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ABSTRACT 
 

ROTATION, SCALE AND TRANSLATION INVARIANT 

AUTOMATIC TARGET RECOGNITION USING 

TEMPLATE MATCHING FOR SATELLITE IMAGERY 

 

Ertürk, Alp 

M.Sc., Deparment of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Tolga Çiloğlu 

Co-Supervisor: Assoc. Prof. Dr. A. Aydın Alatan 

 

January 2010, 150 pages 

 

In this thesis, rotation, scale and translation (RST) invariant automatic target 

recognition (ATR) for satellite imagery is presented. Template matching is used to 

realize the target recognition. However, unlike most of the studies of template 

matching in the literature, RST invariance is required in our problem, since most of 

the time we will have only a small number of templates of each target, while the 

targets to be recognized in the scenes will have various orientations, scaling and 

translations. RST invariance is studied in detail and implemented with some of the 

competing methods in the literature, such as Fourier-Mellin transform and bipectrum 

combined with log-polar mapping. Phase correlation and normalized cross-

correlation are used as similarity metrics. Encountered drawbacks were overcome 

with additional operations and modifications of the algorithms. ATR using 

reconstruction of the target image with respect to the template, based on bispectrum, 

log-polar mapping and phase correlation outperformed the other methods and 

successful recognition was realized for various target types, especially for targets on 

relatively simpler backgrounds, i.e. containing little or no other objects. 



 

 v 
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ÖZ 
 

UYDU GÖRÜNTÜLERĠ ĠÇĠN ġABLON EġLEME 

KULLANILARAK DÖNME, ÖLÇEKLEME VE ÖTELEME 

DEĞĠġMEZLĠKLĠ OTOMATĠK HEDEF TANIMA 

 

Ertürk, Alp 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Tolga Çiloğlu 

Ortak Tez Yöneticisi: Doç. Dr. A. Aydın Alatan 

 

Ocak 2010, 150 sayfa 

 

Bu tezde, uydu görüntüleri için dönme, ölçekleme ve öteleme değiĢmezlikli 

bir otomatik hedef tanıma algoritması sunulmuĢtur. Hedef tanımayı gerçekleĢtirmek 

için Ģablon eĢleme kullanmaktadır. Ancak, literatürdeki Ģablon eĢleme ile ilgili çoğu 

çalıĢmanın aksine, problemimizde, her hedefin sadece bir veya az sayıda Ģablonuna 

sahip olacağımız için ve sahnelerdeki tanınacak hedefler farklı yönelim, ölçek ve 

ötelemeye sahip olacaklarından dolayı, dönme, ölçekleme ve öteleme değiĢmezliği 

gerekmektedir. DeğiĢmezlik detaylı bir biçimde çalıĢılmıĢ ve gerçekleĢtirmek için 

Fourier-Mellin dönüĢümü ve log-polar mapping ile birleĢtirilen bispectrum gibi 

literatürdeki baĢarılı yöntemlerin bazıları kullanılmıĢtır. Benzerlik ölçevleri olarak 

faz korelasyonu ve normalize edilmiĢ çapraz-korelasyon kullanılmıĢtır. KarĢılaĢılan 

zayıflıklar ek iĢlemler ve yöntemlerin uyarlanması ile aĢılmıĢtır. Bispectrum, log-

polar mapping ve faz korelasyonuna dayanan, hedef imgenin Ģablona göre geri 

oluĢturulması ile otomatik hedef tanıma yöntemi diğer yöntemlerden daha iyi sonuç 

vermiĢtir ve birçok hedef türü için, özellikle arkaplan göreceli basitken, yani baĢka 

objeleri az içeriyor veya hiç içermiyorken, baĢarılı tanıma gerçekleĢtirilmiĢtir.  

 



 

 vii 

Anahtar Kelimeler: Otomatik hedef tanıma, Ģablon eĢleme, log-polar mapping, 

Fourier-Mellin dönüĢümü, bispectrum 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1. Motivation 

“Automatic target recognition (ATR) generally refers to  the autonomous target 

detection and recognition by computer processing of data from a variety of sensors  

such as forward looking infrared (FLIR), synthetic aperture radar (SAR), inverse 

synthetic aperture radar (ISAR), laser radar (LADAR), millimeter wave (MMW) 

radar, multispectral/hyperspectral sensors, low-light television (LLTV), video, etc.” 

[1]   

ATR is a crucial element of intelligence, surveillance, target acquisition and 

reconnaissance (ISTAR). Nowadays, the ability of a country to defend itself can 

only be reached via technological superiority in the fields of ISTAR, because the 

detection of possible targets and target locations allows taking necessary precautions 

in times of peace and enables fast and efficient measures, such as the use of 

unmanned weapon systems, in times of war. Since ATR reduces the workload of 

human operators operating in the fields of ISTAR, the importance of ATR has also 

increased.  

Template matching, which is a well-established and easy to realize method 

used in many areas such as image retrieval, image registration, medical imaging and 

face recognition, will be used in this study to realize ATR. In this study, the 

templates are the representative images for each possible target to be detected and 

recognized. In many studies using template matching, the template will remain 

exactly, or very much, the same in the test image to be matched. However, in ATR, 

the targets will be in various orientations and scales, with possible small changes in 
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details or coloring and distortions. In order to detect such a wide range of target 

types, a very large number of templates would have to be stored and used, which 

would greatly increase the computation time.  

Of special concern among these problems is the variation of rotation, scale and 

translation. RST invariance will enable us to overcome this heavy burden. With RST 

invariance, a small number of templates for each target type will be sufficient to 

detect and recognize all targets invariant of their orientations or scales.  

1.2. Scope of the Thesis 

In this thesis, our main goal is to achieve rotation, scale and translation invariant 

automatic target recognition using template matching.  

This thesis is concerned only with automatic target recognition from satellite 

imagery. Although the same techniques can be used for aerial images obtained from 

unmanned aerial vehicles, no experiments are conducted on such images in this 

study. ATR using other type of sensors is completely out of the scope of this study.  

To realize the RST invariance, more than one method is used and the results are 

compared via experiments.  

1.3. Outline of the Thesis 

The outline of the thesis is summarized as follows: 

In Chapter 2, template matching is introduced and a literature survey is 

presented, followed by the descriptions of the similarity metrics that are most 

commonly used in template matching.  

In Chapter 3, RST invariance is studied in detail, with literature survey and a 

through look into some of the promising methods.  

In Chapter 4, the methods that are used in this study are explained in detail with 

respective drawbacks and the efforts made to overcome these.  Also presented in this 

chapter are the common drawbacks of the approach and important points of 

consideration. 

In Chapter 5, experimental results are presented and discussed. 

Finally, in Chapter 6, conclusions and possible future studies will be presented. 
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CHAPTER 2 

 

TEMPLATE MATCHING 

 

 

2.1 Introduction 

The template matching technique refers to the comparison of a standard 

representative pictorial pattern (template) with an image with the purpose of finding 

occurrences of the reference pattern within the image [2]. The basic template-

matching algorithm consists of sliding the template over the search area and, at each 

position, calculating a distortion, or correlation, measure estimating the degree of 

dissimilarity, or similarity, between the template and the image [3]. The mostly used 

similarity –or dissimilarity- measures include sum of absolute differences (SAD), 

sum of squared differences (SSD), cross-correlation (CC) and normalized cross-

correlation (NCC), which is by far the most widely used metric. These similarity 

metrics will be explained in section 2.3 in more detail.  

2.2 Literature Survey 

 Template matching is one of the most common techniques used in image 

processing and pattern recognition. Template matching applications include image 

retrieval [4], image registration [5], image recognition [6], object detection [7], 

medical imaging [8] and face recognition [9] and verification [10]. 

A general problem with template matching is the high computation time it 

requires. Over the years, many techniques have been developed with the intent of 

reducing this computation time.  

The “coarse-to-fine” strategy [7], [11], [12] is a well-known approach to 

reduce the search area, and, therefore, the computational cost of template matching. 

Different resolution versions of the template and the image are generated and the 
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low-resolution versions of the template are compared against low-resolution 

versions of the image, to find the location of the best match. The neighborhood of 

the best-match location is searched in the image using increasingly higher 

resolutions, up to the original resolution image. In some studies, like the one 

proposed by Rosenfeld and VanderBrug [11], matching between higher-resolution 

template and input images is applied only when there is high similarity in the coarse 

matching. However, the reduction in computation achieved by “coarse-to-fine” 

template matching comes at the price of lower precision, i.e., the location of the best 

match at low-resolution is not necessarily exactly at the location of the best match at 

full-resolution. Hence, there is a trade-off between reducing computation and 

precision. The “coarse-to-fine” strategy works well for an object with significantly 

low spatial frequency components which are retained in a low resolution image, but 

it does not work well for cluttered scenes and objects whose details need to be 

checked in order to distinguish one from another [13]. To implement the “coarse-to-

fine” strategy, it is also necessary to decide how many levels of resolution are to be 

used, which depends on the template and the image.  

Another strategy to accelerate template matching is to eliminate the positions 

that cannot provide a better degree of match with respect to the current best-

matching one. Gharavi–Alkhansari combined this strategy with the coarse-to-fine 

strategy, and proposed a method for estimating a threshold in the coarse search and 

pruning the candidates in the fine search [12].  

Yet another strategy to reduce the computational cost is to approximate the 

template by a function. Schweitzer et al. proposed an efficient template matching 

algorithm using integral images and approximating the input image with 

polynomials [14]. In a recent study, Omachi and Omachi proposed a method called 

algebraic template matching, which approximated the template image with a 

polynomial, and calculates NCC between this approximation and partial images of 

the input image of various widths and heights [15]. 

When there are multiple templates to be matched, and the templates have some 

connections or similarities between each other, a template hierarchy may be build to 

reduce the computation time. Such a hierarchy was used in [16] for human detection 
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and segmentation. Hierarchical approach can also be combined with “coarse-to-fine” 

strategy [17].     

 Another problem with template matching is that is not robust against rotation 

or other distortions. Although rotation variance may be useful in some cases, such as 

in [18], in many cases, rotation invariance is strictly preferred, especially in 

automatic target recognition. The straightforward way to solve this problem, without 

rotation invariance, is to use a very large number of templates for every possible 

rotation variance and distortion, but this is computationally very expensive, and in 

general, unacceptable. There have been some studies in the literature to reduce the 

large computation time caused by this problem. Uenohara and Kanade have used 

Karhunen-Loeve transform to represent such a large number of templates with 

various rotations and distortions with a small number of eigenvectors [13]. 

Paglieroni et al proposed a method to reduce the number of positions and 

orientations to be searched, using distance transforms and translational cross-

correlation [19]. Dufour et al proposed a method using estimation on the template 

location in the input image and minimizing a likelihood surface to find the 

parameters of rotation and distortion [7].     

As can be seen, although there are various studies in the literature to solve the 

problem of varying rotations and distortions, these are basically to reduce the 

computation time, instead of actually solving the problem. To solve this problem 

rotation, scale and translation (RST) invariance was studied in this thesis, so that a 

very small number of templates can be used for a large possibility of rotation or 

scale variations of the corresponding object in the input image. RST invariance will 

be studied in Chapter 3 in detail.  

2.3 Similarity (and Dissimilarity) Metrics 

 There is a large number of similarity and distortion metrics used in template 

matching, and it is not in the scope of this thesis to cover them all in this section. 

Brief explanations of the most commonly used metrics follows, with special 

emphasis on normalized cross-correlation and phase correlation.  
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2.3.1 Sum of Absolute Differences (SAD):   

 Sum of absolute differences is a distortion, i.e. dissimilarity, metric. In SAD, 

the absolute value of the difference between each pixel in the original block –the 

template in our study-, and the corresponding pixel in the block being used for 

comparison are summed to create this metric. SAD is also called the L1 norm. Given 

an image I of size WxH and a template T of size MxN (M<W, N<H), the SAD at 

position x, y is defined as: 

 

𝑆𝐴𝐷 𝑥,𝑦 =    𝐼 𝑥 + 𝑖, 𝑦 + 𝑗 − 𝑇 𝑖, 𝑗  

M−1

i=0

N−1

j=0

                           (1) 

 

2.3.2 Sum of Squared Differences (SSD): 

Sum of squared differences is also a distortion, i.e. dissimilarity, metric. In 

SSD, the squared value of the difference between each pixel in the original block –

the template in our study-, and the corresponding pixel in the block being used for 

comparison are summed to create this metric. SSD is also called the L2 norm. 

Given an image I of size WxH and a template T of size MxN, the SSD at 

position x, y is defined as: 

 

𝑆𝑆𝐷 𝑥, 𝑦 =    𝐼 𝑥 + 𝑖, 𝑦 + 𝑗 − 𝑇 𝑖, 𝑗  
2
                            (2)

M−1

i=0

N−1

j=0

 

 

2.3.3 Cross-correlation (CC): 

 Cross Correlation is similar to SSD, since it is motivated by the squared 

Euclidian distance, but can be implemented more efficiently. Starting from the 

squared Euclidian distance equation:  

 

𝑑𝑓 ,𝑡
2  𝑢, 𝑣 =   𝑓 𝑥,𝑦 − 𝑡 𝑥 − 𝑢, 𝑦 − 𝑣  2

𝑥,𝑦

                            (3) 

𝑑𝑓,𝑡
2  𝑥,𝑦 =   𝑓2 𝑥,𝑦 − 2𝑓 𝑥, 𝑦 𝑡 𝑥 − 𝑢, 𝑦 − 𝑣 + 𝑡2 𝑥 − 𝑢,𝑦 − 𝑣     (4)

𝑥,𝑦
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The third term in the parenthesis is constant, and the first term is approximately 

constant. Hence, we arrive at the cross-correlation formula, which is: 

 

𝐶𝐶 𝑥, 𝑦 =   𝐼 𝑥 + 𝑖, 𝑦 + 𝑗 ∙ 𝑇(𝑖, 𝑗)|

M −1

i=0

N−1

j=0

                          (5) 

 

There are some disadvantages of using cross-correlation:  

 If the image energy – the first term in the parenthesis - varies with position, 

cross-correlation can fail.  

 The range of CC(x,y) is dependent on the size of the feature.  

 Cross-correlation is not invariant to changes in image amplitude such as those 

caused by changing lighting conditions across the image sequence.  

2.3.4 Normalized Cross Correlation (NCC): 

 Normalized cross-correlation overcomes the problems mentioned in the 

previous section of cross-correlation [20]. The equation of the normalized cross-

correlation (NCC) is obtained as follows: 

 

𝑁𝐶𝐶 𝑥, 𝑦 =
   𝐼 𝑥 + 𝑖, 𝑦 + 𝑗 − 𝐼  𝑀−1

𝑖=0
𝑁−1
𝑗 =0 ∙  𝑇 𝑖, 𝑗 − 𝑇  

    𝐼 𝑥 + 𝑖, 𝑦 + 𝑗 − 𝐼  2𝑀−1
𝑖=0

𝑁−1
𝑗 =0 ∙     𝑇 𝑖, 𝑗 − 𝑇  2𝑀−1

𝑖=0
𝑁−1
𝑗 =0

   (6) 

 

The image and the template are normalized to unit length in NCC. 

Note that while SSD, SAD and cross-correlation assume constant brightness, 

NCC is invariant to linear brightness and contrast variations due to normalization. 

NCC is by far the most widely used similarity metric in template matching, 

and it is also used in this study. Given below, in Figures 2.1, Figure 2.2 and Figure 

2.3, is a simple example of template matching using normalized cross-correlation: 

 

 

Figure 2.1: Template image for NCC 
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Figure 2.2: Test image for NCC, the matched template location is marked  

 

 

Figure 2.3: Normalized cross-correlation result for the images in Figures 2.1 and 2.2 

 

 

Since NCC is frequently used in template matching, and a large number of 

studies of template matching are made on reducing the computation time, it is 
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inevitable that some of these studies try to reduce the computation time of the NCC 

itself.  

In [3], Stefano and Mattoccia applied the principles of successive elimination 

algorithm and partial distortion elimination, which were proposed for SAD and SSD, 

to the NCC. Their data-dependent method, called the bounded partial correlation, 

used a bound for the NCC function to disregard the search positions that are 

guaranteed not to provide a better match with respect to the current best-match. 

They have also improved this method in a later study [21].  This approach can also 

be combined with other methods used to reduce the computation time of template 

matching, as in [22]. 

2.3.5 Phase Correlation (PC):  

If x1[n] and x2[n] represent the two images and X1[k] and X2[k] show the 

corresponding discrete Fourier transforms (DFTs), the phase correlation is defined 

as:  

𝑆 𝑛 = 𝐹−1  
𝑋1 𝑘 𝑋2

∗ 𝑘 

 𝑋1 𝑘 𝑋2
∗ 𝑘  

                                                 (7) 

 

where F-1 represents the inverse DFT.  

If the two images are the same, the phase correlation result is: 

 

𝑆 𝑛 = 𝐹−1  
𝑋1 𝑘 𝑋1

∗ 𝑘 

 𝑋1 𝑘 𝑋1
∗ 𝑘  

 = 𝐹−1  
 𝑋1 𝑘  

2

 𝑋1 𝑘  
2
 = 𝐹−1 1 = 𝛿 𝑛            (8) 

 

Therefore, the phase correlation result of two identical signals has a peak value of 

unity located at n = 0.  

If the second image is a spatially shifted version of the first image, i.e.: 

 

𝑥2 𝑛1, 𝑛2 = 𝑥1 𝑛1 − 𝑡1, 𝑛2 − 𝑡2                                         (9) 

 

where t1 and t2 represents the horizontal and vertical displacements, according to the 

Fourier shift property, the Fourier transforms will be related as: 
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𝑋2 𝑢, 𝑣 = 𝑋1 𝑢, 𝑣 𝑒−𝑖 𝑢𝑡1+𝑣𝑡2                                      (10) 

 

Then the phase correlation is obtained as: 

 

𝑆 𝑛 = 𝐹−1  
𝑋1 𝑘 𝑋1

∗ 𝑘 𝑒 𝑖 𝑢𝑡1+𝑣𝑡2 

 𝑋1 𝑘 𝑋1
∗ 𝑘  

 = 𝛿 −𝑡1,−𝑡2                      (11) 

 

Hence, if the second image is a spatially shifted version of the first image, the 

phase correlation surface is zero everywhere except at location [-t1,–t2], in which it is 

a delta function and represents the displacement between the two images. 

 

 

   

Figure 2.4: Lena image and the circularly t ranslated Lena image 

 

 

Figure 2.5: Phase correlat ion result for Figure 2.4 
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The height of the peak of phase correlation can be used as a good similarity 

measure for image matching – high peak amplitudes represent good matching, while 

low peak amplitudes show poor correspondence -, and the location of the peak 

shows the translational displacement between the two images.  

The most remarkable property of phase correlation compared to the classical 

cross-correlation method is the accuracy by which the peak of the correlation 

function can be detected: the peak in the phase correlation can be detected much 

more accurately compared to classical cross correlation because the phase 

correlation provides a distinct sharp peak at the point of registration whereas the 

cross-correlation yields several broad peaks and a main peak whose maximum is not 

always exactly located at the right point [23]. Given below is an example for this 

property. The example used for template matching using NCC, is repeated here, but 

is instead matched using phase correlation this time.  

 

 

 

Figure 2.6: Template image for PC 

 

 

Figure 2.7: Test image for PC, the matched template location is marked  
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Figure 2.8: Phase correlat ion result for Figures 2.6 and 2.7 

 

 

A particularly useful feature of the phase correlation technique is the way 

performance degrades gracefully as conditions depart from the ideal of pure 

translation. As conditions depart from ideal translation, the peak in the correlation 

surface will correspond to the best- fitting translational vector [24].  

Another important property is due to the whitening of the signals by 

normalization, which makes the phase correlation notably robust to those types of 

noise that are correlated to the signal, e.g., offsets in average value and fixed gain 

errors [25]. If there is a change in average value and gain so that: 

 

𝑥2 𝑛 = 𝛼 ∙ 𝑥1 𝑛 + 𝛽                                                  (12) 

 

where α and β are constants, then the Fourier transforms will be related by: 

 

𝑋2 𝑘 = 𝛼 ∙ 𝑋1 𝑘 + 𝛽 ∙ 𝛿 𝑘                                            (13) 
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in which case the phase-correlation output is obtained as: 

 

𝑆 𝑛 = 𝐹−1  
𝑋1 𝑘  𝛼 ∙ 𝑋1

∗ 𝑘 + 𝛽 ∙ 𝛿 𝑘  

 𝑋1 𝑘  𝛼 ∙ 𝑋1
∗ 𝑘 + 𝛽 ∙ 𝛿 𝑘   

                            (14) 

= 𝐹−1  
𝛼 ∙  𝑋1 𝑘  

2 + 𝛽 ∙ 𝛿 𝑘 ∙ 𝑋1 𝑘 

 𝛼 ∙  𝑋1 𝑘  
2 + 𝛽 ∙ 𝛿 𝑘 ∙ 𝑋1 𝑘  

                        (15) 

= 𝛿 𝑛                                                                                      (16) 

 

Hence, changes in the average value and gain are automatically canceled by the 

whitening feature of the phase correlation. Thus, phase correlation is insensitive to 

changes in image intensity. 

 

 

Figure 2.9: Lena image and the Lena image with increased average value and fix gain 

 

 

Figure 2.10: Phase correlation result for Figure 2.9 
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In this study, phase correlation is used as a reliable correlation technique that 

enables us to detect the translation between the two images. More information on 

our use of phase correlation will be presented in following chapters, since we will 

use it - combined with some other techniques that will be explained in the next 

chapter - to detect the rotation, scale and translation variations between the template 

and the sub- images.   
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CHAPTER 3 

 

ROTATION, SCALE AND TRANSLATION 

INVARIANCE 

 

 

3.1 Introduction 

 Rotation, scale and translation (RST) invariance is a technique that is mostly 

used in watermarking. In order for a watermark to be useful for copyright protection, 

it must be robust against a variety of possible attacks by pirates. These include 

robustness against compression such as JPEG compression, geometrical distortion, 

cropping, row and column removal, addition of noise, filtering, cryptographic and 

statistical attacks, as well as insertion of other watermarks. While many methods 

perform well against compression, they lack robustness to geometric distortion [26]. 

In recent years, watermarking algorithms robust to the geometrical distortions have 

been the focus of research, because rotation and scaling attacks are considered more 

challenging than other attacks and even very small geometric distortions can prevent 

the detection of a watermark [27]. 

RST invariance is of the utmost importance in this study. Although the 

problem of the variation of the scale can be easily solved if the altitude that the 

image is taken is known –since the sizes of the targets to be recognized are already 

known-, the targets will still be in various orientations. As discussed earlier, using a 

very large number of templates in every possible orientation for each target is 

unfeasible in terms of computation time and necessary memory. However, without 

RST invariance, using only one template in a given orientation is definitely not 

sufficient to recognize the target in all possible orientations and scales, since 

correlation results drop drastically with small amount of rotation or scale variation. 
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Casasent and Psaltis [28] report that the signal-to-noise ratio (SNR) of the 

correlation peak between two images decreases from 30 dB to 3 dB with either a 2% 

scale change or a 3.5° rotation. Hence, in this study, we have to solve the RST 

invariance problem. 

3.2 Literature Survey 

 Invariance against similarity transforms, i.e. RST invariance, has been a focus 

of research for quite some time.  

 The first promising results were obtained using moments. Of special concern 

among these are the Hu moments [29] and the Zernike moments [30]. Angular 

Radial Transform [31, 32] is moment-based shape descriptor used in MPEG-7, 

which is similar to Zernike moments, but can be computed faster. The formulations, 

strengths and weaknesses of these methods will be explained in the next sections in 

detail. Such features capture global information about the image and do not require 

closed boundaries as boundary-based methods such as Fourier descriptors do [30]. 

Moments and functions of moments have been utilized as pattern features in a large 

number of applications. However they have some weaknesses which prevent them 

from proving successful results beyond some certain measure [33, 34], these general 

weaknesses will also be explained later. 

 Fourier-Mellin transform [28] is a well-performing method for RST invariance. 

After FMT was used for watermarking by O’Ruanaidh and Pun [35], to provide RST 

invariance for protection against geometrical attacks, the number of studies on FMT 

and watermarking have exponentially increased and a very large number of studies 

on FMT and watermarking can now be found in the literature. Because of the 

implementation difficulties and image fidelity loss caused by the FMT, some 

modified algorithms are also commonly used [26].  Most of these algorithms use 

LPM which is not truly RST invariant. In fact, Fourier–Mellin transform is a log-

polar mapping (LPM) following and followed by a Fourier transform, while an 

inverse Fourier–Mellin transform is an inverse log-polar mapping (ILPM) following 

and followed by an inverse Fourier transform. Although FMT - and LPM – are 

mostly used in watermarking [27], [36], [37], they are also used in image 

registration [38], texture classification [39] and image recognition, including 
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fingerprint [40], iris [41], face [42] and even shoeprint [43] recognition. LPM and 

FMT will be explained in detail in following sections, since these methods are used 

to a great extent in this thesis.  

 Projecting the two dimensional image into one dimension can also yield some 

properties that can be used to obtain RST invariance. One such technique that is 

commonly used is the Radon transform, which is a special case of an image 

projection algorithm. Radon transform represents the image as a collection of 

projections along various directions. The Radon Transform has been applied to 

image processing in areas of tomographic reconstruction, image segmentation, 

determining the orientation of an object, and restoration of images [44]. The Hough 

transform, which is a special case of the Radon transform, was used in image 

analysis for edge detection and feature extraction purposes [44]. Radon transform 

can be used in a variety of ways to obtain RST invariance. Some of the methods that 

are used with Radon transform for this goal include SVD [44], Fourier transform 

[45], [46], neural networks [47], LPM [48] and wavelets [49]. Radon transform can 

also be used by itself for RST invariance after some manipulations [50]. 

 Higher-order spectra, especially the bispectrum, are also used in RST 

invariance methods. Bispectrum is the Fourier spectrum of the triple correlation of a 

signal. The higher order spectral features are shown to be as immune to Gaussian 

noise as features based on moment invariants, but are superior in their immunity to 

background impulses that cause problems for methods based on accurate calculation 

of the centroid [51]. Bispectrum behaves similarly to Fourier transform against 

rotation and scale. However, in contrast to the Fourier transform in which translation 

invariance is achieved by taking the magnitude and disregarding the phase, 

Bispectrum is directly translation invariant [52]. This is the basic reason that 

Bispectrum is used with Radon transform [53] or LPM [54] to obtain RST 

invariance. Bispectrum is studied in detail in a following section.  

3.3 Moment-Based Approaches 

Joint moments, of order p and q, of random variables ρ(x,y) are defined in 

terms of Riemann integrals as: 

 



 

 18 

𝑚𝑝𝑞 =   𝑥𝑝𝑦𝑞𝜌 𝑥,𝑦 𝑑𝑥𝑑𝑦                                         (17)
∞

−∞

∞

−∞

 

 

The uniqueness theorem states that the double moment sequence {mpq} is 

uniquely determined by ρ(x,y); and conversely, ρ(x,y) is uniquely determined by 

{mpq}. 

Central moments μpq are defined as: 

 

𝜇𝑝𝑞 =    𝑥 − 𝑥  𝑝 𝑦 − 𝑦  𝑞 𝜌 𝑥,𝑦 𝑑 𝑥 − 𝑥  𝑑 𝑦 − 𝑦             (18)
∞

−∞

∞

−∞

 

 𝑥 = 𝑚10 𝑚00 𝑦 = 𝑚01 𝑚00                                         (19) 

 

The central moments are invariants under translation [29]. 

To obtain scale invariance, the central moments are normalized: 

 

𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇
00

𝛾 𝛾 =
 𝑝 + 𝑞 + 2 

2
𝑝 + 𝑞 = 2,3,…                                           (20) 

 

3.3.1 Hu Moments 

Hu introduced seven nonlinear functions based on normalized central moments 

which are translation, scale, and rotation invariant [29]. These moment invariants are 

as follows: 

𝜙1 = 𝜂20 + 𝜂02                                                                                                                     (21) 

𝜙2 =  𝜂20 + 𝜂02 
2 + 4𝜂11

2                                                                                                 (22) 

𝜙3 =  𝜂30 − 3𝜂12 
2 +  3𝜂21 − 𝜂03 

2                                                                            (23) 

𝜙4 =  𝜂30 + 𝜂12 
2 +  𝜂21 + 𝜂03 

2                                                                                 (24) 

𝜙5 =  𝜂30 − 3𝜂12  𝜂30 + 𝜂12   𝜂30 + 𝜂12 
2 − 3 𝜂21 + 𝜂03  2 

+ 3 𝜂21 −𝜂03  𝜂21 + 𝜂03  3 𝜂30 + 𝜂12 
2 −  𝜂21 + 𝜂03 

2         (25) 

𝜙6 =  𝜂20 − 𝜂02   𝜂30 + 𝜂12 
2 −  𝜂21 + 𝜂03 

2 

+ 4𝜂11 𝜂30 + 𝜂12  𝜂21 + 𝜂03                                                               (26) 

𝜙7 =  3𝜂21 − 𝜂03  𝜂30 + 𝜂12   𝜂30 + 𝜂12 
2 − 3 𝜂21 + 𝜂03 

2 

+  3𝜂21 −𝜂30  𝜂12 + 𝜂03  3 𝜂30 + 𝜂12 
2 −  𝜂21 + 𝜂03 

2         (27) 
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3.3.2 Zernike Moments 

3.3.2.1 Introduction to Zernike Moments 

The basis set of regular moments is not orthogonal. Consequently, the recovery 

of image from these moments is quite difficult and computationally expensive.  

Moreover, it implies that the information content of the basis have a certain degree 

of redundancy.  

Orthogonal moments including Zernike moments are better than other types of 

moments in terms of information redundancy and image representation. The 

orthogonality property enables one to separate out the individual contribution of 

each order moment to the reconstruction process. The reason for selecting Zernike 

moments from among the other orthogonal moments is that they possess a useful 

rotation invariance property. Rotating the image does not change the magnitudes of 

its Zernike moments. Hence, they could be used as rotation invariant features for 

image representation.  

It should also be noted that Zernike moments are superior to both regular 

moments and the moment invariants of Hu, in terms of classification accuracy [30]. 

3.3.2.2 Zernike Moments  

Zernike moments are a set of complex polynomials which form a complete 

orthogonal set over the interior of the unit circle. The form of polynomials is:  

 

𝑉𝑛𝑚  𝑥,𝑦 = 𝑉𝑛𝑚  𝜌, 𝜃 = 𝑅𝑛𝑚  𝜌 ∙ 𝑒𝑥𝑝 𝑗𝑚𝜃                           (28) 

𝑅𝑛𝑚  𝜌 =   −1 𝑠

𝑛−
 𝑚  

2

𝑠=0

∙
 𝑛 − 𝑠 !

𝑠! ∙  
𝑛 +  𝑚 

2 − 𝑠 ! ∙  
𝑛 −  𝑚 

2 − 𝑠 !
 𝜌𝑛−2𝑠     (29) 

 

Note that the radial polynomials satisfy:   

 

𝑅𝑛,−𝑚 𝜌 = 𝑅𝑛𝑚  𝜌                                                      (30) 

 

The Zernike polynomials are orthogonal and satisfy: 
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   𝑉𝑛𝑚  𝑥,𝑦  ∗𝑉𝑝𝑞  𝑥, 𝑦 𝑑𝑥𝑑𝑦 =
𝜋

𝑛 + 1
𝛿𝑛𝑝 𝛿𝑚𝑞

𝑥2+𝑦2≤1

                (31) 

𝛿𝑎𝑏 =  
1             𝑎 = 𝑏
0    𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

                                                 32  

 

Zernike moments are obtained by the projection of the image function onto 

these orthogonal basis functions. The Zernike moment of order n with repetition m 

for a continuous image function f(x,y) is: 

𝐴𝑛𝑚 =
𝑛 + 1

𝜋
  𝑓 𝑥, 𝑦 𝑉𝑛𝑚

∗

𝑥2+𝑦2 ≤1

𝑑𝑥𝑑𝑦                             (33) 

 

and in discrete form: 

 

𝐴𝑛𝑚 =
𝑛 + 1

𝜋
  𝑓 𝑥, 𝑦 𝑉𝑛𝑚

∗

𝑦

 𝜌,𝜃     ,    𝑥2 + 𝑦2 ≤ 1                (34)

𝑥

 

 

3.3.2.3 Rotation Invariance of Zernike Moments 

Consider a rotation of an image by an angle of α, i.e.: 

 

𝑓 ′  𝜌,𝜃 = 𝑓 𝜌, 𝜃 − 𝛼                                                 (35) 

 

 After some calculations [27], we arrive at: 

 

𝐴𝑛𝑚
′ = 𝐴𝑛𝑚 𝑒𝑥𝑝 −𝑗𝑚𝛼                                               (36) 

 

The equation above shows that Zernike moments merely acquire a phase shift  

on rotation. Hence, the magnitudes of the Zernike moments of a rotated image  

remain identical to those before rotation.  

3.3.2.4 Scale and Translation Invariance for Zernike Moments 

As a disadvantage, the defined features on the Zernike moments are only 

rotation invariant. To obtain scale and translation invariance, the image is first 

subjected to a normalization process using its regular moments. The rotation 
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invariant Zernike features are then extracted from the scale and translation 

normalized image. 

Translation invariance is achieved by transforming the original image f (x,y) 

into another one, so that the origin is moved to the centroid of the original image :  

 

𝑓 𝑥 + 𝑥 , 𝑦 + 𝑦                                                          (37) 

 

 Scale invariance is obtained by changing the size of the image such that the 

zeroth order moment m00 is equal to a predetermined value β.  

Hence for scale and translation invariance, the image f(x,y) should be 

transformed in to g(x,y), where    

 

𝑔 𝑥, 𝑦 = 𝑓  
𝑥

𝑎
+ 𝑥 ,

𝑦

𝑎
+ 𝑦                                            (38) 

𝑎 =  𝛽 𝑚00                                                           (39) 
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Figure 3.1: Some of the orthogonal Zernike moment basis  functions 
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3.3.2 Angular Radial Transform 

Angular Radial Transform is a moment-based method adopted in MPEG-7 as a 

region based shape descriptor. It is similar to Zernike moments, but can be computed 

faster. It has compact size, is robust to noise and scaling, invariant to rotation and 

has the ability to describe complex objects [31].  

The ART coefficients, Fnm of order n and m, are defined on a unit disk in polar 

coordinates as: 

𝐹𝑛𝑚 =   𝑉𝑛𝑚  𝜌, 𝜃 𝑓 𝜌, 𝜃 𝑑𝜌𝑑𝜃                                 (40)
1

0

2𝜋

0

 

 

where f(ρ,θ) is an image function in polar coordinates and Vnm(ρ,θ) is an ART basis 

function that is separable along the angular and radial directions, i.e.: 

 

𝑉𝑛𝑚  𝜌, 𝜃 = 𝐴𝑚  𝜃 𝑅𝑛 𝜌                                              (41) 

𝐴𝑚  𝜃 =
1

2𝜋
𝑒𝑥𝑝 𝑗𝑚𝜃                                                (42) 

𝑅𝑛 𝜌 =  
1

2 cos 𝜋𝑛𝜌 
     

𝑛 = 0
𝑛 ≠ 0

                                      (43) 

 

 

Figure 3.2: Real parts of ART basis functions (n=3, m=12) 

 

Let the image fα(ρ,θ) be the rotated version of f(ρ,θ) by the angle α around its 

origin, i.e., 

𝑓𝛼 𝜌, 𝜃 = 𝑓 𝜌,𝛼 + 𝜃                                               (44) 

 

Then, the ART coefficients are obtained as: 

𝐹𝑛𝑚
𝛼 = 𝐹𝑛𝑚 exp −𝑗𝑚𝛼                                              (45) 
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Hence, rotation invariance is obtained by taking the magnitude of the ART 

coefficients [32].  

Just like the Zernike moments, ART doesn’t have scale and translation 

invariance. For scale invariance, ART coefficients are normalized by the magnitude 

of ART coefficient of order n=0, m=0 [31]. Translation invariance is obtained by 

centering the transform on the centroid of the object. 

3.3.3 Why Not Use Moments? 

Although moment-based approaches give promising results for RST invariance 

and also have the orthogonality property, there are valid reasons for not using such 

approaches in this study. 

First among these is that the moments are very sensitive to noise, which is why 

moment-based approaches are mostly applied to binary images, or binarized 

grayscale images using lower order moments [33]. 

In a study by Abu-Mostafa and Psaltis [34], the recognitive aspects of moment 

invariants are examined in detail and some very interesting results are obtained. In 

addition to moment invariants being no longer invariant when noise is present, it is 

found in the study that moment invariants of Hu suffer from information loss, 

suppression and redundancy. It was also found that Zernike moment invariants also 

suffer from information loss, although they don’t have information suppression or 

redundancy. 

3.4 Fourier Transform and Its Applications in RST Invariant 

Algorithms 

 Although Fourier transform, by itself, is not RST invariant, it has some very 

useful properties against translation, rotation and scaling, that motivate its usage in a 

lot of RST invariance techniques.  

 The discrete Fourier transform (DFT) of f (x1, x2) is defined as follows: 

 

𝐹 𝑘1,𝑘2 =   𝑓 𝑥1,𝑥2 𝑒
−
𝑗2𝜋𝑥1𝑘1

𝑁1
 −

𝑗2𝜋 𝑥2𝑘2
𝑁2

 

𝑁2 −1

𝑛2=0

𝑁1 −1

𝑛1=0

            (46) 
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 A translation, or a shift in the spatial domain, causes a linear shift in the phase 

component. Note that both F(k1,k2) and f(x1,x2) are periodic functions, so the 

translations are assumed to be circular translation. This leads to the well known 

result that DFT magnitude is invariant to circular translation, which can be observed 

from Figure 3.3 and Figure 3.4.  

 

𝑓 𝑥1 + 𝑎,𝑥2 + 𝑏 
𝐷𝐹𝑇
  𝐹 𝑘1,𝑘2 𝑒𝑥𝑝 −𝑗 𝑎𝑘1,𝑏𝑘2                     (47) 

 

 

Figure 3.3: An image and its circularly t ranslated version 

 

Figure 3.4: Fourier t ransform magnitudes of the images in figure 3.3 

 

 Scaling the image in the spatial domain causes an inverse scaling in the 

frequency domain, which can be observed from Figure 3.5 and Figure 3.6 : 

𝑓 𝜌𝑥1,𝜌𝑥2 
𝐷𝐹𝑇
  

1

𝜌
𝐹  

𝑘1

𝜌
,
𝑘2

𝜌
                                          (48) 

 

 

Figure 3.5: An image and its scaled version 
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Figure 3.6: Fourier t ransform magnitudes of the images in figure 3.5 

 

 Rotating the image through an angle θ in the spatial domain causes the Fourier 

representation to be rotated through the same angle: 

 

𝑓 𝑥1 cos𝜃 − 𝑥2 sin 𝜃 , 𝑥1 sin𝜃 + 𝑥2 cos𝜃 

𝐷𝐹𝑇
  𝐹 𝑘1 cos𝜃 − 𝑘2 sin 𝜃 , 𝑘1 sin 𝜃 + 𝑘2 cos 𝜃                                 (49) 

 

 

Figure 3.7: An image and its rotated version 

 

Figure 3.8: Fourier t ransform magnitudes of the images in figure 3.7 

 

 The magnitude of the Fourier transform is commonly used for translation 

invariance and the properties of Fourier transform against rotation and scale will be 

used in the next section, in log-polar mapping, to transform rotation and scaling to 

translation. 
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3.5 Log-Polar Mapping  

 Log-polar mapping, by itself, is also not an RST invariance technique; however 

it has some very important properties that make it very useful in applications that 

require RST invariance. Before these properties are studied, it is necessary to 

understand how this mapping works.  

Log-polar mapping is a nonlinear transformation that is based on human vision. 

Human vision has two areas, fovea centralis at the center of visual axis, which has 

high resolution, and the peripheral, where the resolution decreases according to the 

distance from the fovea centralis [55]. The log-polar mapping maps the points on the 

Cartesian plane (x,y) to points in the log-polar plane (ξ,ή) similar to the human 

vision system.  

 

 

Figure 3.9: Log-Polar Mapping in Coordinates  

 

 

The coordinate transformation by log-polar mapping is described by the following 

two equations: 

𝜀 = log  𝑥2 + 𝑦2                                                50  

𝜂 = tan−1  
𝑦

𝑥
                                                        51  
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In log-polar domain, one axis gives us the angular value, and the other axis 

gives us the logarithmic representation of the radial value. This mapping is done as 

follows: For each (ξ,ή) value, the corresponding (x,y) value is calculated, then the 

value of the image is obtained at this (x,y) using approximation or interpolation. 

This value is written to that (ξ,ή) coordinate of the log-polar plane. Given below in 

Figure 3.10 are an image and the image obtained by taking the log-polar mapping of 

that image.  

 

        

Figure 3.10: An image and its log-polar mapping  

 

 

The advantage of using Log-Polar over Cartesian coordinate representation is 

because any rotation and scale in Cartesian coordinate is represented as a shift in the 

angular direction and a shift in the log-radius direction in Log-Polar coordinate, 

respectively [56]. In other words, log-polar mapping has the useful property to 

convert scale and rotation into translation. This can be seen from the equations 

below: 

 𝑥, 𝑦 ↔  𝜇, 𝜃                                                             (52) 

 𝜌𝑥,𝜌𝑦 ↔  𝜇 + log𝜌 , 𝜃                                              (53) 

 𝑥 cos 𝜃 + 𝛿 − 𝑦 sin 𝜃 + 𝛿 , 𝑥 sin 𝜃 + 𝛿 + 𝑦 cos 𝜃 + 𝛿  ↔  𝜇, 𝜃 + 𝛿    (54) 

 

The above equations demonstrate that image scaling in Cartesian domain 

results in a translation along the log-radius axis in log-polar domain, and the image 

rotation in Cartesian domain results in a circular translation along the angle axis in 

log-polar domain. 

However, log-polar mapping is not translation invariant. Hence, although log-

polar transform has important properties for scale and rotation invariance, these 
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advantages can be acquired only when the origin of the transformation for both the 

template and target in the candidate image are matched [56]. In Fourier-Mellin 

transform, which is explained in the next section, log-polar mapping is used after the 

magnitude of Fourier transform of the image is taken, to solve this problem. 

 

 

Figure 3.11: Scaling property of log-polar mapping  

 

Figure 3.12: Rotation property of log-polar mapping  

 

 

3.6 Fourier-Mellin Transform 

The Fourier-Mellin transform is a useful tool for image recognition because its 

resulting spectrum is invariant in rotation, translation and scale. The Fourier 

Transform itself is translation invariant and its conversion to log-polar coordinates 

converts the scale and rotation differences to vertical and horizontal translations that 

can be measured. A second DFT, called the Mellin transform gives a transform-

space image that is invariant to translation, rotation and scale.  

 

 

Figure 3.13: Fourier-Mellin transform process 
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We can write the relationship of an image i0(x,y), and a rotated, scaled, and 

translated version of the image, i1(x,y), as follows: 

 

𝑖1 𝑥, 𝑦 = 𝑖0 𝜍 𝑥 cos𝛼 + 𝑦 sin 𝛼 − 𝑥0, 𝜍 −𝑥 sin 𝛼 + 𝑦 cos𝛼 − 𝑦0    (55) 

 

where the image is scaled by σ, rotated by α, and translated by (x0,y0). 

The Fourier transforms of i0(x,y) and i1(x,y) are I0(u,v) and I1(u,v) respectively, 

and their magnitudes are related by: 

 

 𝐼1 𝑢,𝑣  =  𝜍 −2 ∙  𝐼0 𝜍
−1 𝑢cos𝛼 + 𝑣sin 𝛼 , 𝜍−1 −𝑢 sin 𝛼 + 𝑣 cos𝛼     (56) 

 

which is seen to be independent of the translation parameters, i.e., is translation 

invariant. 

 Rewriting the above equation in log-polar coordinates, we arrive at: 

 

 𝐼1 𝑢, 𝑣  =  𝜍 −2 ∙  𝐼0 𝜍
−1𝑒𝜌 cos 𝜃 − 𝛼 , 𝜍−1𝑒𝜌 sin 𝜃 − 𝛼           (57) 

or: 

 𝐼1 𝑢, 𝑣  =  𝜍 −2 ∙  𝐼0 𝜌 − ln 𝜍 , 𝜃 − 𝛼                                 (58) 

 

The equation above is independent of the first translation parameters and the rotation 

and scale parameters have transformed into translation parameters.  

 Another Fourier transform gives us: 

 

𝐹1 𝑤𝜌 , 𝑤𝜃 =  𝜍 −2 ∙ 𝑒−𝑗  𝑤𝜌 ∙ln 𝜍+𝑤𝜃 ∙𝛼 ∙ 𝐹0  𝑤𝜌 , 𝑤𝜃                    (59) 

 

The Fourier magnitudes of the two log-polar mappings are related by: 

 

 𝐹1 𝑤𝜌 , 𝑤𝜃  =  𝜍 −2 ∙  𝐹0 𝑤𝜌 , 𝑤𝜃                                       (60) 

 

As can be seen from the equation above, at the end of the Fourier-Mellin transform, 

we obtain translation and rotation invariance, and scaling only results in a constant 
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scaling of the whole amplitude of the Fourier-Mellin spectrum. This scaling will not 

present a problem since normalized cross-correlation is used as the matching 

similarity metric. 

Although FMT is a successful method for RST invariance, it has some 

important weaknesses that should be considered. The first and foremost among these 

is the loss of phase information since FMT depends on the magnitudes of Fourier 

transforms. The whole information present in the images is not preserved and the 

possibility of false detection increases [33]. Also, the cross-correlation of the 

Fourier-Mellin transforms generally yield a very broad maximum because of the loss 

of phase information, and hence FMT becomes unreliable both for identification and 

localization of an object in the image [33].  

A possible approach to overcome this problem is not to take the second Fourier 

transform in FMT and use phase correlation to obtain the translation values in the 

log-polar mapped image [33], [38], [57]. These translation values correspond to 

rotation and scale parameters between the two images. These parameters are used to  

reconstruct the image. Then, the reconstructed image and the reference image are 

matched using phase correlation to find the optimal translation parameters between 

the two images. 

The method, however, has difficulty in recovering large scales and rotations. 

This difficulty can be understood by realizing that large rotation and scale 

differences exacerbate the border effects when computing the Fourier transform. A 

large translation or scale introduces additional pixel information that can 

dramatically alter the Fourier coefficients [38]. 

It should be noted that even in this method, Fourier transform magnitude has to 

be used before the log-polar mapping for translation invariance while obtaining 

rotation and scale parameters. Hence, we still lose the phase information of the 

image. To overcome this, higher-order spectra can be used instead of the Fourier 

transform for translation invariance. Bispectrum, which is the most frequently used 

higher-order spectra for translation invariance, will be studied in the next section. 

It is important to note that the literature is replete with synthetic examples for 

the Fourier–Mellin registration method. In particular, a reference image is always 

matched against a scaled and rotated version of itself. This serves to defer the 
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problem of handling the fine details introduced by an actual optical zoom.  

Conversely, when the image undergoes minification, translation, or rotation, 

additional real data seeps into the target image, not just black pixels [38]. Note that 

artificial black backgrounds can help register two images, because they ensure that 

the same underlying content is considered [38].  

3.7 Bispectrum 

As stated earlier, amplitude spectrum does not provide a full description of the 

image contents, because it lacks the information carried by the phase spectrum [52]. 

Hence, other translation invariance representations are searched. In practice, the new 

representation should have its behavior against rotation and scale similar to the 

amplitude spectrum, for easier estimation of scale and rotation parameters [52]. 

Fortunately, the amplitude spectrum is not the only spectral representation that is 

translation-invariant. Certain higher order spectrums also have the same property. 

These spectrums are defined by: 

 

Ψ𝑛 𝑢1,𝑢2,… , 𝑢𝑛 = 𝐹∗ 𝑠  𝐹 𝑢𝑖 

𝑛

𝑖=1

                                 (61) 

 

where ui with i = 1, …, n  are vectors in the 2-D frequency space, and s = u1 + u2 

+ … + un. 

 The first-order spectrum is the power spectrum, which is the squared amplitude 

spectrum, and is obtained by taking n=1: 

 

Ψ1 𝑢 = 𝐹 𝑢 ∙ 𝐹∗ 𝑢                                                   (62) 

 

 The second-order spectrum, which is the bispectrum, is obtained by taking 

n=2: 

Ψ2 𝑢1,𝑢2 = 𝐹 𝑢1 ∙ 𝐹 𝑢2 ∙ 𝐹∗ 𝑢1+𝑢2                               (63) 
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The bispectrum is a triple product of Fourier coefficients, and is a complex-

valued function of two frequencies, similar to the power spectrum which is a second 

order product of Fourier coefficients and a function of only one frequency.  

Bispectrum retains both the amplitude and the phase information from the 

Fourier transform of a signal, so the information carried by the phase is not lost. 

Because of this, bispectrum is commonly used in signal –and image- reconstruction 

[58], [59], [60].  

Bispectrum is translation invariant because linear phase terms are cancelled in 

the triple product that defines the bispectrum.  

Also, bispectrum is zero for Gaussian noise and thus provides high noise 

immunity [51]. 

Assuming that F(u) is an N-by-N DFT of an image, the bispectrum becomes a 

N-by-N-by-N-by-N matrix. It is therefore not practical to evaluate the whole 

bispectrum. A better solution, that is commonly used, is to take 2-D slices of this 4-

D spectrum [52]. These slices are generally defined as:  

 

𝑆𝑘 𝑢 = Ψ2 𝑢, 𝑘 ∙ 𝑢      ,∀𝑘 ∈ 𝑅                                        (64)   

 

Although a slice is only a small portion of the whole bispectrum, in the 

applications found in the literature, it is stated that the reconstruction is still possible 

and no essential information has been lost [52]. It is also stated that it is possible to 

obtain slightly better classification results by using multiple slices [54]. 

The scaling and rotation properties of the bispectrum slices and the whole 

bispectrum are the same. These properties are basically the same as for the Fourier 

transform, which indicates that we can directly use the bispectrum slices in the same 

way as the amplitude spectrum in the Fourier-Mellin transform to estimate the scale 

and rotation [52]. The scaling and rotation properties of the bispectrum slices are 

given by: 

𝑓 𝛼𝑥, 𝛽𝑦  
𝐵
  

1

 𝑎𝑏 3
𝑆𝑘  

𝑢

𝑎
,
𝑣

𝑏
                                          (65) 

 

𝑓 𝑟,𝜃 + 𝛼  
𝐵
  𝑆𝑘 𝑤,𝜙 + 𝛼                                           (66) 
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It should be noted that although the bispectrum provides noise immunity and 

translation invariance without losing the phase information, bispectrum is sensitive 

to illumination changes just like the amplitude spectrum. Hence, non-uniform 

illumination changes may cause significant problems in template matching or image 

alignment [52]. 
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CHAPTER 4 

 

THE METHODS 

 

 

4.1 Introduction 

Presented in this chapter are the step-by-step descriptions of the methods used in 

this study. The reasons for using each method are also presented and the strengths 

and drawbacks of the methods are investigated. Before the methods form into their 

final versions, experiments and observations of some of these drawbacks have 

caused us to make some changes on the method, which are also explained 

accordingly.  

4.2 ATR Using Template Matching in Fourier-Mellin Domain: 

 As explained in section 3.6, Fourier-Mellin transform can be used to obtain 

RST invariance. In our first method, the template and the sub-images to be 

compared with the template are transformed into the Fourier-Mellin domain, which 

is RST invariant, and compared in this domain using normalized cross-correlation.  

4.2.1 Step-by-step Description of the Method 

In this section, step-by-step description of the method is presented.  

1) The input – or test – image is formed into sub- images of the same size as 

the template image. The blocks can be overlapping or non-overlapping.  

2) Fourier transforms of both the template and the sub- images are taken and 

the phases are disregarded by taking only the magnitude part to obtain 

translation invariance.  

3) Log-polar mappings of the Fourier transform magnitudes are taken to 

transform scale and rotation into translation.  
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4) Another Fourier transform follows, also in which the phases are 

disregarded by taking the magnitudes and which provides scale and rotation 

invariance. 

5) The resulting images in the Fourier-Mellin domain are passed into a 

similarity metric, which is in our case NCC, and compared with a threshold. 

The sub- images with correlation results higher than the threshold are the 

sub- images which contain the target in the template image.  

Given below in Figure 4.1 is the flowchart of this method. 

 

 

Figure 4.1: Flowchart of ATR using template matching in Fourier-Mellin domain  

 

4.2.2 Drawbacks of the Method 

4.2.2.1 Loss of Phase Information 

 As can be seen from figure 4-1, this method involves taking the Fourier 

transform magnitude two times in order to obtain RST invariance. This results in the 

loss of phase information two times. The information carried by the phase of the 

Fourier transform of the template and the sub- images are lost in the taking of the 

first Fourier magnitude and the phase information of the log-polar mappings of the 

Fourier magnitudes are lost in the second taking of the Fourier transform magnitudes.  

 After the conducted experiments, which are presented in the Chapter 5, it was 

observed that the phase information is essential and critical, and its loss should be 

avoided. The loss results in very high correlation results for each sub- image, and 

hence a very small dynamic range. This can be explained by noting that the loss of 

the essential information contained in the phase results in transformation into a 
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domain in which, although RST invariance is satisfied, each image becomes very 

similar.  

To partially solve this problem, another method similar to those in some 

studies in the literature, based on reconstruction, was constructed which gets rid of 

the need for the second Fourier magnitude. This method is studied in Section 4.3 in 

detail.  

4.2.2.2 Very Small Dynamic Range 

 As explained in section 4.2.2.1, this weakness is a direct consequence of the 

loss of phase information caused by taking the Fourier transform magnitudes while 

transforming into the Fourier-Mellin domain. 

4.3 ATR Using Template Matching Based on Reconstruction by 

Fourier-Mellin Transform and Phase Correlation 

 In this method, rather than transforming the template and the sub- images to the 

Fourier-Mellin domain, reconstruction by phase correlation is used to compare the 

images in image domain. 

 After the Fourier transform magnitude and the log-polar mapping, the second 

Fourier transform magnitude is not taken. Rather, the properties of log-polar 

mapping and phase correlation are used to obtain the rotation and scale parameters 

between the template and the sub- image to be compared. As was explained in the 

previous chapter, the Fourier magnitude provides translation invariance while 

preserving the rotation and scale, and by log-polar mapping rotation and scale 

parameters are transformed into translation. Then, phase correlation is used to obtain 

the translation, which corresponds to the rotation and scale parameters, and 

reconstruct the sub- image so that there is no rotation or scale variation between the 

template and the sub- image. After this reconstruction, the reconstructed image and 

template are phase correlated to obtain the translation parameter.  

4.3.1 Step-by-step Description of the Method 

In this section, step-by-step description of the method is presented. Note that 

the algorithm of this method is modified in section 4.3.2.2, hence the step-by-step 

description and the flowchart presented in this section are not the final versions for 

this method. 
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1) The input – or test – image is formed into sub- images of the same size as 

the template image. The blocks can be overlapping or non-overlapping.  

2) Fourier transforms of both the template and the sub- images are taken and 

the phases are disregarded by taking only the magnitude part to obtain 

translation invariance.  

3) Log-polar mappings of the Fourier transform magnitudes are taken to 

transform scale and rotation into translation. 

4) Phase correlation is taken between the LPM of the FT magnitude of the 

template and the LPM of the FT magnitude of each sub- image to obtain the 

translations, which correspond to the scale and rotation between the sub-

images and the template. 

5) Each sub- image is reconstructed using its rotation and scale parameters.  

6) The reconstructed sub- images and the template image are phase correlated 

to obtain the translations between the images.  

7) The reconstructed sub- images are again reconstructed using their 

translation parameters. 

8) The reconstructed sub-images are normalized cross-correlated with the 

template image in the image domain and the results are compared with a 

threshold. The sub- images with correlation results higher than the threshold 

are the sub- images which contain the target in the template image.  

Given below in Figure 4.2 is the flowchart of this method.  

 

Figure 4.2: Flowchart of ATR using template matching based on reconstruction by Fourier-Mellin 

transform and phase correlation 
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4.3.2 Drawbacks of the Method 

4.3.2.1 Multiple Peaks in Phase Correlation 

As explained before, in the literature, this method is almost always used to 

obtain the RST parameters between an image and its rotated, scaled and translated 

versions. However, in our problem, only the target in the images will be the same 

and the background, and hence an important part of the images, will be different. 

After the experiments, it was observed that this results in not a clean and single peak 

for the phase correlations, but rather in a peak cloud, in which the largest peak is not 

necessarily the correct one to obtain the correct RST parameters. Because of this, 

some modifications on the method were made.  

Multiple peaks were used to obtain rotation and scale parameters, the sub-

image was reconstructed to a number of images using each rotation-scale parameter 

pair, followed again by a phase correlation between each of these images and the 

template to obtain, again with multiple peaks, the translation parameters. The images 

are again reconstructed to a larger number of images using the translation 

parameters. At the end, each image is compared with the template using NCC in 

image domain, and the image with the largest similarity is the one reconstructed 

with the correct RST parameters. 

The step-by-step description of the revised version of the method is as follows: 

1) The input – or test – image is formed into sub- images of the same size as 

the template image. The blocks can be overlapping or non-overlapping.  

2) Fourier transforms of both the template and the sub- images are taken and 

the phases are disregarded by taking only the magnitude part to obtain 

translation invariance.  

3) Log-polar mappings of the Fourier transform magnitudes are taken to 

transform scale and rotation into translation.  

4) Phase correlation is taken between the LPM of the FT magnitude of the 

template and the LPM of the FT magnitude of each sub- image to obtain the 

translations, which correspond to the scale and rotation between the sub-

images and the template. However, multiple peaks are obtained for each 

sub- image, which correspond to multiple R-S pairs.  
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5) Each sub-image is reconstructed using its each rotation and scale parameter 

pair. 

6) The reconstructed sub- images and the template image are phase correlated 

to obtain the translations between the images. Again, multiple peaks are 

used, which correspond to more than one possible translation parameter. 

7) The reconstructed sub-images are again reconstructed using each of their 

translation parameters. 

8) The reconstructed sub-images are normalized cross-correlated with the 

template image in the image domain. For each sub- image the highest 

correlation result is accepted as corresponding to the sub-image which was 

reconstructed using true RST parameters.  

9) The correlation results are compared with a threshold. The sub- images with 

correlation results higher than the threshold are the sub- images which 

contain the target in the template image. 

In our experiments, it was observed that to obtain the correct rotation and scale 

parameters 30 largest peaks was necessary and sufficient, while for the translation 

parameters, 10 peaks were more than enough in all cases. Note that the near 

neighborhood of each taken peak is disregarded for the next possible peak location 

candidates.  

4.3.2.2 Loss of Phase Information 

 Although in this method, we don’t use the second FT magnitude of the method 

in section 4.2, we still have the first FT magnitude for translation invariance. Hence, 

the phase information of the template and the sub-images are still lost.  

 It should be noted that, since in this method, instead of using the final 

similarity metric in Fourier-Mellin domain, we use it in image domain, this loss of 

phase information does not affect the final correlation results as in the method of 

section 4.2. However, the loss of phase degrades the results of phase correlation 

taken after the LPM, and in some cases, the rotation and scale parameters may not 

be correctly obtained.  

 Note that in the literature, since this method is almost always used to find the 

RST parameters between an image and its scaled, rotated and translated version, this 

loss is not as important as in our case.  
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 To truly solve this problem, we either have to forego translation invariance, or 

find another transform which behaves against rotation and scale similar to Fourier 

transform, but is translation invariant without losing the phase information. As 

explained in the previous chapter, bispectrum satisfies these properties. The method 

in which bispectrum is used in place of the FT in this method is studied in the next 

section 

4.4 ATR Using Template Matching Based on Reconstruction by 

Bispectrum, Log-Polar Mapping and Phase Correlation 

 Bispectrum was used instead of FT in the previous method to prevent the loss 

of phase information, and hence overcome a weakness. The rest of the method is 

exactly the same as the previous method.  

4.4.1 Step-by-step Description of the Method 

In this section, step-by-step description of the method is presented. This 

method was developed after the previous method of section 4.3 was revised into its 

final form; hence multiple peaks are used in phase correlation steps.  

1) The input – or test – image is formed into sub- images of the same size as 

the template image. The blocks can be overlapping or non-overlapping.  

2) Bispectrum slices of both the template and the sub- images are taken to 

obtain translation invariance.  

3) Log-polar mappings of the bispectra are taken to transform scale and 

rotation into translation. 

4) Phase correlation is taken between the LPM of the bispectrum of the 

template and the LPM of the bispectrum of each sub- image to obtain the 

translations, which correspond to the scale and rotation between the sub-

images and the template. However, multiple peaks are obtained for each 

sub- image, which correspond to multiple R-S pairs.  

5) Each sub-image is reconstructed using its each rotation and scale parameter 

pair. 

6) The reconstructed sub- images and the template image are phase correlated 

to obtain the translations between the images. Again, multiple peaks are 

used, which correspond to more than one possible translation parameter.  
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7) The reconstructed sub-images are again reconstructed using each of their 

translation parameters. 

8) The reconstructed sub-images are normalized cross-correlated with the 

template image in the image domain. For each sub- image the highest 

correlation result is accepted as corresponding to the sub-image which was 

reconstructed using true RST parameters.  

9) The correlation results are compared with a threshold. The sub- images with 

correlation results higher than the threshold are the sub- images which 

contain the target in the template image.  

Given below in figure 4.3 is the flowchart of this method. 

 

Figure 4.3: Flowchart of ATR using template matching based on reconstruction by bispectrum, log-

polar mapping and phase correlation 

 

4.4.2 Drawbacks of the Method 

4.4.2.1 Multiple Peaks in Phase Correlation 

 This problem is still there, and has the same effect as in the previous method, 

namely the computation time is increased to obtain better results. The same number 

of peaks is used for this method as in the previous method.  

4.4.3 Slice matters 

 As explained in section 3.7, for an NxN image, the bispectrum is NxNxNxN, 

which is not only impractical, but also impossible for our template image sizes, to 

implement. Hence, bispectrum slices are used instead of the whole bispectrum. 

These slices are obtained as: 
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𝑆𝑘 𝑢 = Ψ2 𝑢,𝑘 ∙ 𝑢      ,∀𝑘 ∈ 𝑅                                        (67) 

 

 In the literature, in most studies, the choice of which slice to use does not affect 

the results since bispectrum is mostly used as a feature extraction tool. However, in 

our experiments, it was observed that the choice of the slice affects the results.  

 In a small number of studies, the whole bispectrum is observed and the slice 

corresponding to the highest SNR values are taken. However, in 2-D, we cannot 

obtain the 4-D bispectrum in MATLAB, and hence cannot use this method. Instead, 

a more common approach is adopted, which involves using more than one 

bispectrum slice and for each sub- image taking the slice which gives the higher 

result for that sub- image. Computationally, this is a very time consuming solution, 

since the same operations will be applied for each slice. A better solution can be 

found in a future study. 

4.5 Common Points of Consideration  

 There are some common points of consideration that do not vary depending on 

the method used, but are results of the overall approach or caused by. These 

drawbacks and concepts are detailed in this section.  

4.5.1 Overall Drawbacks of the Approach 

 Beside the presented drawbacks for each method, there are also other important 

drawbacks that are not associated by the specific methods, but rather are caused by 

the overall approach, namely using template matching for RST invariant ATR.  

4.5.1.1 Background 

 The most important problem is the fact that in almost all cases, the template 

image does not only consist of the target, but rather additional data in the form of 

background also leaks in, due to the fact that most of the objects are not shaped as 

perfect squares or circles.  

 The additional data in the form of background causes all the RST invariance 

methods to perform worse than their other applications in the literature, because the 

backgrounds in the sub- images are different than the background in the template 

image, as expected.  



 

 44 

 The background cannot be modeled as an additive noise to the template and 

hence cannot be gotten rid of using the standard methods of noise removal. The 

straightforward solutions to this problem, namely segmentation and/or shape 

analysis cannot be used since they contradict the reason of using template matching. 

Hence, the problem cannot be solved completely. Rather, the effect of the 

background variations can be lessened using some simple techniques such as 

windowing. 

4.5.1.1.1 Windowing 

  Windowing can be used to reduce the effects of background and make 

translation appear as circular translation, and hence increase the dynamic range. 

Three types of windowing functions were studied in this thesis and these are 

Gaussian, Hanning and Hamming windows. Hanning filter proved to be the most 

successful among these. The best performing filter size was chosen as 4/3 times the 

template –and sub- image- size. The windowing tests are studied and analyzed in 

Chepter 5 in detail. 

4.5.1.2 Illumination 

 Considering that the images are illumination distributions, the importance of 

illumination in image processing can be better understood. While using data that is 

exposed to sunlight and affected by weather conditions, this importance increases 

exponentially. 

 The angle that the target in the image receives the light of the sun greatly 

affects the results, so much that at least two templates should be used for each target, 

one for each side of receiving the light. This is not caused by a drawback of our 

methods, but rather is unavoidable while using template matching since the 

illumination distribution of the image, and hence of the target, varies greatly 

depending on the incidence angle of the light and the similarity metrics such as 

normalized cross-correlation are drastically affected. 

4.5.2 Important Concepts to Pay Attention To 

4.5.2.1 Centering the DC Component in FT 

 In MATLAB®, the FT results in a matrix in which the DC component is the 

first –uppermost left- pixel. However the zero-frequency should be in the center 
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pixel to truly observe the rotation property of FT. Otherwise, the frequency domain 

representation would have to be rotated around the uppermost left pixel since FT 

rotates around the DC component, and combined with periodicity, calculation 

complexity would increase. A function called “fftshift” is used to shift zero-

frequency component to the center of the spectrum, which performs as in the figure 

4.4 below. The frequencies increase by getting farther away from the center.  

 

 

Figure 4.4: How the “fftshift” works  

 

 Note that “fftshift” is not enough to center the DC component completely, 

since there is a one pixel shift. To solve this problem, one column and one row are 

added to the right side of and under the frequency domain representation 

respectively. These column and row are the same as the leftmost column and 

uppermost row, since the FT is periodic.     

4.5.2.2 The Discord between Circular and Square Operations 

 LPM is a transformation that takes a circular area from the Cartesian domain 

and maps it into a rectangular area in the log-polar domain. However, FT and 

bispectrum are defined on squared areas on 2-D. Because of this disunity, it is 

necessary to determine in which way the circular area to operate LPM on will be 

selected. The obvious two choices are the inner circle and the outer circle as shown 

in the figure below for an image. 

 

 

Figure 4.5: Inner and outer circles for LPM  
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In this study, the inner circle is used, because LPM is applied after FT or 

bispectrum, and the data disregarded by taking the inner cirle - data corresponding to 

the corners of the squared area – corresponds to very high frequencies, which do not 

affect the reconstructed image in a way noticeable by eye.  

In addition, in this way, LPM can also be applied in image domain, besides 

frequency domain. Otherwise, in using the outer circle, outside of the squared area 

containing the data would have to be filled with data from neighboring sub- images –

which is not applicable for the template image- or taken as zero or NaN, which 

would result in a situation such that for each template and sub- image the same 

locations of each LPM would always be equal, resulting in a domination of rotation 

parameters of 0, 90, 180 and 270 degrees being determined by phase correlation.   

4.5.2.3 Interpolation in LPM 

 As explained before in section 3.5, while performing LPM, for each coordinate 

of the log-polar mapped image the corresponding (x,y) value from the Cartesian 

image is calculated, then the value of the image is obtained at this (x,y) using 

approximation or interpolation, since the (x,y) coordinates are not necessarily –and 

indeed in most cases- integers. 

Both nearest neighbor approximation and bilinear interpolation were used in 

this study and overall, better results were obtained with bilinear interpolation than 

with nearest neighbor, as expected. Bilinear interpolation was adopted for the rest of 

this study. 

 Bicubic interpolation was also used, but it was observed that it did not provide 

a significant improvement over bilinear interpolation.  

4.6 Exhaustive Approach  

To truly discern the necessity of our RST invariant methods, the performances 

should be compared with the exhaustive case, namely using templates at least for 

every rotation, and possibly for every translation and scale, though these can be 

avoided. 

Exhaustive approach has been implemented in this study to be compared in 

performance to the RST-invariant methods. 36 rotated templates have been used for 

each target. Scale invariance is obtained as a first step using the information on the 
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altitude that the test image is obtained and the size of the target. Translation 

invariance is obtained by reconstruction using phase correlation.  

However, the exhaustive method has two drawbacks. One of the drawbacks is 

that the exhaustive case is generally not feasible, since template images containing 

each target in each angle of rotation can’t be obtained in most cases. Note that 

generating these template images artificially can be used to avoid this drawback. 

The second drawback is the computation time. A possible approach to reduce 

this computation time involves using eigenvalue reduction. In this approach, the 

template images of the target with different rotation angles are represented by a 

smaller number of eigenvalues and eigenvectors. This approach will be examined in 

the next section. 

4.7 Eigen Approach  

  Eigen approach has been used in this thesis for performance comparison with 

the RST-invariant methods. The method has been derived from the book of Trucco 

and Verri [61]. The step-by-step description of the method used in this study is as 

follows: 

1) For each target, the template images which contain the target’s rotated versions 

are taken. In this study, a number of 36 manually rotated template images were 

used for each target. Ideally a number of 360 images, one for each degree of 

rotation, should be used, but this is obviously not feasible in real- life 

applications. 

2) The energy for each template image is normalized 

3) DFT is taken for translation invariance 

4) The template images are represented as vectors 

5) The average vector is calculated for each target over these vectors 

6) The covariance matrix of the vectors is computed 

7) Eigenvalues and eigenvectors corresponding to the target are computed. In this 

study, since 36 template images were used for each target, there are a total of 36 

eigenvalues for each target.  
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8) The first k eigenvalues and eigenvectors are kept, and the rest is discarded. In 

this study k is taken as equal to one fourth of the total number of eigenvalues, 

which is 9. 

9) The k-dimensional eigenspace points corresponding to each vector are computed. 

Hence, 36 k-dimensional vectors are obtained. 

10)  For each sub- image, the normalization, DFT and vector representation steps are 

done. Then, the k-dimensional eigenspace point for the sub- image is computed. 

11)  The closest k-dimensional eigenspace point to the k-dimensional eigenspace 

point of the sub- image is found. 

12) NCC between the corresponding template image and the sub-image is calculated. 

13) A threshold is used to discern if the sub- image contains the target.  
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CHAPTER 5 

 

EXPERIMENTAL RESULTS 

 

 

5.1 Introduction to Experiments 

In this chapter, the results of the conducted experiments are presented and 

studied in detail. The chapter is formed up according to the nature of the 

experiments conducted. Note that although some experiments are to give the overall 

performance of the methods, some are to discern how a certain variation or 

additional operation affects the performance. These variations include whether to 

use overlapped blocks, windowing, multiple bispectrum slices and artificial 

backgrounds for the templates. 

After the tests on variations and parameters, the five methods used in this study 

are compared in performance. This comparison is conducted in a subgroup of the 

database. After the performance comparison tests, the best performing method is 

analyzed in performance in more detail and in various situations. 

The performances of the methods are measured in terms of receiver operation 

characteristics (ROC), i.e. recall-vs-precision graphs. In terms of true positive (hit), 

false positive (false alarm) and false negative (miss), these are obtained as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
=

𝐻𝑖𝑡

𝐻𝑖𝑡 + 𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚
                          (68) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
=

𝐻𝑖𝑡

𝐻𝑖𝑡 + 𝑀𝑖𝑠𝑠
                                         (69) 
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5.2 Test Data 

  In this study, the data for testing was collected from all over the world using 

Google Earth ®. The database was mostly focused on airplanes - both civilian and 

military, while containing other types of test data also.  

5.3 Experiments on Variations and Parameters 

 In this section, the experiments are conducted not to give the overall 

performance of a specific method, but rather to determine how a certain variation 

affects the results or the performances of the methods. 

5.3.1 Overlap vs. Non-overlap 

 The sub- images are taken in the size of the templates, but they can either be 

taken as non-overlapping or overlapping. Even though the methods are translation 

invariant, their basic forms are based on the assumption that the target is in the 

center of the sub- image. Our revision of the methods based on using multiple peaks 

and fixing translation after fixing the rotation and scale overcomes this to some 

extent, but the larger part of the target in the sub- image the better the results will be, 

obviously.  

The tests on overlapping were conducted with the method presented in Section 

4.5 and with non-overlapping and overlapping blocks with the overlap ratios of ½ 

and ¾. A single bispectrum slice was used for the tests in this section.  Although a 

large number of template and test images were used in these experiments, only two 

of such template–test image pairs are presented here for space considerations. These 

two examples are chosen such as to convince the reader that the overall results of 

these experiments are the same as those presented in Section 5.3.1.4. While 

presenting the test images, the sub- images are separated by red lines. The blocks that 

are bound in green are those sub- images that result in a final NCC result greater than 

a given threshold, taken as 0.5 here. The NCC results are also presented in all of 

these sections for the corresponding tests. Note that the x-axis of the NCC results 

corresponds to the number of the sub- image being tested. 
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Figure 5.1: Template image for the first overlapping test 

 

 

Figure 5.2: Template image for the second overlapping test 

 

5.3.1.1 Non-overlapping Blocks 

 

 

Figure 5.3: Test image for the first template with the non-overlapping sub-images shown  
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Figure 5.4: Final NCC results for Figure 5.3 

 

 

Figure 5.5: Test image for the second template with the non-overlapping sub-images shown  
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Figure 5.6: Final NCC results for Figure 5.5 

 

5.3.1.2 Overlapping Blocks with ½ Overlap Ratio 

 

 

Figure 5.7: Test image for the first template with the ½ overlapping sub-images shown 
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Figure 5.8: Final NCC results for Figure 5.7 

 

 

Figure 5.9: Test image for the second template with the ½ overlapping sub-images shown 
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Figure 5.10: Final NCC results for Figure 5.9 

 

5.3.1.3 Overlapping Blocks with ¾ Overlap Ratio 

 

 

Figure 5.11: Test image for the first template with the ¾ overlapping sub-images shown 
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Figure 5.12: Final NCC results for Figure 5.11 

 

 

Figure 5.13: Test image for the second template with the ¾ overlapping sub-images shown 
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Figure 5.14: Final NCC results for Figure 5.13 

 

5.3.1.4 Result of the Experiments on Overlapping 

 In the light of the experiments, it was observed that an overlap of ratio ½ is 

crucial to ensure that a large part of the target is in one of the sub- images and 

improves the results significantly. Also, in general, an overlap ratio ¾ provided with 

better results, even though it increases the computation time considerably. Note that 

the increase in computation time is directly proportional to the increase in the 

number of sub-images, which can be easily observed from the x-axis of the plots on 

NCC results for the data presented here. An overlap ratio of ¾ is adopted in the rest 

of this study and all the other experiments presented will be those conducted using 

an overlap ratio of ¾ for the sub- images. 

5.3.2 Windowing Analysis 

 As discussed in Chapter 4, windowing can be used to decrease the effect of 

background and make translation appear as circular translation, and hence obtain 

better results. Presented in this section are the results of experiments on the effects 

of windowing functions on the performance.  

 Three similar windowing methods are implemented in this study, Gaussian 

windowing, Hamming windowing and Hanning windowing. These windowing 

functions are applied to both the templates and the sub-images. Presented below in 

Figure 5.15, Figure 5.16 and Figure 5.17 are these windowing functions.  
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Figure 5.15: Gaussian window 

 

 

Figure 5.16: Hamming window 

 

 

Figure 5.17: Hanning window 
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 Two templates and two test images are presented in this section. These two 

tests were chosen among all the conducted experiments on windowing because they 

serve to enable the reader observe the results derived from the overall experiments. 

The templates that are used are shown below.  

 

 

Figure 5.18: Template image for the first windowing test 

 

Figure 5.19: Template image for the second windowing test 

 

5.3.2.1 Without Windowing 

 

 

Figure 5.20: Results for the first windowing test, without windowing (threshold=0.7)  
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Figure 5.21: Final NCC results for the first windowing test without windowing 

 

 

Figure 5.22: Results for the second windowing test, without windowing (threshold=0.5)  
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Figure 5.23: Final NCC results for the second windowing test without windowing  

 

5.3.2.2 Gaussian Windowing 

 

𝑤 𝑛 = cos 
𝜋𝑛

𝑁 − 1
−

𝜋

2
 = sin  

𝜋𝑛

𝑁 − 1
                             (70) 

 

 

Figure 5.24: Results for the first windowing test, with Gaussian windowing (threshold=0.7)  
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Figure 5.25: Final NCC results for the first windowing test with Gaussian windowing  

 

 

Figure 5.26: Results for the second windowing test, with Gaussian windowing (threshold=0.5) 
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Figure 5.27: Final NCC results for the second windowing test with Gaussian windowing  

 

5.3.2.3 Hamming Windowing 

 

𝑤 𝑛 = 0.54 − 0.46 ∙ cos 
2𝜋𝑛

𝑁 − 1
                                   (71) 

 

 
Figure 5.28: Results for the first windowing test, with Hamming windowing (threshold=0.7)  
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Figure 5.29: Final NCC results for the first windowing test with Hamming windowing  

 

 
Figure 5.30: Results for the second windowing test, with Hamming windowing (threshold=0.5) 
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Figure 5.31: Final NCC results for the second windowing test with Hamming windowing  

 

5.3.2.4 Hanning Windowing 

 

𝑤 𝑛 = 0.5 ∙  1 − cos 
2𝜋𝑛

𝑁 − 1
                                     (72) 

 

 

Figure 5.32: Results for the first windowing test, with Hanning windowing (threshold=0.7)  



 

 66 

 

 

Figure 5.33: Final NCC results for the first windowing test with Hanning windowing  

 

 
Figure 5.34: Results for the second windowing test, with Hanning windowing (threshold=0.5) 
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Figure 5.35: Final NCC results for the second windowing test with Hanning windowing  

 

5.3.2.5 Result of the Experiments on Windowing 

As can be seen from the two experiments presented above, the three 

windowing methods performed very similarly, with Hanning windowing proving 

very slightly better results overall. Through the experiments on windowing, it was 

observed that windowing can be used to increase the dynamic range of the results, 

and hence decrease the number of false alarms, significantly and hence also make 

adaptive thresholding easier. This can also be observed in the two tests presented in 

this section. However, windowing can increase the number of misses, as can be seen 

in the second experiment presented. This is caused when the target in the sub- image 

is not right in the center of the sub-image, but falls more into the windowed part. 

Although an overlap ratio of ¾ decreases this possibility, it does not nullify it, and 

hence the number of misses can somewhat increase with windowing. Ho wever, the 

gain is greater than the lost. Hanning windowing is adopted for the rest of this study.  

5.3.3 Using Artificial Background for the Template  

 As explained before in Section 4.5.1.1, additional data in the form of 

background affects the results significantly and is the main difference of this study 

from the somewhat similar studies that can be found in the literature. Using artificial 

background for the template is one of the first things that come to mind to solve the 

background drawback. In this section, an example for the tests on using artificial 
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background for the template is presented and the results of the overall tests are 

explained with conclusions drawn. 

 

 

Figure 5.36: Template image with natural background 

 

Figure 5.37: Template image with artificial background 

 

5.3.3.1 Template with Natural Background 

 

 
Figure 5.38: Results for the template image with natural background (using Hanning windowing)  
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Figure 5.39: Final NCC results for the template image with natural background (using Hanning 

windowing) 

 

5.3.3.2 Template with Artificial Background 

 

 

Figure 5.40: Results for the template image with art ificial background (using Hanning windowing)  
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Figure 5.41: Final NCC results for the template image with art ificial background (using Hanning 

windowing) 

 

5.3.3.3 Result of the Experiments on using Artificial Background for the 

Template 

 As can also be observed from the example presented above, using artificial 

background for the template does not improve the results. On the contrary, the 

results are generally degraded by using artificial background. The reason for this is 

that although what we wish to match is the template, the background also takes up a 

big part of the template image and actually, both are tried to be matched in the test 

images. This is also the reason that targets that are on much different backgrounds 

than the targets in the template image are hard to be detected and recognized.  

5.3.4 Slice Analysis 

 As discussed in Chapter 4, the choice of which bispectrum slice to use, i.e., the 

bispectrum slice constant, affects the results. This effect is indistinct in some images, 

while important in others. The straightforward solution to this drawback is to use a 

multiple number of slices, which result in more computation time, but better results. 

However, first, the fact that the results vary according to slice choice should be 

proven. Given below are a template image and a test image containing 13 targets of 

the same type as in the template image. The targets in the test image are aligned in 
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various directions, which ensure that RST invariance can be better observed. After 

the template image and the test image are presented, the resulting normalized cross-

correlation results are presented for different bispectrum slice constants, followed by 

the results for using multiple slices.  

 

 

Figure 5.42: Template image for the slice analysis test 

 

5.3.4.1 Single Slices 

 Given below are the results for single slices, starting from the first slice, up to 

the tenth. 

 

 

Figure 5.43: Results using bispectrum slice constant = 1, threshold=0.4  
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Figure 5.44: NCC results using bispectrum slice constant = 1 

 

 

Figure 5.45: Results using bispectrum slice constant = 2, threshold=0.4 
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Figure 5.46: NCC results using bispectrum slice constant = 2 

 

 

Figure 5.47: Results using bispectrum slice constant = 3, threshold=0.4  
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Figure 5.48: NCC results using bispectrum slice constant = 3 

 

 

Figure 5.49: Results using bispectrum slice constant = 4, threshold=0.4  
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Figure 5.50: NCC results using bispectrum slice constant = 4 

 

 

Figure 5.51: Results using bispectrum slice constant = 5, threshold=0.4  
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Figure 5.52: NCC results using bispectrum slice constant = 5 

 

 

Figure 5.53: Results using bispectrum slice constant = 6, threshold=0.4  
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Figure 5.54: NCC results using bispectrum slice constant = 6 

 

 

Figure 5.55: Results using bispectrum slice constant = 7, threshold=0.4  
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Figure 5.56: NCC results using bispectrum slice constant = 7 

 

 

Figure 5.57: Results using bispectrum slice constant = 8, threshold=0.4  
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Figure 5.58: NCC results using bispectrum slice constant = 8 

 

 

Figure 5.59: Results using bispectrum slice constant = 9, threshold=0.4  
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Figure 5.60: NCC results using bispectrum slice constant = 9 

 

 

Figure 5.61: Results using bispectrum slice constant = 10, threshold=0.4  
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Figure 5.62: NCC results using bispectrum slice constant = 10 

 

 As can be seen from the results above, the sixth slice, i.e. a bispectrum slice 

constant of six, gives the best results for the given template image and the test image. 

However, more importantly, it is observed that the correlation results, and hence the 

hits, misses and false alarms vary according to the bispectrum slice constant. Given 

below are the results for using multiple slices, by which for each sub- image, the 

slice giving the highest correlation result is used, i.e. the highest correlation result is 

taken as final. This will obviously raise the number of false alarms, but provide a 

higher number of hits and a better performance. 

5.3.4.2 Multiple Slices 

 Given below are the results for the same template image and test image, but for 

multiple slices. Two different results are presented, the first being the result of using 

the first five slices and the second the first ten.  
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Figure 5.63: Results using the first five bispectrum slice constants, threshold=0.4 

 

 

Figure 5.64: NCC results using the first five b ispectrum slice constants 
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Figure 5.65: Results using the first ten bispectrum slice constants, threshold=0.4 

 

 

Figure 5.66: NCC results using the first ten bispectrum slice constants 
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5.3.4.3 Result of the Experiments on Slice Analysis 

 As can be seen from the exemplary tests presented above in this section, the 

choice of bispectrum slice constant can affect the results. This effect can be easily 

observed in the test image chosen for these tests, while in another test image, the 

effect may not have been observable.  Using a larger number of slices generally does 

provide an improvement in the results, which is significant in some cases. However, 

the computation time is increased to the number of slices times the calculation time 

for the same method using a single slice. Hence, the increase in computation is also 

significant. Also, using multiple slices can decrease precision, since the number of 

false alarms can increase. Whether to use multiple slices or not, and how many 

slices to use if decided on using, are choices to be made by the user of the method. 

5.4 Performance Tests 

 In this section, the performances of the methods used in this study are 

compared. These methods are, in order, template matching using FMT, template 

matching using reconstruction with FMT, template matching using reconstruction 

with bispectrum and LPM, the eigen approach presented in Chapter 4 and the 

exhaustive case. Note that both the eigen approach and the so-called exhaustive case 

in this study involve translation invariance by phase correlation.   

5.4.1 Effect of Bispectrum slice constant on Recall vs. Precision 

The effect of bispectrum slice constant on performance will be presented one 

more time in this section, but this time in terms of recall and precision. Note that the 

results presented are only for the given template image and test image, and in no 

way generally-applicable. In other words, a particular bispectrum slice constant that 

gives the best results for a test image can be the worst for another. Or the effect of 

bispectrum slice constant can be completely negligible for another template image 

and test image duo. 

 

 

Figure 5.67: Template image for the effect of bispectrum slice constant on recall vs. precision 
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Figure 5.68: Test image for the effect of b ispectrum slice constant on recall vs. precision  
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Figure 5.69: Recall vs. precision graph to observe the effect of bispectrum slice constant 

 

 

As expected from the results of Section 5.3.4, it can be seen that different 

bispectrum slice constants result in different recall vs. precision graphs and using 

multiple slices generally results in better performance in terms recall and precision, 

for this template image and test image pair.  
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5.4.2 First Performance Comparison Test 

 A subgroup of the database is used in this section to compare the performances 

of the methods used in this study. A single template image is used for three test 

images, which contain a total number of 26 targets of the same type as the target in 

the template image. The target is a type of civilian aircraft. The subgroup is realistic 

in terms of real- life applications, a large number of targets are covered with just one 

template and, most important of all, the targets are aligned in various directions, 

which ensures that the RST invariance methods are necessary and their 

performances are better observed. 

5.4.2.1 Test Data for the First Test 

 

 

Figure 5.70: Template image for the first performance comparison test 

 

 

Figure 5.71: First test image for the first performance comparison test 
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Figure 5.72: Second test image for the first performance comparison test 
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Figure 5.73: Third test image for the first performance comparison test 

 

5.4.2.2 Recall vs. Precision Graphs for the First Test 

 Given below in Figure 5.74 are the performance graphs of the methods used in 

this study, for the first test group, in terms of recall vs. precision. Note that for the 

reconstruction-based method using bispectrum and LPM, both the results for using 

the first five bispectrum slices and the first ten bispectrum slices are presented. The 

analysis of the performance graphs will be presented in Section 5.4.2.3.  

 Given below in Figure 5.75 is the comparison of the performances of the last 

method using different bispectrum slice constants. Only the results for the first five 

bispectrum slice constants will be presented for representation and clarity purposes, 

but it will be enough to observe that different bispectrum slice constant do result in 

different recall vs. precision graphs, and hence have different performances.  
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5.4.2.3 Results of the First Performance Comparison Test 

 As can be seen from Figure 5.74, moderate performance curves were obtained 

for this test group.  

 The exhaustive case with translation invariance was the best performing 

method from low to middle recall rates and the worst performing method for high 

recall rates. This behavior is hard to explain and does not appear in any other 

performance test conducted throughout the scope of this study. 

 Overall, and excluding the exhaustive case, the reconstruction-based method 

using bispectrum and LPM can be said to have performed the best among other 

methods. 

5.4.3 Second Performance Comparison Test 

In this test group, another group of civilian aircrafts were selected as targets. 14 

test images which contain a total number of 40 targets, of three target types, were 

used. Three template images were used for the three target types.  

5.4.3.1 Test Data for the Second Test 

Given below are the three template images and the fourteen test images used 

for the performance test in this section.  

 

 

Figure 5.76: First template image for the second performance comparison test 

 

 

Figure 5.77: Second template image for the second performance comparison test 

 

 

Figure 5.78: Third template image for the second performance comparison test 
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Figure 5.79: First test image for the second performance comparison test 

 

 

Figure 5.80: Second test image for the second performance comparison test 
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Figure 5.81: Third test image for the second performance comparison test 

 

 

Figure 5.82: Fourth test image for the second performance comparison test  
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Figure 5.83: Fifth test image for the second performance comparison test 

 

 

Figure 5.84: Sixth test image for the second performance comparison test  
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Figure 5.85: Seventh test image for the second performance comparison test 

 

 

Figure 5.86: Eighth test image for the second performance comparison test 
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Figure 5.87: Ninth test image for the second performance comparison test 

 

 

Figure 5.88: Tenth test image for the second performance comparison test 
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Figure 5.89: Eleventh test image for the second performance comparison test 
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Figure 5.90: Twelfth test image for the second performance comparison test 
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Figure 591: Th irteenth test image for the second performance comparison test 
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Figure 5.92: Fourteenth test image for the second performance comparison test 

 

5.4.3.2 Recall vs. Precision Graphs for the Second Test 

Given below in Figure 5.93 are the performance curves of the methods used in 

this study for the given test data. The performance curves are presented in terms of 

recall vs. precision. 
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5.4.3.3 Results of the Second Performance Comparison Test 

For this performance test, the eigen approach using 36 rotated templates and 

75% eigenvalue reduction provided the worst performance curve over all the 

techniques used in this study. 

Exhaustive case using 36 rotated templates provided a better curve than the 

eigen approach, as expected, but was short of the performance curves of the RST 

invariant methods. 

 The reconstruction-based RST-invariant method using FMT had a lower 

performance curve than expected, which was almost equal to the performance curve 

of the exhaustive method using 36 rotated templates.  

The performance of the method using FMT seems high, but it should be noted 

that this curve is a linearization between just two pairs of possible recall and 

precision points. 

Overall, the RST invariant method using bispectrum and LPM provided the 

highest recall vs. precision rates for this test group. The performance curves of the 

method using five and ten bispectrum slices are competing, and hence it is difficult 

to choose one over the other, but a more efficient way to choose slices, instead of 

using multiple slices, would solve this drawback.  

5.4.4 Third Performance Comparison Test 

 Another subgroup of the database is used in this section to compare the 

performances of the methods used in this study. This subgroup contains 38 targets 

which are camouflaged jet fighters. The false alarm rate is expected to increase, and 

hence a lower rate of precision is predicted due to the similarity between the targets 

and the background. A single template image is used to detect all 38 targets in 7 test 

images of various sizes.  

5.4.4.1 Test Data for the Third Performance Test 

 In this section, the template image and the test images for the second 

performance comparison test will be presented.  

 

 

Figure 5.94: Template image for the third performance comparison test 
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Figure 5.95: First test image for the third performance comparison test 

 

 

Figure 5.96: Second test image for the third performance comparison test 
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Figure 5.97: Third test image for the third performance comparison test  

 

 

Figure 5.98: Fourth test image for the third performance comparison test 
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Figure 5.99: Fifth test image for the third performance comparison test  

 

 

Figure 5.100: Sixth test image for the third performance comparison test 
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Figure 5.101: Seventh test image for the third performance comparison test 

 

5.4.4.2 Recall vs. Precision Graphs for the Third Performance Test 
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5.4.4.3 Results of the Third Performance Comparison Test 

As can be seen from Figure 5.102, good performance rates were obtained even 

though the test group consists of targets that are hard to detect. The reason for this is 

that even though the targets themselves are hard to detect, the backgrounds of all the 

test images are similar to the background of the template image. 

The method using FMT provided a very limited performance curve which is 

stuck at high recall and low precision rates.  

Eigen approach, using 36 rotated template images and an eigenvalue reduction 

of 75%, resulted in the next lowest recall-vs.-precision rates. 

The exhaustive case using 36 rotated templates provided a better curve than the 

eigen approach, as expected, but overall was short of the curves of the 

reconstruction-base methods. 

The reconstruction-based methods provided better performance curves and 

good rates for both recall and precision. The reconstruction based method using 

FMT provided better results than the reconstruction based method using bispectrum 

and LPM, both with five slices and ten slices. Reconstruction based method using 

bispectrum with twenty slices and LPM reaches the performance of the 

reconstruction based method using FMT, which tells us that choosing the best slice, 

in a more efficient way, would result in the best performance for this test group. 

5.4.5 Performance Test on Using Extra Templates 

In this section, the improvement that is caused by using extra template images 

will be presented and studied. Using extra templates, in this context, means that for 

one target type, more than one template image is used. The extra template should not 

simply be a rotated version of the template image as in the case of exhaustive 

approach or eigen approach, but a different image of the same target type.  

5.4.5.1 Test Data for the Performance Test on Using Extra Templates 

The data used for the performance test on using extra templates is almost the 

same as the data for the third performance comparison test, i.e. Section 5.4.4, with 

one difference, which is the extra template image. This template image is presented 

below in Figure 5.103. 
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Figure 5.103: Second template image fo r the performance comparison test for mult iple templates  

 

5.4.5.2 Recall vs. Precision Graph for the Performance Test on Using Extra 

Templates 
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5.4.4.3 Results of the Performance Test on Using Extra Templates 

  Comparing Figure 5.104 with Figure 5.102, it can be seen that as expected, 

using an extra template image provided better performance curves in general, for 

almost every method used in this study.  

It can also be observed that only the performance of the reconstruction-based 

method using FMT worsens with the use of the extra template image in Figure 5.103. 

This decrease in recall vs. precision rates is hard to explain, but would probably not 

exist in a test made with a larger amount of data.  

 Overall, it can be said that the so-called exhaustive case and the reconstruction-

based method using bispectrum with ten slices and LPM provided the best 

performance curves for middle rates of recall; and the exhaustive case and 

reconstruction-based method using FMT provided the best results for high recall 

rates. 

5.4.6 Performance Test on using Different Numbers of Rotated Templates 

As mentioned earlier, and can be observed in the recall vs. precision graphs 

presented up-to this point, both the eigen approach and the so-called exhaustive case 

in this study use a total number of 36 rotated templates for each template. Larger 

numbers are not used for feasibility. In this section, the performance rates for the so-

called exhaustive case will be presented and analyzed for different numbers of 

rotated templates. It is expected that a number of 36 rotated templates will provide a 

reasonable performance curve.  

5.4.6.1 Test Data for the Performance Test on using Different Numbers of 

Rotated Templates 

 The test data used for this performance test is the same as the test data in 

Section 5.4.4.1. 

5.4.6.2 Recall vs. Precision Graphs for the Performance Test on using Different 

Numbers of Rotated Templates 
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5.4.6.3 Results for the Performance Test on using Different Numbers of Rotated 

Templates 

 As expected, there is a general tendency to reach higher recall vs. precision 

rates as the number of rotated templates is increased. The increase in recall vs. 

precision rates is more pronounced between lower numbers of rotated templates, but 

gets harder to observe as the number of rotated templates is increased. 36 rotated 

templates, which is used in this study in performance tests, is a good choice both for 

retaining at least some feasibility and, as can also be seen from Figure 5.105, for 

performance. 

5.4.7 Performance Test on Airports 

As we have focused mostly on targets that are aircrafts, a valid question would 

be whether the same methods can be used to detect airports in a much lower 

resolution, and hence develop a pyramidal approach, in which airports are detected 

first, and then the aircrafts are searched within the high resolution version of the 

localized airport. 

Unfortunately, the answer is mostly no. The main reason for this, which will be 

explained in Section 5.4.7.3, can be better understood after a performance test on 

airport detection and localization is conducted.  

5.4.7.1 Test Data for the Performance Test on Airports 

Given below in Figure 5.106 is a template image for the performance test on 

airports. The template image is followed by the test images in Figure 5.107 to Figure 

5.113. 

 

 

Figure 5.106: Template image for the performance test on airports 
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Figure 5.107: First test image for the performance test on airports  

 

, 

Figure 5.108: Second test image for the performance test on airports  
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Figure 5.109: Th ird test image fo r the performance test on airports  

 

 

Figure 5.110: Fourth test image for the performance test on airports  
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Figure 5.111: Fifth test image for the performance test on airports  

 

 

Figure 5.112: Sixth test image for the performance test on airports  

 



 

 118 

 

Figure 5.113: Seventh test image for the performance test on airports  

 

5.4.7.2 Recall vs. Precision Graphs for the Performance Test on Airports 

Given below in Figure 5.114 are the performance curves of the methods used 

in this study in terms of recall versus precision, and for the test data given in section 

5.4.7.1. 
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5.4.7.3 Results for the Performance Test on Airports 

As can be seen from Figure 5.114, all the methods used in this study performed 

poorly on the selected airport data. This result is not caused by the test data per se, 

but rather is a cause of the overall structures of airports.  

Although each and every airport has a structure that is similar, namely contains 

long stretches of a single color which are the runways with intersections along; they 

are greatly varying from the perspective of template matching. The runways and 

their intersections are all distinct from each other in each airport. This can also be 

observed from Figures 5.107 to 5.113. These variances makes template matching a 

poor technique for airport detection compared to some other approaches such as 

detection by shape or texture. 

5.4.8 Performance Test on Helipads  

In this section, the methods used in this study are used to detect and localize a 

different type of target. Helipads are chosen for their importance and universality. 

Also, helipads are not as greatly varying from the perspective of template matching  

as airports are. There are three general types of helipads. The most commonly 

known “H” symbol, the “+” symbol used in the helipads of the hospitals, and a 

circular area, which can be observed in F igure 5.116. In this performance test, the 

helipads containing the “H” symbol will be used as test data.  

5.4.8.1 Test Data for the Performance Test on Helipads  

Given below is the test data for the performance test on helipads. One template 

image is used to detect twelve targets in nine images.  

 

 

Figure 5.115: Template image for the performance test on helipads 
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Figure 5.116: First test image for the performance test on helipads 

 

 

Figure 5.117: Second test image for the performance test on helipads 
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Figure 5.118: Three test image for the performance test on helipads  

 

 

Figure 5.119: Fourth test image for the performance test on helipads  
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Figure 5.120: Fifth test image for the performance test on helipads 

 

 

Figure 5.121: Sixth test image for the performance test on helipads  
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Figure 5.122: Seventh test image for the performance test on helipads  

 

 

Figure 5.123: Eighth test image for the performance test on helipads  
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Figure 5.124: Ninth test image for the performance test on helipads  

 

5.4.8.2 Recall vs. Precision Graphs for the Performance Test on Helipads  

 Given below in Figure 5.125 are the performance curves of the methods used 

in this study for the test data of helipads.  
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5.4.8.3 Results for the Performance Test on Helipads 

As can be observed from Figure 5.125 the recall vs. precision rates are 

somewhat low for this test group. Especially for high recall rates, very low precision 

rates were obtained, which means that the false alarm rate gets very high. This is 

caused by the test data used, which was presented in Section 5.4.7.1, and which is 

particularly hard to detect and localize. 

The method using FMT has provided a performance curve which is stuck at 

low precision rates.  

All the other methods provided recall vs. precision rates which were similar. 

The exhaustive case with the translation fix and the RST-invariant reconstruction-

based method using bispectrum and LPM provided the better results, but even these 

performances are poor. 

5.4.9 Performance Test on Buildings 

A performance test on building detection and localization will be performed in 

this section. Building detection is an important topic for remote sensing and object 

detection and localization, and it has a large number of civilian applications ranging 

from map updating to land use analysis and city modeling. 

5.4.9.1 Test Data for the Performance Test on Buildings 

A building with a square shape is chosen as the template image and two test 

images which contain the target building in the template image, with empty spaces 

between, were chosen to ensure that more than one target is not taken as detected as 

the template image is rotated, since all the RST invariant methods contain LPM, 

which is a circular operator.  Hence, more realistic performance curves can be 

obtained from such a selection instead of choosing a rectangular building as the 

template image and test images that contain crammed clusters  of targets. 

  

 

Figure 5.126: Template image for the performance test on buildings 
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Figure 5.127: First test image for the performance test on buildings (size is reduced to fit in page)  

 

 

Figure 5.128: Second test image for the performance test on buildings (size is reduced to fit in page) 

 

5.4.9.2 Recall vs. Precision Graphs for the Performance Test on Buildings  
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5.4.9.3 Results for the Performance Test on Buildings  

As can be observed from Figure 5.129, the method involving transforming to 

FMT domain provided the worst performance curve for the given test data.  

Eigen approach using 75% eigenvalue reduction provided the next worse 

performance curve in terms of recall vs. precision.  

Reconstruction based RST invariant methods and the so-called exhaustive case 

in this study performed the best results for this test data.  

While the exhaustive case has resulted in the highest precision for the 100% 

recall rate, overall, the performance curve of the reconstruction-based method using 

bispectrum and LPM competes with the exhaustive case to be the leading method in 

performance for this test group. 

5.4.10 Performance Test on Cars 

A performance on test on another type of target will be conducted in this 

section. The target selected was a car. One template image containing a specific car 

with specific coloring is used. There are four test images containing a total number 

of 163 cars, 11 of which are the same as the target in the template image.  

5.4.10.1 Test Data for the Performance Test on Cars 

Given below are the template image and the four test images for the 

performance test on cars. 

 

 

Figure 5.130: Template image for the performance test on cars 

 

 

Figure 5.131: First test image for the performance test on cars 
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Figure 5.132: Second test image for the performance test on cars 

 

 

Figure 5.133: Th ird test image fo r the performance test on cars 

 

 

Figure 5.134: Fourth test image for the performance test on cars 

 

5.4.10.2 Recall vs. Precision Graphs for the Performance Test on Cars  
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5.4.10.3 Results for the Performance Test on Cars  

As can be observed from Figure 5.135, the method using FMT and the eigen 

approach using 36 rotated templates and 75% reduction provided the worst 

performance curves for this test group, over all the methods used in this study. 

The exhaustive case and the reconstruction-based RST invariant methods 

provided much better performance curves, with the reconstruction-based method 

using FMT providing the highest precision rate for 100% recall rate.  

The obtained recall and precision rates are high for this test data, because the 

backgrounds are all are roads or car parking areas, which are similar to each other in 

terms of texture and coloring. 

5.4.11 Overall Analysis of the Performance Tests 

 

Table 5.1: Precision rates of the methods at 100% recall rate  
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Table 5.2: Recall rates of the methods at 100% precision rate  

 

 

Through the performance tests conducted in this study, and as can be observed 

from Table 5.1 and Table 5.2 above, several important conclusions can be drawn by 

the analysis of the obtained recall vs. precision graphs.  

As expected, Fourier-Mellin Transform, by itself, was not sufficient to obtain 

good performance rates. Mostly, only low precision rates could be obtained with this 

method. This is direct consequence of drawbacks of this approach, which were 

explained in Section 4.2.2. 

Although the exhaustive case provided good performance rates for most the 

test groups, obtaining 36 images of a target with 10° rotations is generally unfeasible, 

unless these images are generated artificially.  

From the performance rates of the eigen approach, it is deduced that either no 

or a lower rate eigenvalue reduction must be used to obtain good recall and precision 

rates unless the translation invariance vs. loss of phase information drawback can be 

overcome.    

The reconstruction-based RST invariant methods provided the best 

performance curves, considering that only a single template image was used for each 

target type. While the method denoted as reconstruction with FMT provided a 
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relatively good performance curve, it was observed that the method denoted as 

reconstruction with bispectrum and LPM did not always provide better recall vs. 

precision rates than this method, as expected. This is caused by the effect of the 

bispectrum slices. Increasing the number of bispectrum slices However, it should be 

noted that increasing the number of bispectrum slices does not necessarily always 

result in obtaining better performances, while it always results in increasing the 

computation time.  

As mentioned earlier, and will also be mentioned in Section 6.3, future studies, 

a better method for choosing bispectrum slices would solve the high computation 

time drawback of the method using bispectrum, while enabling higher recall vs. 

precision rates, and hence better performances than the ones obtained in this study.  

 

Table 5.3: The effect of using ext ra templates on recall rates at 100% precision rate 

 

 

Table 5.4: The effect of using ext ra templates on precision rates at 100% recall rate 

 

 

As can be observed from the tables above, using extra number of templates 

increases the both the recall and the precision rates for all of the methods 

implemented in this study, as expected.  
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5.5 Computation Time Analysis 

 Given below in Table 5.5 are the computation times for the methods 

implemented in this study, for a template image and a sub- image of size 60x60 

pixels. The computation times are calculated in MATLAB® R2007a and on a 

computer with Intel® Core™2 Quad CPU @ 2.4GHz, 3.50 GB of RAM. 

 

Table 5.5: Computation times of the methods   

 

 

As can be observed from Table 5.5, FMT is the method with the shortest 

computation time. This is followed by the exhaustive and the eigen approaches. 

Note that although the eigen approach is devised to lessen the computation time of 

the exhaustive approach, the improvement is negligible. Considering the decrease in 

recall vs. precision rates, eigen approach seems as an unnecessary method at its form 

in this study. The RST-invariant methods based on reconstruction have higher 

computation times, due to the increased number of operations and the multiple 

numbers of peaks used. As can be seen, using multiple numbers of slice constants 

results in an increase in computation time, that is not directly proportional to the 

number, since not all of the operations are multiplied. 

5.6 Template Selection and Extraction 

 Template selection is an important part of this study and affects the 

performance of any method using template matching, drastically. Ideally, the 

template should be exactly the same in the scene to be recognized, but this cannot be 

satisfied in object detection and recognition due to background and illumination 

(including the angle of the sun) variations.  

 Although using a large number of templates is a straightforward solution to this 

problem, this is generally not feasible.  
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 Then, all that can be done is to choose the templates as good as possible. 

Through this study, an understanding of the template selection has been gained. 

Some of the guidelines to keep in mind while choosing or extracting templates are as 

follows: 

1) Keeping the object at the center of the template image: 

This is mandatory in applications involving or requiring RST invariance, since 

the rotation of the template image and the object in the template image should be the 

same. Also, keeping the object at the center ensures that the object is affected 

minimally by transitions. In application without RST invariance, this is still good 

advice, since combined with the guideline two below, this ensures that the object 

stays in the template image completely while the image contains as little background 

as possible. 

2) Keeping the background as small as possible in the template image: 

Although it is the object in the template that is wished to be matched, the overall 

template is matched. The rest of the template is named loosely as background. In 

applications like object detection, this background varies for each matching even 

though the object stays pretty much the same and hence decreases the matching 

performance. Hence, obviously, keeping the template as small as possible while 

retaining the object fully, i.e. keeping the background as small as possible, results in 

better performance. 

3) Selecting the template with the relatively simpler background: 

Even though the background is kept as small as possible, the properties of the 

background are also very important. Ideally, the background should be as similar to 

the backgrounds of the targets in the test images. This is in many, if not all, cases not 

feasible. However, the fact that the background should not be irrelevant or far-out 

can easily be deduced from here.  

Failing taking similar backgrounds, the background of the chosen template 

should be as simple as possible. In this context, simple means little or no other 

objects in the template image, other than the object that is being tried to be matched. 

The reason for this is that these objects almost always vary and a relatively simpler 

background can be matched more successfully.  

4) Selecting the template with smaller shadows and well illuminated object: 
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This guideline is in parts trivial and in parts a consequence of the previous 

guideline. A well illuminated template is trivially better than a template with weak 

illumination since the information stored in the pixels are affected by the 

illumination and a weak illumination results in loss of information. If the angle of 

the light –or in our case, sun- is perpendicular to the object, the illumination 

distribution will be even in both sides of a symmetrical object. However, if this 

angle is oblique, this distribution will vary, and the more oblique the angle, the 

greater the variance, and the greater the shadows.  

As explained previously, and will be again mentioned later on, the shadows –

both self and cast- and the illumination angle are important drawbacks of using 

template matching for object detection and recognition. However, selecting a 

template with nearly perpendicular illumination and little shadow, results in better 

performance, as expected, since no shadow or a distinct variation of illumination 

coefficients are tried to be matched in such a case.  
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CHAPTER 6 

 

CONCLUSIONS 

 

 

6.1 Summary 

 In this thesis, template matching was used with RST invariance methods to 

achieve automatic target recognition from satellite imagery.  

 Template matching was studied in Chapter 2. A literature survey on template 

matching was presented. Similarity metrics were also studied in Chapter 2, with 

special emphasis on normalized cross-correlation and phase correlation, which are 

used in this study in great extent.  

RST invariance, which has been the primary focus of this study, was studied in 

Chapter 3. After the literature survey on RST invariance, moment-based approaches, 

which were studied and discarded because of their many drawbacks, were explained. 

Then, the translation, rotation and scaling properties of Fourier  transform were 

presented, followed by log-polar mapping. Fourier-Mellin transform, which is one of 

the methods implemented in this study for RST invariance, and is a combination of 

Fourier transforms and log-polar mapping, was presented next. Bispectrum and its 

properties of rotation, scaling and translation were presented last.  

In Chapter 4 the methods used in this study were presented and studied in 

detail. These methods were, in order of study, and hence in order of appearance in 

this thesis, Fourier-Mellin transform, a reconstruction-based method using Fourier-

Mellin transform and a reconstruction-based method using bispectrum and log-polar 

mapping. The drawbacks of the RST invariant approach was explained after the 

common points that should be heeded. A method involving eigenvalue reduction, 
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named in this study as the eigen approach, was presented next, since it was used in 

this study for performance comparison purposes. 

 In Chapter 5, the tests on variations and parameters was presented and studied, 

followed by the tests of performance. The tests on whether to use overlapping or 

non-overlapping blocks, and what is the best overlapping ratio was presented first, 

which were concluded for using overlapping blocks, with the overlap ratio set at 3/4. 

These tests were followed by the windowing tests, in which using Hanning 

windowing were concluded with the window size set as proportional to the template 

image size. The tests on using artificial or real background were concluded in not 

using an artificial background. The slice analysis of the method involving 

bispectrum was the last of the tests on variations and parameters. The affect of slice 

choice on the performance was shown and an approach using multiple slices and for 

each sub- image, choosing the slice with the highest correlation result among these 

was developed. 

 Also in Chapter 5, some performance tests were presented in terms of recall 

versus precision. The performances of the methods were compared and analyzed for 

each group of test data, followed by the overall analysis of performance. 

6.2 Conclusions 

 Target detection, recognition and localization from satellite and air imagery 

have been and will continue to be an important topic of research. ATR has many 

military and civilian applications. These applications range from GPS-enabled firing 

systems to homeland security and surveillance, from land use analysis to map 

updating and city planning. RST invariance is a must for most of the targets to be 

recognized in many of these applications, since using a template image for each 

scale and rotation angle is not feasible. However, the conclusive research on RST 

invariant target recognition and localization is still limited due to many drawbacks 

faced. 

 RST invariant automatic target recognition is realized in this thesis using 

template matching. A variety of RST invariance methods was investigated, 

implemented and tested for performance for a variety of target types. Important and 
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conclusive deductions have been made through the extensive performance tests 

conducted. 

 It was realized that a simple method of transforming the template images and 

the sub- images to the Fourier-Mellin domain generally doesn’t result in a good 

performance and is limited to low precision rates. The reason for this is that all the 

images are transformed into a similar form, due to the losses of phase information, 

and the dynamic range is very small. Reconstruction-based method, which is devised 

to overcome this drawback, and which detects the RST parameters and uses these to 

reconstruct the sub-image to a form in which the target in the sub-image will have 

the same scale and rotational alignment as the target in the template image, resulted 

in better performance curves. Yet the phase information was still lost to some extent. 

For this reason, to reach better performance rates, this method was replaced by 

another. This new method which works similarly but uses bispectrum instead of FT 

provided better results, but another problem, namely the bispectrum slice choice, 

arose. It was realized that the computationally costly approach of using a multiple 

number of slices for each sub- image limited the potential of this method. A novel 

approach to solve this drawback would probably make this method reach the highest 

performance rates among the methods studied and implemented in this study.  

Despite the faced drawbacks, RST-invariant ATR using template matching was 

achieved in this study and tested for performance on different types of targets. 

Performance rates reaching or suppressing the exhaustive case using 36 rotated 

templates could be obtained in nearly all of these performance tests. Of particular 

interest are the precision rates when a recall rate of 100% is reached. This recall rate 

corresponds to the threshold that results in each and every target being recognized, 

in other words when there are no missed targets. This is especially important for 

military applications. In most of the performance tests conducted in this study, 

precision rates of at least 10% or 5% could be reached for a recall rate of 100%. This 

means that checking just 10 times or 20 times more sub- images than the number of 

targets will be sufficient for a human operator to have all the targets recognized 

without having any false alarms. This is a rate that has not been obtained in the 

literature up to now and would be acceptable, if not desirable, for many applications. 
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 An understanding on the nature of template matching was also obtained 

through this study. Template selection and extraction is a fundamental and important 

part of each method applying template matching. As can be seen from the 

performance tests, some target types are more suitable for template matching, while 

others, such as airports, play into the drawbacks of such an approach.  

 RST-invariant ATR using template matching is a research topic that is still 

open to improvement. Studies that are built on this thesis can achieve  greater 

performance rates, and higher real- life applicability, by building on the methods 

used in this study and solving the few drawbacks that are brought into light by it. 

6.3 Future Studies 

 The basic drawback of the approach of this study was that the target does not 

appear the same in the test images as in the templates. One of the important factors 

that cause this deviation from the template images is illumination. Both cast shadow 

and self shadow cause changes in the illumination distribution of the target. A 

possible future work would be to use a shadow detection and compensation system 

with the methods in this study to make the methods not only RST invariant but also, 

in a way, shadow invariant.  

 In a very recent study, Matungka, Zheng and Ewing [62] have solved the two 

important problems of log-polar mapping, oversampling and bias, which were also 

mentioned in this thesis. Their novel method, named as adaptive polar transform, 

outperformed the conventional LPM and provided both unbiased matching and 

lesser computation time. A possible future study would be to incorporate adaptive 

polar transform into the methods used in this study, in the place of LPM. 

 As observed and explained through the presented tests in this study, the choice 

of the bispectrum slice affects the results of the last method, the reconstruction-

based method using bispectrum and LPM. Instead of the straightforward and 

computationally highly inefficient solution applied in this study, namely using a 

multiple number of bispectrum slices for each sub- image and taking the highest 

result, a novel method to solve this drawback in a computationally efficient way can 

be developed to obtain better results in much less time. 
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 Instead of the sliding-window approach used in this study, which has a high 

computation cost, a more efficient sub-window search can be adopted. Lampert et al 

[63] have developed such a method which approaches the search as an optimization 

problem that can be applied to any quality function, and uses a global branch-and-

bound search. They have achieved fast object localization while retaining global 

optimality in the search. 
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