 

HRM can be written in a recursive manner up to its last platform, which is the base 

of the FTM. As for the kinematics of the FTM, it can be seen in Appendix A. The 

transformation matrix of the last platform and the position vector of its center point 

relative to the fixed base frame, 0F , are denoted simply as rG  and Ĉ . They are 

expressed as described below. 

 

1 2 ............ nr r r r= + + +
G G G G                 (3.15) 

 
(0, ) (0,1) (1,2) ( 2, 1) ( 1, )ˆ ˆ ˆ ˆ ˆ...............n n n n nC C C C C− − −=                (3.16) 

 

Here, n is the number of discretely actuated modules, ir
G  is the position vector of 

center of the upper platform of the thi  module relative to the base frame and ( 1, )ˆ i iC −  is 

the transformation matrix from the reference frame of the thi  module to that of the 

( 1)thi −  module. The detailed expressions are given below for ir
G  and ( 1, )ˆ i iC − .  

 

01 12 3i i i ir r r h u= + +
G G G G  
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In the matrix form, 

 

( )1 1 1 1 2 1( 1, ) ( ) ( 1, ) ( , ) ( )(0) (0, 1) ( 1)
1 12 3

ˆ ˆ ˆ ˆi i i i i ii sub sub i sub sub sub subi i
i i i ir C r C r h C C u− −− −= + +           (3.17) 

 
1( 1, )ˆ ii subC −  : For the thi  module, the transformation matrix from the top frame of the 

first submodule to the reference frame located at the base of the module. 

 
1 2( , )ˆ i isub subC  : The transformation matrix from the top frame of the second submodule 

to the reference frame located at the top of the first submodule. 

 
1 1 21 2( 1, ) ( , ) ( , )( 1, )ˆ ˆ ˆ ˆi i i i ii sub sub sub sub roti iC C C C−− =                (3.18) 

 
2( , )ˆ i isub rotC  : Due to the rotation of the third submodule, the transformation matrix 

from the reference frame located at top of the thi  module to the reference frame 

located at the top of the second submodule. 

 

The transformation matrices can be written as exponential form. More detailed 

information about this subject can be found in [47]. 

 

1 1 2 2 3 1 2( )( 1, )ˆ i i i iu u ui iC e e eθ θ ψ ψ−− = � � � . 

 

The calculation of the forward kinematics equations is very easy on the computer 

since all formulas are recursive. By using MATLAB computer program, the position 

vectors of each module for 3 3 12 2 3 192× × =  possible configurations are calculated 

with respect to the dimensions given in Table 3.1 and stored in a computer library. In 

Table 3.1, the dimensions 0d , 1d  and the maximum and minimum length of the joint 

actuators ( )ij min,max
s  and ( )min,max

ρ  for each module are given according to Figure 3.1 

and Figure 3.3. Given a configuration sequence, the position vectors and 

transformation matrices for all modules are calculated by using this library and they 

are combined with Equations (3.17) and (3.18) to obtain the position and orientation 



 34

of the tip point of the HRM. For the different configuration sequences, the different 

manipulator configurations are shown in Figures 3.4a and 3.4b.  

 
 

Table 3.1 The Dimensions of Each Module (in meters) 
 

Module 
Number 

0d  1d  ( )1i min
s

( )2i min
s  

( )1i max
s

( )2i max
s

( )3i min
s

 
( )3i max
s

 
( )min
ρ

 
( )max
ρ

 
1 0.142 0.1278 0.21 0.342 0.3416 0.4354 0.217 0.277 
2 0.13 0.117 0.2 0.318 0.3176 0.4024 0.192 0.245 
3 0.12 0.108 0.185 0.291 0.2934 0.3695 0.177 0.226 
4 0.1105 0.9945 0.148 0.244 0.2566 0.3217 0.159 0.203 
5 0.0909 0.08145 0.125 0.213 0.2124 0.2736 0.156 0.199 
6 0.08 0.072 0.112 0.190 0.1886 0.2432 0.130 0.169 
7 0.07 0.063 0.105 0.175 0.1693 0.2197 0.112 0.143 
8 0.058 0.0522 0.088 0.148 0.1409 0.1844 0.098 0.125 
9 0.044 0.0396 0.084 0.132 0.1184 0.1562 0.076 0.097 

10 0.036 0.0324 0.06 0.102 0.0909 0.1228 0.062 0.079 
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Figure 3.4a The Different Manipulator Configurations with Planar Motion 
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Figure 3.4b The Different Manipulator Configurations with Spatial Motion 

 

 

3.3 The Singularity Analysis for the Submodules  

 

Since the manipulator has so many links and it contains the symmetric constructions, 

the possibility of obtaining the singular positions is very high. It is necessary to solve 

the passive joint variables of the submodules for both the forward and inverse 

kinematics of the HRM. Therefore, the position and velocity singularity for the 

submodules will be investigated in this section.  

 

First of all, let’s solve analytically the passive joint variables from the inverse 

kinematics for the given actuated joint variables ( 11s , 12s  and 13s ) of the submodule. 

Also, the position of the center of the top platform and the orientation of the top 

platform should be solved.  The variables are shown in Figure 3.1. 
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According to Figure 3.1 and the first and second loop closure equations, the passive 

joint variables have been solved in Subsection (3.2). For this aim, Equations (3.5)-

(3.8) can be written again as follows. 

 

 ( )2
1 1 1 1atan2 1 ,γ σ ξ ξ= −                   

where 
2 2 2

13 12 0
1 1

0 12

4cos( )
4

s s d
d s

γ ξ− −
= =  and ( ) 2

1 1 1sin 1γ σ ξ= − . 

 

( )1 1 1atan2 ,β δ λ=                     

where 0 12 1
1 1

13

2 cos( )cos( ) d s
s

γβ λ+
= =  and ( ) ( )12 1

1 1
13

sin
sin

s
s

γ
β δ= = . 

 

( )2
01 1 2 1 1atan2 1 ,θ β σ κ κ= − −                  

where 
2 2 2

13 1 11
1 01 1 01 01 1 1

1 13

4cos( )cos( ) sin( )sin( ) cos( )
4

s d s
d s

β θ β θ θ β κ+ −
+ = − = =   and 

2
01 1 2 1sin( ) 1θ β σ κ− = − . 

 

1 1 1atan2( , )m nα =              

 

where 

13 1 1 01
1 1

11

cos( ) 2 cos( )cos( ) s d n
s

β θα −
= =  and 13 1 1 01

1 1
11

sin( ) 2 sin( )sin( ) s d m
s

β θα −
= = . 

 

Note that, there are singularities in cases of  11 0s = , 12 0s =  and 13 0s =  but these 

singularities do not occur because these conditions are kinematically impossible for 

this submodule. 

 

Using Figure 3.1, the position of the origin O1 and the orientation of the top platform 

can be written as follows. 
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( ) ( )
( ) ( )

01 11 1 1 01 0

11 1 1 01

0
cos cos

sin sin
r s d d

s d
α θ
α θ

⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥+⎣ ⎦

 and ( ) 1 010 1, uĈ e θ= � . 

 

Now, lets take a look at the velocity singularity for the given velocity of the actuated 

joint variables ( 11s� , 12s�  and 13s� ). For this aim, differentiating the scalar loop closure 

actuations and after some calculations, the angular velocities of the passive joint 

variables can be obtained in terms of the velocities of the actuated joint variables as 

follows. 

 

12 1 1 13
1

12 1 1

cos( )
sin( )

s s
s

γ βγ
γ β
− −

=
−

� ��  

 

12 13 1 1
1

13 1 1

cos( )
sin( )

s s
s

γ ββ
γ β

− −
=

−
� ��  

 

13 1 01 11 1 01 1 1
1

12 1 0111 1 1 1 01

sin( ) cos( )sin( )...1
sin( )sin( )sin( )

s s
ss

γ θ α θ γ β
α

β θγ β α θ
− + − −⎛ ⎞

= ⎜ ⎟− −− − ⎝ ⎠

� �
�

�
 

 

( )01 13 1 1 11 1 1 12 1 1
1 1 1 1 01

1 sin( ) sin( ) sin( )
2 sin( )sin( )

s s s
d

θ α γ γ β α β
γ β α θ

= − + − − −
− −

� � � �  

 

In these equations, the values making the denominators zero cause the velocity 

singularities at the following points. 

 

-  1 01 1 01 1 01sin( ) 0 or n n 1,2....α θ α θ α θ π− = ⇒ = = + =  

-  11 0s =  

-  12 0s =  

-  13 0s =  

- 1 1 1 1 1 1sin( ) 0 or n n 1,2...− = ⇒ = = + =γ β γ β γ β π  
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It is seen that none of above conditions are reached when Figure 3.1 is investigated.  

 

These analyses show that neither the position singularity nor the velocity singularity 

at the first and second submodule occur for any given actuated joint variables. 

 

For the third submodule which makes the only rotational motion, the passive joint 

variable can be obtained in terms of the actuated joint variable. In order to 

investigate the singularity of the third submodule, from Figure 3.3, Equations (3.13) 

and (3.14) can be rewritten as follows. 

  

( )2
3atan2 , 1ψ χ σ χ= −                  

where, 
2 2

2
4sin( )

4
x

x

r
r

ρψ χ−
= =  and 2

3cos( ) 1ψ σ χ= − . 

 

After differentiating Equation (3.13), the angular velocity of the passive joint can be 

obtained like this.  

 

cos sin
2 2xr

ρψ
ψ ψ

=
⎛ ⎞−⎜ ⎟
⎝ ⎠

i
i

 

 

For the third module, there is no positional singularity, but the condition of 

cos sin 0
2 2
ψ ψ

− = , i.e. 090ψ = causes the velocity singularity.  However, because of 

the construction of the third submodule, this value for ψ  can not be reached. So, 

these analyses show that there are not any singular positions for the third submodule 

as well. In other words, the manipulator does not reach the singular positions with 

respect to the inverse kinematics analysis of the submodules. However, when the 

dynamic equations are solved, it is observed that the determinant of the system 

matrix ˆ ˆA B⎡ ⎤
⎣ ⎦#  constructed from the equations of motion of the HRM is zero or closed 

to zero. This causes the system equations to be unsolvable or the results may not be 
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correct. That is, apart from the kinematics singularities, there is another singularity 

that comes from the dynamic equations.  

 

Briefly, this chapter presents the forward kinematics of the HRM to calculate the 

position vectors and transformation matrices in terms of the actuated joint variables. 

Then, the positional and velocity singularities are studied.  
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CHAPTER 4 

 
 
 
 

INVERSE KINEMATICS OF THE HYPER REDUNDANT 

MANIPULATOR 

 
 
 
 
 
 

4.1 Introduction 

 

Inverse kinematics is a required study for the motion planning of manipulators. 

Given a position and orientation (simply expressed as pose) of the end effector, the 

required values belonging to the actuated joint variables of the manipulator are found 

by means of inverse kinematics. The trajectory planning in the configuration space is 

based on the result of the inverse kinematics study. It is always desired that 

manipulator can track the given reference curve. At the same time, the result of the 

motion planning determines also the shape of the manipulator for the given pose. 

Implementing all these studies successfully depends on the performance of the 

inverse kinematics methods to be used. Depending upon their degrees of freedom, 

there are three types of manipulators namely, normal (regular), deficient and 

redundant. These manipulators have 6 DOF, less than 6 DOF and more than 6 DOF 

respectively. If a manipulator has 6 or less than 6 DOF, then, its inverse kinematics 

solution can be found out analytically or numerically. But, in redundant 

manipulators, for example with up to 10, 11, or 12 DOF, an optimal solution is 

searched in the velocity level by using some methods like Pseudo-Inverse matrix 

method. However, these methods are not feasible for hyper redundant manipulators 

since there are many excessively variables to be solved and the dimension of matrix 

calculations becomes very large. 
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Inverse kinematics is a mapping from the task space to the joint configuration space 

for the hyper redundant manipulators. It is much more difficult for the binary hyper 

redundant manipulators compared to their continuously actuated counterparts 

because the actuators used in the binary manipulators do not have any intermediate 

state. On account of this, any analytical or numerical solution for the inverse 

kinematics is not considered. For the binary HRMs, solutions with minimum 

positional and orientational errors are expected from the inverse kinematics method. 

Besides, the shape of the manipulator and trajectory following are the other criteria 

to be implemented. All calculations should, of course, take short time. The methods 

presented in the literature try to reach the optimal solution. However, it can’t be 

stated that the solution is the global optimum because of a great number of 

configurations. Nevertheless, the solution can approach a local optimum as closely as 

sufficient.  

 

As mentioned in Chapter 1, a few methods have been presented in the literature for 

the inverse kinematics of binary hyper redundant manipulators. For the binary 

manipulator with 12-14 actuated degrees of freedom, the exhaustive search (brute 

force search) method is an applicable and effective method. In the exhaustive search 

method, all configurations are looked at to obtain the optimal solution. However, the 

number of configuration increases exponentially by increasing the DOF of the 

system, i.e. the number of actuators. Therefore, applying this method to the binary 

manipulators with very high DOF is not an efficient approach for the inverse 

kinematics. For example, the manipulator with 50 binary actuators has 
50 122 1.125 10≈ ×  possible configurations. Searching all of them for optimal solution 

is impossible. Therefore, the binary manipulator with too many actuators needs more 

efficient methods.         

 

4.2 The Inverse Kinematics of the HRM 

 

In this study, three methods are presented to solve the inverse kinematics of the 

HRM. These methods try to select the convenient configuration from 

( )103 3 1 222 2 3 6.8 10× × ≈ ×  possible configurations for the manipulator with ten 
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modules. In the result of the solution, the bit sequences constructed by 0’s and 1’s 

will be found. These bits represent the on-off pneumatic actuator lengths, “0” for 

fully contracted and “1” fully extended positions. Note that here, in all the kinematics 

studies, the hyper redundant manipulator covers only the discretely actuated part of 

the manipulator, and the continuously actuated part (the fine tuning manipulator 

(FTM)) of the manipulator is not included into the calculations. For the discretely 

actuated part of the HRM, the position and orientation of the target are taken as the 

reference position and orientation for the last platform of the HRM (i.e. the base of 

the FTM). However, the part of the HRM required to reach the given target is 

actually the end effector of the FTM. Therefore, there should be a certain distance 

allowed between the center point of the last platform and the target point (i.e. the 

point describing the target position) so that the FTM can function properly by having 

the target point within its workspace. In other words, this distance should have a 

lower and upper bound with respect to the workspace of the FTM. Here, the 

boundaries of the workspace of the FTM are approximated (for the sake of 

simplicity) as semi-spherical surfaces. This approximate workspace is a subset of the 

actual workspace of the FTM. It is depicted as shown in Figure 4.1.     

 

 

auG

Target 

dmin 

dmax 

ϕ

The Workspace 
 of the Fine 

Tuning 
Manipulator 

T
G

Figure 4.1 The Orientation Criterion for the Selection of the Configuration 
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The following criteria are taken into consideration for the selection of the convenient 

configurations. 

Positional Error: The distance, errord , between the tip point of the hyper redundant 

manipulator and the given task position should be in a certain threshold, i.e. 

min maxerrord d d< < . The values of mind  and maxd  are related to the workspace of the 

FTM for fine tuning as shown in Figure 4.1. mind  and maxd  represent the lower and 

upper bounds of the hemi-sperical workspace respectively. Thus, this supplies the 

target point to be in the border of the compensation of the FTM. 

   

Orientational Error: The orientational errors are also eliminated by the FTM. 

However, in the selection of the configuration, the top of the HRM (i.e. the base of 

the FTM) should be situated in such a way that the workspace of the FTM can 

involve the target point as shown in Figure 4.1 and it must be oriented as closely as 

desired in order to reduce the burden on the FTM.  

 

Desired Manipulator Shape: In addition to satisfying the criteria of the positional 

and orientational errors concerning the last platform, the whole body of the HRM 

should also take a specified shape in 3D space in order to avoid the obstacles.  

 

Trajectory Following: Between two successive configurations, binary manipulators 

can not follow a certain reference curve since there is not control over its actuators, 

i.e. the actuators are not located in intermediates states in a controllable way. They 

can not only exactly track a reference curves but also the deviations from the 

reference curve can be quite excessive. In this study, the exact trajectory tracking 

between the via points is not focused on, however, it is desired that the deviation is 

smaller, and the manipulator should not collide with the obstacles during the motion.  

 

In this study, three inverse kinematics methods are presented in order to select the 

possibly better configurations to satisfy the above criteria in a reasonable way.  

These are the spline fitting method, the extended spline fitting method and the 

workspace filling method. The spline fitting method is based on the space reference 

curve and fitting each module to the curve parts segmented with respect to the 
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average length of the related module. In the second method, the extended spline 

fitting method is the combination of the spline fitting method and a genetic 

algorithm. Finally, in the third method, the workspace filling method, the optimal 

configuration is selected from the workspace constructed randomly or by using a 

genetic algorithm. These methods are given in detail in the following subsections. 

 

4.3 The Spline Fitting Method 

 

In this method, the investigation of the inverse kinematics of the hyper redundant 

manipulator is based on the spline curve, which is a reference spatial curve.  In order 

to construct a spline, some control points are needed in the workspace. These points 

are defined according to the task position that the end effector reaches and the shape 

of the manipulator to avoid the obstacles in the environment. The spline is formed by 

passing through or near these control points. After this construction, the aim is to fit 

the HRM to the spline as closely as possible.  

 

The HRM contains many modules; each consists of two VGT submodules and one 

rotating submodule. The VGT submodule has 8 different configurations, as shown in 

Figure 4.2, because of three binary (on-off) actuators. In addition to this, the third 

module has a twist motion about only one axis. This part can be at only three angular 

positions ( * *,0,ψ ψ− + ). Hence, one module has totally 3 3 12 2 3 192× × =  possible 

configurations. The inverse kinematics is solved for the manipulator with ten 

modules. As mentioned earlier, the positions of the end point of each module are 

calculated for all 192 configurations by using the forward kinematics. The data, 

which is the positions and related bit sequences, is stored in a computer library. 

 

To solve the inverse kinematics, matching between the spline and manipulator is 

needed. The spline defines the whole shape of the manipulator whereas we have only 

the information of each module and the target position. To match the spline and each 

module in a consistent way, the spline is divided into the number of the modules so 

that the length of each piece is proportional to the average length of corresponding 

module. This matching is implemented by minimizing a cost function given below.  
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( ) ( ) ( )( )
( ) ( )

22 22 2 2 2
1 2 3

2 22 2
4 5

M s M s M s

M s M S

f P Q L L L n

L L

φ φ θ θ ψ ψ κ

ρ ρ

= − + − + − + − +

+ − + −A A
            (4.1) 
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Figure 4.2 The 8 Different Configurations of the VGT Submodule 

 

 

This cost function consists of the positional, orientational, radius of curvature and 

length errors. Here, Q and P denote the position of the end point of the spline 

segment and the nth module of the manipulator respectively. 1L , 2L , 3L , 4L  and 5L  

are the gain constants of the azimuth angle (φ ), the elevation angle (θ ), the twist 

angle (ψ ), the radius of curvature and the length respectively. The subscript “M” 

indicates the features of the HRM and “S” is used for that of the spline. The term 

S nψ κ+  represents the twist on the top of each spline. Sψ  comes from the spline 

calculation and κ  is the twist value belonging to each spline part when the desired 

torsion on the top of the HRM is distributed over n spline parts. In this cost function, 

P, Mφ , Mθ , Mψ , Mρ , MA , 1L , 2L , 3L , 4L  and 5L are the optimization parameters. 

The spline, of course, is very important tool for the inverse kinematics study. The 

detailed information about the spline is given in the following subsections.  
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In the spline fitting method, the HRM is fitted to the spline segments as closely as 

possible. The operation is carried out module by module and from the bottom to the 

top. The initial point of the first spline part and the first module are located in the 

center of the base platform. The cost function is calculated for 192 configurations by 

using the data stored in the computer library and calculating the values of Mφ , Mθ , 

Mψ , Mρ  and MA  for the related configurations. For the first module, the 

configuration minimizing the cost function is selected. The selected configuration 

involves the position of the end point of the module and its bit sequence like 

[00101100]. Using this information, the orientation of the first module is calculated 

and used in the selection of configuration for the second module. The same fitting 

procedure is applied for the second module. For this part, the configuration of the 

first module is fixed, and then the position vectors belonging to the 192 

configurations of the second module are added to this fixed position vector. The cost 

function is calculated for the second module with respect to the frame at the top of 

fixed first module for the orientational and length errors. The position errors are 

already written with respect to the initial frame. Here, the orientation of the first 

module is taken into consideration. Again, according to the optimization of the cost 

function, the convenient configuration is chosen for the second module. This 

procedure continues until the last discrete module (10th module). After selecting all 

the configurations for 10 modules, the error between the given task pose and the real 

pose is compensated with the fine tuning manipulator (FTM). For this compensation, 

the calculation of the required joint variables for the FTM is given in Appendix A.         

 

4.3.1 Splines    

 

The term spline is named after the flexible strip used by ship builders to “interpolate” 

points of ship hulls. In general, the term "spline" is used to refer to a wide class of 

functions that are used in applications requiring data interpolation and/or smoothing 

[48]. Splines may be used for interpolation and/or smoothing of either one 

dimensional or multi-dimensional data. Spline functions for interpolation are 

normally determined as the minimizers of suitable measures of roughness (for 

example integral squared curvature) subject to the interpolation constraints. 
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Smoothing splines may be viewed as generalizations of interpolation splines where 

the functions are determined to minimize a weighted combination of the average 

squared approximation error over observed data and the roughness measure. For a 

number of meaningful definitions of the roughness measure, the spline functions are 

found to be finite dimensional in nature, which is the primary reason for their utility 

in computations and representation.  

 

Splines are functions generally built of piecewise polynomials, which can to some 

extent overcome the drawbacks. These drawbacks are excessive oscillations that 

occur in case of many interpolation points, necessity of recomputation of the basis 

for additional knots and ill conditioned matrices in corresponding equations. 

 

A piecewise function consisting of polynomial pieces of degree k is called a spline 

function provided that it is ( 1k − ) times continuously differentiable. As expressed 

before, the “pieces” may be described by different polynomials, resulting in, e.g., 

cubic splines, quintic splines, Hermite splines, but none of the above mathematical 

descriptions allow for geometric interpretation of the interpolating curve. More 

precisely the above descriptions do not include parameters which might indicate 

where in space the interpolating curve lies. That is why we considered interpolating 

curves with other, different basis, i.e. Bezier and NURBS curves. These curves 

contain intrinsic parameters which suit them to interactive design. More information 

about splines is given in [48], [49], and [50]. 

 

In this study, NURBS (Non-Uniform Rational Base Spline) is used as a reference 

curve since it contains parameters which suit the curve to interactive design, and is 

very efficient with its control polygon to construct the desired spatial curve with a 

broad range of geometric forms. Also, any local modification on the spline can be 

made easily by using the parameters of NURBS.   
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4.3.1.1   Non-Uniform Rational Base Spline (NURBS) 

 

Non-Uniform Rational Base Spline (NURBS) curves are special cases of rational B 

(Base)-spline curves based on the B-spline basis functions k,iN . Given a knot vector 

( )knt.....,,.........t,tT += 10 , the associated normalized B-spline basis function k,iN  of 

degree ( 1k − ) and of order k is defined to be  

for 1 and 0,1,....,k i n= =  

1
,1

1,
( )
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The contribution of the basis function to the curve is shown in Figure 4.3. 

 

 

 
 

Figure 4.3 The Contribution of the Basis Functions  
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The knot vector, which specifies the distribution of the parametric variable along the 

curve, consists of a set of non-decreasing scalar values. A knot with certain value 

appears more than once in a knot vector. For example, 

1 10 0 0 0 ,............., 1 1 1 1k n k

k k

T t t+ − −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦
��	�
 �	
 is used for the thk order curve. 

 

Suppose we are given the same knot vector T and points niBi ,....,1,0, = . Then a B-

spline curve of degree (k-1) with knot vector can be defined as 

 

[ ]∑
=

+−∈−≥=
n

i
nkkii tttkntNBtB

0
11, ,,1),()(                 (4.4) 

 

where the points Bi are called the control points or de Boor points and they form the 

control polygon or de Boor polygon as shown in Figure 4.4. 

 

 

 
 

Figure 4.4 The Control or de Boor Points and Polygon 

 

 

Spline 
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B1 

B2

B3 

B0, B1, B2, B3 , B4 : Control or de Boor Points 

B4

Control or de Boor Polygon 
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The geometric interpretation of the de Boor polygon is the same as for Bezier 

polygon given in the Appendix B, but with the following additional features. 

 

o B-spline functions are defined locally (This means that changing of one 

point in the de Boor points affects the corresponding B-spline curve only 

locally.), 

 

o The number of de Boor points is not related to the degree of B-spline curve 

(One may insert additional de Boor points and keep the required curve 

degree). 

 

A rational B-spline curve is described as the projection of a B-spline curve defined in 

four-dimensional homogenous space into three dimensional E3 space. The fourth 

coordinate represents the weight associated with each control point. These weights 

are used to form a homogenous coordinate system. Thus, a point in 4D space can be 

represented by ( ), , ,wx wy wz w . For a knot vector T and a set of de Boor points 

niBi ,....,1,0, = , given in homogenous coordinates, the rational B-spline curve form 

is described by 

 

[ ],0
1 1

,0

( )
( ) , 1, ,

( )

n
i i i ki

k nn
i i ki

B w N t
Q t n k t t t

w N t
=

− +

=

= ≥ − ∈∑
∑

               (4.5) 

 

Here, the parameter wi is the homogenizing coordinate or the weight. Rational B-

spline curves and basis functions are generalization of B-spline curves and, as such, 

they encompass all features of B-spline curves and B-spline basis functions as 

special cases. NURBS are rational B-spline curves with non-uniform knot vector, i.e. 

a knot vector whose values it  are distributed evenly or non-evenly and have 

multiplicities. Due to their numerous parameters, NURBS curves seem to be a 

powerful tool for interpolants planning. These may be recognized as design 

parameters, 
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– Knot vector T, if we compare both equations above we see that the choice 

of the knot vector influences the basis functions k,iN  and of course the 

NURBS curve. 

– Curve degree. As expressed before, the change of the degree changes basis 

functions k,iN  and thus change the form of the resulting NURBS curve. 

– Number and multiplicity of de Boor points. We can change existing de 

Boor points, thus change the shape of the NURBS curve. This modifies the 

existing curve locally and we use this feature of NURBS to plan the 

interpolants to avoid boundary orientation poses. 

– Weight values. Changing of the weights wi influences the shape of NURBS 

curve, therefore they can be used as another design parameter. Figure 4.5 

shows the effect of change of the weight values.    

 

The detailed features of NURBS are given in the Appendix B. 

 

w = 0 

w = 0.2 

w = 0.5 

w = 1 

w = 2 

w = 5 
Control Polygon 

 
 

Figure 4.5 The Spline Part for Different Values of w 
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4.3.1.2 The Construction of Spline Parameters   

 

For a given set of control points, a lot of splines can be drawn. In other words, the 

spline is not unique. Therefore, the spline is constructed by taking some various 

criteria into account for any set of control points so that it is subjected to a kind of 

shape modification. In this thesis, the control points defining the spline are selected 

by trial and error to supply the given task specifications. More appropriately, the 

positions of the control points can be defined according to some optimization 

criterion. However, such an optimization is held out of the thesis subject and it needs 

a further elaborate study.  The shape of the spline should correspond to the motion 

capability of the hyper redundant manipulator, which is discretely actuated, since its 

inverse kinematics is investigated according to this spline. A spatial curve has some 

features such as arc length, radius of curvature, torsion, tangent and normal 

directions at any point on it. If these features are approximately met by the 

manipulator, i.e. by its modules, as a result of the inverse kinematics, the shape of the 

manipulator can be matched to the shape of the spline as closely as possible. 

 

It is assumed that the dimensions of the HRM are assigned. The position and 

orientation of the end platform of each module or submodule are found from the 

forward analysis in terms of the system variables and the dimensions. 

 

( , )i jr r s d=                      (4.6) 

ˆ ˆ ( , )i jC C s d=                      (4.7) 

 

Here, is  are the system variables defining the length of the actuators and jd  are the 

dimensions. According to these values, the end position, the length, the radius of 

curvature, the azimuth, elevation and twist angles of each module are obtained.  

 

The external factors such as obstacles shown in Figure 4.6 should also be considered 

in the work space when constructing the splines. As for selecting the control points, 

the deviation of the manipulator from the spline should be considered. In this case, a 
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sphere represents the obstacle in the workspace so that we can define it 

mathematically. Then, the algorithm can be setup for the manipulator to avoid the 

obstacles.            

 

 

 
 

Figure 4.6 Obstacle Avoidance 

 

 

The criteria of the spline optimization are as follows: 

 

 For the curve [ ]( ) ( ), ( ), ( )Q t x t y t z t=  with the parameter t, the length of the spline 

should not be more than the maximum length of the manipulator or less than the 

minimum length of the manipulator. That is, 
min

s m ε> +A A  

max

s m ε< −A A  

Where ε  is the tolerance and sA  is the length of spline defined as  

 

2 2 2

0

tend

s x y z dt= + +∫ � � �A                    (4.8) 

Manipulator 
Target 

Spline 

OBSTACLE 
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The approximated method for calculating sA  in Equation (4.8) does not cause much 

error. Therefore, the following formula can be used 

 

( )1 1/ 22 2
1

1

n
s i i

i
Q Q

−

+
=

= −∑A                    (4.9) 

 

iQ  are the points on the spline curve, and n is the number that the curve is evaluated. 

 

 The control of the control polygon: 

The control points construct a polygon, as shown in Figure 4.7, which is a reference 

to drive spline. If the angles between successive two lines in the control polygon are 

greater than any specified angle, this means that the spline supplies the requirements 

of the manipulator, otherwise, the number of iteration increases in selection of the 

spline, or, at least, it gives us any idea whether to change the position of the control 

points or not. The angle can be found as follows. 

 

1 1 2 1

1 2 1

,cos
| || |

i
i i i i

i i i i

B B B B

B B B B
θ

→ →
− + + +

→ →

+ + +

⎛ ⎞
< >⎜ ⎟= ⎜ ⎟⎜ ⎟

⎝ ⎠

, 0......... 2i n= −               (4.10) 

where Bi are the control points. Note that *
iθ θ> where *θ  is the specified angle. 

 

    The radius of curvature of spline should be greater than that of the manipulator. 

Because of the discrete nature and physical restrictions, the manipulator does not 

allow all types of turnings with smaller curvatures. Therefore, sharp turnings of the 

manipulator are avoided.  Since the success of the manipulator depends on the spline, 

the manipulator may keep track of the spline as closely as possible as far as the 

radius of curvature of the spline is greater than that of manipulator that is 

approximately calculated for one module.   

 

s mρ ρ ε> +                    (4.11) 

Where ε  is the tolerance for the curvature. 
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Figure 4.7 The Control Polygon 

 

 

The geometric features of the module are given as follows. Here, P1, P2 and P3 are 

three points on the manipulator placed on the base, intermediate and last platforms of 

the module as shown in Figure 4.8. These three points defines a plane in  3D space. 

 

 
 

Figure 4.8 The Radius of Curveture  for the Module 
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The normal vector T
→

 to the plane can be obtained by using the cross product of two 

vectors on the same plane, 

 

1 3 1 2T PP PP
→ → →

= × .  

The vector directed on the normal of the circle is defined as 1 3N PP T
→ → →

= × . The unit 

normal vector nuG is also defined as 
| |n
Nu
N

=
G

G G . The magnitude of the radius of 

curvature Mρ  can be determined as 

 

4M
a b c

S
ρ =                          (4.12) 

 

where S is the area of the triangle and a, b, c are the lengths of sides of the triangle 

whose corner points are  P1, P2, and P3 . Note that, ( )( )( )S u u a u b u c= − − − , 

2
a b cu + +

= .  

 

The radius of curvature as shown in Figure 4.9 is given for the instantaneous value of 

t , which is the parameter of the spline. The equations below are used to carry out the 

magnitude of the radius of curvature.  

 

Let ( )( ), ( ), ( )Q Q x t y t z t=
G G

 be a spline in 3D space. The magnitude of the radius of 

curvature for the spline is then  

 

3S

Q Q

Q
ρ

×
=

G G� ��

G�
                  (4.13) 
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Figure 4.9. The Curvature and Torsion for the Spline 

 

 

 The control of the azimuth and elevation and twist angles (Figure 4.10): 

These angles show how much the module deviates from the reference axis for the 

spline fitting method. These angles are related to the motion capability of the 

manipulator. For each spline part, the azimuth and elevation angles should not 

exceed the specified values. That is, they should be in the ranges * *θ θ θ− < <  and   
* *φ φ φ− < < . According to the configurations of the module, *θ  and *φ  are 

determined by using the position vector from the base to the top of the module. The 

values of these angles can be calculated with some simple geometric calculations. 

For the values of the twist angle, the calculations are given as follows.   
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Figure 4.10 The Azimuth (φ ), Elevation (θ ) and Twist (ψ ) Angles 

 

 

The torsion: 
( )

2

Q Q Q
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×
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                 (4.14) 

 

Integrating both sides of ds dτ ψ= , an expression between the arc length s  and the 

twist angle ψ  is obtained as  
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=                    (4.15) 
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Here, sΔ  is the total arc length of the spline part (Equation (4.17)), and  ψ  is the 

twist angle of the final point of the spline part. And also, avgτ  is the average torsion 

of the spline part and calculated by using Equations (4.14) and (4.16). Since the 

manipulator is discretely actuated, the twist motion is calculated for the spline part 

between the initial and final point of this part.   

 

4.3.2 The Computer Algorithm 

 

The required computer program for the analysis of the HRM has been written in 

MATLAB based on Equations 4.1-4.17. The algorithm is given as follows and the 

flow chart for the spline fitting method is given in Figure 4.11. 

 

 The position of the end platform of each module is calculated for 192 

configurations with respect to the initial frame by using the forward kinematics. The 

positions, lengths, azimuth, elevation and twist angles belonging to each module 

together with the related bit sequences are saved in a data file.  

 

 The control points in the workspace are assigned in such a way that the 

manipulator reaches the target position and avoids the obstacles in the environment. 

These control points construct the control polygon on which the spline depends. The 

number of control points is optional. In this study, 8 control points 0 7,..............,P P  

are selected as suitable for two-part cubic curve. 0P  is the starting point of the 

manipulator while  7P   is the target position (The error between the end effector and 

target position is eliminated by the  continuously actuated manipulator). 

 

 The angles between the successive control polygon lines are to be controlled to 

check whether the radius of curvature of the spline is greater than the specified one 

or not. This value can be taken as 700 with respect to the motion capability and 

construction of the manipulator. This condition decreases the number of iteration or, 

at least, gives information about which of the control points violate the curvature 

consistency.   
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 Passing the control polygon angle test, now, the spline is constructed. The 

NURBS curve is selected since it allows the curve to be reshaped interactively. This 

spline consisting of cubic rational polynomials has the following features: 

• The degree is 3, ( 3p = ) 

• The knot vector T  is selected as uniform due to its simplicity; however, it 

could also be selected as non-uniform.  

 [ ]0 0 0 0 0.2 0.4 0.6 0.8 1 1 1 1T =        

• The weight vector W  is selected initially as [ ]1 1 1 1 1 1 1 1W = . 

 

The knots it  increase from 0 to 1 by 0.001. For each t  value, the interval is found to 

calculate the corresponding basis functions. According to the knot span found, the 

basis functions are calculated for it  values. Finally, the curve ( )Q t  is obtained by 

using the related basis functions, weighting factors and control points. 

 

 The whole curve is obtained by repeating this procedure in a loop until 1t = .  

 

 After that, the spline is divided into the number of the modules proportional in 

length to the average length of each module.  

 

 If the radius of curvature calculated does not satisfy the specified one, the ( )Q t  

is reconstructed, reducing the weight factor w  with respect to the unsatisfied part. 

When    0.2iw =  or *
iρ ρ> , the loop ends, and the convenient spline is constructed.  

 

 The spline arc length is controlled. 

 

 The construction of the spline is completed. 

 

 The spline is used to select the convenient configurations as expressed in detail 

above.  
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Figure 4.11 The Flow Chart of the Spline Fitting Algorithm 

 

 

Using the spline fitting method, an example is given in Figures 4.12. In this figure, 

the control points, the control polygon, the spline and the selected configuration are 

defined in different line types, color and markers.  
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Figure 4.12 The Solution Configuration with the Spline Fitting Method 

 

 

In this method, the selection of the configuration has been made module by module 

and in each selection one module has been used. So, 192 10=1920×  iterations are run 

to resolve the HRM with ten modules. Using two modules and dividing the spline 

into five parts instead of ten is another alternative for implementing this method. 

This improves the success of the fitting operation since, instead of 192 possible 

configurations, 192 192 = 36864×  possible configurations are searched for each 

fitting procedure. That is, the spline fitting method with two module-based has 

totally 36864 5 =184320×  iterations. The examples of this approach compared to the 

module-based method are given in Figures 4.13a-13b.     
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Figure 4.13a Two Module-Based and One Module-Based Fitting 
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Figure 4.13b Two Module-Based and One Module-Based Fitting   
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4.3.3   The Intermediate Configurations for the Spline Fitting Method  

 

The HRM may collide with the obstacles in its working space while it moves from an 

initial configuration to the final configuration. Therefore, according to the position 

and size of the obstacles, one or more than one intermediate configurations are 

needed to move safely. The NURBS can be used to construct the spline for the 

intermediate configurations if the workspace is complicated and therefore the 

manipulator needs some special shapes. Otherwise, a simpler version of spline such 

as a cubic spline can be used to select the intermediate configurations. In this study, a 

cubic spline, which is a polynomial curve ( )P t  with four independent coefficients, is 

used. The problem here is to create a polynomial, ( )P t , with an independent variable 

t that increases from 0.0 to 1.0. There are various approximations that can be used if 

we do not need exact equality at every point. However, for the purpose of 

understanding, we use the exact fit by a third order polynomial, 
2 3

0 1 2 3( )        P t c c t c t c t= + + + . Writing this equation in 3D spatial cubic spline, 

one obtains 

 

3 2 1 0
3 2

3 2 1 0

3 2 1 0

( )
( )
( )

x x x x x

y y y y y

z z z z z

P t c c c c
P t c t c t c t c
P t c c c c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

              (4.18) 

 

The boundary conditions and related coefficients are given such that: 

- The spline starts with the origin. 
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. 

 

- The slope of the spline at the origin is 0, i.e. the spline is oriented towards 

the z axis. 

0
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- The other boundary conditions are the final point and mid point of the 

spline. These are calculated for the intermediate configuration as follows.  

3 2
3 2

3 2

3 2

0
(1/ 2) (1/ 2) (1/ 2) 0 (1/ 2)

1

x x

y y

z z

c c
P c c

c c
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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Noting that this is a set of simultaneous equations, define the constant matrix A from 

the equations above and writing the matrix vector equation. 

 

*C A X=                   (4.19) 

 

where X is the column matrix formed by the boundary conditions, A is the system 

matrix and C is the coefficient matrix. Since X and A are both known, C can be 

directly computed as 1*C X A−= . For computational efficiency, the inverse of A is 

computed at most once and can be used for many different X vectors. Obtaining the 

C vector, this method is used to compute the intermediate values at the parameter t 

which are needed by our graphics application. Now using the method described 

above and considering a 3D point, we can compute the three C vectors, Cx, Cy and 

Cz. Thus, the three polynomials ( )xP t , ( )yP t  and ( )zP t  that interpolate and produce 

x, y and z for each value of t in the range 0.0 to 1.0 are obtained. The final and mid 

point of the spline for the boundary conditions is calculated according to Figure 4.14.   

 

To find the end point of the spline for the intermediate configuration of the 

manipulator, we follow the procedure below. 

• Determine a plane with the points Ps , Pf  and O, 

• Determine the normal vector of the plane, N
G

, 

 

s fN OP OP
→ →

= ×
G

                  (4.20) 
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Figure 4.14 The Construction of Intermediate Configuration 

 

 

• Using vector algebra, the new position of the end point of the spline (the point F) 

can be found. The coordinate of the end point of the spline can be found on the line 

whose direction is along the normal of the plane PsPfOs and passes through the point 

L. 

1s sOF OP P L h n
→ → →

= + +
G                  (4.21) 

where nG is the unit normal vector, Nn
N

=
G

G G . 

 

• Determine the L point, where s f
s

P P
P L

k

→
→

=   and 
s f

s

P P
k

P L

→

→
= . 
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Determine the mid point of the spline. The point M is found with respect to spline 

length, varying the distance h2.  

22
OLOM h s
→

→

= +
G  

Here, sG  is parallel to nG  and passes through the mid point M. 

 

After this procedure, given the end points, Ps and Pf, of the initial and final 

configurations and the center point Os of the sphere including the obstacle, the cubic 

spline to investigate the intermediate configurations can be constructed as shown in 

Figure 4.15. The values of the parameters h1 and h2 in this spline are adjusted with 

respect to two cases. The first one is that the manipulator should not collide with the 

obstacles in the motion, and secondly, the length of the spline should be consistent 

with the length of the manipulator. Although the manipulator is a discretely actuated 

manipulator, it goes from initial configuration to final one moving continuously. 

Therefore, we can see some intermediate states as shown in Figure 4.16. Thus, it can 

be seen that whether the manipulator touches or intersects the obstacle or not.    
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Figure 4.15 The Intermediate Configuration 
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Figure 4.16 The Trajectory Control of the Intermediate Configuration 

 

 

4.4   The Extended Spline Fitting Method for the Inverse Kinematics of the 

HRM 

 

In the previous section, the inverse kinematics problem of the HRM has been 

examined by the spline fitting method in detail. This method gives only one 

configuration as a solution. Implementing the given criteria, which are the positional 

and orientational errors, the shape of the manipulator and the trajectory tracking, is 

very difficult by using only a single configuration. Also note that, in the first method, 

the orientation error and the trajectory following are not involved into the selection 

process. That is, we don’t have any control over these criteria. At the same time, the 

selection operation is carried out module by module and from the bottom to the top. 

In other words, there is not any flexibility to select the configurations of the 

intermediate modules. This causes the larger positional and orientational errors on 

the top of the manipulator and, even, the manipulator can excessively diverge from 

the given reference curve. On account of these reasons, the spline fitting method 

should be improved to fulfill the given tasks properly. Therefore, a second method, 
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the extended spline fitting method, is presented. In this method, a genetic algorithm 

is used to solve the inverse kinematics problem effectively. Genetic algorithm is very 

suitable for the kinematics of binary hyper redundant manipulator since it uses 

binary coding system in its algorithm. One of the most important parameters of 

genetic algorithm is its initial population when to start to the optimization procedure, 

and the success in genetic algorithm depends in great extend on this given initial 

population. If the initial population is given far away from the solution, which is also 

a population, the desired solution may not be approached. Because of this, in this 

method, the solution configuration determined in the first method is assigned as an 

initial population for the genetic algorithm. This method generates a solution set with 

many possible configurations vicinity of the configuration found in the spline fitting 

method. This approach provides a control over the shape of the manipulator because 

the possible configurations heap up around the reference curve and they enable us to 

investigate the configuration with the optimal trajectory between two successive 

configurations due to the solution set. The best configuration selected by the 

extended spline fitting method does not only fulfill all required criteria but also it 

supplies the improvement in the positional errors.                 

 

4.4.1 Genetic Algorithm 

 

A solution set is necessary for a better solution in the inverse kinematics of the 

HRM. For this aim, using genetic algorithm is an effective approach to implement 

the given tasks for the motion planning of the HRM. Genetic algorithm has been 

widely used to solve unusual of difficult optimization problems which are not easily 

solved by conventional optimization methods [51]. Genetic algorithm is a 

nondeterministic stochastic search algorithm based on the mechanism of natural 

selection and natural genetics. Although the solution space is very large, genetic 

algorithm approaches a better solution in a shorter time. Unlike the conventional 

search techniques, genetic algorithm starts with an initial set of random solutions 

called “population” satisfying the boundary conditions and/or system constraints of 

the problem. 
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In general, a genetic algorithm has five basic components. 

 

(1) A genetic representation of potential solutions: A population consists of 

individuals that are chromosomes. Individual represents potential solutions in the 

optimization problem. The parameters of problem are encoded to be initial 

population, and each solution is also encoded as a finite length string. There are 

many types of solution representations such as the binary coding and permutation 

coding. The basic one is the binary coding consisting of binary digits “0” and “1”. 

Each bit in a string represents the characteristics of solution. A string, which is an 

individual, represents a potential solution, for example, 

 
 

(2) A way to create a population: In genetic algorithm, instead of a single initial 

solution, an initial set of potential solutions is used in the solution of the problem. 

This provides the algorithm to be able to work without reaching a local optimum. 

Initial population is a very important component because if the initial population is 

closer to the solution, the genetic algorithm gives much better solutions in a shorter 

time.  

 

(3) An evaluation function: One common application of genetic algorithm is 

function optimization. Individuals in the current population are decoded and 

evaluated according to some predefined quality criteria that are one or more than one 

function. This function rates the solutions in terms of their fitness. Because of this, it 

is called as fitness function. Each individual is selected according to fitness value in 

which existing members of the current solution pool are replaced by newly created 

members. In genetic algorithm, only this part is peculiar to the problem. 

 

(4) Genetic operators: Genetic operators are some operations applied on the current 

population. The aim of these operators is to produce new better generations and to 
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expand the space of the searching algorithm. Genetic operators alter the genetic 

composition of offspring (next generation). These genetic operators are as follows: 

 

• Crossover: Crossover is the main genetic operator. It takes two individuals 

and cuts their chromosome strings by using the random positions. After that, they 

have head and tail segments. The tail segments are swapped over to produce two new 

full length chromosomes where two new offspring inherit some genes each parent. A 

single point, two points or uniform crossover would be chosen for cut-points. This 

methods works well with bit string representation. An example of crossover is shown 

in Figure 4.17a. The normal probability of crossover varies between 0.6 and 1. The 

performance of genetic operators depends to a great extent on the performance of the 

crossover operator.       

 

• Mutation: This operator flips some of the bits in an individual. It serves to 

introduce the diversity in the population. Mutation can occur at each bit position in a 

string with some very small probability that usually varies between 0.001 and 0.01. It 

changes an element from a binary string that is generated by the crossover and 

replaces a bit by digit “0” or “1” as shown in Figure 4.17b. In general, after a certain 

period, the chromosomes (individuals) become a homogenous structure in the 

population because of the effect of selection and crossover operations. This causes 

the chromosomes to stop their developments without reaching their optimum level. 

On account of this, mutation brings about the diversity of the chromosomes in the 

population.  

 

• Selection: A selection is the process of determining a particular individual 

that is chosen for the reproduction and the number of offspring in which an 

individual will produce. It transforms the fitness values of individuals to the 

probability value for reproducing by the probability of reproduction according to the 

fitness values. The binary strings that have higher fitness values are more likely to be 

selected as parents. “Roulette Wheel”, “Tournament”, “Stochastic Universal 

Sampling” methods are generally used for selection.      
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Figure 4.17 Crossover (a) and Mutation (b) Operators 

 

 

(5) Parameter Values: In implementing a genetic algorithm, the fifth decision to 

make is how to set the values for the various parameters. These parameters typically 

interact with one another nonlinearly, so they can not be optimized at a time [52]. 

Genetic algorithm uses population size, probability values of applied genetic 

operators, number of generation, number of individuals etc.  

 

After some definitions, the work of the genetic algorithm can be summarized in the 

following steps. 

 

Step 1: An initial population is assigned. 

Step 2: Individuals are decoded and evaluated according to the fitness 

function. This function defines how much good individual is. 

Step 3: A selection is made by mating individuals with respect to their fitness 

value. 

Step 4: Old individuals are removed to create space for the new ones. Hence, 

the population with constant size is supplied. 
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Step 5: The success of the population is found again by evaluating the fitness 

values of all individuals.  

Step 6: A great number of populations are constructed by repeatedly running 

the genetic algorithm. Go back to Step 3 if the time is not over.  

Step 7: The best individual until that time is the result since, in the evaluation 

of the populations, the better individuals are saved.       

 

To use a genetic algorithm in binary manipulators is very natural and convenient 

because the potential solutions for binary manipulators are already given in a binary 

manner. In many engineering problems, the conversion from the real world problem 

to a binary encoding can be very complex because of real number representation. 

However, this complexity does not exist in the inverse kinematics of binary 

manipulators. All joint variables constructing individual in the population can be 

represented by using digits “0” or “1”. Thus, all genetic operations can be performed 

on candidate solutions. 

 

4.4.2 Using Genetic Algorithm in the Extended Spline Fitting Method 

 

In this method, many configurations for the solution of the inverse kinematics of the 

HRM are generated by using the genetic algorithm in the vicinity of the 

configuration found in the spline fitting method. An example of this method is shown 

in Figure 4.18. In our genetic algorithm search, since the aim is to maximize the 

fitness values to select better individuals, the fitness function is set to
arg

1

i t et

f
r r

=
−

. 

Despite choosing of one individual of the population from all the generations as a 

solution, many individuals from all regenerated populations which satisfy the 

constraint ( * *
min arg maxi t etd r r d< − < ) are selected and stored. argi t etr r−  is the distance 

between the task position and the tip points of the HRM for the generated 

configurations in searching. Here, *
mind and  *

maxd  are defined with respect to the 

workspace of the fine tuning manipulator as shown Figure 4.1.   
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Figure 4.18 The Extended Spline Fitting Method 

 

 

In genetic algorithm, the main algorithm design variables are the population size, the 

number of generations of evaluation, the mutation factor, the crossover ratio, the 

crossover method, the selection type and the scaling factor. In this study, many of 

these algorithm variables are heuristically based on general performance of the 

algorithm. In this method, the size of the populations, at the initial step, is two, where 

the first one comes from the spline fitting method and the second one is given by 

flipping one or more than one bits of the first one since a genetic algorithm uses 

populations with even numbers. However, at later steps, it takes the fixed assigned 

value, e.g., in this study, each population has one thousand individuals in each of the 

iterations. The parameter values used in this algorithm are given as follows. 
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The crossover type: uniform crossover 

The probability of crossover: 0.9 

The mutation probability (per bit): 0.01 

The selection type: The Stochastic Universal Sampling method (In Roulette 

Wheel selection method, the wheel is span N times, where N is the number of 

individual in the population. On each spin, the individual under the wheel’s marker is 

selected to be in the pool of parents for the next generation. Rather than spin the 

roulette wheel N times to select N parents, the Stochastic Universal Sampling spins 

the wheel once, but with N equally spaced pointers, which are used to select N 

parents).   

The sigma scaling coefficient: 1 (Sigma scaling is a method which keeps the 

selection pressure, i.e. the degree to which highly fit individuals are allowed many 

offspring, relatively constant over the course of the run rather than depending on the 

fitness variances in the population. The aim is to make the genetic algorithm less 

susceptible to premature convergence.) 

 The mask repository factor: 5 (Without changing the behavior of the genetic 

algorithm, it significantly improves the speed of the code. It is used in crossover and 

mutation operators to mask from a pregenerated repository of randomly generated 

bits.) 

 

For more detail information about the concepts above, see [51] and [52]. 

 

4.4.3 The Selection Process from the Configuration Set 

 

The selection process is made in turn with respect to the criteria given in the 

Subsection 4.2. This contains four successive operations. In each step, the 

inconvenient configurations are eliminated for the later operations so that the fewer 

configurations are searched. To solve the inverse kinematics with the extended spline 

fitting method, the order of the selection procedure of the configuration is given as 

follows. 
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1) The positional error, or the Euclidian norm, for the HRM is expressed as a 

distance between the tip point of the manipulator and the given target position. The 

configurations satisfying the given threshold, min maxerrord d d< <  (shown as Figure 

4.1), are chosen, and the other are eliminated. Here, 

min max 11............i id P Q d i n< − < = . After this process, the search space, 1( )W n  

becomes 2( )W n , 2 1n n<< . 

 

2) This step consists of the orientation of the manipulator. In this step, the 

configurations are selected in such a way that the burden on the fine tuning 

manipulator is reduced fairly. For this purpose, a cost function with the orientation 

angles of the possible configuration and the given orientation angles with respect to 

323 Euler angle convention is minimized. The calculations are given in Appendix A 

for the Euler angles. As a result of this process, the search space, 2( )W n  becomes 

3( )W n , 3 2n n< . 

( ) ( ) ( )2 2 2

1 2 3M given M given M givenCost function L L Lφ φ θ θ ψ ψ= − + − + −  

 

3)  The shape control of the manipulator is implemented in this stage. To avoid the 

obstacles and obtain the desired shape, the algorithm provides the convenient 

configurations so that the HRM can not collide with the obstacles represented by 

spheres. For an efficient algorithm, the reference curve is assigned such that it 

satisfies the requirements. Since the initial position of the configurations is already 

fixed and their final position is known, only intermediate positions should be defined 

for the shape of the manipulator. For this aim, the reference curve is divided into the 

segments like in the spline fitting method, and the selection is made with respect to a 

cost function. This cost function is a function of the total distance between the tip 

point of the intermediate modules and the related spline segments as shown in Figure 

4.19. However, the cost function with too many parameters can not give successful 

results. In this application, the total distance belonging to third, fifth and seventh 

modules or only fifth module is taken for the cost function.     

 
2 3 1........ nCost function d d d −= + + +  
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In the result of this stage, the set of convenient configurations is chosen for the later 

process. They are controlled graphically whether to collide with the obstacles or not. 

After this process, the search space, 3( )W n  becomes 4( )W n , 4 3n n< . 

 

 

 
 

Figure 4.19 The Shape Criterion for the Selection of Configuration 

 

 

4) At the last process, the selection is made with the remaining configurations. The 

resulting configuration satisfies all the three criteria, and should have the smoothest 

motion between two successive configurations. Given a reference curve from the top 

point of the initial configuration to the target position for the next configuration, the 

configuration with the smoothest motion is defined from the other cost function 

defined according to Figure 4.20.  

 

1 2 3 1 1 2 2 3 32 ( ) ( ) 2 ( ) ( ) ( ) ( )i i iCost function d d d P j Q j P j Q j P j Q j= + + = − + × − + −  
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Here, jP  and jQ  represent the possible trajectories and the reference curve 

respectively. These curves are parametric, and the parameters are taken as 1 20j = , 

2 50j =  and 3 80j =  with 100-step curves. 

 

   

 
 

Figure 4.20 The Trajectory Following Criterion 

 

 

At the end of all four stages, the optimal configuration is selected. This is not 

considered as globally optimal configuration, but it is the local optimal. For example, 

in Figure 4.18, the positional errors for different possible configurations vary 

between 1.2%-2.8% while this error is 17.05% for the configuration found in the first 

method. The other applications of this method are given compared to the other 

method as shown in Figure 4.26-4.30.  
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4.5 The Workspace Filling Method  

 

The hyper redundant manipulator with ten modules has ( )103 3 1 222 2 3 6.8 10× × ≈ ×  

possible configurations. The calculation of position and orientation with the forward 

kinematics for all these configurations is impossible even though well developed and 

fast computers are used. The calculation for each configuration consists of not only 

the pose of the end-effector but also the poses of the tip point of every ten modules, 

which are based on many parameters in the loop. Because of this, instead of using 

this whole configuration set, the subset of this in a reasonable number is selected to 

construct a workspace. This workspace is represented with the tip point of the HRM. 

Here, the workspace involves only the discrete part of the HRM. These points are 

obtained with the forward kinematics for a finite number of configurations 

constructed by the related bit sequences. Each configuration sequence is a 1x80 row 

matrix including “0”s and “1”s such as [ ]1 80
01101100..........00110

×
. In fact, there are 

70 independent joints. However, each configuration sequence involves 80 bits 

because the submodule with twist motion is represented by two bits for one joint 

variable. At first, the sequences are constructed randomly. After that, the positions of 

the tip point of the HRM related to the initial reference frame for each configuration 

are calculated, and then the position vectors and related configurations are stored in a 

computer library. 

 

Figure 4.21 shows the workspace with 100000 randomly selected configurations. 

This method is called “the workspace filling method” because it fills the workspace 

with the discrete configurations of the HRM. This operation is made by using the 

simple computer program written in MATLAB. The row matrix with 80 bits 

represents the actuator states for ten modules. The computer program generates 

simultaneously the number between 0 and 1 for each bit.  The bit is taken as “0” if 

the number generated randomly is between 0 and 0.5, and otherwise it is taken as 

“1”. After constructing the workspace, the inverse kinematics is solved by selecting 

the convenient configuration form this workspace.  
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Figure 4.21 The Workspace with 100 000 Configurations 

 

 

The workspace resembles almost like a sphere. It is noted that the number of mark 

points in some regions especially in the border of this workspace is rather small. 

Working on these regions can not give an efficient solution for the motion planning 

of the HRM. For example, the region represented by a sphere with its radius 

1000r mm=  and centered at (0,0,0) involves only two mark points. That is, the 

manipulator has only two configurations whose end-effector is located at the inside 

of this sphere. In fact, this manipulator is expected to behave similar to its 

continuously actuated counterparts because of its ( )103 3 1 222 2 3 6.8 10× × ≈ ×  possible 

configurations. More than 100000 configurations can be chosen to construct for this 

workspace. However, this does not guarantee enough number of configurations for 

any working region. In addition, the searching time becomes larger by the increased 

number in the same workspace. Therefore, the genetic algorithm will be used as 

another method to construct the efficient workspace. In addition, if it is desired to 

have concentration on a particular region of the workspace, then, that region is filled 

by using the genetic algorithm.   
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4.5.1 Using Genetic Algorithm in the Workspace of the HRM 

 

New denser workspace is necessary for the efficient solutions in the inverse 

kinematics of the HRM. Instead of working on the whole workspace, one or more 

than one specified workspaces involving the solutions of possible configurations will 

be obtained with respect to the task regions. Here, the aim is to concentrate on some 

particular regions and to involve many more possible configurations in them. These 

workspaces are restricted by a constraint. This constraint is *
argi t etr r r− ≤ , where ir  

are the end points of the HRM, argt etr  is the origin points of the studied regions and 

*r  is the bounded value. In fact, this expression represents a sphere. The genetic 

algorithm provides enough number of configurations in the sphere. This method has 

two advantages. First, denser workspaces can be obtained and, secondly, the 

searching time becomes relatively smaller by searching the restricted workspaces. 

  

To apply the genetic algorithm to the workspace generation for the inverse 

kinematics of the HRM, a computer program written in MATLAB implements the 

genetic algorithm for this study.  In the simulations, the initial population has been 

selected from 100.000 randomly selected configurations that the library constructed 

in the previous study to approach better solutions since the better initial population 

selected the better generations yielded. In this selection, the size of the populations, 

at the initial step, changes with the initial selection from the randomly selected 

workspace with respect to the given constraint. This constraint collects the tip points 

of the HRM in a sphere with certain radius and origin point. However, at later steps, 

it takes the fixed assigned value expressed as in the previous method.  

 

In this method, the fitness function is the same as one in the extended spline fitting 

method, i.e. 
arg

1

i t et

f
r r

=
−

. Again, many individuals from all regenerated 

populations which satisfy the constraint ( *
argi t etr r r− < ) are selected and stored. This 

method starting with the possible solutions as an initial population increases the 

number of configurations in the workspaces to have concentration on some particular 
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regions. Many workspaces can be obtained easily for different applications. The 

following figures (Figure 4.22a-b) show how successful the method is. Table 4.1 

shows the number of possible configurations randomly constructed and by using the 

genetic algorithm for the different regions. Working on these restricted workspaces is 

useful for successive multiple tasks. 

 

 

 
 

Figure 4.22a The Restricted Workspaces for Different Task Regions 
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Figure 4.22b The Top View of the Restricted Workspaces  

 

 

Table 4.1 The Number of Possible Configurations Constructed Randomly and by 
Using the Genetic Algorithm for the Different Workspace Regions 

 
The coordinate of 
the center of the 

workspace 

The number of the 
configurations 

randomly 
constructed 

The number of the 
configurations 
with genetic 

algorithm 
 

The total 
computation

time 
(s) 

(2500,0,1500) 489 1676 121.5 
(-2500,0,1500) 410 2063 456 
(0,2500,1500) 345 1405 237.5 
(0,-2500,1500) 425 802 103 

(0,0,3500) 2328 3811 179 
(1500,1500,2000) 577 839 122.5 
(1500,-1500,2000) 665 1617 832.5 
(-1500,1500,2000) 472 1339 449.5 
(-1500,-1500,2000) 564 1361 856.5 

(0,0,0) 0, r =500mm  
2, r =1000mm 1670, r = 500mm 219 
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4.5.2 The Selection Process from the Workspace 

 

The selection process for the workspace filling method is made again, in turn, with 

respect to the given four criteria, which are the same as those in the extended spline 

fitting method. At the end of these four stages, the optimal configuration is selected. 

As an example, some possible solution configurations as shown in Figure 4.23 are 

given to select the best one. Figure 4.24 shows the best solution configuration 

together with the initial configuration and related trajectory. 
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Figure 4.23 The Possible Configurations and Related Trajectories 
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Figure 4.24 The Selected Configuration by Using the Workspace Filling Method 

 

 

The workspace filling method can be used conveniently for avoiding moving or 

unexpectedly appearing obstacles because, even for a very close neighborhood of the 

desired end point position, its readily available configuration diversity is very 

numerous as shown in Figure 4.23 as an example. For a more specific example, 

illustrated in Figure 4.25, it is assumed that firstly the manipulator with the 

configuration 1 is selected to avoid the obstacle A. However, after a while, the 

manipulator with the configuration 1 runs into another obstacle (the obstacle B) as 

shown in the figure. In that case, by using the workspace filling method, the 

configuration of the manipulator is changed from the configuration 1 to the 

configuration 2 or 3 to avoid the obstacle A as well as the obstacle B by 

compromising very slightly in the desired position of the end point.  
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Figure 4.25 Avoiding the Moving Obstacles 

 

 

After all these specifications, some examples about the workspace filling method 

compared to the other methods used in this thesis are given in Figures 4.26-4.30.   

 

4.6   The Comparison of the Inverse Kinematics Methods  

 

In this thesis, three different methods have been used for the inverse kinematics of 

the HRM. These are the spline fitting method, the extended spline fitting method, 

and the workspace filling method. In fact, the extended spline fitting method is not 

absolutely a different approach from the others because it is a combination of the 

spline fitting method and the genetic algorithm. This uses the advantages of both 

methods. In the solution of the inverse kinematics, selection of which method to be 

used is based on the given task. The positional and orientational error, the shape of 

the configuration and the trajectory following are the criteria for defining the 

selection of the method. To compare these methods, some special selected tasks are 

examined with respect to the positional error and the shape of the configuration. In 
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order to see the behavior of these methods well, the examples have been selected 

with different features defined by reference curve. These curves are selected as line, 

parabolic or hyperbolic-like planar curves and spatial curves. In addition, the tasks, 

which are not convenient with the motion capability of the HRM, are given as 

another example. For the comparison of these three methods, 11 different tasks 

numbered from 1 to 11 are given and shown on the same figures according to their 

categories as shown in Figures 4.26-4.30.  
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Figure 4.26 The Planar and Linear Configurations 
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Figure 4.27 The Planar and Curve-Like Configurations  
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Figure 4.28 The Spatial Configurations  
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Figure 4.29 The Spatial Configurations  
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Figure 4.30 The Configurations for the Inconvenient Reference Curves 
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The evaluation of the solution configurations in the figures above is made with 

respect to the given reference curves, which are NURBS’s. In Figure 4.26, the 

reference curves are lines on the y-z plane. Here, the configurations found with the 

spline fitting method and the extended spline fitting method can be fitted to the given 

reference curves in a better way whereas the configurations found with the 

workspace filling method display a little bit deviation from the reference curves, but, 

these amounts are small and in the acceptable limits of error. Figure 4.27 includes 

two curves on the x-z plane. The configurations found with all three methods can 

approach the given curves. However, the spline fitting method shows a better 

performance for this type of configurations for the shape of the configurations. In 

Figures 4.28 and 4.29, the tasks include spatial curves. Note that, the spline fitting 

method can fit the solution configurations to the initial parts of reference curves in a 

better way, but, the fitting procedure can not be implemented towards the last parts 

of the reference curves. These can cause the larger positional errors and inconvenient 

configuration shapes. For the workspace filling method, the configurations could 

excessively deviate from the reference curves although it could reach the desired 

target position sufficiently. In the spatial space tasks, it is apparently seen that the 

most successful results belong to the extended spline fitting method. Figure 4.30 is 

the most interesting of these examples. In this figure, the reference curves, which are 

inconvenient for the motion capability of the manipulator, are assigned intentionally 

to investigate the solutions with these methods. Note that none of them is not fitted to 

the given reference curves properly; even if the configurations by the spline fitting 

method deviates from the reference curves considerably and have larger positional 

errors. In fact, the workspace filling method and the extended spline fitting method 

could sufficiently approach the desired target positions, and although they deviate 

from the reference curves excessively, they try to resemble the reference curve as 

shown in the figure. 

 

Another comparison subject is related to the positional error. The positional errors 

for 11 examples are given in Table 4.2 for three methods. Here, the positional error 

value is found by dividing the distance between the desired target position and the 

top position of the configuration by the average length of the HRM. It is expected 
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that this error is less than 3.25% with respect to the workspace of the fine tuning 

manipulator (FTM) for the limits of *
min 20d mm= and  *

max 140d mm= . 

 

Table 4.2 Positional Errors with the Three Inverse Kinematics Methods 

 
The 

Configuration 
Number 

The Spline Fitting 
Method 

(Error %) 

The Extended Spline 
Fitting Method 

(Error %) 

The Workspace 
Filling Method 

(Error %) 
1 2.0 0.2 2.3 

2 7.0 0.3 2.4 

3 7.2 7.0 14.5 

4 5.9 0.15 1.5 

5 5.0 1.1 2.6 

6 4.8 2.2 2.5 

7 4.9 1.7 2.3 

8 10.5 2.6 2.3 

9 22.8 1.2 2.7 

10 43.0 1.7 2.5 

11 25.0 2.7 2.4 
 

 

As seen on the above table, the solutions by the spline fitting method have the larger 

positional errors, even; these errors can exceed the limits which the continuously 

actuated manipulator can compensate. On the other hand, the extended spline fitting 

method and the workspace filling method ensure the condition of the positional error. 

According to the positional error, the extended spline fitting method gives better 

results in these three methods.  

 

The trajectory following is the other comparison criterion. There is no control on the 

trajectory following with the spline fitting method for the specified reference curve 

since only a single configuration is obtained as a solution. However, the trajectory 

following is taken into consideration for the solutions with the extended spline fitting 

method and the workspace filling method because a set of configurations rather than 

a single configuration can be obtained by using these methods. In spite of this, as 
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expressed earlier, the trajectory following cannot be implemented by the HRM 

because when the manipulator moves between two successive configurations, the 

larger deviations, which the FTM cannot compensate, take place. 

 

The advantage of using the spline fitting method over the other methods is that it has 

relatively shorter run time for the inverse kinematics. In other methods, this time is 

much larger. In fact, there is not a certain run time for the extended spline fitting 

method and the workspace filling method since they have different number of 

configurations for each selection operation.       

 

 4.7   Summary and Results 

 

In this chapter, the inverse kinematics of the HRM has been investigated with three 

methods. In these methods, the minimum positional and orientational error, the 

convenient shape of the manipulator and the trajectory following between successive 

configurations are the criteria for the solutions.  

 

The first method is the spline fitting method. In this method, the manipulator is fitted 

to the given reference curve which is Non-Uniform Rational Base Spline (NURBS) 

defining the shape of the manipulator. This curve has also been used in the other 

methods as a reference curve. The fitting operation is module based, i.e. each module 

is fitted to the spline parts as closely as possible. For the obstacle avoidance, cubic 

spline, which is simpler, has been used for intermediate configuration as a reference 

curve. 

 

The second method is the extended spline fitting method. This method is not, in fact, 

a different approach. It uses the spline fitting method and the genetic algorithm. The 

solution with this method is obtained directly by using genetic algorithm. In the 

genetic algorithm, the solution configuration from the spline fitting method is used as 

an initial population. Thus, better configurations can be obtained.   
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In the third method, the workspace filling method has been presented for the inverse 

kinematics. This method is based on the workspace of the manipulator. The 

workspace is filled with the certain number of configurations randomly selected from 

the whole workspace. Besides, some concentrated working regions according to the 

tasks are filled with many possible configurations by using the genetic algorithm. 

The selection of the configuration from the workspace has been implemented with 

respect to the given four criteria expressed above.            

 

The figures above show that the manipulator can fit the spline as closely as possible 

for many times. The method is investigated for one module-based and two module-

based fitting. Instead of one-module based fitting, two-module based fitting can 

decrease the errors, and the manipulator can approach the reference shape. However, 

in this case, the time for the library construction and the searching increases 

considerably because the number of calculation increases from O(n…) to O(n…2). 

For example, the time constructing the library for two-module-based approach takes 

about 30 minutes whereas one-module based takes 0.6 seconds. Besides, there is also 

not any control on the position of the intermediate modules. The applications are run 

with the algorithm written in MATLAB in a computer which has an AMD ATLON 

2000, 1.6 GHz CPU, 704 MB of RAM. 

 

The success of the manipulator to fit the spline depends on the cost function in this 

algorithm. According to the figures, using the distance minimization alone in the 

cost function is more effective than using it with the other parameters. This is 

obvious because the optimization of the cost function with many parameters does not 

give an efficient solution. In addition, the control over the system parameters can not 

be supplied because of the discrete nature of the binary actuators, and the motion 

capability of the manipulator is restricted with its physical structure, e.g., it can reach 

finite discrete points and each module has approximately an orientation of the 

maximum angle of 300 in each direction. In this method, the positional errors are, in 

some cases, rather large to be eliminated by means of the FTM. In addition, the 

manipulator can not fit the reference curve appropriately. There are some reasons for 

this situation. The fitting process takes place from the bottom module to the top one. 
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The errors accumulate in each operation. The small errors for the modules towards 

the base cause the larger errors for the upper modules. Although each fitting 

operation tries to eliminate these errors, because of the nature of the binary actuation, 

the manipulator can deviate from the reference curve in an undesirable way. In 

addition to this, there are some reasons that can cause the failure of this method. The 

spline as a reference curve for the HRM is not divided optimally with respect to each 

related module. With this method, we can not have over the control of the trajectory 

following between successive configurations because the trajectory following is not 

taken into consideration. 

 

The extended spline fitting method shows relatively better performance for the 

inverse kinematics. This method has minimum positional errors in these three 

methods. It obtains better results for the shape of the configurations because it uses 

the advantage of the spline fitting method and the genetic algorithm. From the 

Figures 4.26-4.30, the method can be fitted to the reference curve as closely as 

sufficient. Also, the trajectory following can be controlled by using this method 

because of the set of solution configurations.        

 

In the workspace filling method, the optimum configurations can be reached to local 

optimum since the selection is made from the certain number of configurations 

fulfilling the error tolerance. In addition, this method permits us to select the 

configurations providing the better trajectory between successive configurations.  

However, it takes too much time to construct the workspaces as shown in Table 4.1, 

and the shape of the configurations selected sometimes can not be convenient for the 

given reference curve. The workspace is constructed by using two methods. The first 

one fills the workspace randomly with the configurations of the HRM. The second 

method constructs the working regions by using the genetic algorithm. The first 

approach generates the more different types of the configurations whereas the second 

one may consist of the similar configurations since the genetic algorithm forces to 

the configurations with the smallest fitting values.     
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The better running time is obtained in the spline fitting method. For example, the 

solution of the inverse kinematics with this method takes approximately 0.6 s for the 

module library and 0.2 s for the selection of configuration. Compared to the other 

methods, this time is much smaller. As seen from Table 4.1, the construction of the 

workspace and searching the possible configurations in the workspace filling method 

can take longer time. Note that the extended spline fitting method takes almost as 

much as the same time as in the workspace filling method.       
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CHAPTER 5 

 
 
 
 

DYNAMIC ANALYSIS OF THE HYPER REDUNDANT MANIPULATOR  

 
 
 
 
 
 
5. 1 Introduction  

 

In this thesis, the dynamic analysis is carried out in order to get information about the 

behavior of the HRM under the effect of the actuator forces. For this aim, the 

accelerations are first determined by using the laws of motion. These accelerations 

are then integrated to determine the velocities and the positions of the links of the 

HRM.  

 

The equations of motions of the hyper redundant manipulator consisting of rigid 

bodies are developed in this chapter in terms of reference coordinates that represent 

the translation of the reference points of the manipulator as well as their orientations 

with respect to the inertial reference frames. This representation will prove useful in 

developing general purpose computer algorithms for dynamic analysis of 

interconnected sets of rigid bodies, since, practically speaking, there is no limitation 

on the number of bodies or the types of forces and constraints that can be introduced 

to this formulation.  

 

Until now, in the kinematics studies, it is assumed that all the actuators start and 

finish the motions simultaneously, and the characteristics of their motions are the 

same. However, the actual motion of the manipulator is different from this 

assumption. In a manipulator, after starting the motion, the motion of the actuators 
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finish at different times and their motion characteristics can be considerably different 

from each other.    

 

The dynamics of hyper redundant manipulators was first formulated by Chirikjian 

[53]. He used principles of continuum mechanics to approximately represent the 

dynamics of HRM, where the dynamics of the continuum is first formulated and then 

projected on to the actual physical structure. This modeling technique is only an 

approximation. In his other study, Chirikjian proposed an approximation for the 

binary pneumatic cylinders used in HRMs [40]. If the mass of the plunger of a 

pneumatic cylinder is m, then in absence of gravity the equation of motion for the 

cylinder is simply 
2

2

d x dxm PA c
dt dt

= − , where P is the pressure in the tube, A is the 

area of the plunger head, c is the viscous friction coefficient, and x is the amount of 

plunger that is displaced from a datum. In this approximation, it is assumed that an 

end point of the actuator is connected to a fixed point. For convenience, the variable 

F PA= , which is the force that the actuator is able to provide, will be used. More 

information can be obtained from this simple method. For instance, if the datum is 

chosen such that (0) 0x = , and viscosity and pressure are very high relative to the 

mass, then / 0m c →  and the approximation for the displacement is obtained simply 

as ( ) ( / )x t F c t≈ . An elementary analysis of the more complicated case of a whole 

manipulator composed of highly damped pneumatic actuators yields essentially the 

same result. That is, the manipulator dynamical equations are 

 

 [ ] [ ] [ ]( ) ( , ) ( )M q q C q q G q f q⎡ ⎤+ + = − Δ⎣ ⎦�� � �   

 

where f  is the vector due to pressure, and [ ]Δ  is the diagonal viscosity matrix. 

Under the assumption of slow motion, and very high pressure and viscosity, the left 

hand side of the equation of the manipulator dynamics can be essentially neglected. 

In this case, the linear behavior is simply obtained as 

[ ] 1
0( ) ( ) .q t q t t f−

= + Δ  
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However, this result is a crude approximation and it involves many simplifying 

assumptions, such as neglecting the effect of gravity, etc. In this thesis, instead of 

using this approximate result, a realistic model is constructed to investigate the 

dynamic behavior of the hyper redundant manipulator. 

  

In this chapter, the dynamic analysis of the HRM is made in a module-based manner. 

The equations of motion are written for each rigid body of the modules. The 

equations are arranged in a matrix form from the module-based equations written 

recursively. The unknowns are the piston accelerations of the actuators and the 

components of the structural reaction forces and moments at the joints. However, the 

system happens to be overconstrained and therefore the number of the mentioned 

equations turns out to be less than the number of the unknowns, majority of which 

are the reaction force and moment components. Nevertheless, after some virtual 

structural simplifications, these system equations become solvable, i.e. the number of 

equations conforms to the number of the unknowns with the justly reduced number 

of unknown reaction force and moment components.  

 

5.2 The Virtual Elimination of the Excess Constraints for the Dynamic Analysis 

of the Hyper Redundant Manipulator   

 

With the dynamic analysis, the independent joint variables, which are the lengths of 

the actuators, and the reaction force and moment components between the rigid 

members of the manipulator are determined. However, the real aim is to find the 

independent joint variables. Although the system is binary actuated, for the two 

successive configurations of the HRM, the actuators moves continuously between the 

two states under the action of the pressure forces, which are specified depending on 

the on or off states of the actuators. To solve an equation system, the number of 

equations should be equal to the number of unknowns, and also the equations should 

be independent to get a unique solution. In this study, due to the modules with the 

same characteristics, the equations obtained for any module of the HRM are similar 

for the other modules too. Because of this, all the virtual simplifications and 

derivations are carried out for a typical module of the HRM as shown in Figure 5.1, 
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and then, they are adapted to the other modules recursively to construct the equations 

of motion of the whole HRM.  

 

 

 
 

Figure 5.1 The Module Joints of the Manipulator 

 

 

The following formula shows the relation between the number of equations and the 

number of unknowns for any mechanism. 
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( 1)n N Fλ − = +                                         (5.1) 

 

where  

( 1)nλ −  is the number of equations for n  links including the base, 

6λ =  for spatial mechanisms, 

N  is the number of unknown reaction force and moment components, 

5 4 4R C UN N N N= × + × + ×  

RN , CN  and UN are the number of revolute, cylindrical and universal joints 

respectively, 

and 

F  is the degree of freedom (DOF) for the module, which is equal to the 

unknown accelerations of the independent joint variables associated with that 

module. 

 

For the module as shown in Figure 5.1, the actuators are connected to the platforms 

with revolute joints, and the piston-cylinder joints for the actuators are cylindrical.  

The module involves 33 links, 30 revolute (R) joints and 14 cylindrical (C) joints. 

The revolute joints allow only one relative rotational motion between two bodies 

and, thus, they impose 5 constraints, which lead to 3 reaction force and 2 reaction 

moment components. As for the cylindrical joints, they allow only one rotational and 

only one translational relative motion and, thus, they impose 4 constraints, which 

lead to 2 reaction force and 2 reaction moment components.    

 

If the dynamics of the system is expressed by means of the Newton-Euler equations, 

then, many reaction force and moment components appear as unknowns in the 

equations. For each module with 30RN =  revolute joints and 14CN =  cylindrical 

joints, the number of these unknowns is 5(30) 4(14) 206N = + = . On the other hand, 

the degrees of freedom of each module is 7F = . However, there are 8 joint 

variables; 6 for the first and second VGT submodules and 2 for the third submodule. 

The two joint variables ( 1ψ , 2ψ ) for the third submodule define, in fact, only one 

rotational motion (ψ ). Therefore, one additional kinematics constraint ( 1 2ψ ψ ψ= + ) 
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is added to the system. So, for each module, the number of unknowns is 

206 7 213+ =  whereas the number of equations is ( ) ( )1 6 33 1 192nλ − = − = . The 

number of equations is not equal to the number of unknowns. This shows that the 

system is over-constrained. In other words, a unique solution can not be obtained. As 

a result, 213 192 21− =  unknown reaction force and moment components should be 

treated as if absent for the module shown in the Figure 5.1 by virtually simplifying 

its structure. Of course, this must be done without violating the rigidity assumption 

of the links. For this aim, the joint types of the module are virtually changed to 

obtain a solvable system without changing the motion characteristic of the module. 

Here, such a virtual simplification can be made since we are not actually interested in 

the reaction force and moment components. As a result of this simplification, the 

unknown reaction force and moment components arise according to the new 

configuration. 

 

For the simplification, there are many alternatives with respect to the joint 

configurations. That is, the simplification for the module is not unique. So, the 

alternative shown in Figure 5.2 is selected. Thus, the extra links causing the system 

to be over-constrained are removed from the model.  To repeat, these simplifications 

are considered only for solving the equations of motion of the HRM and do not 

involve any structural modification on the original model. These simplifications do 

not change the form of the motions of the first and second submodules but they 

convert the last submodule into a 3-position actuator with the displacement set 

{ }* *,0,ψ ψ− + .  

 

According to the new considered model, the module shown in Figure 5.2 involves 18 

links, 7 revolute joints, 12 cylindrical joints and 3 universal joints. Note that a 

universal joint allows only two relative rotational motions between the connected 

bodies and it imposes 4 constraints that create 3 reaction force components and 1 

reaction moment component. 
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The number of unknown reaction force and moment components is 

7 5 12 4 3 4 95× + × + × =  ( 7RN = , 12CN =  and 3UN = ) and the degrees of freedom is 

7, i.e. there are 7 independent joint variables. As a result, there are totally 

95 7 102+ =  unknowns while there are ( )18 1 6 102− × =  equations. Thus, the number 

of unknowns becomes equal to the number of equations, and the system turns into a 

solvable system.  

 

 

 
 

Figure 5.2 The Assumption for the Joint Types of the Module 
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5.3 The Dynamic Analysis 

 

The most efficient methods for representing manipulator dynamics in the literature 

require serial computations proportional to degrees of freedom. The manipulator 

dynamics problem is generally formulated by using a technique based on Lagrangian 

mechanics, iterative Newton-Euler formulation or Newton-Euler method. Lagrangian 

mechanics results in equations of motion that can be written compactly as 

 

ˆ ( ) ( , ) ( )M q q C q q G q F+ + =�� �                  (5.2) 

 

Here, q  is the vector of the generalized coordinates, i.e. the actuator lengths 

11 12 13, , ,s s s etc, ˆ ( )M q  is the mass matrix, ( , )C q q�  and ( )G q  are vectors containing 

the velocity and gravity dependent terms, and F  is a vector containing the actuating 

forces.   

 

This manipulator is actuated with on-off pneumatic actuators which are either fully 

extended or fully contracted in the initial and terminal positions of the HRM. While 

the HRM is in motion between the initial and terminal positions, some of the 

actuators move from the extended state to the contracted state, some of them move in 

the opposite sense, and the rest of them remain unchanged. The actuator motions are 

obtained by applying pneumatic forces in the given direction. The motion of an 

actuator from one state to the other one, whenever commanded, is of course possible 

if the applied pneumatic force is sufficiently large. Whether such motions of the 

actuators can come true or not, can be tested by means of the dynamic analysis of the 

manipulator. If the required motion of any of the actuators does not come true, then 

the manipulator fails performing the desired task.  

 

To analyze the dynamic ability of the system, at first, the dynamic equations for each 

module are established by considering the free body diagram of each link as shown 

in Figures 5.3 and 5.4. By applying the Newton-Euler Method, the equations are 

written in matrix form separately for the 17 rigid links belonging to that module with 

the presence of the given forces of the actuators.  
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The Newton-Euler equations are written as follows. 

The force equations are  

=∑ i i iF m a                       (5.3) 

 

The moment equations are 

α ω ω= +∑ �i i i i i i
ˆ ˆM J J                           (5.4) 

 

In these equations, ia , iα  and iω  are the linear acceleration, angular acceleration and 

angular velocity of each link respectively. They are generated recursively as shown 

below. 

 

/ 0 / 0 /i k i kω ω ω= +
G G G                    (5.5) 

 

/ 0 / 0 / / 0 /i k i k k i kv v v rω= + + ×
GG G G G                    (5.6) 

 

/ 0 / 0 / / 0 /i k i k k i kα α α ω ω= + + ×
G G G G G                   (5.7) 

 

( )/ 0 / 0 / / 0 / / 0 / 0 / / 0 /2i k i k k i k k k i k k i ka a a v r rω ω ω α= + + × + × × + ×
G G G GG G G G G G               (5.8) 

 

Here, i / jωG  and i / jαG are the angular velocity and acceleration of the body i  relative to 

the reference frame j , which is fixed to body j . i / jrG , i / jvG  and  i / jaG  are the position, 

velocity and acceleration of the center of gravity of the body i  relative to the 

reference frame j .   

 

The Newton-Euler equations for body 2 are written as shown below first as vector 

equations and then as matrix equations expressed in the first reference frame attached 

to the first link. 

 
(0) (2)

12 32 2 3 3 2 2( )sF F m gu F F u m a+ + + − =
G G G G G   
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(1) (1) (1,0) (1,2) (2) (1)
12 32 2 3 1 3 2 2

ˆ ˆ( )F F m gC u cs F C u m a+ + + − =�  

( 2 ) ( 2 )
12 32 2 12 2 32 1 3 2 2 2 2 2( )G G sM M F r F d u F F u J Jα ω ω

∨ ∨

+ + × + × + × − = ⋅ + × ⋅
GG G G G G G GG G GA

(1) (1) (1) (1) (1) (1) (1,2 ) ( 2 ) (1) (1) (1) (1) (1)
12 32 2 12 2 32 1 2 2 2 2 2 2

ˆ ˆ ˆ( )G GM M F r F d cs F C u J Jα ω ω+ + + − − = +� �� �A  

 

Now, the Newton-Euler equations can be written for body 3 also as above. 

 
(0) (2)

23 12 3 3 3 3 3 3( )sF F m gu F F u m a−+ + + − =
G G G G G   

(1) (1) (1,0) (1,2) (2) (1)
12 3 32 3 3 1 3 3 3

ˆ ˆ( )F F m gC u F cs C u m a− − + + − =�  

( 2 ) ( 2 )
23 12 3 3 12 3 3 23 1 3

3 3 3 3 3

( )G G sM M F r F d u F F u

J Jα ω ω

− −

∨ ∨

+ + × + × + × −

= ⋅ + × ⋅

GG G G GG G GA
G G G

(1) (1) (1) (1) (1) (1) (1,2 ) ( 2 )
12 3 32 3 12 3 3 32 1 2

(1) (1) (1) (1) (1)
3 2 2 3 2

ˆ( )
ˆ ˆ

G GM M F r F d cs F C u

J Jα ω ω
− −− + − − −

= +

� � �A
�

 

 

 
 

 
Figure 5.3. The Free Body Diagrams of the 2nd and 3rd Links 
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The vector and matrix equations for body 8 (the second platform) are written with 

respect to the reference frame attached to its own mass center as shown in Figure 5.4.    

 
(0)

3 8 5 8 7 8 9 8 11 8 13 8 8 3 8 8F F F F F F m gu m a− − − − − −+ + + + + + =
G G G G G G G G   

(8,2) (2) (8,4) (4) (8,6) (6) (8) (8) (8) (8,0) (8)
8 3 8 5 8 7 9 8 11 8 13 8 8 3 8 8

ˆ ˆ ˆ ˆC F C F C F F F F m gC u m a− − − − − −− − − + + + + =  

 

3 8 5 8 7 8 9 8 11 8 13 8 3 8 3 8 5 8 5 8 7 8 7 8

9 8 9 8 11 8 11 8 13 8 13 8 8 8 8 8 8

M M M M M M r F r F r F

r F r F r F J Jα ω ω

− − − − − − − − − − − −

∨ ∨

− − − − − −

+ + + + + + × + × + ×

+ × + × + × = ⋅ + × ⋅

G G G G G G G G GG G G

G G G G G GG G G  

 
(8,2 ) ( 2 ) (8,4 ) ( 4 ) (8,6 ) (6 ) (8) (8 ) (8)

8 3 8 5 8 7 9 8 11 8 13 8

(8) (8 ,2 ) ( 2 ) (8) (8,4 ) ( 4 ) (8) (8,6 ) (6 ) (8) (8 ) (8) (8)
3 8 8 3 5 8 8 5 7 8 8 7 9 8 9 8 11 8 11 8

(8) (8) (8 )
13 8 13 8 8

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

C M C M C M M M M

r C F r C F r C F r F r F

r F J α

− − − − − −

− − − − − − − − − −

− −

− − − + + +

− − − + +

+ =

� � � � �

� (8 ) (8) (8) (8)
8 8 8 8Ĵω ω+ �

 

 

 

 
 

Figure 5.4 The Free Body Diagram of the Link 8 

 

 

This procedure is applied until the 18th link, which is the last link of the model. 
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The vector and matrix equations for body 18 (the last link of the model) is written 

with respect to the 18th reference frame.       

 
(0)

15 18 17 18 19 18 21 18 23 18 18 3 18 18F F F F F m gu m a− − − − −+ + + + + =
G G G G G G G   

(18,15) (15) (18,16) (16) (18) (18) (18) (18,0) (18)
18 15 18 17 19 18 21 18 23 13 18 3 18 18

ˆ ˆ ˆC F C F F F F m gC u m a− − − − −− − − − − + =  

 

15 18 17 18 19 18 21 18 23 18 15 18 15 18 17 18 17 18 19 18 19 18

21 18 21 18 23 18 23 18 12 12 12 12 12

M M M M M r F r F r F

r F r F J Jα ω ω

− − − − − − − − − − −

∨ ∨

− − − −

+ + + + + × + × + ×

+ × + × = ⋅ + × ⋅

G G G G G G G GG G G

G G G G GG G  

(18,15) (15 ) (18,16 ) (16 ) (18) (18) (18) (18 ) (18,15 ) (15)
18 15 18 17 18 19 18 21 18 23 15 18 18 15

(18) (18,16 ) (16 ) (18) (18 ) (18) (18 ) (18 ) (18)
17 18 18 17 19 18 18 19 21 18 18 21 23 18 18 2

ˆ ˆ ˆ

ˆ
C M C M M M M r C F

r C F r F r F r F
− − − − − − −

− − − − − − − −

− − − − − −

− − − −

�

� � � � 3

(18 ) (18 ) (18) (18) (18)
18 18 18 18 18

ˆ ˆJ Jα ω ω= + �
 

 

where, 

 

0ω ωi i /=  and 0α αi i /=  

i jr−

G : the position vector from the connection point between the body i  and the body 

j  to the center of gravity of the body j . 

 
( )k

i jr−� : the tilde matrix of  i jr−

G  with respect to the reference frame k . 

 

i jF −

G
, i jM −

G
: the force/moment on the body j  applied by the body i . 

 
( )k

i jF − , ( )k
i jM − : the matrix representation of i jF −

G
/ i jM −

G
with respect to the reference 

frame k . 

 
( )i , jĈ : the component transformation matrix from the reference frame j  to the 

reference frame i .  
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kJ
∨

 and ( )ˆ i
kJ : the inertia tensor of the body k and the corresponding inertia matrix of 

the body k  written relative to the reference frame i.  

 

These equations of motion as a reference are used to write the equations of motion of 

the HRM.   

 

5.3.1 The Equations of Motion of the HRM 

 

The equations of motion are at first written by applying the Newton-Euler equations 

to the links of the reference module as shown in Figure 5.2. These equations 

constitute a reference set of equations. By using this set, the equations of motions for 

all modules of the HRM can be obtained set by set according to their dimensions, 

applied forces, inertias etc. Taking the orientations and positions of the modules into 

account, all equation sets can be combined in matrix form as follows.       

 

ˆˆ ˆ ˆ( ) ( ) ( , ) ( )Ca
M q B q R D q q G q F

α
⎡ ⎤

+ + + =⎢ ⎥
⎣ ⎦

�                 (5.9) 

where  

ca : the acceleration vector of the link centers of gravity 

α : the angular acceleration vector of the links 

( )
[ ]

( )

0

0

i

i

ˆm
M̂ q

ˆ Ĵ q

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥=
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

: the mass matrix, 

B̂ : the reaction force and moment component matrix 

R : the unknown reaction force and moment component vector 

D : the dissipative force vector 

G : the gravity force vector 

F : the applied force vector 

 

In Equation (5.9), the acceleration vector ca  and the angular acceleration vector α  

involve the independent and dependent joint variables. These acceleration vectors 



 109

can be written in terms of the independent joint variable accelerations and the 

velocity terms involving the dependent and independent joint velocity and position 

terms. That is,  

 

ˆ
α

��Ca
Hq E

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
                  (5.10) 

where 

q  is the independent joint variable vector 

E  is the vector involving the velocity and position terms. 

( )Ĥ q  is the Jacobian matrix.  

 

Substituting Equation (5.10) into Equation (5.9), Equation (5.9) can be written in 

terms of only independent joint variable accelerations as follows.  

 

( ) ˆˆ ˆ ˆ ˆ( ) ( ) ( , ) ( )M q Hq E B q R D q q G q F+ + + + =�� �  

 

This equation can be rewritten in a simpler form. 

 

ˆ ˆ ˆMH q BR Q+ =��                   (5.11)

    

where, 

 ˆˆ ˆQ F ME D G= − − −  

 

This equation can also be written as, 

 

ˆ ˆ ˆ q
MH B Q

R
⎡ ⎤⎡ ⎤ =⎢ ⎥⎣ ⎦ ⎣ ⎦

��
#  

 

Solution of this equation for q��  and R  is 
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1ˆ ˆ ˆq
MH B Q

R
−⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎣ ⎦⎣ ⎦

��
#  

 

The dimension of the matrix ˆ ˆ ˆ ˆL MH B⎡ ⎤= ⎣ ⎦#  for the ten-module manipulator 

considered here is 1020 by 1020. The inversion of such a huge matrix is very 

difficult and the solution time for the manipulator motion simulation takes a very 

long time because the inverted matrix is needed at each time step during the 

numerical integration of the motion equations. On the other hand, what cause the 

matrix L̂  to grow in size are the unknown reaction force and moment components. 

For example, there are 950 unknown reaction force and moment components while 

there are only 70 independent joint variables. If the reaction force and moment 

components are eliminated, the dimension of the matrix to be inverted becomes 

much smaller compared to L̂ .  

 

5.3.1.1 The Elimination of the Constraint Forces  

 

 The constraint forces (i.e. the reaction force and moment components) are 

eliminated from the dynamic equations by expressing these equations in terms of the 

independent joint variables.  

 

To extract the independent joint variables from Equation (5.11), the equation is 

premultiplied side-by-side by the matrix ˆ TH . Then, Equation (5.11) becomes    

 

ˆ ˆ ˆ ˆ ˆ ˆT T TH MH q H BR H Q+ =��                (5.12) 

 

This operation is called “embedding technique” or “reduction of matrix dimension” 

in the literature [54], [55] and [56]. Here, it must be noted that 

 

ˆ ˆ 0TH BR =                    (5.13) 
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This equation is based on the "virtual work method" and it states the renown fact that 

the constraint forces do not do any work [54].  

 

Owing to Equation (5.13), the system differential equation reduces to 

 

ˆ ˆ ˆ ˆT TH MH q H Q=��                   (5.14) 

 

Here, ˆ ˆ ˆ ˆTM H MH′ =  and ˆ TQ H Q′ =  are the generalized mass matrix and the 

vector of generalized forces associated with the independent coordinates. Noting that 

ˆ ˆ ˆ ˆTM H MH′ =  has a much smaller size compared to L̂ . With the embedding 

technique described above, the dimension of the system matrix to be inverted is 

reduced form 1020 by 1020 to 70 by 70. Although the dimension of the other 

matrices is larger, the operation on these matrices is arithmetic, summation and 

multiplication of two matrices. This is very easier rather than calculating the 

inversion of the matrix.    

   

Equation (5.14) can be solved for the independent accelerations easily as follows.  

 

( ) 1ˆ ˆ ˆ ˆT Tq H MH H Q
−

=��                  (5.15) 

 

The accelerations determined above can then be integrated forward in time in order 

to determine the independent coordinates and velocities. 

 

Using the Euler's approach to solve the differential equations numerically with a time 

step h , the solution can be expressed as follows. 

 

( ) ( ) ( ) ( )
2

2
hq t h q t v t h q t+ = + + ��  

( ) ( ) ( )v t h v t q t h+ = + ��  
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Here, the components of q  and v  are the lengths and speeds of the actuators. 

 

In the numerical solution of the equations of motion of the HRM, when the pistons of 

the actuators touch the ends of their cylinders, the joint variables of the actuators take 

specified values, which are the minimum or maximum actuator lengths. To handle 

such cases, saturation limits are employed in the computer program prepared to 

integrate the differential equations.       

 

If one wants to find the constraint forces, then Equation (5.11) is rearranged to obtain 

them as follows.  

 

( ) ( ){ }1ˆ ˆ ˆ ˆ ˆT TR B B B Q MH q
−

= − ��                 (5.16) 

 

From Equation (5.15) and (5.16), all the unknowns of the HRM can be obtained for 

the given actuator forces between the initial and final configurations of the HRM.  

 

5.3.2 Pneumatic Actuator Forces 

 

In this study, on-off pneumatic cylinders have been used as actuators. Due to the 

compressibility of air, the presence of friction and the non-linearity of valves, 

pneumatic actuators exhibit highly non-linear characteristics. Modeling of pneumatic 

actuator systems is based on the standard orifice theory. In this modeling, the 

equations are derived for the compressible air, the ideal gas with one-dimensional 

adiabatic, isentropic flow. Also, it is assumed that the supply pressure is constant. 

The relations and information about pneumatic systems are given in [57] in detail. 

  

According to Figure 5.5, the expressions with the given assumptions can be written 

as follows.  

 

20 11
2

T k M
T

−
= +                     (5.17) 
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120 11
2

k
kP k M

P
−−⎛ ⎞= +⎜ ⎟

⎝ ⎠
                 (5.18) 

 

Mass flow rate passing through unit area is that 

0
1

0 2( 1)211
2

k
k

Pk M
A R T k M

ω
+
−

=
−⎛ ⎞+⎜ ⎟

⎝ ⎠

                (5.19) 

 

 

 
 

Figure 5.5 Pneumatic Serial Circuit 

 

 

where, 

ω  : mass flow rate, kg/s 

A  : cross sectional area, m2 

k  : specific heat ratio, /p vc c  ( / 1.4p vc c =  for air) 

R  : idea gas constant ( 287.0R = , m2/s2-K for air) 

T  : absolute gas temperature, K 

0T  : state temperature, K 

P  : gas pressure, Pa 

Ps Pe PA PB

PL 

A=γA0 A=γA0 

Aa �y  

ω1 ω2 
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0P  : state pressure, Pa 

M  : Mach number 

 

Solving equation (5.18) for M, and substituting it into equation (5.19), the mass flow 

rate passing through unit area can also be written as, 

 

 

1 1

0

0 00

2 1
( 1)

k
k kPk P P

A R k P PT
ω

−

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

               (5.20) 

 

For the compressible flow, 

 
1 1

0

0 00

2 1
( 1)

k
k k

d
Pk P PC A

R k P PT
ω

−

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠

               (5.21) 

 

According to Figure 5.5, the piston velocity is given as 

1

A a

y
A

ω
ρ

=�                    (5.22)   

or 

2

B a

y
A

ω
ρ

=�                    (5.23) 

 

When Equation (5.21) is substituted into these two velocity equations and the ideal 

gas equation ( P RTρ= ) is used, the working pressures AP  and BP  are obtained as 

follows in terms of the piston velocity.  

 

For part A, 
1 1

0
2 1

( 1)

k
k k

S A A
d

A a S SS

P P PRT ky C A
P A R k P PT

γ

−

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠
�              (5.24) 
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For part B, 

1 1

0
2 1

( 1)

k
k k

e eB
d

B a B BB

P PPRT ky C A
P A R k P PT

γ

−

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠
�              (5.25) 

 

The load pressure and the piston force depending on the velocity can be obtained 

from the following formulas respectively.  

L A BP P P= −  and a LF A P=   

For the given specifications, the piston force versus piston velocity is shown in 

Figure 5.6 and 5.7. The system specification is as follows. 

 
020 293A B ST T T C K= = =�  (environment temperature with small change) 

1γ =  (full opening of valve) 
2 3 21250 1.25 10aA mm x m−= =  (cross sectional area of the piston) 

5 25.10 /SP N m=  (source pressure) 

5 210 /eP N m=  (environment pressure) 

5 2
0 10A m−=  (cross sectional area of the valve)  

0.85dC =  (discharge coefficient for orifices) 
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Figure 5.6 The Piston Force versus Piston Velocity 
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Figure 5.7 The Piston Force versus Piston Velocity for 0 0.5 /v m s= −  

 

 

Due to the physical restrictions, actuators generally have a maximum velocity limit. 

In this study, this limit is assumed to be 0.5 /v m s=  as a case study. Note that the 

relationship between the piston force of the pneumatic actuator and the piston 

velocity is almost linear for this velocity limit. 

 

According to the figures, the push and pull forces of pistons can be taken as constant 

in the simulations since the change in piston force is negligibly small in the range of 

the piston speeds. For example, for the velocity limitation of 0.5 /v m s= , taking a 

constant force value during the operations causes a maximum error of 4.8%. 

 

5.3.3   The Algorithm for the Computer Program 

 

In this dynamic problem, the independent joint variables which are the lengths of the 

actuators used in the HRM will be solved. This solution will be made numerically by 

using the algorithm for the computer program as follows. 

 

 The masses, inertias and dimensions are taken from 3D solid drawing software 

module by module. 
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 From the inverse kinematics, the on-off information belonging to the actuators is 

taken and, the initial and final positions of the actuators and the required angles 

are calculated for each module. 

 The numeric iterations come true step by step for each time value in the loop. 

 In order to obtain the whole dynamic system equations, the required sub-

matrices and the sub-vectors are obtained for each module. These are the 

acceleration matrix [ ]ˆia , the constraint force matrix involving the reaction forces 

and moment components ˆ
iR⎡ ⎤⎣ ⎦ , the mass matrix ˆ

iM⎡ ⎤⎣ ⎦ , the gravity vector iG⎡ ⎤⎣ ⎦ , 

the dissipative force vector iD⎡ ⎤⎣ ⎦ , the applied force vector iF⎡ ⎤⎣ ⎦ , the inertial 

force vectors Mi
J⎡ ⎤⎣ ⎦ , ˆ

i iM E⎡ ⎤⎣ ⎦ . They are written by using the dimensions, and the 

initial positional and velocity values of each module for 1,2,.............10i = . 

 After that, the upper matrices are obtained by combining these sub-matrices as 

follows. 

 

[ ]

]

1

*
1 2

* *
1 2 3

* *
1 2 10

ˆˆ 0

ˆˆ ˆ 0

ˆˆ ˆ ˆ 0ˆ

ˆ ˆ ˆ.........

a

a a

a a aa

a a a

⎡ ⎤⎡ ⎤
⎣ ⎦⎢ ⎥

⎢ ⎥⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤⎢ ⎥= ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎡⎢ ⎥⎣⎣ ⎦

# #
# #

   

1

2

10

ˆˆ 0

ˆ
ˆ

ˆ ˆ0

R

R
R

R

⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦

%
 

 

1
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10
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ˆ
ˆ

ˆ ˆ0

M

M
M

M

⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦⎣ ⎦
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1
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D
D

D

D

⎡ ⎤
⎢ ⎥
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1
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10

F
F

F
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⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
     

1

2

10

G
G

G

G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
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Since the last link of each module is the first link of the following module, the 

Newton-Euler equations for the last link are written out of the sub-matrix ˆ
iR⎡ ⎤⎣ ⎦  and, 

it is added to the upper matrix R̂⎡ ⎤⎣ ⎦ . 

 

 To construct system matrix, make the matrix calculations between the 

acceleration coefficient matrix and the mass matrix. By inverting the system 

matrix, calculate the independent accelerations of the actuated joint variables 

using the Euler approach. Then, the velocity and also the joint variables are 

calculated by integrating these accelerations. 

 

  The values of the joint variables are controlled for the maximum and minimum 

length of the actuators. That is, when each joint variable reach these values, it is 

accepted that it finishes its motion unless there is any motion in the reverse 

direction. Each value is saved and, then, the algorithm passes to the next step. 

 

 After calculating all the joint variables, using these values and Equation (5.16) 

from the whole dynamic equation set, the constraint forces are calculated. 

 

According to this algorithm, the dynamics solution of the manipulator is given in the 

motion between the configurations shown in Figure 5.8. The plots belonging to the 

joint variables versus time for some modules as an example are depicted in Figures 

5.9a-5.9d. In this simulation, the system specifications are given in Table 5.1. These 

values are approximately specified with respect to the mass, inertia and dimensions 

of each module. 
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Table 5.1 Applied Forces, Module Masses and Viscous Friction Coefficients 

 
Module 

Number 

Applied Force 

(N) 

The Total Mass 

of Each Module 

(kg) 

Viscous Friction 

Coefficient (Ns/m)  

1 1200 11.5 
2 1000 9.6 
3 900 8.3 
4 800 7.2 
5 700 6.4 
6 600 5.4 
7 500 4.3 
8 240 3.5 
9 120 2.8 
10 60 2.2 

 

500c =    for the diagonal and 

off-diagonal actuators. 

  

1500c =  for the actuators in 

the rotating submodule. 
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Figure 5.8 The Initial and Final Configurations for the Dynamic Analysis 
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Figure 5.9a The Joint Variables for the Module 1 
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Figure 5.9b The Joint Variables for the Module 4 
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Figure 5.9c The Joint Variables for the Module 6 
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Figure 5.9d The Joint Variables for the Module 9  
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In some applications, some actuators can not reach the given stable states when many 

actuators of the HRM are in motion and especially the HRM is forced to take the 

configuration with both the fully extended and twisted motions. For example, for the 

initial and final configurations as shown in Figure 5.10, the actuators represented 

with the 12s  and 22s  joint variables for the module 1 in Figure 5.11a can not 

complete their motion.  12s  and 22s  have to reach the contracted stable state whereas 

they are in some intermediate states. Also, for the module 3 as shown in Figure 

5.11b, 12s  has to remain in the contracted stable state whereas it is again in an 

intermediate state. 
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Figure 5.10 An Example of Non-Implemented Configuration Set 

 



 123

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
200

250

300

350

400

450

Time (s)

Po
si

tio
n 

(m
m

)

s23: OFF to ON

s22: ON to OFF

s12: ON to OFF

s13: OFF to OFF

e : OFF to ON

s11: OFF to ON

s21: OFF to ON

 
 

Figure 5.11a The Joint Variables for the Module1 
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Figure 5.11b The Joint Variables for the Module 3 

 

 

5.4   COSMOSMOTION 

 

COSMOSMotion is a computer software tool that supports engineers to analyze and 

design mechanisms. COSMOSMotion is a module of the SolidWorks product family 

developed by SolidWorks Corporation. This software supports users to create virtual 

mechanisms. The analysis and simulation capabilities in CosmosMotion employ 
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simulation engine, ADAMS/Solver, which solves the equations of motion for the 

mechanism. Typical simulation problems, including statics (equilibrium 

configuration) and motion (kinematics and dynamics), are supported. All 

mechanisms can be simulated and visualized as shown in Figure 5.12. 

 

COSMOSMotion creates a kinematics analysis model; e.g., using a motion driver to 

drive the mechanism; and then carries out dynamic analyses. In dynamic analysis, 

position, velocity, and acceleration results are identical to those of kinematics 

analysis. However, the inertia of the bodies will be taken into account for analysis; 

therefore, reaction forces are calculated between bodies. 

 

 

 
 

Figure 5.12 The General View of SolidWorks with COSMOSMotion 

 

 

The overall process of using COSMOSMotion for analyzing a mechanism consists of 

three main steps: model generation, analysis (or simulation), and result visualization 
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(or post-processing), as illustrated in Figure 5.13. The analysis or simulation 

capabilities in COSMOSMotion employ simulation engine, ADAMS/Solver, which 

solves the equations of motion for the mechanism. ADAMS/Solver calculates the 

position, velocity, acceleration, and reaction forces acting on each moving part in the 

mechanism.  

 

 

 
 

Figure 5.13 General Process of Using COSMOSMotion 

 

 

ADAMS/Solver simulation engine has some features as follows: 

• ADAMS/Solver uses the system of Euler-Lagrange equations of motion. This 

system, composed of algebraic and second order differential equations, 

requires sophisticated numerical methods for their solutions. 

• ADAMS/Solver solves all equations simultaneously. 

• ADAMS/Solver arbitrarily determines which constraints are redundant, 

deletes them from the set of equations, and provides a set of results that 

characterize the motion and forces in the system. 

• ADAMS/Solver can simulate an overconstrained model only if the redundant 

constraints are consistent. Redundant constraints are consistent if a solution 
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satisfying the set of independent constraint equations also satisfies the set of 

redundant constraint equations. 

• If a singularity takes place in the initial position, ADAMS/Solver removes it 

by making very small motions. It uses the information at the previous 

iteration to pass singular positions when mechanism is in motion. 

 

The solid model of all the links of the manipulator and their assemblies are made in 

SolidWorks software. The applied forces, the dissipative forces and the gravity 

forces are modeled in COSMOSMotion and then, the dynamic equations are solved.  

 

5.5   The Comparison of the Joint Variables of Hyper Redundant Manipulator 

Found in COSMOSMOTION and the Computer Program in MATLAB 

 

The computer program to solve the unknowns of the dynamic equation set has been 

written in MATLAB with respect to the algorithm expressed above. It consists of a 

main program and many sub programs. In this part, the solution of the independent 

joint variables of the HRM will be found out for the different initial and final 

positions of the manipulator. Some assumptions have been made in this application. 

The applied forces on the actuators are taken as fixed due to the pneumatic 

calculations and the physical velocity restriction.  It is supposed that the dissipative 

force type is viscous friction on the actuators and, the dissipative forces on the 

passive joints are assumed to be negligible. In addition to these, in the simulations, 

the applied forces are assumed to be large enough to perform the motions and the 

viscous friction coefficient is taken as larger because these cover the realistic 

requirements of such a system.     

 

After obtaining the dynamic equations of HRM with Newton-Euler method, the joint 

variables, which are the lengths of the pneumatic cylinders, have been solved in the 

computer program written in MATLAB. For visualization and justification, the hyper 

redundant manipulator consisting of the first two of ten modules has been 

constructed in SolidWorks CAD software and the dynamic solution of this part has 

been investigated to find out the joint variables in CosmosMotion. For example, the 
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simulations for both methods have been run under the same conditions. The results 

are shown in Figures 5.14 and 5.15.  
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Figure 5.14 The Joint Variables for the Module 1 
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Figure 5.15 The Joint Variables for the Module 2 
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As shown in the figures above, the variations of the joint variables obtained with 

both methods are almost the same. Nevertheless, some errors appear between some 

joint variables. This contradiction can depend on some reasons. The first one, when 

the CosmosMotion encounters a redundancy in solving the dynamics equations, the 

software removes the redundant equations. However, in order to eliminate the 

redundancy for solving the dynamic equation by the computer program, some 

assumptions and simplifications have been made and, during the simulation we don’t 

interfere the simulation. This operation is made by changing virtually the joint types 

for only the conformity of the equation set. Another reason to cause this 

contradiction may be that the solution technique is different for these two methods. 

The CosmosMotion uses iterative approach to solve the joint variables while the 

computer program written in MATLAB uses matrix inversion method for the 

solution.     

 
5.6   Summary and Results 
 
 

In this chapter, the dynamics analysis of the hyper redundant manipulator has been 

considered in detail by using Newton-Euler Laws. At first, the equations of motion 

are obtained for a single module. Then, these equation set is applied to construct the 

equations of the motion for the whole system because the manipulator is module-

based, i.e. all modules have same constructive characteristics. These system 

equations are written in matrix form. The dimensions of the system matrix are rather 

large to solve the system unknowns, which are the independent joint variables and 

the constraint forces. Especially, the constraint forces (reaction moment and force 

components) increase the dimension. This causes too much time loss to solve the 

equations. It is known that, according to the virtual work principles, the constraint 

forces are not involved in the equations of the motion since the virtual work of them 

equals to zero. Using embedding technique, the dimension of the system matrix is 

diminished. The reaction forces and moment components can be then found by using 

the calculated independent joint variables.       
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The solid model of the hyper redundant manipulator is designed in SolidWorks 

computer program and, the features of each part of the manipulator are given in the 

same program. After obtaining the set of inertial and dimensional features, the 

dynamic equations are solved with the algorithm written in the MATLAB computer 

program. At the same time, the results for the same features are obtained by using the 

CosmosMotion dynamic simulation software. The two groups of the results are 

compared with each other on the same figures. The plots show that the two methods 

give approximately the same results. However, there are some differences for the 

independent joint variables between the results with the MATLAB algorithm and the 

one with CosmosMotion. These differences can be originated from firstly the 

solution technique and secondly the behavior of the CAD software when to 

encounter the redundancy in the simulation. 

 

According to the figures, the independent joint variables change linearly with time. 

This conforms to the simple modeling of the pneumatic actuator for hyper redundant 

manipulators by Chirikjian [40]. However, the actuators can open and close at the 

different times. 

 

In the simulations, it is assumed that the actuator forces are larger enough and the 

coefficient of the viscous friction is large. This assumption causes the actuators to 

make almost linear motion.        
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CHAPTER 6 

 
 
 
 

THE APPLICATIONS OF THE HYPER REDUNDANT 

MANIPULATOR 

 
 
 
 
 

 
6.1   Applications 

 

Binary hyper redundant manipulators can be used in many applications such as pick-

and-place, spot welding, repairing and inspection in dangerous and complex areas 

such as space satellites, nuclear powers, bridges. Compared to their continuously 

actuated counterparts, they have many advantages such as much cheaper, light 

weight, no need for feedback, less complexity in computer controlled interfacing, 

allowing tasks to be performed even when some actuators fail etc. In spite of these 

advantages, they have a discrete workspace and can reach a finite set of points in this 

workspace. In addition to this, binary hyper redundant manipulators can not follow a 

given reference trajectory when they move from a configuration to another one since 

the actuators used in binary hyper redundant manipulators have either fully open or 

fully closed position. This does not allow to have any control in intermediate 

positions, and the manipulators can deviate excessively from a given reference 

trajectory. As a result, these manipulators can not be used in the applications based 

on a certain trajectory except for some specific cases.         

 

In this chapter, some applications of the hyper redundant manipulator are given. 

These applications show the capability of the manipulator and its applicability in 

different fields. The first application is the path tracking of the manipulator and, the 

second one is grasping and wrapping an object.  
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6.1.1   The Path Tracking   

 

As expressed earlier, one of the fields of binary hyper redundant manipulators is spot 

welding. In this study, according to the inverse kinematics, the manipulator can reach 

any given point with very small error in its workspace. This provides the manipulator 

to make spot welding easily. However, if the manipulator is required to follow the 

continuous path exactly, then, this process can not be performed due to the reasons 

expressed above. Despite working in the discrete space, the last module of the HRM 

is taken as a continuous manipulator to fine tuning so that it can follow any 

continuous path in its workspace. The 6 DOF fine tuning manipulator (FTM) has 

been selected for the continuously actuated manipulator. As an example, the circular 

path is to be tracked. The application of the path tracking can be applied for 

continuously welding of object as well as cleaning, repairing. For this path tracking, 

at first, the discrete target points are specified as shown in Figure 6.1. According to 

these selected discrete points, the convenient configurations are found by using the 

workspace filling method (or the extended spline fitting method) in such a way that 

the manipulator can avoid the obstacles and its trajectory is as close as possible to the 

given circular path. The last module traces the circular path while the discrete parts 

of the HRM are passing through these discrete target points. However, in this 

motion, the trajectory of the discrete part, especially the trajectories of the last 

module, get out of the space in which the continuously actuated part of the HRM can 

reach. This makes the path tracking impossible for the specified dimensions of the 

continuously actuated part (the FTM). For this reason, in this application, we use 

another procedure for the path tracking. First, the circular reference path is divided 

into some parts such that the initial and final points of each part should be in the 

workspace of the continuously actuated manipulator. Secondly, the discrete modules 

are moved from the initial configuration to the next configuration and stop, then, the 

FTM goes to the initial point of the circular path and follows the path until the end 

point of the segmented part. After that, the same procedure is applied for the next 

steps till completing the whole path tracking work. This procedure is shown in 

Figure 6.2. 
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The Figure 6.1 The Selected Configurations for the Path Tracking 

 

 

Note that the motion between two successive configurations is continuous although 

the system is discrete. The values of the joint variables, the length of actuators, 

between two successive configurations have been taken from the data files found 

with the inverse kinematics and dynamics analysis. These files are created by the 

offline solution of the manipulator by using the computer programs written in 

MATLAB. Then, the solutions are used in the online path tracking problem. In 

Figure 6.3, the trajectory of the last discrete module of the HRM, the circular 

trajectory to be tracked and the initial configuration are shown. According to this 

figure, it is obvious that the fine tuning manipulator could not follow the reference 

circular curve for the HRM in motion.  
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Figure 6.2 The Path Tracking Procedure 
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Figure 6.3 The Trajectory of the HRM for the Path Tracking 
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In the applications, the selection of the configuration is very important. The 

configurations should not collide with the obstacles and should have smaller 

deviation from the reference curve. Also, the distance of the last point between two 

successive configurations should be in the workspace of the FTM. In addition to 

these criteria, the orientational error of the top platform of the HRM is another 

criterion for the selection of configuration. Although the target position is in the 

workspace of the FTM, any configuration as shown in Figure 6.4(a) increases the 

burden on the FTM considerably. On the other hand, Figure 6.4(b) shows a 

convenient target position for the FTM.  

 

 

 
 

 
Figure 6.4 Inconvenient (a) and Convenient (b) Target Positions for the FTM   

 

 

6.1.2   Grasping an Object 

 

In this application, the manipulator grasps an object, surrounding it, and moves it 

from one position to another one. The last discrete 4 modules of the manipulator 

makes grasping and the fine tuning manipulator (FTM) presses the object at a 
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convenient point to hold it stably as the remaining modules carries the object to the 

desired place. It is assumed that the manipulator provides enough contact force and 

there is no possibility of rotation of the object during grasping and carrying. Figure 

6.5 and 6.6 shows this application. In this application, the shape of the manipulator 

can be defined by the inverse kinematics. However, the motion from any 

configuration to this grasping configuration should be defined by the spline fitting 

method or heuristically. Not only the change of on-off positions of the actuators, but 

also the sequence of the change of actuator is important for efficient process. Here, 

the grasping is made by the last four modules and the continuously actuated 

manipulator. Therefore, the actuator states can be specified for different objects in 

such a way that the maximum contact points and surface are obtained to move the 

object in a stable manner. In this application, any analysis for the grasping has not 

been made and also only a cylindrical object as a sample is selected.   

 

 

 
 

Figure 6.5 The Schematic of Grasping an Object 
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Figure 6.6 The Grasping an Object 

 

 

6.1.3   Wrapping an Object 

 

In the previous study, it is shown that the manipulator could grip a cylindrical object 

and move it from a position to another one. In addition, the HRM can wrap around a 

cylindrical object in 3D space as shown in Figures 6.7 and 6.8. However, it can not 

completely wrap around the object. In this type of applications, for full wrapping an 

object, it is required that many modules should be used, dimensions must be smaller 

and motion of each module must be larger. Like the grapping operation, in this 

application, the shape of the manipulator can be defined from the inverse kinematics 

and the sequence of the action of the actuator should be specified.  
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Figure 6.7 Wrapping an Object Graphically 

 

 

 
 

Figure 6.8 Wrapping an Object in SolidWorks Environment 



 138

 
 

CHAPTER 7 

 
 
 
 

CONCLUSION 

 
 
 
 
 
 
In this study, a hyper redundant manipulator driven by binary actuators has been 

devised and controlled by the inverse kinematics methods. It also has an additional 

continuously actuated manipulator at its tip for fine tuning. In the first part (Chapter 

2), the manipulator has been devised and modified to improve its rigidity and 

performance with respect to the structure and dimensions of the modules. In the 

second part (Chapters 3 & 4), the kinematics of the hyper redundant manipulator 

(HRM) has been studied and, the algorithms have been developed to control the 

manipulator. In Chapter 5, the dynamic analysis has been carried out to create the 

equations of motion for the HRM. In the last part, the applications of the manipulator 

such as the path tracking, grasping an object have been studied. 

 

Note that the hyper redundant manipulators have some disadvantages such as 

insufficient rigidity and powerful actuation system. The modifications on the HRM, 

which the structure of the variable geometry truss (VGT) submodules is converted 

from parallelogram to trapezoidal, and the manipulator constructed like a cone, 

improve these disadvantages. Furthermore, these modifications reduce the lateral 

forces on the actuators and joints.  

 

The most important disadvantage about the discretely actuated hyper redundant 

manipulators is that their inverse kinematics and control of trajectories based on the 

inverse kinematics are rather difficult to implement the given tasks. In this study, the 

inverse kinematics of the HRM with ten modules has been studied for 
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( )103 3 1 222 2 3 6.8 10× × ×�  possible configurations. For such a huge system, three 

approaches have been offered for the inverse kinematics. The first approach is the 

spline fitting method based on a reference curve which is a spline. With this method, 

the manipulator is fitted to the spline part divided into the number of the modules. 

This method needs only a little bit memory and the operation for the library 

construction and selection of the configuration take very short time since this method 

is module-based and the searching process is based only on the number of the 

module configurations. Using this method, the manipulator can fit fairly well into the 

given spline on condition that the spline confirms with the motion capability of the 

HRM. However, the results show that the positional errors can be larger although the 

manipulator can fit well into the reference curve. Even, these errors can be out of the 

limits which the continuously actuated manipulator can compensate. This is possible 

because the searching process is module-based and made from the base to the top. 

This procedure accumulates the larger errors on the top of the HRM. In some cases, 

especially, for the splines which do not fit the motion capabilities of the manipulator, 

this method would give the inconvenient configurations, which deviate excessively 

from the reference curve.  

 

To eliminate the drawbacks of the first method, the extended spline method has been 

offered. This method is the combination of the spline fitting method and the genetic 

algorithm. The extended spline fitting method has supplied a quite improvement on 

this first method as seen from Table 4.2 and Figure 4.26-30. 

 

In another approach for the inverse kinematics, the workspace filling method based 

on the workspace of the manipulator has been offered. Instead of the whole 

workspace of the manipulator involving  ( )103 3 1 222 2 3 6.8 10× × ×�  configurations, a 

workspace which is the subset of this whole workspace and consists of a finite 

number of configurations is created randomly or by using the genetic algorithm. The 

selection process is made with respect to some criteria which are the minimum 

positional and orientational errors, the shape of the manipulator and the trajectory 

tracking. The selected configurations can provide the desired criteria as shown in 
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Chapter 4. However, a problem related to this method is appeared. Although the 

other criteria are supplied, one does not have a control over the shape of the 

manipulator since the set of the configurations is selected randomly from the 

workspace created.  

 

The comparison of these three methods is made according to Figure 4.26-30 and 

Table 4.2. The results point out that the extended spline fitting and the workspace 

filling methods give more feasible solutions than ones with the spline fitting method 

in terms of the positional errors. In addition, the extended spline fitting and the 

workspace filling methods contain the minimum orientational errors whereas this is 

not involved in the spline fitting method except for the torsion. When considered the 

shape of the manipulator, all three methods, especially the extended spline fitting 

method, can provide the convenient solutions. The other criterion for the comparison 

is the trajectory tracking. The extended spline fitting and the workspace filling 

methods can select the configurations with better trajectories since these two 

methods provide multiple solutions for the inverse kinematics and involve a set of 

the solution configurations instead of one configuration. In the spline fitting method, 

this criterion is excluded from the searching since the method does not have any 

relation about the trajectory between the successive configurations and selects only 

one configuration. However, the control of the trajectory tracking with all these 

methods does not seem to be feasible. The trajectory of the manipulator can deviate 

excessively from the given reference curve. In fact, although it is claimed in the 

literature that the combinatorial method [34] gives feasible solutions for the 

trajectory tracing, this study was given for the planar manipulators and the solution 

configuration was searched on the neighboring of the preceding configuration, i.e. 

the method tries to find the solution by changing the state of only a few actuators. 

This is not sufficient for the 3D space and changing the state of actuators towards the 

base of the manipulator can cause larger deviations at the top of the manipulator.  

 

For the workspace filling method, the workspace is divided some restricted parts for 

different tasks and, also with this method, the larger configuration diversity is 

obtained. Because of these, in addition to four criteria expressed above, the 
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workspace filling method is useful for the multiple tasks and avoiding the moving or 

unexpectedly appearing obstacles.  For the task of avoiding the obstacles, the HRM 

has already a set of solution configuration with respect to its tip point. Thus, by 

compromising the tip point accuracy by a small amount, a different configuration 

from this set can be selected in such a way that the manipulator can not collide with 

the obstacles.   

 

In this thesis, the configurations found with these three inverse kinematics methods 

are not necessarily globally optimum. However, the configurations found by the 

extended spline and the workspace filling methods are local optimum. These 

methods can be applied to all binary actuated hyper redundant planar, spatial, parallel 

manipulators. The use of these methods is the task dependent. If the obstacles in the 

environment are definite, the extended spline method is preferred to select better 

configurations. Otherwise, the workspace filling method is more useful for adaptable 

configurations. As for the spline fitting method, it is better for reducing the 

computation time. Table 7.1 summarizes the comparison of these three inverse 

kinematics methods with respect to several criteria.  

 

 

Table 7.1 The Comparison of Three Inverse Kinematics Methods 

 
  Spline Fitting Method Extended Spline 

Fitting Method 
Workspace Filling 

Method 
Positional 

Error    

Orientation 
Error    

Shape    
Trajectory    

Time    
Multiple 

Tasks    

Moving 
Obstacles    
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Finally, with the dynamic analysis, the equations of motion have been written in 

terms of the pneumatic forces generated by the binary actuators and the real motion 

of the manipulator has been obtained by using the solution of these equations. The 

results show that the real motion of the manipulator between two successive 

configurations has a very non-smooth trajectory with respect to the given reference 

curve.  

 

In some cases, the manipulator can not reach the desired configurations. The discrete 

nature of the manipulator causes this problem. The manipulator could take the 

desired shape and follow exactly the given reference trajectory if it were actuated 

continuously. So, it is desirable to have a binary hyper redundant manipulator to 

approximate the motion capability of a continuously actuated counterpart as much as 

possible. For this aim, the dimensions of the modules, i.e. the dimensions of their 

actuators, should be diminished and the stroke of the actuators with respect to their 

nominal length should be increased. However, these are some theoretical 

considerations. Here, there appears a problem. In fact, designing such actuators with 

much smaller dimensions is rather difficult in practice. In particular, when these 

actuators are used towards the base of the manipulators, to actuate such a huge 

system becomes almost impossible. 

 

The future works can be focused on the following subjects.  

 

• As expressed earlier, in order to implement the given task correctly the structure 

of the discretely actuated hyper redundant manipulators should be approached to the 

continuously actuated counterparts. Therefore, a study will be focused on devising 

new binary small but rigid actuators. These should provide larger power and have 

very small dimensions and larger strokes relative to their nominal lengths.  

 

• In order to define a spline efficiently for inverse kinematics of hyper redundant 

manipulators, the position of the control points is a very important subject. For the 

further study, according to the given task and motion capability of HRMs, the 
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positions and number of these points can be obtained by an appropriate optimization 

study. 

 

• The environment in which binary HRMs work may involve moving or 

unexpectedly appearing obstacles. In such an environment, the control of binary 

HRMs is rather difficult in real time by using the ordinary or extended spline fitting 

methods because of the long computation times they need. However, the workspace 

filling method generates a larger configuration diversity readily. Therefore, it can be 

useful to adapt the configuration of the HRM quickly to the changes in the 

environment. As a future work, an efficient algorithm can be developed for this 

purpose.  

 

• An investigation related to this binary hyper redundant manipulator can be made 

for different realistic applications. Also, defining the tasks, which the HRM with the 

present actuators can make, is another subject to be studied for the future work. That 

is, the working limit of the manipulator needs to be defined. 

 

• The task of trajectory tracking with the discretely actuated hyper redundant 

manipulators is still a dilemma. Different methods for solving this problem can be 

studied for a discrete workspace with a very large number of configurations.      
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APPENDIX A 

 
 
 
 

KINEMATICS OF THE FINE TUNING MANIPULATOR (FTM) 

 
 
 
 
 
 

The fine tuning manipulator (FTM) has been used as a continuously actuated part of 

the HRM for fine tuning. The kinematics analysis of this manipulator has been made 

according to Figure A.1 and the Denavite-Hartenberg parameters as shown in Table 

A.1.   

 

The transformation matrix from the base frame of the FTM to the end effector is 

given in exponential form with respect to Table A.1 as follows. 

3 1 2 23 3 4 2 5 3 6(0,6)ˆ ˆ e e e e eu u u u uC C θ θ θ θ θ= = � � � � �                 (A.1) 

where 23 2 3θ θ θ= +  

 

 

Table A.1 Denavite-Hartenberg Link Parameters for the FTM 

 
Link Variable α  a  d  

1 1θ  / 2π−  0 1d  
2 2θ  0  2a  2d  
3 3θ  / 2π  0 0 
4 4θ  / 2π−  0 4d  
5 5θ  / 2π  0 0 
6 6θ  0  0 0 
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Figure A.1 Schematic View of the Fine Tuning Manipulator and its Joint Variables 
and Dimensions 

 
 

 

The position vector from the base frame of the FTM to the tip point of this 

manipulator is given in the following. 

 
(0) (1) (2) (3)

1 3 2 3 2 1 4 3fr d u d u a u d u= + + +
G G G G G                 (A.2) 

 
(0) (0,1) *

1 3
ˆ

f fr d u C r= +  

M=O0 

O1 

(1) 

(2)

(3)

(4)

(5)

(6) 

A2 

O2= O3 

O4= O5= O6 

d2 

d1 

a2 

d4 

(0)
3uG  (1)

3uG  

(2) (1)
3 3//u uG G

(4)
3uG

(3)
3uG  

(5) (6)
3 3u u=G G  

Target 

Target/Mfr r=
G G
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where 
2 2 4 23

*
2 2 4 23

2

cos sin
sin cosf

a d
r a d

d

θ θ
θ θ

+⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

The given orientation matrix is 
11 12 13

*
21 22 23

31 32 33

ˆ
c c c

C c c c
c c c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The translational vector is 
1

2

3

f

f f

f

r
r r

r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

From the positional and orientational equations, all the joint variables can be found, 

in turn, as follows. 

 

( )2
1 1 1atan 2 ,1t tθ = − −                   (A.3) 

 

where, 
2 2 2

1 1 2 2 2
1

2 2

f f f

f

r r d r
t

d r
σ+ − +

=
+

,  1 1σ = ±  

( )2
2 2 2atan 2 ,1t tθ = − −                   (A.4) 

 

where, 
( ) ( )22 2 2 2

2 3 1 2 2 3 1 2 2 1
2

2 2 1

2 4 4

2
f fa r d a r d k a B

t
k a B

σ− + − − +
=

+
, 2 1σ = ±  

1 1 1 2 1cos sinf fB r rθ θ= +  

 

( )3 1 2 2atan ,θ ζ ζ θ= −                    (A.5) 

 

where, 1 2 2
23 1

4

cossin B a
d

θθ ζ−
= = , 3 1 2 2

23 2
4

sin
cos fr d a

d
θ

θ ζ
− +

= =  

 

( )* 2 *
5 5 33 33atan 1 ,c cθ σ= −                   (A.6) 
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where, 5 1σ = ±  and 2 2 3 3 1

* * *
11 12 13

( )** * * * *
21 22 23
* * *
31 32 33

ˆ ˆe eu u

c c c
C C c c c

c c c

θ θ θ− + −

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

� �  

( )* *
4 5 23 5 13atan ,c cθ σ σ=                   (A.7) 

 

( )* *
6 5 32 5 31atan ,c cθ σ σ= −                   (A.8) 

 

Target/M Target/0 M/0r r r= −
G G G : the given positional vector 

 

The given orientation matrix *Ĉ  can be found with respect to 323 Euler angle 

convention as follows.  

 

11 12 13
*

21 22 23

31 32 33

c c c
ˆ c c c

c

c c c c s s c s s c c s
C c c c s c s s s c c s s

c c c s c s s

φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

θ ψ θ ψ θ

− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = + − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

           (A.9) 

 

( )2
33 33atan2 1 ,c cθ σ= − , 1σ = ±                (A.10) 

 

( )23 13atan2 ,c cφ =                      (A.11) 

Where, 13cos
sin
cφ
θ

= ,  23sin
sin
cφ
θ

=   

 

( )32 31atan2 ,c cψ = −                 (A.12) 

where,  31cos
sin
cψ
θ

= , 32sin
sin
cψ
θ

=  

 

Equations A.1-12 calculate the required joint variables to compensate the positional 

and orientational errors of the HRM. The given orientation matrix *Ĉ  can be 

expressed in terms of the orientation of the last platform of the HRM (included only 

discrete part of the manipulator) and the FTM in the following. 
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* (0, ) (0, ) ( , )ˆ ˆ ˆ ˆTarget HRM HRM TargetC C C C= =               (A.13) 

 

Here, (0, )ˆ TargetC :  the given orientation matrix, 
(0, )ˆ HRMC :  the orientation matrix of the last platform of the HRM with 

respect to the initial reference frame, 
( , )ˆ HRM TargetC : the orientation matrix of the FTM with respect to the last 

platform of the HRM. 

 

If it is desired that the FTM does minimum work or no work, all joint variables of the 

FTM can be assigned zero. Thus, the orientation matrix of the FTM becomes an 

identity matrix. So, the orientation matrix of the discrete part of the HRM becomes 

equal to the given orientation matrix.    

 
* (0, ) (0, ) (0, )ˆ ˆ ˆ ˆˆTarget HRM HRMC C C I C= = =  
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APPENDIX B 

 
 
 
 

BEZIER CURVE AND ADDITIONAL FEATURES OF NURBS 

 

 

 

 

There are many types of splines. Here, Bezier curves and NURBS is given with their 

features. 

 

B.1 Bezier Curve 

 

The basis functions used for Bezier curves are Bernstein polynomials of degree k, 

defined by  

 

( ) ( ) kittB ikik
i

k
i ,......0,1 =−= − .  

 

With the aid of Bernstein polynomials, the definition of a Bezier curve b(t) is given 

as )t(BB)t(b k
ii∑= . 

The vectors Bi are called Bezier points and they form a Bezier polygon. Figure B.1 

shows, for parameter interval 10 ≤≤ t , an example of a cubic Bezier with 

corresponding Bezier points and polygon. 
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Figure B.1 Bezier Cubic Curve and its Bezier Polygon B1B2B3B4 

 

 

Analyzing Figure B.1 and additionally the Bezier curve’s first and second derivative 

we notice that: 

- The first Bezier curve point coincides with Bezier point B0 and the last 

Bezier curve point coincides with Bezier point Bk, 

- The Bezier polygon sides B0B1 and Bk-1Bk are tangent to the Bezier curve, 

- The degree k of the Bezier curve is one less than the number of Bezier 

points k+1, 

- The Bezier curve is contained entirely with in convex hull of its Bezier 

polygon. 

 

Curves consisting of just one polynomial or rational segment are often inadequate. 

Their shortcomings are: 

• a high degree is required in order to satisfy a large number of 

constraints; e.g., 1( n )− -degree is needed to pass a polynomial Bezier 

curve through n  data points. However, high degree curves are 

inefficient to process and are numerically unstable; 

• a high degree is required to accurately fit some complex shapes; 

• single-segment curves are not well-suited to interactive shape design; 

although Bezier curve can be shaped by means of their control points 

(and weights), the control is not sufficiently local. 

B1 

B2 

B3 

B4 

t = 0 t = 1 
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The solution is to use curves which are piecewise polynomial, or piecewise rational 

 

B.2 Additional Features of NURBS 

 

NURBS is a piecewise rational splines. Here, some features of this spline are 

presented in the following.  

• i,0N ( t ) , which equals to zero everywhere except on the half-open 

interval  [ )1i it ,t + , is a unit step function; 

• For 0k > , i ,kN ( t ) is a linear combination of two ( )1k − -degree basis 

functions; 

• The calculation of a set of basis functions needs specification of a knot 

vector, T , and the degree,  k; 

• The i ,kN ( t ) are piecewise polynomials on the entire real line only 

between [ ]0 mt ,t ; 

• The half-open interval, [ )1i it ,t + , is called the ith knot span. It can have 

zero length, since knots need not be distinct; 

• In any given knot span, )1j jt ,t +⎡⎣ , at most, 1k +  of the i ,kN ( t ) are non 

zero, i.e. the functions j k ,k j ,kN ,............,N−  are non-zero; 

• For an arbitrary knot span [ )1i it ,t + , 0 1n
i i ,kN ( t )= =∑  for all  [ ]0 1t ,∈ ; 

 

The ikR ( t ) are the rational basis functions on [ ]0 1t ,∈ . The i ,kR ( t )  have the 

following properties derived NURBS equation and the corresponding properties of 

the i ,kN ( t ): 

1- 0i ,kR ( t )≥  for all i, k and [ ]0 1t ,∈ ; 

2- 0 1n
i i ,kR ( t )= =∑  for all  [ ]0 1t ,∈ ; 

3- 0 0 1 1,k n,kR ( ) R ( )= = ; 

4- For 0k > , all i ,kR ( t )  reach exactly one maximum on the interval [ ]0 1t ,∈ . 
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5- 0i ,kR ( t ) =  for ( )1i i kt t ,t + +∉ . Like the basis functions, in any given knot span, at 

most, 1k +  of the i ,kR ( t )  are nonzero ( i-k ,k i ,kR ( t )..........R ( t ) are nonzero in 

[ )1i it ,t + ); 

6- At a knot, i ,kR ( t )  is k r−  times continously differentiable, where r is the 

multiplicity of the knot; 

7- If  iw  are constant for all i, then i ,k i ,kR ( t ) N ( t )=  for all i; i.e. the i ,kN ( t ) are 

special cases of the i ,kR ( t ) .  

8- Properties (1)-(4) yield the following important geometric characteristics of 

NURBS curves: 

8-  From (3), 00Q( ) P=  and  1 nQ( ) P= ;  

9-  From (1), (2) and (5), if  [ )1i it t ,t +∈ , then Q( t )  lies within the convex hull of the 

control points i k iP ,..........,P− ; 

10- Q( t )  is infinitely differentiable on the interior of knot spans and is k r−  times 

differentiable at a knot of multiplicity r; 

11- As special cases, A NURBS curve with no interior knots is a rational Bezier 

curve, since the i ,kN ( t ) reduce to the i ,nB ( t )  (Bernstain function for Bezier 

curve). This, means that NURBS curves contain nonrational B-Spline and rational 

and nonrational Bezier curves; 

12- From (5), the control point iP  affects only that portion of the curve on the 

interval [ )1i i kt t ,t + +∈  if the control point iP  is moved or the weight  iw  is changed; 

  

Property (12) is very important for interactive shape design. Using NURBS curves, 

both control point movement and weight modification can be used to attain local 

shape control. Figure 4.5 shows the effect of modifying a single weight. Qualitatively 

the effect is: assume [ )1i i kt t ,t + +∈ ; then  iw  increases (decreases), the point  Q( t )  

moves closer to (farther from) iP , and hence the curve is pulled towards (pushed 

away from ) iP . Furthermore, the movement of  Q( t )  for fixed t is along a straight 

line. 
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