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ABSTRACT 
 

 
POSITIONAL UNCERTAINTY ANALYSIS USING DATA UNCERTAINY ENGINE   

A CASE STUDY ON AGRICULTURAL LAND PARCELS 

 

Urgancı, İlksen 

 

M.S., Department of Geodetic and Geographic Information Technologies 

Supervisor: Assoc. Prof. Dr. S. Zuhal Akyürek 
 

December 2009, 106 pages 

 
 
Most of spatial data extraction and updating procedures require digitization of 

geographical entities from satellite imagery. During digitization, errors are introduced 

by factors like instrument deficiencies or user errors. In this study positional 

uncertainty of geographical objects, digitized from high resolution Quickbird satellite 

imagery, is assessed using Data Uncertainty Engine (DUE). It is a software tool for 

assessing uncertainties in environmental data; and generating realisations of 

uncertain data for use in uncertainty propagation analyses. A case study area in 

Kocaeli, Turkey that mostly includes agricultural land parcels is selected in order to 

evaluate positional uncertainty and obtain uncertainty boundaries for manually 

digitized fields. Geostatistical evaluation of discrepancy between reference data and 

digitized polygons are undertaken to analyse auto and cross correlation structures of 

errors. This process is utilized in order to estimate error model parameters which are 

employed in defining an uncertainty model within DUE. Error model parameters 

obtained from training data, are used to generate simulations for test data.  

Realisations of data derived via Monte Carlo Simulation using DUE, are evaluated to 

generate uncertainty boundaries for each object guiding user for further analyses 

with pre-defined information related to the accuracy of spatial entities. It is also 

aimed to assess area uncertainties affected by the position of spatial entities. For all 

different correlation structures and object models, weighted average positional error 
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for this study is between 2.66 to 2.91 meters. At the end of uncertainty analysis, 

deformable object model produced the smallest uncertainty bandwidth by modelling 

cross correlation. 

 

Keywords: Positional Uncertainty, Data Uncertainty Engine, Vector Data, GIS  
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ÖZ 
 

 

VERİ BELİRSİZLİK MOTORU KULLANILARAK KONUMSAL BELİRSİZLİK ANALİZİ 

TARIMSAL ARAZİ PARSELLERİ ÖRNEĞİ 

 

Urgancı, İlksen 

 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri E.A.B.D. 

Tez Yöneticisi: Doç. Dr. S. Zuhal Akyürek 
 

Aralık 2009, 106 sayfa 

 

Mekansal veri çıkarımı ve güncelleme işlemlerinin çoğunluğu coğrafi varlıkların uydu 

görüntüsünden sayışlaştırılmasını gerektirmektedir. Sayısallaştırma sırasında 

ekipman kısıtlamaları ya da insan yanılgıları gibi değişkenlerden kaynaklanan 

hatalar ortaya çıkmaktadır. Bu çalışmada yüksek çözünürlüklü Quickbird uydu 

görüntüsünden sayısallaştırılan coğrafi nesnelerin konumsal belirsizliği Veri 

Belirsizlik Motoru (DUE) kullanılarak değerlendirilmektedir. DUE, mekansal 

verilerdeki belirsizliğin değerlendirilmesi ve yayılımı analizlerinde kullanılmak üzere 

belirsiz verilerden simülasyonlar üretmeyi sağlayan bir yazılımdır. Elle 

sayısallaştırılan arazi sınırlarının konumsal belirsizliğini değerlendirmek ve belirsizlik 

sınırlarını elde etmek için, Kocaeli’nde çoğunlukla tarımsal arazi parsellerini içeren 

bir çalışma alanı seçilmiştir. Referans veri ve sayısallaştırılan poligonlar arasındaki 

farkın coğrafi-istatistiki değerlendirmesi, konumsal hataların oto ve çapraz 

korelasyon yapıları incelenerek gerçekleştirilmiştir. Bu analiz süreci, DUE içinde 

tanımlanan belirsizlik modelinin oluşturulmasında kullanılan hata modeli 

parametrelerini hesaplanmasını sağlamıştır.  Eğitme verilerinden elde edilen hata 

modeli parametreleri test verileri için simülasyonların oluşturulmasında kullanılmıştır. 

DUE kullanılarak, Monte Carlo Simülasyonu metoduyla türetilen simülasyonlar her 

bir obje için belirsizlik sınırlarının oluşturulmasında kullanılmıştır. Oluşturulan 

belirsizlik sınırları ileriki analizler için, mekansal verilerin doğruluğuyla ilgili 
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kullanıcıya yol gösterici öncül bilgi sağlamaktadır. Bunlara ek olarak, mekansal 

verilerin pozisyonlarının alansal belirsizlik üzerindeki etkilerinin değerlendirilmesi de 

amaçlanmıştır. Bu çalışmada, bütün farklı korelasyon ve obje modelleri için, 

hesaplanan ağırlık ortalama konumsal hata 2.66 ile 2.91 metre arasındadır. 

Belirsizlik sınır analizleri sonucunda, biçim değiştirebilen obje modeli çapraz 

korelasyonu modelleyerek en küçük belirsiz bant genişliğini üretmiştir.   

 
 
Anahtar Kelimeler: Konumsal Belirsizlik, Veri Belirsizlik Motoru, Vektör Veri, CBS 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Geographical Information Systems (GIS) frame a brief abstraction of the real world 

entities in the form of vector and raster data models associated with attributes. 

These data models are used to describe objects in GIS; however, these descriptions 

may involve certain amount of uncertainties caused during extracting environmental 

variables as objects on computer based systems.  These uncertainties can be 

introduced from the first step of cognition of the real world, to process, analysis and 

even to decision making (Cheng, 2003). 
 

GISs are commonly utilized as a means of storing and displaying spatial objects and 

their associated attributes. Hence, a GIS database is a digital representation of the 

spatial organization of objects and phenomena in the real world. The 

representations inevitably contain errors arising from the difference between the true 

value and observed value of a geographical object. So it can easily be said as 

Heuvelink (1998) stated the problem of spatial data quality is obvious because no 

map stored in GIS is completely error – free. True state of inputs is not always 

available to quantify errors in data which can be defined departure from reality.  In 

such cases uncertainty is used as an expression of confidence about our knowledge 

in data (Heuvelink and Brown, 2007). 

 

When maps that are stored in a GIS database are used as inputs to a GIS 

operation, the errors in the input will propagate to the output of the operation. 

According to Cheng (2003), the accuracy of geographical feature and its attribute in 

GIS may be influenced by vague properties of the spatial objects or uncertainties 

introduced during the process of data capture. This is because the resulting output 

is a function of input values, and inaccurate input values automatically affect the 

computed result (Heuvelink et. al., 1989). Therefore the output may not be 
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sufficiently reliable for correct conclusions to be drawn from it. Moreover, the error 

propagation continues when output from one operation is used as input to an 

ensuing operation. Consequently, when no record is kept of the accuracy of the 

intermediate results, it becomes extremely difficult to evaluate the true accuracy of 

the final result (Heuvelink, 1998). 

 

GIS is described by the massive amount of data, sources, and methodologies 

employed in data production and manipulation. Data in a GIS are often stored in the 

form of data layers. The data stored in a GIS have been collected in the field, have 

been classified, interpreted, estimated intuitively and so contain a certain amount of 

error. Errors also derive from measurement error, from spatial and temporal 

variation and from mistakes in data entry (Heuvelink, 1998). 

 

Spatial data layers may originate from a variety of sources: digitized maps, points 

acquired through global positioning devices, and surveyed attributes entered into a 

software package. Layers may also consist of objects extracted from remotely-

sensed imagery. 

 

Within a GIS environment, the proper use of information requires the identification of 

the uncertainty estimates associated with it. Currently, a major dilemma in 

evaluating the positional accuracy of a GIS dataset lies in determining the 

uncertainty of different objects. Positional uncertainty assessments examine error by 

attempting to predict its propagation from points to lines and to objects within a GIS. 

The most fundamental geometric elements are points and lines, and an analysis of 

positional accuracy would logically begin with these simple objects.  

 

Error models for points and the line segments that connect them have been 

developed, such as the epsilon-band, confidence region, and G-Band models (Shi 

and Liu 2000). These models are based on an assumed statistical distribution of the 

error associated with each point, typically a Gaussian (Normal) distribution. Shi and 

Liu (2000) present a stochastic model of the positional errors in line segments which 
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assumes that the errors of the endpoints follow two-dimensional (x,y) normal 

distributions.  

 

The Data Uncertainty Engine (DUE) which is developed by Brown and Heuvelink 

(2007) allows uncertainties in model inputs to be described and their impacts 

propagated through for model predictions.  It is a prototype software tool for 

assessing uncertainties in environmental data, for storing them within a database, 

and for generating realizations of data to include in an uncertainty propagation 

analysis (Heuvelink et al., 2007). 

 

Using DUE, the spatial and temporal patterns of uncertainty (autocorrelation), as 

well as cross-correlations between related inputs, can be incorporated in an 

uncertainty analysis.  Such correlations may greatly influence the outcomes of an 

uncertainty analysis because models typically respond differently to correlated 

variability than random errors.  DUE also supports the quantification of positional 

uncertainties in geographic objects, represented as raster maps, time-series or 

vector outlines (Brown & Heuvelink, 2007). 

 

Objects supported by DUE include spatial vectors, space-time vectors, spatial 

raster, time-series of raster, simple time-series and objects that are ‘constant’ in 

space and time.  Attributes supported by DUE include continuous numerical 

variables, discrete numerical variables and categorical variables.  

 

1.1. Objectives of the Study 
 
Such computer based environments are only the abstraction of real world 

applications for further research activities used in decision making processes. So 

that the awareness about the accuracy of used data and executed operations during 

these processes have crucial effect on outputs.  
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Here it is tried to increase awareness of using data with positional uncertainty and 

establish an error- aware decision making processes throughout the use of Data 

Uncertainty Engine which is developed by Brown & Heuvelink (2007).  

 

Essentially, this study proposes a method to improve the reliability of GIS outputs at 

real world applications by performing uncertainty analysis in order to identify error 

aware results in decision making processes 

 

In this thesis, uncertainty boundary estimation with an emphasis on vector polygons 

which are manually digitized from orthorectified satellite imagery is addressed. By 

modelling the boundary of the uncertainties of agricultural land parcels, how this 

information can be used together for spatial analysis containing such datasets is 

investigated.  

 

Main focus of this study is handling the positional uncertainty in spatial data features 

within GIS environments, with the help of DUE. The objectives of this study are;    

 

 to analyze estimation and modelling techniques for uncertainty modelling in 

DUE  

 to asses the effectiveness of different object models offered within DUE  

 to create uncertainty boundaries of spatial objects digitized from satellite 

imagery  

 to provide uncertainty boundaries for each polygon  

 to measure the inclusion and exclusion areas affected by the positional 

uncertainty in agricultural land parcels 

 

1.2. Thesis Structure                  
 

This study is consisted of five chapters. Following this introduction chapter, Chapter 

2 concentrates on the sources of uncertainty that are introduced during data 

capture, concepts and definitions about spatial uncertainty and introduces a review 

of previous studies on estimation and modelling of positional uncertainty. Also 
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Chapter 2 gives the basics of mathematical theory behind models and summarizes 

the models that are used to model the positional uncertainty in DUE.  

 

Chapter 3 explains the methods and data used in the study. Also an introduction 

about the main parts of Data Uncertainty Engine (DUE) developed by Brown and 

Heuvelink (2007) and example studies with DUE are given. A flowchart of the 

methods used in the uncertainty analysis is presented.  

 

Uncertainty analysis and modelling of digitized data and the creation of uncertainty 

boundaries around vector polygons for case study are explained in Chapter 4. Two 

sample regions are selected for further analysis to examine different object models 

(namely, deformable and rigid models) and cross correlation structure between x 

and y coordinate errors are explained in section 4.4. Chapter 4 also, is a review on 

results of the uncertainty analysis.  

 

And finally Chapter 5 brings the thesis to a close with a summary and paves the way 

for future research.  
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 

This chapter includes the previous studies carried out about spatial uncertainty in 

GIS. First sources, concepts and definitions about spatial uncertainty are explained. 

Then, the previous studies, related to spatial uncertainty estimation and modelling 

techniques are presented. Some of these methods developed in the previous 

studies and used in this study are also explained.  
 

2.1. Sources of Uncertainty  
 

Spatial information and data capture procedures contain error inevitably. Spatial 

measurements can represent the geographical location or extents of a feature. Also 

a spatial observation can be associated with attribute measurements which specify 

the characteristics of geographic phenomena.  Both the position and attribute 

contain errors to some degree. An error is defined as a discrepancy between the 

measured and actual value of a particular attribute for a given entity (Veregin, 1999).  

Error sources are classified as follows by King’s study (2002) when dealing with 

spatial and attribute measurements. 

 

 Natural - Errors caused by changing conditions in the environment 

 Personal - Errors that are created by limitations in the human senses 

 Instrumental – Errors which are caused by imperfections in instrument 

functionality 

 

Natural errors can be caused by the variations in temperature, wind, atmospheric 

pressure, gravitational fields, and magnetic fields. Human (personal) errors occur 

from one's inability to perfectly see, perceive, or interpolate observations. Examples 

of instrumental errors may include uncalibrated parts or lenses in an imaging device, 
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or non-uniform spacing between divisions on a theodolite or total station instrument 

(Wolf and Ghilani, 1997). 

 

The types of errors produced by the above mentioned sources can be categorized in 

three main classes: 

                                                                                                                                                              

 Blunders 

 Systematic errors  

 Random errors 

 

Blunders are usually large errors such as mistakes in reading or writing observations 

values or using the wrong datum or projection resulting from the carelessness of the 

operator. Systematic errors are those that follow some physical law and hence can 

be predicted. Often systematic errors are removed by deriving corrections based on 

the physical conditions that created them (e.g., atmospheric interference, solar 

radiation). Random errors are errors inherent in the nature of measurement, those 

errors that exist after all blunders and systematic errors have been removed. 

Random errors can arise from human and instrument imperfection, as well as 

imperfect corrections. Random errors are impossible to avoid and do not follow any 

physical laws. Therefore they must be handled according to the mathematical laws 

of probability and corrected by a series of adjustments (Wolf and Ghilani, 1997) 

 

Uncertainty analyses in GISs mainly focuses on assessment of the random errors 

that are left when blunder and systematic errors removed by elimination or 

corrections.  
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2.2. Spatial Uncertainty  
 
Identifying spatial uncertainty starts with understanding the concepts of spatial 

accuracy and data quality. Data quality is often used in the context of metadata, and 

describes the measures and assessments that are intended by data producers to 

characterize known uncertainties. King (2002) defines accuracy as a measure of 

how an observation is close to a true value.  

 

The definition of geospatial uncertainty within GIS is a much argued and often 

unclear subject. When describing spatial uncertainty, a range of comparable terms 

such as: error, accuracy, precision, vagueness, ambiguity, and reliability have been 

used almost interchangeably. Vagueness, imprecision, and inaccuracy indicate 

specific conceptual terms, varying from fuzzy set theory to traditional theories of 

scientific measurement error, and whether or not it is implied that some true value 

exists in the real world that can be compared to the value stored in the database 

(Goodchild, 2007). Today most research undertaken on dealing uncertainty in GIS 

has concentrated on two main methods: fuzzy set theory to represent vagueness, 

and probability theory to characterize error (Fisher, 2005).  

 

According to Klir and Yuan (1995) uncertainty is identified as either products of 

fuzziness or products of ambiguity. Fisher (2005) has developed a taxonomy based 

on Klir and Yuan’s study to represent the relation between geographical feature and 

definitions different types of uncertainty. Figure 2.1 demonstrates Fisher's different 

types of uncertainty within spatial information. 
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Figure 2.1 Conceptual Model of Uncertainty (taken form Fisher, 2005 and Klir and 

Yuan, 1995) 

 

To determine which method of uncertainty assessment can be utilized for a 

particular spatial object, it is crucial to determine whether the class of objects is well 

defined or poorly defined. If the object is well defined, (e.g., land ownership 

boundaries), then the uncertainty is caused by errors and is probabilistic. If the 

object is poorly defined, such as vegetation or soil boundaries, then specific types of 

uncertainty, vagueness or ambiguity, may be recognized. Fisher (2005) associates 

vagueness with the poor definition of the class where the object belongs. 

 

Ambiguity is described with instances when doubt about the classification of object 

because of different perceptions exists. Ambiguity can also be divided in two groups. 

Discord occurs when an object is clearly defined, yet different perceptions of the 

classification scheme allow the object to be classified in more than one class. Non-

specificity occurs when features have no appropriate class to be assigned to.  

 

As Fisher (2005) and Kurtar (2007) are expressed in their studies line features in  

other means vector features are well defined geographical objects. In this study 

spatial uncertainty of well defined objects are evaluated so that in the previous 
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section much of the discussion focuses on the probability model of spatial 

uncertainty.           

 
2.3. Models for Assessing Spatial Uncertainty  
 
2.3.1 Probability Models  
 
Focusing mainly on estimation and prediction of the random errors within the system 

or model, within uncertainty analysis it is assumed that all systematic errors can be 

corrected. This assumption is mainly utilized for assessing positional uncertainty of 

spatial entities. So that it tends to be the basis of the many probability-based 

methods that examine spatial uncertainty (King, 2002). For any measurement of a 

parameter, there is a probability that it is correctly measured. Methods for 

determining uncertainty using probability are based on assumptions of standard 

error theory.  

 

Points, straight line segments, polylines and polygons are main spatial                        

entities in a vector data. Positional uncertainty of a point is usually represented by a 

circle with a radius of ε . ε  is the discrepancy between the true value and the 

observation. Manual data entry method of digitizing is still a popular method 

however nowadays automated data entry techniques have been improved. 

Uncertainty distribution for digitisation is investigated by researches such as Bolstad 

et al. (1990) found that the digitizing uncertainty is nearly normally distributed. 

 

When probabilistic approaches are considered, distribution functions are the tools 

for modelling uncertainty in positional uncertainty; like Gaussian distribution, that is 

commonly used for error distribution. The equation for probability density function of 

a normal distribution is (Mathworld, 2009): 

 

                          
2
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2
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Wolf and Ghilani (1997) proposed an uncertainty model for point features. In this 

model, uncertainty of a point is modelled based on bivariate normal distribution. In 

bivariate normal distribution, the dimensions are x and y coordinate pair of the point. 

Hence uncertainty region of the point is in shape of ellipse (Figure 2.2) 

 

 
 

Figure 2.2 Bivariate Probability Distribution of a Point Object’s Position (adapted 

from Heuvelink and Brown, 2007) 

 

The other characteristic of this model is that, a correlation between x and y is taken 

into consideration and any correlation between these variables cause the ellipse to 

be rotated towards clockwise direction, if correlation is positive. Otherwise the 

ellipse is rotated towards counter clockwise direction. 

 

An epsilon error band model is introduced by Perkal (1956, 1966) and developed by 

Chrisman (1982). The model based on the premise to create an uncertainty band 

surrounding the line segment. Width of the uncertainty boundary is based on a 

constant radius around line’s most likely true position and called an epsilon band. 

The quantity epsilon (ε ) is derived from the radius of the line's endpoint error 

circles, assuming a digitization process that yields random coordinate error in a 

circular normal distribution. The circular normal distribution is two-dimensional 

(bivariate) and varies normally, meaning that it consists of errors in two directions 

that are equal and uncorrelated. The main drawback of this model is that it provides 

no interpretation of error distribution inside the band (Figure 2.3). 
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Figure 2.3 Chrisman’s Epsilon Model (taken from Chrisman, 1982) 

 

Caspary and Scheuring (1992) improved Chrisman’s band model based on Dutton 

experiment (Dutton, 1992) which generates realizations of line segments using 

Monte Carlo Simulation between two uncertain end points. Dutton finds out that the 

error is the greatest on the measured point and least in the halfway between them. 

The experiment showed that there is a need to narrower band towards the interior of 

the line segment (Figure 2.4).  
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Figure 2.4  Dutton’s Experiment Simulating Line Segments (taken from Dutton, 

1992) 

 

After Dutton experiment, Caspary and Scheuring refine the fixed radius epsilon band 

and they proposed a new error band which has a narrower width error band toward 

the interior of the line segment. This model also uses circular normal distribution as 

Chrisman’s band model. Like Chrisman (1982) and Dutton (1992) they use equal 

endpoint coordinate errors following a circular normal distribution. Monte Carlo 

simulation and error propagation are used to derive the error band which becomes 

narrower towards the midpoint. (Figure 2.5) 
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Figure 2.5 Caspary and Scheuring Error Band Model (taken from Caspary and 

Scheuring, 1992) 

 

This study is important for positional accuracy of spatial objects because it utilizes 

the error propagation law to derive errors along the line and determines an error 

band by the error circle boundaries of all points along the line rather than error of the 

end points strictly. Also this model represents a straight line as four – dimensional 

random vector (four coordinates of two endpoints) (King, 2002). 

 

Shi and Tempflie (1994) expand the work of Caspary and Scheuring’s study as 

taking it one step further for modelling positional errors in line features. As in the 

previous model, this model also makes the assumption that errors fits on a normal 

distribution and uncorrelated. Also the model assumes that positional error 

distribution of a random point on the line segment is dependent on the errors and 

distribution of the endpoints. They define the probability distribution function and 

confidence region of a line segment with equal variances and covariances which 

indicates independent endpoint errors. A boundary that is formed by computing the 

probability distribution of a point in a direction to perpendicular to the line indicates 

how the point’s position can vary from its true or mean position (King, 2002). Figure 

2.6 of Shi and Tempfli’s (1994) graphic displays a line segments’ probability 

distribution and how it can deviate from its expected or mean location. 
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Figure 2.6 Probability density function of a line (taken from Shi and Tempfli, 1994) 

 

Goodchild and Hunter (1997) modified the epsilon band model for assessing 

positional uncertainty of a digitised line feature. The width of the epsilon band was 

estimated by calculating the proportion of the measured location of the line feature 

falling on or inside the epsilon band. If the value of the proportion is equal to or 

larger than the predefined tolerance (e.g. 0.95), the width of the epsilon band is a 

measure of the positional uncertainty of the line feature. 

 

Shi and Liu (2000) further developed the studies of Caspary and Scheuring (1992) 

and Shi and Tempfli (1994) by creating a more general model of the error band, 

called the G – Band model. The main improvement of the G – band model is that it 

accounts for the correlations between two endpoints, a condition that is not handled 

by the previous error band models. Endpoint errors are assumed to follow two-

dimensional normal distribution but unlike from the previous studies errors of the 

endpoints can be different from each other.  

 

Figure 2.7(a) illustrates the more general case of the G-band, which allows each 

endpoint to have varying errors in both dimensions. In this case, the endpoint errors 

in the two directions are correlated and of varying magnitudes. Figure 2.7 (b) and (d) 

displays errors with the same magnitude in the points on the line segments, but at 

(b) the errors are cross correlated between x and y coordinate pairs of each point, in 

(d) there is no indication of a cross correlation structure. While Caspary and 

Scheuring's (1992) error band relies on the assumption of directional independence, 

this condition applies only special occasions of the G-band. Figure 2.7 (c) illustrates 
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a special case of the G-band, when endpoint errors are independent and equal. 

Under these conditions, the G-band reduces to the error band models of Caspary 

and Scheuring.  

 

 
Figure 2.7 G Band of Line Segments with Different Statistical Characteristics 

(Adapted from Shi and Liu, 2000)  

 

Kurtar (2006) studied on the G-Band model to develop it for non-linear functional 

curves. Models for arc, arc string, cubic spline and clothoid are proposed. The 

proposed uncertainty models for arc geometry is managed using three coordinates, 
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arc string and cubic spline are based on G-Band model. However the uncertainty 

models for arc by centre point and clothoid are modelled using epsilon ellipse 

model. Kurtar (2006) propose epsilon band model for arc by centre point and 

clothoid because they are created with a single geographic coordinate together with 

other scalar variables. Hence, the band models of these functional curves use a 

unique epsilon ellipse for all of random points on the arc line segments.  

 

Yarkınoğlu (2007) worked on a road network geometry consisted of line segments. 

A new uncertainty model is proposed for network implementation based on the 

Propagated Error Band model developed by Leung and Yan (1998). This model and 

G-Band are utilized in this study. Study is carried out in two parts; first models are 

applied for each line segment of the selected network separately and on the second 

one uncertainty that propagated form the consecutive segment are utilized 

considering the positional correlation.  

 

Unlike previous studies Leung and Yan (1998) developed an error model for points, 

lines and also polygons. Errors in vertices points of lines and polygons are used as 

the basis for constructing the model. Two main assumption are taken into account in 

this model (1) all the errors in vertices points have the same standard deviation, (2) 

the distribution of any point of an entity displays a circular normal distribution.  

 

Zhang and Kirby (2000) examined in their study that “the possibilities by which 

spatial correlation may be usefully explored in the handling of positional errors in 

vector data”. An empirical study using photogrammetric data for a suburb –

containing line and polygon features of buildings, roads and natural geographic 

objects such as lakes – displayed that geostatistics can be applied to analyse vector 

data and photogrammetric data in particular without major complications. Also the 

study confirmed that spatial correlation should be incorporated in the analysis of 

positional errors. Also they proposed that geostatistical methods can be used to 

explore spatial correlation in attribute errors.  
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Heuvelink et al. (2007) developed a probabilistic framework for representing and 

simulating uncertain environmental variables both for positional and attribute 

uncertainty. They categorize the spatial uncertainty in two groups of attribute and 

positional uncertainty and create taxonomy for both these groups. Uncertainties are 

associated with estimated probability distribution function (pdf). Then Brown and 

Heuvelink (2007) developed a software tool called as Data Uncertainty Engine 

(DUE) using this probabilistic framework study. DUE can deal with both attribute and 

positional uncertainties. In this study for the assessment of positional uncertainty 

DUE is utilized so that framework of DUE will be explained in section 2.4 of this 

chapter.  

 

Kiiveri (1997) suggest a statistical model which assumes that effect of all sources of 

error give a ‘smooth or rubber sheet distortion’ on true map. Each error source is not 

modelled separately so that smoothness preserves continuous lines and topology is 

guaranteed in resulting simulations. Transmitting the uncertainty between set 

operations such as; intersection and unions are also evaluated within this study.  

Also uncertainty in length and area of fence lines, roads and property boundaries 

are modelled.  

 

Bogaert et al. (2005) developed a general framework for error assessment of area 

measurements of planar polygonal surfaces with application to agriculture. Two 

cases are evaluated such as; correlated and independent measurements carried out 

with Global Positioning Systems (GPS) devices.  Geostatistical analysis is based on 

time series data obtained via GPS measurements. An operator made the 

measurements trough walking along the border line of a field. At the end of the study 

it is observed that error in area measurements are linked to both the operator's 

speed and the acquisition rate of GPS device.  
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2.3.2. Fundamental Mathematical Expression of Uncertain Spatial Features 
 
This chapter aims at describing the positional uncertainty of the spatial features 

mathematically. 

 
2.3.2.1. Probability Density Function of a Point 
 
Location of a point feature is usually captured by techniques such as, ground 

survey, photogrammetric or remote sensing survey, map digitising or scanning, or a 

combination of these. A point in GIS is mostly obtained by digitising a map produced 

using through the photogrammetric method. Its positional uncertainty is then caused 

by control, photography, aero-triangulation, orientation, compilation, drafting, printing 

and digitisation (Shi, 1994) and can be estimated by error propagation law. 

 

Let ),( PyPxfP  denote the probability density function (pdf) of a point P. This is the 

probability that any point ),( PyPx  is located at the true location of P. Let 

),( YXP PPX = , ),( PyPxP μμμ =  where Pxμ  and Pyμ  are the expected (or mean) 

values of Px  and Py  respectively, ∑ ⎟
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where Z T is the transpose of any vector Z (Cheng , 2003). 

 

2.3.2.2. Probability Density Function of a Line or Polygon 
 

Positional uncertainty of a line or polygon is difficult to model statistically when 

compared to a point feature. Because an infinite number of points located on lines 

and line segments that form a polygon have correlated. Cheng (2003) stated in her 
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study that if individual positional uncertainties of all the points on a line are 

identically and uniformly distributed, a probability density function (pdf) of the 

uncertainty of the whole line would be like a three-dimensional box. However, the 

normality of the random uncertainty of a digitised point is usually made for ease of 

computations (Bolstad et aI., 1990; Dutton, 1992; Caspary and Scheduring, 1992). 

In statistics, it is hard to find a distribution that fits the whole line, because any 

location on the line follows bivariate normal distribution. Similar situation is also valid 

when defining a pdf of a polygon.  

 

Cheng et al. (2003) studied the pdfs of the individual points rather than the pdf of the 

whole spatial feature. These pdfs are in fact different from the pdf of the whole 

spatial feature; however they can be used to derive multivariate pdf of all the points 

of the geographical object.  

 

Cheng at al. (2003) define this pdf as follows; 

 

Let  ( )
AA NNA AyAxAyAxAyAxh ,,....,,,, 2211  denote the pdf of all the points of a 

spatial feature A. If the positional uncertainty of these points follows a multivariate 

normal distribution it will become;  
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2.4. Probabilistic Framework of DUE 

 

Heuvelink et al. (2007) developed taxonomy for uncertain objects and models for 

each object to define uncertainty model. In this framework, objects are represented 

as abstractions of real entities that include features with observed boundaries, such 

as buildings, trees, and land ownership boundaries.  These boundaries contain 

positional information, such as absolute coordinates in space and time or relative 

distances between locations. If the coordinates or distances are uncertain, the 

boundaries contain positional uncertainty. 

 

2.4.1. Taxonomy of Uncertain Objects 
 

Heuvelink et al. (2007) classified the uncertain geographical objects “by their 

primitive parts and by the types of movement they support under uncertainty” in 

order to describe positional uncertainty. These classes are as follows by their 

definition;  

 

 Objects that are single points (point objects); 

 Objects that comprise multiple points whose relative position in space-time 

(internal geometry) cannot change under uncertainty (rigid objects); 

 Objects that comprise multiple points whose relative position in space-time 

can vary under uncertainty (deformable objects). 

 

In contrast to rigid and deformable objects, the positional uncertainty of a point 

object always leads to a unitary shift in the object’s position.  Rigid and deformable 

objects may comprise groups of isolated points, such as the ‘trees’ in a ‘orchard’ or  

groups of interconnected points, such as a ‘main road centerline’ or a time series of 

‘water levels’, and closed lines or polygons (in 2D or 3D), such as, ‘buildings’ or 

‘lakes’.  However, the positional uncertainty of a rigid or deformable object is always 

characterised by the uncertainties of its individual points (Brown and Heuvelink, 

2006) 
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The positional uncertainty of a rigid object leads to - as Brown and Heuvelink (2006) 

defined - a “unitary shift in the object’s position (translation) and/or an angular shift 

(rotation)” of the object for any given outcome of the pdf, because the primitive 

nodes are perfectly correlated.  By other means, positional uncertainty cannot alter 

the topology of a rigid object.  In contrast, the topology of a deformable object may 

be altered by positional uncertainty, because the uncertainties in its primitive points 

are partially or completely independent of each other.   

 

2.4.2. Models Used for Positional Uncertainty  
 

Methods for defining positional uncertainty in geographic entities include partial and 

full application of probability theory to vector data. These methods are explained in 

section 2.2. Heuvelink et al. (2007) developed a general probability method based 

on the previous studies for point, rigid and deformable objects.  

 

A point object contain at least two uncertain coordinates namely x and y in 2D 

Cartesian space. Location of each coordinate is uncertain so that they can be 

represented by random variables X and Y with a marginal (cumulative) probability 

distribution function (mpdf) XF  and YF .  

 

)(Pr)( xXobxFX ≤=  and )(Pr)( yYobyFY ≤=                        (2.4) 

 

where x and y are real numbers. Marginal distributions may be defined for each 

coordinate of an uncertain point object. When the errors in x and y directions are 

correlated, a multivariate or joint pdf (jpdf) is required: 

 

)(Pr),( yYandxXobyxFXY ≤≤=                             (2.5) 

 

When the uncertain coordinates are independent, the jpdf  is the product of the two 

mpdfs. 
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The random variables X and Y will typically have a mean (expected value) 

[ ] xXE μ=  and a standard deviation ( )[ ] XX nXE σμ =−−∑ 1/2 . As a 

measure of central tendency, the mean provides information about positional bias 

and standard deviation as measure of dispersion provides information about the 

average departure of X and Y from their means.  

 

Rigid objects are consisted of multiple points whose internal angles and distances 

cannot change under uncertainty. The positional uncertainty of a rigid object is 

characterized by movement of a chosen single point whether a translation of the 

point and/or a rotation around the point. The point itself may be a primitive point of 

the rigid object or a reference point associated with the object (e.g. its centroid) 

(Brown and Heuvelink, 2007; Heuvelink et al., 2007). So that a joint probability 

distribution function is required for the positional coordinates of this reference point 

(x and y). 

 

A spatial object is treated as deformable if its component vertices can move with a 

degree of independence. Description of a positional uncertainty for a deformable 

object composed of n vertices requires a 2n dimensional joint probability distribution 

function where this jpdf contains mpdfs for the coordinates of the individual vertices, 

together with all the auto and cross correlations between them (Brown and 

Heuvelink, 2007; Heuvelink et al., 2007).  
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Heuvelink et al. (2007) stated that obtaining equation (2.6) as the product of n jpdfs 

specified in equation (2.5) is not practical because data collection and pre-

processing will introduce statistical dependencies between points. For example, 

GPS surveys, georeferencing of remote sensing data, and manual digitizing will all 

introduce positive correlations between positional uncertainties. Considering these 
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conditions, DUE proposes a technique that is more practical in the estimation of 

statistical dependence with pdfs.  

 

The positional uncertainties of objects may be statistically dependent in space and 

time, and between coordinate dimensions. If the uncertainties are statistically 

dependent, these dependencies must be estimated alongside the mpdfs. In practice, 

few parametric shapes are available to describe the jpdf whose mpdfs are 

statistically dependent. For continuous numerical variables, a joint normal 

distribution is often assumed. Given this assumption, the jpdf comprises a vector of 

means and a covariance matrix. The covariance matrix contains the variance of 

each mpdf along the diagonal and the covariance of each pair of mpdfs that 

comprise the jpdf elsewhere. Using expert judgement, the uncertainty may be 

assumed ‘second-order stationary’, whereby the associated pdf has a variance that 

is constant and for which the covariances depend only on the distance between 

locations (Heuvelink, 1998). In that case, the covariances may be estimated from a 

simple function (semi variogram, cross-variogram), which can be fitted directly to a 

sample of observed errors at control points (Goovaerts, 1997).  
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CHAPTER 3 
 
 

DATA AND METHODOLOGY 
 
 
3.1. Study Area  
 
Study area is located within the boundaries of Kocaeli Province in northwest 

Anatolia. Area contains agricultural fields and villages scattered around 30 km². 

Geographical extent of the study area is upper left 40° 47’ 42.25”N 30° 3’ 21.7”E,  

lower right 40° 46’ 16.8”N 30° 5’ 17.5”E.  Elevation within the selected region ranges 

from 5 metres to 410 metres (Figure 3.1).  

 

This area is selected due to agricultural field density and low variation at the altitude 

which is also corrected by orthorectification. When compared to urban areas and 

buildings, agricultural fields are located exactly on terrain surface. In remotely 

sensed images height of geographical objects may cause positional bias in terms of 

X and Y coordinates of feature. Therefore the errors that may be occurred 

depending on the heights of building due to the perspective distortion during image 

acquisition are removed or alleviated. Another characteristic of agricultural field is its 

boundaries are static. For instance lakes or shorelines are affected from seasonal 

fluctuations during the year and do not have static boundaries. However agricultural 

land parcel boundaries are static and can be defined with cadastral studies. The 

availability of the cadastral data is another reason in selecting this area for the case 

study.  
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Figure 3.1 Location of the Study Area 
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3.2. Data Description 
 

 
Data that constitute the base information for the study is obtained from Municipality 

of Kocaeli. They consist of 1:5000 scaled digital base map series. These map 

sheets were produced from aerial colour photographs acquired in 2005 with 35 cm. / 

pixel nominal spatial resolution via photogrammetric production. Planimetric 

accuracy of this production is known to be about ±35 cm. (RMSE) on the ground. 

1:5000 scaled digital base maps contain detailed information about structure of land 

as parcel boundaries, road network, fences, man – made structures etc (Figure 3.2). 

 

Second data used in thesis is satellite imagery of study area. Two images of the 

same region acquired at different dates ordered for the study. Satellite imagery is 

obtained with the fund provided from Scientific Research Project (BAP) under the 

supervision of Natural and Applied Sciences Institute.  Pre – processing stage is 

explained in orthorectification section. One of these images is used as basis for 

digitizing agricultural land parcels. Also digitizing process is explained in digitizing 

section.  

 

Agricultural field boundaries that are used as basis for all analysis are extracted 

from 1:5000 scaled digital base maps as vector dataset. These data used as 

reference and assumed to be the true positions of field boundaries. And the 

accuracy of this cadastral data is analysis is at most 1 meter on the ground.  

 
All raster and vector dataset (e.g. satellite imagery, cadastral boundaries, 1:5.000 

scaled base maps, simulations) utilized in this study are referenced with the 

following datum and projection domain; ITRF96 (International Terrestrial Reference 

System 1996) Datum, GRS80 (Geodetic Reference System 1980) Ellipsoid, 3º 

Gauss Kruger (aka Transverse Mercator) Projection.  
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Figure 3.2 1:5.000 scaled GCP reference dataset. Map Sheet G-24-D-03-A 
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3.3. Orhorectification 

 

A very high resolution optical satellite imagery acquired on 16th of June 2007 was 

utilized in this study in order to digitize 221 polygon vector dataset. Metadata of this 

image, acquired by Quickbird satellite platform, is given in Table 3.1. Image can be 

previewed in Figure 3.3.  

 

Table 3.1 Metadata of Quickbird Image 

Catalog ID 1010010005B06700 
Satellite Platform / Operator Quickbird / Digital Globe US 
Date / Time of Acquisition 16.06.2007 / 09:15 
Processing Level / Type 2A / Standard Ortho Ready 
Scan Mode & Direction / 

Number of Looks 
Full Swath & Forward / 

1 (Stereo mode off) 
Number of Bands / 
Band Combination 

4 / Red Green Blue (RGB) + Near Infrared 
(nIR) 

Radiometric Resolution 11 bits (2048 shades of gray) per band 
Resampling Kernel / Nominal 

Spatial Resolution Pansharpen / 60 cm. per pixel 

Mean Ground Sampling 
Distance 0,705 m. 

Mean Sun Azimuth 147,8 ° 
Mean Sun Elevation 70,3 ° 

Mean Satellite Elevation 65,0 ° 
Mean in Track View Angle 23,4 ° 

Mean Cross Track View Angle - 0,8 ° 
Mean Off Nadir View Angle 23,5 ° 
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Figure 3.3 Previews of Quickbird Image 

 

Quickbird image is processed under PCI Geomatica v10.0.3 and ortho-rectification 

is performed in OrthoEngine via Toutin’s (high resolution) rigorous physical model 

which fully utilizes ephemeris data. 

 

For year 2007 image, having the catalog id of 1010010005B06700, 50 ground control 

points (GCPs) are selected from 1:5.000 scaled digital base map series (Figure 3.2). 

These map sheets were produced from aerial colour photographs acquired in 2005 

with 35 cm. / pixel nominal spatial resolution via photogrammetric production. 

Planimetric accuracy of this production is known to be about ±35 cm. (RMSE) on the 

ground.             

 

Besides, with reference to the same dataset having contour intervals of 2,5 m., 

digital elevation model (DEM) of the study area having 1,20 m. / pixel spatial 

resolution was produced with an accuracy of ±48 cm. (RMSE) on the vertical axis 

(Figure 3.4). DEM is produced using universal kriging surface interpolator algorithm 

via second order trend surface in ArcGIS v. 9.3 Geostatistical Analyst.  
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Figure 3.4 DEM of the study area produced from 1:5.000 scaled map sheets. 

 

 
Figure 3.5 Distribution of GCPs 
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Utilizing Toutin’s (high resolution) rigorous physical model, bundled in OrthoEngine 

v10.0.3, achieved planimetric accuracy for ortho-rectified image is ±0,98 pixel 

(RMSE) for 2007 image. Detailed results are given in Table 3.2. Full residual report, 

including complete list of GCPs is given in Appendix A. 

 

Table 3.2 Calculated error values for ortho-rectification via rigorous physical model 

 
ID 

1010010005B06700  
Date 16.06.2007 

Number of GCPs 50 
GCP RMSE X axis 0,72 
GCP RMSE Y axis 0,67 
GCP RMSE X & Y  0,98 

 
3.4. Digitizing of Test Data  
 
To undertake uncertainty analysis, experimental test data is generated using 

digitising. Digitising is performed using ESRI ArcGIS v.9.3 from orto - rectified 

satellite imagery acquired in year 2007. Spatial features are constituted of 

agricultural land parcel boundaries. All digitizing process is performed at 1:1000 

scale on a display with 1028x1024 pixel resolution in ArcGIS v.9.3 for eliminating 

any variation, which can be caused by resolution and scale variation. All 700 

polygon boundaries digitized in clockwise direction starting from lower left corner of 

parcels. While generating geographical features via digitising auto - complete 

polygon option was selected from topology tasks to avoid gaps between adjacent 

parcel boundaries. Both reference data and data generated from satellite imagery 

via digitising can be seen in Figure 3.6. In order to ease further analysis, each of the 

700 polygons is registered with a unique feature ID which is the same both in 

reference and digitized vector dataset.  
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Figure 3.6 Polygons Digitized from Satellite Imagery and Reference Polygons 

 

3.5 Data Uncertainty Engine (DUE)  
 
Data Uncertainty Engine (DUE) is a free software that aids the user in defining 

probability distributions for uncertain spatial objects and draws random samples 

using Monte Carlo Simulation (MCS) from these distributions. DUE is developed by 

by James D. Brown and Gerard B.M. Heuvelink (2007) using java programming 

language It runs on the Java TM Runtime Environment (JRE) version 5.0 (1.5.0) or 

higher. 
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DUE enables to describe spatial and temporal patterns (time – series data) of 

uncertainty which can be called auto correlation and also cross – correlations 

available in the related inputs that can be included in uncertainty model. 

Determination of a probability distribution function (pdf) in DUE for the positional 

uncertainty of 2D spatial vectors includes correlations within and between 

coordinates. Such correlations may greatly influence the outcomes of an uncertainty 

analysis because models typically respond differently to correlated variability than 

random errors.  DUE also supports the quantification of positional uncertainties in 

geographic objects, presented as raster maps, time-series or vector outlines.  

 

Objects that comprise multiple points, such as lines and polygons, may be assumed 

“rigid” under uncertainty, where all internal coordinates move identically, or 

“deformable”, whereby each internal point can move separately.  The uncertainty of 

a rigid object is completely specified by a translation and/or rotation of that object 

about a single point. Examples of rigid object might include buildings whose 

boundaries are theoretically rigid or field whose boundaries are treated as rigid for 

simplicity. In contrast, the uncertainty of a “deformable” object requires the marginal 

uncertainties to be defined at all internal points, together with any relationships 

between them (Heuvelink et al.,2007)(Figure 3.7). 

 

Deformable Object Rigid Object 
 

 

 

 
 

Figure 3.7 Examples of Deformable and Rigid Object 
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Both attribute and positional uncertainties can be evaluated using probability 

distribution functions. Objects supported by DUE include spatial vectors, space-time 

vectors, spatial rasters, time-series of rasters, simple time-series and objects that 

are constant in space and time. Attributes supported by DUE include continuous 

numerical variables, discrete numerical variables and categorical variables (Brown & 

Heuvelink, 2007). 

 

An uncertainty assessment with DUE is separated into five stages. These stages 

are presented as ‘tabbed windows’ in DUE. Also the workflow of DUE is shown in 

Figure 3.8.  

 

 
 

Figure 3.8 Workflow of DUE (Adapted from Brown and Heuvelink, 2007) 

 

1. Input Window - Loading and saving data  

Supported Data Files in DUE are as follows.  

  ESRI Shapefile for spatial vector datasets (e.g. points,lines,polygons)  

  ASCII Raster for 2D raster data (.asc) 

  ASCII file for simple time series data (.tsd) 

  Also searching, retrieving and saving pdfs for time series in a DUE – 

enabled Oracle – ArcSDE database.  

 A snapshot of Input window is presented in Figure 3.9.  
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Figure 3.9 Input window of DUE 

 

2. Sources Window - Identifying the causes or sources of uncertainty  

A library of sources included in the software as an example, sources of uncertainty 

generally classified as follows; 

 Instrumental Accuracy 

 Sampling Design 

 Sample Representativeness 

 Statistical Modeling 

 Classification Accuracy 

 Class Definition 

 

3. Model Window - Defining an uncertainty model  

Once data is imported into DUE, an uncertainty model can be defined for the objects 

and attributes selected in the opening tab. In the first window of the “Model” pane, 

an uncertainty model structure is chosen for the selected objects and attributes. 
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Figure 3.10 Model Window of DUE 

 

If sample data are available, it can be loaded. In the absence of sample data, an 

uncertainty model is defined through expert judgement. If the uncertainties are 

assumed spatially correlated, then a correlation model must be defined in the 

following model window. (Figure 3.10)  

 

4. Goodness Window - Reflecting on the quality of the model  

When constructing uncertainty model in DUE stages 2 and 4 (describing the sources 

of uncertainty and assessing goodness) can be skipped. 
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Figure 3.11 Output Window for DUE  

 

5. Output Window - Simulating from an uncertainty model  

Once complete, an uncertainty model is used to generate realisations of the 

uncertain objects and attributes in the output window (Figure 3.11). In order to 

simulate from an uncertainty model, the output scale, the number of realisations and 

the location for writing data must be specified 

 
3.5.1 Worked Examples with DUE 

 

DUE has the functionality to evaluate both attribute and positional errors in spatial 

data. But this study focuses on positional uncertainty. Following examples display 

the use of DUE within spatial projects.  
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The Dutch Ministry of Housing, Spatial Planning and the Environment initiated a 

project that aims to provide tools for handling uncertainty in spatial planning.  

Positional uncertainty in delineated breeding bird areas was evaluated as one of the 

aspects of the study. Heuvelink (2007) stated that these areas are considered to 

have exact boundaries however in reality there is no certain knowledge about where 

these areas begin and end. Vullings et al. (2007) explains the aim of the project to 

analyse how positional uncertainty of these areas would affect the outcome of the 

spatial planning process. 

 

The shape files of breeding bird areas were loaded into DUE and a statistical model 

(probability distribution function) of uncertain position of the polygons was 

constructed. Parameters of standard deviations in the x and y coordinates and 

correlation between neighbouring vertices of each polygon were defined. Standard 

deviations in the x and y directions were assumed to be equal. The correlation was 

assumed to depend only on the distance between points, where a Gaussian-shaped 

semivariogram was employed. Then DUE was used to simulate 100 possible 

realisations of the delineated breeding bird areas. Many of the simulated polygons 

were topologically corrupt so that they were replaced by new simulations. After 

running the spatial planning process, it turned out that the positional uncertainty 

about the breeding bird areas marginally affected the final plan. (Heuvelink 2007, 

Vullings et al., 2007) 

 

Cultivation of fields is executed using GPS driven farming vehicles in Netherlands 

such that precision farming requires that field boundaries are measured with cm 

level accuracy. To avoid losses caused by unharvested crops or wasted inputs de 

Bruin et al. (2008) presented a general error propagation method using DUE.  

 

Propagation of positional error measurements that are carried out with three 

different scenarios is investigated. Spatial dependence structure is based on a 

statistical model that compromises of temporal correlation in positional 

measurements.  
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A potato field of 15 ha is used as case study and error model was parameterised on 

measurements’ scenarios presenting; 

 

(1) Manual digitization of field boundary 

(2) Real Time Kinematic GPS survey  

(3) Differential GPS- based field checks  

 

Methods used in Bogaert et al. (2005) (explained in Chapter 2, page 18) are 

adopted in this study with extension to Data Uncertainty Engine.  

  

14 corner points of the polygon are modelled in scenario 1 and 2; however in 

scenario 3 of differential GPS number of vertices were 1258.  Temporal 

autocorrelation and cross correlation structure were modelled using semivariogram 

analysis. For each model 250 simulations of the case area is created using DUE.  

 

Inclusion and exclusion areas for each of 250 simulations are computed. Then mean 

and standard deviation of these 250 realisations are calculated to observe the 

performance of scenarios. Best results are obtained with Real Time Kinematic 

GPSs.  
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CHAPTER 4 
 
 

UNCERTAINTY ANALYSIS 
 

 

In order to analyze positional uncertainty using Data Uncertainty Engine (DUE), 

measures of spatial correlations, semivariograms of positional displacements both in 

X and Y coordinates and cross – semivariogram of X and Y displacements are 

needed to be constructed. Modelling of semivariograms is performed to define 

spatial autocorrelation and cross correlation structures in positional errors. These 

model parameters are used as inputs for running simulations from digitized features 

using joint normal distribution. These model parameters are also used to construct a 

valid variance – covariance structure for uncertainty models used in DUE.  

 

Realisations of possible positional displacements generated by DUE give possible 

locations of digitized dataset within pre–defined uncertainty error model. These 

realisations allow user to define the uncertainty boundaries for uncertain dataset.  

 

To run simulations it is necessary to compute semivariograms and then to fit 

suitable semivariogram models. This chapter explains steps of uncertainty analysis 

from data preparation to running simulations. 

 

Three different sample applications are carried out with DUE on different locations of 

the same dataset. In the first example a training set of 221 polygons are selected to 

identify error model for a larger set of 479 polygons out of a total number 700 

polygonal boundaries. In the second and third example sample regions of 95 and 30 

polygonal boundaries are selected respectively for analysis. Both in these two 

examples 5% of population are selected as training data for error model parameter 

estimation.  
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4.1. Data Preparation  
 
To provide initial estimation of positional errors of digitized land parcel boundaries 

from Quickbird imagery, reference data produced from cadastral data are overlaid 

with vector data digitized from satellite imagery. In order to obtain main vertices of 

polygons, line simplification algorithm in ArcGIS Desktop v9.3 ArcToolBox is used to 

eliminate redundant point’s information in polygon features. Every polygon is 

registered with a unique feature ID; also vertices are labelled with unique ID 

indicating which points belong to which polygon. Point IDs are given starting from 

the lower left corner of the polygon and then following a clockwise direction. Vertices 

of digitized polygons, which are converted to 506 unique points, can be seen in 

Figure 4.1.  

 

It is possible to match polygon vertices across two data layers and to compute 

displacements for individual points. Matching points both in reference data and 

digitized polygons’ X and Y coordinates are extracted from each other to provide 

displacements of individual points in X and Y coordinates.  

 

Initial information about positional errors in X and Y coordinates is acquired via 

descriptive statistics measures and histograms. Table 4.1 represents descriptive 

statistics both in positional displacements and absolute values of displacements. 
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Figure 4.1 Polygon Vertices Points 

 

Table 4.1 Descriptive Statistics of Displacements in Coordinates 

 ΔX ΔY Abs(ΔX) Abs(ΔY) 
N  497 497 497 497 
Mean (m) -.05944 .21696 .86467 .88424 
Standard 
Deviation (m) 1.156449 1.274988 .769248 .943032 

Variance (m) 1.337 1.626 .592 .889 
Skewness .087 1.469 1.572 3.225 
Kurtosis 1.343 7.648 2.835 18.265 
Range (m) 8.120 12.414 4.060 8.884 
Minimum (m) -4.052 -3.526 .008 .004 
Maximum (m) 4.068 8.888 4.068 8.888 
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In DUE, errors are assumed to follow a normal distribution. Also semivariogram 

construction compromises this assumption; positional errors represent normal 

distributions.  

 

Histograms for displacements both in X and Y axis are calculated before 

semivariogram construction to check normality assumption. Figure 4.2 is prepared 

using SPSS v15.0. Negative and positive values on histograms indicate direction in 

positional errors. When histogram of positional errors displays normal distributions 

for both X and Y, absolute values show skewed distribution since all errors are 

converted to positive values. It can be interpreted from the histograms that majority 

of the positional errors in both X and Y axes are less than 1 meter.   

 

Displacements in X and Y coordinates are re-organised from ArcGIS “shp” shape 

file format to GSlib’s text based “dat” file format in order to construct 

semivariograms, standardised semivariograms and correlograms in the 

geostatistical software package GSlib, which is a free geostatistical software.  

 

The data input files for GSlib need to be in a specific format common to many 

geostatistical software packages. Each data file starts with a header line containing 

a descriptive title. Next follows a line with the number of variables. The following set 

of lines contains the variable names, one per line. Next are the actual values, with a 

new column for each observation, and the values separated by tabs or spaces. The 

last line in the file should be a blank line. 
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Histograms of Errors in X and Y Axis Histograms of Absolute Values of 
Errors 

 

 

Figure 4.2 Histograms of Errors in X and Y Axis 

 

4.2. Parameter Estimation  
 
Practical use of probability distribution functions usually involves a combination of 

choosing a parametric shape and estimation. Auto correlations, cross correlation of 

uncertainty in the positions of vertices and the random deviations of polygons 

require description of statistically dependent joint probability distribution functions.  

 

Using the familiar assumption of second order stationarity (Isaaks and Srivastava, 

1989, Goovaerts 1997), covariances and cross-covariances can be estimated from 
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semivariograms that are fitted to samples of observed reference positions 

(Heuvelink et al, 2007). 

 

Semivariograms of the deviations are computed using geostaistical software 

package GSlib.  

 
4.2.1. Semivariogram  
 
A semivariogram is a geostatistical technique which can be used to examine the 

spatial continuity of a regionalized variable and how this continuity changes as a 

function of distance and direction. 

 

The correlation structure of the positioning can be made by estimating 

semivariogram of displacements both in X and Y coordinates.  The basic idea is to 

look at points separated by lag distance h and to compare measurement values. 

(Kanevski & Maignan, 2004) 
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Computation of a variogram involves plotting the relationship between the 

semivariance )(hijγ  and the lag distance (h). (Equation 4.1) The semivariance can 

be defined as one half of the variance of the difference between points separated by 

a lag distance (h), such that: where )(hijγ  is the semivariance, )(xZi  is the 

measured sample value at point i, )( hxZi +  is the measured sample value at point 

i+h where h is the lag distance, and N is the number of observations for a particular 

separation or lag distance. The lag distance is defined as the distance separating 

two points within a dataset in a specific direction (Isaaks and Srivastava, 1989).   
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Figure 4.3 Parameters of a semivariogram  

 

When the semivariance is plotted against the lag distance, certain features are 

displayed on the resulting semivariogram (Figure 4.3). These features include the 

sill, range and nugget effect.  

 

4.2.2. Semivariogram Construction  
 
The formula involves calculating the difference squared between the values of the 

paired locations with an increment of h lag distances. For semivariogram 

construction parameters of lag distance, lag tolerance and number of lags are 

needed. Rule of thumb indicates that the multiplication of the lag distance with the 

number of lags should be about largest distance among all points, in this case it is 

about 1800 meters. Actual largest distance is 1940 meters but above 1800 meters 

semivariance values starts to diminish which indicates no significant correlation 

structure.  

 

Selection of lag distance and number of lags requires a trial-error procedure of 

different values. Optimum values representing the auto and cross correlations are 

selected as follows. Lag distance is selected between points is about 4.5 metres and 

lag tolerance is selected as 2 meters. Number of lags is selected as 400. Resulting 

semivariogram graph for positional errors in X coordinate can be seen in Figure 4.4. 
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Experimental Semivariogram for Positional Errors in X Coordinate 
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Standardised Semivariogram for Positional Errors in X Coordinate 
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Figure 4.4 Semivariograms for X Coordinate Errors 

 

However semivariogram models included in DUE uses sill that is standardised at 

value 1 so that semivariogram values standardised by diving each semivariogram 

value by its lag variance. Both semivariograms and standardised semivariograms for 

X and Y coordinate errors are presented in Figure 4.4 and 4.5 respectively. Model 

fitting is performed by using standardised semivariograms.  
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Experimental Semivariogram for Positional Errors in Y Coordinate 
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Standardised Semivariogram for Positional Errors in Y Coordinate 
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Figure 4.5 Semivariograms for Y Coordinate Errors 

 

In order to evaluate whether positional errors in X and Y coordinates have any affect 

on another, cross correlation between errors should be investigated. To evaluate 

cross correlation a cross – semivariogram is constructed with the aid of GSlib. Also 

in DUE cross correlation can be defined in uncertainty model calculation. Calculated 

cross semivariogram can be seen in Figure 4.6.  
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Cross- Semivariogram of  X and Y Positional Errors
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Figure 4.6 Cross - Semivariogram for X and Y Coordinate Errors 

 
4.2.3. Semivariogram Modelling & Model Fitting 
 
A unique principle of variography is that a number of theoretical variogram models, 

either alone or in combination, can be used in order to capture a statistically 

quantifiable portion of the spatial variability in the dataset. The model chosen will 

depend on several factors including whether the semivariogram reaches a sill value, 

and the behaviour of the semivariogram at the origin. Most commonly used models 

to describe the variability are exponential, spherical and gaussian models. All three 

semivariogram models are displayed with equivalent practical range in the below 

Figure 4.7.  

 

Model fitting requires comparing different alternatives. Inspection of standardized 

semivariograms suggests using exponential, Gaussian and spherical semivariogram 

models.  
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Figure 4.7 Three Generic Semivariogram Models  

 

Following equations is used to define and construct semivariogram models for 

experimental semivariograms above. Then these models are evaluated using three 

different quality indicators to decide which model gives the best estimate for the 

data.  
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Spherical Model  
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Gaussian Model  
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0c  indicates nugget, c is the partial sill, addition of nugget and partial sill gives the 

sill. h is the lag distance on the i-th lag, and a is the range of correlation.  

 

Fitted models for semivariogram of positional errors in X are shown in Figure 4.8 

where semivariogram model parameters respectively in Table 4.2 and Table 4.3. 

The region in the blue box is expressed to show slight differences in models and 

how models close to each other. There are slight differences in the sill and nugget 

parameters of these three models however differences in range of the correlations 

can be seen in Figure 4.8.  
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Semivariogram of X & Models
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Figure 4.8 Fitted Semivariogram Models to Positional Errors in X axis 

 

Fitted models for semivariogram of positional errors in Y are shown in Figure 4.9. 

where semivariogram model parameters respectively in the table. The region in the 

blue box is zoomed to show slight differences in models and how models close to 

each other in this data, too.  The sill and nugget parameters are nearly the same in 
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all three models however differences in range of the correlations can also be seen in 

Figure 4.9.  

 

 

Figure 4.9 Fitted Semivariogram Models to Positional Errors in Y axis 
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4.2.4. Model Fitting Indicators  
 
During model fitting parameters and models are controlled via three different quality 

indicators commonly used in variogram fitting. Usually they are giving comparable 

results but they can differ depending on the function to be fitted. 

  

4.2.4.1. Indicative Goodness of Fit 
 

The Indicative Goodness of Fit (IGF) measure (Kanevski & Maignan, 2004) is based 

on a least squares estimator and is defined as: 
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where )( ihγ  is the value of semivariogram at the i-th lag, )(ˆ ihγ is the semivariogram 

model value for the lag ih , N is the number of directional semivariograms, )( ihN is 

the number of pairs for the lag ih ,  ( )khmax   is the maximum lag distance for the k-th 

direction, 2σ   is the variance of the data for the variogram. This goodness of fit 

measure is standardized so that values for different variograms, using different 

models can be compared. A value closer to zero indicates a better fit. 

4.2.4.2. Residuals Sum of Squares  

In statistics, the residual sum of squares (RSS) is the sum of squared errors. It is a 

measure of the discrepancy between the data and an estimation model. A small 

RSS indicates a tight fit of the model to the data (Wikipedia, 2009). 
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RSS Calculation for Semivariogram Models  
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4.2.4.3. Cressie’s Indicator  
 

Cressie’s indicator is a weighted RSS (WSS) where the weight hi given to each lag 

kh  is usually taken proportional to the number of N ( kh ) of data pairs that contribute 

to the estimated semivariogram. 

 

The implicit assumption is that the reliability of an experimental semivariogram value 

increases with statistical mass. An alternative that gives more weight to the first lags 

consists of dividing the number of data pairs by the squared model value: 2)(ˆ
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(Cressie , 1985 in Goovaerts 1997) 
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Corresponding quality indicator results to models and parameters used in 

semivariogram model fitting step  are seen in Tables 4.2 and 4.3 representing 

models for errors in X and Y respectively. Smallest values for indicators are 

represented in bold characters. But as followed from Table 4.1 models represent 

very close fitting results to each other as previously assumed with reference to 

graphs (Figure 4.8 & 4.9). It is assumed in this study that all distributions display an 

exponential spatial correlation model in terms of positional errors. But to observe 

how different models respond to uncertainty in the output, all three models are used 

for simulations for generating comparable results in evaluation.  
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Table 4.2 Model Parameters and Indicators for X Errors 

  Exponential 
Model 

Spherical 
Model 

Gaussian 
Model 

Nugget 0.53 0.53 0.53 
Sill 0.98 0.97 0.99 Model 

Parameters 
Range 162 85 72 
I.G.F 0.035506 0.037212 0.039967 
RSS 8.4217 8.7522 8.5556 Quality 

Indicators 
Cressie 3758.51219 4032.70433 3647.47663 

 

Table 4.3 Model Parameters and Indicators for Y Errors 

  Exponential 
Model 

Spherical 
Model 

Gaussian 
Model 

Nugget 0.49 0.5 0.54 
Sill 1.01 1 1 Model 

Parameters 
Range 165 110 85 
I.G.F 0.047693 0.047608 0.047319 
RSS 19.9955 20.1433 20.1491 Quality 

Indicators 
Cressie 6579.215 6675.73 6678.076 

 

4.3. Simulation of Digitized Field Boundaries 
 
Simulations of digitized agricultural parcel boundaries are performed in two phases. 

First stage is analysis of training data (221 polygons) using all semivariogram 

models’ (Exponential, Spherical and Gaussian models) parameters. In the first 

phase, it is also compared that how different models affect the resulting uncertainty 

boundaries and distributions of generated simulations around both reference and 

digitized data. 

 

Second phase focuses on test data that consists of 479 field boundaries out of 700. 

These test data are simulated with respect to best fitting (Table 4.2 & 4.3) 

exponential model’s parameters in uncertainty model, then 1000 realisations are 

performed per each polygon. Distribution of training and test data can be viewed in 

Figure 4.10.  
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Figure 4.10 Distributions of Training and Test Data  
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4.3.1. Simulation of Training Data  
 
The Data Uncertainty Engine (DUE) v3.1 (Brown and Heuvelink, 2007) is used for 

generating 250 realisations of error model with parameterisations representing each 

model described before. Number of simulations is determined as 250 with reference 

to the study of de Bruin et al. (2008), in which they generated the same number of 

simulations with DUE in order to identify errors arising from positional 

measurements carried by GPS. The field boundaries are classified as rigid objects 

containing multiple vertices whose relative positions do not change under 

uncertainty (Brown and Heuvelink, 2007). Examples of rigid objects might include 

buildings whose boundaries are theoretically rigid or fields whose boundaries are 

treated as rigid for simplicity (de Bruin et. al, 2008). The positional uncertainty of a 

rigid object can be characterised by a translation and possibly rotation of the object 

in DUE.  
 
The model parameters are entered as “expert judgement” on the model page of 

DUE 3.1. The standard deviations or spreads of normally distributed errors Xσ  and 

Yσ defined as 1.2 metres and 1.3 metres respectively (Table 4.1). Normal 

distribution curves, regarding the coordinate errors, are centred on the object 

coordinates in case of 0== YX μμ , otherwise an offset is added to model bias. 

Semivariograms are modelled before they were employed in DUE to define the 

dependence models. In the case of cross – correlation between X and Y errors, 

linear model of co - regionalization is used to ensure a valid bivariate covariance 

structure (Heuvelink, 2007). Negative cross – correlations are not currently 

supported in DUE. In this study, positional errors in X and Y coordinates display very 

small magnitude of negative cross correlation, around -0,075 (Figure 4.6). Thus, it is 

not possible to model the cross – correlations structure with respect to the defined 

uncertainty model. In the output window, number of simulations is defined as 250 

and output file type is selected as ArcGIS shapefile format for further analysis on 

simulations.  
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Simulation results regarding the rigid object model with exponential function can be 

seen in Figure 4.11.  

 

 
Figure 4.11 Simulations Derived from Uncertainty Model 

 

Initially, all shapefiles, each containing 250 simulations per polygon, are merged into 

a single shapefile containing 55250 simulations, pertaining 221 polygons. In order to 

determine the exterior simulation boundaries for each polygon, 55250 simulations 

are dissolved with respect to their parent polygon id. By means of this “union” 

operation, exterior simulation boundaries are extracted as polygons. To determine 

the interior simulation boundary for each polygon, “intersection” of 250 simulations, 



  
61 

each simulation set corresponding to one parent polygon, is computed and inner 

simulation boundary is extracted. By repeating this procedure 221 times, all inner 

simulation boundaries are extracted. Both inner and outer simulation boundaries are 

converted into polylines, merged into a new shapefile and dissolved as multipart 

polyline objects representing both inner and outer simulation boundaries, resembling 

a donut shape. Results are presented in Figure 4.12. It can be interpreted that in the 

absence of cross – correlation structure uncertainty boundaries showed an epsilon 

error band model structure. If cross – correlation could be modelled within 

uncertainty model, uncertainty bands may result in G - band structure which displays 

narrower band width towards the midpoints.   

 

 
Figure 4.12 Uncertainty Boundaries Derived from Simulations  
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In order to explore the spatial distribution of simulations from digitized vector 

dataset, digitized polygons and reference data polygons are converted into polyline 

objects and multiple buffers, each increasing by 50 cm, are applied in each 

direction; in and out. A buffer distance of 50 cm. is selected because digitized 

dataset to which simulations are referencing is digitized from the Quickbird satellite 

imagery having a nominal resolution of 60 cm/pixel. Knowing the smallest 

discriminable image unit corresponds 60 cm, multiple buffer intervals are selected 

as 50 cm for computational easiness. Once multiple buffer rings are created and 

simulation polygons are converted into polylines, a spatial query is performed for 

each ring at that buffer distance. As a result of the following query; “Number of 

simulation polyline features which are completely covered by the relevant buffer 

ring” gives the spatial distribution. To give better understanding about the spatial 

distribution of simulations, a histogram is constructed with respect to buffer 

distances (Figure 4.13). 

 

Both histograms in Figure 4.13 confirm the joint normal distribution of uncertainty 

model that generated simulations. Distribution of simulations around digitized data 

represent the farthest simulation that falls at a distance of 6 meters, however the 

frequency of simulated polygons are accumulated within 1 to 3 meters distance from 

digitized data. However, simulated polygons are distributed within 10 meters 

distance around reference data and accumulation takes place between 2 to 4 meter 

distances.   
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Figure 4.13 Numbers of Simulations (Exponential Model) Included in Buffers 

 

When percentage of distributions around digitized and reference data are 

calculated, it is observed that 84.83% of the simulations fall within 2.5 meters 

around digitized data (Table 4.4). But in this study, departure of simulations from 

true value is essential. From all the realisations derived, with 85.90% probability, 

digitized vectors contain an error of 4 meters whether they are on the left or right 

hand side of the reference data (Table 4.5). 
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Table 4.4 Percentage of Exponential Model Simulations’ Distributions around 

Digitized Data  

Buffer 
Distance (m)* 

Number of 
Simulations Percentage Cumulative 

Percentage 
0.5 2588 4.684% 4.684% 

1 10482 18.972% 23.66% 
1.5 13426 24.300% 47.96% 

2 12065 21.837% 69.79% 
2.5 8307 15.035% 84.83% 

3 4868 8.811% 93.64% 
3.5 2196 3.975% 97.61% 

4 896 1.622% 99.24% 
4.5 314 0.568% 99.80% 

5 90 0.163% 99.97% 
5.5 17 0.031% 100.00% 

6 1 0.002% 100.00% 
*Buffer Distance indicates buffer ring distance to both sides (left and 
right side of the polygon), thus 0.5 meters to both sides of the reference 
data covers an area of 1 meter around the line. 

 

 

Table 4.5 Percentage of Exponential Model Simulations’ Distributions around 

Reference Data  

Buffer 
Distance (m) 

Number of 
Simulations Percentage Cumulative 

Percentage 
0.5 3 0.005% 0.005% 

1 454 0.822% 0.827% 
1.5 3757 6.800% 7.627% 

2 8535 15.448% 23.075% 
2.5 11060 20.018% 43.093% 

3 10175 18.416% 61.510% 
3.5 7995 14.471% 75.980% 

4 5482 9.922% 85.902% 
4.5 3478 6.295% 92.197% 

5 2037 3.687% 95.884% 
5.5 1141 2.065% 97.949% 

6 557 1.008% 98.957% 
6.5 298 0.539% 99.497% 

7 137 0.248% 99.745% 
7.5 78 0.141% 99.886% 

8 34 0.062% 99.948% 
8.5 13 0.024% 99.971% 

9 13 0.024% 99.995% 
9.5 2 0.004% 99.998% 
10 1 0.002% 100.000% 
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4.3.1.1. Comparison of Uncertainty Model Results 
 
All three semivariogram models are used to simulate positional uncertainty. The 

parameterised error models are entered as expert judgement on the model window 

in DUE. All the same procedure applied to training data is executed over each 

model’s resulting realisations and distributions are calculated to provide comparable 

results. Figure 4.14 show the distribution of simulations around reference data and 

digitized data, it can be followed from the figure that gaussian and spherical models’ 

parameters results create similar distributions compared to exponential model. 

 

The range of distributions around reference data is 10 meters in all model results. 

Exponential models’ resulting range around digitized data 6 meters, but spherical 

and gaussian model the display same range of 6.5 meters.  

 

Also the percentage and cumulative percentage of distributions are calculated for 

both reference data and digitized data. (Table 4.6 and Table 4.7) The 

semivariogram models’ parameter values and goodness of fit results in modelling 

stage presented similar results, so that in the uncertainty analysis simulations 

derived from these parameters shows slight differences. According to the different 

model results, from this point forward only the best fitting model parameters will be 

used to generate simulations from error model.  
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Figure 4.14 Exponential – Spherical and Gaussian Models’ Simulation Distributions 
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4.3.2. Simulation of Test Data  
 
Test data, containing 479 polygons out of 700, are evaluated in uncertainty analysis. 

Data Uncertainty Engine (DUE) is used for generating 1000 realisations of the error 

model with parameterisations.  

 

Model parameters are inserted as “expert judgement” on the model page of DUE 

3.1. Standard deviations or spreads of normally distributed errors, Xσ  and Yσ , are 

defined as 1.2 metres and 1.3 metres respectively from training data results (Table 

4.1). In case of 0== YX μμ , if coordinate errors exhibit normal distribution, they are 

centred on the coordinates of objects; otherwise an offset is added to model bias. To 

define spatial dependence model, semivariograms are modelled before they were 

employed in DUE. Exponential semivariogram model parameters that are drawn out 

from training data are used for describing uncertainty model. These model 

parameters vary in range of 162 meters for X error autocorrelations and 165 meters 

for Y autocorrelations. In DUE’s simulations output window number of simulations is 

defined as 1000 per each polygon and output file type is selected as ArcGIS 

shapefile format as before.  

 

Resulting 479,000 simulations are evaluated with respect to the same procedure 

explained in section 4.3.1 and distribution of simulations around reference data is 

displayed below in Figure 4.15 and Table 4.8. Compared to training set, it is 

observed that distribution of simulations display a more dispersed range of 12.5 

meters. In training data, 4 meters distance contain 85.902 % of all simulations, but in 

test data 4 meters of distance cover up 89.87 % of all realisations.  
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Figure 4.15 Distribution of Simulations around Reference Data  

 

Table 4.8.Percentage of Distribution for Test Data 

Buffer 
Distance(m) 

Number of 
Simulations Percentage Cumulative 

Percentage 
0.5 51 0.0106% 0.0106% 

1 7165 1.4958% 1.5065% 
1.5 43466 9.0743% 10.5808% 

2 83924 17.5207% 28.1015% 
2.5 100000 20.8768% 48.9783% 

3 88359 18.4466% 67.4248% 
3.5 65530 13.6806% 81.1054% 

4 42002 8.7687% 89.8741% 
4.5 24071 5.0253% 94.8994% 

5 12399 2.5885% 97.4879% 
5.5 5970 1.2463% 98.7342% 

6 2708 0.5653% 99.2996% 
6.5 1272 0.2656% 99.5651% 

7 647 0.1351% 99.7002% 
7.5 456 0.0952% 99.7954% 

8 324 0.0676% 99.8630% 
8.5 265 0.0553% 99.9184% 

9 173 0.0361% 99.9545% 
9.5 103 0.0215% 99.9760% 
10 67 0.0140% 99.9900% 

10.5 27 0.0056% 99.9956% 
11 13 0.0027% 99.9983% 

11.5 6 0.0013% 99.9996% 
12 1 0.0002% 99.9998% 

12.5 1 0.0002% 100.0000% 
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4.4. Positional Uncertainty Analysis of Sample Areas  
 
Two sample areas are selected for further analysis in order to cover up the whole 

functionality of DUE. Effects of cross correlation structure on model results are 

analyzed in the first sample region for 95 polygons. Second example, comprising 

from 30 parcel boundaries, is carried with two scenarios, first is rigid object model 

and second is deformable object model with cross correlation. 

 

In the previous analysis, involving 221 training and 479 test parcel boundaries, four 

main corner vertices of 221 vector polygons are used as samples to provide 

positional errors and autocorrelation structure. On these sample regions a different 

method is applied for sampling. Initially 5 % of population (total number of parcel 

boundaries in each region) is sampled. Spatial random sampling is performed via 

ArcGIS Desktop v9.3 Geostatistical Analyst to provide sample polygons. Afterwards, 

these parcel boundaries are traced with snapping on reference data and digitized 

data with different intervals. Finally, vertices of the line segments are converted to 

point features and used for point based displacement calculation.                                                      

 
4.4.1. Analysis of Cross – Correlated Areas  
 

First the sample region contains a number of 95 agricultural land parcel boundaries 

are selected from the previous 700 polygonal vector dataset. Selected region and 

region’s location in the whole dataset can be viewed in Figure 4.16.  

 

5% of these 95 polygons are sampled to generate vertices for evaluation of error 

modelling and uncertainty model parameter estimation. Sample parcel boundaries 

are traced with snapping option in order to preserve exact positions of reference and 

digitized data. Tracing operation is carried with 5 meters of intervals starting from 

the lower left corner of polygons. This is carried out for all polygons both in 

reference and digitized dataset.   
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Figure 4.16 Sample Region of 95 Parcel Boundaries  

 

For all sampled polygons, vertices for each 5 meters line segment are converted to 

point features. A unique ID is given to all points in both data for matching these 

points in further analysis. Preliminary assessment of positional errors is carried out 

with the discrepancy of points in reference and digitized data. Selected polygons 

and sample vertices can be seen on Figure 4.17.  
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Figure 4.17 Sampled Polygons and Vertices for 95 Polygon Sample Region 

 

Total number of 387 points from 5 polygons is included in calculation. Absolute 

values are calculated for displacements because minus or plus signs only indicates 

the direction of errors in positions. Main focus on this study is the absolute distance 

variation.  

 

Statistical measures for positional errors on X and Y axis are given in Table 4.9.  
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Table 4.9 Descriptive statistics of Displacements in Coordinates for 95 Polygon 

Sample Region 

 Errors in X Axis Errors in Y Axis 
Standard Deviation 0.85 0.94 

Mean 0.98 0.97 
Maximum Value 4.8 7.2 

 

Calculated absolute valued positional errors in X and Y coordinates are converted to 

“.dat” file format in order to compute standardised semivariograms and cross 

semivariogram. Geostatistical software package GSlib is used to construct 

standardised semivariograms.  

 

Since sample points are located within 5 meters interval, optimum lag distance 

parameter for all semivariograms is selected as 5 meters while constructing 

semivariograms. Optimum number of lags representing the autocorrelation structure 

is found as 24 for errors on X and Y axis. However, number of lags for cross – 

correlation structure is 20.  All three semivariograms are displayed in Figure 4.18.  

 

For semivariogram modelling, different model alternatives (e.g. Gaussian, 

exponential, spherical) are evaluated and finally spherical model is selected as the 

best fitting model for the following semivariograms given in Figure 4.18. Fitted 

semivariogram models are controlled by the most powerful quality indicator – 

indicative goodness of fit (IGF). These semivariogram model parameters are further 

employed to construct uncertainty model within DUE.   
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Figure 4.18 Semivariograms for Positional Errors and Best Fitting Models 
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IGF results and parameters regarding all semivariograms are shown in Table 4.10.  

 

Table 4.10 Model Parameters and IGF Results for 95 Polygon Sample Region 

X Model Y Model XY Cross Model Model 
Parameters Spherical Spherical Spherical 

Nugget 0 0 0.7 
Sill 1 0.98 0.3 

Range 46.8 58 50 
I.G.F 0.007337 0.013826 0.01205 

 
250 realisations for each polygon are created with the error model parameters 

described in Table 4.10 using DUE. Parcel boundaries are defined via rigid object 

model with type of movement as translation.   

 

Parameters are entered as “expert judgement” on the modelling tab of DUE 3.1. 

Standard deviations or spreads of normally distributed errors, Xσ  and Yσ , are both 

defined as 1 metre (Table 4.9). Normal distribution curves, regarding the coordinate 

errors, are centred on the object coordinates in case of 0== YX μμ , otherwise an 

offset is added to model bias. Semivariograms are modelled before they were 

employed in DUE to define the dependence models. Auto-correlation and cross-

correlation structures are defined by using semivariogram parameters in the second 

modelling window of DUE 3.1. Range parameters for X and Y are entered as 47 and 

58 meters respectively. For auto correlation structure, sill is considered to be 

constant on DUE and taken as 1. With reference to this sill value, all 

semivariograms are standardised to achieve 1 meter of sill. For this test case, since 

cross – correlation displays a positive structure, it can be modelled within DUE. 

Parameters of range and sill are employed as 50 meters and 0.3 respectively. 

 

Simulations are generated within DUE in ESRI shapefile file format as polygon 

feature. Similar procedures explained before are repeated to obtain the uncertainty 

boundaries around data. Totally, 23750 realisations are evaluated to achieve the 

distribution structure around reference data.  
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The uncertain boundaries are displayed in Figure 4.19.  

 
Figure 4.19 Resulting Uncertainty Boundaries for 95 Polygons.  

 

Distribution of simulations around reference polygons are given in Figure 4.19 and 

percentage of this spatial dispersion is displayed in Table 4.11.  
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Figure 4.20 Distribution Graphic of Simulations. 

 

Table 4.11 Percentage and Cumulative Percentage of Distributions 

Buffer 
Distance (m) 

Number of 
Simulations Percentage Cumulative 

Percentage 
0.5 0 0.000% 0.000% 

1 356 1.499% 1.499% 
1.5 2631 11.078% 12.577% 

2 5073 21.360% 33.937% 
2.5 5435 22.884% 56.821% 

3 4260 17.937% 74.758% 
3.5 2727 11.482% 86.240% 

4 1510 6.358% 92.598% 
4.5 795 3.347% 95.945% 

5 432 1.819% 97.764% 
5.5 217 0.914% 98.678% 

6 111 0.467% 99.145% 
6.5 72 0.303% 99.448% 

7 56 0.236% 99.684% 
7.5 39 0.164% 99.848% 

8 18 0.076% 99.924% 
8.5 9 0.038% 99.962% 

9 7 0.029% 99.992% 
9.5 1 0.004% 99.996% 
10 1 0.004% 100.000% 
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When compared with the previous model, which ignores cross – correlation, nearly 

85 % of simulations dispersed within 4 metres. However if cross – correlation 

structure is considered in the model, about 86% of simulations can be covered 

within a range of 3.5 metres.  

 
4.4.2. Analysis with Different Object Models  
 
For the second case area, a number of 30 agricultural land parcels are sub-sampled 

from the vector dataset containing 700 parcels. Selected region and the location of 

this sub-region within the whole dataset can be viewed in Figure 4.21.  

 

In this example, two scenarios for manual digitization of vector data are considered; 

“rigid object model” scenario and “deformable object model” scenario. A spatial 

object is considered as deformable if its vertices can move separately (Brown and 

Heuvelink , 2007). 

 

In order to generate vertices for the evaluation of error modelling and uncertainty 

model parameter estimation, 5% of these 30 polygons are sub-sampled. Sample 

parcel boundaries are traced with snapping option in order to preserve the exact 

positions of reference and digitized data. Tracing operation is carried with 2 meters 

intervals, starting from the lower left corner of the polygon in clockwise direction and 

the same procedure repeated for two polygons in the reference and digitized data.   

 
Vertices of line segments, each having 2 meters length, are converted to point 

features. A unique ID is given to all points in both data for matching these points in 

further analysis. Initial assessment of positional errors is carried out with the 

discrepancy of points in reference and digitized data. 
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Figure 4.21 Sample Region of 30 Parcel Boundaries  

 

Total number of 409 points derived from 2 polygons is included in calculation. 

Absolute values are calculated for displacements since either minus or plus sign 

only indicates the direction of positional error.  

 

Selected polygons and sample vertices can be seen on Figure 4.22.  
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Figure 4.22 Sampled Polygons and Vertices for 95 Polygon Sample Region 

 

Statistical measures regarding positional errors on X and Y axis are given in the 

following Table 4.12. 

 

Table 4.12 Descriptive statistics of Displacements in Coordinates for 30Polygon 

Sample Region 

 Errors in X Axis Errors in Y Axis 
Standard Deviation 0.78 0.83 

Mean 0.86 0.84 
Maximum Value 3.2 2.9 
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Values that are computed for positional errors in X and Y coordinates are converted 

to “.dat” file format to calculate standardised semivariograms and cross 

semivariogram. Like in the previous analysis GSlib software tool is utilized to 

construct standardised semivariograms.  

 

As in the previous sample region of 95 polygons, optimum lag distance is selected 

according to interval between sample points. As stated, 2 meters is applied as lag 

distance while forming semivariograms and optimum number of lags for 

autocorrelation is employed as 60 for X and Y axis and for the cross – correlation 

structure semivariograms. All three semivariograms are displayed on Figure 4.18. 

 

In model fitting, three different alternatives are assessed, then Spherical and 

Gaussian semivariogram models following models are selected as the best fitting 

model for X and Y coordinate errors (Figure 4.23). Spherical model is observed as 

the best fitting model for cross - semivariogram of positional errors. Indicative 

Goodness of Fit is used as quality indicator for assessing fitting performance of 

semivariogram models (Table 4.13). Parameters that are obtained from modelling 

process are entered as uncertainty model parameters within DUE to generate 

simulations. 

 

Table 4.13 Model Parameters and IGF Results for 95 Polygon Sample Region 

X Models Y Models XY Cross Model Model 
Parameters Gaussian Spherical Gaussian Spherical Spherical 
Nugget 0.1 0.07 0.11 0.05 0
Sill  1 1 1 1 0.3
Range  38 51 61 75 41
I.G.F 0.038575 0.018980 0.136200 0.107400 0.2074
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Figure 4.23 Semivariograms for Positional Errors and Best Fitting Models 
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4.4.2.1. Deformable Object Model with Cross Correlation 
 
Using uncertainty model parameters, which are calculated from semivariogram 

models, 250 realisations are generated for each polygon within DUE. Parcel 

boundaries are defined to be deformable; where concept of deformability is 

explained previously. 

 

Model parameters are supplied as “expert judgement” since DUE does not allow 

utilization of training data. Standard deviations or spreads of normally distributed 

errors, Xσ  and Yσ , are both considered as 1 metre (Table 4.12). Normal distribution 

curves, regarding the coordinate errors, are centred on the object coordinates in 

case of 0== YX μμ . Auto-correlation and cross-correlation structures are defined 

by using semivariogram parameters in the modelling window of DUE 3.1. Range 

parameters for X and Y are entered as 51 and 75 meters respectively. For auto 

correlation structure, sill is considered as constant on DUE and thus taken as 1 

meter. Based on this restriction, semivariograms are standardised so that 1 meter of 

sill can be utilized. For this case, since cross – correlation displays a positive 

structure, it can be modelled within DUE. Parameters of range and sill are employed 

as 41 meters and 0.3 respectively. 

 

Regarding the uncertainty model described above, simulation results performed in 

DUE can be seen in Figure 4.24.  
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Figure 4.24 Simulations Derived from Uncertainty Model by Deformable Object 

 

Totally, 7500 realisations are evaluated in order to figure the spatial distribution 

around reference data. These uncertain boundaries are displayed in Figure 4.25.  
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Figure 4.25 Uncertainty Boundaries Derived from Simulations 

 

Number of simulations that resides in multiple buffer zones, each separated with 0.5 

meters, is counted by performing a simple spatial query in ArcGIS Desktop v9.3. 

Spatial dispersion characteristics of these simulations, a histogram and a table, are 

given in Figure 4.26 and Table 4.14.  
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Figure 4.26 Deformable Object Model’s Distribution Graphic of Simulations  

 

Table 4.14 Deformable Object Model’s Percentage and Cumulative Percentage of 

Distributions 

Buffer 
Distance (m) 

Number of 
Simulations Percentage Cumulative 

Percentage 
0.5 0 0.00% 0.00% 

1 22 0.29% 0.29% 
1.5 370 4.93% 5.23% 

2 1296 17.28% 22.51% 
2.5 1821 24.28% 46.79% 

3 1773 23.64% 70.43% 
3.5 1199 15.99% 86.41% 

4 617 8.23% 94.64% 
4.5 264 3.52% 98.16% 

5 96 1.28% 99.44% 
5.5 33 0.44% 99.88% 

6 6 0.08% 99.96% 
6.5 3 0.04% 100.00% 
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4.4.2.2. Rigid Object Model with Cross Correlation 
 

Similar procedures and model parameters utilized while exploring the spatial 

distribution for deformable object model are also carried for the rigid object model 

case. Rigid object model with translation is selected when defining uncertainty 

model. Distribution of simulations around reference data is given in Figure 4.27 and 

Table 4.15. 
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Figure 4.27 Rigid Object Model’s Distribution Graphic of Simulations 

 
Table 4.15 Rigid Object Model’s Percentage and Cumulative Percentage of 

Distributions 

Buffer 
Distance (m)

Number of 
Simulations Percentage Cumulative 

Percentage 
0.5 0 0.00% 0.00% 

1 206 2.75% 2.75% 
1.5 1065 14.20% 16.95% 

2 1521 20.28% 37.23% 
2.5 1562 20.83% 58.05% 

3 1265 16.87% 74.92% 
3.5 875 11.67% 86.59% 

4 544 7.25% 93.84% 
4.5 282 3.76% 97.60% 

5 123 1.64% 99.24% 
5.5 36 0.48% 99.72% 

6 16 0.21% 99.93% 
6.5 5 0.07% 100.00% 



  
88 

4.4.2.3. Comparison of Different Object Model Results 
 

In order to compare the results of deformable and rigid object model scenarios, 

uncertainty boundaries of simulations obtained from each model are overlaid in 

Figure 4.28. Besides, distribution of simulations around reference dataset are tried 

to be compared, however since location of vertices are scattered, this leads 

implication. Similar to G-Band Model, for deformable objects, it is assumed that 

uncertainty band width gets narrower towards the midpoints, by other means in un-

sampled locations.  

 

Main objective here is achieving the smallest uncertainty bandwidth containing 

reference data. Thus, uncertainty boundaries representing error models should 

exhibit the possible optimum bandwidth. As wider bandwidths create loose regions, 

false inclusion and exclusion regions; narrower bandwidths probably end up with 

exclusion of reference data, so that uncertainty band fails to represent uncertainties 

in manual digitizing.  

 

In this study, deformable object model gives the best possible uncertainty 

boundaries for parcel boundaries. As can be followed from Figure 4.28, rigid object 

model generates wider bands but also includes superfluous regions.  
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Figure 4.28 Overlaid Uncertainty Boundaries of Rigid and Deformable Object Model 
 
4.5. Area Uncertainty Analysis  
 
Since areas of agricultural parcels are sensitive to the changes in polygon positions, 

effect of positional uncertainty on area attribute is also investigated in this study. 
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Inner and outer simulation boundaries are converted into polylines, merged into new 

shapefile and dissolved as multipart polyline objects representing inner and outer 

simulation boundaries which resemble a donut like shape (Figure 4.29). This donut 

like shapes is overlaid with the reference data and possible inclusion, exclusion 

areas are calculated for each of 30 polygons (Table 4.16). 

 

 
Figure 4.29 Inclusion and Exclusion Regions for Parcel Boundaries  

 

Accuracy of area is influenced by vague locations of point positions. Resulting areas 

calculated with respect to these inaccurate input values generate unreliable results. 

However, these results create awareness about the accuracy of data by supplying 

preliminary information about the true nature of the data.  
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With reference to Table 4.16, it can be figured out that deformable object model 

creates more accurate and reliable results compared to the rigid object model. It 

should be noticed that mean values of rigid method, both for excluded and included 

regions, are higher than the mean values observed for deformable one. 

 

Table 4.16 Inclusion and Exclusion Areas for Deformable and Rigid Object Models  

 Deformable Object Model Rigid Object Model 

ID Area 
Exclusion 

Area 
Inclusion 

Area 
Exclusion 

Area 
Inclusion 

1 776.13 1205.25 1053.45 2493.88 
2 1114.05 811.02 1317.23 2284.05 
3 1061.48 955.80 1256.42 2433.24 
4 1280.05 954.44 1274.28 2263.12 
5 937.93 993.73 1073.90 2293.52 
6 1305.03 669.91 2005.57 3314.13 
7 1121.93 1251.78 1354.11 2715.53 
8 823.13 672.04 1023.96 1839.04 
9 667.04 672.57 788.07 1593.64 

10 736.25 537.28 1057.90 1795.75 
11 1020.54 837.80 1308.52 2465.44 
12 670.14 1077.09 971.51 2318.05 
13 1167.92 511.53 1260.54 1928.18 
14 872.14 680.85 1193.71 2150.67 
15 844.90 964.35 1159.57 2280.50 
16 686.60 890.96 846.93 2019.91 
17 988.01 1252.21 1117.19 2604.36 
18 538.47 929.72 679.92 1728.15 
19 1491.69 975.17 1817.64 3033.95 
20 1224.32 1777.55 1633.03 3810.13 
21 1304.21 1592.90 1522.46 3355.23 
22 1910.96 883.99 2173.50 3380.62 
23 2021.77 1131.85 2334.34 3905.54 
24 1605.35 1795.78 1861.34 3685.96 
25 979.90 1086.94 1350.17 2842.16 
26 1468.78 1848.64 1716.06 4053.26 
27 1236.54 1229.21 1621.60 3222.04 
28 1022.14 770.57 1237.37 2221.20 
29 1098.41 1140.65 1408.55 2993.29 
30 1039.11 938.22 1248.23 2278.88 

Mean 1100.50 1034.66 1355.57 2643.45 
Std. Deviation 350.75 351.30 396.42 686.73 
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4.6. Discussion of Results  
 
In this chapter a general framework of error analysis for vector polygonal fields are 

introduced using Data Uncertainty Engine. Previous studies mainly concentrated on 

points, lines or line segments, because of computational difficulty in defining 

positional uncertainty of polygon data model.  

 

Generating simulations with Monte Carlo Simulation (MCS) method of possible 

feature locations from a defined probability distribution function (pdf) is the main 

principle running behind DUE.  

 

When analyzing positional uncertainty, geostatistical estimation of spatial correlation 

structure which is developed by Zhang and Kirby (2000) is employed. According to 

Tobler’s first law of geography “Everything is related to everything else, but near 

things are more related than distant things”, spatial dependence in geographical 

objects requires more than just statistical evaluation. Semivariogram analysis – 

which is a major part of geostatistics - accounts for distances between spatial 

objects when representing correlation structures. Because of reasons that are 

explained, use of geostatistics in uncertainty analysis improved error modeling in 

GIS. 

 

Three different case studies using the same area are conducted in the study. First 

case concentrates on modeling positional uncertainty within large dataset. 221 and 

479 training and test parcels, respectively are managed using corner points of 

polygons. In large dataset, it is computationally hard to model cross correlation 

structure when compared to relatively small ones. It is observed that in the absence 

of cross – correlation structure uncertainty boundaries showed an epsilon error band 

model structure, which gives a buffer region around data with a distance of ε .  

 

Departure of 55250 simulations from true value is examined. From all the 

realisations derived, with 85.90% probability, digitized vectors contain an error of 4 

meters in training data. In test data number of simulations per each polygon is 
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selected as 1000, so that resulting 479,000 simulations are evaluated. Compared to 

training set, it is observed that distribution of simulations display a more dispersed 

range of 12.5 meters. In training data, 4 meters distance contain 85.902% of all 

simulations, but in test data 4 meters of distance cover up 89.87% of all realisations.  

 

Also efficiency of different semivariogram models (namely exponential, gaussian 

and spherical) is compared on this dataset. Semivariogram models’ parameter 

values and goodness of fit results presented similar results, so that in the 

uncertainty analysis simulations derived from these parameters shows slight 

differences.  

 

In second and third case studies a different sampling method is employed, instead 

of corner points, 5% of population selected as training data and divided into line 

segments. End points of these line segments are used to calculate positional errors.  

Small magnitude positional errors are provided with this method because line 

segments produce consequent sample points (2 meters and 5 meters) within the 

same polygons which can not divert far away from each other. 

 

In second example cross correlation structure in positional uncertainty modelling is 

evaluated on 95 polygons. When compared with the previous model, which ignores 

cross – correlation, nearly 85 % of simulations dispersed within 4 metres. However if 

cross – correlation structure is considered in the model, about 86% of simulations 

can be covered within a range of 3.5 metres. Modelling cross correlation improves 

resulting uncertainty bands.  

 

Last case area focuses on deformable and rigid object model results. First two 

examples use rigid object model due to model constraints. In this case a region of 

30 polygons are modelled both rigid and deformable model with the same error 

model, and results are compared.  

 

Distribution of simulations are scattered around vertices in deformable object model, 

this is because of separately calculated pdf for each vertices in the object model 
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however rigid object model assumes one pdf for all errors. Similar to G-Band Model, 

for deformable objects, it is assumed that uncertainty band width gets narrower 

towards the midpoints, by other means in un-sampled locations.  

 

In this study it is aimed to attain the smallest uncertainty bandwidth containing true 

position of data. Wide bandwidths create loose regions and narrow bandwidths 

probably end up with exclusion of reference data, so that uncertainty band fails to 

represent uncertainties in manual digitizing. Deformable object model gives the best 

possible uncertainty boundaries for parcel boundaries.  

 

Weighted averages of realisations’ departure from true locations for 3 case studies 

are computed. Number of simulations lying in each buffer distance is multiplied with 

buffers’ distance to reference polygons. Afterwards, summation of these 

multiplications is divided to total number of simulations in each case. A summary of 

all cases with results are given in Table 4.17. Weighted average positional error for 

this study is between 2.66 to 2.91 meters for all cases.  

 

To assess inclusion and exclusion areas of uncertainty bands, area analysis is 

performed comparable with rigid and deformable model results. Rigid object model’s 

falsely included and excluded regions are higher than deformable model. This also 

proves efficiency of deformable model for representing uncertain polygonal vector 

data.  

 

Another issue observed in this study that when generating simulation, rigid object 

model gives a shift to polygon according to a distance and direction; however 

deformable model concentrates on errors in vertices. This implies the assumption of 

de Bruin et al. (2008) that rigid object model can be used to assess geometric 

correction, rectification of aerial photographs or satellite imagery; however 

deformable model represents human error better.  
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CHAPTER 5 
 
 

CONCLUSIONS AND RECCOMENDATIONS 
 

 
In this chapter, the conclusions of the conducted study are described together with 

the recommendations for further studies related with GIS and uncertainty analysis. 
 
5.1. Conclusions  
 

In conventional analyses, where agricultural field boundaries are obtained from field 

surveys, GPS measurements and digitizing from high resolution imagery are 

assumed to have exact spatial boundaries, however in reality there is an amount of 

uncertainty about the border lines. 

 

A general positional uncertainty analysis method is demonstrated in this study that 

can be used to verify positional accuracy of manual digitizing operations. In this 

implementation, Data Uncertainty Engine (DUE) is employed which is a free 

software that aids user in defining probability distributions for uncertain spatial 

objects and draws random samples from these distributions. 

 
On the previous studies of uncertainty analysis, mainly point and line feature spatial 

entities are handled within different applications. In this study, uncertainty analyses 

are performed for polygonal vector data that are manually digitized from satellite 

imagery. 

 

If user does not have any previous lineage information about digitized data and 

using the cadastral information of studied region, positional accuracy must be 

studied to raise the awareness about data.  But GIS applications are not eroor-free 

due to the error may occur from natural variation. Error-aware datasets allows user 

to describe more reliable outputs from GIS operations.  
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Use of geostatistical techniques as semivariograms for defining autocorrelation and 

cross - correlation structures increased the consistency of model outputs.  

 

Two different sampling methods - first is using the corner vertices from the selected 

training set (221 polygons) and second using selecting 5% of population with spatial 

random sampling and then using the 2 and 5 metered interval vertices -  are used to 

identify uncertainty model within DUE and all worked well on the data.  

 

DUE’s functionality works well within relatively small regions. In the example region 

of 30 polygons, both deformable and rigid object model are applied easily. However 

as the number of data increased application can’t create variance – covariance 

matrix to derive simulations. Also the cross – correlation structure gets 

computationally hard to define in large number of samples. In this study, the 

smallest sample of 30 polygons can be easily modelled with cross – correlation 

structure and both in deformable and rigid object model, but in 95 sampled example 

uncertainty model can only be applied to rigid object model with cross – correlation.  

 

Cross correlation structure increased the reliability and precision of uncertainty 

boundaries around reference data. Resulting uncertain bands are narrower 

compared to uncertainty models without cross – correlation structure between X and 

Y positional errors. In the model applied without cross correlation, the bandwidths 

expand at most 12.5 meters but in the examples modelled with cross correlation, 

first region maximum bandwidth is 10 meters and in the second sample area 

maximum bandwidth is 6 meters.  

 

Best results are found for deformable object model because in deformable model it 

is assumed that every vertex has its own error distribution and points are considered 

independent from each other. However in rigid object model, point movements in 

simulations are modelled with the same joint probability distribution function. 

Deformable object model gives the best possible uncertainty boundaries for the 

parcel boundaries in the study. Because in deformable object model, similar to G- 

Band model output, it is assumed that, uncertainty bandwidth gets narrower towards 
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the midpoints, by other means un-sampled locations. Rigid object model generate 

wider bands but also includes superfluous regions. 

 

It can be concluded that human digitising errors, which is the main focus of this 

study, are represented better with deformable object model, however rigid object 

model is more convenient for ortho-rectification alignment errors. 

 

5.2. Recommendations 
 

Correlations are assumed to depend on the distance between points. But in the 

study conducted by De Bruin et.al.(2008) a field boundaries are measured with 

different GPS equipments – both real time kinematic, hand held differential GPS  –

and data collected from these measurements are modelled as time series data.  

Another study can be executed using GPS measurements of four corner vertices of 

field boundaries and the discrepancy between the selected points can be modelled 

for uncertainty analysis 

 

In this study, main focus is on the human digitising errors so that the area is 

selected with respect to the agricultural field density where there is low altitude 

variation, which is also corrected by ortho-rectification. In remotely sensed images 

height of geographical objects may cause positional bias in terms of X and Y 

coordinates of feature. Therefore potential errors that may occur depending on the 

height of buildings due to perspective distortion can also be modelled within DUE. 

 

Data quality studies for multiple user systems can also be studied for private sector 

initiatives to improve metadata characteristics. Average positional errors acquired 

from different users can be included in lineage information.  

 

Also the error propagation of DEM, used in ortho-rectification, can be modelled in 

future studies. Combined uncertainty of error generated via orthorectication, DEM 

error and operator’s error of digitisation is should be studied within such a study.  
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However the data used in the study has only the areas as attributes, attributes which 

are affected by the positions of data can also be evaluated. Amount of fertilizer 

needed for harvesting, mineral deposit amount of the land or soil salinity can be 

listed among the examples of attributes that are affected by the position and area of 

the objects. 

 

Since crop heights in agricultural fields affect the visibility of the borderlines, 

uncertainty of the digitisation process that is arising with respect to the agricultural 

crop pattern can be investigated. For instance, long crops tend to create vagueness 

and the uncertainty increases parallel to the height of the crop. Satellite imagery 

utilized in this study include 4 bands, if such an NDVI study is willing to be executed 

especially near infrared and red bands should be used to classify crop pattern on 

the region. For instance wheat as a long crop type, wheat and harvested wheat 

exhibits nearly the same reflectance value either in visible or near infrared band. 

From this perspective, in addition to spectral operations (e.g. NDVI), a field survey 

study should be undertaken in order to properly analyze the effects of crop pattern 

on uncertainty studies.  
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APPENDIX A 
 

RESIDUAL REPORT OF QUICKBIRD IMAGERY  
 

Table A.1. Full residual report for image including GCPs  

 

GCP/TP 
ID Error Error 

X 
Error 

Y Type Image  
X 

Image  
Y 

Computed  
X 

Computed 
Y 

G0001 0,83 0,46 0,7 GCP 13274 9559 13274,5 9559,7
G0002 0,29 0,27 -0,11 GCP 16106 13201,5 16106,3 13201,4
G0005 0,92 -0,91 0,14 GCP 10002 9269 10001,1 9269,1
G0007 0,49 0,39 -0,3 GCP 14894 10443 14894,4 10442,7
G0008 0,7 -0,5 0,48 GCP 14649 7610 14648,5 7610,5
G0010 0,73 -0,17 0,71 GCP 9784,5 5200 9784,3 5200,7
G0011 1,02 -0,87 -0,53 GCP 6493 6770 6492,1 6769,5
G0013 1,27 -0,8 -0,99 GCP 3255 6714 3254,2 6713
G0014 0,4 0,31 -0,26 GCP 6502,5 1302 6502,8 1301,7
G0015 1,34 -1,14 0,7 GCP 4749 646 4747,9 646,7
G0018 0,9 0,53 0,73 GCP 11791 13109 11791,5 13109,7
G0024 0,76 0,73 -0,23 GCP 14069 10929 14069,7 10928,8
G0025 0,81 0,62 0,52 GCP 12693 10731 12693,6 10731,5
G0034 1,42 1,42 0,07 GCP 9052 6843 9053,4 6843,1
G0036 0,85 -0,79 -0,31 GCP 17503 13057 17502,2 13056,7
G0037 0,31 -0,24 -0,19 GCP 18078 15293 18077,8 15292,8
G0039 0,52 -0,1 -0,51 GCP 15783 14011 15782,9 14010,5
G0040 0,36 0,15 0,33 GCP 12733 12858 12733,2 12858,3
G0042 1,2 -1,17 -0,24 GCP 5342 5930 5340,8 5929,8
G0045 1,49 -0,61 -1,36 GCP 8908 12417 8907,4 12415,6
G0047 1,33 1,02 0,86 GCP 6962,5 4167 6963,5 4167,9
G0052 1,24 0,37 1,18 GCP 8323 9102,5 8323,4 9103,7
G0053 1,38 -1,37 -0,1 GCP 15141 6314,5 15139,6 6314,4
G0054 0,86 0,82 0,27 GCP 18010 5280 18010,8 5280,3
G0058 0,91 0,61 0,67 GCP 16491 6399 16491,6 6399,7
G0060 0,44 0,43 -0,06 GCP 15708 8343 15708,4 8342,9
G0062 0,9 0,22 -0,87 GCP 17791 5978 17791,2 5977,1
G0063 0,57 0,48 0,32 GCP 13805 6452 13805,5 6452,3
G0064 1,17 -0,58 1,02 GCP 13388 6947,5 13387,4 6948,5
G0067 1,19 -1,19 0,1 GCP 12999,5 7838,5 12998,3 7838,6
G0068 1,12 -0,54 -0,99 GCP 15812 4993 15811,5 4992
G0069 0,53 0,35 -0,39 GCP 14719 9359 14719,4 9358,6
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G0070 0,62 -0,16 -0,6 GCP 14385 5548 14384,8 5547,4
G0071 0,64 -0,15 -0,62 GCP 14608 7108 14607,9 7107,4
G0072 1,19 0,28 1,16 GCP 5760 2713,5 5760,3 2714,7
G0074 1,18 0,11 1,17 GCP 3124,5 3750 3124,6 3751,2
G0075 1,21 0,72 -0,97 GCP 3364 5734 3364,7 5733
G0076 1,06 0,16 -1,05 GCP 3812 4838 3812,2 4837
G0079 1,41 0,64 -1,26 GCP 4345 1157 4345,6 1155,7
G0080 0,47 0,31 -0,35 GCP 16694 13144 16694,3 13143,6
G0081 0,65 0,63 -0,15 GCP 15673 13009 15673,6 13008,8
G0082 1,2 -0,95 0,73 GCP 13483 13109 13482,1 13109,7
G0083 0,94 -0,21 0,91 GCP 12315 12719,5 12314,8 12720,4
G0084 0,7 -0,55 -0,43 GCP 13319,5 9891,5 13318,9 9891,1
G0087 1,29 1,2 0,48 GCP 14026 11160,5 14027,2 11161
G0088 0,73 -0,71 0,17 GCP 13584,5 11512 13583,8 11512,2
G0090 1,29 1,27 -0,23 GCP 8412,5 11012,5 8413,8 11012,3
G0091 1,35 -1,27 -0,46 GCP 12644 9636 12642,7 9635,5
G0092 0,92 0,82 0,43 GCP 10959 6115 10959,8 6115,4
G0095 0,61 -0,53 -0,3 GCP 16268 5553 16267,5 5552,7

 
Residual Summary for image 

         GCPs:  50      XY RMS =   0,98    X RMS =   0.72    Y RMS =   0.67 
    

* Residual units as image pixels 
 
 

 

 


