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ABSTRACT

POSITIONAL UNCERTAINTY ANALYSIS USING DATA UNCERTAINY ENGINE
A CASE STUDY ON AGRICULTURAL LAND PARCELS

Urganci, ilksen

M.S., Department of Geodetic and Geographic Information Technologies

Supervisor: Assoc. Prof. Dr. S. Zuhal Akyurek

December 2009, 106 pages

Most of spatial data extraction and updating procedures require digitization of
geographical entities from satellite imagery. During digitization, errors are introduced
by factors like instrument deficiencies or user errors. In this study positional
uncertainty of geographical objects, digitized from high resolution Quickbird satellite
imagery, is assessed using Data Uncertainty Engine (DUE). It is a software tool for
assessing uncertainties in environmental data; and generating realisations of
uncertain data for use in uncertainty propagation analyses. A case study area in
Kocaeli, Turkey that mostly includes agricultural land parcels is selected in order to
evaluate positional uncertainty and obtain uncertainty boundaries for manually
digitized fields. Geostatistical evaluation of discrepancy between reference data and
digitized polygons are undertaken to analyse auto and cross correlation structures of
errors. This process is utilized in order to estimate error model parameters which are
employed in defining an uncertainty model within DUE. Error model parameters
obtained from training data, are used to generate simulations for test data.
Realisations of data derived via Monte Carlo Simulation using DUE, are evaluated to
generate uncertainty boundaries for each object guiding user for further analyses
with pre-defined information related to the accuracy of spatial entities. It is also
aimed to assess area uncertainties affected by the position of spatial entities. For all

different correlation structures and object models, weighted average positional error
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for this study is between 2.66 to 2.91 meters. At the end of uncertainty analysis,

deformable object model produced the smallest uncertainty bandwidth by modelling
cross correlation.

Keywords: Positional Uncertainty, Data Uncertainty Engine, Vector Data, GIS



0z

VERI BELIRSIZLIK MOTORU KULLANILARAK KONUMSAL BELIRSIZLIK ANALIZI
TARIMSAL ARAZi PARSELLERi ORNEGI

Urganci, ilksen

Yiksek Lisans, Jeodezi ve Cografi Bilgi Teknolojileri E.A.B.D.
Tez Yoneticisi: Dog. Dr. S. Zuhal Akylrek

Aralik 2009, 106 sayfa

Mekansal veri ¢cikarimi ve guincelleme islemlerinin cogunlugu cografi varliklarin uydu
géruntisinden sayislastinimasini  gerektirmektedir. Sayisallastirma sirasinda
ekipman kisittamalari ya da insan yanilgilari gibi degiskenlerden kaynaklanan
hatalar ortaya cikmaktadir. Bu calismada ylksek ¢6zUnUrliklG Quickbird uydu
goruntisunden sayisallagtirilan cografi nesnelerin  konumsal belirsizligi Veri
Belirsizlik Motoru (DUE) kullanilarak degerlendiriimektedir. DUE, mekansal
verilerdeki belirsizligin degerlendirilmesi ve yayillimi analizlerinde kullaniimak Gzere
belirsiz  verilerden simulasyonlar Uretmeyi sagdlayan bir yazilimdir. Elle
sayisallastirilan arazi sinirlarinin konumsal belirsizligini degerlendirmek ve belirsizlik
sinirlarini elde etmek igin, Kocaeli’'nde ¢ogunlukla tarimsal arazi parsellerini igeren
bir gcalisma alani secilmistir. Referans veri ve sayisallastirilan poligonlar arasindaki
farkin cografi-istatistiki degerlendirmesi, konumsal hatalarin oto ve c¢apraz
korelasyon vyapilari incelenerek gercgeklestiriimistir. Bu analiz streci, DUE iginde
tanimlanan belirsizlik modelinin  olusturuimasinda kullanilan hata modeli
parametrelerini hesaplanmasini saglamistir. Egitme verilerinden elde edilen hata
modeli parametreleri test verileri igin simulasyonlarin olusturulmasinda kullaniimistir.
DUE kullanilarak, Monte Carlo Similasyonu metoduyla turetilen similasyonlar her
bir obje icin belirsizlik sinirlarinin olusturulmasinda kullaniimistir. Olusturulan

belirsizlik sinirlari ileriki analizler igin, mekansal verilerin dogruluguyla ilgili
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kullaniciya yol gdsterici oncul bilgi saglamaktadir. Bunlara ek olarak, mekansal
verilerin pozisyonlarinin alansal belirsizlik Gzerindeki etkilerinin degerlendiriimesi de
amaclanmistir. Bu calismada, butin farkli korelasyon ve obje modelleri igin,
hesaplanan agirlik ortalama konumsal hata 2.66 ile 2.91 metre arasindadir.
Belirsizlik sinir analizleri sonucunda, bigim degistirebilen obje modeli g¢apraz

korelasyonu modelleyerek en kigik belirsiz bant genisligini Gretmistir.

Anahtar Kelimeler: Konumsal Belirsizlik, Veri Belirsizlik Motoru, Vektor Veri, CBS
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CHAPTER 1

INTRODUCTION

Geographical Information Systems (GIS) frame a brief abstraction of the real world
entities in the form of vector and raster data models associated with attributes.
These data models are used to describe objects in GIS; however, these descriptions
may involve certain amount of uncertainties caused during extracting environmental
variables as objects on computer based systems. These uncertainties can be
introduced from the first step of cognition of the real world, to process, analysis and

even to decision making (Cheng, 2003).

GISs are commonly utilized as a means of storing and displaying spatial objects and
their associated attributes. Hence, a GIS database is a digital representation of the
spatial organization of objects and phenomena in the real world. The
representations inevitably contain errors arising from the difference between the true
value and observed value of a geographical object. So it can easily be said as
Heuvelink (1998) stated the problem of spatial data quality is obvious because no
map stored in GIS is completely error — free. True state of inputs is not always
available to quantify errors in data which can be defined departure from reality. In
such cases uncertainty is used as an expression of confidence about our knowledge
in data (Heuvelink and Brown, 2007).

When maps that are stored in a GIS database are used as inputs to a GIS
operation, the errors in the input will propagate to the output of the operation.
According to Cheng (2003), the accuracy of geographical feature and its attribute in
GIS may be influenced by vague properties of the spatial objects or uncertainties
introduced during the process of data capture. This is because the resulting output
is a function of input values, and inaccurate input values automatically affect the

computed result (Heuvelink et. al., 1989). Therefore the output may not be



sufficiently reliable for correct conclusions to be drawn from it. Moreover, the error
propagation continues when output from one operation is used as input to an
ensuing operation. Consequently, when no record is kept of the accuracy of the
intermediate results, it becomes extremely difficult to evaluate the true accuracy of
the final result (Heuvelink, 1998).

GIS is described by the massive amount of data, sources, and methodologies
employed in data production and manipulation. Data in a GIS are often stored in the
form of data layers. The data stored in a GIS have been collected in the field, have
been classified, interpreted, estimated intuitively and so contain a certain amount of
error. Errors also derive from measurement error, from spatial and temporal

variation and from mistakes in data entry (Heuvelink, 1998).

Spatial data layers may originate from a variety of sources: digitized maps, points
acquired through global positioning devices, and surveyed attributes entered into a
software package. Layers may also consist of objects extracted from remotely-

sensed imagery.

Within a GIS environment, the proper use of information requires the identification of
the uncertainty estimates associated with it. Currently, a major dilemma in
evaluating the positional accuracy of a GIS dataset lies in determining the
uncertainty of different objects. Positional uncertainty assessments examine error by
attempting to predict its propagation from points to lines and to objects within a GIS.
The most fundamental geometric elements are points and lines, and an analysis of

positional accuracy would logically begin with these simple objects.

Error models for points and the line segments that connect them have been
developed, such as the epsilon-band, confidence region, and G-Band models (Shi
and Liu 2000). These models are based on an assumed statistical distribution of the
error associated with each point, typically a Gaussian (Normal) distribution. Shi and

Liu (2000) present a stochastic model of the positional errors in line segments which



assumes that the errors of the endpoints follow two-dimensional (x,y) normal

distributions.

The Data Uncertainty Engine (DUE) which is developed by Brown and Heuvelink
(2007) allows uncertainties in model inputs to be described and their impacts
propagated through for model predictions. It is a prototype software tool for
assessing uncertainties in environmental data, for storing them within a database,
and for generating realizations of data to include in an uncertainty propagation

analysis (Heuvelink et al., 2007).

Using DUE, the spatial and temporal patterns of uncertainty (autocorrelation), as
well as cross-correlations between related inputs, can be incorporated in an
uncertainty analysis. Such correlations may greatly influence the outcomes of an
uncertainty analysis because models typically respond differently to correlated
variability than random errors. DUE also supports the quantification of positional
uncertainties in geographic objects, represented as raster maps, time-series or

vector outlines (Brown & Heuvelink, 2007).

Objects supported by DUE include spatial vectors, space-time vectors, spatial
raster, time-series of raster, simple time-series and objects that are ‘constant’ in
space and time. Attributes supported by DUE include continuous numerical

variables, discrete numerical variables and categorical variables.

1.1. Objectives of the Study

Such computer based environments are only the abstraction of real world
applications for further research activities used in decision making processes. So
that the awareness about the accuracy of used data and executed operations during

these processes have crucial effect on outputs.



Here it is tried to increase awareness of using data with positional uncertainty and
establish an error- aware decision making processes throughout the use of Data

Uncertainty Engine which is developed by Brown & Heuvelink (2007).

Essentially, this study proposes a method to improve the reliability of GIS outputs at
real world applications by performing uncertainty analysis in order to identify error

aware results in decision making processes

In this thesis, uncertainty boundary estimation with an emphasis on vector polygons
which are manually digitized from orthorectified satellite imagery is addressed. By
modelling the boundary of the uncertainties of agricultural land parcels, how this
information can be used together for spatial analysis containing such datasets is

investigated.

Main focus of this study is handling the positional uncertainty in spatial data features

within GIS environments, with the help of DUE. The objectives of this study are;

= to analyze estimation and modelling techniques for uncertainty modelling in
DUE

= to asses the effectiveness of different object models offered within DUE

= to create uncertainty boundaries of spatial objects digitized from satellite
imagery

= to provide uncertainty boundaries for each polygon

= to measure the inclusion and exclusion areas affected by the positional

uncertainty in agricultural land parcels

1.2. Thesis Structure

This study is consisted of five chapters. Following this introduction chapter, Chapter
2 concentrates on the sources of uncertainty that are introduced during data
capture, concepts and definitions about spatial uncertainty and introduces a review

of previous studies on estimation and modelling of positional uncertainty. Also



Chapter 2 gives the basics of mathematical theory behind models and summarizes

the models that are used to model the positional uncertainty in DUE.

Chapter 3 explains the methods and data used in the study. Also an introduction
about the main parts of Data Uncertainty Engine (DUE) developed by Brown and
Heuvelink (2007) and example studies with DUE are given. A flowchart of the

methods used in the uncertainty analysis is presented.

Uncertainty analysis and modelling of digitized data and the creation of uncertainty
boundaries around vector polygons for case study are explained in Chapter 4. Two
sample regions are selected for further analysis to examine different object models
(namely, deformable and rigid models) and cross correlation structure between x
and y coordinate errors are explained in section 4.4. Chapter 4 also, is a review on

results of the uncertainty analysis.

And finally Chapter 5 brings the thesis to a close with a summary and paves the way

for future research.



CHAPTER 2

LITERATURE REVIEW

This chapter includes the previous studies carried out about spatial uncertainty in
GIS. First sources, concepts and definitions about spatial uncertainty are explained.
Then, the previous studies, related to spatial uncertainty estimation and modelling
techniques are presented. Some of these methods developed in the previous

studies and used in this study are also explained.

2.1. Sources of Uncertainty

Spatial information and data capture procedures contain error inevitably. Spatial
measurements can represent the geographical location or extents of a feature. Also
a spatial observation can be associated with attribute measurements which specify
the characteristics of geographic phenomena. Both the position and attribute
contain errors to some degree. An error is defined as a discrepancy between the
measured and actual value of a particular attribute for a given entity (Veregin, 1999).
Error sources are classified as follows by King’s study (2002) when dealing with

spatial and attribute measurements.

= Natural - Errors caused by changing conditions in the environment
= Personal - Errors that are created by limitations in the human senses
= |nstrumental — Errors which are caused by imperfections in instrument

functionality

Natural errors can be caused by the variations in temperature, wind, atmospheric
pressure, gravitational fields, and magnetic fields. Human (personal) errors occur
from one's inability to perfectly see, perceive, or interpolate observations. Examples

of instrumental errors may include uncalibrated parts or lenses in an imaging device,



or non-uniform spacing between divisions on a theodolite or total station instrument
(Wolf and Ghilani, 1997).

The types of errors produced by the above mentioned sources can be categorized in

three main classes:

= Blunders
= Systematic errors

= Random errors

Blunders are usually large errors such as mistakes in reading or writing observations
values or using the wrong datum or projection resulting from the carelessness of the
operator. Systematic errors are those that follow some physical law and hence can
be predicted. Often systematic errors are removed by deriving corrections based on
the physical conditions that created them (e.g., atmospheric interference, solar
radiation). Random errors are errors inherent in the nature of measurement, those
errors that exist after all blunders and systematic errors have been removed.
Random errors can arise from human and instrument imperfection, as well as
imperfect corrections. Random errors are impossible to avoid and do not follow any
physical laws. Therefore they must be handled according to the mathematical laws

of probability and corrected by a series of adjustments (Wolf and Ghilani, 1997)

Uncertainty analyses in GISs mainly focuses on assessment of the random errors
that are left when blunder and systematic errors removed by elimination or

corrections.



2.2. Spatial Uncertainty

Identifying spatial uncertainty starts with understanding the concepts of spatial
accuracy and data quality. Data quality is often used in the context of metadata, and
describes the measures and assessments that are intended by data producers to
characterize known uncertainties. King (2002) defines accuracy as a measure of

how an observation is close to a true value.

The definition of geospatial uncertainty within GIS is a much argued and often
unclear subject. When describing spatial uncertainty, a range of comparable terms
such as: error, accuracy, precision, vagueness, ambiguity, and reliability have been
used almost interchangeably. Vagueness, imprecision, and inaccuracy indicate
specific conceptual terms, varying from fuzzy set theory to traditional theories of
scientific measurement error, and whether or not it is implied that some true value
exists in the real world that can be compared to the value stored in the database
(Goodchild, 2007). Today most research undertaken on dealing uncertainty in GIS
has concentrated on two main methods: fuzzy set theory to represent vagueness,

and probability theory to characterize error (Fisher, 2005).

According to Klir and Yuan (1995) uncertainty is identified as either products of
fuzziness or products of ambiguity. Fisher (2005) has developed a taxonomy based
on Klir and Yuan'’s study to represent the relation between geographical feature and
definitions different types of uncertainty. Figure 2.1 demonstrates Fisher's different

types of uncertainty within spatial information.
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Figure 2.1 Conceptual Model of Uncertainty (taken form Fisher, 2005 and Klir and
Yuan, 1995)

To determine which method of uncertainty assessment can be utilized for a
particular spatial object, it is crucial to determine whether the class of objects is well
defined or poorly defined. If the object is well defined, (e.g., land ownership
boundaries), then the uncertainty is caused by errors and is probabilistic. If the
object is poorly defined, such as vegetation or soil boundaries, then specific types of
uncertainty, vagueness or ambiguity, may be recognized. Fisher (2005) associates

vagueness with the poor definition of the class where the object belongs.

Ambiguity is described with instances when doubt about the classification of object
because of different perceptions exists. Ambiguity can also be divided in two groups.
Discord occurs when an object is clearly defined, yet different perceptions of the
classification scheme allow the object to be classified in more than one class. Non-

specificity occurs when features have no appropriate class to be assigned to.

As Fisher (2005) and Kurtar (2007) are expressed in their studies line features in
other means vector features are well defined geographical objects. In this study

spatial uncertainty of well defined objects are evaluated so that in the previous
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section much of the discussion focuses on the probability model of spatial

uncertainty.
2.3. Models for Assessing Spatial Uncertainty
2.3.1 Probability Models

Focusing mainly on estimation and prediction of the random errors within the system
or model, within uncertainty analysis it is assumed that all systematic errors can be
corrected. This assumption is mainly utilized for assessing positional uncertainty of
spatial entities. So that it tends to be the basis of the many probability-based
methods that examine spatial uncertainty (King, 2002). For any measurement of a
parameter, there is a probability that it is correctly measured. Methods for
determining uncertainty using probability are based on assumptions of standard

error theory.

Points, straight line segments, polylines and polygons are main spatial
entities in a vector data. Positional uncertainty of a point is usually represented by a
circle with a radius of & . & s the discrepancy between the true value and the
observation. Manual data entry method of digitizing is still a popular method
however nowadays automated data entry techniques have been improved.
Uncertainty distribution for digitisation is investigated by researches such as Bolstad

et al. (1990) found that the digitizing uncertainty is nearly normally distributed.

When probabilistic approaches are considered, distribution functions are the tools
for modelling uncertainty in positional uncertainty; like Gaussian distribution, that is
commonly used for error distribution. The equation for probability density function of
a normal distribution is (Mathworld, 2009):

1w’ )
f(x)=—=—¢ 2o
( ) G\/Z (2.1)
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Wolf and Ghilani (1997) proposed an uncertainty model for point features. In this
model, uncertainty of a point is modelled based on bivariate normal distribution. In
bivariate normal distribution, the dimensions are x and y coordinate pair of the point.

Hence uncertainty region of the point is in shape of ellipse (Figure 2.2)

probability
density

A

Figure 2.2 Bivariate Probability Distribution of a Point Object’s Position (adapted

from Heuvelink and Brown, 2007)

The other characteristic of this model is that, a correlation between x and y is taken
into consideration and any correlation between these variables cause the ellipse to
be rotated towards clockwise direction, if correlation is positive. Otherwise the

ellipse is rotated towards counter clockwise direction.

An epsilon error band model is introduced by Perkal (1956, 1966) and developed by
Chrisman (1982). The model based on the premise to create an uncertainty band
surrounding the line segment. Width of the uncertainty boundary is based on a
constant radius around line’s most likely true position and called an epsilon band.
The quantity epsilon (&) is derived from the radius of the line's endpoint error
circles, assuming a digitization process that yields random coordinate error in a
circular normal distribution. The circular normal distribution is two-dimensional
(bivariate) and varies normally, meaning that it consists of errors in two directions
that are equal and uncorrelated. The main drawback of this model is that it provides

no interpretation of error distribution inside the band (Figure 2.3).
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Figure 2.3 Chrisman’s Epsilon Model (taken from Chrisman, 1982)

Caspary and Scheuring (1992) improved Chrisman’s band model based on Dutton
experiment (Dutton, 1992) which generates realizations of line segments using
Monte Carlo Simulation between two uncertain end points. Dutton finds out that the
error is the greatest on the measured point and least in the halfway between them.
The experiment showed that there is a need to narrower band towards the interior of

the line segment (Figure 2.4).
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o) A line segment is drawn with equal error circles around
each endpoint

(—)

b) Possible endpoint locations are drawn via circular normal distributions

¢) Random endpoints are connected to form line segments;
standard deviation is less at midpoints than at endpoints

d) Probability contours of one standard deviation may be abstracted at
intervals along the median line

Ci Os

Oéy

Figure 2.4 Dutton’s Experiment Simulating Line Segments (taken from Dutton,
1992)

After Dutton experiment, Caspary and Scheuring refine the fixed radius epsilon band
and they proposed a new error band which has a narrower width error band toward
the interior of the line segment. This model also uses circular normal distribution as
Chrisman’s band model. Like Chrisman (1982) and Dutton (1992) they use equal
endpoint coordinate errors following a circular normal distribution. Monte Carlo
simulation and error propagation are used to derive the error band which becomes

narrower towards the midpoint. (Figure 2.5)
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Figure 2.5 Caspary and Scheuring Error Band Model (taken from Caspary and
Scheuring, 1992)

This study is important for positional accuracy of spatial objects because it utilizes
the error propagation law to derive errors along the line and determines an error
band by the error circle boundaries of all points along the line rather than error of the
end points strictly. Also this model represents a straight line as four — dimensional

random vector (four coordinates of two endpoints) (King, 2002).

Shi and Tempflie (1994) expand the work of Caspary and Scheuring’s study as
taking it one step further for modelling positional errors in line features. As in the
previous model, this model also makes the assumption that errors fits on a normal
distribution and uncorrelated. Also the model assumes that positional error
distribution of a random point on the line segment is dependent on the errors and
distribution of the endpoints. They define the probability distribution function and
confidence region of a line segment with equal variances and covariances which
indicates independent endpoint errors. A boundary that is formed by computing the
probability distribution of a point in a direction to perpendicular to the line indicates
how the point’s position can vary from its true or mean position (King, 2002). Figure
2.6 of Shi and Tempfli's (1994) graphic displays a line segments’ probability

distribution and how it can deviate from its expected or mean location.
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Figure 2.6 Probability density function of a line (taken from Shi and Tempfli, 1994)

Goodchild and Hunter (1997) modified the epsilon band model for assessing
positional uncertainty of a digitised line feature. The width of the epsilon band was
estimated by calculating the proportion of the measured location of the line feature
falling on or inside the epsilon band. If the value of the proportion is equal to or
larger than the predefined tolerance (e.g. 0.95), the width of the epsilon band is a

measure of the positional uncertainty of the line feature.

Shi and Liu (2000) further developed the studies of Caspary and Scheuring (1992)
and Shi and Tempfli (1994) by creating a more general model of the error band,
called the G — Band model. The main improvement of the G — band model is that it
accounts for the correlations between two endpoints, a condition that is not handled
by the previous error band models. Endpoint errors are assumed to follow two-
dimensional normal distribution but unlike from the previous studies errors of the

endpoints can be different from each other.

Figure 2.7(a) illustrates the more general case of the G-band, which allows each
endpoint to have varying errors in both dimensions. In this case, the endpoint errors
in the two directions are correlated and of varying magnitudes. Figure 2.7 (b) and (d)
displays errors with the same magnitude in the points on the line segments, but at
(b) the errors are cross correlated between x and y coordinate pairs of each point, in
(d) there is no indication of a cross correlation structure. While Caspary and
Scheuring's (1992) error band relies on the assumption of directional independence,

this condition applies only special occasions of the G-band. Figure 2.7 (c) illustrates
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a special case of the G-band, when endpoint errors are independent and equal.
Under these conditions, the G-band reduces to the error band models of Caspary

and Scheuring.

\. N
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ST
\A—A

Figure 2.7 G Band of Line Segments with Different Statistical Characteristics
(Adapted from Shi and Liu, 2000)

Kurtar (2006) studied on the G-Band model to develop it for non-linear functional
curves. Models for arc, arc string, cubic spline and clothoid are proposed. The

proposed uncertainty models for arc geometry is managed using three coordinates,
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arc string and cubic spline are based on G-Band model. However the uncertainty
models for arc by centre point and clothoid are modelled using epsilon ellipse
model. Kurtar (2006) propose epsilon band model for arc by centre point and
clothoid because they are created with a single geographic coordinate together with
other scalar variables. Hence, the band models of these functional curves use a

unique epsilon ellipse for all of random points on the arc line segments.

Yarkinoglu (2007) worked on a road network geometry consisted of line segments.
A new uncertainty model is proposed for network implementation based on the
Propagated Error Band model developed by Leung and Yan (1998). This model and
G-Band are utilized in this study. Study is carried out in two parts; first models are
applied for each line segment of the selected network separately and on the second
one uncertainty that propagated form the consecutive segment are utilized

considering the positional correlation.

Unlike previous studies Leung and Yan (1998) developed an error model for points,
lines and also polygons. Errors in vertices points of lines and polygons are used as
the basis for constructing the model. Two main assumption are taken into account in
this model (1) all the errors in vertices points have the same standard deviation, (2)

the distribution of any point of an entity displays a circular normal distribution.

Zhang and Kirby (2000) examined in their study that “the possibilities by which
spatial correlation may be usefully explored in the handling of positional errors in
vector data”. An empirical study using photogrammetric data for a suburb —
containing line and polygon features of buildings, roads and natural geographic
objects such as lakes — displayed that geostatistics can be applied to analyse vector
data and photogrammetric data in particular without major complications. Also the
study confirmed that spatial correlation should be incorporated in the analysis of
positional errors. Also they proposed that geostatistical methods can be used to

explore spatial correlation in attribute errors.
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Heuvelink et al. (2007) developed a probabilistic framework for representing and
simulating uncertain environmental variables both for positional and attribute
uncertainty. They categorize the spatial uncertainty in two groups of attribute and
positional uncertainty and create taxonomy for both these groups. Uncertainties are
associated with estimated probability distribution function (pdf). Then Brown and
Heuvelink (2007) developed a software tool called as Data Uncertainty Engine
(DUE) using this probabilistic framework study. DUE can deal with both attribute and
positional uncertainties. In this study for the assessment of positional uncertainty
DUE is utilized so that framework of DUE will be explained in section 2.4 of this

chapter.

Kiiveri (1997) suggest a statistical model which assumes that effect of all sources of
error give a ‘smooth or rubber sheet distortion’ on true map. Each error source is not
modelled separately so that smoothness preserves continuous lines and topology is
guaranteed in resulting simulations. Transmitting the uncertainty between set
operations such as; intersection and unions are also evaluated within this study.
Also uncertainty in length and area of fence lines, roads and property boundaries

are modelled.

Bogaert et al. (2005) developed a general framework for error assessment of area
measurements of planar polygonal surfaces with application to agriculture. Two
cases are evaluated such as; correlated and independent measurements carried out
with Global Positioning Systems (GPS) devices. Geostatistical analysis is based on
time series data obtained via GPS measurements. An operator made the
measurements trough walking along the border line of a field. At the end of the study
it is observed that error in area measurements are linked to both the operator's

speed and the acquisition rate of GPS device.
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2.3.2. Fundamental Mathematical Expression of Uncertain Spatial Features

This chapter aims at describing the positional uncertainty of the spatial features

mathematically.
2.3.2.1. Probability Density Function of a Point

Location of a point feature is usually captured by techniques such as, ground
survey, photogrammetric or remote sensing survey, map digitising or scanning, or a
combination of these. A point in GIS is mostly obtained by digitising a map produced
using through the photogrammetric method. Its positional uncertainty is then caused
by control, photography, aero-triangulation, orientation, compilation, drafting, printing

and digitisation (Shi, 1994) and can be estimated by error propagation law.

Let f,(Px,Py) denote the probability density function (pdf) of a point P. This is the
probability that any point (Px,Py) is located at the true location of P. Let

Xp =P, )y #tp = (#ps, Htpy) Where u,, and u,, are the expected (or mean)

GPX,PX O-Px,Py

values of Px and Py respectively, sz( thich is covariance matrix

GPy,Px GPy,Py

of P. If the uncertainty of P follows a bivariate normal distribution, f_ (Px, Py) will be

f,(Px, Py) = L om0 1255) 02)

(27) ‘ZP‘

where Z T the transpose of any vector Z (Cheng , 2003).
2.3.2.2. Probability Density Function of a Line or Polygon
Positional uncertainty of a line or polygon is difficult to model statistically when

compared to a point feature. Because an infinite number of points located on lines

and line segments that form a polygon have correlated. Cheng (2003) stated in her
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study that if individual positional uncertainties of all the points on a line are
identically and uniformly distributed, a probability density function (pdf) of the
uncertainty of the whole line would be like a three-dimensional box. However, the
normality of the random uncertainty of a digitised point is usually made for ease of
computations (Bolstad et al., 1990; Dutton, 1992; Caspary and Scheduring, 1992).
In statistics, it is hard to find a distribution that fits the whole line, because any
location on the line follows bivariate normal distribution. Similar situation is also valid

when defining a pdf of a polygon.

Cheng et al. (2003) studied the pdfs of the individual points rather than the pdf of the
whole spatial feature. These pdfs are in fact different from the pdf of the whole
spatial feature; however they can be used to derive multivariate pdf of all the points

of the geographical object.

Cheng at al. (2003) define this pdf as follows;

Let hA(Axl,Ayl,sz,Ayz,....,AxNA,AyNA) denote the pdf of all the points of a

spatial feature A. If the positional uncertainty of these points follows a multivariate
normal distribution it will become;

1 oy Xa) (X a=s1p)"
A

(@D @3

where the following represents;

O-Axl,Axl O-Axl,Ayl GAxl,AXN A O-AxllAyN A

O-AY1»AX1 GAyle)ﬁ GAyleXN A O-AYLAVN A
2A=

O-AXNA JAX O-AXNA Ay, GAXNA AXN GAXNA AYN

O nyy,m Oayy, A O aypmi, O Ay, Ay,

X,= (Axl,Ayl,sz,Ayz,....,AxNA,AyNA) and u, = (’LlAX1’lLtA)ﬁ"LlAXz"LlAyz1.'.,ﬂAXNA1ﬂAyNA)
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2.4. Probabilistic Framework of DUE

Heuvelink et al. (2007) developed taxonomy for uncertain objects and models for
each object to define uncertainty model. In this framework, objects are represented
as abstractions of real entities that include features with observed boundaries, such
as buildings, trees, and land ownership boundaries. These boundaries contain
positional information, such as absolute coordinates in space and time or relative
distances between locations. If the coordinates or distances are uncertain, the

boundaries contain positional uncertainty.

2.4.1. Taxonomy of Uncertain Objects

Heuvelink et al. (2007) classified the uncertain geographical objects “by their
primitive parts and by the types of movement they support under uncertainty” in
order to describe positional uncertainty. These classes are as follows by their

definition;

= Objects that are single points (point objects);

= Objects that comprise multiple points whose relative position in space-time
(internal geometry) cannot change under uncertainty (rigid objects);

= Objects that comprise multiple points whose relative position in space-time

can vary under uncertainty (deformable objects).

In contrast to rigid and deformable objects, the positional uncertainty of a point
object always leads to a unitary shift in the object’s position. Rigid and deformable
objects may comprise groups of isolated points, such as the ‘trees’ in a ‘orchard’ or
groups of interconnected points, such as a ‘main road centerline’ or a time series of
‘water levels’, and closed lines or polygons (in 2D or 3D), such as, ‘buildings’ or
‘lakes’. However, the positional uncertainty of a rigid or deformable object is always
characterised by the uncertainties of its individual points (Brown and Heuvelink,
2006)
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The positional uncertainty of a rigid object leads to - as Brown and Heuvelink (2006)
defined - a “unitary shift in the object’s position (translation) and/or an angular shift
(rotation)” of the object for any given outcome of the pdf, because the primitive
nodes are perfectly correlated. By other means, positional uncertainty cannot alter
the topology of a rigid object. In contrast, the topology of a deformable object may
be altered by positional uncertainty, because the uncertainties in its primitive points

are partially or completely independent of each other.

2.4.2. Models Used for Positional Uncertainty

Methods for defining positional uncertainty in geographic entities include partial and
full application of probability theory to vector data. These methods are explained in
section 2.2. Heuvelink et al. (2007) developed a general probability method based

on the previous studies for point, rigid and deformable objects.
A point object contain at least two uncertain coordinates namely x and y in 2D

Cartesian space. Location of each coordinate is uncertain so that they can be

represented by random variables X and Y with a marginal (cumulative) probability

distribution function (mpdf) F, and F, .

F, (x) =Prob(X <x) and F, (y) =Prob(Y <vy) (2.4)

where x and y are real numbers. Marginal distributions may be defined for each
coordinate of an uncertain point object. When the errors in x and y directions are
correlated, a multivariate or joint pdf (jpdf) is required:

Fow (X, y)=Prob(X <xand Y <) (2.5)

When the uncertain coordinates are independent, the jpdf is the product of the two

mpdfs.
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The random variables X and Y will typically have a mean (expected value)

E [X ]: M, and a standard deviation\/E[Z(X — Uy )2/n—1J:o-X. As a
measure of central tendency, the mean provides information about positional bias

and standard deviation as measure of dispersion provides information about the

average departure of X and Y from their means.

Rigid objects are consisted of multiple points whose internal angles and distances
cannot change under uncertainty. The positional uncertainty of a rigid object is
characterized by movement of a chosen single point whether a translation of the
point and/or a rotation around the point. The point itself may be a primitive point of
the rigid object or a reference point associated with the object (e.g. its centroid)
(Brown and Heuvelink, 2007; Heuvelink et al., 2007). So that a joint probability
distribution function is required for the positional coordinates of this reference point

(x and y).

A spatial object is treated as deformable if its component vertices can move with a
degree of independence. Description of a positional uncertainty for a deformable
object composed of n vertices requires a 2n dimensional joint probability distribution
function where this jpdf contains mpdfs for the coordinates of the individual vertices,
together with all the auto and cross correlations between them (Brown and
Heuvelink, 2007; Heuvelink et al., 2007).

Fxl\(l,xz\(2 ........ X,Y, (le Yir Xon Yoree Xps Yn) = Pr Ob(Xl <X, Y; <Y,

e X XY < Y) (2.6)

Heuvelink et al. (2007) stated that obtaining equation (2.6) as the product of n jpdfs
specified in equation (2.5) is not practical because data collection and pre-
processing will introduce statistical dependencies between points. For example,
GPS surveys, georeferencing of remote sensing data, and manual digitizing will all

introduce positive correlations between positional uncertainties. Considering these
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conditions, DUE proposes a technique that is more practical in the estimation of

statistical dependence with pdfs.

The positional uncertainties of objects may be statistically dependent in space and
time, and between coordinate dimensions. If the uncertainties are statistically
dependent, these dependencies must be estimated alongside the mpdfs. In practice,
few parametric shapes are available to describe the jpdf whose mpdfs are
statistically dependent. For continuous numerical variables, a joint normal
distribution is often assumed. Given this assumption, the jpdf comprises a vector of
means and a covariance matrix. The covariance matrix contains the variance of
each mpdf along the diagonal and the covariance of each pair of mpdfs that
comprise the jpdf elsewhere. Using expert judgement, the uncertainty may be
assumed ‘second-order stationary’, whereby the associated pdf has a variance that
is constant and for which the covariances depend only on the distance between
locations (Heuvelink, 1998). In that case, the covariances may be estimated from a
simple function (semi variogram, cross-variogram), which can be fitted directly to a

sample of observed errors at control points (Goovaerts, 1997).
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CHAPTER 3

DATA AND METHODOLOGY

3.1. Study Area

Study area is located within the boundaries of Kocaeli Province in northwest
Anatolia. Area contains agricultural fields and villages scattered around 30 kmZ2
Geographical extent of the study area is upper left 40° 47’ 42.25’N 30° 3’ 21.7"E,
lower right 40° 46’ 16.8"N 30° 5’ 17.5’E. Elevation within the selected region ranges

from 5 metres to 410 metres (Figure 3.1).

This area is selected due to agricultural field density and low variation at the altitude
which is also corrected by orthorectification. When compared to urban areas and
buildings, agricultural fields are located exactly on terrain surface. In remotely
sensed images height of geographical objects may cause positional bias in terms of
X and Y coordinates of feature. Therefore the errors that may be occurred
depending on the heights of building due to the perspective distortion during image
acquisition are removed or alleviated. Another characteristic of agricultural field is its
boundaries are static. For instance lakes or shorelines are affected from seasonal
fluctuations during the year and do not have static boundaries. However agricultural
land parcel boundaries are static and can be defined with cadastral studies. The
availability of the cadastral data is another reason in selecting this area for the case

study.
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Figure 3.1 Location of the Study Area
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3.2. Data Description

Data that constitute the base information for the study is obtained from Municipality
of Kocaeli. They consist of 1:5000 scaled digital base map series. These map
sheets were produced from aerial colour photographs acquired in 2005 with 35 cm. /
pixel nominal spatial resolution via photogrammetric production. Planimetric
accuracy of this production is known to be about 35 cm. (RMSE) on the ground.
1:5000 scaled digital base maps contain detailed information about structure of land

as parcel boundaries, road network, fences, man — made structures etc (Figure 3.2).

Second data used in thesis is satellite imagery of study area. Two images of the
same region acquired at different dates ordered for the study. Satellite imagery is
obtained with the fund provided from Scientific Research Project (BAP) under the
supervision of Natural and Applied Sciences Institute. Pre — processing stage is
explained in orthorectification section. One of these images is used as basis for
digitizing agricultural land parcels. Also digitizing process is explained in digitizing

section.

Agricultural field boundaries that are used as basis for all analysis are extracted
from 1:5000 scaled digital base maps as vector dataset. These data used as
reference and assumed to be the true positions of field boundaries. And the

accuracy of this cadastral data is analysis is at most 1 meter on the ground.

All raster and vector dataset (e.g. satellite imagery, cadastral boundaries, 1:5.000
scaled base maps, simulations) utilized in this study are referenced with the
following datum and projection domain; ITRF96 (International Terrestrial Reference
System 1996) Datum, GRS80 (Geodetic Reference System 1980) Ellipsoid, 3°

Gauss Kruger (aka Transverse Mercator) Projection.
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Figure 3.2 1:5.000 scaled GCP reference dataset. Map Sheet G-24-D-03-A
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3.3. Orhorectification

A very high resolution optical satellite imagery acquired on 16" of June 2007 was
utilized in this study in order to digitize 221 polygon vector dataset. Metadata of this

image, acquired by Quickbird satellite platform, is given in Table 3.1. Image can be
previewed in Figure 3.3.

Table 3.1 Metadata of Quickbird Image

Catalog ID 1010010005B06700
Satellite Platform / Operator Quickbird / Digital Globe US
Date / Time of Acquisition 16.06.2007 / 09:15
Processing Level / Type 2A / Standard Ortho Ready
Scan Mode & Direction / Full Swath & Forward /
Number of Looks 1 (Stereo mode off)
Number of Bands / 4 / Red Green Blue (RGB) + Near Infrared
Band Combination (nIR)
Radiometric Resolution 11 bits (2048 shades of gray) per band
Resarggg?iglPg;ggllu/tiggmlnal Pansharpen / 60 cm. per pixel
Mean GIS?SL{[I;?]CSeampImg 0705 m.
Mean Sun Azimuth 147,8 °
Mean Sun Elevation 70,3 °
Mean Satellite Elevation 65,0 °
Mean in Track View Angle 23,4 °
Mean Cross Track View Angle -0,8°
Mean Off Nadir View Angle 23,5°
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Figure 3.3 Previews of Quickbird Image

Quickbird image is processed under PClI Geomatica v10.0.3 and ortho-rectification
is performed in OrthoEngine via Toutin’s (high resolution) rigorous physical model

which fully utilizes ephemeris data.

For year 2007 image, having the catalog id of 1010010005B06700, 50 ground control
points (GCPs) are selected from 1:5.000 scaled digital base map series (Figure 3.2).
These map sheets were produced from aerial colour photographs acquired in 2005
with 35 cm. / pixel nominal spatial resolution via photogrammetric production.
Planimetric accuracy of this production is known to be about £35 cm. (RMSE) on the

ground.

Besides, with reference to the same dataset having contour intervals of 2,5 m.,
digital elevation model (DEM) of the study area having 1,20 m. / pixel spatial
resolution was produced with an accuracy of +48 cm. (RMSE) on the vertical axis
(Figure 3.4). DEM is produced using universal kriging surface interpolator algorithm

via second order trend surface in ArcGIS v. 9.3 Geostatistical Analyst.
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Figure 3.4 DEM of the study area produced from 1:5.000 scaled map sheets.
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Figure 3.5 Distribution of GCPs
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Utilizing Toutin’s (high resolution) rigorous physical model, bundled in OrthoEngine
v10.0.3, achieved planimetric accuracy for ortho-rectified image is +0,98 pixel
(RMSE) for 2007 image. Detailed results are given in Table 3.2. Full residual report,
including complete list of GCPs is given in Appendix A.

Table 3.2 Calculated error values for ortho-rectification via rigorous physical model

ID
1010010005B06700
Date 16.06.2007
Number of GCPs 50
GCP RMSE X axis 0,72
GCP RMSE Y axis 0,67
GCPRMSE X &Y 0,98

3.4. Digitizing of Test Data

To undertake uncertainty analysis, experimental test data is generated using
digitising. Digitising is performed using ESRI ArcGIS v.9.3 from orto - rectified
satellite imagery acquired in year 2007. Spatial features are constituted of
agricultural land parcel boundaries. All digitizing process is performed at 1:1000
scale on a display with 1028x1024 pixel resolution in ArcGIS v.9.3 for eliminating
any variation, which can be caused by resolution and scale variation. All 700
polygon boundaries digitized in clockwise direction starting from lower left corner of
parcels. While generating geographical features via digitising auto - complete
polygon option was selected from topology tasks to avoid gaps between adjacent
parcel boundaries. Both reference data and data generated from satellite imagery
via digitising can be seen in Figure 3.6. In order to ease further analysis, each of the
700 polygons is registered with a unique feature ID which is the same both in

reference and digitized vector dataset.
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Figure 3.6 Polygons Digitized from Satellite Imagery and Reference Polygons

3.5 Data Uncertainty Engine (DUE)

Data Uncertainty Engine (DUE) is a free software that aids the user in defining
probability distributions for uncertain spatial objects and draws random samples
using Monte Carlo Simulation (MCS) from these distributions. DUE is developed by
by James D. Brown and Gerard B.M. Heuvelink (2007) using java programming
language It runs on the Java TM Runtime Environment (JRE) version 5.0 (1.5.0) or
higher.
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DUE enables to describe spatial and temporal patterns (time — series data) of
uncertainty which can be called auto correlation and also cross — correlations
available in the related inputs that can be included in uncertainty model.
Determination of a probability distribution function (pdf) in DUE for the positional
uncertainty of 2D spatial vectors includes correlations within and between
coordinates. Such correlations may greatly influence the outcomes of an uncertainty
analysis because models typically respond differently to correlated variability than
random errors. DUE also supports the quantification of positional uncertainties in

geographic objects, presented as raster maps, time-series or vector outlines.

Objects that comprise multiple points, such as lines and polygons, may be assumed
“rigid” under uncertainty, where all internal coordinates move identically, or
“‘deformable”, whereby each internal point can move separately. The uncertainty of
a rigid object is completely specified by a translation and/or rotation of that object
about a single point. Examples of rigid object might include buildings whose
boundaries are theoretically rigid or field whose boundaries are treated as rigid for
simplicity. In contrast, the uncertainty of a “deformable” object requires the marginal
uncertainties to be defined at all internal points, together with any relationships
between them (Heuvelink et al.,2007)(Figure 3.7).

Deformable Object Rigid Object

Figure 3.7 Examples of Deformable and Rigid Object
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Both attribute and positional uncertainties can be evaluated using probability
distribution functions. Objects supported by DUE include spatial vectors, space-time
vectors, spatial rasters, time-series of rasters, simple time-series and objects that
are constant in space and time. Attributes supported by DUE include continuous
numerical variables, discrete numerical variables and categorical variables (Brown &
Heuvelink, 2007).

An uncertainty assessment with DUE is separated into five stages. These stages
are presented as ‘tabbed windows’ in DUE. Also the workflow of DUE is shown in
Figure 3.8.

Data
v - X__, Testing
Model | Model | data
Params. | states 3
Input TN "'-'r"' A
data -- -L__, -
Model | | Approx. | Model
structure 1 solution output
| I
Data Model Output

Figure 3.8 Workflow of DUE (Adapted from Brown and Heuvelink, 2007)

1. Input Window - Loading and saving data
Supported Data Files in DUE are as follows.
= ESRI Shapefile for spatial vector datasets (e.g. points,lines,polygons)
= ASCII Raster for 2D raster data (.asc)
= ASCII file for simple time series data (.tsd)
= Also searching, retrieving and saving pdfs for time series in a DUE —
enabled Oracle — ArcSDE database.

A snapshot of Input window is presented in Figure 3.9.
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2. Sources Window - Identifying the causes or sources of uncertainty

A library of sources included in the software as an example, sources of uncertainty

generally classified as follows;

= [nstrumental Accuracy

= Sampling Design

= Sample Representativeness

= Statistical Modeling

= Classification Accuracy

= (Class Definition

3. Model Window - Defining an uncertainty model

Once data is imported into DUE, an uncertainty model can be defined for the objects

and attributes selected in the opening tab. In the first window of the “Model” pane,

an uncertainty model structure is chosen for the selected objects and attributes.
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Figure 3.10 Model Window of DUE

If sample data are available, it can be loaded. In the absence of sample data, an
uncertainty model is defined through expert judgement. If the uncertainties are
assumed spatially correlated, then a correlation model must be defined in the
following model window. (Figure 3.10)

4. Goodness Window - Reflecting on the quality of the model

When constructing uncertainty model in DUE stages 2 and 4 (describing the sources

of uncertainty and assessing goodness) can be skipped.
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Figure 3.11 Output Window for DUE

5. Output Window - Simulating from an uncertainty model

Once complete, an uncertainty model is used to generate realisations of the

uncertain objects and attributes in the output window (Figure 3.11). In order to

simulate from an uncertainty model, the output scale, the number of realisations and

the location for writing data must be specified

3.5.1 Worked Examples with DUE

DUE has the functionality to evaluate both attribute and positional errors in spatial

data. But this study focuses on positional uncertainty. Following examples display

the use of DUE within spatial projects.
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The Dutch Ministry of Housing, Spatial Planning and the Environment initiated a
project that aims to provide tools for handling uncertainty in spatial planning.
Positional uncertainty in delineated breeding bird areas was evaluated as one of the
aspects of the study. Heuvelink (2007) stated that these areas are considered to
have exact boundaries however in reality there is no certain knowledge about where
these areas begin and end. Vullings et al. (2007) explains the aim of the project to
analyse how positional uncertainty of these areas would affect the outcome of the

spatial planning process.

The shape files of breeding bird areas were loaded into DUE and a statistical model
(probability distribution function) of uncertain position of the polygons was
constructed. Parameters of standard deviations in the x and y coordinates and
correlation between neighbouring vertices of each polygon were defined. Standard
deviations in the x and y directions were assumed to be equal. The correlation was
assumed to depend only on the distance between points, where a Gaussian-shaped
semivariogram was employed. Then DUE was used to simulate 100 possible
realisations of the delineated breeding bird areas. Many of the simulated polygons
were topologically corrupt so that they were replaced by new simulations. After
running the spatial planning process, it turned out that the positional uncertainty
about the breeding bird areas marginally affected the final plan. (Heuvelink 2007,
Vullings et al., 2007)

Cultivation of fields is executed using GPS driven farming vehicles in Netherlands
such that precision farming requires that field boundaries are measured with cm
level accuracy. To avoid losses caused by unharvested crops or wasted inputs de

Bruin et al. (2008) presented a general error propagation method using DUE.

Propagation of positional error measurements that are carried out with three
different scenarios is investigated. Spatial dependence structure is based on a
statistical model that compromises of temporal correlation in positional

measurements.
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A potato field of 15 ha is used as case study and error model was parameterised on

measurements’ scenarios presenting;

(1) Manual digitization of field boundary
(2) Real Time Kinematic GPS survey
(3) Differential GPS- based field checks

Methods used in Bogaert et al. (2005) (explained in Chapter 2, page 18) are

adopted in this study with extension to Data Uncertainty Engine.

14 corner points of the polygon are modelled in scenario 1 and 2; however in
scenario 3 of differential GPS number of vertices were 1258. Temporal
autocorrelation and cross correlation structure were modelled using semivariogram

analysis. For each model 250 simulations of the case area is created using DUE.

Inclusion and exclusion areas for each of 250 simulations are computed. Then mean
and standard deviation of these 250 realisations are calculated to observe the
performance of scenarios. Best results are obtained with Real Time Kinematic
GPSs.
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CHAPTER 4

UNCERTAINTY ANALYSIS

In order to analyze positional uncertainty using Data Uncertainty Engine (DUE),
measures of spatial correlations, semivariograms of positional displacements both in
X and Y coordinates and cross — semivariogram of X and Y displacements are
needed to be constructed. Modelling of semivariograms is performed to define
spatial autocorrelation and cross correlation structures in positional errors. These
model parameters are used as inputs for running simulations from digitized features
using joint normal distribution. These model parameters are also used to construct a

valid variance — covariance structure for uncertainty models used in DUE.

Realisations of possible positional displacements generated by DUE give possible
locations of digitized dataset within pre—defined uncertainty error model. These

realisations allow user to define the uncertainty boundaries for uncertain dataset.

To run simulations it is necessary to compute semivariograms and then to fit
suitable semivariogram models. This chapter explains steps of uncertainty analysis

from data preparation to running simulations.

Three different sample applications are carried out with DUE on different locations of
the same dataset. In the first example a training set of 221 polygons are selected to
identify error model for a larger set of 479 polygons out of a total number 700
polygonal boundaries. In the second and third example sample regions of 95 and 30
polygonal boundaries are selected respectively for analysis. Both in these two
examples 5% of population are selected as training data for error model parameter

estimation.
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4.1. Data Preparation

To provide initial estimation of positional errors of digitized land parcel boundaries
from Quickbird imagery, reference data produced from cadastral data are overlaid
with vector data digitized from satellite imagery. In order to obtain main vertices of
polygons, line simplification algorithm in ArcGIS Desktop v9.3 ArcToolBox is used to
eliminate redundant point’'s information in polygon features. Every polygon is
registered with a unique feature ID; also vertices are labelled with unique ID
indicating which points belong to which polygon. Point IDs are given starting from
the lower left corner of the polygon and then following a clockwise direction. Vertices
of digitized polygons, which are converted to 506 unique points, can be seen in

Figure 4.1.

It is possible to match polygon vertices across two data layers and to compute
displacements for individual points. Matching points both in reference data and
digitized polygons’ X and Y coordinates are extracted from each other to provide

displacements of individual points in X and Y coordinates.
Initial information about positional errors in X and Y coordinates is acquired via

descriptive statistics measures and histograms. Table 4.1 represents descriptive

statistics both in positional displacements and absolute values of displacements.

42



Comers of Digitized Polygons (Vertices)

[ Ipolygons Digitized from Quickbird Imagery g

505000

505500
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Table 4.1 Descriptive Statistics of Displacements in Coordinates

AX AY Abs(AX) | Abs(AY)
N 497 497 497 497
Mean (m) -.05944 .21696 .86467 .88424
Standard 1156449 | 1.274988 | 769248 | .943032

eviation (m)

Variance (m) 1.337 1.626 .592 .889
Skewness .087 1.469 1.572 3.225
Kurtosis 1.343 7.648 2.835 18.265
Range (m) 8.120 12.414 4.060 8.884
Minimum (m) -4.052 -3.526 .008 .004
Maximum (m) 4.068 8.888 4.068 8.888
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In DUE, errors are assumed to follow a normal distribution. Also semivariogram
construction compromises this assumption; positional errors represent normal

distributions.

Histograms for displacements both in X and Y axis are calculated before
semivariogram construction to check normality assumption. Figure 4.2 is prepared
using SPSS v15.0. Negative and positive values on histograms indicate direction in
positional errors. When histogram of positional errors displays normal distributions
for both X and Y, absolute values show skewed distribution since all errors are
converted to positive values. It can be interpreted from the histograms that majority

of the positional errors in both X and Y axes are less than 1 meter.

Displacements in X and Y coordinates are re-organised from ArcGIS “shp” shape
file format to GSlib’'s text based “dat” file format in order to construct
semivariograms, standardised semivariograms and correlograms in the

geostatistical software package GSlib, which is a free geostatistical software.

The data input files for GSlib need to be in a specific format common to many
geostatistical software packages. Each data file starts with a header line containing
a descriptive title. Next follows a line with the number of variables. The following set
of lines contains the variable names, one per line. Next are the actual values, with a
new column for each observation, and the values separated by tabs or spaces. The

last line in the file should be a blank line.
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Figure 4.2 Histograms of Errors in X and Y Axis

4.2. Parameter Estimation

Practical use of probability distribution functions usually involves a combination of
choosing a parametric shape and estimation. Auto correlations, cross correlation of
uncertainty in the positions of vertices and the random deviations of polygons

require description of statistically dependent joint probability distribution functions.

Using the familiar assumption of second order stationarity (Isaaks and Srivastava,

1989, Goovaerts 1997), covariances and cross-covariances can be estimated from
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semivariograms that are fitted to samples of observed reference positions
(Heuvelink et al, 2007).

Semivariograms of the deviations are computed using geostaistical software

package GSlib.

4.2.1. Semivariogram

A semivariogram is a geostatistical technique which can be used to examine the
spatial continuity of a regionalized variable and how this continuity changes as a

function of distance and direction.

The correlation structure of the positioning can be made by estimating
semivariogram of displacements both in X and Y coordinates. The basic idea is to
look at points separated by lag distance h and to compare measurement values.
(Kanevski & Maignan, 2004)

1 N (h) )
Vi (h)=m;(zi(x)—zi(x+ h)) (4.1)

Computation of a variogram involves plotting the relationship between the

semivariance y;(h) and the lag distance (h). (Equation 4.1) The semivariance can
be defined as one half of the variance of the difference between points separated by
a lag distance (h), such that: where y;(h) is the semivariance, Z;(x) is the
measured sample value at point i, Z,(x + h) is the measured sample value at point

i+h where h is the lag distance, and N is the number of observations for a particular
separation or lag distance. The lag distance is defined as the distance separating

two points within a dataset in a specific direction (Isaaks and Srivastava, 1989).
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Figure 4.3 Parameters of a semivariogram

When the semivariance is plotted against the lag distance, certain features are
displayed on the resulting semivariogram (Figure 4.3). These features include the

sill, range and nugget effect.

4.2.2. Semivariogram Construction

The formula involves calculating the difference squared between the values of the
paired locations with an increment of h lag distances. For semivariogram
construction parameters of lag distance, lag tolerance and number of lags are
needed. Rule of thumb indicates that the multiplication of the lag distance with the
number of lags should be about largest distance among all points, in this case it is
about 1800 meters. Actual largest distance is 1940 meters but above 1800 meters
semivariance values starts to diminish which indicates no significant correlation

structure.

Selection of lag distance and number of lags requires a trial-error procedure of
different values. Optimum values representing the auto and cross correlations are
selected as follows. Lag distance is selected between points is about 4.5 metres and
lag tolerance is selected as 2 meters. Number of lags is selected as 400. Resulting

semivariogram graph for positional errors in X coordinate can be seen in Figure 4.4.
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Experimental Semivariogram for Positional Errors in X Coordinate
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Figure 4.4 Semivariograms for X Coordinate Errors

However semivariogram models included in DUE uses sill that is standardised at
value 1 so that semivariogram values standardised by diving each semivariogram
value by its lag variance. Both semivariograms and standardised semivariograms for
X and Y coordinate errors are presented in Figure 4.4 and 4.5 respectively. Model

fitting is performed by using standardised semivariograms.
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Experimental Semivariogram for Positional Errors in Y Coordinate
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Figure 4.5 Semivariograms for Y Coordinate Errors

In order to evaluate whether positional errors in X and Y coordinates have any affect
on another, cross correlation between errors should be investigated. To evaluate
cross correlation a cross — semivariogram is constructed with the aid of GSlib. Also
in DUE cross correlation can be defined in uncertainty model calculation. Calculated

cross semivariogram can be seen in Figure 4.6.
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Cross- Semivariogram of X and Y Positional Errors
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Figure 4.6 Cross - Semivariogram for X and Y Coordinate Errors

4.2.3. Semivariogram Modelling & Model Fitting

A unique principle of variography is that a number of theoretical variogram models,
either alone or in combination, can be used in order to capture a statistically
quantifiable portion of the spatial variability in the dataset. The model chosen will
depend on several factors including whether the semivariogram reaches a sill value,
and the behaviour of the semivariogram at the origin. Most commonly used models
to describe the variability are exponential, spherical and gaussian models. All three
semivariogram models are displayed with equivalent practical range in the below
Figure 4.7.

Model fitting requires comparing different alternatives. Inspection of standardized
semivariograms suggests using exponential, Gaussian and spherical semivariogram
models.
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Figure 4.7 Three Generic Semivariogram Models

Following equations is used to define and construct semivariogram models for

experimental semivariograms above. Then these models are evaluated using three

different quality indicators to decide which model gives the best estimate for the

data.

Exponential Model

Spherical Model
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Gaussian Model

y(h)=c, + c{l— exp(_ar;2 j] (4.4)

¢, indicates nugget, c is the partial sill, addition of nugget and partial sill gives the

sill. h is the lag distance on the i-th lag, and a is the range of correlation.

Fitted models for semivariogram of positional errors in X are shown in Figure 4.8
where semivariogram model parameters respectively in Table 4.2 and Table 4.3.
The region in the blue box is expressed to show slight differences in models and
how models close to each other. There are slight differences in the sill and nugget
parameters of these three models however differences in range of the correlations

can be seen in Figure 4.8.
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Semivariogram of X & Models
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Figure 4.8 Fitted Semivariogram Models to Positional Errors in X axis

Fitted models for semivariogram of positional errors in Y are shown in Figure 4.9.
where semivariogram model parameters respectively in the table. The region in the
blue box is zoomed to show slight differences in models and how models close to

each other in this data, too. The sill and nugget parameters are nearly the same in
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all three models however differences in range of the correlations can also be seen in
Figure 4.9.

Semivariogram of Y & Models
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Figure 4.9 Fitted Semivariogram Models to Positional Errors in Y axis

54



4.2.4. Model Fitting Indicators

During model fitting parameters and models are controlled via three different quality
indicators commonly used in variogram fitting. Usually they are giving comparable
results but they can differ depending on the function to be fitted.

4.2.4.1. Indicative Goodness of Fit

The Indicative Goodness of Fit (IGF) measure (Kanevski & Maignan, 2004) is based

on a least squares estimator and is defined as:

n(k) -
N (h; )(Z (h )j R 2
_lN W i=0 f (hi)_y(hi):|
R I (Y o)

where y(h,) is the value of semivariogram at the i-th lag, 7(h;) is the semivariogram
model value for the lag h,, N is the number of directional semivariograms, N(h,)is
the number of pairs for the lag h,, h (k) is the maximum lag distance for the k-th

direction, o® is the variance of the data for the variogram. This goodness of fit
measure is standardized so that values for different variograms, using different

models can be compared. A value closer to zero indicates a better fit.
4.2.4.2. Residuals Sum of Squares

In statistics, the residual sum of squares (RSS) is the sum of squared errors. It is a
measure of the discrepancy between the data and an estimation model. A small
RSS indicates a tight fit of the model to the data (Wikipedia, 2009).

RSS = i(yi - f(x))° (4.6)
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RSS Calculation for Semivariogram Models

RSS = i(y(hi) 7)) @7)

4.2.4.3. Cressie’s Indicator

Cressie’s indicator is a weighted RSS (WSS) where the weight hi given to each lag
h, is usually taken proportional to the number of N (h, ) of data pairs that contribute

to the estimated semivariogram.

The implicit assumption is that the reliability of an experimental semivariogram value

increases with statistical mass. An alternative that gives more weight to the first lags

consists of dividing the number of data pairs by the squared model value: ’A\l(r(]hiz
yAn;
(Cressie , 1985 in Goovaerts 1997)
N(h) AL\
le =2 = —3lr(h) - 7(h)] (4.8)
¢ Z:7/(hi)2

Corresponding quality indicator results to models and parameters used in
semivariogram model fitting step are seen in Tables 4.2 and 4.3 representing
models for errors in X and Y respectively. Smallest values for indicators are
represented in bold characters. But as followed from Table 4.1 models represent
very close fitting results to each other as previously assumed with reference to
graphs (Figure 4.8 & 4.9). It is assumed in this study that all distributions display an
exponential spatial correlation model in terms of positional errors. But to observe
how different models respond to uncertainty in the output, all three models are used

for simulations for generating comparable results in evaluation.
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Table 4.2 Model Parameters and Indicators for X Errors

Exponential | Spherical Gaussian
Model Model Model
Nugget 0.53 0.53 0.53
Model ;
Sill 0.98 0.97 0.99
Parameters
Range 162 85 72
I.G.F 0.035506 0.037212 0.039967
Quality
. RSS 8.4217 8.7522 8.5556
Indicators
Cressie | 3758.51219 | 4032.70433 | 3647.47663

Table 4.3 Model Parameters and Indicators for Y Errors

Exponential | Spherical | Gaussian
Model Model Model
Nugget 0.49 0.5 0.54
p ) sill 1.01 1 1
arameters

Range 165 110 85

I.G.F 0.047693 0.047608 0.047319

Gllglity RSS 19.9955 | 201433 | 20.1491
Indicators - . -

Cressie 6579.215 6675.73 6678.076

4.3. Simulation of Digitized Field Boundaries

Simulations of digitized agricultural parcel boundaries are performed in two phases.
First stage is analysis of training data (221 polygons) using all semivariogram
models’ (Exponential, Spherical and Gaussian models) parameters. In the first
phase, it is also compared that how different models affect the resulting uncertainty
boundaries and distributions of generated simulations around both reference and

digitized data.

Second phase focuses on test data that consists of 479 field boundaries out of 700.
These test data are simulated with respect to best fitting (Table 4.2 & 4.3)
exponential model’'s parameters in uncertainty model, then 1000 realisations are
performed per each polygon. Distribution of training and test data can be viewed in
Figure 4.10.
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Figure 4.10 Distributions of Training and Test Data
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4.3.1. Simulation of Training Data

The Data Uncertainty Engine (DUE) v3.1 (Brown and Heuvelink, 2007) is used for
generating 250 realisations of error model with parameterisations representing each
model described before. Number of simulations is determined as 250 with reference
to the study of de Bruin et al. (2008), in which they generated the same number of
simulations with DUE in order to identify errors arising from positional
measurements carried by GPS. The field boundaries are classified as rigid objects
containing multiple vertices whose relative positions do not change under
uncertainty (Brown and Heuvelink, 2007). Examples of rigid objects might include
buildings whose boundaries are theoretically rigid or fields whose boundaries are
treated as rigid for simplicity (de Bruin et. al, 2008). The positional uncertainty of a
rigid object can be characterised by a translation and possibly rotation of the object
in DUE.

The model parameters are entered as “expert judgement” on the model page of

DUE 3.1. The standard deviations or spreads of normally distributed errors o, and

o, defined as 1.2 metres and 1.3 metres respectively (Table 4.1). Normal
distribution curves, regarding the coordinate errors, are centred on the object
coordinates in case of u, = u, =0, otherwise an offset is added to model bias.

Semivariograms are modelled before they were employed in DUE to define the
dependence models. In the case of cross — correlation between X and Y errors,
linear model of co - regionalization is used to ensure a valid bivariate covariance
structure (Heuvelink, 2007). Negative cross — correlations are not currently
supported in DUE. In this study, positional errors in X and Y coordinates display very
small magnitude of negative cross correlation, around -0,075 (Figure 4.6). Thus, it is
not possible to model the cross — correlations structure with respect to the defined
uncertainty model. In the output window, number of simulations is defined as 250
and output file type is selected as ArcGIS shapefile format for further analysis on

simulations.
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Simulation results regarding the rigid object model with exponential function can be

seen in Figure 4.11.
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Figure 4.11 Simulations Derived from Uncertainty Model

Initially, all shapefiles, each containing 250 simulations per polygon, are merged into
a single shapefile containing 55250 simulations, pertaining 221 polygons. In order to
determine the exterior simulation boundaries for each polygon, 55250 simulations
are dissolved with respect to their parent polygon id. By means of this “union”
operation, exterior simulation boundaries are extracted as polygons. To determine

the interior simulation boundary for each polygon, “intersection” of 250 simulations,
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each simulation set corresponding to one parent polygon, is computed and inner
simulation boundary is extracted. By repeating this procedure 221 times, all inner
simulation boundaries are extracted. Both inner and outer simulation boundaries are
converted into polylines, merged into a new shapefile and dissolved as multipart
polyline objects representing both inner and outer simulation boundaries, resembling
a donut shape. Results are presented in Figure 4.12. It can be interpreted that in the
absence of cross — correlation structure uncertainty boundaries showed an epsilon
error band model structure. If cross — correlation could be modelled within
uncertainty model, uncertainty bands may result in G - band structure which displays

narrower band width towards the midpoints.

505000 505500 506000 506500 507000

- Uncertainty Boundaries Derived from Simulations |
l Reference Polygons (Base Dataset)

506500

Figure 4.12 Uncertainty Boundaries Derived from Simulations
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In order to explore the spatial distribution of simulations from digitized vector
dataset, digitized polygons and reference data polygons are converted into polyline
objects and multiple buffers, each increasing by 50 cm, are applied in each
direction; in and out. A buffer distance of 50 cm. is selected because digitized
dataset to which simulations are referencing is digitized from the Quickbird satellite
imagery having a nominal resolution of 60 cm/pixel. Knowing the smallest
discriminable image unit corresponds 60 cm, multiple buffer intervals are selected
as 50 cm for computational easiness. Once multiple buffer rings are created and
simulation polygons are converted into polylines, a spatial query is performed for
each ring at that buffer distance. As a result of the following query; “Number of
simulation polyline features which are completely covered by the relevant buffer
ring” gives the spatial distribution. To give better understanding about the spatial
distribution of simulations, a histogram is constructed with respect to buffer

distances (Figure 4.13).

Both histograms in Figure 4.13 confirm the joint normal distribution of uncertainty
model that generated simulations. Distribution of simulations around digitized data
represent the farthest simulation that falls at a distance of 6 meters, however the
frequency of simulated polygons are accumulated within 1 to 3 meters distance from
digitized data. However, simulated polygons are distributed within 10 meters
distance around reference data and accumulation takes place between 2 to 4 meter

distances.
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Figure 4.13 Numbers of Simulations (Exponential Model) Included in Buffers

When percentage of distributions around digitized and reference data are
calculated, it is observed that 84.83% of the simulations fall within 2.5 meters
around digitized data (Table 4.4). But in this study, departure of simulations from
true value is essential. From all the realisations derived, with 85.90% probability,
digitized vectors contain an error of 4 meters whether they are on the left or right

hand side of the reference data (Table 4.5).
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Digitized Data

Table 4.4 Percentage of Exponential Model Simulations’ Distributions around

Buffer Number of Percentage Cumulative
Distance (m)* Simulations Percentage

0.5 2588 4.684% 4.684%

1 10482 18.972% 23.66%

1.5 13426 24.300% 47.96%

2 12065 21.837% 69.79%

2.5 8307 15.035% 84.83%

3 4868 8.811% 93.64%

3.5 2196 3.975% 97.61%

4 896 1.622% 99.24%

4.5 314 0.568% 99.80%

5 90 0.163% 99.97%

5.5 17 0.031% 100.00%

6 1 0.002% 100.00%

*Buffer Distance indicates buffer ring distance to both sides (left and
right side of the polygon), thus 0.5 meters to both sides of the reference
data covers an area of 1 meter around the line.

Reference Data

Table 4.5 Percentage of Exponential Model Simulations’ Distributions around

Buffer Number of Percentage Cumulative
Distance (m) Simulations Percentage

0.5 3 0.005% 0.005%
1 454 0.822% 0.827%
1.5 3757 6.800% 7.627%
2 8535 15.448% 23.075%
2.5 11060 20.018% 43.093%
3 10175 18.416% 61.510%
3.5 7995 14.471% 75.980%
4 5482 9.922% 85.902%
4.5 3478 6.295% 92.197%
5 2037 3.687% 95.884%
5.5 1141 2.065% 97.949%
6 557 1.008% 98.957%
6.5 298 0.539% 99.497%
7 137 0.248% 99.745%
7.5 78 0.141% 99.886%
8 34 0.062% 99.948%
8.5 13 0.024% 99.971%
9 13 0.024% 99.995%
9.5 2 0.004% 99.998%
10 1 0.002% 100.000%
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4.3.1.1. Comparison of Uncertainty Model Results

All three semivariogram models are used to simulate positional uncertainty. The
parameterised error models are entered as expert judgement on the model window
in DUE. All the same procedure applied to training data is executed over each
model’s resulting realisations and distributions are calculated to provide comparable
results. Figure 4.14 show the distribution of simulations around reference data and
digitized data, it can be followed from the figure that gaussian and spherical models’

parameters results create similar distributions compared to exponential model.

The range of distributions around reference data is 10 meters in all model results.
Exponential models’ resulting range around digitized data 6 meters, but spherical

and gaussian model the display same range of 6.5 meters.

Also the percentage and cumulative percentage of distributions are calculated for
both reference data and digitized data. (Table 4.6 and Table 4.7) The
semivariogram models’ parameter values and goodness of fit results in modelling
stage presented similar results, so that in the uncertainty analysis simulations
derived from these parameters shows slight differences. According to the different
model results, from this point forward only the best fitting model parameters will be

used to generate simulations from error model.
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Figure 4.14 Exponential — Spherical and Gaussian Models’ Simulation Distributions
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4.3.2. Simulation of Test Data

Test data, containing 479 polygons out of 700, are evaluated in uncertainty analysis.
Data Uncertainty Engine (DUE) is used for generating 1000 realisations of the error

model with parameterisations.

Model parameters are inserted as “expert judgement” on the model page of DUE
3.1. Standard deviations or spreads of normally distributed errors, o, and o, , are
defined as 1.2 metres and 1.3 metres respectively from training data results (Table
4.1). In case of u, = u, =0, if coordinate errors exhibit normal distribution, they are

centred on the coordinates of objects; otherwise an offset is added to model bias. To
define spatial dependence model, semivariograms are modelled before they were
employed in DUE. Exponential semivariogram model parameters that are drawn out
from training data are used for describing uncertainty model. These model
parameters vary in range of 162 meters for X error autocorrelations and 165 meters
for Y autocorrelations. In DUE’s simulations output window number of simulations is
defined as 1000 per each polygon and output file type is selected as ArcGIS

shapefile format as before.

Resulting 479,000 simulations are evaluated with respect to the same procedure
explained in section 4.3.1 and distribution of simulations around reference data is
displayed below in Figure 4.15 and Table 4.8. Compared to training set, it is
observed that distribution of simulations display a more dispersed range of 12.5
meters. In training data, 4 meters distance contain 85.902 % of all simulations, but in

test data 4 meters of distance cover up 89.87 % of all realisations.
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Figure 4.15 Distribution of Simulations around Reference Data

Table 4.8.Percentage of Distribution for Test Data

Buffer Number of Cumulative
Distance(m) | Simulations Percentage Percentage
0.5 51 0.0106% 0.0106%
1 7165 1.4958% 1.5065%
1.5 43466 9.0743% 10.5808%
2 83924 17.5207% 28.1015%
2.5 100000 20.8768% 48.9783%
3 88359 18.4466% 67.4248%
3.5 65530 13.6806% 81.1054%
4 42002 8.7687% 89.8741%
4.5 24071 5.0253% 94.8994%
5 12399 2.5885% 97.4879%
5.5 5970 1.2463% 98.7342%
6 2708 0.5653% 99.2996%
6.5 1272 0.2656% 99.5651%
7 647 0.1351% 99.7002%
7.5 456 0.0952% 99.7954%
8 324 0.0676% 99.8630%
8.5 265 0.0553% 99.9184%
9 173 0.0361% 99.9545%
9.5 103 0.0215% 99.9760%
10 67 0.0140% 99.9900%
10.5 27 0.0056% 99.9956%
11 13 0.0027% 99.9983%
11.5 6 0.0013% 99.9996%
12 1 0.0002% 99.9998%
12.5 1 0.0002% 100.0000%
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4.4. Positional Uncertainty Analysis of Sample Areas

Two sample areas are selected for further analysis in order to cover up the whole
functionality of DUE. Effects of cross correlation structure on model results are
analyzed in the first sample region for 95 polygons. Second example, comprising
from 30 parcel boundaries, is carried with two scenarios, first is rigid object model

and second is deformable object model with cross correlation.

In the previous analysis, involving 221 training and 479 test parcel boundaries, four
main corner vertices of 221 vector polygons are used as samples to provide
positional errors and autocorrelation structure. On these sample regions a different
method is applied for sampling. Initially 5 % of population (total humber of parcel
boundaries in each region) is sampled. Spatial random sampling is performed via
ArcGIS Desktop v9.3 Geostatistical Analyst to provide sample polygons. Afterwards,
these parcel boundaries are traced with snapping on reference data and digitized
data with different intervals. Finally, vertices of the line segments are converted to

point features and used for point based displacement calculation.

4.4.1. Analysis of Cross — Correlated Areas

First the sample region contains a number of 95 agricultural land parcel boundaries
are selected from the previous 700 polygonal vector dataset. Selected region and

region’s location in the whole dataset can be viewed in Figure 4.16.

5% of these 95 polygons are sampled to generate vertices for evaluation of error
modelling and uncertainty model parameter estimation. Sample parcel boundaries
are traced with snapping option in order to preserve exact positions of reference and
digitized data. Tracing operation is carried with 5 meters of intervals starting from
the lower left corner of polygons. This is carried out for all polygons both in

reference and digitized dataset.
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Figure 4.16 Sample Region of 95 Parcel Boundaries

For all sampled polygons, vertices for each 5 meters line segment are converted to
point features. A unique ID is given to all points in both data for matching these
points in further analysis. Preliminary assessment of positional errors is carried out
with the discrepancy of points in reference and digitized data. Selected polygons
and sample vertices can be seen on Figure 4.17.
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Figure 4.17 Sampled Polygons and Vertices for 95 Polygon Sample Region

Total number of 387 points from 5 polygons is included in calculation. Absolute
values are calculated for displacements because minus or plus signs only indicates
the direction of errors in positions. Main focus on this study is the absolute distance

variation.

Statistical measures for positional errors on X and Y axis are given in Table 4.9.
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Sample Region

Table 4.9 Descriptive statistics of Displacements in Coordinates for 95 Polygon

Errors in X Axis

Errors in Y Axis

Standard Deviation 0.85 0.94
Mean 0.98 0.97
Maximum Value 4.8 7.2

Calculated absolute valued positional errors in X and Y coordinates are converted to
“dat” file format in order to compute standardised semivariograms and cross
semivariogram. Geostatistical software package GSlib is used to construct

standardised semivariograms.

Since sample points are located within 5 meters interval, optimum lag distance
parameter for all semivariograms is selected as 5 meters while constructing
semivariograms. Optimum number of lags representing the autocorrelation structure
is found as 24 for errors on X and Y axis. However, number of lags for cross —
correlation structure is 20. All three semivariograms are displayed in Figure 4.18.

For semivariogram modelling, different model alternatives (e.g. Gaussian,
exponential, spherical) are evaluated and finally spherical model is selected as the
best fitting model for the following semivariograms given in Figure 4.18. Fitted
semivariogram models are controlled by the most powerful quality indicator —
indicative goodness of fit (IGF). These semivariogram model parameters are further

employed to construct uncertainty model within DUE.
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Figure 4.18 Semivariograms for Positional Errors and Best Fitting Models



Table 4.10 Model Parameters and IGF Results for 95 Polygon Sample Region

IGF results and parameters regarding all semivariograms are shown in Table 4.10.

Model X Model Y Model XY Cross Model
Parameters Spherical Spherical Spherical
Nugget 0 0 0.7
Sill 1 0.98 0.3
Range 46.8 58 50
I.G.F 0.007337 0.013826 0.01205

250 realisations for each polygon are created with the error model parameters
described in Table 4.10 using DUE. Parcel boundaries are defined via rigid object

model with type of movement as translation.

Parameters are entered as “expert judgement” on the modelling tab of DUE 3.1.
Standard deviations or spreads of normally distributed errors, o, ando, , are both
defined as 1 metre (Table 4.9). Normal distribution curves, regarding the coordinate
errors, are centred on the object coordinates in case of 1, = u, =0, otherwise an

offset is added to model bias. Semivariograms are modelled before they were
employed in DUE to define the dependence models. Auto-correlation and cross-
correlation structures are defined by using semivariogram parameters in the second
modelling window of DUE 3.1. Range parameters for X and Y are entered as 47 and
58 meters respectively. For auto correlation structure, sill is considered to be
constant on DUE and taken as 1. With reference to this sill value, all
semivariograms are standardised to achieve 1 meter of sill. For this test case, since
cross — correlation displays a positive structure, it can be modelled within DUE.

Parameters of range and sill are employed as 50 meters and 0.3 respectively.

Simulations are generated within DUE in ESRI shapefile file format as polygon
feature. Similar procedures explained before are repeated to obtain the uncertainty
boundaries around data. Totally, 23750 realisations are evaluated to achieve the

distribution structure around reference data.
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The uncertain boundaries are displayed in Figure 4.19.

506250 506500 506750

4516250

4516000

Figure 4.19 Resulting Uncertainty Boundaries for 95 Polygons.

Distribution of simulations around reference polygons are given in Figure 4.19 and
percentage of this spatial dispersion is displayed in Table 4.11.
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Number of Simulations

5435

1711172 56 39 18 9 7 1

1

Buffer Distance (m)

051 15 2 25 3 354 45 555 6 657 75 8 85 9 9510

Table 4.11 Percentage and Cumulative Percentage of Distributions

Figure 4.20 Distribution Graphic of Simulations.

Buffer Number of Cumulative
Distance (m) [ Simulations GG Percentage |
0.5 0 0.000% 0.000%
1 356 1.499% 1.499%
1.5 2631 11.078% 12.577%
2 5073 21.360% 33.937%
2.5 5435 22.884% 56.821%
3 4260 17.937% 74.758%
3.5 2727 11.482% 86.240%
4 1510 6.358% 92.598%
4.5 795 3.347% 95.945%
5 432 1.819% 97.764%
5.5 217 0.914% 98.678%
6 111 0.467% 99.145%
6.5 72 0.303% 99.448%
7 56 0.236% 99.684%
7.5 39 0.164% 99.848%
8 18 0.076% 99.924%
8.5 9 0.038% 99.962%
9 7 0.029% 99.992%
9.5 1 0.004% 99.996%
10 1 0.004% 100.000%
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When compared with the previous model, which ignores cross — correlation, nearly
85 % of simulations dispersed within 4 metres. However if cross — correlation
structure is considered in the model, about 86% of simulations can be covered

within a range of 3.5 metres.

4.4.2. Analysis with Different Object Models

For the second case area, a number of 30 agricultural land parcels are sub-sampled
from the vector dataset containing 700 parcels. Selected region and the location of

this sub-region within the whole dataset can be viewed in Figure 4.21.

In this example, two scenarios for manual digitization of vector data are considered;
“rigid object model” scenario and “deformable object model” scenario. A spatial
object is considered as deformable if its vertices can move separately (Brown and
Heuvelink , 2007).

In order to generate vertices for the evaluation of error modelling and uncertainty
model parameter estimation, 5% of these 30 polygons are sub-sampled. Sample
parcel boundaries are traced with snapping option in order to preserve the exact
positions of reference and digitized data. Tracing operation is carried with 2 meters
intervals, starting from the lower left corner of the polygon in clockwise direction and

the same procedure repeated for two polygons in the reference and digitized data.

Vertices of line segments, each having 2 meters length, are converted to point
features. A unique ID is given to all points in both data for matching these points in
further analysis. Initial assessment of positional errors is carried out with the

discrepancy of points in reference and digitized data.
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Figure 4.21 Sample Region of 30 Parcel Boundaries

Total number of 409 points derived from 2 polygons is included in calculation.
Absolute values are calculated for displacements since either minus or plus sign
only indicates the direction of positional error.

Selected polygons and sample vertices can be seen on Figure 4.22.
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Figure 4.22 Sampled Polygons and Vertices for 95 Polygon Sample Region

Statistical measures regarding positional errors on X and Y axis are given in the
following Table 4.12.

Table 4.12 Descriptive statistics of Displacements in Coordinates for 30Polygon

Sample Region

Errors in X Axis Errors in Y Axis
Standard Deviation 0.78 0.83
Mean 0.86 0.84
Maximum Value 3.2 2.9
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Values that are computed for positional errors in X and Y coordinates are converted
to “dat” file format to calculate standardised semivariograms and cross
semivariogram. Like in the previous analysis GSlib software tool is utilized to

construct standardised semivariograms.

As in the previous sample region of 95 polygons, optimum lag distance is selected
according to interval between sample points. As stated, 2 meters is applied as lag
distance while forming semivariograms and optimum number of lags for
autocorrelation is employed as 60 for X and Y axis and for the cross — correlation

structure semivariograms. All three semivariograms are displayed on Figure 4.18.

In model fitting, three different alternatives are assessed, then Spherical and
Gaussian semivariogram models following models are selected as the best fitting
model for X and Y coordinate errors (Figure 4.23). Spherical model is observed as
the best fitting model for cross - semivariogram of positional errors. Indicative
Goodness of Fit is used as quality indicator for assessing fitting performance of
semivariogram models (Table 4.13). Parameters that are obtained from modelling
process are entered as uncertainty model parameters within DUE to generate

simulations.

Table 4.13 Model Parameters and IGF Results for 95 Polygon Sample Region

Model X Models Y Models XY Cross Model
Parameters | Gaussian | Spherical | Gaussian | Spherical Spherical
Nugget 0.1 0.07 0.11 0.05 0
Sill 1 1 1 1 0.3
Range 38 51 61 75 41
I.G.F 0.038575 | 0.018980 | 0.136200 | 0.107400 0.2074
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Figure 4.23 Semivariograms for Positional Errors and Best Fitting Models
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4.4.2.1. Deformable Object Model with Cross Correlation

Using uncertainty model parameters, which are calculated from semivariogram
models, 250 realisations are generated for each polygon within DUE. Parcel
boundaries are defined to be deformable; where concept of deformability is

explained previously.

Model parameters are supplied as “expert judgement” since DUE does not allow
utilization of training data. Standard deviations or spreads of normally distributed
errors, o, ando, , are both considered as 1 metre (Table 4.12). Normal distribution
curves, regarding the coordinate errors, are centred on the object coordinates in
case of 4, = u, =0. Auto-correlation and cross-correlation structures are defined
by using semivariogram parameters in the modelling window of DUE 3.1. Range
parameters for X and Y are entered as 51 and 75 meters respectively. For auto
correlation structure, sill is considered as constant on DUE and thus taken as 1
meter. Based on this restriction, semivariograms are standardised so that 1 meter of
sill can be utilized. For this case, since cross — correlation displays a positive
structure, it can be modelled within DUE. Parameters of range and sill are employed

as 41 meters and 0.3 respectively.

Regarding the uncertainty model described above, simulation results performed in

DUE can be seen in Figure 4.24.
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Figure 4.24 Simulations Derived from Uncertainty Model by Deformable Object

Totally, 7500 realisations are evaluated in order to figure the spatial distribution

around reference data. These uncertain boundaries are displayed in Figure 4.25.
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Figure 4.25 Uncertainty Boundaries Derived from Simulations

Number of simulations that resides in multiple buffer zones, each separated with 0.5
meters, is counted by performing a simple spatial query in ArcGIS Desktop v9.3.
Spatial dispersion characteristics of these simulations, a histogram and a table, are
given in Figure 4.26 and Table 4.14.
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Figure 4.26 Deformable Object Model’s Distribution Graphic of Simulations

Table 4.14 Deformable Object Model’s Percentage and Cumulative Percentage of

Distributions

Buffer Number of Percentage Cumulative
Distance (m) | Simulations Percentage |

0.5 0 0.00% 0.00%

1 22 0.29% 0.29%

1.5 370 4.93% 5.23%

2 1296 17.28% 22.51%

25 1821 24.28% 46.79%

3 1773 23.64% 70.43%

3.5 1199 15.99% 86.41%

4 617 8.23% 94.64%

4.5 264 3.52% 98.16%

5 96 1.28% 99.44%

5.5 33 0.44% 99.88%

6 6 0.08% 99.96%

6.5 3 0.04% 100.00%
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4.4.2.2. Rigid Object Model with Cross Correlation

Similar procedures and model parameters utilized while exploring the spatial
distribution for deformable object model are also carried for the rigid object model
case. Rigid object model with translation is selected when defining uncertainty

model. Distribution of simulations around reference data is given in Figure 4.27 and

Table 4.15.

Number of Simulations

15211562

15 2 25 3

35 4
Buffer Distance (m)

4.5

5 55 6 65

Figure 4.27 Rigid Object Model’s Distribution Graphic of Simulations

Table 4.15 Rigid Object Model's Percentage and Cumulative Percentage of

Distributions

Buffer Number of Cumulative
Distance (m) | Simulations FETEEE Percentage |

0.5 0 0.00% 0.00%

1 206 2.75% 2.75%

1.5 1065 14.20% 16.95%

2 1521 20.28% 37.23%

2.5 1562 20.83% 58.05%

3 1265 16.87% 74.92%

3.5 875 11.67% 86.59%

4 544 7.25% 93.84%

4.5 282 3.76% 97.60%

5 123 1.64% 99.24%

5.5 36 0.48% 99.72%

6 16 0.21% 99.93%

6.5 5 0.07% 100.00%
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4.4.2.3. Comparison of Different Object Model Results

In order to compare the results of deformable and rigid object model scenarios,
uncertainty boundaries of simulations obtained from each model are overlaid in
Figure 4.28. Besides, distribution of simulations around reference dataset are tried
to be compared, however since location of vertices are scattered, this leads
implication. Similar to G-Band Model, for deformable objects, it is assumed that
uncertainty band width gets narrower towards the midpoints, by other means in un-

sampled locations.

Main objective here is achieving the smallest uncertainty bandwidth containing
reference data. Thus, uncertainty boundaries representing error models should
exhibit the possible optimum bandwidth. As wider bandwidths create loose regions,
false inclusion and exclusion regions; narrower bandwidths probably end up with
exclusion of reference data, so that uncertainty band fails to represent uncertainties

in manual digitizing.
In this study, deformable object model gives the best possible uncertainty

boundaries for parcel boundaries. As can be followed from Figure 4.28, rigid object

model generates wider bands but also includes superfluous regions.
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Figure 4.28 Overlaid Uncertainty Boundaries of Rigid and Deformable Object Model

4.5. Area Uncertainty Analysis

Since areas of agricultural parcels are sensitive to the changes in polygon positions,

effect of positional uncertainty on area attribute is also investigated in this study.
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Inner and outer simulation boundaries are converted into polylines, merged into new
shapefile and dissolved as multipart polyline objects representing inner and outer
simulation boundaries which resemble a donut like shape (Figure 4.29). This donut
like shapes is overlaid with the reference data and possible inclusion, exclusion

areas are calculated for each of 30 polygons (Table 4.16).

I:l Inclusion Region
|:| Exclusion Region
RIGID OBJECT MODEL DEFORMABLE OBJECT MODEL
20 20
[ Ineters [ IMeters

Figure 4.29 Inclusion and Exclusion Regions for Parcel Boundaries

Accuracy of area is influenced by vague locations of point positions. Resulting areas
calculated with respect to these inaccurate input values generate unreliable results.
However, these results create awareness about the accuracy of data by supplying

preliminary information about the true nature of the data.
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With reference to Table 4.16, it can be figured out that deformable object model
creates more accurate and reliable results compared to the rigid object model. It
should be noticed that mean values of rigid method, both for excluded and included

regions, are higher than the mean values observed for deformable one.

Table 4.16 Inclusion and Exclusion Areas for Deformable and Rigid Object Models

Deformable Object Model Rigid Object Model
ID Area_ Are? Area_ Are?
Exclusion Inclusion Exclusion Inclusion

1 776.13 1205.25 1053.45 2493.88
2 1114.05 811.02 1317.23 2284.05
3 1061.48 955.80 1256.42 2433.24
4 1280.05 954.44 1274.28 2263.12
5 937.93 993.73 1073.90 2293.52
6 1305.03 669.91 2005.57 3314.13
7 1121.93 1251.78 1354.11 2715.53
8 823.13 672.04 1023.96 1839.04
9 667.04 672.57 788.07 1593.64
10 736.25 537.28 1057.90 1795.75
11 1020.54 837.80 1308.52 2465.44
12 670.14 1077.09 971.51 2318.05
13 1167.92 511.53 1260.54 1928.18
14 872.14 680.85 1193.71 2150.67
15 844.90 964.35 1159.57 2280.50
16 686.60 890.96 846.93 2019.91
17 988.01 1252.21 1117.19 2604.36
18 538.47 929.72 679.92 1728.15
19 1491.69 975.17 1817.64 3033.95
20 1224.32 1777.55 1633.03 3810.13
21 1304.21 1592.90 1522.46 3355.23
22 1910.96 883.99 2173.50 3380.62
23 2021.77 1131.85 2334.34 3905.54
24 1605.35 1795.78 1861.34 3685.96
25 979.90 1086.94 1350.17 2842.16
26 1468.78 1848.64 1716.06 4053.26
27 1236.54 1229.21 1621.60 3222.04
28 1022.14 770.57 1237.37 2221.20
29 1098.41 1140.65 1408.55 2993.29
30 1039.11 938.22 1248.23 2278.88
Mean 1100.50 1034.66 1355.57 2643.45
Std. Deviation 350.75 351.30 396.42 686.73
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4.6. Discussion of Results

In this chapter a general framework of error analysis for vector polygonal fields are
introduced using Data Uncertainty Engine. Previous studies mainly concentrated on
points, lines or line segments, because of computational difficulty in defining

positional uncertainty of polygon data model.

Generating simulations with Monte Carlo Simulation (MCS) method of possible
feature locations from a defined probability distribution function (pdf) is the main

principle running behind DUE.

When analyzing positional uncertainty, geostatistical estimation of spatial correlation
structure which is developed by Zhang and Kirby (2000) is employed. According to
Tobler’s first law of geography “Everything is related to everything else, but near
things are more related than distant things”, spatial dependence in geographical
objects requires more than just statistical evaluation. Semivariogram analysis —
which is a major part of geostatistics - accounts for distances between spatial
objects when representing correlation structures. Because of reasons that are
explained, use of geostatistics in uncertainty analysis improved error modeling in
GIS.

Three different case studies using the same area are conducted in the study. First
case concentrates on modeling positional uncertainty within large dataset. 221 and
479 training and test parcels, respectively are managed using corner points of
polygons. In large dataset, it is computationally hard to model cross correlation
structure when compared to relatively small ones. It is observed that in the absence

of cross — correlation structure uncertainty boundaries showed an epsilon error band

model structure, which gives a buffer region around data with a distance of & .
Departure of 55250 simulations from true value is examined. From all the
realisations derived, with 85.90% probability, digitized vectors contain an error of 4

meters in training data. In test data number of simulations per each polygon is
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selected as 1000, so that resulting 479,000 simulations are evaluated. Compared to
training set, it is observed that distribution of simulations display a more dispersed
range of 12.5 meters. In training data, 4 meters distance contain 85.902% of all

simulations, but in test data 4 meters of distance cover up 89.87% of all realisations.

Also efficiency of different semivariogram models (namely exponential, gaussian
and spherical) is compared on this dataset. Semivariogram models’ parameter
values and goodness of fit results presented similar results, so that in the
uncertainty analysis simulations derived from these parameters shows slight

differences.

In second and third case studies a different sampling method is employed, instead
of corner points, 5% of population selected as training data and divided into line
segments. End points of these line segments are used to calculate positional errors.
Small magnitude positional errors are provided with this method because line
segments produce consequent sample points (2 meters and 5 meters) within the

same polygons which can not divert far away from each other.

In second example cross correlation structure in positional uncertainty modelling is
evaluated on 95 polygons. When compared with the previous model, which ignores
cross — correlation, nearly 85 % of simulations dispersed within 4 metres. However if
cross — correlation structure is considered in the model, about 86% of simulations
can be covered within a range of 3.5 metres. Modelling cross correlation improves

resulting uncertainty bands.

Last case area focuses on deformable and rigid object model results. First two
examples use rigid object model due to model constraints. In this case a region of
30 polygons are modelled both rigid and deformable model with the same error

model, and results are compared.

Distribution of simulations are scattered around vertices in deformable object model,

this is because of separately calculated pdf for each vertices in the object model
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however rigid object model assumes one pdf for all errors. Similar to G-Band Model,
for deformable objects, it is assumed that uncertainty band width gets narrower

towards the midpoints, by other means in un-sampled locations.

In this study it is aimed to attain the smallest uncertainty bandwidth containing true
position of data. Wide bandwidths create loose regions and narrow bandwidths
probably end up with exclusion of reference data, so that uncertainty band fails to
represent uncertainties in manual digitizing. Deformable object model gives the best

possible uncertainty boundaries for parcel boundaries.

Weighted averages of realisations’ departure from true locations for 3 case studies
are computed. Number of simulations lying in each buffer distance is multiplied with
buffers’ distance to reference polygons. Afterwards, summation of these
multiplications is divided to total number of simulations in each case. A summary of
all cases with results are given in Table 4.17. Weighted average positional error for

this study is between 2.66 to 2.91 meters for all cases.

To assess inclusion and exclusion areas of uncertainty bands, area analysis is
performed comparable with rigid and deformable model results. Rigid object model’s
falsely included and excluded regions are higher than deformable model. This also
proves efficiency of deformable model for representing uncertain polygonal vector
data.

Another issue observed in this study that when generating simulation, rigid object
model gives a shift to polygon according to a distance and direction; however
deformable model concentrates on errors in vertices. This implies the assumption of
de Bruin et al. (2008) that rigid object model can be used to assess geometric
correction, rectification of aerial photographs or satellite imagery; however

deformable model represents human error better.
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CHAPTER 5

CONCLUSIONS AND RECCOMENDATIONS

In this chapter, the conclusions of the conducted study are described together with

the recommendations for further studies related with GIS and uncertainty analysis.

5.1. Conclusions

In conventional analyses, where agricultural field boundaries are obtained from field
surveys, GPS measurements and digitizing from high resolution imagery are
assumed to have exact spatial boundaries, however in reality there is an amount of

uncertainty about the border lines.

A general positional uncertainty analysis method is demonstrated in this study that
can be used to verify positional accuracy of manual digitizing operations. In this
implementation, Data Uncertainty Engine (DUE) is employed which is a free
software that aids user in defining probability distributions for uncertain spatial

objects and draws random samples from these distributions.

On the previous studies of uncertainty analysis, mainly point and line feature spatial
entities are handled within different applications. In this study, uncertainty analyses
are performed for polygonal vector data that are manually digitized from satellite

imagery.

If user does not have any previous lineage information about digitized data and
using the cadastral information of studied region, positional accuracy must be
studied to raise the awareness about data. But GIS applications are not eroor-free
due to the error may occur from natural variation. Error-aware datasets allows user

to describe more reliable outputs from GIS operations.
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Use of geostatistical techniques as semivariograms for defining autocorrelation and

cross - correlation structures increased the consistency of model outputs.

Two different sampling methods - first is using the corner vertices from the selected
training set (221 polygons) and second using selecting 5% of population with spatial
random sampling and then using the 2 and 5 metered interval vertices - are used to

identify uncertainty model within DUE and all worked well on the data.

DUE’s functionality works well within relatively small regions. In the example region
of 30 polygons, both deformable and rigid object model are applied easily. However
as the number of data increased application can’t create variance — covariance
matrix to derive simulations. Also the cross — -correlation structure gets
computationally hard to define in large number of samples. In this study, the
smallest sample of 30 polygons can be easily modelled with cross — correlation
structure and both in deformable and rigid object model, but in 95 sampled example

uncertainty model can only be applied to rigid object model with cross — correlation.

Cross correlation structure increased the reliability and precision of uncertainty
boundaries around reference data. Resulting uncertain bands are narrower
compared to uncertainty models without cross — correlation structure between X and
Y positional errors. In the model applied without cross correlation, the bandwidths
expand at most 12.5 meters but in the examples modelled with cross correlation,
first region maximum bandwidth is 10 meters and in the second sample area

maximum bandwidth is 6 meters.

Best results are found for deformable object model because in deformable model it
is assumed that every vertex has its own error distribution and points are considered
independent from each other. However in rigid object model, point movements in
simulations are modelled with the same joint probability distribution function.
Deformable object model gives the best possible uncertainty boundaries for the
parcel boundaries in the study. Because in deformable object model, similar to G-

Band model output, it is assumed that, uncertainty bandwidth gets narrower towards
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the midpoints, by other means un-sampled locations. Rigid object model generate

wider bands but also includes superfluous regions.

It can be concluded that human digitising errors, which is the main focus of this
study, are represented better with deformable object model, however rigid object

model is more convenient for ortho-rectification alignment errors.

5.2. Recommendations

Correlations are assumed to depend on the distance between points. But in the
study conducted by De Bruin et.al.(2008) a field boundaries are measured with
different GPS equipments — both real time kinematic, hand held differential GPS —
and data collected from these measurements are modelled as time series data.
Another study can be executed using GPS measurements of four corner vertices of
field boundaries and the discrepancy between the selected points can be modelled

for uncertainty analysis

In this study, main focus is on the human digitising errors so that the area is
selected with respect to the agricultural field density where there is low altitude
variation, which is also corrected by ortho-rectification. In remotely sensed images
height of geographical objects may cause positional bias in terms of X and Y
coordinates of feature. Therefore potential errors that may occur depending on the

height of buildings due to perspective distortion can also be modelled within DUE.

Data quality studies for multiple user systems can also be studied for private sector
initiatives to improve metadata characteristics. Average positional errors acquired

from different users can be included in lineage information.
Also the error propagation of DEM, used in ortho-rectification, can be modelled in

future studies. Combined uncertainty of error generated via orthorectication, DEM

error and operator’s error of digitisation is should be studied within such a study.
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However the data used in the study has only the areas as attributes, attributes which
are affected by the positions of data can also be evaluated. Amount of fertilizer
needed for harvesting, mineral deposit amount of the land or soil salinity can be
listed among the examples of attributes that are affected by the position and area of

the objects.

Since crop heights in agricultural fields affect the visibility of the borderlines,
uncertainty of the digitisation process that is arising with respect to the agricultural
crop pattern can be investigated. For instance, long crops tend to create vagueness
and the uncertainty increases parallel to the height of the crop. Satellite imagery
utilized in this study include 4 bands, if such an NDVI study is willing to be executed
especially near infrared and red bands should be used to classify crop pattern on
the region. For instance wheat as a long crop type, wheat and harvested wheat
exhibits nearly the same reflectance value either in visible or near infrared band.
From this perspective, in addition to spectral operations (e.g. NDVI), a field survey
study should be undertaken in order to properly analyze the effects of crop pattern

on uncertainty studies.
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APPENDIX A

RESIDUAL REPORT OF QUICKBIRD IMAGERY

Table A.1. Full residual report for image including GCPs

GCIII’JITP Error Er;or Er;or Type Im;ge Im$ge Com)rzuted ComYputed
G0001 0,83| 0,46 0,7| GCP 13274 9559 13274,5 9559,7
G0002 0,29| 0,27 -0,11| GCP 16106 | 13201,5 16106,3 13201,4
G0005 0,92| -091| 0,14| GCP 10002 9269 10001,1 9269,1
G0007 0,49| 0,39 -0,3| GCP 14894 10443 14894 ,4 10442,7
G0008 0,7| -0,5| 048| GCP 14649 7610 14648,5 7610,5
G0010 0,73| -0,17| 0,71| GCP 9784,5 5200 9784,3 5200,7
G0011 1,02 -0,87| -0,53| GCP 6493 6770 6492,1 6769,5
G0013 1,27 -0,8| -0,99| GCP 3255 6714 3254,2 6713
G0014 0,4 0,31| -0,26| GCP 6502,5 1302 6502,8 1301,7
G0015 1,34 -1,14 0,7| GCP 4749 646 47479 646,7
G0018 0,9 0,53| 0,73 GCP 11791 13109 11791,5 13109,7
G0024 0,76| 0,73| -0,23| GCP 14069 10929 14069,7 10928,8
G0025 0,81| 0,62 0,52| GCP 12693 10731 12693,6 10731,5
G0034 1,42 1,42| 0,07| GCP 9052 6843 9053,4 6843,1
G0036 0,85| -0,79| -0,31| GCP 17503 13057 17502,2 13056,7
G0037 0,31| -0,24| -0,19| GCP 18078 15293 18077,8 15292,8
G0039 0,52| -0,1| -0,51| GCP 15783 14011 15782,9 14010,5
G0040 0,36| 0,15 0,33| GCP 12733 12858 12733,2 12858,3
G0042 1,2| -1,17| -0,24| GCP 5342 5930 5340,8 5929,8
G0045 1,49( -0,61| -1,36| GCP 8908 12417 8907,4 12415,6
G0047 1,33 1,02| 0,86| GCP 6962,5 4167 6963,5 41679
G0052 1,24 0,37 1,18| GCP 8323 9102,5 8323,4 9103,7
G0053 1,38 -1,37| -0,1| GCP 15141 6314,5 15139,6 6314,4
G0054 0,86| 0,82 0,27| GCP 18010 5280 18010,8 5280,3
G0058 0,91| 0,61| 0,67| GCP 16491 6399 16491,6 6399,7
G0060 0,44| 0,43| -0,06| GCP 15708 8343 15708,4 83429
G0062 0,9 0,22| -0,87| GCP 17791 5978 17791,2 5977 .1
G0063 0,57| 0,48| 0,32| GCP 13805 6452 13805,5 6452,3
G0064 1,17| -0,58| 1,02| GCP 13388 6947,5 13387,4 6948,5
G0067 1,19( -1,19 0,1 GCP | 12999,5 7838,5 12998,3 7838,6
G0068 1,12| -0,54| -0,99| GCP 15812 4993 15811,5 4992
G0069 0,53| 0,35| -0,39| GCP 14719 9359 14719,4 9358,6

105




G0070 0,62 -0,16( -0,6| GCP 14385 5548 14384,8 5547,4
GO0071 0,64| -0,15| -0,62| GCP 14608 7108 14607,9 7107.,4
G0072 1,19| 0,28| 1,16| GCP 5760 2713,5 5760,3 2714,7
G0074 1,18| 0,11| 1,17| GCP 3124,5 3750 3124,6 3751,2
G0075 1,21 0,72 -0,97| GCP 3364 5734 3364,7 5733
G0076 1,06| 0,16| -1,05| GCP 3812 4838 3812,2 4837
G0079 1,41| 0,64| -1,26| GCP 4345 1157 4345,6 1155,7
G0080 0,47| 0,31 -0,35| GCP 16694 13144 16694,3 13143,6
G0081 0,65 0,63 -0,15| GCP 15673 13009 15673,6 13008,8
G0082 1,2 -0,95| 0,73| GCP 13483 13109 13482,1 13109,7
G0083 0,94 -0,21( 0,91| GCP 12315 12719,5 12314,8 12720,4
G0084 0,7| -0,55| -0,43| GCP | 13319,5| 98915 13318,9 9891,1
G0087 1,29 1,2| 0,48| GCP 14026 | 11160,5 14027,2 11161
G0088 0,73 -0,71| 0,17 | GCP | 13584,5 11512 13583,8 11512,2
G0090 1,29| 1,27| -0,23| GCP 8412,5| 11012,5 8413,8 11012,3
G0091 1,35 -1,27| -0,46| GCP 12644 9636 126427 9635,5
G0092 092 0,82 043| GCP 10959 6115 10959,8 6115,4
G0095 0,61 -0,53( -0,3| GCP 16268 5553 16267,5 5552,7

Residual Summary for image

GCPs: 50

XYRMS= 0,98 XRMS= 0.72 YRMS= 0.67

* Residual units as image pixels
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