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ABSTRACT 

 

 

BAYESIAN INFERENCE IN ANOVA MODELS 

 

 

 

ÖZBOZKURT, Pelin 

Ph. D., Department of Statistics  

Supervisor: Prof. Dr. Moti Lal TIKU 

 

January 2010, 141 pages 

 

 

 

 Estimation of location and scale parameters from a random sample of size 

n is of paramount importance in Statistics. An estimator is called fully efficient if 

it attains the Cramer-Rao minimum variance bound besides being unbiased. The 

method that yields such estimators, at any rate for large n, is the method of 

modified maximum likelihood estimation. Apparently, such estimators cannot be 

made more efficient by using sample based classical methods. That makes room 

for Bayesian method of estimation which engages prior distributions and 

likelihood functions. A formal combination of the prior knowledge and the sample 

information is called posterior distribution. The posterior distribution is 

maximized with respect to the unknown parameter(s). That gives HPD (highest 

probability density) estimator(s). Locating the maximum of the posterior 

distribution is, however, enormously difficult (computationally and analytically) 

in most situations. To alleviate these difficulties, we use modified likelihood 
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function in the posterior distribution instead of the likelihood function. We 

derived the HPD estimators of location and scale parameters of distributions in the 

family of Generalized Logistic. We have extended the work to experimental 

design, one way ANOVA. We have obtained the HPD estimators of the block 

effects and the scale parameter (in the distribution of errors); they have beautiful 

algebraic forms. We have shown that they are highly efficient. We have given real 

life examples to illustrate the usefulness of our results. Thus, the enormous 

computational and analytical difficulties with the traditional Bayesian method of 

estimation are circumvented at any rate in the context of experimental design.   

 

Key Words: Modified maximum likelihood, Bayesian estimation, Prior 

distribution, Posterior distribution, Experimental design. 
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ANOVA MODELLERİNE BAYESIAN YAKLAŞIM 

 

 

 

ÖZBOZKURT, Pelin 
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Tez Yöneticisi: Prof. Dr. Moti Lal TIKU 

 

Ocak 2010, 141 sayfa 

 

 

 

 Boyutu n olan rassal örneklemden gelen konum ve ölçek parametrelerinin 

tahmini İstatistikte büyük öneme sahiptir. Bir tahmin edici, yansız olmakla 

birlikte, Cramer_Rao en küçük varyans sınırına erişirse bütünüyle etkin olarak 

adlandırılır. Bu özelliklere sahip tahmin edicileri veren yöntem uyarlanmış en çok 

olabilirlik yöntemidir. Görüldüğü gibi, bu tahmin ediciler, örneklem bazlı en çok 

olabilirlik yöntemleri gibi klasik analizler ile daha etkin hale getirilemezler. Bu 

durum öncül olasılık dağılımları ile olabilirlik fonksiyonunu birleştiren Bayesci 

yöntemlere olanak vermektedir. Öncül dağılımın ve örneklemden elde edilen 

bilginin formal kombinasyonu soncul dağılım olarak adlandırılır. Soncul dağılım 

bilinmeyen parametrelere göre maksimize edilir. Bu işlem sonucunda en yüksek 

soncul  olasılık yoğunluk (HPD) tahmin edicileri elde edilir. Fakat çoğu durumda 

soncul dağılımın maksimum noktasını bulmak analitik ve hesapsal açılardan 

oldukça zorlayıcı olabilir. Bu sorunları aşabilmek için, soncul dağılımda 
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olabilirlik fonksiyonu yerine uyarlanmış olabilirlik fonksiyonunu kullandık. 

Genelleştirilmiş Lojistik dağılımlarında konum ve ölçek parametleri için HPD 

tahmin edicileri türettik. Bu analizleri tek yönlü deney tasarımı çalışmaları ile 

genişlettik. Blok etkileri ve (hata terimlerinin dağılımındaki) ölçek parametresi 

için cebirsel olarak uygun formda olan HPD tahmin edicileri elde ettik. Bu tahmin 

edicilerin yüksek derecede etkin olduklarını gösterdik. Sonuçlarımızın 

yararlılığını göstermek adına gerçek hayattan elde edilen veriler ile örnekler 

verdik. Böylece deney tasarımında geleneksel Bayesci tahmin yöntemlerinde 

karşılaşılan analitik ve hesaplama zorluklarını aşmış olduk. 

 

Anahtar Kelimeler: Uyarlanmış En Çok Olabilirlik, Bayesci Tahmin, Öncül 

Dağılım, Soncul Dağılım, Deney Tasarımı. 
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CHAPTER 1 

 

 

INTRODUCTION 

and 

LITERATURE SURVEY 

 

 

 

 The main purpose of statistical theory is to derive inferences for unknown 

parameters under a specified model. Basically, there are two different approaches 

to statistics. Classical statistics, also called the frequentist approach, deals with 

parametric statistical models in which  random variables are assumed to be 

distributed according to a function ),( yf  where the parameter   is unknown 

and fixed. On the other hand, Bayesian statisticians argue that data is not the only 

source of information about the underlying population. Since true values of 

parameters are unknown, they may be considered as random variables. Therefore, 

Bayesian methods include external information to the analysis by considering a 

model for the random variable y  with  pdf  (probability density function) ),( yf  

where   is unknown and not fixed.  

 

In Bayesian framework the parameter  is treated as a random variable and  

has a distribution itself, which is called prior distribution. Prior distribution has a 

major role to play because it represents the information about the unknown 

parameter before the data are observed.  By using the prior distribution and the 

data itself, it is possible to obtain the posterior distribution.  
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1.1. Basic Definitions: 

  

 Theorem: Prior distributions are combined with the information obtained 

from sample data and updated to posterior distributions. The theorem for this 

process is called Bayes theorem stated by Thomas Bayes in 1764. Given the data 

y  and the prior information about  , the posterior distribution )|( yp   can be 

written as the product of the prior distribution )(p  and the likelihood function 

)|( yL . Formally,  

 

 )()|()|(  pyLyp  .                                                                         (1.1) 

 

 Posterior distribution contains all the information about an unknown 

parameter.  It combines the sampling information and information from the prior 

distribution (which depends on previous experiences). It is possible to make 

inferences about the unknown parameter(s) by using the posterior densities. 

 

In order to obtain posterior densities, one can choose informative or non 

informative priors, proper or improper. 

 

1.1.1.  Noninformative Prior Distributions: 

 

Non informative prior distributions give equal, or nearly equal, weights to 

all   values. Such distributions may also be called as flat or diffuse priors. 

Uniform distribution is an obvious choice for a noninformative prior.  Generally, 

the most favored non-informative prior used by Bayesians is Jeffreys’ prior. 

Jeffreys’ principle gives the non informative prior density as 
2/1

)()(  Jp   

where )(J  is the Fisher information for   (Marin and Robert, 2007). There is 

considerable work on Jeffreys’ prior. For example, Ibrahim and Laud (1991) use 

the Jeffreys’ prior with generalized linear models and show that proper posterior 

are produced. Hartigan (1983) studies different exponential family distributions 

and gives their associated Jeffreys’ priors. Poirer (1994) works with logit model 



3 

 

using Jeffrey’s prior and Kass (1989) produces the full properties of these priors 

with geometric interpretation.  

  

Non informative prior distributions have been investigated by many 

statisticians. Jeffreys (1961) and Hartigan (1964) state invariance principles for 

noninformative prior distributions. Box and Tiao (1973), Berger (1985), Bernardo 

(1979) present some definitions and discussions about them. Barnard (1985) 

examines the relationship between pivotal quantities and noninformative Bayesian 

inference. Kass and Wasserman (1996) discuss the ways of obtaining 

noninformative priors based on Jeffres’ rule. Dawid, Stone and Zidek (1973) point 

out the difficulties by using these priors.  

 

1.1.2. Proper and Improper Prior Distributions: 

 

A prior density )(p  is called improper if it  is non-negative for all    

values but   dp )( . Otherwise, it is called proper prior (Gelman et al., 

2004). The main distinction between proper and improper priors is that improper 

priors may lead to improper posterior distributions. For large sample sizes this 

problem disappears but in some cases it remains the same, therefore the resulting 

posterior distributions should be investigated more carefully when an improper 

prior is used. 

 

1.1.3. Informative Prior Distributions: 

 

 Informative or informed priors incorporate all the information about the 

parametes. The information may come from experience.  

 

1.1.3.1.Conjugate Prior Distributions: 

 

The main difficulty of Bayesian anlaysis is that the posterior distribution 

may not be in analytically convenient form. In order to alleviate this difficulty, a 
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conjugate prior may be used. Let P  be a class of prior distributions for  . The 

class P  is said to be conjugate to a class of sampling distributions )|( yp  if the 

resulting posterior distribution )|( yp   is in the same family as )(p . Conjugate 

families are practical to use and mathematically convenient since posterior 

distributions have known parametric forms (Gill, 2008). Although, they are good 

starting points, in some cases it is not possible to use conjugate distributions 

because of their complicated forms.  

 

 Remark: If there exists a sufficient statistics )(yT  then the posterior 

distribution can be written as, )()|)(()()|()|(  pyTgpyfyp   which 

implies that posterior distribution depends on the sampling distribution through 

sufficient statistics.  

 

 Remark: Probability distributions that belong to exponential family have 

conjugate prior distributions. (Gelman et al., 2004). 

 

 Bayesian way of thinking has been applied to almost all statistical 

problems. In this thesis, we are fundemantally interested in the estimation of 

unknown parameters coming from different symmetric and skewed families. Gill 

(2008) considers Bayesian linear regression models by assuming different prior 

distributions. Lindley and Smith (1972) deal with Bayesian linear regression 

while Geweke (1993) investigate the regression model by using error terms 

having t distribution and shows that when the error terms are not normal, complex 

solutions will result. While investigating Bayesian regression, most of the 

researchers assume homoscedasticity. However, Leonard (1975), Mouchart and 

Simar (1984), Le Cam (1986) deal with heteroscedasticity. Inference problems 

like hypothesis testing is also possible with Bayesian approaches. A good 

discussion of hypothesis testing is given by Marden (2000). Lindley (1961) 

develops a procedure that provides two sided hypothesis testing which 

coincidences with classical methods. Moreover, Berger et al. (1994,1997) and Lee 

(2004) deal with Bayesian hypothesis. Bayesian inference is discussed more 
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generally  by Jeffreys (1961), Zellner (1971), Box and Tiao (1973). Bayesian 

techniques are also used in nonparametric analyses.  Bernardo and Smith (1994), 

Dey et al. (1998), Walker et al. (1999) deal with nonparametric Bayesian, a brief 

review can be found in Sinha and Dey (1997).   

 

 The purpose of this thesis is to show that most of the analytical and 

computational difficulties with Bayesian methodology can be alleviated by using 

Tiku’s method of parameter estimation. The results one gets are simple and 

amazingly highly efficient. 

 

1.2. Bayesian Estimation with Single Parameter Models: Normal Distribution 

with Unknown Mean but Known Variance 

  

 Consider a sample nyyy ,,, 21   assumed to come from a normal 

distribution with unknown mean   and known variance 
2 : 

 

 )|( iyp  ))(
2

1
exp( 2

2



 iy ,  ,y .                               (1.2) 

 

In order to find Bayesian estimator of unknown mean ,  assume a conjugate 

prior density )(p , 

 

 ))(
2

1
exp(

2

1
)( 2

02

0

2

0




 p ,   .                    (1.3) 

 

The hyperparameters of the prior distribution 0  and 2

0  are assumed to be 

known. The posterior density is, 
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



n

i

iyppyppyp
1

)|()()|()()|(   

          





















 



n

i

iy
1

2

2

2

02

0

11

2

1
exp 





       

                           (1.4) 

 

which can be written as

 
 

     










 0

22

0

22

0

2

2

0

2
2

2

1
exp)|( 


 ynnyp .           (1.5) 

 

Making equation (1.5) a complete square by adding and subtracting 

2

22

0

0

22

0





















yn
 we get 

 

  




























2

22

0

0

22

022

02

02

1
exp)|(









yn
nyp .                      (1.6) 

 

 The conjugate prior distribution implies that the posterior distribution of 

  is normal density also.  After some algebraic simplification, the posterior 

density )|( yp  can be written as 

 

  











2

12

12

1
exp)|( 


 yp                                                           (1.7) 

 

where 

 

 yww
n

y
n

)1(
1

1

0

22

0

202

0
1 





 







  , 
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and  

 

22

0

2

1

11



n
 .                                   (1.8) 

 

 Remark: The posterior mean is a weighted average of sample mean and 

prior mean with weights proportional to inverse of the variances. The posterior 

mean 
1

 

may also be expressed as adjusted prior mean and sample mean as 

 

 
2

0

2

2

0
001 )(






n
yn


 .                                                              (1.9) 

 

Alternatively, 

 

 
2

0

2

2

01 )(





n
yy


  .                                                                 (1.10) 

 

Moreover, as the number of observations increases, posterior mean 

approaches y . Therefore, the asymptotic distribution of 1  is normal with mean 

y  and variance n/2 . In addition to  this, Gill (2008) states that large values of 

prior variance will yield the same results as the frequentists approach. 

 

 The variances of posterior density and y  can be compared by computing 

the relative efficiency 
)(

)( 1

yVar

Var
RE


 . The numerical results are given in Table 1.1 

below for 2
0

22 /  . 
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Table 1.1 RE values for normal distribution with unknown mean but known 

variance 

2  2 4 7 20 

n=3 0.8571 0.9230 0.9545 0.9836 

n=5 0.9090 0.9523 0.9722 0.9900 

n=10 0.9523 0.9756 0.9859 0.9950 

n=50 0.9900 0.9950 0.9971 0.9990 

 

 

Remark: From Table 1.1, it is seen that as 2  increases, relative 

efficiency increases. In other words, Bayesian estimator of   looses efficiency as 

prior distribution variance becomes large. On the other hand, if sample variance 

increases, the Bayesian estimator of mean 
 
becomes more efficient than the 

sample mean.  

 

Remark: It is seen from Table 1.1 that as sample size increases, likelihood 

dominates over the prior information. Therefore, Bayes estimator is not 

advantageous as compared to sample mean when number of observations is large.  

 

1.3. Bayesian Estimation with Multiparameter Models: 

 

1.3.1 Normal Distribution with Unknown Mean and Unknown Variance: A 

Non-Informative Prior: 

 

Consider normal distribution with unknown mean   and unknown 

variance 2   and assume a non informative prior density as, 

 

  122 ),(


 p                                                                                  (1.11) 
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Combining the likelihood with (1.11) the joint posterior density  

)|,( 2 yp   is obtained as, 

 

  







 




n

i

i

n yyp
1

2

2

)2(2

2

1
exp)|,( 


   

 

      







  22

2

)2( 1
2

1
exp 


 ynsnn  .              (1.12) 

 

Note that, we can determine the posterior density of   given 2  with 

uniform prior density as normal )/,( 2 ny  . Moreover, the marginal posterior 

density of 2  can be found by integrating (1.12) as 

 

     


 dynsnyp n

 







  22

2

)2(2 1
2

1
exp)|(    

 

          







 




2

2
2/)1(2

2

1
exp




snn
                                            (1.13) 

 

which is a scaled inverse chi square distribution with 1n  degrees of freedom.  

As a result, the joint posterior density (1.12), is factorized as 

)|(),|()|,( 222 ypypyp   . In order to draw samples from joint 

posterior density (1.12) first samples should be selected from (1.13) and then from 

conditional posterior density of   which is  normal )/,( 2 ny  .  Moreover, if 

unconditional posterior density of   is to be obtained, 

 

 
22 )|,()|(  dypyp                                                                 (1.14) 

 

which is obtained as 
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 
 

2/

2

2

1
1)|(

n

sn

yn
yp


















 .                                                            (1.15) 

 

1.3.2. Normal Distribution with Unknown Mean and Unknown Variance: 

Dependent Prior Distributions of   and 2  

  

 Consider normal distribution with unknown mean   and unknown 

variance 2  with prior distributions specified by (1.16) and (1.17) below: 

 

 )/,(~| 0

2

0

2  Normal                     (1.16) 

 

and  

 

 ),(~ 2

00

22  vInv  .                       (1.17) 

 

The dependent prior distribution of   on 2 implies that they will have joint 

conjugate prior density as 

 

     









 2

00

2

002

)12/(212

2

1
exp),(

0




 vp
v

.           (1.18) 

 

Gelman et al. (2004) calls density (1.18) as ),;/,( 2

000

2

00

2  vInvN  . 

Multiplying (1.18) with the likelihood function yields the joint posterior 

distribution: 

 

      








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2

1
exp)|,(

0




 vyp
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         









 22

2

2/2 1
2

1
exp 


 ynsn

n
                 (1.19) 
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which is    ),;/, 222
nnnnn vInvN    where y

n

n

n
n







0

0

0

0







 , 

nn  0 , nvvn  0 ,    2

0

0

022

00

2 1 



 


 y

n

n
snvv nn . 

 

 Remark: It is seen that posterior distribution uses information from prior 

distribution and sample distribution with appropriate weights. It can easily be 

shown  that n  is the weighted average of prior mean and sample mean.  

 

 One can show that, the conditional density of y,| 2  is   


















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

22

0
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202

0

1
,















nn

y
n

Normal  and marginal posterior density of y|2  is 

 22 , nnvInv  . Moreover, the marginal posterior of   obtained by integrating 

(1.19) over 2 ,  is obtained as 
 

2/)1(

2

2

1)|(













 


nv

nn

nn

v
yp




 . 

 

1.3.3. Normal Distribution with Unknown Mean and Unknown Variance: 

Independent Prior Distributions of   and 2  

 

 Consider normal distribution with unknown mean   and unknown 

variance 2  with independent conjugate prior distributions as 

),(~)( 2

00  Normalp  and 














2
,

2
~)(

2

0002 s
GammaInvp


 . The joint 

posterior distribution of   and 
2  can be written as  
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From joint posterior density (1.20) it is easy to show that,  
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and 
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
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






nn

n

Normalyp          (1.22) 

 

   

 

 Remark. It can be seen from the marginal posterior density (1.22) that the 

precision of   is equal to the sum of the precision of prior distribution and the 

precision of the sample.  

 

 Remark: It can be stated from (1.22) that posterior mean   is a weighted 

average of sample mean and prior mean with weights proportional to inverse of 

the variances.  

 

  Relative efficiency values of Bayes estimator of  , denoted as  1 , with 

respect to sample estimator ̂  with respect to different sample sizes is given by 

Table 1.2 below. 
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Table 1.2  RE values for normal distribution with unknown mean and unknown 

variance: independent prior distributions
 

  =1.5
 

 =2.5
 

n=5 

 

0 =2 

0 =3
 

0.8183 

0.9102 

0.6213 

0.7855 

n=10 
0 =2 

0 =3
 

0.8974 

0.9530 

0.7556 

0.8777 

n=15 
0 =2 

0 =3
 

0.9291 

0.9675 

0.8248 

0.9135 

n=20  
0 =2 

0 =3
 

0.9466 

0.9757 

0.8624 

0.9345 

n=30 
0 =2 

0 =3
 

0.9635 

0.9835 

0.9049 

0.9550 

  

Remark: Table 1.2 indicates that, Bayes estimator of   will be less efficient if 

the variance of prior distribution becomes large, and it gains efficiency when 

sample dispersion increases.  

 

Remark:  As sample size increases, likelihood dominates and Bayes estimator of 

mean is not advantageous. This result is also the same as the results shown by 

Table 1.1 given in section 1.2. 
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CHAPTER 2 

 

 

BAYESIAN ANALYSES OF SYMMETRIC and SKEWED FAMILIES 

ONE SAMPLE CASE 

 

 

 

 In this chapter, location parameters of some symmetric and skewed 

distributions are estimated by using both classical and Bayesian techniques. First, 

we apply Modified Maximum Likelihood (MML) estimation method and find 

MML estimators (MMLE) of unknown parameters. After that, posterior densities 

are provided by considering parameters as random variables and assuming 

appropriate robust priors for them. Highest posterior density (HPD) estimators are 

derived from resulting posterior distributions. Relative efficiencies of MMLEs 

and Bayes estimators are compared and presented in the following pages. We start 

with symmetric distributions and extend our analyzes to skewed distributions. It 

may be noted that maximum likelihood estimators are intractable in most 

situations and that makes Bayesian methodology enormously problematic. 

 

2.1. Symmetric Distributions:  

 

2.1.1.Type II Censored Samples Coming from Normal Distribution 

 

2.1.1.1. MML Estimators: 

 

Consider a symmetric type II censored sample from normal distribution 

with mean   and variance 2 . After censoring smallest and largest r  



15 

 

observations, remaining observations can be displayed in terms of order statistics 

as )()1( ,, rnr yy   . In order to find Maximum Likelihood (ML) estimators of 

unknown parameters, the likelihood function L is 

 

   






 
rn

ri

i

r

rn

r

r

rn zfzFzFL
1

)()()1(

)2( )(1)(               (2.1) 

 

where 





)(

)(

i

i

y
z  , rnir 1  , 





z

dzzfzF )()(  and 2

2

)(

z

ezf


 .   

 

The  derivatives of lnL which give ML estimators  are 

 

    0
1ln

)(2)1(1

1

)( 







 





 rnr

rn

ri

i zrgzrgz
d

Ld


                                   (2.2) 

 

and 

 

      02
1ln

1

)(2)()1(1)1(

2 







 







rn

ri

rnrnrri zgrzzgrzzrn
d

Ld


 (2.3) 

 

where      zFzfzg /1   and       zFzfzg  1/2  (Tiku, 1967).  

 

These equations are very difficult to solve since they involve non-linear 

functions  zgi . They have no explicit solutions and iterative methods have to be 

used to obtain ML estimators. Newton-Raphson method can be applied to solve 

them (Schneider,1986) but the resulting estimators will be implicit and difficult to 

use (Tiku and Stewart,1977). Moreover, iterative methods may yield multiple 

roots, iterations may not converge or they may converge to wrong values, see 

Barnett (1966), Lee et al.(1980), and Vaughan(1992). Puthenpura and Sinha 

(1986) also indicate that iterative solutions might not converge if the data contains 

outliers; see also Qumsiyeh (2007, pp.8-14).  In order to alleviate these 
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difficulties, method of modified maximum likelihood estimation  (Tiku (1967, 

1968a,b,c, 1970, 1973), Tiku and Suresh,1992) is used which gives explicit 

solutions. The intractable terms in likelihood equations are linearized and 

resulting equations yield MML estimators. They are highly efficient and 

asymptotically equivalent to the ML estimators (Bhattacharyya, 1985; Vaughan 

and Tiku, 2000) and they maintain high efficiencies for small samples also (Tiku 

and Suresh, 1992; Vaughan, 1992, 2002). Tan (1985) and Tan and Balakrishnan 

(1986) study MML method in Bayesian point of view in case of censored normal 

samples.   

 

In order to formulate MML equations, the functions  
)1(1 rzg  and 

 )(2 rnzg   can be linearized in the vicinity of z (Tiku,1967) such that, 

 
)1()1(1   rr zzg   and   )()(2 rnrn zzg    .  From Taylor series expansion, 

the coefficients   and  are found as 

 











q

tf
t

q

tf )()(
 ,    t

q

tf


)(
          (2.4) 

 

where nrq / , 




t

qdzzf 1)( .  Note that,   and   are both positive and 

between 0 and 1. (Tiku and Akkaya, 2004).  

 

MML equations are obtained by incorporating (2.4) in (2.2) and (2.3) as 

 

   







 
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


                         

       0
2

 


K
m

            (2.5) 

 

and 
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
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1 22

3
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KmCBA                             (2.6) 

 

where 

rnA 2 , rrnm 22  , 

 

m

yyry
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ri

i )()1(
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)( 






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 
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 
)1()(   rrn yyrB   
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)(
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1

2

)( mKyyryC rnr

rn

ri

i  


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The solutions of MML equations give MML estimators as 

 

 

 

m

yyry rnr

rn

ri

i

MML

)()1(

1

)(

ˆ









 

                                                         (2.8) 

 

and, 

 

    12/4ˆ 2  AAACBBMML                                                    (2.9) 

 

 

Note that, MML estimators MML̂  and MML̂  are asymtotically fully efficient 

since likelihood and modified likelihood equations are asymptotically equivalent.  
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 Remark: Asymptotically, MMLE MML̂  is unbiased and 

   12 /12/)ˆ(


 AtrAVar MML  . 

 

 Remark: MML̂  is unbiased for all n and independent of MML̂ . It is easy to 

show that  


 MMl

m

d

Ld

d

Ld
ˆ

lnln
2

*

 and   0/ln   srsr LE   for all 

1, sr .  Moreover, the minumum variance bound for estimating   is 

)2/(2 rn   for large n (Tiku and Akkaya, 2004). 

 

 Comment:  The complete sample  results can readily be obtained by 

taking 0r , of course, certain regularity conditions have to be satisfied. If the 

variances of estimators are compared between complete sample and censored 

sample, it is seen that censoring observations can improve efficiencies if 

miscreant observations (e.g.,outliers) occur in the data.  

 

2.1.1.2. Posterior Distribution: 

 

In order to find posterior distribution of   and 2  given sample 

observations, first modified likelihood equation *L  is obtained (by solving the two 

differential equations (2.5) and (2.6)): 

 

     )(ˆˆ
2

1
exp

22

2

* yHmAL MMLMML

A









  


                          (2.10) 

 

where )(yH  is a function free of   and  .  Then, the joint distribution of MML̂  

and MML̂  can be written as 
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since MML̂  and MML̂  are independently distributed.   

 

 The priors for   and 2  are taken as independent normal and inverse chi-

square distribution as 
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and  
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where  0 , 2

0  and 0  are hyperparamaters of prior distributions. Then,  

 

      22,  ppp                                                                            (2.14) 

 

and 

 

     2*22 ,,,  yLpyp  .                                                        (2.15) 

From (2.15), the joint posterior density can be expressed as 
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where ̂  and 2̂  are MMLE of   and 2 . 

 

2.1.1.3. HPD Estimators: 

 

 The estimators given by mode of posterior densities are called HPD 

(Highest Posterior Density) estimators. From joint posterior density (2.16), it is 

easy to show that 
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and, 
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2.1.1.4.  Comparing Efficiencies of MML and Bayes Estimators: Simulation 

Results 

 

 In order to evaluate the performence of Bayesian estimator and MML 

estimator, simulated relative efficiencies, )ˆ(/)ˆ( MMLBayes VarVarRE  ,are 

calculated and given in Table 2.1 below.  Symmetric type II censoring is 

considered with fixed q=r/n. The observations are assumed to have normal 

distribution with 0  having likelihood function (2.1).  HPD estimator of   

given by equation (2.17) is calculated by assuming (2.12) as prior density with 

hyperparameters 00   and 30  . Using IMSL algorithms 10,000 simulations 

are performed for different sample sizes n.  
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Table 2.1 Simulated means, variances and RE values for censored normal 

distribution with 5.1  

q 0.2 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
0 2.0 

0 2.5 

-0.0037 

0.0040 

0.5174 

0.4934 

-0.0031 

0.0033 

0.4285 

0.4331 

0.8281 

0.8778 

n 10 
0 2.0 

0 2.5 

-0.0044 

-0.0013 

0.2428 

0.2482 

-0.0043 

-0.0011 

0.2169 

0.2308 

0.8934 

0.9301 

n 15 
0 2.0 

0 2.5 

0.0064 

0.0029 

0.1668 

0.1676 

0.0062 

0.0028 

0.1548 

0.1595 

0.9280 

0.9513 

n 20 
0 2.0 

0 2.5 

-0.0040 

-0.0021 

0.1234 

0.1230 

-0.0039 

0.0021 

0.1163 

0.1183 

0.9427 

0.9623 

n 30 
0 2.0 

0 2.5 

-0.0041 

-0.0007 

0.0850 

0.0817 

-0.0040 

-0.0007 

0.0817 

0.0796 

0.9612 

0.9746 

 

Table 2.2 Simulated means, variances and RE values for censored normal 

distribution with 30 
 

q 0.2 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
 1.5 

 2.5 

0.0017 

0.0055 

0.5234 

1.4100 

0.0015 

0.0050 

0.4773 

1.1309 

0.9119 

0.8020 

n 10 
 1.5 

 2.5 

-0.0026 

-0.0116 

0.2517 

0.6995 

-0.0024 

-0.0107 

0.2392 

0.6123 

0.9503 

0.8754 

n 15 
 1.5 

 2.5 

-0.0037 

-0.0013 

0.1688 

0.4671 

-0.0036 

-0.0015 

0.1630 

0.4248 

0.9657 

0.9095 

n 20 
 1.5 

 2.5 

-0.0046 

-0.0073 

0.1249 

0.3421 

-0.0045 

-0.0071 

0.1216 

0.3184 

0.9736 

0.9308 

n 30 
 1.5 

 2.5 

-0.0003 

0.0030 

0.0839 

0.2277 

0.0003 

0.0029 

0.0824 

0.2167 

0.9821 

0.9518 
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Table 2.1 shows the values of means, variances and relative efficiencies 

while sample observations are coming from normal distribution with 5.1 . In 

order to see the impact of prior dispersion on the effectiveness of Bayesian 

estimator, two different 0  values are considered. It can be concluded that when 

prior dispersion increases, relative effiency value increases, that means MML 

estimator gains efficiency. Table 2.2 is constructed to show the changes in relative 

efficiencies with respect to different sample dispersions. Therefore, means and 

variances of estimators are calculated by assuming prior density (2.12) with 

00   and 30   and sample observations are assumed to have 0  and 

5.1   and 5.2 . According to the results in Table 2.2 we can say that as 

sample dispersion increases relative efficiency decreases, which indicates that 

Bayes estimator gains efficiency relative to MMLE. Moreover, both Table 2.1 and 

Table 2.2 show that increasing sample size causes increase in relative efficiencies. 

That is to say, MML estimator gets close to HPD estimators as number of 

observation increases which is in agreement with our earlier statements given in 

Chapter I.  

 

Comment: One of the most important aspects of Bayesian techiques is that one 

can obtain estimators whose variances are smaller than the minum variance bound 

(MVB). By combining prior information with likelihood function, one can cross 

the MVB barrier which is not possible at all in classicals statistical analyses.  

 

2.1.2.Type II Censored Samples Coming from LTS Distributions 

 

2.1.2.1. MML Estimators: 

  

 It has been a tradition to assume a normal distribution but as indicated by 

Geary (1947) and Scheffé (1959),  normality assumption may not be very 

realistic.  In practice, it may be more reasonable to assume that underlying 

distribution belongs to a family which includes a  wide class of symmetric 
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distributions. Therefore, in this part of the study, we consider  type II symmetric 

censored sample )()1( ,, rnr yy     coming from the distribution 
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where 32  pk  and 2p .  We assume p  is known. It is easy to show that  the 

ratio 
 

k

yv
t




   has a Student’s t distribution with degree of freedom 

12  pv . Moreover, (2.18) is  a normal distribution for p . 

 

 In order to find ML estimators, the likelihood equation can be expressed 

as, 
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The derivatives of log of L  are 
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where  
kz

z
zg

/1 2
 ,   

 
 zF
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zf
zh


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1
2 .  

 

Since these equations do not  have explicit solutions,  solving them iteratively 

may have convergence and multiple root problems especially for small values of 

p . Therefore, MML estimators are used instead of MLEs.  MML equations are 

obtained by linearizing the intractable functions as  
)()()()( iiii zzg   , 

 
)1()1(1   rr bzazh  and  

)()(2 rnrn bzazh   . The coefficients of these 

functions can be obtained from first two terms of  Taylor series expansion around 

 
)()( ii zEt  .  The estimators are found by solving modified likelihood equations: 
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Moreover, 
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  rrrr tFtftFtfb  . We can extend these results to 

complete samples by taking 0r .  

 

Note: It may be noted that if 0r , 1  (and few other i  coefficients) can be 

negative if n is large and p  is small. Consequently, C  can be negative resulting 

in an irrational estimator of  . To rectify this situation we replace i  and i  by 
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not affect the asymptotic results since    .)(
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 Tiku and Suresh (1992)  and Vaughan (1992) indicate that for fixed 

nrq / , MML̂  and MML̂  are asypmtotically minumum variance bound 

estimators. For small n  also they are highly efficient.  Note also that MML̂  is 

unbiased for all rn 2  and .0)ˆ,ˆcov(   This result follows from symmetry:  

see Tiku et al. (1986).  

 

Remark: As stated by Tiku and Akkaya (2004), for large A  (with fixed nr / ), 

the asymptotic properties of MML estimators are as follows: 

 

i) MML̂ is minumum variance bound estimator of   and MVar MML /)ˆ( 2  , 

 

ii) 22 /ˆ A  is distributed as chi-square with A -1 degrees of freedom, 

 

iii) MML̂  and MML̂  are distributed independently. 
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Also,  
 


 MMLM ˆ
 is a standard normal variate and, therefore, 

 




ˆ

ˆ 


M
T  is distributed as Student’s t with 1A  degrees of freedom ( 

asymptotically).  

 

2.1.2.2. Prior Distributions: 

 

 In order  to develop Bayesian estimators of of   and 2 , prior 

distribution for  them should be specified. Traditionally, a normal-inverted gamma 

density is assumed such that 
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and 
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.                                                 (2.26)                                                       

 

The joint prior distribution is 

 

      22,  ppp  .                                                                     (2.27) 

 

However, conjugate prior for a normal distribution may not be robust to outliers. 

As stated by Stone (1964), Tiao and Zellner (1964), Dickey (1968, 1974), Berger 

(1984), Bian (1989), O’Hagan (1990), Angers and Berger (1991), Bian and 

Dickey (1996)  assuming prior distributions which give higher probabilities to 

extreme values of   will be more reliable. Such distributions are called robust 

priors.  Therefore,  instead of normal-inverted gamma density an independent t 

and inverted gamma distribution is assumed as 
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      22,  ppp                                                                           (2.28) 

 

where the prior of 2  is given by (2.26) and the prior of   is given by 
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The prior distribution of   reduces to a non informative prior if  0  is infinite 

and it becomes a normal distribution if 0v  is infinte (Bian and Tiku, 1997).  

 

2.1.2.3.  Posterior Distribution: 

 

 HPD estimators are derived from posterior densities of unknown 

parameters which are obtained by combining information from prior distributions 

and sample itself.  In order to find joint posterior density, first joint distribution of 

̂  and 2̂  is expressed as 
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                         (2.30) 

Thus, the posterior density is obtained: 
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It is seen from (2.32) that  and 2  are posteriorly independent where the  

marginal posterior densities are 
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and 
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2.1.2.4.  HPD Estimators: 

 

The HPD estimator of 2  is the mode of the scale inverse chi-square  

density given by (2.34), 

 

 
A

As
Bayes






0

22

002 ˆ
ˆ




                                                                            (2.35) 

 

Remark: From equation (2.35) it is seen that Bayesian estimator of 2  is the 

weighted average of MML estimators and prior information. 

 

 In order to find HPD estimator of   , the mode of the marginal posterior 

density of   given by equation (2.33) should be found. However, it is a poly t 

density which includes a t and a normal factor. Poly t densities are usually 

bimodal and asymmetric, so the mode is different than their mean. Therefore, two 

different cases are considered in finding Bayesian estimator of  . In the first 

case, the degree of freedom of prior distribution of  is taken as infinite, and in 

the second case it is considered as finite.  
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Case1: When 0v , marginal posterior density of   become a product of two 

normal densities, since the prior distribution of   expressed by (2.29) reduces to 

a normal distribution. Under this assumption the marginal posterior density of   

is 
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which yields a normal distribution with mean 
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Comment: We may also express Bayesian estimator of   as  

 ˆ)1(ˆ
0 wwBayes    where   122

0

2

0
ˆ

   Mw . From this expression it is 

clear that Bayes estimator of   is a weighted (or convex) combination of prior 

mean and sample information. If M (i.e.,n) goes to infinity then 0w . In which 

case Bayesian estimator of  will reduce to MML estimator.  On the other hand, 

Bayes estimator will be equal to the prior mean 0  when 1w  and prior variance 

is zero which occurs in case 00  . 

 

Case2: When 0v  is finite, the posterior density of   is 
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In order to obtain the mode of the density of (2.38) the modal equation is obtained 

by taking derivative of  yp ln . The equation simplifies to 
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          2
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ˆˆ1   vMv .                (2.39) 

 

HPD estimator of  will be found by equating the modal equation to zero and find 

the root for  .  

 

 In order to solve (2.39), it is re-formulated as 
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g .  Equation (2.40) is a cubic 

equation which will have either one or three real roots because conjugate roots 

occur in pairs.  If the discriminant of (2.40) is greater than or equal to zero, we can 

say that it has only one real root, otherwise there will be three distinct real roots.   
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Re organization of (2.41) yields 
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(2.42) is a quadratic function of  2  and the discriminant of (2.42), 
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which can be simplified as 
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We can say that 0D  and so posterior of   is unimodal if 01 D . From (2.44) 

it is seen that 01 D  if 
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extreme case of 10 v , 01 D  if and only if 25.0
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
. However, since 

)/ˆvar(   is proportional to M/1 . 
2

2

0

̂


M  will hardly ever be smaller than 0.25. 

Therefore, it can be stated that modal equation will have one real root,almost 

always.  

 

In order to find posterior estimator of  , consider two cases: 

 

Case1: Bayes̂ is close to 0  :  

 

The modal equation (2.39) is re-written as 
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Since Bayes̂ is close to 0 we can ignore 
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which is a convex combination of  0  and ̂ . 

 

Case2: Bayes̂ is close to ̂  :  

 

The modal equation (2.39) is re-written as 
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Since Bayes̂ is close to ̂ we can ignore 
 
 0
ˆ

ˆˆ







Bayes
 and  

 
 20

2

ˆ

ˆˆ







Bayes
and after 

some algebra (2.47) becomes 
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22
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2
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2
0

22
00 MMvvMMvBayes  

        .ˆ1 0

2

0 v                   (2.48) 

 

The resulting HPD estimator Bayes̂  is 

 

     
      2

0
2

0
2

0

2
0

2
00

2
0

ˆ  1/ 

ˆˆ  1/ 
ˆ















Mvv

Mvv
Bayes                                (2.49) 

 

which is a convex combination of 0 and ̂ , a beautiful result indeed. 

 

Comments: 

 

i) In the case of normal distribution with a  conjugate prior we have seen 

that  Bayesian estimator of   is the weighted average of prior mean 

0  and the sample mean y , namely  ywwBayes  1ˆ
0 . In this 

case we have also a similar form with weights which are reciprocals  

of variances. This beautiful result is an outcome of applying the 

method of modified likelihood estimation. It can also be seen from 

(2.46) and (2.49) that the weight of prior mean is higher when the 

posterior distribution is governed by prior information, and weight for 

̂  is higher when the case is vice versa. This weighted form of HPD 

estimators makes them robust to outliers. 

  

ii) When we have non-informative prior distribution of  , i.e., when 0  

goes to infinity, the Bayesian estimator of   converges to MMLE. On 

the other hand, as prior variances become smaller, Bayes̂  tends to prior 

mean 0 ; see also Bian and Tiku (1997). 
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iii) As variance of sample observations increases, Bayesian estimator of 

  converges to 0  since it includes weights which depend on ̂ .  

 

iv) As sample size increases, the information coming from likelihood 

function dominates over the prior distribution and Bayesian estimator 

converges to MML estimator.  

 

2.1.2.5 Comparing Efficiencies of MML and Bayes Estimators: Simulation 

Results 

 

The performence of MML and Bayes estimators are compared by 

simulations. For illustration, we consider observations coming from (2.19) with 

p=3.5, i.e., Student’s t distribution with 6 degree of freedom. The mean of the 

prior distribution (2.29) is taken as 0 and prior degrees of freedom is taken as 6, to 

be compatible with the sampling distribution. IMSL subroutine is used to generate 

indepent random variables of size n. First we obtain simulated values with type II 

censoring with fixed q=r/n, while Bayes̂ is close to 0 . Then, simulations are done 

with type II censoring while Bayes̂ is close to MML̂ . The results are given by 

Table 2.3, Table 2.4 and Table 2.5, Table 2.6, respectively. Moreover, full sample 

results are also reported for both of the cases in Table 2.7, Table 2.8, Table 2.9 

and Table 2.10.  
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Table 2.3 Simulated means, variances and RE values for censored Student t 

distribution with 0,5.1,0,6 00  v  when Bayes̂ is close to 0  

q 0.2 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
0 2.0 

0 2.5 

-0.0046 

0.0165 

0.6457 

0.6382 

-0.0028 

0.0148 

0.4543 

0.4952 

0.7037 

0.7760 

n 10 
0 2.0 

0 2.5 

0.0057 

-0.0051 

0.3163 

0.3080 

0.0052 

-0.0046 

0.2606 

0.2707 

0.8237 

0.8788 

n 15 
0 2.0 

0 2.5 

0.0002 

-0.0077 

0.2033 

0.1996 

0.0002 

-0.0074 

0.1785 

0.1834 

0.8783 

0.9188 

n 20 
0 2.0 

0 2.5 

-0.0058 

-0.0010 

0.1540 

0.1585 

-0.0056 

-0.0009 

0.1397 

0.1441 

0.9071 

0.9387 

n 30 
0 2.0 

0 2.5 

-0.0081 

-0.0048 

0.1006 

0.1030 

-0.0079 

-0.0047 

0.0944 

0.0989 

0.9384 

0.9593 

 

 

Table 2.4 Simulated means, variances and RE values for censored Student t 

distribution with 0,3,0,6 000  v  when Bayes̂ is close to 0  

q 0.2 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
 1.5 

 2.5 

-0.0008 

-0.0176 

0.6528 

1.7614 

-0.0007 

-0.0148 

0.5403 

1.1464 

0.8277 

0.6509 

n 10 
 1.5 

 2.5 

0.0007 

-0.0036 

0.3080 

0.8622 

0.0007 

-0.0032 

0.2805 

0.6802 

0.9106 

0.7889 

n 15 
 1.5 

 2.5 

-0.0020 

-0.0115 

0.2055 

0.5592 

-0.0019 

-0.0103 

0.1936 

0.4768 

0.9418 

0.8526 

n 20 
 1.5 

 2.5 

-0.0018 

0.0027 

0.1527 

0.4200 

-0.0017 

0.0023 

0.1460 

0.3731 

0.9563 

0.8883 

n 30 
 1.5 

 2.5 

0.0047 

-0.0002 

0.1027 

0.2822 

0.0046 

-0.0002 

0.0998 

0.2606 

0.9716 

0.9235 
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Table 2.5 Simulated means, variances and RE values for censored Student t 

distribution with 0,5.1,0,6 00  v  when Bayes̂ is close to MML̂  

q 0.2 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
0 2.0 

0 2.5 

-0.0070 

-0.0026 

0.6356 

0.6345 

-0.0058 

-0.0015 

0.4499 

0.4943 

0.7079 

0.7791 

n 10 
0 2.0 

0 2.5 

0.0072 

-0.0082 

0.3057 

0.3116 

0.0068 

-0.0076 

0.2528 

0.2747 

0.8269 

0.8816 

n 15 
0 2.0 

0 2.5 

-0.0036 

-0.0062 

0.2036 

0.2056 

-0.0033 

-0.0060 

0.1793 

0.1890 

0.8804 

0.9194 

n 20 
0 2.0 

0 2.5 

0.0007 

0.0007 

0.1519 

0.1520 

0.0007 

0.0007 

0.1382 

0.1429 

0.9097 

0.9401 

n 30 
0 2.0 

0 2.5 

-0.0012 

-0.0015 

0.1004 

0.0998 

-0.0011 

-0.0015 

0.0943 

0.0957 

0.9389 

0.9594 

 

 

Table 2.6 Simulated means, variances and RE values for censored Student t 

distribution with 0,3,0,6 000  v  when Bayes̂ is close to MML̂  

q 0.2 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
 1.5 

 2.5 

-0.0012 

0.0091 

0.6368 

1.7537 

-0.0015 

0.0073 

0.5306 

1.1890 

0.8332 

0.6780 

n 10 
 1.5 

 2.5 

0.0052 

-0.0142 

0.3100 

0.8551 

0.0051 

-0.0124 

0.2829 

0.6821 

0.9125 

0.7977 

n 15 
 1.5 

 2.5 

0.0018 

-0.0051 

0.2031 

0.5684 

0.0016 

-0.0047 

0.1913 

0.4866 

0.9420 

0.8561 

n 20 
 1.5 

 2.5 

-0.0034 

-0.0119 

0.1483 

0.4292 

-0.0033 

-0.0113 

0.1418 

0.3819 

0.9565 

0.8899 

n 30 
 1.5 

 2.5 

0.0019 

0.0026 

0.1025 

0.2803 

0.0018 

-0.0025 

0.0996 

0.2592 

0.9717 

0.9247 
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Table 2.7 Simulated means, variances and RE values for Student t distribution 

with 0,5.1,0,6 00  v  when Bayes̂ is close to 0  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
0 2.0 

0 2.5 

0.0014 

-0.0072 

0.6270 

0.6271 

0.0006 

-0.0057 

0.4249 

0.4826 

0.6777 

0.7695 

n 10 
0 2.0 

0 2.5 

0.0031 

0.0043 

0.3042 

0.2935 

0.0026 

0.0043 

0.2498 

0.2574 

0.8211 

0.8772 

n 15  
0 2.0 

0 2.5 

0.0035 

0.0094 

0.1957 

0.1983 

0.0035 

0.0090 

0.1718 

0.1818 

0.8778 

0.9169 

n 20  
0 2.0 

0 2.5 

-0.0024 

-0.0030 

0.1460 

0.1495 

-0.0022 

-0.0029 

0.1323 

0.1402 

0.9065 

0.9381 

n 30 
0 2.0 

0 2.5 

-0.0040 

0.0013 

0.0997 

0.0986 

-0.0039 

0.0013 

0.0943 

0.0951 

0.9455 

0.9646 

 

 

Table 2.8 Simulated means, variances and RE values for Student t distribution 

with 0,3,0,6 000  v  when Bayes̂ is close to 0  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
 1.5 

 2.5 

0.0073 

0.0066 

0.6430 

1.7081 

0.0064 

0.0075 

0.5248 

1.0882 

0.8162 

0.6371 

n 10 
 1.5 

 2.5 

0.0031 

0.0123 

0.2987 

0.8301 

0.0030 

0.0113 

0.2719 

0.6503 

0.9104 

0.7834 

n 15 
 1.5 

 2.5 

-0.0002 

0.0007 

0.1990 

0.5527 

-0.0002 

-00001 

0.1873 

0.4711 

0.9409 

0.8525 

n 20 
 1.5 

 2.5 

-0.0026 

-0.0059 

0.1453 

0.4034 

-0.0026 

-0.0058 

0.1390 

0.3575 

0.9565 

0.8863 

n 30 
 1.5 

 2.5 

0.0055 

-0.0050 

0.1017 

0.2787 

0.0054 

-0.0047 

0.0991 

0.2601 

0.9749 

0.9331 
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Table 2.9 Simulated means, variances and RE values for Student t distribution 

with 0,5.1,0,6 00  v  when Bayes̂ is close to MML̂  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
0 2.0 

0 2.5 

-0.0030 

-0.0050 

0.6261 

0.6268 

-0.0031 

-0.0032 

0.4386 

0.4831 

0.7005 

0.7707 

n 10 
0 2.0 

0 2.5 

-0.0046 

0.0025 

0.3036 

0.3060 

-0.0040 

0.0024 

0.2509 

0.2690 

0.8265 

0.8791 

n 15 
0 2.0 

0 2.5 

-0.0024 

-0.0044 

0.1965 

0.2004 

-0.0023 

-0.0043 

0.1727 

0.1843 

0.8788 

0.9194 

n 20 
0 2.0 

0 2.5 

-0.0086 

-0.0024 

0.1476 

0.1468 

-0.0083 

-0.0023 

0.1340 

0.1377 

0.9076 

0.9384 

n 30 
0 2.0 

0 2.5 

0.0023 

-0.0005 

0.0989 

0.0975 

0.0022 

-0.0004 

0.0936 

0.0941 

0.9469 

0.9650 

 

 

Table 2.10 Simulated means, variances and RE values for Student t distribution 

with 0,3,0,6 000  v  when Bayes̂ is close to MML̂  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
 1.5 

 2.5 

-0.0046 

-0.0206 

0.6106 

1.7110 

-0.0043 

-0.0175 

0.5064 

1.1312 

0.8293 

0.6533 

n 10 
 1.5 

 2.5 

-0.0150 

-0.0049 

0.2983 

0.8460 

-0.0145 

-0.0042 

0.2730 

0.6705 

0.9151 

0.7926 

n 15 
 1.5 

 2.5 

0.0002 

-0.0124 

0.1997 

0.5550 

0.0001 

-0.0111 

0.1880 

0.4747 

0.9414 

0.8554 

n 20 
 1.5 

 2.5 

0.0021 

-0.0087 

0.1466 

0.4060 

0.0021 

-0.0080 

0.1403 

0.3602 

0.9572 

0.8872 

n 30 
 1.5 

 2.5 

0.0017 

-0.0041 

0.0995 

0.2773 

0.0017 

-0.0040 

0.0970 

0.2591 

0.9754 

0.9346 
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Table 2.3 and Table 2.4 deal with the censoring case while Bayes̂  is close 

to prior mean 0 . Table 2.3 indicates the effect of increasing prior dispersion on 

both of the HPD and MML estimators, while Table 2.4 shows the changes in 

simulated values with respect to different   values. We know that Bayes 

estimator looses  efficiency as prior distribution variance becomes larger. On the 

other hand, increasing the sample variance makes HPD estimator better than 

MML estimator. These results are shown in Table 2.3 and Table 2.4 above. After 

that, simulations are carried out for the case when Bayes̂  is close to MML̂ . All of 

the inferences are the same for this case also. The relative efficiencies are almost 

the same as in the case when Bayes̂  is close to 0  but a little larger as expected. 

 

All of the statements made above are valid also for the full sample cases 

which are given in Table 2.7 -Table 2.10. 

 

Moreover, all of the tables above show that both MML and HPD 

estimators have almost no bias. Also, as sample size increases Bayes̂  converges to 

MML̂ , which is expected.  

 

2.2. HPD Estimators under Skewed Sample Distributions  

 

 We extend the results of the previous section to skewed distributions. 

Primarly, gamma distribution is considered since it represents an important class 

of skewed distributions.  

 

2.2.1. Gamma Distribution: 

 

2.2.1.1. MML Estimators: 

 

Consider  a random sample nyyy ,,, 21   coming from gamma distribution 

with unknown origin and scale as 
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




  yy

k
yf k ,         y .                          (2.50) 

 

Assume 1k  and known. We have  kYE )( , 2)( kYVar   and 

  1 kMode . It is known that for 1k , (2.50) is unimodal and positively 

skewed. 

 

In order to find the ML estimators of   and   ,  the likelihood equations are 
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We re-write (2.51) in terms of order statistics, since complere sums are invariant 

to ordering. Thus, 
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where 





)(

)(

i

i

y
z . These equations have no explicit solutions. Therefore, 

instead of maximum likelihood estimation method, Tiku’s modified maximum 
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likelihood estimation method is used.  Let )( )(ii zEt  . Taylor series expansion 

yields the equation )(

211

)( 2 iiii zttz   . The likelihood functions are  
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The MML equations are solutions of 0
ln *


d

Ld
 and 0

ln *


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and they are 

found as 
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As stated by Bian and Tiku (1997), MML estimators are linear functions 

of order statistics. Therefore, their variance-covariance matrix can be obtained 

from the expected values of order statistics which are available in Gupta (1960), 

Pearson and Hartley(1972) and Prescott (1974).   
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Since        dLddLdn /ln/ln/1 *  converges to zero as n goes to infinity 

because 
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 













0

2

1

1

1

111
lim

k
dzze

k
t

n

kz
n

i

i
n

, the following results are true 

(Bian and Tiku ,1997): 

 

Lemma1:  )(
)1(ln

2

*







 DK
km

d

Ld
 which shows that the MML estimator 

of  is MVB estimator (asymptotically) when   is known.   

 

Lemma2. 







 



n

i

iy
nk

nk

d

Ld

1

)(2

*

)(
1ln




 which shows that MML estimator 

of   is MVB estimator asymptotically  when   is known.   

 

Moreover, The asymptotic variance-covariance matrix of ̂  and ̂  is given by 

 

   1** ),(


 IV ,                       

 

where 

 

 2*
)1(

),( 








 
 

nkn

nkm
I .                                                             (2.54) 

 

Remark: Since the joint density of 








 d

Ld

d

Ld ** ln
,

ln
 is bivariate normal with 

mean vector  ,  and variance covariance matrix (2.54) , asymptotically, we 

can write 

 

    .)ˆ()ˆ)(ˆ(2)ˆ)(1(
2

1
expˆ,ˆ 22

2

2

1 







  


 nknkmf              

                                                                                                                          (2.55) 
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Remark: Let  k . The asymptotic distribution of ̂  and  ˆˆˆ k  is 

bivariate normal with mean vector  ,  and variance-covariance matrix 

2

/0

0)1(/







 

nk

km
 where   1

)1(/1


 kmkn .  Therefore, we can write the 

density function of   ˆ,ˆ  as 

 

      .)ˆ)(/()ˆ(/)1(
2

1
expˆ,ˆ 22

2

2

2 







  


 knknkmf  

    (2.56) 

 

Note that the joint density of   ˆ,ˆ  and   ˆ,ˆ  can be written respectively 

as 

 

       ˆˆ|ˆˆ,ˆ 111 hgf    

 

and  

 

        ˆˆˆ,ˆ 222 hgf                                                                            (2.57) 

 

where 

 

       
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
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 k
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    


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

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



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2

2
2
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ˆ2

expˆ 



h

g ;                                                                (2.58) 
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 ̂1h   and )ˆ(2 h  are approximated by a chi-square distributions by using three-

moment chi-square approximation as (Tiku 1996a,b) 

 

    
1)22 1(2)1(

1
ˆ/ˆ)1(expˆ


    nknk nkh  

 

and 

 

   1

2
ˆ/ˆexp)ˆ(   nn nh                                                                  (2.59) 

 

where, 

 

   2/1
)1(/  kmkn  is the correlation coefficient between ̂  and ̂ .  1h  and 

2h  are provided by Vaughan(1992) as variance adjusting factors that approximate 

sampling distributions much closer to normal. They can be expressed as 

 

  22

1 )1(/11)1(  nkkmh  

 

and 

 

    .)1(/11/)1(
22

2  nkknkmh                                              (2.60) 

 

Considering the functional forms of   ˆ,ˆ1f  and   ˆ,ˆ2f  given by (2.57) the 

likelihood functions  ,1L  and  ,2L  can be approximated as 
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and 
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      








  2

2

21
2 ˆ

ˆ2
expˆ/ˆexp, 




h
nL nn                           (2.61) 

 

It has been shown by Tan(1985) that (2.61) are close approximations to the 

corresponding likelihood functions so that HPD estimators can be obtained by 

using them.  

 

2.2.1.2.  Prior Distributions: 

 

In order to find the HPD estimators, robust priors for   and   are 

assumed as an independent t and inverse gamma distribution: 

 

 )()()(  ppp                                                                                  (2.62) 

 

where,  

 

    2/)1(
2

00

2

0

0

/1)(





 sp  

 

and    

 

 )/exp()( 00
0  np

n



                                                                  (2.63) 

 

2.2.1.3.  Posterior Distributions: 

 

The posterior distribution of   and   can be found by combining the 

prior distribution with sample information as 

 

         ˆ,ˆ, 2fppyp                                                               (2.64) 
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and  

          
 2/)10(2
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000
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 snnyf
nn

 

     .ˆ2/ˆexp 22

2   h                                                 (2.65) 

 

2.2.1.4.  HPD Estimators: 

 

 It can be seen from (2.65) that   and   are posteriorly independent. The 

marginal posterior density of 1 is the scaled gamma given by 

 

    /ˆexp)|( 00
)0(

nnyf
nn




                                            (2.66) 

 

which is   ˆ,1 000 nnnnmainversegam   .The HPD estimator of   is 

obtained from (2.66) as 

 

   
nn

nn
yEBayes






0

00|ˆ 
                                                                 (2.67) 

 

 Comment: As is seen from (2.67),  Bayesian estimator of    is a convex 

combination of the prior location 0 and MML estimator ̂ . Bayes estimator will 

be close to its prior value or sample estimate depending on the weights of 0n  and  

n  (Bian and Tiku, 1997). 

 

The marginal posterior density of   is  poly t density with t factor and 

normal factor that represents prior information and sampling information jointly: 
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s
yf                         (2.68) 

 

In order to find the HPD estimator of  , two cases need to be considered. 



47 

 

Case1: If 0  is infinite, then the prior of   reduces to a normal density and the 

posterior will be normal density as 

 

   ).)ˆ(
ˆ2

exp(
2

1
exp()|( 2

2

22

02

0



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s
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After some algebra, the posterior density (2.69) reduces to a normal density with 

 2, BayesBayes   as 
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2    hsyVar Bayes                                                     (2.70) 

 

Comment:  Similar to the symmetric family case, we can express the Bayes 

estimator of   as the weighted average of prior and sample mean as 

  ˆ1ˆ
0 wwBayes   where  2

2

2

0

2

0
ˆ/   hssw . From this weighted form it 

is seen that if 00 s , Bayes estimator of   will be equal to the prior value, as 

expected. If 2h  tends to infinity then the weight w  becomes zero and Bayes 

estimator of   converges to ̂ . Moreover, HPD estimator of   become  robust 

to outliers because of the weights depend on the variances. 

 

Case2: When 0  is finite, the posterior density of  will be a poly t  density 

which can be expressed as 
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In order to solve this  poly t density we obtain the modal equation by taking 

derivative of log posterior density of   and find 

 

         ;0ˆˆ1
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002

2

00   sh                           (2.72) 

 

Bayes̂  is the solution of the modal equation. Repeating the same mathematical 

procedures, as in the symmetric family case, we consider two cases for the HPD 

estimator of  . 

 

Case1:  Bayes̂ is close to 0 , we can write HPD estimator of  as 
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Case2:  Bayes̂ is close to ̂ , then HPD estimator of  is, 
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where 
 

0

0
ˆ

s





 . 

 

2.2.1.5.  Comparing Efficiencies of MML and Bayes Estimators: Simulation 

Results 

 

 Simulated means, variances and relative efficiencies of HPD and MML 

estimators are given by Table 2.11- Table 2.14 below while the underlying 

distribution is (2.50). Results are obtained from 10,000 simulations in which we 
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assume 3k , 0  and hyperparameters 00   and 60   with prior 

distribution given by (2.63). 

 

 Note that Table 2.11 and Table 2.12 show the results while Bayes̂ is close 

to 0 . Table 2.13 and Table 2.14 are obtained under the assumption that Bayes̂ is 

close to MML̂ . The inference obtained from these tables are not different than that 

of symmetric distributions. In case of skewed distributions,  Bayesian estimator is 

again a weighted combination of prior mean 0  and MML estimator MML̂  where 

the weights are adjusted by variances. Like in the symmetric case, it is expected 

here also that as 0  increases, relative efficiencies should  increase, which is 

shown in Table 2.11. Moreover, if   increases, relative efficiencies should  

decrease and this result is shown in Table 2.12.  Similar arguments can also be 

stated for Table 2.13 and Table 2.14 in which relative efficiencies are slightly 

larger as we expect. 

 

Comment: Note that Bayes̂  has a little bias especially for small n values. In that 

cases, mean squared error values would be compared instead of variances. 

However, since Bayes̂  is a convex combination of  0  and MML̂  with weights w  

and )1( w , respectively, mean square error of Bayes̂  will be smaller than that of 

MML̂  since   11
2
 w . Therefore, any bias correction will yield relative 

efficiencies which are favorable to Bayes̂ . 

 

 

 

 

 

 

 

 



50 

 

Table 2.11 Simulated means, variances and RE values for Gamma distribution 

with 1,0,0,6 00   , when Bayes̂ is close to 0  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
0 3 

0 4 

0.0686 

0.0650 

0.8257 

0.8455 

0.1159 

0.0982 

0.6056 

0.6935 

0.7333 

0.8203 

n 7 
0 3 

0 4 

0.0156 

0.0171 

0.5248 

0.5255 

0.0452 

0.0353 

0.4094 

0.4546 

0.7800 

0.8650 

n 10 
0 3 

0 4 

-0.0161 

-0.0120 

0.3309 

0.3384 

-0.0165 

-0.0033 

0.2833 

0.3095 

0.8561 

0.9144 

n 15 
0 3 

0 4 

-0.0426 

-0.0374 

0.1990 

0.1996 

-0.0360 

-0.0337 

0.1821 

0.1896 

0.9153 

0.9501 

n 20 
0 3 

0 4 

-0.0401 

-0.0473 

0.1390 

0.1347 

-0.0366 

-0.0452 

0.1311 

0.1303 

0.9435 

0.9672 

 

 

Table 2.12 Simulated means, variances and RE values for Gamma distribution 

with 3,0,0,6 000   , when Bayes̂ is close to 0  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
 1.0 

 1.5 

0.0706 

0.1023 

0.8358 

1.9027 

0.1186 

0.2183 

0.6165 

1.0832 

0.7375 

0.5693 

n 7 
 1.0 

 1.5 

0.0551 

0.0125 

0.5254 

1.2056 

0.0357 

0.0904 

0.4104 

0.7502 

0.7811 

0.6222 

n 10 
 1.0 

 1.5 

-0.0194 

-0.0326 

0.3397 

0.7556 

-0.0042 

0.0099 

0.2906 

0.5512 

0.8554 

0.7294 

n 15 
 1.0 

 1.5 

-0.0389 

-0.0620 

0.1921 

0.4444 

-0.0325 

-0.0412 

0.1760 

0.3667 

0.9159 

0.8253 

n 20 
 1.0 

 1.5 

-0.0408 

-0.0555 

0.1376 

0.3065 

-0.0373 

-0.0449 

0.1298 

0.2699 

0.9433 

0.8804 
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Table 2.13 Simulated means, variances and RE values for Gamma distribution 

with 1,0,0,6 00   , when Bayes̂ is close to MML̂  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
0 3 

0 4 

0.0846 

0.0537 

0.8452 

0.8503 

0.1295 

0.0872 

0.6307 

0.6987 

0.7462 

0.8217 

n 7 
0 3 

0 4 

0.0099 

0.0170 

0.5412 

0.5432 

0.0401 

0.0357 

0.4268 

0.4704 

0.7886 

0.8660 

n 10 
0 3 

0 4 

-0.0214 

-0.0195 

0.3325 

0.3367 

-0.0066 

-0.0105 

0.2848 

0.3081 

0.8563 

0.9151 

n 15 
0 3 

0 4 

-0.0369 

-0.0379 

0.1980 

0.2007 

-0.0306 

-0.0341 

0.1816 

0.1909 

0.9169 

0.9513 

n 20 
0 3 

0 4 

-0.0384 

-0.0360 

0.1336 

0.1379 

-0.0351 

-0.0340 

0.1261 

0.1335 

0.9440 

0.9676 

 

 

Table 2.14 Simulated means, variances and RE values for Gamma distribution 

with 3,0,0,6 000   , when Bayes̂ is close to MML̂  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

n 5 
 1.0 

 1.5 

0.0713 

0.1230 

0.8187 

1.8887 

0.1163 

0.2282 

0.6090 

1.1200 

0.7438 

0.5930 

n 7 
 1.0 

 1.5 

0.0048 

-0.0051 

0.5411 

1.1972 

0.0358 

0.0738 

0.4235 

0.7584 

0.7827 

0.6335 

n 10 
 1.0 

 1.5 

-0.0180 

-0.0373 

0.3290 

0.7497 

-0.0036 

0.0046 

0.2828 

0.5494 

0.8597 

0.7329 

n 15 
 1.0 

 1.5 

-0.0356 

-0.0559 

0.1947 

0.4413 

-0.0293 

-0.0365 

0.1785 

0.3670 

0.9164 

0.8315 

n 20 
 1.0 

 1.5 

-0.0448 

-0.0702 

0.1406 

0.3116 

-0.0411 

-0.0587 

0.1327 

0.2749 

0.9439 

0.8824 
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2.2.2.  Generalized Logistic Distribution: 

 

2.2.2.1. MML Estimators: 

 

 Consider the family of generalized logistic distributions as 
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If 1b , )(yf  is negatively skewed; if 1b , )(yf  is positively skewed; if 1b , 

)(yf  is symmetric. We will consider the cases where 1b .  

 

For a random sample nyyy ,,, 21   from (2.75), the derivatives of the 

likelihood function L are, 
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where  /)(  yz  and )1/(1)1/()( zzz eeezg   .  These equations do 

not have explicit solutions, therefore MML estimators will be obtained by first 

expressing likelihood functions in terms of order statistics )(iz  and then linearizing 

 )(izg  as   .)()( iiii zzg    This yields, 
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where  )()( ii zEt  .  Balakrishnan and Leung (1988) give values of )(it  for 

15n . For other cases, the values of )(it  can be obtained as  1ln /1

)(   b

ii qt  

and  1/  niqi  (Tiku and Akkaya, 2004).  

 

The modified likelihood equations are expressed as 
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MML estimators given below are the solutions of (2.78) and (2.79), 

 

  ˆˆ DK    and       )1(2/4ˆ 2  nnnCBB .                  (2.80) 

 

 

Tiku and Akkaya (2004) gives the asymptotic variance- covariance matrix of ̂  

and ̂  as 
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where )(/)()( xxx   is the psi function and )(x   is the derivative of 

)(x with respect to x. The variances are calculated from (2.81) as 
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and 
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2.2.2.2. Prior and Posterior Distributions: 

 

We will find the posterior density of   and   where   ˆˆˆ k  and k is 

the constant that makes ̂  and ̂  uncorraleted. Therefore we can specify k as 

)ˆ,ˆcov(/)ˆvar( k . Thus, 
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Variance-covariance matrix of )ˆ,ˆ(   is, 
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where )ˆ,ˆcov(2)ˆ()ˆvar()ˆvar( 2  kkVar   which simplifies to 
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Remark: Since 



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



 d

Ld

d

Ld ln
,

ln
 is distributed as bivariate normal, we can say 

that ̂  and ̂  are distributed as bivariate normal with mean  ,  and variance-

covariance matrix (2.86)  Therefore, the joint distribution of    ˆ,ˆ  is written as 
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We can obtain marginal distributions of  ̂  and ̂  from (2.88) as  
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and 
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since ̂  and ̂  are independent. 

 

Remark:  In order to have more accurate results,  chi-square approximation for  

̂  is applied. As a result,  /ˆ2n  is distributed as chi-square with degree of 

freedom n2 . The approximation of ̂  yields an infinite degree of freedom so the 

distribution of ̂  can be considered as normal which is given above.  

 

Therefore, we can write the joint distribution of ̂  and ̂  as 
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Bayes theorem is used to obtain posterior densities and to do that  the priors for   

and   are assumed as 
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and 
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where )()(),(  ppp  . Combining the likelihood (2.91) and priors (2.92), 

the posterior density of   and   is obtained: 
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Comment: It is seen from  yf |,  that   and   are posteriorly independent. 

The marginal posterior density of 1 is the scaled gamma 
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and the marginal posterior density of   is  poly t density with t factor and normal 

factor that represents prior information and sampling information together, 
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2.2.2.3.  HPD Estimators: 

 

The HPD estimator of   is       nnnnyEBayes  000 /ˆ|ˆ  . As in 

the gamma distribution,  Bayes̂  is a combination of the prior location 0 and MML 

estimator ̂ .  In this situation we may emphasize that if  0n  is large,  the posterior 

estimate is close to the prior location 0  but if n is large it will be close to MML 

estimator.  
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In order to find the HPD estimator of  , two cases need to be considered. 

 

Case1: If 0  is infinite, than the prior of   reduces to a normal density and the 

posterior is 
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It is seen from (2.96) that )|( yp   is normal  2, bb   where 
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Case2: When 0  is finite, then the posterior density reduces to a  a poly t density 

as 
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b̂  is the solution of the modal equation, 
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When the posterior density of   is governed by the prior density, then the HPD 

estimator of   is 
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When the posterior density of  is governed by the sampling density, then the 

HPD estimator of   is, 
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where 
 

0

0
ˆ







 . 

 

Comment: Note that the posterior estimates of   is a weighted combination of 

0  and ̂  with weights proportional to variances. The form of Bayesian estimator 

of   is similar to  (2.17), (2.46), (2.49), (2.70), (2.73) and (2.74). Consequently, 

similar arguments about the efficiencies can be made under the assumption of the 

generalized logistic distribution also. This is made possible by an application of 

modified maximum likelihood estimation. Maximum likelihood estimation would 

get us no where because computations are too involved.  

                                            

2.2.2.4. Comparing Efficiencies of MML and Bayes Estimators:Simulations 

Results 

 

In case of generalized logistic family we consider relative efficiencies of 

HPD and MML estimators for 5.0b , 1, 4, 6 and 8 with different sample sizes. 

The parameters of prior distribution of   specified by (2.92) is taken as 

00  , 20 s  and 5.20 s  while observations are assumed to have the 

distribution (2.75) with 0 , 1  and, alternatively, 5.1 . The results of 
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10,000 simulations with respect to different b values are given in Table 2.15 -

Table 2.34 below. According to these results we can say that Bayesian estimator 

is generally better when b=0.5. Both MML and HPD estimators are unbiased for 

large n but they have a little bias especially for n=5. In that cases any bias 

correction would make HPD estimators more efficient as they are now and does 

not make  any difference in the interpretation. Therefore, we leave these values  as 

they are.   

  

 Like previous sections, the situations of HPD estimator being close to prior 

mean or HPD estimator being close to MML estimator are considered separately. 

In both cases, very similar results are obtained which are in favor of Bayesian 

estimator. Note that, HPD is a little less efficient when Bayes̂ is close to MML̂ ,  as 

ecpected. One can see the results of simulations of case1 from Table 2.15 to Table 

2.24 and case 2 from Table 2.25 to Table 2.34 below. 

 

 Generally, all of the simulated values tell us that HPD estimator is 

negatively affected with the increasing prior dispersion. As prior dispersion 

increases, prior distribution converges to non-informative prior and therefore HPD 

estimator converges to MML estimator. On the other hand, if the value of prior 

dispersion decreases, Bayesian estimator will converge to prior mean. From 

simulated efficiencies it can also be inferred that HPD estimator looses efficiency 

with increasing 0 . However, if we look at relative efficiencies, with different   

values in order to see the impact of the change in  , we see that as it increases, 

weight of prior mean increases and MML estimator looses efficiency. These 

results are also the same as the statements  we made in previous sections.  

 

 Moreover, we can state that HPD estimators are preferable for small 

sample sizes. When number of observations increases, prior distribution is 

dominated by likelihood function in which case the MML estimators are more 

advantegeous to use when sample size is large.  
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Table 2.15 Simulated means, variances and RE values for Generalized Logistic 

distribution with 5.0,0,3,6,0 000  bs   when Bayes̂ is close to 0  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

-0.0940 

-0.1645 

1.1234 

2.5673 

-0.0960 

-0.1586 

0.8068 

1.4063 

0.7182 

0.5478 

n 10 
 1.0 

 1.5 

-0.0433 

-0.0416 

0.5383 

1.2146 

-0.0448 

-0.0480 

0.4603 

0.8750 

0.8551 

0.7204 

n 15 
 1.0 

 1.5 

-0.0169 

-0.0294 

0.3429 

0.8165 

-0.0182 

-0.0321 

0.3105 

0.6595 

0.9055 

0.8076 

n 20 
 1.0 

 1.5 

-0.0114 

-0.0271 

0.2595 

0.5862 

-0.0121 

-0.0281 

0.2413 

0.5000 

0.9299 

0.8530 

 

 

Table 2.16 Simulated means, variances and RE values for Generalized Logistic 

distribution with 1,0,3,6,0 000  bs  , when Bayes̂ is close to 0  

b 1 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

-0.0087 

0.0246 

0.6363 

1.4195 

-0.0085 

0.0297 

0.5225 

0.9483 

0.8212 

0.6680 

n 10 
 1.0 

 1.5 

0.0026 

-0.0002 

0.3050 

0.6944 

0.0027 

0.0001 

0.2780 

0.5703 

0.9115 

0.8214 

n 15 
 1.0 

 1.5 

0.0051 

-0.0062 

0.2042 

0.4534 

0.0048 

-0.0057 

0.1927 

0.3988 

0.9437 

0.8796 

n 20 
 1.0 

 1.5 

0.0042 

-0.0050 

0.1594 

0.3379 

0.0041 

-0.0046 

0.1532 

0.3071 

0.9611 

0.9090 
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Table 2.17 Simulated means, variances and RE values for Generalized Logistic 

distribution with 4,0,3,6,0 000  bs  , when Bayes̂ is close to 0  

b 4 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

0.1519 

0.2155 

0.4965 

1.1162 

0.1604 

0.2392 

0.4342 

0.8480 

0.8745 

0.7597 

n 10 
 1.0 

 1.5 

0.0691 

0.1028 

0.2351 

0.5281 

0.0714 

0.1095 

0.2202 

0.4587 

0.9366 

0.8686 

n 15 
 1.0 

 1.5 

0.0389 

0.0584 

0.1504 

0.3595 

0.0399 

0.0621 

0.1442 

0.3273 

0.9588 

0.9105 

n 20 
 1.0 

 1.5 

0.0342 

0.0405 

0.1136 

0.2584 

0.0347 

0.0424 

0.1101 

0.2414 

0.9692 

0.9341 

 

 

Table 2.18 Simulated means, variances and RE values for Generalized Logistic 

distribution with 6,0,3,6,0 000  bs  , when Bayes̂ is close to 0  

b 6 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

0.1905 

0.2829 

0.5994 

1.3741 

0.2046 

0.3217 

0.5109 

0.9987 

0.8524 

0.7268 

n 10 
 1.0 

 1.5 

0.0843 

0.1331 

0.2878 

10.6188 

0.0882 

0.1428 

0.2664 

0.5265 

0.9256 

0.8508 

n 15 
 1.0 

 1.5 

0.0564 

0.0835 

0.1846 

0.4109 

0.0580 

0.0886 

0.1756 

0.3685 

0.9512 

0.8967 

n 20 
 1.0 

 1.5 

0.0420 

0.0626 

0.1356 

0.3106 

0.0429 

0.0656 

0.1307 

0.2865 

0.9639 

0.9222 
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Table 2.19 Simulated means, variances and RE values for Generalized Logistic 

distribution with 8,0,3,6,0 000  bs  , when Bayes̂ is close to 0  

b 8 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

0.2261 

0.3209 

0.7304 

1.6426 

0.2458 

0.3693 

0.6005 

1.1477 

0.8222 

0.6987 

n 10 
 1.0 

 1.5 

0.0927 

0.1436 

0.3372 

0.7526 

0.0981 

0.1584 

0.3081 

0.6230 

0.9137 

0.8278 

n 15 
 1.0 

 1.5 

0.0671 

0.0890 

0.2163 

0.5032 

0.0693 

0.0967 

0.2043 

0.4430 

0.9445 

0.8804 

n 20 
 1.0 

 1.5 

0.0534 

0.0737 

0.1611 

0.3567 

0.0546 

0.0774 

0.1544 

0.3251 

0.9584 

0.9116 

 

 

Table 2.20 Simulated means, variances and RE values for Generalized Logistic 

distribution with  5.0,1,0,6,0 00  b , when Bayes̂ is close to 0  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

-0.0882 

-0.0873 

1.1225 

1.1127 

-0.0909 

-0.0897 

0.6084 

0.7160 

0.5420 

0.6435 

n 10 
0s 2.0 

0s 2.5 

-0.0047 

-0.0344 

0.5383 

0.5340 

-0.0460 

-0.0363 

0.3871 

0.4281 

0.7191 

0.8018 

n 15 
0s 2.0 

0s 2.5 

-0.0309 

-0.0194 

0.3572 

0.3525 

-0.0313 

-0.0207 

0.2893 

0.3060 

0.8100 

0.8682 

n 20 
0s 2.0 

0s 2.5 

-0.0100 

-0.0164 

0.2593 

0.2678 

-0.0113 

-0.0169 

0.2212 

0.2413 

0.8531 

0.9010 
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Table 2.21 Simulated means, variances and RE values for Generalized Logistic 

distribution with  1,1,0,6,0 00  b , when Bayes̂ is close to 0  

b 1 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

-0.0034 

0.0162 

0.6365 

0.6404 

0.0017 

0.0131 

0.4276 

0.4878 

0.6719 

0.7616 

n 10 
0s 2.0 

0s 2.5 

0.0017 

-0.0036 

0.2981 

0.3023 

0.0016 

-0.0031 

0.2437 

0.2650 

0.8173 

0.8768 

n 15 
0s 2.0 

0s 2.5 

0.0080 

0.0016 

0.2059 

0.2018 

0.0075 

0.0018 

0.1812 

0.1857 

0.8798 

0.9203 

n 20 
0s 2.0 

0s 2.5 

0.0029 

0.0068 

0.1533 

0.1554 

0.0028 

0.0065 

0.1394 

0.1462 

0.9094 

0.9407 

 

 

Table 2.22 Simulated means, variances and RE values for Generalized Logistic 

distribution with 4,1,0,6,0 00  b , when Bayes̂ is close to 0  

b 4 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

0.1346 

0.1482 

0.5054 

0.5050 

0.1535 

0.1606 

0.3798 

0.4196 

0.7516 

0.8309 

n 10 
0s 2.0 

0s 2.5 

0.0680 

0.0694 

0.2342 

0.2362 

0.0726 

0.0726 

0.2032 

0.2154 

0.8677 

0.9118 

n 15 
0s 2.0 

0s 2.5 

0.0382 

0.0452 

0.1569 

0.1522 

0.0407 

0.0465 

0.1430 

0.1433 

0.9115 

0.9416 

n 20 
0s 2.0 

0s 2.5 

0.0368 

0.0244 

0.1139 

0.1133 

0.0378 

0.0253 

0.1064 

0.1084 

0.9342 

0.9564 

 

 

 

 

 



65 

 

Table 2.23 Simulated means, variances and RE values for Generalized Logistic 

distribution with  6,1,0,6,0 00  b , when Bayes̂ is close to 0  

b 6 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

0.1932 

0.1815 

0.5986 

0.6249 

0.2162 

0.2019 

0.4362 

0.4989 

0.7288 

0.7984 

n 10 
0s 2.0 

0s 2.5 

0.0928 

0.0929 

0.2859 

0.2802 

0.0995 

0.0977 

0.2432 

0.2514 

0.8507 

0.8974 

n 15 
0s 2.0 

0s 2.5 

0.0585 

0.0561 

0.1835 

0.1864 

0.0616 

0.0584 

0.1648 

0.1736 

0.8979 

0.9317 

n 20 
0s 2.0 

0s 2.5 

0.0409 

0.0470 

0.1405 

0.1383 

0.0430 

0.0481 

0.1295 

0.1314 

0.9212 

0.9495 

 

 

Table 2.24 Simulated means, variances and RE values for Generalized Logistic 

distribution with  8,1,0,6,0 00  b , when Bayes̂ is close to 0  

b 8 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

0.1959 

0.2065 

0.7224 

0.7397 

0.2302 

0.2326 

0.5045 

0.5712 

0.6984 

0.7721 

n 10 
0s 2.0 

0s 2.5 

0.1046 

0.1018 

0.3412 

0.3317 

0.1143 

0.1084 

0.2816 

0.2925 

0.8252 

0.8819 

n 15 
0s 2.0 

0s 2.5 

0.0640 

0.0645 

0.2116 

0.2174 

0.0684 

0.0676 

0.1867 

0.2002 

0.8825 

0.9205 

n 20 
0s 2.0 

0s 2.5 

0.0488 

0.0463 

0.1611 

0.1592 

0.0514 

0.0481 

0.1468 

0.1499 

0.9109 

0.9414 
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Table 2.25 Simulated means, variances and RE values for Generalized Logistic 

distribution with 5.0,0,3,6,0 000  bs  ,when Bayes̂ is close to MML̂  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

-0.0932 

-0.1332 

1.1132 

2.5805 

-0.0957 

-0.1404 

0.8213 

1.4813 

0.7378 

0.5756 

n 10 
 1.0 

 1.5 

-0.0230 

-0.545 

0.5361 

1.2093 

-0.0257 

-0.0585 

0.4618 

0.8914 

0.8614 

0.7371 

n 15 
 1.0 

 1.5 

-0.0270 

-0.0153 

0.3567 

0.7792 

-0.0278 

-0.0194 

0.3232 

0.6356 

0.9060 

0.8157 

n 20 
 1.0 

 1.5 

-0.0138 

-0.0288 

0.2616 

0.5973 

-0.0143 

-0.0299 

0.2435 

0.5123 

0.9308 

0.8577 

 

 

Table 2.26 Simulated means, variances and RE values for Generalized Logistic 

distribution with  1,0,3,6,0 000  bs  , when Bayes̂ is close to MML̂  

b 1 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

0.0037 

-0.0070 

0.6302 

1.4016 

0.0031 

-0.0055 

0.5210 

0.9593 

0.8267 

0.6844 

n 10 
 1.0 

 1.5 

-0.0112 

-0.0049 

0.3096 

0.6943 

-0.0109 

-0.0041 

0.2828 

0.5735 

0.9135 

0.8259 

n 15 
 1.0 

 1.5 

-0.0064 

-0.0015 

0.2040 

0.4557 

-0.0062 

-0.0013 

0.1927 

0.4015 

0.9446 

0.8811 

n 20 
 1.0 

 1.5 

0.0047 

0.0098 

0.1506 

0.3431 

0.0046 

0.0094 

0.1443 

0.3128 

0.9588 

0.9117 
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Table 2.27 Simulated means, variances and RE values for Generalized Logistic 

distribution with  4,0,3,6,0 000  bs  , when Bayes̂ is close to MML̂  

b 4 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

0.1447 

0.2112 

0.4944 

1.1408 

0.1539 

0.2355 

0.4338 

0.8720 

0.8773 

0.7644 

n 10 
 1.0 

 1.5 

0.0723 

0.0708 

0.2345 

0.5265 

0.0744 

0.0795 

0.2198 

0.4582 

0.9374 

0.8703 

n 15 
 1.0 

 1.5 

0.0367 

0.0686 

0.1534 

0.3459 

0.0378 

0.0716 

0.1473 

0.3158 

0.9596 

0.9131 

n 20 
 1.0 

 1.5 

0.0310 

0.0501 

0.1133 

0.2614 

0.0316 

0.0520 

0.1099 

0.2443 

0.9698 

0.9345 

 

 

Table 2.28 Simulated means, variances and RE values for Generalized Logistic 

distribution with  6,0,3,6,0 000  bs  , when Bayes̂ is close to MML̂  

b 6 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

0.1812 

0.2748 

0.5999 

1.4024 

0.1958 

0.3119 

0.5120 

1.0363 

0.8535 

0.7389 

n 10 
 1.0 

 1.5 

0.0824 

0.1426 

0.2848 

0.6390 

0.0863 

0.1519 

0.2637 

0.5464 

0.9258 

0.8551 

n 15 
 1.0 

 1.5 

0.0516 

0.0841 

0.1817 

0.4122 

0.0533 

0.0890 

0.1729 

0.3705 

0.9518 

0.8988 

n 20 
 1.0 

 1.5 

0.0454 

0.0547 

0.1351 

0.3098 

0.0462 

0.0579 

0.1303 

0.2861 

0.9647 

0.9233 
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Table 2.29 Simulated means, variances and RE values for Generalized Logistic 

distribution with  8,0,3,6,0 000  bs  , when Bayes̂ is close to MML̂  

b 8 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
 1.0 

 1.5 

0.2238 

0.2981 

0.7209 

1.7155 

0.2418 

0.3516 

0.6004 

1.2106 

0.8329 

0.7057 

n 10 
 1.0 

 1.5 

0.0908 

0.1618 

0.3357 

0.7576 

0.0962 

0.1752 

0.3074 

0.6328 

0.9157 

0.8352 

n 15 
 1.0 

 1.5 

0.0064 

0.1012 

0.2154 

0.4821 

0.0685 

0.1073 

0.2035 

0.4269 

0.9448 

0.8855 

n 20 
 1.0 

 1.5 

0.0467 

0.0789 

0.1587 

0.3558 

0.0479 

0.0822 

0.1522 

0.3252 

0.9588 

0.9139 

 

 

Table 2.30 Simulated means, variances and RE values for Generalized Logistic 

distribution with 5.0,1,0,6,0 00  b , when Bayes̂ is close to MML̂  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

-0.0710 

-0.0879 

1.1025 

1.1390 

-0.0799 

-0.0931 

0.6306 

0.7539 

0.5719 

0.6619 

n 10 
0s 2.0 

0s 2.5 

-0.0195 

-0.0285 

0.5526 

0.5402 

-0.0250 

-0.0322 

0.4053 

0.4383 

0.7335 

0.8113 

n 15 
0s 2.0 

0s 2.5 

-0.0246 

-0.0127 

0.3532 

0.3550 

-0.0258 

-0.0145 

0.2877 

0.3094 

0.8145 

0.8717 

n 20 
0s 2.0 

0s 2.5 

-0.0154 

-0.0180 

0.2596 

0.2645 

-0.0164 

-0.0186 

0.2225 

0.2388 

0.8572 

0.9029 
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Table 2.31 Simulated means, variances and RE values for Generalized Logistic 

distribution with  1,1,0,6,0 00  b , when Bayes̂ is close to MML̂  

b 1 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

-0.0052 

-0.0035 

0.6273 

0.6285 

-0.0047 

-0.0031 

0.4311 

0.4080 

0.6873 

0.7651 

n 10 
0s 2.0 

0s 2.5 

-0.0077 

0.0054 

0.3119 

0.3177 

-0.072 

0.0051 

0.2577 

0.2797 

0.8263 

0.8806 

n 15 
0s 2.0 

0s 2.5 

-0.0005 

0.0045 

0.1976 

0.2024 

-0.0006 

0.0044 

0.1745 

0.1865 

0.8829 

0.9216 

n 20 
0s 2.0 

0s 2.5 

-0.0022 

-0.0010 

0.1513 

0.1517 

-0.0019 

-0.0011 

0.1381 

0.1429 

0.9125 

0.9421 

 

 

Table 2.32 Simulated means, variances and RE values for Generalized Logistic 

distribution with  4,1,0,6,0 00  b , when Bayes̂ is close to MML̂  

b 4 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

0.1422 

0.1441 

0.5018 

0.4937 

0.1583 

0.1555 

0.3873 

0.4111 

0.7718 

0.8327 

n 10 
0s 2.0 

0s 2.5 

0.0642 

0.0686 

0.2350 

0.2312 

0.0687 

0.0716 

0.2045 

0.2111 

0.8704 

0.9129 

n 15 
0s 2.0 

0s 2.5 

0.0368 

0.0395 

0.1540 

0.1542 

0.0391 

0.0410 

0.1407 

0.1453 

0.9132 

0.9424 

n 20 
0s 2.0 

0s 2.5 

0.0317 

0.0297 

0.1140 

0.1153 

0.0329 

0.0305 

0.1065 

0.1104 

0.9346 

0.9570 
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Table 2.33 Simulated means, variances and RE values for Generalized Logistic 

distribution with  6,1,0,6,0 00  b , when Bayes̂ is close to MML̂  

b 6 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

0.1876 

0.1754 

0.6158 

0.5950 

0.2116 

0.1936 

0.4581 

0.4818 

0.7439 

0.8097 

n 10 
0s 2.0 

0s 2.5 

0.0928 

0.0821 

0.2887 

0.2865 

0.0995 

0.0873 

0.2467 

0.2581 

0.8545 

0.9008 

n 15 
0s 2.0 

0s 2.5 

0.0571 

0.0614 

0.1823 

0.1817 

0.0603 

0.0634 

0.1641 

0.1698 

0.9002 

0.9343 

n 20 
0s 2.0 

0s 2.5 

0.0430 

0.0438 

0.1352 

0.1375 

0.0447 

0.0450 

0.1249 

0.1307 

0.9240 

0.9503 

 

 

Table 2.34 Simulated means, variances and RE values for Generalized Logistic 

distribution with  8,1,0,6,0 00  b , when Bayes̂ is close to MML̂  

b 8 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

n 5 
0s 2.0 

0s 2.5 

0.2130 

0.2156 

0.7156 

0.7184 

0.2440 

0.2399 

0.5053 

0.5613 

0.7061 

0.7813 

n 10 
0s 2.0 

0s 2.5 

0.1045 

0.1045 

0.3416 

0.3256 

0.1142 

0.1107 

0.2840 

0.2882 

0.8315 

0.8849 

n 15 
0s 2.0 

0s 2.5 

0.0661 

0.0688 

0.2177 

0.2124 

0.0705 

0.0715 

0.1927 

0.1960 

0.8849 

0.9225 

n 20 
0s 2.0 

0s 2.5 

0.0500 

0.0460 

0.1588 

0.1612 

0.0523 

0.0478 

0.1451 

0.1519 

0.9138 

0.9417 
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CHAPTER 3 

 

 

BAYESIAN ANALYSES OF SYMMETRIC and SKEWED FAMILIES 

ONE WAY EXPERIMENTAL DESIGN 

 

 

 

 In this chapter, we are interested in developing Bayesian estimators for 

one way Anova model by considering Student’s t and generalized logistic families 

of distributions. We develop MML and Bayesian estimators of  the main effects in 

one-factor experimental design. As in the one sample case, robust priors are 

asummed for unknown parameters and marginal posterior densities are derived by 

combining them with the likelihood function. The resulting HPD estimators are a 

convex combination of  MML estimators and prior hyperparameters which are 

demonstrated in the following sections. We reiterate, this was made possible by 

applying the method of modified maximum likelihood estimation. 

 

We start with Student’s t family which consists of long-tailed symmetric 

distributions. 

 

3.1. Student t family: 

 

Consider a one way ANOVA model, 

 

ijiijy   ai ,,1 nj ,,1                                                    (3.1) 
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where  random errors are assumed to have a scaled Student’s t distribution. Thus, 

we can write the density function of y as 

 

 
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iij
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


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2

1
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1

1
)(







,      y ,              (3.2) 

 

where a)i(1  ii  , 32  pk ,  .,.  is the beta function and 2p . 

n)j(1 )(  iijyE   and 2)( ijyVar .  

 

3.1.1. MML Estimators: 

 

A type II symmetric sample )(,)1(,)(, rniriri yyy     from (3.2) is given 

which yields the likelihood function 

 

     rrni
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rj

jirna zFzF
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1 1
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



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


                    (3.3) 

 

where 


iji

ji

y
z




)(,

)(,  . 

 

In order to find the estmators of i  and  , the derivatives of log 

likelihood function are obtained as 

 

  )()(
2ln

)(,2)1(,1

1

)(, rniri

rn
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ji

i
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 
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and  
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where )2( rnaA  , 

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)(1

)(
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)(,

)(,

)(,2

ji

ji

ji
zF

zf
zh


 .  

 

These equations do not have explicit solutions. Therefore, MML method is 

used in estimating the parameters instead of ML estimation which is enormously 

problematic. In order to do this,  )( )(, jizg , )( )(,1 jizh  and )( )(,2 jizh  are linerazied as 

)(,)(,)(,)(, )( jijijiji zzg   , )1(,)1(,1 )(   riiiri zbazh  and )(,)(,2 )( rniiirni zbazh   . 

Incorporating these linear approximations in the first derivatives of lnL, the MML 

estimators are obtained as (Tiku and Suresh, 1992, Section 6):  

 

     

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and, 

 

  ACBB
A

4
2
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ˆ 2                                                                         (3.5) 

 

where, 
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Incidentally, the MML estimator of   is  



a

i

ia
1

ˆ/1ˆ   and  ˆˆˆ  ii . 

 

Note that complete sample results can easily be obtained by taking 0r . Of 

course, certain regularity conditions have to be satisfied as said earlier.  

 

Remark: Tiku and Suresh (1992) and Vaughan(1992) indicate in their works that 

for fixed nrq / , these MML estimators are MVB estimators asymptotically. 

Also, they are almost fully efficient for small sample sizes.  

 

 The asymptotic properties of MML estimators are the following: 

 

i) 
 





ˆ

ˆˆ im
 is distributed as normal (0,1),  

ii) 
2

2ˆ



A
 is distributed as )(

2
aA , 

iii) i̂  and ̂  are independently distributed.  

 

According to these results, the joint density of a)i(1 ˆ
 i  and 2̂  is 

    12/22/)(22

1 )ˆ()ˆ,ˆ,,ˆ( aAaA

af    

              ))ˆ(
ˆ2

exp()
2

exp( 2

22 ii

mA



                   (3.6) 
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3.1.2. Prior Distribution: 

 

Robust prior distributions with known hyperparameters are assumed as 

independent Student’s t and inverted gamma distribution which yields 
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Bian (1996) considers the situation when the joint prior density of a)i(1 i  is 

a product of normal densities. His results immediately follow from ours as a 

particular case by taking 0i  equal to infinity for all ai ,1 . Bian also takes 

0r  in (3.3). Our results are much more general.  

 

3.1.3. Posterior Distribution: 

 

 Combining the prior distribution (3.7) with the likelihood function (3.6), 

the posterior distribution are obtained and given by (3.8) below: 
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                           (3.8) 

 

It is seen from (3.8) that the posterior density of a ,,1   and 2  are 

independent. Marginal posterior density  of 2  is  inverse gamma with 
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3.1.4 HPD Estimators: 

 

 The HPD estimator of 2  is the mode of inverse gamma density, which 

can be expressed as 

 

      AAsb  0

2
0

2

0

2 /ˆˆ                                                        (3.9) 

 

As in previous cases, it  is a weighted average of prior information and MML 

estimator of 2 .  

 

 Since the marginal posterior density of  is a poly t density two different 

cases are considered to find HPD estimator of   . 

 

Case1: If 0iv  is infinite, than the prior of i  reduces to a normal density and the 

posterior is 
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It has been shown in Chapter 2 that the posterior distribution is normal, and the 

Bayesian estimator of   is the mode, (same as the mean) of the posterior 

distribution which can be expressed as 
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with variance   122

0
ˆ)|(

   myVar ii .  

 

The overall esitmator of   is obtained as 
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and the Bayesian estimator of factor effects is,  

 

   bbibi  ˆˆˆ
,,  , ai ,,1 .                                                                    (3.13) 

 

Alternatively, the weighted form of ib,̂  can be written as   iiiiib ww  ˆ1ˆ
0,                                                                           

where   122

0

2

0
ˆ

   mw iii . These are beautiful results indeed. 

 

Comment: As in the one sample case, ib,̂  is a weighted combination of MML 

estimator and prior hyperparameter. From the weighted form of ib,̂  we can see 

that as m goes to infinity Bayesian estimator converges to MML estimator since 

weight iw becomes zero. On the other hand, if 00 i  and so 1iw  then the 

Bayes estimator will be equal to 0i , which is expected.  

 

Case2: When 0iv  is finite, then ib,̂  is the solution of the modal equation 
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00  iiiiiiiii vmv                   (3.14) 

 

Applying exactly the same procedures as in Chapter 2 and re-organizing the 

resulting equations, we obtain Bayesian estimator ib,̂  in two different forms as 

follows: 
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When the posterior density of i  is governed by the prior density,  the HPD 

estimator of i  is 
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On the other hand, when the posterior density of i  is governed by the sampling 

density, the HPD estimator of i  is 
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where 
 

0

0
ˆ

i

ii
i







 . 

 

Comments: 

 

 The HPD estimators of i  given by (3.11), (3.15) and (3.16) contain information 

from robust priors and MML estimators. They have the weighted form which 

makes them robust to outliers. If we look at some special cases we see that, 

 

i) The prior density of i  converges to a non-informative prior if 

dispersion of it goes to infinity. Therefore, for large 0i  values HPD 

estimator of i  converges to MML esitmator.  

 

ii) If prior dispersion 0i  goes to zero then HPD estimator of i  tends to       

prior hyperparameter 0i . 
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iii) When sample observation have a large dispersion, HPD estimator of 

i  converges to 0i  since prior information takes much importance as 

sample variance increases. 

 

iv) If sample size increses, the information coming from likelihood 

function dominates over prior density. As a result, Bayes estimator 

converges to MML estimators.  

 

3.1.5. Comparing Efficiencies of MML and Bayes Estimators: Simulation 

Results 

 

 In order to compare relative efficiencies of HPD estimators and MMLEs 

we simulate random variables from (3.1) with p=3.5. Simulated mean and 

variances of MML estimators  and two Bayesian estimators given by (3.5), (3.15) 

and (3.16)  are obtained by 10,000 simulations. The degree of freedom of prior 

distribution (3.7) is taken as 6, while 00 i  and i =0. We assign different 

values to 0i  and   to see the effect on relative efficiencies. We generate 

independent random variables for two treatments containing fixed number of 

observations. According to the simulation results given in Table 3.1 to Table 3.8 

below we can say the followings: 

 

Comparing the results for both censoring, with q=r/n being fixed, and full 

sample cases it is clear that Bayes estimator have lower variances. However, they 

loose their advantage when prior dispersion increases. On the other hand, they 

gain efficiency when sample dispersion increases. Moreover, as the number of 

observations in each treatment increase the relative efficiencies increases since 

prior information is dominated by the likelihood funtion for large sample sizes. 

That is to say, all of the statments made in the one sample case are valid for the 

one way classification model that is the beauty in the convex combination of 

MML estimators and prior information.  
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Table 3.1 Simulated means, variances and RE values for censored Student t 

distribution with 0,6,3,0 000  iiii s  , when Bayes̂ is close to 0  

q =0.2 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

ntr=2 

nbl=5 

 

 =1.5 

 

i=1 

i=2 

-0.0101 

-0.0108 

0.6332 

0.6320 

-0.0092 

-0.0107 

0.5454 

0.5450 

0.8614 

0.8624 

 

 =2.5 

i=1 

i=2 

-0.0109 

-0.0050 

1.7824 

1.7715 

-0.0062 

-0.0047 

1.2612 

1.2509 

0.7076 

0.7062 

ntr=2 

nbl=10 

 

 =1.5 

 

i=1 

i=2 

-0.0064 

0.0023 

0.3049 

0.3094 

-0.0062 

0.0022 

0.2814 

0.2856 

0.9229 

0.9230 

 

 =2.5 

i=1 

i=2 

0.0030 

0.0194 

0.8438 

0.8565 

0.0023 

0.0176 

0.6852 

0.6928 

0.8120 

0.8089 

ntr=2 

nbl=15 

 

 =1.5 

 

i=1 

i=2 

0.0030 

-0.0037 

0.2078 

0.2019 

0.0030 

-0.0037 

0.1969 

0.1914 

0.9475 

0.9478 

 

 =2.5 

i=1 

i=2 

-0.0046 

-0.0041 

0.5695 

0.5613 

-0.0042 

-0.0039 

0.4922 

0.4845 

0.8643 

0.8633 

 

 

Table 3.2 Simulated means, variances and RE values for censored Student t 

distribution with 0,6,5.1,0 00  iii  , when Bayes̂ is close to 0  

q =0.2 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=5 

 

0s =2.0 

 

i=1 

i=2 

-0.0011 

-0.0015 

0.6357 

0.6463 

0.0005 

-0.0003 

0.4701 

0.4767 

0.7395 

0.7376 

 

0s =2.5 

i=1 

i=2 

-0.0179 

0.0029 

0.6475 

0.6555 

-0.0172 

0.0033 

0.5269 

0.5317 

0.8137 

0.8112 

ntr=2 

nbl=10 

 

0s =2.0 

 

i=1 

i=2 

-0.0081 

-0.0021 

0.3118 

0.3042 

-0.0075 

-0.0018 

0.2617 

0.2562 

0.8394 

0.8422 

 

0s =2.5 

i=1 

i=2 

0.0085 

0.0022 

0.3075 

0.3061 

0.0082 

0.0021 

0.2746 

0.2732 

0.8929 

0.8927 

ntr=2 

nbl=15 

 

0s =2.0 

 

i=1 

i=2 

0.0006 

-0.0104 

0.2059 

0.2035 

0.0006 

-0.0098 

0.1828 

0.1809 

0.8880 

0.8887 

 

0s =2.5 

i=1 

i=2 

-0.0002 

0.0017 

0.2043 

0.1988 

-0.0002 

0.0016 

0.1891 

0.1841 

0.9258 

0.9256 
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Table 3.3 Simulated means, variances and RE values for Student t distribution 

with 0,6,3,0 000  iiii s  , when Bayes̂ is close to 0  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

ntr=2 

nbl=5 

 

 =1.5 

 

i=1 

i=2 

-0.0074 

-0.0017 

0.6315 

0.6307 

-0.0067 

-0.0016 

0.5336 

0.5326 

0.8451 

0.8446 

 

 =2.5 

i=1 

i=2 

0.0150 

0.0315 

1.7509 

1.7010 

0.0139 

0.0257 

1.1768 

1.1342 

0.6721 

0.6668 

ntr=2 

nbl=10 

 

 =1.5 

 

i=1 

i=2 

0.0014 

-0.0084 

0.3044 

0.3048 

0.0015 

-0.0080 

0.2793 

0.2800 

0.9176 

0.9187 

 

 =2.5 

i=1 

i=2 

-0.0029 

-0.0025 

0.8322 

0.8324 

-0.0025 

-0.0027 

0.6642 

0.6634 

0.7981 

0.7969 

ntr=2 

nbl=15 

 

 =1.5 

 

i=1 

i=2 

-0.0072 

0.0026 

0.2009 

0.2005 

-0.0070 

0.0025 

0.1899 

0.1894 

0.9454 

0.9446 

 

 =2.5 

i=1 

i=2 

-0.0052 

-0.0099 

0.5506 

0.5558 

-0.0047 

-0.0092 

0.4773 

0.4776 

0.8595 

0.8594 

 

 

Table 3.4 Simulated means, variances and RE values for Student t distribution 

with 0,6,5.1,0 00  iii  , when Bayes̂ is close to 0  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

ntr=2 

nbl=5 

 

0s =2.0 

 

i=1 

i=2 

0.0064 

-0.0040 

0.6222 

0.6203 

0.0064 

-0.0036 

0.4425 

0.4415 

0.7112 

0.7118 

 

0s =2.5 

i=1 

i=2 

-0.008 

0.0042 

0.6282 

0.6230 

-0.0012 

0.0048 

0.5003 

0.4958 

0.7964 

0.7959 

ntr=2 

nbl=10 

 

0s =2.0 

 

i=1 

i=2 

-0.0019 

0.0030 

0.3008 

0.2993 

-0.0018 

0.0028 

0.2502 

0.2494 

0.8316 

0.8334 

 

0s =2.5 

i=1 

i=2 

0.0032 

0.0013 

0.3026 

0.3033 

0.0032 

0.0013 

0.2682 

0.2689 

0.8863 

0.8866 

ntr=2 

nbl=15 

 

0s =2.0 

 

i=1 

i=2 

0.0018 

0.0061 

0.1953 

0.1976 

0.0018 

0.0057 

0.1725 

0.1742 

0.8834 

0.8815 

 

0s =2.5 

i=1 

i=2 

0.0013 

0.0001 

0.2021 

0.1956 

0.0011 

-0.0001 

0.1863 

0.1804 

0.9220 

0.9224 
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Table 3.5 Simulated means, variances and RE values for censored Student t 

distribution with 0,6,3,0 000  iiii s  , when Bayes̂ is close to MML̂  

q =0.2 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

ntr=2 

nbl=5 

 

 =1.5 

 

i=1 

i=2 

-0.0187 

-0.0125 

0.6451 

0.6230 

-0.0174 

-0.0116 

0.5603 

0.5409 

0.8686 

0.8682 

 

 =2.5 

i=1 

i=2 

-0.0105 

0.0166 

1.7576 

1.7678 

-0.0094 

0.0148 

1.2622 

1.2826 

0.7181 

0.7256 

ntr=2 

nbl=10 

 

 =1.5 

 

i=1 

i=2 

-0.0013 

0.0041 

0.3122 

0.3007 

-0.0014 

0.0037 

0.2884 

0.2780 

0.9236 

0.9245 

 

 =2.5 

i=1 

i=2 

0.0043 

0.0080 

0.8433 

0.8741 

0.0040 

0.0079 

0.6888 

0.7124 

0.8168 

0.8150 

ntr=2 

nbl=15 

 

 =1.5 

 

i=1 

i=2 

-0.0064 

0.0086 

0.2028 

0.2037 

-0.0062 

0.0084 

0.1922 

0.1931 

0.9480 

0.9479 

 

 =2.5 

i=1 

i=2 

-0.0114 

-0.0003 

0.5553 

0.5470 

-0.0106 

0.0001 

0.4817 

0.4839 

0.8674 

0.8688 

 

Table 3.6 Simulated means, variances and RE values for censored Student t 

distribution with 0,6,5.1,0 00  iii  , when Bayes̂ is close to MML̂  

q =0.2 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=5 

 

0s =2.0 

 

i=1 

i=2 

0.0094 

0.0118 

0.6367 

0.6297 

0.0083 

0.0101 

0.4804 

0.4765 

0.7545 

0.7567 

 

0s =2.5 

i=1 

i=2 

0.0069 

-0.0155 

0.6349 

0.6354 

0.0069 

-0.0145 

0.526 

0.5251 

0.8231 

0.8263 

ntr=2 

nbl=10 

 

0s =2.0 

 

i=1 

i=2 

0.0029 

0.0058 

0.3072 

0.3103 

0.0026 

0.0053 

0.2594 

0.2620 

0.8445 

0.8444 

 

0s =2.5 

i=1 

i=2 

-0.0012 

0.0013 

0.3052 

0.3120 

-0.0013 

0.0014 

0.2732 

0.2790 

0.8954 

0.8941 

ntr=2 

nbl=15 

 

0s =2.0 

 

i=1 

i=2 

-0.0049 

-0.0019 

0.2036 

0.1997 

-0.0047 

-0.0019 

0.1811 

0.1779 

0.8896 

0.8908 

 

0s =2.5 

i=1 

i=2 

-0.0055 

-0.0048 

0.2056 

0.2012 

-0.0053 

-0.0046 

0.1904 

0.1865 

0.9261 

0.9268 
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Table 3.7 Simulated means, variances and RE values for Student t distribution 

with 0,6,3,0 000  iiii s  , when Bayes̂ is close to MML̂  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

ntr=2 

nbl=5 

 

 =1.5 

 

i=1 

i=2 

0.0016 

-0.0036 

0.6373 

0.6172 

0.0020 

-0.0023 

0.5414 

0.5239 

0.8495 

0.8488 

 

 =2.5 

i=1 

i=2 

-0.0251 

-0.0252 

1.6943 

1.7447 

-0.0212 

-0.0202 

1.1721 

1.2036 

0.6918 

0.6899 

ntr=2 

nbl=10 

 

 =1.5 

 

i=1 

i=2 

0.0011 

-0.0031 

0.3042 

0.3003 

0.0011 

-0.0031 

0.2796 

0.2762 

0.9189 

0.9197 

 

 =2.5 

i=1 

i=2 

-0.0177 

0.0056 

0.8159 

0.8290 

-0.0160 

0.0052 

0.6598 

0.6694 

0.8087 

0.8075 

ntr=2 

nbl=15 

 

 =1.5 

 

i=1 

i=2 

0.0014 

-0.0061 

0.1957 

0.1994 

0.0013 

-0.0060 

0.1850 

0.1886 

0.9456 

0.9459 

 

 =2.5 

i=1 

i=2 

-0.0060 

-0.0045 

0.5545 

0.5455 

-0.0054 

-0.0043 

0.4786 

0.4710 

0.8631 

0.8635 

 

 

Table 3.8 Simulated means, variances and RE values for Student t distribution 

with 0,6,5.1,0 00  iii  , when Bayes̂ is close to MML̂  

 
MML

̂  )ˆ(
MML

V   
HPD

̂  )ˆ(
HPD

V   RE 

ntr=2 

nbl=5 

 

0s =2.0 

 

i=1 

i=2 

-0.0052 

0.0067 

0.6291 

0.6260 

-0.0034 

0.0061 

0.4579 

0.4542 

0.7279 

0.7256 

 

0s =2.5 

i=1 

i=2 

-0.0019 

0.0040 

0.6272 

0.6105 

-0.0027 

0.0039 

0.5022 

0.4915 

0.8007 

0.8052 

ntr=2 

nbl=10 

 

0s =2.0 

 

i=1 

i=2 

-0.0036 

-0.0055 

0.3057 

0.2957 

-0.0032 

-0.0049 

0.2562 

0.2479 

0.8380 

0.8381 

 

0s =2.5 

i=1 

i=2 

0.0036 

0.0024 

0.3020 

0.2964 

0.0033 

0.0025 

0.2688 

0.2637 

0.8901 

0.8896 

ntr=2 

nbl=15 

 

0s =2.0 

 

i=1 

i=2 

-0.0008 

0.0024 

0.1965 

0.1995 

-0.0008 

0.0023 

0.1742 

0.1766 

0.8867 

0.8853 

 

0s =2.5 

i=1 

i=2 

-0.0036 

-0.0002 

0.1999 

0.1992 

-0.0035 

-0.0002 

0.1846 

0.1841 

0.9236 

0.9240 
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3.2. Generalized Logistic Distribution: 

 

 Consider the model (3.1) with error terms having generalized logistic 

distribution. The density function of ijy is 

 

  
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3.2.1. MML Estimators: 

 

  In order to find MML estimators, the derivatives of likelihood functions 

are, 
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and 
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where  
)(

)(

1
)(

ji
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z

z

ji
e

e
zg






  and 



iji

ji

y
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


)(

)( .  

 

In order to find MML estimators, we linearize  )( jizg  as 

  )()()()( jijijiji zzg    where )( ji  and )( ji  are obtained from first two terms 

of Taylor series expansion as before: 
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where 

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1
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Note that jjajj   )()(2)(1   and jjajj   )()(2)(1   for all 

nj ,,1 .  Therefore, equation (3.18) is written as 
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MML estimators are obtained by solving (3.20) and are given by Tiku and 

Akkaya (2004) as follows: 
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where 
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 Then, we can write,  



a

i

ia
1

ˆ/1ˆ   and  ˆˆˆ  ii . 

 

Variances of estimators are obtained from the inverse of the Fisher information 

matrix given below: 

 

  
2

n
I    

              

  

    

              





























2
2121

2
21

2

21
22





bb
b

ab
ab

b

b

b
b

b

b

b

 

                               (3.22) 

 

where      xxx  /  is the psi-function  and  x   is the derivative of  x  

with respect to x .  
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3.2.2. Prior and Posterior Distributions: 

 

  We will find marginal posterior densities of i  and i  where 

 ˆˆˆ kii  . The value of k  is determined as to make i̂  and i̂  uncorrelated 

and it is simply )ˆ,ˆcov(/)ˆ(  iiVark   where  
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In order to write the joint density function of i̂  and i̂  we use the bivariate 

normality of idLd /ln  and idLd /ln   and write 
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where by 1k  and 2k  are obtained from 
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 From (3.24) it is also seen that i̂  and i̂   are uncorrelated and the marginal 

densities of them can be written as 
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In order to obtain more accurate results the distribution of i̂  can be approximated 

by chi-square distribution with n2  degrees of freedom.  

 

In order to obtain posterior densities of parameters, independent robust priors for 

i  and i are assumed: 

 

       iiii ppp  ,                                                                          (3.27) 

 

where 
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00

2

000 ,,,, iiiii ns   are hyperparameters considered as known and fixed.  

  

  Combining sample information with prior densities, the joint posterior 

distribution of parameters is given by, 
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The form (3.30) indicates that i  and 1

i  are posteriorly independent and 

marginal posterior densities are 
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where  12 /1 kh  . 

 

3.2.3. HPD Estimators: 

 

  iBayes,̂  is the mode of the inverse gamma density given by (3.30) and it can 

be expressed as 

 

  
nn

nn

i

iii

iBayes





0

00

,

ˆ
ˆ 
 .                                                                           (3.31) 

 

  In order to find the Bayesian estimator of i , the poly-t density given by 

(3.30) is solved by following exactly the same procedures as in the previous 

sections and two cases for the estimator of i are obtained. 

 

Case1: If 0i  is infinite, then the marginal density of i  is, 
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which yields the Bayes estimator as 
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iBayes .                                                                  (3.33) 

 

Case2: If 0i  is finite, then the solution of modal equation yields the Bayes 

estimators as follows: 

 

i) When Bayesian estimator iBayes,̂ is closes to prior mean 0i ,  then 
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ii)  When Bayesian estimator iBayes,̂ is closes to sample mean i̂ ,  then 
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where  
00 /ˆ

iiii s  .  

 

As is seen from (3.33), (3.34) and (3.35),  the  form of Bayes estimator is exactly 

the same as in the case of Student’s t distribution. So we can write 

 

    iiiiiBayes ww  ˆ1ˆ
0,  .                                                                  (3.36) 

 

The weighted form of Bayesian estimator makes it possible to produce exactly the 

same arguments as in previous section which assumes Student’s t distribution for 

error terms.  
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3.2.4. Comparing Efficiencies of MML and Bayes Estimators: Simulation 

Results 

 

Considering generalized logistic family we carry out simulations for two 

treatments containing 3,5,10 and 15 observations by assuming different b values. 

HPD estimators (3.34) and (3.35) are obtained by assuming prior density as (3.28) 

with 0 =0 and 20 s  and 20 s .5.  The random observations are assumed to 

have the form (3.17) with 0 , 1  and 5.1 . The simulated means, 

variances and relative efficiencies shown below indicate that for b=0.5 HPD 

estimators are generally better, like in the one sample case. Since the HPD 

estimator is a convex combination, the relationship with prior and sample 

dispersion and relative efficiencies are the same as before. Increasing prior 

variance yields less favorable HPD estimator while increasing   values gives 

more efficient Bayesian estimators. Similar statements can be made for Bayesian 

estimators (3.34) and (3.35) except that the estimator given by (3.34) has a little 

higher efficiencies. In addition to these, we can also say that, HPDs are better for 

small sample sizes although for all sample sizes they break the MVB barrier 

which is not possible in the classical statistical analyses. 

 

Remark: All of the simulation results are obtained when we have two treatments. 

However, they can be generalized to more than two treatments by using exactly 

similar arguments. 
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Table3.9 Simulated values for Generalized Logistic distribution with
 

5.0,75.0,0,6,3,0 000  bs iiii 
 Bayes̂ is close to 0  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

i=1 

i=2 

-0.1348 

-0.1475 

1.0497 

1.0621 

-0.1232 

-0.1378 

0.7543 

0.7637 

0.7187 

0.7190 

ntr=2 

nbl=5 

i=1 

i=2 

-0.0876 

-0.0598 

0.6315 

0.6354 

-0.0839 

-0.0592 

0.5240 

0.5237 

0.8299 

0.8243 

ntr=2 

nbl=10 

i=1 

i=2 

-0.0225 

-0.0244 

0.2965 

0.2975 

-0.0228 

-0.0243 

0.2721 

0.2728 

0.9178 

0.9167 

ntr=2 

nbl=15 

i=1 

i=2 

-0.0102 

-0.0108 

0.1990 

0.2000 

-0.0104 

-0.0109 

0.1884 

0.1893 

0.9469 

0.9466 

 

 

Table 3.10 Simulated values for Generalized Logistic distribution with
 

1,75.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to 0  

b 1 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

i=1 

i=2 

-0.0080 

0.0176 

0.6038 

0.5975 

-0.0080 

0.0160 

0.4897 

0.4844 

0.8111 

0.8107 

ntr=2 

nbl=5 

i=1 

i=2 

0.0010 

0.0003 

0.3535 

0.3476 

0.0011 

0.0004 

0.3153 

0.3103 

0.8918 

0.8925 

ntr=2 

nbl=10 

i=1 

i=2 

0.0065 

0.0017 

0.1747 

0.1697 

0.0064 

0.0017 

0.1662 

0.1614 

0.9510 

0.9509 

ntr=2 

nbl=15 

i=1 

i=2 

0.0010 

-0.0032 

0.1151 

0.1161 

0.0010 

-0.0031 

0.1114 

0.1123 

0.9682 

0.9681 
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Table 3.11 Simulated values for Generalized Logistic distribution with
 

4,75.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to 0  

b 4 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

i=1 

i=2 

0.1498 

0.1400 

0.4232 

0.4156 

0.1546 

0.1450 

0.3785 

0.3729 

0.8945 

0.8974 

ntr=2 

nbl=5 

i=1 

i=2 

0.0816 

0.0795 

0.2341 

0.2342 

0.0828 

0.0810 

0.2199 

0.2198 

0.9397 

0.9383 

ntr=2 

nbl=10 

i=1 

i=2 

0.0365 

0.0425 

0.1086 

0.1076 

0.0368 

0.0426 

0.1056 

0.1046 

0.9720 

0.9724 

ntr=2 

nbl=15 

i=1 

i=2 

0.0251 

0.0254 

0.0737 

0.0734 

0.0252 

0.0255 

0.0723 

0.0720 

0.9816 

0.9816 

 

 

Table 3.12 Simulated values for Generalized Logistic distribution with
 

6,75.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to 0  

b 6 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

i=1 

i=2 

0.1759 

0.1865 

0.4699 

0.4881 

0.1829 

0.1931 

0.4211 

0.4363 

0.8962 

0.8939 

ntr=2 

nbl=5 

i=1 

i=2 

0.1000 

0.1052 

0.2626 

0.2555 

0.1022 

0.1071 

0.2470 

0.2402 

0.9399 

0.9401 

ntr=2 

nbl=10 

i=1 

i=2 

0.0513 

0.0438 

0.1165 

0.1193 

0.0516 

0.0442 

0.1133 

0.1160 

0.9727 

0.9721 

ntr=2 

nbl=15 

i=1 

i=2 

0.0342 

0.0346 

0.0778 

0.0797 

0.0343 

0.0347 

0.0764 

0.0783 

0.9821 

0.9821 
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Table 3.13 Simulated values for Generalized Logistic distribution with
 

8,75.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to 0  

b 8 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

i=1 

i=2 

0.1986 

0.1909 

0.5453 

0.5575 

0.2082 

0.2008 

0.4849 

0.4958 

0.8893 

0.8894 

ntr=2 

nbl=5 

i=1 

i=2 

0.1194 

0.1145 

0.2846 

0.2857 

0.1216 

0.1169 

0.2679 

0.2687 

0.9414 

0.9405 

ntr=2 

nbl=10 

i=1 

i=2 

0.0568 

0.0525 

0.1333 

0.1323 

0.0573 

0.0530 

0.1297 

0.1286 

0.9724 

0.9723 

ntr=2 

nbl=15 

i=1 

i=2 

0.0367 

0.0405 

0.0844 

0.0861 

0.0369 

0.0407 

0.0829 

0.0845 

0.9822 

0.9821 

 

 

Table 3.14 Simulated values for Generalized Logistic distribution with
 

5.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to 0  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

 =1 

 

i=1 

i=2 

-0.1807 

-0.1767 

1.9211 

1.9012 

-0.1633 

-0.1617 

1.1425 

1.1321 

0.5947 

0.5955 

 

 =1.5 

i=1 

i=2 

-0.2609 

-0.2573 

4.2632 

4.2912 

-0.2119 

-0.2029 

1.7321 

1.7347 

0.4063 

0.4042 

ntr=2 

nbl=5 

 

 =1 

 

i=1 

i=2 

-0.0901 

-0.0926 

1.1176 

1.0956 

-0.0853 

-0.0876 

0.8134 

0.8005 

0.7278 

0.7306 

 

 =1.5 

i=1 

i=2 

-0.1463 

-0.1449 

2.4436 

2.5662 

-0.1304 

-0.1312 

1.3194 

1.3921 

0.5399 

0.5425 

ntr=2 

nbl=10 

 

 =1 

 

i=1 

i=2 

-0.0286 

-0.0215 

0.5273 

0.5218 

-0.0291 

-0.0220 

0.4545 

0.4499 

0.8619 

0.8624 

 

 =1.5 

i=1 

i=2 

-0.0532 

-0.0299 

1.1811 

1.2033 

-0.0517 

-0.0327 

0.8615 

0.8773 

0.7294 

0.7291 

ntr=2 

nbl=15 

 

 =1 

 

i=1 

i=2 

-0.0205 

-0.0192 

0.3528 

0.3496 

-0.0205 

-0.0192 

0.3206 

0.3177 

0.9086 

0.9090 

 

 =1.5 

i=1 

i=2 

-0.0227 

-0.0137 

0.8015 

0.7821 

-0.0276 

-0.0150 

0.6506 

0.6350 

0.8117 

0.8119 
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Table 3.15 Simulated values for Generalized Logistic distribution with
 

1,0,6,3,0 000  bs iiii  , when Bayes̂ is close to 0  

b 1 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

 =1 

 

i=1 

i=2 

0.0061 

0.0054 

1.0580 

1.0664 

0.0067 

0.0056 

0.7546 

0.7655 

0.7132 

0.7178 

 

 =1.5 

i=1 

i=2 

-0.0196 

-0.0114 

2.4235 

2.4468 

-0.0124 

-0.0047 

1.2811 

1.2883 

0.5286 

0.5265 

ntr=2 

nbl=5 

 

 =1 

 

i=1 

i=2 

-0.0108 

-0.0047 

0.6526 

0.6550 

-0.0108 

-0.0039 

0.5363 

0.5390 

0.8217 

0.8229 

 

 =1.5 

i=1 

i=2 

-0.0013 

-0.0089 

1.4344 

1.4430 

-0.0002 

-0.0066 

0.9610 

0.9627 

0.6700 

0.6671 

ntr=2 

nbl=10 

 

 =1 

 

i=1 

i=2 

0.0057 

0.0043 

0.3058 

0.3159 

0.0053 

0.0041 

0.2794 

0.2890 

0.9140 

0.9151 

 

 =1.5 

i=1 

i=2 

0.0061 

0.0112 

0.7007 

0.6891 

0.0055 

0.0100 

0.5779 

0.5677 

0.8247 

0.8238 

ntr=2 

nbl=15 

 

 =1 

 

i=1 

i=2 

0.0065 

-0.0027 

0.2056 

0.2045 

0.0062 

-0.0026 

0.1941 

0.1931 

0.9440 

0.9443 

 

 =1.5 

i=1 

i=2 

0.0028 

-0.0035 

0.4668 

0.4511 

0.0026 

-0.0034 

0.4117 

0.3978 

0.8818 

0.8818 

 

Table 3.16 Simulated values for Generalized Logistic distribution with
 

4,0,6,3,0 000  bs iiii  , when Bayes̂ is close to 0  

b 4 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

 =1 

 

i=1 

i=2 

0.1962 

0.1881 

0.7419 

0.7433 

0.2049 

0.1983 

0.6233 

0.6178 

0.8402 

0.8312 

 

 =1.5 

i=1 

i=2 

0.3042 

0.2827 

1.6408 

1.6718 

0.3222 

0.3042 

0.1543 

0.1691 

0.7035 

0.6993 

ntr=2 

nbl=5 

 

 =1 

 

i=1 

i=2 

0.1103 

0.0968 

0.4137 

0.4054 

0.1129 

0.0998 

0.3724 

0.3646 

0.9001 

0.8995 

 

 =1.5 

i=1 

i=2 

0.1412 

0.1542 

0.9159 

0.9216 

0.1509 

0.1616 

0.7296 

0.7357 

0.7966 

0.7983 

ntr=2 

nbl=10 

 

 =1 

 

i=1 

i=2 

0.0484 

0.0633 

0.1987 

0.1940 

0.0490 

0.0635 

0.1890 

0.1846 

0.9512 

0.9512 

 

 =1.5 

i=1 

i=2 

0.0756 

0.0770 

0.4349 

0.4271 

0.0772 

0.0785 

0.3893 

0.3826 

0.8950 

0.8959 

ntr=2 

nbl=15 

 

 =1 

 

i=1 

i=2 

0.0350 

0.0354 

0.1294 

0.1233 

0.0352 

0.0356 

0.1252 

0.1194 

0.9677 

0.9683 

 

 =1.5 

i=1 

i=2 

0.0492 

0.0442 

0.2905 

0.2929 

0.0500 

0.0452 

0.2700 

0.2724 

0.9293 

0.9300 
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Table 3.17 Simulated values for Generalized Logistic distribution with
 

5.0,1,0,6,0 00  biii  , when Bayes̂ is close to 0  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

s =2.0 

 

i=1 

i=2 

-0.1798 

-0.1699 

1.8935 

1.9061 

-0.1427 

-0.1380 

0.7742 

0.7671 

0.4088 

0.4024 

 

s =2.5 

i=1 

i=2 

-0.1819 

-0.1890 

1.9303 

1.9358 

-0.1537 

-0.1613 

0.9793 

0.9913 

0.5073 

0.5074 

ntr=2 

nbl=5 

 

s =2.0 

 

i=1 

i=2 

-0.0922 

-0.0797 

1.1379 

1.0935 

-0.0809 

-0.0709 

0.6135 

0.5900 

0.5392 

0.5396 

 

s =2.5 

i=1 

i=2 

-0.0983 

-0.0954 

1.1269 

1.1158 

-0.0912 

-0.0884 

0.7314 

0.7265 

0.6490 

0.6511 

ntr=2 

nbl=10 

 

s =2.0 

 

i=1 

i=2 

-0.0488 

-0.0311 

0.5269 

0.5416 

-0.0459 

-0.0302 

0.3854 

0.3940 

0.7314 

0.7275 

 

s =2.5 

i=1 

i=2 

-0.0301 

-0.0390 

0.5268 

0.5224 

-0.0300 

-0.0381 

0.4276 

0.4242 

0.8116 

0.8121 

ntr=2 

nbl=15 

 

s =2.0 

 

i=1 

i=2 

-0.0194 

-0.0160 

0.3396 

0.3561 

-0.0193 

-0.0165 

0.2763 

0.2891 

0.8135 

0.8119 

 

s =2.5 

i=1 

i=2 

-0.0117 

-0.0208 

0.3509 

0.3608 

-0.0120 

-0.0208 

0.3063 

0.3148 

0.8729 

0.8725 

 

 

Table 3.18 Simulated values for Generalized Logistic distribution with
 

1,1,0,6,0 00  biii  , when Bayes̂ is close to 0  

b 1 MML
̂  )ˆ(

MML
V 

 
HPD

̂  )ˆ(
HPD

V 
 

RE 

ntr=2 

nbl=3 

 

s =2.0 

 

i=1 

i=2 

-0.0090 

0.0117 

1.0898 

1.0990 

-0.0047 

0.0091 

0.5800 

0.5853 

0.5323 

0.5326 

 

s =2.5 

i=1 

i=2 

0.0022 

-0.0006 

1.0650 

1.1070

0 

0.0028 

-0.0016 

0.6774 

0.6797 

0.6332 

0.6352 

ntr=2 

nbl=5 

 

s =2.0 

 

i=1 

i=2 

0.0046 

-0.0075 

0.6411 

0.6414 

0.0034 

-0.0061 

0.4289 

0.4307 

0.6691 

0.6715 

 

s =2.5 

i=1 

i=2 

-0.0016 

0.0082 

0.6250 

0.6313 

-0.0013 

0.0074 

0.4754 

0.4786 

0.7607 

0.7582 

ntr=2 

nbl=10 

 

s =2.0 

 

i=1 

i=2 

-0.0010 

-0.0068 

0.3120 

0.3096 

-0.0018 

-0.0062 

0.2569 

0.2550 

0.8233 

0.8238 

 

s =2.5 

i=1 

i=2 

-0.0077 

-0.0048 

0.3114 

0.3124 

-0.0071 

-0.0044 

0.2739 

0.2749 

0.8793 

0.8801 

ntr=2 

nbl=15 

 

s =2.0 

 

i=1 

i=2 

0.0025 

-0.0007 

0.2052 

0.2046 

0.0024 

-0.0006 

0.1810 

0.1804 

0.8817 

0.8816 

 

s =2.5 

i=1 

i=2 

0.0095 

-0.0033 

0.2052 

0.2036 

0.0091 

-0.0031 

0.1891 

0.1875 

0.9215 

0.9210 
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Table 3.19 Simulated values for Generalized Logistic distribution with
 

4,1,0,6,0 00  biii  , when Bayes̂ is close to 0  

b 4 MML
̂  )ˆ(

MML
V 

 
HPD

̂  )ˆ(
HPD

V 
 

RE 

ntr=2 

nbl=3 

 

s =2.0 

 

i=1 

i=2 

0.1958 

0.1944 

0.7427 

0.7322 

0.2095 

0.2072 

0.5264 

0.5155 

0.7087 

0.7040 

 

s =2.5 

i=1 

i=2 

0.1977 

0.1944 

0.7426 

0.7236 

0.2080 

0.2056 

0.5836 

0.5652 

0.7859 

0.7811 

ntr=2 

nbl=5 

 

s =2.0 

 

i=1 

i=2 

0.1117 

0.1124 

0.4107 

0.4098 

0.1158 

0.1167 

0.3294 

0.3289 

0.8021 

0.8025 

 

s =2.5 

i=1 

i=2 

0.1172 

0.1108 

0.4055 

0.4029 

0.1196 

0.1137 

0.3512 

0.3487 

0.8660 

0.8654 

ntr=2 

nbl=10 

 

s =2.0 

 

i=1 

i=2 

0.0430 

0.0494 

0.1975 

0.1975 

0.0445 

0.0507 

0.1765 

0.1766 

0.8938 

0.8941 

 

s =2.5 

i=1 

i=2 

0.0534 

0.0501 

0.1935 

0.1938 

0.0541 

0.0509 

0.1802 

0.1804 

0.9314 

0.9310 

ntr=2 

nbl=15 

 

s =2.0 

 

i=1 

i=2 

0.0326 

0.0309 

0.1272 

0.1284 

0.0332 

0.0316 

0.1182 

0.1194 

0.9295 

0.9299 

 

s =2.5 

i=1 

i=2 

0.0034 

0.0319 

0.1266 

0.1278 

0.0347 

0.0323 

0.1208 

0.1219 

0.9543 

0.9540 

 

 

Table 3.20 Simulated values for Generalized Logistic distribution with
 

5.0,75.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to MML̂  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2  

nbl=3 

i=1 

i=2 

-0.1560 

-0.1413 

1.0894 

1.0641 

-0.1447 

-0.1323 

0.7993 

0.7814 

0.7337 

0.7343 

ntr=2 

 nbl=5 

i=1 

i=2 

-0.0660 

-0.0543 

0.6249 

0.6333 

-0.0640 

-0.0546 

0.5204 

0.5284 

0.8328 

0.8344 

ntr=2 

nbl=10 

i=1 

i=2 

-0.0263 

-0.0254 

0.2929 

0.3016 

-0.0262 

-0.0254 

0.2691 

0.2769 

0.9187 

0.9181 

ntr=2 

nbl=15 

i=1 

i=2 

-0.0203 

-0.0103 

0.1943 

0.1952 

-0.0202 

-0.0105 

0.1841 

0.1848 

0.9473 

0.9470 
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Table 3.21 Simulated values for Generalized Logistic distribution with
 

1,75.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to MML̂  

b 1 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

i=1 

i=2 

-0.0012 

0.0139 

0.6028 

0.6152 

-0.0007 

0.0129 

0.4942 

0.5035 

0.8198 

0.8184 

ntr=2 

nbl=5 

i=1 

i=2 

0.0025 

0.0008 

0.3576 

0.3642 

0.0026 

0.0006 

0.3197 

0.3256 

0.8940 

0.8941 

ntr=2 

nbl=10 

i=1 

i=2 

-0.0009 

-0.0022 

0.1724 

0.1740 

-0.0008 

-0.0021 

0.1640 

0.1654 

0.9511 

0.9509 

ntr=2 

nbl=15 

i=1 

i=2 

-0.0055 

0.0058 

0.1175 

0.1137 

-0.0054 

0.0057 

0.1138 

0.1102 

0.9685 

0.9686 

 

 

Table 3.22 Simulated values for Generalized Logistic distribution with
 

4,75.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to MML̂  

b 4 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

i=1 

i=2 

0.1508 

0.1496 

0.4119 

0.4156 

0.1551 

0.1539 

0.3713 

0.3736 

0.9015 

0.8989 

ntr=2 

nbl=5 

i=1 

i=2 

0.0833 

0.0872 

0.2294 

0.2375 

0.0844 

0.0884 

0.2161 

0.2237 

0.9420 

0.9418 

ntr=2 

nbl=10 

i=1 

i=2 

0.0411 

0.0420 

0.1072 

0.1078 

0.0413 

0.0422 

0.1042 

0.1048 

0.9722 

0.9724 

ntr=2 

nbl=15 

i=1 

i=2 

0.0245 

0.0311 

0.0714 

0.0728 

0.0246 

0.0312 

0.0701 

0.0715 

0.9818 

0.9820 
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Table 3.23 Simulated values for Generalized Logistic distribution with
 

6,75.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to MML̂  

b 6 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

i=1 

i=2 

0.1889 

0.1728 

0.4766 

0.4884 

0.1955 

0.1803 

0.4285 

0.4382 

0.8991 

0.8972 

ntr=2 

nbl=5 

i=1 

i=2 

0.1077 

0.1084 

0.2532 

0.2629 

0.1093 

0.1101 

0.2387 

0.2478 

0.9427 

0.9428 

ntr=2 

nbl=10 

i=1 

i=2 

0.0604 

0.0529 

0.1200 

0.1178 

0.0606 

0.0532 

0.1168 

0.1146 

0.9732 

0.9729 

ntr=2 

nbl=15 

i=1 

i=2 

0.0348 

0.0285 

0.0775 

0.0790 

0.0350 

0.0287 

0.0762 

0.0776 

0.9823 

0.9823 

 

 

Table 3.24 Simulated values for Generalized Logistic distribution with
 

8,75.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to MML̂  

b 8 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

i=1 

i=2 

0.1969 

0.2070 

0.5449 

0.5483 

0.2061 

0.2157 

0.4869 

0.4902 

0.8936 

0.8940 

ntr=2 

nbl=5 

i=1 

i=2 

0.1082 

0.1120 

0.2894 

0.2892 

0.1107 

0.1144 

0.2728 

0.2723 

0.9424 

0.9415 

ntr=2 

nbl=10 

i=1 

i=2 

0.0579 

0.0577 

0.1338 

0.1298 

0.0584 

0.0581 

0.1301 

0.1263 

0.9729 

0.9727 

ntr=2 

nbl=15 

i=1 

i=2 

0.0409 

0.0392 

0.0841 

0.0864 

0.0411 

0.0394 

0.0826 

0.0848 

0.9824 

0.9823 
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Table 3.25 Simulated values for Generalized Logistic distribution with
 

5.0,0,6,3,0 000  bs iiii  , when Bayes̂ is close to MML̂  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

 =1 

 

i=1 

i=2 

-0.1770 

-0.1828 

1.8892 

1.8972 

-0.1587 

-0.1654 

1.1710 

1.1828 

0.6199 

0.6235 

 

 =1.5 

i=1 

i=2 

-0.2675 

-0.3067 

4.2832 

4.3164 

-0.2262 

-0.2478 

2.0147 

2.0142 

0.4704 

0.4666 

ntr=2 

nbl=5 

 

 =1 

 

i=1 

i=2 

-0.1089 

-0.0972 

1.1295 

1.1105 

-0.1025 

-0.0931 

0.8412 

0.8243 

0.7447 

0.7423 

 

 =1.5 

i=1 

i=2 

-0.1263 

-0.1223 

2.4737 

2.4461 

-0.1158 

-0.1136 

1.4199 

1.4058 

0.5740 

0.5747 

ntr=2 

nbl=10 

 

 =1 

 

i=1 

i=2 

-0.0358 

-0.0383 

0.5357 

0.5458 

-0.0358 

-0.0379 

0.4643 

0.4638 

0.8667 

0.8656 

 

 =1.5 

i=1 

i=2 

-0.0431 

-0.0338 

1.1859 

1.2096 

-0.0428 

-0.0360 

0.8846 

0.9030 

0.7460 

0.7465 

ntr=2 

nbl=15 

 

 =1 

 

i=1 

i=2 

-0.0214 

0.0113 

0.3507 

0.3462 

-0.0215 

-0.0118 

0.3194 

0.3153 

0.9107 

0.9110 

 

 =1.5 

i=1 

i=2 

-0.0271 

-0.0274 

0.7936 

0.7874 

-0.0273 

-0.0282 

0.6505 

0.6450 

0.8197 

0.8191 

 

Table 3.26 Simulated values for Generalized Logistic distribution with
 

1,0,6,3,0 000  bs iiii  , when Bayes̂ is close to MML̂  

b 1 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

 =1 

 

i=1 

i=2 

-0.0011 

0.0002 

1.0933 

1.0951 

-0.0019 

0.0003 

0.7941 

0.7920 

0.7264 

0.7233 

 

 =1.5 

i=1 

i=2 

00013 

-0.0081 

2.3836 

2.4094 

0.0024 

-0.0062 

1.3554 

1.3737 

0.5686 

0.5701 

ntr=2 

nbl=5 

 

 =1 

 

i=1 

i=2 

-0.0015 

0.0011 

0.6476 

0.6245 

-0.0013 

-0.0004 

0.5358 

0.5166 

0.8274 

0.8272 

 

 =1.5 

i=1 

i=2 

-0.0068 

-0.0191 

1.4099 

1.4461 

-0.0051 

-0.0164 

0.9743 

0.9967 

0.6910 

0.6892 

ntr=2 

nbl=10 

 

 =1 

 

i=1 

i=2 

0.0067 

-0.0079 

0.3138 

0.3156 

0.0065 

-0.0074 

0.2873 

0.2890 

0.9155 

0.9156 

 

 =1.5 

i=1 

i=2 

-0.0054 

0.0004 

0.7024 

0.6913 

-0.0051 

0.0006 

0.5831 

0.5741 

0.8301 

0.8304 

ntr=2 

nbl=15 

 

 =1 

 

i=1 

i=2 

-0.0102 

0.0068 

0.1983 

0.2056 

-0.0099 

0.0068 

0.1875 

0.1943 

0.9452 

0.9450 

 

 =1.5 

i=1 

i=2 

0.0022 

-0.0032 

0.4607 

0.4587 

0.0021 

-0.0030 

0.4073 

0.4054 

0.8840 

0.8837 
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Table 3.27 Simulated values for Generalized Logistic distribution with
 

4,0,6,3,0 000  bs iiii  , when Bayes̂ is close to MML̂  

b 4 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

 =1 

 

i=1 

i=2 

0.1869 

0.1838 

0.7180 

0.7550 

0.1957 

0.1948 

0.6054 

0.6345 

0.8432 

0.8405 

 

 =1.5 

i=1 

i=2 

0.3165 

0.3016 

1.6325 

1.6760 

0.3321 

0.3214 

1.1782 

1.2165 

0.7217 

0.7259 

ntr=2 

nbl=5 

 

 =1 

 

i=1 

i=2 

0.1113 

0.1055 

0.4057 

0.4062 

0.1140 

0.1082 

0.3662 

0.3670 

0.9026 

0.9033 

 

 =1.5 

i=1 

i=2 

0.1674 

0.1772 

0.9160 

0.9186 

0.1732 

0.1824 

0.7626 

0.7454 

0.78107 

0.8114 

ntr=2 

nbl=10 

 

 =1 

 

i=1 

i=2 

0.0452 

0.0533 

0.1953 

0.1949 

0.0459 

0.0539 

0.1858 

0.1855 

0.9513 

0.9516 

 

 =1.5 

i=1 

i=2 

0.0794 

0.0673 

0.4348 

0.4377 

0.0809 

0.0694 

0.3905 

0.3930 

0.8980 

0.8979 

ntr=2 

nbl=15 

 

 =1 

 

i=1 

i=2 

0.0326 

0.0344 

0.1306 

0.1303 

0.0329 

0.0346 

0.1264 

0.1261 

0.9680 

0.9683 

 

 =1.5 

i=1 

i=2 

0.0465 

0.0503 

0.2914 

0.2935 

0.0475 

0.0509 

0.2712 

0.2736 

0.9308 

0.9321 

Table 3.28 Simulated values for Generalized Logistic distribution with
 

5.0,1,0,6,0 00  biii  , when Bayes̂ is close to MML̂  

b 0.5 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

s =2.0 

 

i=1 

i=2 

-0.1857 

0.1933 

1.9184 

1.9151 

-0.1482 

-0.1580 

0.8797 

0.8685 

0.4585 

0.4535 

 

s =2.5 

i=1 

i=2 

-0.1729 

-0.2043 

1.8877 

1.9264 

-0.1515 

-0.1746 

1.0421 

1.0757 

0.5521 

0.5584 

ntr=2 

nbl=5 

 

s =2.0 

 

i=1 

i=2 

-0.0624 

-0.0783 

1.1064 

1.0993 

-0.0616 

-0.0739 

0.6321 

0.6298 

0.5713 

0.5729 

 

s =2.5 

i=1 

i=2 

-0.0904 

-0.0883 

1.1204 

1.1041 

-0.0863 

-0.0833 

0.7575 

0.7451 

0.6761 

0.6749 

ntr=2 

nbl=10 

 

s =2.0 

 

i=1 

i=2 

-0.0266 

-0.0352 

0.5325 

0.5411 

-0.0280 

-0.0341 

0.3965 

0.4039 

0.7445 

0.7463 

 

s =2.5 

i=1 

i=2 

-0.0289 

-0.0279 

0.5311 

0.5256 

-0.0292 

-0.0278 

0.02787 

0.4342 

0.4304 

0.8176 

0.8188 

ntr=2 

nbl=15 

 

s =2.0 

 

i=1 

i=2 

-0.0348 

-0.0160 

0.3394 

0.3472 

-0.0332 

-0.0165 

0.2784 

0.2851 

0.8201 

0.8211 

 

s =2.5 

i=1 

i=2 

-0.0237 

-0.0163 

0.3470 

0.3527 

-0.0235 

-0.0169 

0.3038 

0.3090 

0.8754 

0.8762 
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Table 3.29 Simulated values for Generalized Logistic distribution with
 

1,1,0,6,0 00  biii  , when Bayes̂ is close to MML̂  

b 1 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

s =2.0 

 

i=1 

i=2 

0.0063 

0.0012 

1.0682 

1.0946 

0.0072 

0.0008 

0.6031 

0.6163 

0.5646 

0.5630 

 

s =2.5 

i=1 

i=2 

-0.0180 

0.0175 

1.0781 

1.0917 

-0.0149 

0.0146 

0.7034 

0.7229 

0.6524 

0.6622 

ntr=2 

nbl=5 

 

s =2.0 

 

i=1 

i=2 

0.0137 

0.0114 

0.6363 

0.6297 

0.0129 

0.0098 

0.4423 

0.4331 

0.6919 

0.6878 

 

s =2.5 

i=1 

i=2 

-0.0002 

-0.0163 

0.6277 

0.6397 

-0.0003 

-0.0140 

0.4845 

0.4936 

0.7718 

0.7717 

ntr=2 

nbl=10 

 

s =2.0 

 

i=1 

i=2 

-0.0035 

0.0007 

0.3126 

0.3049 

-0.0030 

0.0007 

0.2595 

0.2529 

0.8302 

0.8295 

 

s =2.5 

i=1 

i=2 

-0.0028 

-0.0036 

0.3134 

0.3075 

-0.0028 

-0.0034 

0.2765 

0.2716 

0.8822 

0.8833 

ntr=2 

nbl=15 

 

s =2.0 

 

i=1 

i=2 

0.0044 

0.0016 

0.2011 

0.2029 

0.0042 

0.0015 

0.1781 

0.1796 

0.8860 

0.8851 

 

s =2.5 

i=1 

i=2 

0.0074 

0.0009 

0.2106 

0.2064 

0.0072 

0.0009 

0.1943 

0.1905 

0.9226 

0.9233 

 

 

Table 3.30 Simulated values for Generalized Logistic distribution with
 

4,1,0,6,0 00  biii  , when Bayes̂ is close to MML̂  

b 4 MML
̂  )ˆ(

MML
V   

HPD
̂  )ˆ(

HPD
V   RE 

ntr=2 

nbl=3 

 

s =2.0 

 

i=1 

i=2 

0.1963 

0.2040 

0.7287 

0.7238 

0.2082 

0.2133 

0.5257 

0.5226 

0.7214 

0.7220 

 

s =2.5 

i=1 

i=2 

0.1958 

0.2034 

0.7395 

0.7328 

0.2068 

0.2127 

0.5846 

0.5841 

0.7906 

0.7971 

ntr=2 

nbl=5 

 

s =2.0 

 

i=1 

i=2 

0.1056 

0.1120 

0.4103 

0.4188 

0.1104 

0.1161 

0.3323 

0.3392 

0.8098 

0.8100 

 

s =2.5 

i=1 

i=2 

0.1137 

0.1169 

0.4087 

0.4072 

0.1168 

0.1197 

0.3555 

0.3530 

0.8699 

0.8670 

ntr=2 

nbl=10 

 

s =2.0 

 

i=1 

i=2 

0.0572 

0.0541 

0.1994 

0.1976 

0.0580 

0.0551 

0.1792 

0.1776 

0.8986 

0.8985 

 

s =2.5 

i=1 

i=2 

0.0473 

0.0530 

0.1925 

0.1952 

0.0481 

0.0537 

0.1794 

0.1820 

0.9319 

0.9325 

ntr=2 

nbl=15 

 

s =2.0 

 

i=1 

i=2 

0.0388 

0.0319 

0.1256 

0.1276 

0.0342 

0.0324 

0.1169 

0.1188 

0.9308 

0.9313 

 

s =2.5 

i=1 

i=2 

0.0319 

0.0325 

0.1269 

0.1276 

0.0323 

0.0329 

0.1211 

0.1217 

0.9546 

0.9544 
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CHAPTER 4 

 

 

APPLICATION 

 

 

 

4.1.Application with Real Data 

 

 We start with the observations that represents the differences (in heights) 

between cross and self fertilizied plants of the same pair grown in one pot. The 

data, which is known as Darwin’s data, is given below: 

 

49,  -67,  8,  16,  6,  23,  28,  41,  14,  29,  56,  24,  75,  60,  -48 

 

The Q-Q plot based on a normal distribution is represented by Figure 4.1 

below. We see that two smallest and one largest observations are different than 

the bulk of the observations, that means they are possibly outliers. In order to 

obtain more reliable results, formal outlier tests are applied to the data and it has 

been found that these observations are in fact outliers. (Tiku and Akkaya, 2004). 

Since existence of extreme values adversely affects the efficiency of estimators, 

these observations are given zero weights. That is to say, they are censored from 

the data. Since we deal with symmetric censoring in Chapter 2, we censor two 

smallest and two largest observations from the data and calculate MML and HPD 

estimators with the remaining observations.  
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Figure 4.1. Q-Q Plot for example1 with normal distribution 

 

In order to see the affect of outliers, we start with full data and obtain 

Least Square (LS) estimators with fifteen observations as, 

 

933.20ˆ LS  and  )ˆ( LSVar  94.975           (4.1) 

 

 We aim to calculate Bayesian estimator of  also, therefore we assume a 

normal prior with hyperparameters 2

00 , . If we assume 0  20 and 2

0 7 and 

use (1.22) we get 

 

Bayes̂  20.317 and  )ˆ( BayesVar  32.323           (4.2) 

 

From (4.1) and (4.2) we see that LS and Bayes estimators of   are very close to 

each other, however, the variance of Bayes estimator is much smaller. 

 

 In order to eliminate the affect of extreme values, we censor two smallest 

and largest observatios from the data and calculate MML estimator (2.8) as  

 

MML̂ 27.703  and  )ˆ( MMLVar  45.197                (4.3) 
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Moreover, HPD estimator of   given by (2.17) is obtained by assuming 

),(~)( 2

00  Np . If we take 0 and 2

0  as 20 and 7, respectively,  we get 

 

Bayes̂ 24.007  and  )ˆ( BayesVar  23.510            (4.4) 

 

Like in the full sample case, we see that MMLE and Bayesian estimator of   are 

similar to each other but HPD estimator has smaller variance. Moreover, if we 

compare full sample and censored sample results for both MML and Bayes 

estimators, we see that extreme values affect the efficiencies adversely. Therefore, 

they need to be removed from the data in order to get more reliable estimates.  

 

Example2: Following data represents the average annual erosion rates of thirteen 

states in US (Tiku and Akkaya, 2004): 

 

-0.4   -0.5   -0.9   -0.5   0.1   -1.0   0.1   -1.5   -4.2   -0.6   -2.0   0.7   -0.1 

 

 The general pattern of the data indicates that a negatively skewed 

distribution may be appropriate. According to the Q-Q plot shown by Figure 4.2 

we can say that GL distribution may be a good choice. In order to determine the 

value of b, estimates of ndLnL /  are calculated. We find that b=0.5 is the 

maximizing point and should be used.  

 

 

Figure 4.2. Q-Q plot for Example2 with GL distribution (b=0.5).  
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Assuming GL distribution with b=0.5, MML estimators are calculated from (2.80) 

as 

 

MML̂ -0.1812 and  )ˆ( MMLVar  0.0685                                              (4.5) 

 

In order to calculate HPD estimators, we assume a robust prior (2.92) with 00   

and 12

0   and obtain Bayes estimator of   from (2.100) as 

 

Bayes̂ -0.1796 and  )ˆ( BayesVar  0.0587            (4.6)   

 

If we compare (4.5) and (4.6) we see that the estimates of   are very close to 

each other but variance of HPD estimator is lower than the variance of MMLE. 

Relative efficiency of HPD estimator is calculated as 

 

 
)ˆ(

)ˆ(

MML

Bayes

Var

Var
RE




0.8574            (4.7) 

 

which indicates the HPD estimator is more efficient than MML estimator. 

However, if we change the prior variance from 12

0   to 32

0   we see that, 

 


)ˆ(

)ˆ(

MML

Baye

Var

Var
RE




0.9824              (4.8) 

 

That means, if prior dispersion increases, Bayes estimator looses efficiency since 

the weight of MML estimator increases. However, as 2

0  becomes larger and 

larger, RE converges to 1 which indicates HPD estimator converges to MML 

estimator. That is to say, for reasonable prior variance, HPD is more efficient than 

MML estimators but for large 2

0   it becomes at least as efficient as MMLE.  
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Example3. The following data represents the gain (in pounds) of 20 pigs with 

respect to two different feeds, A and B (Tiku and Akkaya, 2004).  

 

A: 0.09   1.43   2.79   1.60   1.71   3.37   2.06   2.67   8.42   3.67 

B: 1.96   1.79   2.60   1.40   2.22   3.45   1.16   5.71   2.93   1.40 

 

In order to fit a reasonable distribution we look at different Q-Q plots and 

see that GL distribution with b>1 may be an appropriate choice for the error 

terms. The value of b is chosen as 8 since it maximezes nLd /ˆln . 

 

 

Figure 4.3. Q-Q plot for Example 3 withGL distribution(b=8).  

 

We may fit a one way experimental design model to the data with two 

treatments each having ten observations. MML estimators (3.21) are calculated as 

 

MMLA,̂ -0.4893, MMLB,̂ -0.3945 and )ˆ( ,MMLiVar  0.2600         (4.9) 

 

We find HPD estimators of treatments by assuming prior distribution (3.28) with 

00, i , 12

0, i  and 60, iv  as 

 

HPDA,̂ -0.4312, HPDB,̂ -0.3476 and  )ˆ( ,HPDiVar  0.2072            (4.10) 
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The estimates of location parameters are close to each other but their 

variances become smaller if Bayesian techniques are used in estimation. 

Assuming prior distribution with parameters mentioned above, we get  the relative 

efficiency of HPD estimators as 

 


)ˆ(

)ˆ(

MML

Bayes

Var

Var
RE




0.79                                                                       (4.11) 

 

However, if we change prior dispersion and assume 5.12

0, i , then relative 

efficiency become 

 


)ˆ(

)ˆ(

MML

Bayes

Var

Var
RE




0.89                                                                       (4.12) 

 

Relative efficiency increases with prior dispersion and converges to 1 for large 

values of 5.12

0  , as expected. 

 

Example4. The following data comes from the study of Columbian molasess. 

Brix Degrees, which is a measure of the quantity of solids in a molasses,  is one of 

the qualities of importance. The sources of the molasses are three different areas 

in the country. In order to see whether these three locations provide the same Brix 

Degrees of molasses, eight observations are obtainded from each location 

(Johnson and Leone, 1964). 

 

LocationI :   81.6   81.3   82.0   79.6   78.4   81.8   80.2   80.7 

Location II:  81.8   84.7   82.0   85.6   79.9   83.2   84.1   85.0 

Location III: 82.1   79.6   83.1   80.7   81.8   79.9   82.6   81.9 
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Figure 4.4. Q-Q plot for Example 4 with LTS distribution(p=4). 

 

One way ANOVA model is considered with three treatments each having eight 

observations. Q-Q plot, shown by Figure 4.4, indicates that LTS family may be 

appropriate for the data. The suitable value of p is found as 4 since it  maximizes 

nLd /ˆln .  

 

According to one way classification model with LTS distribution p=4, 

MML estimators (3.5) are calculated as 

 

MML,1̂ 80.778, MML,2̂ 83.367, MML,3̂ 81.498 and )ˆ( ,MMLiVar  0.265  (4.13) 

 

Assuming robust prior (3.7) with 800, i , 10, i  and 60, iv , HPD estimators 

(3.15) are calculated as 

 

Bayes,1̂ 80.594, Bayes2̂ 82.572, Bayes,3̂ 81.145and )ˆ( ,BayesiVar  0.210  (4.14) 

 

The results agree with the simulation results of Chapter 3. The MML and HPD 

estimates of   are close to each other but the latter have smaller variance. 

However, as in the previous cases, variance of HPD estimators converges to 

variance of MML estimators as 0  increases. For example, If we take 10, i , the 

relative efficiency is %79.4 while it becomes %89.7 for 5.10, i . 



110 

 

Comment: The method we have developed in this chapter can be extended to 

more complex data structures, e.g., two-way-classification ANOVA with 

interaction, BIB design, linear regression, etc. That will be the subject matter of 

our future research.  
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

 In the classical statistical framework, any estimator of an unknown 

population parameter is a function of sample observations. The variance of the 

estimator, however, cannot be less than the Cramer – Rao minumum variance 

bound. The only way to obtain an estimator having its variance smaller than the 

minumum variance bound is to engage Bayesian methodology: An unknown 

population parameter   is assumed to have a probability density function )(p  

called prior distribution. The posterior distribution )|( yf   of   is defined to be 

the product of the prior distribution )(p  and the likelihood function 

)|,,,( 21 nyyyL  , the likelihood function representing the sample information. 

Thus, the posterior distribution of   is given by  

 

)|,,,,()()|( 321  nyyyyLpyf                                                    (5.1) 

 

  is a single parameter or vector of parameters. The Bayesian estimator of  , 

popularly called the HPD (highest posterior density) estimator, is defined to be the 

mode of )|( yf  .  

 

 If )|( yf   is a symmetric distribution, its mode, median and mean are the 

same. Otherwise, they are different and called Bayesian mode, Bayesian median 

and Bayesian mean estimators, respectively. HPD estimator Bayesian mode is 
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most popular. To locate the mode of )|( yf   one differentiates its logarithm with 

respect to   and equates it to zero. The solution is the HPD estimator provided 

0/)|(ln 22   dyL . In most situations, however, 0/)|(ln   dyL  has no 

explicit solution and finding its zero(es) becomes a very difficult task analytically 

and computationally. Certain probing techniques, e.g., Gibbs sampling, are 

available to locate the mode of )|( yf  . Such solutions, however, are not 

conducive to algebraic treatment of the subject matter. To alleviate these 

difficulties, Bain and Tiku (1997, a,b) defined posterior distribution as the product 

of the prior distribution and Tiku’s modified maximum likelihood function 

)|,,,( 21

* nyyyL  ; *L  is obtained by solving differential equations which yield 

modified maximum likelihood estimators (Tiku and Akkaya, 2004, p.53). An 

intresting feature of *L  is that it resembles a normal – theory likelihood function 

irrespective of the underlying distribution )|( yf . Consequently, HPD estimators 

take the form of convex combinations of the prior perceived value of a population 

parameter and its modified maximum likelihood estimator. The latter are known 

to be asymptotically equivalent to maximum likelihood estimators; for finite 

sample sizes, they are essentially as efficient as maximum likelihood estimators 

and numerically very close to them.  

 

 Bian and Tiku (1997,a,b) used this new posterior to find the HPD 

estimators of location and scale parameters of distributions in two families: a) 

long-tailed symmetric distributions, and b) Gamma distributions. We have 

extended this work to the prominent family of Generalized Logistic distributions. 

Further, we have extended the work to one – way – classification ANOVA 

models. Our estimators are convex combinations and have beautiful algebraic 

forms. We have shown that they have variances smaller than the minimum 

variance bounds. In one – way – classification our estimator of ith block effect, 

for example, is 
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ib                                                                         (5.2) 

 

and its variance is 

 

  122

0
ˆ)|(

   myVar ii                                                                   (5.3) 

 

The underlying distribution being (3.2). The estimated variance of the 

corresponding MMLE is m/ˆ 2  (almost) which is larger than (5.3). Note that, 

m/ˆ 2  is only marginially bigger than the minimum variance bound 

  2ˆ)2/1(/)1)(2/3(  pnppp (Tiku and Suresh, 1992); the MVB estimator of 

  does not exist for the LTS family.  

 

 We have given in Chapter 4 of the thesis real life examples to illustrate the 

usefulness of our method and the HPD estimators.  

 

 Our method can be extended to more complex data structures, e.g., two- 

way- classification ANOVA with interaction, linear regression, etc. That will be 

the subject matter of future research.  
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APPENDIX A 

 

 

VISUAL FORTRAN PROGRAM FOR CENSORED STUDENT T DISTRIBUTION  

ONE SAMPLE CASE 

 

 

 

C   *** Written by Pelin Özbozkurt, 2009, Ankara***                  

 

use numerical_libraries 

integer simnumber,n 

real r,q,k,p,DF,t(1000),u,h(1000) 

real mu,sigma, order,ordery, alpha(1000) 

real alphapay(1000),alphapayda(1000) 

real betapay(1000),betapayda(1000),beta1(1000) 

real t1,g1,fpay1,fpay,fpayda,f1,b1,b2,b,a 

real sumbeta,M,sumbetay,muhat1,muhat 

real muhatMML(10000), Abig,sumalphay 

real Bbig,Cbig,sum1, z(10000),y(10000) 

real sigmahat1,sigmahat,sigmahatMML(10000) 

real sum2,muhatMMLsimmean,sum3,muhatMMLsimvar 

real muzero,sigmazero,vzero,muhatbayespay1,muhatbayespay 

real muhatbayespayda1,muhatbayespayda,sigmahatpayda 

real muhatbayesson,muhatbayes(10000) 

real sum5,muhatBayessimmean,sum6,muhatBayessimvar 

real RE,sigmazeroinv,vzeroinv,sigmahatinv 

real muhatbayespay2, muhatbayespayda2 

real deltamu,mubcase2pay1,mubcase2pay2,mubcase2pay3 

real mubcase2pay,mubcase2payda1,mubcase2payda2 

real mubcase2payda3,mubcase2payda,mubcase 

real muhatbayesCase2(10000),sum5case2, 

real muhatBayesCase2simmean,sum6case2 

real muhatBayesCase2simvar,RECase2 

real d1 
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open(unit=1,file='C:\Documents and Settings\peli\Desktop\ 

&CENSOREDstudentT.txt') 

 

print*, 'enter n and r' 

 

read*, n,r 

 

simnumber=10000 

mu=0 

sigma=1.5 

q=r/n 

p=3.5 

k=(2*p)-3 

DF=(2.0*p)-1 

 

C *** Specify prior probabilities as: 

 

muzero=0 

sigmazero=3 

vzero=6 

 

C *** Calculate t(i) as: 

 

do i=1,n 

u=i/((1.0*n)+1) 

t(i)=TIN(u,DF) 

enddo 

 

C *** Calculate alpha(i) as: 

 

do i=1,n 

alphapay(i)=(2/k)*t(i)*t(i)*t(i) 

alphapayda(i)=(1+((1/k)*t(i)*t(i)))**2 

alpha(i)=alphapay(i)/alphapayda(i) 

enddo 
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C *** Calculate beta(i) as: 

 

do i=1,n 

betapay(i)=1-((1/k)*t(i)*t(i)) 

betapayda(i)=(1+((1/k)*t(i)*t(i)))**2 

beta1(i)=betapay(i)/betapayda(i) 

enddo 

 

C *** IF BETA(r+1) ISNEGATIVE, SO USE BETASTAR AND ALPHASTAR as: 

  

 if (beta1(r+1)<0) then  

do i=1,n 

beta1(i)=1/((1+(1/k)*t(i)*t(i))**2) 

alphapay(i)=(1/k)*t(i)*t(i)*t(i) 

alphapayda(i)=(1+((1/k)*t(i)*t(i)))**2 

alpha(i)=alphapay(i)/alphapayda(i) 

enddo 

endif 

 

C *** Calculate a and b as: 

 

d1=1.0*(1-q) 

t1=TIN(d1,DF) 

g1=t1/(1+(1/k)*(t1)*(t1)) 

fpay1=1/(1+(1/k)*(t1)*(t1)) 

fpay=fpay1**p 

fpayda=sqrt(k)*BETA(0.5,p-0.5) 

f1=fpay/fpayda 

b1=((-1.0)*f1)/q 

b2=(2.0*p/k)*g1-(1.0)*(f1/q) 

b=b1*b2 

a=f1/q-b*t1 

 

C *** Start simulation: 

 

DO 212 s=1,simnumber 

call RNSTT(n,DF,h) 
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do i=1,n 

y(i)=sigma*h(i)+mu 

enddo 

 

C *** Find ordered y(i) values as: 

 

order=1 

5 if (order.eq.1) then 

order=0 

do 8 i=1,n-1 

if (y(i).gt.y(i+1)) then 

ordery=y(i) 

y(i)=y(i+1) 

y(i+1)=ordery 

order=1 

endif 

8 continue 

go to 5 

endif 

 

C *** Start to calculate MML estimators: 

 

C *** Calculate MML of muhat 

 

sumbeta=0 

do i=r+1,n-r 

sumbeta=sumbeta+beta1(i) 

enddo 

 

M=((2.0*p*sumbeta)/k)+(2.0*r*b) 

 

sumbetay=0 

do i=r+1,n-r 

sumbetay=sumbetay+beta1(i)*y(i) 

enddo 

muhat1=((2.0*p*sumbetay)/k)+r*b*(y(r+1)+y(n-r)) 

muhat=muhat1/M 

muhatMML(s)=muhat 
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C *** Calculate MML of sigmahat 

 

Abig=(1.0*n)-(2.0*r) 

 

sumalphay=0 

do i=r+1,n-r 

sumalphay=sumalphay+alpha(i)*y(i) 

enddo 

 

Bbig=((2*p*sumalphay)/k)+r*a*(y(n-r)-y(r+1)) 

 

sum1=0 

do i=r+1,n-r 

sum1=sum1+beta1(i)*((y(i)-muhat)**2) 

enddo 

 

Cbig=((2.0*p*sum1)/k)+r*b*(y(r+1)-muhat)**2 

     &+r*b*(y(n-r)-muhat)**2 

 

sigmahat1=sqrt((Bbig**2)+(4.0*Abig*Cbig)) 

sigmahat=(Bbig+sigmahat1)/(2*sqrt((Abig)*(Abig-1))) 

sigmahatMML(s)=sigmahat 

 

C *** Calculate HPD Estimators: 

 

C *** CASE1: When mubayes is close to muzero: 

 

sigmazeroinv=(1.0/sigmazero) 

vzeroinv=(1.0/vzero) 

sigmahatinv=(1.0/sigmahat) 

muhatbayespay1=(sigmazeroinv**2)*(1+vzeroinv)*muzero 

muhatbayespay2=M*(sigmahatinv**2)*muhat 

muhatbayespay=muhatbayespay1+muhatbayespay2 

muhatbayespayda1=(sigmazeroinv**2)*(1+vzeroinv) 

muhatbayespayda2=M*(sigmahatinv**2) 

muhatbayespayda=muhatbayespayda1+muhatbayespayda2 

muhatbayesson=muhatbayespay/muhatbayespayda 

muhatbayes(s)=muhatbayesson 
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C *** Case2: When mubayes close to muMML: 

 

deltamu=(muhat-muzero)/sigmazero 

mubcase2pay1=(sigmazeroinv*sigmazeroinv*muzero) 

mubcase2pay2=(1.0*vzero+(deltamu*deltamu))/(vzero+1.0) 

mubcase2pay3=mubcase2pay2*M*(sigmahatinv**2)*muhat 

mubcase2pay=(mubcase2pay1+mubcase2pay3) 

mubcase2payda1=(sigmazeroinv*sigmazeroinv) 

mubcase2payda2=(vzero+(deltamu*deltamu))/(vzero+1) 

mubcase2payda3=mubcase2payda2*M*(sigmahatinv**2) 

mubcase2payda=mubcase2payda1+mubcase2payda3 

mubcase2=mubcase2pay/mubcase2payda 

muhatbayesCase2(s)=mubcase2  

212 continue 

 

C *** Finding simulated MMLmean: 

 

sum2=0 

do i=1,simnumber 

sum2=sum2+muhatMML(i) 

enddo 

muhatMMLsimmean=sum2/simnumber 

 

C *** Finding simulated MMLvariance: 

 

sum3=0 

do i=1,simnumber 

sum3=sum3+((muhatMML(i)-muhatMMLsimmean)**2) 

enddo 

muhatMMLsimvar=sum3/(simnumber-1)  

 

C *** Finding simulated Bayes mean: CASE1: 

 

sum5=0 

do i=1,simnumber 

sum5=sum5+muhatbayes(i) 

enddo 

  

muhatBayessimmean=sum5/simnumber 
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C *** Finding simulated Bayes mean: CASE2: 

 

sum5case2=0 

do i=1,simnumber 

sum5case2=sum5case2+muhatbayesCase2(i) 

enddo 

  

muhatBayesCase2simmean=sum5case2/simnumber 

 

C *** Finding Simulated Bayes variance:CASE1: 

 

sum6=0 

do i=1,simnumber 

sum6=sum6+((muhatbayes(i)-muhatBayessimmean)**2) 

enddo 

 

muhatBayessimvar=sum6/(simnumber-1) 

 

C *** Finding simulated Bayes variance:CASE2: 

 

sum6case2=0 

do i=1,simnumber 

sum6case2=sum6case2+((muhatbayesCase2(i)- 

          &muhatBayesCase2simmean)**2) 

enddo 

 

muhatBayesCase2simvar=sum6case2/(simnumber-1) 

 

C ** Relative Efficiency, Case1: 

 

RE=muhatBayessimvar/muhatMMLsimvar 

 

C ** Relative Efficiency, Case2: 

 

RECase2=muhatBayesCase2simvar/muhatMMLsimvar 

 

202 format(a8,6x,a12,6x,a10,6x,a14,6x,a13) 

write(1,202)'MML_Mean','MML_Variance','Bayes_Mean', 

&'Bayes_Variance','RE(Bayes/MML)' 
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C *** Case1: When mubayes close to muzero: 

 

203 format(f7.4,8x,f7.4,12x,f7.4,9x,f7.4,13x,f7.4) 

write(1,203) muhatMMLsimmean,muhatMMLsimvar, 

&muhatBayessimmean,muhatBayessimvar,RE 

  

C *** Case2: When mubayes close to muMML: 

 

C 203 format(f7.4,8x,f7.4,12x,f7.4,9x,f7.4,13x,f7.4) 

C write(1,203) muhatMMLsimmean,muhatMMLsimvar, 

C &muhatBayesCase2simmean,muhatBayesCase2simvar 

C &RECase2 

 

stop  

end 
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APPENDIX B 

 

 

VISUAL FORTRAN PROGRAM FOR GENERALIZED LOGISTIC DISTRIBUTION  

ONE WAY CLASSIFICATION 

 

 

  

C   *** Written by Pelin Özbozkurt, 2009, Ankara***                  

 

use numerical_libraries 

 integer N,simnumber,p,k,order,ntr,nbl,f 

 real b,mu(1000),sigma,ordery,pu 

 real q(1000),tara1(1000),tara2(1000),t(1000) 

 real bbetapay(1000),bbetapayda(1000),bbeta(1000) 

 real alphapay(1000),alphapayda(1000),alpha(1000) 

 real u(1000),z(1000),sumbbeta, u2(100,100) 

 real ya1(100,100),ya2(100,100),ya3(100,100),y(100,100) 

 real delta(1000),sumdelta,D2,K2(1000) 

real B2ara1(1000),B2(1000),B2sum 

 real C2ara(1000),C2(1000),C2sum,sigmahatpay1 

 real sigmahatpayda1,sigmahatpayda2,sigmahatpay2 

real sMML,mMML(100),sigmahatMML(100000) 

real summuhat(1000),sim_Meanmuhat_MML(1000) 

real sumsigmahat,sim_Meansigmahat_MML muhatMML(100,100000) 

real summuvar(1000),sim_Variancemuhat_MML(1000) 

 real sumsigmavar,sim_Variancesigmahat_MML 

 real muzero(1000),szero(1000),deltazero(1000) 

real sifprime2,sif2,sibarti1,siprimebarti1 

real muhatpriorpay1(1000),muhatpriorpay2(1000) 

 real muhatpriorpayda(1000),muhatBAYESprior(1000) 

 real muhat_prior_BAYES(100,100000),muhatpriorpay(1000) 

real h2inversepay,h2inversepayda1,h2inversepayda2 

 real h2inversepayda3,h2inverse,h2 

 real summubayeshat(1000),sim_Meanmuhat_Bayes(1000) 
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 real summubayesvar(1000),sim_Variancemuhat_Bayes(1000) 

 real RE_Bayes_MML(1000) 

real fmupay1,fmupay2,fmupay,fmupayda1,fmupayda2 

 real fmupayda3,fmupayda,MVBmuKONTROL 

 real fsigmapay,fsigmapayda1,fsigmapayda2 

      real fsigmapayda3,fsigmapayda 

 real fcovpay,fcovpayda1,fcovpayda2,fcovpayda3,fcovpayda 

 real fmupayda1ara, fsigmapayda1ara,fcovpayda1ara 

 real K2ara(1000), szeroinv(10000) 

real deltamu(10000),mubcase2pay1(10000) 

 real mubcase2pay2(10000), mubcase2pay3(10000) 

 real mubcase2pay(10000),mubcase2payda1(10000) 

 real mubcase2payda2(10000), mubcase2(10000) 

 real mubcase2payda3(10000),mubcase2payda(10000) 

 real muhatbayesCase2(100,10000) 

 real sum5case2(10000), sum6case2(10000) 

      real muhatBayesCase2simmean(10000)  

 real muhatBayesCase2simvar(10000) 

 real RECase2(10000), deltazeroinv(10000),sMMLinv 

 real muhatpriorpayda1(1000),muhatpriorpayda2(1000) 

 

 open(unit=1,file='C:\Documents and Settings\peli\Desktop\ 

     &GL_ANOVA.txt') 

 

print*, 'enter ntr, nbl,b' 

 

     read*,ntr 

 read*,nbl 

 read*,b 

 

 simnumber=10000 

 do i=1,ntr 

 mu(i)=0 

 enddo 

 

 N=ntr*nbl 

 sigma=1 

sifprime2=0.6449 

 sif2=0.4228 
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 if (b.eq.0.5) sibarti1=0.0365 

 if (b.eq.1)  sibarti1=0.4228  

 if (b.eq.2)  sibarti1=0.9228 

 if (b.eq.3)  sibarti1=1.2561  

 if (b.eq.4)  sibarti1=1.5061   

 if (b.eq.5)  sibarti1=1.7061   

 if (b.eq.6)  sibarti1=1.8728  

 if (b.eq.7)  sibarti1=2.0156  

 if (b.eq.8)  sibarti1=2.1406  

 if (b.eq.9)  sibarti1=2.2518  

 if (b.eq.10) sibarti1=2.3518 

 if (b.eq.0.5) siprimebarti1=0.9348 

 if (b.eq.1)  siprimebarti1=0.6449   

 if (b.eq.2)  siprimebarti1=0.3949   

 if (b.eq.3)  siprimebarti1=0.2838   

 if (b.eq.4)  siprimebarti1=0.2213   

 if (b.eq.5)  siprimebarti1=0.1813  

 if (b.eq.6)  siprimebarti1=0.1536   

 if (b.eq.7)  siprimebarti1=0.1331   

 if (b.eq.8)  siprimebarti1=0.1175   

 if (b.eq.9)  siprimebarti1=0.1051   

 if (b.eq.10) siprimebarti1=0.0951   

 

C *** Specify prior parameters as: 

 

 do i=1,ntr 

 muzero(i)=0 

 szero(i)=2.5 

 deltazero(i)=6 

 end 

 

C ** Find h2 as: 

 

 fmupay1=((sibarti1-sif2)*(sibarti1-sif2))+ 

              &(siprimebarti1+sifprime2) 

 fmupay2=(1.0*ntr*b*fmupay1)+(1.0*ntr*(b+2.0)) 

 fmupay=fmupay2 

fmupayda1ara=1.0*(ntr-1)*b*b*((sibarti1-sif2)* 

                   &(sibarti1-sif2)) 
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 fmupayda1=fmupayda1ara/(b+2.0) 

 fmupayda2=(1.0*ntr*b*b*(siprimebarti1+sifprime2))/(b+2.0) 

 fmupayda3=(1.0*ntr*b)+fmupayda1+fmupayda2 

 fmupayda=nbl*fmupayda3 

 h2inverse=fmupay/fmupayda 

 h2=1.0/h2inverse 

 

C *** Start to calculate MML estimators: 

 

 do j=1,nbl 

 p=j 

 q(j)=p/(nbl+1.0) 

 enddo 

 

 do j=1,nbl 

 tara1(j)=(1.0/q(j))**(1.0/b) 

 tara2(j)=tara1(j)-1 

 t(j)=(-1.0)*alog(tara2(j)) 

 enddo 

 

 do j=1,nbl 

 bbetapay(j)=exp(t(j)) 

 bbetapayda(j)=(1+exp(t(j)))*(1+exp(t(j))) 

 bbeta(j)=bbetapay(j)/bbetapayda(j) 

 enddo 

 

 sumbbeta=0 

 do j=1,nbl 

 sumbbeta=sumbbeta+bbeta(j) 

 enddo 

 

 do j=1,nbl 

 alphapay(j)=1.0+exp(t(j))+t(j)*exp(t(j)) 

 alphapayda(j)=(1+exp(t(j)))*(1+exp(t(j))) 

 alpha(j)=alphapay(j)/alphapayda(j) 

enddo 
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C *** Start simulation as: 

 

 DO 212 s=1,simnumber 

 

 call rnun(N,z) 

   

 do i=1,N 

 u(i)=z(i) 

 enddo 

  

 f=1 

  do i=1,ntr 

   do j=1,nbl 

    u2(i,j)=u(f) 

 f=f+1 

 enddo 

 enddo 

 

C *** Obtain random variables from GL as: 

  

 do i=1,ntr 

  do j=1,nbl    

   ya1(i,j)=(1.0/u2(i,j))**((1.0/b)) 

   ya2(i,j)=ya1(i,j)-1 

   ya3(i,j)=(-1.0)*alog(ya2(i,j)) 

   y(i,j)=mu(i)+sigma*ya3(i,j) 

  enddo 

 enddo 

 

C *** Find ordered y(i,(j)) values as: 

 

 order=1 

5 if (order.eq.1) then 

 order=0 

 do 8 i=1,ntr 

 do 10 j=1,nbl-1 

 if (y(i,j).gt.y(i,j+1)) then 

 ordery=y(i,j) 

 y(i,j)=y(i,j+1) 
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 y(i,j+1)=ordery 

 order=1 

 endif 

10 continue 

8 continue 

 go to 5 

 endif 

 

C *** Find muMML and sigmaMML as: 

 

do j=1,nbl 

 delta(j)=alpha(j)-(1.0/(b+1.0)) 

 enddo 

 

 sumdelta=0 

 do j=1,nbl 

 sumdelta=sumdelta+delta(j) 

 enddo 

 D2=sumdelta/sumbbeta 

 

 do i=1,ntr 

 K2ara(i)=0 

 K2(i)=0 

  do j=1,nbl 

  K2ara(i)=K2ara(i)+bbeta(j)*y(i,j) 

      enddo 

 K2(i)=K2ara(i)/sumbbeta 

 enddo 

  

 do i=1,ntr 

 B2ara1(i)=0 

  do j=1,nbl 

  B2ara1(i)=B2ara1(i)+1.0*delta(j)*(y(i,j)-K2(i)) 

  enddo 

 enddo 

 

 

 do i=1,ntr 

 B2(i)=(b+1.0)*B2ara1(i) 
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 enddo 

 B2sum=0 

 do i=1,ntr 

 B2sum=B2sum+B2(i) 

 enddo 

 

 do i=1,ntr 

 C2ara(i)=0 

  do j=1,nbl 

  C2ara(i)=C2ara(i)+bbeta(j)*(y(i,j)-K2(i))* 

           &(y(i,j)-K2(i)) 

  enddo 

 enddo 

 

 do i=1,ntr 

 C2(i)=C2ara(i)*(b+1.0) 

 enddo 

 

 C2sum=0 

 do i=1,ntr 

 C2sum=C2sum+C2(i) 

 enddo 

 

 sigmahatpay1=(B2sum*B2sum)+(4.0*ntr*nbl*C2sum) 

 sigmahatpay2=(-1.0)*B2sum+sqrt(1.0*sigmahatpay1) 

 sigmahatpayda1=1.0*N*(N-ntr) 

 sigmahatpayda2=2.0*sqrt(1.0*sigmahatpayda1) 

 sMML=sigmahatpay2/sigmahatpayda2 

 

 do i=1,ntr 

 mMML(i)=K2(i)-(1.0*sMML*D2) 

 enddo 

 sigmahatMML(s)=sMML 

  

do i=1,ntr 

 muhatMML(i,s)=mMML(i) 

 enddo 
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C *** Find muBayes as: 

 

C *** Case1: When mubayes close to muzero: 

 

 sMMLinv=1/sMML 

 

 do i=1,ntr 

 deltazeroinv(i)=1/deltazero(i) 

 muhatpriorpay1(i)=(1.0/szero(i))*(1.0/szero(i))* 

     &(1+deltazeroinv(i))*muzero(i) 

 muhatpriorpay2(i)=1.0*h2*mMML(i)*sMMLinv*sMMLinv 

 muhatpriorpay(i)=muhatpriorpay1(i)+muhatpriorpay2(i) 

 muhatpriorpayda1(i)=(1.0/szero(i))*(1.0/szero(i))* 

     &(1+deltazeroinv(i)) 

 muhatpriorpayda2(i)=1.0*h2*sMMLinv*sMMLinv 

 muhatpriorpayda(i)=muhatpriorpayda1(i)+muhatpriorpayda2(i) 

 muhatBAYESprior(i)=muhatpriorpay(i)/muhatpriorpayda(i) 

 enddo 

 

 do i=1,ntr 

 muhat_prior_BAYES(i,s)=muhatBAYESprior(i) 

 enddo 

 

C *** Case2: When mubayes close to muMML: 

 

 do i=1,ntr 

 szeroinv(i)=1/szero(i) 

 deltamu(i)=(mMML(i)-muzero(i))/szero(i) 

 mubcase2pay1(i)=(szeroinv(i)*szeroinv(i)*muzero(i)) 

mubcase2pay2(i)=(1.0*deltazero(i)+(deltamu(i)* 

     &deltamu(i)))/(deltazero(i)+1.0) 

mubcase2pay3(i)=h2*(mubcase2pay2(i)* 

     &(sMMLinv**2)*mMML(i)) 

mubcase2pay(i)=(mubcase2pay1(i)+mubcase2pay3(i)) 

mubcase2payda1(i)=(szeroinv(i)*szeroinv(i)) 

 mubcase2payda2(i)=(deltazero(i)+(deltamu(i)* 

     &deltamu(i)))/(deltazero(i)+1) 

 mubcase2payda3(i)=mubcase2payda2(i)*h2*(sMMLinv**2) 

mubcase2payda(i)=mubcase2payda1(i)+mubcase2payda3(i) 
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mubcase2(i)=mubcase2pay(i)/mubcase2payda(i) 

muhatbayesCase2(i,s)=mubcase2(i) 

 enddo 

212 continue 

 

C *** Finding simulated MMLmean: 

 

 do i=1,ntr 

 summuhat(i)=0 

  do s=1,simnumber  

  summuhat(i)=summuhat(i)+muhatMML(i,s) 

  enddo 

 enddo 

 

 do i=1,ntr 

 sim_Meanmuhat_MML(i)=summuhat(i)/simnumber 

 enddo 

  

C *** Finding simulated Bayes mean: CASE1: 

  

 do i=1,ntr 

 summubayeshat(i)=0 

  do s=1,simnumber  

  summubayeshat(i)=summubayeshat(i)+ 

&muhat_prior_BAYES(i,s) 

  enddo 

 enddo 

do i=1,ntr 

 sim_Meanmuhat_Bayes(i)=summubayeshat(i)/simnumber 

 enddo 

 

C *** Finding simulated Bayes mean: CASE2: 

 

 do i=1,ntr 

sum5case2(i)=0 

do s=1,simnumber 

  sum5case2(i)=sum5case2(i)+muhatbayesCase2(i,s) 

  enddo 

 enddo  
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 do i=1,ntr 

 muhatBayesCase2simmean(i)=sum5case2(i)/simnumber 

 enddo 

 

C *** Finding simulated MMLvariance: 

 

 do i=1,ntr 

 summuvar(i)=0 

  do s=1,simnumber 

  summuvar(i)=summuvar(i)+ 

       &(muhatMML(i,s)-sim_Meanmuhat_MML(i))* 

       &(muhatMML(i,s)-sim_Meanmuhat_MML(i)) 

       enddo 

 enddo 

 

 do i=1,ntr 

 sim_Variancemuhat_MML(i)=summuvar(i)/(simnumber-1.0) 

 enddo 

 

C *** Finding Simulated Bayes variance:CASE1: 

  

 do i=1,ntr 

 summubayesvar(i)=0 

  do s=1,simnumber 

  summubayesvar(i)=summubayesvar(i)+ 

       &(muhat_prior_BAYES(i,s)-sim_Meanmuhat_Bayes(i))* 

&(muhat_prior_BAYES(i,s)-sim_Meanmuhat_Bayes(i)) 

  enddo 

 enddo 

  

 do i=1,ntr 

 sim_Variancemuhat_Bayes(i)=summubayesvar(i)/ 

      &(simnumber-1.0) 

 enddo 

 

C *** Finding Simulated Bayes variance:CASE2: 

 

 do i=1,ntr 

 sum6case2(i)=0 
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  do s=1,simnumber 

sum6case2(i)=sum6case2(i)+ 

         &((muhatbayesCase2(i,s)- 

         &muhatBayesCase2simmean(i))**2) 

enddo 

enddo 

 

 do i=1,ntr 

 muhatBayesCase2simvar(i)=sum6case2(i)/(simnumber-1) 

 enddo 

 

C *** Relative efficency, Case1: 

 

 do i=1,ntr 

 RE_Bayes_MML(i)=sim_Variancemuhat_Bayes(i)/ 

                     &sim_Variancemuhat_MML(i) 

 enddo 

 

C *** Relative efficency, Case2: 

 

 do i=1,ntr 

 RECase2(i)=muhatBayesCase2simvar(i)/ 

                &sim_Variancemuhat_MML(i) 

 enddo 

202 format(a9,11x,a10,6x,a12,6x,a14,10x,a13) 

 write(1,202) 'MML_Mean','MML_Variance','Bayes_Mean', 

     &'Bayes_Variance','RE(Bayes/MML)' 

 

C *** Case1: When mubayes close to muzero: 

 

203 format(f7.4,11x,f7.4,13x,f7.4,11x,f7.4,15x,f7.4,11x,f7.4, 

    &11x,f7.4) 

 

 do i=1,ntr 

 write(1,203) sim_Meanmuhat_MML(i), 

     &sim_Variancemuhat_MML(i),sim_Meanmuhat_Bayes(i), 

     &sim_Variancemuhat_Bayes(i),RE_Bayes_MML(i) 

 Enddo 
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C *** Case2: When mubayes close to muMML: 

 

C 203 format(f7.4,11x,f7.4,13x,f7.4,11x,f7.4,15x,f7.4,11x,f7.4, 

C      &11x,f7.4) 

 

C do i=1,ntr 

C  write(1,203) sim_Meanmuhat_MML(i),                      

C     &sim_Variancemuhat_MML(i),muhatBayesCase2simmean(i), 

C     &muhatBayesCase2simvar(i),RECase2(i) 

C enddo 

  

 stop  

 end 
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