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ABSTRACT

OPTIMUM DESIGN
OF

SLURRY PIPELINES

Y�ld�z, Burhan

M.S, Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Ay³e Burcu Altan Sakarya

Co-Supervisor: Prof. Dr. Metin Ger

December 2009, 58 pages

There exist various applications of transportation of slurries through pipelines all over the

world. In the present study, the problem is formulated as a 'transportation problem' to

determine the pipe diameters and amounts of slurry to be transported from the demand

(production) points to the processing (factory) points. The minimization of the cost consist-

ing of the pipe and energy cost terms is considered as the objective function to determine the

stated decision variables. Pipe cost is given as the function of pipe diameters and the energy

cost is de�ned as function of pipe diameters and slurry amounts. Energy cost is obtained by

using the relation that is previously determined after the experimental studies made for the

magnetic ore. The optimization method used in the study is Genetic Algorithms method. A

commercially available software written in C language is used and modi�ed for the present

study. The proposed methodology to solve this nonlinear programming problem is applied

to a transportation system and it is seen that the methodology made the complex, labor

intensive equation solution process very convenient for the user.

Keywords: Slurry pipelines, Optimization, Genetic Algorithms
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ÖZ

KATI MADDE TA�INAN BORU HATLARININ OPT�MUM TASARIMI

Y�ld�z, Burhan

Yüksek Lisans, �n³aat Mühendisli§i Bölümü

Tez Yöneticisi: Doç. Dr. Ay³e Burcu Altan Sakarya

Ortak Tez Yöneticisi: Prof. Dr. Metin Ger

Aral�k 2009, 58 sayfa

Borularda kat� madde ta³�n�m�n�n dünya genelinde çe³itli uygulamalar� vard�r. Mevcut

çal�³mada, problem bir ula³t�rma problemi olarak, boru çaplar�n� ve üretim (talep) nokta-

lar�ndan tüketim (fabrika) noktalar�na ta³�nan kat� madde miktar�n� bulma üzerine formüle

edilmi³tir. Belirtilen karar de§i³kenlerinin bulunabilinmesi için, enerji ve boru hatt� gider-

lerinden olu³an toplan maliyetin en küçüklenmesi amaç fonksiyonu olarak belirlenmi³tir.

Boru hatt� maliyeti, boru çap�n�n bir fonksiyonu olarak ele al�n�rken, enerji giderleri boru

çap� ve ta³�nan kat� madde miktar�na ba§l� bir fonksiyon olarak hesaplanm�³t�r. Enerji

giderleri, daha önce manyetit konsantreleri için yap�lan deneysel çal�³malardan elde edilen

denklemler kullan�larak hesaplanm�³t�r. Optimizasyon yöntemi olarak Genetik Algoritma

metodu kullan�lm�³t�r. C dilinde yaz�lan bir serbest yaz�l�m al�narak mevcut çal�³ma için

uyarlanm�³t�r. Lineer olmayan programlama problemlerinin çözümü için önerilen bu yön-

tem, bir ula³t�rma sistemi üzerinde uygulanm�³ ve uygulanan bu metodun kar�³�k ve a§�r

zahmet gerektiren denklem çözümlerini kullan�c� için kolayla³t�rd�§� gözlemlenmi³tir.

Anahtar Kelimeler: Kat�-s�v� kar�³�m� ak�mlar, optimizasyon, genetik algoritma
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CHAPTER 1

INTRODUCTION

1.1 Problem De�nition

Slurry pipeline method was �rst used in 1950s in order to transport ore materials. The

method is found to be feasible in the situation of transporting materials to long distances.

This type of transportation is obtained by making a mixture �ow of water and the material

to be transported. The pipelines are laid between the source of the material and the place

where the material is to be processed. The concentrate of the ore is mixed with water and

then pumped over long distances.

The hydraulics of slurry pipelines are somehow similar to the hydraulics of water pipelines.

However, as it is a mixture �ow, critical velocity of the particles in suspension should be

computed. Also a head loss equation should be formulated to compute the required energy

to the system. The head loss for mixture �ows depends on pipe diameter, concentration of

transported material and velocity of mixture. The related equations are obtained by the

help of the information given in [1], which are presented in Chapter 3.

In this study the optimization of transportation of materials by means of slurry pipelines

is handled. The problem is constructed as transporting the materials from multi production

points to multi consumption points. The aim of the optimization problem in the study is to

minimize the total cost. The constraint of the problem becomes the weight of the material to

be transported. Pipe diameter and concentration values are selected as the decision variables

of the problem. To consider a system with m production point and n consumption points,

m × n pipelines should be laid between each point, then there exists m × n unknown pipe

diameter and m× n unknown concentration value.

Due to the non-linearity in the equations to be used, the constructed optimization prob-

lem is a non-linear optimization problem. Also, there exists several unknowns as decision
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variables when considering multi production and multi consumption points. The method of

optimization is selected by considering conditions. In the pre-studies, non-linear program-

ming methods were tried. However, due to the high non-linearity of the problem, this method

failed to converge to the optimal solution. Then it is decided to use the genetic algorithms

method in solving the optimization problem. The main advantage of the genetic algorithms

is that the algorithm always �nds an answer whether the problem is highly nonlinear or not.

Also, this solution can be improved applying various operators of the algorithm.

Previously, optimization of slurry pipeline is achieved by [1] where, the optimization

process is done by trying each and every possible solutions by a computer code. Although

there exists one production point and one consumption point in the study, the process is

labor intensive. It can be estimated that, applying this method to a multi-inlet and multi-

outlet system would not be practical. For example, if one wants to solve the real life study

handled in the present study, which has 3 inlet and 3 outlet, over 20×1024 possible solutions

should be examined within the boundaries of the decision variables in order to reach the

optimal solution.

1.2 Literature Survey

In 1978, a feasibility study of constructing a slurry pipeline between Hasançelebi and �sk-

enderun [1] is prepared by METU Hydraulics Laboratory upon the request of Ministry of

Transportation. The optimization of the problem is solved within the report. The decision

variable of the optimization problem was taken as pipe diameter and the problem was solved

for the possible pipe diameters. The path of the pipeline was also a parameter in this study

and the problem was solved several times for various weight of transported material. Besides,

as the number of decision variable is one and the search space is relatively small, this process

is achieved by a computer code written by the researchers. The computer code used in the

study was based on a �ow chart of the problem. Although the genetic algorithms method

was not developed so far to apply on a project at the time, the search algorithm used in the

study is somehow similar to the genetic algorithms method. In the search algorithm used,

the possible solutions are inserted to the computer code, and the code evaluates each and

every one systematically, then gives the best result as optimum. That algorithm did not

need any operators, like the genetic algorithms have, to reach the result more quickly due

to the small search space. Although, it can be estimated that, the algorithm used in the

study may not work successfully for a problem having several decision variables and lots of

2



possible results.

In 1979, two of the researchers of the previously explained study (Ger and Yücel) have

written a congress paper on optimization of slurry pipelines with multi source points [5]. In

this study an optimization problem is constructed by minimizing the cost of the system and

constraining the weight of the transported material. The equations are converted to linear

equations and solved by linear programming techniques.

In 1987 by Goldberg et al., pipeline optimization using genetic algorithms is done [6]. In

this study, a pipeline problem with several pipes and several pumps is optimized. In this

early study, the power and applicability of genetic algorithms method on pipeline problem

is examined and the algorithm found very near-optimal results quickly. This study has been

the �rst application of genetic algorithms to a water resources problem. After this study,

many researchers followed the same way and applied genetic algorithms in water resources

optimization problems.

In 1994 by Simpson et al., the comparison of optimization techniques for pipe optimiza-

tion is studied [7]. In the study, a case of a small scaled pipe network is handled. The system

is optimized to get a least-cost alternative by using methods; enumeration, non-linear op-

timization and genetic algorithms. By comparing the results, the researchers stated that;

enumeration method gives good results on pipe networks with relatively few pipes, nonlinear

optimization is an e�ective technique when applied to a small network expansions, however

the method generates only one solution and discrete pipe sizes must be converted to a con-

tinuous function in order to use the method, and genetic algorithms method generates a

whole class of alternative solutions close to the optimum. One of these solutions may be

preferred to the optimum solution. Also, it is suggested that the genetic algorithm technique

is ideally suited to discrete problems such as selection of commercially available pipe sizes.

Among the later studies, in 2000, Sharif et al., applied the genetic algorithms in optimiz-

ing multi reservoir systems [8]. In the study, a case is solved using dynamic programming

methods and using genetic algorithms, then the obtained results are compared. It is con-

cluded that the results obtained from both techniques are similar and genetic algorithms

method has advantages over dynamic programming methods in practicability.

Another application of genetic algorithms on water resources is done by Farmani et al.,

in 2007 [9]. In the study, genetic algorithms is applied on optimum design of pressurized

branched irrigation networks. The method is compared with linear programming methods,

which is an alternative solution procedure for the problem. After applying genetic algorithms

on the problem, it is concluded that, genetic algorithms are better in satisfying constraints

3



and lowering the capital cost of the system.

1.3 Outline of the Thesis

In Chapter 2, Genetic Algorithms method is explained brie�y. The operators of genetic

algorithms and the parameters to be used in the study are discussed.

Then in Chapter 3, the problem is de�ned. At �rst, basic characteristics of slurry

pipelines are given and hydraulic characteristics of this �ow type is de�ned. Then, the

optimization problem is constructed by means of objective function and constraints. At the

end, the �tness function, to be used in Genetic Algorithms process, is de�ned.

In Chapter 4, the application of the problem is done for two situations. First, the method

is applied to a single pipe system and then it is applied to a real life study. The results of

these applications are presented in the same Chapter.

Finally, in Conclusion Chapter, a summary of the study is done, the gains from the study

is explained and the way of improving the present study is stated.

4



CHAPTER 2

GENETIC ALGORITHMS

The selected optimization technique for the study is Genetic Algorithms, because the other

methods were tried previously for the solution of the problem and an acceptable result could

not be obtained due to nonlinearity of the equations. In this Chapter, Genetic Algorithms

will be explained brie�y.

Genetic Algorithms is a search algorithm based on the principles of natural genetics and

evolution. It has been developed by John Holland in 1975. The �rst real world applications

of Genetic Algorithms were designed in 80's after it has been studied theoretically until the

early 80's.

The main advantages of solving an optimization problem by using genetic algorithms

can be listed as; (i) it is reliable in either linear or non-linear problems, (ii) it gives always

an answer to the problem, (iii) there exists many ways to improve the solution of genetic

algorithms.

Genetic Algorithms is based on the main principle of the evolution, survival of the �ttest.

The good solution survive for the next generation, while the bad solution taken out from the

population. The algorithm applies the same processes as the nature does in evolution. The

schema of the Genetic Algorithms processes are shown in Figure 2.1. Mainly, the process

starts with creating an initial population, which is the set of possible solutions. This process

is done randomly. Then each individual is evaluated by use of �tness function, which is an

evaluation function that determines which solutions are better than others. It is computed

for each individual. Then a selection method is used to transfer the single individual to the

next generation. The remaining individuals are selected for the mating pool. Crossover,

mutation and elitism operators are applied to the individuals. The Genetic Algorithms

operators will be explained in this Chapter, below. The parent individuals, entered into the

operators constitutes the o�spring. Then, �nally by the insertion of the o�spring into the

5
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Figure 2.1: Genetic Algorithms Processes

population, the new population for the next generation is obtained. If stopping criteria is

satis�ed after constructing the new population, the process ends and the individual in the

population with the best �tness becomes the result. If the stopping criteria is not satis�ed,

the process continues until it is satis�ed. The stopping criteria can be de�ned in two ways

as; (i) stop when the generation number reaches the previously de�ned number, (ii) stop

when the improvement of the average �tness over two generations is below a de�ned limit.

2.1 Operators of Genetic Algorithms

Mainly, there exists three Genetic Algorithms operators; selection operator selects the indi-

viduals to be transferred to the next generation, crossover and mutation operators changes

the individuals to obtain better �tness values.

2.1.1 Selection

Selection operator transfers the single individual into the next generation based on �tness.

Two possible selection methods are; (i) only the strongest survive because of their strong

�tness (ii) some weak solutions also survive as some bad solutions might have good parts.

Two main selection techniques are; roulette wheel selection and tournament selection.

In roulette wheel selection, each individual has a portion in the roulette wheel. The

area of any individual in the roulette wheel is based on the �tness values. Then selection

is done on roulette wheel, the probability of �ttest individuals to be selected is higher than

the weaker ones.
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Figure 2.2: One-point Crossover Operator Schema

In tournament selection, subsets including n individuals are produced and the �ttest of

each subset are selected. n here is the tournament size. According to Prof. Kalyanmoy Deb

from KANGAL (Kanpur Genetic Algorithms Laboratory), in the light of the explanations

given in the Genetic Algorithms solver C Code he has developed, in minimization problems,

tournament selection method should be used as selection operator.

2.1.2 Crossover

Crossover operator combines genetic material from two parents, in order to produce superior

o�spring. It is done to share the information among chromosomes. The aim is to combine

the strong parts of the parents and get �tter o�spring chromosomes. Mainly, one point and

multi point crossover methods are applied in Genetic Algorithms. In Figure 2.2, basic one

point crossover method is illustrated. The genes of the parent chromosomes change their

places in order to create o�spring chromosomes. In [10], it is stated that in most cases the

crossover percentage is about 80%.

Generally two types of crossover methods are applied in real coded Genetic Algorithms;

(i) simulated binary crossover (SBX-η), (ii) blend crossover (BLX-α). Both investigate the

place of crossover site in di�erent manner. In [11], it is stated that BLX-0.5 (α=0.5) performs

better than the BLX operators with other α value. Besides, no recommendation for η value

in SBX-η is found on articles.

7



Figure 2.3: Mutation Operator Schema

2.1.3 Mutation

As the o�spring is produced from one parent chromosome, while crossover is known as sexual

reproduction in genetics, mutation is known as asexual reproduction. The idea of mutation

is to reintroduce divergence into a converging population. It helps to extend the search space

widespread. Mutation is performed on small part of population in order to avoid entering

unstable state.

In Figure 2.3, an illustration shows how mutation operator works. The parent chro-

mosome do not mate with any other chromosome to mutate. After applying the mutation

operator to the parent chromosome, a gen or some genes of the chromosome change into

another gen or genes. This operator is applied in order to reach a di�erent path of the

solution space.

2.2 Example Genetic Algorithms Solution by Hand

To explain genetic algorithms more clearly, a genetic algorithm solution by hand made in [4]

is presented here.

The problem is to maximize f(x) = x2, where x vary between 0 and 31. The procedure is

presented in Table 2.1 and Table 2.2 The possible solutions are written in base 2 arithmetic

in binary coding. (Second column in Table 2.1), the corresponding actual x values are

given in third column, and corresponding f(x) values are calculated. By dividing fi to

the fave. expected counts are calculated and a comparison between individuals are done.

Actual counts to be used in Roulette Wheel is found by using the expected count values.

Elitism and mutation operators are not used in this problem. Only crossover operator is

used. In Table 2.2, each individual is taken into mating pool for crossover operator. Then,

randomly mates and the crossover sites are selected. In the table, mate numbers shows

8



Table 2.1: A Genetic Algorithm Solution by Hand[4]

String No. Initial Population x value f(x) Expected count Actual count

1 01101 13 169 0.58 1

2 11000 24 576 1.97 2

3 01000 8 64 0.22 0

4 10011 19 361 1.23 1

Sum 1170 4.00 4.0

Average 293 1.00 1.0

Max 576 1.97 2.0

Table 2.2: A Genetic Algorithm Solution by Hand (continued)[4]

Mating Pool

after

Reproduction Mate Crossover Site New Population x value f(x)

0110|1 2 4 01100 12 144

1100|0 1 4 11001 25 625

11|000 4 2 11011 27 729

10|011 3 2 10000 16 256

Sum 1754

Average 439

Max 729

that the related string will match which string in crossover process and crossover site shows

after which chromosome one-point crossover will be done. After the individuals reproduced,

new population is obtained and the evaluation of the new population is done in the same

manner as done in the �rst population. One generation of the algorithm is shown here. This

processes continues until the stopping criteria is satis�ed. As a result of this example, it is

shown that the �tness is improved over two generations.
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CHAPTER 3

PROBLEM FORMULATION

The aim of this study is to minimize the cost of the transportation of solid materials by pipe

�ow. First, the basic characteristics of solid-liquid mixture �ows are investigated. Hydraulic

computations are done to attain the hydraulic loss and critical velocity of mixture �ow

formulas. Then the energy required to overcome the head loss occurring during the pipe line

and the cost of this amount of energy is calculated.

The cost of the system is reduced to a simpler state, as the total cost is taken as the sum

of energy costs and pipe costs only. In [1], more detailed cost analysis can be found for a

real world application.

In the present study, the pipe cost is calculated by the help of formula given in [12].

The constraints of the optimization problem, are the capacity and the demand of the

production and the consumption points, respectively.

After de�ning the optimization problem, a genetic algorithms code based on C program-

ming language written by Prof. Dr. Kalyanmoy Deb (1995) is adapted to the present study.

The detailed explanations of the above mentioned steps are presented in this chapter.

3.1 Hydraulic De�nition

3.1.1 The Basics of Solid-Liquid Mixture Flows in Pipes

Solid-liquid mixture �ows are mainly separated in two parts as settling and non-settling

�ows. In non-settling �ow, as the particle diameters and particle settling velocity, i.e. fall

velocity, are so small, the particles do not settle and �ow in suspension with the e�ect of

turbulence of the �ow. Therefore, any cross-section of the pipeline carries the same volume of

the particles. The �ow behaves in a semi-homogeneous manner. On the contrary, in settling

�ow, the particle diameters and the settling velocities are higher. The turbulence e�ect of
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the �ow is not enough to lift the particles from the ground. Therefore, the concentration

of particles in suspension is not uniform over the cross section. From the application point

of view, while non-settling �ows can be treated as the �ow of a new �uid, the settling �ow

characteristics depend on both solid and liquid characteristics individually. Furthermore,

Durand and Condolios (1956) stated that if the volumetric concentration of solids exceeds

30 percent in settling �ows, the �ow characteristics start to behave like non-settling �ows

[1].

The border line between settling and non-settling �ows is not very explicit [1]. Du-

rand(1953) and Newitt(1955) stated that the range of particle settling velocity of V =

0.60 ∼ 1.50 mm/s is the border line between two types of �ows, such that the larger ve-

locities are settling �ows, and the lower velocities are non-settling �ows. Additionally, in

Wilson et al. [13], it is stated that, a slurry of small particles (less than 40 µm) in turbulent

motion tends to behave in a homogeneous fashion. Also on the same source, the limit for

pseudo-homogeneous �ow (means that, there exists measurable decrease of concentration by

height) are given for particles larger than 100 µm.

Also, Newitt(1955) and Aude(1971) obtained graphs showing the distinction between the

�ow types as a function of particle diameter, velocity of mixture and speci�c gravity of solid

material, which is shown in Figure 3.1. As stated in Yücel et al. [1], ore materials, convenient

for hydraulic transport, have particle diameters of d50 = 40 − 100 microns and speci�c

gravity of ss = 4.6− 6.2 which corresponds the dashed regions in Figure 3.1. Therefore, it is

concluded in Yücel et al. [1] that, the mixture �ows convenient for hydraulic transport are

semi-homogeneous and non-settling �ows.

3.1.2 Head Losses in Non-Settling Solid-Liquid Mixture Flows

As mentioned above, in non-settling solid-liquid mixture �ows, the particles are distributed

uniformly in every cross-section of the pipe. Therefore, this mixture �ow can be treated as

a �ow of a new �uid with di�erent properties. The basic head loss formula for pipe �ows is

given in Equation 3.1.

H = i L (3.1)

where, H is the head loss through the pipe, i is the head loss coe�cient and L is the

pipe length.

From the experiments [1], the following relation is obtained for ore concentrate mixture
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Figure 3.1: Classi�cation of Mixture Flows [1]
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�ows convenient for slurry pipelining,

i = k Cx
VD

y V z
m (3.2)

where, CV is the concentration by volume, D is the diameter and Vm is the velocity of

mixture and k, x, y and z are the constants and determined after the laboratory studies.

First of all, to investigate the relation between i and Vm, Equation 3.2 can be written as,

i = k1 V
z
m (3.3)

where, k1 = k Cx
V D

y. The experiments were done for concentration by volume values of

CV = 0.20, 0.25 and 0.30 separately for the diameter values of D= 0.108 m, 0.159 m, 0.209

m, 0.263 m and 0.315 m [2]. Then researchers obtained the relation between i and Vm,

which are shown in Figure 3.2, Figure 3.3 and Figure 3.4. As shown on these three graphs,

z values are calculated for each diameter after the experimental studies and it is seen that

all z values are close to each other. Then, the average of these values, z=1.77, will be used

for all diameters in Equation 3.3 [1].

After determining the exponent of Vm, k1 values are calculated as k1 = i/V 1.77
m from

Equation 3.3. After k1 values of all experiment sets are calculated and according to equation

below,

k1 = k2D
y (3.4)

where,k2 = k Cx
V .

k1versus D graphs are drawn for various CV values as shown in Figure 3.5. It is seen from

the equations of the lines that, the slopes of all lines, the exponent of diameter in Equation

3.2 i.e. y value, are the same. k2 values are also obtained as 0.001074, 0.001284 and 0.001487

for CV of 0.2, 0.25 and 0.3, respectively.

As k2 = k Cx
V and k2 and corresponding CV values are known, a graph showing the rela-

tion between k2 and CV was obtained (Figure 3.6). As shown on Figure 3.6, two appropriate

equations were �tted on the graph. The equation of exponential form (i.e. k2 = 0.0039C0.803
V )

is chosen, which makes the �nal version of Equation 3.2 to become,

i = 0.0039C0.803
V D−1.25V 1.77

m (3.5)

where, i is in m/m, D is in m and Vm is in m/s.
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Figure 3.2: Relation between the slope of HGL and velocity of mixture when CV =0.20 [2]
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Figure 3.3: Relation between the slope of HGL and velocity of mixture when CV =0.25 [2]
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Figure 3.4: Relation between the slope of HGL and velocity of mixture when CV =0.30 [2]
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Figure 3.5: k1 versus D for various CV values [2]
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Figure 3.6: k2 versus CV [2]

Also another suggestion on head loss calculation has been made by Thomas, 1976 [14],

for the iron ore materials having average particle diameters, d50 = 40 microns and mixtures

having concentration by volume of, CV = 0.24. The equation is shown below.

i = 0.001508D−1.18V 1.77
m (3.6)

Taking CV as 0.24, to compare Equation 3.5 with Equation 3.6, Equation 3.5 becomes

i = 0.001239D−1.25V 1.77
m (3.7)

To see the di�erences of two equations more clearly Figure 3.7 is drawn. The agreement

between the predictions of these two equations warrants to use of Equation 3.5.

Then the �nal state of head loss equation becomes by combining Equation 3.1 and Equa-

tion 3.5,

H = 0.0039C0.803
V D−1.25V 1.77

m L (3.8)

3.1.3 Critical Mixture Velocity

As stated in [1], the relation between critical mixture velocity (Vcr), particle diameter (d),

concentration by weight (CW ), speci�c gravity (ss) and diameter (D) of the pipe can be

indicated as below,

Vcr = f(CW )dpsq
sD

r (3.9)
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Figure 3.8: Relation between Critical Velocity and Concentration by Weight [3]

The values of the exponents are stated as below in the light of the experiments done in

Colorado and Saskatchewan Institutes, [3] and [2],

p = 0.75, q = 0.50 and r = 0.50.

To �nd the value of f(CW ), the graph shown in Figure 3.8 is utilized. In this �gure,

the experimental �ndings of the study made in Colorado Institute to investigate the relation

between CW and Vcr is depicted.

The researchers made a dimensional analysis to obtain the following equation [1].

Vcr = f(CW )(
d

d∗
)0.75(

ss

ss∗
)0.5(

D

D∗
)0.5 (3.10)

In the experiments, particle diameter, d∗ = 20 microns, speci�c gravity, ss∗ = 4.71 and
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diameter, D∗ = 0.27 m was used. Placing the values in Equation 3.10, the following equation

was obtained.

Vcr = 2966.45 f(CW ) d0.75s0.5
s D0.5 (3.11)

Referring to Figure 3.8 and using Equation 3.12, the relation between f(CW ) and Cw is

obtained for the ranges of Cw tested.

For 0.30 ≤ CW < 0.45,

f(CW ) = 0.2067CW + 1.035

For 0.45 ≤ CW < 0.55,

f(CW ) = 1.5200CW + 0.444 (3.12)

For 0.55 ≤ CW ≤ 0.70,

f(CW ) = 6.1000CW − 2.075

In Figure 3.8, there exists no information for CW < 0.30, which is necessary for the

present study. Taking the asymptotic behavior as depicted in the �gure into account for

CW < 0.30, f(CW ) is set equal to 1.097.

3.1.4 Cost Computations

Head loss of the whole system is calculated using Equation 3.8. Then the required pump

power to supply the energy to overcome this loss can be found from;

P =
γQHp

η
(3.13)

where, P is the pump power, γ is the unit weight of mixture, Q is the discharge and Hp

is the head of the pump. Equating the pump head to the head loss, Equation 3.13 can be

written as,

P =
ρmQmH

101.94η
(3.14)

where ρm (density of mixture) is in t/m3, H (head loss) is in m and P results in kW . In

this study, η (pump e�ciency) is taken as 100% and Qm (discharge of mixture) is in m3/s.

ρm is found by,
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ρm = ρw(CV ss + (1− CV )) (3.15)

where, ρw is density of mixture, CV is concentration by volume, and ss is speci�c gravity

of solid material.

In Equation 3.14, H is found from Equation 3.8 and Qm equals to Vcr (velocity) times

A (area), where Vcr is obtained from Equation 3.11.

The energy supplied for 1-year time period is then found, assuming that the pump is in

operation for 90% of the time, as follows;

E = 7884P (3.16)

where, E is in kWh.

Finally, energy cost, C1 is computed by multiplying the unit price of energy with energy

spent for one year.

C1 = CE × E (3.17)

where CE is the unit price of energy and taken as 0.1 $/kWh The electricity unit price

for industrial facilities, announced by Turkish Energy Market Regularity Authority in 2008

as 0.172 TL/kWh, approximately 0.1 $/kWh and C1 results in $.

Second component of the cost is the pipe cost, C2, which depends on the length and the

diameter of the pipe. [12] suggests to use the following formula for pipe cost in pipelines.

C2 = 210.89D1.3744L (3.18)

where, C2 is in $, D is in m and L is in m.

3.2 De�nition of the Optimization Problem

3.2.1 Objective Function and Constraints

In the optimization problem part, it is decided to construct a problem of transporting iron

ore from multi production points to multi consumption points. To develop this problem,

m production points (mine pits) and n consumption points (factories) system is considered.

The aim of the problem is to minimize the cost of all system. The decision variables become

the pipe diameters and the concentrations of solid material that will be carried by each
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pipeline. The total cost of the system is the sum of the energy cost and the pipe cost. Thus,

the cost of the system becomes as,

C =
m∑

i=1

n∑
j=1

C1ij +
m∑

i=1

n∑
j=1

C2ij (3.19)

where, C1ij stands for the energy cost associated with the head loss of pipe connecting

ith production point to jth consumption point. Similarly, C2ij is the pipe cost of the corre-

sponding pipe between i and j. C1 and C2 are calculated from Equation 3.17 and Equation

3.18, respectively. Thus, C becomes the total cost of the system.

The constraints of the problem are the capacities of the production points and the de-

mands of the consumption points.

Thus, if WSij stands for the weight of the materials transported between ith production

point and jthconsumption point, the total weight of the ore produced on ith production point

(pi) becomes;

pi =
n∑

j=1

Wij for i = 1, ...,m (3.20)

Similarly for consumption points, the total weight of the ore used on jth consumption

point (cj) becomes;

cj =
m∑

i=1

Wij for j = 1, ...., n (3.21)

The weight of the transported material is calculated by;

W ij = CV ij (ρw ss)
πD2

ij

4
(Vm)ij for i = 1, ...,m j = 1, ..., n (3.22)

where, Vm is taken as Vcr,also CVij can be written as;

CV ij =
CWij

CWij + ss (1− CWij)
for i = 1, ...,m j = 1, ..., n (3.23)

It can be seen that, Wij is calculated as function of Dij and CWij , which are the decision

variables of the optimization problem.

There exists bound constraints on Dij and CWij as;

Dmin ≤ Dij ≤ Dmax for i = 1, ...,m j = 1, ..., n (3.24)

CWmin ≤ CWij ≤ CWmax for i = 1, ...,m j = 1, ..., n (3.25)
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where, Dmin and Dmax are the minimum and maximum pipe diameters allowed to be

used and CWmin and CWmax are the minimum and maximum values of the concentration

by weight.

The constraints are mainly related to the amount of the transported material. They

have been handled in two cases; the �rst one is if the total capacity of the production points

is greater than the total demand of the consumption points. The second case is just the

opposite of the �rst case, which is the case of demand of consumption points to be higher

than the capacity of production points. Both cases are investigated below.

Initially, if the total capacity of production points is greater than the total capacity of

consumption points (Equation 3.26), each consumption point can use the materials till the

limit of its capacity, that is the demands of the consumption points are satis�ed. In other

words, the amount of used material on every consumption point must be equal to the demand

of corresponding point (Equation 3.27).

n∑
j=1

ccapj <
m∑

i=1

pcapi (3.26)

cj = ccapj for j = 1, ...., n (3.27)

where, ccapj stands for the demand capacity of jth consumption point and pcapi stands

for the production capacity of ith production point.

While satisfying the total demand of the consumption points, any production point should

not exceed its own capacity as given in;

pi ≤ pcapi for i = 1, ...,m (3.28)

Also, the weight of materials transported on each pipe (W ij) must be non-negative.

W ij > 0 for i = 1, ...,m j = 1, ..., n (3.29)

Equation 3.29 is automatically satis�ed asW ij is calculated from Equation 3.22 and with

the bound limits of Dij and CWij , it will always be non-negative.

On the other hand, for the second case, when the total demand of the consumption

points is higher than the total capacity of the production points (Equation 3.30), the demand

can not be satis�ed. The production points must work on their maximum level and every

production point should reach its capacity (Equation 3.31).
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m∑
i=1

pcapi <

n∑
j=1

ccapj (3.30)

pi = pcapi for i = 1, ...,m (3.31)

Besides, any consumption point should not exceed its own capacity.

cj ≤ ccapj (3.32)

Also, similar to the �rst case, the weight of materials transported on each pipe (W ij)

must be non-negative (Equation 3.33).

W ij ≥ 0 (3.33)

If the production capacity and consumption capacity are to be equal, both cases will be

valid. Therefore, either one of the smaller sign on Equation 3.26 or Equation 3.30 can be

smaller or equal to sign.

3.2.2 Fitness Function of the Problem

In 3.2.1, the optimization problem is formulated basically by formulating the objective func-

tion and the constraints. The formulated optimization problem will be expressed in such a

way that it will be possible to solve the problem using Genetic Algorithms (GA). It is known

that, GA can only handle unconstrained optimization problems. The problem in hand is

a constrained one. Hence, the constrained optimization problem must be converted to an

unconstrained one. To achieve this, the penalty function method is used. In this method, the

constraints are embedded into the objective function as penalty terms. Hence the objective

function, that is to be solved by GA, now named as �tness function composed of the original

objective function and penalty terms. Thus, the �tness function becomes;

F = C + P (3.34)

where; C is the objective function (Equation 3.19), P is the penalty function. To �nd

penalty function, the bracket penalty function method [15] is used in the study, which is

shown for minimization problems as,.

P = R
∑

l

[max(0, Vl)]2 (3.35)
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where R is the penalty parameter which is a numerical value that must be assigned, Vl

is the violation of bound constraint l. Penalty parameter for the problem must be chosen

as a very big number. The value is chosen not to have any penalty violation for the results

obtained, i.e. the constraints would be totally satis�ed.

For example, for Equation 3.28, the corresponding numerical value of the violation of the

constraint is (pi − pcapi). Hence, the penalty term;

P = R[max(0, pi − pcapi)]2 (3.36)

If there exists no violation, if pi ≤ pcapi, the resulting penalty term will be zero. If

not, if pi ≥ pcapi, the violation term will be positive and will be included into the objective

function as a penalty term.

It is really very hard to satisfy the constraints like Equation 3.27. As cj is the capacity

of the consumption point j and calculated as the summation of weight of the substances

coming to consumption point through each production point, exactly having cj to be equal

to the capacity of the consumption point ccapj is almost impossible. Hence, there will be no

feasible solution to the optimization problem in consideration. If this constraint is relaxed

to cj ≤ ccapj , then as the objection is to minimize the cost, there will be no transportation

of material between the production and consumption points which will make the objective

function value to be zero. To force the transportation, Equation 3.27 is relaxed to;

α ccapj ≤ cj ≤ ccapj for j = 1, ...., n (3.37)

α in this study is taken as 0.99. By the help of above constraint, the consumption point

will work at almost its capacity.

Similarly, Equation 3.31 is relaxed to;

αpcapi ≤ pi ≤ pcapi for i = 1, ...,m (3.38)

Hence, the �tness function of the optimization problem to be solved using GA will be

composed of the objective function (Equation 3.19) and the penalty term associated with

Equation 3.28 and Equation 3.37 for case I and Equation 3.32 and Equation 3.38 for case

II. The bounds on Dij and CWij are inputs to the GA code, hence, they are automatically

satis�ed.
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3.3 Computer Application

After constructing the problem, a computer code is required to apply the genetic algorithms

process. By this need, a commercially available software written in C language by Prof.

Kalyonmey Deb from KANGAL (Kanpur Genetic Algorithms Laboratory) in 1995, is used.

The code is written to solve the input optimization problem by using genetic algorithms

method. Therefore, the constructed optimization problem is adapted to the C language and

inserted to the code. The inserted part is given in the Appendix. The details are explained

below.

3.3.1 Code Modi�cation

Basically, the related equations of the problem are inserted to the GA code by adapting

them into the C language. Also, some alternations were implemented. For instance, some

modi�cations related to the limits of decision variables were done. The limits of CW are

used as 0 to 0.7 which is obtained from Colorado Researches. First of all, according to the

code, the resultant CW were taken any real number within these limits. Then it is taught

that using any real number as the solution would not be practical, so an extra limit is put

by using the if function of C. By adding the algorithm given below, CW will be chosen from

a set of {0.01, 0.02, 0.03,......, 0.70}.

if (CW<0.005){

CW=0;}

else if ((0.005≤CW<0.015)){

CW=0.01;}

else if ((0.015≤CW<0.025)){

CW=0.02;}

Goes like this till upper limit

Similarly, a modi�cation is done to get diameter values from commercially available

diameters set. Limits of the diameter values are �rstly decided as 0.1 and 1.0. The lower

limit is given to use all pipes. However, in the analysis of results part it is shown that not

to use some pipes would give better results. Then, the limits of the diameters is altered to

0 and 1.0. Similar algorithm is developed as CW, which is shown below,

if (D<0.11){

D=0.1; }

else if ((0.11≤D<0.135)) {
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D=0.12; }

else if ((0.135≤D<0.175)){

D=0.15; }

else if ((0.175≤D<0.225)){

D=0.2; }

Goes like this till upper limit

Also, there exists max function on penalty function (Equation 3.35). when modifying

the code; this mathematical operator has been removed and a new algorithm by using the if

statement of C language has been established for its place. The algorithm works as, if the

violation is greater than zero, it will be valid, else it will not. An example of the algorithm

is given below.

for (i=0; i < pn; i++){

if (p[i] > pcap[i]) �tness = �tness + R*(p[i] - pcap[i])*(p[i] - pcap[i]) ; }

where, pn is the number of production points.

Also for the same case shown above, penalty functions for utilization points are shown

below;

for (j=0; j < cn; j++){

if (c[j] > ccap[j]) �tness = �tness + R * (c[j] - ccap[j]) * (c[j] - ccap[j]) ;

if (c[j] < 0.99 * ccap[j]) �tness = �tness + R * (0.99 * ccap[j] - c[j]) * (0.99 * ccap[j] -

c[j]) ; }

where, cn is the number of consumption points.
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CHAPTER 4

APPLICATIONS AND RESULTS

The method developed in the study is explained brie�y in Chapter 3. In Chapter 4, initially,

applications for a 1-pipe system and for a model are presented. Then, the results and the

analysis of the results are presented in this chapter.

4.1 Application and Results for 1-Pipe System

Initially, the code is run for 1-pipe system. A system, transporting materials from 1 produc-

tion point to 1 utilization point is handled. The length between two points is taken as 400

km. Firstly, the transported material (W ) is taken as 20 million tons/year. Then the code is

run for weights of 10 and 15 million tons/year to see how optimal solution is changed by the

weight of the transported material. The C code is adapted as diameters become the input of

the problem and just concentrations become decision variables. The code is run several times

for various diameters. The optimum concentration by weight values for every diameter value

are obtained. Then all results are combined to get the optimal diameter and corresponding

optimal concentration value. The results are shown in Figure 4.1. The change of two parts of

the total cost, that are, the change of pipe costs and energy costs by diameter are also shown

in the �gure. The optimum values of diameter (D) and concentration by weight (CW ) are

obtained as 0.61 m and 0.446, respectively. As seen from Figure 4.1, pipe cost increases by

increase in diameter as mentioned in Equation 3.18 and energy cost decreases by increase in

diameter like explained in 3.1.4.

Also, the change of the optimum point with respect to the change of weight of the

transported solid material is investigated. Then, the same problem is solved for weights of 10

and 15 million tons/year, respectively. The graph thus constructed is presented in Figure 4.2.

It is seen from the graph that, when the amount of transported material increases, the cost
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of the system and also the optimal diameter increase.
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Figure 4.1: Cost versus Diameter for 1-Pipe-System
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Figure 4.2: Cost versus Diameter for Di�erent Weights of Material for 1-Pipe System

Additionally, another deduction from these runs are made about the concentration by

weight(CW ) and diameter relation. The optimal CW values for the diameter values shows

an almost linear relation with the diameter values for CW>0.3. In Figure 4.3, the data points
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Table 4.1: Distances Between Mine Pits and Steel Factories in kms.

Hasançelebi Avnik Kozan

�skenderun 400 589 105

Samsun 583 901 988

Sivas 180 501 585

greater than CW=0.3 and smaller than CW=0.3 are separated, and the linear relation for

points greater than CW=0.3 is obtained.
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Figure 4.3: Relationship Between Concentration by Weight and Diameter in 1-Pipe-System

4.2 Model Application

The developed method is applied to an example problem with 3-inlet and 3-outlet points.

This problem, which is also used as a case study in [5], is the optimization of transportation of

Kozan, Avnik and Hasançelebi mine pits' iron ore to the steel factories located in �skenderun,

Sivas and Samsun. The distances between mine pits to the steel factories, i.e. the lengths

of the pipelines laid out, is given in Table 4.1. The capacities of the facilities are taken to

be equal to the capacities used in the second case in [5], which are listed in Table 4.2.
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Table 4.2: Capacities of the Facilities

Production Capacity Utilization Capacity

Mine Pit (106tons/yr) Factory (106tons/yr)

Hasançelebi 20 �skenderun 10

Avnik 10 Samsun 10

Kozan 5 Sivas 10

Thus, there occurs 9 pipelines to connect three production points to three utilization

points. Then, 9 pipe diameters and 9 concentrations of solid materials will be the unknowns

of the problem. Totally, there are 18 unknowns for the problem. The results of the opti-

mization problem is given in Section 4.4 in detail.

4.3 Selection of the Genetic Algorithm Operators

After developing the optimization problem and adapting the code into the problem, the code

has been run for several times for various combinations of genetic algorithms operators to

obtain the optimal combinations of operators that will be used in the study.

First of all, generation number has been changed for various �xed population numbers

ranging between 500 to 10000 and the results are shown in Figure 4.4. Other parameters

are used as the default values of the code. It is seen from the �gure that, increasing the

generation number has a positive e�ect and decreases the �tness value. However, when the

generation number exceeds 200, for all populations considered, there exists no improvement

in the �tness value. Therefore, it is decided that taking generation number as 200 will be

enough to get the optimum �tness value and also it will be more practical rather than dealing

with higher generation numbers for the problem under consideration.

It can also be seen from Figure 4.4 that, the minimum �tness value is obtained when

population number is equal to 9000. This can be seen more clearly, if the �tness versus

population is drawn for each generation number used, which is shown in Figure 4.5. This

�gure shows the results of the same runs of Figure 4.4, having population range between

500 and 10000 and generation number range of 10 to 1000. Unfortunately, there exists no

asymptotic behavior as in Figure 4.4, and the optimum results are obtained when population

number equals to 9000. When the population number increases to 9500 slightly higher value

of �tness value is obtained. Therefore it is decided to take population number as 9000 for
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Figure 4.5: E�ect of Population Number on Fitness

the further runs.

While optimum generation and population numbers are obtained, the code is run for

the default values of the remaining parameters and also limitation to the values of CW has

not been considered yet. Therefore, the minimum �tness value obtained from these runs are

smaller than the following runs. The parameters found here is used for the following runs

and after all parameters are found, these will be checked once more. It can be seen at the

end of this Section.

Then, the e�ect of cross-over type on the �tness is observed. From this observation till

the end of the study, the decision variables are limited as explained in Subsection 3.3.1.

As mentioned in Chapter 2, two cross-over types exists as SBX-η and BLX-α, and in the

code used, η can take any number but α is de�ned as 0.5. Therefore, the runs are made for

SBX-η and BLX-0.5. The runs are made for these two types for three di�erent population

numbers which give the smaller �tness values on previous runs. For generation number

selection, since a relationship between generation number and �tness function is obtained in

previous runs, trying di�erent generation numbers is not required and the selected generation

number (200) is used. Figure 4.6 is obtained, as a result of these runs. The e�ect of change

of η on �tness value is observed from the �gure. The runs made for same combinations for

BLX-0.5, gives �tness values higher than the minimum of the one obtained by choosing sbx

34



280000

290000

300000

310000

320000

330000

340000

350000

0 2 4 6 8 10 12 14 16

η

F
it

n
es

s p3000
p7500
p9000

Figure 4.6: E�ect of η on Fitness

type of cross-over. Therefore, blx type of cross-over excluded from the runs. SBX component

of 2 will be in use as it gives the minimum �tness value. Also, the minimum is obtained

when the population number is chosen as 9000, as can be seen from Figure 4.6.

Subsequently, the in�uence of cross-over rate on �tness is investigated. As seen from

Figure 4.7, the minimum �tness value is obtained when cross-over ratio equals to 0.75. For

this set of runs, population number, generation number and sbx component are chosen as

9000, 200 and 2, respectively.

Afterwards, the e�ect of mutation ratio on �tness value is investigated. For that purpose,

by using the selected values for the operators observed previously, the code is run for various

mutation ratio ranging from 0.01 to 0.15. Figure 4.8 is gathered from the study. It is seen

from the �gure that, for mutation number equals to 0.06, the �tness value is minimum.

Therefore, this value is selected to be in use for the study.

As mentioned in Chapter 2, tournament selection operator is recommended for mini-

mization problems. Therefore, it is selected as the selection operator of this problem. To

decide on the tournament size, code runs are made to get the relation between tournament

size and �tness function value. The resultant �gure is presented in Figure 4.9. It is obtained

from the �gure that, for small values of tournament size, relatively small �tness values are

obtained and the minimum is obtained when tournament size equals to 3.
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Finally, as a result of the studies to get the appropriate genetic algorithms operators and

the numerical values of them, the operators are chosen as shown below;

Generation Number = 200,

Population Number = 9000,

Cross-over Type : sbx-2,

Cross-over Ratio = 0.75,

Mutation Ratio = 0.06,

Selection Operator : Tournament selection,

Tournament Size = 3.

Then �nally, the check for the generation and population numbers are done. As stated

above, generation number change does not have a big in�uence on �tness after generation

number exceeds 200. Therefore, for the following runs generation number is �xed on 200

and the in�uence of population number change on �tness is observed, as can be seen on

Figure 4.10. Again, for the Genetic Algorithm operators and the numerical values used, the

optimum result is obtained when population is equal to 9000.
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4.4 Results for the Model Application

The model application problem explained in Section 4.2 is solved by applying the param-

eters of the Genetic Algorithms found in the previous section. As explained in previously,

decision variables are diameter and concentration by weight for the corresponding pipelines

transporting between production and consumption points. The limits of the concentration

by weight is taken as, 0 to 0.7, in the light of the information obtained from experiments

explained in Subsection 3.1.3. The limits of the diameters are taken as 0.1 m to 1 m. The

aim to take the lower limit as 0.1 m is to force to have all pipelines work. The upper limit

is taken as 1 m, as it is thought that the exceeding values would not be practical to apply.

The penalty parameter is taken as 1×109 after trying several numbers. By using this

number as penalty parameter, results having penalty term in �tness drops far away from

the optimal solution. Therefore, by using this value, the probability of obtaining a feasible

solution, constraints to be satis�ed totally, would almost be 100%.

The result obtained from the solution of the problem is presented inTable 4.3. The cost

is given in (1000 $) to deal with small numbers in code. For this reason, a constant term in

Cost1 and Cost2 functions separately divided to 1000.

Table 4.3: Results Obtained

(1) (2) (3) (4) (5) (6) (7)

Pipe D (m) CW WS(106 ton/year) Cost1(1000$) Cost2(1000$) Total Cost(1000$)
p11 0.5 0.34 7.979 22356 32537 54893
p12 0.45 0.44 9.060 41386 41030 82416
p13 0.15 0.62 1.587 7945 2799 10744
p21 0.1 0 0.000 0 0 0
p22 0.1 0.32 0.131 1470 8024 9494
p23 0.45 0.41 8.102 31036 35259 66295
p31 0.3 0.31 1.954 1702 4233 5935
p32 0.2 0.31 0.709 6739 22811 29550
p33 0.1 0.44 0.211 1674 5210 6884

29.733 114308 151902 266210
42.94 57.06 100.00

Total
                   Percentage

In Table 4.3, the �rst column elements, pij , stands for the pipeline between ith production

node and jth consumption node. For example p11 is the pipeline laid out between �rst

production point (Hasançelebi) and the �rst consumption point (�skenderun). The second

and third columns in the table are the decision variables of the problem and these are the

outputs of the Genetic Algorithms. Column 4 shows the weight of the material transported
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on each pipeline, which is a function of pipe diameter and concentration (Equation 3.22).

Column 5 and column 6 shows the energy cost and pipe cost of each pipeline, respectively.

In Chapter 3, energy cost is calculated using Equation 3.17 and the pipe cost is calculated

using Equation 3.18. In column number 7, the total cost of the each pipelines are found by

adding the elements of column number 5 and column number 6.

Thus, the weight of the material transported from the �rst production point (Hasançelebi)

becomes the sum of WS values corresponding to the �rst three rows. Similarly, sum of the

second three rows gives the weight of material transported from Avnik and the sum of the

last three rows gives the weight of material transported from Kozan. The weight of material

transported to the �rst consumption point (�skenderun) becomes, the sum of WS values of

rows; 1, 4 and 7, as the pipelines connected to the �rst consumption point are, p11, p21 and

p31. By the same manner for the remaining consumption points, the sum of second, �fth

and eighth rows of WS is the weight of material transported to Samsun and the sum of the

third, sixth and the ninth rows gives the weight of the material transported to Sivas.

The total capacities of the facilities were given in Table 4.2. As the total capacity of pro-

duction points are greater than the total capacities of consumption points, case 1 (Equation

3.26) of the optimization problem is valid for this application. The numerical values of the

weights of materials produced and consumed on each points are given in Table 4.4. When

comparing Table 4.2 and Table 4.4, it is seen that, produced material weights of mine pits

are less than the capacity of the corresponding pit. Also, the consumed material weights in

the factories are within the limits of 0.99×capacity and the capacity of the corresponding

factory. Therefore, all the constraints are satis�ed, hence there is no violation. Therefore, no

penalty value is added to the �tness and �tness is composed of only cost values and equals

to 266210.

Also, it is seen from the percentages of the cost components that, pipe cost (Cost2) is

slightly higher than the energy cost (Cost1).( 57.06% to 42.94%)

It is seen from Table 4.3 that, in p21 nothing is transported as CW21 is 0, even though

the optimum pipe diameter is found to be 0.1 m. Of course, it is meaningless to construct

a pipeline, if nothing is transported. Hence, it is decided to lower the bound constraint of

the pipe diameters to zero and be able to have no pipe connection between production and

consumption points if it is not optimal. In order to see the �tness change and compare with

the previous result, the problem is solved by changing the limits of diameter to 0 to 1. The

results are presented in Table 4.5.

It is seen from the table that, pipes p23 and p32 are not in use. Therefore, the corre-
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Table 4.4: Resultant Weights

Weight of Produced

Mine Pit Material (106tons/yr.)

Hasançelebi 18.626

Avnik 8.233

Kozan 2.874

Total 29.733

Weight of Consumed

Factory Material (106tons/yr.)

�skenderun 9.933

Samsun 9.900

Sivas 9.900

Total 29.733

Table 4.5: Results Obtained When the Lower Limit of Diameter is 0

(1) (2) (3) (4) (5) (6) (7)

Pipe D (m) CW WS(106 ton/year) Cost1(1000$) Cost2(1000$) Total Cost(1000$)
p11 0.15 0.55 0.953 6003 6219 12222
p12 0.45 0.42 8.413 37801 41030 78831
p13 0.5 0.39 9.765 12736 14642 27378
p21 0.35 0.51 6.627 40245 29345 69590
p22 0.25 0.36 1.532 12614 28269 40883
p23 0 0.07 0.000 0 0 0
p31 0.3 0.36 2.417 2170 4233 6402
p32 0 0.48 0.000 0 0 0
p33 0.1 0.45 0.219 1751 5210 6961

29.925 113320 128947 242267
46.77 53.23 100.00

Total
                   Percentage
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sponding pipe costs and energy costs are found to be 0. It should be noted that, in the

second case better �tness value is obtained, as expected. Corresponding CW values, for

pipes p23 and p32, are just the values of the last population in Genetic Algorithms and they

are meaningless values in the table.

If Table 4.5 is examined, it is seen that, the weight of the transported material in p33

is just 0.219×106 tons/yr. To construct pipeline between Kozan and Sivas to carry this

amount of material might not be optimal, even though it is found to be the optimal result

by the code. In real life application, construction of this pipeline should be reconsidered and

alternatives must be considered.

Also, it is known that the system is solved for 1 year lifetime, so in cost computations,

the initial cost and the annual cost are added directly. In this section to compare the results,

the system is solved for 10-year and 50-year lifetime periods and the results are presented.

Energy costs are taken as the same for the lifetime periods. The convergence of annual cost

to present value is achieved by using the formula given below;

P = A [
(1 + i)n − 1
i (1 + i)n

] (4.1)

where, n is the time in years, i is the interest rate, taken 10% yearly here, A is the annual

cost and P is the present value of the cost.

In this study, as the energy cost of a year is assumed to be paid at the beginning of the

year, Equation 4.1 becomes as,

P = A+A [
(1 + i)n−1 − 1
i (1 + i)n−1

] (4.2)

The results are shown in Table 4.6 and Table 4.7 for 10 and 50 years of life time, re-

spectively. As seen from the results, diameter and concentration combination of 10-year and

50-year systems are almost same. The energy cost (Cost1) becomes more dominant in cost

parts percentages, by increasing the life time period. As the total cost almost depends on

one part of the cost by the increasing years, the algorithms starts to �nd out similar results

for di�erent life time periods.

42



Table 4.6: Results Obtained For Life Time = 10 years

(1) (2) (3) (4) (5) (6) (7)

Pipe D (m) CW WS(106 ton/year) Cost1(1000$) Cost2(1000$) Total Cost(1000$)

p11 0.35 0.07 0.518 1813 19929 32183

p12 0.55 0.33 9.705 38046 54060 311217

p13 0.5 0.39 9.765 12736 14642 100727

p21 0.55 0.32 9.294 36599 54617 301987

p22 0 0.06 0.000 0 0 0

p23 0 0.14 0.000 0 0 0

p31 0.1 0.23 0.086 110 935 1682

p32 0.1 0.42 0.196 2582 8799 26252

p33 0.15 0.15 0.143 907 9096 15229
29.706 92794 162077 789276

627199 162077 789276
79.47 20.53 100.00

Total (Annual)

                 Percentage (for 10 years)
                 Total (for 10 years)

Table 4.7: Results Obtained For Life Time = 50 years

(1) (2) (3) (4) (5) (6) (7)

Pipe D (m) CW WS(106 ton/year) Cost1(1000$) Cost2(1000$) Total Cost(1000$)

p11 0.35 0.07 0.518 1813 19929 39702

p12 0.55 0.32 9.294 36226 54060 449149

p13 0.5 0.39 9.765 12736 14642 153549

p21 0.55 0.32 9.294 36599 54617 453771

p22 0 0.05 0.000 0 0 0

p23 0 0.19 0.000 0 0 0

p31 0.1 0.23 0.086 110 935 2140

p32 0.15 0.45 0.603 7028 15361 92013

p33 0.12 0.23 0.135 908 6693 16597
29.694 95420 166238 1206920

1040682 166238 1206920
86.23 13.77 100.00

Total (Annual)
                 Total (for 50 years)
                 Percentage (for 50 years)
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CHAPTER 5

CONCLUSION

The aim of this study was to optimize slurry pipeline systems with multi production and

multi processing points. Due to high nonlinearity of the optimization problem, nonlinear

optimization problem solving methods fail to converge to an optimal solution. In the present

study, by using the Genetic Algorithms as the optimization method, a solution procedure is

constructed. Genetic Algorithms is a previously tested and approved optimization method

in many studies.

In the optimization problem, the minimization of the total cost of the system is aimed,

by considering the weights of the transported material in each pipeline as constraints. The

problem is solved by handling pipe diameters and concentration values as decision variables.

First of all, this method is applied to a 1-pipe system to compare the results with the results

obtained from previous studies. It is observed that, the results obtained in the present study

show similarities with the ones obtained previously. Then the method is applied to a real

life study. A system having 3 production points, 3 consumption points and 9 pipelines to

connect these points, handled in the study. As the decision variables of the problem are pipe

diameters and the concentration values of the transported material, in this application, there

are 18 unknown parameters to be found. Although the number of the unknown parameters is

high, the Genetic Algorithm achieved convergence to a solution in each run within the feasible

region, as expected. The solution was improved further by identifying and implementing the

optimal Genetic Algorithm parameters. After obtaining the results, the problem is solved

once more by changing the limits of pipe diameters. The lower limit is reduced to zero, in

the light of the information gathered from the �rst results. It is observed that, the results

of the second case is better than the �rst case, as expected.

To conclude, in the present study, the optimum design of slurry pipelines is done by

using Genetic Algorithms. The method developed in the study was shown to be an applicable
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method in the optimization of slurry pipelines with multi production and multi consumption

points. For future research, cost function of the problem can be improved by inserting all

possible cost parts into the objective function.
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float objective(x) 
float *x; 
{ 
int un = 3; 
int tn = 3; 
int p; 
p = un * tn; 
       
float C[p], C2[p], C3[p], C4[p]; 
float DEM[p], CV[p], CQM[p], CVM[p], FCM[p], CSI[p]; 
float L[9] = { 400000, 583000, 180000, 589000, 901000, 501000, 105000, 988000, 
585000}; 
float C1[p],FCW[p]; 
float SS = 4.74; 
float CWS[p], C5[p], WS[p]; 
float ucap[3] = { 634, 317, 158.5 } ;  
float tcap[3] = { 317, 317, 317 }; 
float DEW = 1000.0; 
float DP= 0.000045; 
float CE= 0.0001; 
float term3 = 0; 
float g, h, penalty_coef;       
       
            
            
            
            
           int i;         
           for (i = 0; i < p; i++){ 
                
               if (0.11>x[i]){ 
               x[i]=0.1; 
               } 
               else if ((0.11<=x[i])&&(x[i]<0.135)) { 
               x[i]=0.12; 
               } 
               else if ((0.135<=x[i])&&(x[i]<0.175)){ 
               x[i]=0.15; 
               } 
               else if ((0.175<=x[i])&&(x[i]<0.225)){ 
                    x[i]=0.2; 
               } 
               else if ((0.225<=x[i])&&(x[i]<0.275)){ 
                    x[i]=0.25; 
               } 
               else if ((0.275<=x[i])&&(x[i]<0.325)){ 
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else if ((0.325<=x[i])&&(x[i]<0.375)){ 
                    x[i]=0.35; 
               } 
               else if ((0.375<=x[i])&&(x[i]<0.425)){ 
                    x[i]=0.4; 
               } 
               else if ((0.425<=x[i])&&(x[i]<0.475)){ 
                    x[i]=0.45; 
               } 
               else if ((0.475<=x[i])&&(x[i]<0.525)){ 
                    x[i]=0.5; 
               } 
               else if ((0.525<=x[i])&&(x[i]<0.575)){ 
                    x[i]=0.55; 
               } 
               else if ((0.575<=x[i])&&(x[i]<0.625)){ 
                    x[i]=0.6; 
               } 
               else if ((0.625<=x[i])&&(x[i]<0.675)){ 
                    x[i]=0.65; 
               } 
               else if ((0.675<=x[i])&&(x[i]<0.725)){ 
                    x[i]=0.7; 
               } 
               else if ((0.725<=x[i])&&(x[i]<0.775)){ 
                    x[i]=0.75; 
               } 
               else if ((0.775<=x[i])&&(x[i]<0.825)){ 
                    x[i]=0.8; 
               } 
               else if ((0.825<=x[i])&&(x[i]<0.875)){ 
                    x[i]=0.85; 
               } 
               else if ((0.875<=x[i])&&(x[i]<0.925)){ 
                    x[i]=0.9; 
               } 
               else if ((0.925<=x[i])&&(x[i]<0.975)){ 
                    x[i]=0.95; 
               } 
               else if ((0.925<=x[i])&&(x[i]<= 1)){ 
                    x[i]=1; 
                    } 
               if (0.005>x[i+9]){ 
               x[i+9]=0; 
               } 
               else if ((0.005<=x[i+9])&&(x[i+9]<0.015)) { 
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x[i+9]=0.01; 
               } 
               else if ((0.015<=x[i+9])&&(x[i+9]<0.025)) { 
               x[i+9]=0.02; 
               } 
               else if ((0.025<=x[i+9])&&(x[i+9]<0.035)) { 
               x[i+9]=0.03; 
               } 
               else if ((0.035<=x[i+9])&&(x[i+9]<0.045)) { 
               x[i+9]=0.04; 
               } 
               else if ((0.045<=x[i+9])&&(x[i+9]<0.055)) { 
               x[i+9]=0.05; 
               } 
               else if ((0.055<=x[i+9])&&(x[i+9]<0.065)) { 
               x[i+9]=0.06; 
               } 
               else if ((0.065<=x[i+9])&&(x[i+9]<0.075)) { 
               x[i+9]=0.07; 
               } 
               else if ((0.075<=x[i+9])&&(x[i+9]<0.085)) { 
               x[i+9]=0.08; 
               } 
               else if ((0.085<=x[i+9])&&(x[i+9]<0.095)) { 
               x[i+9]=0.09; 
               } 
               else if ((0.095<=x[i+9])&&(x[i+9]<0.105)) { 
               x[i+9]=0.1; 
               } 
               else if ((0.105<=x[i+9])&&(x[i+9]<0.115)) { 
               x[i+9]=0.11; 
               } 
               else if ((0.115<=x[i+9])&&(x[i+9]<0.125)) { 
               x[i+9]=0.12; 
               } 
               else if ((0.125<=x[i+9])&&(x[i+9]<0.135)) { 
               x[i+9]=0.13; 
               } 
               else if ((0.135<=x[i+9])&&(x[i+9]<0.145)) { 
               x[i+9]=0.14; 
               } 
               else if ((0.145<=x[i+9])&&(x[i+9]<0.155)) { 
               x[i+9]=0.15; 
               } 
               else if ((0.155<=x[i+9])&&(x[i+9]<0.165)) { 
               x[i+9]=0.16; 
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} 
               else if ((0.165<=x[i+9])&&(x[i+9]<0.175)) { 
               x[i+9]=0.17; 
               } 
               else if ((0.175<=x[i+9])&&(x[i+9]<0.185)) { 
               x[i+9]=0.18; 
               } 
               else if ((0.185<=x[i+9])&&(x[i+9]<0.195)) { 
               x[i+9]=0.19; 
               } 
               else if ((0.195<=x[i+9])&&(x[i+9]<0.205)) { 
               x[i+9]=0.2; 
               } 
               else if ((0.205<=x[i+9])&&(x[i+9]<0.215)) { 
               x[i+9]=0.21; 
               } 
               else if ((0.215<=x[i+9])&&(x[i+9]<0.225)) { 
               x[i+9]=0.22; 
               } 
               else if ((0.225<=x[i+9])&&(x[i+9]<0.235)) { 
               x[i+9]=0.23; 
               } 
               else if ((0.235<=x[i+9])&&(x[i+9]<0.245)) { 
               x[i+9]=0.24; 
               } 
               else if ((0.245<=x[i+9])&&(x[i+9]<0.255)) { 
               x[i+9]=0.25; 
               } 
               else if ((0.255<=x[i+9])&&(x[i+9]<0.265)) { 
               x[i+9]=0.26; 
               } 
               else if ((0.265<=x[i+9])&&(x[i+9]<0.275)) { 
               x[i+9]=0.27; 
               } 
               else if ((0.275<=x[i+9])&&(x[i+9]<0.285)) { 
               x[i+9]=0.28; 
               } 
               else if ((0.285<=x[i+9])&&(x[i+9]<0.295)) { 
               x[i+9]=0.29; 
               } 
               else if ((0.295<=x[i+9])&&(x[i+9]<0.305)) { 
               x[i+9]=0.30; 
               } 
               else if ((0.305<=x[i+9])&&(x[i+9]<0.315)) { 
               x[i+9]=0.31; 
               } 
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} 
               else if ((0.315<=x[i+9])&&(x[i+9]<0.325)) { 
               x[i+9]=0.32; 
               } 
               else if ((0.325<=x[i+9])&&(x[i+9]<0.335)) { 
               x[i+9]=0.33; 
               } 
               else if ((0.335<=x[i+9])&&(x[i+9]<0.345)) { 
               x[i+9]=0.34; 
               } 
               else if ((0.345<=x[i+9])&&(x[i+9]<0.355)) { 
               x[i+9]=0.35; 
               } 
               else if ((0.355<=x[i+9])&&(x[i+9]<0.365)) { 
               x[i+9]=0.36; 
               } 
               else if ((0.365<=x[i+9])&&(x[i+9]<0.375)) { 
               x[i+9]=0.37; 
               } 
               else if ((0.375<=x[i+9])&&(x[i+9]<0.385)) { 
               x[i+9]=0.38; 
               } 
               else if ((0.385<=x[i+9])&&(x[i+9]<0.395)) { 
               x[i+9]=0.39; 
               } 
               else if ((0.395<=x[i+9])&&(x[i+9]<0.405)) { 
               x[i+9]=0.40; 
               } 
               else if ((0.405<=x[i+9])&&(x[i+9]<0.415)) { 
               x[i+9]=0.41; 
               } 
               else if ((0.415<=x[i+9])&&(x[i+9]<0.425)) { 
               x[i+9]=0.42; 
               } 
               else if ((0.425<=x[i+9])&&(x[i+9]<0.435)) { 
               x[i+9]=0.43; 
               } 
               else if ((0.435<=x[i+9])&&(x[i+9]<0.445)) { 
               x[i+9]=0.44; 
               } 
               else if ((0.445<=x[i+9])&&(x[i+9]<0.455)) { 
               x[i+9]=0.45; 
               } 
               else if ((0.455<=x[i+9])&&(x[i+9]<0.465)) { 
               x[i+9]=0.46; 
               } 
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 else if ((0.465<=x[i+9])&&(x[i+9]<0.475)) { 
               x[i+9]=0.47; 
               } 
               else if ((0.475<=x[i+9])&&(x[i+9]<0.485)) { 
               x[i+9]=0.48; 
               } 
               else if ((0.485<=x[i+9])&&(x[i+9]<0.495)) { 
               x[i+9]=0.49; 
               } 
               else if ((0.495<=x[i+9])&&(x[i+9]<0.505)) { 
               x[i+9]=0.5; 
               } 
               else if ((0.505<=x[i+9])&&(x[i+9]<0.515)) { 
               x[i+9]=0.51; 
               } 
               else if ((0.515<=x[i+9])&&(x[i+9]<0.525)) { 
               x[i+9]=0.52; 
               } 
               else if ((0.525<=x[i+9])&&(x[i+9]<0.535)) { 
               x[i+9]=0.53; 
               } 
               else if ((0.535<=x[i+9])&&(x[i+9]<0.545)) { 
               x[i+9]=0.54; 
               } 
               else if ((0.545<=x[i+9])&&(x[i+9]<0.555)) { 
               x[i+9]=0.55; 
               } 
               else if ((0.555<=x[i+9])&&(x[i+9]<0.565)) { 
               x[i+9]=0.56; 
               } 
               else if ((0.565<=x[i+9])&&(x[i+9]<0.575)) { 
               x[i+9]=0.57; 
               } 
               else if ((0.575<=x[i+9])&&(x[i+9]<0.585)) { 
               x[i+9]=0.58; 
               } 
               else if ((0.585<=x[i+9])&&(x[i+9]<0.595)) { 
               x[i+9]=0.59; 
               } 
               else if ((0.595<=x[i+9])&&(x[i+9]<0.605)) { 
               x[i+9]=0.6; 
               } 
               else if ((0.605<=x[i+9])&&(x[i+9]<0.615)) { 
               x[i+9]=0.61; 
               } 
               else if ((0.615<=x[i+9])&&(x[i+9]<0.625)) { 
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x[i+9]=0.62; 
               } 
               else if ((0.625<=x[i+9])&&(x[i+9]<0.635)) { 
               x[i+9]=0.63; 
               } 
               else if ((0.635<=x[i+9])&&(x[i+9]<0.645)) { 
               x[i+9]=0.64; 
               } 
               else if ((0.645<=x[i+9])&&(x[i+9]<0.655)) { 
               x[i+9]=0.65; 
               } 
               else if ((0.655<=x[i+9])&&(x[i+9]<0.665)) { 
               x[i+9]=0.66; 
               } 
               else if ((0.665<=x[i+9])&&(x[i+9]<0.675)) { 
               x[i+9]=0.67; 
               } 
               else if ((0.675<=x[i+9])&&(x[i+9]<0.685)) { 
               x[i+9]=0.68; 
               } 
               else if ((0.685<=x[i+9])&&(x[i+9]<695)) { 
               x[i+9]=0.69; 
               } 
               else if ((0.695<=x[i+9])&&(x[i+9]<0.7)) { 
               x[i+9]=0.6975; 
               } 
                     
                
                             
                
               
           CV[i]=x[i+9]/(x[i+9]+SS*(1-x[i+9])); 
           DEM[i]=DEW*(CV[i]*SS+(1-CV[i])); 
               
                     
                  printf("L= %f\n", L[i]);*/ 
           if ((0.3<=x[i+9])&&(x[i+9]<0.45)){ 
           FCW[i]=0.2067*x[i+9]+1.035; 
           } 
           else if ((0.45<=x[i+9])&&(x[i+9]<0.55)){  
             FCW[i]=1.52*x[i+9]+0.444; 
           } 
           else if ((0.55<=x[i+9])&&(x[i+9]<0.70)){  
               FCW[i]=6.1*x[i+9]-2.075; 
           } 
           else if (x[i+9]<0.3){  
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                FCW[i]=0.2067*0.3+1.035; 
                 } 
          
           if (x[i+9]<0.7){  
               C2[i]=2.135; 
                  CVM[i]=2966.45*FCW[i]*(pow(DP,0.75))*(pow(SS,0.5)); 
           } 
            
           else { 
                    C2[i]=1000; 
                 CVM[i]=1000; 
            
            
            
            
           if (x[i+9]<0.7){  
               C5[i]=2.5; 
           } 
            
           else {  
                 C5[i]=1000;                  
           } 
                      
           CWS[i]=CV[i]*DEW*SS*3.14159*CVM[i]/4; 
           CSI[i]=0.0039*(pow(CV[i],0.803)); 
           CQM[i]=CVM[i]*3.14159/4; 
           C1[i]= CE*365*24*DEM[i]*CQM[i]*CSI[i]*(pow(CVM[i],1.77))*L[i]/101.94; 
           C3[i]= 0.21089*L[i]; 
            
           
            
           C4[i]= 1.3744;  
           C[i]=C1[i]*(pow(x[i],C2[i]))+C3[i]*(pow(x[i],C4[i]));             
            
           WS[i]=CWS[i]*pow(x[i],C5[i]);  
           } 
           int y, z, a, b, s, r, e; 
           int cost = 0; 
           for (s=0; s<p; s++){ 
               cost = cost + C[s]; 
               } 
           float u[3], t[3]; 
           u[0]= WS[0]+WS[1]+WS[2]; 
           u[1]= WS[3]+WS[4]+WS[5]; 
           u[2]= WS[6]+WS[7]+WS[8]; 
           t[0]= WS[0]+WS[3]+WS[6]; 

56



t[1]= WS[1]+WS[4]+WS[7]; 
           t[2]= WS[2]+WS[5]+WS[8]; 
           int ucap_tot = 0; 
           int tcap_tot = 0;          
                 
            
           for (r=0; r < un; r++){ 
               ucap_tot = ucap_tot + ucap[r]; 
               } 
                
           for (e=0; e < tn; e++){ 
               tcap_tot = tcap_tot + tcap[e]; 
               }            
       if (ucap_tot >= tcap_tot) {                                 
                      
                     
                      
#ifdef prob1 
MINM  = 1; 
term3 = cost; 
    
   penalty_coef = 1000.0; 
   for (a=0; a < un; a++){ 
   if (u[a] < 0.0) term3 = (term3 + penalty_coef * u[a] * u[a])/1000000 ; 
   if (u[a] > ucap[a]) term3 = (term3 + penalty_coef * (u[a] - ucap[a]) * (u[a] - 
ucap[a]))/1000000 ; 
} 
   for (b=0; b < tn; b++){ 
   if (t[b] > tcap[b]) term3 = (term3 + penalty_coef * (t[b] - tcap[b]) * (t[b] - 
tcap[b]))/1000000 ; 
   if (t[b] < 0.995 * tcap[b]) term3 = (term3 + penalty_coef * (0.995 * tcap[b] - t[b])  * 
(0.995 * tcap[b] - t[b]))/1000000 ; 
}    
    
     return(term3); 
#endif 
   } 
       
    
    
   if (tcap_tot > ucap_tot) { 
         
#ifdef prob1 
MINM  = 1; 
term3 = cost; 
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   penalty_coef = 1000.0; 
   for (y=0; y < tn; y++){ 
   if (t[y] < 0.0) term3 = (term3 + penalty_coef * t[y] * t[y])/1000000 ; 
   if (t[y] > tcap[y]) term3 = (term3 + penalty_coef * (t[y] - tcap[y]) * (t[y] - 
tcap[y]))/1000000 ; 
} 
   for (z=0; z < un; z++){ 
   if (u[z] > ucap[z]) term3 = (term3 + penalty_coef * (u[z] - ucap[z]) * (u[z] - 
ucap[z]))/1000000 ; 
   if (u[z] < 0.995 * ucap[z]) term3 = (term3 + penalty_coef * (0.995 * ucap[z] - u[z]) * 
(0.995 * ucap[z] - u[z]))/1000000 ; 
} 
   return(term3); 
#endif 
} 
} 
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