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ABSTRACT 
 

 

ADAPTATION OF A CONTROL SYSTEM  
TO  

VARYING MISSILE CONFIGURATIONS 
 

 

Ekinci, Özgür 

M.S. Department of Aerospace Engineering 

 Supervisor : Assist. Prof. Dr. İlkay Yavrucuk 

 

December 2009, 90 pages 

 

Varying missile configurations may create uncertainty for a missile control 

algorithm developed with linear control theory, for instance the control system 

performance requirements may not be satisfied anymore. Missile configuration may 

change during the missile design period due to variations in subsystem locations, 

subsystem weights and missile geometry. Likewise, burning propellant, deployment 

of aerodynamic surfaces and wings with varying sweep angle can be considered as 

in-flight missile configuration changes. This thesis study addresses development 

and analysis of an adaptive missile control algorithm to account for the uncertain 

effects caused by varying missile configuration. 

Control algorithms, designed using pole placement, are augmented with adaptive 

neural networks. The resulting controller is a type of model reference adaptive 

controller. Adaptation characteristics of the augmented control algorithms are 

investigated to changing center of pressure location and missile geometry. Analyses 

are performed for three different missile configurations using simulation. 

 

Keywords: Missile, Neural Networks, Adaptive Augmentation, 
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ÖZ 

 

 

DEĞİŞEN FÜZE KONFİGÜRASYONLARINA 

KONTROL SİSTEMİ ADAPTASYONU 

 

 

Ekinci, Özgür 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

 Tez Yöneticisi : Yar. Doç. Dr. İlkay Yavrucuk 

 

Aralık 2009, 90 sayfa 

 

Değişen füze konfigürasyonları, lineer kontrol teorisi ile geliştirilen füze kontrol 

algoritmaları için, kontrol sistemi performans gereksinimlerinin karşılanamayacağı 

şekilde belirsizlik yaratabilmektedir. Füze konfigürasyonu, tasarımı süreci sırasında 

alt sistem yerleşiminin, alt sistem ağırlıklarının ve füze geometrisinin farklılaşması 

sebebi ile değişebilir. Ayrıca, yanan yakıt, açılan aerodinamik yüzeyler ve değişen 

kontrol yüzeyi süpürme açısı, uçuş sırası füze konfigürasyon değişiklikleri olarak 

değerlendirilebilir. Bu tez çalışması, değişen füze konfigürasyonlarının neden 

olduğu belirsiz etkilerin telafi edilmesi amacı ile adaptif füze kontrol 

algoritmalarının geliştirilmesi ve analizini gösterir.  

Kök yerleştirme ile tasarlanan kontrol algoritmaları, adatif sinir ağları ile 

geliştirilmiştir. Ortaya çıkan kontrolcü, bir çeşit model referans adaptif 

kontrolcüdür. Geliştirilmiş kontrol algoritmalarının, değişen ağırlık merkezi ve füze 

geometrisine adaptasyon karakteristiği incelenmiştir. Üç değişik füze 

konfigürasyonu için benzetim aracı kullanılarak analizler yapılmıştır. 

 

Anahtar Kelimeler: Füze, Sinir Ağı, Adaptif Geliştirme
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CHAPTER 1 

1 INTRODUCTION 
 

 

 

 

1.1 Problem Statement 

The overall performance of a missile is a strong function of the control system 

performance. Missile control algorithms developed with linear methods are often 

subject to model uncertainties originated by varying missile configuration, 

unmodeled dynamics, low fidelity aerodynamic models, and actuator failures etc. 

Uncertain effects may cause degradation in performance of a missile control 

system. Within the scope of this thesis, changes in configuration of a missile system 

are studied. Missile configuration may change during missile design period due to 

variations in subsystem locations, subsystem weights and missile geometry. Also, 

missile configuration may change during the flight because of the burning 

propellant, deployment of aerodynamic surfaces and wings with varying sweep 

angle. 

This thesis research applies an adaptive control algorithm to account for the effects 

caused by varying configuration, such that the system satisfies the performance 

requirements. Therefore, existing control algorithms are augmented with neural 

networks. Performance of the augmented control algorithms are analyzed for 

changing center of gravity location and changing missile geometry using 

simulations for three different missile configurations. First missile configuration is 

selected to be the baseline configuration and the second and third missile 

configurations are modified by varying the center of gravity location and shape of 

the missile aerodynamic surfaces respectively. 
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1.2 Literature Survey 

Most missile control systems are designed using classical control methods which 

are based on well known PID and three loop control architectures. PID algorithms 

have shown to be suitable and perform adequately for missile acceleration control 

[1]. Likewise, acceleration control systems based on three loop control is a common 

control technique including the rate stabilization loop, synthetic stabilization loop 

and acceleration loop [2]. With three loop control method acceleration response of 

missiles is found out to be quite well [3]. For both PID and three loop architectures, 

measurable outputs like acceleration (with accelerometers) and angular rates (with 

gyroscopes) are used as feedback [3]. This is an important property since it 

alleviates the need for observers to estimate unmeasured states. Implementations of 

both control methods require gain scheduling to maintain flight stability and control 

[1] & [3]. 

Another common approach to control missile acceleration is pole placement. 

Theory of this technique is based on assigning the closed loop poles to desired 

locations. To find the desired pole locations, dominant poles are placed as the 

desired response is satisfied and the remaining poles are placed such that their effect 

on closed loop dynamics are small [4]. Alternatively, LQR like methods based on 

optimum control theory is used to determine desired pole locations. Unfortunately, 

state feedback designs require knowledge of full state parameters. However, 

common problem for designers is that these parameters are often unmeasured and 

have to be estimated. There exists an output feedback theory presented in [4] for the 

state observer based extension of the previous approaches. Alternatively, Kalman 

estimator extension of LQR architecture known as LQG is a solution to full state 

feedback problem. LQG method is designed considering a Gaussian measurement 

noise and it is feasible to implement this architecture on a control system with noisy 

measurements. Pole placement methods usually satisfy the desired performance for 

missile acceleration control if designed well as is shown in this thesis and [4]. 

In order to analyze the problem defined in the previous section, adaptive control 

methods are investigated. Some application of adaptive control theory to missile 
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systems are based on adaptive dynamic inversion control, L1 adaptive control and 

reference model following adaptive control approaches. 

Dynamic inversion control is a technique using the approximate model inverse to 

create control signals and compensate the modeling error by adding an adapting 

control signal. One way to calculate adaptive control signal is using neural networks 

as in this study. Also, angle of attack and side slip angle control of bank to turn 

missiles are presented in [5] and [6]. Simulation results in these references have 

shown that achieving both rapid learning and robustness is difficult. Also, 

introductory study on lateral acceleration control system for a skid to turn missile 

based on adaptive dynamic inversion is presented in [7]. 

Methods for neural network augmentation of existing control systems implement a 

reference model defining the desired dynamics and an adaptive structure to 

compensate for errors caused by modeling and linearization. There are several 

application examples of this method as adaptation of control gains directly or 

augmentation of an existing state/output feedback controller with neural networks. 

Some applications of this method to augment an existing controller is given in [8] 

[9] and [10]. An augmentation of a simple PI controller for a nonlinear system is 

presented in [8]. Simulation results indicate that reference model tracking for a 

simple system is acceptable. Similar approach as in [8] is applied to JDAM guided 

bomb for angle of attack control and tracking of the reference model is achieved 

with a time delay. Also [10] presents simulation results of an arbitrary open loop 

and closed loop reference model following architectures developed with the 

observer based output feedback extension. Simulation results in this study showed 

significant improvements by means of control system performance with 

applications to guided projectile, micro adaptive flow control actuators and several 

numerical examples. 

Adaptive control technique called L1 is developed to filter unwanted high 

frequency signals on the adaptive control signal observed at some model referenced 

adaptive control approaches [11]. Removal of high frequency adaptive control 

signals that disturb the system let the designer to increase learning rates for the 

adaptive structures. An application of this method for unmanned combat air vehicle 
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X-45A is presented in [12] and it’s shown that results obtained with this method are 

superior to ones obtained with a model reference adaptive control approach. 

 

1.3 Motivation and Contribution of this Thesis 

Motivation of this thesis is to augment the existing control system of an agile 

missile system to adapt to configuration changes such that the performance 

requirements are still satisfied.  

Contributions of this thesis are, 

• Effect of change in missile center of gravity location on control system is 

analyzed. 

• Effect of change in external missile geometry on control system is analyzed. 

• Adaptive neural network augmentation of existing pole placement control 

algorithm of an agile missile system is performed using model reference 

adaptive control approach. 

• Different adaptation characteristics with the augmented control algorithms 

are shown. 

 

1.4 Thesis Outline 

Chapter 1 introduces the problem and gives references about the theory and 

applications. 

Chapter 2 presents theoretical background on used control system design methods, 

formulations and control architectures. 

Chapter 3 explains the design approaches, models and simulation related studies to 

be used in the analysis of the control systems. 

Chapter 4 includes autopilot performance requirements, design approaches and 

autopilot design parameters on some design conditions. 

Chapter 5 presents analysis results for several design conditions. 

Chapter 6 discusses analysis results and presents the conclusions. 
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CHAPTER 2 

2 PRELIMINARIES 
 

 

 

 

2.1 Pole Placement Method [4] 

To design control systems with the pole placement method, different approaches 

depending on the plant type are used. To design type 1 closed loop systems with 

this method, two different approaches are used depending on whether the plant 

itself is type 1 or type 0 [4]. Type of a system is determined by the order of “s” 

multiplier in the characteristic equation in other words with the number of 

integrating actions. In control engineering, type of a closed loop system is important 

to interpret the steady state error characteristics depending on the reference input. 

A type 1 closed loop system design method is presented in Figure 2.1.  

 

 

 

∫
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Figure 2.1 Pole Placement Method for a Type 1 Plant 
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Open loop system model is given in (2.1). 

 1 1 1

1 1

n n n n n

n n

x A x B u
y C x

× × × ×

× ×

= +
=

 (2.1) 

 

For the following input signal u, closed loop system dynamics are found as in (2.2) 

1 1 1n nu K x K r× ×= − +  

 1 1 1 1 1 1

1 1

( )n n n n n n n

n n

x A B K x B K r
y C x

× × × × × ×

× ×

= − +
=

 (2.2) 

Where, 

 [ ]1 1 2n nK K K K× =  

Feedback gain vector K is calculated with Ackerman’s Formula such that poles of 

the closed loop system are assigned to desired locations on s plane. 

Next architecture which is pole placement approach for type 0 plants is presented in 

Figure 2.2 [4]. This method adds an integrating action in order to increase the order 

of the closed loop system such that it is type 1. This property is desired since 

response of type 1 systems is better compared to type 0 systems in terms of steady 

state error. 
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Figure 2.2 Pole Placement Method for a Type 0 System Model 
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Open loop system model is given in (2.3). 

 1 1 1

1 1

n n n n n

n n

x A x B u
y C x

× × × ×

× ×

= +
=

 (2.3) 

For the following input signal u, closed loop system dynamics are found as (2.4). 

 1 ( 1) ( 1) 1
ˆ ˆn nu K x× + + ×= −  

 ( 1) 1 ( 1) ( 1) ( 1) 1 ( 1) 1

1 ( 1) ( 1) 1

ˆ ˆˆ ˆ
ˆ ˆ

n n n n n

n n

x A x B u

y C x
+ × + × + + × + ×

× + + ×

= +

=
 (2.4) 

Or in open form, 

[ ]

1 1 11 1 1

1

1
1

( ) 0
0 1

0

n n n n n In n n

n

n
n

A B K B Kx x
r

C

x
y C

ξ ξ

ξ

× × × ×× × ×

×

×
×

− ⋅ ⋅⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

 

Where, 

 [ ]1 ( 1) 1
ˆ

n n IK K K× + ×= −  

Feedback gain vector K̂ is calculated with Ackerman’s Formula using the closed 

loop system matrices Â and B̂ such that poles of the closed loop system are 

assigned to desired locations on s plane as in the previous case.  
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2.2 Existing Control System Augmentation [10] 

Arbitrary reference model following adaptive control approach presented in Figure 

2.3 is used to augment the existing pole placement control system as presented in 

[9] and [10]. 

 

 

 

Reference 
Model
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Controller

Adaptive
Structure

cy u y

Ry

e

u
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Figure 2.3 Closed Loop Augmentation Architecture 

 

 

 

To explain the errors cancelled with adaptive structure, error dynamics is 

formulated. Missile dynamics can be considered as an observable and stabilizable 

nonlinear SISO system in normal form [13] as given in (2.5).  

 

1 2

1

1

( , , )
r r

r r

x x

x x
x h u
y x

−

=

=
=
=

z = f(z, x)

z x

 (2.5) 
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Where n r−∈z  are states of internal dynamics, 1[ ] r
rx x= ∈x  are states of 

output dynamics, ,u y∈  are control and measurement variables, f and h are 

sufficiently smooth partially known functions, and r is the relative degree of the 

system. 

As a reference model rth order linear stable system with full relative degree in (2.6) 

is selected. 

 

1 2

1

1

r r

r

m m

m m

m r c

m m

x x

x x

x D y

y x

−

=

=

= +

=
r mC x

 (2.6) 

Or, 

 c

m

y

y

= +

=
m m m m

T
m m

x A x b

c x
 (2.7) 

Defining tracking error as me y y= − , the error dynamics can be expressed from 

(2.5) and (2.7) as, 

 
( ( , , ))AD c ADu y u

y e

+ −Δ

= =
m m

T
m

E = A E b x z,

c E
 (2.8) 

Where 
1[ ]re e e −=E  

1
1( , , ) ( ( , ,..., , ) )c AD r r r r c ADy u D h x x u C y u−Δ = − − +mx z, z x  

Control goal with this approach is to design an adaptive control input such that it 

cancels modeling errors defined by Δ . 

For the adaptive structure presented in Figure 2.3, neural networks is selected. 

There are various neural network architectures such as Radial Basis Function 

Neural Networks and Single Hidden Layer Neural Networks [9] that are used to 

augment the control systems. 
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Single Hidden Layer Neural Network, a nonlinear in the parameters feed forward 

neural network structure, is used as an adaptive element. Details of the formulation 

of SHLNN are given in references [8], [9] and [14]. 

 

 

 

σ(θ1)

.

.

.

σ(θ2)

bw

X1

X2

bv

σ(θn)
Xm

.

.

Input
Layer

Hidden
Layer

Output
Layer

V̂ Ŵ

μ

σ(θ)

 
Figure 2.4 SHL Neural Network Structure 

 

 

 

Existing control system augmentation with neural networks is done as, 

 EC ADu u u= −  (2.9) 

 

 ( )ˆ ˆT T
ADu = W σ V μ  (2.10) 
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Sigmoid activation function σ  is defined as given in (2.11). 

 1( )
1 ae θσ θ − ⋅=
+

 (2.11) 

Also the input - hidden layer and hidden - output layer weights V̂  and Ŵ  are 

defined as,  

 

1,1 1,2 1,

,1 ,2 ,

1 2

ˆ

n

m m m n

b b bn

v v v

v v v
v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

V  (2.12) 

 

1

ˆ
n

b

w

w
w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

W  (2.13) 

The input vector μ  hidden layer activation function vector σ  is defined as 

 

1

m

v

X

X
b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

μ  (2.14) 

 

1( )

( )
( )n

wb

σ θ

σ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

σ θ  (2.15) 

Derivation of adaptation laws required to adapt neural networks weights Ŵ  and V̂  

in (2.10) includes the following steps. 

1. Define the error dynamics. 

2. Define a Lyapunov energy like function ˆ ˆ( , , )V e V W  

3. Perform Lyapunov stability analysis finding the ˆ ˆ( , , )V e V W  

4. Conditions satisfying stability requirement ( ˆ ˆ( , , ) 0V ≤e V W ) gives the 

adaptation laws that guarantee stable error dynamics outside a compact set 

in the error state space also implying that all the parameters are bounded. 
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Performing these steps, adaptation laws [8] in (2.16) are found. 

 
ˆ ˆ ˆ ˆ( ( ) )

ˆ ˆ ˆ ˆ ˆ(( ( ) ( ) ) )

T T
V

T T T
W

λ

λ

= −Γ +

′= −Γ − +

V μζW σ V μ ζ V

W σ V μ σ V μ V μ ζ ζ W
 (2.16) 

Where VΓ , WΓ  represents learning rates, λ  represent e-modification gain and ζ  

defined as, 
T=ζ e PB  

 

Also ′σ  is the Jacobian of σ  and defined as, 

 

1

1

( ) 0

( )
( )0

0 0 0

n

n

d
d

d
d

σ θ
θ

σ θ
θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

′ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

σ θ  (2.17) 

Where, 

( ) ( ) (1 ( )) 1...i
i i

i

d a i n
d
σ θ σ θ σ θ
θ

= ⋅ ⋅ − =  

To show the boundedness of the signals in the closed loop control algorithms the 

following assumptions are made. 

 

Assumption 2.1: The true plant given in (2.5) is minimum phase, i.e. internal 

dynamics z = f(z, x)  with x = 0  are asymtotically stable. 

 

Assumption 2.2: The existing controller is bounded input – bounded output stable. 

Adaptive control signal introduced in (2.9) is computed with the neural network as 

follows. 
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Then, Theorem 2.1 guarantees the boundednes of the signals in the control system. 

 

Theorem 2.1: Consider the system (2.5) under the control of existing control 

algorithm and neural network augmenting controller. Let Assumption 2.1 and 

Assumption 2.2 hold. Then all the signals in the augmented missile system are 

uniformly ultimately bounded [10]. 

 

One design restriction is that parameters and errors may grow outside the allowable 

bounds in the compact set discussed above (derivative of Lyapunov function is 

positive in that set). So the neural network parameters should be tuned such that the 

size of the compact set is allowable. However, finding the optimum parameters for 

the augmentation scheme may require many simulations. 
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2.3 Frames of Reference and Coordinate Axes 

Right handed coordinate axes are used as a convention. Since the missile to be used 

in analysis is a short range missile, non-rotating, non-accelerating and flat earth is 

assumed. Hence, any reference frame defined on the earth is assumed to be an 

inertial frame of reference relative to which Newton’s laws of motion are valid. 

 

2.3.1 Earth Fixed Reference Frame FE (Axes, OEXEYEZE)  

Earth-fixed reference frame is defined on the ground plane as shown in Figure 2.5. 

Origin of the earth-fixed reference frame is defined at a point on the ground from 

which the initial position vector to missile is perpendicular to the ground plane. 

OEXE axis is defined in any convenient direction. OEYE axis is also on the ground 

plane to the right of OEXE direction and OEZE axis is downwards. 

 

 

Ground Plane

EX

EY

EZ

EO

Launch
Platform

Target

Missile

 
Figure 2.5 Earth Axes 
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2.3.2 Missile Body Fixed Reference Frame FB (Axes, OBXBYBZB) 

Missile body-fixed reference frame is attached to center of gravity of the missile as 

shown in Figure 2.6. OBXB axis is longitudinal axis pointing forward direction of 

the missile. OBYB axis is lateral axis to the right and OBZB axis is vertical axis to the 

down, at the missile back view. 

 

 

 

BX

BZ

BO

BY

 
Figure 2.6 Missile Body Axes 

 

 

 

2.3.3 Thrust Reference Frame FF (Axes, OFXFYFZF) 

Origin of thrust reference frame is attached to the nozzle as presented in Figure 2.7. 

OFXF axis is aligned to thrust vector. OFYF axis is always in XBYB plane 

perpendicular and to the right of OFXF. OFZF axis is defined such that it’s 

orthogonal to XFYF plane completing a right handed coordinate axes.  

 

2.3.4 Wind Reference Frame FA (Axes, OAXAYAZA) 

Origin of wind reference frame is center of gravity of the missile and coincides with 

OB as shown in Figure 2.8. OAXA axis is always aligned with wind vector. OAZA 

axis is defined such that it is always in XBZB plane so called symmetry plane of the 

missile. OAYA axis is defined such that it is completing an orthogonal right handed 

coordinate axes. 



 
 
 
 
 
 

16

 

FO
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Fψ
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FY BZThrustF

BO

 
Figure 2.7 Thrust Vector Axes 
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Figure 2.8 Wind Axes 
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2.4 Coordinate Axes Transformations 

Orientation of coordinate axes with respect to another can be defined in different 

ways. One of them is as three rotation angles called Euler angles. One other method 

is using a magnitude of rotation and an axis of rotation called Euler axis or Eigen 

axis. 

Based on these methods to relate coordinate axes, formulations used in aerospace 

literature for coordinate axes transformation of vector components are as follows 

[13]; 

1. Euler angles formulation 

2. Direction cosine matrix formulation 

3. Euler-Rodrigues quaternion formulation 

 

 

 

 
Figure 2.9 Body Axes Orientations [13] 

 

 

 

Coordinate axes transformations are used to define quantities and solve equations of 

motion in a simpler way. As an example, for a missile moving in inertial space, it is 

more convenient to express equations of motion on body coordinate axes since the 
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moment equations include inertia terms which are constant with respect to body 

coordinate axes. 

For the case where one of the coordinate axes is not stationary, as body-fixed 

coordinate axes in the missile, transformation matrix is a function of time. Thus 

transformation matrix and its parameters have to be calculated instantaneously 

using rate of change of those parameters (Euler angle rates, direction cosine rates, 

quaternion rates). 

Formulations listed before is given in between missile body-fixed reference frame 

and earth-fixed reference frame in the following sections and is adapted for any 

coordinate system transformation needed in simulation. 

 

2.4.1 Euler Angles Formulation 

Euler angles defining the orientation of FB with respect to FE is given as, 

 ,E

φ
θ
ψ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Mφ  

Transformation matrices for individual rotations on OEXE, OEYE and OEZE axis is 

defined as, 

1 0 0 0 0
( ) 0 ( ) 0 1 0 ( ) 0

0 0 0 0 1

C S C S
C S S C
S C S C

θ θ ψ ψ

φ φ ψ ψ

φ φ θ θ

φ θ ψ
⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎣ ⎦

1 2 3L L L  

Where, 

 
sin( )
cos( )

x

x

S x
C x

=
=

 

Although it is possible to use twelve [13] different rotation sequences to calculate 

Euler angle transformation matrices, aerospace engineering convention is “321” 

rotations or “Yaw-Pitch-Roll” rotations. 321 rotations can be visualized as a 

rotation of magnitudeψ  on yawing axis OEZE, then a rotation of magnitude θ  on 

the rotated pitching axis OEY’E and lastly a rotation of φ  on twice rotated rolling 

axis OEX”E. 
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Transformation matrix from FE to FB for 321 rotations is then; 

 ( ) ( ) ( )φ θ ψ= ⋅ ⋅BE 1 2 3L L L L  

 
M

C C C S S
S S C C S S S S C C S C

C S C S S C S S S C C C

θ ψ θ ψ θ

φ θ ψ φ ψ φ θ ψ φ ψ φ θ

φ θ ψ φ ψ φ θ ψ φ ψ φ θ

⎡ ⎤⋅ ⋅ −
⎢ ⎥

= ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅⎣ ⎦

BEL  (2.18) 

Also for the rotation in (2.18), Euler angle rates ,EMφ  is given with angular velocity 

of the missile ,BMω  are presented with (2.19) and the derivation is given in [13] and 

[16]. 

 ,

1

0

0

E

S S C S
C C p
C S q
S C r
C C

φ θ φ θ

θ θ

φ φ

φ φ

θ θ

φ
θ
ψ

⋅ ⋅⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = − ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

Mφ  (2.19) 

It should be noted that Euler angle formulation has a singularity called “Gimbal 

Lock” since Euler angle rates are undefined for 2π± . Although the formulation is 

easy to understand and interpret it should be used for applications in which attitude 

change is not close to singular points. This problem is solved with other 

formulations explained in the following sections. 

 

2.4.2 Direction Cosine Matrix Formulation 

Elements of a direction cosine matrix are called the direction cosines and they 

represent orientation of FB with respect to FE. Direction cosines are defined as the 

angles in between for all possible combinations of axis couples. Direction cosine 

matrix for the transformation is expressed as, 

 
11 12 13

21 22 23

31 32 33

C C C
C C C
C C C

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

BEL DCM  (2.20) 
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Since for any formulation, transformation of a vector between same coordinate axes 

should result the same vector components, all Euler angle transformation matrices 

based on different sequences are equal to the one in (2.20).  

Rate of change of DCM is given by the following formula known as Poisson’s 

kinematic equations derived in [13] and [17]. 

 
11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

0
0

0

C C C r q C C C
C C C r p C C C
C C C q p C C C

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − − ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

BEL  

 ,B= − ⋅BE M BEL ω L  (2.21) 

Also rate for reverse transformation [17] is given as (2.22). 

 ,B= ⋅EB EB ML L ω  (2.22) 

Time rate of change of DCM expressed in (2.21) has no singularity problem. But 

note that the degree of freedom for describing the orientation is three which means 

that six of the nine equations given in (2.21) are redundant. Numerical integration 

of these redundant equations may cause orthogonality problems with time. Also this 

formulation needs high computational power compared to other transformation 

formulations which is no longer a problem for today’s processor technology. 

 

2.4.3 Euler-Rodrigues Quaternion Formulation 

Transformation matrix formed using Euler-Rodrigues quaternion formulation is a 

method which doesn’t suffer from a singularity problem and has the highest 

computational efficiency. 

This formulation is based on Euler Axis formulation and it overcomes the 

singularity problem which Euler Axis formulation also suffers. 

Quaternion parameters are defined as [13], 

 

/20

/2

/2

/2

Xx

Yy

Zz

Ce
E Se
E Se
E Se

Θ

Θ

Θ

Θ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⋅⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥ ⋅
⎢ ⎥⎢ ⎥ ⋅⎣ ⎦ ⎣ ⎦

Q  (2.23) 
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E is the Euler axis as given below and Θ is the magnitude of rotation along Euler 

axis.  

 
X

Y

Z

E
E
E

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

E  

Quaternion also can be calculated from Euler angles as in (2.24) with the following 

formulation which is used in the simulation for calculating initial conditions for 

quaternion integrations. 

 

/2 /2 /2 /2 /2 /20

/2 /2 /2 /2 /2 /2

/2 /2 /2 /2 /2 /2

/2 /2 /2 /2 /2 /2

x

y

z

C C C S S Se
S C C C S Se
C S C S C Se
C C S S S Ce

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

φ θ ψ φ θ ψ

⋅ ⋅ + ⋅ ⋅⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⋅ ⋅ − ⋅ ⋅⎢ ⎥⎢ ⎥= =
⎢ ⎥⋅ ⋅ + ⋅ ⋅⎢ ⎥
⎢ ⎥⎢ ⎥ ⋅ ⋅ − ⋅ ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦

Q  (2.24) 

Transformation matrix derived from quaternion parameters is given in (2.25). 

 

2 2 2 2
0 0 0

2 2 2 2
0 0 0

2 2 2 2
0 0 0

2 ( ) 2 ( )
2 ( ) 2 ( )
2 ( ) 2 ( )

x y z x y z x z y

x y z y x z y z x

x z y y z x z x y

e e e e e e e e e e e e
e e e e e e e e e e e e
e e e e e e e e e e e e

⎡ ⎤+ − − ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅
⎢ ⎥= ⋅ ⋅ + ⋅ + − − ⋅ ⋅ − ⋅⎢ ⎥
⎢ ⎥⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ + − −⎣ ⎦

BEL  (2.25) 

Above expression of quaternion parameters is also equal to the DCM found in 

(2.18) and (2.20). 

Quaternion rates for the integration of quaternion parameters are given as, 

 

0 00
0

0
0

x x

y y

z z

e ep q r
e ep r q
e eq r p
e er q p

− − −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥= =
⎢ ⎥ ⎢ ⎥⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

Q  (2.26) 

Or alternatively, 

 

0

0

0

0

x y z

z yx

z xy

y xz

e e ee
p

e e ee
q

e e ee
r

e e ee

− − −⎡ ⎤⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥ − ⎢ ⎥⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥−⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦−⎢ ⎥⎣ ⎦ ⎣ ⎦

Q  (2.27) 
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CHAPTER 3 

3 CONFIGURATION SELECTION AND MATHEMATICAL MODELING 
 

 

 

 

3.1 Missile Configuration Selection 

Configuration selection of the missile is performed such that the missile 

characteristics and configuration which affect the missile performance is as desired. 

For this purpose, desired properties are defined, alternative baseline configurations 

are searched and geometry of baseline and varying configurations are selected. 

 

3.1.1 Desired Missile Properties 

In order to observe the effects of varying configurations on the control system, 

neutrally stable dynamics for most of the flight regime is desired. For neutral 

stability, center of pressure should be around the center of gravity. 

STT maneuvering is desired in which missile is non-rolling and pitching and 

yawing motion is possible at any instant [18]. For STT maneuvering agility and 

maneuverability is higher then other strategies. Moreover, aerodynamic analysis 

with this maneuvering type is simpler due to no rolling motion and aerodynamic 

couplings.  

A canard-controlled missile is desired, since tail controlled systems have unstable 

zero dynamics (non-minimum phase systems) for lateral and transverse 

acceleration. This property complicates the problem and creates a challenge for 

some of nonlinear autopilot design approaches that are beyond the purpose of this 

thesis. 

Four control surfaces and four lifting surfaces (Table 3.1) that are aligned in-line 

(Table 3.2) are desired since four panel configurations have symmetric 

aerodynamics [18]. 
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Table 3.1 Aerodynamic Surface Arrangements  

2 Surface 3 Surface 4 Surface 6 Surface 8 Surface 

     

 

 
Table 3.2 Aerodynamic Surface Alignments  

In-Line 
Alignment  

Interdigitated 
Alignment  

 

 

For the cruciform aerodynamic surface arrangements, aerodynamic surface 

orientation can be a plus or cross orientation. It is desired to orient the aerodynamic 

surfaces in a cross configuration since they have statically stable roll characteristics. 

Also aerodynamic effectiveness in pitching and yawing planes is higher than plus 

orientations for the same aerodynamic surface area. For plus and cross 

configurations control forces needed to maneuver a missile achieving steady 

trimmed flight are given in Table 3.3.  

 

 
Table 3.3 Plus and Cross Orientation Control Forces 

 Pitch Maneuver
(Nose Up) 

Yaw Maneuver
(Nose Left) 

Roll Maneuver 
(CCW ) 

Plus 
Orientation 
(Canard C.)    

Cross 
Orientation 
(Canard C.)    
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3.1.2 Missile Baseline Configuration Alternatives 

For the desired properties defined, short range agile missile systems are searched to 

establish a baseline configuration. Potential baseline missile configurations that 

seem reasonable to perform the analysis of control systems are given in Table 3.4. 

 

 
Table 3.4 Alternative Missiles [19] 

     

C
M

 USA 
AIM 9D 

Russia 
SA-15 

Gauntlet 

Russia 
AA–3 
Anab 

Russia 
SA – 8 
Gecko 

 

 

As a baseline configuration, AIM 9D missile is selected since its known 

characteristics are as desired. 

 

 

 
Figure 3.1 Baseline Configuration AIM 9D (Modeled in SolidWorks) 
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3.1.3 Varying Missile Configurations 

In this section various configurations from the baseline configuration is obtained 

such that the aerodynamic characteristics are different from each other. 

Aerodynamic differences on configurations are considered as an uncertainty for the 

control system of baseline configuration. Then control systems are augmented using 

the adaptive augmentation strategy explained in Section 2.2. 

Baseline configuration called “C1” is obtained from AIM 9D. Approximate 

dimensions are derived from distributed specifications and digitizing images from 

the internet as presented with Figure 3.2. 

 

 

 

Dimensions in cm

6
40

67

75°

12.723 25.15

37

R 4

214
20

R 60

287

160
 

Figure 3.2 Configuration C1 – Baseline Configuration 

 

 

 

Center of gravity location is assigned to a location along the longitudinal axis 

considering the desired stability characteristics. For this purpose, center of pressure 

locations are estimated using the tool explained in section 3.2 which automates 

missile DATCOM. Then, a proper center of gravity location is selected accordingly 

such that the desired stability characteristics are met. 
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Next configuration called “C2” is obtained by varying center of gravity location of 

the baseline configuration as in Figure 3.3. Purpose of such a variation is to 

simulate the effects of burning propellant and change in subsystem locations or 

weights on the control system.  

 

 

 

Dimensions in cm

6
40

67

75°

12.723 25.15

37

R 4

214
20

R 60

287

50
 

Figure 3.3 Configuration C2 – Variation 1 

 

 

 

Third configuration called “C3” is obtained by changing the shape of fixed 

aerodynamic surfaces as given in Figure 3.4. For a missile system, such a variation 

often occurs during the development phase. Also it is possible to have such an 

effect with aerodynamic surfaces extracting from the missile body during the flight. 

It is also possible see applications that have wings with changing sweep angle 

during the flight which would also affect the control system in a similar manner. 

In order to keep the change in maneuverability of configuration C3 minimal, wing 

loading is kept constant. Then, dimensions for the new tail surface are found with 

the following approach. 

Wing loading formula for C1 and C3 is, 
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 1
1, 1, 1, 1

2
( )C

tail tip root

W WWL
S c c b

⋅
= =

+ ⋅
 (3.1) 

 3
3, 3, 3, 3

2
( )C

tail tip root

W WWL
S c c b

⋅
= =

+ ⋅
 (3.2) 

Then, equating (3.1) to (3.2), 

 1, 1, 1
3, 3,

3

( )tip root
tip root

c c b
c c

b
+ ⋅

= −  (3.3) 

Finally, C3 tail dimensions are found as, 
  

1, 3

1, 3, 3,

1

40 40

67 37 30.275

25.15

tip

root root tip

c cm b cm

c cm c cm c cm

b cm

= =

= = ⇒ ≅

=

 

 

 

 

Dimensions in cm

75°

23

37

R 4

20

R 60

160

287

12.7

250

30.275

40

 
Figure 3.4 Configuration C3 – Variation 2 
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3.2 Missile Aerodynamics 

To simulate and establish a mathematical model of a missile, aerodynamic forces 

and moments have to be determined. 

Missile DATCOM is used for aerodynamic analysis considering the ease of use and 

availability. User manual [20] gives detailed instructions about the configuration of 

the program. 

To create the aerodynamic database, an automated database generation tool is 

developed in MATLAB which configures the input file, run executable and read 

output file included in missile DATCOM. The aerodynamics database generation 

process with this tool is given with Figure 3.5. 

 

 

 

No

User Inputs

Calculate and Plot
CP Locations

Continue?

Calculate Aerodynamic 
Coefficients

Yes

Generate Aerodynamic
Database  

Figure 3.5 Flow Diagram for Aerodynamic Database Generation 

 

 

 

Necessary aerodynamic parameters to simulate missile motion are selected and 

output from Missile DATCOM. In order to have a small size database, aerodynamic 
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coefficients’ dependence on some parameters as presented in Table 3.5 is assumed 

to be small and neglected. Also, missile DATCOM accepts actual control surface 

deflections 1δ , 2δ , 3δ  and 4δ as input. A convenient way to express the aerodynamic 

coefficients dependence is using virtual control deflections aδ , eδ , rδ  defined on 

rolling, pitching and yawing axes respectively. 

 

 

 
Table 3.5 Aerodynamic Database Coefficients 

Dependence Coeff. 
M α β δa δe δr

Description 

XC  ● ● ●  ● ● Axial Force Coefficient 

YC  ●  ●   ● Side Force Coefficient 

ZC  ● ●   ●  Normal Force Coefficient 

LC  ● ● ● ●   Rolling Moment Coefficient 

MC  ● ●   ●  Pitching Moment Coefficient 

NC  ●  ●   ● Yawing Moment Coefficient 

LpC  ●      Rolling moment coefficient derivative with roll rate 

MqC  ●      Pitching moment coefficient derivative with pitch rate 

NrC  ●      Yawing moment coefficient derivative with yaw rate 

MC α  ●      Pitching moment derivative with rate of change of 
angle of attack 

NC β  ●      Yawing moment derivative with rate of change of side 
slip  

 

 

 

Virtual control surface deflection mapping explained in [21] is applied as in (3.4). 

The same mapping is also used in order to convert the autopilot commands 

calculated as virtual deflection commands to actual CAS deflection commands. 
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1
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4

1 1 1
1 1 1
1 1 1
1 1 1

a

e

r

δ
δ

δ
δ

δ
δ

δ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦−⎣ ⎦⎣ ⎦

 (3.4) 

Also inverse mapping which is given in (3.5) is used to convert real CAS 

deflections to virtual deflections in simulation. 

 

1

2

3

4

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

a

e

r

δ
δ

δ
δ

δ
δ

δ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦

 (3.5) 

Aerodynamic forces and moments are determined from database coefficients in 

Table 3.5 with (3.6). 

 

,
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X

B ref Y

Z

L Lp
ref ref

B ref ref M Mq M
MA MA

N Nr N

X C
Y Q S C
Z C

L C p C
l l

M Q S l C q C C
V V

N C r C C
α

β
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β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ⋅ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞⎡ ⎤⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

Aero

Aero

F

M

 (3.6) 

Aerodynamic coefficients in (3.6) are functions of , , , , ,a e rM α β δ δ δ  (Table 3.5). 

Aerodynamic database is generated for discrete values of these parameters and 1D, 

2D, 3D or 4D linear interpolation algorithms are implemented in order to calculate 

aerodynamics of the missile in between. 
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3.2.1 Aerodynamics of Configurations C1, C2 and C3 

Aerodynamics of C1, C2 and C3 are calculated as discussed in the preceding 

section. Roll aerodynamics for C2 and C3 are assumed to be the same with C1 since 

problem defined in this thesis mainly affect pitch and yaw dynamics. 

Also due to the symmetry, missile aerodynamics in pitch and yaw planes are found 

to be the same. For this reason only the pitch aerodynamics is presented in this part 

since the yaw aerodynamics is also the same in magnitude. 

Change of center of pressure for the whole Mach interval and an angle of attack 

interval is given in Figure 3.2, Figure 3.3 and Figure 3.4. This is shown for fixed 

control surfaces ( 0 , 1,..., 4i iδ = ° = ). 

 

 

 

0 50 100 150 200 250 300
-50

0

50

Longitudinal Axis (cm)

La
te

ra
l A

xi
s (

cm
)

⊗C.G.

0 50 100 150 200 250 300

0.3
0.8
1.1
1.4
1.8
2.4

M
ac

h 
N

um
be

r

C.P. Locations for 0 ≤ α  ≤ 18

 
Figure 3.6 Configuration C1 Center of Pressure Locations 
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Figure 3.7 Configuration C2 Center of Pressure Locations 
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Figure 3.8 Configuration C3 Center of Pressure Locations 
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Previous figures show that C1 is “nearly” neutrally stable whereas C2 and C3 are 

stable while the controls surfaces are fixed. These stability characteristics also 

observed from Figure 3.9. Since the geometry for C1 and C2 are the same, normal 

force coefficients CZ coincide in Figure 3.9.  
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Figure 3.9 CM and CZ versus Alpha at 1.8 Mach for 0° Delta  

 

 

 

CM and CZ are given in 3 dimensions (see Table 3.5 for dependencies) in Figure 

3.10 and Figure 3.11 for C1. 
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Figure 3.10 CM Coefficient at Mach 1.8 for C1 
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Figure 3.11 CZ Coefficient at Mach 1.8 for C1 
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3.2.2 Non-Linear Parameters in Missile Aerodynamics 

Aerodynamic non-linearity is one of the issues that make linearization process 

necessary. Nonlinearity may occur on any dimension of aerodynamic coefficient 

data depending on the missile configuration. To illustrate, in Figure 3.9, CM and CZ 

coefficients of C1 is nonlinear for varying alpha as shown below,  

 ( 15 ) ( 15 )M MC Cα αα α≤ ° ≠ ≥ °  

Similarly, aerodynamic coefficients are nonlinear with Mach number variation as 

explained in Figure 3.12. Normal force coefficients for C1 and C2 again coincide 

since the external geometry is the same. 
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Figure 3.12 CM and CN versus Mach at 10° Alpha 
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3.3 Missile Dynamics 

In order to derive the governing equations of motion for a missile, Newton’s laws of 

motion are used as given in reference [17]. 

Following is assumed while deriving equations of motion for a missile. 

1. Constant mass is assumed. 

2. Origin of FB is at center of gravity, CG of the missile. 

3. Rigid body is assumed. 

4. Missile is symmetric n XBYB and XBZB planes. 

For all vectors, subscript defines the reference frame in which the components are 

given. 

 

 

 

 
Figure 3.13 Axes and Vectors Used to Derive the Equations of Motion. 
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Translational equations of motion are derived for a missile starting from particles 

and applying Newton’s second and third law with the assumptions above. 

Newton’s second law is applied to a particle in inertial space as, 

 ( )E E
dd d
dt

=F L  (3.7) 

Linear momentum of a particle is, 

 ,E Ed dm= ⋅PL V  (3.8) 

Then linear momentum of the missile is, 

 ,E Ed dm=∫ ∫ PL V  (3.9) 

In order to formulate velocity of a particle P in terms of velocities defined,  

 , ,E E E= +P Mr r r  (3.10) 

Taking the time derivative of the above equation gives, 

 , ,E E E= +P Mr r r  (3.11) 

Noting that in (3.11) , ,E E=M MEr V  and , ,E E=P Pr V , 

 , ,E E E= +P MEV V r  (3.12) 

Then the linear momentum expression in (3.9) is, 

 ,E E Ed dm dm= ⋅ +∫ ∫ ∫MEL V r  (3.13) 

0E dm =∫r  in (3.13) since second assumption states that OB is the mass center, 

 , ,E E Ed dm m= = ⋅∫ ∫ P MEL V V  (3.14) 

The integration of (3.7) gives the Newton’s second law applied to the missile as, 

 ( ),E E
d m
dt

= ⋅MEF V  (3.15) 

Following remarks are valid for (3.15): 

1. (3.15) is not valid when the first assumption does not hold. 

2. EF  is summation of external forces only since the internal forces that the 

particles apply to each other cancel each other obeying Newton’s third law. 

3. This equation is valid even though the third assumption does not hold. 
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In order to express (3.15) in FB, coordinate system transformation has to be 

performed. 

 ( ),B B
dm
dt

⋅ = ⋅ ⋅EB EB MEL F L V  (3.16) 

 , ,( )B B Bm⋅ = ⋅ ⋅ + ⋅EB EB ME EB MEL F L V L V  (3.17) 

Also derivative of a coordinate transformation matrix is given in (3.18) as; 

 ,B= ⋅EB EB ML L ω  (3.18) 

Where, 

 [ ],
T

B p q r=Mω  (3.19) 

 ,

0
0

0
B

r q
r p
q p

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

Mω  (3.20) 

 

Substituting (3.18) into (3.17), 

 , , ,( )B B B Bm⋅ = ⋅ ⋅ ⋅ + ⋅EB EB M ME EB MEL F L ω V L V  (3.21) 

 , , ,( )B B B Bm= ⋅ + ⋅ME M MEF V ω V  (3.22) 

Rearranging terms in (3.22) give the translational equation of motion as, 

 ( ), , ,
1

B B B Bm
= ⋅ − ⋅ME M MEV F ω V  (3.23) 

In a case where wind exists, (3.26) has to be used with (3.23), 

 , , ,E E E= +ME MA WV V V  (3.24) 

 , , ,B B E⋅ = ⋅ +EB ME EB MA WL V L V V  (3.25) 

 1
, , ,B B E

−= + ⋅ME MA EB WV V L V  (3.26) 

Note that transformation matrices satisfy the “orthogonality condition” and the 

following formulas are valid for any transformation matrices. 

 ⋅ =T
EB EBL L I  (3.27) 

 1−= =T
EB EB BEL L L  (3.28) 

Hence (3.26) can also be written as, 
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 , , ,B B E= + ⋅T
ME MA EB WV V L V  (3.29) 

Where, 

 [ ],
T

B u v w=MAV . (3.30) 

 [ ],
T

B E E Eu v w=MEV  (3.31) 

 ,

T

E X Y ZW W W⎡ ⎤=⎣ ⎦WV  (3.32) 

Rotational dynamics of a missile is also derived in a similar manner to translational 

dynamics. Moment of forces acting on a particle is integrated for the whole missile. 

Moment of momentum of dm  with respect to OM is, 

 ,E E Ed dm= ⋅ ⋅PH r V  (3.33) 

Taking the time derivative, 

 , ,( )E E E E E
d d dm dm
dt

= ⋅ ⋅ + ⋅ ⋅P PH r V r V  (3.34) 

Also from (3.12), 

 , ,E E E= −P MEr V V  (3.35) 

Also moment of EdF  acting on the particle with respect to OM is, 

 E E Ed d= ⋅M r F  (3.36) 

Substituting (3.7) and (3.8) in (3.36), 

 ,E E Ed dm= ⋅ ⋅PM r V  (3.37) 

Then using (3.35) and (3.37) in (3.34) and arranging terms,  

 , , ,( ) ( )E E E E E
dd d dm
dt

= − − ⋅ ⋅P ME PM H V V V  (3.38) 

Since , , 0E E− ⋅ =P PV V , (3.38) reduces to, 

 , ,( )E E E E
dd d dm
dt

= + ⋅ ⋅ME PM H V V  (3.39) 

Integration of (3.39) give, 

 , ,( )E E E E
dd d dm
dt

= + ⋅∫ ∫ ∫ME PM H V V  (3.40) 

Substituting (3.14) for the last integral in (3.40),  
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 , ,( )E E E E
d m
dt

= + ⋅ ⋅ME MEM H V V  (3.41) 

Noting that , , 0E E⋅ =ME MEV V , (3.41) reduces to moment equation defining the 

rotational dynamics of a missile, 

 ( )E E
d
dt

=M H  (3.42) 

Following remarks are valid for (3.42): 

1. (3.42) is not valid when the first assumption does not hold. 

2. EM  is summation of external moments only since the moments of internal 

forces cancel each other obeying Newton’s third law. 

3. This equation is valid even though the third assumption does not hold. 

In order to express the moment equation  (3.42) governing the rotational dynamics 

in FB, coordinate system transformation has to be performed. 

 ( )B B
d
dt

⋅ = ⋅EB EBL M L H  (3.43) 

Taking the time derivative of the right hand side, 

 ( )B B B
d
dt

⋅ = ⋅ + ⋅EB EB EBL H L H L H  (3.44) 

Substituting (3.18) in (3.44) and dividing by EBL , 

 ,B B B B= + ⋅MM H ω H  (3.45) 

In order to calculate the angular momentum of the missile with respect CG in FB, 

angular momentum of particles in it have to be integrated for the whole missile as, 

 ,
B

E E E dm= ⋅∫ PH r V  (3.46) 

In (3.10), position of the particle with respect to CG is written in FB as, 

 , ,E E B= + ⋅P M EBr r L r  (3.47) 

Time derivative of (3.47) gives, 

 , ,E E B B= + ⋅ + ⋅P M EB EBr r L r L r  (3.48) 
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Note that , ,E EV=M MEr  and for a rigid missile 0B =r . Also substituting (3.18) in 

(3.48), 

 , , ,E B B B= ⋅ + ⋅ ⋅P EB ME EB MV L V L ω r  (3.49) 

Then (3.46) is written relative to FM using (3.49) as, 

 , ,( )B E E B B B dm= ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅∫BE BE EB ME EB MH L H L r L V L ω r  (3.50) 

Using the rule following rule of matrix transformation derived in [17] 

 B E= ⋅ ⋅BE EBr L r L  (3.51) 

Rearranging terms in (3.50) yields, 

 ( ) , ,B B B B B Bdm dm= ⋅ + ⋅ ⋅∫ ∫ME MH r V r ω r  (3.52) 

The first integral in (3.52) is zero since 1st assumption holds. 

When the last integral in (3.52) is expanded the following is found, 

 ,B B B= ⋅ MH I ω  (3.53) 

Where, 

 
XX XY XZ

B YX YY YZ

ZX ZY ZZ

I I I
I I I
I I I

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

I  (3.54) 

 

2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

XX XY YX

YY XZ ZX

ZZ YZ ZY

I y z dm I I x y dm

I x z dm I I x z dm

I x y dm I I y z dm

= + = = ⋅

= + = = ⋅

= + = = ⋅

∫ ∫
∫ ∫
∫ ∫

 (3.55) 

Noting that missile is symmetric relative to XBYB and XBZB, off-diagonal terms of 

the inertia tensor, so called products of inertia are, 

 0XY XZ YZI I I= = =  (3.56) 

Because of the above condition, body-fixed coordinate axes are also the principal 

axes of rotation. In other words, for angular velocity of a missile in any of the body-

fixed axis, the angular momentum vector is also on that axis. 
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Substituting the angular momentum expression given in (3.53) into rotational 

dynamics equation (3.45), 

 , , ,( )B B B B B B
d
dt

= ⋅ + ⋅ ⋅M M MM I ω ω I ω  (3.57) 

Carrying time derivation on, 

 , , , ,B B B B B B B B= ⋅ + ⋅ + ⋅ ⋅M M M MM I ω I ω ω I ω  (3.58) 

Since third assumption yields 0B =I , (3.58) reduces to, 

 , , ,B B B B B B= ⋅ + ⋅ ⋅M M MM I ω ω I ω  (3.59) 

Expanding (3.59) and arranging the terms if BI  is non-singular, give rotational 

equation of motion as, 

 1
, , ,( ) ( )B B B B B B

−= ⋅ − ⋅ ⋅M M Mω I M ω I ω  (3.60) 

Total forces and moment used in translational and rotational equations are defined 

as follows. 

 , , ,

X

B Y B B B

Z

F
F
F

⎡ ⎤
⎢ ⎥= = + +⎢ ⎥
⎢ ⎥⎣ ⎦

Aero Thrust GravityF F F F  (3.61) 

Where, 

 , , ,

0
0 0
0

X

B B Y B

Z

X T T
Y T
Z T m g

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = ⋅ = ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T
Aero Thrust BF Gravity EBF F L F L  

As stated before BM  term in (3.60) is the sum of all external moments and is given 

as (3.62). 

 , ,

X

B Y B B

Z

M
M
M

⎡ ⎤
⎢ ⎥= = +⎢ ⎥
⎢ ⎥⎣ ⎦

Aero ThrustM M M  (3.62) 

Where 

 , , , , , 0
0

N

B B B B B

L x
M
N

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ⋅ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Aero Thrust N Thrust NM M r F r  
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3.4 Thrust Model 

A jet engine like varying thrust engine model is developed to maintain the missile 

velocity as constant as possible during the analysis in simulation. For this purpose 

following assumptions are made. 

1. Mass is constant, as always in this thesis, 

2. Wind velocity is negligibly small compared to the missile air velocity and 

MA MEV V≅  

3. Air velocity vector magnitude is approximately equal to its component on 

OBXB  axis ( 0, 0α β≅ ≅ ) and MAu V≅ , 

4. Thrust misalignment is negligible and thrust is aligned with OBXB axis, 

5. Gravity vector component on OBXB axis is negligible compared to the 

missile axial acceleration. 

Translational dynamics of a missile is given in Section 3.3. Considering the given 

assumptions, translational equation along OBXB axis reduces to (3.63). 

 ,
MA

X B
dVF T X m

dt
≅ + ≅ ⋅∑  (3.63) 

Variable thrust engine model for missile velocity control is implemented using 

reduced equations above.  

While designing a velocity hold control algorithm, following assumptions are made, 

1. Drag force changes linearly with speed, 

2. It’s assumed that engine is commanded with thrust input. 

Architecture used to control the missile velocity is given in Figure 3.14. 
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Figure 3.14 Variable Thrust Engine Model 
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In order to determine missile transfer function Gm defining translational dynamics, 

drag force is formulated in terms of velocity. 

 X MAX K V= ⋅  (3.64) 

Substituting (3.64) into (3.63), 

 MA
X MA

dVT K V m
dt

+ ⋅ ≅ ⋅  (3.65) 

Taking the Laplace transformation of (3.65), 

  

 ( ) ( ) ( )X MA MAT s K V s m V s s+ ⋅ ≅ ⋅ ⋅  (3.66) 

Then Gm is found to be as, 

 1( ) MA
m

X

VG s
T m s K

= =
⋅ −

 (3.67) 

To find engine transfer function Ge, time constant of the engine from idle to full 

throttle is defined as follows, 

 0.5e sτ =  

First order model for the engine is given in (3.68), 

 ,

,

( ) n e
e

com n e

wTG s
T s w

= =
+

 (3.68) 

Where, 

 1
,

1 2n e
e

w s
τ

−= =  

 

3.5 Control Actuation System (CAS) Model 

For CAS model, non-linear model included in MATLAB Simulink Aerospace 

Blockset is referred. This model is based on a regular second order actuator as 

presented in (3.69) plus the following extensions, 

• Position integral saturation modeling mechanical limit, 

• Actuator input saturation in terms of velocity, modeling the limited input 

(voltage for electro-mechanical systems, oil and gas pressure for hydraulic 

and pneumatic systems). 
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2

2 22
CAS

C CAS CAS CASs s
ωδ

δ ζ ω ω
=

+ ⋅ ⋅ ⋅ +
 (3.69) 

Response of this model for 20° fin deflection command for different velocity limits 

is presented in Figure 3.15. 
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Figure 3.15 Non-linear Actuator Model Response to Step Input 

 

 

 

In the simulation, following CAS performance parameters are used. 

30 22

0.8 500
CAS MAX

CAS MAX

Hz

s

ω δ

ζ δ

= = °

= = °
 

 



 
 
 
 
 
 

46

CHAPTER 4 

4 AUTOPILOT DESIGN 
 

 

 

 

4.1 Control Requirements 

Closed loop system performance requirements have to be defined before designing 

control systems. Requirements are defined at different design points in time domain 

considering the limits of aerodynamics and CAS dynamics 

Some of the time domain transient-response specifications in Figure 4.1 are used to 

define control requirements [4]. 
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Figure 4.1 Definitions of Transient-Response Spesifications 
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Requirements are defined considering the open loop missile characteristics and 

CAS characteristics. Using the definitions above performance requirements are 

found as in Table 4.1. A similar approach is also proposed in [9]. 

 

 

 
Table 4.1 Transient Response Performance Requirements 

 Pitch & Yaw Channel Roll Channel 
Mach tr (s) M.P. (%) tr (s) M.P. (%) 

0.3 ≤ 1.50 ≤ 20 ≤ 0.40 ≤ 20 
0.8 ≤ 1.21 ≤ 20 ≤ 0.33 ≤ 20 
1.1 ≤ 1.04 ≤ 20 ≤ 0.29 ≤ 20 
1.4 ≤ 0.87 ≤ 20 ≤ 0.24 ≤ 20 
1.8 ≤ 0.64 ≤ 20 ≤ 0.19 ≤ 20 
2.4 ≤ 0.30 ≤ 20 ≤ 0.10 ≤ 20 

 

 

 

For any design condition in between Mach 0.3 and 2.4, performance requirements 

are assumed to change in a linear manner and can be interpolated with Mach 

number. 



 
 
 
 
 
 

48

 

4.2 Linear Missile Models 

Linear missile model is derived for pitch, yaw and roll channel respectively using 

the non-linear equations of motion and Euler angle rates given in section 3.3, and 

2.4.1 respectively. While deriving the linear models, CAS dynamics are neglected. 

Effects of CAS on missile dynamics are compensated by re-arranging the closed 

loop pole locations if missile response is not as desired. 

Equations of motion in all three axes are given as below, 

 
( )
( )
( )

X E E E

Y E E E

Z E E E

F = m u  +m q w r v
F = m v  +m r u p w
F = m w  +m p v q u

⋅ ⋅ ⋅ − ⋅
⋅ ⋅ ⋅ − ⋅
⋅ ⋅ ⋅ − ⋅

 (4.1) 

 

2 2

2 2

2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

X XX YY ZZ YZ ZX XY

Y YY ZZ XX ZX XY YZ

Z ZZ XX YY XY YZ ZX
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(4.2) 

For the case that thrust vector is along the OBXB axis ( 0Y ZT T= = ), forces and 

moments in (4.1) and (4.2) are, 

sin
cos sin
cos cos

X X

Y

Z

F = X T m g
F = Y m g
F = Z m g

θ
θ φ
θ φ

+ − ⋅ ⋅
+ ⋅ ⋅ ⋅
+ ⋅ ⋅ ⋅

     
X

Y

Z

M L
M M
M N

=
=
=

  

The Euler angle rates are, 

 
sin tan sin tan

cos sin
sin sec cos sec

p q r

q r
q r

φ φ θ φ θ

θ φ φ
ψ φ θ φ θ

= + ⋅ ⋅ + ⋅

= ⋅ − ⋅
= ⋅ ⋅ + ⋅ ⋅

 (4.3) 

In order to derive a linear model of missile dynamics, assumption called “short 

period approximation” is used (see [22] and [23]). This approach is commonly used 

in missile autopilot design process and simply states that rate of change of missile 

velocity is negligible compared to rates of change of velocities along other axes 

( 0u ≅ ). With this approximation, simple linear models as explained in the 

following sections are derived to define short period missile dynamics to be used in 

autopilot design. 
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4.2.1 Linear Missile Model for Pitching Motion 

Equations defining 3 degree of freedom pitch plane motion is extracted from (4.1), 

(4.2) and (4.3) with the assumptions and conditions below, 

1. Thrust vector is along OBXB axis,  

2. For only pitching motion, 0v p r Y L N φ ψ= = = = = = = =  

3. Atmosphere is stationary, =ME MAV V  

 cos ( )Z m g m w - m q uθ+ ⋅ ⋅ = ⋅ ⋅ ⋅  (4.4) 

 YYM I q= ⋅  (4.5) 

 qθ =  (4.6) 

Also as a convention, pitch dynamics are based on α  instead of w  using the 

following definitions for small angles and short period approximation above, 

 
0

tan
MA

w w
u V

α = ≅  (4.7) 

 
0

tan
MA

w w
u V

α = ≅  (4.8) 

Since the missile is an air to air missile, it has to have higher acceleration capability 

compared to target whose lateral acceleration is limited 10-15 g’s considering the 

blackout problem of the pilot. In order to provide a precision hit capability missile 

lateral acceleration limit is about 2-3 times higher than the targets’, i.e. around 30-

50 g’s. Then non-linear gravitational force term cosm g θ⋅ ⋅  in (4.4) is neglected 

compared to the Z aerodynamic force in body z-axis. 

Lastly before formulating the linear model, aerodynamic forces and moments have 

to be expressed with a linear combination of dominant database parameters. 

 
Eref Z ref Z EZ Q S C Q S Cα δα δ= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅  (4.9) 

 
2

2 E

ref ref Mq
ref ref M ref ref M E

MA

Q S l C
M Q S l C q Q S l C

Vα δα δ
⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅
⋅

 (4.10) 

Re-arranging with preceding equations through (4.4) to (4.10), remaining linear 

equations defining missile pitching motion are given as follows. 
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 Eref Zref Z
E

MA MA

Q S CQ S C
 q

m V m V
δαα α δ

⋅ ⋅⋅ ⋅
= ⋅ + + ⋅

⋅ ⋅
 (4.11) 
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 (4.12) 

For simplicity,  

E
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I I V I
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Lateral acceleration needed as an output for autopilot design is defined as, 

 
Ez MA MA E

Za V Z + V Z
m α δα δ≅ = ⋅ ⋅ ⋅ ⋅  (4.13) 

Equations (4.11) and (4.12) are the state equations and given in a matrix form as, 
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 (4.14) 
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4.2.2 Linear Missile Model for Yawing Motion 

Equations defining 3 degree of freedom yaw plane motion are extracted in a similar 

manner to pitching equations using assumptions and conditions below, 

1. Thrust vector is along the OBXB axis, 0Y ZT T= =  

2. For only yawing motion, 0w p q Z L M θ φ= = = = = = = =  

3. Atmosphere is stationary, =ME MAV V  

 
( )

ZZ

Y m v +m r u
N I r

rψ

⋅ ⋅ ⋅
= ⋅
=

=
 (4.16) 

If same methodology is applied as in pitch plane, state space linear yaw model is 

found as, 

 
1
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YY
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 (4.17) 

And the output equation is, 
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 (4.18) 

Where, 
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4.2.3 Linear Missile Model for Rolling Motion 

Equations of motion defining rolling motion are found with a similar approach as in 

pitching and yawing planes. 

1. For only rolling motion, 0v w q r Y Z M N θ ψ= = = = = = = = = =  

2. Atmosphere is stationary, =ME MAV V  

 XXL I p

pφ

= ⋅

=
 (4.19) 

For the roll model, rolling moment has to be expressed in a linear composition of 

state parameters as, 
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Q S l C
L p Q S l C

V δ δ
⋅ ⋅ ⋅

= ⋅ + ⋅ ⋅ ⋅ ⋅
⋅

 (4.20) 

After some substitution, roll equations are found as, 
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 (4.21) 

For simplicity, 
2
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Then the state and output equations are defined as, 
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 (4.22) 

And the output equation is, 
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φ φ
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 (4.23) 
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4.3 Missile Acceleration Response Characteristics 

In order to examine the missile acceleration response characteristics, the open loop 

transfer function from elevator deflection to normal acceleration is found using 

(4.14) and (4.15) as in (4.24). 

 
2

2

( ) ( )( )
( ) ( ) ( )

E E E E EqZ
MA

E q q

Z s M M Z s M Z M Za s V
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= ⋅
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 (4.24) 
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Figure 4.2 Configuration C1 Acceleration Transfer Function Root Locus 

 

The acceleration transfer function of configuration C1 is found using the 

aerodynamic derivatives calculated at Mach number 1.8 and is given with (4.25).   
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 (4.25) 
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The root locus plot in Figure 4.2 shows that the open loop acceleration response to 

elevator deflection is minimum phase. Therefore, the Assumption 2.1 for 

boundedness of the augmented system is verified. 

 

4.4 Full-State Feedback Autopilot Design Using Pole Placement 

Full state feedback autopilot algorithms are designed using the data for 

configuration C1. Then effects of changing the configurations specified with C2 and 

C3 are analyzed using the autopilot designed for C1. 

Nonlinearities in aerodynamics are handled with gain scheduling during the design. 

Gain scheduling stands for determining some design points for flight parameters 

and designing linear controllers at the design points. Between consecutive design 

points (if design points selected properly), changes in aerodynamics are assumed to 

be small and linear. 

For systems like missiles, gain scheduling is necessary to compensate changes in 

dynamic pressure and schedule linear controllers to the conditions at that instant. 

The controllers in this thesis are scheduled for Mach number only. Normally 

scheduling is done for dynamic pressure or both Mach number and altitude.  

For missile systems of this kind, lateral and transverse acceleration transfer 

functions, which can be easily derived from state space representations given in 

(4.14), (4.15), (4.17) and (4.18), are type 0 and proper transfer functions. On the 

other hand, bank angle transfer function that can be derived from (4.22) and (4.23) 

is type 1 and strictly proper. Using a suitable method presented in Section 2.1 

autopilots are designed in a decoupled manner. 

The pitch, yaw and roll autopilot architectures are presented in Figure 4.3, Figure 

4.4 and Figure 4.5 respectively. 
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Figure 4.3 Pitch Autopilot Architecture with Pole Placement Approach 
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Figure 4.4 Yaw Autopilot Architecture with Pole Placement Approach 
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Figure 4.5 Roll Autopilot Architecture with Pole Placement Approach 
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Poles of closed loop systems are placed to proper locations using the approach 

explained in section 2.1. Dominant poles are placed to the desired locations on the 

s-plane. Remaining poles of the closed loop system are placed to other locations 

where interference with dominant dynamics is negligible. However as stated in 

section 4.2, CAS model is not included in linear missile models. Interferences to the 

missile dynamics due to CAS is compensated by re-arranging closed loop pole 

locations if necessary. Missile response with CAS dynamics for different pole 

locations is analyzed in simulation until the desired response is achieved. 

Pitch, yaw and roll open-loop poles for all configurations are presented in Table 4.2 

and Table 4.3.  

 

 

 
Table 4.2 Open Loop Poles for Pitch and Yaw Autopilots  

 Open Loop Poles (Pitch & Yaw) 
 Configuration C1 Configuration C2 Configuration C3 

Mach Pole 1 Pole 2 Pole 1 Pole 2 Pole 1 Pole 2 
0.3 -0.6 -75.7 -1.1 -87.9 -1.1 -110.0 
0.8 -1.4 -189.1 -3.0 -213.2 -3.3 -285.9 
1.1 -2.0 -305.1 -4.4 -310.1 -4.7 -480.4 
1.4 -2.7 -345.9 -5.6 -351.4 -5.3 -506.8 
1.8 -4.2 -395.7 -7.8 -392.4 -6.4 -580.2 
2.4 -5.2 -410.3 -9.6 -440.1 -7.1 -560.9 

 

 

 
Table 4.3 Open Loop Poles for Roll Autopilot 

 Open Loop Poles (Roll) 
 Configuration C1 Configuration C2 Configuration C3 

Mach Pole 1 Pole 2 Pole 1 Pole 2 Pole 1 Pole 2 
0.3 0.0 -221.7 0.0 -221.7 0.0 -221.7 
0.8 0.0 -524.9 0.0 -524.9 0.0 -524.9 
1.1 0.0 -320.1 0.0 -320.1 0.0 -320.1 
1.4 0.0 -868.9 0.0 -868.9 0.0 -868.9 
1.8 0.0 -1595.0 0.0 -1595.0 0.0 -1595.0 
2.4 0.0 -2419.0 0.0 -2419.0 0.0 -2419.0 
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The gains calculated using C1 aerodynamic models are presented in Table 4.4. 

Using the gains given in Table 4.4, the closed loop poles for pitch and yaw 

autopilots using linear models for C1, C2 and C3 are presented in Table 4.5 and 

Table 4.6. 

 

 
Table 4.4 Pitch, Yaw and Roll Autopilot Gains for Calculated for C1 

 Feedback Gains (Pitch & Yaw) Feedback Gains (Roll) 
Mach K1 K2 -KI K1 K2 

0.3 5.795 -0.752 0.271 -2.463 -0.042 
0.8 1.178 -0.355 0.009 -0.466 0.023 
1.1 0.727 -0.264 0.003 -0.271 -0.003 
1.4 0.642 -0.215 0.002 -0.272 0.015 
1.8 0.666 -0.178 0.003 -0.352 0.028 
2.4 2.833 -0.100 0.015 -0.864 0.026 

 

 
Table 4.5 Closed Loop Poles for Pitch and Yaw Autopilots (using Gains for C1) 

 Closed Loop Poles (Pitch & Yaw) 
 Configuration C1 Configuration C2 Configuration C3 

Mach Pole 1 Pole 2 Pole 3 Pole 1 Pole 2 Pole 3 Pole 1 Pole 2 Pole 3 
0.3 -5.7 +1.8i -5.7 -1.8i -22.9 -1.0 +1.3i -1.0 -1.3i -71.9 -3.1 +3.0i -3.1 -3.0i -58.4 
0.8 -7.0 +2.3i -7.0 -2.3i -28.3 -3.3 -0.8 -160 -5.5 -4 -108 
1.1 -8.2 +2.7i -8.2 -2.7i -32.9 -5.5 -0.7 -207.4 -8.8 -2.5 -169.7 
1.4 -9.8 +3.2i -9.8 -3.2i -39.4 -6.8 -0.9 -238.7 -8.9 -3.2 -185.2 
1.8 -13.3 +4.3i -13.3 -4.3i -53.4 -9.4 -1.4 -268.8 -6.4 +0.9i -6.4 -0.9i -251.4 
2.4 -28.6 +9.4i -28.6 -9.4i -114.5 -7.8 +4.8i -7.8 -4.8i -349.4 -12.9+11.6i -12.9-11.6i -308.4 

 

 
Table 4.6 Closed Loop Poles for Roll Autopilot (using Gains for C1) 

 Closed Loop Poles (Roll) 
 Configuration C1 Configuration C2 Configuration C3 

Mach Pole 1 Pole 2 Pole 1 Pole 2 Pole 1 Pole 2 
0.3 -10.7 -257.7 -10.7 -257.7 -10.7 -257.7 
0.8 -13.0 -313.7 -13.0 -313.7 -13.0 -313.7 
1.1 -15.0 -360.8 -15.0 -360.8 -15.0 -360.8 
1.4 -17.6 -424.5 -17.6 -424.5 -17.6 -424.5 
1.8 -23.1 -555.1 -23.1 -555.1 -23.1 -555.1 
2.4 -42.9 -1031.0 -42.9 -1031.0 -42.9 -1031.0 
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For the nonlinear CAS model presented in section 3.5, closed loop poles for small 

signals for which the system behaves linearly is given in Table 4.7. 

 

 
Table 4.7 Linear CAS Model Closed Loop Poles 

Pole 1 Pole 2 
-150.8 + 113.1i -150.8 - 113.1i 

 

 

For the pitch and yaw autopilots, CAS dynamics is at least 6 times faster than the 

closed loop missile dynamics. However for the roll autopilot, interference from 

CAS to missile dynamics is significant since the roll channel closed loop poles is at 

least 2 times faster. Response of the roll autopilots with the desired pole locations is 

found to be more oscillatory than expected due to the CAS. This oscillatory 

response is compensated by placing the closed loop poles of the roll autopilot on the 

real axis of s-plane as presented in Table 4.6 such that the desired performance 

requirements in Table 4.1 is satisfied. 

Closed loop dynamics of the configurations presented in Table 4.5 and Table 4.6 

show that the rise time of the missile configurations for pitch and yaw channels are 

increasing for C1, C3 and C2 respectively which will also be analyzed in the next 

chapter with simulation. 

 

4.5 Adaptive Augmentation of Existing Autopilots 

Existing pole placement control system is augmented with neural network in pitch 

and yaw channel according to the theory presented in section 2.2. 

For varying configurations, response of the missile changes due to the varying 

aerodynamics which causes the existing autopilots designed for C1 do not produce 

the necessary control input. Neural network augmentation is used to produce the 

missing control input portion to satisfy the requirements defined with reference 

model. 
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For pitch and yaw autopilots augmentation architectures are given in Figure 4.6 and 

Figure 4.7. 
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Figure 4.6 Architecture for Adaptive Augmentation of Pitch Autopilot 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 

60

 

 

Neural Network Augmentation

Yaw Autopilot

Rξ Rξ Missile∫ Ik

1K

2K

Ya
RδYCOMa

-+

+

-+

+

β
r

Reference 
Model

+
-

SHL 
Neural 

Networks

,R ADδ

,R ECδ

,Y REFa

-
+Ye

Rδ
Ya

 
Figure 4.7 Architecture for Adaptive Augmentation of Yaw Autopilot 

 

 

 

To find convenient values for the neural network parameters as number of neurons, 

input scaling, and learning rates simulation is used. Finding specific parameters that 

satisfy adequate performance for the augmented autopilots is not easy to achieve 

since the method includes trial and error design approach. 
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CHAPTER 5 

5 RESULTS AND DISCUSSION 
 

 

 

 

As explained in the previous chapter, the autopilots are designed using the base 

configuration C1. Then the same autopilots are also used for varying configurations 

C2 and C3 which have different pitch and yaw aerodynamics creating an 

uncertainty for the pitch and yaw autopilots. The decrease in performance is 

compensated for by augmenting existing autopilots with adaptive networks. 

Five different time domain analysis case are set up to show the source of 

uncertainty for existing autopilots, the performance of existing autopilots and the 

performance improvement with augmented pitch and yaw autopilots as presented in 

Table 5.1. 

The analysis results in cases 1, 3, 4 and 5 are only presented in pitch plane since the 

pitch and yaw aerodynamics, autopilot architectures and the desired performance 

are same.  

In the first case, source of uncertainty on autopilots caused by varying 

configurations are explicitly shown and discussed using simulation results for the 

pitch autopilot. Then in the second case, performance of unaugmented autopilots for 

the base and varying configurations is analyzed considering the performance 

requirements defined in Table 4.1. Lastly, with the remaining three cases, 

performance of augmented pitch autopilot is presented for configurations C1, C2 

and C3 respectively. 
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Table 5.1 Description of Analyses Cases 

Analysis Config. Description 
1 C1–C2–C3 Pitch plane open loop missile response analysis 
2 C1–C2–C3 Pitch/Yaw/Roll autopilot time domain performance analysis 
3 C1 Pitch autopilot performance analysis with/without NN 
4 C2 Pitch autopilot performance analysis with/without NN 
5 C3 Pitch autopilot performance analysis with/without NN 
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5.1 Analysis 1 

Open loop missile dynamics are analyzed for the case defined in Table 5.2 to show 

why the variations on missile configuration degrade the performance of the 

controlled missile.  

 

 
Table 5.2 Parameters for Analysis 1 

Property Symbol Value 
Missile Configuration  C1–C2–C3 
Mach No M 1.8 

 

 

The cause of performance degradation for missile autopilots is the change in control 

effectiveness for various configurations. For varying configurations, missile 

aerodynamic moments are different causing change in control effectiveness. Control 

effectiveness is defined as the ratio of angle of attack to control input. For the same 

control input (control force), angle of attack at trim condition are different. This 

condition is so, since the body + wing aerodynamic moments with respect to center 

of gravity are different.  

For all the configurations, 2 degrees elevator deflections as presented in Figure 5.1 

are used. Then control effectiveness for configurations can be calculated using the 

angle of attack responses in Figure 5.2 for the commands in Figure 5.1. 

Control effectiveness is decreasing as C1, C3 and C2 as observed in Figure 5.1, 

Figure 5.2 and Figure 5.3. Then physical interpretation is that the gains calculated 

for configuration C1 whose controls are more effective, cannot create the necessary 

control authority for configurations C2 and C3 resulting an increase in autopilot rise 

time. 
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Figure 5.1 Analysis 1 – Elevator Deflection vs Time 

 

 

 

 

 
Figure 5.2 Analysis 1 – Angle of Attack vs Time 
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Figure 5.3 Analysis 1 – Pitch Acceleration Response 
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5.2 Analysis 2 

Designed un-augmented pitch, yaw and roll autopilots are analyzed for the case 

defined in Table 5.3 to show whether the requirements defined in Table 4.1 are 

satisfied for the alternative configurations.  

 

 
Table 5.3 Parameters for Analysis 2  

Property Symbol Value 
Missile Configuration  C1–C2–C3 
Mach No M 0.3 – … – 2.4 

 

 

Results show that performance for pitch and yaw autopilots for any configuration 

are found to be the same since the pitch and aerodynamics are the same. Also, as 

explained in section 3.2, the roll aerodynamics is assumed to be the same for all 

configurations which caused the performance analysis for roll autopilots to be the 

same.  

As seen from Figure 5.4 and Figure 5.5, pitch and yaw autopilot rise time 

performance for C1 is as required. However, C2 and C3 cannot satisfy the rise time 

requirements for most of the flight region. The roll autopilot rise time performance 

is as required for all configurations which are presented in Figure 5.6.  

For all the configurations, maximum percent overshoot requirements are satisfied as 

in Figure 5.7, Figure 5.8 and Figure 5.9.  
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Figure 5.4 Analysis 2 – Pitch A/P Rise Time with Mach 

 

 

 

 

 
Figure 5.5 Analysis 2 – Yaw A/P Rise Time with Mach 
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Figure 5.6 Analysis 2 – Roll A/P Rise Time with Mach 

 

 

 

 

 
Figure 5.7 Analysis 2 – Pitch A/P Percent Overshoot with Mach 
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Figure 5.8 Analysis 2 – Yaw A/P Percent Overshoot with Mach 

 

 

 

 

 
Figure 5.9 Analysis 2 – Roll A/P Percent Overshoot with Mach 
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5.3 Analysis 3 

The effect of adaptive augmentation on missile pitch and yaw autopilots is analyzed 

for the case in Table 5.4. The purpose of this analysis is to show that if the 

modeling error caused by linearization is small, interference of adaptive 

augmentation on the existing controller is small. 

 

 
Table 5.4 Parameters for Analysis 3  

Property Symbol Value 
Missile Configuration  C1 
Mach No M 1.8 
Number of Neurons N 5 
Input – Hidden Layer Weights 
Learning Rate ΓV 1 

Hidden – Output Layer 
Weights Learning Rate ΓW 0.001 

e-modification Coefficient λ 0.001 
Activation Potential a 0.1 – … – 1 
Total Simulation Time s 10 

 

 

Results of this case show that the response of augmented pitch autopilot not much 

altered by neural networks. This result can be observed from transverse acceleration 

presented with Figure 5.10 and Figure 5.11, pitch rate given in Figure 5.12 and 

control inputs Figure 5.13. In Figure 5.13, it is observed that the order of magnitude 

of neural network control input is very low compared to the existing autopilot 

control input. Also weight histories in Figure 5.14 and Figure 5.15 show that 

instantaneous adaptation for this configuration is observed which means that the 

neural network weights did not converge. 
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Figure 5.10 Analysis 3 – Pitch Acceleration Response  

 

 

 

 

 
Figure 5.11 Analysis 3 – Pitch Acceleration Response (5s – 6s) 
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Figure 5.12 Analysis 3 – Pitch Rate  

 

 

 

 

 
Figure 5.13 Analysis 3 – Elevator Control Inputs 
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Figure 5.14 Analysis 3 – Pitch NN Input – Hidden Layer Weights 

 

 

 

 

 
Figure 5.15 Analysis 3 – Pitch NN Hidden – Output Layer Weights 
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5.4 Analysis 4 

The effect of adaptive augmentation on missile pitch and yaw autopilots is analyzed 

for the case in Table 5.5. The purpose of this analysis is to show that adaptive 

augmentation of existing controller can compensate for the modeling error 

originated from changing center of gravity location. 

 

 
Table 5.5 Parameters for Analysis 4  

Property Symbol Value 
Missile Configuration  C2 
Mach No M 1.8 
Number of Neurons N 5 
Input – Hidden Layer Weights 
Learning Rate ΓV 1 

Hidden – Output Layer 
Weights Learning Rate ΓW 0.001 

e-modification Coefficient λ 0.001 
Activation Potential a 0.1 – … – 1 
Total Simulation Time s 70 

 

 

Results of this case show that the response of augmented pitch autopilot for this 

configuration is improved by neural networks. This result can be observed from 

transverse acceleration presented with Figure 5.16, Figure 5.17 and Figure 5.18, 

pitch rate given in Figure 5.19 and control inputs Figure 5.20. Figures show that 

augmented autopilot response satisfies the requirements defined using reference 

model with time. In Figure 5.20, it is shown that order of magnitude of neural 

network control input is comparable to existing autopilot control input. Also, weight 

histories in Figure 5.21 and Figure 5.22 show that adaptation for this configuration 

is observed which means neural network weights converge and learn this 

configuration. 
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Figure 5.16 Analysis 4 – Pitch Acceleration Response 

 

 

 

 

 
Figure 5.17 Analysis 4 – Pitch Acceleration Response (5s – 6s) 
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Figure 5.18 Analysis 4 – Pitch Acceleration Response (65s – 66s) 

 

 

 

 

 
Figure 5.19 Analysis 4 – Pitch Rate 
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Figure 5.20 Analysis 4 – Elevator Control Inputs 

 

 

 

 

 
Figure 5.21 Analysis 4 – Pitch NN Input – Hidden Layer Weights 
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Figure 5.22 Analysis 4 – Pitch NN Hidden – Output Layer Weights 
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5.5 Analysis 5 

The effect of adaptive augmentation on missile pitch and yaw autopilots is analyzed 

for the case in Table 5.6. The purpose of this analysis is to show that adaptive 

augmentation of existing controller can compensate for the modeling error 

originated from the varying aerodynamics due to the changing tail geometry. 

 
Table 5.6 Parameters for Analysis 5  

Property Symbol Value 
Missile Configuration  C3 
Mach No M 1.8 
Number of Neurons N 5 
Input – Hidden Layer Weights 
Learning Rate ΓV 1 

Hidden – Output Layer 
Weights Learning Rate ΓW 0.1 

e-modification Coefficient λ 0.001 
Activation Potential a 0.1 – … – 1 
Total Simulation Time s 20 

 

Results of this case show that the response of augmented pitch autopilot for this 

configuration is also improved by neural networks. This result can be seen in 

transverse acceleration presented with Figure 5.23 and Figure 5.24, pitch rate given 

in Figure 5.25 and control inputs Figure 5.26. Figures show that augmented 

autopilot response satisfies the requirements defined using reference model very 

fast. Also it is observed in Figure 5.24 that perfect tracking of the reference model 

is achieved with the neural network augmented autopilots. In Figure 5.26, it is 

shown that order of magnitude of neural network control input is also comparable to 

existing autopilot control input as the previous case analysis 4. Also, weight 

histories in Figure 5.27 and Figure 5.28 show that instantaneous adaptation for this 

configuration is observed meaning that neural network weights did not converge as 

in the case analysis 3. 
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Figure 5.23 Analysis 5 – Pitch Acceleration Response 

 

 

 

 

 
Figure 5.24 Analysis 5 – Pitch Acceleration Response (2.5s – 3s) 

 



 
 
 
 
 
 

81

 

 
Figure 5.25 Analysis 5 – Pitch Rate 

 

 

 

 

 
Figure 5.26 Analysis 5 – Elevator Control Inputs 
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Figure 5.27 Analysis 5 – Pitch NN Input – Hidden Layer Weights 

 

 

 

 

 
Figure 5.28 Analysis 5 – Pitch NN Hidden – Output Layer Weights 
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CHAPTER 6 

6 CONCLUSIONS 
 

 

 

With this thesis, an automated aerodynamic analysis tool is developed and used to 

create different configurations with different aerodynamics, such that the 

performance of the control system designed for the base configuration decreases. 

After modeling the missile dynamics, six degree of freedom simulation is developed 

and used to simulate different missile configurations and analyze control system 

performance during the analysis. Afterwards, control systems are designed with the 

derivation of linear missile models considering time domain performance 

requirements. Then, control systems are augmented using existing control system 

augmentation approach. Lastly the performance of un-augmented and augmented 

existing controllers are analyzed and discussed. 

Analysis 1 presented in previous chapter showed that the reason for autopilot 

performance decrease for varying configurations is the change in control 

effectiveness. Control effectiveness for configurations is shown to reduce with the 

order C1, C3 and C2. Control system performance for different configurations is 

also shown to decrease in the same manner as explained in analysis 2. With the 

adaptation of existing autopilot designed for C1, augmented pitch and yaw 

autopilots satisfy the required performance for base configuration C1 and varying 

configurations C2 and C3 as presented with analysis 3 to 5. Augmented autopilots 

for C2 in analysis 4 are shown to have global (convergent) adaptation and neural 

networks learned the system. For this analysis, augmented autopilots took some 

time to achieve adaptation to the uncertain aerodynamics of C2. On the other hand, 

augmented autopilots for C3 in analysis 5 achieve local adaptation in which the 

neural network weights did not converge. But the adaptation of augmented 

autopilots in analysis 5 is found to be instantaneous. 
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During the analysis, some restrictions of adaptation method for this kind of 

problems are discovered. With this method response characteristics depend on the 

flight velocity, command and amplitude of the command. This in turn required 

tuning process to be performed at some design points for different commands and 

learning rate scheduling. Furthermore, increasing the learning rates of the neural 

networks may cause unwanted high frequency dynamics in missile response for 

certain conditions. 

To summarize, overall assessment of adaptive augmentation architecture presented 

herein work well. For an agile missile control problem, in which lateral 

accelerations are usually controlled, application may not increase the performance 

much because of the restrictions of the method. The analysis cases show that 

instantaneous adaptation with this method is better than the convergent adaptation 

which requires more time to satisfy the performance defined with requirements.  
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APPENDIX A 

AAERODYNAMIC ANALYSIS 
 

 

 

A.1 Missile DATCOM 

Missile DATCOM is a FORTRAN based executable analysis code which includes 

different empirical formulas, charts as well as theories and formulas depending on 

the flight region and geometry. It includes text files with ‘.dat’ extension that are 

used for input and output. Files used during the aerodynamic analysis in this thesis 

and their descriptions are listed in the following table and function of other files in 

the program is explained in Ref. [20]. 

 

 

 
Table A.1 Input and Output Files for DATCOM 

Unit Name Usage 
4 for004.dat Program output file for user specified parameters 
5 for005.dat User input file 
6 for006.dat Program output file 

 

 

 

Missile DATCOM is configured using the commands called ‘Control Cards’ and 

physical properties of the geometry input are defined with subroutines called 

‘Namelist’. Inputs are defined using file ‘for005.dat’ and see Ref [20] for a 

complete list of control cards and namelists. Basic parameters used to define a 

missile are expressed in [20] and missile DATCOM input file configured for 

AIM9D aerodynamic analysis is presented below. 
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Table A.2 DATCOM Input Parameters 

Namelist Parameter Description 
LREF Reference length 
SREF Reference area REFQ 
XCG Center of graviy 
BETA Sideslip angle 
NALPHA angle of alpha vector length 
ALPHA angle of alpha vector 
NMACH Mach vector length 
MACH Mach vector 

FLTCON 

ALT Altitude vector 
TNOSE Nose shape selection 
LNOSE Nose length 
DNOSE Nose diameter 
LCENTR Center body length 
DCENTR Center body diameter 
LAFT Aft body length 
DAFT Aft body diameter at the front 
DEXIT Aft body diameter at the back 

AXIBOD 

BNOSE Nose bluntness radius 

ZUPPER Span-wise vector for thickness to chord ratio of upper 
fin surface. 

LMAXU Span-wise vector for fraction of chord from section 
leading edge to maximum thickness of upper surface. 

LFLATU Span-wise vector for fraction of chord of constant 
thickness section of upper surface. 

SSPAN Span-wise vector of semi-span locations 
CHORD Span-wise vector of chord length 
XLE Span-wise vector of nose to leading edge distance  
STA Place of sweep angle (leading/trailing edge) 
SWEEP Sweepback angle at each span station. 
NPANEL Number of panels 

FINSETn 

PHIF Angle of the fins to vertical axis at back view 
DELTAn Vector of fin set n deflection angles for each panel DEFLCT 
XHINGE Vector of fin set hinge line locations relative to nose 
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A complete aerodynamic database has to include most of the coefficients needed to 

estimate aerodynamic forces and moments at any flight condition. An aerodynamic 

flight condition is defined by Mach number, altitude, alpha, beta and control surface 

deflections. However, Missile DATCOM gives aerodynamic coefficients for a 

vector of angles of attack at certain Mach number, altitude, beta and control surface 

deflection angles. So that the user has to change the parameters except the angles of 

attack defined in order to sweep all possible flight conditions. This procedure is 

done autonomously with aerodynamic database creation code developed in 

MATLAB. This code forms ‘for005.dat’ file according to the user inputs, run 

executable analysis code and save the aerodynamic analysis results read from 

‘for004.dat’ to a file. Also the code generates a plot of the input geometry and 

potential center of pressure locations before the analysis to be able to decide on the 

stability characteristics of the missile. 

 

 

 


