BAYESIAN INFERENCE IN ANOVA MODELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

PELIN OZBOZKURT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPY
IN
STATISTICS

JANUARY 2010



Approval of the thesis:

BAYESIAN INFERENCE IN ANOVA MODELS

submitted by Pelin OZBOZKURT in partial fulfillment of the requirements for

the degree of Doctor of Philosopy in Statistics Department, Middle East
Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. H. Oztas Ayhan
Head of Department, Statistics

Prof. Dr. Moti Lal Tiku
Supervisor, Statistics Dept., METU

Examining Committee Members:

Prof. Dr. Aysen Akkaya
Statistics Dept., METU

Prof. Dr. Moti Lal Tiku
Statistics Dept., METU

Assoc. Prof. Dr. Birdal Senoglu
Statistics Dept., Ankara University

Assistant Prof. Dr. Baris Siiriicii
Statistics Dept., METU

Assistant Prof. Dr. Zeynep Kalaylioglu
Statistics Dept., METU

Date: 22.01.2010




I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, | have fully cited and
referenced all material and results that are not original to this work.

Pelin OZBOZKURT



ABSTRACT

BAYESIAN INFERENCE IN ANOVA MODELS

OZBOZKURT, Pelin
Ph. D., Department of Statistics
Supervisor: Prof. Dr. Moti Lal TIKU

January 2010, 141 pages

Estimation of location and scale parameters from a random sample of size
n is of paramount importance in Statistics. An estimator is called fully efficient if
it attains the Cramer-Rao minimum variance bound besides being unbiased. The
method that yields such estimators, at any rate for large n, is the method of
modified maximum likelihood estimation. Apparently, such estimators cannot be
made more efficient by using sample based classical methods. That makes room
for Bayesian method of estimation which engages prior distributions and
likelihood functions. A formal combination of the prior knowledge and the sample
information is called posterior distribution. The posterior distribution is
maximized with respect to the unknown parameter(s). That gives HPD (highest
probability density) estimator(s). Locating the maximum of the posterior
distribution is, however, enormously difficult (computationally and analytically)

in most situations. To alleviate these difficulties, we use modified likelihood
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function in the posterior distribution instead of the likelihood function. We
derived the HPD estimators of location and scale parameters of distributions in the
family of Generalized Logistic. We have extended the work to experimental
design, one way ANOVA. We have obtained the HPD estimators of the block
effects and the scale parameter (in the distribution of errors); they have beautiful
algebraic forms. We have shown that they are highly efficient. We have given real
life examples to illustrate the usefulness of our results. Thus, the enormous
computational and analytical difficulties with the traditional Bayesian method of

estimation are circumvented at any rate in the context of experimental design.

Key Words: Modified maximum likelihood, Bayesian estimation, Prior

distribution, Posterior distribution, Experimental design.
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ANOVA MODELLERINE BAYESIAN YAKLASIM

OZBOZKURT, Pelin
Doktora, Istatistik Boliimii

Tez Yoneticisi: Prof. Dr. Moti Lal TIKU

Ocak 2010, 141 sayfa

Boyutu n olan rassal érneklemden gelen konum ve 6lgek parametrelerinin
tahmini Istatistikte bilyilk 6neme sahiptir. Bir tahmin edici, yansiz olmakla
birlikte, Cramer Rao en kii¢lik varyans siniria erigirse biitiinliyle etkin olarak
adlandirilir. Bu 6zelliklere sahip tahmin edicileri veren yontem uyarlanmis en ¢ok
olabilirlik yontemidir. Goriildiigii gibi, bu tahmin ediciler, 6rneklem bazli en ¢ok
olabilirlik yontemleri gibi klasik analizler ile daha etkin hale getirilemezler. Bu
durum Onciil olasilik dagilimlar: ile olabilirlik fonksiyonunu birlestiren Bayesci
yontemlere olanak vermektedir. Onciil dagilimin ve &rneklemden elde edilen
bilginin formal kombinasyonu soncul dagilim olarak adlandirilir. Soncul dagilim
bilinmeyen parametrelere gére maksimize edilir. Bu islem sonucunda en yiiksek
soncul olasilik yogunluk (HPD) tahmin edicileri elde edilir. Fakat ¢ogu durumda
soncul dagilimmn maksimum noktasini bulmak analitik ve hesapsal agilardan

olduk¢a zorlayici olabilir. Bu sorunlari asabilmek i¢in, soncul dagilimda
Vi



olabilirlik fonksiyonu yerine uyarlanmig olabilirlik fonksiyonunu kullandik.
Genellestirilmis Lojistik dagilimlarinda konum ve 6l¢ek parametleri icin HPD
tahmin edicileri tlirettik. Bu analizleri tek yonlii deney tasarimi ¢alismalar ile
geniglettik. Blok etkileri ve (hata terimlerinin dagilimindaki) 6l¢ek parametresi
icin cebirsel olarak uygun formda olan HPD tahmin edicileri elde ettik. Bu tahmin
edicilerin yiiksek derecede etkin olduklarin1  gosterdik. Sonuglarimizin
yararlihigimi gostermek adina gergek hayattan elde edilen veriler ile ornekler
verdik. Boylece deney tasariminda geleneksel Bayesci tahmin ydntemlerinde

karsilasilan analitik ve hesaplama zorluklarini agmis olduk.

Anahtar Kelimeler: Uyarlanmis En Cok Olabilirlik, Bayesci Tahmin, Onciil

Dagilim, Soncul Dagilim, Deney Tasarimu.
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CHAPTER 1

INTRODUCTION
and
LITERATURE SURVEY

The main purpose of statistical theory is to derive inferences for unknown
parameters under a specified model. Basically, there are two different approaches
to statistics. Classical statistics, also called the frequentist approach, deals with
parametric statistical models in which random variables are assumed to be

distributed according to a function f(y,8) where the parameter & is unknown

and fixed. On the other hand, Bayesian statisticians argue that data is not the only
source of information about the underlying population. Since true values of
parameters are unknown, they may be considered as random variables. Therefore,
Bayesian methods include external information to the analysis by considering a

model for the random variable y with pdf (probability density function) f (y, &)

where & is unknown and not fixed.

In Bayesian framework the parameter @ is treated as a random variable and
has a distribution itself, which is called prior distribution. Prior distribution has a
major role to play because it represents the information about the unknown
parameter before the data are observed. By using the prior distribution and the

data itself, it is possible to obtain the posterior distribution.



1.1. Basic Definitions:

Theorem: Prior distributions are combined with the information obtained
from sample data and updated to posterior distributions. The theorem for this
process is called Bayes theorem stated by Thomas Bayes in 1764. Given the data

y and the prior information about &, the posterior distribution p(@|y) can be
written as the product of the prior distribution p(&#) and the likelihood function

L(y|#). Formally,

P@]y) < L(y|0)p(d). (1.1)

Posterior distribution contains all the information about an unknown
parameter. It combines the sampling information and information from the prior
distribution (which depends on previous experiences). It is possible to make

inferences about the unknown parameter(s) by using the posterior densities.

In order to obtain posterior densities, one can choose informative or non

informative priors, proper or improper.
1.1.1. Noninformative Prior Distributions:

Non informative prior distributions give equal, or nearly equal, weights to
all 6 values. Such distributions may also be called as flat or diffuse priors.
Uniform distribution is an obvious choice for a noninformative prior. Generally,

the most favored non-informative prior used by Bayesians is Jeffreys’ prior.

Jeffreys’ principle gives the non informative prior density as p(60) OC|J(0)|1/2

where J(6) is the Fisher information for 6 (Marin and Robert, 2007). There is
considerable work on Jeffreys’ prior. For example, Ibrahim and Laud (1991) use
the Jeffreys’ prior with generalized linear models and show that proper posterior

are produced. Hartigan (1983) studies different exponential family distributions

and gives their associated Jeffreys’ priors. Poirer (1994) works with logit model
2



using Jeffrey’s prior and Kass (1989) produces the full properties of these priors

with geometric interpretation.

Non informative prior distributions have been investigated by many
statisticians. Jeffreys (1961) and Hartigan (1964) state invariance principles for
noninformative prior distributions. Box and Tiao (1973), Berger (1985), Bernardo
(1979) present some definitions and discussions about them. Barnard (1985)
examines the relationship between pivotal quantities and noninformative Bayesian
inference. Kass and Wasserman (1996) discuss the ways of obtaining
noninformative priors based on Jeffres’ rule. Dawid, Stone and Zidek (1973) point

out the difficulties by using these priors.
1.1.2. Proper and Improper Prior Distributions:

A prior density p(@) is called improper if it is non-negative for all
values but jp(@)d@:oo. Otherwise, it is called proper prior (Gelman et al.,

2004). The main distinction between proper and improper priors is that improper
priors may lead to improper posterior distributions. For large sample sizes this
problem disappears but in some cases it remains the same, therefore the resulting
posterior distributions should be investigated more carefully when an improper

prior is used.
1.1.3. Informative Prior Distributions:

Informative or informed priors incorporate all the information about the

parametes. The information may come from experience.
1.1.3.1.Conjugate Prior Distributions:

The main difficulty of Bayesian anlaysis is that the posterior distribution

may not be in analytically convenient form. In order to alleviate this difficulty, a

3



conjugate prior may be used. Let P be a class of prior distributions for 6. The

class P is said to be conjugate to a class of sampling distributions p(y | &) if the
resulting posterior distribution p(@|y) is in the same family as p(#) . Conjugate

families are practical to use and mathematically convenient since posterior
distributions have known parametric forms (Gill, 2008). Although, they are good
starting points, in some cases it is not possible to use conjugate distributions

because of their complicated forms.

Remark: If there exists a sufficient statistics T(y) then the posterior
distribution can be written as, p(@|y) o« f(y|8)p(8) < g(T(y)|E)p(#) which

implies that posterior distribution depends on the sampling distribution through

sufficient statistics.

Remark: Probability distributions that belong to exponential family have

conjugate prior distributions. (Gelman et al., 2004).

Bayesian way of thinking has been applied to almost all statistical
problems. In this thesis, we are fundemantally interested in the estimation of
unknown parameters coming from different symmetric and skewed families. Gill
(2008) considers Bayesian linear regression models by assuming different prior
distributions. Lindley and Smith (1972) deal with Bayesian linear regression
while Geweke (1993) investigate the regression model by using error terms
having t distribution and shows that when the error terms are not normal, complex
solutions will result. While investigating Bayesian regression, most of the
researchers assume homoscedasticity. However, Leonard (1975), Mouchart and
Simar (1984), Le Cam (1986) deal with heteroscedasticity. Inference problems
like hypothesis testing is also possible with Bayesian approaches. A good
discussion of hypothesis testing is given by Marden (2000). Lindley (1961)
develops a procedure that provides two sided hypothesis testing which
coincidences with classical methods. Moreover, Berger et al. (1994,1997) and Lee
(2004) deal with Bayesian hypothesis. Bayesian inference is discussed more

4



generally by Jeffreys (1961), Zellner (1971), Box and Tiao (1973). Bayesian
techniques are also used in nonparametric analyses. Bernardo and Smith (1994),
Dey et al. (1998), Walker et al. (1999) deal with nonparametric Bayesian, a brief

review can be found in Sinha and Dey (1997).

The purpose of this thesis is to show that most of the analytical and
computational difficulties with Bayesian methodology can be alleviated by using
Tiku’s method of parameter estimation. The results one gets are simple and

amazingly highly efficient.

1.2. Bayesian Estimation with Single Parameter Models: Normal Distribution

with Unknown Mean but Known Variance

Consider a sample vy,,v,,...,Yy, assumed to come from a normal

distribution with unknown mean z and known variance o -

1

5 7 (Vi —H)*),—o <y, p<oo. (1.2)
o

P(Y; | 1) a exp(—

In order to find Bayesian estimator of unknown mean g, assume a conjugate

prior density p(u),

p(ﬂ)=2126><|0( L (u-m)?),  —o<p<o. (1.3)

T 2
o 20,

The hyperparameters of the prior distribution x4, and o are assumed to be

known. The posterior density is,



p(ue ) o p()p(Y | ) = PU)] | POV | 20

i=1

oc exp(—%{iz(ﬂ—ué)Jr%Z(yi —ﬂ)ZD

(70 O i
which can be written as

m[ﬂz(naé +62)_2/J[ny<7§ +0'2ﬂo]]j- (1.5)
0

p(uly)ec exp(—

Making equation (1.5) a complete square by adding and subtracting

o 2 2 2

no, +o

% Weget
o, +0

. 2 2
p(u| y)ocexp[z—lz(naéwz{um} } (1.6)

2 2
o, o, +o

The conjugate prior distribution implies that the posterior distribution of

4 is normal density also. After some algebraic simplification, the posterior

density p(u| y)can be written as

1
|o(u|y)oce><|0(—2 z(u—ul)ZJ (1.7)
0,
where
1 n _
Myt —Y
O'O O
lu’l: 1 n _W:uO+(1_W)y )
7+7
ol o’



and

=t (1.8)

Remark: The posterior mean is a weighted average of sample mean and
prior mean with weights proportional to inverse of the variances. The posterior

mean x, may also be expressed as adjusted prior mean and sample mean as

2

— O
M = Hy +n(y_ﬂo)ﬁ- (1.9)
o +no

Alternatively,

2
o

th =Y = (Y~ t) (1.10)

o’ +no}

Moreover, as the number of observations increases, posterior mean
approaches y . Therefore, the asymptotic distribution of ., is normal with mean
y and variance o*/n. In addition to this, Gill (2008) states that large values of

prior variance will yield the same results as the frequentists approach.

The variances of posterior density and y can be compared by computing

. .. Var . . .
the relative efficiency RE = M. The numerical results are given in Table 1.1

Var(y)

below for 72 = 6% / o2.



Table 1.1 RE values for normal distribution with unknown mean but known

variance
r? 2 4 7 20
n=3 0.8571 0.9230 0.9545 0.9836
n=>5 0.9090 0.9523 0.9722 0.9900
n=10 0.9523 0.9756 0.9859 0.9950
n=>50 0.9900 0.9950 0.9971 0.9990

Remark: From Table 1.1, it is seen that as z? increases, relative

efficiency increases. In other words, Bayesian estimator of x4 looses efficiency as

prior distribution variance becomes large. On the other hand, if sample variance

increases, the Bayesian estimator of mean ux becomes more efficient than the

sample mean.

Remark: It is seen from Table 1.1 that as sample size increases, likelihood
dominates over the prior information. Therefore, Bayes estimator is not
advantageous as compared to sample mean when number of observations is large.

1.3. Bayesian Estimation with Multiparameter Models:

1.3.1 Normal Distribution with Unknown Mean and Unknown Variance: A

Non-Informative Prior:

Consider normal distribution with unknown mean 4 and unknown

variance o and assume a non informative prior density as,

p(u,0%) o (o) (1.11)



Combining the likelihood with (1.11) the joint posterior density
p(u, 0% | y) is obtained as,

(e 1 <
P, | y) oc o Z’exp[—z ; (yi—u)zj
O ia

=g ™2 exp(— 2;2 [(n ~1)s% +n(y — p) D : (1.12)

Note that, we can determine the posterior density of x given o with
uniform prior density as normal (y,o*/n). Moreover, the marginal posterior

density of o* can be found by integrating (1.12) as

p(o? [y) o [0 exp[—%[(n ~1)s% +n(y - " Ddﬂ

20

o (62)—(n+1)/2 eXp(— WJ (1.13)

which is a scaled inverse chi square distribution with n—1 degrees of freedom.

As a result, the joint posterior density (1.12), is factorized as
p(u, % |y) = p(u|o?,y)p(c?|y). In order to draw samples from joint
posterior density (1.12) first samples should be selected from (1.13) and then from
conditional posterior density of x which is normal(y,c°/n). Moreover, if

unconditional posterior density of 4 is to be obtained,

p(u|y) = [ p(, o* | y)do® (1.14)

which is obtained as



p(uly) oc {1+ rﬁ”_;l)zz} . (1.15)

1.3.2. Normal Distribution with Unknown Mean and Unknown Variance:

Dependent Prior Distributions of # and &°

Consider normal distribution with unknown mean 4 and unknown

variance o* with prior distributions specified by (1.16) and (1.17) below:

) o’ ~ Normal(u,,0° / k) (1.16)
and

o’ ~Inv—y*(v,,0¢). (2.17)

The dependent prior distribution of x on o?implies that they will have joint

conjugate prior density as
_ —(vo / 2+1) 1
p(u,0%) o 1(02) 21 exp(—g[voaoz + 15 (1ty — 1)’ D (1.18)

Gelman et al. (2004) calls density (1.18) asN —Inv— y*(uy,05 1 K;V,,075) .

Multiplying (1.18) with the likelihood function vyields the joint posterior

distribution:

. —(Vo / 2+ 1
p(u,c’|y)co 1(0-2)( = eXp[_r._z[Voo'g"'Ko(ﬂ_ﬂo)sz

()" exp(— 212 [(n ~Ds? +n(y - uf D (1.19)

o

10



K, n _
Y7
K, +N K, +N

which is N —Inv— y%(u,), 02 1 xk,;V,,02)  Where p, =

n» n’

K, =K, +N,V, =V, +N,V,0% =V,0? +(n-1)s* + V—1,)

Ky +N

Remark: It is seen that posterior distribution uses information from prior
distribution and sample distribution with appropriate weights. It can easily be

shown that g, is the weighted average of prior mean and sample mean.

One can show that, the conditional density of u|c?y is

and marginal posterior density of o |y is

Inv—;(z(vn,af). Moreover, the marginal posterior of x obtained by integrating

2 —(v,+1)/2
1+ Ky (/u_:;'ln) :I .

n n

(1.19) over &, is obtained as p(u|Yy) oc|:

1.3.3. Normal Distribution with Unknown Mean and Unknown Variance:

Independent Prior Distributions of # and &

Consider normal distribution with unknown mean 4 and unknown
variance o®  with independent conjugate prior distributions  as

2
p(w) ~ Normal(y,,0f) and p(02)~lnv—Gamma(%,5°%J. The joint

posterior distribution of 4 and o can be written as

11



ple,o? | y)=Lly | u.0% )l o?)

exp(— 222 (fr—u) - (l; (ﬂ—ﬂo)zj- (1.20)

From joint posterior density (1.20) it is easy to show that,

2 A2
p(c?|y) ~ scaled — Inv—;(z(n+50,5osr;’+;gj (1.21)
0
and
N
gg +0'7/v: 60t
P(x|y) ~ Normal| —-—— e +n002 (1.22)
0
002 62

Remark. It can be seen from the marginal posterior density (1.22) that the
precision of u is equal to the sum of the precision of prior distribution and the

precision of the sample.

Remark: It can be stated from (1.22) that posterior mean x is a weighted

average of sample mean and prior mean with weights proportional to inverse of
the variances.

Relative efficiency values of Bayes estimator of x, denoted as x,, with

respect to sample estimator & with respect to different sample sizes is given by
Table 1.2 below.

12



Table 1.2 RE values for normal distribution with unknown mean and unknown

variance: independent prior distributions

o =1.5 o =2.5

n=5 0o=2 0.8183 0.6213
0y=3 0.9102 0.7855

10 0o=2 0.8974 0.7556
Gy=3 0.9530 0.8777

15 0o=2 0.9291 0.8248
Gy=3 0.9675 0.9135

=20 0p=2 0.9466 0.8624
0,3 0.9757 0.9345

=30 0o=2 0.9635 0.9049
oy=3 0.9835 0.9550

Remark: Table 1.2 indicates that, Bayes estimator of x will be less efficient if

the variance of prior distribution becomes large, and it gains efficiency when

sample dispersion increases.
Remark: As sample size increases, likelihood dominates and Bayes estimator of

mean is not advantageous. This result is also the same as the results shown by

Table 1.1 given in section 1.2.
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CHAPTER 2

BAYESIAN ANALYSES OF SYMMETRIC and SKEWED FAMILIES
ONE SAMPLE CASE

In this chapter, location parameters of some symmetric and skewed
distributions are estimated by using both classical and Bayesian techniques. First,
we apply Modified Maximum Likelihood (MML) estimation method and find
MML estimators (MMLE) of unknown parameters. After that, posterior densities
are provided by considering parameters as random variables and assuming
appropriate robust priors for them. Highest posterior density (HPD) estimators are
derived from resulting posterior distributions. Relative efficiencies of MMLEs
and Bayes estimators are compared and presented in the following pages. We start
with symmetric distributions and extend our analyzes to skewed distributions. It
may be noted that maximum likelihood estimators are intractable in most

situations and that makes Bayesian methodology enormously problematic.

2.1. Symmetric Distributions:

2.1.1. Type Il Censored Samples Coming from Normal Distribution

2.1.1.1. MML Estimators:

Consider a symmetric type Il censored sample from normal distribution

with mean x and variance o”. After censoring smallest and largest r

14



observations, remaining observations can be displayed in terms of order statistics

aS Yirgyr-+1 Ynry- IN order to find Maximum Likelihood (ML) estimators of

unknown parameters, the likelihood function L is

L oc O-(nizr) F(Z(Hl))r [1_ I:(Z(n—r))]r ‘]TAI;-f(Z(i)) (21)
where 2, =29 "H# t i qci<nor F(z)—jf(z)dz and f(z)ocef%
W= sis ! = :

The derivatives of InL which give ML estimators are

dInL_l{

du iz(i) - rgl(z(r+1) )+ rgz(z(n_r) )} =0 (2.2)

i=r+1
and

dinL 1 <
n = _|:_ (n - 2r)+ Z Zi2 - rZ(rJrl)gl(Z(rJrl) )+ rZ(n—r)gz(z(n—r) ):| =0 (23)

dG o i=r+1

where g,(z)= f(2)/F(z) and g,(z)= f(z)/(1- F(z)) (Tiku, 1967).

These equations are very difficult to solve since they involve non-linear

functions g, (z). They have no explicit solutions and iterative methods have to be

used to obtain ML estimators. Newton-Raphson method can be applied to solve
them (Schneider,1986) but the resulting estimators will be implicit and difficult to
use (Tiku and Stewart,1977). Moreover, iterative methods may yield multiple
roots, iterations may not converge or they may converge to wrong values, see
Barnett (1966), Lee et al.(1980), and Vaughan(1992). Puthenpura and Sinha
(1986) also indicate that iterative solutions might not converge if the data contains

outliers; see also Qumsiyeh (2007, pp.8-14). In order to alleviate these
15



difficulties, method of modified maximum likelihood estimation (Tiku (1967,
1968a,b,c, 1970, 1973), Tiku and Suresh,1992) is used which gives explicit
solutions. The intractable terms in likelihood equations are linearized and
resulting equations yield MML estimators. They are highly efficient and
asymptotically equivalent to the ML estimators (Bhattacharyya, 1985; Vaughan
and Tiku, 2000) and they maintain high efficiencies for small samples also (Tiku
and Suresh, 1992; Vaughan, 1992, 2002). Tan (1985) and Tan and Balakrishnan
(1986) study MML method in Bayesian point of view in case of censored normal

samples.

In order to formulate MML equations, the functions gl(z(m)) and
gz(z(n_r)) can be linearized in the vicinity of z (Tiku,1967) such that,
gl(z(m));a—ﬁz(”l) and gz(z(nfr));aJrﬁz(nfr). From Taylor series expansion,

the coefficients « and g are found as

ﬂzw[t_pwJ, aszrt,B (2-4)
q q q

t
where q=r/n, jf(z)dz =1-q. Note that, «and g are both positive and

—00

between 0 and 1. (Tiku and Akkaya, 2004).

MML equations are obtained by incorporating (2.4) in (2.2) and (2.3) as

dI L I
- {lem (0‘ =B )+ r(a ~ P )}

=%(K—u)=o (2.5)
(o2

and
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dinL”™ 1 =
an' = ;|:_ (n - Zr) + z Zi2 - r-Z(H—l) (a - ﬂz(rﬂ) )+ I’Z(n—r.) (0( - ﬂz(n—r) ):|

i=r+l

—— L [(Ac?-Bo-C)-m(K - )?]-0 (26)
(o}

where

Z y(i) + rﬂ(y(m—l) + y(n—r))
A=n-2r, m=n-2r+2rp3, K==+

m

B= ra(y(n—r) - y(r+1))

and

C= 3y +1B[Y2y — Yirn |- MK, 27)

i=r+1

The solutions of MML equations give MML estimators as

Z_: Yiy T rﬂ(y(rﬂ) + y(n—r))

Ao = = m (2.8)

and,

S = [B +B? +4AC J/ 2 /A(A-1) (2.9)

Note that, MML estimators 4, and &,,, are asymtotically fully efficient

since likelihood and modified likelihood equations are asymptotically equivalent.

17



Remark:  Asymptoticallyy, MMLE &,,, is unbiased and

Var Gy ) = (02 12AL-rat / AT

Remark: z,,, is unbiased for all n and independent of &,,,, . Itiseasy to

show that dInL;dInL :ﬂ2
O

du du

r,s>1. Moreover, the minumum variance bound for estimating u is

(fiyw — ) and E(@"* INL/ou"0c°)=0 for all

o’ I(n—2r) for large n (Tiku and Akkaya, 2004).

Comment: The complete sample results can readily be obtained by
taking r =0, of course, certain regularity conditions have to be satisfied. If the
variances of estimators are compared between complete sample and censored
sample, it is seen that censoring observations can improve efficiencies if

miscreant observations (e.g.,outliers) occur in the data.

2.1.1.2. Posterior Distribution:

In order to find posterior distribution of 4 and o® given sample

observations, first modified likelihood equation L™ is obtained (by solving the two
differential equations (2.5) and (2.6)):

N i 1 R R
L' co™ EXp |:_T._2(AGI%/IML)+ m(/uMML - ﬂ)Z}H (y) (2.10)

where H(y) is a function free of x and o. Then, the joint distribution of z,,,,

and &,,,._ can be written as

18



eXp[‘%(ﬂMML _,U)z] (2.11)

since i, and o,,, areindependently distributed.

The priors for 1 and o are taken as independent normal and inverse chi-

square distribution as

p(w) < (02 ) 2 e’@(—%(#—ﬂo)zj (2.12)
and
p(c?) (0’2 )%0+1 exp(—izéosjj (2.13)
20

where u,, o and &, are hyperparamaters of prior distributions. Then,

p(u, o) = p(u)p(c?) (2.14)

and

p(,u, 0'2|y)oc p(,u, JZ)L*(y‘,u, 0'2). (2.15)

From (2.15), the joint posterior density can be expressed as

A-1+6, N

p(ﬂ,02|y)oc(a’2) 2 1exp[—2—12(5os§+A&2)}x
O
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m /. 2 1 2
_ _uf- _ 216
|~ = (42— p) 207 (10— ) } (2.16)

where £ and 6% are MMLE of x and o°.

2.1.1.3. HPD Estimators:

The estimators given by mode of posterior densities are called HPD
(Highest Posterior Density) estimators. From joint posterior density (2.16), it is

easy to show that

maoc, + u,6° 6ol
p(y|y)~ Normal( m<072+6g s +°&2 (2.17)
0 0
and,
A-1 2+ AG°
plo?ly)~ InverseGanma( 2+5° ,508"; c ] (2.18)

2.1.1.4. Comparing Efficiencies of MML and Bayes Estimators: Simulation

Results

In order to evaluate the performence of Bayesian estimator and MML

estimator, simulated relative  efficiencies, RE =Var (i, ) /Var (i, ) .are

calculated and given in Table 2.1 below. Symmetric type Il censoring is
considered with fixed g=r/n. The observations are assumed to have normal

distribution with # =0 having likelihood function (2.1). HPD estimator of u

given by equation (2.17) is calculated by assuming (2.12) as prior density with
hyperparameters 4, =0 and o, =3. Using IMSL algorithms 10,000 simulations

are performed for different sample sizes n.
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Table 2.1 Simulated means, variances and RE values for censored normal
distribution with o =1.5

q =0.2 Hume \ (ll’lMML) Hipp \ (lLlHPD) RE
n 0y =2.0 -0.0037 0.5174 -0.0031 0.4285 0.8281
=5
0.0040 0.4934 0.0033 0.4331 0.8778
Oy =2.5
n=10 0, =2.0 -0.0044 0.2428 -0.0043 0.2169 0.8934
-0.0013 0.2482 -0.0011 0.2308 0.9301
Oy =2.5
n 0y =2.0 0.0064 0.1668 0.0062 0.1548 0.9280
=15
0.0029 0.1676 0.0028 0.1595 0.9513
Oy =2.5
n 0y, =2.0 -0.0040 0.1234 -0.0039 0.1163 0.9427
=20
-0.0021 0.1230 0.0021 0.1183 0.9623
Oy =2.5
N 0, =2.0 -0.0041 0.0850 -0.0040 0.0817 0.9612
=30
-0.0007 0.0817 -0.0007 0.0796 0.9746
Oy =2.5

Table 2.2 Simulated means, variances and RE values for censored normal
distribution with o, =3

gq=o0.2 Hme \Y (/UMML) Hipp \ (luHPD) RE

n O=1.5 0.0017 0.5234 0.0015 0.4773 0.9119
=5

O =2.5 0.0055 1.4100 0.0050 1.1309 0.8020

n O=1.5 -0.0026 0.2517 -0.0024 0.2392 0.9503
=10

O =2.5 -0.0116 0.6995 -0.0107 0.6123 0.8754

n O=1.5 -0.0037 0.1688 -0.0036 0.1630 0.9657
=15

O =2.5 -0.0013 0.4671 -0.0015 0.4248 0.9095

n=20 O=1.5 -0.0046 0.1249 -0.0045 0.1216 0.9736

O =2.5 -0.0073 0.3421 -0.0071 0.3184 0.9308

n= 30 O=1.5 -0.0003 0.0839 0.0003 0.0824 0.9821

O =2.5 0.0030 0.2277 0.0029 0.2167 0.9518
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Table 2.1 shows the values of means, variances and relative efficiencies
while sample observations are coming from normal distribution with & =1.5. In
order to see the impact of prior dispersion on the effectiveness of Bayesian

estimator, two different o, values are considered. It can be concluded that when

prior dispersion increases, relative effiency value increases, that means MML
estimator gains efficiency. Table 2.2 is constructed to show the changes in relative
efficiencies with respect to different sample dispersions. Therefore, means and
variances of estimators are calculated by assuming prior density (2.12) with

U, =0 and o, =3 and sample observations are assumed to have x=0 and
o =15 and o=2.5. According to the results in Table 2.2 we can say that as

sample dispersion increases relative efficiency decreases, which indicates that
Bayes estimator gains efficiency relative to MMLE. Moreover, both Table 2.1 and
Table 2.2 show that increasing sample size causes increase in relative efficiencies.
That is to say, MML estimator gets close to HPD estimators as number of
observation increases which is in agreement with our earlier statements given in
Chapter 1.

Comment: One of the most important aspects of Bayesian techiques is that one
can obtain estimators whose variances are smaller than the minum variance bound
(MVB). By combining prior information with likelihood function, one can cross
the MVB barrier which is not possible at all in classicals statistical analyses.

2.1.2.Type Il Censored Samples Coming from LTS Distributions
2.1.2.1. MML Estimators:

It has been a tradition to assume a normal distribution but as indicated by
Geary (1947) and Scheffé (1959), normality assumption may not be very

realistic. In practice, it may be more reasonable to assume that underlying

distribution belongs to a family which includes a wide class of symmetric
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distributions. Therefore, in this part of the study, we consider type Il symmetric

censored sample Y ,,y,..., Y,y coming from the distribution

£(y) 1 {1+ (y—u)

-pP
= . —w<y<om, (219
oJkpL/2,p-1/2) ko? } wey<e 219

where k=2p—-3 and p>2. We assume p is known. It is easy to show that the

ratio tzﬁ(y—\/%u) has a Student’s t distribution with degree of freedom
o

v=2p-1. Moreover, (2.18) is a normal distribution for p = .

In order to find ML estimators, the likelihood equation can be expressed
as,

i=r+1

L oc a{ﬁ[u ZL;)] ]F(z(m) Ja-Flz,.,) (2.20)

Yoy —H F
where A=n-2r, z, = (’G and F(z) = If(z)dz.

The derivatives of log of L are

dinL 2p &
% = % izr+:1g(2(i) )_ éhl(z(m-l))—"_ g h, (Z(n—r))= 0 (2.21)
and

dinL A 2p

n—r
do o ko iz Z(i)g(z(i) )_ ézm hl(z(r+l) )+ i Zin-ny (Z(n—r) ) =0

=r+l

(2.22)
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where g(z):ﬁ, hl(z)z% and h, (z)= f(z)

Since these equations do not have explicit solutions, solving them iteratively
may have convergence and multiple root problems especially for small values of

p . Therefore, MML estimators are used instead of MLEs. MML equations are
obtained by linearizing the intractable functions as g(z(i)); iy + BiyZy s
hl(z(m)); a-bz,,, and hz(z(nfr)); a+bz, . The coefficients of these

functions can be obtained from first two terms of Taylor series expansion around

ti = E(z(i)). The estimators are found by solving modified likelihood equations:

. 1(2p "=
Hume = M(Tp Zﬂ. Yiy T rb[y(rm + Yion ]j

i=r+l

and
Gyl =i[B+\/B2 +4AC] (2.23)
2A

where

A=n-2r, M :%iﬂi +2rb, B:%iaiy(i)"'ra[y(nr)_y(r+1)]

i=r+l i=r+1

and

2 n-r .
C= Tp > By + rbly? . + Y2 |- Ma2. (2.24)

i=r+l
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Moreover, «

(27K, 1-(/K) { F(t )}
.:—’ i=—’ = btr+ d
B ST R e L |

b=|- f'(t(Hl))F(t(Hl))+ fz(t(Hl))]F’z(t(Hl)) . We can extend these results to

complete samples by taking r =0.

Note: It may be noted that if r=0, g, (and few other g. coefficients) can be
negative if nis large and p is small. Consequently, C can be negative resulting
in an irrational estimator of o . To rectify this situation we replace «, and g, by

. L7kt . 1
Sl and :Bi =—22,
b+ @ik b+ @ik ]

not affect the asymptotic results since g(z(i)); o + B 2.

respectively, if g, <0 . This does

Tiku and Suresh (1992) and Vaughan (1992) indicate that for fixed

q=r/n, pi,, and &,,, are asypmtotically minumum variance bound
estimators. For small n also they are highly efficient. Note also that ,,, Is
unbiased for all n—2r and cov(s,6)=0. This result follows from symmetry:

see Tiku et al. (1986).

Remark: As stated by Tiku and Akkaya (2004), for large A (with fixed r/n),

the asymptotic properties of MML estimators are as follows:

i) [y iS minumum variance bound estimator of x and Var (i, )= c*/M,

i) A6* | o? is distributed as chi-square with A-1 degrees of freedom,

i) 4y, and &,,, aredistributed independently.
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N(l&MML _ﬂ)

(o}

Also, is a standard normal variate and, therefore,

_N(ﬁ:l—ﬂ)

T= is distributed as Student’s t with A—1 degrees of freedom (

(e}

asymptotically).
2.1.2.2. Prior Distributions:

In order to develop Bayesian estimators of of x4 and o, prior

distribution for them should be specified. Traditionally, a normal-inverted gamma

density is assumed such that

plujo)oc o exp{— s (= a1 )} (2.25)
and

plo?)ec (o) exp(—%aoséj. (2.26)
The joint prior distribution is

pluo?) o plejo)plo?). (2.27)

However, conjugate prior for a normal distribution may not be robust to outliers.
As stated by Stone (1964), Tiao and Zellner (1964), Dickey (1968, 1974), Berger
(1984), Bian (1989), O’Hagan (1990), Angers and Berger (1991), Bian and
Dickey (1996) assuming prior distributions which give higher probabilities to
extreme values of & will be more reliable. Such distributions are called robust
priors. Therefore, instead of normal-inverted gamma density an independent t

and inverted gamma distribution is assumed as
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plu, %) p(u)plo?) (2.28)

where the prior of & is given by (2.26) and the prior of 4 is given by

( )2 —(vg+1)/2

p(u) oc {u %} . (2.29)
VoOo

The prior distribution of x reduces to a non informative prior if o, is infinite

and it becomes a normal distribution if v, is infinte (Bian and Tiku, 1997).

2.1.2.3. Posterior Distribution:

HPD estimators are derived from posterior densities of unknown
parameters which are obtained by combining information from prior distributions

and sample itself. In order to find joint posterior density, first joint distribution of

4 and &7 is expressed as

R A B e ey e (NP

267
(2.30)
Thus, the posterior density is obtained:
plu,o?|y)oc p(u)plo? ) (2.67) (2.31)
which is
-2
p(,u,az‘y)oc (0_—2 )(60+A+1)/2—1 exp(—%[%sg n AOA_Z]JX
—(Vp+1)/2
M o ey )
- - 1+-—222 : 2.32
exp( 557 (A= H) j{ — (2.32)
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It is seen from (2.32) that ,and o* are posteriorly independent where the

marginal posterior densities are

(Vo+1)
Pl 2
p(yly)o{u%} exp(— o (ﬂ—ﬂ)zj (233
0~0
and
ploly)ee (o2) 2 exr{— “7 (6355 + A" ]]- (2.34)

2.1.2.4. HPD Estimators:

The HPD estimator of &2 is the mode of the scale inverse chi-square

density given by (2.34),

o (6,57 + AG?)

= 2.35
GBayes 50 LA ( )

Remark: From equation (2.35) it is seen that Bayesian estimator of & is the

weighted average of MML estimators and prior information.

In order to find HPD estimator of 4, the mode of the marginal posterior
density of x given by equation (2.33) should be found. However, it is a poly t

density which includes a t and a normal factor. Poly t densities are usually
bimodal and asymmetric, so the mode is different than their mean. Therefore, two

different cases are considered in finding Bayesian estimator of . In the first
case, the degree of freedom of prior distribution of  is taken as infinite, and in

the second case it is considered as finite.
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Casel: When v, = oo, marginal posterior density of x become a product of two
normal densities, since the prior distribution of x expressed by (2.29) reduces to
a normal distribution. Under this assumption the marginal posterior density of u

is

(1=, Y —i(u—ﬁ)z] (2.36)

p(ﬂ|y) oc exp (_ 262

2
20,

oy e +MS

which yields a normal distribution with mean - — and
o, +Moc
variance —; — . Therefore we can write,
o,  +Moc
A Oy Hy +MS 1
/uBayes = (237)

0'0_2+M6_2

Comment: We may also express Bayesian estimator of u as
flgayes = Wity +(1—W) 2 where w = o,? (agz +M632 )71. From this expression it is

clear that Bayes estimator of u is a weighted (or convex) combination of prior

mean and sample information. If M (i.e.,n) goes to infinity then w=0. In which

case Bayesian estimator of z will reduce to MML estimator. On the other hand,
Bayes estimator will be equal to the prior mean x, whenw =1 and prior variance

is zero which occurs in case o, =0.

Case2: When v, is finite, the posterior density of x is

]_ (vo+D)

p(y)oe [+ (1= 1) 1,072 {1+ Mr . (2.38)
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In order to obtain the mode of the density of (2.38) the modal equation is obtained

by taking derivative of In p(u|y). The equation simplifies to

In p(uly) o —(VOT”)In[H (“V_(ff)z}— M (u- iy

= (Vo +2)62 (1 — 1)+ M (s~ 2)vo0 + (1 — 11, ¥ | (2.39)

HPD estimator of x will be found by equating the modal equation to zero and find

the root for u .

In order to solve (2.39), it is re-formulated as

X3 — (Au)X? + [Mwﬁ,}x v, (A) =0 (2.40)
agM

>
N

Oy

where X = 5. Equation (2.40) is a cubic

H=H Ay = and g=—
o, o, o)

equation which will have either one or three real roots because conjugate roots

occur in pairs. If the discriminant of (2.40) is greater than or equal to zero, we can

say that it has only one real root, otherwise there will be three distinct real roots.

Vo +1)

Let a=-Au, b=[( +V°j and ¢=-v,Au. The discriminant of
gM

equation (2.40) is

D:2_17[<v°_+1>+vo_1<Aﬂ>z}l1{_£w+§M(M+VO]_VOMT

gM 3 4| 27 gM
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Re organization of (2.41) yields

aM 2gM gM

27D = v, (Au)* + {ZVS il 1) ((V‘) R 1))2}@#)2 + {M + VOT ; (242)

(2.42) is a quadratic function of (Ax)* and the discriminant of (2.42),

D, - { 27— Svy(vy +1) ((v0 +1)ﬂ ~ 4\,0(@ 4 VOT (2.43)

gM 2gM

which can be simplified as

D, = (v, +1) {(VO +1) —8VOT. (2.44)
16gM gM

We can say that D >0 and so posterior of  is unimodal if D, <0. From (2.44)

it is seen that D, <O if M—8v0 <0 which implies gM >1+i. In the

gM 8 8v,

2
extreme case of v, =1, D, >0 if and only if Cf—(;M <0.25. However, since
o)

2
var(4/ o) is proportional to 1/M . M % will hardly ever be smaller than 0.25.

Therefore, it can be stated that modal equation will have one real root,almost

always.

In order to find posterior estimator of z, consider two cases:
Casel: flg,,is close to y; :

The modal equation (2.39) is re-written as
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(Vo +1)6_2 + MVOO_§ = (,[‘ _,uo)2 X

M (;[lBayes - /JO)_i_ |V|Vo<7§ . M (ﬂBayes - 1u0>2
(/'Al B :UO) (:[lBayes —Ho X/A‘ o :UO) (/Al —Hy )2
(2.45)
A A 2
Since flg, is close to u,we can ignore M and M and the
(2 - o) (2= o)
resulting HPD estimator /zg, ., will be
G
o, | 1+ y Uy +Mc 4
Hoayes = °1 (2.46)
00‘2[1+j +Mé&?
VO
which is a convex combination of z, and 4.
Case2: fig,,siscloseto i :
The modal equation (2.39) is re-written as
Mvyos = (1o — 1) x
2M (:&Bayes - /[l) _ M (:&Bayes - /&)2 _ (VO +1)6-2 (:&Bayes - /uo) -M (2 47)
~ ~A\2 A ~A\2 ' '
(210 = £2) (o= £1F  (flpages — 1 Nt — 22
A A A A 2
Since i, is close to /4 we can ignore ('UBLM and Mand after
(,u - /uo) (/U - ,Uo)

some algebra (2.47) becomes
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/:lBayes X [MVOO'S +M (Ay)z ag + (VO + 1)&2 ] = Mvoagﬂ +M (A,u)2 0‘3,[1 X

(Vo +1)6° 1. (2.48)

The resulting HPD estimator fig, . is

;uBayes

_ on2ug + v + (A J1(vy +1) (M6 2
oo + “vo + (A,u)ZJ/(vO +1) }M&‘Z

(2.49)

which is a convex combination of g, and z, a beautiful result indeed.

Comments:

i)

In the case of normal distribution with a conjugate prior we have seen

that Bayesian estimator of u is the weighted average of prior mean
#, and the sample mean ¥, namely fg, . =W, +(L—w)y. In this

case we have also a similar form with weights which are reciprocals
of variances. This beautiful result is an outcome of applying the
method of modified likelihood estimation. It can also be seen from
(2.46) and (2.49) that the weight of prior mean is higher when the
posterior distribution is governed by prior information, and weight for

£ is higher when the case is vice versa. This weighted form of HPD

estimators makes them robust to outliers.

When we have non-informative prior distribution of 4, i.e., when o,
goes to infinity, the Bayesian estimator of x converges to MMLE. On

the other hand, as prior variances become smaller, f,,., tends to prior

mean ., ; see also Bian and Tiku (1997).
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i) As variance of sample observations increases, Bayesian estimator of

4 converges to u, since it includes weights which depend on & .

1v) As sample size increases, the information coming from likelihood
function dominates over the prior distribution and Bayesian estimator

converges to MML estimator.

2.1.2.5 Comparing Efficiencies of MML and Bayes Estimators: Simulation

Results

The performence of MML and Bayes estimators are compared by
simulations. For illustration, we consider observations coming from (2.19) with
p=3.5, i.e., Student’s t distribution with 6 degree of freedom. The mean of the
prior distribution (2.29) is taken as 0 and prior degrees of freedom is taken as 6, to
be compatible with the sampling distribution. IMSL subroutine is used to generate
indepent random variables of size n. First we obtain simulated values with type |1

censoring with fixed g=r/n, while z, . is close to g, . Then, simulations are done
with type Il censoring while fg, . is close to g, . The results are given by

Table 2.3, Table 2.4 and Table 2.5, Table 2.6, respectively. Moreover, full sample
results are also reported for both of the cases in Table 2.7, Table 2.8, Table 2.9
and Table 2.10.
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Table 2.3 Simulated means, variances and RE values for censored Student t

distribution with v, =6, £1=0,0=1.5, 14, =0 when /i, .. is close to x,

q =0.2 Hume \ (/uMML) Hipp \ (lLlHPD) RE
n 0, =2.0 -0.0046 0.6457 -0.0028 0.4543 0.7037
=5
0.0165 0.6382 0.0148 0.4952 0.7760
Oy =2.5
n 0y =2.0 0.0057 0.3163 0.0052 0.2606 0.8237
=10
-0.0051 0.3080 -0.0046 0.2707 0.8788
Oy =2.5
n 0, =2.0 0.0002 0.2033 0.0002 0.1785 0.8783
=15
-0.0077 0.1996 -0.0074 0.1834 0.9188
Oy =2.5
n 0y =2.0 -0.0058 0.1540 -0.0056 0.1397 0.9071
=20
-0.0010 0.1585 -0.0009 0.1441 0.9387
Oy =2.5
n 0y =2.0 -0.0081 0.1006 -0.0079 0.0944 0.9384
=30
-0.0048 0.1030 -0.0047 0.0989 0.9593
Oy =2.5

Table 2.4 Simulated means, variances and RE values for censored Student t

distribution withv, =6, 11=0,0, =3, 4, =0 when /i, . is close to

q =0.2 Hme \Y (/UMML) Hipp \ (IUHPD) RE

n O=1.5 -0.0008 0.6528 -0.0007 0.5403 0.8277
=5

O=2.5 -0.0176 1.7614 -0.0148 1.1464 0.6509

n O=1.5 0.0007 0.3080 0.0007 0.2805 0.9106
=10

O =2.5 -0.0036 0.8622 -0.0032 0.6802 0.7889

n O=1.5 -0.0020 0.2055 -0.0019 0.1936 0.9418
=15

O=2.5 -0.0115 0.5592 -0.0103 0.4768 0.8526

n O=1.5 -0.0018 0.1527 -0.0017 0.1460 0.9563
=20

O=2.5 0.0027 0.4200 0.0023 0.3731 0.8883

n =30 oO=1.5 0.0047 0.1027 0.0046 0.0998 0.9716

O =2.5 -0.0002 0.2822 -0.0002 0.2606 0.9235
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Table 2.5 Simulated means, variances and RE values for censored Student t

distribution with v, =6, £ =0,0=1.5, 14, =0 when /i, . is close to fi,

q =0.2 Hume \ (/JMML) Hipp \ (lLlHPD) RE
n O, =2.0 -0.0070 0.6356 -0.0058 0.4499 0.7079
=5
-0.0026 0.6345 -0.0015 0.4943 0.7791
O, =2.5
n Oy, =2.0 0.0072 0.3057 0.0068 0.2528 0.8269
=10
-0.0082 0.3116 -0.0076 0.2747 0.8816
O, =2.5
n 0, =2.0 -0.0036 0.2036 -0.0033 0.1793 0.8804
=15
-0.0062 0.2056 -0.0060 0.1890 0.9194
Oy =2.5
n 0,=2.0 0.0007 0.1519 0.0007 0.1382 0.9097
=20
0.0007 0.1520 0.0007 0.1429 0.9401
Oy =2.5
n 0,=2.0 -0.0012 0.1004 -0.0011 0.0943 0.9389
=30
-0.0015 0.0998 -0.0015 0.0957 0.9594
Oy =2.5

Table 2.6 Simulated means, variances and RE values for censored Student t

distribution with v, =6, 4 =0,0, =3, 14, =0 when [, . is close to zi,,

q =0.2 Hme \Y (/UMML) Hipp \ (IUHPD) RE

n O=1.5 -0.0012 0.6368 -0.0015 0.5306 0.8332
=5

O=2.5 0.0091 1.7537 0.0073 1.1890 0.6780

n O=1.5 0.0052 0.3100 0.0051 0.2829 0.9125
=10

O =2.5 -0.0142 0.8551 -0.0124 0.6821 0.7977

n O=1.5 0.0018 0.2031 0.0016 0.1913 0.9420
=15

O=2.5 -0.0051 0.5684 -0.0047 0.4866 0.8561

n O=1.5 -0.0034 0.1483 -0.0033 0.1418 0.9565
=20

O=2.5 -0.0119 0.4292 -0.0113 0.3819 0.8899

n =30 oO=1.5 0.0019 0.1025 0.0018 0.0996 0.9717

O =2.5 0.0026 0.2803 -0.0025 0.2592 0.9247
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Table 2.7 Simulated means, variances and RE values for Student t distribution

with vy =6, u=0,0 =15, 14y =0 when g, . is close to

/’lMML V(/’IMML) /’lHPD V(ll’lHPD) RE
0 0, =2.0 | 0.0014 0.6270 0.0006 0.4249 0.6777
=5
-0.0072 0.6271 -0.0057 0.4826 0.7695
0,=2.5
0 0, =2.0 | 0.0031 0.3042 0.0026 0.2498 0.8211
=10
0.0043 0.2935 0.0043 0.2574 0.8772
0,=2.5
0 O, =2.0 | 0.0035 0.1957 0.0035 0.1718 0.8778
=15
0.0094 0.1983 0.0090 0.1818 0.9169
0, =2.5
. 0, =2.0 | -0.0024 0.1460 -0.0022 0.1323 0.9065
=20
-0.0030 0.1495 | -0.0029 | 0.1402 0.9381
0,=2.5
0 O, =2.0 | -0.0040 0.0997 -0.0039 | 0.0943 0.9455
=30
0.0013 0.0986 0.0013 0.0951 0.9646
0, =2.5

Table 2.8 Simulated means, variances and RE values for Student t distribution

with v, =6, u=0,0, =3, 1, =0 when f, . is close to

Ly V (i) Moo V(o) RE

n O=1.5 0.0073 0.6430 0.0064 0.5248 0.8162
=5

O =2.5 0.0066 1.7081 0.0075 1.0882 0.6371

n O=1.5 0.0031 0.2987 0.0030 0.2719 0.9104
=10

O =2.5 0.0123 0.8301 0.0113 0.6503 0.7834

n oO=1.5 -0.0002 0.1990 -0.0002 0.1873 0.9409
=15

O =2.5 0.0007 0.5527 -00001 0.4711 0.8525

n O =1.5 -0.0026 0.1453 -0.0026 0.1390 0.9565
=20

O =2.5 -0.0059 0.4034 -0.0058 0.3575 0.8863

n =30 oO=1.5 0.0055 0.1017 0.0054 0.0991 0.9749

O =2.5 -0.0050 0.2787 -0.0047 0.2601 0.9331
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Table 2.9 Simulated means, variances and RE values for Student t distribution

with vy =6, 4=0,0 =15, 14, =0 when fg, . is close to i,

/’lMML V(/’IMML) /’lHPD V(ll’lHPD) RE
0 Oy, =2.0 | -0.0030 0.6261 -0.0031 0.4386 0.7005
=5
-0.0050 0.6268 ~0.0032 0.4831 0.7707
0,=2.5
0 O, =2.0 | -0.0046 | 0.3036 | -0.0040 0.2509 0.8265
=10
0.0025 0.3060 0.0024 0.2690 0.8791
0,=2.5
0 O, =2.0 | -0.0024 0.1965 | -0.0023 0.1727 0.8788
=15
-0.0044 0.2004 -0.0043 0.1843 0.9194
0, =2.5
0 0,=2.0 | -0.0086 | 0.1476 | -0.0083 0.1340 0.9076
=20
-0.0024 0.1468 -0.0023 0.1377 0.9384
0,=2.5
0 0, =2.0 | 0.0023 0.0989 0.0022 0.0936 0.9469
=30
-0.0005 | 0.0975 | -0.0004 0.0941 0.9650
0, =2.5

Table 2.10 Simulated means, variances and RE values for Student t distribution

with v, =6, u=0,0, =3, 14, =0 when [, . is close to fi,,

I |V () Moo V (fpp) RE

n O=1.5 -0.00406 0.6106 -0.0043 0.50064 0.8293
=5

O =2.5 -0.02006 1.7110 -0.0175 1.1312 0.6533

n O=1.5 -0.0150 0.2983 -0.0145 0.2730 0.9151
=10

O =2.5 -0.0049 0.8460 -0.0042 0.6705 0.7926

n oO=1.5 0.0002 0.1997 0.0001 0.1880 0.9414
=15

O =2.5 -0.0124 0.5550 -0.0111 0.4747 0.8554

n O=1.5 0.0021 0.1466 0.0021 0.1403 0.9572
=20

O =2.5 -0.0087 0.4060 -0.0080 0.3602 0.8872

n =30 oO=1.5 0.0017 0.0995 0.0017 0.0970 0.9754

O =2.5 -0.0041 0.2773 -0.0040 0.2591 0.9346
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Table 2.3 and Table 2.4 deal with the censoring case while f, . is close

to prior mean z,. Table 2.3 indicates the effect of increasing prior dispersion on

both of the HPD and MML estimators, while Table 2.4 shows the changes in
simulated values with respect to different o values. We know that Bayes
estimator looses efficiency as prior distribution variance becomes larger. On the
other hand, increasing the sample variance makes HPD estimator better than
MML estimator. These results are shown in Table 2.3 and Table 2.4 above. After

that, simulations are carried out for the case when /[, . is close to z, . All of

the inferences are the same for this case also. The relative efficiencies are almost

the same as in the case when /i, .. is close to x4, but a little larger as expected.

All of the statements made above are valid also for the full sample cases
which are given in Table 2.7 -Table 2.10.

Moreover, all of the tables above show that both MML and HPD

estimators have almost no bias. Also, as sample size increases jig,,, CONverges to

Ly » Which is expected.

2.2. HPD Estimators under Skewed Sample Distributions

We extend the results of the previous section to skewed distributions.
Primarly, gamma distribution is considered since it represents an important class

of skewed distributions.

2.2.1. Gamma Distribution:

2.2.1.1. MML Estimators:

Consider a random sample vy,,V,,..., ¥y, coming from gamma distribution

n

with unknown origin and scale as
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1 y-ua o Y H
f(y)——r(k)a(—a ) exp( o ) y>u. (2.50)

Assume k >1 and known. We have E(Y)= u+ko, Var(Y)=ko® and
Mode = 2 + (k —1)o . It is known that for k > 1, (2.50) is unimodal and positively

skewed.
In order to find the ML estimators of © and o, the likelihood equations are

dinL
du

n 3 g
w2y —a)* =0

and

dinL ok 20A)
L——Ft———=

do o o’

0 (2.51)

We re-write (2.51) in terms of order statistics, since complere sums are invariant
to ordering. Thus,

dInLOCn (k-1) <
du o o ‘O

and
Z(y(i)_ﬂ)
dink k=70 T g (2.52)
do o o’
where z;, = Yo 7H  These equations have no explicit solutions. Therefore,
(o2

instead of maximum likelihood estimation method, Tiku’s modified maximum
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likelihood estimation method is used. Let t =E(z; ). Taylor series expansion

yields the equation z;) = 2t —t;”z, . The likelihood functions are

dint _dink _n_ k=D t7,y-0
du du o o =

and

dinL _dinL"  nk 1

——+=>17,=0. 2.53
do do c o< (2.53)
The MML equations are solutions of dint =0 and dinl =0and they are
du do
found as
A=K-Dé and 6= By,
i=1
where,
25V n
K="=— D:E(Zth——n ), B = L=(n/m)o =7
m m- 5 k-1 n[k—(l/m)Zti |

m :Zn:5i , 6, =t7. Note that, iﬂi =0.
i=1

i=1

As stated by Bian and Tiku (1997), MML estimators are linear functions
of order statistics. Therefore, their variance-covariance matrix can be obtained
from the expected values of order statistics which are available in Gupta (1960),
Pearson and Hartley(1972) and Prescott (1974).
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Since (1/n){dInL/du)—(dInL" /du)j converges to zero as n goes to infinity

because Iim(ljz:ti‘1 =ije‘zzk‘2dz=ﬁ, the following results are true
) _

n—o\ N /%

(Bian and Tiku ,1997):

Lemmal: d Ln L m(k2—1) (K —-Do — ) which shows that the MML estimator
O

Y7

of xis MVB estimator (asymptotically) when o is known.

dinl’ _ nk

Lemma2. >
(e}

[%Z(y(i) —,u)—a} which shows that MML estimator
i=1

of o is MVB estimator asymptotically when x is known.

Moreover, The asymptotic variance-covariance matrix of & and & is given by

vV ="’

where
. m(k-1) n
" (,0) { =v }a 254
n nk
Remark: Since the joint density of {d(ljnL ’d(ljnL} is bivariate normal with
7 (o

mean vector (,u, O') and variance covariance matrix (2.54) , asymptotically, we

can write

1

20°

f,(f1,6)oc o exp(— [k =1)(22 - 1)? + 2n(fr — w)(6 — &) + k(6 — O')ZD.

(2.55)
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Remark: Let &= u+ko. The asymptotic distribution of 2 and &= a+ké& is

bivariate normal with mean vector (u,&) and variance-covariance matrix

Almk-1) 0
0 k/n

}02 where A =[1—n/mk(k —1)]". Therefore, we can write the

density function of (,[1, 5) as

1

2
(o}

i E)oe o e - 2 limtc -~ nGi— 0 + k0 - 7]

(2.56)

Note that the joint density of ([1 &) and (,ué) can be written respectively

as
f.(4,6)=g,(2r1 6)h,(6)
and
ol &)= g, (a0, (€) (2.57)
where
gl(m&)ocexp{i; [(ﬂ—u)+kp2(&—a)2]}
and

g, (&) exp{_ahz (ﬂ—ﬂ)z}; (2.58)
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hl(&) and h, (f) are approximated by a chi-square distributions by using three-

moment chi-square approximation as (Tiku 1996a,b)

h(6) o o™ exp- k(1 - p?)6 /o5
and

hy(&) oc & exp(-né /)it (259)
where,

p =—-[nl{mk(k —=1)}]'* is the correlation coefficient between 4 and 6. h, and
h, are provided by Vaughan(1992) as variance adjusting factors that approximate

sampling distributions much closer to normal. They can be expressed as
h, =m(k—Di-1/nk(@-p>)f
and
h, =[mk —1) —n/kJi-1/nk@- p>)f. (2.60)

Considering the functional forms of f,(,&) and fz(,&,cf) given by (2.57) the

likelihood functions L,(x, o) and L,(u, &) can be approximated as

2y 2
Ly (,U, O') oc Jf(nk(l’pz)“) exp {M} y
o

o0 |~ Dufli- )+ ko6 -oF ]

262

and
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It has been shown by Tan(1985) that (2.61) are close approximations to the
corresponding likelihood functions so that HPD estimators can be obtained by
using them.

2.2.1.2. Prior Distributions:

In order to find the HPD estimators, robust priors for 4 and & are

assumed as an independent t and inverse gamma distribution:

p(u) oc p(1) p(E) (2.62)
where,

pu) o [t (= aip Y1 5,52 ] "
and

P(&) o &0 exp(—Npy /&) (2.63)
2.2.1.3. Posterior Distributions:

The posterior distribution of # and & can be found by combining the

prior distribution with sample information as

ple 2 [y)or p(p(©)1, (4.8) (2.64)
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and

. Q012
f(ﬂny) (o n)EXp[ (noffoJrnf /5[1+/U ,Uo /50 OT

exp|-h, (i1— uf 1262 (2.65)
2.2.1.4. HPD Estimators:

It can be seen from (2.65) that # and & are posteriorly independent. The

marginal posterior density of £ is the scaled gamma given by
F(E [y)oc & expl- (e, +né)r ] (2.66)

which is inversegamma(no+n—1,n0§0+n$) .The HPD estimator of ¢& is

obtained from (2.66) as

Nogo + N5

n, +n

Soays =E(5 1Y) = (2.67)
Comment: As is seen from (2.67), Bayesian estimator of £ is a convex
combination of the prior location &;and MML estimator £ Bayes estimator will

be close to its prior value or sample estimate depending on the weights of n, and

n (Bian and Tiku, 1997).

The marginal posterior density of x is poly t density with t factor and

normal factor that represents prior information and sampling information jointly:

(ﬂ_,uo)z o —h2 ~\2
Flaly)oc| 1+ exp[ (e — f2) } (2.68)

5,8 267

In order to find the HPD estimator of 4, two cases need to be considered.
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Casel: If g, is infinite, then the prior of x reduces to a normal density and the

posterior will be normal density as

h,
267

P(u 1Y) 0P (= (1= (= 2 (= 7). (2.69)

After some algebra, the posterior density (2.69) reduces to a normal density with

(ﬂBayes ' Uéayes ) as

-2 A-2 A
. _ Sy My +hGT
E(:U | y) - /uBayes - 362 + h2(3'72

var(u|y) = 62, = (8% +h,67) . (2.70)

Comment: Similar to the symmetric family case, we can express the Bayes

estimator of u as the weighted average of prior and sample mean as
Llaages = Wity +(L—W)a where w=s;? /(5% +h,62). From this weighted form it
is seen that if s, =0, Bayes estimator of x will be equal to the prior value, as

expected. If h, tends to infinity then the weight w becomes zero and Bayes
estimator of x converges to 4. Moreover, HPD estimator of 4 become robust

to outliers because of the weights depend on the variances.

Case2: When ¢, is finite, the posterior density of x will be a poly t density

which can be expressed as

(- " h, "
p(uly) e 1+T exp (- 252 (ﬂ—ﬂ) )- (2.71)
0~0

47



In order to solve this poly t density we obtain the modal equation by taking

derivative of log posterior density of x and find

(50 + 1)(:” —Hy )&2 +h, (ﬂ - [1)[5055 + (/u — My )2 ] =0; (2.72)

flgayes 18 the solution of the modal equation. Repeating the same mathematical

procedures, as in the symmetric family case, we consider two cases for the HPD

estimator of .

Casel: /i, IS close to g, we can write HPD estimator of x as

352(1+ 51},% +h,672 01
[, = 0 . (2.73)

’ 1
S,° (1 + ] +h,67
50

Case2: g, Is close to i, then HPD estimator of s,

~o S(;z/uo + {[50 + (A,u)z_]/(é‘o +1)}h2&72[1
BT 6o + ()2 [(50 +1) jh,672 (2.74)

where Au = M .

So

2.2.1.5. Comparing Efficiencies of MML and Bayes Estimators: Simulation

Results

Simulated means, variances and relative efficiencies of HPD and MML
estimators are given by Table 2.11- Table 2.14 below while the underlying

distribution is (2.50). Results are obtained from 10,000 simulations in which we
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assume k=3, x=0 and hyperparameters y,=0 and J,=6 with prior

distribution given by (2.63).

Note that Table 2.11 and Table 2.12 show the results while zg, . is close
to u,. Table 2.13 and Table 2.14 are obtained under the assumption that /g, . is

close to /4, - The inference obtained from these tables are not different than that
of symmetric distributions. In case of skewed distributions, Bayesian estimator is

again a weighted combination of prior mean g, and MML estimator /,,, Where

the weights are adjusted by variances. Like in the symmetric case, it is expected

here also that as o, increases, relative efficiencies should increase, which is

shown in Table 2.11. Moreover, if o increases, relative efficiencies should
decrease and this result is shown in Table 2.12. Similar arguments can also be
stated for Table 2.13 and Table 2.14 in which relative efficiencies are slightly
larger as we expect.

Comment: Note that /i, ., has a little bias especially for small n values. In that

cases, mean squared error values would be compared instead of variances.

However, since /i, is a convex combination of 4, and /1, with weights w

and (1-w), respectively, mean square error of /i, .. will be smaller than that of

i Since (1—w) <1. Therefore, any bias correction will yield relative

efficiencies which are favorable to /i, -
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Table 2.11 Simulated means, variances and RE values for Gamma distribution

with 6, =6, 4 =0, 14y =0,0 =1, when fg, . is close to

/’lMML V(/’IMML) /’lHPD V(ILIHPD) RE
N Oy =3 0.0686 0.8257 0.1159 0.6056 0.7333
=5
0.0650 0.8455 0.0982 0.6935 0.8203
O, =14
N Oy =3 0.0156 0.5248 0.0452 0.4094 0.7800
=7
0.0171 0.5255 0.0353 0.4546 0.8650
O, =4
N Oy =3 -0.0161 0.3309 -0.0165 0.2833 0.8561
=10
-0.0120 0.3384 -0.0033 0.3095 0.9144
O, =14
0 Oy =3 -0.0426 0.1990 -0.0360 0.1821 0.9153
=15
-0.0374 0.1996 -0.0337 0.1896 0.9501
O, =14
=20 Oy =3 -0.0401 0.1390 -0.0366 0.1311 0.9435
-0.0473 0.1347 -0.0452 0.1303 0.9672
o, =14

Table 2.12 Simulated means, variances and RE values for Gamma distribution

with o, =6, £ =0, 4, =0,0, =3, when fig, . is close to

I V (£l ) Moo V(L) RE

n O=1.0 0.0706 0.8358 0.1186 0.6165 0.7375
=5

oO=1.5 0.1023 1.9027 0.2183 1.0832 0.5693

n O=1.0 0.0551 0.5254 0.0357 0.4104 0.7811
=7

O=1.5 0.0125 1.2056 0.0904 0.7502 0.6222

n=10 O=1.0 -0.0194 0.3397 -0.0042 0.2906 0.8554

O =1.5 -0.0326 0.7556 0.0099 0.5512 0.7294

n=1s oO=1.0 -0.0389 0.1921 -0.0325 0.1760 0.9159

O=1.5 -0.0620 0.4444 -0.0412 0.3667 0.8253

=20 O=1.0 -0.0408 0.1376 -0.0373 0.1298 0.9433

oO=1.5 -0.0555 0.3065 -0.0449 0.2699 0.8804
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Table 2.13 Simulated means, variances and RE values for Gamma distribution

with 6, =6, 4 =0, 1y =0,0 =1, when fg, . is close to i,

/’lMML V(/’IMML) ILIHPD V(ll’lHPD) RE
N Oy =3 0.0846 0.8452 0.1295 0.6307 0.7462
=5
0.0537 0.8503 0.0872 0.6987 0.8217
o, =4
N Oy =3 0.0099 0.5412 0.0401 0.4268 0.7886
=7
0.0170 0.5432 0.0357 0.4704 0.8660
O, =4
N Oy =3 -0.0214 0.3325 -0.0066 0.2848 0.8563
=10
-0.0195 0.3367 -0.0105 0.3081 0.9151
o, =4
0 Oy =3 -0.0369 0.1980 -0.0306 0.1816 0.9169
=15
-0.0379 0.2007 -0.0341 0.1909 0.9513
O, =4
=20 Oy =3 -0.0384 0.1336 -0.0351 0.1261 0.9440
-0.0360 0.1379 -0.0340 0.1335 0.9676
o, =4

Table 2.14 Simulated means, variances and RE values for Gamma distribution

with, =6, =0, 4, =0,0, =3, When fig, . is close to [,

I |V () Moo V(i) RE

n O=1.0 0.0713 0.8187 0.1163 0.6090 0.7438
=5

O=1.5 0.1230 1.8887 0.2282 1.1200 0.5930

n O=1.0 0.0048 0.5411 0.0358 0.4235 0.7827
=7

O=1.5 -0.0051 1.1972 0.0738 0.7584 0.6335

n=10 O=1.0 -0.0180 0.3290 -0.0036 0.2828 0.8597

O=1.5 -0.0373 0.7497 0.00406 0.5494 0.7329

n=1s O=1.0 -0.03506 0.1947 -0.0293 0.1785 0.9164

O=1.5 -0.0559 0.4413 -0.0365 0.3670 0.8315

n =20 O=1.0 -0.0448 0.1406 -0.0411 0.1327 0.9439

O=1.5 -0.0702 0.3116 -0.0587 0.2749 0.8824
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2.2.2. Generalized Logistic Distribution:

2.2.2.1. MML Estimators:

Consider the family of generalized logistic distributions as

f(y):g —0< Y <00, (2.75)

onf-222)]

If b<1, f(y) is negatively skewed; if b>1, f(y) is positively skewed; if b=1,

f (y) is symmetric. We will consider the cases where b =1.

For a random sample v,,y,,...,y, from (2.75), the derivatives of the

likelihood function L are,

dinL n (b+1)
=—— z)=0
P— iZl)g( )
and
dink _ n ey O g@)=0 (2.76)
do o o5 o ‘o

where z=(y—u)/o and g(z)=e*/(L+e*)=1/(1+e*). These equations do
not have explicit solutions, therefore MML estimators will be obtained by first

expressing likelihood functions in terms of order statistics z;, and then linearizing

g(z(i)) as g(z(i)): a; — Bz, This yields,
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“ e
and
el
B = m (2.77)

where t, =E(z(i)). Balakrishnan and Leung (1988) give values of t; for
n<15. For other cases, the values of t;, can be obtained as t ——In( g )

and g, =i/(n+1) (Tiku and Akkaya, 2004).

The modified likelihood equations are expressed as

dinL _dinL’" _n (b+)

= — —£72.)=0
d/,l d/J o é(a ﬂl (|))
M
and
dinL _diInL n 1 CE
= =——+— 7. (a. —B2,.)=0
do do o O'; o ; (|)(a| IBI (|))

:is[(rla2 —BO'—C)—M(K—,u)(K+D0'—,u)]:O
o

(2.79)

where M =(b+1)m, K:(Z,Biy(i)}/m, m=> 8, D=YA/m
i=1 i=1 i=1
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A=b+1)"—a;, B= (b+1)zn:Ai (y;—K) and C=(b +1)(iﬁi Yy —mKZJ :

i=1

MML estimators given below are the solutions of (2.78) and (2.79),

4=K+Dé and &={B+1/i82 +4nC i}lz,/%n(n—l)}. (2.80)

Tiku and Akkaya (2004) gives the asymptotic variance- covariance matrix of 4

and & as
I (u,0) = sz
O
b bly (b+1) -y (2)}
(b+2) (b+2)
bly(0+0 -y @} | by’ G+ +y'@]+ [ b+D-p@F]
(b+2) (b+2)

(2.81)

where w(x)=T"(x)/T'(x) is the psi function and w'(x) is the derivative of

w (X) with respect to x. The variances are calculated from (2.81) as

0 b+2 bl (b+1) —w(2)f
var(i) ="=, [1+b+2+b[y/’(b+1)+://’(2)]} (2.82)

N0 b+2
var(@) =" {b+2+b[y/’(b+1)+w’(2)]} (2.83)

and
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» a0 (042w b+ -y(2)]
V) = = 24 bl (b1 D)+ )] (2.84)

2.2.2.2. Prior and Posterior Distributions:

We will find the posterior density of x and & where &= +ké and k is

the constant that makes 2 and & uncorraleted. Therefore we can specify k as

k = —var(i)/cov(i, &) . Thus,

_b+2+bly'(b+) +y'(Q)]+blw(b+1) -y (2

k (2.85)
bly (b +1) ~y/(2)]
Variance-covariance matrix of (&, &) is,
A k, 0|o?
var(i, &) =+ T |2 (2.86)
0 k,|n
where var(é) = var( ) +Var(&)k? + 2k cov( i1, &) which simplifies to
2 ’ ’ 2
var(Z)= & b+2[1+ [b2+ 2,+ blw'(b +,1)+:// @] 2}
n b |7 bb+2)+by (b +1) +y' @y (b +1) - w(2)]
(2.87)
Remark: Since (d;n L , dolln L] is distributed as bivariate normal, we can say
u o

that 4 and .§ are distributed as bivariate normal with mean (,u,f) and variance-

covariance matrix (2.86) Therefore, the joint distribution of (,ué) is written as
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f(/:l, é?) oc 0—2n eXp[ 12 {(l&ﬂ)z N (é—f) }] (288)

We can obtain marginal distributions of £ and 5 from (2.88) as

f()oco™ exp{— 2k1 z(ﬂ—ﬂ)z} (2.89)
O
and
£ e _ 1 £ 2
N o ep( E-¢h (2.90)

since 2 and & are independent.

Remark: In order to have more accurate results, chi-square approximation for
& is applied. As a result, 2né/¢& is distributed as chi-square with degree of
freedom 2n. The approximation of & yields an infinite degree of freedom so the

distribution of sz can be considered as normal which is given above.

Therefore, we can write the joint distribution of 2 and & as

fla,)e e ep(-nérefir exp{— 2‘;12 (ﬂ—u)z}. (2.91)

Bayes theorem is used to obtain posterior densities and to do that the priors for u

and & are assumed as

p(u) oc [:|_+(ﬂ_ﬂo)2/5055}(50+1)/2

56



and
p(&)oc&™ exp(—nyé, /&) (2.92)

where p(u, & ) o« p(r) p(&) . Combining the likelihood (2.91) and priors (2.92),

the posterior density of x and & is obtained:

(&1 y)oc £ el (ngéy +n8) o (u— sV 18,5 ] "

exp|-k,(i1— u) 1262. (2.93)

Comment: It is seen from f(u,&|y) that & and & are posteriorly independent.

The marginal posterior density of £*is the scaled gamma

F(&]y) o & expl- (1, +né)r | (2.94)

and the marginal posterior density of x is poly t density with t factor and normal

factor that represents prior information and sampling information together,

(/u _ ﬂo )2 —(6+1) /2 B kl N
Fluly)oe| 1202 exp{ (- A1) } (2.95)
050 o

2.2.2.3. HPD Estimators:

The HPD estimator of & is &g = E(£]Y)= (noffo + ngg)/(n0 +n). As in
the gamma distribution, (fBayes is a combination of the prior location £,and MML
estimator £. In this situation we may emphasize that if n, is large, the posterior

estimate is close to the prior location &, but if n is large it will be close to MML

estimator.
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In order to find the HPD estimator of 4, two cases need to be considered.

Casel: If 9, is infinite, than the prior of x reduces to a normal density and the

posterior is

1

p(u|y) oc em(—g(ﬂ—ﬂo)z exp (-

2“}2 (u—0)?). (2.96)
O

2 A_D A
Sy Mo +K G
s;° +k,67°

It is seen from (2.96) that p(«|y) is normal (yb,aj) where g, =

_ ~_2 1
and o} = (502 +k,6 2) . Therefore,

2 A2 A
_ So Ho +k 6 f1

2.97
;2 + k&7 (297)

E(,u| Y): L,

Case2: When 0, is finite, then the posterior density reduces to a a poly t density

as

(ﬂ_ﬂo)z e K, A2y .
p(ue]y) o< 1+T exp(— 252 (#—,U) ); (2.98)
0~0

4, is the solution of the modal equation,

(50 +1)(y —Hy )6-2 + kl(/u _,[‘)[5035 + (/J —Hy )2 J: 0. (2.99)

When the posterior density of x is governed by the prior density, then the HPD

estimator of y is
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s, > (1+ 51]#0 +K, 672 [

0

My = 1
S° [l+ j +k, 67
0,

0

iy

(2.100)

When the posterior density of uis governed by the sampling density, then the
HPD estimator of x is,

. So% Ly + {Jﬁo + (Aﬂ)z_]/(5o +1) }kl&fzfl (2.101)
Hy =—""7 2 ~-2 '
so? + 10 + (A2 /(S +1) [k,
where Ay:(ﬁ_%).

Oy

Comment: Note that the posterior estimates of  is a weighted combination of
U, and g with weights proportional to variances. The form of Bayesian estimator
of u issimilarto (2.17), (2.46), (2.49), (2.70), (2.73) and (2.74). Consequently,

similar arguments about the efficiencies can be made under the assumption of the
generalized logistic distribution also. This is made possible by an application of
modified maximum likelihood estimation. Maximum likelihood estimation would

get us no where because computations are too involved.

2.2.2.4. Comparing Efficiencies of MML and Bayes Estimators:Simulations

Results

In case of generalized logistic family we consider relative efficiencies of
HPD and MML estimators for b=0.5, 1, 4, 6 and 8 with different sample sizes.
The parameters of prior distribution of x specified by (2.92) is taken as

U, =0,5,=2 and s, =25 while observations are assumed to have the

distribution (2.75) with =0, o =1 and, alternatively, o =1.5. The results of
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10,000 simulations with respect to different b values are given in Table 2.15 -
Table 2.34 below. According to these results we can say that Bayesian estimator
is generally better when b=0.5. Both MML and HPD estimators are unbiased for
large n but they have a little bias especially for n=5. In that cases any bias
correction would make HPD estimators more efficient as they are now and does
not make any difference in the interpretation. Therefore, we leave these values as

they are.

Like previous sections, the situations of HPD estimator being close to prior
mean or HPD estimator being close to MML estimator are considered separately.
In both cases, very similar results are obtained which are in favor of Bayesian

estimator. Note that, HPD is a little less efficient when jig, . is close to fi,, , as

ecpected. One can see the results of simulations of casel from Table 2.15 to Table
2.24 and case 2 from Table 2.25 to Table 2.34 below.

Generally, all of the simulated values tell us that HPD estimator is
negatively affected with the increasing prior dispersion. As prior dispersion
increases, prior distribution converges to non-informative prior and therefore HPD
estimator converges to MML estimator. On the other hand, if the value of prior
dispersion decreases, Bayesian estimator will converge to prior mean. From
simulated efficiencies it can also be inferred that HPD estimator looses efficiency

with increasing o,. However, if we look at relative efficiencies, with different o

values in order to see the impact of the change in o, we see that as it increases,
weight of prior mean increases and MML estimator looses efficiency. These

results are also the same as the statements we made in previous sections.

Moreover, we can state that HPD estimators are preferable for small
sample sizes. When number of observations increases, prior distribution is
dominated by likelihood function in which case the MML estimators are more

advantegeous to use when sample size is large.
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Table 2.15 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, = 0,5, =6,s, =3, £=0,b=0.5 when /i, is close to

b=o.s Hume V(IUMML) Hipp V(IUHPD) RE

n oO=1 -0.0940 1.1234 -0.0960 0.8068 .7182
=5

o =1 -0.1645 2.5673 -0.1586 1.4063 .5478

n 0 o =1 -0.0433 0.5383 -0.0448 0.4603 .8551
=1

O =1 -0.0416 1.2146 -0.0480 0.8750 .7204

n=1s o =1 -0.0169 0.3429 -0.0182 0.3105 .9055

O =1 -0.0294 0.8165 -0.0321 0.6595 .8076

n o =1 -0.0114 0.2595 -0.0121 0.2413 .9299
=20

o =1 -0.0271 0.5862 -0.0281 0.5000 .8530

Table 2.16 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, = 0,5, =6,s, =3, £ =0,b =1, when /i, is close to x,

b=1 Hume V(/”MML) Hipp V(IUHPD) RE
n oO=1 -0.0087 0.6363 -0.0085 0.5225 .8212
=5
o =1 0.0246 1.4195 0.0297 0.9483 .6680
n=1o o =1 0.0026 0.3050 0.0027 0.2780 .9115
O =1 -0.0002 0.6944 0.0001 0.5703 .8214
n=1s O =1 0.0051 0.2042 0.0048 0.1927 .9437
o =1 -0.0062 0.4534 -0.0057 0.3988 .8796
n=20 o =1 0.0042 0.1594 0.0041 0.1532 .9611
o =1 -0.0050 0.3379 -0.0046 0.3071 .9090
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Table 2.17 Simulated means, variances and RE values for Generalized Logistic

distribution with x4, = 0,5, =6,s, =3, #=0,b=4, when /i, is close to x,

b=4 Hume \ (/uMML) Hipp \ (lLlHPD) RE

nes oO=1 0.1519 0.4965 0.1604 0.4342 .8745

O =1 0.2155 1.1162 0.2392 0.8480 .7597

n=10 o =1 0.0691 0.2351 0.0714 0.2202 .9366

o =1 0.1028 0.5281 0.1095 0.4587 .8686

n o =1 0.0389 0.1504 0.0399 0.1442 .9588
=15

o =1 0.0584 0.3595 0.0621 0.3273 .9105

n o =1 0.0342 0.1136 0.0347 0.1101 .9692
=20

O =1 0.0405 0.2584 0.0424 0.2414 .9341

Table 2.18 Simulated means, variances and RE values for Generalized Logistic

distribution with z4, = 0,5, =6,s, =3, 4 =0,b =6, when /g, is close to

b=¢ Hume \ (/uMML) Hipp \ (lLlHPD) RE

nes o =1 0.1905 0.5994 0.2046 0.5109 .8524

O =1 0.2829 1.3741 0.3217 0.9987 .7268

n=1o o =1 0.0843 0.2878 0.0882 0.2664 .9256

o =1 0.1331 10.6188 0.1428 0.5265 .8508

n O =1 0.05064 0.1846 0.0580 0.1756 .9512
=15

O =1 0.0835 0.4109 0.0886 0.3685 .8967

n o =1 0.0420 0.1356 0.0429 0.1307 .9639
=20

o=1 0.0626 0.3106 0.0656 0.2865 L9222
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Table 2.19 Simulated means, variances and RE values for Generalized Logistic

distribution with x4, =0,5, =6,s, =3, £ =0,b =8, when /g, is close to

b=s Hume \ (/uMML) Hipp \ (lLlHPD) RE

nes oO=1 0.2261 0.7304 0.2458 0.6005 .8222

O =1 0.3209 1.6426 0.3693 1.1477 .6987

n=10 o =1 0.0927 0.3372 0.0981 0.3081 .9137

o =1 0.1436 0.7526 0.1584 0.6230 .8278

n o =1 0.0671 0.2163 0.0693 0.2043 .9445
=15

o =1 0.0890 0.5032 0.0967 0.4430 .8804

n o =1 0.0534 0.1611 0.05406 0.1544 .9584
=20

O =1 0.0737 0.3567 0.0774 0.3251 .9116

Table 2.20 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6, 4=0,0=1,b=0.5, when /i, is close to

b=o0.5 Hum \ (IUMML) Hipp \% (/JHPD) RE
n SO =2. -0.0882 1.1225 -0.0909 0.6084 .5420
=5
-0.0873 1.1127 -0.0897 0.7160 .6435
Sop =2.
n So =2. -0.0047 0.5383 -0.0460 0.3871 L7191
=10
-0.0344 0.5340 -0.0363 0.4281 .8018
Sop =2.
neqs | 7% -0.0309 | 0.3572 | -0.0313 | 0.2893 .8100
-0.0194 0.3525 -0.0207 0.3060 .8682
Sy =2.
n=o20 So =2. -0.0100 0.2593 -0.0113 0.2212 .8531
S —» -0.0164 0.2678 -0.0169 0.2413 .9010
0 - -
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Table 2.21 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6, 4u=0,0 =1,b =1, when /i, is close to x,

b=1 Hume \ (/uMML) Hipp \ (lLlHPD) RE
n SO =2. -0.0034 0.6365 0.0017 0.4276 .6719
=5
0.0162 0.6404 0.0131 0.4878 .7616
Sy =2.
n So =2. 0.0017 0.2981 0.0016 0.2437 .8173
=10
-0.0036 0.3023 -0.0031 0.2650 .8768
Sop =2.
0 Sy =2. 0.0080 0.2059 0.0075 0.1812 .8798
=15
0.0016 0.2018 0.0018 0.1857 .9203
Sop =2.
n So =2. 0.0029 0.1533 0.0028 0.1394 .9094
=20
S —» 0.0068 0.1554 0.0065 0.1462 .9407
0 - .

Table 2.22 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,5, =6, 4=0,0 =1,b =4, when /[, . is close to g,

b=4 Hyume \ (/UMML) Hipp \% (IUHPD) RE
N So =2. 0.1346 0.5054 0.1535 0.3798 .7516
=5
0.1482 0.5050 0.1606 0.4196 .83009
Sy =2.
N Sy =2. 0.0680 0.2342 0.0726 0.2032 .8677
=10
0.0694 0.2362 0.0726 0.2154 .9118
Sy =2.
N Sy =2. 0.0382 0.1569 0.0407 0.1430 L9115
=15
0.0452 0.1522 0.0465 0.1433 .9416
Sy =2.
=20 Sy =2. 0.0368 0.1139 0.0378 0.1064 .9342
s = 0.0244 0.1133 0.0253 0.1084 .9564
0 - -
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Table 2.23 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6, 4u=0,0 =1,b =6, when f, . is close to i,

b=6 Hume \ (/uMML) Hipp \ (lLlHPD) RE
n SO =2. 0.1932 0.5986 0.2162 0.4362 .7288
=5
0.1815 0.6249 0.2019 0.4989 .7984
Sy =2.
n So =2. 0.0928 0.2859 0.0995 0.2432 .8507
=10
0.0929 0.2802 0.0977 0.2514 .8974
Sop =2.
0 Sy =2. 0.0585 0.1835 0.0616 0.1648 .8979
=15
0.0561 0.1864 0.0584 0.1736 .9317
Sop =2.
n So =2. 0.0409 0.1405 0.0430 0.1295 .9212
=20
S —» 0.0470 0.1383 0.0481 0.1314 .9495
0 - .

Table 2.24 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6, 4=0,0=1,b =8, when i, .. is close to

b=s Hme \Y (/UMML) Hipp \ (IUHPD) RE
n SO =2. 0.1959 0.7224 0.2302 0.5045 .6984
=5
0.2065 0.7397 0.2326 0.5712 L7721
Sy =2.
0 S, =2. 0.1046 0.3412 0.1143 0.2816 .8252
=10
0.1018 0.3317 0.1084 0.2925 .8819
Sg =2.
0 Sy =2. 0.0640 0.2116 0.0684 0.1867 .8825
=15
0.0645 0.2174 0.0676 0.2002 .9205
Sop =2.
n=-0 So =2. 0.0488 0.1611 0.0514 0.1468 .9109
S —» 0.0463 0.1592 0.0481 0.1499 .9414
0 - -
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Table 2.25 Simulated means, variances and RE values for Generalized Logistic

distribution with x4, = 0,5, =6,s, =3, £ =0,b=0.5,when jg, . is close to i,

b=o.5 Hume \ (/uMML) Hipp \ (lLlHPD) RE
nes oO=1 -0.0932 1.1132 -0.0957 0.8213 .7378
O =1 -0.1332 2.5805 -0.1404 1.4813 .5756
n=10 o =1 -0.0230 0.5361 -0.0257 0.4618 .8614
o =1 -0.545 1.2093 -0.0585 0.8914 L7371
n=1s o =1 -0.0270 0.3567 -0.0278 0.3232 .9060
o =1 -0.0153 0.7792 -0.0194 0.6356 .8157
n=20 o =1 -0.0138 0.2616 -0.0143 0.2435 .9308
O =1 -0.0288 0.5973 -0.0299 0.5123 .8577

Table 2.26 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6,5, =3, 4 =0,b =1, when /g, . is close to fi,,

b=1 Hume \Y (/UMML) Hipp \ (/'lHPD) RE
n=-s o =1 0.0037 0.6302 0.0031 0.5210 .8267
O =1 -0.0070 1.4016 -0.0055 0.9593 .6844
n=10 o =1 -0.0112 0.3096 -0.0109 0.2828 .9135
O =1 -0.0049 0.6943 -0.0041 0.5735 .8259
n=1s o =1 -0.00064 0.2040 -0.0062 0.1927 .944¢6
o =1 -0.0015 0.4557 -0.0013 0.4015 .8811
n =20 o =1 0.0047 0.1506 0.0046 0.1443 .9588
o =1 0.00098 0.3431 0.0094 0.3128 .9117
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Table 2.27 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6,s, =3, u=0,b =4, when /i, is close to fi,,

b=4 Hume \ (/uMML) Hipp \ (lLlHPD) RE

n oO=1 0.1447 0.4944 0.1539 0.4338 .8773
=5

O =1 0.2112 1.1408 0.2355 0.8720 .7644

n o =1 0.0723 0.2345 0.0744 0.2198 .9374
=10

o =1 0.0708 0.5265 0.0795 0.4582 .8703

n o =1 0.0367 0.1534 0.0378 0.1473 .9596
=15

o =1 0.0686 0.3459 0.0716 0.3158 .9131

n o =1 0.0310 0.1133 0.0316 0.1099 .9698
=20

O =1 0.0501 0.2614 0.0520 0.2443 .9345

Table 2.28 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6,5, =3, 4 =0,b =6, when /i, is close to fi,,

b=¢ Hume \ (/uMML) Hipp \ (lLlHPD) RE

nes o =1 0.1812 0.5999 0.1958 0.5120 .8535

O =1 0.2748 1.4024 0.3119 1.0363 .7389

n=1o o =1 0.0824 0.2848 0.0863 0.2637 .9258

o =1 0.1426 0.6390 0.1519 0.5464 .8551

n O =1 0.0516 0.1817 0.0533 0.1729 .9518
=15

O =1 0.0841 0.4122 0.0890 0.3705 .8988

n o =1 0.0454 0.1351 0.0462 0.1303 .9647
=20

o=1 0.0547 0.3098 0.0579 0.2861 .9233
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Table 2.29 Simulated means, variances and RE values for Generalized Logistic

distribution with 4, = 0,6, =6,s, =3, £=0,b =8, when /i, . is close to fi,,

b=s Hume \ (/uMML) Hipp \ (lLlHPD) RE

nes oO=1 0.2238 0.7209 0.2418 0.6004 .8329

O =1 0.2981 1.7155 0.3516 1.2106 .7057

n=10 o =1 0.0908 0.3357 0.0962 0.3074 .9157

o =1 0.1618 0.7576 0.1752 0.6328 .8352

n o =1 0.0064 0.2154 0.0685 0.2035 .9448
=15

o =1 0.1012 0.4821 0.1073 0.4269 .8855

n o =1 0.0467 0.1587 0.0479 0.1522 .9588
=20

O =1 0.0789 0.3558 0.0822 0.3252 .9139

Table 2.30 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,5, =6, 4=0,0 =1,b=0.5, when j, . is close to i,

b=o0.5 v \% (/UMML) Hipp \% (/UHPD) RE
n Sp =2. -0.0710 1.1025 -0.0799 0.6306 .5719
=5
-0.0879 1.1390 -0.0931 0.7539 .6619
Sy =2.
0 Sy =2. -0.0195 0.5526 -0.0250 0.4053 .7335
=10
-0.0285 0.5402 -0.0322 0.4383 .8113
Sy =2.
0 Sy =2. -0.0246 0.3532 -0.0258 0.2877 .8145
=15
-0.0127 0.3550 -0.0145 0.3094 L8717
Sy =2.
n=-0 Sp =2. -0.0154 0.2596 -0.0164 0.2225 .8572
S —» -0.0180 0.2645 -0.0186 0.2388 .9029
O - .
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Table 2.31 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6, u=0,0 =1,b =1, when /i, is close to fi,,

b=1 Hume \ (/uMML) Hipp \ (lLlHPD) RE

n=s SO =2. -0.0052 0.6273 -0.0047 0.4311 .6873
-0.0035 0.6285 -0.0031 0.4080 .7651

Sy =2.
n So =2. -0.0077 0.3119 -0.072 0.2577 .8263

=10

0.0054 0.3177 0.0051 0.2797 .8806

Sop =2.
Nis Sy =2. -0.0005 0.1976 -0.0006 0.1745 .8829
0.0045 0.2024 0.0044 0.1865 .9216

Sop =2.
N =20 So =2. -0.0022 0.1513 -0.0019 0.1381 .9125
S —» -0.0010 0.1517 -0.0011 0.1429 .9421

0 - .

Table 2.32 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6, 4=0,0=1b=4,when fg, . is close to i,

b=4 Hme \Y (/UMML) Hipp \ (IUHPD) RE

n=-s SO =2. 0.1422 0.5018 0.1583 0.3873 .7718
0.1441 0.4937 0.1555 0.4111 .8327

Sy =2.
n=1o0 So =2. 0.0642 0.2350 0.0687 0.2045 .8704
0.0686 0.2312 0.0716 0.2111 .9129

Sg =2.
Nes So =2. 0.0368 0.1540 0.0391 0.1407 .9132
0.0395 0.1542 0.0410 0.1453 .9424

Sop =2.
n=o20 So =2. 0.0317 0.1140 0.0329 0.1065 .9346
S —» 0.0297 0.1153 0.0305 0.1104 .9570

0 - -
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Table 2.33 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6, u=0,0=1,b =6, when fg, . is close to i,

b=6 Hume \ (/uMML) Hipp \ (lLlHPD) RE

n=s SO =2. 0.1876 0.6158 0.2116 0.4581 . 7439
0.1754 0.5950 0.1936 0.4818 .8097

Sy =2.
n=1o So =2. 0.0928 0.2887 0.0995 0.2467 .8545
0.0821 0.2865 0.0873 0.2581 .9008

Sop =2.
Nis Sy =2. 0.0571 0.1823 0.0603 0.1641 .9002
0.0614 0.1817 0.0634 0.1698 .9343

Sop =2.
N =20 So =2. 0.0430 0.1352 0.0447 0.1249 .9240
S —» 0.0438 0.1375 0.0450 0.1307 .9503

0 - .

Table 2.34 Simulated means, variances and RE values for Generalized Logistic

distribution with 14, =0,6, =6, 4=0,0 =1,b =8, when f,. is close to i,

b=s Hm \ (/UMML) Hypop \% (IUHPD) RE

ne-s Sp =2. 0.2130 0.7156 0.2440 0.5053 .7061
0.2156 0.7184 0.2399 0.5613 .7813

Sp =2.
=10 Sp =2. 0.1045 0.3416 0.1142 0.2840 .8315
0.1045 0.3256 0.1107 0.2882 .8849

Sp =2.
Neis Sp =2. 0.0661 0.2177 0.0705 0.1927 .8849
0.0688 0.2124 0.0715 0.1960 .9225

Sp =2.
=20 Sp =2. 0.0500 0.1588 0.0523 0.1451 .9138
s = 0.0460 0.1612 0.0478 0.1519 .9417

0 - .
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CHAPTER 3

BAYESIAN ANALYSES OF SYMMETRIC and SKEWED FAMILIES
ONE WAY EXPERIMENTAL DESIGN

In this chapter, we are interested in developing Bayesian estimators for
one way Anova model by considering Student’s t and generalized logistic families
of distributions. We develop MML and Bayesian estimators of the main effects in
one-factor experimental design. As in the one sample case, robust priors are
asummed for unknown parameters and marginal posterior densities are derived by
combining them with the likelihood function. The resulting HPD estimators are a
convex combination of MML estimators and prior hyperparameters which are
demonstrated in the following sections. We reiterate, this was made possible by

applying the method of modified maximum likelihood estimation.

We start with Student’s t family which consists of long-tailed symmetric

distributions.

3.1. Student t family:

Consider a one way ANOVA model,

Vi =utyit+ei=L.,aj=1..,n (3.1)
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where random errors are assumed to have a scaled Student’s t distribution. Thus,

we can write the density function of y as

f(y)= L

il

ko?

j|:1+(y”_'u'):| , —o<Yy<oo, (3.2)

where g =p+y, (1<i<a), k=2p-3, B(,.) is the beta function and p>2.

E(y;) = (1<j<n) and Var(y;) = o”.
3.1.1. MML Estimators:

A type Il symmetric sample Y; ) <V, .y <-..< Vi from (3.2) is given

which yields the likelihood function

Lo Gfa(nfzr)ﬁ ﬁ(lJr %J [F (Zi,(r+1) )]r [1_ F(Zi,(n—r) )]r (33)

i=1l j=r+1

where z; S T
(o2
In order to find the estmators of x4 and o, the derivatives of log

likelihood function are obtained as

dinL  2p && r r
a oc Gizr;lg(zi,(j) )_Ehl(zi,(rﬂ)) + P M, (Zi0-r))

and
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dinL A 2p & r r
oL——+— Zi,(j)g(zi,(j) )_ pu Zi ey (Zi iny) + - Zi (-0 (Zi o)

do o ko i=r+1
(3.4)
Yihy — Hi Zi(; F(z)
where A=a(n-2r), z, === Q(Zi.m): R h(zi ;) = E(z o
o 14 i,(J) ( i,(j))
k

and h,(z,,.,) = )
2( |,(j)) 1—F(Zi’(j))

These equations do not have explicit solutions. Therefore, MML method is

used in estimating the parameters instead of ML estimation which is enormously

problematic. In order to do this, g(z ;). (z ;) and h,(z ;) are linerazied as

9z ) =2 a4y + Bz i) 28 bz and hy(z ) =& +bz -
Incorporating these linear approximations in the first derivatives of InL, the MML

estimators are obtained as (Tiku and Suresh, 1992, Section 6):

. 1 2 n—r i
= _{_p 2 BipYip + 10 [yi,(r+l) + yi,(n—r>]}’ i=1....a
m k j=r+l

and,
6=i(B+\/BZ+4AC) (3.5
where,

op o 2p 0
m = Tp Zﬁl +2rb, Bi :?p Z(iji'(j) +ra [yi,(n—r) + yi,(r+1)]

j=r+1 j=r+1
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2 n-r .
C = ?p Zﬁ] yi,(j)2 +rb [yiz,(r+l) + yiz,(n—r)]_ m,uiz )

j=r+1

Bzgsi,czgci,

e, -k,
Dot T Rraioe |

b =~ F(tyy Pty )+ T2y F 2 () @ =] F Q) I F (ta) [+ Dty

Incidentally, the MML estimator of 4 is 2 =(1/a)) & and 7, = 4, — .

i=1

Note that complete sample results can easily be obtained by taking r=0. Of

course, certain regularity conditions have to be satisfied as said earlier.

Remark: Tiku and Suresh (1992) and Vaughan(1992) indicate in their works that
for fixed g=r/n, these MML estimators are MVB estimators asymptotically.

Also, they are almost fully efficient for small sample sizes.

The asymptotic properties of MML estimators are the following:

(5 &
i) M is distributed as normal (0,1),

O

.. A% . . .
i) (Z is distributed as y*(a-a),
(e

iii) 4, and & are independently distributed.

2

According to these results, the joint density of 4 (1<i<a) and 6° is
oy A A > \(A-a)/2 , A a2
f(ﬂl,...,,ua,az)oc(a 2) (62)A212 1 5
A m ,
M (= (4~ 4 36
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3.1.2. Prior Distribution:

Robust prior distributions with known hyperparameters are assumed as

independent Student’s t and inverted gamma distribution which yields

5\ /241 1
p(az,ﬂl,...,ua)oc(a 2) exp(—Féosé)x

_(vig+1)
2

H(:HM . (3.7)

2
VioTio

Bian (1996) considers the situation when the joint prior density of s (1<i1<4a) is
a product of normal densities. His results immediately follow from ours as a

particular case by taking v,, equal to infinity for all i=1,...a. Bian also takes

r =0 in (3.3). Our results are much more general.
3.1.3. Posterior Distribution:

Combining the prior distribution (3.7) with the likelihood function (3.6),

the posterior distribution are obtained and given by (3.8) below:

2

f(u o O | y)oc (G‘Z)Aiafm exp(—%(éosg + A&z)jx

_(vig+1)

[1ee] -5 <M>J(1M} :

~2
26 VioOio

(3.8)

It is seen from (3.8) that the posterior density of s,...,, and o® are

independent. Marginal posterior density of o® is inverse gamma with
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: Sy +A—a 6,8; +ASG?
inverse — gamma( 5 , 5

) while marginal posterior of uis a

_(vip+D)
2

(4, — &4 F j[l + MJ

2
VioOio

m
polyt density f(z |Y) ocexp(— =
26

3.1.4 HPD Estimators:

The HPD estimator of o is the mode of inverse gamma density, which

can be expressed as
6% = (5,5% + AG?)I(5, + A) (3.9)

As in previous cases, it is a weighted average of prior information and MML

estimator of o2.

Since the marginal posterior density of «is a poly t density two different

cases are considered to find HPD estimator of .

Casel: If v,, is infinite, than the prior of g reduces to a normal density and the

posterior is

(14 _/[‘i)z)- (3.10)

1 2 m
262 (;Ui ﬂio) exp( 252

(s |y) ocexp(-

It has been shown in Chapter 2 that the posterior distribution is normal, and the

Bayesian estimator of x is the mode, (same as the mean) of the posterior

distribution which can be expressed as

2 PN
Oip Hip TM T 44

ﬂb,i = (3.11)

ol+maoé”?
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with variance Var (g | y) = (aioz +mé? )71-

The overall esitmator of 4 is obtained as

a a -
iy =i, 6 =(0Z +ms? {Z(aﬁf +m &7 )} (3.12)
i=1

i=1
and the Bayesian estimator of factor effects is,
Vio = b — My, 1=1,...,8. (3.13)

Alternatively, the weighted form of z,; can be written as z,; = w, 14, + @-w, )i,

_ _ ~_2 Y1 . .
where w, = o/ (aioz +mé 2) . These are beautiful results indeed.

Comment: As in the one sample case, f,; is a weighted combination of MML
estimator and prior hyperparameter. From the weighted form of ., ; we can see

that as m goes to infinity Bayesian estimator converges to MML estimator since

weight w, becomes zero. On the other hand, if o,, =0 and so w, =1 then the
Bayes estimator will be equal to z;,, which is expected.
Case2: When v, is finite, then £ ; is the solution of the modal equation

(Vo + 2Nt — 440067+ (s — 1, Wio + (s — 11 '] = 0. (3.14)
Applying exactly the same procedures as in Chapter 2 and re-organizing the

resulting equations, we obtain Bayesian estimator /,; in two different forms as

follows:
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When the posterior density of y is governed by the prior density, the HPD

estimator of ; is

1 n D A
Ui_oz{l"'vjﬂio +mo Zﬂi

i0

o = 1
s (1+ J +m &7

ViO

(3.15)

On the other hand, when the posterior density of y; is governed by the sampling

density, the HPD estimator of ; is

oo+ {vio + (A v +1) m 672,
Hip = = 11 1 — (3.16)
Tio +“Vi0 +(An) J/(Vio +1) }mia
where Ay, :L’U'O)
Oig
Comments:

The HPD estimators of g, given by (3.11), (3.15) and (3.16) contain information

from robust priors and MML estimators. They have the weighted form which

makes them robust to outliers. If we look at some special cases we see that,

)] The prior density of x converges to a non-informative prior if
dispersion of it goes to infinity. Therefore, for large o,, values HPD

estimator of g, converges to MML esitmator.

i) If prior dispersion o,, goes to zero then HPD estimator of y; tends to

prior hyperparameter g, .
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iii) When sample observation have a large dispersion, HPD estimator of

4; converges to u,, since prior information takes much importance as

sample variance increases.

iv) If sample size increses, the information coming from likelihood
function dominates over prior density. As a result, Bayes estimator
converges to MML estimators.

3.1.5. Comparing Efficiencies of MML and Bayes Estimators: Simulation

Results

In order to compare relative efficiencies of HPD estimators and MMLES
we simulate random variables from (3.1) with p=3.5. Simulated mean and
variances of MML estimators and two Bayesian estimators given by (3.5), (3.15)
and (3.16) are obtained by 10,000 simulations. The degree of freedom of prior
distribution (3.7) is taken as 6, while z, =0 and g =0. We assign different

values to o,, and o to see the effect on relative efficiencies. We generate

independent random variables for two treatments containing fixed number of
observations. According to the simulation results given in Table 3.1 to Table 3.8

below we can say the followings:

Comparing the results for both censoring, with g=r/n being fixed, and full
sample cases it is clear that Bayes estimator have lower variances. However, they
loose their advantage when prior dispersion increases. On the other hand, they
gain efficiency when sample dispersion increases. Moreover, as the number of
observations in each treatment increase the relative efficiencies increases since
prior information is dominated by the likelihood funtion for large sample sizes.
That is to say, all of the statments made in the one sample case are valid for the
one way classification model that is the beauty in the convex combination of

MML estimators and prior information.
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Table 3.1 Simulated

distribution with 1, = 0,5, = 3,5,, = 6, 1 =0, when fig, .. is close to

means, variances and RE values for censored Student t

q=0 I[IMML \Y (:&MML) /:lHPD \Y (l[lHPD) RE
i=1 | -0.0101 | 0.6332 | -0.0092 | 0.5454 | 0.8614
ntr=2 o=1 i= -0.0108 | 0.6320 | -0.0107 | 0.5450 | 0.8624
nbl=>5 i=1 | -0.0109 | 1.7824 | -0.0062 | 1.2612 0.7076
o= i= -0.0050 | 1.7715 | -0.0047 | 1.2509 | 0.7062
i=1 | -0.0064 | 0.3049 | -0.0062 | 0.2814 | 0.9229
ntr=2 o =1 i=2 0.0023 | 0.3094 0.0022 | 0.2856 | 0.9230
nbl=10 i=1 0.0030 0.8438 0.0023 0.6852 0.8120
O =2. i=2 0.0194 0.8565 | 0.0176 | 0.6928 | 0.8089
i=1 0.0030 0.2078 | 0.0030 | 0.1969 | 0.9475
ntr=2 o =1 i=2 | -0.0037 | 0.2019 | -0.0037 | 0.1914 | 0.9478
nbl=15 i=1 | -0.0046 | 0.5695 -0.0042 | 0.4922 0.8643
o= i=2 | -0.0041 | 0.5613 -0.0039 | 0.4845 | 0.8633

Table 3.2 Simulated

means, variances and RE values for censored Student

distribution with 14, = 0,0 =1.5,5,, =6, 14 =0, when /1, . is close to

q =0 ILIMML V(/’lMML) ll’lHPD V (/’IHPD) RE
i=1 | -0.0011 | 0.6357 0.0005 0.4701 0.7395
ntr=2 Sy=2. i= -0.0015 | 0.6463 | -0.0003 | 0.4767 0.7376
nbl=5 i=1 -0.0179 | 0.6475 | -0.0172 | 0.5269 0.8137
Sy=2. i= 0.0029 0.6555 0.0033 0.5317 0.8112
i=1 | -0.0081 | 0.3118 | -0.0075 | 0.2617 0.8394
ntr=2 Sy=2. i= -0.0021 | 0.3042 | -0.0018 | 0.2562 0.8422
nbl=10 i=1 0.0085 0.3075 0.0082 0.2746 0.8929
Sy = i= 0.0022 0.3061 0.0021 0.2732 0.8927
i=1 0.0006 0.2059 0.0006 0.1828 0.8880
ntr=2 So= i=2 | -0.0104 | 0.2035 | -0.0098 | 0.1809 0.8887
nbl=15 i=1 -0.0002 | 0.2043 | -0.0002 | 0.1891 0.9258
So= i=2 0.0017 0.1988 0.0016 0.1841 0.9256
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Table 3.3 Simulated means, variances and RE values for Student t distribution

with 4, =0,8, =3,6, =6, 14 =0, when /i, . is close to g,

l[lMML V(I[JMML) l[lHPD V (I[IHPD) RE

i=1 | -0.0074 | 0.6315 | -0.0067 | 0.5336 | 0.8451

ntr=2 c=1 i= -0.0017 | 0.6307 | -0.0016| 0.5326 | 0.8446
nbl=>5 i=1 0.0150 1.7509 0.0139 1.1768 0.6721
o= i= 0.0315 | 1.7010 | 0.0257 | 1.1342 | 0.6668

i=1 0.0014 0.3044 0.0015 | 0.2793 | 0.9176

ntr=2 c=1 i=2 | -0.0084 | 0.3048 | -0.0080 | 0.2800 | 0.9187
nbl=10 i=1 | -0.0029 | 0.8322 | -0.0025 | 0.6642 0.7981
0 =2. i=2 | -0.0025| 0.8324 | -0.0027 | 0.6634 | 0.7969

i=1 | -0.0072 | 0.2009 | -0.0070| 0.1899 | 0.9454

ntr=2 c=1 i=2 0.0026 | 0.2005 | 0.0025 | 0.1894 | 0.9446
nbl=15 i=1 | -0.0052 | 0.5506 | -0.0047 | 0.4773 0.8595
o= i=2 | -0.0099 | 0.5558 | -0.0092 | 0.4776 | 0.8594

Table 3.4 Simulated means, variances and RE values for Student t distribution

with 24, =0,0=15,0,, =6, 4 =0, when /i, .. is close to g,

/’lMML V(/’lMML) lLlHPD V(/’lHPD) RE

i=1 0.0064 0.6222 0.0064 0.4425 0.7112

ntr=2 S,=2. i= -0.0040 | 0.6203 | -0.0036 | 0.4415 0.7118
nbl=5 i=1 -0.008 0.6282 | -0.0012 | 0.5003 0.7964
S,=2. i= 0.0042 0.6230 0.0048 0.4958 0.7959

i=1 | -0.0019 | 0.3008 | -0.0018 | 0.2502 0.8316

ntr=2 S,=2. i= 0.0030 0.2993 | 0.0028 0.2494 0.8334
nbl=10 i=1 0.0032 0.3026 0.0032 0.2682 0.8863
Sy = i= 0.0013 0.3033 0.0013 0.2689 0.8866

i=1 0.0018 0.1953 0.0018 0.1725 0.8834

ntr=2 So= i=2 0.0061 0.1976 0.0057 0.1742 0.8815
nbl=15 i=1 0.0013 0.2021 0.0011 0.1863 0.9220
So= i=2 0.0001 0.1956 | -0.0001 | 0.1804 0.9224
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Table 3.5 Simulated means, variances and RE values for censored Student t

distribution with g4, = 0,8,y =3,5,, =6, 14 =0, when /i, . is close to fi,

q =0 l[lMML V(l[lMML) l[lHPD V(l[lHPD) RE
i=1 | -0.0187 | 0.6451 | -0.0174 | 0.5603 | 0.8686
ntr=2 o=1 i= -0.0125 | 0.6230 | -0.0116 | 0.5409 | 0.8682
nbl=>5 i=1 | -0.0105| 1.7576 | -0.0094 | 1.2622 0.7181
o= i= 0.0166 | 1.7678 | 0.0148 | 1.2826 | 0.7256
i=1 | -0.0013 | 0.3122 | -0.0014 | 0.2884 | 0.9236
ntr=2 o =1 i=2 0.0041 0.3007 0.0037 | 0.2780 | 0.9245
nbl=10 i=1 0.0043 0.8433 0.0040 0.6888 0.8168
O =2. i=2 0.0080 0.8741 0.0079 | 0.7124 | 0.8150
i=1 | -0.0064 | 0.2028 | -0.0062 | 0.1922 | 0.9480
ntr=2 o =1 i=2 0.0086 | 0.2037 0.0084 | 0.1931 |0.9479
nbl=15 i=1 | -0.0114 | 0.5553 | -0.0106 | 0.4817 0.8674
o= i=2 | -0.0003 | 0.5470 | 0.0001 | 0.4839 | 0.8688

Table 3.6 Simulated means, variances and RE values for censored Student t

distribution with 4, =0,0=1.5,6,, =6, 14 =0, when /[, . is close to zz,,

q =0.2 /uMML V (/JMML) :uHPD V (/JHPD) RE
i=1 0.0094 0.6367 0.0083 | 0.4804 | 0.7545
I S, =2. i= 0.0118 | 0.6297 0.0101 | 0.4765 | 0.7567
nbl=5 i=1 0.0069 0.6349 0.0069 0.526 0.8231
S, =2. i=2 | -0.0155| 0.6354 | -0.0145| 0.5251 | 0.8263
i=1 | 0.0029 0.3072 | 0.0026 0.2594 | 0.8445
I Sy = i=2 | 0.0058 0.3103 | 0.0053 0.2620 | 0.8444
nbl=10 i=1 | -0.0012 | 0.3052 | -0.0013| 0.2732 0.8954
So= i=2 0.0013 | 0.3120 | 0.0014 | 0.2790 | 0.8941
i= -0.0049 | 0.2036 | -0.0047 | 0.1811 | 0.8896
I S, = i=2 | -0.0019 | 0.1997 | -0.0019 | 0.1779 | 0.8908
nbl=15 i= -0.0055 | 0.2056 | -0.0053 | 0.1904 | 0.9261
So= i=2 | -0.0048 | 0.2012 | -0.0046 | 0.1865 | 0.9268
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Table 3.7 Simulated means, variances and RE values for Student t distribution

with 4, =0,8, =3,6, =6, 44 =0, when /g, . is close to ji,,

l[lMML V(I[IMML) I[lHPD V(/[lHPD) RE

i=1 0.0016 | 0.6373 | 0.0020 | 0.5414 | 0.8495

ntr=2 o=1 i=2 | -0.0036 | 0.6172 | -0.0023 | 0.5239 | 0.8488
nbl=>5 i=1 | -0.0251 | 1.6943 | -0.0212 | 1.1721 0.6918
o= i= -0.0252 | 1.7447 | -0.0202 | 1.2036 | 0.6899

i=1 0.0011 0.3042 0.0011 | 0.2796 | 0.9189

ntr=2 o=1 i=2 | -0.0031 | 0.3003 | -0.0031| 0.2762 | 0.9197
nbl=10 i=1 | -0.0177 | 0.8159 | -0.0160 | 0.6598 0.8087
O =2. i= 0.0056 | 0.8290 0.0052 | 0.6694 | 0.8075

i=1 0.0014 0.1957 0.0013 | 0.1850 | 0.9456

ntr=2 o=1 i=2 | -0.0061 | 0.1994 | -0.0060 | 0.1886 | 0.9459
nbl=15 i=1 | -0.0060 | 0.5545 | -0.0054 | 0.4786 | 0.8631
o= i= -0.0045 | 0.5455 | -0.0043 | 0.4710 | 0.8635

Table 3.8 Simulated means, variances and RE values for Student t distribution

with z4,=0,0=15,0,, =6, 14 =0, when [, . is close to iz,

I | V) | A |V () RE

i=1 -0.0052 | 0.6291 | -0.0034 | 0.4579 | 0.7279

ntr=2 Sy= j=2 0.0067 0.6260 0.0061 0.4542 0.7256
nbl=5 i=1 -0.0019 | 0.6272 | -0.0027 | 0.5022 0.8007
Sp=2. i=2 0.0040 0.6105 0.0039 0.4915 | 0.8052

i=1 -0.0036 | 0.3057 | -0.0032 | 0.2562 0.8380

ntr=2 Sy= i= -0.0055 | 0.2957 | -0.0049 | 0.2479 | 0.8381
nbl=10 i= 0.0036 0.3020 0.0033 0.2688 0.8901
Sy= i=2 0.0024 0.2964 0.0025 0.2637 0.8896

i=1 -0.0008 | 0.1965 | -0.0008 | 0.1742 0.8867

ntr=2 Sp=2. i=2 0.0024 0.1995 0.0023 0.1766 | 0.8853
nbl=15 i= -0.0036 | 0.1999 | -0.0035 | 0.1846 0.9236
Sy= i= -0.0002 | 0.1992 | -0.0002 | 0.1841 0.9240
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3.2. Generalized Logistic Distribution:

Consider the model (3.1) with error terms having generalized logistic

distribution. The density function of y; is

—0< Yy <o (3.17)

3.2.1. MML Estimators:

In order to find MML estimators, the derivatives of likelihood functions

are,

dinL E_E n (Z )

dyy, o o G770
and

dinL N 13 b+1& &

do OC_;Jr;iZ:l:jZ:l:Z‘“) _Tgézimg(zi(j)) (3.18)
where g(zi(j)):i and 7, ,, = Yich —H .

1+ o

In order to find MML estimators, we linearize g(zi(j)) as
9(zi;y )= @) — By Zi;) Where a;, and S, are obtained from first two terms

of Taylor series expansion as before:
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1+ 'O +t(j)et“” e .
%y = —— and Sy =—— (3.19)
@+em) @+e”)
1 j
where t;;, =t =—In(qjb —1J and q; =1
Note that ;) =ay ) =...=ay; =a; and By = By =---Bay = B; for all
j=1,...,n. Therefore, equation (3.18) is written as
dinL n b+1{ ( )
i o o &\ Pt
Hi o 0 ja
and
dinL N 1&¢ b+1& L&
. OC—;+;;JZ_1:ZM) TS g;zim(aj - J'Zi(j))' (3.20)

MML estimators are obtained by solving (3.20) and are given by Tiku and

Akkaya (2004) as follows:

n

Z;,b’j Yiii)
A ]: _

A

G_

and
6o —B++/B*+4NC
2N
where

(3.21)
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A1=a1—b— D:ZAj,m—ZﬂJ K, =15 :
ARy,
-1
B, =(b+1)ZA,-(yi(,-)—K,) B=> B
j=1 i=1
n 2 a
C =(b+1)Zﬁ;(yim—K.) c=>C,
j=L i=1

a
Then, we can write, 2 =(1/a)) 4 and 7, =i — 4.

i=1

Variances of estimators are obtained from the inverse of the Fisher information

matrix given below:

o b+ (2]

o0+ D)-v(2) a+baTb2[W'(b+1)+t//'(2)+(!//(b+1)—w(2))2]

(3.22)

where w(x)=T"(x)/T(x) is the psi-function and '(x) is the derivative of y/(x)

with respect to x.
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3.2.2. Prior and Posterior Distributions:

We will find marginal posterior densities of g and & where
& = i, +ké . The value of k is determined as to make £, and & uncorrelated

and it is simply k =-Var(4,)/cov(z,,&) where

‘ alb+2)+ably'(b+1)+y'()]+[wb+) -y ()f (3.23)
by (b +1) - (2)] | |

In order to write the joint density function of # and & we use the bivariate

normality of dInL/dg, and dInL/d&, and write

f(/:li!éi)oc o2 exp{ 12 [(/Al. ;/‘)2 " (é% ;5)2 ]J (3.24)

where by k; and k, are obtained from

K, 0
Var(g,,&) = o’ . (3.25)
0 k,

From (3.24) it is also seen that 4, and fi are uncorrelated and the marginal

densities of them can be written as

1(M—MV}

f<n>ocalexp{— L

and
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f(])mcyla@{5§7§éiéili. (3.26)

In order to obtain more accurate results the distribution of fi can be approximated

by chi-square distribution with 2n degrees of freedom.

In order to obtain posterior densities of parameters, independent robust priors for

u; and & are assumed:

ple & )or p(us (&) (3.27)

where

(Si0+1)

pWJm%+Q%%?l 2

and,

p( i )OC & Mo exp(— nio—_gioj; (3.28)

I
Lo, Oi0» S5 Ny, & are hyperparameters considered as known and fixed.

Combining sample information with prior densities, the joint posterior

distribution of parameters is given by,

f(ﬂi & ‘y)oc fif(mnio) exp{— (niofio +ng )} 9

_(3ip+1)

0| (ﬂi—ﬁ)ﬂ{uw} 2 (329)

26_2 5iOSi20
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The form (3.30) indicates that x and &' are posteriorly independent and

marginal posterior densities are

f(§|y)oc 5—(n+ni0) exp(— NigSio + néi J
' S

and

f(e]y) o exp[— " (s, —ﬂ)z}{nw o (3.30)

26
where h, =1/k;.
3.2.3. HPD Estimators:

fBayes]i is the mode of the inverse gamma density given by (3.30) and it can

be expressed as

R n.& +né
gBayes,i = % . (331)
i0

In order to find the Bayesian estimator of ;, the poly-t density given by

(3.30) is solved by following exactly the same procedures as in the previous

sections and two cases for the estimator of ; are obtained.

Casel: If §,, is infinite, then the marginal density of g, is,

f(uily)ocexp[—

= (u —uio)z}exp{—

23},

zhfz (= /1 )2} (3.32)
O
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which yields the Bayes estimator as

,2 A2 A

- Sio Mio + N0 A4

Bayes,i = : 0+h O' _2 . (333)
|O

Case2: If o,, is finite, then the solution of modal equation yields the Bayes

estimators as follows:

) When Bayesian estimator fig,,, ; is closes to prior mean s, then

Siioz {1"' ;}Uio + hzé'izﬂi

i0

[‘Bayesi = 1 (334)
Siy {1 - } +h,67?
é‘iO
i) When Bayesian estimator g, . ; is closes to sample mean /;, then
fameci = Sio Ao J( + (M) 2) Jig +1J h, 62 i (3.35)
ayes,i _ _ :
Si02 +H (A,u,) )/ 5,0 +1 tho 2

where Az = (i — f40)/ ;5.

As is seen from (3.33), (3.34) and (3.35), the form of Bayes estimator is exactly

the same as in the case of Student’s t distribution. So we can write
/:\lBayes,i =W, 4 + (1_ W; )[ll : (336)

The weighted form of Bayesian estimator makes it possible to produce exactly the
same arguments as in previous section which assumes Student’s t distribution for

error terms.
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3.2.4. Comparing Efficiencies of MML and Bayes Estimators: Simulation
Results

Considering generalized logistic family we carry out simulations for two
treatments containing 3,5,10 and 15 observations by assuming different b values.
HPD estimators (3.34) and (3.35) are obtained by assuming prior density as (3.28)

with £,=0 and s, =2 and s, =2.5. The random observations are assumed to
have the form (3.17) with =0, o=1 and o=1.5. The simulated means,

variances and relative efficiencies shown below indicate that for b=0.5 HPD
estimators are generally better, like in the one sample case. Since the HPD
estimator is a convex combination, the relationship with prior and sample
dispersion and relative efficiencies are the same as before. Increasing prior
variance yields less favorable HPD estimator while increasing o values gives
more efficient Bayesian estimators. Similar statements can be made for Bayesian
estimators (3.34) and (3.35) except that the estimator given by (3.34) has a little
higher efficiencies. In addition to these, we can also say that, HPDs are better for
small sample sizes although for all sample sizes they break the MVB barrier
which is not possible in the classical statistical analyses.

Remark: All of the simulation results are obtained when we have two treatments.

However, they can be generalized to more than two treatments by using exactly

similar arguments.
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Table3.9 Simulated values for Generalized Logistic distribution with

tho = 0,8, =3,6,=6,14 =0,0 =0.75,b=0.5 f1g,, is close to x,

b =0.5 A V(/”MML) Hipp V(ll’lHPD) RE
ntr=2 i=1 -0.1348 1.0497 -0.1232 0.7543 0.7187
nbl=3 i=2 -0.1475 1.0621 -0.1378 0.7637 0.7190
ntr=2 i=1 -0.0876 0.6315 -0.0839 0.5240 0.8299
nbl=5 i= -0.0598 0.6354 -0.0592 0.5237 0.8243
ntr=2 i=1 -0.0225 0.2965 -0.0228 0.2721 0.9178
nbl=10 i= -0.0244 0.2975 -0.0243 0.2728 0.9167
ntr=2 i=1 -0.0102 0.1990 -0.0104 0.1884 0.9469
nbl=15 i= -0.0108 0.2000 -0.0109 0.1893 0.9466

Table 3.10 Simulated values for Generalized Logistic distribution with

tho = 0,8, =3,5,=6,44 =0,0=0.75b =1, when g, . is close to

b=1 Hume V(/”MML) Hipp V(IUHPD) RE
ntr=2 i= -0.0080 0.6038 -0.0080 0.4897 0.8111
nbl=3 i=2 0.0176 0.5975 0.0160 0.4844 0.8107
ntr=2 i=1 0.0010 0.3535 0.0011 0.3153 0.8918
nbl=5 i=2 0.0003 0.3476 0.0004 0.3103 0.8925
ntr=2 i=1 0.0065 0.1747 0.0064 0.1662 0.9510
nb1l=10 i=2 0.0017 0.1697 0.0017 0.1614 0.9509
ntr=2 i=1 0.0010 0.1151 0.0010 0.1114 0.9682
nbl=15 i=2 -0.0032 0.1161 -0.0031 0.1123 0.9681
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Table 3.11 Simulated values for Generalized Logistic distribution with

tho = 0,8, =3,6,=6,14 =0,0 =0.75,b =4, when /1, is close to x,

b=4 Hume V(/”MML) Hipp V(ll’lHPD) RE
ntr=2 i=1 0.1498 0.4232 0.1546 0.3785 .8945
nbl=3 i=2 0.1400 0.4156 0.1450 0.3729 .8974
ntr=2 i=1 0.0816 0.2341 0.0828 0.2199 .9397
nbl=5 i= 0.0795 0.2342 0.0810 0.2198 .9383
ntr=2 i=1 0.0365 0.1086 0.0368 0.1056 .9720
nb1l=10 i= 0.0425 0.1076 0.0426 0.1046 .9724
ntr=2 i=1 0.0251 0.0737 0.0252 0.0723 .9816
nbl=15 i= 0.0254 0.0734 0.0255 0.0720 .9816

Table 3.12 Simulated
thio = 0,8, =3,6,=6,44 =0,0=0.75b =6, when /i, is close to y,

values for Generalized Logistic distribution with

b=¢ Hume \Y (luMML) Hipp V(IUHPD) RE
ntr=2 i=1 0.1759 0.4699 0.1829 0.4211 .8962
nbl=3 i=2 0.1865 0.4881 0.1931 0.4363 .8939
ntr=2 i=1 0.1000 0.2626 0.1022 0.2470 .9399
nbl=5 i=2 0.1052 0.2555 0.1071 0.2402 .9401
ntr=2 i=1 0.0513 0.1165 0.0516 0.1133 L9727
nbl=10 i= 0.0438 0.1193 0.0442 0.1160 .9721
ntr=2 i=1 0.0342 0.0778 0.0343 0.0764 .9821
nbl=15 i= 0.03406 0.0797 0.0347 0.0783 .9821
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Table 3.13 Simulated values for Generalized Logistic distribution with

tho = 0,8, =3,5,=6,44 =0,0=0.75b =8, when /i, . is close to y,

b=s Hume \Y (/UMML) Hipp V(IuHPD) RE
ntr=2 i=1 0.1986 0.5453 0.2082 0.4849 0.8893
nbl=3 i=2 0.1909 0.5575 0.2008 0.4958 0.8894
ntr=2 i=1 0.1194 0.2846 0.1216 0.2679 0.9414
nbl=5 i= 0.1145 0.2857 0.1169 0.2687 0.9405
ntr=2 i=1 0.0568 0.1333 0.0573 0.1297 0.9724
nb1l=10 i=2 0.0525 0.1323 0.0530 0.1286 0.9723
ntr=2 i=1 0.0367 0.0844 0.0369 0.0829 0.9822
nbl=15 i= 0.0405 0.0861 0.0407 0.0845 0.9821

Table 3.14 Simulated values for Generalized Logistic distribution with

thio = 0,8, =3,5,=6,14 =0,b=0.5, when /i, is close to x,

b=o.5 /[‘MML V(:[‘MML) l[lHPD \Y (I[IHPD) RE
i=1 | -0.1807 | 1.9211 | -0.1633 | 1.1425 | 0.5947
ntr=2 o =1 i= -0.1767 | 1.9012 | -0.1617 | 1.1321 | 0.5955
nbl=3 i=1 -0.2609 | 4.2632 | -0.2119 | 1.7321 | 0.4063
o=1.5 i=2 | -0.2573 | 4.2912 | -0.2029 | 1.7347 | 0.4042
i= -0.0901 | 1.1176 | -0.0853 | 0.8134 | 0.7278
ntr=2 o0 =1 i=2 | -0.0926 | 1.0956 | -0.0876 | 0.8005 | 0.7306
nbl=5 i=1 -0.1463 | 2.4436 | -0.1304 | 1.3194 | 0.5399
0=1.5 i=2 | -0.1449 | 2.5662 | -0.1312 | 1.3921 | 0.5425
i=1 | -0.0286 | 0.5273 | -0.0291 | 0.4545 | 0.8619
ntr=2 o=1 i=2 | -0.0215 | 0.5218 | -0.0220 | 0.4499 | 0.8624
nbl=10 i=1 | -0.0532 | 1.1811 | -0.0517 | 0.8615 | 0.7294
0=1.5 i=2 | -0.0299 | 1.2033 | -0.0327 | 0.8773 | 0.7291
i=1 | -0.0205 | 0.3528 | -0.0205 | 0.3206 | 0.9086
ntr=2 o =1 i= -0.0192 | 0.3496 | -0.0192 | 0.3177 | 0.9090
nbl=15 i= -0.0227 | 0.8015 | -0.0276 | 0.6506 | 0.8117
0=1.5 i= -0.0137 | 0.7821 | -0.0150 | 0.6350 | 0.8119
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Table 3.15 Simulated values for Generalized Logistic distribution with

thio = 0,8, =3,6,=6,44 =0,b=1, when /i, . is close to x4,

b=1 /&MML V(/[lMML) l[lHPD V(/[lHPD) RE
i=1 0.0061 1.0580 0.0067 0.7546 0.7132
ntr=2 o=1 i= 0.0054 1.0664 0.0056 0.7655 0.7178
nbl=3 i=1 -0.0196 | 2.4235 | -0.0124 1.2811 0.5286
o=1.5 i= -0.0114 | 2.4468 | -0.0047 1.2883 0.5265
i=1 -0.0108 0.6526 | -0.0108 | 0.5363 0.8217
ntr=2 o=1 i=2 -0.0047 0.6550 | -0.0039 | 0.5390 0.8229
nbl=5 i=1 -0.0013 | 1.4344 | -0.0002 | 0.9610 0.6700
0=1.5 i=2 -0.0089 | 1.4430 | -0.0066 | 0.9627 0.6671
i=1 0.0057 0.3058 0.0053 0.2794 0.9140
ntr=2 o=1 i=2 0.0043 0.3159 0.0041 0.2890 0.9151
nbl=10 i=1 0.0061 0.7007 0.0055 0.5779 0.8247
0=1.5 i= 0.0112 0.6891 0.0100 0.5677 0.8238
i=1 0.0065 0.2056 0.0062 0.1941 0.9440
ntr=2 o=1 i=2 -0.0027 0.2045 | -0.0026 | 0.1931 0.9443
nbl=15 i=1 0.0028 0.4668 0.0026 0.4117 0.8818
0 =1.5 i=2 -0.0035 | 0.4511 | -0.0034 | 0.3978 0.8818

Table 3.16 Simulated values for Generalized Logistic distribution with

thio = 0,8, =3,5, =6, 14 =0,b =4, when /g, is close to x,

b=4 l[lMML V(l[lMML) l[lHPD V(l[lHPD) RE
i=1 0.1962 0.7419 0.2049 0.6233 0.8402
ntr=2 o=1 i=2 0.1881 0.7433 0.1983 0.6178 0.8312
nbl=3 i=1 0.3042 1.6408 0.3222 0.1543 0.7035
o0=1.5 i= 0.2827 1.6718 0.3042 0.1691 0.6993
i=1 0.1103 0.4137 0.1129 0.3724 0.9001
ntr=2 O =1 i= 0.0968 0.4054 0.0998 0.3646 0.8995
nbl=5 i=1 0.1412 0.9159 0.1509 0.7296 0.7966
0=1.5 i=2 0.1542 0.9216 0.161l6 0.7357 0.7983
i=1 0.0484 0.1987 0.0490 0.1890 0.9512
ntr=2 O =1 i=2 0.0633 0.1940 0.0635 0.1846 0.9512
nbl=10 i=1 0.0756 0.4349 0.0772 0.3893 0.8950
O0=1.5 i= 0.0770 0.4271 0.0785 0.3826 0.8959
i=1 0.0350 0.1294 0.0352 0.1252 0.9677
ntr=2 O =1 i=2 0.0354 0.1233 0.0356 0.1194 0.9683
nbl=15 i=1 0.0492 0.2905 0.0500 0.2700 0.9293
O0=1.5 i=2 0.0442 0.2929 0.0452 0.2724 0.9300
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Table 3.17 Simulated values for Generalized Logistic distribution with

thio = 0,6, =6, 44 =0,0 =1,b=0.5, when f, . is close to

b=o0.5 Ll V (i) I, V (fypp) RE
i=1 -0.1798 1.8935 -0.1427 0.7742 0.4088
ntr=2 S$S=2.0 i= -0.1699 1.9061 -0.1380 0.7671 0.4024
nbl=3 i=1 -0.1819 1.9303 -0.1537 0.9793 0.5073
S$=2.5 i= -0.1890 1.9358 -0.1613 0.9913 0.5074
i=1 -0.0922 1.1379 -0.0809 0.6135 0.5392
ntr=2 S$S=2.0 i=2 -0.0797 1.0935 -0.0709 0.5900 0.5396
nbl=5 i=1 -0.0983 1.1269 -0.0912 0.7314 0.6490
S$=2.5 i=2 -0.0954 1.1158 -0.0884 0.7265 0.6511
i=1 -0.0488 0.5269 -0.0459 0.3854 0.7314
ntr=2 S$S=2.0 i=2 -0.0311 0.5416 -0.0302 0.3940 0.7275
nbl=10 i=1 -0.0301 0.5268 -0.0300 0.4276 0.8116
$=2.5 i= -0.0390 0.5224 -0.0381 0.4242 0.8121
i=1 -0.0194 0.3396 -0.0193 0.2763 0.8135
ntr=2 S$=2.0 i=2 -0.0160 0.3561 -0.0165 0.2891 0.8119
nbl=15 i=1 -0.0117 0.3509 -0.0120 0.3063 0.8729
§$=2.5 i=2 -0.0208 0.3608 -0.0208 0.3148 0.8725

Table 3.18 Simulated values for Generalized Logistic distribution with

tho =0,0,, =6,44, =0,0 =1,b =1, when /i, is close to x,

b=1 Iy v ('&MM'—) Hipo v ('[lHPD) RE
i=1 -0.0090 1.0898 -0.0047 0.5800 0.5323
ntr=2 $=2.0 i= 0.0117 1.0990 0.0091 0.5853 0.5326
nbl=3 i=1 0.0022 1.0650 0.0028 0.6774 0.6332
$=2.5 i=2 -0.0006 1.1070 -0.0016 0.6797 0.6352
i=1 0.0046 0.6411 0.0034 0.4289 0.6691
ntr=2 $=2.0 i=2 -0.0075 0.6414 -0.0061 0.4307 0.6715
nbl=5 i=1 -0.0016 0.6250 -0.0013 0.4754 0.7607
$=2.5 i= 0.0082 0.6313 0.0074 0.4786 0.7582
i=1 -0.0010 0.3120 -0.0018 0.2569 0.8233
ntr=2 $=2.0 i=2 -0.0068 0.3096 -0.0062 0.2550 0.8238
nbl=10 i=1 -0.0077 0.3114 -0.0071 0.2739 0.8793
$=2.5 i=2 -0.0048 0.3124 -0.0044 0.2749 0.8801
i= 0.0025 0.2052 0.0024 0.1810 0.8817
ntr=2 $=2.0 i=2 -0.0007 0.2046 -0.0006 0.1804 0.8816
nbl=15 i=1 0.0095 0.2052 0.0091 0.1891 0.9215
$=2.5 i=2 -0.0033 0.2036 -0.0031 0.1875 0.9210
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Table 3.19 Simulated values for Generalized Logistic distribution with

thio =0,6,0=6,44 =0,0 =1,b=4, when /i, is close to x4,

b=4 /[lMML \% (:&MML) ,[lHPD \Y (l[lHPD ) RE
i= 0.1958 0.7427 0.2095 0.5264 0.7087
ntr=2 $=2.0 i= 0.1944 0.7322 0.2072 0.5155 0.7040
npbl=3 i= 0.1977 0.7426 0.2080 0.5836 0.7859
$=2.5 i=2 0.1944 0.7236 0.2056 0.5652 0.7811
i=1 0.1117 0.4107 0.1158 0.3294 0.8021
ntr=2 $=2.0 i= 0.1124 0.4098 0.1167 0.3289 0.8025
nbl=5 i=1 0.1172 0.4055 0.1196 0.3512 0.8660
$=2.5 i= 0.1108 0.4029 0.1137 0.3487 0.8654
i=1 0.0430 0.1975 0.0445 0.1765 0.8938
ntr=2 $=2.0 i= 0.0494 0.1975 0.0507 0.1766 0.8941
nbl=10 i=1 0.0534 0.1935 0.0541 0.1802 0.9314
$=2.5 i= 0.0501 0.1938 0.0509 0.1804 0.9310
i=1 0.0326 0.1272 0.0332 0.1182 0.9295
ntr=2 $=2.0 i= 0.0309 0.1284 0.0316 0.1194 0.9299
nbl=15 i=1 0.0034 0.1266 0.0347 0.1208 0.9543
$=2.5 i=2 0.0319 0.1278 0.0323 0.1219 0.9540

Table 3.20 Simulated values for Generalized Logistic distribution with

tho = 0,8, =3,6,=6,44 =0,0 =0.75b = 0.5, when i, . is close to i,

b=o.5 l[lMML \ (I&MML) [lHPD \% (:[lHPD) RE
ntr=2 i=1 -0.1560 1.0894 -0.1447 0.7993 0.7337
nbl=3 i= -0.1413 1.0641 -0.1323 0.7814 0.7343
ntr=2 i=1 -0.0660 0.6249 -0.0640 0.5204 0.8328
nbl=5 i= -0.0543 0.6333 -0.0546 0.5284 0.8344
ntr=2 i=1 -0.0263 0.2929 -0.0262 0.2691 0.9187
nbl=10 i=2 -0.0254 0.3016 -0.0254 0.2769 0.9181
ntr=2 i=1 -0.0203 0.1943 -0.0202 0.1841 0.9473
nbl=15 i=2 -0.0103 0.1952 -0.0105 0.1848 0.9470
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Table 3.21 Simulated values for Generalized Logistic distribution with

thio = 0,8 =3,6,=6,44 =0,0=0.75b =1, when f, . is close to i,

b=1 Hume V(/”MML) Hipp V(ll’lHPD) RE
ntr=2 i=1 -0.0012 0.6028 -0.0007 0.4942 .8198
nbl=3 i=2 0.0139 0.6152 0.0129 0.5035 .8184
ntr=2 i=1 0.0025 0.3576 0.0026 0.3197 .8940
nbl=5 i= 0.0008 0.3642 0.0006 0.3256 .8941
ntr=2 i=1 -0.0009 0.1724 -0.0008 0.1640 .9511
nb1l=10 i= -0.0022 0.1740 -0.0021 0.1654 .9509
ntr=2 i=1 -0.0055 0.1175 -0.0054 0.1138 .9685
nbl=15 i= 0.0058 0.1137 0.0057 0.1102 .9686

Table 3.22 Simulated
tio = 0,80 =3,8,, =6, 14

values for Generalized Logistic distribution with

=0,0=0.75,b =4, when fg,,is close to i,

b=a Hme V(/UMML) Hipp \Y (ILlHPD) RE
ntr=2 i=1 0.1508 0.4119 0.1551 0.3713 .9015
nbl=3 i=2 0.1496 0.4156 0.1539 0.3736 .8989
ntr=2 i=1 0.0833 0.2294 0.0844 0.2161 .9420
nbl=5 i=2 0.0872 0.2375 0.0884 0.2237 .9418
ntr=2 i=1 0.0411 0.1072 0.0413 0.1042 .9722
nbl=10 i=2 0.0420 0.1078 0.0422 0.1048 .9724
ntr=2 i=1 0.0245 0.0714 0.02406 0.0701 .9818
nbl=15 i=2 0.0311 0.0728 0.0312 0.0715 . 9820
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Table 3.23 Simulated values for Generalized Logistic distribution with

thio = 0,8, =3,6,=6,44 =0,0=0.75b =6, when [, . is close to 1,

b=¢ Hume V(/”MML) Hipp V(ll’lHPD) RE
ntr=2 i=1 0.1889 0.4766 0.1955 0.4285 0.8991
nbl=3 i=2 0.1728 0.4884 0.1803 0.4382 0.8972
ntr=2 i=1 0.1077 0.2532 0.1093 0.2387 0.9427
nbl=5 i= 0.1084 0.2629 0.1101 0.2478 0.9428
ntr=2 i=1 0.0604 0.1200 0.0606 0.1168 0.9732
nb1l=10 i= 0.0529 0.1178 0.0532 0.1146 0.9729
ntr=2 i=1 0.0348 0.0775 0.0350 0.0762 0.9823
nbl=15 i= 0.0285 0.0790 0.0287 0.0776 0.9823

Table 3.24 Simulated values for Generalized Logistic distribution with

thio = 0,8, =3,6,=6,44 =0,0=0.75b =8, when /[, . is close to zz,,

b=s Hume \Y (/uMML) Hipp V(IUHPD) RE
ntr=2 i= 0.1969 0.5449 0.2061 0.4869 0.8936
nbl=3 i=2 0.2070 0.5483 0.2157 0.4902 0.8940
ntr=2 i=1 0.1082 0.2894 0.1107 0.2728 0.9424
nbl=5 i=2 0.1120 0.2892 0.1144 0.2723 0.9415
ntr=2 i=1 0.0579 0.1338 0.0584 0.1301 0.9729
nbl=10 i= 0.0577 0.1298 0.0581 0.1263 0.9727
ntr=2 i=1 0.0409 0.0841 0.0411 0.0826 0.9824
nbl=15 i= 0.0392 0.0864 0.0394 0.0848 0.9823
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Table 3.25 Simulated values for Generalized Logistic distribution with

tho = 0,8, =3,5, =6, 14 =0,b=0.5, when /i, is close to fi,,

b=o.5 /&MML V(/&MML) IaHPD V(/&HPD) RE
i=1 -0.1770 1.8892 -0.1587 1.1710 0.6199
ntr=2 o =1 i=2 -0.1828 1.8972 -0.1654 1.1828 0.6235
nbl=3 i= -0.2675 4.2832 -0.2262 2.0147 0.4704
o=1.5 i= -0.3067 4.3164 -0.2478 2.0142 0.4666
i= -0.1089 1.1295 -0.1025 0.8412 0.7447
ntr=2 o =1 i=2 -0.0972 1.1105 -0.0931 0.8243 0.7423
nbl=5 i=1 -0.1263 2.4737 -0.1158 1.4199 0.5740
0=1.5 i=2 -0.1223 2.4461 -0.1136 1.4058 0.5747
i=1 -0.0358 0.5357 -0.0358 0.4643 0.8667
ntr=2 o =1 i=2 -0.0383 0.5458 -0.0379 0.4638 0.8656
nbl=10 i=1 -0.0431 1.1859 -0.0428 0.8846 0.7460
0=1.5 i=2 -0.0338 1.2096 -0.0360 0.9030 0.7465
i=1 -0.0214 0.3507 -0.0215 0.3194 0.9107
ntr=2 o =1 i=2 0.0113 0.3462 -0.0118 0.3153 0.9110
nbl=15 i=1 -0.0271 0.7936 -0.0273 0.6505 0.8197
o=1.5 i=2 -0.0274 0.7874 -0.0282 0.6450 0.8191

Table 3.26 Simulated values for Generalized Logistic distribution with

thio =0,8,,=3,6,=6,44 =0,b=1, when /i, . is close to fi,,

b=1 I[IMML V(/&MML) IaHPD V(;&HPD) RE
i=1 -0.0011 1.0933 -0.0019 0.7941 0.7264
ntr=2 =1 i=2 0.0002 1.0951 0.0003 0.7920 0.7233
nbl=3 i=1 00013 2.3836 0.0024 1.3554 0.5686
o=1.5 i= -0.0081 2.4094 -0.0062 1.3737 0.5701
i=1 -0.0015 0.6476 -0.0013 0.5358 0.8274
ntr=2 =1 i=2 0.0011 0.6245 -0.0004 0.5166 0.8272
nbl=5 i=1 -0.0068 1.4099 -0.0051 0.9743 0.6910
o=1.5 i=2 -0.0191 1.44¢61 -0.0164 0.9967 0.6892
i=1 0.0067 0.3138 0.0065 0.2873 0.9155
ntr=2 o=1 i= -0.0079 0.3156 -0.0074 0.2890 0.9156
nbl=10 i=1 -0.0054 0.7024 -0.0051 0.5831 0.8301
o=1.5 i=2 0.0004 0.6913 0.0006 0.5741 0.8304
i=1 -0.0102 0.1983 -0.0099 0.1875 0.9452
ntr=2 o=1 i=2 0.0068 0.2056 0.0068 0.1943 0.9450
nbl=15 i=1 0.0022 0.4607 0.0021 0.4073 0.8840
o=1.5 i= -0.0032 0.4587 -0.0030 0.4054 0.8837
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Table 3.27 Simulated values for Generalized Logistic distribution with

thio = 0,8, =3,5,=6,44 =0,b=4,when jig, . is close to f,,

b=4 :[lMML V(/&MML) l[lHPD V(/&HPD) RE
i=1 0.1869 0.7180 0.1957 0.6054 0.8432
ntr=2 o=1 i=2 0.1838 0.7550 0.1948 0.6345 0.8405
nbl=3 i=1 0.3165 1.6325 0.3321 1.1782 0.7217
o0=1.5 i=2 0.3016 1.6760 0.3214 1.2165 0.7259
i=1 0.1113 0.4057 0.1140 0.3662 0.9026
ntr=2 O =1 i= 0.1055 0.4062 0.1082 0.3670 0.9033
nbl=5 i=1 0.1674 0.9160 0.1732 0.7626 0.78107
O=1.5 i= 0.1772 0.9186 0.1824 0.7454 0.8114
i=1 0.0452 0.1953 0.0459 0.1858 0.9513
ntr=2 O =1 i=2 0.0533 0.1949 0.0539 0.1855 0.9516
nbl=10 i=1 0.0794 0.4348 0.0809 0.3905 0.8980
o0=1.5 i=2 0.0673 0.4377 0.0694 0.3930 0.8979
i=1 0.0326 0.1306 0.0329 0.1264 0.9680
ntr=2 O =1 i=2 0.0344 0.1303 0.0346 0.1261 0.9683
nbl=15 i=1 0.0465 0.2914 0.0475 0.2712 0.9308
o0=1.5 i=2 0.0503 0.2935 0.0509 0.2736 0.9321

Table 3.28 Simulated values for Generalized Logistic distribution with

thio =0,6,,=6,44 =0,0 =1Lb=0.5, when /i, . is close to zz,,

b=o.5 I[IMML v (/&MML) IaHPD V(I[IHPD) RE

i=1 -0.1857 1.9184 -0.1482 0.8797 0.4585

ntr=2 $=2.0 i=2 0.1933 1.9151 -0.1580 0.8685 0.4535
nbl=3 i=1 -0.1729 1.8877 -0.1515 1.0421 0.5521
$=2.5 i= -0.2043 1.9264 -0.1746 1.0757 0.5584

i=1 -0.0624 1.1064 -0.0616 0.6321 0.5713

ntr=2 $=2.0 i=2 -0.0783 1.0993 -0.0739 0.6298 0.5729
nbl=5 i=1 -0.0904 1.1204 -0.0863 0.7575 0.6761
$=2.5 i=2 -0.0883 1.1041 -0.0833 0.7451 0.6749

i=1 -0.0266 0.5325 -0.0280 0.3965 0.7445

ntr=2 $=2.0 i= -0.0352 0.5411 -0.0341 0.4039 0.7463
nbl=10 i=1 -0.0289 0.5311 -0.0292 0.4342 0.8176
$=2.5 i=2 -0.0279 0.5256 -0.0278 0.4304 0.8188

i=1 -0.0348 0.3394 -0.0332 0.2784 0.8201

ntr=2 $=2.0 i=2 -0.0160 0.3472 -0.0165 0.2851 0.8211
nbl=15 i=1 -0.0237 0.3470 -0.0235 0.3038 0.8754
$=2.5 i= -0.0163 0.3527 -0.0169 0.3090 0.8762
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Table 3.29 Simulated values for Generalized Logistic distribution with

tho =0,0,, =6,44, =0,0 =1,b=1, when /g, is close to fiy,,

b=1 Ll V (i) I, V () RE
i=1 0.0063 1.0682 0.0072 0.6031 0.5646
ntr=2 S=2.0 i= 0.0012 1.0946 0.0008 0.6163 0.5630
nbl=3 i=1 -0.0180 1.0781 -0.0149 0.7034 0.6524
S$=2.5 i=2 0.0175 1.0917 0.0146 0.7229 0.6622
i=1 0.0137 0.6363 0.0129 0.4423 0.6919
ntr=2 S=2.0 i= 0.0114 0.6297 0.0098 0.4331 0.6878
nbl=5 i=1 -0.0002 0.6277 -0.0003 0.4845 0.7718
§$=2.5 i=2 -0.0163 0.6397 -0.0140 0.4936 0.7717
i=1 -0.0035 0.3126 -0.0030 0.2595 0.8302
ntr=2 S$=2.0 i= 0.0007 0.3049 0.0007 0.2529 0.8295
nbl=10 i=1 -0.0028 0.3134 -0.0028 0.2765 0.8822
§$=2.5 i=2 -0.0036 0.3075 -0.0034 0.2716 0.8833
i=1 0.0044 0.2011 0.0042 0.1781 0.8860
ntr=2 S=2.0 i=2 0.0016 0.2029 0.0015 0.1796 0.8851
nbl=15 i=1 0.0074 0.2106 0.0072 0.1943 0.9226
$=2.5 i=2 0.0009 0.2064 0.0009 0.1905 0.9233

Table 3.30 Simulated values for Generalized Logistic distribution with

tio=0,6 =61 =0,0=1b=4,when /g, iscloseto i,

b= /&MML V(/&MML) :[IHPD V(;&HPD) RE
i=1 0.1963 0.7287 0.2082 0.5257 0.7214
ntr=2 S$S=2.0 i= 0.2040 0.7238 0.2133 0.5226 0.7220
nbl=3 i=1 0.1958 0.7395 0.2068 0.5846 0.7906
§$=2.5 i= 0.2034 0.7328 0.2127 0.5841 0.7971
i=1 0.1056 0.4103 0.1104 0.3323 0.8098
ntr=2 S$S=2.0 i= 0.1120 0.4188 0.1161 0.3392 0.8100
nbl=5 i=1 0.1137 0.4087 0.1168 0.3555 0.8699
$=2.5 i=2 0.1169 0.4072 0.1197 0.3530 0.8670
i=1 0.0572 0.1994 0.0580 0.1792 0.8986
ntr=2 S$=2.0 i=2 0.0541 0.1976 0.0551 0.1776 0.8985
nbl=10 i=1 0.0473 0.1925 0.0481 0.1794 0.9319
S$=2.5 i=2 0.0530 0.1952 0.0537 0.1820 0.9325
i=1 0.0388 0.1256 0.0342 0.1169 0.9308
ntr=2 S$=2.0 i=2 0.0319 0.1276 0.0324 0.1188 0.9313
nbl=15 i=1 0.0319 0.1269 0.0323 0.1211 0.9546
S$=2.5 i=2 0.0325 0.1276 0.0329 0.1217 0.9544
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CHAPTER 4

APPLICATION

4.1.Application with Real Data

We start with the observations that represents the differences (in heights)
between cross and self fertilizied plants of the same pair grown in one pot. The

data, which is known as Darwin’s data, is given below:

49, -67, 8, 16, 6, 23, 28, 41, 14, 29, 56, 24, 75, 60, -48

The Q-Q plot based on a normal distribution is represented by Figure 4.1
below. We see that two smallest and one largest observations are different than
the bulk of the observations, that means they are possibly outliers. In order to
obtain more reliable results, formal outlier tests are applied to the data and it has
been found that these observations are in fact outliers. (Tiku and Akkaya, 2004).
Since existence of extreme values adversely affects the efficiency of estimators,
these observations are given zero weights. That is to say, they are censored from
the data. Since we deal with symmetric censoring in Chapter 2, we censor two
smallest and two largest observations from the data and calculate MML and HPD

estimators with the remaining observations.
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Figure 4.1. Q-Q Plot for examplel with normal distribution

In order to see the affect of outliers, we start with full data and obtain
Least Square (LS) estimators with fifteen observations as,

s =20.933 and Var(z,) =94.975 (4.1)

We aim to calculate Bayesian estimator of u also, therefore we assume a

normal prior with hyperparameters s, o¢ . If we assume g, = 20 and o =7 and

use (1.22) we get

flgayes = 20.317 and Var(g,.,) =32.323 4.2)

From (4.1) and (4.2) we see that LS and Bayes estimators of x are very close to

each other, however, the variance of Bayes estimator is much smaller.

In order to eliminate the affect of extreme values, we censor two smallest

and largest observatios from the data and calculate MML estimator (2.8) as

Loy, =27.703 and Var (i, ) =45.197 (4.3)
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Moreover, HPD estimator of 4 given by (2.17) is obtained by assuming

p(1t) ~ N(1y,07). If we take u,and o7 as 20 and 7, respectively, we get

Hgages =24.007 and Var (g, ) =23.510 (4.4)

Like in the full sample case, we see that MMLE and Bayesian estimator of x are
similar to each other but HPD estimator has smaller variance. Moreover, if we
compare full sample and censored sample results for both MML and Bayes
estimators, we see that extreme values affect the efficiencies adversely. Therefore,

they need to be removed from the data in order to get more reliable estimates.

Example2: Following data represents the average annual erosion rates of thirteen
states in US (Tiku and Akkaya, 2004):

-04 -05 -09 -05 01 -10 0.1 -15 -42 -06 -20 0.7 -0.1

The general pattern of the data indicates that a negatively skewed
distribution may be appropriate. According to the Q-Q plot shown by Figure 4.2
we can say that GL distribution may be a good choice. In order to determine the
value of b, estimates of dLnL/n are calculated. We find that b=0.5 is the

maximizing point and should be used.

1
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Figure 4.2. Q-Q plot for Example2 with GL distribution (b=0.5).
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Assuming GL distribution with b=0.5, MML estimators are calculated from (2.80)
as

Ly =-0.1812 and  Var (4, ) =0.0685 (4.5)

In order to calculate HPD estimators, we assume a robust prior (2.92) with z, =0

and o =1 and obtain Bayes estimator of x from (2.100) as
0 H
[gages =-0.1796 and Var (ilg,,,, ) =0.0587 (4.6)

If we compare (4.5) and (4.6) we see that the estimates of x are very close to

each other but variance of HPD estimator is lower than the variance of MMLE.

Relative efficiency of HPD estimator is calculated as

_ Var (:aBayes )

RE = ~
Var(/uMML)

=0.8574 4.7)

which indicates the HPD estimator is more efficient than MML estimator.

However, if we change the prior variance from o =1 to o =3 we see that,

E = Var (l[lBaye)

= - =0.9824 (4.8)
var ()

That means, if prior dispersion increases, Bayes estimator looses efficiency since
the weight of MML estimator increases. However, as o becomes larger and

larger, RE converges to 1 which indicates HPD estimator converges to MML

estimator. That is to say, for reasonable prior variance, HPD is more efficient than

MML estimators but for large o it becomes at least as efficient as MMLE.
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Example3. The following data represents the gain (in pounds) of 20 pigs with
respect to two different feeds, A and B (Tiku and Akkaya, 2004).

A:0.09 143 2.7/9 160 1.71 3.37 2.06 2.67 8.42 3.67
B:1.96 179 2.60 140 222 345 116 571 293 1.40

In order to fit a reasonable distribution we look at different Q-Q plots and

see that GL distribution with b>1 may be an appropriate choice for the error

terms. The value of b is chosen as 8 since it maximezes dInL/n.

7
6 .
5
a
3 *
2
g1
1] o® * ©
O %”!
o***
1 1y o ¢ 3 a4 5 6
2
,3 .
-4
i)

Figure 4.3. Q-Q plot for Example 3 withGL distribution(b=8).

We may fit a one way experimental design model to the data with two

treatments each having ten observations. MML estimators (3.21) are calculated as

fpma =-0.4893, 2ty yuy =-0.3945 and Var (4 ) = 0.2600 (4.9)

We find HPD estimators of treatments by assuming prior distribution (3.28) with

to=0, 0’ =1and v,, =6 as

fiprpo =-04312, i1y op =-0.3476 and Var (2 ,pp ) =0.2072 (4.10)
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The estimates of location parameters are close to each other but their
variances become smaller if Bayesian techniques are used in estimation.
Assuming prior distribution with parameters mentioned above, we get the relative

efficiency of HPD estimators as

E - Var(laBayeS)

= TRl 079 (4.11)
Var (i)

However, if we change prior dispersion and assume afo =15, then relative

efficiency become

Var (1
g = Varlee) _ g (4.12)
Var(:uMML)

Relative efficiency increases with prior dispersion and converges to 1 for large

values of o =1.5, as expected.

Example4. The following data comes from the study of Columbian molasess.
Brix Degrees, which is a measure of the quantity of solids in a molasses, is one of
the qualities of importance. The sources of the molasses are three different areas
in the country. In order to see whether these three locations provide the same Brix
Degrees of molasses, eight observations are obtainded from each location
(Johnson and Leone, 1964).

Locationl : 81.6 81.3 82.0 79.6 784 818 80.2 80.7

Location Il; 81.8 84.7 82.0 856 79.9 83.2 84.1 85.0
Location I11: 82.1 79.6 83.1 80.7 81.8 79.9 826 819

108



3
.
2 .
.
&
1 .00’
.0
o**
=5 15 1 0.5 0.5 1 1.5 2
*
*
* -2
.
3
.
4
i)

Figure 4.4. Q-Q plot for Example 4 with LTS distribution(p=4).

One way ANOVA model is considered with three treatments each having eight
observations. Q-Q plot, shown by Figure 4.4, indicates that LTS family may be
appropriate for the data. The suitable value of p is found as 4 since it maximizes

dinC/n.

According to one way classification model with LTS distribution p=4,
MML estimators (3.5) are calculated as

. =80.778, 2y v =83.367, b . =81.498 and Var (4 . ) =0.265 (4.13)

Assuming robust prior (3.7) with 24, =80, o;,, =1 and v,, =6, HPD estimators

(3.15) are calculated as
£ payes =80.594, flyp. . =82.572, fiyg, . =81.145and Var (4 g, ) =0.210 (4.14)

The results agree with the simulation results of Chapter 3. The MML and HPD

estimates of x are close to each other but the latter have smaller variance.
However, as in the previous cases, variance of HPD estimators converges to

variance of MML estimators as o, increases. For example, If we take o; , =1, the
relative efficiency is %79.4 while it becomes %89.7 for o, , =1.5.
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Comment: The method we have developed in this chapter can be extended to
more complex data structures, e.g., two-way-classification ANOVA with
interaction, BIB design, linear regression, etc. That will be the subject matter of

our future research.
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CHAPTER 5

CONCLUSION

In the classical statistical framework, any estimator of an unknown
population parameter is a function of sample observations. The variance of the
estimator, however, cannot be less than the Cramer — Rao minumum variance
bound. The only way to obtain an estimator having its variance smaller than the
minumum variance bound is to engage Bayesian methodology: An unknown
population parameter & is assumed to have a probability density function p(&)
called prior distribution. The posterior distribution f(€|y) of & is defined to be
the product of the prior distribution p(#) and the likelihood function

L(Y,, Ys,---0 Y, | 6), the likelihood function representing the sample information.

Thus, the posterior distribution of & is given by

f(O1y) o« P(O)L(Y1: Yas Yar--s Yo | 6) (5.1)

@ is a single parameter or vector of parameters. The Bayesian estimator of &,
popularly called the HPD (highest posterior density) estimator, is defined to be the
mode of f(@]y).

If f(6]y) isasymmetric distribution, its mode, median and mean are the

same. Otherwise, they are different and called Bayesian mode, Bayesian median

and Bayesian mean estimators, respectively. HPD estimator Bayesian mode is
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most popular. To locate the mode of f(€]|y) one differentiates its logarithm with
respect to @ and equates it to zero. The solution is the HPD estimator provided
0*InL(@]y)/d&? <0. In most situations, however, dInL(&|y)/d@ =0 has no
explicit solution and finding its zero(es) becomes a very difficult task analytically
and computationally. Certain probing techniques, e.g., Gibbs sampling, are
available to locate the mode of f(@]|y). Such solutions, however, are not
conducive to algebraic treatment of the subject matter. To alleviate these
difficulties, Bain and Tiku (1997, a,b) defined posterior distribution as the product
of the prior distribution and Tiku’s modified maximum likelihood function
L (Y, Yss.., Y, |8); L is obtained by solving differential equations which yield
modified maximum likelihood estimators (Tiku and Akkaya, 2004, p.53). An
intresting feature of L~ is that it resembles a normal — theory likelihood function
irrespective of the underlying distribution f (y | 8) . Consequently, HPD estimators
take the form of convex combinations of the prior perceived value of a population
parameter and its modified maximum likelihood estimator. The latter are known
to be asymptotically equivalent to maximum likelihood estimators; for finite
sample sizes, they are essentially as efficient as maximum likelihood estimators

and numerically very close to them.

Bian and Tiku (1997,a,b) used this new posterior to find the HPD
estimators of location and scale parameters of distributions in two families: a)
long-tailed symmetric distributions, and b) Gamma distributions. We have
extended this work to the prominent family of Generalized Logistic distributions.
Further, we have extended the work to one — way — classification ANOVA
models. Our estimators are convex combinations and have beautiful algebraic
forms. We have shown that they have variances smaller than the minimum
variance bounds. In one — way — classification our estimator of ith block effect,

for example, is
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and its variance is
Var(z | y) = (o7 +m&~ ) (5.3)

The underlying distribution being (3.2). The estimated variance of the
corresponding MMLE is &°/m (almost) which is larger than (5.3). Note that,
6°/m is only marginially bigger than the minimum variance bound

{(p—3/2)(p+1)/np(p—1/2)}6* (Tiku and Suresh, 1992); the MVB estimator of
4 does not exist for the LTS family.

We have given in Chapter 4 of the thesis real life examples to illustrate the
usefulness of our method and the HPD estimators.

Our method can be extended to more complex data structures, e.g., two-
way- classification ANOVA with interaction, linear regression, etc. That will be
the subject matter of future research.
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APPENDIX A

VISUAL FORTRAN PROGRAM FOR CENSORED STUDENT T DISTRIBUTION

ONE SAMPLE CASE

(o} *** Written by Pelin Ozbozkurt, 2009, Ankara***

use numerical libraries

integer simnumber,n

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

real

r,q,%k,p,DF,t(1000),u,h(1000)

mu, sigma, order,ordery, alpha(1000)
alphapay (1000) ,alphapayda (1000)

betapay (1000) ,betapayda (1000) ,betal (1000)
tl,ql, fpayl, fpay, fpayda, f1l,bl,b2,b, a

sumbeta, M, sumbetay,muhatl, muhat

muhatMML (10000), Abig, sumalphay
Bbig,Cbig,suml, z(10000),y(10000)
sigmahatl, sigmahat, sigmahatMML (10000)

sum2, muhatMMLsimmean, sum3, muhatMMLsimvar
muzero, sigmazero, vzero,muhatbayespayl, muhatbayespay
muhatbayespaydal, muhatbayespayda, sigmahatpayda
muhatbayesson, muhatbayes (10000)

sumb, muhatBayessimmean, sum6, muhatBayessimvar
RE, sigmazeroinv, vzeroinv, sigmahatinv
muhatbayespay2, muhatbayespaydaZz
deltamu,mubcase2payl, mubcase2pay2, mubcase2pay3
mubcase2pay,mubcase2paydal, mubcase2payda?
mubcaseZpayda3, mubcase?2payda, mubcase
muhatbayesCase2 (10000) , sumbcase?2,
muhatBayesCase2simmean, sumbcase?2
muhatBayesCase2simvar, RECase?2

d1
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open (unit=1,file="C:\Documents and Settings\peli\Desktop\
&CENSOREDstudentT.txt')

print*, 'enter n and r'

read*, n,r

simnumber=10000
mu=0

sigma=1.5

g=r/n

p=3.5

k=(2*p)-3
DF=(2.0%*p) -1

C *** Specify prior probabilities as:

muzero=0
sigmazero=3

vZero=6

C *** Calculate t(i) as:

do i=1,n
u=1i/((1.0*n)+1)
t (i)=TIN (u,DF)
enddo

C *** Calculate alpha(i) as:

do i=1,n

alphapay (1)=(2/k)*t (i) *t (i) *t (1)
alphapayda (i) =(1+((1/k)*t(i)*t(i)))**2
alpha (i) =alphapay (i) /alphapayda (i)
enddo
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C *** Calculate beta (i) as:

do i=1,n

betapay (1) =1-((1/k) *t (i) *t (1))
betapayda (1) =(1+((1/k) *t (1) *t(i)))**2
betal (i) =betapay (i) /betapayda (i)
enddo

C *** IF BETA(r+l) ISNEGATIVE, SO USE BETASTAR AND ALPHASTAR as:

if (betal(r+1)<0) then

do i=1,n

betal (1)=1/((1+(1/k)*t (i) *t(i))**2)
alphapay (1)=(1/k) *t (i) *t (i) *t (1)
alphapayda (i)=(1+((1/k)*t (i) *t(i)))**2
alpha (i) =alphapay (i) /alphapayda (i)
enddo

endif

C *** Calculate a and b as:

dl=1.0*(1-q)

t1=TIN(d1l, DF)
gl=tl/(1+(1/k)*(tl)*(tl))
fpayl=1/(1+(1/k)* (tl) *(tl))
fpay=fpayl**p
fpayda=sqgrt (k) *BETA(0.5,p-0.5)
fl=fpay/fpayda

bl=((-1.0)*fl) /g
b2=(2.0*p/k) *gl-(1.0)* (f1/q)
b=b1*b2

a=f1/q-b*tl

C *** Start simulation:

DO 212 s=1,simnumber

call RNSTT (n, DF,h)
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do i=1,n
y(i)=sigma*h (i) +mu

enddo

C *** Find ordered y (i) values as:

order=1
5 if (order.eg.l) then
order=0
do 8 i=1,n-1
if (y(i).gt.y(i+1)) then
ordery=y (1)
y (1)=y (i+1)
y (i+1l)=ordery
order=1
endif
8 continue
go to 5

endif

C *** Start to calculate MML estimators:

C *** Calculate MML of muhat

sumbeta=0
do i=r+1,n-r
sumbeta=sumbeta+betal (1)

enddo

M= ((2.0*p*sumbeta) /k)+(2.0*r*b)

sumbetay=0

do i=r+l,n-r

sumbetay=sumbetay+betal (1) *y (1)

enddo
muhatl=((2.0*p*sumbetay) /k)+r*b* (y (r+1)+y(n-r))
muhat=muhatl/M

muhatMML (s) =muhat
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C *** Calculate MML of sigmahat

Abig=(1.0*n)-(2.0*r)

sumalphay=0

do i=r+1,n-r
sumalphay=sumalphay+alpha (i) *y (i)
enddo

Bbig=((2*p*sumalphay) /k)+r*a* (y (n-r) -y (r+l1))

suml=0

do i=r+l,n-r
suml=suml+betal (i) * ((y (i) -muhat) **2)
enddo

Cbig=((2.0*p*suml) /k) +r*b* (y (r+1) -muhat) **2

&tr*b* (y(n-r) -muhat) **2

sigmahatl=sqrt ((Bbig**2)+(4.0*Abig*Cbiqg))
sigmahat= (Bbig+sigmahatl) / (2*sqrt ( (Abig) * (Abig-1)))
sigmahatMML (s)=sigmahat

C *** Calculate HPD Estimators:

C *** CASEl: When mubayes is close to muzero:

sigmazeroinv=(1.0/sigmazero)

vzeroinv=(1.0/vzero)

sigmahatinv=(1.0/sigmahat)
muhatbayespayl=(sigmazeroinv**2) * (1l+vzeroinv) *muzero
muhatbayespay2=M* (sigmahatinv**2) *muhat
muhatbayespay=muhatbayespayl+muhatbayespay?2
muhatbayespaydal=(sigmazeroinv**2) * (1l+vzeroinv)
muhatbayespayda2=M* (sigmahatinv**2)
muhatbayespayda=muhatbayespaydal+muhatbayespayda?
muhatbayesson=muhatbayespay/muhatbayespayda

muhatbayes (s)=muhatbayesson
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C *** Case2: When mubayes close to muMML:

deltamu= (muhat-muzero) /sigmazero
mubcaselZpayl=(sigmazeroinv*sigmazeroinv*muzero)
mubcase2pay2=(1.0*vzero+ (deltamu*deltamu) )/ (vzero+1.0)
mubcase2pay3=mubcasel2pay2*M* (sigmahatinv**2) *muhat
mubcase2pay= (mubcase2payl+mubcase2pay3)
mubcasel2paydal=(sigmazeroinv*sigmazeroinv)
mubcase2payda2= (vzero+ (deltamu*deltamu) )/ (vzero+1l)
mubcasel2payda3=mubcaselpayda2*M* (sigmahatinv**2)
mubcase2payda=mubcasel2paydal+mubcase2paydal
mubcase2=mubcasel2pay/mubcase2payda
muhatbayesCase?2 (s) =mubcase?

212 continue

C *** Finding simulated MMLmean:

sum2=0

do i=1, simnumber
sum2=sum2+muhatMML (1)
enddo

muhatMMLsimmean=sumZ2/simnumber

C *** Finding simulated MMLvariance:

sum3=0

do i=1, simnumber

sum3=sum3+ ( (muhatMML (i) -muhatMMLsimmean) **2)
enddo

muhatMMLsimvar=sum3/ (simnumber-1)

C *** Finding simulated Bayes mean: CASEl:

sum5=0
do 1=1, simnumber
sumb=sumS+muhatbayes (i)

enddo

muhatBayessimmean=sum5/simnumber
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C *** Finding simulated Bayes mean: CASEZ2:
sumbScase2=0
do i=1, simnumber
sumbcase2=sumbcase2+muhatbayesCase2 (1)
enddo
muhatBayesCase2simmean=sumbcase?2/simnumber
C *** Finding Simulated Bayes variance:CASEl:
sum6=0
do i=1, simnumber
sum6=sumb6+ ( (muhatbayes (i) -muhatBayessimmean) **2)
enddo
muhatBayessimvar=sumé6/ (simnumber-1)
C *** Finding simulated Bayes variance:CASE2:
sumé6case2=0
do i=1, simnumber
sumbcase2=sumbcase2+ ( (muhatbayesCase2 (1) -
smuhatBayesCase2simmean) **2)
enddo
muhatBayesCase2simvar=sum6case?/ (simnumber-1)
C ** Relative Efficiency, Casel:
RE=muhatBayessimvar/muhatMMLsimvar
C ** Relative Efficiency, Case2:
RECase2=muhatBayesCase2simvar/muhatMMLsimvar
202 format (a8, 6x,al2,6x,al0,6x,al4,6x,al3)

write(1l,202) 'MML Mean', 'MML Variance', 'Bayes Mean',

&'Bayes Variance', 'RE (Bayes/MML) '
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C *** Casel: When mubayes close to muzero:
203 format (£7.4,8x%x,£7.4,12%x,£7.4,9%x,£7.4,13x,£7.4)
write(1,203) muhatMMLsimmean,muhatMMLsimvar,

&muhatBayessimmean, muhatBayessimvar, RE

C *** Case2: When mubayes close to muMML:

C 203 format(f7.4,8x,£f7.4,12%,£f7.4,9x,£7.4,13x%x,£7.4)
C write(1,203) muhatMMLsimmean,muhatMMLsimvar,

C &muhatBayesCase2simmean,muhatBayesCase2simvar

C &RECase?2

stop

end
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APPENDIX B

VISUAL FORTRAN PROGRAM FOR GENERALIZED LOGISTIC DISTRIBUTION
ONE WAY CLASSIFICATION

(o} *** Written by Pelin Ozbozkurt, 2009, Ankara***

use numerical libraries

integer N, simnumber,p,k,order,ntr,nbl, f

real b,mu(1000),sigma,ordery, pu

real ¢g(1000),taral (1000),tara2(1000),t(1000)

real bbetapay(1000),bbetapayda (1000),bbeta (1000)

real alphapay(1000),alphapayda (1000),alpha(1000)

real u(1000),z(1000), sumbbeta, u2(100,100)

real yal(100,100),ya2(100,100),ya3(100,100),y(100,100)
real delta(1000),sumdelta,D2,K2(1000)

real B2aral (1000),B2(1000),B2sum

real C2ara(1000),C2(1000),C2sum, sigmahatpayl

real sigmahatpaydal, sigmahatpayda?2, sigmahatpay?

real sMML,mMML (100), sigmahatMML (100000)

real summuhat (1000),sim Meanmuhat MML (1000)

real sumsigmahat,sim Meansigmahat MML muhatMML (100,100000)
real summuvar (1000),sim Variancemuhat MML (1000)

real sumsigmavar,sim Variancesigmahat MML

real muzero (1000),szero(1000),deltazero(1000)

real sifprime2,sif2,sibartil,siprimebartil

real muhatpriorpayl (1000),muhatpriorpay2 (1000)

real muhatpriorpayda (1000), muhatBAYESprior (1000)

real muhat prior BAYES(100,100000),muhatpriorpay(1000)
real h2inversepay,h2inversepaydal,h2inversepayda?2
real h2inversepayda3,h2inverse,h?2

real summubayeshat (1000), sim Meanmuhat Bayes (1000)
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real summubayesvar (1000),sim Variancemuhat Bayes (1000)
real RE Bayes MML (1000)

real fmupayl, fmupay2, fmupay, fmupaydal, fmupayda?2

real fmupayda3, fmupayda, MVBmuKONTROL

real fsigmapay, fsigmapaydal, fsigmapayda?

real fsigmapayda3, fsigmapayda

real fcovpay, fcovpaydal, fcovpayda?2, fcovpayda3, fcovpayda
real fmupaydalara, fsigmapaydalara, fcovpaydalara

real K2ara(1000), szeroinv (10000)

real deltamu(10000),mubcase2payl (10000)

real mubcase2pay2 (10000), mubcase2pay3(10000)

real mubcase2pay (10000) ,mubcase2paydal (10000)

real mubcase2paydaZ2 (10000), mubcase2(10000)

real mubcase2payda3 (10000),mubcase2payda (10000)

real muhatbayesCase2 (100,10000)

real sumbcase2 (10000), sumbcase2 (10000)

real muhatBayesCase2simmean (10000)

real muhatBayesCase2simvar (10000)

real RECase2(10000), deltazeroinv (10000), sMMLinv

real muhatpriorpaydal (1000), muhatpriorpayda2 (1000)

open (unit=1,file="C:\Documents and Settings\pelil\Desktop\
&GL ANOVA.txt')

print*, 'enter ntr, nbl,b'

read*,ntr
read*, nbl

read*, b

simnumber=10000
do i=1,ntr
mu (i) =0

enddo

N=ntr*nbl
sigma=1
sifprime2=0.6449

s1£2=0.4228
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if (b.eq.0.5) sibartil=0.0365
if (b.eq.l) sibartil=0.4228
if (b.eq.2) sibartil=0.9228
if (b.eq.3) sibartil=1.2561
if (b.eqg.4) sibartil=1.5061
if (b.eqg.5) sibartil=1.7061
if (b.eq.o0) sibartil=1.8728
if (b.eq.7) sibartil=2.0156
if (b.eq.8) sibartil=2.1406
if (b.eq.9) sibartil=2.2518
if (b.eq.10) sibartil=2.3518
if (b.eqg.0.5) siprimebartil=0.9348
if (b.eg.l) siprimebartil=0.6449
if (b.eqg.2) siprimebartil=0.3949
if (b.eqg.3) siprimebartil=0.2838
if (b.eg.4) siprimebartil=0.2213
if (b.eg.b) siprimebartil=0.1813
if (b.eg.6) siprimebartil=0.1536
if (b.eqg.7) siprimebartil=0.1331
if (b.eqg.8) siprimebartil=0.1175
if (b.eqg.9) siprimebartil=0.1051
if (b.eqg.10) siprimebartil=0.0951

C *** Specify prior parameters as:

do i=1,ntr
muzero (i) =0
szero (i)=2.5
deltazero (i)=6

end

C ** Find h2 as:

fmupayl=((sibartil-sif2) * (sibartil-sif2))+

& (siprimebartil+sifprime?2)
fmupay2=(1.0*ntr*b*fmupayl)+(1.0*ntr* (b+2.0))
fmupay=fmupay?2
fmupaydalara=1.0* (ntr-1) *b*b* ((sibartil-sif2) *

& (sibartil-sif2))
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fmupaydal=fmupaydalara/ (b+2.0)

fmupayda2=(1.0*ntr*b*b* (siprimebartil+sifprime2))/ (b+2.0)
fmupayda3=(1.0*ntr*b)+fmupaydal+fmupayda?
fmupayda=nbl*fmupayda3

h2inverse=fmupay/fmupayda

h2=1.0/h2inverse

C *** Start to calculate MML estimators:

do j=1,nbl

p=]

a(j)=p/ (nbl+1.0)
enddo

do j=1,nbl
taral (3)=(1.0/9(3))**(1.0/b)
tara2 (j)=taral(j)-1

t(3)=(-1.0)*alog(tara2(j))
enddo
do j=1,nbl

bbetapay (j)=exp(t(3))

bbetapayda (7)=(1+exp (t (J))) * (1+exp (t(J)))
bbeta (j) =bbetapay (j) /bbetapayda (J)

enddo

sumbbeta=0

do j=1,nbl
sumbbeta=sumbbeta+bbeta (J)
enddo

do j=1,nbl
alphapay () =1.0+exp (t (J))+t(J) *exp(t(J))
alphapayda (§)=(l+exp (t (7)) ) * (1+exp (t(J)))
alpha (j)=alphapay (j) /alphapayda (j)

enddo
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C *** Start simulation as:

DO 212 s=1,simnumber

call rnun (N, z)

enddo
f=1
do i=1,ntr
do j=1,nbl
uz (i, 3)=u(f)

f=f+1
enddo
enddo

C *** Obtain random variables from GL as:

do i=1,ntr
do j=1,nbl
yal(i,3)=(1.0/u2(i,J))**((1.0/b))
vaz(i,j)=yal(i,J)-1
ya3(i,Jj)=(-1.0)*alog(ya2(i,3J))

y(i,j)=mu(i)+sigma*ya3 (i, )

enddo
enddo
C *** Find ordered y (i, (j)) values as:
order=1
5 if (order.eqg.l) then
order=0

do 8 i=1,ntr

do 10 j=1,nbl-1

if (y(i,3J).gt.y(i,j+1)) then
ordery=y (i, J)

y(i,3)=y(i,3+1)
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y(i,j+1)=ordery
order=1
endif
10 continue
8 continue
go to 5

endif

C *** Find muMML and sigmaMML as:

do j=1,nbl
delta(j)=alpha(j)-(1.0/(b+1.0))
enddo

sumdelta=0

do j=1,nbl
sumdelta=sumdelta+delta (j)
enddo
D2=sumdelta/sumbbeta

do i=1,ntr

K2ara (1) =0

K2 (1i)=0
do j=1,nbl
K2ara (i)=K2ara (i) +bbeta (J) *y (i, 7)
enddo

K2 (1)=K2ara (1) /sumbbeta

enddo

do i=1,ntr

B2aral (i) =0
do j=1,nbl
B2aral (i)=B2aral (i)+1.0*delta(j)*(y(i,])-K2(1))
enddo

enddo

do i=1,ntr
B2 (i)=(b+1.0)*B2aral (i)
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enddo

B2sum=0

do i=1,ntr
B2sum=B2sum+B2 (i)
enddo

do i=1,ntr

C2ara (i) =0
do j=1,nbl
C2ara(i)=C2ara (i) +bbeta(j)*(y(i,J)-K2(1i))*
&(y(i,7)-K2(1))
enddo

enddo

do i=1,ntr
C2 (i)=C2ara (i) * (b+1.0)
enddo

C2sum=0

do i=1,ntr
C2sum=C2sum+C2 (i)
enddo

sigmahatpayl=(B2sum*B2sum) + (4.0*ntr*nbl*C2sum)
sigmahatpay2=(-1.0)*B2sum+sqgrt (1.0*sigmahatpayl)
sigmahatpaydal=1.0*N* (N-ntr)
sigmahatpayda2=2.0*sqgrt (1.0*sigmahatpaydal)
sMML=sigmahatpay?2/sigmahatpayda?2

do i=1,ntr

mMML (1) =K2 (i) - (1.0*sMML*D2)
enddo

sigmahatMML (s)=sMML

do i=1,ntr

muhatMML (i, s)=mMML (1)
enddo
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*** Find muBayes as:

*** Casel: When mubayes close to muzero:

sMMLinv=1/sMML

do i=1,ntr

deltazeroinv(i)=1/deltazero (1)

muhatpriorpayl (i)=(1.0/szero(i))*(1.0/szero (1)) *

& (l+deltazeroinv (i) ) *muzero (i)

muhatpriorpay2 (i)=1.0*h2*mMML (i) *sMMLinv*sMMLinv
muhatpriorpay (i)=muhatpriorpayl (i) +muhatpriorpay?2 (i)
muhatpriorpaydal (i)=(1.0/szero(i))*(1.0/szero(i))*

& (l+deltazeroinv(i))

muhatpriorpayda2 (i)=1.0*h2*sMMLinv*sMMLinv
muhatpriorpayda (i) =muhatpriorpaydal (i) +tmuhatpriorpayda2 (i)
muhatBAYESprior (i) =muhatpriorpay (i) /muhatpriorpayda (i)
enddo

do i=1,ntr
muhat prior BAYES (i, s)=muhatBAYESprior (i)
enddo

*** Case2: When mubayes close to muMML:

do i=1,ntr

szeroinv (i)=1/szero (1)

deltamu (i) = (mMML (i) -muzero (i))/szero (i)
mubcase2payl (i) =(szeroinv (i) *szeroinv (i) *muzero (1))
mubcasel2pay?2 (i)=(1.0*deltazero (i) + (deltamu (i) *

&deltamu(i)))/ (deltazero(i)+1.0)
mubcaseZpay3 (i) =h2* (mubcase2pay?2 (i) *

& (sMMLinv**2) *mMML (i) )

mubcaseZ2pay (i) =(mubcase2payl (1) tmubcase2pay3(1i))
mubcasel2paydal (1)=(szeroinv (i) *szeroinv (i))
mubcasel2payda? (1)=(deltazero (i) +(deltamu (i) *
&deltamu(i)))/ (deltazero (i) +1)
mubcase2payda3 (1) =mubcase2payda2 (i) *h2* (sMMLinv**2)

mubcase2payda (1) =mubcase2paydal (1) +mubcase2payda3 (1)
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mubcase?2 (1) =mubcaselpay (i) /mubcase2payda (i)
muhatbayesCase?2 (i, s)=mubcase?2 (1)
enddo

212 continue

C *** Finding simulated MMLmean:

do i=1,ntr

summuhat (1) =0
do s=1, simnumber
summuhat (i) =summuhat (i) +muhatMML (i, s)
enddo

enddo

do i=1,ntr
sim Meanmuhat MML (i)=summuhat (i) /simnumber

enddo

C *** Finding simulated Bayes mean: CASEl:

do i=1,ntr

summubayeshat (i) =0
do s=1,simnumber
summubayeshat (i) =summubayeshat (i) +

&muhat prior BAYES (i, s)

enddo

enddo

do i=1,ntr

sim Meanmuhat Bayes (i)=summubayeshat (i) /simnumber

enddo

C *** Finding simulated Bayes mean: CASEZ2:

do i=1,ntr

sumbcase? (1) =0
do s=1,simnumber
sumbcase?2 (i) =sumbcase?2 (i) tmuhatbayesCase2 (i, s)
enddo

enddo
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do i=1,ntr
muhatBayesCase2simmean (i) =sumbcase?2 (i) /simnumber

enddo

C *** Finding simulated MMLvariance:

do i=1,ntr

summuvar (1) =0
do s=1,simnumber
summuvar (i)=summuvar (i) +
& (muhatMML (i, s) -sim Meanmuhat MML (1)) *
& (muhatMML (i, s) -sim Meanmuhat MML (1))
enddo

enddo

do i=1,ntr
sim Variancemuhat MML (i)=summuvar (i)/ (simnumber-1.0)

enddo

C *** Finding Simulated Bayes variance:CASEl:

do i=1,ntr
summubayesvar (i) =0
do s=1,simnumber
summubayesvar (i) =summubayesvar (i) +
& (muhat prior BAYES (i, s)-sim Meanmuhat Bayes(i))*
& (muhat prior BAYES(i,s)-sim Meanmuhat Bayes(i))
enddo
enddo

do i=1,ntr
sim Variancemuhat Bayes (i)=summubayesvar (i) /
& (simnumber-1.0)

enddo

C *** Finding Simulated Bayes variance:CASE2:

do i=1,ntr

sumécase?2 (i) =0
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do s=1, simnumber
sumbcase? (1) =sumbcase? (1) +
& ( (muhatbayesCase?2 (i, s) -
&muhatBayesCase2simmean (i) ) **2)
enddo

enddo

do i=1,ntr
muhatBayesCase2simvar (i) =sumb6case?2 (i) / (simnumber-1)

enddo

C *** Relative efficency, Casel:

do i=1,ntr
RE Bayes MML(i)=sim Variancemuhat Bayes(i)/
&sim Variancemuhat MML (i)

enddo

C *** Relative efficency, Case2:

do i=1,ntr
RECase? (i) =muhatBayesCase2simvar (i) /
&sim Variancemuhat MML (i)
enddo
202 format (a9, 11x,al10,6x,al2,0x,al4,10x,al3)
write(1,202) 'MML Mean',6 'MML Variance', 'Bayes Mean',

&'Bayes Variance', 'RE (Bayes/MML) '

C *** Casel: When mubayes close to muzero:

203 format(f7.4,11x,f7.4,13x,£f7.4,11x,£f7.4,15x,€7.4,11x,£7.4,
&llx, £7.4)

do i=1,ntr

write(1,203) sim Meanmuhat MML (i),

&sim Variancemuhat MML (i), sim Meanmuhat Bayes (i),
&sim Variancemuhat Bayes(i),RE Bayes MML (1)

Enddo
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C *** Case2: When mubayes close to muMML:

C 203 format(f7.4,11x,£7.4,13%x,£7.4,11%x,£7.4,15x,£7.4,11x%x,£7.4,
C &11x,£7.4)

C do i=1,ntr
C write(1,203) sim Meanmuhat MML (i),
C &sim Variancemuhat MML (i), muhatBayesCaseZsimmean (i),
C smuhatBayesCase2simvar (i) ,RECase2 (1)
C enddo
stop
end
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