
MATHEMATICAL MODELING OF GATE CONTROL THEORY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EGEMEN AGİ
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ABSTRACT

MATHEMATICAL MODELING OF GATE CONTROL THEORY

Agi, Egemen

M.S., Department of Chemical Engineering

Supervisor : Prof. Dr. Canan Özgen

Co-Supervisor: Prof. Dr. Nuhan Pural�

December 2009, 115 pages

The purpose of this thesis work is to model the gate control theory, which ex-

plains the modulation of pain signals, with a motivation of �nding new possible

targets for pain treatment and to �nd novel control algorithms that can be used

in engineering practice. The di�erence of the current study from the previous

modeling trials is that morphologies of neurons that constitute gate control sys-

tem are also included in the model by which structure-function relationship can

be observed. Model of an excitable neuron is constructed and the response of

the model for di�erent perturbations are investigated. The simulation results of

the excitable cell model is obtained and when compared with the experimental

�ndings obtained by using cray�sh, it is found that they are in good agreement.

Model encodes stimulation intensity information as �ring frequency and also it

can add sub-threshold inputs and �re action potentials as real neurons. Moreover,

model is able to predict depolarization block. Absolute refractory period of the

single cell model is found as 3.7 ms. The developed model, produces no action po-

tentials when the sodium channels are blocked by tetrodotoxin. Also, frequency

and amplitudes of generated action potentials increase when the reversal poten-

tial of Na+ is increased. In addition, propagation of signals along myelinated and
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unmyelinated �bers is simulated and input current intensity-frequency relation-

ships for both type of �bers are constructed. Myelinated �ber starts to conduct

when current input is about 400 pA whereas this minimum threshold value for

unmyelinated �ber is around 1100 pA. Propagation velocity in the 1 cm long

unmyelinated �ber is found as 0.43 m
s
whereas velocity along myelinated �ber

with the same length is found to be 64.35 m
s
. Developed synapse model exhibits

the summation and tetanization properties of real synapses while simulating the

time dependency of neurotransmitter concentration in the synaptic cleft. Mor-

phometric analysis of neurons that constitute gate control system are done in

order to �nd electrophysiological properties according to dimensions of the neu-

rons. All of the individual parts of the gate control system are connected and the

whole system is simulated. For di�erent connection con�gurations, results of the

simulations predict the observed phenomena for the suppression of pain. If the

myelinated �ber is dissected, the projection neuron generates action potentials

that would convey to brain and elicit pain. However, if the unmyelinated �ber is

dissected, projection neuron remains silent. In this study all of the simulations

are preformed using Simulink.

Keywords: Hodgkin-Huxley model, ion channels, action potential propagation,

synaptic transmission, conductance based models, substantia gelatinosa.
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ÖZ

GEÇ�T KONTROL KURAMININ MATEMAT�KSEL MODELLENMES�

Agi, Egemen

Yüksek Lisans, Kimya Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Canan Özgen

Ortak Tez Yöneticisi: Prof. Dr. Nuhan Pural�

Aral�k 2009, 115 sayfa

Bu tez çal�³mas�n�n amac�, a§r� sinyallerinin modülasyonunu aç�klayan geçit kon-

trol kuram�n�n, a§r� tedavilerinde, tedavinin uygulanabilece§i muhtemel hede-

�erin saptanmas� ve mühendislik alan�nda kullan�labilecek yeni bir denetim algo-

ritmas�n�n bulunabilmesi amac�yla modellenmesidir. Bu çal�³man�n önceki mod-

elleme çal�³malar�ndan fark�, geçit kontrol sistemini olu³turan nöronlar�n morfolo-

jilerinin de göz önüne al�nmas� ve yap�-i³lev ili³kisinin de modele dahil edilme-

sidir. Çal�³mada, uyar�labilir bir sinir hücresinin modeli kurularak, bu modelin

çe³itli de§i³kenler kar³�s�nda nas�l cevap verdi§i incelenmi³tir. Farkl� �zyolojik

ko³ullarda, model sonuçlar�n�n kerevit bal�§� kullan�larak yap�lan deneysel çal�³ma

sonuçlar� ile uygun oldu§u gözlenmi³tir. Model, uyar� ³iddeti bilgisini aksiyon

potensiyeli frekans� olarak kodlamakta ve ayr�ca e³ik alt� uyar�lar� gerçek nöronlar

gibi toplayarak aksiyon potansiyeli üretmektedir. Model, depolarizasyon blo§unu

da tahmin edebilmektedir. Geli³tirilen hücre modelinin mutlak tepkisiz periyodu

3.7 ms olarak bulunmu³tur. Sodyum kanallar�ndan iyon geçi³i tetrodotoxin ile

engellendi§inde, geli³tirilen model aksiyon potansiyeli üretememektedir. Ayr�ca,

sodyumun dönme potansiyeli artt�r�ld�§�nda, olu³an aksiyon potansiyellerinin

frekans ve genliklerinin artt�§� gözlenmi³tir. Biyoelektrik sinyallerin miyelinli ve
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miyelinsiz sinir li�erindeki iletimi benzetilmi³ ve her iki tip lif için

uyar� ak�m ³iddeti-frekans ili³kisi kurulmu³tur. Bir cm uzunlu§undaki miyelin-

siz sinir li�nde iletim h�z� 0.43 m
s
olarak bulunurken, ayn� uzunluktaki miyelinli

sinirde iletim h�z� 64.35 m
s
olarak belirlenmi³tir. Ayr�ca geli³tirilen sinaps modeli,

sinaptik bo³luktaki, zamana ba§l� nörotransmiter konsantrasyonunu benzetirken,

gerçek sinapslarda da görülen toplama ve tetanizasyon özelliklerini göstermi³tir.

Geçit kontrol sistemini olu³turan nöronlar�n, boyutlar�na ba§l� elektro�zyolo-

jik özelliklerini bulabilmek için, morfolojik analizleri yap�lm�³t�r. Tüm sistem

modeli, bütün üye parçalar�n birle³tirilmesiyle çal�³t�r�lm�³t�r. Farkl� ba§lanma

düzenleri için, bentezim çal�³malar�n�n sonuçlar�, a§r�n�n bask�lanmas�yla ilgili

gözlemlenen olaylar� yak�n bir biçimde benzetebilmi³tir. Miyelinli sinir modelden

ç�kar�ld�§� zaman, beyne ileti ta³�yan projeksiyon nöronu aksiyon potansiyelleri

üretmi³tir. Miyelinsiz sinir modelden ç�kar�ld�§�ndaysa projeksiyon nöronu ak-

tivite göstermemi³tir. Bu çal�³madaki bütün benzetimler Simulink benzetim or-

tam�nda yap�lm�³t�r.

Anahtar Kelimeler: Hodgkin-Huxley modeli, iyon kanallar�, aksiyon potansiyeli

iletimi, sinaptik iletim, iletkenlik temelli modeller, jelatin madde.
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CHAPTER 1

INTRODUCTION

Control mechanisms in living organisms deserve attention since they are very

stable and robust from an engineering perspective. pH control of the body �uids

is a very good example for a biological control mechanism. Although various

food that can change the pH is digested, pH value is always kept in between very

narrow limits. Otherwise, the consequences can be detrimental. If the mechanism

of control system can be understood, not only it can be imitated and applied in

engineering sciences but also theories existing for engineering purposes can be

utilized to �x any malfunction in the system like dialysis. However, to be able to

extract a new theory from the living organisms or to apply engineering theory for

treatments, the system at hand should be investigated thoroughly and this is a

very hard task since biological systems posses multi-compartmental interactions

which are usually not well understood [9].

Another example of a control structure in a living organism is the gate con-

trol mechanism, which modulates the pain signals with tactile signals so that the

level of pain that is perceived is changed. For treatment of chronic pain, elec-

trical stimulation of spinal cord, where the gate control structure takes place, is

a common method [10]. However, to increase the e�ciency of this method and

to develop new treatment techniques gate control mechanism must be identi�ed

clearly. Apart from stimulation of spinal cord, for �nding the possible targets for

pain killers, the mechanism of suppression of pain must be studied thoroughly.

Although neuronal structure of the gate control mechanism is very simple, which

consists of two neurons and two �bers, since there is a vast heterogeneity in the

electrophysiological and morphological characteristics of neurons, formation of an

1



exact circuit is extremely hard. In recent years, to �nd exact circuits that process

pain signaling, connectivity patterns between neurons that are most probable to

be included in gate control mechanism are investigated. In addition, morpholog-

ical and electrophysiological properties of these neurons are being investigated so

that their signaling properties are revealed [2].

Electrophysiological and morphological characteristics of the components of

gate control structure are important because these properties directly a�ect the

signal initiation and propagation. Pain sensation can be inhibited if initiation of

signals that carry nociceptive (pain related) information is prevented. Neurons

generate signals through the ion movements across their membranes. Ions move

through ion channels that are embedded in cell membrane and these ion channels

change their permeability to ions with membrane voltage. If the dynamics of

these ion channels are understood, novel techniques can be improved to change

their permeability. As a result, initiation of signals can be inhibited or promoted.

While propagating along nerve �bers, signals attenuates with time and space.

Morphology is important because of the fact that the same signal can initiate a

response when it reaches to the end of a �ber whereas it cannot in another one.

Also, spatial summation of signals is a direct consequence of morphology of the

neurons.

Previous models of gate control structure did not take into account the phys-

iological and morphological properties of the components of the system. They

were either phenomenological models in which signal initiation is modeled with-

out regarding the biophysics behind the process [11] or black box models that use

arti�cial neural networks and use only input and output data [12].

In the current work, gate control structure is investigated with an e�ort to

model and �nd out the input-output relationship of the circuit with taking into

account the electrophysiological, morphological and connectivity patterns of the

neurons that are included. In this sense, signal initiation in an excitable neuron

and the propagation of this signal along nerve �bers are modeled. In addition,

signals travel from neuron to neuron through synapses so synaptic transmission is

2



modeled. Also the morphometric analysis of the component neurons is included

in the model.

Main concern of this study is to model the system regarding the physiological

and morphological properties of the components of the gate control structure

and test it for di�erent conditions to see if it predicts the observations for pain

transmission.
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CHAPTER 2

LITERATURE SURVEY

In this part, initially development of pain mechanism theories over a century

is presented along with the gate control theory. After examining the modeling

studies of gate control structure, clinical applications for pain treatments that

were based on gate control theory is investigated. Afterwards literature on single

cell excitability, signal propagation along �bers and morphology of components

of gate control strcuture is given.

2.1 Previous Models

At the beginning of 20th century, until the emergence of gate control theory there

were two theories that tried to explain pain sensation. The �rst one was the

speci�city theory which proposed that receptors, which were speci�c to pain, were

connected directly to a pain center in brain [13]. This meant that stimulation of

these receptors would elicit pain and only pain. Although physiologically there

were identi�ed skin organs that acted as receptors that were excited by only

nociceptive (pain related) stimuli, these stimuli did not necessarily evoke sensation

of pain.

Another competing theory was pattern theory. In contrary to stimulus spe-

ci�c receptors and pathways, in this theory receptors were non-speci�c and di�er-

ent sensations were encoded according to spatio-temporal pattern in discharged

impulses from the skin. In other words, distinctions in discharge properties of

peripheral nerve �bers projecting from skin and nerve �bers of central nervous

system that connected to peripherals were the reason of di�erent kinds of sensa-

tions that were experienced [14]. This coded message was decoded in the central
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nervous system. According to the theory pain was produced by the intense stimu-

lation of non-speci�c receptors. As the quantity of nerve �ber discharge increased,

quality of the sensation changed and pain was felt. So the theory said that there

were no speci�c �bers that carry speci�c sensation. However, physiological evi-

dence showed that there was �a high degree of receptor-�ber specialization� [15].

Modulation of pain by other sensory signals that are not related to nocicep-

tive information was �rst proposed by Melzack and Wall [15]. In their work it

was stated that after stimulation of skin, generated impulses were transmitted to

three structures in spinal cord, substantia gelatinosa (SG) cells in dorsal horn of

spinal cord, the dorsal column �bers that project to the brain and transmission

cells (T cells) in the dorsal horn. Substantia gelatinosa cells regulate the activ-

ity of a�erent �bers before they a�ect transmission cells. Dorsal column �bers

activate brain processes that changes modulation properties of gate control sys-

tem. Activity di�erence between nociceptive small diameter and non-nociceptive

large diameter �bers determine the activity of transmission cells which in turn

determines the level of perception of pain. Substantia gelatinosa cells are located

in the lamina II of spinal cord and exact location of the transmission cells were

not indicated explicitly in their paper. But with recent labeling studies it is un-

derstood that lamina I receives nociceptive signals from peripheral a�erents and

they relay this information to the brain, which makes them more likely to be

transmission cells [16,2].

After the proposal of the gate control theory, debate over the subject rised

and Nathan made a critical review about the theory [14]. He indicated that

the T-cell in the gate control theory is a hypothetical cell and gave possible

neurons that could be T-cells. Furthermore, he stated that a theory of pain

should explain di�erent kinds of pain that arose from stimulation of di�erent

tissues. Finally he criticzed the theory for neglecting �the facts known about

stimulus-speci�city of nerve �bres�. In a re-examination of the theory, Wall [17]

indicated that neurons of lamina I and lamina V of dorsal horn were candidate

neurons for being T-cells. Moreover, as a response to the critics of Nathan [14], he
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explained two di�erent uses of word speci�ty; one is diagnostic use and the other

is predictive use. He stated that predictive use of speci�city was misleading since

it could not be predicted if the stimulation of one �ber would cause the expected

sensation eventually. However, �past cause of an observed nerve impulse� could

be determined and this was referred as the diagnostic use of speci�city.

A neural network model of pain mechanism was presented by Minamitani and

Hagita [18]. In their model, peripheral receptors, a�erent Aβ, Aδ and C �bers,

receptive cells of spinal cord, brain stem, thalamus, and the cerebral cortex were

involved and the simualations were done only for one directional ascending and

descending pathways for pain sensation. Model only coped with signals that were

elicited by cutaneous stimulation. Firing properties of the component cells that

were related to pain generation were investigated and �spatial information pro-

cessing� mechanisms were not explained analytically. Although adaptation and

conduction velocity in the �bers were considered, each neural unit in the model

had constant conduction velocity and discharge threshold. With their model,

di�erent modalities of pain could be could be simulated such as fast stinging pain

and slow burning pain. In addition graded touch sensation was simulated.

Duty of brain in the gate control theory was a signi�cant contribution to un-

derstanding pain but duty of the brain and how it performed its task was poorly

understood. In this respect Melzack proposed that brain possesed a neural net-

work, which was called neuromatrix, and this neural network combined multiple

inputs to form the signal pattern that generates pain [19]. Melzack stated that

synaptic connections of the neuromatrix was initially determined genetically and

later shaped by sensory inputs. Output of this genetically determined neuro-

matrix was called neurosignature, which was the characteristic nerve impulse

pattern, and this characteristic neurosignature determined quality of pain experi-

ence. In his work, inputs that acted on neurosignature were stated as follows: 1)

sensory inputs from cutaneous receptors, 2) inputs that helped �congnitive inter-

pretation of the situation� like visual signals, 3) tonic inputs from other parts of

the brain that were related to emotions, 4) inhibitory modulation that was built
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in all brain function, 5) activity of stress regulation system which was activated

by any threat to biological stability or homeostasis. With the brain's function,

pain was not a direct consequence of only injury.

First mathematical model of the gate control theory of pain was made in

1989 [11]. In their paper Britton and Skevington indicates that a pain theory

must be capable of addressing �ve observations:

1. Increased stimulation of small nerve �bers increases pain.

2. Stimulation of large nerve �bers may increase pain temporarily but it will

reduce pain eventually.

3. Electrical stimulation of grey matter of the midbrain may reduce pain.

4. During situations like war, pain may not be felt even if you are wounded

severely.

5. Expectation of pain may augment the perceived pain.

Their model is composed of one excitatory, one inhibitory SG cells, one T cell, cog-

nitive control and descending control structures which represents the function of

the brain. They pick up arbitrary functions for frequency of outputs of cognitive

and descending control structures, which are strictly monotone increasing func-

tions of impulse frequencies in a�erent pathways, and for frequencies of outputs of

three cells, which are strictly monotone increasing functions of slow potentials of

the cells. With their model, Britton and Skevington not only achieved to explain

the �ve observations but also they explained that the cause of rhythmic pain is

the sudden changes in �ring frequencies of the cells. However, in their paper

mathematical equations were arbitrary and were not derived regarding the phys-

ical phenomena behind pain process [12]. Also physiological and morphological

properties of cells and a�erent �bers were not included.

Regarding the nonlinear interactions between components of gate control sys-

tem, another model is developed by Haeri et al. by using arti�cial neural networks

(ANN) [12]. They de�ned the inputs to be the frequency of impulses conveyed
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by a�erent �bers and output to be the potential of T cell, which represents pain

level. Using the results of mathematical model in [11], they got a set of training

data to be used to train their ANN. With their model they managed to explain

pain situations in which small diameter �bers are not excited. But again, their

model does not consider physiological and morphological properties of cells and

a�erent �bers.

In a more recent study in 2008 Xu and co-workers investigated pain, which is

caused by thermal means, in a holistic method [20]. They started to model the

transduction of thermal stimulus into bioelectrical pain signals by nociceptors,

in other words pain receptors. For the bioelectrical signal generation, they used

Hodgkin-Huxley formalism, which is the main formalism used in this current

work. For model of the transmission of the signal they used only nerve length

and conduction velocity data and did not take into account the morphology of

the �bers and the limitations that morphology may cause. For the gate control

system, they used the mathematical model of Britton and Skevington which had

the limitations that are mentioned above.

Stojanovic et.al. [10] indicated that for the treatment of chronic low back

pain, spinal cord stimulation is the most common technique that is used. Clinical

studies revealed a success rate above 50% and considering its relatively low cost

it is one the best techniques. They indicated that the base for this technique

was attributed to gate control theory but also there were possible new mecha-

nisms. Chaudhari et.al. [21] stated that treatment with neuromodulation aims to

decrease the activity in the pathways that carry pain signals and indicated that

implantation of spinal cord stimulators require high level of expertise since these

devices are implemented by invasive methods.

2.2 Electrical Properties of Neurons

For a complete model that will include physiological and morphological proper-

ties of the cells and a�erent �bers, certain structures that constitutes the gate

control circuitry must be modeled. These are model of an excitable cell which
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will generate an action potential (unit signal in nervous system), model of prop-

agation of action potential along a�erent �bers, model of synapses that connects

cells, morphology of cells, namely SG and T cells.

Model of a neuron can have di�erent complexity levels [22]and model should

be chose according to the particular goal of the study. For a big network of

neurons, simpler models are preferred to provide computational e�ciency, where

action potential initiation is described by simple mathematical expressions [23].

Since gate control system is a small circuit and computation powers of computers

are vast, detailed compartmental modeling, where the anatomical features of cells

are included into the model would be better to be used.

Model of an excitable cell was �rst modeled by Hodgkin and Huxley [24]using

squid giant axon and they received Nobel Prize in 1963 for this work. They

represented the electrical behaviour of membrane of an excitable cell by a simple

electrical circuit that is composed of a capacitor, resistors and batteries. They

proposed that ion channels that provide the transportation of Na+ and K+ ions

across cell membrane open or close with respect to voltage across membrane, so

there is a non-linear relationship between voltage across membrane and current

through ion channels. This non-linearity creates the speci�c action potential

shape. Electrical behaviour of human neurons is investigated by Schwarz et.al.

They performed their experiments on �nerve material that was obtained from

patients undergoing nerve graft operations� [8]. Di�erent from squid, human

nerve �bers are myelinated, in other words they are wrapped with myelin which

is an insulating material that changes the electrophysiological characteristic of

the �ber.

With the foundation of electrical excitability of cell membrane, the question

how action potentials propagate along a�erent �bers arose. Attenuation of volt-

age along dendrite of a neuron was shown by the cable theory of Rall [25,26]. This

passive propagation describes how voltage changes with time and space along ho-

mogeneous non-excitable part of the a�erents. In this model, cable is composed

of parallel connected RC �rst order circuits. However, saltatory conduction was

9



observed over myelinated �bers [27]. Myelin is an electrically insulating mate-

rial and covers the non-excitable parts of �bers. So an action potential that is

initiated in the excitable part of the �ber propagates along myelinated part pas-

sively and attenuates, but if magnitude of the attenuated signal is big enough

when it reaches the neighbouring excitable part, it can excite that excitable part.

In this way signal makes a saltatory propagation. Since conduction velocity is

proportional the square root of axon diameter [28], there are giant axons in in-

vertebrates (creatures without spine) to achieve to give fast responses to stimuli.

In vertebrates, myelinated axons are developed to increase the conduction ve-

locity of action potentials without increasing the diameter of the axon [29] so

that nerve bundles can be con�ned to a limited area. Since myelinated axons

are not uniform, propagation of action potentials along these �bers cannot be

described by only cable theory of Rall. To solve this non-homogeneity problem,

compartmental modeling is used [30]. In this method, axon is divided into small

compartments and every compartment is modeled according to their electrical

properties.

2.3 Synaptic Transmission

After the propagation of the action potential over a neuron, it should be transmit-

ted to the neighboring neurons. This is accomplished by synaptic transmission.

In central nervous system transmission is done by chemical synapses [1]. When

an action potential reaches the terminals of an axon, it triggers neurotransmitter

release into the synaptic cleft. These neurotransmitters di�use in the cleft and

bind to receptors that are located on post-synaptic neuron. Upon binding of

transmitters, receptors gate ion channels that allow the passage of speci�c ions.

There are inhibitory and excitatory receptors; inhibitory receptors gate ion chan-

nels that would let transport of ions which will decrease the membrane potential

of post-synaptic cell whereas excitatory receptors gate ion channels that would

let transport of ions which will increase the membrane potential of post-synaptic

cell and helps action potential to be initiated on the post-synaptic neuron.
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When modeling this process, there are two main things to consider; time

course of the neurotransmitter in the synaptic cleft and the dynamics of recep-

tors. Concentration of neurotransmitter in the synaptic cleft changes with di�u-

sion out of the cleft, uptake by post-synaptic neuron receptors [31] and opening

and closing dynamics of post-synaptic ion channels are dependent on this concen-

tration. Simpli�ed models of these receptors that are compatible with Hodgkin-

Huxley formalism are present in literature [32]. In this model concentration of

neurotransmitter in synaptic cleft is approximated with a brief pulse. In another

model transmitter concentration is de�ned with a function of pre-synaptic neuron

membrane voltage [33].

2.4 Morphologies of Lamina I-II Neurons

Propagation along a neuron is in�uenced by the shape of the neuron. Since

passive parts of the neuron are modeled as RC circuits, these compartments act

as low-pass �lter. As the diameter of the neuron changes, parameters of RC

circuit change, which means �lter characteristics also change.

Gate control system constitutes two neurons; one substantia gelatinosa and

one transmission cell. Di�erentiating the layers of spinal cord was a debate for

a long time and a review can be found in the work of Cervero and Iggo [34].

Substantia gelatinosa is the lamina II region of the spinal cord. Transmission cell

takes place in lamina I. These two regions receive a heavy synaptic input from

�bers that carry nociceptive signals [16] and that is why these two regions are

thought to be take part in modulation of pain signals [35].

With recent labeling studies in these two regions it is seen that there are more

neuron groups that di�er in electrophysiological and morphological characteristics

[3, 36]. Since substantia gelatinosa cells have inhibitory e�ect on transmission

cells, they should posses neurotransmitters that would gate inhibitory receptors.

Again in labeling studies, islet cells of lamina II are determined to have GABA

transmitter, which is a transmitter that gates inhibitory receptors [36]. So islet

cells are great candidates for the substantia gelatinosa cell that take place in
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gate control system. A morphometric and physiologic analysis of islet cells is

done by Melnick [4] and it is stated that �islet cells �re action potentials tonically

in response to sustained depolarization�. Transmission cell in the gate control

system integrates the incoming signals from substantia gelatinosa cell and a�erent

�bers. Prescott and Koninck indicated that tonic cells of lamina I have integrative

properties, so this makes them a candidate for being transmission cells [3].
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CHAPTER 3

PAIN CONTROL MECHANISMS

In this chapter, working principle of gate control theory is presented. The candi-

date component neurons of the structure are identi�ed and the ones that are most

suitable are chosen to be used in the model regarding their electrophysiological

properties.

3.1 Pain Perception

Pain is de�ned as �an unpleasant sensory and emotional experience associated

with actual or potential tissue damage, or described in terms of such damage�

by The International Association for the Study of Pain [20]. Pain is a sensory

modality like vision, hearing, touch and it is the result of tissue damage. With its

nature, pain perception is a protective mechanism; �it warns of injury that should

be avoided or treated� [1]. If someone who cannot perceive pain puts his/her hand

on a hot stove, s/he will not feel any pain expectedly and will not pull his/her

hand back so this will cause severe tissue damage. It should be emphasized that

pain is a perception and is di�erent from nociception which is �the response to

perceived or actual tissue damage� [1]. Sensation is the transduction of stimulus

by body receptors into signals that can be conveyed in the body. Perception is

the processing and abstraction of the sensory input. In this regard nociception

does not cause pain necessarily. Since pain is a percept, level of perception of

it changes from person to person with past experience, environmental conditions

and emotional state. This subjectivity makes pain treatment rather di�cult [1].

Nociceptors are receptors that are activated by unpleasant stimulus to pe-

ripheral tissues. There are three types of nociceptors; mechanical, thermal and
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polymodal which are responsive to mechanical, thermal and high intensity chem-

ical, thermal, mechanical stimuli, respectively. Most of them are free nerve end-

ings [1]. One important characteristic of nociceptors is that in general they do

not adapt. Adaptation is the decrease in the frequency of any sensory signal with

time, although the stimulus that evokes the sensory signal is still active. One

example is that although they are continually in contact with the body, clothes

are not felt to be touching all the time. The non-adapting nature of nociceptors

is important since it keeps the person alert for any tissue damage as long as the

noxious stimuli persists [5].

Thermal and mechanical receptors have thinly myelinated �bers, Aδ �bers,

that carry the nociceptive signal at a speed of 5-30 m/s. Whereas polymodal

nociceptors have unmyelinated C �bers that carry signal at 1m/s. Both types

of these �bers are known to be small diameter �bers; C �bers having diameters

between 0.25-1.5 microns and Aδ �bers having diameters between 1-5 microns.

The non-nociceptive signals like tactile sensory signals are generally carried by

Aβ �bers which are heavily myelinated and large in diameter (5-15 microns) [11].

3.2 Gate Control Theory of Pain

For explaining the perception of pain, before gate control theory was proposed

in 1965, there were two theories. One was the speci�city theory and the other

was pattern theory. Speci�city theory states that like vision, hearing and smell

modalities, pain also has �its own peripheral and central apparatus� [15], which

means there are specialized receptors, nociceptors, that are excited by only nox-

ious stimuli and this stimuli will be transmitted by Aδ and C �bers to speci�c

pain center in the brain. This type of transmission implies that stimulation of

nociceptors will de�nitely evoke pain and only pain. However, Aβ sensory �bers

which do not transmit pain signals have e�ect on pain perception. When Aβ

�bers of one region is selectively blocked, distinct unpleasant stimuli that would

cause di�erent pain like pin-prick, pinch and cold, could not be distinguished and

all of them causes burning pain [1]. Also activating Aβ �bers at the site of injury
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decreases pain and this is the reason why people rub their arm after they hit

somewhere or shake their hands after burning them. So modality and level of

pain that is perceived is not only a result of activity in pain speci�c peripheral

and central structures but also sensory signals that are not related to pain are

also e�ective in perception.

According to pattern theory, all sensations are produced by di�erent spatio-

temporal patterns of nerve impulses and there is no �modality speci�c� transmis-

sion pathways [15]. However, it is known there is specialization in sensory modal-

ities, like information related to vision is transmitted through speci�c pathways

to vision center of the brain. Also pattern theory cannot explain how the sensory

codes that are embedded in impulse patterns are decoded by the central nervous

system.

Psychological state has also e�ect on pain perception. During stressful situ-

ations like battles, severely wounded soldiers would feel little pain, although the

same injury would normally cause great pain [15, 11]. If something is expected

to cause pain, this expectation may augment the intensity of perceived pain [11].

Also past experience may modulate the level of perception of pain. Dogs which

are served food after being shocked, burned and cut, �soon respond to these stim-

uli as signals for food and salivate, without showing any signs of pain�; however

they react and howl as normal dogs when the site of stimuli is changed [15].

With the need of a new theory that would explain how the activities in no-

ciceptive and non-nociceptive �bers a�ect the level and quality of pain, and how

psychological state can modulate perception of pain, Melzack and Wall proposed

gate control theory in 1965 [15]. Their theory included an explicit mechanism

showing how the balance of activity in nociceptive and non-nociceptive a�erents

modulate pain. In addition they included descending control mechanism from

brain, that would be responsible for the e�ects of psychological state on pain.

Also stimulation of grey matter of midbrain is reported to cause pain relief [11],

so descending control also accounts for this observation. However, in this study

descending control will be excluded since there is no data on how brain interacts
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Figure 3.1 Schematic of gate control mechanism.

with other parts of the gate control system and the control action that it takes.

Gate control theory is best explained by a simple diagram as Figure 3.1.

Small diameter C and Aδ �bers excite transmission cells whereas inhibit sub-

stantia gelatinosa cells which inhibit transmission cells; in other words they in-

crease the excitability of transmission cells indirectly also. On the other hand, Aβ

�bers stimulate both substantia gelatinosa and transmission cells, which means

that while Aβ �bers excite transmission cells directly, they inhibit them indi-

rectly [15, 1]. Output of the transmission cell determines the level of perception.

Consequently, intensity of pain is modulated by this small neuronal circuitry

and it is composed of four parts: 1) unmyelinated, small diameter C �ber that

carries nociceptive signals 2) myelinated, large diameter, A �ber that conveys

non-nociceptive signals 3) transmission cell 4) substantia gelatinosa cell which

inhibits transmission cell [1].

The gate control system is located in the spinal cord which is the initial site

of modulation of pain. It is also important to mention that this mechanism is

topographically speci�c. This means every part of the body is connected to the

speci�c parts of spinal cord where nociceptive and non-nociceptive a�erent �bers

terminate. So when pain is felt in upper part of the left arm, exact place where

pain is felt, upper part of the left arm, should be rubbed; rubbing right foot would

not ease pain [1]. Substantia gelatinosa neurons and T-cells are situated at the

dorsal horn of the spinal cord. Dorsal horn is the part of the gray matter (which

16



Figure 3.2 Peripheral and central pathway for nociceptive and non-nociceptive

sensory signals (adapted from [1]).

is the butter�y shaped inner part of the cord) that is positioned near the back of

a human anatomically. Opposite of dorsal is ventral and it corresponds to part of

body near the belly. After integrating all coming signals, T-cell projects through

ascending pathways to activating system in the brain and brain interprets the

meaning of the incoming signal. The pathway that is dealed here is shown in

Figure 3.2.

Dorsal horn is composed of multiple laminars and substantia gelatinosa (gelati-

nous substance) corresponds to lamina II. The neurons of this lamina are thought

to be the interneurons in the gate control system because it receives a heavy

synaptic input from unmyelinated C �bers and thinly myelinated Aδ �bers, which

convey nociceptive information [16, 35]. Also in their recent work, Daniele and

MacDermott found GABAergic, in other words inhibitory neurons that receive

Aβ projection and inhibit the same Aβ drive onto projection neurons in a feedfor-

ward manner in super�cial dorsal horn (lamina I and II) [37], which is consistent
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Figure 3.3 Laminar structure of dorsal horn [2].

with the gate control theory. In their work Melzack and Wall did not mention

what the T-cells are and the place of T-cells in the dorsal horn due to lack of

data. However, in a re-examination of the theory, Wall gave two candidate lam-

ina where T-cells may be present. One is the lamina I (marginal zone) and the

other is lamina V [17]. In lamina I, there were cells which were only responsive to

noxious stimuli and to no others. Also some of these cells projected to higher cen-

ters in the central nervous system. It was also shown that electrical stimulation

of large diameter cutaneous (related to skin) �bers inhibited the �ring of these

cells [17]. Wall stated that lamina V cells had a wide receptive �eld; not only

nociceptive a�erents but also non-nociceptive a�erents converged on this lamina

and activity of non-nociceptive �bers inhibited them. These cells were also re-

sponsive to injury [17]. This was consistent with the receptive �eld of T-cells. In

the most recent papers lamina I neurons are associated with nociception and are

stated to be projection neurons that send nociceptive signals to brain through

ascending pathways [3, 38,16]. In this regard lamina I neurons will be treated to

be the T-cells in the gate control mechanism in this current study.

There is not one kind of neuron neither in substantia gelatinosa nor in marginal

zone. Neurons of these layers di�er morphologically and also with their response

to same stimuli. There are attempts to classify the neurons of these layers ac-

cording to their morphological and electrophysiological properties and try to �nd
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Figure 3.4 Firing properties of di�erent lamina I neurons [3].

correlations between these properties [38,36,3]. In the work of Prescott De Kon-

inck with adult rat, based on the responses to current injection to soma, four cell

types are identi�ed [3]; tonic cells �re action potentials continuously as long as

the stimuli persists, phasic cells �re high frequency burst of action potentials with

variable durations depending on the amplitude of the stimuli, however they stop

�ring before the end of stimulation, delayed onset cells start to �re with a delay to

the �rst action potential and single spike cells �re only one action potential or a

very short burst (≤ 4 spikes) and become silent during the rest of the stimulation.

Firing properties of these cells are shown in Figure 3.4. Upper plots indicates the

membrane potentials of the cells that are produced upon stimulation with current

injections that are shown in lower plots. Membrane potentials are in the order of

mV and currents are in the order of pA.

In the same study, upon investigation of the responses of these cells to train

of pulses, it is stated that tonic and delayed onset cells tend to integrate inputs

whereas phasic and single spike cells operate as coincide detectors, so phasic and

single spike cells can follow high frequency inputs. In addition, tonic cells are

reported to be able to transduce stimulus intensity into �ring frequency [3] which

is the general method of transduction in nervous system. Since T-cells in gate

control system sums inputs from three di�erent sources, they act as integrators.

So tonic cell will be chosen to be T-cell in this current work. When the �ring

property and morphology of the cells are explored, it is found that tonic cells

corresponds to fusiform cells. Cells of lamina I are di�erentiated according to

their soma shape and number of primary dendrites which are fusiform, pyramidal

and multipolar [3, 39]. Fusiform cells are identi�ed with their elongated soma
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and primary dendrites arising from each end of the soma [39] which means they

have two primary dendrites [3], pyramidal cells have triangular soma and three

primary dendrites arising from the corners of the soma, multipolar cells have no

speci�c soma shape but they posses four or more primary dendrites. These cell

morphologies are not speci�c to rat, they are also found in cat and monkey, so

this indicates that these cell types are a mammalian feature [39]. In the work

of Han et.al., responses of cat lamina I neurons were recorded and it was found

that all of the fusiform cells that were labeled were nociceptive speci�c, in other

words they were responsive only to noxious stimuli like pinch and heat [40]. This

is another reason why fusiform cells may be chosen as T-cells in gate control

system. Fusiform lamina I cell in Figure 3.5 is a 3-D reconstruction that is

obtained from the confocal images of the labeled neuron that were obtained by

Zeiss Axioplan2 microscope equipped with a 40X water immersion objective [3]

and it will be used as the T-cell in the current work. Axon is determined to be

the thin branch coming out of the soma and labeled with the arrow in Figure 3.5.

This is consistent with the criteria that Grudt and Perl used to identify axons of

the cells in super�cial dorsal horn (lamina I and II); they are �generally thinner

and relatively constant size from the soma outward� and they do not contain

spines [38]; mushroom shaped small parts that are connected to dendrites or axons

with thin necks. Vertical axis of Figure 3.5 corresponds to the rostro-caudal axis

which is the line connecting tail and head in animals like rats, horses; in humans

it is the line connecting foot and head. Neither the neuron in Figure 3.5 nor other

fusiform cells are classi�ed as projection neurons in the work of Prescott and De

Koninck [3]. However, there are studies that explored ascending pathways from

lamina I to brain and found samples of all three classes of neurons projecting to

these ascending pathways [41, 39]. So the neuron in Figure 3.5 will be assumed

to be projecting to ascending pathways as the T-cell in gate control system does.

Substantia gelatinosa is generally indicated to be composed of four di�erent

classes of neurons that di�er morphologically; islet cells, central cells, radial cells
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Figure 3.5 Fusiform, tonic lamina I cell [3].

and vertical cells [38, 35]. More speci�cally they are classi�ed according to their

branching pattern of dendrites and principal orientation of the dendritic tree.

Schematics of these neuron types are shown in Figure 3.6. Islet cells have rela-

tively longer dendrites than the other types of neurons and these dendrites mainly

extend along the rostro-caudal axis. Central cells are similar to islet cells but they

have shorter dendritic tree along rostro-caudal axis. Radial cells have dendrites

that extends in every direction. Dendritic tree of vertical cells extends ventrally

to laminae II-IV [38, 35]. Substantia gelatinosa neuron in the gate control sys-

tem is an inhibitory interneuron that inhibits the T-cell. The neuron that will

be chosen as the substantia gelatinosa neuron in the gate control system should

posses inhibitory neurotransmitter so upon secretion it will inhibit T-cell. With

labeling studies, islet cells were showed to be immunoreactive for g-aminobutyric

acid (GABA) which is the main neurotransmitter in super�cial dorsal horn [42].

In the work of Maxwell et.al., morphology of inhibitory and excitatory interneu-

rons in the super�cial laminae of the rat dorsal horn were investigated and all of

the islet cells were found to be inhibitory whereas other cell types shows multi-

ple actions; either excitatory or inhibitory. They also stated that islet cells had

axons that project outside the territory of dendritic tree which made them great

candidates for being inhibitory interneurons since they may collect information
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Figure 3.6 Neuron types in substantia gelatinosa.

from one sensory region and inhibit other neurons outside this region [36]. Under

sustained depolarization islet cells �re action potentials tonically which means

they �re repetitively with regular intervals [43,16,4] and this electrophysiological

property is stated to be consistent with an inhibitory function [36]. With the

evidence at hand they are the major class of inhibitory interneurons in lamina

II [44]. For the inhibitory interneuron in the gate control mechanism an islet cell

will be used.

Axons of islet cells are con�ned in their dendritic trees and the dendritic tree

of islet cells are so dense that their axons and primary dendrites are hard to be

identi�ed. But a clear image of a labeled islet cell from work of Melnick will be

used in this work [4] which is shown in Figure 3.7. This image was taken and

processed with a Zeiss LSM510 confocal microscope [4]. Probable axon of the

islet cell in Figure 3.7 is determined according to the de�nition given by Grudt

and Perl; axon is identi�ed by its generally thinner and relatively constant size,

emerging from soma outwards and does not contain spines [38]. It should be noted

that there is not a work that shows the inhibitory connectivity between a lamina

II islet cell and lamina I fusiform cell. To �nd such a connectivity, simultaneous

recordings should be done from the fusiform and islet cells so that it can be

shown, an activity in islet cell mediates a response in fusiform cell, which is the

postsynaptic neuron in the gate control system. In literature such simultaneous

recordings were done to reveal connectivity patterns between super�cial dorsal

horn neurons [43, 16] so that possible modulatory circuits can be found. Such

connectivity studies should be done to explore precise targets for therapies in pain

conditions. However, simultaneous paired recordings have technical challenges.
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Figure 3.7 Islet cell in substantia gelatinosa [4].

First of all, probability of encountering connected neurons is very low, almost 10%

of the tested pairs are found to be connected. Other shortcoming of the technique

is that data sets are relatively small [2]. It should also be noted that there may

be other gate control structures that are di�erent from the one proposed by

Melzack and Wall [15]. Lu and Perl proposed a probable gate system where both

presynaptic and postsynaptic neurons were located in lamina II and inhibitory

interneuron received only innocuous input from unmyelinated C �ber unlike the

interneuron in original gate control system which received input from a myelinated

Aβ �ber and nociceptive C �ber [43].

Connectivities between the neurons and the �bers that convey noxious and

non-nociceptive signals to them will be treated to be monosynaptic, which means

every component of the gate control system will be in contact with each other

at only one point. So, while morphometric analysis is being done, not all the

dendrites will be investigated since number of dendrites may be higher than the

number of inputs to the neuron. Dendrites that receive no input will not a�ect

the behaviour of the neuron and will not be included. There are works in liter-

ature pointing monosynaptic connections in super�cial dorsal horn. In the work

of Grudt and Perl, stimulation of dorsal root (a term that is used for collection

nerve �bers that carry sensory information to central nervous system) evoked
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responses in super�cial dorsal horn which were judged to be monosynaptic [38].

In the inhibitory network that Lu and Perl proposed, islet cell and central cell of

substantia gelatinosa, which are connected monosynaptically, received monosy-

naptic excitatory inputs from C �bers [43]. It should be noted that, monosynaptic

connectivity is one of the major assumptions in the current modeling study.
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CHAPTER 4

ELECTRICAL PROPERTIES OF CELL MEMBRANE

In this chapter, action potential generation is explained. First, the forces that

act on ions and make them move through the cell membrane are presented. Af-

ter that, electrical circuit model of cell membrane is explained which is followed

by formulation of the propagation of action potentials along myelinated and un-

myelinated �bers.

4.1 Mechanism of Ion Movement Through Cell Membrane

Cell membrane is a lipid bilayer, in which proteins that span the whole membrane

exist [5]. A simple �gure of this structure is shown in Figure 4.1.

This membrane separates internal and external conducting solutions and con-

stitutes a barrier for lipid-nonsoluble substances, namely water and free ions in

the body �uid. Electrical activity in the nerves is accomplished by the movement

of intracellular and extracellular free mobile ions through the cell membrane.

Since ions cannot dissolve and di�use through membrane, they are transported

through watery channels, ion channels, which are proteins that span the cell mem-

brane. There are two forces that make ions move through ion channels, across

the membrane:

1. Chemical driving force

2. Electrical driving force

Chemical driving force is the result of concentration gradient of ions that exists

across cell membrane. One dimensional movement of ions under this force is

25



Figure 4.1 Cell membrane structure. [5]

explained by Fick's Law of Di�usion which has the following form:

JAdiffusion = −DAB
dCA
dx

(4.1)

where JAdi�usion
is the molar �ux of ion A, that is generated by concentration

gradient, in mol/cm2 · s, DAB is the molecular di�usivity of ion A in B in cm2/s

and CA is the local concentration of ion A in mol/cm3 [45,6]. B in Equation 4.1

is the body �uid in ion channels.

As mentioned before, cell membrane separates intracellular and extracellular

conducting solutions, which consist of ions at di�erent concentrations. As a result

of accumulation of these ions on both sides of membrane, a potential di�erence

is created. This potential di�erence creates an electric �eld which is the source

of electrical driving force. Flux that is generated by drift of ions in electric �eld

is calculated as:

JAelectrical drift = −zAµACA
dV

dx
(4.2)

where JAelectrical drift
is the molar �ux of ion A, that is generated by the potential

gradient, in mol/cm2 ·s, zA is the valence of A (dimensionless), mA is the mobility

of A in membrane in cm2/V ·s, CA is the local concentration of ion A in mol/cm3,

V is the local electrical potential in membrane in V [6]. Multiplying the right

side of Equation 4.2 by ionic valance, zA, and Faraday's constant, F in C
mol

, gives
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the current density IA in terms of A/cm2. Under the assumption that electric

�eld,−dV
dx
, and mobility across the membrane are constant, which means they are

independent of x, derivative term can be replaced by E
l
where E is the potential

di�erence across the membrane and l is thickness of membrane. Equation 4.2

takes the following form:

IADrift = z2
AFµACA

E

l
(4.3)

In fact Equation 4.3 is an explicit form of Ohm's law where conductivity of an

electrolyte solution has the form z2AFµACA
l

. Total �ux resulting from di�usion and

electrical drift has the following form:

Jtotal = −DAB
dCA
dx
− zAµACA

dV

dx
(4.4)

Multiplying both sides of Equation 4.4 by ionic valance, zA, and Faraday's con-

stant, F in C
mol

, gives the total current density IAtotal
in terms of A/cm2:

IAtotal = zAF (−DAB
dCA
dx
− zAµACA

dV

dx
) (4.5)

Molecular di�usivity in Fick's law and the mobility in electrical drift equation

�express a similar quantity: the ease of motion through the �uid� [6] and these

parameters has a connecting formula known as Einstein Relationship:

DAB = µA
kT

q
=
RT

F
µA (4.6)

where R is the gas constant in J
K·mol . Using Einstein relationship in Equation 4.5,

Nernst-Planck electrodi�usion equation is obtained:

IAtotal = (−zAµART
dCA
dx
− z2

AFµACA
dV

dx
) (4.7)

Equation 4.7 is the basic relation that explains the movement of ions in electric

�eld through a membrane where concentration gradient exists. As the ions �di�use

through the membrane, the electrical potential di�erence that is set up across the

membrane retards the di�usion of more ions� [46]. In other words, electrical and

chemical forces oppose each other and an equilibrium is reached and total current

density becomes 0. At this point, Equation 4.7 takes the following form:

0 = (−zAµART
dCA
dx
− z2

AFµACA
dV

dx
) (4.8)
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Rearranging gives
dV

dx
=
−RT
zAF

1

CA

dCA
dx

(4.9)

Integrating with proper limits gives

V2ˆ

V1

dV =
−RT
zAF

C2ˆ

C1

dCA
CA

(4.10)

V2 − V1 =
−RT
zAF

ln
C2

C1

(4.11)

where V1 and C1 are extracellular potential and extracellular concentration, re-

spectively; V2 and C2 are intracellular potential and intracellular concentration,

respectively. By convention, extracellular side is taken as reference so membrane

potential is de�ned as

Vmembrane = Vintracellular − Vextracellular = V2 − V1 (4.12)

So the �nal form of the equation is

Vmembrane =
RT

zAF
ln
C1

C2

(4.13)

Potential di�erence that is generated by concentration di�erence of one kind of

ion across cell membrane is given by Equation 4.13. We may write

EA =
RT

zAF
ln
Coutside
Cinside

(4.14)

where EA is known to be equilibrium potential of ion A. When membrane potential

is equal to equilibrium potential of ion A, net �ux of A ions is zero. Equation

4.14 is the Nernst equation. In fact in the original form of Nernst equation,

instead of concentrations, chemical activity coe�cients of ion A in extracellular

and intracellular solutions are used. But, if the activity coe�cients are nearly

the same in two solutions, intracellular and extracellular concentrations can be

used [46].

Movement of ions through the cell membrane and the currents that they

create was �rst investigated by David E. Goldman, Alan Lloyd Hodgkin and

Bernard Katz and GHK current and GHK voltage equations were formulated [6].
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Figure 4.2 Model of transport through cell membrane [6].

GHK current equation is a solution of Nernst-Planck electrodi�usion equation

with two additional assumptions: electric �eld across the cell membrane is con-

stant and movements of di�erent ions are independent from each other, in other

words species do not interrupt the movement of di�erent species. Membrane is

selectively permeable to substances and has di�erent membrane permeabilities to

di�erent substances. For a substance to pass though the membrane, it should be

�rst dissolved in the lipid membrane. So the �ux of the substance is determined

by the concentration di�erence inside the membrane. To �nd the concentration

di�erence inside the membrane, the extracellular and intracellular concentrations

of ion A are multiplied by β, water-membrane partition coe�cient for ion A which

is a dimensionless number. A simple model of transport through cell membrane

is shown in Figure 4.2.

Permeability of an ion A is de�ned by the empirical �ux equation

MA = −PA∆CA (4.15)

whereMA is the molar �ux density of A in mol
cm2·s , PA is the membrane permeability

to A in cm
s
and ∆CA is the concentration di�erence of A between extracellular and

intracellular bulk solutions. Under the condition that partitioning of A between

membrane and extracellular and intracellular solutions is very rapid, this process

may be assumed to be in equilibrium and concentration of A inside the membrane,

at membrane-solution interface can be found by multiplying the bulk solution
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concentration by membrane-water partition coe�cient, β. With the assumption

that concentration gradient is constant, from Fick's �rst law �ux can be written

as

MA = −∆CADABβ

l
(4.16)

Equating Equation 4.15 and Equation 4.16 PA can be found as

PA =
DABβ

l
(4.17)

Using Equation 4.6 in Equation 4.17, relationship between permeability and mo-

bility can be expressed as

PA =
βµART

lF
(4.18)

With the use of permeability and the aforementioned two assumptions, GHK

current equation takes the following form

IA = PAz
2
A

V F 2

RT

[CA]in − [CA]out exp(−zAFVRT )

1− exp(−zAFVRT )
(4.19)

As it can be seen, ionic current is a non-linear function of membrane voltage.

Since transport of di�erent ions is independent from each other, Equation 4.19

can be split into unidirectional e�ux and in�ux of the ions as

IAefflux = PAzAFθ
[CA]in

1− exp(−θ)
(4.20)

IAinflux = −PAzAFθ
[CA]out exp(−θ)

1− exp(−θ)
= PAzAFθ

[CA]out
1− exp(θ)

(4.21)

where θ is equal to zAFVRT . These two equations are nonlinear functions of mem-

brane voltage, but for large voltages they become asymptotic to straight lines

which have the following forms

IAefflux = PAzAFθ [CA]in for E � 0 (4.22)

IAinflux = PAzAFθ [CA]out for E � 0 (4.23)

Current-voltage relation, which is expressed in GHK current equation, changes

between these two lines. From the current-voltage relation it can be deduced that

membrane conductance changes with membrane voltage. Nonlinear dependence
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of current on membrane voltage and the asymptotic behaviour of GHK current

equation can be seen more clearly in Figure 4.3. By convention outward current

is taken as positive and inward current is taken as negative. When the intracellu-

lar concentration is much higher than extracellular concentration, as the voltage

increases total current curve approaches the outward current (e�ux) asymptote

and as the voltage decreases it approaches inward current (in�ux) asymptote as

in Figure 4.3(a). When the extracellular concentration is much higher than intra-

cellular concentration, for smaller voltages total current curve approaches inward

current asymptote and for higher voltages it approaches outward current asymp-

tote as in Figure 4.3(b). If Figure 4.3(b)and Figure 4.3(a) are investigated more

closely, it can be seen that total current changes direction at some speci�c point.

The voltage at which total current changes direction is the reversal potential and

it is the membrane potential when the net ionic �ux, in other words total current

through membrane is zero. If only Na+, K+ and Cl- ions are assumed to pass

through the cell membrane, total current at any moment will be equal to the

following:

Itotal = INa + IK + ICl (4.24)

Itotal =
V F 2

RT
[
1− exp(−V F

RT
)
]Y (4.25)

X = PNa [Na]in + PK [K]in + PCl [Cl]out (4.26)

Y =

{
X − (PNa [Na]out + PK [K]out + PCl [Cl]in) exp(

−V F
RT

)

}
(4.27)

At the resting condition, there is no ionic �ux through the membrane so total

current is zero. Itotal becomes zero when the term Y equals zero in Equation 4.25.

After equating that term to zero the following equation is obtained

PNa [Na]out + PK [K]out + PCl [Cl]in
PNa [Na]in + PK [K]in + PCl [Cl]out

= exp(
V F

RT
) (4.28)

If the membrane voltage is left alone, GHK voltage equation is obtained as

V =
RT

F
ln
PNa [Na]out + PK [K]out + PCl [Cl]in
PNa [Na]in + PK [K]in + PCl [Cl]out

(4.29)
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Equation 4.29 gives the resting membrane potential when the membrane is per-

meable to more than one species and it gives the point where total current changes

direction. If the membrane is permeable to only one specie, Equation 4.29 be-

comes Nernst potential of that specie. GHK voltage equation is used to calculate

the resting membrane potential from the experimentally determined values which

are the permeabilities and extracellular and intracellular concentrations.

(a) High intracellular concentration. (b) High extracellular concentration.

Figure 4.3 Current-voltage relation according to GHK current equation.

Although GHK current equation can explain how current-voltage relation of

the membrane is altered by concentration di�erence and how it is dependent on

permeability, this relation is not as steep as observed [6]. During the formation of

an unit signal (action potential) permeabilities of ions change with voltage so the

ion channel concept is introduced. Every specie is selectively permeable through

certain ion channels which open and close with voltage and this changes the

permeabilities of the ions. However, instead of permeability of ions, conductances

of ionic channels are included in the models.
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Figure 4.4 A representative action potential. (Modi�ed from [5]).

4.2 Hodgkin-Huxley Formalism

The concentration di�erence of ions and movement of these ions across cell mem-

brane let electrical signal formation. All the information in living organisms is

carried in the form of this electrical signal. Unit electrical signal in a living body

is called action potential (AP) and the cells that generate AP upon stimulation

are called excitable cells. The striking characteristic of AP is that while it is

transmitted by nerve cells even over long distances it is not attenuated because

of its regenerative nature. Also an AP is formed in a �all or none� fashion which

means AP is formed only when membrane potential exceeds a threshold value. A

very simple sketch of an action potential is shown in Figure 4.4. The �rst question

is how a nerve cell generates an electrical signal, and the second question is how

this signal propagates without attenuation over a wide range of distances.

Alan Hodgkin and Andrew Huxley answered the �rst question by de�ning

the cell membrane with an equivalent electrical circuit [24]. Their work is a

milestone in biophysics and they got Nobel Prize in 1963 with this work. But the

importance of their work is not because of the Nobel Prize they got, it is because

Hodgkin-Huxley formalism is still valid and utilized with minor alterations today.
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Figure 4.5 Equivalent circuit of membrane proposed by Hodgkin and Huxley. [1]

The �rst thing to be done was to explain movement of which ions contribute

to the formation of an AP. An action potential was recorded by two separate

groups; Kenneth Cole and Howard Curtis in the USA, Alan Hodgkin and An-

drew Huxley in Britain [6]. What they observed was during the action potential

ion conductances, in other means permeability to ions change dramatically. To

specify conductances of which ions change most, Alan Hodgkin and Bernard Katz

changed extracellular concentration of Na+ ion and observed that amplitude of

action potential decreases. This shows that rising phase of AP is mediated by

in�ux Na+. Their work also suggested that falling phase of AP was due to in-

crease in permeability to K+ ions which is led by e�ux of these ions. Hodgkin

and Huxley represented the membrane with the circuit in Figure 4.5.

Cell membrane acts as a capacitor since lipid bilayer separates conducting

intracellular and extracellular solutions as an insulating layer. So they stated

that �current can be carried through the membrane either by charging the mem-

brane capacity or by movement of ions through the resistances in parallel with

the capacity.� [24]. Previously they had found that Na+ and K+ ions are the

major components in the formation of an action potential. So in their model

they included INa and IK as ionic currents. In addition they included a �leakage

current� component, Il that is generated by movement of other ions. The per-

meability change of the membrane to Na+ and K+ ions are described as variable

conductances whereas leakage current �ows over a constant conductance. They
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have shown that Na+ conductance (gNa) and K+ conductance (gK) are functions

of time and voltage whereas ENa (equilibrium potential of Na+ ions), EK (equilib-

rium potential of K+ ions), El (equilibrium potential for ions that create leakage

currents), Cm (membrane capacitance) and gl (leakage conductance) are taken as

constant. For the physical mechanism of how permeabilities change with time and

membrane voltage, Hodgkin and Huxley proposed that speci�c gating particles

for Na+ and K+ ions form a bridge and let the passage of these ions [24]. Follow-

ing this idea, today it is known that there are ion channels which are membrane

spanning proteins that let the passage of ions selectively through a pore that

is formed after the protein has a conformational change due to varying electric

�eld [1]. Sodium ion channels let only sodium ion �ux, potassium channels let

only potassium ion �ux. Permeabilities of these ion channels change with voltage

as proposed and they are called voltage-gated ion channels. Leakage current is

formed by ion movement through resting channels which are independent of volt-

age and always open. All of these channels work independently from each other,

so conductances that they constitute are work in parallel and also shown in the

electrical circuit as parallel. Equilibrium potentials of ions are added as voltage

sources in the equivalent circuit and the net potential over the conductances are

Vmembrane − ENa,K,l. The reason for this is since electrochemical driving force

changes direction when membrane voltage crosses equilibrium potential, current

that is resulted from the movement of ions also change directions. It should be

noted that, polarities of ENa and EK are opposite to each other since their con-

centration gradients are di�erent: Na+ is more concentrated in extracellular side

than intracellular side whereas K+ is more concentrated in intracellular side than

extracellular side. Also it should be mentioned that by convention the reference

point is taken as extracellular side and currents that are from inside to outside

are to be positive.

The next step in the model is to �nd how gNa and gK depends on voltage and

time. At this point it is important to mention one method that Hodgkin and Hux-

ley utilized while determining voltage dependence of conductances. The method
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Figure 4.6 Changes in gK and gNa when membrane potential is stepped from -65

mV to -9 mV. [6]

is called voltage clamp. Basic duty of voltage clamp is to hold the membrane

potential at a �xed command voltage. This is done by injecting a current that is

�equal and opposite to the current �owing through the voltage-gated membrane

channels� [1]. By this way at a speci�c command voltage, the current �owing

through membrane can be determined and hence conductance at that that volt-

age value is determined. To �nd gNa and gK one kind of channel can be blocked

selectively. Tetrodotoxin is a substance which has an a�nity to bind to the open-

ing pore of sodium channels and block these channels and prevent sodium current.

After injecting tetrodotoxin, with voltage clamp gK can be found. Subtracting

this conductance value from the total conductance at that voltage level would

give us gNa. Hodgkin and Huxley used squid giant axon in their experiments.

In Figure 4.6 membrane voltage, EM is stepped from -65 mV to -9 mV and

corresponding changes in gK and gNa are shown with bold traces. It is seen that

if the voltage is kept at -9 mV, gK reaches a maximum value following an S-
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shaped curve whereas gNa drops back to its initial value after reaching a peak.

If the voltage is droped back to its resting value, -65 mV, gNa also drops to its

resting value immediately (dashed line in gNa plot). In the same manner, with

voltage step down, gK also drops to its resting value but more slowly than gNa

and not following an S-shaped curve; it drops exponentially. So the opening

and closing dynamics of gK and gNa are di�erent. Hodgkin and Huxley found

empirical equations that would �t the experimentally found data points. So for

the conductance of K+ ions they proposed the following mechanism:

gK = gKn
4 (4.30)

where gK is the maximum conductance and n is the probability of potassium

gating particle to be in the open position. Here HH model assumes that for the

passage of K+ ions 4 activating particles must be in open position. So this n4term

explains the variable conductance. The transition of activating particles between

open state and closed state is represented by a �rst order reaction:

1− n
αn


βn
n (4.31)

where 1 − n is the probability of gating particle to be in closed state, αn is

the voltage dependent forward rate constant that de�nes the rate of particles

going from closed state to open state, βn is the voltage dependent backward rate

constant that de�nes rate of particles going from open state to closed state. n is

a dimensionless variable and the rate constants have the dimension of [time]−1.

The time dependence of n is given by

dn

dt
= αn(1− n)− βnn (4.32)

If the membrane voltage is kept constant for a long time, n will reach steady state

value, n∞, and dn
dt

term will vanish:

n∞ =
αn

αn + βn
(4.33)

When membrane voltage is changed, it would take some time for n and conse-

quently for gK to reach its �nal value from its initial value. If Equation 4.33 is
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reorganized and inserted in Equation 4.32 the following is obtained:

dn

dt
= αn− (αn + βn)n = n∞(αn + βn)− (αn + βn)n = (αn + βn)(n∞− n) (4.34)

After reorganizing and integrating

ln(n∞ − n) = −(αn + βn)t+ C (4.35)

is got where C is constant resulting from the integration. Leaving n alone

n = n∞ − A exp−(αn+βn)t (4.36)

is reached. Using the initial condition n0 = n(t = 0), A is found to be (n∞−n0).

So the �nal equation will take the following form

n = n∞(1− exp−(αn+βn)t) + n0 exp−(αn+βn)t (4.37)

Equation 4.37 states that when voltage is altered, probability of activating particle

for K+ ion to be in open state goes from n0 to n∞with a time constant of τn =

1
αn+βn

. If n∞ is divided by τn, αn would be obtained;

n∞
τn

=

αn
αn+βn

1
αn+βn

= αn (4.38)

Since n∞ and τn can be obtained experimentally at every voltage level, by

Equation 4.38 αn at every voltage level can be found. In the same manner from

Equation 4.33 βn can be driven as

βn =
αn(1− n∞)

n∞
=

n∞
τn

(1− n∞)

n∞
=

1− n∞
τn

(4.39)

So knowing n∞ and τn for certain voltage levels, voltage dependence of βn can be

found. Knowing function forms of αn and βn, n can be found at di�erent voltage

levels and hence K+ ion current can be found by the following relation,

IK = gKn
4(EM − EK) (4.40)

Sodium ion channel has a di�erent mechanism than potassium ion channel. In

Figure 4.6, when membrane voltage is sustained at a �xed value potassium con-

ductance reaches a maximum steady state value. However, sodium conductance
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Figure 4.7 Representative schematic of sodium channels. [5]

returns back to its resting value. In this regard, Hodgkin and Huxley proposed

that, Na+ channel is composed of 4 particles, 3 of them activating and 1 is inacti-

vating. For the channel to conduct, all four particles should be in open position.

m represents the probability of Na+ channel activating particle to be in open

position and h represents the probability of Na+ channel inactivating particle to

be in open position. Sodium channels can be visualized as in Figure 4.7.

At resting membrane potential, m is low, which means activating particles are

in closed state, whereas h is high, which means inactivating particle is in open

state. As depolarization starts, m starts to rise rapidly and h starts to fall slowly.

So the dynamics of activating particles are faster than dynamics of inactivating

particle which causes the sodium channel to be permeable for sodium ions. Here

it should be noted that, as membrane potential increases, sodium channels will

open and with the in�ow of sodium ions membrane potential will increase further,

which will cause more sodium channels to open. If there were no inactivating par-

ticles involved in sodium channel like potassium channel, because of the positive

feedback the membrane potential would increase until many sodium ions �ow

into the cell and electrochemical force over sodium ions become zero. However,

as the potential increases inactivating particle gets closer to closed state and at

one point it closes the channel so sodium in�ow is interrupted. Inactivating par-

ticle is the reason why sodium conductance falls to its resting value after reaching

39



a peak value. Empirical formula that is proposed by Hodgkin and Huxley is

gNa = gNam
3h (4.41)

where gNa is the maximum conductance. As for the potassium channel activating

particle n, transitions of m and h are modeled as �rst order reaction;

1−m
αm


βm

m (4.42)

1− h
αh


βh
h (4.43)

where αm and αh are forward rate constants as going from closed state to open

state, βm and βh are backward rate constants as going from open state to closed

state. Time dependence of m and h are given as

dm

dt
= αm(1−m)− βmm (4.44)

dh

dt
= αh(1− h)− βhh (4.45)

and with the very same derivation that is done for potassium activating particles

steady state values and time constants of m and h are found as

m∞ =
αm

αm + βm
(4.46)

h∞ =
αh

αh + βh
(4.47)

τm =
1

αm + βm
(4.48)

τh =
1

αh + βh
(4.49)

Then, αm is equal to m∞
τm

and αh is equal to h∞
τh
. Also βm equals to 1−m∞

τm
and βh

equals to 1−h∞
τh

. Final form of Na+ current has the following form

INa = gNam
3h(EM − ENa) (4.50)

Noting that current over leakage channels is gl(EM − El) the total ionic current

over cell membrane is

Itotal ionic = INa + IK + Il = gNam
3h(EM −ENa) + gKn

4(EM −EK) + gl(EM −El)

(4.51)
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With the summation of total ionic current and the capacitive current total mem-

brane current can be found.

Itotal = Cm
dEM
dt

+ gNam
3h(EM −ENa) + gKn

4(EM −EK) + gl(EM −El) (4.52)

If a stimulus is applied to the excitable cell, stimulus current Istim should be added

to the right hand side of Equation 4.52 and if the amplitude of the stimulus is large

enough excitable cell would �re an action potential. Solving Equation 4.52 for

membrane voltage EM numerically would give the shape of the action potential.

Formation of action potential waveform is because of the di�erence of dynam-

ics of ion channels. Principally with increasing voltage, activating gates of Na+

and K+ channels open and inversely, inactivating gates of Na+ channels closes.

If the membrane voltage of an excitable cell starts to rise with stimulation, Na+

activating particles start to get into open position and Na+ ion channels open.

Because the opening dynamics of activating particles of Na+ channel is faster

that closing dynamics of inactivating particles of Na+ channel and initially in-

activating particles are in open position, Na+ channel stays open for a while.

During this time Na+ ions �ow into the cell and increase the membrane voltage

further. As voltage increases, more Na+ channels open. By this way a steep

depolarization, namely the rising phase of the action potential, occurs. At the

same time activating particles of K+ channels start to get into open position but

more slowly than activating particles of Na+ channels. So an e�ux of K+ starts.

When inactivating particles of Na+ channels get into closed position, Na+

channels cannot let passage of Na+. So further depolarization is not possible

by Na+ ions. As the channels for K+ are open, K+ out�ows and decreases the

membrane potential. Although membrane potential reaches its resting value, K+

channels cannot close immediately and e�ux of K+ hyperpolarizes the membrane.

As all voltage-gated channels are closed, �ow through leakage channels bring the

membrane potential back to its resting value. So the component that keeps

the membrane voltage at a negative value (this resting membrane voltage values
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Figure 4.8 The conditions of ion channels at di�erent phases of an action poten-

tial.

changes from species to species, it is not the same in all living organisms.) is the

leakage current through leakage channels that are open all the time.

4.3 Propagation of Action Potential Along Neuron

Information �ow in the nervous system occurs with the propagation of initiated

action potentials. When an excitable cell produces an AP, it travels through

axon and dendrites of the cell which have passive parts, the parts that cannot

generate AP. Propagation of electrical signals through these passive parts are

determined by the three passive electrical properties of the neuron; membrane

resistance, membrane capacitance and intracellular axial resistance along axons

and dendrites [1].

A passive spherical neuron membrane is modeled by a parallel resistor and

capacitor. Leakage channels that are independent of membrane voltage and open

all the time is modeled as the resistor, Rm, and the lipid bilayer membrane is

modeled as a capacitor, Cm. A passive neuron does not involve voltage-gated

ion channels so the value of the resistor is constant. When a stimulating current

Is is applied to the membrane, it will dissociate into two components; current
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�owing over the resistor Ir and current �owing over the capacitor Ic, so that

Is = Ir + Ic. Since the components are in parallel, voltage across resistor, Er,

and voltage across capacitor, Ec, will be equal to each other and to membrane

potential E. By using Ohm's law Er can be found as

Er = Ir ·Rm (4.53)

Current over the capacitor is found as such

Ic = Cm
dEC
dt

(4.54)

Replacing Er in Equation 4.53 with E and Ir with Is − Ic the following equation

is obtained

E = (Is − Ic) ·Rm (4.55)

Putting Equation 4.54 in Equation 4.55, Equation 4.56 is obtained

E = (Is − Cm
dEC
dt

) ·Rm (4.56)

Noting that Ec = E, Equation 4.56 takes the following form

E = (Is − Cm
dE

dt
) ·Rm (4.57)

Rearranging Equation 4.57 gives the following di�erential equation

RmCm
dE

dt
+ E = IsRm (4.58)

Under the assumption of zero initial conditions solution of Equation 4.58 is

E = IsRm(1− exp
−t

RmCm ) (4.59)

RmCm multiplication is the time constant of the membrane and represented

by τm. It shows how fast the membrane capacitance charges under current stim-

ulation and how fast it discharges when there is no stimulation. Under sustained

stimulation, as time goes to in�nity membrane potential in Equation 4.59 reaches

a constant value as E = E∞ = IsRm. Responses of a model circuit with Rm = 1Ω,

Cm = 1F to current pulses with durations 12s and amplitudes 1mA and 2mA
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Figure 4.9 A simple RC circuit.

Figure 4.10 Responses of a model RC circuit to input current pulses.

are shown in Figure 4.10; membrane potential starts to rise with the start of the

current pulse at Time = 1s and reaches a steady value of 1mV for 1mA input and

2mV for 2mA input. As the input vanishes at Time = 13s, membrane voltage

immediately starts to fall to its initial value.

If the capacitance of the model is changed under the same stimulation then

timing of the signal will change. Responses of two models with di�erent capaci-

tances to the same current input of 1mA are shown in Figure 4.11. Model circuit

with higher capacitance has a higher time constant which means that dynamics of

it is slower than the one with lower capacitance; membrane voltage with the lower
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Figure 4.11 Responses of two models with di�erent capacitances to same current

stimulus.

capacitance reaches its �nal value quicker than the one with higher capacitance.

For cell membrane, capacitance is proportional to the area of the membrane, so

it is harder to charge bigger cells.

Neurons have complex morphologies and only soma of the neuron can be

approximated to be spherical. It is more realistic to approximate the shapes of

axon and dendrites to a cylinder. For this geometry, spread of the electrotonic

voltage (membrane voltage that is not regenerative like action potential) along

homogeneous axon and dendrites was �rst modeled by Rall [25, 26] with the

following assumptions:

• Membrane of the axon is homogeneous which means capacitance and resis-

tance of the membrane is constant along the axon.

• Membrane properties like membrane capacitance and membrane conduc-

tance are voltage independent and constant which means membrane is pas-

sive.

• Axon is a cylinder.

• Resistance of the extracellular �uid is negligible.
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Figure 4.12 Model of an axon.

With these assumptions an axon is approximated as in Figure 4.12 and time

and space dependence of membrane voltage can be driven. In Figure 4.12 rm

represents the membrane resistance, cm represents the membrane capacitance, ri

is the intracellular axial resistance, im is the current through membrane, ii is the

axial current along the axon and a is the radius of the axon.

When going from one node to the adjacent node in x direction, membrane

voltage drops with the amount of voltage that is across the resistance ri:

dVm
dx

= −ri · ii (4.60)

In addition, axial current ii drops with an amount of im:

dii
dx

= −im (4.61)

Taking the derivative of Equation 4.60 and putting Equation 4.61 in it the fol-

lowing equation is obtained:
d2Vm
dx2

= im · ri (4.62)

1

ri

d2Vm
dx2

= im (4.63)

Membrane current is composed of two components; one is the current over mem-

brane resistance, ir, and the other is current over the membrane capacitance,

ic.

im = ir + ic =
Vm
rm

+ cm
dVm
dt

(4.64)

After equating Equation 4.63 and Equation 4.64 and rearranging, cable equation

of Rall is obtained:
1

ri

∂2Vm
∂x2

− Vm
rm

= cm
∂Vm
∂t

(4.65)
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Equation 4.65 shows the time and space dependence of membrane voltage of a

homogeneous cylindrical axon.

To compare passive membrane properties of neurons of di�ering sizes, three

di�erent values are de�ned; speci�c intracellular resistance, Ri in units of Ω.cm,

speci�c membrane resistance, Rm in units of Ω.cm2, speci�c membrane capac-

itance, Cm in units of F/cm2. Rm and Cm are de�ned with respect to 1cm2

membrane area; as area gets bigger the number of resting ion channels will in-

crease which in turn decreases the membrane resistance but bigger area means

bigger capacitance.So to �nd the resistance and capacitance of a cylindrical mem-

brane with length l and radius a, Rm should be divided by 2πal and Cm should

be multiplied with 2πal, respectively. Ri represents the resistivity of the bio-

logical cable; resistance of a cable decreases with increasing area and increases

with increasing length and the proportionality constant is called resistivity, ρ. So

resistance of a cable with length l and cross-sectional area A is given by R = ρ l
A

in Ω. To �nd passive properties of a cylindrical axon membrane of unit length,

the following equations are used:

rm =
Rm

2πa
(4.66)

where rm is in Ω.cm,

cm = Cm2πa (4.67)

where cm is in F/cm,

ri =
Ri

πa2
(4.68)

where ri is in Ω/cm.

One very important constant is the length constant and it is de�ned as

λ =

√
rm
ri

=

√
a.Rm

2Ri

(4.69)

and it has the units of cm. By using length constant and time constant, dimen-

sionless variables can be derived and Equation 4.65 can be made dimensionless.

Dimensionless length is X = x/λ and dimensionless time is T = t/τm. Multiply-

ing both sides of Equation 4.65 by rm and replacing the dimensionless variables
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X and T the following equation is obtained:

∂2Vm
∂X2

− Vm =
∂Vm
∂T

(4.70)

At steady state Equation 4.70 takes the following form

∂2Vm
∂X2

− Vm = 0 (4.71)

which has the general solution as

Vm = V0e
−X = V0e

− x
λ (4.72)

As moving along the axon in x direction, voltage will decrease according to

Equation 4.72 and at every length constant the amplitude of the signal drops

to the 1/e of the original voltage. So along an axon with big length constant,

the signal will travel long distances with less attenuation in comparison to prop-

agation along an axon with smaller length constant. As the length constant is

proportional to the square root of axon radius, signals will travel longer distances

with less attenuation along axons which have big radius. By de�nition propaga-

tion speed of the electrotonic voltage is given as

Θ =
2λ

τm
=

√
2a

RmRiC2
m

(4.73)

It can be seen that propagation speed is proportional to square root of radius

which means that to increase propagation speed, axon diameter should increase.

Since any living organism seeks food and escapes from possible dangers to sur-

vive, they should move fast. Fast movement requires fast signaling so that muscles

rapidly contract and escape movements can be done. In order to increase prop-

agation speed, axon diameter gets bigger and that is why giant axons can be

found in invertebrates (creatures without spine, like squid). However, in verte-

brates operation of nervous system requires too many fast conducting �bers for

processes like maintenance of posture, re�exes, motor actions and if axon diam-

eters increase to provide the necessary propagation speed, bundles of �bers will

be gigantic and occupy a lot of space. In the process of evolution, this problem
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Figure 4.13 Schematic of a neuron (cwx.prenhall.com).

is solved by myelin coated �bers [29]. Myelin is an insulating material that is

wrapped around the axon and it is reported that myelin sheath increases the spe-

ci�c membrane resistance with 60 fold whereas decreases the speci�c membrane

capacitance with 20 fold. Schematic of a neuron with myelinated axon is given

in Figure 4.13. Certain points of the axon do not posses myelin sheath and these

parts are called node and the parts that are wrapped by myelin are called paran-

ode. Action potential is initiated at the axon hillock where a high concentration

of voltage gated sodium ion channels is present [47]. As the signal attenuates

while traveling along paranodes, not to lose information, action potential is re-

generated at the adjacent node again. This way of propagation is called saltatory

conduction since only at nodes action potentials are seen [27]. Nodes of an axon

are excitable parts and paranodes are the passive parts.

As the speci�c membrane resistance increases, length constant also gets bigger,

so that signal can propagate long distances with little attenuation with respect

to unmyelinated �bers. This implies that myelinated �bers are energetically ad-

49



vantageous over unmyelinated �bers. Because an initiated action potential can

propagate through myelinated �ber longer distances, so the transmission of the

signal can be achieved by less nodes. However, in unmyelinated �bers, to restore

the action potential, nodes should be placed closer to each other in comparison

to myelinated �bers so number of nodes increases and the energy that is spent

to restore and keep the ion concentrations at resting conditions increases. In

addition in myelinated �bers propagation velocity gets bigger as it is inversely

proportional to
√
Rm and Cm.

Cable equation is derived under the assumption of homogeneous �ber. How-

ever, as it can be seen from the schematic of the neuron in Figure 4.13 and more

speci�cally from the actual �gures of neurons that will be used in this study in

Figure 3.5 and Figure 3.7 neuron not uniform, it has a highly non-uniform shape.

Soma has a spherical shape whereas dendrites and axon are cylindrical in shape.

Furthermore, axon is divided into many parts as nodes and paranodes where

nodes are excitable, in other words they posses voltage-gated ion channels, how-

ever, paranodes are passive elements with only passive components. To overcome

this di�culty compartmental modeling is utilized. In this type of modeling neu-

ron is decomposed into parts which are homogeneous separately. Three adjacent

compartments are shown in Figure 4.14 and they are modeled as RC circuits. It

should be noted that if one of the compartments is excitable, then that part is

modeled as in Figure 4.5, voltage gated ion channels are also added to the model.

Membrane current, im, over J th part is found by applying Kirchho�'s current

law at J th node:

im = iJ−1,J − iJ,J+1 (4.74)

where iJ−1,J is the current �owing from J − 1th node to J th node and iJ,J+1 is

the current �owing from J th node to J + 1th node. Axoplasmic resistance, rj in

Figure 4.14, of one compartment is calculated according to its dimensions by the

use of the speci�c intracellular resistance. While calculating the axoplasmic resis-

tance between compartments, axoplasmic resistances of adjacent compartments
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Figure 4.14 Adjacent compartments in a compartmental model.

are summed and divided by two. So Equation 4.74 can be rewritten as

im =
VJ−1 − VJ
rJ−1+rJ

2

− VJ − VJ+1
rJ+rj+1

2

(4.75)

Membrane current can be decomposed into two components as ionic current and

capacitive current:

im = Iion + cmj
dVj
dt

(4.76)

If there is an external current input, Iext, addition of this current on the right

side of Equation 4.76 and combining with Equation 4.75 will give the following

equation:

Iion + cmj
dVj
dt

+ Iext =
VJ−1 − VJ
rJ−1+rJ

2

− VJ − VJ+1
rJ+rj+1

2

(4.77)

Numerical solution of Equation 4.77 for voltage at every compartment at any

instant, will give the propagation of signal along the axon that is comprised of

the compartments.
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CHAPTER 5

SYNAPTIC TRANSMISSION

In the complex network of neurons in the nervous system, synapses are the nodes

that connect neurons to each other and direct the �ow of information. Trans-

mission of signals along synapses is achieved by secretion of neurotransmitters.

Types of the receptors that neurotransmitters bind determine the types of the

synapses as being excitatory or inhibitory. In this chapter, �rstly general charac-

teristics of synapses and mechanism of synaptic transmission are examined and

after that types of neurotransmitters and properties of inhibitory and excitatory

synapses are explained.

5.1 General Characteristics of Synapses

Signal transmission between the neurons of central nervous system is achieved by

chemical synapses. Here synapse refers to the contact zone between neurons that

are communicating. In fact, neurons on both sides of the synapse do not form a

continuum, they are separated by a region called synaptic cleft. Neuron which

conveys signal to the synapse is called pre-synaptic neuron and the neuron that

rests at other side of the synapse is called post-synaptic neuron. Schematic of a

synapse is shown in Figure 5.1.

The word �chemical� in the phrase �chemical synapse� indicates that electrical

signal gets through the synapse by the help of chemicals which are called neuro-

transmitters. For a substance to be called as neurotransmitter four criteria must

be ful�lled [1]:

1. It must be synthesized in the neuron.
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Figure 5.1 Schematic of a synapse [5].

2. It must be contained by presynaptic neuron and after its release it must

have a speci�c action on the postsynaptic neuron.

3. Upon injecting into the body, it must have the same e�ect that is induced

when it is released from the presynaptic neuron.

4. It should be removed from the synaptic cleft by a speci�c mechanism.

Regarding the spinal cord, mainly two amino acid transmitters are used for

excitation and inhibition, glutamate and g-aminobutyric acid (GABA) respec-

tively [35, 2]. Structures of both molecules are shown in Figure 5.2. Here it

should be noted that the response of the postsynaptic cell, whether it is excita-

tory or inhibitory, is not determined by the neurotransmitter that is released by

the presynaptic cell; the e�ect is determined by the receptors of the postsynaptic

neuron that transmitters bind. In a simple analogy, transmitters are the keys and

receptors are the doors and ions that will pass is determined by the door itself.
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(a) Glutamate (b) GABA

Figure 5.2 Structures of amino acid transmitters [1].

Receptors are divided into two main groups, ionotropic and metabotropic

receptors. In ionotropic receptors the receptor and the ion channel that it gates

are parts of the same protein [48]. As the neurotransmitter binds to the receptor,

protein undergoes a conformational change which leads to opening of a passage

through the protein that lets transport of speci�c ions. Whereas metabotropic

receptors gates ion channels indirectly. Upon binding of a neurotransmitter,

related cytoplasmic proteins produce di�usible second messengers which triggers

biochemical cascades in the cytoplasm. After these processes ion channels can

be opened or closed, but more importantly metabolic machinery and structure of

the neuron can be altered.

According to �speed of onset and duration of the postsynaptic e�ect�, actions

of transmitters on receptors are classi�ed as being slow or fast [1]. Gating of ion

channels through ionotropic receptors is on the order of milliseconds and referred

as being fast. On the other hand, gating of ion channels through metabotropic

receptors is slower; onset of the postsynaptic e�ect takes tens of milliseconds to

seconds and duration of the e�ect takes second to minutes, which is because of

the cascade of biochemical reactions that is involved [1]. Moreover, physiolog-

ical functions of these two types of receptors di�er; ionotropic receptors excite

or inhibit a neuron. They do not alter the electrophysiological properties of
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cells, only act as on-o� switches. On the other hand, although slow dynamics of

metabotropic receptors prevents them to generate an action potential, they can

change the electrophysiological characteristics of cell, namely resting membrane

potential, threshold potential, length and time constants and input resistance [1].

This means that metabotropic receptors modulates synaptic actions by having

long term in�uence on membrane characteristics.

Sensory signals, namely vision, audio, touch, pain etc., are transmitted rapidly

in the central nervous system and that is way in this study, receptors in the

synapses of the gate control system are to be ionotropic receptors. Long term

modulation of these synapses by action of metabotropic receptors will not be

considered.

5.2 Mechanism of Synaptic Transmission

Transmission of an action potential across a synapse involves a cascade of bio-

chemical reactions. For the transmission to occur, neurotransmitters must be

released into synaptic cleft. Neurotransmitters are packed in synaptic vesicles

and these vesicles are accumulated in active zones, which are transmitter release

sites. This series of reactions is triggered by the action potential that arrives to

terminal of presynaptic neuron. Upon arrival of this action potential, voltage-

gated calcium ion (Ca2+) channels open and since extracellular Ca2+ concentra-

tion is much higher than intracellular Ca2+ [5], an in�ux of Ca2+ ions occurs.

This is depicted in Figure 5.3. With the in�ux of Ca2+ ions, Ca2+ concentration

near active zones increases and this high concentration of Ca2+ causes synaptic

vesicles to fuse with presynaptic cell membrane and release the neurotransmitter

molecules into synaptic cleft. Release of transmitters into synaptic cleft is called

exocytosis.

After releasing their neurotransmitter content, synaptic vesicles are taken into

the cell and processed to form new vesicles. Transmitters di�use in the synaptic

cleft and bind to their respective receptors and make them open or close. But in

the case of ionotropic receptors, transmitters only cause them to open. As the
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Figure 5.3 After opening of calcium channels, in�ow of calcium ions increase in-

tracellular calcium concentration [1].

receptor-channels open, conductance of the membrane of postsynaptic cell in-

creases and Na+ ions �ow into the cell, causing membrane potential to increase.

This increase of voltage is called excitatory postsynaptic potential (EPSP) and

the Na+ current that is mediated by Na+ in�ux is called excitatory postsynaptic

current (EPSC). When the neurotransmitter is inhibitory, upon binding to in-

hibitory receptors, Cl- ions will �ow into the cell and decrease the postsynaptic

membrane potential. This decrease in membrane potential is called inhibitory

postsynaptic potential (IPSP) and the Cl- current is called inhibitory postsynap-

tic current (IPSC).

It should be noted that, EPSP that is mediated by the action of only one

terminal is not su�cient to make postsynaptic cell to �re an action potential.

Simultaneous EPSPs should be summed to cause the postsynaptic cell to �re an

action potential. Alternatively, as excitatory inputs elevate postsynaptic mem-

brane potential, competing inhibitory inputs may decrease the potential, pre-
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Figure 5.4 After synaptic vesicles fused with cell membrane, transmitter

molecules are released into synaptic cleft [1].

Figure 5.5 Upon binding of transmitters, receptor-channels open and Na+ in�ux

increases postsynaptic membrane potential [1].
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venting postsynaptic cell from �ring an action potential. Synaptic integration

of di�erent inputs is the basis for the fundamental operation of brain: decision

making [1]. Inputs are integrated in two di�erent aspects; temporally and spa-

tially. Temporal summation is the addition of consecutive synaptic potentials at

the same site. If the time constant of the cell is long enough, before potential

that is mediated by the �rst input attenuates, potential that is created by the

second input adds up to the previous potential and postsynaptic potential gets

closer to threshold voltage for action potential initiation. If the time constant of

the cell is not long enough, the two consecutive potentials cannot add up since

until second input is received, potential that is created by �rst input diminishes.

Spatial summation is related to the integration of potentials that are generated

at di�erent sites. If the length constant of a neuron is long enough, signal can

propagate with minimum attenuation so potentials that are formed at di�erent

sites can be summed before any one of them dies out. In this regard, besides

electrophysiological properties of neurons, the location of the synapses and their

relative strengths are important factors that determine synaptic integration.

5.3 Glutamate and GABA Receptors

As mentioned before in the central nervous system main excitatory and inhibitory

neurotransmitters are glutamate and GABA, respectively. Although these trans-

mitters can gate both ionotropic and metabotropic receptors, for gate control

system only ionotropic receptors will be considered due to their fast dynamics.

The substantia gelatinosa (lamina II) and lamina I of spinal cord are major tar-

gets that receive heavy primary a�erent input that is related with nociception and

also skin sensory neurons [16,49] so these two layers take part in the modulation

of pain signals. The kinds of receptors and transmitters that neurons of these

two layers possess determines the synaptic action in the gate control system.
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5.3.1 Glutamate Receptors

There are both ionotropic and metabotropic glutamate receptors in the central

nervous system, however only ionotropic ones will be mentioned. Ionotropic gluta-

mate receptors can be divided into three classes: 1) AMPA 2) Kainate 3) NMDA.

These receptors are named according to the synthetic agonists (substance that

makes receptor work, produce an action) that activate them; a-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid, kainate and N-methyl-D-aspartate, respec-

tively [1]. Since AMPA and kainate receptors are very similar to each other they

are also called as non-NMDA receptors. Non-NMDA receptors are permeable to

Na+ and K+ ions but not to Ca2+ ions whereas NMDA receptors are permeable

to whole of these ions. Channels that these receptors gate have di�erent conduc-

tance values. Channels, which non-NMDA receptors gate, have low conductance

ranging in between 0.2-25 pS in comparison to channels, which NMDA receptors

gate, that have conductance level ranging from 17 to 75 pS [50]. One important

di�erence of channels that NMDA receptors gate is that their opening depends

not only on the presence of transmitter, in this case glutamate, but also on mem-

brane voltage. However, mechanism of this voltage dependence is di�erent from

the mechanism of voltage-gated ion channels that generate action potentials. In

NMDA receptor-channels, �extracellular Mg2+ binds to a site in the pore of the

open channel and acts like a plug, blocking the current �ow� [1]. When the

membrane depolarizes, in other words when the intracellular side becomes more

positive, Mg2+ is repelled by electrostatic force. Because of this voltage depen-

dence, NMDA receptor-channels do not conduct immediately at the presence of

glutamate so do not contribute very much to EPSP at resting membrane po-

tential. NMDA receptor-channels have e�ect on the late phase of EPSP due to

its slow opening and closing dynamics [1]. As EPSCs formed by non-NMDA

receptor-channels are briefer (decay time constants 1-8 ms) with respect to EP-

SCs formed by NMDA receptor-channels (decay time constants 10-200 ms), fast

transmission of excitatory signals is achieved by utilization of non-NMDA recep-

tors [51]. Regarding the dynamics of channels and their contribution to formation
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of EPSPs, non-NMDA receptor-channels are better candidates to be used in a

model of synapse.

Immunolabeling studies show that ionotropic glutamate receptors mainly con-

centrate in lamina II of dorsal horn, and also they are found in lamina I. Since

these two layers receive heavy primary a�erent input that carry nociceptive and

sensory signals, glutamate receptors in dorsal horn are related with transmis-

sion mechanism of nociception [52]. As stated before, the islet cell of substantia

gelatinosa will be used as the interneuron in the gate control system since they

are mostly GABAergic cells. Myelinated �bers in the gate control system that

carry non-nociceptive sensory information make excitatory synapse on these cells.

With Co2+ labeling study, these cells are found to contain mainly kainate and

NMDA receptors [52]. However, in the study of Lu and Perl, where they investi-

gated an inhibitory circuit in substantia gelatinosa, inhibitory interneuron, which

is to be an islet cell, have an excitatory connection with a C-�ber that is medi-

ated by AMPA receptor [43]. This shows islet cells may have AMPA receptors as

well. As mentioned before AMPA and kainate receptors are grouped together as

non-NMDA receptors because of their similarities, namely the ions that they are

selective for, blockage by same antagonist (substance that prevents the action of

the receptor) which is CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), their con-

ductance values etc. Their dynamics are also closely matched to each other so in

modeling studies their dynamics are taken to be identical [33]. So knowing that

islet cells have predominantly kainate receptors and also may have AMPA recep-

tors, non-NMDA receptor dynamics will be used for glutamate driven excitatory

synaptic transmission.

5.3.2 GABA Receptors

In the central nervous system the main inhibitory neurotransmitter is g-aminobutyric

acid (GABA) and it is secreted by GABAergic cells [53]. There two major sub-

types of receptors that bind GABA: GABAA and GABAB where the �rst one is

an ionotropic receptor and the other is a metabotropic receptor. GABAA recep-
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tors will be investigated due to the fact that fast inhibitory signalling is mediated

by them.

GABAA receptor-channels are selectively permeable to Cl- ions and extracel-

lular concentration of Cl- is almost 25 fold of intracellular Cl- concentration [5].

Reversal potential for Cl- with this concentration di�erence is estimated to be

−70 mv. For membrane voltages that are more positive than the reversal poten-

tial of Cl-, the electrochemical driving force (Vm − ECl ; where Vm is membrane

potential and ECl is the Cl- reversal potential) acting on Cl- ions is positive. So

this will lead an outward current because by convention current from inside to

outside is chosen to be positive. Since the charge carrier is an anion, positive cur-

rent means anion movement in the opposite direction of the current itself. This

means Cl- ions �ow from outside to inside and decrease the potential of cell mem-

brane and prevents it from depolarization. The current mediated by Cl- ions is

called inhibitory postsynaptic current (IPSC) and the voltage drop caused by this

current is called inhibitory postsynaptic potential (IPSP) [1]. Although GABAA

receptor-channels have multiple conductance levels, the predominant and main

level is 27-30 pS conductance level [53].

Most of the islet cells in lamina II of dorsal horn are GABAergic cells and

this suggests that they are inhibitory interneurons [42,36]. In the work of Lu and

Perl, an inhibitory pathway between lamina II neurons was investigated and in the

pathway they found islet cell inhibits central cell of the same lamina so this is an

example for the inhibitory function of the islet cells [43]. Another important thing

is transmission cell and inhibitory interneuron should have GABAA receptors

since they receive inhibitory connections in the gate control system. Although

there is not information whether speci�c cell types of lamina I and II contain

GABAA receptors, in general terms two layers have GABAA receptors. In human

and monkey spinal cord, GABAA receptors are found in high densities in lamina

II and in moderate densities in lamina I [52]. In this work the chosen inhibitory

islet cell from lamina II and transmission cell from lamina I will be treated to

contain GABAA receptors.
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CHAPTER 6

MODELING STUDIES

In this part, model equations that are used for the simulation of gate control

system are presented. Firstly model for an excitable nerve cell is given and un-

myelinated and myelinated �bers are constructed by the use of this basic nerve cell

model. Morphometric analysis of the component neurons, which are inhibitory

interneuron and projection neuron, is done and compartmental models of these

neurons are built according to the morphometric analysis. After giving the model

parameters for individual components, model for transmission of electrical signal

by chemical means through synapse is given. Synapse model includes the time

dependency of neurotransmitter concentration in the synaptic cleft and the dy-

namics of neurotransmitter-gated post-synaptic receptors.

6.1 Model of Single Excitable Nerve Cell Membrane

Dynamics of ion channels, which are leaky channels and voltage-gated Na+ and

K+ channels, are based on the work of Schwarz et.al. [8]. The data for the

dynamics was acquired from single human myelinated nerve �bers and mathe-

matical model was derived based on Frankenhauser-Huxley (FH) equations [54].

Major di�erence between HH and FH equations is that Na+ current is modeled

with GHK current equation in FH model instead of the ohmic relation as in HH

model. But as it can be seen from Equation 4.19 as membrane voltage becomes

0, current relation becomes uncertain due to 0
0
division. In the work of Franken-

hauser and Huxley voltage axis was shifted by the amount of resting membrane

potential so membrane potential never crossed zero. Instead of using GHK cur-

rent equation, in the current work ohmic relations are used for all of the ionic
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currents. In the work of Schwarz et.al. [8] current equation for Na+ was given as

INa = m3h

[
PNa

EmF
2

RT

[Na]0 − [Na]i exp(EmF/RT )

1− exp(EmF/RT )

]
(6.1)

By �tting a linear equation to the part of Equation 6.1 that is in brackets for the

values of Em ranging between −0.1V and 0.1V , the following ohmic relation is

obtained

INa = m3hgNa(Em − ENa) (6.2)

which has the same form as in the HH model. Before the �t, value of PNa is

increased from 3.52× 10−12 cm3

s
to 15× 10−12 cm3

s
because after increasing to this

level, �nal model starts to produce repetitive �ring on sustained depolarization.

From the linear �t ENais found as 45.4mV . This value is consistent with the

value that was used by Wesselink et.al. [55] who used the model parameters that

was given by Schwarz et.al. [8]. Maximum Na+ conductance, gNa, is found to

be 5120nS. Schwarz et.al. [8] did not give the dimensions of the nodal part

in their work so area of nodal part is taken as 50 µm2 in accordance with the

work of Wesselink et.al. [55]. Scholz et.al. [56] reported maximum conductance

of a single Na+ channel in human axons as 13pS. In the work of Ritchie and

Rogart [57], density of sodium channels in mammalian nodes was found to be

12000 channels per µm2 from the measurements in rabbit sciatic nerve. By using

these values, for a 50 µm2nodal area, gNa is found as 7800 nS, so the value that is

used in the current work is comparable with the physiological values. Maximum

K+ conductance gK for 50 µm2 membrane is taken as 30 nS [8, 55] and the K+

current is calculated as

IK = n4gK(Em − EK) (6.3)

where EK is -84 mV. Leakage conductance, gleakage, for 50 µm2 membrane is taken

as 30 nS and Eleakage is -84 mV [8]. Current resulting from ion �ow through leakage

channels is given as

Ileakage = gleakage(Em − Eleakage) (6.4)

Capacitance of 50 µm2 membrane is 1.4 pF.
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Another alteration that is made in the model equations is that, the rate con-

stants of Na+ activation and inactivation gates are doubled. This is done to

decrease the width of the AP signal and to obtain a conduction velocity that is

well in the range for myelinated and unmyelinated �bers. Dynamics of K+ acti-

vation gates remain the same since in the work of Schwarz et.al. [8], it was noted

that AP shape was determined mainly by Na+ conductance and K+ conductance

determined the repetitive �ring behaviour. Model equations for dynamics of ions

channels of excitable nerve cell are as follows:

αn =
0.00798× (Em + 93.2)

1− exp((−93.2− Em)/1.10)
(6.5)

βn =
0.0142× (−76− Em)

1− exp((Em + 76)/10.5)
(6.6)

αm =
3.72× (Em + 18.4)

1− exp((−18.4− Em)/10.3)
(6.7)

βm =
0.172× (−22.7− Em)

1− exp((Em + 22.7)/9.16)
(6.8)

αh =
0.0672× (−111− Em)

1− exp((Em + 111)/11)
(6.9)

βh =
4.6

1 + exp((−28.8− Em)/13.4)
(6.10)

all of which are in 1
ms
.

6.2 Model for Unmyelinated and Myelinated Fibers

Unmyelinated �ber is homogeneous and AP propagates passively. Its model is

composed of cylindrical identical compartments which are all excitable. Every

compartment has a length of 100µm and diameter of the �ber is 1.5µm. Phases

of modeling of unmyelinated �ber is shown in Figure 6.1.

Myelinated �ber is not homogeneous and its compartmental model has non-

identical parts. Phases of the modeling is shown in Figure 6.2. Fiber is decom-

posed into cylindrical nodal and paranodal parts. Axon diameter is chosen to

be 10µm and the �ber diameter, which is the sum of axon diameter and myelin
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Figure 6.1 Compartmental modeling of unmyelinated �ber.

Figure 6.2 Compartmental modeling of myelinated �ber.
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sheath thickness, is determined to be 15µm. These values are in the range of di-

ameters of large diameter �bers [11]. Area of nodal part is 50µm2 and this results

in a length of 1.59µm for nodal part. Length of paranodal part is determined as

5000µm which is the longest length for paranodal part that saltatory conduction

can be obtained along the �ber. Also, the length constant λ for the paranodal

part is found as 4123µm so the selected paranodal part length is about 1.21 λ.

Thus, the signal along paranodal part would decay to e−1.21 , i.e. 0.3 of its starting

amplitude from the cable equation, which is enough to elicit an AP in the adjacent

node. Paranodal part is composed of 5 identical parts that are1000µm in length.

However, shorter paranodal lengths can be used. In the study, 1
4
and 1

2
of 5000µm

is used for the best selection of length for the paranodal part. This length must

be such that propagation velocity evaluated must be within physiological ranges.

If the same propagation velocity is found for all lengths selected, the maximum

value can be used in the simulations. Paranodal part is not composed of one com-

partment because in that case the intraaxonal resistance between the nodal and

paranodal part is so big that signal cannot propagate. However, if the paranodal

part is divided into parts as in this study, signals can travel along the �ber. Only

nodal parts are excitable and posses voltage-gated Na+ and K+ channels. Under

the myelin sheath, Na+ and K+ ionic currents are ignored so the paranodal part

is modeled as passive RC circuit [58]. Speci�c membrane resistance of paranodal

part is chosen to be 2500 times the speci�c membrane resistance of nodal part and

speci�c membrane capacitance of paranodal part is determined by dividing the

speci�c membrane capacitance of nodal part by 350. These parameters are tuned

by hand until paranodal part lets saltatory propagation along the �ber. Frijns

et.al. [59] noted that speci�c intracellular resistance was not measured reliably

and used a value of 0.7Ω.m. To achieve a propagation velocity that is comparable

with physiological measurements and other �ber models, speci�c intracellular re-

sistance is chosen to be 1.25Ω.m which is the same for both paranodal and nodal

parts. Electrical parameters for myelinated and unmyelinated �bers are given in

Table 6.1.
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Table 6.1: Membrane Parameters

Cm ( F
m2 ) Rm (Ω ·m2) Ri (Ω ·m)

Nodal part of myelinated �ber 0.028 0.0017 1.25

Paranodal part of myelinated �ber 0.00008 4.25 1.25

Unmyelinated �ber 0.028 0.0017 1.25

Figure 6.3 Two tank system for the model of synapse.

6.3 Model of Synaptic Transmission

In the modeling studies two issues must be considered: one is the time course

of concentration of neurotransmitter in the synaptic cleft and the other is the

dynamics of the receptors that will be gated by the neurotransmitters in the cleft.

Upon arrival of action potential to the terminals of pre-synaptic neuron, many

processes occur: in�ow of Ca2+ ions, fusion of vesicles with membrane, exocytosis

of neurotransmitters into the cleft. However, all of these processes are so rapid

that they are not the main determinants of the time course of neurotransmitter

in the synaptic cleft [33].

Exocytosis of neurotransmitters and the concentration change in the synaptic

cleft are modeled as a two tank system as in Figure 6.3.

Tank 1 represents the vesicle pool in the presynaptic neuron and Tank 2

represents synaptic cleft. Height of liquid in Tank 1, B, is constant with the

assumption that vesicles that hold neurotransmitter molecules do not run out.
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R1(V ) is the resistance to �ow at the outlet of the Tank 1 which is dependent on

presynaptic voltage. As the presynaptic membrane voltage is at resting membrane

potential, R1(V ) is so high that no �ow of transmitters occur. When an AP arrives

at the terminal of pre-synaptic neuron, membrane voltage will increase and R1(V )

will decrease so that neurotransmitters will �ow into synaptic cleft. R2 at the

outlet of Tank 2 represents all of the processes in which neurotransmitters di�use

out of the synaptic cleft and it is constant. A2 is the area of Tank 2 and it is

constant. It determines the time constant of neurotransmitters in the synaptic

cleft with R2. Height of the liquid in Tank 2, h, is the analog for neurotransmitter

concentration in the synaptic cleft. Material balance for the liquid in Tank 2 gives

the following relation
B

R1(V )
− h

R2

=
dV

dt
= A

dh

dt
(6.11)

where B
R1(V )

is the inlet �ow, h
R2

is the outlet �ow and dV
dt

= Adh
dt

is the accumula-

tion term where V is the volume of the liquid in Tank 2. There is no generation

term since in the synaptic cleft no neurotransmitter is formed. Transfer function

of this process is found as

Gp =
R

ARs+ 1
(6.12)

where AR is the time constant of the process and represents the time constant of

concentration of neurotransmitters in synaptic cleft. R is the steady state gain

and it is determinant of maximum concentration of neurotransmitters in the cleft.

These parameters are chosen in a manner that maximum concentration and time

constant values for transmitters in the cleft are in experimentally determined

ranges [60]. Time constants for both excitatory and inhibitory transmitters are

chosen as 2.5 ms and steady state gain is taken as 5.

Post-synaptic transmitter receptors open upon binding of neurotransmitters.

Model of these receptors have two states, bound and unbound which are open

and close states, respectively. Dynamics of these receptors can be shown by �rst

order reaction kinetics as

1− r
αr


βr
r (6.13)
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where r is the fraction of bound (open) receptors, αr is the forward rate constant

for transmitter binding and it is dependent on neurotransmitter concentration,

[T ], βr is the backward rate constant for binding and it is constant. Fraction of

bound receptors change with respect to time with the following equation

dr

dt
= αr[T ](1− r)− βrr (6.14)

αr is 2ms−1mM−1 and βris 1ms−1 for excitatory synapses and αr is 0.5ms−1mM−1

and βris 0.1ms−1 for inhibitory synapses [61].

Current through these receptors is calculated with the following equation

Ireceptor = gsynr(Epost − Esyn rev) (6.15)

where gsyn is the maximum synaptic conductance, Epost is the membrane voltage

of post-synaptic neuron and Esyn rev is the reversal potential of the synapse. For

excitatory synapses Esyn rev is 0mV [61] and for inhibitory synapses Esyn rev is

-90mV which is the reversal potential of Cl-.

6.4 Morphometric Analysis of Component Neurons

Dimensions of the neurons that constitute gate control system must be known

since electrophysiological properties such as membrane resistance and membrane

capacitance depend on these dimensions. Neurons are partitioned into segments

that are homogeneous within themselves for compartmental modeling. Morpho-

metric analysis is done in MATLAB. Upon loading the pictures of the fusiform

and islet cells that are given in Figure 3.5 and Figure 3.7 into the workspace,

with the use of function �imdistline� length of two speci�ed points are found.

As mentioned before every connection in gate control system is monosynaptic.

Substantia gelatinosa neuron receives two inputs, one from C �ber and the other

from Aβ �ber. Assuming these two inputs acts on di�erent dendrites, two den-

drites of the neuron is investigated for morphometric analysis and those dendrites

are shown in Figure 6.4. Islet cell is divided into six segments, each of which has

a constant diameter. Dimensions of these segments of islet cell are given in Table
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Figure 6.4 Partitioning of islet cell into segments.

Table 6.2: Dimensions of segments of islet cell.

Diameter (µm) Length (µm) Area (µm2)

Part 1 3.00 60 565.5

Part 2 3.00 40 377

Part 3 4.03 27.39 346.77

Part 4 (Soma) 10.63 - 355.00

Part 5 3.60 18.44 208.55

Part 6 2.8 89.03 783.15

Axon 1.86 48.03 280.66

6.2. Part 4 is assumed to be spherical and all other segments are considered as

cylindrical. Thus, part 4 has only diameter without a length. Axon of the cell

may be longer than the value given in Table 6.2 because it is very thin. Therefore

it may only be labeled poorly or the labeled part may not be inspected by bare

eye. However, the value given in Table 6.2 will be used in the model development.

Axon of the islet cell is made spontaneously active which means that it produces

APs without need of any excitation. This is done because of the fact that islet cell

should inhibit fusiform cell continuously so that fusiform cell would not generate

APs when there is no incoming nociceptive signals.

70



Figure 6.5 Partitioning of lamina I fusiform cell into segments.

Lamina I fusiform cell receives three inputs, one from substantia gelatinosa,

one from C �ber and one from Aβ �ber. C �ber and Aβ �ber will be assumed to

be making contacts on separate dendrites. Substantia gelatinosa cell will make

contact on soma since most of the inhibitory synapses end on cell body. So one

of the dendrites in Figure 3.5 is neglected and this is done arbitrarily: there is

not a speci�c reason for choosing the dendrite that is to be neglected. Segments

of the lamina I fusiform cell are shown in Figure 6.5. Part 4 corresponds to the

soma of the cell and it is assumed to be spherical whereas the rest are considered

to be cylindrical.

Dimensions of the segments of lamina I cell are given in Table 6.3 where length

of the axon of lamina I cell is taken as 100 µm and not longer because the output

of the system is the action potentials that are initiated at the initial region of the

axon and propagation of these signals are not the concern of the current work.

In both neurons soma is divided into two identical parts since it is very hard to

charge soma due to its dimensions and part of the soma that is connected to axon

is made excitable for the ease of propagation of AP signals.
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Table 6.3: Dimensions of segments of fusiform cell.

Diameter (µm) Length (µm) Area (µm2)

Part 1 1.9 10.42 54.34

Part 2 1.6 8.41 34.35

Part 3 2.9 20.85 189.96

Part 4 (Soma) 9.11 - 260.73

Part 5 2.40 4.16 31.37

Part 6 2.61 19.51 159.97

Part 7 0.94 9.94 29.35

Part 8 2.34 5.86 43.08

Part 9 1.82 17.30 98.92

Axon 1.118 100 3.51
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CHAPTER 7

EXPERIMENTAL STUDIES

In this chapter, experimental procedure for recording action potentials (AP)

from the giant axon of cray�sh (Astacus leptodactylus), which is an invertebrate

(species with no spine), is given. Train of APs are recorded from the cray�sh for

the purpose of comparison with the developed model. This animal is collected

from the lakes of Central Turkey and kept in an aquarium at 18-20oC. The ex-

periments are held in Biophysics Department of Hacettepe University. �In the use

of the experimental animals national guidelines have been followed and approval

from the Hacettepe University Ethics Committee has been obtained� [62].

7.1 Experimental Set-Up

In the experiments a vertical puller (PC10 Narishige, Japan) is used for the man-

ufacture of glass microelectrodes and it is shown in Figure 7.1. A microscope (TE

Eclipse 200, Nikon, Japan) is used for visualizing the giant axon of the cray�sh.

In addition, manipulaters are used to change the position of microelectrodes and

stick them into the neuron. The microscope and one of the manipulaters are

shown in Figure 7.2.

One electrode current clamp set-up is shown in Figure 7.3. This set-up is

composed of one glass chamber with a diameter of 5 cm and height of 7 mm,

and the manufactured glass microelectrode. This system is designed to control

potential across Rf so that injected current, I, can be controlled.
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Figure 7.1 Vertical puller that is used for the manufacture of microelectrodes.

(a) Nikon microscope (b) Microelectrode manipulator

Figure 7.2 Set-up that is used to stick microelectrodes into the neuron accurately.
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Figure 7.3 One electrode current clamp setup [7].

The experiment duration is determined by the amount of �uid and its con-

centration in the pipette. Toward the end of the experiment ion concentration

changes in the pipette and also ion concentrations in the neuron are distorted

which results wrong recordings. The time to measure APs without major distor-

tions is approximately 20 minutes.

In this set-up, the voltage across the pipette, Vp, is followed by a voltage

follower and added to the command voltage Vk. This is done in order to control

the current across the resistanceRf . If this correction is not done, then the voltage

across Rf will be di�erent from the command voltage and the current injected

to the membrane cannot be known. Thus, the current injecion is achieved by

applying a command voltage over a known resistance which is in this case is 100

MΩ. Pipette voltage Vp is not the membrane voltage, Vm. Instead it is equal

to the summation of the membrane voltage and the voltage across the resistance

of the electrode Re. Membrane voltage can be extracted if the voltage across

the electrode resistance is subtracted from the pipette voltage. For this purpose,

command voltage is fed through an adjustable resistance to a di�erence ampli�er

and this correction voltage is subtracted from the pipette voltage to �nd the

membrane voltage. This correction setup is shown in Figure 7.4.
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Figure 7.4 Voltage correction setup to extract membrane voltage from pipette

voltage [7].

7.2 Experimental Procedure

In the experiments AP from the giant axon of a cray�sh is measured. This

selection of the animal is based on the size of its axon which is giant and which

can be used experimentally. Also since it is an invertebrate, its handling is easy.

Giant receptor neuron of the cray�sh is dissected from the �rst to forth abdom-

inal segments and dissected receptor neuron is mounted in a recording chamber

and immersed in control solution. Control solution is composed of 200 mM NaCl,

5.4 mM KCl, 13.5 mM CaCl2, 2.6 mM MgCl2 and it is bu�ered to pH of 7.4

using 10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid ) [63].

Glass capillary (GC150F, Clarke Electromedical Instruments, Reading, UK)

is heated in the vertical puller for the manufacture of glass microelectrodes for

intracellular recordings and stimulation. Glass capillary is held by the holders

and the temperature of the �lament is set to the desired level. Weights of the

puller can be changed as light and heavy. As the �lamnt is heated, the glass

softens, weights in the puller pulls down the glass and two microelectrodes are

formed. By adjusting the level of temperature of the �lament and the weights of

the puller, the diameter and length of the tip of the microelectrode can be altered.

Recording chamber is placed onto the microscope. The electrodes are �lled with

3 M KCL solution. The reference electrode is an Ag/AgCl wire immersed into the

bathing solution. With the use of the microscope and the manipulaters (MHW-
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3, Narishige, Japan) that position the microelectrodes, the microelectrodes are

sticked into the neuron. A multi-functional clamp ampli�er (Axoclamp 900A,

Axon Instruments USA) is used for electrophysiological recordings. For current-

clamp studies, the input current to the neuron is kept constant and the membrane

voltage is recorded. Current stimulus is generated in a computer and converted to

analogue form and delivered to the ampli�er. The recorded analogue membrane

voltage signals are digitized (Digidata 1440, Axon Instruments, USA) and stored

in a computer. While viewing the specimen under microscope, the space for multi

microelectrodes is limited. Because of this physical limitation, stimulation and

recording is done by the same electrode so one electrode current clamp is used.
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CHAPTER 8

RESULTS AND DISCUSSIONS

In this chapter �rst the simulation results for the components of the gate control

system are presented and followed by the response of gate control network for

di�erent con�gurations. The results of the behaviour of single excitable cell model

under di�erent physiological conditions is followed by the model results of action

potential propagation along myelinated and unmyelinated �bers. Afterwards,

simulation results of synaptic transmission is presented. Finally, response of the

neuronal circuit for di�erent con�gurations is investigated.

8.1 Behaviour of Single Excitable Cell Model

For the simulation of the response of a single excitable cell, a nodal part with

50µm2 membrane area is used. Current pulse stimulus that is shown in Figure 8.1

is applied for the stimulation of the cell. Current that is applied is negative since

current �ows into the cell and by convention inward currents are negative. Pulse

Figure 8.1 Current stimulus that initiated the action potential in Figure 8.2 (a).
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width of the current pulse is 0.0005 ms and its amplitude is 3150 pA which is

the threshold value for the speci�c pulse duration. The generated AP has a

proper shape with its depolarization and repolarization phases and it is shown

in Figure 8.2(a). Amplitude of the action potential is 126 mV and it is 10 mV

bigger than the experimentally recorded action potential that is recorded from

human nerve �bers in the work of Schwarz et.al. [8] which has an amplitude of

116 mV and it is shown in Figure 8.2(b). This di�erence is mainly due to di�erent

Na+ reversal potential that is used in this study. As depicted in Figure 8.2(a),

membrane voltage increases very rapidly after passing a threshold value, which is

around -74 mV and it is 9 mV higher than the resting membrane potential which

is 83 mV.

(a) Simualted AP. (b) Experimental AP.

Figure 8.2 Simulated AP in the current work and experimental AP from the work

of Schwarz et.al. [8] .

This rapid increase is caused by the progressive opening of voltage sensitive

sodium channels. At the peak of the action potential, inactivation gates of sodium

channels close and potassium channels open which start to polarize the cell back

to its resting membrane potential. After passing the resting membrane potential,

since potassium channels cannot close immediately, out�ow of potassium ions fur-

ther polarizes the membrane, below the resting membrane potential level. During
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this hyperpolarization, Na+ inactivation gates return to their initial open state.

After potassium channels close, resting ion channels bring the membrane poten-

tial to its resting membrane potential. For comparison, single AP and train of

APs that are generated by giant neuron of cray�sh are recorded experimentally.

The current stimulus is 6.5 nA and the resting membrane potential of the cray�sh

is around -67 mV. The resulting AP has an amplitude of 105 mV. Recorded single

AP and AP train are given in Figure 8.3.

(a) Single AP. (b) Train of APs.

Figure 8.3 Recorded APs from cray�sh.

After initiation of an AP, for a certain time, neurons cannot generate a second

AP in response to a second stimulus �even if its strength is unlimited� [59]. This

period of time is called absolute refractory period and Na+ channel inactivation

is the main reason of this phenomenon. At the repolarization phase of the AP,

Na+ inactivation gates start to close and they do not get into open state until

membrane voltage decreases to resting membrane potential. If any stimulus is

applied at this period, since Na+ channels do not let passage of Na+ ions, mem-

brane voltage will not increase and AP will not be generated. To �nd the absolute

refractory period of the developed model in this study, two current pulses with

pulse width of 0.0005 ms are applied at di�erent times. Amplitudes of the current

pulses are chosen to be 150% of the threshold value of 3150 pA in accordance with
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Figure 8.4 Absolute refractory period for the model cell.

the work of Frijns et.al. [59]. Time di�erence between pulses is decreased until

the second pulse cannot initiate an AP. With this procedure, absolute refractory

period of the model is found as 3.7 ms. This value imposes an upper limit for

the maximum frequency of AP train which is 270 Hz. In Figure 8.4 absolute

refractory period of the model cell is shown.

If the pulse width of the current stimulus is increased, model generates action

potentials as long as the stimulus sustains. When the input current pulse width is

increased to 29 ms and the amplitude is taken as 110 pA, the model generates the

train of action potentials as given in Figure 8.5. Sensation of touch is felt as long

as the skin is touched, so the receptor neurons should generate action potentials

as long as the stimulation sustains. Amplitude of input current is decreased due

to the fact that, as the stimulation duration increases threshold decreases so if

the threshold value for 0.0005 ms input is applied for 29 ms, input and generated

action potentials cannot be separated as in .

Intensity of stimulus is encoded as the frequency of generated action poten-

tials. So if the amplitude of the current stimulus is increased, the frequency of

generated action potentials increase. However, there is no study to quantify the

current-frequency relation for all models [20]. Every model has its own current-

frequency relation. For the unmyelinated and myelinated �bers current-frequency

relations will be given in the next section but this relation is not given for single
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Figure 8.5 Action potentials generated under sustained stimulation with 110 pA

for 29 ms.

Figure 8.6 Frequency di�erences of train of action potentials in response to dif-

ferent current intensities.

excitable cell. However, to observe the frequency change upon increasing stimu-

lation intensity, two current inputs are applied with amplitudes 200 pA and 300

pA for 29 ms and results are given in Figure 8.6. In the same time interval,

model generates eight action potentials to higher intensity stimulus whereas it

generates six action potentials to lower intensity stimulus. When the frequencies

of the train of action potentials are calculated as the inverse of the time interval

between the �rst two spikes, it is found that under higher intensity stimulus,

frequency becomes 246 Hz whereas under lower intensity stimulus frequency is

found to be 177.3 Hz. The spikes after the �rst one have smaller amplitude

according to the amplitude of �rst spike and this di�erence becomes clear as
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Figure 8.7 States of sodium inactivation gates during di�erent current intensities.

the stimulus intensity is increased. This is observed in experimental studies of

Schwarz et.al. [8] and also in modeling studies of Frijns et.al. [59]. Reason of this

observation is �depolarization of the axon membrane resulting in inactivation of

the sodium channel� [64]. When the amount of input current is increased, volt-

age over the leakage channels increases so in the hyperpolarization phase of �rst

AP that is initiated, membrane voltage cannot decrease below resting membrane

potential so inactivation gates of Na+ channels cannot open fully. Since inacti-

vation gates remain partially open, during the generation of the next AP Na+

ion current through Na+ channels decrease which results in partial depolarization

of the membrane. As a result, amplitudes of the APs that follow the �rst one

decrease. This phenomenon is known as depolarization block. The states of Na+

inactivation gates during inputs of 200 and 300 pA currents for 29 ms is shown

in Figure 8.7. When the input is 300 pA, the h value, which represents the prob-

ability of the inactivation gate to be in open state, is lower in comparison to its

value when the input is 200 pA.

Any excitable cell model should predict the outcome of any change in physi-

ological properties like the intracellular and extracellular ion concentrations and

block of ion channels by blocking agents. Due to the changes in concentrations of

extracellular and intracellular ions, response of the neuron changes dramatically.

Also if the ionic channels are blocked by channel antagonists, neuron does not

function properly. Tetrodotoxin is a substance that has a high a�nity to bind to
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Figure 8.8 Response of the model when conductance of sodium channels becomes

zero.

the opening pores of sodium channels block action potential generation. To eat

a pu�er �sh, which posses this substance, may be fatal, since when action poten-

tial generation is blocked, information �ow in nervous system does not occur and

contraction and relaxation of muscles stop, which in turn stops vital physiological

processes like breathing. If the conductance of sodium channels is decreased by

half then there will be no action potential generation and this can be seen in

the response of the developed model in this study as in Figure 8.8. If the con-

centration of extracellular sodium ion increases the reversal potential of sodium

ion increases. If the sodium reversal potential increases by two fold, the model

generates a train of action potentials with a higher frequency as shown in Figure

8.9. It should also be noted that, as the reversal potential of sodium ion increases,

the resulting amplitude of action potentials also increases. This is because of the

fact that as the reversal potential of sodium ion increases, the electrochemical

driving force on sodium ions increases and neuron depolarizes to a greater extent

and amplitude of the action potential increases. This is the main reason for the

discrepancy between the amplitudes of APs generated in the current model and

the ones that are experimentally recorded [8].

Another important aspect of the model is that it can summate the stimuli

temporally. A current pulse, which has a pulse duration of 0.0005 ms and an

amplitude of 2400 pA, will not elicit an AP, since it is lower than threshold.
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Figure 8.9 Response of the model when reversal potential of sodium ion is dou-

bled.

If another current stimulus with same amplitude is applied after 0.00025 ms,

model generates an action potential. This is due to the fact that, because of

the membrane capacitance, membrane voltage attenuates in a certain time. If a

second stimulus arrives before the voltage that is generated by the �rst stimulus

attenuates, response of the second stimulus adds on the initial response and if

this new voltage passes threshold, an action potential is elicited. The stimulus

for this case is given in Figure 8.10(a) and the response of the model is shown in

Figure 8.10(b).
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(a) Two consecutive inputs. (b) Generated AP in response to two

consecutive inputs.

Figure 8.10 Temporal summation.

Temporal summation is an important feature since it changes the response

of the neuron. If the responses of the �rst stimulus and the second stimulus

cannot be added, than to elicit an action potential, amplitudes of the incoming

action potentials from other neurons must be very big and this is not energetically

favorable since for bigger amplitudes, ion �uxes over cell membrane must be bigger

and reallocation of the ions to their resting conditions will consume much more

energy. If there was no temporal summation, then a neuron may never �re an

action potential which will cause interruption of transmission of the signals.

8.2 Propagation Along Fibers

Gate control system includes one unmyelinated and one myelinated �bers. Con-

duction velocities, stimulus intensity-frequency characteristics and the ways of

conduction di�er for both �ber types.

First of all, AP spreads with passive conduction along unmyelinated �bers.

When AP is initiated at one point of the �ber, ions in this depolarized part �ow

to adjacent parts so that adjacent parts are also depolarized and if the voltage

exceeds threshold, he adjacent parts produce AP. By this way AP travels all along

the �ber. While AP propagation, wherever the electrode is placed, an AP can be
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recorded. However, in myelinated �bers the only points from where an AP can

be recorded are the nodal parts because APs are generated only in these active

parts. In this respect, a saltatory conduction is observed in myelinated �bers.

AP propagation along myelinated �ber is given in Figure 8.11.

(a) Saltatory propagation. (b) Close up of saltatory propagation.

Figure 8.11 AP propagation along myelinated �ber.

To �nd the propagation velocity along the myelinated �ber, time di�erence

between the peaks of APs that are generated by adjacent nodes should be calcu-

lated. Two adjacent nodes are separated by a paranodal part which is 0.5 cm in

length. Calculation of propagation velocity along myelinated �ber is given in Fig-

ure 8.12 which is a close-up of Figure 8.11(b). A velocity of 64.35 m
s
is calculated

and this velocity is in the range of physiological velocities for large diameter

�bers [11]. As given in Chapter 6, the paranodal length, has an e�ect on the

calculated velocity. During the modeling studies paranodal length is selected as

1.21 λ. However, in order to see the e�ect of paranodal length on the results other

values for paranodal length are investigated. The results are given in Table 8.1.

As it can be seen from Table 8.1, there is no signi�cant di�erence between the

velocities so the longest possible length can be used so that with myelination

less nodes can be used which is energetically more e�cient. In Figure 8.12 it is

seen that third action potential is greater than the second one in amplitude. The
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Table 8.1: Propagation velocity for di�erent paranodal lengths

Paranodal length (µm) Propagation velocity (m/s)

5000 (5 compartments) 64.35

5000 (10 compartments) 63.77

2500 (5 compartments) 61.0

2500 (10 compartments) 60.5

1250 (5 compartments) 60.8

1250 (10 compartments) 60.4

Figure 8.12 Calculation of conduction velocity along myelinated �ber.

reason is that, as the third node is the last compartment of the �ber, there is not

a �ow of ions to the adjacent compartment. Ions leave the compartment only

through ion channels on the membrane. As a result, more ions accumulate in

the last compartment and this causes AP amplitude to increase. When, a paran-

odal compartment is connected to this third node, since there would be another

route for the ions to �ow, accumulation of ions in this compartment decreased

and in turn the di�erence between the amplitudes of APs of the second and third

nodes disappears. In comparison to saltatory conduction in myelinated �bers,

AP initiation can be observed at every point of unmyelinated �ber. Model of this

�ber is composed of 100 nodal parts each of which has a length of 100 µm. This

length is the longest length for nodal parts so that propagation along the �ber

model can be observed. In fact, if the length of each part is kept smaller, the
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model would simulate real �bers better, however, the computational burden will

increase at the same time. Initiation and propagation of APs along unmyelinated

�ber is given in Figure 8.13 upon stimulation of 29 ms long current pulse. For

clarity, responses of four nodes are shown in Figure 8.13(a) and the responses of

two nodes are given in Figure 8.13(b).

(a) AP initiation and propagation at

four nodes.

(b) AP initiation and propagation at

two nodes.

Figure 8.13 AP propagation along unmyelinated �ber.

To �nd the propagation velocity along the unmyelinated �ber, time di�erence

between the peaks of second APs of node 70 and node 100 is calculated as in

Figure 8.14. Velocity along the unmyelinated �ber is found as 0.43 m
s
which

is in agreement with the physiological values that are given for small diameter

�bers as 0.25-1.25 m
s
[11]. In the developed model velocity along myelinated

�ber is much more higher than the velocity along unmyelinated �ber. Also while

myelinated �ber posses only three nodes, unmyelinated �ber has 100 nodal parts

so myelinated �ber conducts much more faster with consumption of very little

energy in comparison to unmyelinated �ber. Energy is consumed while regaining

the ion concentrations on both sides of cell membrane after initiation of AP so as

the number of nodal parts in the �ber decrease, consumed energy decreases. In

this respect, myelinated �ber is energetically more favorable than unmyelinated
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Figure 8.14 Close-up of Figure 8.13(b).

�ber.

When the intensity of stimulus is changed, frequency of the responses of the

�bers change. There is a lower limit and and upper limit for the current intensity.

Lower limit is determined by the threshold of excitation of the �ber. If the

intensity of the stimulus cannot exceed the threshold, �ber would not initiate

and AP and would not propagate it. The upper limit is determined by the

phenomenon called as depolarization block. When the intensity of the stimulus

is increased beyond a certain value, the excited node starts to �re APs with small

amplitudes after the initiation of the �rst AP. When the amplitudes of the APs

decrease, voltage di�erence, which is the driving force, between the adjacent nodes

decrease and the adjacent node cannot be excited so signal cannot be propagated

along the �ber. In fact, besides the psychological reasons, feeling no pain after

getting severe wounds in war, may be due to this incapability of the �bers. The

input current-frequency relations of myelinated and unmyelinated �bers are given

in Figure 8.15.
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(a) Current-Frequency relation for un-

myelinated �ber.

(b) Current-Frequency relation for

myelinated �ber.

Figure 8.15 Current-Frequency relations for unmyelinated and myelinated �bers.

It is seen that for the initiation and conduction of APs along unmyelinated

�ber, stimulus intensity must be in a higher range in comparison to intensity

range of the myelinated �ber. Since unmyelinated �ber carries the nociceptive

signals, for the initiation of nociceptive signal, a high intensity stimulus must

be applied. When a spot on the skin is touched, initially only tactile signals

are perceived. If the intensity of the stimulus is increases by pressure, then the

nociceptive �bers also start to conduct APs so pain can be perceived.

8.3 Neurotransmitter Concentration In the Synaptic Cleft

With every incoming AP to the pre-synaptic neuron's terminal, neurotransmitters

in the vesicles are released into the synaptic cleft. When the frequency of incom-

ing APs is high, before the previously released neurotransmitters di�use away

from the synaptic cleft, new vesicles release neurotransmitters. By summation,

concentration of neurotransmitters increase. However, increasing the frequency

of APs does not increase the concentration of transmitters unlimitedly. The con-

centration is saturated and this is called tetanization. The �rst order model for

time dependency of neurotransmitter concentration can predict the summation

and saturation of neurotransmitters. In Figure 8.16 the change in neurotrans-
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Figure 8.16 Concentration of neurotransmitter with di�erent time constants.

mitter concentration in response to incoming APs with a frequency of 246 Hz is

shown for two di�erent time constants whereas the steady state gain is 5 for both

cases. The summation property can be seen more clearly when the time constant

is 5 ms. In both cases, concentration saturates at a certain value and oscillates

around it since the release of neurotransmitters is dependent of AP waveform.

8.4 Response of Lamina I and II Neurons

Gate control structure is composed of four member components; myelinated �ber

which conducts tactile signals, unmyelinated �ber which conducts nociceptive sig-

nals, islet neuron which is the interneuron and fusiform cell which is the projection

neuron. While determining the contact points between these neurons and �bers,

components that are connected with synapses are simulated separately and as the

contact point, the furthest point where excitation or inhibition can be observed is

chosen. In other words when determining the contact point of unmyelinated �ber

and projection neuron, only unmyelinated �ber is excited and the response of the

fusiform cell is examined. Contact point is chosen as the point where the �ber

can excite the neuron without the need of increasing the synaptic conductance

above physiological values. When connections are tested, unmyelinated �ber is

found to be connected to the sixth part of fusiform cell whereas myelinated �ber

is connected to the the second part on the same neuron. Excitation of islet cell
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by myelinated �ber is achieved when connected to the second part of the cell and

inhibition by unmyelinated �ber is accomplished when connection is at sixth part

of the cell. For the connection between islet cell and fusiform cell, it is consid-

ered that inhibitory connections between neurons generally take place near to the

soma of the cell [1] so that islet cell is connected to the �fth part of fusiform cell.

All of the simulations are performed for this con�guration.

Islet cell is modeled to be spontaneously active which means that without any

need of excitation, islet cell continuously �res APs. This is because of the fact

that any activity that would cause fusiform cell to integrate the sub-threshold

voltages and �re APs should be inhibited so that pain sensation is prevented

when nociceptive �bers are not conducting any signal. When myelinated �ber

propagates APs, it would excite islet cell and for the time period that myelinated

�ber is active, the frequency of the response of islet cell will increase. This can

be seen clearly in Figure 8.17. In Figure 8.17(b), myelinated �ber generates APs

between 100 and 200 ms and at that time period frequency of the response of

islet cell increases from 72 Hz to 132 Hz. This increase in frequency will result in

secretion of more GABA neurotransmitters so the e�ect of inhibition on fusiform

cell increases.

(a) Spontaneous �ring of islet cell. (b) Firing of islet cell when excited by

myelinated �ber.

Figure 8.17 AP generation of islet cell with and without the e�ect of myelinated

�ber.
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When only the connection of the unmyelinated �ber and islet cell is simulated,

it is seen that at the time period unmyelinated �ber is active, islet cell becomes

silent. This is given in Figure 8.18. Between 100 ms and 200 ms, unmyelinated

�ber conducts APs for 100 ms and islet cell is inhibited during the time period

it receives those APs as it is shown in Figure 8.18(b). This inhibition is caused

by the inhibitory post-synaptic potential (IPSP) that is created by the inhibitory

connection between unmyelinated �ber and the islet cell. If the voltage of sixth

part of islet cell is investigated, IPSPs can be observed as the membrane voltage

of the part drops below the resting membrane potential with incoming signals

from the unmyelinated �ber.

(a) Spontaneous �ring of islet cell. (b) Firing of islet cell when inhibited by

unmyelinated �ber.

Figure 8.18 AP generation of islet cell with and without the e�ect of unmyelinated

�ber.

The membrane voltage at the sixth part of islet cell is shown for the 100 ms

period that the unmyelinated �ber is active in Figure 8.19. At the inhibitory

synapse, as the GABA gated ion channels open, the �ow of Cl- ions into the

cell decreases the membrane voltage and this is called IPSP. It should be noted

that before inhibition starts, the last AP is generated at around 120 ms although

current input to the unmyelinated �ber is starts to be applied at 100 ms. This
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Figure 8.19 IPSPs at the sixth part of islet cell.

time lag arises because of the conduction velocity of the unmyelinated �ber.

When both of the myelinated and unmyelinated �bers are active, during that

time period islet cell generates APs. This is an expected result with respect

to the gate control theory [15], because for the the tactile signals to suppress

nociceptive signals islet cell should be activated in order to inhibit projection

neuron. During myelinated and unmyelinated �bers are active, the frequency

of response of islet cell is found to be 129 Hz and this value is very close to

the obtained frequency when only myelinated �ber is active. When the synaptic

conductance of the synapse between unmyelinated �ber and islet cell is increased

from 100 nS to 150 nS, frequency of the response remains the same. However,

when the contact point of unmyelinated �ber is shifted from sixth part to �fth

part of islet cell, response frequency decreases to 117 Hz. This shows that as the

contact point gets closer to the soma, e�ect of the inhibition increases.

In the gate control structure, if the myelinated �ber is dissected so that no

tactile signal arrives at islet cell or fusiform cell, nociceptive signal cannot be

suppressed. Unmyelinated �ber will inhibit islet cell and excite fusiform cell so

that fusiform cell will �re APs that may be perceived as pain. To see the e�ect of

inhibition that unmyelinated �ber exerts on islet cell, responses of the fusiform cell

for two con�gurations are examined. In the �rst con�guration, synapse between

the unmyelinated �ber and the islet cell is blocked so that there are only two

synaptic activity: one is the inhibitory e�ect of islet cell on fusiform cell and the
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other is the excitatory e�ect of unmyelinated �ber on fusiform cell. In the other

con�guration, synapse between unmyelinated �ber and islet cell is active. The

responses of fusiform cell are given in Figure 8.20.

(a) Synapse between islet cell and un-

myelinated �ber is blocked.

(b) Synapse between islet cell and un-

myelinated �ber is active.

Figure 8.20 Responses of gate control structure when myelinated �ber is dis-

sected.

When the connection between islet cell and unmyelinated �ber is blocked,

islet cell manages to inhibit fusiform cell although there is an excitatory input to

fusiform cell from the �ber. Response of fusiform cell is shown in Figure 8.20(a).

Membrane voltage increases about 1 mV but since it does not exceed threshold,

no APs are generated. However, when the connection between the �ber and

the interneuron is active, �ber manages to inhibit the interneuron and excite

the fusiform so that fusiform cell generates APs. These generated APs may be

perceived as pain.

If the unmyelinated �ber is dissected, no nociceptive signal transmission will

occur. In this case, myelinated �ber will excite both the fusiform cell and the

islet cell. Since the response of fusiform cell will determine the level of pain, islet

cell should inhibit the fusiform cell. Otherwise, tactile signals will create pain

sensation. When the connection between the islet cell and the fusiform cell and
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the connection between islet cell and the myelinated �ber are broken myelinated

�ber will excite the fusiform cell and the response of it will be perceived as pain

although incoming signal along the myelinated �ber is non-nociceptive. While

keeping the connection between the interneuron and the myelinated �ber broken,

if the connection between the interneuron and the projection neuron is reestab-

lished, number of the APs that projection neuron generates decreases because of

the inhibitory e�ect of the islet cell. Also if the myelinated �ber and interneuron

is reconnected, after generating one spike, projection neuron becomes silent. This

is because of the fact that frequency of the response of islet cell increases as it

is excited by the myelinated �ber. Responses of fusiform cell, in other words

responses of gate control structure, for these di�erent con�gurations are shown

in Figure 8.21. Myelinated �ber is active for 100 ms between 100 ms and 200 ms.

(a) Only myelinated �ber

and fusiform cell are con-

nected.

(b) Myelinated �ber and

islet cell are not con-

nected.

(c) Myelinated �ber, islet

cell and fusiform cell are

connected.

Figure 8.21 Responses of gate control structure when unmyelinated �ber is dis-

sected.

In stressful situations like war, severe wounds that would normally cause great

pain is not felt [11]. This psychological phenomenon is explained with the actions

that brain take to inhibit such signals. But the mode of inhibition by brain is not

understood fully. However, besides the e�ect of brain, physiological properties of

the �bers that convey nociceptive signals may be responsible for this observation.
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For the developed model, if an input stimulus is applied that is out of range of the

current intensity-frequency relationship, unmyelinated �ber is blocked, which is

called depolarization block. Since the unmyelinated �ber cannot convey nocicep-

tive signals, no pain is perceived. Close-up signal waveform of the depolarization

block that occurs when 8000 pA current is applied to unmyelinated �ber is shown

in Figure 8.22(a)and the response of the fusiform cell to this input is shown in

Figure 8.22(b).

(a) Response of unmyelinated �ber to

high intensity current input.

(b) Response of fusiform cell to un-

myelinated �ber that is stimulated with

high intensity input.

Figure 8.22 Responses of unmyelinated �ber and fusiform cell under high intensity

input.

In Figure 8.22(a) it is seen that, after initiation of one AP at the start of the

high intensity input, membrane voltage of the unmyelinated �ber remains sub-

threshold. It is obvious that when the input to the unmyelinated �ber exceeds

the range of current-frequency relationship, �ber cannot excite fusiform cell so

no pain signal is transmitted to upper centers of the nervous system.

While quantifying nociceptive signals with mathematical models, test of the

accuracy of these models are very hard, if not impossible. Pain sensation is de-

coded with the nociceptive signals that convey to the higher centers of central
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nervous system and these signals are encoded and perceived as pain or not in

the brain. The most important handicap is the subjectiveness in the perception

of pain. In other words, the outcome of the same stimulus that activates noci-

ceptive �bers is di�erent from person to person so to construct an input-output

relationship experimentally and test the mathematical models with these experi-

mental results will lead to wrong results. If this subjectiveness is to be eliminated

and test the mathematical models accurately, recordings from the components of

the gate control system must be done. However, this would be a highly invasive

procedure since the system is situated in the spinal cord and very long electrodes

must be inserted into the subject's body. Also, recording from the correct neu-

ron is not guaranteed since the spinal cord is very crowded with heterogeneous

types of neurons. With these insu�ciencies in recording nociceptive signals and

measuring the perceived pain that these signals cause, the mathematical model

that is developed in this study is tested with the reported observations regarding

the perception of pain from the literature. As the recording technologies develop

and non-invasive techniques are found, models can be tested more accurately.

Finally, for a more complete model, speci�c connectivity patterns between the

�bers and neurons should be found. Also the synaptic conductances of inhibitory

and excitatory synapses should be measured exactly. In the further studies, the

e�ect of brain can be included when more information on the dynamics of the

input that is exerted by the brain is gained.
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CHAPTER 9

CONCLUSIONS

In this thesis work, a mathematical model of the gate control structure is devel-

oped. Model contains the electrophysiological and morphological characteristics

of the component �bers and neurons. The model of an excitable cell is con-

structed in the Simulink simulation environment and the response of this model

cell is investigated under di�erent physiological conditions and di�erent external

stimulus pattern. Consequently, output of the gate control system is investigated

for di�erent con�gurations and the following conclusions are made:

• Absolute refractory period of the single cell model is found as 3.7 ms and

this value introduces an upper limit for the frequency of generated APs as

270 Hz.

• Model can transduce the input current intensity to �ring frequency as ex-

pected: as the current intensity increases, frequency of generated APs in-

creases.

• Model can predict depolarization block that is due to the slow dynamics of

sodium inactivation gates.

• Model neuron can add inputs as real neurons do: although model does

not produce an AP for sub-threshold inputs, when two consecutive sub-

threshold inputs are applied, AP is initiated.

• Tetrodotoxin is a substance that blocks sodium ion channels and its e�ect is

predicted by the model; no action potential is produced after the blockage

of sodium channels as in real neurons.
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• If the extracellular Na+ ion concentration is increased, the model generates

train of APs with a higher frequency and the amplitudes of APs increase.

• Propagation velocities along myelinated and unmyelinated �bers are found

in accordance with the literature. The velocity along myelinated �ber is

almost 150 times of the velocity along unmyelinated �ber.

• Input current intensity-frequency relationships of myelinated and unmyeli-

nated �bers are found. Myelinated �ber has lower threshold in comparison

to unmyelinated �ber. Myelinated �ber starts to conduct when input is

around 400 pA whereas unmyelinated �ber starts to conduct when input is

around 1100 pA.

• Synaptic transmission is modeled with a two tank system and it is found

that the developed model can add neurotransmitter concentration with ev-

ery incoming action potential and shows the tetanization phenomenon that

is seen in real synapses.

• Interneuron �res spontaneously and when it is under the e�ect of only

myelinated �ber, during the �ber is active, frequency of the response of

the interneuron increases. When it is only under the e�ect of unmyelinated

�ber, interneuron becomes silent as long as the �ber is active. When both of

the �bers are connected to the interneuron and they are active for the same

time period, e�ect of myelinated �ber dominates and the �ring frequency

of the interneuron increases.

• When the contact point of unmyelinated �ber comes closer to the soma of

the interneuron, its �ring frequency decreases which shows that the e�ect

of inhibition increases as the contact point is near soma.

• When only the myelinated �ber is dissected, projection neuron generates

APs which means nociceptive signals project to upper centers. On the other

hand, when only unmyelinated �ber is dissected, projection neuron becomes

silent.
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APPENDIX A

SIMULINK MODELS OF ION CHANNELS

Block diagrams of sodium and potassium conductance models are given in

Figure A.1 and Figure A.2, respectively. Block diagram in Figure A.3 is the

same for sodium activation (m) and inactivation (h) gating particles except the

dynamics of m and h are doubled.
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Figure A.1 Sodium conductance model.

Figure A.2 Potassium conductance model.

Figure A.3 Potassium channel gating variable model.
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APPENDIX B

SIMULINK MODELS OF FIBERS AND NEURONS

In Figure B.1 �gure starts with the model of a node and followed by the model of a

paranode which is followed by another node. The block diagram of unmyelinated

�ber is composed of a hundred nodal blocks but since the picture of the model is

too big, it is not included. Block diagrams of interneuron and projection neuron

are given in Figure B.2 and Figure B.3, respectively. Finally the block diagram

of the complete model is presented.
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