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ABSTRACT 

 

 
AN APPROACH FOR LANDSLIDE RISK ASSESMENT BY USING 

GEOGRAPHIC INFORMATION SYSTEMS (GIS) AND  

 REMOTE SENSING (RS) 

 

 

Arzu Erener 

 PHd., Geodetic and Geographic Information Technologies 

 Supervisor : Assoc. Prof. Dr. Şebnem Düzgün 

  
 

December 2009, 414 pages 

 

This study aims to develop a Geographic Information Systems (GIS) and Remote 

Sensing (RS) Based systematic quantitative landslide risk assessment methodology 

for regional and local scales. Each component of risk, i.e., hazard assessment, 

vulnerability, and consequence analysis, is quantitatively assessed for both scales. 

The developed landslide risk assessment methodology is tested at Kumluca 

watershed, which covers an area of 330 km2, in Bartın province of the Western Black 

Sea Region, Turkey. 

 
GIS and RS techniques are used to create landslide factor maps, to obtain 

susceptibility maps, hazard maps, elements at risk and risk maps, and additionally to 

compare the obtained maps.  

 
In this study, the effect of mapping unit and mapping method upon susceptibility 

mapping method, and as a result the effect upon risk map, is evaluated. Susceptibility 

maps are obtained by using two different mapping units, namely slope unit-based and 



 v

grid-based mapping units. When analyzing the effect of susceptibility mapping 

method, this study attempts to extend Logistic Regression (LR) and Artificial Neural 

Network (ANN) by implementing Geographically-Weighted Logistic Regression 

(GWR) and spatial regression (SR) techniques for landslide susceptibility 

assessment.  

 
In addition to spatial probability of occurrence of damaging events, landslide hazard 

calculation requires the determination of the temporal probability. Precipitation 

triggers the majority of landslides in the study region. The critical rainfall thresholds 

were estimated by using daily and antecedent rainfalls and landslide occurrence dates 

based on three different approaches: Time Series, Gumble Distribution and Intensity 

Duration Curves.  

Different procedures are adopted to obtain the element at risk values and 

vulnerability values for local and regional scale analyses. For regional scale analysis, 

the elements at risk were obtained from existing digital cadastral databases and 

vulnerabilities are obtained by adopting some generalization approaches. On the 

other hand, on local scale the elements at risk are obtained by high resolution remote 

sensing images by the developed algorithms in an automatic way.  

 
It is found that risk maps are more similar for slope unit-based mapping unit than 

grid–based mapping unit. 

 

Keywords: Risk Assessment, GIS, RS, Hazard, Susceptibility, Consequence 

Analysis, Mapping Unit, Mapping Method 
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ÖZ 

 

 
COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA KULLANILARAK 

HEYELAN RİSKİ BELİRLEME YAKLAŞIMI 

 

 

Arzu Erener 

 Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri  

 Tez Yöneticisi : Doç. Dr. Şebnem Düzgün 

  

Aralık 2009, 414 sayfa 

 
Bu çalışma local ve bölgesel ölçekler için Coğrafi Bilgi Sistemlerine (CBS) ve 

Uzaktan Algılamaya (UA) dayalı sayısal ve sistematik bir risk metodolojisi 

geliştirmeyi amaçlamaktadır. Riskin her bir bileşeni olan tehlike, duyarlılık ve sonuç 

analizleri her bir ölçek için nitel olarak değerlendirilmiştir. Geliştirilen heyelan riski 

belirleme metodolojisi 330 km2 alan kaplayan Türkiye’nin batı karadeniz bölgesinde 

bulunan Bartın ilinin Kumluca havzasında test edilmiştir. 

 
Duyarlılık haritalarını oluşturmak için gerekli olan faktörleri ve duyarlılık, tehlike, 

risk altındaki elemanların belirlenmesi, risk haritalamaları ve elde edilen haritaların 

karşılaştırma aşamalarında CBS ve UA teknikleri kullanılmıştır. Bu çalışmada 

haritalama unitesi ve metodun heyelan duyarlılık haritalarına olan etkisi ve sonuç 

olarakta risk haritalarına olan etki değerlendirilecektir. Duyarlılık haritaları eğim 

birimi-esaslı ve hücre birimi-esaslı olmak üzere iki farklı haritalama biriminden elde 

edilmiştir. Oluşturulacak duyarlık haritalarına duyarlılık metodlarının etkisini 

araştırmak amaçlı, bu çalışma, Lojistik Regrasyon (LR) ve Yapay Sinir Ağları (YSA) 

metodlarını, Coğrafi Ağırlıklandırılmış Lojistik Regrasyon (CAR) ve Mekansal 

Regrasyon (MR) teknikleri ile iyileştirmiştir.  
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Heyelan tehlikesinin tahmininde mekansal olasılık yanında, zamansal olasılığın da 

belirlenmesi gerekmektedir. Çalışma alanında meydana gelen çoğu heyelan 

yağışların tetiklemesi ile meydana geldiği için, bu tez çalışmasında da yağışın neden 

olduğu heyelanlara odaklanılmıştır. Kritik yağış eşikleri günlük ve geçmiş yağış 

bilgisi ve heyelan olma tarihleri kullanılarak zaman serisi, gumble dağılımı ve siddet 

ve süre eğrileri kullanılarak üç farklı yaklaşımla tahmin edilmiştir. 

 
Risk altındaki elemanların ve bunların duyarlılıklarının belirlenmesinde local ve 

bölgesel ölçekte farklı prosedürler uygulanmıştır. Bölgesel ölçekteki analizler için 

risk altındaki elemanlar var olan dijital kadastral veri tabanından elde edilmiştir ve 

duyarlılıklar bazı genelleştirme yaklaşımları ile oluşturulmuştur. Diğer taraftan, local 

ölçekte risk altındaki elemanlar geliştirilen algoritmalarla otomatik olarak yüksek 

çözünürlüğe sahip uzaktan algılama görüntülerinden elde edilmiştir.  

 
Sonuç risk haritalarının karşılaştırılması sonrası, eğim birimi-esaslı risk haritalarının 

hücre birimi-esaslı risk haritalarına göre daha çok benzediği görülmüştür. 

 
Anahtar Kelimeler: Risk Belirleme, CBS, UA, Tehlike, Duyarlılık, Sonuç 

Analizleri, Haritalama Birimi, Haritalama metodu. 
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CHAPTER 1 
 
 

1 INTRODUCTION 
 
 
 

1.1 BackGround 
 
Natural disasters may pose severe threat to life, property and infrastructure, which 

results in human suffering, property losses, and environmental degradation. 

Systematic risk assessment procedures decrease these losses due to natural hazards 

and provide effective strategies for disaster preparedness.  
 

The data collected between 1903 and 2007 in Emergency Disaster Database (EM-

DAT) (OFDA/CRED, 2007) shows that landslide is the fifth most frequently 

occurring natural disaster among all natural hazard types (Figure 1.1). In many 

countries, the economic losses and casualties are considerably high and landslides 

generate a yearly loss of property larger than property losses from earthquakes, 

floods and windstorms (Schuster and Fleming, 1986; Alexander, 1989; Swanston and 

Schuster, 1989; Olshansky, 1990; Schuster, 1995; Glade, 1998).  

 

 
Figure 1.1. Frequency of natural disasters in the world (OFDA/CRED, 2007). 
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In the United States, landslides cause an estimated economic loss of US$1–2 billion 

and about 25–50 deaths annually, which exceeds the average losses due to 

earthquakes (Schuster and Fleming, 1986). When the EM-DAT database 

(OFDA/CRED, 2007) is analyzed for the number of fatalities and the cost of damage 

from landslides between 1903 and 2007, it is found that around US$2,5 million of 

damage occurred in Europe. Asia follows Europe with a damage of more than 

US$1,5 million and then America comes with more than US$1 million of damage. 

Furthermore, as reported by EM-DAT, landslides are the seventh leading cause of 

death among all the natural disaster types in the database.  

 
In Turkey, landslides are one of the most devastating natural hazards. The Black Sea 

Region is particularly vulnerable to such hazards. 89% of the middle and the eastern 

parts of the region are reported to be susceptible to landslides (Toprak Su, 1978; 

Öztürk, 2002). The frequency analyses of the EM-DAT database for natural disasters 

in Turkey between 1903 and 2007 (OFDA/CRED, 2007) show that the frequency of 

the landslides is the fourth in order (Figure 1.2). Landslides are the second most 

common natural disasters that cause damages in Turkey (Figure 1.3). Between 1959 

and 1994, landslides damaged 76,995 buildings, killed hundreds of people, and 

destroyed farming lands and roads throughout Turkey (Ildir, 1995). Thus, landslide 

risk assessment is of crucial importance in decreasing the potential losses.  

 

 
Figure 1.2. Frequency of natural disasters in Turkey (OFDA/CRED, 2007) 
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Figure 1.3. Damages caused by disasters in Turkey (Ergunay et al., 2003) 
 
 
Risk is defined in terms of the expected degree of loss due to a particular natural 

phenomenon (Varnes, 1984). It is the product of two main elements: landslide hazard 

and consequences of the landslide events. In most of the publications, the risk is 

assessed qualitatively (Lateltin 1997; Blake et al. 2002; Cardinali et al. 2002b; 

Glassey et al. 2003; Leiba et al. 2003; Catani et al., 2005) because of the fact that 

obtaining quantitative data is more difficult. However, the qualitative risk assessment 

has some weaknesses. The main shortcoming is that, the results are incomparable 

due to the verbal expression of risk for various cases. Since most of the time these 

verbal risk levels reflect the experts’ opinions, they are subjective in nature.  

 
Being reproducible, justifiable and meaningful, quantitative landslide risk assessment 

methods have received increased focus on regional and local scales in recent years. 

Risk assessment on regional scale is necessary to support decisions for urban 

development and land-use planning, and also it provides important information for 

hazard mitigation. Local scale risk assessments are required to carry out more 

detailed analysis and risk management. Therefore, there have been considerable 

efforts on developing quantitative risk assessment for landslides (e.g. Varnes, 1984; 

Einstein, 1988; Wang and Unwin, 1992; Fell, 1994; Chung et al., 1995; Carrara et 

al., 1995; Chowdhury and Flentje, 1996; Leroi, 1996; Aleotti and Chowdhury, 1999; 

Chung and Fabbri, 1999; Jibson et al., 1998; Ho et al., 2000; Dai et al., 2002; Bell 

and Glade, 2004; Remondo et al. 2008). However, most of these studies appeared not 

to have a well-developed systematic approach. Hence, the present study aims to 

develop a systematic methodology to quantitatively assess the landslide risk. The 
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proposed methodology relies on two different scales: regional and local. The 

methodology developed for regional scale involves the application of the risk 

assessment procedure to numerous mapped landslides. On the other hand, the 

methodology for local scale is adapted to a single slope. Each component of risk, i.e., 

hazard assessment, vulnerability and consequence analysis, is quantitatively assessed 

for both scales. In this way, the decision makers will be able to perform cost-benefit 

analysis for proper land-use planning and to develop effective disaster preparedness 

strategies. 

 
Hazard mapping, which is one of the main components of risk assessment, should 

contain information about probability of occurrence of a landslide in a given area 

over a specified period of time (Varnes, 1984). Because of the lack of complete 

landslide inventory maps (especially temporal) and oversimplifications related to 

landslide influencing factors and triggers (Van Westen et al., 2006, Guzetti et al 

2005), it is difficult to make temporal predictions of landslide occurrence 

(Ohlmacher and Davis, 2003). Few attempts have been made to establish the 

temporal occurrence of landslides (Hansen, 1984; Keaton et al., 1988; Hutchinson, 

1995; Grunert and Hardenbicker, 1997; Dikau and Schrott, 1999; Lang et al., 1999; 

Coe et al., 2000; Corsini et al., 2000; Barnard et al., 2001; Derbyshire, 2001; 

Cardinali et al, 2002b; Vanacker et al., 2003; Carrasco et al., 2003; Catani et al.  

2005), and also there is yet not a wide range of studies on integration of these 

parameters. Hence, most of the hazard maps in the literature basically determine the 

susceptibility (lsao, 1996; Uromeihy et al., 2000; Lee et al., 2004; Chen and Wang, 

2006; Fourniadis, 2007), which aims to predict where failures are likely to occur 

without any clear indication of when they will occur.  

 
In this thesis, the developed risk assessment methodology propose a systematic 

approach for transforming susceptibility maps into hazard maps by integrating 

susceptibility maps with landslide trigger probabilities. Susceptibility maps have an 

utmost importance in risk assessment as they are the first stage in hazard mapping. It 

is evident that an accurate assessment of susceptibility model is crucially important 

for the accuracy of hazard and also ultimately of the risk map. The choice of an 

inappropriate model for the analysis may result in probabilities which over or 

underestimate the occurrence of future events. There exist several reviews on 
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landslide hazard and susceptibility zonation methods as Carrara (1983), Hansen 

(1984), Van Westen (1993), Leroi (1996), Soeters and Van Western (1996), Guzetti 

et.al (1999), Aleotti and Chowdhury (1999), and Huabin et al., (2005). At present, 

there is no agreement or any guide on how to choose susceptibility mapping method 

(Brabb, 1984; Carrara, 1989; Nieto, 1989). The majority of the papers concerning 

hazard assessment deal with data preparation and the methods used; Varnes (1984), 

Anagnosti and Lesevic, (1991), Van Westen (1997), Chung and Fabbri (1999), Dai 

and Lee (2001), Baeza and Corominas (2001), Lee and Min (2001), Pistocchi et al. 

(2002), Lee and Dan (2005), Yeşilnacar and Topal (2005), Lee and Pradhan (2006). 

Most of the studies in the literature deal with the application of the conventional 

methods and there is not yet a common consensus on the appropriate susceptibility 

method to be applied in susceptibility assessment. Very few deal with the 

comparison of different methods and none describe its effect on the resultant risk 

maps.  

 
In this thesis, the influence of different susceptibility models on the resultant risk 

maps was investigated to develop guidelines on the selection of appropriate 

susceptibility mapping. In addition to the existing methods, a new approach to 

enhance the performance of susceptibility assessment method, which considers the 

spatial correlation structure of the parameters, was proposed as it has better 

explanation level for the phenomenon of landslide occurrence. In addition to the 

utilization of different models on regional scale, the effects of the mapping unit and 

the scale on the resultant risk maps were analyzed. Prediction capabilities of models 

were evaluated by using validation tests comparing susceptibility maps and past 

landslides occurrences. Such analyses also provide a guideline for the choice of 

suitable mapping units and scale for risk maps. 

 
Spatial probability maps were converted into the hazard maps by combining the 

temporal probability with susceptibility map. Precipitation is the main trigger for 

landsliding in the study region. Therefore, rainfall data were analyzed to obtain the 

critical thresholds for exceedance probabilities.  

 
Another important aspect of quantitative risk assessment is the characterization of 

consequence scenarios, which are based on elements at risk and vulnerability of 
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elements at risk. Consequences are the potential outcomes arising from the 

occurrence of a natural phenomenon (Bell and Glade, 2004) and the vulnerability 

reflects the degree of loss of an element within the landslide-affected area (Fell, 

1994). Difficulties in the modeling of run-out zone and damage data shortage are the 

main limitations of consequence mapping (van Westen et al., 2006).  

 
In this thesis study, a loss estimation approach due to landslides was developed for 

regional and local scales. The procedures followed for regional and local scales to 

obtain the elements at risk and vulnerability differs from each other. On regional 

scale, a more general approach was followed, whereas on local scale a more specific 

methodology was developed to obtain quantitative vulnerability and elements at risk. 

The quantitative risk maps were obtained for both local and regional scale by the 

developed methodology for risk assessment through combination of hazard maps 

with the consequence maps.  

 
Geographic information systems (GIS) and remote sensing (RS) have recently 

become important tools for handling and analyzing spatial data, which facilitates the 

application of quantitative techniques in landslide hazard and risk assessment 

(Turrini and Visintainer, 1998; Chung and Fabbri, 1995, 1999; Guzzetti et al., 1999; 

Gökceoglu et al., 2000; Luzi et al., 2000; Lee and Min, 2001; Huabin et. al., 2005).  

 
In the developed methodology an integrated approach of RS and GIS was used for 

risk assessment. RS is mostly used for capturing, displaying and determining the 

relevant data which may be required at different stages of the risk assessment 

procedure. A medium-resolution Aster remote sensing data was used to obtain the 

vegetation cover of the whole study region which may contribute to landslide. 

Moreover, a semiautomatic algorithm was developed to extract the buildings and 

roads from Quickbird, which is a high resolution satellite image, for determining the 

elements at risk.  

 
GIS technology provide more objective maps than a comparable laborious and time-

consuming hand-made product in landslide hazard assessment (Turrini and 

Visintainer, 1998; Chung and Fabbri, 1999; Guzzetti et al., 1999; Gökçeoğlu et al., 

2000; Luzi et al., 2000; Lee and Min, 2001). GIS was used in each step of the 

quantitative risk assessment to store, monitor, evaluate, process, and manage the 
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data. In the thesis, the raw data was stored, monitored and projected in the GIS 

environment to determine the influencing factors that lead to landslides. Besides, the 

mapping and visualization of the spatial distribution of the maps, and the evaluation 

of simple statistics of the data were done in GIS environment. Data is usually 

transformed into external software products for core analyses to obtain susceptibility 

maps due to deficiency in GIS technology (Ayalew et al., 2005). Despite these 

difficulties, GIS technology provides high efficiency and convenience in most of the 

steps in risk assessment processes. The final quantitative susceptibility, hazard, 

consequence and risk maps were produced by stepwise combination of relevant 

components in GIS environment.  

 
 

1.2 General Terminology 
 
Risk assessment is comprised of risk analysis and evaluation. The former is based on 

hazard analysis and consequence analysis (Cascini et al., 2005). The latter, on the 

other hand focuses on the stage at which the risk analysis values are evaluated. As a 

result of this judgment enter the decision process, explicitly or implicitly, by 

including consideration of the importance of the estimated risks and the associated 

social, environmental, and economic consequences, in order to identify a range of 

alternatives for managing the risks (AGS, 2000). This study mainly focuses on the 

risk analysis, rather than the risk evaluation.  

 
The risk assessment approaches can be generated qualitatively by expert knowledge 

or quantitatively via complex mathematical or statistical analysis (Chung and Fabbri, 

2003). Qualitative risk assessment uses word form, hence the components of risk, 

which are basically hazard, element at risk, and vulnerability are expressed verbally 

(Düzgün and Lacasse, 2005). Quantitative risk assessment, on the other hand, is 

based on numerical values of the probability, resulting in a numerical value of the 

risk (JTC, 2008). Thus, the use of quantitative risk assessment allows better risk 

communication and the use of systematic decision making methods (Lee and Jones 

2004). 

 
In a simple form, for the evaluation of quantitative landslide risk assessment process 

the following questions which were discussed in detail by AGS (2000), Ho et 
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al. (2000) and Lee and Jones (2004), and Düzgün, (2006) should be answered: 

 
• Where will the landslide occur? [Susceptibility Assessment] 

• What type of failures will occur? [Susceptibility Assessment] 

• What would be the magnitude of landslide? [Hazard Assessment] 

• When will the landslide occur? [Hazard Assessment] 

•  What damage or injury may result? [Vulnerability] 

• What are the elements at risk and the possible consequences? 

[Consequence/Elements at Risk Identification] 

•  How important is the damage caused by landslide? [Risk Evaluation] 

•  What precautions could be taken to prevent similar cases? [Risk Management] 

 
The quantitative risk assessment frameworks differ depending on the characteristics 

of the landslide, the available data, scale of the investigation and the nature of 

consequences; as a result, each stage can use different approaches (Düzgün, 2008). 

 
Risk assessment involves hazard assessment and consequence (C) analysis (Bell and 

Glade, 2004). The hazard assessment is comprised of spatial and temporal 

probability, whereas consequence analysis involves elements at risk and vulnerability 

assessment (Figure 1.4). The main elements of a risk assessment procedure are 

shown in Figure 1.4.  

 

 
Figure 1.4. Basic steps in landslide risk assessment 
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Risk mapping can be carried out separately for each type of element at risk (specific 

risk) and then combined into a total risk by adding all maps of specific risk 

(Remondo et al., 2008). The risk assessment process is followed by landslide 

evaluation, where it may be possible to define “acceptable risk”. Acceptable risk is 

the possible social, economic, and environmental consequences that a society or a 

component of it can implicitly or explicitly tolerate.  
 
Terms like susceptibility, hazard, vulnerability, consequence, and risk can be found 

with different definitions that can be referenced to many technical papers (Yong et 

al., 1977; Brabb, 1984; Varnes, 1984, Brand, 1988; Carrara et al., 1991; van Westen, 

1993; Fell, 1994; Guzzetti et al., 1994; Scheidegger, 1973, Ibsen and Brunsden, 

1996; Leone et al., 1996; Cruden and Fell, 1997; Wong et al., 1997; Glade, 1998; 

Aleotti and Chowdhury, 1999; Dai and Lee, 2002). The most widely adopted set of 

definitions regarding risk and its components is presented in Table 1.1. There is a 

need for a unified terminology in susceptibility, hazard, and risk, which is essential 

for authorities to compare and discuss common studies on a similar basis. JTC-1, the 

Joint Technical Committee on Landslides and Engineered Slopes, proposed 

international guidelines for landslide susceptibility, hazard and risk zoning for land-

use planning, which are acceptable for the international community. The guideline 

provides definitions, terminology and international standards for methods, levels, 

scales, and types of zoning. The basic terminology adopted in this thesis is listed in 

Table 1.1. 

 
Table 1.1. Different risk and hazard definitions proposed in the literature  

Term Definition Source 

Risk 

“The expected number of lives lost, persons injured, damage  
to property and distribution of economic activity due to a 
particular damaging phenomenon for a given area and  
reference period.” 

Varnes 
(1984) 

Risk Analysis 
“The use of available information to estimate the risk to 
individuals, population, property, or the environment, from  
hazards. “ 

JTC 
(2008) 

Risk Management  
 

“The complete process of risk assessment and risk control (or 
risk treatment).” 

JTC 
(2008) 

Risk Control or  
Risk Treatment  
 

“The process of decision making for managing risk, and the 
implementation or enforcement of risk mitigation measures 
and the re-evaluation of its effectiveness from time to time, 
using the results of risk assessment as one input.” 

JTC 
(2008) 

Risk Assessment   
 “The process of risk analysis and risk evaluation. “ JTC 

(2008) 
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Table 1.1. Different risk and hazard definitions proposed in the literature (Continued) 
 

Term Definition Source 

Risk Estimation   
 

“The process used to produce a measure of the level of health, 
property, or environmental risks being analyzed. Risk 
estimation contains the following steps: frequency analysis, 
consequence analysis, and their integration.” 

JTC 
(2008) 

Risk Evaluation   
 

“The stage at which values and judgments enter the decision 
process, explicitly or implicitly, by including consideration of 
the importance of the estimated risks and the associated 
social, environmental, and economic consequences, in order 
to identify a range of alternatives for managing the risks.” 

JTC 
(2008) 

Societal Risk  
 

“The risk of multiple fatalities or injuries in society as a 
whole: one where society would have to carry the burden of a 
landslide causing a number of deaths, injuries, financial, 
environmental, and other losses.” 

AGS 
(2000) 

Individual Risk 
 

“The risk of fatality or injury to any identifiable (named) 
individual who lives within the zone impacted by the 
landslide; or who follows a particular pattern of life that 
might subject him or her to the consequences of the andslide.” 

AGS 
(2000) 

Acceptable Risk  
 

“A risk for which, for the purposes of life or work, we are 
prepared to accept as it is with no regard to its management. 
Society does not generally consider expenditure in further 
reducing such risks justifiable.” 

JTC 
(2008) 

Tolerable Risk  
 

“A risk within a range that society can live with so as to 
secure certain net benefits. It is a range of risk regarded as 
non-negligible and needing to be kept under review and 
reduced further if possible.” 

JTC 
(2008) 

Landslide hazard 
 

“The probability of occurrence within a specified period of 
time and within a given area of a potentially damaging 
phenomenon“ 

Varnes 
(1984) 

Consequence  
 

“The outcomes or potential outcomes arising from the 
occurrence of a landslide expressed qualitatively or 
quantitatively, in terms of loss, disadvantage or gain, 
damage, injury or loss of life. “ 
 

AGS 
(2000) 

Vulnerability  
 

“The degree of loss to a given element or set of elements 
within the area affected by the landslide hazard. It is 
expressed on a scale of 0 (no loss) to 1 (total loss). “ 

AGS  
(2000) 

Element at Risk “Population, properties, economic activities, including public 
services, etc. at risk in a given area.” 

Varnes 
(1984) 

 

1.3 Purpose and Scope of the Thesis  
 

The main objective of this thesis is to develop a GIS- and RS-based quantitative risk 

assessment methodology for landslides. The methodology was developed for two 

different scales: Landslide risk assessment for a region with numerous landslides 

(regional scale) and landslide risk assessment for a single landslide (local scale). 

While developing the methodology, the thesis involves several subobjectives: 



 

11

 

• To investigate the effect of different susceptibility assessment models, mapping 

units and scales on resultant risk maps to develop guidelines for risk mapping. 

• To enhance the performance of landslide susceptibility mapping by using spatial 

regression and geographic weighted regression. 

• To compare various methods for determining rainfall trigger threshold for 

landslides 

• To propose a new hazard assessment methodology to estimate the spatial and 

temporal probability of rainfall triggered landslides. 

• To develop a new RS- and GIS-based consequence assessment approach to 

estimate the vulnerability of elements at risk on regional and local scales. 

• To implement and validate the proposed methodology in Bartın Kumluca Basin, 

Turkey on regional and local scales. 

1.4 Outline of the Thesis 
 

The thesis study is organized in four main chapters as follows; 

 
The second chapter is the “Methodology” chapter. In this chapter, in addition to the 

theoretical overview and the literature, the general methodology adopted for this 

thesis is presented. The literature survey and the methodology adopted are presented 

for each component of risk, which involves data collection, susceptibility mapping, 

triggering, hazard assessment, consequence, and risk assessment. Each component is 

described by considering two different scales, local and regional scale. 

 
The third and the fourth chapters contain the “Implementation” part. These chapters 

are organized for the implementation of the methodology for two different scales, 

regional and local respectively. In the regional scale risk assessment part, a 

comprehensive landslide risk assessment considering data collection, susceptibility, 

hazard, vulnerability, elements at risk and risk assessment was conducted for Bartın 

Kumluca region. In this part, four different mapping methods and two different 

mapping units were considered to analyze the differences between the resultant maps 

and their affects on the resultant risk maps. In the last part of this chapter, the 

susceptibility maps obtained from different mapping units and methods were 
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compared in addition to the risk map comparison. High hazard regions on regional 

scale were interpreted for more detailed risk assessment and Hepler region was 

identified as a high risk zone to adopt the local scale risk assessment methodology.  

In the local scale implementation part, the hazard value obtained from the regional 

scale maps was used and the vulnerability and elements at risk were conducted to 

produce local scale risk maps. The resultant risk maps were compared and the 

similarities and dissimilarities for different risk maps obtained by using different 

mapping methods and mapping units were evaluated and discussed. 

 
In the “Conclusion” chapter, an evaluation is given regarding the aim, the objective 

of the study, and the analysis of these objectives. Finally, the recommendations and 

the conclusion of the study are presented and some suggestions are put forward for 

the future studies.  
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    CHAPTER 2 
 

2 METHODOLOGY 
 

2.1 Introduction 
 
The objective of this study is to develop a GIS- and RS-based methodology for 

quantitative landslide hazard and risk mapping on local and regional scale and to 

investigate the effects of several landslide hazard mapping procedures on final risk 

maps. The methodology of this study is composed of six consecutive steps including 

data collection, susceptibility assessment, analysis of triggers, hazard assessment, 

consequence analysis and risk assessment (Figure 2.1.).  

 
In this thesis, the proposed methodology involves two different scales: local and 

regional scales. The landslide risk assessment procedure at each scale requires the 

following issues to be addressed: (1) probability of landsliding, (2) consequence of 

landslide, (3) vulnerability of property and people to landslide, (4) landslide risk to 

property and people (Dai et al., 2002). The type of data and methods adopted in each 

stage depends on the scale of the risk assessment framework, i.e. whether it is 

applied at the regional level for numerous slides or at the local level for a single 

slope. Therefore, it is better first to introduce the data requirement for the 

components of the risk and then describe each component individually. 
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Figure 2.1. Basic steps in landslide risk assessment 
 
 

2.2 Data Collection 
 
Data collection is required for susceptibility assessment, hazard analysis, and 

consequence analysis. Figure 2.2 gives a schematic overview of the main data sets 

required for components of landslide risk assessment. While both the landslide 

inventory and the influencing factors are necessary to obtain susceptibility maps, 

triggers are the required data for hazard assessment of temporal probability, and in 

order to create a consequence map, the list of elements at risk will be required.  

 
The data collection is directly related to the scale. The regional scale hazard and risk 

assessment require data in the form of maps whereas the local scale hazard and risk 
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assessment demand specific geotechnical investigations including observational 

procedures. 

 

 
Figure 2.2. Schematic overview of the data sets (adopted from van Westen et al., 2006) involved in 
landslide risk assessment 
 

 

The most straightforward initial approach to any regional scale landslide hazard 

analysis is compilation of a landslide inventory map. This map generally shows the 

spatial distribution of landslides in an area and provide information about the 

characteristics, type of slope movement, dates of activity, thickness of material, and 

so on. These maps are based on the interpretation of aerial photo in different time 

periods with geomorphologic field checking (Dai et al., 2002; Guzzetti et al., 2000). 

The landslide locations are imported into GIS environment and represented with 

vector file, forming the cumulative landslide inventory map. 

 
When assessing the probability of landslides for a specified period of time and within 

a given area, the priority is given to the recognition of the conditions that cause the 

slope to become unstable and to the identification of the processes that trigger the 

movement. The factors that are responsible for creating a landslide on a particular 

slope or in a particular area may be categorized into two groups: the influencing 

(preparatory, intrinsic) factors that make the slope susceptible to failure without 

actually initiating it, such as slope, aspect, geology, lithology, topographical 
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elevation, vegetation triggers, and geotechnical properties and so on, and the 

triggering (extrinsic) factors that cause the failure, such as heavy rainfall, 

earthquakes, and human activities and so on.  

 
Lithology and slope gradient are important contributing factors leading to landslide 

activity. Most assessments of susceptibility utilize slope angle and/or lithology as 

commonly-used independent variables for susceptibility mapping (Carrara, 1983; 

Anbalagan, 1992; Campbell and Bernknopf, 1993; Maharaj, 1993; Jager and 

Wieczorek, 1994; Atkinson and Massari, 1998; Zezere et al., 1999; Guzzetti et al., 

2000; Lee and Min, 2001; Ohlmacher and Davis, 2003; Ayalew, and Yamagishi, 

2005, Ayalew et. al., 2005). Topographical elevation is also significant due to its 

property of controlling the degree and the type of erosion (Dai and Lee, 2002).  

Human activities, however, are rarely referred to in the literature (Pachauri and Pant, 

1992; Gritzner et al., 2001; Ercanoğlu and Gökçeoğlu, 2002; Can et al., 2005; 

Ayalew, and Yamagishi, 2005; Ayalew et. al., 2005). Aspect can influence the 

concentration of soil moisture; hence it can have an impact on the distribution and 

density of landslides (Wieczorek et al., 1997). Although its relation to mass 

movement has long been investigated, several authors (e.g., Carrara et al., 1991; 

Maharaj, 1993; Gökçeoğlu and Aksoy, 1996; Atkinson and Massari, 1998; Jakob, 

2000; Nagarajan et al., 2000; Ayalew, and Yamagishi, 2005; Can et al., 2005; Akgün 

and Bulut, 2007) have considered aspect as a factor in landslide activity. Planar and 

profile curvatures are the second and the first derivative of a surface, hence they are 

mostly found to be redundant in the susceptibility analysis; however, it’s taken into 

consideration by a few researchers (Lee and Min, 2001; Lee, 2004; Can et al., 2005). 

Land use refers to the type of vegetation cover on the slope, which may cause slope 

instability for shallow landslides. Several researchers emphasized the importance of 

vegetation cover in landslide activity (Carrara, 1983; Gökçeoğlu and Aksoy, 1996; 

Luzi and Pergalani, 1999; Can et al., 2005; Guzetti at al. 2005 and 2006; Nagarajan 

et al., 2000; Baeza and Corominas 2001; Fernández et al. 2003). Rivers, roads and 

lineaments are linear features whose influences are spatially limited; however, by 

using distance or density analysis in GIS, it’s worth analyzing their contribution to 

slope movements (Yeşilnacar and Topal, 2005; Ayalew et al., 2005). 

 
In order to generate the necessary variables to identify the influencing factors, remote 
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sensing products (multispectral satellite imagery and aerial photographs), 

topographical maps, and existing geological maps are used (Süzen and Doyuran, 

2004; Weirich and Blesius, 2007). Furthermore, data from meteorological stations, 

seismic stations, and wind stations will be required in order that the variables can be 

obtained to discover the triggering factors. If no data is available from 

meteorological stations, generally rainfall estimates from satellite imagery can be 

used for larger regions. The data can also be grouped into two as static or dynamic. 

The basic static data sets are stable, which are generally seen in geology, soil types 

and geomorphology (van Westen et al., 2008). Yet, dynamic data sets need to be 

updated regularly and may range from hours to years such as meteorological data, 

land use and elements at risk data. Generally, the influencing factors and historical 

landslide information will be analyzed for cause-effect relationships by using 

heuristic or statistical methods. This analysis leads to susceptibility map production. 

Landslide susceptibility maps combined with frequency analysis of triggering factors 

transform susceptibility maps into hazard maps. 

 
In developing a method for landslide risk assessment, it is of fundamental importance 

to collect data about consequences of landslides (losses due to landslides). The 

analysis of consequences involves determination of elements at risk and vulnerability 

of elements at risk. The vulnerability of elements at risk depends on the 

understanding of the interaction between a given landslide and the affected elements. 

Elements at risk for a regional scale analysis refer to the population, buildings, road 

networks, services, utilities and infrastructure and so on (van Westen, 2005).  Most 

of these features can often be derived from existing cadastral databases, and 

population data may be derived from existing census data. If there is no existing 

digital cadastral database, it may be possible to digitize the elements at risk from the 

satellite images (van Westen, 2008). However, due to the size of the study region, 

digitizing may be cumbersome. Automatic extraction of features from high 

resolution images requires acquisition of various satellite images for a large region, 

which makes this solution unpractical in economical terms. Even though digital 

information for elements at risk exists, the development of a GIS database for these 

features requires considerable effort since it is complex to define. In addition, in 

regional risk assessment studies, it is generally difficult to obtain information about 

the vulnerability of elements at risk from landslide initiation. Therefore, 
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generalization approaches are adopted - as in the study of Glade et al., 2003- where it 

is assumed that if an element at risk is affected by a landslide, then its totality will be 

destroyed. 

 
On the other hand, specific slope situations usually do not require high amount of 

data collection for vulnerability and consequence analyses, as the elements at risk 

can be relatively easy to determine (Düzgün and Lacasse, 2005). Local slope 

instability problems widely employ geotechnical models, which involve application 

of mainly slope stability models. These models require input data from field work 

with some laboratory testing, where the evaluation area changes from several 

hectares to several tens of square kilometers. Therefore, these methods are normally 

applied only in small areas. In order to perform a stability analysis, the data required 

for a single slope involve topographic attributes (e.g. slope angle, vertical and 

horizontal curvatures, slope aspect, distance to divide or channel, contributing area, 

etc.), hydrological conditions (e.g. soil saturation, permeability, hydraulic 

conductivity), geometry (height, width and inclination of slope) and generalized 

geotechnical information of soil properties (e.g. cohesion, angle of internal friction, 

specific weight). In addition, the creation of hazard maps on local scale will need 

triggers (rainfall intensity, ground water level, seismic load magnitudes, etc.) and the 

creation of consequence maps involves the location and characteristics of elements at 

risk with more detail, such as the number of buildings, length of transportation, the 

number of people, farm lands on the slope and in the runout zone and the like 

(Thomas and Michael, 2004; Düzgün, 2008). In addition to the field surveys on local 

scale, the remote sensing data is mostly preferred to obtain the elements at risk like 

buildings and road features. 

 

2.2.1 Data Collection and Processing for the Proposed Methodology 
 
Data collection and processing is the first stage of the proposed methodology. The 

data collection framework in this thesis was adopted from Düzgün (2008). For 

regional scale risk assessment, data collection and related data processing has three 

main parts: Data for susceptibility mapping, data for analysis of triggers and data for 

consequence analysis (Figure 2.3).  
Figure 2.3. Data collection and data processes framework  
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In addition, for local scale analysis, data collection has two main parts: data for slope 

stability analysis and elements at risk for consequence analysis (Figure 2.3). Slope 

stability analysis can adopt two different approaches. The first approach follows the 

regional scale analysis. After determination of the high-risk areas, a more specific 

study is carried out at a slope where the hazard value is obtained from the regional 

scale. This approach has been adopted in this thesis study, in which Hepler village is 

interpreted as the high risk zone based on the regional scale analysis. The second 

approach follows individual slope analysis. This analysis involves application of 

geotechnical studies for hazard analysis, which require enormous data sets from field 

and laboratory tests.  

 

The landslide inventory usually involves the locations of past landslides as well as 

their types, dates etc. The types of data layers for influencing factors can be divided 

into five main groups; i.e., morphological data (maps of digital elevation model 

(DEM), slope, aspect, curvature, etc.), geology (lithology, faults, etc.), soil (soil type, 

soil depth, erosion, etc.), land use (land use map, vegetation cover, road, etc.), and 

hydrology (soil moisture, stream network, etc.). In order to obtain relevant input such 

as vegetation cover, land-use maps, wetness index data etc., medium resolution 

satellite images are often used.  
 
Influencing factors are required to predict the spatial probability of future landslides 

and the GIS is used to store, monitor, evaluate, compile, manipulate and manage 

data. There are few studies in the literature which supplement clear information as to 

the preparation and processing of the data (Baeza and Corominas, 2001; Ercanoğlu et 

al., 2004; van Westen et al., 2008). In most published studies, the type of analysis 

conducted on the raw data set and the related statistical analyses are not described 

clearly. They mostly indicate the dataset used and the description of the raw data 

only. In this thesis study, in addition to the detailed description of raw input data set 

and the analysis of the relationship between each influencing factor and landslide 

frequency, the statistical analysis of the influencing factors contributing to landslides 

was described in detail. The statistical process comprises pre-analysis of the data set 

before constructing the database for further analysis. The statistical treatment of the 

influencing factors changes depending on the adopted procedure. Hence, the partition 

of the land surface into mapping unit may be determined initially. In this study, two 
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different mapping units, grid and slope units, were adopted for the analysis. For each 

mapping unit, (i) transformation of qualitative variables, and (ii) selection of 

independent variables by multicolinearity analysis, (iii) testing for normal 

distribution for each variable was carried out. As a result, two different spatial 

databases were constructed. These databases were used to predict the future landslide 

locations by using different methods for each mapping unit on regional scale. 

 
Spatial probability maps can be converted into hazard maps by combining temporal 

probability with susceptibility map. Temporal behavior of landslides is estimated by 

means of frequency of landslides for a region. The frequency of landslides can be 

obtained from historical landslide data, triggering event frequencies (eg. rainfall, 

earthquakes) with known annual exceedance probabilities (Cascini et al., 2005). In 

this thesis study, the frequency was assessed with the landslide occurrence dates to 

obtain the temporal probability.  

 
On regional scale, the procedure followed to obtain the consequence analysis differs 

from the local scale procedure, which also causes a change in the data collection 

procedure. On regional scale, it is more difficult to identify elements at risk and 

determine the vulnerabilities of each element at risk. The main reason is that run-out 

should be predicted to determine the elements which may be exposed to landslides. 

However, it is a challenging issue to define the run-outs for a number of landslides 

on regional scale. The vulnerabilities of elements at risk may change depending on 

their geographical and temporal existence with respect to landslides. In addition, the 

value or cost of each element at risk may vary depending on its type. Therefore, 

mostly quantitative assumptions can be adopted for estimation of vulnerabilities and 

the elements at risk can be obtained by overlaying the existing hazard maps with the 

land-use maps on regional scale. In this study, the elements at risk were determined 

from the existing topographic maps, and the inhabitants were estimated per house in 

rural areas using the population density of Kumluca settlement. The vulnerability 

level was evaluated as 1 for all elements at risk.  

 

For local slope analysis, two different approaches were proposed in the methodology 

for slope stability analysis, which requires different data sets. If a quick risk map 

following a regional scale analysis is required for a local slope, then the hazard 
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values of that slope can be obtained from the regional scale hazard map. Therefore, 

there is no need to collect data for hazard analysis. This approach was followed in 

this thesis study and it is not present in the literature yet. On the other hand, a 

comprehensive local slope study requires geotechnical modeling, which can be 

encountered in the literature. This geotechnical modeling contains the assessment of 

deterministic models or probabilistic analysis.  The analysis of slope stability for a 

single slope requires extensive data including geometrical data, shear strength 

parameters (cohesion and angle of internal friction), depth below the terrain surface, 

soil layer thickness, angle of internal friction, slope angle, pore water pressure and 

the like, which are mostly determined in the field or in the laboratory.  

 
On local scale, it can be relatively easier to determine the elements at risk, but a more 

detailed data collection procedure is required such as a detailed survey of the 

elements at risk, type of the elements at risk, its usage, size, and the number of 

inhabitants in each building, and seasonal or temporal movement of the population. 

If no digital data exist on local scale, remote sensing products can be used to extract 

the element at risk data, such as road network and buildings. It might be possible to 

digitize the elements at risk from high resolution images, which entails considerable 

amount of work. On the other hand, the elements at risk can be automatically 

extracted from images using various image processing and enhancement techniques. 

The population data is required for each individual building to estimate the loss of 

life. The population data can be collected through field inquires which are time- 

consuming and costly. On the other hand, recently remote sensing has had potential 

for predicting the population with low cost and up-to-date data. Wang (1990), Zhang 

(2003), Lu et al. (2006), Morton and Yuan (2008), and Erener and Düzgün, (2009) 

has examined residential population dynamics from satellite remote sensing images. 

In the thesis study, an algorithm was developed to obtain the elements at risk and the 

number of inhabitants per house was obtained by field surveys. 

 
Moreover, the estimation of the run-out of the area for the slope is required, which is 

governed by the volume, velocity, and topography of the region (Düzgün, 2008). The 

Digital Elevation Model (DEM) is the most crucial factor in the modeling of the run-

out distance for landslides on local scale. Hence, in field, a detailed survey of 

topography is mostly required, which can be done by using Lidar, GPS instruments 
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or other engineering surveys. 

 
The damage is related to the temporal occurrence of landslides. Thus, daily and 

seasonal movements of dynamic elements (residents of the buildings, cars, trains 

etc.) are also required for a reliable estimation. Consideration of the dynamic 

property of elements is also another difficulty to estimate the vulnerability.  

 
To quantify the elements at risk, the exposure of each element is needed for 

consequence analysis. This requires compilation of data from different organizations 

through interviews with the employees, which is a time-consuming process. 

 
 

2.3 Hazard Assessment 
 

Varnes et al. (1984) proposed the most widely adopted definition of landslide hazard 

as “the probability of occurrence of a potentially damaging phenomenon (landslide) 

within a given area and in a given period of time”. Hence, basically, a landslide 

hazard assessment methodology is composed of two important aspects. The first one 

is susceptibility mapping, which involves assessing the spatial probability of a 

landslide-prone area. The other aspect is determining the probability of occurrence of 

a specific triggering event.  

 
In the literature, there is confusion over the concepts of hazard and susceptibility. 

Most hazard maps in the literature are in fact susceptibility maps, where landslide-

prone areas are determined based on the correlating influencing factors with the 

landslide inventory. By definition, hazard mapping should contain information about 

the probability of landslide occurrence for a given area in a specified period of time 

(Varnes 1984). Hence, effective landslide hazard maps can be constructed based on 

the combination of spatial and temporal prediction of the landslide occurrence 

probability. In this study, susceptibility was considered as the relative indication of 

the spatial probability.  
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2.3.1 Literature Review on Susceptibility Mapping 
 
Susceptibility mapping forms the basis of any hazard mapping, which is an essential 

part of quantitative risk mapping. These maps can be expressed as relative hazard 

(Einstein, 1988; Hartlen and Viberg, 1988), landslide-deposits inventory (van 

Westen, 1993), and total landslide density or likely frequency (Evans and King, 

1998; Evans et al., 1997). A landslide susceptibility map ranks the slope stability 

from stable to unstable in categories in order to determine zones of landslide-prone 

areas without any temporal implication. These maps represent the occurrence of 

landslides (Chacon et al., 2006) and they are useful for areas where there is lack of 

information about the triggering events of landslide and not enough information 

concerning historical records. 

 
The choice of susceptibility mapping method depends on a variety of factors, which 

are the type of susceptibility method, the mapping unit, scale, the type of landslide, 

and availability of data, triggers, and the purpose of mapping.  

 
 

2.3.1.1 Susceptibility Mapping Methods 
 
Numerous efforts have been devoted in the last three decades to evaluating landslide 

susceptibility and no agreement has been reached either on the procedure or the 

scope of producing landslide susceptibility maps (Brabb, 1984). 

 
The proposed methods for susceptibility assessment are based on widely accepted 

principles or assumptions as the following (Varnes and IAEG, 1984; Carrara et al., 

1991; Hutchinson et al., 1991; Hutchinson, 1995; Aleotti and Chowdhury, 1999): 

 
i. The past and present landslides are keys to the future landslides 

ii. The future landslides will always occur in the same conditions as in the past 

iii. The main conditions that cause landslides are controlled by identifiable physical 

factors. 

 
The susceptibility assessment methodologies can be classified mainly as qualitative 
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or quantitative approaches as presented in Figure 2.4, similar to those proposed by 

such authors as Carrara (1988), Hutchinson (1995), Leroi (1996) and Soeters and van 

Westen (1996).  

 

 
Figure 2.4 Landslide susceptibility assessment classifications 
 
 
Some significant contributions to general review of the concepts, principles, 

techniques, and methodologies for susceptibility assessment and evaluations of 

subsequent approaches are given in: Brabb et al. (1972), Carrara et al. (1978), 

Cotecchia (1978), Carrara (1983), Brabb (1984), Varnes (1984), Crozier (1986), 

Einstein (1988), Hartlen and Viberg (1988), Mulder (1991), van Westen (1993) 

(1994), Leroi (1996), Soeters and van Westen (1996), Aleotti and Chowdhury 

(1999), Guzzetti et al. (1999), Miles and Ho (1999), Wu and Abdel-Latif (2000), 

Carrara et al. (2001), Chung and Fabbri (2003), Remondo et al. (2003), Van Westen 

et al. (2003),  van Westen (2004), Chung and Fabbri (2005), Huabin et al. (2005), 

Chaco´n et al. (2006). 
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2.3.1.1.1 Qualitative Methods 
 
Qualitative methods are subjective and portray the susceptibility zoning in 

descriptive terms. The qualitative methods involve mapping of spatial distribution of 

mass movements based on one way or a combination of ways: the aerial photo-

interpretation, field survey, and catalogue of historical landslides in the region 

(Demek, 1972; Demek and Embleton, 1978). An overview of qualitative methods is 

illustrated in Table 2.1 and Table 2.2. Table 2.1 and Table 2.2 include information as 

to where and upon what size of an area they are applied and by whom they are 

implemented. Table 2.1 summarizes the photo-interpretive analysis for landslide 

inventory mapping and/or susceptibility zoning by geomorphological analyses. Table 

2.2 summarizes the index based methods for susceptibility mapping. The regions 

reviewed here range between 30 and 8456 km2. 

 

 
Table 2.1 Review of geomorphologic analysis for susceptibility mapping 
 

Region Area 
 (km2) Source 

Staffora river basin, (Italy) 280 Carrara et al. (2003) 

La Honda basin, California 17 Carrara et al. (1992) 

Southern Apennines (Italy) 30 Parise (2001) 

Lands between Kelso and Woodland 275 Wegmann, (2002) 

Umbria (Italy) 8456 Cardinali et al. (2002b) 

San Mateo County, California, 
(USA) Not defined Brabb and Pampeyan 

(1972) 

Kathmandu, (Nepal) Not defined Ives and Messerli, (1981) 

Zonguldak (Turkey) 39.081 Duman et al. (2005a) 

Umbria (Italy) 8456 Ardizzone (2005) 

Flemish Ardennes (Belgium). 125 Van Den Eeckhaut et al. 
(2007) 

Andorra, Pyrenees Mountains 
(between Spain and France) 5 Copons and Vilaplana  

(2008) 

Gran Canaria island, (Spain) 49 Jose et al. (2000) 

Tuscan-Emilian Apennines (Italy) Not defined Zanutta et al. (2006) 
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Table 2.2 Review of index based analysis for susceptibility mapping 
 

Region Area 
 (km2) Data Used Source 

Colorado Plateau, the Appalachian 
Highlands, the Coast Ranges of 
California, and the Southern Rocky 
Mountains, (USA) 

Not 
defined 

Rock types, structures, topography, precipitation, 
landslide type, and landslide incidence 

Radbruch et 
al. (1982) 

La Cabrera Sierra (Madrid) Not 
defined Reach angle, run-out distance 

Ayala-
Carcedo et al. 
(2003) 

Southeast Umbria, East 
of Spoleto (Perugia) 18 

Distance from faults, parallelism between the fractures 
and the landslide scarps, land use, lithology, distance 
from the streams, orientation and steepness of slopes, 
orientation of layers compared to the slope. 

Donati and  
Turrini (2002) 

Wushan–Badong area in 
theThree Gorges (China) 

Not 
defined 

Slope angle in relation to lithology; distance to drainage 
network in relation to stream order; and  distance to 
tectonic lineament in relation to lineament length. 

Fourniadis et. 
al. (2007) 

YangSan area, (Korea) 339.67 
Lithology, elevation, slope gradient, 
slope aspect, lineament, drainage, vegetation, and land 
use 

Nguyen and 
Bui, (2004) 

Alpago,  (Italy) 20.8 
Geomorphological maps, lithology, structural geology, 
surficial materials, slope, land use, distance from 
streams, roads and houses 

Van Westen et 
al., (2003) 

Swabian Alb (SW-Germany) 500 

Soil type, Geological units, Distance-escarpment, 
Hydro-geological units, Lineament-density, Lineament-
distance, Geomorphological units, Slope angle, 
Curvature 

Neuhäuser and 
Terhorst 
(2007) 

Jurassic escarpment in the Swabian 
Alb (SW-Germany) 500 Geology, lineament-density,curvature, slope angle, 

distance-escarpment and soil type. 

Neuhäuser and  
Terhorst  
(2007) 

Rio Mendoza Valley, (Argentina) 1600 Lithology, slope angle, 
landslide distribution and landslide activity 

Moreiras 
(2005) 

Texas, (USA) Not 
defined Slope, geology, vegetation, and proximity to faults. Wachal and 

Hudak (2000) 

Pena Canyon and Big Rock Canyon, 
Santa Monica, CA 

1.90 
1.80 

Slope angle, dip angle, dip angle versus the slope angle 
factor, distance to faults factor, distance to roads factor, 
distance to streams factor, lithology factor, soil 
permeability factor, land cover factor. 

Weirich and 
Blesius (2007) 

Dessie area, (Ethiopia) 16 Geological, geotechnical, geomorphological, 
hydrogeological, and anthropogenic factors 

Ayenew and 
Barbieri 
(2005) 

Tsugawa area of Agano River, 
Niigata Prefecture, (Japan) 53 Elevation, slope gradient, aspect and curvature. Ayalew et al. 

(2004) 

Yomra and Arsin (Trabzon) 38.87 Slope angle, slope aspect, distance from drainage, 
distance from roads and the weathered lithological units 

Akgün and  
Bulut  (2007) 

Guizhou(China) 176,167 Slope, lithology, landslide inventory, tectonic activity, 
drainage distribution and annual precipitation 

Wang, et al.  
(2008) 

More and Romstal (Norway) 12,168 Slope, aspect,curvature, lineaments, vegetation 
index and  elevation 

Erener and 
Düzgün 
(2008) 

 
 
Since the late 1960’s, a number of maps have been made on qualitative landslide 
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susceptibility by various researchers: Blanc and Cleveland (1968), Pomeroy (1974), 

Scott (1972), Brabb and Pampeyan (1972), Brabb (1976), Radbruch et al. (1982), 

Mahr and Malgot (1978), Kienholtz (1978), Rodriguez Ortiz et al. (1978), Hinojosa 

and Leon (1978), Ives and Messerli (1981), Van Den Eeckhaut et al. (2007), Parise 

(2001), Cardinali et al. (2002a), Zanutta et al. (2006); Schädel and Stober (1988), 

Thein (2000), Neuhäuser and Terhorst (2007). These methodologies are also defined 

as expert evaluation approaches (Leroi, 1996; Jose, 2000), in which an expert of 

geomorphology decides on the type and degree of hazard for each area. They can be 

divided into two types, direct mapping or indirect mapping. In the direct mapping 

approach, the degree of hazard is mapped based on the field geomorphologic 

analysis. The indirect mapping approach utilizes the combination or overlaying of 

index maps with or without weighting. 

 

Qualitative methods are usually geomorphologic mapping, in which an expert 

identifies past and present landslides as well as making predictions for future failures 

which are likely to occur (Carrara et al., 1995; Aleotti and Chowdhury, 1999). The 

expert-driven approach or the direct approach involves assessment and/or zonation of 

the degree of hazard directly in the field based on the experience of earth scientist, or 

evolving it after the fieldwork on the basis of a detailed geomorphological map. 

Overviews of conventional geomorphological mapping systems on medium and large 

scale are presented by Demek and Embleton (1978) and Van Zuidam (1986). 

 
The major drawback of these types of maps is that it is a time-consuming process due 

to the requirement of lengthy field surveys. Besides, the maps are hardly 

reproducible because of subjectivity (Dai and Lee, 2001). Examples of  susceptibility 

maps based on field analysis can be frequently found between the 1970’s and early 

1990’s (Carrara and Merenda, 1976; Fenti et al., 1979; Kienholz, 1978; Ives and 

Messerli, 1981; Rupke et al., 1988; Carmassi et al., 1992; Terhorst, 1997, 2001; Jose, 

2000; Parise, 2001).   

 
The historical aerial photos are of fundamental importance for qualitative analysis as 

given in Brabb and Pampeyan (1972), Wegmann  (2002), Van Westen et al., 2003, 

Ardizzone (2005), Zanutta et al. (2006), Duman et al. (2005a). Carrara et al. (1992) 

and (2003) compare the landslide maps produced independently by different 
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investigators for the same region (Table 2.1). In addition to aerial photos, with the 

development of technology, Van Den Eckhaut et al. (2007) maps old landslides by 

using Lidar (Light Detection and Ranging) images with the help of the expert 

knowledge of seven geomorphologists (Table 2.1 ). 

 

In addition to medium and regional scale analysis, for large slopes Rouiller and 

Marro (1997), Rouiller et al. (1998) and Jaboyedoff et al. (2004) use rating methods 

based several factors such as structural geology, weathering, seepages, etc. to assess 

the propensity of large rock falls. Copons and Vilaplana (2008) obtained the records 

of rock falls by means of geomorphologic analysis to analyze the susceptibility of 

minor rock falls on large scale (Table 2.1 ). 

 
Index based methods are also called heuristic methods. Heuristic methods involve 

ranking and weighting of instability factors according to their assumed or expected 

importance based on their effects on landsliding (Nilsen and Brabb, 1977; Amadesi 

and Vianello, 1978; Hollingsworth and Kovacs, 1981; Neeley and Rice, 1990; 

Montgomery et al., 1991; Mejıa-Navarro et al., 1994; Jose et al. 2000). GIS-based 

overlay functions have strongly facilitated the use of a combination or an overlay of 

index-based maps with or without weighting on any scale to assess landslide 

susceptibility (Huabin et al., 2005). The main reason is that GIS allows easier 

application of arithmetic procedures and overlay analysis. Examples of these studies 

can be found in Pachauri and Pant (1992), Maharaj (1993), Gökçeoğlu and Aksoy 

(1996), Hylland and Lowe (1997), Pachauri et al. (1998), Turrini and Visintainer 

(1998), Dhakal et al. (1999), Luzi and Pergalani (1999), Wachal and Hudak (2000), 

Donati and Turrini (2002), Sarkar and Kanungo (2004), Moreiras (2005) and 

Ayenew and Barbieri (2005). 

 
As geomorphological analysis depends on the expert subjective criteria and the 

appropriate interpretation of the landscape, in the study of Moreiras (2005) each 

parameter conditioning landslide occurrence is analyzed and ranked according to the 

slope instability conditions in order to reduce subjectivity and to quantify the degree 

of susceptibility (Table 2.2). Qualitative ranking was applied in this methodology to 

create susceptibility. Wachal and Hudak (2000) and Erener and Düzgün (2008) 

applied a scoring method (Table 2.2). In these studies, a numerical rating system is 

http://www.scopus.com/scopus/search/submit/author.url?author=Van+Den+Eeckhaut%2c+M.&authorId=8628579200&origin=recordpage�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V63-4T2S8TV-2&_user=691352&_coverDate=12%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=5803&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=7ead1b29015da0dfc10d32d72baeaa4d#bib29�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V63-4T2S8TV-2&_user=691352&_coverDate=12%2F01%2F2008&_rdoc=1&_fmt=full&_orig=search&_cdi=5803&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=7ead1b29015da0dfc10d32d72baeaa4d#bib29�
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applied first by grouping the data into categories, then assigning a value to each 

category, and then assigning weights to each factor between 0.0 and 1.0 based on 

their relative importance to slope instability in the study area. 

 
To provide qualitative maps Bonham-Carter (1994), Van Westen et al. (2003), 

Nguyen and Bui (2004), and Neuhäuser and Terhorst (2007) use the weights-of-

evidence method (Table 2.2). In this method, a pair of positive and negative weights 

is calculated for each causative factor. This calculation is done by applying the log-

linear form of the Bayesian probability, which describes how probably a landslide 

will occur in the case of present factor and in the case of absent factor. Wang et al. 

(2008) assess the susceptibility with trapezoidal fuzzy number weighting (TFNW) 

approach (Table 2.2). The weighting procedure showed that the TFNW is an efficient 

method for landslide causal factors weighting. Ayalew et al. (2004) and Akgün and  

Bulut  (2007) use the weighted linear combination model (Table 2.2), which is a 

hybrid method between qualitative and quantitative methods in landslide 

susceptibility assessments. This technique has been described by Saaty (1988, 1994) 

and Saaty and Vargas (2001) in the context of decision making processes and it is 

likely to be the best known and commonly used multicriteria-GIS method (Eastman 

1999; Jiang and Eastman 2000). In the weighted linear combination (WLC) model, 

the class weights of landslide triggering factors are determined using the analytical 

hierarchy process (AHP) and then each factor is multiplied with the determined 

weight values and so the weighted factor maps are obtained for the studied area. 

Finally, all the weighted factor maps are overlaid and a landslide susceptibility map 

is produced. Akgün and Bulut (2007) compared Logistic regression (LR) and WLC 

methods and the results showed that the WLC model is more suitable than the LR 

model.  

 
Most susceptibility maps are performed on small or medium scales, in general lower 

than a scale of 1:25,000. Ayala-Carcedo et al. (2003) explore the problems and 

possibilities of large scale mapping. They analyze a rock fall front in the Sierra de la 

Cabrera (Madrid, Spain) by a heuristic approach (Table 2.2).  
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2.3.1.1.2 Quantitative Methods 
 
The quantitative methods include statistical methods, neural network analysis, 

geotechnical approaches, and fuzzy set-based approaches. Quantitative methods 

produce numerical estimates for probability of landslide occurrence phenomena for 

areas currently free of landslides, and have conditions similar to the past landslide 

occurrence areas (Guzetti et al., 1999; Chung and Fabbri, 1993; Huabin et al., 2005). 

Examples of quantitative or semi-quantitative analysis using these methods in the 

literature are Reger (1979), Carrara (1983), Bernknopf et al. (1988), Carrara et al. 

(1991, 1992, 1995, 2003), Jade and Sarkar (1993), Chung et al. (1995), Baeza and 

Corominas (1996, 2001), Wieczorek et al. (1996), Van Westen et al. (1997), 

Atckinson and Massari (1998), Rowbotham and Dudycha (1998), Nagarajan et al. 

(2000), Sakellariou and Ferentinou (2001), Baeza and Corominas (2001), Ardizzone 

et al. (2002), Bianchi and Catani (2002), Cardinali et al. (2002b), Dai and Lee (2002, 

2003), Ercanoğlu and Gökçeoğlu (2002, 2004), Lee et al. (2003), Lu and Rosenbaum 

(2003), Olhmacher and Davis (2003), Santacana et al. (2003), Süzen and Doyuran 

(2004), Ayalew and Yamagishi (2005), Guzetti et al. (2005), Ermini et al. (2005), 

Gomez and Kavzoglu (2005), Düzgün (2008, 2009). The summary of quantitative 

methods is listed in Table 2.3-Table 2.6.  

 
Among quantitative methods, the statistical methods are the most popular ones. They 

can easily be implemented in GIS. GIS allows extraction of parameters such as slope 

gradient, slope aspect, slope convexity, watershed area, drainage network, and so on. 

These parameters can easily be included for susceptibility analyses in GIS 

environment. Complete overviews of the use of GIS for landslide susceptibility 

assessment can be found in Van Westen (1994) and Carrara et al. (1995), and the 

statistical methods applied by using GIS involve studies of  van Westen (1993), 

Carrara et al. (1990), Carrara et al. (1995), Carrara et al. (1999), van Westen et al. 

(1997), Thurston and Degg (2000), Ohlmacher and Davis (2003), Melelli 

andTaramelli (2004), Çan et al. (2005), Duman et al. (2006), Erener et al. (2007) and 

Akgün and Bulut (2007).   

 
Statistical approaches are based on the observed relationship between each factor and 

the distribution of landslides (Huabin et al., 2005). This requires a landslide 

inventory map, which is used in combination with a series of 
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environmental factors, and is based on the assumption that landslides are likely to 

occur under the same conditions as those under which they occurred in the recent 

past (Van Westen et al. 2005). Since the instability determinants and their 

interrelations are evaluated on a statistical basis, susceptibility evaluation becomes an 

operation as objective as possible. 

 
Statistical techniques are generally considered as the most appropriate approach for 

landslide susceptibility mapping on medium scales (1:10,000–1:50,000). This can 

also be seen in Table 2.3, where most of the application scales are on a medium 

scale. The main reason for this is that it is possible to map the occurrence of past 

landslides in detail and to collect sufficient information on variables which are 

considered to be relevant to the occurrence of landslides (Huabin et al. 2005; Dai et 

al. 2002). Examples of statistical  analyses are by Carrara et al. (1991), Jade and 

Sarkar (1993), Guzzetti et al. (1999), Lee and Min (2001), Ercanoğlu et al. (2004), 

Ayalew and Yamagishi (2005), Erener and Düzgün (2006) (Table 2.3, Table 2.4, 

Table 2.5 and Table 2.6). 

 
Table 2.3. Review of bivariate susceptibility mapping methods. 
 

Region Area 
 (km2) Factor Landslide 

Type Cell Size Source 

Konkan Coast, (India) Not 
defined 

Land cover vegetation, drainage 
density, slope aspect, relative 
relief, stratification of rocks, 
joint  discontinuity/lineament, 
weathering, soil type, soil–rock 
interface, rainfall. 

Not defined Not defined Nagarajan 
et al. (2000) 

Kuzulu landslide Sivas (Turkey)  6.9 
Geology, slope, aspect, 
elevation, topographic-wetness 
index and stream-power index 

Earth flow 25x25 m Gökçeoğlu 
et al. (2005) 

Asarsuyu catchment, Bolu 
(Turkey) 200  

Slope, aspect, lithologic map, 
fault density, elevation map, land 
cover map, distance to drainage, 
distance to lineament, distance to 
ridge, distance to E-5 highway, 
distance to power and road 
network and distance to 
settlement. 

Earth flow and 
shallow 
translational 
slides  

25x25 m 
Süzen and 
Doyuran 
(2004) 

Janghung area (South Korea) Not 
defined 

Landslide location, geological 
structure and topography Not defined 20x20 m Lee et al. 

(2002) 

Janghung area (South Korea) 41  

Slope gradient, slope aspect, and 
curvature of topography, Soil 
texture, material, drainage, 
and effective depth forest type, 
diameter, and density, land cover  

Debris flows 
and shallow 
soil slips 

10 x 10 m Lee (2004) 

Terni basin (Italy) 15.3 Geology, slope, distance from 
rivers and distance from faults Debris-flows 25×25m 

 

Melelli and 
Taramelli 
(2004) 

Contraviesa 
Area, Granada (Spain) 94  

Altitudes, slopes, aspect, 
hillshading, slope curvature, 
slope roughness, slope area  and 
qualitative classification of 
landforms.  

Falls, slides, 
flow 6x6 m Fernández 

et al. (2003) 
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Statistical methods can be divided into two as bivariate and multivariate statistical 

data analysis methods.  

 

In multivariate methods, all of the factors are treated together and their interactions 

assist to resolve the phenomena statistically whereas bivariate methods assume that 

the factors are not correlated with each other. Some examples of bivariate and multi-

variate models can be found in Carrara (1983), Wang and Un-win (1992), Van 

Westen (1993), Baeza and Corominas (2001). 

 
In bivariate statistical analyses, each individual factor is compared to the landslide 

occurrence data (Aleotti and Chowdhury, 1999) and the role of each individual 

parameter or that of combinations of parameters with regard to slope failures is 

statistically evaluated (Van Westen, 1997). The comparison is applied by calculation 

of the number of landslide locations in primary factors unit divided by the areal 

extent of that unit. The correlation analysis between landslides and their causal 

factors made by using bivariate statistical methods constitutes assigning objective 

weights. There have been many applications of bivariate methods in the literature, 

some of which can be listed chronologically as Brabb et al. (1972), Brabb (1984), 

Degraff and Romersburg (1980), Kobashi and Suzuki (1988), Yin and Yan (1988), 

Gupta and Joshi (1990), Pachauri and Pant (1992), Jade and Sarkar (1993), Chung 

and Fabbri (1993), Van Westen (1993), Irigaray (1995), Fiener and Haji (1999), 

Uromeihy and Mahdavifar (2000), Fernández et al. (2003), Melelli and Taramelli 

(2004). Some of these are listed in Table 2.3. Recently, Suzen and Doyuran, 2004 

provided a GIS-based comparison between bivariate and multivariate analysis in 

terms of performance and accuracy. 

 
As can be seen in Table 2.3, most researchers used slope, aspect, and vegetation 

parameters for bivariate statistical analysis. The cell sizes range between 6x6 m. and 

25x25 m. and the regions range between 15 km2 and 275 km2. The method was 

applied to a variety of slide types such as earth flows, debris flows, and shallow 

translational slides and flows  (Melelli and Taramelli, 2004; Süzen and Doyuran, 

2004; Lee, 2004; Van Westen et al., 2003; Fernandez et al., 2003). 

 
Multivariate analysis is one of the most sophisticated techniques for landslide 
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susceptibility assessment. Multivariate statistical approaches include discriminant 

analyses and logistic regression. This approach was applied by Neuland (1976), 

Carrara (1983), Bernknopf et al. (1988), Carrara et al. (1991) Wang and Unwin 

(1992), Baeza (1994), Chung et al. (1995), Süzen and Doyuran (2004), Ercanoğlu et 

al. (2004), Melelli andTaramelli (2004), Duman et al. (2006), and Tunusoğlu et al. 

(2008). 

  
The purpose of discriminant analyses is to classify a set of observations into 

predefined classes based on their values for a set of predictors or input variables. A 

detailed description of the discriminant analysis can be found in David et al. (1977), 

Lebart et al. (1982) and Dillon and Goldstein (1986). The technique constructs a set 

of linear functions of environmental variables which maximizes the differences 

between the populations of stable and unstable slopes with minimal error (Guzzetti et 

al., 2006). 

 
Some examples of the use of discriminant analysis are Reger (1979), Carrara (1983), 

Carrara et al. (1991), (1992), (1995), Guzzetti et al. (1999), (2006), Nagarajan et al. 

(2000), Baeza and Corominas, (2001), Ardizzone et al. (2002), Cardinali et al. 

(2002a), Santacana et al.(2003), Guzetti at al. (2005), (2006). 

 
When using multivariate statistical methods, all parameters related to slope 

instability can be analyzed by multiple regression techniques or parameter maps, 

which are overlaid by landslide distribution maps, and the correlation is established 

for stable and unstable areas through discriminant analysis (Van Westen, 1997). 

Stepwise discriminant analysis is effectively applied in relation to a particular land 

surface subdivision in the mentioned hydrological slope units (Carrara et al., 1991, 

1992 and 2003; Guzetti at al., 2006) and grid units (Santacana et al., 2003) to classify 

stable and unstable regions (Table 2.4). Carrara (1983) evaluates the landslide 

susceptibility by multivariate models for two different regions using both grid unit 

and slope unit. Most of the researchers summarized in Table 2.4 studied in an area 

affected by shallow landslides. Among these, Santacana et al. (2003), Baeza and 

Corominas (2001), and Guzetti et al. (2006) carried out their studies in areas that 

range between 60 and 275 km2. 
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Table 2.4. Review of discriminant analysis for susceptibility mapping 
 

Region Area 
(km2) Factor Landslide 

Type 
Mapping 

Unit Source 

La Pobla de 
Lillet 
(Eastern 
Pyreenes, 
Spain). 

Not 
defined 

Cellheight, slope angle, slope aspect, curvature, 
transverse curvature, and  
longitudinalcurvature,sinusoidal slope angle, solar 
radiation, slope roughness, watershedangle and 
both watershed length and area of the whole basin 
and that of the colluvial deposits 

Shallow 
Landslide 

Grid (15 × 
15 m) 

Santacana 
et al. (2003) 

Ferro (Italy) 120 Mass 
movements 

Grid (200 
x 200 m) 

Buonamico 
(Italy) 

 
 91 

slope elevation, gradient, aspect and curvature, 
Slong with land use/cover, drainage network Deep Seated 

landslides 
Slope 
Units 

Carrara 
(1983) 

Pyrenees 
(Spain) 

Not 
defined 

Height, orientation, slope angle, drainage sub-
basin, vegetation, soil width and land use units 

Shallow 
landslides 

Not 
defined 

Baeza and 
Corominas 
(2001) 

The 
Staffora river 
basin, (Italy) 

280  
Land-use data, A digital terrain model, 
geological–morphological factors, lithological 
variables 

Earth flows 
and 
translational 
slides, large 
rotational 
slides 

Slope 
units 
 

Carrara et 
al. (2003) 

La Honda 
basin, 
California 
Tescio, (Italy) 
Merecchia 
basin (Italy) 

60  Morphometric parameters, lithologic, structural 
and hydrological data Slide flow Slope 

units 
Carrara et 
al. (1992) 

Umbria, Italy 60  40 morphological, geological and vegetational 
attributes 

Translative 
slides and 
flows 

Slope 
units (266 
units) 

Carrara et 
al. (1991) 

Collazzone 
area in central 
Umbria, Italy 

78.9  

46 thematic environmental variables 
environmental thematic variables, including 
morphology, hydrology, lithology, structure, 
bedding attitude and land use. 

Shallow 
landslides 

Slope 
units  
(894) 

Guzetti et 
al. (2006) 

Lombardy 
region,( Italy) 275  

46 thematic variables, including morphology (24 
variables), lithology (14 variables), structure (3 
variables) and land use (5 variables).  

Not defined Not 
defined 

Guzetti et 
al. (2005) 

 
 
 LR allows forming a best fitting model to describe the relationship between the 

occurrence or non-occurrence of landslides and independent parameters (Wrigley, 

1985; Upton and Fingleton, 1989; Dobson, 1990; O'Brien, 1992; Ohlmacher and 

Davis 2003). It uses this relationship to produce a map showing the probability of 

future landslides that are constrained to fall between 0 and 1 by considering several 

independent factors. The main advantage of LR over simple multiple regression is 

that LR allows the use of binary dependent variable types, which are the presence or 

absence of landslides in landslide susceptibility mapping. LR is one of the most 

widely applied methods for statistical susceptibility mapping and it is successfully 

applied by Menard (1995), Bernknopf et al. (1988), Jade and Sarkar (1993), Jager 

and Wieczorek (1994), Wieczorek et al. (1996), Atkinson and Massari (1998), 

Guzzetti et al. (1999) Hosmer and Lomeshow (2000)  Gorsevski et al. (2000), Dai 

and Lee (2002), Ohlmacher and Davis (2003), Lee (2004), Guzetti et al. (2005), 

Yeşilnacar and Topal (2005), Dai and Lee  (2001), Dai et al. (2001), Lee and Min 
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(2001), Dai and Lee (2002), Süzen (2002), Süzen and Doyuran (2004), Ayalew and 

Yamagishi (2005), Çan et al. (2005), Lee (2005), Duman et al. (2006), Erener and 

Düzgün (2006), Zhu and Huang (2006), Akgün and Bulut  (2007), Erener and 

Lacasse (2007) and Tunusluoğlu et al. (2008). 

 
As presented in Table 2.5, the application of the LR analysis to produce 

susceptibility map is encountered for areas with a variable size (38-2668 km2). The 

method is mostly used by grid cells with a size ranging from 10 to 90 m. (Atkinson 

and Massari, 1998; Ohlmacher and Davis, 2003; Akgün and Bulut, 2007). However, 

few are used for unique condition units (Can et al., 2005; Chen and Wang, 2007). 

Most of the researchers applied logistic regression to different types of slides such as 

debris flows and shallow soil slips, rapid slump-earth flow, rotational slides, etc. 

(Jager, and Wieczorek, 1994; Ohlmacher and Davis, 2003; Lee, 2004; Can et al., 

2005; Yeşilnacar and Topal, 2005; Greco et al., 2007) and few to rock falls 

(Marquinez et al., 2003). The information about influencing factors are provided by 

few studies such as Atkinson and Massari (1998) (geology and slope angle), Ayalew 

et al. (2005) (slope) and Ayalew and Yamagishi (2005) (road network). Additionally 

Can et al.  (2005) applied susceptibility mapping to three different regions where 

most of the influencing factors are obtained for each region. 

 
Table 2.5. Review of logistic regression and conditional probability for susceptibility mapping in the 
literature  
 

Region Method Area 
(km2) Factor Landslide 

Type 
Mapping 

Unit Source 

Yomra and 
Arsin 
(Trabzon) 

LR   38.87  

Slope angle, slope aspect, 
distance from drainage, 
distance from roads and the 
weathered lithological units 

Not defined Grid (20  x 
20 m) 

Akgün and  
Bulut  (2007) 

Apennines, 
(Italy) 

 
LR 65  

Geology, dip, strike, strata-
slope interaction, aspect, 
density of lineaments and 
slope angle 

Not defined Grid (20  x 
20 m) 

Atkinson and 
Massari 
(1998) 

Sado Island 
(Japan) 

Analytical 
hierarchy 
process 
(AHP) and 
the LR 

854.6  Elevation, lithology and slope 
gradient 

Deep-seated, 
rotational 
and 
translational 
slides 

Grid 
(10x10 m) 

Ayalew et. al. 
(2005) 

Kakuda-
Yahiko 
Mountains 
(Japan) 

LR 105  

Lithology, bed rock-slope 
relationship, lineaments, slope 
gradient, aspect, elevation and 
road network 
 

Slide Grid 
(10x10m) 

Ayalew, and 
Yamagishi 
(2005) 
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Table 2.5. Review of logistic regression and conditional probability for susceptibility mapping in the 
literature (Continued) 
 

Region Method Area 
(km2) Factor Landslide Type Mapping 

Unit Source 

Tully Valley, 
 ( New York) LR 415  clays, slope angle, and 

glacial lake levels 
Rapid slump-earth 
flow 

Grid (90x90 
m) 

Jager, and 
Wieczorek 
(1994) 

Mackenzie 
Valley, 
(Canada) 

LR 2,668 

Bedrock, surface material, 
elevation, slope, aspect, dip 
angle, dip direction, 
distance to water system, 
and vegetation cover. 

Not defined 
unique-
condition 
unit 

Chen  and 
Wang  
(2007) 

Egerci, 80.4 

Agustu 26.2 

Kelemen 
catchments 
(Turkey) 

LR 

79.0  

Area and elevation, Aspect, 
Plan curvature, Slope, 
Landcover, Geology 

Shallow 
earthflows 

unique 
condition 
units 
(UCU) 

Can et al.  
(2005) 

Aspromonte 
case study, 
Calabria, (Italy) 

LR 850  

Rock type, 
land use, elevation, slope 
angle, aspect, slope profile 
curvature down-slope and 
across-slope. 

Fall/topple,  block 
slide, slide, 
complex  
slide/flow and 
flow, lateral 
spreading, 
sackung (rock 
flow, debris 
avalanche. 
 

Grid (10x10 
m) 

Greco et al. 
(2007) 

Kansas and 
Missouri 
(Kansas) 

LR 202.3  
 

slope, slope aspect, 
geology, and soils. 
 

Shallow 
failures 

Grid (10x10 
m) 

Ohlmacher 
and Davis, 
(2003) 

Hendek 
(Turkey) 

LR and 
ANN 290 

aspect, distance to drainage 
network, distance to fault 
planes, distance to ridges, 
distance to roads, drainage 
density, elevation, fault 
density, geology, land 
cover, plan curvature, 
profile 
curvature, road density, 
slope, slope length, stream 
power, surface area ratio, 
topographic wetness index 
and subwatershed basins) 

Rotational Grid (25 x 
25 m) 

Yeşilnacar 
and Topal 
(2005) 

Janghung,  
(Korea) 

LR and 
 Likelihood 
Ratio Model  

41  

Slope gradient, 
slope aspect, and curvature, 
Soil texture, material, 
drainage, 
and effective depth, 
while forest type, diameter, 
and density , Land cover. 

Debris flows and 
shallow soil slips 

Grid (10 x 
10 m) Lee (2004) 

Yongin, 
(Korea) 

LR and 
Probability  66 

Slope, aspect, curvature, 
texture, material, drainage, 
soil thickness, timber type, 
age, diameter and dendity, 
Lithology, land use 

 Grid (10 
x10m) 

Lee and Min  
(2001) 
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Table 2.5. Review of logistic regression and conditional probability for susceptibility mapping in the 
literature (Continued) 
 

Region Method Area 
(km2) Factor Landslide 

Type 
Mapping 

Unit Source 

Cantabrian 
Mountains 
(Asturias, 
North Spain) 

LR 500  

Altitude, sun radiation, 
slope roughness, slope 
gradient, 
anisotropy and lithology. 
 
 

Rock fall Grid (25 x 25 
m) 

Marquinez 
et al. (2003) 

Sivas, (Turkey) Conditional 
probability 

Not 
defined 

Geology, slope, aspect, 
elevation, 
topographic-wetness index 
and stream-power index 
 

Rapid flow Grid (25x25 
m) 

Gökçeoğlu 
et al. ( 2005) 

Cekmece, 
İstanbul 
(Turkey) 

Conditional 
probability 

Not 
defined 

Slope, aspect and 
altitude, lithology, 
geomorphology, distance 
from faults, dis20 
tance from drainage, 
distance from roads 
 

Not 
defined 

Grid (25×25 
m) 

Duman et 
al., (2005a) 

Yomra and 
Arsin, Trabzon 
(Turkey) 

LR  and 
weighted linear 
combination 
(WLC) 

38.87  

Slope angle, slope aspect, 
distance from drainage, 
distance from roads and the 
weathered lithological units 

Not 
defined 

Geotechnical 
unit  

Akgün and  
Bulut  
(2007) 

 
 

A number of studies have utilized a considerable diversity of parameters including 

morphological factors such as slope geometry (slope angle, slope aspect, plan 

curvature, profile curvature, topographical elevation), geological factors such as 

geologic properties (lithological types, fault, anticlines, and bedding), drainage 

factors (distance to water system and channel gradient), and land use/land cover for 

landslide analysis (Gupta and Joshi, 1990; Maharaj, 1993; Jager and Wieczorek, 

1994; Van Westen, 1994; Carrara et al., 1995; Chung et al., 1995; Hansen et al., 

1995; Guzzetti et al., 1999; Donati and Turrini, 2002). Relatively few studies have 

additionally considered the use of other variables such as topographic wetness index, 

elevation, slope length and soil type, which may have significant effects on landslide, 

in landslide susceptibility mapping (Carrara, 1983). 

 

Conditional analysis involves assessment of the probability that event A will occur if 

event B occurs (Negnevitsky, 2002). In recent years, the conditional probability 

approach has been successfully applied to produce susceptibility maps by some 

researchers (Carrara et al., 1995; Chung et al., 1995; Clerici et al., 2002; Süzen and 

Doyuran, 2004a; Lee, 2004; Duman et al., 2005a, 2005b; Gökçeoğlu et al., 2005). 

According to the findings of Lee (2004), the logistic regression analysis seems to be 
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more consistent when compared with the conditional probability (Table 2.5). 

 

Artificial neural networks have been introduced to produce landslide hazard maps 

under the consideration of the nonlinear characteristics of the sliding process. Neural 

networks analysis must be considered as a black box model (Aleotti and Chowdhury, 

1999). Lees (1996) describes it as follows: “Neural network is a processing device, 

implemented as an algorithm or in hardware, whose design was motivated by the 

design and function of mammalian brains; they react to training data input in such a 

way as to alter their initial state, something no conventional algorithm does: they can 

learn”. The main characteristics of artificial neural networks (ANN) dealing with 

mixed-type parameters such as categorical and cardinal units (Ermini et al. 2005; 

Gomez and Kavzoglu, 2005; Huabin et al., 2005) also include large-scale parallel 

distributed processing, continuously nonlinear dynamics, collective computation, 

high fault-tolerance, self-organization, self-learning, and real-time treatment 

(Rumelhart et al., 1986). 

 
Recently, several papers have been published concerning ANN applications in the 

literature (e.g Emami et al., 1998; Lee et al., 2001, 2003; Bianchi and Catani, 2002; 

Lu and Rosenbaum 2003; Catani et al., 2005; Ercanoğlu, 2005; Ermini et al., 2005; 

Gomez and Kavzoglu 2005; Yeşilnacar and Topal, 2005; Tunusluoğlu et al., 2007). 

Rumelhart et al. (1986) and Binaghi et al. (2004) provide examples of GIS landslide 

mapping using ANN methods. 

 
Several researchers have compared and evaluated susceptibility maps produced by 

logistic regression and ANN. While some researchers have found that neural network 

is superior to LR (Ayalew et. al, 2005; Yeşilnacar and Topal, 2005) (Table 2.5), 

other authors have found no differences in overall predictive performance (Mahiny 

and Turner, 2003; Ottenbacher et al., 2001; Manel et al., 1999; Tu, 1996; 

Schumacher et al., 1996). These comparisons are highly dependent on the nature of 

the data set used in the analysis. 

 
As presented in Table 2.6, in order to classify stable and unstable regions, ANN is 

applied to land surface mapping units in the aforementioned Unique Condition Unit, 

(Ermini et al. 2005; Catani et al., 2005) and grid units (Lee et al., 2003a; Yeşilnacar 
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and Topal, 2005; Gömez and Kavzoglu, 2005; Neaupane and Piantanakulchai, 2006; 

Ercanoğlu, 2005). The pixel sizes range between 5 and 230 m2 and the sizes of areas 

range from 17 to 9100 km2. As indicated in Table 2.6. most of the ANN was applied 

in rotational type landslides.  

 
Table 2.6. Review of ANN for susceptibility mapping in the literature 

Region Factor Area 
(km2) Landslide Type Mapping 

Unit Source 

Arno River 
(Central Italy) 

Slope angle, lithology, profile 
curvature, land cover and 
upslope contributing area. 

9100  

Rotational 
slides, solifluctions 
and other shallow 
slow movements 
and flows  

Unique 
conditions 
units (UCU) 

Catani et al. (2005) 

Hendek 
(Turkey) 

Aspect, distance to drainage 
network, distance to fault planes, 
distance to ridges, 
distance to roads, drainage 
density, elevation, fault 
density, geology, land cover, 
plan curvature, profile 
curvature, road density, slope, 
slope length, stream 
power, surface area ratio, 
topographic wetness index 
and subwatershed basins 

Not 
defined Rotational slides Grid (25 x25 

m) 
Yeşilnacar and 
Topal ( 2005) 

Riomaggiore 
catchment, 
Northern 
Apennines 
(Italy) 

Lithology,  slope angle,  profile 
curvature, land cover and 
upslope contributing area. 

17  

Rotational-
traslational 
movements 
associated with 
earth slides–earth 
flows. 

Unique 
Condition 
Unit, UCU) 

Ermini et al. 
(2005) 

Jabonosa river 
(Venezuela) 

Land cover, slope angle, slope 
aspect, elevation, slope length, 
topographic wetness index, 
lineaments, geological 
formations, soil types 

110  Shallow landslides Grid (30x30 
m ) 

Gömez and 
Kavzoglu (2005) 

Boun (Korea) 

Slope, aspect, curvature, 
topographic type, soil 
texture, soil material, soil 
drainage, soil effective thickness, 
timber type, timber age, timber 
diameter, timber density, 
geology, and land cover 
 

68 Not defined Grid (5x5 m) Lee et al. ( 2003b) 

Himalayas 
(Nepal) 
 

Slope steepness and aspect, 
underlying geology, landuse and 
vegetation cover, channel 
proximity, groundwater 
hydrology 

Not 
defined Not defined Grid 

(230×230 m) 

Neaupane  and 
Piantanakulchai 
(2006) 

West Black 
Sea (Turkey) 

Slope angle, slope aspect, 
topographical elevation, 
topographical shape, wetness 
index, and vegetation index 

879  
rotational slides, soil 
flows, and  
translational slides. 

Grid (25×25 
m) Ercanoğlu (2005) 

 
 
The geotechnical model, which is deterministic or probabilistic, has been widely 

employed in civil engineering and engineering geology for slope stability analysis of 

a single slide. Examples of geotechnical slope stability analysis are presented in 

Benda and Zhang (1990), Gökçeoğlu and Aksoy (1996), Luzi and Pergalani (1996), 

VanWesten et al., (1997), Borga et al. (1998), Terlien (1998), Luzi and Pergalani 

(1999), Preston and Crozier (1999), Miles and Ho (1999), Xie et al., 2004, Wu and 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V63-4JVT1TM-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=c1b89d243f84a3b1bbd7ed25c4e8dbfd#bbib47#bbib47�
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Abdel-Latif, 2000 , Düzgün and Özdemir, (2006), Düzgün and Karpuz (2006), Fall et 

al. (2006), Düzgün (2008), and Düzgün and Bhasin (2009). Some of these are 

reviewed in Table 2.7. 

 
Table 2.7. Review of Geotechnical slope stability analysis in the literature  
 

Region Factor Method Area 
(km2) 

Landslide 
Type 

Mapping 
Unit Source 

Mengen, 
(Turkey) 

Cohesion, angle of internal 
friction, slope, relative height, 
orientation of slopes, proximity 
to drainage pattern, vegetation 
cover and proximity to major 
faults 

Deterministic 
slope stability 
analyses 
techniques 

120  

Rotational, 
successive 
shallow 
landslides 

Not 
defined 

Gökçeoğlu 
and Aksoy  
(1996) 

San 
Francisco 
East Bay 
Hills, 
Berkeley, 
California 
(USA) 

Soil parameters, topography, slip 
surface depth, fault location 
and acceleration time histories, 
drained cohesion, friction 
angle and unit weight of the 
regional soils 

Newmark’s 
analysis 31  Not defined Not 

defined 
Miles and 
Ho (1999) 

Hawke's 
Bay, (New 
Zealand) 

Shear Strength, Crıtıcal Slope 
Angles, Cohesıve Strength 

Geotechnical 
model 

Not 
defined Earthflows Not 

defined 

Preston and 
Crozier 
(1999) 

Dakar 

Geology map (lithology,   
structural geology, etc.), relief 
maps (slope height and gradient), 
historical landslides maps, 
erosion at the study area 
(material loss, cliff retreat), 
hydrogeological information 
layers (groundwater level, 
natural and domestic source, 
flow direction of the surface or 
rain water, convergence zone of 
the rain water, etc.),  
geotechnical soils map (soils and 
their liability to slide, different 
homogenous sections 
determined), and safety factors 
map 

Geotechnical 
field and  
laboratory 
works, of GIS, 
and of 
mechanical 
(deterministic 
and numerical) 
stability 
analysis. 

Not 
defined Not defined Grid (2 

x2 m) 
Fall et al. 
(2006) 

Kyushu, 
(Japan) 

Elevation, inclination, slope, 
groundwater, strata, slip surface 
and mechanical parameters) 

Deterministic 
Model 3.4  Slide failure 

 

Slope 
unit 
 

Xie et al. 
(2004) 

Bandırma 
(Turkey) Slope, aspect, soil strength FORM Not 

defined Not defined Not 
defined 

Düzgün and 
Karpuz  
(2006) 

Dereköy, 
(Konya) 
 

Geologic, hydrologic, vegetation 
and geotechnical information 
 

FORM Not 
defined 

Old, active 
and potential 
slope 
movements, 
 

Not 
defined 

Düzgün and  
Özdemir 
(2006) 

Pete King 
watershed, 
Clearwater 
National 
Forest, 
northcentral 
Idaho, (USA) 

Climate data, a digital elevation 
model, soil, and land use data. 

Infinite slope 
model 
Monte Carlo 
Simulation 

72 Not defined Not 
defined 

Gorsevski 
et al. (2006) 

West Black 
Sea Region, 
(Turkey) 

Geological: Closeness to the 
structural elements  
and relationship between 
discontinuities and slopes 
Topographical : distance to 
drainage network, topographical 
elevation, shape of slope and 
slope aspect, Environmental: 
vegetation cover and main roads 

Fuzzy Relations 275.4 

Rotational 
slide,soil 
flow and 
shallow 
translational 
slide. 

Grid (25x 
25 m) 

Ercanoğlu 
and 
Gökçeoğlu, 
(2004) 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V63-4JVT1TM-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=c1b89d243f84a3b1bbd7ed25c4e8dbfd#bbib47#bbib47�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V63-4JVT1TM-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=c1b89d243f84a3b1bbd7ed25c4e8dbfd#bbib47#bbib47�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V63-4JVT1TM-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=c1b89d243f84a3b1bbd7ed25c4e8dbfd#bbib47#bbib47�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4MC718F-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=52e1162e231872fbac018b79278aeaa1#bbib36#bbib36�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4MC718F-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=52e1162e231872fbac018b79278aeaa1#bbib36#bbib36�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4MC718F-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=52e1162e231872fbac018b79278aeaa1#bbib41#bbib41�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4MC718F-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=52e1162e231872fbac018b79278aeaa1#bbib41#bbib41�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4MC718F-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=52e1162e231872fbac018b79278aeaa1#bbib41#bbib41�
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Table 2.7. Review of Geotechnical slope stability analysis in the literature (Continued) 

Region Factor Method Area 
(km2) Landslide Type Mapping 

Unit Source 

Landslides and slopes (localisation, 
lithology, structural characteristics, 
morphology, aspect, landuse, slope 
angle, erosion, hydrology, type of 
landslide activity, causes, presence 
of infrastructures. 

Probabilistic 
Analysis 

Lombardia  
(Italy) 

Geotechnic parameters:unit weight , 
residual  effective cohesion , and 
residual effective angle of internal 
friction.  

Dynamic 
Analysis 

310  

Flows, 
translational 
slides, rotational 
slides, and 
transla  
tional slides-
flows. 

Grid (10x  
10 m) 

Luzi and 
Pergalani 
(1999) 

 
 

Deterministic approaches are based on a set of physical laws or models controlling 

slope stability (Montgomery and Dietrich, 1994; Terlien et al. 1995; Xie et al., 2004). 

Being process-driven models, they may provide significant insight on the causes of 

landslides.  

 
Deterministic models have been successfully used for many years to evaluate 

landslide hazards (Ward et al. 1981, 1982; Nash, 1987; Benda and Zhang 1990; Van 

Westen et al. 1993; Terlien et al., 1995; Terlien 1996; Atkinson and Massari, 1998; 

Fall and Azzam, 2001 and so on). This method is applicable on a large scale over 

small areas (Terlien et al., 1995; Wu and Sidle, 1995) due to the need for exhaustive 

data including geometrical data, shear strength parameters (cohesion and angle of 

internal friction), depth below the terrain surface, soil layer thickness, angle of 

internal friction, slope angle, pore water pressure, etc. The parameters used in these 

models can be determined in the field or in the laboratory. Their limitations include 

the fact that very few geotechnical data can be collected over a large region at 

reasonable cost; an example is provided by the Mulder (1991). 

 
In its simplest form, deterministic approaches consist of an estimation of quantitative 

values of slope stability for each slope, which generally aims to evaluate a safety 

factor. The factor of safety does not take into consideration the variability of 

geotechnical material parameters; hence a high degree of simplification is usually 

necessary for the use of such models (Aleotti and Chowdhury, 1999). The 

recognition of uncertainties in the slope stability has led to the development of 

methods of analysis within a probabilistic framework. The probability of failure is 

usually considered simply as the probability that the factor of safety is less than the 

threshold value (Dai et. al. 2002; Aleotti and Chowdhury, 1999). Three commonly 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4MC718F-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=52e1162e231872fbac018b79278aeaa1#bbib33#bbib33�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4MC718F-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=52e1162e231872fbac018b79278aeaa1#bbib33#bbib33�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4MC718F-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=52e1162e231872fbac018b79278aeaa1#bbib33#bbib33�
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-3YSY1BF-T&_user=691352&_coverDate=12%2F31%2F1999&_rdoc=1&_fmt=full&_orig=search&_cdi=5887&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=6063f856b935e207371e4d887cc37026#bbib125#bbib125�
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used methods of probability are First Order Reliability Method (Luzi et al., 2000; 

Zhou et al., 2003; Uzelli et al. 2006; Düzgün and Karpuz, 2006; Düzgün and 

Özdemir, 2006; Düzgün and Grimstad, 2007; Düzgün, 2008), Point Estimate 

Method, and Monte Carlo Simulation Method (Xie et al., 2004; Gorsevski et al., 

2006). These probability methods are described in Chowdhury (1984), Nguyen and 

Chowdhury (1984, 1985), and Aloetti and Chawroli, (1999) (Table 2.7). Some of the 

studies presented in Table 2.7 (Gorsevski et al., 2006; Lacasse et al., 2006) use a 

combination of deterministic and probabilistic slope stability analyses. 

 

Infinite slope stability models may be employed in one-dimensional (1-D) geometry 

(Aleotti and Chowdhury, 1999; VanWesten et al., 1997; Xie et al., 2001; Zhou et al., 

2003), two-dimensional (2-D) geometry (Janbu, 1973; Sarma, 1973; Gökçeoğlu and 

Aksoy (1996)) or three-dimensional (3-D) geometry (Gens et al., 1988; Leshchinsky 

and Huang, 1992; Hungr, 1994; Xie et al., 2004). As indicated in Table 2.7, some 

researchers have considered pixel (Luzi and Pergalani, 1999; Fall et al., 2006) as the 

mapping unit, and some prefer the slope unit (Xie et al., 2004). Furthermore, 

rotational slides, translational slides, and earth flows are types of slides mostly 

studied for deterministic studies. 

 

 

2.3.1.2 Mapping Unit 
 
Landslide susceptibility mapping requires the preliminary selection of a suitable 

mapping unit (Guzzetti et al., 2005). Selection of the mapping unit largely influences 

all the subsequent analyses and modeling. Mapping unit is the process of partitioning 

the land surface into smaller units such that a unit contains a set of ground conditions 

which differ from the adjacent units across definable boundaries (Hansen, 1984). 

After determination of the mapping unit, each unit is assigned a value for each factor 

that is taken into consideration and each unit is treated as a case or sampling unit in 

the analysis. Various methods have been proposed to partition the landscape 

(Meijerink, 1988; Carrara et al., 1995; Leroi, 1996), which has pros and cons that can 

be enhanced or reduced by choosing the appropriate susceptibility mapping method.  

 
The methods for partitioning the territory can be simply named as (Carrara, 1983; 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4MC718F-1&_user=691352&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=52e1162e231872fbac018b79278aeaa1#bbib33#bbib33�
http://deis158.deis.unibo.it/gis/glossary.htm�
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Meijerink, 1988; Pike, 1988; Carrara et al., 1991; van Westen, 1993; Bonham Carter, 

1994; Chung and Fabbri, 1995; Hearn and Griffiths, 2001; Lee and Min, 2001):  

◊ grid-cells, 

◊ terrain units, 

◊ unique-condition units, 

◊ slope-units, and 

◊ topographic units  

 
A grid (also known as a raster format) consists of a regular orthogonal pattern that 

divides the space into small units called cells (Figure 2.5). The advantage of this 

mapping unit technique is that it can be automatically created with the aid of a GIS 

and the grids are in the matrix format, which is algorithmically simple. The main 

disadvantage of grid-based mapping unit, on the other hand, is that they do not bear 

any physical representation of the land. Besides, the selection of grid-cell size is 

intrinsically subjective in classifying the region. It is important to determine the 

adequate grid size for the scale of the analysis. Each cell is assigned the value of the 

contributing factor at that location; hence the selection of a small cell size may result 

in a cumbersome computational process while the selection of a large cell size may 

result in overgeneralization of each factor, which causes a reduction in information.  

 

 
Figure 2.5. Grid or raster representation of the terrain at Kumluca watershed, Bartın (Turkey) 
 
 
Terrain units are the land-system classification approach. To partition the landscape 
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into geomorphologic units, maps portraying all the different forms and processes are 

used. The main drawback lays in the intrinsic subjectivity of the method. This 

subjectivity occurs due to different perspectives of different experts on the same 

region.  

 
Unique-condition units are constructed by grouping the grid cells into fewer groups 

(Can et al., 2005; Chen and Wang, 2006) by the sequential overlay of different 

categorical maps where all grid cells within one group have the same terrain 

condition, hence each map unit is defined by a unique homogeneous combination of 

the attributes (Bonham-Carter, 1994; Chung et al., 1995) (Figure 2.6). Problems arise 

when linear features, i.e., fault lines or lithological boundaries, are used in the 

analysis (Guzzetti et al., 1999). 

 
Figure 2.6. Unique condition unit of the of the Riomaggiore catchment Northern Apennines (Italy) 
(Ermini et al., 2005) 
 
 
Partition of a region into sub-basins or slope units (Figure 2.7) are obtained from 

high-quality DEM’s and hydrological regions between drainage and divide lines 

(Carrara et al., 1991). In the nature, there exists a clear physical relationship between 

landsliding and the fundamental morphological elements of a hilly or mountainous 

region, namely drainage and divide lines. Therefore, the slope unit-based mapping 

unit has more representative power for the landslide phenomena. Slope units can be 
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further subdivided into topographic units, which are based on the intersection of 

topographical contours and flow lines. Due to the physical relationship between 

topography and surface and sub-surface hydrology, this approach has higher 

potential to predict the surface saturation and the occurrence of topographically 

controlled landslides, such as debris flows (Montgomery and Dietrich, 1994). 

 
Figure 2.7. Slope unit representation of the terrain at Kumluca watershed, Bartın (Turkey)  
 
 

2.3.1.3 Scale 
 
Another important aspect of susceptibility mapping is the scale of investigation. 

Scale determines basically the size of the region to be covered in the analysis. 

Therefore, it is also a critical factor for the resolution of the analysis and an output of 

the study. It is chosen on the basis of three factors: the purpose of the assessment, the 

extent of the studied area and the availability of data. The landslide susceptibility 

mapping can be grouped as large scale (1:5000–1:10 000), medium scale (1:25 000–

1:50 000), and regional scale (1:250 000) (Luzi and Pergalani, 1996). Planning on a 

regional scale requires a regional scale (1:100.000–1:500.000), whereas for more 

specific problems such as the implementation of large engineering structures or the 

identification of priority measures, larger scales are required (medium scale: 1: 

25.000–1: 50.000) (Aleotti and Chowdhury, 1999). Furthermore, the quantification 

of the components of risk assessment may vary depending on different levels 



 

47

of scale (Figure 2.8). For example, it might not be easy to quantify the elements at 

risk and assign vulnerability values to them in regional scale analysis. However, it is 

relatively easier to survey the elements at risk, analyze the vulnerability, or assess the 

hazard quantitatively on local scale. Hence, on more detailed scales, risk maps 

require more detailed data and resolution.   

 

 

Figure 2.8. Data characteristics for different mapping scales 
 

 

Another aspect of scale is the scale difference of input data used in the analysis. As a 

general rule-of-thumb, a regional scale analysis can only be carried out on the scale 

of the data set with the coarsest resolution (Thomas and Michael, 2004). Therefore, 

before the analysis, all data should be upscaled to coarser resolution.  However, if 

only one data layer is in the coarser resolution and the rest are in higher resolution, 

instead of losing information by upscaling, the downscaling process can be applied to 

obtain high-resolution data. The downscaling process is useful to run the analysis and 

gain the results; however, because the original data is on the small scale, the content 

of the data is still dependent on the original data scale. For up scaling or downscaling 

GIS technology can be easily used.  

 
Moreover, whatever the analysis scale, a different work scale determines the 

selection of the susceptibility assessment approach. The most appropriate approaches 

for different work scales are given in Table 2.8. These work scales and selection of 
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the methodology are defined extensively by Huabin et al. (2005), Glade (2005), and 

Dai et al. (2002).  

 
Table 2.8. Comparison of the main susceptibility mapping methods on different mapping scales 
(Huabin et al., 2005; Glade, 2005) 
  

Type of Analysis Technique Scale   

  >1:100000 1:25000-
1:50000 

<1:10000

Heuristic Index Based 
Methods 

+ + - 

Q
ua

lit
at

iv
e 

 Geomorphologic 
Analysis 

- - + 

Statistical Bivariate - + - 
 Multivariate - + Limited 
Neural Network 
Processing 

 - + - 

Geotechnical 
Model-Based 
Methodologies 

Safety Factor - - + 

Q
ua

nt
ita

tiv
e 

 Probability of 
Failure 

- - + 

 
 

2.3.2 The Susceptibility Assessment Methods in the Thesis 
 

Statistical models are one of the most preferred methods among many landslide 

susceptibility assessment methods. As landslide occurrences and influencing factors 

have spatial variations, global models like artificial neural network (ANN) or logistic 

regression (LR) ignore spatial dependence or autocorrelation characteristics of data 

between observations in susceptibility assessment. However, to assess the probability 

of landslide occurrence within a specified period of time and within a given area, it is 

important to understand the spatial correlation between landslide occurrences and 

influencing factors. By including these relations, the predictive ability of the 

developed model increases. In this respect, the techniques of spatial regression (SR) 

and geographically weighted regression (GWR), which consider spatial variability in 

the parameters, were proposed in this thesis study for landslide susceptibility 

assessment to provide better representations of landslide susceptibility.  
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Most of the studies in the literature deal with the application of conventional 

methods, yet there is not a common consensus on the best susceptibility assessment 

method. Hence there is little literature on the comparison of methods related to 

combination methods and analyzing their affects on resultant maps. In addition, there 

are few studies in the literature which assess the performance of models in different 

mapping units. However, the statistical treatment of independent variables changes 

depending on the adopted mapping unit procedure. Hence, the resultant map may 

also change depending on the adopted mapping unit procedure. In the thesis, the 

landslide susceptibility mapping was assessed quantitatively by constructing three 

global models, LR, SR, NN, and a local model, GWR for two different mapping 

units, slope unit-based and grid-based mapping unit (Figure 2.9). 

 
The prediction maps were obtained on a continous scale, where the numerical values 

lie between 0 and 1. In the”implementation part” of the thesis, the prediction maps 

were analyzed visually and on a statistical basis. Yet, for comparison purposes it is 

more suitable to change the susceptibility maps from continuous scale into 

categorical classes. It is not an easy task to categorize continuous data automatically 

as there are no statistical rules yet. Therefore, a classification method was adopted 

for comparison of the prediction maps, which was discussed in detail in the last 

sections of the implementation part.  

 
The validation of prediction results is absolutely the most essential part of risk 

assessment. Without any validation process, the resultant susceptibility maps are 

totally useless and have hardly any scientific significance (Chung and Fabbri, 2003). 

Thus, for validation of the models, two different approaches were used. In the first 

approach, the dataset was partitioned into two subsets by space-partition technique. 

The first subset of data was used for obtaining the prediction maps and the second 

subset was used for validation by performing the relative operating characteristics 

(ROC).  

 
In the second approach, the validation was performed by field works. Most of the 

high hazard slopes were checked in the field for the whole region and the model 

results were compared by these inventories.  
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Figure 2.9. The adopted procedure for landslide susceptibility assessment 
 
 

2.3.2.1 Logistic Regression 
 
Logistic regression (LR) is useful for dichotomous dependent or predictor variables. 

The advantage of logistic regression is that through the addition of an appropriate 

link function to the usual linear regression model, the variables may be either 

continuous or discrete, or any combination of both types (Lee 2005). Using a logistic 

multiple regression model, the relationship between landslide occurrence (Y, 

dependent variable) and landslide influencing factors (X1, X2,…, Xn,, independent 

variable), is established.  Then a mathematical formula of landslide occurrence is 

obtained. The dependent variable (Y) represents the presence or absence of 

landslides. Generally, logistic regression involves fitting the dependent variable 

using an equation in the following form (Bugería and Lorente, 1999): 
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where pi is the probability that the event Y occurs, p(Y=1) , )1/( ii pp −  is the "odds 

ratio"  or likelihood ratio, ln[ )1/( ii pp − ] is the log odds ratio, or "logit" , 0β  is the 

intercept, and nβββ ,..., 21  are coefficients that measure the contribution of 

independent variables (X1, X2,…,Xn), which are landslide influencing factors of the 

variations in Y (landslide occurrence). 

 
The LR procedure offers several methods for stepwise selection of the "best" 

predictors to be included in the model. In this thesis study, a forward stepwise 

procedure was used to introduce the independent variables in the analysis. Forward 

stepwise methods start with a model that does not include any of the predictors. At 

each step, the variables which are determined to be significant are added to the model 

while all the others are withheld. The variables which have a significance level 

higher than 0.05 are left out of the analysis in the last step. As a result, the procedure 

selects only the variables that significantly contribute to the improvement of the 

model. 

 

2.3.2.2 Artificial Neural Networks (ANN) 
 
ANN is an attempt, in the simplest way, to imitate the neural system of the human 

brain. The attractiveness of ANN is due to its performance in learning and adaptivity, 

which allows the system to update its internal structure (Jain et al., 1996). Recently, 

ANN’s have been used for various scientific and engineering applications (Emami et 

al., 1998; Caparrini et al., 1996; Sönmez et al., 2006) and also for landslide 

susceptibility mapping (Lee et al., 2001; Fernandez-Steeger et al., 2002; Ermini et 

al., 2005; Yeşilnacar and Topal, 2005; Neaupane and Achet, 2004; Lee et al., 2001; 

Gomez and Kavzoglu, 2005). In this thesis, the data set was divided into three groups 

as training, testing, and validation data. Back propagation neural network learning 

algorithm (BMNN) was used for assessing the landslide susceptibility. BMNN is 

currently the most widely used algorithm for connectionist learning. Each iteration in 

the back propagation algorithm has two operations: forward activation and backward 

propagation. In the forward operation, after the neuron in the first layer receives 
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its input, it applies the Linear Combiner and the Activation Function to the inputs 

and maps an input vector X = [xl, ..., xn] into an output.  

 
The activation function or, transfer function h (.), determines the relationship 

between inputs and outputs of neurons in a network, which may be in different types. 

Any differentiable nonlinear function can be used as an activation function, but the 

sigmoids activation function, or “S” function, is the most common in the literature 

(Gomez and Kavzoglu, 2005; Sönmez et al., 2006). A backward propagation step 

involves the computation of error to modify the weights (Basheer and Hajmeer, 

2000). The error is computed and propagated backwards starting at the output layer 

in order to update the connection weights to reduce the error. At the end of this 

training procedure, an optimum weight matrix was obtained, which represent the best 

approximation of the process being modeled (Basheer, 2000). A single-layered 

network typically consists of input units fully connected to output units, which is 

only a satisfactory estimator for linear problems, whereas a multi-layered network 

has one or more hidden layers in between (Neaupane and Achet, 2004), where the 

complexity increases by the addition of hidden layers. Villiers and Barnard (1992) 

show no significant statistical differences between one and two hidden layers and 

they indicate that networks with two hidden layers are often more difficult to train 

and are affected more by the initial weight set. Therefore, one hidden layer was 

preferred in the thesis study. The three-layer artificial neural network structure with 3 

layers (input, hidden, and output), which was employed in this thesis study, is shown 

in Figure 2.10.  

 

 
Figure 2.10. Architecture of the ANN used in this thesis 
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There are n neurons in the first layer, where n equals the number of inputs. There are 

one neuron in the output layer, which represents the dependent variables (in this case 

it is the landslide occurrence) (Basheer and Hajmeer, 2000). The compromised 

number of neurons that may be used in the hidden layer is proposed in the literature 

with some heuristics. The heuristics used for determination of number of neurons are 

presented by Sönmez et al. (2006). Depending on Table 2.9, different heuristics are 

presented to calculate the number of hidden neurons.  

 
Table 2.9. Heuristics proposed in the literature 
  

Hidden Neuron Heuristic Reference Learning 
Rate Reference 

)( 0NNi ×  
Masters 
(1994) 
 

0.1–10 Wythoff 
(1993) 

( ) )/(3)(5.02 0
2

000 NNNNNNN iii +−+××+×+  
Paola  
(1994) 
 

1/ d 

McClelland 
and 
Rumelhart 
(1986) 

2/)( 0NNi +  
Ripley  
(1993) 
 

0.3–0.6 
Zupan and 
Gasteiger 
(1993) 

  0.0–1.0 Fu (1995) 

Test Data  
Training 

Set 
Number 

 

20–30%  
Nelson and 
Illingworth 
(1990) 

30 x ni x 
(ni+1) 

Kavzoglu, 
2001 

25% Looney 
(1996) D*0.65 Looney 

(1996) 

20% Swingler 
(1996)   

Initial weights  Momentum 
Coefficient  

-0.30 and +0.30 ASCE 
(2000) 0.4 and 0.9 Wyhthoff 

(1993) 

[-0.1;0.1]  

Paola 
(1994) and 
Staufer and  
Fisher 
(1997) 

0.0 to 1.0 
Hassoun 
(1995) and 
Fu (1995) 

[-0.25;0.25] 

Gallahger 
and Downs 
(1997) and 
Kavzoglu 
(2001) 

μ≈1:0 

Henseler 
(1995) and 
Hertz et al. 
(1991) 

  μ =0.9 and 
η=0.25 

Swingler 
(1996) 

*Ni=Number of input layer, N0=Number of output layer=, D= parent database d= 

total number of nodes in the network, ni=number of input nodes 
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2.3.2.3 Spatial Models 
 
The spatial data, where several attributes are specified for each spatial zone, contain 

autocorrelation. The non-spatial regression models lack the ability to include this 

property in analysis. Consider the linear logistic regression model:  

 

Y = BX + e                          (2) 
 
Where,  

 

Y : Vector of dependent variable, (nx1). 

X : Matrix of the values of p independent variables in each spatial zone, 

(nxp).  

e : Vector of errors with zero mean and constant variance, (nx1). 

B : Regression coefficients to be estimated (px1) 

 

The model given in Eq. 2 does not take the spatial variability of the parameters into 

account. Hence, for a better treatment of spatial data, spatial regression models are 

developed. These spatial models have been widely used in broad scientific 

disciplines, such as analysis of crime, modeling land prices, poverty mapping, 

epidemiology, air pollution and health, natural and environmental sciences, and so on 

(Düzgün and Kemeç, 2008). In this way, the main shortcomings of non-spatial 

regression, which are assumptions of identically and independently distributed (i.i.d.) 

independent variables (Xi’s) and uncorrelated error terms, are tried to be eliminated 

by relaxing the regression method with the allowance of spatial autocorrelation. 

 
Although spatial regression (SR) models take the spatial variability of the parameters 

into account, they are not considered as local models since they are developed for 

modeling the mean of the spatial phenomena. Geographically Weighted Regression 

(GWR) is a relatively simple and effective technique for explaining the local 

characteristics of the spatial phenomena, especially when the phenomena vary over 

the space (Fotheringham et al., 2002). It is one of the most widely used local 

modeling methods, which is implemented in various disciplines such as natural, 

environmental, social and, earth sciences.  
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In the thesis study, the SR and GWR models were developed for assessing landslide 

susceptibility. 

 
SR is a global spatial modeling technique in which spatial autocorrelation among the 

regression parameters are taken into account (Düzgün and Kemec, 2008). Spatial 

autocorrelation or dependence means that observations at location i depend on other 

observations at locations j ≠ i. When there is spatial dependence, neighboring units 

exhibit a high degree of spatial correlation than units located far apart (LeSage, 

1999). If the phenomenon has a spatial nature, incorporating the spatial correlation 

into the model provides better performance, which is reflected by higher R2 values. 

Spatial correlation can be incorporated into the model by modification of the 

regression equation (Eq. 2) using a contiguity matrix (proximity matrix or 

geographic weights matrix), in which the neighborhood information about the spatial 

zones is characterized and used for spatial autocorrelation. There are a large number 

of ways to construct the contiguity matrix. Some alternative ways can be listed as 

follows: sharing a common edge (linear contiguity), sharing a common side (Rook 

contiguity), sharing a common vertex (bishop contiguity), length of shared borders, 

and inter-centroid distance functions. For spatial regression model, the first task is to 

construct a spatial contiguity matrix. In this study, in order to obtain a contiguity 

matrix, a function was developed based on the Delaunay triangularization (Matlab 

7.1, 2008). The input variables are the coordinates of x and y, such as n by 1 vector. 

The Delaunay triangulation is a set of lines connecting each point to its natural 

neighbours (Figure 2.11). The circle circumscribed around a Delaunay triangle has 

its centre at the vertex of a Voronoi polygon. It returns a set of triangles such that no 

data points are contained in any triangles’ circumscribed circle for the data points 

defined by vectors x and y. 
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Figure 2.11. Delaunay triangularization approach 
 
After the creation of the Delaunay triangulation, the sum of corners (ssum) that share 

a common vertex was computed (LeSage, 1999). This sum of corners was used to 

calculate the weight matrixes (Eq. 4-6) based on Eq. 3. Three different spatial weight 

matrixes were created as output. These matrixes are:  

 

wmat = sqrt((1/ssum)');       (3) 

W1=wmat         (4) 

W2= wmat*wmat*A        (5) 

W3= wmat*A*wmat        (6) 

 

Where, A represents the adjacency matrix from Delaunay triangles, which depicts the 

neighbors of each vertexes; ssum is the sum of corners connected to the same vertex; 

wmat is the standardized 1st-order contiguity matrix, computed based on the sum of 

corners connected to the same vertex. 

 
There are basically three spatial regression models depending on the formulation of 

spatial autocorrelation: Simultaneous auto regression (SAR), moving average (MA), 

and conditional spatial regression (CSR) (Anselin 1988; Dubin, 1988; Dubin 1992; 

Anselin, 1995; Fotheringham et al., 1996; Fotheringham, 1997; Pace 1997; Brunsdon 

et al., 1998). In this study, the SAR model for limited dependent variable, which is in 

the form of binary data, was used. The SAR model (Eq. 4-6) is also called auto 

correlated error model as the error term in non-spatial regression model is 
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formulated in such a way that it involves spatial autocorrelation (Bailey, 1994; 

Anselin, 1995; Pace et al, 1998; Fotheringham et al., 2000; Gamerman and Moreira, 

2004). 

 

Y = Xβ + U                                                                                                 (7) 

U = ρWy + ε                                                                                               (8) 

Then  

Y = Xβ + ρWy + ε                                                                                       (9) 

 

Where, 

ε : Vector of errors with zero mean and constant variance σ2 

W: Proximity matrix 

ρ : Interaction parameter or spatial autoregressive coefficient 

β : Parameter to be estimated due to relationship between the variables 

Y : Landslide occurrence 

 

As can be seen in Eq. 9, the SAR model requires prediction of an additional 

parameter of ρ, which accounts for the direction and magnitude of the neighborhood 

effect.  Hence the SAR model is computationally costly as compared to non-spatial 

regression as it requires the estimation of β and ρ. For more information, refer to 

Bailey and Gatrell, (1995) and Fotheringham et al. (2000). For individual 

observation (yi) Eq. 9 takes the following form: 

 

ερ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

j
jiji ywy                                          (10)            

 
Incorporating spatial variation using contiguity improves the fit of the model, raising 

the R2 statistic. The spatial phenomena have potential variability across space. Global 

models have inadequacies in exploring the local variations (Fortheringham et al., 

2000). Geographically Weighted Regression (GWR) allows local parameters to be 

estimated, which are specific to each location. Hence, it helps understanding the 

factors that cause landslide occurrences on a local scale. It arises from the extension 

of non-spatial regression in Eq. 2. The basic mechanism of GWR relies on obtaining 

separate regression equations for each spatial zone, in which a kernel centered on the 
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area is adapted in such a way that neighboring areas are weighted based on a distance 

decay function (Fotheringham et al., 2002). In GWR: 

 

( ) εβ +⊗= 1XY                                                                                                         (11) 

 
Where ⊗  is a multiplication operator serving the multiplication of each element of β 

with the corresponding element of X and 1 is vector of 1s (Kazar et al, 2005). For n 

number of spatial zones with k number of independent variables, β and X have n x 

(k+1) dimensions and hence 1 has the dimension of (k+1) x 1. Then least square 

estimates of βi ( β̂ i) and their variances are: 

 

( ) YWXXWX i
T

i
T

i
1ˆ −

=β                                                                                           (12)  
 

11 )()ˆ( −−= XWXVAR i
T

iβ                                                                                          (13) 
 
Where Wi is n by n weighting matrix whose off-diagonal elements are zero and 

diagonal elements are the geographical weighting (Eq.14). 
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The choice of Wi depends on the selection of the kernel function, which may be in 

the form of fixed (i.e. fixed bandwidth) or adaptive kernels (i.e. varying bandwidths). 

A typical kernel for Wi is given in Eq. (15).   
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where b is referred to as the bandwidth. The weighting of data will decrease 

according to a Gaussian curve as the distance d between i and j increases. 
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2.3.3 Analysis of Triggers 

2.3.3.1 Literature Review on Analysis of Triggers 
 
While susceptibility maps provide zonations of areas with similar instability or 

similar conditions that generate landslides, a true landslide hazard map should offer a 

zonation of areas with similar probabilities of landslides in a given period of time, 

based on quantitative analysis of data (Chaco et al., 2006). Hence, the described 

susceptibility methods suffice to assess the spatial probability but are not adequate to 

solve the problems in evaluating the temporal probability. To produce real hazard 

maps by definition, a hazard map should include the consideration of a time 

dimension (reoccurrence period). A few attempts have been made to establish the 

temporal occurrence of landslides (Hansen, 1984; Keaton et al., 1988; Hutchinson, 

1995; Grunert and Hardenbicker, 1997; Dikau and Schrott, 1999; Lang et al., 1999; 

Coe et al., 2000; Corsini et al., 2000; Barnard et al., 2001; Derbyshire, 2001; 

Cardinali et al, 2002b; Vanacker et al., 2003; Carrasco et al., 2003; Catani et al.  

2005). The time dimension of a landslide may be estimated by the exceedance 

probability of landslide occurrence during an established period (Guzzetti et al., 

2005). The exceedence probability is most commonly obtained through the analysis 

of catalogues of historical landslide events (Morgan et al., 1992; Moon et al., 1992; 

Cruden, 1997; Cardinali et al., 2002b; Catani et al., 2005; Guzzetti et al., 2005).  

 
However, these catalogs, which list the time (or period) of occurrence of a single 

failure or multiple slope failures, are not available for most regions. In such cases, 

there are varieties of methods to quantitatively assess the frequency or probability of 

landslide occurrence from the disparate sets of information (Fell et al., 2005). They 

may be summarized as follows: judgment based on experience (Foster et al., 1998), 

inventories, slope instability ranking systems (Koirala and Watkins, 1988; Flentje 

and Chowdhury, 1999), relation between geomorphology and geology (Hutchinson, 

1988; Fell and Hartford, 1997; Moon et al, 1992; Leroi, 1996; and Soeters and Van 

Westen, 1996), relating a landslide event to a triggering event, e.g. rainfall, 

snowmelt, earthquake, and the like (Fell et al., 1988; Lumb, 1975; Flentje and 

Chowdhury, 1999; Brand et al, 1984 and Premchitt et al., 1994), modeling primary 

variable (Fell et al., 1991; Haneberg, 1991 and Okunushi and Okumura, 1987), and 

probabilistic methods or a combination of methods (Mostyn and Fell, 1997), where 
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most of which are limited by data availability (Corominas et al., 2005; AGS Sub-

Committee, 2000). 

 
Studies in the literature show that the number of landslide occurrences in a given 

time or the frequency of landslides is often derived from the temporal occurrence of 

landslide triggers (e.g. rainfall, earthquake). The statistical analysis of triggering 

mechanism is significant for hazard assessment due to the evaluation of critical 

thresholds above which landslides are triggered and the calculation of the frequency 

with which these thresholds are exceeded (Aleotti and Chowdhury, 1999). 

Landslides triggered by earthquakes may exhibit different mechanisms and 

characteristics. Examples of triggered landslides by earthquakes are presented in e.g. 

Adams (1980), Wieczorek and Jager (1996), Keefer (1999) and Hung (2000).  To 

understand the level of hazard and to evaluate the risk, the return period of 

earthquakes of different magnitudes must be estimated (Aleotti and Chowdhury, 

1999). It may be more difficult to establish a record of seismically-induced landslides 

due to the low return periods of these sparse events. On the other hand, it is easier to 

obtain a record of rainfall induced landslides because rainfall records coupled with 

historical landslide information permit the computation of the temporal probability of 

rainfall induced landslides (Thomas and Micheal, 2004). Hence, rainfall analysis is 

the most frequently adopted approach in forecasting the occurrence of landslide 

events (Crosta, 2004). In the study of Aleotti (2004), Zezere et al. (2004), Carrasco et 

al. (2003) and Remondo et al. (2005b) rainfall induced landslides are investigated.  

 
Generally two types of rainfall thresholds are proposed in the literature, which are 

empirical thresholds (historical, statistical) and physical-based (process based, 

conceptual) thresholds (Corominas, 2000; Aleotti, 2004; Guzetti et al, 2007). 

 
The most widely used empirical thresholds are based on the historical analysis of  the 

relationship between rainfall and landslide occurrence and they depend on studying 

the results of rainfall events that result in slope failures (Caine ,1980; Crozier and 

Glade, 1999; Glade et. al., 2000; Aleotti, 2004; Wieczorek and Glade, 2005, Guzzetti 

et al, 2007) whereas physical-based thresholds are rarely used because they require 

detailed knowledge, which is difficult to be collected over large areas, about the 

spatial information on the hydrological, lithological, morphological, and soil 
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characteristics that control the initiation of landslides  (Montgomery and Dietrich, 

1994; Salvucci and Entekabi, 1994; Wu and Sidle, 1995; Wilson and Wieczorek, 

1995; Crosta, 1998; Terlien, 1998; Iverson, 2000). 

 
Empirical rainfall thresholds are commonly investigated with reference to 

combinations of different rainfall parameters (Glade et al., 2000; Aleotti, 2004; 

Guzetti et al., 2007) such as antecedent rainfall (“pre-event”), cumulative  rainfall 

(‘total’), and rainfall intensity and duration.  

 
The importance of antecedent rainfall may be related to ground water levels and 

moisture properties of soil which causes slope failures (Wieczorek, 1996; Wieczorek 

and Guzetti, 1999; Guzetti et al., 2007). Using antecedent rainfall data in the analysis 

may be problematic because it is difficult to define the period which is affected by 

conditions such as climate, soil and, vegetation. In the literature, different studies use 

different periods ranging from 2-day to 6-month antecedent rainfalls, e.g. Kim et al, 

1991; Pasuto and Silvano, 1998; Glade et al, 2000; Aleotti, 2004; Cardinali et al., 

2006. Cumulative rainfall versus time is another type of threshold that is frequently 

used. Examples of cumulative rainfall use as an indicator of debris flow hazard have 

been reported by Wilson and Wieczorek, 1995; Page et.al. 1993.  

 
Intensity-duration (ID) rainfall thresholds are the most frequently used threshold type 

proposed in the literature (Caine, 1980; Larsen and Simon, 1992; Wieczorek, 1987; 

Casini and Versace, 1988; Cancelli and Nova, 1985). In addition, in the study by 

Guzetti et al., (2007), a summary and comparisons of 52 different intensity-duration 

thresholds were listed. Intensity-duration rainfall threshold curves are proposed for 

shallow landslides and debris flows (i.e. Caine 1980; Wieczorek 1987; Cannon 1988) 

and for mid-sized landslides and mudslides (i.e. Corominas and Moya 1999) in some 

regions (Corominas et. al., 2005). The literature reveals that these thresholds vary as 

local thresholds, regional thresholds, and global thresholds. 

 

ID thresholds have the general form (Eq.16): 

 

I = c +α* Dβ                            (16) 
 

where I is (mean) rainfall intensity, D is rainfall duration, and c≥0,  α and β are 
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parameters.  

 
The objective of this study is to obtain rainfall thresholds for Bartın Kumluca region 

because owing to its geologic, geomorphologic, and climatic settings, it is highly 

prone to the occurrence of rainfall induced landslides. Therefore, a series of 

meteorological events that triggered landslides were studied to define the rainfall 

thresholds.  

 

2.3.3.2 The proposed Approach for the Analysis of Triggers  
 

Landslides may be triggered by short intense storms or by prolonged rainfall events. 

Several studies have attempted to define rainfall thresholds both on empirical and on 

physical bases for the triggering of landslides. Empirical thresholds are defined by 

collecting rainfall data for meteorological landslide events and for events without 

landslides, while physical thresholds are based on numerical models that consider the 

relation between rainfall, pore pressure, and slope stability (Aleotti, 2004). The main 

objective of this thesis study is the identification of the empirical triggering 

thresholds for Kumluca Region. Through the systematic review of newspapers, 

interviews with local witnesses, and the inspection of technical and scientific reports 

and papers, sixteen meteorological events were selected and analyzed. In most of 

these meteorological events, which are known to trigger the slides due to extreme 

rainfall, the rainfall intensities ranged between 20 mm and 94 mm per day. 

Interviews with the local host revealed that most of the slides were triggered by 

prolonged and relatively moderate rainfall events. In this thesis, daily rainfall data 

were analysed for both daily extremes and antecedent rainfalls. In order to explore 

the extremes for daily data, two different models were adopted. The first approach, 

which is proposed in this thesis as an alternative way for extreme rainfall methods, is 

a time series model. The second approach is the graphical gumble approach, which is 

one of the most preferred methods for extreme analysis. Furthermore, for the 

antecedent rainfall analysis two different methods were adopted for the study. The 

first one is the analytical gumble approach and the second one is the adoption of 

intensity–duration relationships for antecedent rainfall events that trigger landslides.  

 

The thresholds obtained for daily and antecedent rainfall data were compared. 
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The Gumble approach applied to the antecedent rainfall was selected for further 

hazard analysis. Three different triggering scenarios for different return periods 

obtained from Gumble approach were used in order to model the hazard. The 

triggering scenarios were combined with conditional probability to obtain an ultimate 

probability of trigger that exceeds a certain threshold for a unique annual hazard. 
 

The motivation for the analysis of the triggering rainfall threshold study was twofold. 

First, the identification of rainfall amounts for daily extremes and for antecedent 

rainfalls which lead to landslides may help mitigate the loss of life and property. 

Second, the motivation was towards developing a quantitative hazard model relating 

rainfall to landslide.  

 

2.3.3.2.1 Time Series Analysis of Rainfall Pattern with ARIMA Model 
Fitting 

 
Time series is a set of observations obtained by measuring a single variable regularly 

over a period of time. The aim of obtaining a time series model is to forecast the 

outliers.  

  
ARIMA models provide more sophisticated methods for modeling trend and 

seasonal components and it is the most generally used models in forecasting. There 

are three basic components in an ARIMA model: autoregression (AR), differencing 

or integration (I), and moving-average (MA). An ARIMA model is typically 

expressed as: ARIMA(p,d,q) where p is the order of autoregression, d is the order of 

differencing (or integration), and q is the order of moving-average involved. These 

components are used to explain significant correlations found in the autocorrelation 

(ACF) and partial autocorrelation (PACF) plots to handle trends. 

 
In an autoregressive (AR) process, each value in a series is a linear function of the 

preceding value or values. In a first-order autoregressive process, only the single 

preceding value is used. The assumption is that the time series to be modeled should 

be stationary. The differencing or integration component of an ARIMA model tries, 

through differencing, to make a series stationary. A stationary series has a constant 

mean and a constant variance over time (Boverman and O’Connell, 1993). The 
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moving-average (MA) component of an ARIMA model tries to predict future values 

of the series based on deviations from the series mean observed for previous values. 

In practical terms, MA processes are more useful for modeling short-term 

fluctuations, while AR processes are more useful for modeling longer-term effects.  

 
In the thesis study, the autocorrelation function (ACF) and partial autocorrelation 

function (PACF) were plotted and the autocorrelation values were examined to 

determine the decision levels. After the identification of likely models, the ARIMA 

procedure was applied. In the ARIMA procedure, different combinations of AR and 

MA levels were evaluated to get the best results. After determination of the suitable 

model, it was run to predict the outliers. 

 
 

2.3.3.2.2 Critical Rainfall Analysis with Gumbel Approach 
 
For extreme value analysis, several alternative distributions are suggested to be used 

most often in hydrology as Normal (Gaussian) distribution, Log-Normal distribution, 

Gumbel (Type I Extreme Value distribution), and Pearson Type III (Gamma) 

distribution. Gumbel is one commonly preferred distribution type for extreme value 

analyses.  

 
Gumbel extreme value diagram is used to plot data for probability distribution. The 

plotting position of probability values are computed depending on Weibull definition 

given by the following equation:  
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Where n is the number of years of recording and m is the rank of the event (smaller 

to larger) (Usul, 2005). The coefficient of the correlation was computed with the 

below formulation of Eq.18. 
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where; 
 
y = observed data 

=y  mean of the rainfall data 
ys = simulated data 
 
The Gumbel theoretical distribution considers the distribution of the largest or the 

smallest value observed in repeated samples. In this extreme distribution, the 

probability (p) of the occurrence of a magnitude equal to or greater than any value of 

the observations (x) and the theory of extremes is applied by using the Equation: 

 
ye
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where y= reduced variate and computed with the equation below as:  

y=a(xi-x0)                                  (20) 

 

where a=dispersion parameter (a scale parameter), x0 is the location parameter of the 

distribution. 
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Where x  and xσ  is the mean and standard deviation of the observations found with 
equations as follows: 
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2.3.3.2.3 Intensity Duration Curves 
 
Critical pairs of rainfall amount-duration were defined as proposed by D’Ecclesiis et 

al. (1991), and by referring to the applied studies of Zezere et al. (2004) and Marques 

et al. (2007), the critical pair is determined depending on the combination of 

cumulative rainfall amounts and the corresponding return periods where the extreme 

combination is decided with the higher return period. The applied assumption is not 

physically based; however, it provides discrimination between rainfall periods 

characterized by landslide activity and rainfall periods. After the determination of 

higher return period for each event, the corresponding antecedent day is determined 

to compute the intensity with the Eq. 25: 

 
I= Pr/X                     (25) 

 

where; 

I= Intensity 

Pr= Absolute antecedent precipitation for the day with higher return period, 

X=Antecedent day of the higher return period 

 

2.3.4 Hazard Assessment 
 

2.3.4.1 Literature Review of Hazard Assessment 
 

In regional scale analysis, hazard maps can be obtained by combining the 

susceptibility map and triggering factors. There is yet not a wide range of studies on 

integration of these parameters.Table 2.10 lists different definitions of hazard for 

landslides and also indicates the integration of parameters to obtain hazard.  

 
Guzzetti et al. (2005) and Cardinali et al. (2002a) study the historical information on 

past landslide events to obtain a quantitative estimate of landslide hazard. The 

definition of landslide hazard by Guzzetti et al. (2005) incorporates the concepts of 

location and time, in addition to the size of landslides. Poisson model is adopted for 

the temporal occurrence of landslides as shown in Table 2.10 by considering the 

landslides as independent random point-events in time. As an alternative to the 
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Poisson model (Crovelli, 2000), binomial model can be adopted (Coe et al., 2000). 

 
Due to the lack of data, Carrasco et al. (2003) obtain the temporal probability by 

statistical analysis of precipitation (Table 2.10). The probability map of occurrence 

of the precipitation conditions is then combined with landslide susceptibility map to 

generate the hazard map. The hazard map is made by overlaying the reclassified 

maps (susceptibility and probability). Cardinali et al. (2002b) assess landslide hazard 

for Umbria, in Central Italy, depending on the frequency of landslide movements (F) 

and the landslide’s intensity (I). The ascertained frequency of occurrence of a single 

landslide or multiple landslides is based on the number of events recognized during 

the observation period. The landslide intensity (I) is considered as a measure of the 

destructiveness of a landslide, which is defined as a function of landslide volume (v) 

and of landslide expected velocity (s). Likewise, Corominas et al., (2003) determine 

the landslide magnitude and frequency in susceptible areas in order to produce a 

hazard map.  

 
Table 2.10. The existing hazard mapping approach in the literature 
 

Mathematical Model Definition Source 

HL = PAL x PN x S 
 
PN = ( e-λt λtn)/n! 

HL : landslide hazard 
PAL: conditional probability of 
landslide 
size, 
PN : landslide occurrence in an 
established period t, 
S: landslide spatial occurrence, 
λ: the estimated average rate of 
occurrence of landslides, which 
corresponds to 1 /µ, 
µ : the future mean recurrence interval  

Guzzetti et al., (2005) 
(southern 
Lombardy region, in 
northern Italy) 

H = f (F, I ) 
I = f (v, s). 

H: Landslide hazard 
F : the frequency of landslide 
Movements 
I : the landslide’s intensity 

Cardinali et al, (2002b) 
(Umbria, Central Italy) 
 

H(N) = 1 − (1 − 1/T)N 
H(N : )absolute hazard 
N : a given time span  
T: Return time (years) 

Catani et al., (2005) 
(Arno River basin 
(Italy) 
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class y 

Zezere et al, 2004 
(Lisbon 
(Portugal) 
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Table 2.10. The existing hazard mapping approch in the literature (continued) 

Mathematical Model Definition Source 

H= landslide susceptible zones, landslide 
magnitude and frequency.  

Coromias et al., 
(2003)  
(Principality of 
Andorra) 

H = M x P 

H= Hazard  
M= a description of the 
magnitude  
P= probability of 
occurrence of the 
landslide(s) 

Fell (1994) 
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Hazard = combination of probability map of 
occurrence of the precipitation and landslide 
susceptibility map 

PV: the average 
precipitation at a desired 
location;  
HV: the average 
altitude of the Valley  
 Hsi:the altitude of the 
desired locations; 
a: the intersection value 
(constant value, that 
depends on the quantity of 
precipitation); 
Psi:  is the precipitation 
value used to calculate the 
series; and 
n is the number of rain 
gauges. 

Carrasco et al., 
(2003) (Jerte 
Valley (Spain)) 

 

The frequency of landslides has been obtained from the temporal distribution of 

rainfall events, and the size of the mobilized mass along with the propagation 

velocity provides an estimation of the landslide magnitude. As a result, the degree of 

hazard is obtained from the frequency and magnitude of the landslide events based 

on hazard matrix.  

 

The temporal prediction is obtained by Catani et al., (2005) through the combination 

of susceptibility values with information on the state of activity for mapped 

landslides. The selected recurrence times are transformed into probability by the 

computation of absolute hazard H (N) in a given time span N using the binomial 

distribution. 

 

2.3.4.2 Obtaining Hazard Maps from Susceptibility and Trigger 
Analysis 

 
The spatial and temporal probability should be included in order to be able to obtain 

hazard maps. Therefore, a procedure was followed, in which the hazard (H) was 
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calculated by multiplication of two probabilities. 

 

H=Pf *Pt                   (26) 

 

where:  

Pt is the probability of trigger that exceeds a certain threshold 

Pf  is the probability of failure. The Pf  can be formulated as (Eq. 27): 

 

Pf=Ps*(Pl|Pt)                    (27) 

 

where;  

Ps is the spatial probability  

(Pl|Pt) is the conditional probability of having a landslide given that rainfall triggers 

exceed a certain threshold value for a given time period.  

 

For the computation of (Pl|Pt), a methodology was also developed. In this approach, 

the logistic regression was computed for modeling the landslide occurrence and 

rainfall values higher than the critical rainfall value. Then appropriate hazard 

estimate for the time t for risk analysis takes the following form of joint probability: 

 
H= Pt*(Pl|Pt)*Ps                    (28)  
 
 

2.3.5 Consequence Analysis 

2.3.5.1 Literature Review of Consequence Analysis 
 
In quantitative terms, risk is the product of consequence and hazard (Hungr, 2004). 

The product of the value of an element at risk and its vulnerability is referred to as 

the consequence of the hazard. Bell and Glade (2004) include the probability of 

temporal and spatial impact, as well as the probability of seasonal occurrence, in 

consequence definition in addition to vulnerability as presented in  

 
C = Ps xPt x Vp xVpe x Pso;                (29)  
 
 
where P is the probability and refers to space (s) or time (t) values and V is the 
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vulnerability of buildings (p) and people (pe), while Pso is the probability of seasonal 

occurrence. 

 
The characterization of consequence scenarios might be relatively easier for specific 

slope situations than regional scale analysis. Because it is more complicated to 

identify and quantify the elements at risk and the vulnerability of element at risk in 

regional scale analysis. Hence the definition of elements at risk depends on data 

requirements and corresponds to the scale of investigation (Bell and Glade, 2004).  

 

2.3.5.1.1 Literature Review of Elements at Risk 
 
The elements at risk can be classified as (AGS, 2000; Düzgün and Lacasse, 2005):  
 

o Property assets, which may be subdivided into portions relative to the hazard, 
such as furniture, equipment, personnel property, vehicles, machines, cars, 
trains etc. 

 
o Populations, who either live, work, or spend some time in the area affected by 

landsliding and who have possibility to be affected by the landslide(s) that 
may cause losses, in the form of basically fatalities and injuries. 

 
o Structural elements, such as buildings, roads, railway lines, lifeline networks, 

and communication facilities.   
o Services, such as water supply or drainage or electricity supply. 

 
o Natural environment involves flora, fauna, landscape, and environmental 

quality, for which it is usually difficult to predict losses since they are mostly 
intangible. 

 
o  

The element of population consists of individuals or groups of people who have 

possibility to be affected by landslides that may cause losses in the form of fatalities 

and/or injuries. Structural elements comprise buildings, roads, railway lines, and 

lifeline networks. It is relatively easier to express loss in monetary values for damage 

in structural elements. Property assets include the content of structural elements, such 

as furniture, equipment, personnel property, domestic animals, vehicles, machines, 

cars, trains, etc. Activities refer to any activity interrupted by landslide events, such 

as commercial, industrial, agricultural activities, etc. Natural environment involves 

flora, fauna, landscape, and environmental quality, for which it is usually difficult to 

predict losses since they are mostly intangible. Urban environment is in fact 
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composed of a combination of some or all of the elements mentioned above, as well 

as other urban elements such as monuments, recreation areas, historical buildings, 

and ancient ruins, etc. (Lacasse et al., 2006).  

 
Among these classes, the greatest emphasis is given to buildings, population, and 

infrastructure. Data collection techniques for a rapid inventory of elements at risk 

generally use high-resolution images and result in the generation of multipurpose 

elements at risk databases. Each of the elements at risk has its own characteristics, 

which can be spatial (the location in relation to the hazard), temporal (such as the 

population, which will differ in time at a certain location), and thematic 

characteristics (such as the material type of buildings or the age distribution of the 

population). The cost of different types of structures can be obtained and represented 

in maps (Remondo et al., 2005a). 

 

2.3.5.1.2 Literature Review of Vulnerability Assessment 
 
Vulnerability is another fundamental component in the evaluation of landslide risk 

(Leone et al., 1996). Vulnerability is defined as the level of potential damage, or 

degree of loss, of a given element or set of elements within the area affected by a 

hazard (Fell, 1994). It is expressed on a scale of 0 (no loss) to 1 (total loss) (Fell, 

1994; Leone et al., 1996; Wong et al., 1997). The understanding of the interaction 

between a given landslide and the affected elements is fundamental for vulnerability 

assessment (Dai et al., 2002).  

 

The assessments of vulnerability for landslides in the literature are usually qualitative 

(Rauthela and Lakhera, 2000) and mostly depend on historical records (Dai et al., 

2002; Glade, 2003). For an effective use of QRA in landslides, generalized 

quantitative models for vulnerability assessment are essential. Reviews of landslide 

vulnerability are made by Glade (2003) and Lee and Jones (2004). 

 
Vulnerability assessment is much more complex than finding the cost of different 

types of structures, because vulnerability depends not only on the type of element but 

also on the type and magnitude of the process (Remondo et al., 2005a).  

The major factors would be: 
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(i) run-out distance; (Finlay, 1996). 

(ii) The intensity, the volume, and velocity of sliding; 

(iii) The type of landslide mechanism (rock fall, debris flow, slide, etc);  

(iiii) the relative location of the vulnerable element in relation to the landslide 

trajectory or to the position inside the landslide affected area (Cascini et al. 2005). 

 
In the World Vulnerability Report by Zeneb (2003), about 50 different indicators of 

vulnerability are shown. Thus, vulnerability is complex coactions between natural 

exposure, physical exposure, social exposure, economic exposure, and political 

exposure (Taubenböck et al., 2006).  

 
Several procedures are described in the literature for the assessment of vulnerability, 

among others, Mejia-Navarro et al. (1994), Fell (1994), Leone et al. (1996), Leroi 

(1996), Glade (2003), Uzelli et al. (2006). 

 

Fell (1994) proposed three different vulnerabilities of the elements of the territory 

(Chaco et al., 2006). Fell (1994) followed Morgan et al. (1992) to introduce the 

vulnerability equation as: 

 
V =V(S) +V(T) + V(L)                 (29) 

 

V(S) = The spatial vulnerability, which means that an element will be affected by the 

landslide given that the landslide occurs, and therefore it represents the vulnerability 

derived from the spatial position of the element at risk. 

V(T) = The temporal vulnerability, which expresses a likelihood of the temporal 

impact, which takes into account temporal changes of the element at risk. A house, 

for instance, may or may not be occupied, depending on the time of impact. 

V(L) = The life vulnerability, which expresses the likelihood of an individual 

occupant’s loss of life  in the impacted element, or the proportion of the value of the 

impacted element which is lost (Chaco et al., 2006). 

 
Romendo et al. 2005 calculates the vulnerability coefficient for each element (or per 

unit area and/or length) as: 

 
V=Damage / Cost                    (30)  
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Vulnerability (0–1) thus obtained expresses the degree of potential monetary loss 

with respect to the total value of the element.  

 
Düzgün and Lacasse (2005) proposed a 3-dimensional conceptual framework for the 

assessment of vulnerability. The magnitude (M) of a landslide is the first dimension 

while scale (S) and elements at risk (E) are the other dimensions (Figure 2.12).  

 

 
 
Figure 2.12. Conceptual 3-D vulnerability framework (Düzgün and Lacasse, 2005). 
 
 
In this approach, the magnitude of a landslide defined by the volume, velocity, depth, 

run-out and areal extent (Ojeda-Mocayo et al. 2004, Lee and Jones 2004) has an 

important effect on the vulnerability value of elements at risk. Scale (S) refers to the 

scale of investigation. It is relatively easier to assess the vulnerability of specific 

slopes than the assessment on a regional scale analysis. Elements at risk (E), the third 

dimension, reflect the specific risk, which is assessed from attributes such as 

property, population, environment, and economy.  

 
The vulnerability of lives and property to land sliding may be different. For instance, 

a house may have a similar high vulnerability to both slow-moving and rapid 

landslide, while a person living in it may have a low vulnerability to slow- moving 

landslide (Fell, 1994; Fell and Hartford,1997).  
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The vulnerability of a person and/or property to landsliding may be assessed 

systematically by expert judgment and by the statistics of detailed historical records. 

As an example of the statistics of historical records, the vulnerability matrix method 

proposed by Leone et al., 1996 can be given. In this method, the vulnerability of 

elements at risk depends on the characteristics of the landslide and the technical 

resistance of the building, such as the type, nature, age, etc (Dai et al., 2002). 

Following Varnes’ (1984) definition of vulnerability, Prina et al. (2004) took account 

of four factors: physical, social, environmental, and economical vulnerability.  

 
Vulnerability values present several uncertainties due to the empirical nature of the 

assessment and the completeness, quality and the reliability of brute data on 

damages. Moreover, many elements which are not present today will exits and be 

subject to risk in the future. The uncertainties affect the quality of the final risk 

estimates obtained, as the better the quality of the available data is, the more reliable 

the results of the assessments become (Remondo et al., 2005a).  

 

2.3.5.2 The Adopted Methodology for Consequence Analysis 
 
The thesis study adopted the 3D procedure of Düzgün and Lacasse (2005) for 

consequence analysis, which involves scale, elements at risk and magnitude of the 

devastating event. Depending on this procedure, the consequence may vary at 

different spatial and temporal dimensions (Figure 2.13). The identification of spatial 

impact P(S|H) requires the estimation of landslide run-out distances (Finlay et al., 

1999; Bertolo and Wieczorek, 2005) which is governed by the volume, velocity and 

topography of the region (Düzgün, 2008). It may be easier to estimate the parameters 

for a local slope; however, the estimation of these parameters is not an easy task for 

multiple landslide locations on a regional scale. Hence simplifying the hypothesis is 

mostly accepted for spatial impact in regional studies. For local scale analysis, the 

spatial probability may be estimated by simulating the run-out. In the thesis study, a 

method was proposed to obtain the spatial probability. In this approach the simulated 

landslide velocity was associated by the spatial distribution of the element at risk 

map. This approach was logical because the velocity depends on the topography of 

the region. Hence, spatial probability increases depending on the velocity level on 

which the element at risk is located.   
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Figure 2.13 The adopted conceptual 3-D vulnerability framework (Adopted from Düzgün and 
Lacasse, 2005) 
 

 

The temporal impact should also be considered in the consequence analysis of 

elements at risk. Because the result damage may vary depending on the temporal 

occurrence of landslide (a slide at midnight or at low season time can have 

enormously worse consequences compared to slides in day time or at high season 

time). The vulnerability of stable elements at risk, such as buildings, land-use, roads, 

etc. does not vary with time. They are always exposed to threats for all time in all 

day or all year. Conversely, it is more difficult to estimate the vulnerability for 

dynamic elements at risk, such as cars, human etc. which exist at run-outs. In the 

thesis study, in both the local and regional scale analysis, the temporal impact was 

considered for the residents living in houses. In this context, for regional scale 

analysis, day and night were considered for occupancy of houses. On the other hand, 

on local scale it was possible to focus on a more detailed survey to obtain 

information about occupancy of buildings by people at different times. Hence, in 

local scale analysis the vulnerability of human was evaluated for day time, night 

time, high season time, and low season time.  
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2.3.5.2.1 The Adopted Methodology for Element at Risk 
 
The procedure adopted to obtain the elements at risk varies for local and regional 

scale analysis. It is difficult to predict run-outs for many landslides, therefore 

obtaining the elements at risk and quantifying vulnerabilities in large regions is 

generally a challenging issue. In this thesis study, in large regions the elements at 

risk were obtained by overlaying the hazard maps with land cover maps and the 

extracted elements were classified into different categories in order to differentiate 

the exposure of different types. In addition, the population data was derived from 

existing census data. The number of inhabitants were then estimated per house by 

using the population density of Kumluca settlement. 

 

For a single slope, it is easier to focus on a more detailed survey of elements at risk. 

In addition, the parameters required for the estimation of run-out can be obtained by 

field surveys. In this thesis study, a high-resolution image was used to extract the 

elements at risk. The elements were detected by the algorithm developed for risk 

analysis. The proposed method consists of mainly four steps: first, masking 

vegetation and shadow areas and obtaining man-made segments, then main road 

detection, and then filtering thin and long artifacts by Principle Component Analysis 

(PCA) and eliminating small segments by morphological operations, and finally 

classifying the result image for building detection, which is masked by vegetation, 

shadow and road features. For risk to life analysis the number of inhabitants per 

house was obtained through field surveys by interviews.  

 

As can be presented in the adopted conceptual 3D frame work (Figure 2.13), the 

buildings, roads, land-use infrastructure and residents living in buildings were 

considered for regional scale, on the other hand, the buildings, main roads and 

residents in each building were emphasized for the local scale for consequence 

analysis. 
 

2.3.5.2.2 The Adopted Methodology for Vulnerability 
 

The adopted vulnerability assessment framework has three dimensions, which 

involve Magnitude (M), Elements at risk (EAR) and Scale (S) (Figure 2.13). The 
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magnitude of landslide can be assessed by parameters such as: Volume (x1), Velocity 

(x2), Depth (x3), Run-out (x4), and Areal extent (x5). In the thesis study the 

magnitude can not be computed due to insufficient information for parameters. 

Hence it is considered as 1, which means that if a landslide occurs, it may wreak a 

total destruction.  

 

As indicated previously, the methodology was adopted on two different scales: local 

and regional, and for each scale, different procedures are adopted for determination 

of the vulnerability of elements at risk as described. 

 

For local scale analysis, the vulnerability was estimated by adopting a “damage 

probability matrix“approach (Düzgün, 2008). This approach is used in structural 

earthquake engineering for evaluating the damage for a given building stock with 

given earthquake intensity (Ko Ko et al., 2004). In this approach, instead of building 

blocks, the elements at risk on local scale were considered separately by damage 

probability matrix. 

 

Conversely, because of lower resolution, it is not an easy task to identify different 

vulnerability values for different types of element at risk on regional scale. Thus, a 

generalized assumption was applied and the vulnerability indicator was set to “1” for 

all EAR on this scale.  

 

2.3.6 Risk Analysis 

2.3.6.1 Literature Review of Risk Analysis 
 
Once hazard, value of elements at risk, and vulnerability of elements are obtained, 

they can be integrated into a risk map (Remondo et al., 2005a). Risk assessment is 

generally analyzed qualitatively or quantitatively. The assessment of risk depends 

mostly on both the desired accuracy of the outcome and the nature of the problem, 

and should be compatible with the quality and quantity of the available data (Dai et 

al., 2002).  

 

In qualitative risk assessment, the components of the risk, which are basically hazard, 
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elements at risk, and vulnerability, are expressed verbally and the final result is in 

terms of ranked or verbal risk levels (IUGS, 1997; Düzgün and Lacasse, 2005). 

Therefore, qualitative risk maps are based on the experience of experts mostly. In 

quantitative risk maps, the levels of risk are described in numerical terms, where the 

prediction results are expressed with probability functions on a continuous scale 

(Chung and Fabbri, 2003). The risk components are assessed quantitatively, which 

allows the decision makers to perform an adequate economic cost-benefit analysis 

for proper land-use planning by quantitatively estimated risk maps. There are a 

number of risk assessment methods proposed in the literature; however, few of them 

are published and most of them are not spatially based (Castellanos, 2008). Table 

2.11 presents some risk assessment methods defined by different publications.  

 
Table 2.11. Landslide risk assessment methods 
 

Method Risk formulation Definition References 

Qualitative  R(T,I)=D(I)×H(T,I). D(I)= potential worth of losses, at a given 
intensity 

Catani et 
al., 2005 
Arno River 
(Central 
Italy) 

Qualitative  Rs = f (H, V ). 
Rs = specific landslide risk , 
H= landslide hazard,  
V= vulnerability 

Cardinali et 
al. 2002b 
 Umbria, 
(Italy) 

Review 
Rs = H x V  
Rt = Rs x E = (H x 
V) x E 

Rs: Specific risk, H: Hazard, V: Vulnerability  
Rt: Total risk, E: Elements at risk 

Varnes 
(1984) 

Quantitative Risk = Hazard x 
Consequences Consequences: Potential worth of loss Einstein 

(1988) 

Quantitative Rt = Σ(Rs x E) = Σ(H 
x V x E) 

Rt: Total risk, Rs: Specific risk, V: 
Vulnerability, E: Elements at risk 

Fell (1994), 
Fell et al. 
2005 

Quantitative 

R(prop) = P(L) × 
P(T:L) × P(S:T) × 
V(prop:S) × E 
P(LOL) = P(L) × 
P(T:L) × P(S:T) × 
V(D:T) 

P(L) = the frequency of the rockfall events of a 
given magnitude; 
P(T:L) = the probability of the rockfall 
reaching the element at risk; 
P(S:T)= the temporal spatial probability of the 
element at risk; 
V(prop:S)= the vulnerability of the element at 
risk;  
E= the element at risk  
V(D:T) = the vulnerability of a person with 
respect to the rockfall event 

 
Corominas 
et al., 2005 

Quantitative 
R(DI) = P(H) x 
P(S\H) x P(T\S) x 
V(L\T) 

R(DI): Individual risk, P(H): Hazard, P(S\H): 
Probability of spatial impact, P (T\S): 
Probability of temporal impact, P (L\T): 
Probability of loss of life for an individual 

Morgan et 
al. (1992) 

Quantitative 
 
R(PD) = P(H) x 
P(S\H) x V(P\S) x E 

R (PD): Specific risk (property), P(H): Hazard, 
P (S\H): Probability that landslide impacts the 
property, V(P\S): Vulnerability, E: Value of 
property 

Dai et al. 
(2002) 
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Table 2.11. Landslide risk assessment methods (Continued) 
 

Method Risk formulation Definition References 

Overview 
and 
discussion 

R=P x C 

R= one event with potential 
consequences risk  
P = the probability that this event 
will occur  
C = the consequences given the 
event occurs; 

Faber and 
Stewart  
(2003) 

Quantitative R = H x C x E 

R= The landslide risk   
H= the probability of 
the hazardous event or natural hazard and its 
C= consequences on the elements at risk E. 

Bell and 
Glade 
(2004) 
Bildudalur 
(Iceland) 

Quantitative R = ( )( )∑ ∑ VAH  

R = Risk (€/year); 
H = Hazard (0–1/year) 
V = Physical vulnerability of a particular type 
of element at risk (0 - 1)  
A = Amount or cost of the particular elements 
at risk (€). 
(VA) = Consequences for all elements at risk 

Leroi (1996) 
and Lee and 
Jones (2004) 

Quantitative RT = Rs i+ Rs b +Rs l 

RT: Total risk;  
Rs i: Specific risk for linear infrastructures;  
Rs b: Specific risk for buildings;  
Rs l: Specific risk for lands. 

Remondo et 
al. (2005a), 
Remondo et 
al. (2008) 
 Bajo Deba 
area 
(northern 
Spain) 

Review 

Specific risk of a 
building: 
Rs= P(SPV|TM) x P(S 
TV | TM ) x P(R X | 
SVT ) x P(D B | SVT ) 
x CB   

  

     
Specific risk of 
persons in building: 
Rs= P(SPV|TM) x P(S 
TV | TM ) x P(R X | 
SVT ) x P(D B | SVT ) 
x P(IP | DB ) x P(PH | 
SVT ) x NP   

P(SPV|TM)= Spatial probability.   
P(S TV | TM ) = Temporal probability.  
P(RX | SVT )= Conditional probability that a 
runout zone with distance X to the building will 
be covered. 
P(D B | SVT ) = Conditional probability of 
damage to the building of a particular 
construction type. 
CB= Replacement costs of the particular 
building. 
 P(IP | DB ) = Conditional probability of injuries 
or death for a person present in the house. 
P(PH | SVT ) = Conditional probability of a 
person being present in the building. 
NP = Number of persons in the building. 

van Westen 
et al. (2005) 

 
 
The risk equation is similar in terms of the combination of hazard and consequences, 

but they differ in terms of some abbreviations and details in certain formulations. 

One of the most widely used definitions of risk, which is presented by Varnes 

(1984), Fell (1994), and Fell et al. (2005), introduces a distinction between specific 

(RS) and total risk (Rt). The specific risk means “the expected degree of loss due to a 

particular phenomenon”. It may be expressed by the product of Hazard (H) times 

Vulnerability (V). The specific risk would result in a single value of potential losses 
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for a given probability (van Western et al., 2006). The total risk means ‘‘the expected 

number of lives lost, persons injured, damage to property and disruption of economic 

activity due to a particular damaging phenomenon for a given area and reference 

period’’.It can be clearly seen in the definitions of specific and total risk that in 

specific risk, only one single element is considered during the calculation of the risk, 

but because of the variability of the environment, for regional scale analysis, a 

variety of elements can be under risk. For that reason, all these different elements at 

risk should be evaluated for the calculation of the risk (Lee and Jones 2004). 

 

In fact, variable types of elements at risk lead to decomposition of total landslide risk 

into specific risk. For that reason, based on Remondo et al. (2005a) and Remondo et 

al. (2008),  landslide risk mapping should be carried out separately for each type of 

element (Specific Risk) and then integrated into a total risk map (RT) by adding all 

the specific risk maps, as shown in Table 2.11 (Remondo et al. 2005a and Remondo 

et al. 2008). 

 

Depending on van Western et al. (2005), the estimation of risk turns out to be very 

complicated when one tries to calculate specific risk for buildings or persons in 

buildings. The formula should take into account a lot of aspects, which are difficult 

to evaluate (Figure 2.14). 

 

 

Figure 2.14. Example of possible calculation methods for specific risk to buildings and persons in 

buildings (van Westen et al., 2005) 

 
In the literature survey, some of the publications define risk as the product of hazard 
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and vulnerability (Table 2.11). In these studies vulnerability is defined as 

consequences (Varnes, 1984; Cardinali et al. 2002b; Morgan et al. 1992; Leroi, 1996 

and Lee and Jones, 2004). However, Einstein (1988), Faber and Stewart (2003), and 

Bell and Glade (2004) undertook a parameter of consequences (C) to define the risk. 

In these studies, landslide risk (R) is defined as a function of the probability of 

hazardous events or natural hazard (H) and its consequences (C) on elements at risk 

(E). Catani et al. (2005) define the potential worth of losses (D), which is the 

combination of vulnerability and exposure at a given intensity (D(I)=V(I)×E) (Table 

2.11). The exposure was estimated on the basis of presumed assets and income 

values of every single object E.  

 
In terms of conditional probability, the probability of spatial and temporal impact is 

also considered in the risk analysis (Morgan et al.,1992; Dai et al., 2002 and 

Corominas et al., 2005). Some researchers considered the product of P (S\H) x P 

(T\S) x V (L\T) in Morgan et al. (1992) or P (S\H) x V (P\S) x E in Dai et al. (2002) 

as ‘‘consequence’’ (e.g. Wong et al., 1997) or the product of P(H) x P(S\H) as 

‘‘hazard’’ (e.g. Leroueil and Locat, 1998). 
 
Although the total risk is defined by the sum of specific risk, in fact it is difficult to 

evaluate this sum, since the unit of expressing each specific risk is not identical. For 

example, individual risk has the unit of loss of life/year, while annual property loss 

has the unit of loss of property/year, in which it is complex and even debatable to 

convert loss of life into a monetary value (Lacasse et al., 2006). 

 

2.3.6.2 Adopted Methodology for Risk Analysis 
 
The adopted risk procedure involves computation of risk for each element at risk 

separately. Then all specific risks were added to obtain the total risk. The procedure 

followed two steps, which involve the creation of risk maps for property and life. For 

regional and local scale risk map, the procedure follows: 

 

The annual loss of property value, R(LOP) and the loss of life probability R(LOL) 

were calculated by the adapted procedure from Dai et al. (2002), which involves 

multiplication of hazard with the possible consequences as follows: 
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CHPLOPR ∗= )()(                   (31)           
 
With R (LOP) is the risk (annual loss of property value); P(H) is the annual 

probability of landslide event; C is the consequence, and in this study it is considered 

based on Wong et al. (1997); 

 

Where; 
 
C= P(S|H) x WOL                  (32) 
          
 
With P(S|H) is the probability of spatial impact (i.e. of landslide impacting upon the 

property); WOL is the worth of loss and product of vulnerability and exposure, 

which is the value of elements at risk adopted from Catani et al.(2005). 

 

Where; 

 
WOL=V(P|S)xEAR                 (33)        
 

With V(P|S) is the vulnerability of the property (proportion of property value lost); 

EAR is the element at risk (e.g. the value or net present value of the property). 

Hence; 
 
R(LOP) = P(H)x P(S|H)x V(P|S)xEAR              (34)        
  
The annual probability that a person may lose his/her life, R(LOL) is calculated from 
 

R(LOL) = ∑
=

2

1
Epe x H)|P(SP(H)x 

i
             (35) 

 
C= P(S|H) x Epe                                 (36) 
 
where R(LOL) is the risk (annual probability of loss of life of an individual); P(H) is 

the annual probability of landslide event; P(S|H) is the probability of spatial impact 

given the event; and Epe is the number of people in each building. 

 
Final risk values are highly dependent on the process of each component which 

involves landslide susceptibility mapping, hazard mapping, and consequence 

mapping.  
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The result of the risk maps may vary distinctively depending on the respective 

susceptibility models. Application of different susceptibility models may result in 

different landslide susceptibility maps, leading to different hazard and risk maps.  

There are a variety of susceptibility models applied in the literature, each of which 

consider different data input and algorithm. For example, application of statistical 

models versus neural network may provide different spatial probability values at 

similar mapping units. Hence, the location of high susceptible zone may vary from 

statistical models to neural network models. The changes of location may also affect 

the number of threatened properties because of the vulnerabilities of elements at 

risks.  

 
Another important aspect is that the selection of mapping unit largely influences all 

the subsequent analyses and modeling the risk. There are various methods that have 

been proposed to partition the surface into homogeneous regions as discussed in the 

previous parts. Each method has pros and cons on application level. Each unit is 

treated as a case or sampling unit in the analysis and a value for each factor is 

assigned to each mapping unit. Hence the size of the mapping unit influences the 

value of the factor. The value can be generalized if the size of the mapping unit is far 

coarser than the factor, or vice versa. As a result, the result of the risk maps may 

differ depending on the consideration of the generalized factor values. 

Another important point for risk mapping is the work scale to be adopted in the 

analysis. The scale is determined depending on the extent of the study area and data 

availability. The data acquired from different organizations may be on different 

scales. Hence, each data should be fetched to the same resolution by upscaling or 

downscaling. Coarser resolution may decrease the number of pixels in risk mapping, 

hence the degree of details gets lesser.  

 
Topics like the variation of risk due to different input parameters, process models, 

risk models, reference units, and data resolution must be considered in the analysis. 

Actually there are few studies in the literature that considers these topics. In this 

study, the effect of each component on risk mapping will be discussed and analyzed.  

http://deis158.deis.unibo.it/gis/glossary.htm�
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CHAPTER 3 
 

3 IMPLEMENTATION FOR REGIONAL SCALE RISK 
ASSESSMENT 

 

 

In order to demonstrate the implementation of the proposed methodology, Bartın 

Kumluca watershed in the Western Black Sea Region was selected. The Western 

Black Sea Region is characterized by a steep topography, and is subjected to heavy 

precipitation. Due to these adverse effects, the region is prone to extensive and 

severe landslides (Ercanoğlu and Gökçeoğlu, 2002). Therefore, it needs to be 

analyzed for landslide risk.  

 

3.1 Description of the Study Area 
 

The Kumluca watershed is located in the south-eastern part of Bartın city and the 

north-western part of Ulus district in the middle part of the Black Sea Region, 

Turkey. The area covers 330 km2 and is located 15 km south-west of Bartın city 

center (Figure 3.1). The Kumluca watershed includes F28b1, F28b2, F29a1, F29a2, 

F28b3, F29a4 and F29a3 die plates in 1:25000 scale topographic maps.  

 

 

 

 

 

 

 

Figure 3.1. Study region, Kumluca watershed, in the south-western part of Bartin city and the map 
showing the landslide locations with two types of slides, Type 1: Non active and depth >5m, Type 2: 
Active and depth >5m. 
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The most common landcover in the area is forest, which is 63% of the whole region. 

The other parts of the study area are dry farming (36%) and settlement (0.45%). The 

range of topographical elevation values varies between 80 and 1755 m, while the 

dominant topographical elevation range is between 350 and 550 m. Although the 

slope angle values range between 00 and 650, the majority are between 150 and 250 

degrees. The main stream in the study area is the Kumluca Stream. It has a dendritic 

drainage pattern and is composed of lower order streams, namely Zafer and Kızıllar 

(Bartından Haberler, 2009). The largest settlement to the north of the area is 

Kumluca. In addition, there are approximately 27 villages in the watershed.  

 
The field observations showed that most of the houses are single- to two-storey stone 

and/or adobe masonry with mud mortar. Based on these observations, the masonry 

dwellings of rural settlements were found to be the most affected ones by the 

reactivation of landslides (Figure 3.2a, Figure 3.2b), and some of the buildings which 

were mainly situated on landslide masses were totally damaged due to the 

reactivation of landslides (Figure 3.2 c,d). In addition to damages to the houses, some 

of the road embankments aligning through the toe of landslides were also damaged 

(Figure 3.3 a and Figure 3.3 b). Furthermore, some parts of the roads which ran 

parallel to the toe of landslides changed their forms from straight to curve due to the 

reactivation of landslides (Figure 3.3c, Figure 3.3d). 

. 

 
Figure 3.2. The damages observed at the rural settlements during field surveys 
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Figure 3.3. The damages observed at the road embankments and roads  
 

 

The reports (Landslide Reports, 1975, 1985, 1987, 1993, 1995, 2005) of the study 

region showed that the area has both natural and artificial triggers for landslide 

occurrence. While intense rainfall, rapid snowmelt, and stream erosion of slope toes 

are the natural triggers, indirect human action such as steeply and improperly cut 

slopes, poorly controlled surface drainage, uncontrolled settlement, and agricultural 

activities are the artificial triggers (Akgün and Bulut, 2007).  

 
Most of the study area is covered by Ulus Formation, which is known to be 

susceptible to landslides in the region (Figure 3.4). Indeed, when the landslide 

reports obtained from the General Directorate of Disaster Affairs Bartın Division is 

evaluated for the spatial distribution of slope movements, it is proved that most of the 

landslides are identified in the Upper Cretaceous Age in Ulus Formation. Ulus 

formation is composed of mostly thick sandstone levels and sandy, loamy schist, 

claystone and loamy marl alternations at higher elevations (Landslide Reports, 

1985). It is known as a typical flysch sequence and is highly susceptible to 

weathering (Deveciler, 1986; Demir and Ercan, 1999; Ercanoğlu et al., 2004; 

Ercanoğlu, 2005).  
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Figure 3.4. Generalized geological map of the study area adopted from Ercanoğlu, 2005 (simplified 
from Timur et al., 1997). 
 
 
Long-lasting rainfall periods and slow snowmelt processes are responsible for the 

rise of the groundwater table, which produces flash floods. Depending on the 30 
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years of rainfall database from meteorological stations around the study region, the 

annual mean rainfall was found to be between 900 and 1071 mm. Different years of 

the analysis of landslide inventory show that 537 houses were moved due to damages 

that occurred after landslides in the region (Landslide Reports, 1975, 1985, 1987, 

1993, 1995, 2005). In the study region, there have been approximately 287 landslides 

since 1961, which have been recorded by the General Directorate of Disaster Affairs 

(Landslide Map, 2004). In addition to this, 184 slide regions are mapped by the 

General Directorate of Mineral Research and Exploration (MTA) on 1:25000 scales 

as part of the Turkish Landslide Inventory Mapping Project. Most of these reported 

landslides which have occurred in the study region have frequently been reported in 

some recent studies (e.g. Temiz, 2000; Ercanoğlu and Gökçeoğlu, 2002; Ercanoğlu, 

2003, 2005; Ercanoğlu and Gökçeoğlu, 2004; Ercanoğlu et al., 2004; Duman et al., 

2005a).  

 
The field observations showed that a settlement may be vulnerable to different types 

of disasters such as flooding and landslides (Figure 3.5). As illustrated in Figure 3.5, 

the area to the south-eastern part of the study region was prone to two different types 

of slides, in which buildings, roads, bridges, and humans were under risk.  

 
 

 
Figure 3.5. A small site in the south-west part of the study region vulnerable to both flooding and 
landslides with different types (A: mass flow, B: debris flow). 
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Slides and flows are the two main types of mass movements in the study region. 

Among the slide types, rotational (Figure 3.6 a, Figure 3.6d) or complex (Figure 3.6 

c) landslides are more common. The second most common type of failure is flow, 

mostly earth and debris flow in highly weathered alteration zones (Figure 3.6 b). 

 
Figure 3.6. Landslides in Bartın Kumluca region: a. rotational slide, b. debris flow, c. shallow 
complex slide and d. rotational slide. 
 
 
The relative depth of failure surfaces was classified as shallow (depth<5 m) and 

deep-seated (depth>5 m) (Gökçeoğlu et al., 2005). All slides in the study area are 

deep-seated, as presented in Figure 3.1. For simplicity, the activities of mass 

movements are classified into two groups as active and inactive. In Figure 3.1, type 1 

represents inactive slides with a depth greater than 5 m., and type 2 is active slides 

with a depth greater than 5 m. Active landslides are defined as those currently 

moving, whereas inactive ones are relict according to WP/WLI (1993). In the study 

area, both active and inactive slides can be seen, and approximately 86.41% of all 

landslides are active whereas the rest is composed of non active slides. The 

morphometric landslide size parameters, such as width, vary from 30 m to several 

hundred meters, while the length varies from 20 m to several kilometers. 
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There are totally 184 slide locations including dormant and active slides in the region 

covering approximately 47.68 km2 of the study area, and the largest slide area 

occupies 4.5 km2.  

 

The main reasons for selecting Kumluca Watershed for implementing the 

methodology are: 

 
i. The landslides in the region have a wide range of sizes.  

ii. The geologic and topographic property of the study region necessitates a 

landslide susceptibility map. 

iii. Depending on the reports of the General Directorate of Disaster Affairs, the 

most important factor in landslide occurrence is heavy rainfalls and flooding. 

iv. Depending on the reports of the General Directorate of Disaster Affairs, 537 

buildings have been damaged and the people living in those houses have 

been moved to safe places because of damages which occurred after 

landslides. 

 
Depending on the literature surveys, there is yet no study on risk mitigation in the 

study region. Hence, as the region is highly susceptible to landslides, it provides 

suitable site characteristics for demonstrating the application of the proposed 

methodology. 

 

3.2 Data Collection 
 
Data collection is the initial step for risk assessment methodology, which involves 

obtaining the data required for components of landslide risk assessment, such as 

susceptibility assessment, hazard analysis, and consequence analysis.  

 
When assessing the susceptibility, the priority was given to the identification of 

landslide inventory together with the conditions that caused the slope to become 

unstable.  

 
Depending on the key assumption of susceptibility assessment, which is “the slope 

failures in the future are more likely to occur under the conditions which led to past 

and present slope movements” (Varnes, 1984; Carrara et al. 1991; 1995), 
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determining the areas exposed to landslides provide useful information for 

identifying future landslide occurrences. Thus, an inventory map which ideally 

includes individual landslide features, type, style, activity, depth, and the exact date 

of the slope failure (van Westen, et al. 1999) was required initially. As these 

inventories are used for the assessment of probability of failure, the accuracy and 

completeness of these maps are significant.  

 
The information about the past states of landslides was acquired from the MTA on 

1:25000 scales. The location of the landslide phenomena was visually surveyed by 

air photo-interpretation (Figure 3.7) as well as extensive field works. In the field 

works, a hand GPS (Global Positioning System) receiver with an accuracy of ±5m 

(at 95% confidence interval) and DGPS were used to check the locations of 

landslides.  

 

 
Figure 3.7. Interpretation of landslide boundaries from aerial photo 
 

 

In the Project of Turkish Landslide Inventory Mapping (Duman et al., 2001), mass 

movements are classified according to the terminology of Varnes (1978), i.e. slides, 
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creep, falls, and flows. In the study area, slide type mass movements are dominant 

and flows are also present. This study separates flows from slide type movements. 

Hence, the flow deposits present in Kumluca watershed were not included in the 

landslide inventory map and only the slides were involved in further risk assessment 

studies.  

 

For landslide susceptibility assessment, several spatial data layers, or landslide 

influencing parameters, are necessary for evaluation together with the landslide 

inventory. Therefore, information related to landslide factors were acquired from 

different organizations. Most of them were on similar scales but with different data 

formats, projections, and types. Different data formats, projections and types were 

converted into the same format. Before the production of input data from these raw 

data, all data set was converted into the same projection system and Universal 

Transverse Mercator (UTM) projection of ED50 datum was used for all the data set. 

Then the raw data were used for the production of input data with the same data type. 

The main data sources are given in Table 3.1 with their properties and scale.  

 

Table 3.1. Characteristics of data for Kumluca basin  

 

Implement 
Type Data Source Data Type Data Format Scale Coordinate 

System 

S*, H* 
General Directorate 
of Mineral Research 
and Exploration 

Landslide Map ARC/INFO 
polygon 1:25000 Geographic 

WGS_84 

S General Directorite 
of Disaster Affairs  

Landslide Map (Landslide Map, 
2004) ARC/INFO Point 1:50000 European 

Datum 1950 

H 
General Directorite 
of Disaster Affairs of 
Bartın 

Landslide  reports (Landslide 
Reports, 1975-1985-1987-
1993-1995-2005) 

Text   

S 

General 
Command of 
Mapping  
 

Aerial Photo 

(14 -26.07.1998) 
Tif 1:35000 None 

S, R*  

General 

Command of 
Mapping  

Topographic Map 

(Boundry, topographical elevation, 
hydrography, Industry, 
Physography, population, 
transportation, utilities) 

ARC/INFO 
Vector  (Line, 
point, polygon) 

1:25000 

UTM  

Datum: 
ED_50  

Zone 36 
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Table 3.1 Characteristics of data for Kumluca basin (Continued) 
 
Implement 

Type Data Source Data Type Data 
Format Scale Coordinate System 

S 
General Directorate of 
Mineral Research and 
Exploration 

Geology Map 
ARC/INFO 
Vector 
(polygon) 

1:25000 Geographic WGS_84 

S General Directorate of 
Village Maintenance Soil Map 

ARC/INFO 
Vector 
(polygon) 

1:100000 WGS_1984_UTM_Zone_36N 

S NIK 

ASTER (Advanced 
Spaceborne Thermal 
Emission and 
Reflection 
Radiometer) (14 
Spectral Band, Level 
3A)  (22.10.2005) 

Raster 

VNIR(3): 
15m 

SWIR(6): 
30m 

TIR (5): 
90m 

WGS_1984_UTM_Zone_36N 

R  

General Directorate of 
Highway, General 
Directorite of Disaster 
Affairs of Bartın, Soil 
Yield Production 
Office 

The value of element 
at risk Text 2009  

H 
Turkish State 
Meteorological 
Service 

Rainfall Data for 
Kozcagiz, Ulus, 
Bartın, Amasra, 
Kurucaşile and Arıt 
stations 

Excel 
1975-
2006 daily 
data 

 

R  Turkish Statistical 
Institute (TÜİK) Population Excel 2007  

* S =Susceptibility, H=Hazard, R=Risk, C=Consequence 

 
 
The input data include 1:25,000 scale topographic maps including contour, 

hydrology and transportation maps; 1:25,000 scale geological maps include fault 

lines; Aster 3A satellite image includes 14 bands, 1:100,000 scale soil maps include 

soil depth, erosion, and land-use information; aerial photos containing 17 scenes with 

a scale of 1:35000 was taken in 1998. From the calculated data, 18 factors (dem, 

slope, aspect, curvature, plan, profile, wetness index, distance to hydrology network, 

density of hydrology network, distance to road network, density of road network, 

geological formations, distance to fault lines, soil type, soil effective thickness, 

erosion coverage, land cover, and vegetation cover) to be used for landslide 

susceptibility analysis were extracted. For the further analysis, these created maps 

relevant to landslide occurrence were constructed in a raster format and a spatial 

database was created by using the GIS software ARC/INFO and TNT-MIPS for the 

study region.  
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The Kumluca region is frequently affected by severe rainfall events. Hence, for the 

hazard assessment, data for daily rainfall was obtained from different stations 

distributed around Kumluca Bartın, for a 30-year period. In addition to this, the dates 

of past landslide events were extracted through landslide technical reports, a 

systematic review of newspapers, interviews with local witnesses, and inspections of 

technical and scientific reports and papers. The technical landslide reports were 

obtained from the General Directorate of Disaster Affairs of Bartın (Landslide 

Reports, 1975, 1985, 1987, 1993, 1995, 2005). The reports have detailed information 

about the geology, the reasons of landslide occurrences, the number of affected 

people, and the name of the villages, but not the spatial location of these slides.  

 
For the consequence analysis, the elements at risk data for property, which include 

buildings, roads, land–use, and infrastructure, were obtained from digital topographic 

maps, as well as from the updated land cover map on a scale of 1:25,000. The value 

of each element at risk was obtained by means of interviews with experts from 

different organizations and the inspection of technical reports. The exposure of road 

classes and utility was obtained from the General Directorate of Highways, the 

building value was obtained from the General Directorate of Disaster Affairs of 

Bartın and the value of agricultural fields was obtained from the Soil Yield 

Production Office. For the assessment of risk to life on regional scale, the 2007 

population information was used to estimate the number of people living at each 

building, which was acquired from Turkish Statistical Institute. 

 
 

3.3 Susceptibility Assessment 
 

Susceptibility assessment involves two main parts (Figure 3.8). The first part of the 

analysis involves preparation of the data. After obtaining the variables from data 

preparation part, they are used as an input for susceptibility assessment models.  
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Figure 3.8. The procedure followed for susceptibility assessment methodology 
 

3.3.1 Data Preparation 
 
In order to determine landslide influencing factors for susceptibility assessment, the 

following stages were followed: (1) description of raw input data set in detail and 

processing of raw data are presented in Figure 3.9; in addition, analyzing the 

relationship between each influencing factor and landslide frequency; (2) statistical 

analysis of the conditioning factors contributing to landslides; (3) construction of the 

spatial database for further quantitative analysis. The data preparation stage of 

susceptibility assessment was illustrated in Figure 3.9.  

 
The first stage of data preparation involves description of raw data in detail, which 

include format, projection, date, where it was obtained, what different sources of data 
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it contains, etc. After the description of the data, the process to obtain variable maps 

was described. The raw input data and the processed variable maps were illustrated 

in Figure 3.9. The relationship between each variable and landslide occurrence was 

analyzed by using the histograms. For this reason, the continuous variables were first 

divided up into zones, and then the area of each group and the landslide frequency in 

percentage was computed. 

 

 
Figure 3.9. The main input data set and processed data to obtain influencing factors 
 
 
Before the second stage of data preparation, the type of mapping unit was 

determined. This is defined as the partition of land surface into homogeneous 

regions. The reason for determining the mapping unit type was that statistical 

analysis of the variables changes depending on the type of mapping unit. In addition, 

different geospatial databases should be constructed for each mapping unit to obtain 

susceptibility maps for each mapping unit. Considering these results, it was 

determined that the mapping unit to be used in the study would involve grid cells and 

slope units.  

  
After determining the type of mapping unit, the statistical analysis of the variables 

for each mapping unit was performed. The statistical analysis involves (i) 

transformation of qualitative variables; (ii) selection of independent variables by 

multi colinearity analysis; (iii) testing for normal distribution for each variable. 
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Following the stage of constructing spatial databases for each mapping unit, 

landslide susceptibility maps by four different mapping methods were obtained.  

 

3.3.1.1 Processing of Topographical Data 
 
The topographical data was acquired from the General Command of Mapping in 

digital format. The data set included the contour map, road and stream networks 

which were in vector coverage format and represented by points, lines, or polygonal 

features. This discrete form of data was not suitable to be used in landslide 

susceptibility mapping. For this reason, it was converted into continuous surfaces 

(Süzen and Doyuran, 2004). As a result, the contour map data were used to generate 

a DEM. The DEM was then used to describe geomorphologic (slope, aspect, plan 

curvature, profile curvature) units and topographic wetness index.  

 
In the first stage, to produce the input data, the data format, which was in ARC/INFO 

E00 format, was transformed into ARC/GIS shape format. The map incorporates 10 

m. contour intervals. By using this map, DEM of the study area was generated by 

using the Triangular Irregular Network (TIN) algorithm (Figure 3.10). 

 

 
Figure 3.10. The contour map of the study area 
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After the creation of TIN model, the DEM of the area was produced for 20 m. 

through interpolation. There are two reasons for selecting 20-m resolution: first, the 

working scale was selected as 1:25000, and second according to USGS (1993), the 

positional accuracy needed for 1:25000 scale maps must be ±12.5 m. For this reason, 

a pixel size of 20 m. was selected for production of DEM. The “linear method”, 

which treats each triangle as a planar surface, was used. By using this method, each 

output cell was assigned a topographical elevation by finding which triangle, in 2-D 

space, it fell in and the position of the cell center was evaluated relative to the 

triangle plane. Accordingly, the total number of pixels for the whole area was 

810,005. The DEM generated from the contour map in Figure 3.11 shows that the 

topographical elevation ranges from 80 to 1755 m in the study area.  The mean 

topographical elevation is 708.99 m. having a standard deviation of 397.66 m. and 

the maximum concentration of topographical elevation is observed at 200 - 600 

meters with a value of about 50%.   

 
The lowest topographical elevations are dominant around the north-western and 

northern parts of the area, particularly where the landslide occurrences are 

concentrated. The highest topographical elevations, on the other hand, can be 

observed around the south-eastern part of the study region.  

 

 
Figure 3.11. DEM of the study region overlaid with the landslide locations and the frequency 
distribution of values 
 
 
The relationship between landslide activity and topographical elevation is still 
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unclear, hence it requires further studies. However, the topographical elevation 

affects soil characteristics significantly. Gomez and Kavzoglu (2005) refer to Ochoa 

(1978), arguing that soil texture varies with topographical elevation, as the grain size 

increases with the altitude. 

 
To analyze the relationship between landslide occurrence and topographical 

elevation, histograms were constructed (Figure 3.12). The percentage of landslide 

occurrence is the highest at the 201- 600 m topographical elevation range. Moreover, 

the area of this zone occupies the largest region (49%). The occurrence of landslide 

frequency reduces as the topographical elevation increases. 
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Figure 3.12. Histogram showing the relationship between topographical elevation and landslide frequency. 

 

The construction of an accurate model of the terrain surface is fundamental for 

landslide susceptibility mapping. In order to test the accuracy of the produced DEM, 

the principles of DEM accuracy assessment given by USGS were adopted. 

According to USGS National Mapping Program Technical Instructions, a 

representative sampling of test points was used to verify the accuracy of any category 

of the DEM. A minimum number of 28 test points for DEM is required (USGS 

2002). The root-mean-square error (RMSE) statistic for topographical elevation was 

used to describe the vertical accuracy of the DEM.  

 
Vertical RMSE is defined as: 

 

RMSE=
( )

n
zz ti∑ − 2

                 (37) 
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Where; 

 zi  = interpolated DEM topographical elevation of a test point; 

 zt =True topographical elevation of a test point and 

n = number of test points.  

 

For accuracy assessment, the contour line mid points were extracted and then 

different sets of 20% of these points were selected randomly as test points for 

accuracy assessment of the DEM (Table 3.2).  

 
Table 3.2. RMSE of DEM 

 Ref. 
Elev. 

DEM 
Elev. 

Diff. 
Elev. 

Diff. 
Sqr.  Ref. 

Elev. 
DEM 
Elev. 

Diff. 
Elev. 

Diff. 
Sqr. 

1 585 585 0 0 15 635 636.12 1.12 1.2544 
2 370 369.19 -0.81 0.6561 16 500 499.42 -0.58 0.3364 
3 420 427.6 7.6 57.76 17 825 825 0 0 
4 380 382.7 2.7 7.29 18 250 250 0 0 
5 530 527.48 -2.52 6.3504 19 425 421.01 -3.99 15.9201 
6 550 554.31 4.31 18.5761 20 415 411.22 -3.78 14.2884 
7 430 433.77 3.77 14.2129 21 435 434.22 -0.78 0.6084 
8 530 530.88 0.88 0.7744 22 635 635 0 0 
9 510 514.91 4.91 24.1081 23 460 458.54 -1.46 2.1316 
10 80 80.35 0.35 0.1225 24 500 498.1 -1.9 3.61 
11 585 582.87 -2.13 4.5369 25 1030 1032 2 4 
12 545 549.12 4.12 16.9744 26 370 371.35 1.35 1.8225 
13 665 665 0 0 27 390 391 1 1 
14 625 628.63 3.63 13.1769 28 130 129.61 -0.39 0.1521 
      RMSE= 3.17 

 
 
The mean of vertical RMSE was found to be 3.17 m., which is quite admissible 

within the accuracy requirements of the study (which is much less than the minimum 

accuracy limit of one-third of the contour interval specified by USGS, 2002). 

 
The produced DEM was used as the topographical elevation input data for 

topographical elevation attributes of landslides. As the morphometric terrain 

attributes can be derived directly from the DEM using (local) filter operations or a 

mathematical formula, initially the slope and aspect, the first derivatives of the DEM, 

were produced. Subsequently the curvatures, the second derivatives of the DEM, 

were acquired. Hydrological or flow accumulation-based terrain parameters are 

typically used to quantify the flow intensity and accumulation potential or erosion 

potential. Hence the topographic wetness index as the second derivative of the DEM 

was produced.  
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Slope angle is an essential component of the landslide influencing factor set, which 

indicates how steep the ground surface is.  The produced and color-coded slope map 

and its frequency distribution were presented in Figure 3.13a. The slope has a range 

between 0 and 90, 0 as the flat lying areas and 90 as the vertical ones; any other 

value is the slope angle measured from horizontal. Hence, in the study area the 

minimum value of the data is 0 and the maximum is 65.5 degrees. The mean is 

20.880 with a standard deviation of 8.480 (Figure 3.13b). 70% of the region has slope 

angles between 100 and 300. The slopes above 500 is negligible since their 

percentages are nearly 0. The higher slopes are dominant mostly in the western and 

south- eastern parts of the region, where the presence of landslide occurrences is 

lower. 

 

 
Figure 3.13. Slope map of study region overlaid with landslide locations b. frequency distribution of 
slope variable 
 
The relationship between landslide frequency and slope angle (Figure 3.14) showed 

that slope has relevance with landslide occurrences at angle ranges of 110- 200 rather 

than the steep slopes. Pachauri and Panta (1992) indicated that the frequency of 

landslides is higher in steeper slopes (>350). However, this was not the case in this 

study. 55% of the study region has slopes higher than 210 and only 35% of the 

landslides were present in this part. This situation may be related to vegetation or 

forest cutoff to obtain area for agriculture, or it may be related to accumulation of 

soil material coming from upper resistant rocks by weathering or erosional processes 

associated with possible saturation of soil by low groundwater level on gentle slopes 

(Ercanoğlu, 2005).  
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Figure 3.14. Histogram showing the relationship between slope angle and landslide frequency. 
 
 
Aspect is the orientation of a slope face in degrees (between 0 and 360 degrees). 

There is yet no general agreement on aspect regarding its relation to landslide 

occurrence. Some authors (Nagarajan et al., 2000; Fernández et al., 2003; Santacana 

et al., 2003; Ayalew et al., 2004; Lee, 2004; Melelli and Taramelli, 2004; Süzen and 

Doyuran, 2004; Gökçeoğlu, 2005; Akgün and Bulut, 2007) took aspect into 

consideration as a factor controlling landslides while the others (Jose et al., 2000; 

Van Westen et al., 2003; Ayenew and Barbieri, 2005; Neuhäuser and Terhorst, 2007; 

Weirich and Blesius, 2007; Wang et al., 2008) did not consider it as a conditioning 

factor. 

 
Aspect strongly influences potential direct incident radiation and thus temperature. 

Therefore, the moisture of the soil on the ground may alter. As a result, this 

parameter was also considered as a conditioning factor for the study area. Flat areas 

having no downslope direction are given a value of -1; 0 is regarded as the north; any 

other value is the azimuth measurement from north. The aspect values were preferred 

to be oriented in 16 principal directions, which are 22.5 degrees apart from each 

other. The produced and color-coded aspect map was presented in Figure 3.15b. The 

minimum value is –10 and the maximum is 3600. The aspect has a mean of 184.30 

with a standard deviation of 110.60. The aspect shows a similar frequency 

distribution in each range (Figure 3.15b). 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V93-4KXDR02-2&_user=691352&_coverDate=04%2F15%2F2007&_rdoc=1&_fmt=full&_orig=search&_cdi=5887&_sort=d&_docanchor=&view=c&_acct=C000038698&_version=1&_urlVersion=0&_userid=691352&md5=87713b0aa6b1d225a089c7c8da0d19a2#bbib32#bbib32�
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Figure 3.15. a. Aspect map of the study region and b. frequency distribution of values 
 
 
In untransformed form, aspect is not suitable for quantitative analysis, since 10 is 

adjacent to 3600. The numbers are very different even though the aspect is roughly 

the same (McCune and Keon, 2002). For this reason, aspect was transformed for 

further analysis by using the folded aspect formula, which is proposed by McCune 

and Keon (2002) (Equation 2). Depending on this approach, aspect is ‘folded’ about 

the north-south line, rescaling 0-3600 to 0-1800, such that NE = NW, E = W, etc.: 

 
 
Folded aspect = 180 – |Aspect – 180|            (38) 
 
 
The relationship between landslide locations and aspect variable was shown in 

Figure 3.16. As Figure 3.16 illustrates, landslide occurrences are observed in almost 

every aspect class, but the slopes facing the north seem to be relatively more 

susceptible to landslide occurrence. 
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Figure 3.16. Histogram showing the relationship between aspect and landslide frequency. 
 

Curvature values represent the morphology of the landscape. Curvature maps were 

derived as the second derivative of a DEM. A positive curvature indicates that the 

surface is convex (Figure 3.17). A negative curvature indicates that the surface is 

concave (Figure 3.17). A curvature value of zero indicates that the surface is flat.  

 
Figure 3.17. The positive and negative curvature 
 
 
The positive curvature (convex) occupies 45% of the region and the negative 

curvature (concave) occupies 20% of the region; therefore, they are both dominant in 

the whole region when compared to the flat areas, which compose 35% of the study 

region (Figure 3.18). The curvature values have a mean of 0 with standard deviation 

of 1.05. The maximum and minimum values are -19.08 and 21.35, respectively. 
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Figure 3.18. Statistics for curvature, plan curvature and profile curvature map (%). 

 
In addition to curvature, plan and profile curvatures were also formed to represent 

the morphology of the topography. The plan curvature implies that a slope is parallel 

to the elevation contours, which can be used to help identify divergent or convergent 

flow areas on the landscape. Convergent flow generally indicates higher erosion and 

transport potential, while divergent flow indicates lower erosion and transport 

potential. The profile curvature implies that slope is perpendicular to the elevation 

contours and indicates whether any particular point on the hill slope profile is in an 

area of convex or concave curvature. It affects the acceleration and deceleration of 

the flow, and therefore influences landslide damage potential.  

 
The profile curvature has larger flat areas compared to the plan curvature, they 

occupy 60% and 45% of the study region respectively (Figure 3.18). The plan 

curvature values have a mean of 0.13 with a standard deviation of 0.57. The 

maximum and minimum values are 8.76 and -8.51 respectively and the profile 

curvature has a mean of 0.13 with a standard deviation of 0.67. The maximum and 

minimum values are 15.31 and -14.09 respectively.  
 
The relationship between landslide locations and curvature (Figure 3.19) shows that 

approximately 58% of landslides occur at convex and concave topography whereas 

41% occur on flat slope surface. 
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Figure 3.19. Histogram showing the relationship between curvature and landslide frequency 
 
 
A DEM-based topographic wetness index, (TWI) (Moore et al., 1988), was used to 

represent the spatial distribution of water flow across the study area. The wetness 

index represents a theoretical measure of the accumulation of flow at any point 

within a river basin. The index can be used as a basis for estimating the local soil 

moisture status and thus areas of landslides which were affected by hydrological 

conditions due to the topographic effects of surface (Gomez, and Kavzoglu, 2005). 

The calculation of this index is based on several assumptions (Moore et al., 1991). 

The flow conditions are assumed to be at a steady state, which means that the water 

flow is uniform and every calculation unit gets a contribution from its entire upslope 

contributing area. The rate of groundwater recharge and soil properties is assumed to 

be uniform over the area. In the computation of the wetness index, a depressionless 

DEM was calculated to remove the sinks. After multiple flow directions were 

determined from the resulting DEM image, the flow accumulation area (As) and the 

tangent of slope (tan β) were produced. The topographic wetness index of the study 

area was then created by using the Eq. (39) as proposed by Moore et al. (1991):  

  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

βtan
ln SA

TWI        (39) 

 
where, As is the specific catchment area , β is the slope gradient. 

 
By employing Eq. (39), the topographic wetness index map was produced in Figure 

3.20a. As it can be seen in Figure 3.20a, the topographic wetness index values 
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are higher around the river bed and the slide area. This might be due to the fact that 

the index shows the tendency of water to accumulate at any point in the drainage 

basin and the tendency of the water to move down the slope by gravitational forces. 

Infiltration of water into slope-forming material results in increased pore water 

pressure on the material and a decrease in its shear strength (Gökceoglu et al., 2005). 

 

 

 
Figure 3.20. Topographic wetness index (TWI) overlaid with landslide locations zoomed in the north-
eastern part of study region 
 
 

The wetness index of the study region has a mean of 196 having a standard deviation 

of 0,562 (Figure 3.20b). In addition to the statistics, the distribution of the wetness 

index to the landslide and study region is analyzed as presented in Figure 3.21. It is 

clear that the percentages of the wetness index distribution is higher for the first two 

classes (2.6-5 and 5.1-7) from both the study area and landslide region with 70% and 

63% frequencies (Figure 3.21). The relationship between TWI and landslide 

occurrence shows significant relations at the range of 5.1-7 (Figure 3.21) with a 

value of 37%.  
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Figure 3.21. Histogram showing the relationship between curvature and landslide frequency 
 
 
Data acquired from the General Command of Mapping also include the road network 

map, which shows the main roads and pathways (Figure 3.22a), and the stream 

network map showing the rivers, dry rivers, and rivers with wide bed in the study 

region (Figure 3.22b).  

 
The stream network and road network map do not have an elevation value hence a 

non-interpolative method was implemented to treat such data, where the distance 

map or the density map was used. A distance map was calculated by computation of 

the Euclidian distance of each cell to the nearest line in the map and a density map 

(the number of line/point elements of fixed length in a fixed area) was calculated by 

using a moving window through calculation of density of the object within a 

specified area.  

 

A distance map for road lines and stream lines was produced and used in the analysis 

to consider the effect of each factor on landslide occurrence. For both maps, the 

distances of each pixel regarding the nearest road line and the nearest drainage-lines 

(Figure 3.23a, Figure 3.24a) were calculated by using the Euclidian distance.  In both 

maps the minimum distance of pixels was 1 meter and the maximum was 1000 

meters. The values of distance to road have a mean of 117.37 m. with a standard 

deviation of 115.27 m. (Figure 3.23b). The distance to stream lines has a mean of 

222.01 m. with a standard deviation of 173.97 m. (Figure 3.24b). The distances to 

road and stream lines show a similar distribution around the whole region, whereas 
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the road lines are denser than the stream lines mostly in the north-eastern part of the 

region (Figure 3.23a).  

 
 

 
Figure 3.22. a. Road network map overlaid with the villages and b. Stream network map showing the 
names of rivers 
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Figure 3.23.a.  Distance to road network map and b. Frequency distribution of distance to road 
network 
 

 
Figure 3.24. a. Distance to stream network map and b. Frequency distribution of distance to stream 
network 
 
 
In addition to the distance to road lines and stream lines, the density of road and 

stream lines were also produced (Figure 3.25a, Figure 3.26a). The density map was 

computed by the calculation of the ratio of the summation of the number of line/point 

elements of fixed length to the kernel selected for a fixed area. For the production of 

the road density map and the stream density map, the road line length and the stream 

line length were taken into account. For the road density, a 2 km2 kernel size was 

selected, which provides density values ranging from 0.27 to 4.33 km/km2. For the 

stream density map, a 3 km2 kernel size was selected, which provides density values 

ranging from 0.13 to 1.86 km/km2. The road density values have a mean of 2299.8 

m/m2 with a standard deviation of 893.28 m/m2 (Figure 3.25b). The stream network 
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density values have a mean of 1004.46 m/m2 with a standard deviation of 328.64 

m/m2 (Figure 3.26b). The distance map for road network lines shows higher density 

in the north-eastern and middle parts of the region (Figure 3.25a), whereas the stream 

network lines are denser in the northern and north-eastern parts of the region (Figure 

3.26a). 

 
 

 
Figure 3.25. a. Density of Road Network map b. Frequency distribution of Road Density 
 
 

 
Figure 3.26. a. Density of stream network map b. Frequency distribution of stream density 
 
 
The relationship between landslide frequency and the distance to road network 

(Figure 3.27) and the distance to stream network (Figure 3.28) indicates that 

landslide occurrence increases as the distance to stream network and the distance to 
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road network decrease. The influence of road distance on landslide occurrence can be 

explained by the human impact on nature through road cuts. As it can be seen in 

Figure 3.27, a landslide frequency of 90%is present up to 200 m distance to road 

network. 
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Figure 3.27. Histogram showing the relationship between distance to road network and landslide 
frequency 
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Figure 3.28. Histogram showing the relationship between distance to stream network and landslide 
frequency 
 

 

Additionally, the highest correlation between the road density and landslides is 

observed between 2.17 and 4.33 km/km2 (95%) (Figure 3.29). In parallel, the highest 

correlation between landslide occurrence and the drainage network density is in the 

range from 0.707 to 1.33 km/km2 (64%) (Figure 3.30).   
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Figure 3.29. Histogram showing the relationship between road density and landslide frequency 
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Figure 3.30. Histogram showing the relationship between stream network density and landslide 
frequency 
 
 
The vegetation index was produced by using ASTER (Advanced Space borne 

Thermal Emission and Reflection Radiometer) (14 Spectral Band, Level 3A) satellite 

imagery acquired on 22.10.2005. The data was projected to WGS84_UTM zone 36 

by using 156 GCP geographic coordinates by using PCI 9.1 GCP WORKS. Then it 

was reprojected to UTM ED50 Zone 36 by using the Focus extension of PCI. After 

extracting the spectral bands to study the region boundary, the Normalized 

Difference Vegetative Index (NDVI) was created. NDVI is an index derived from 

reflectance measurements in the red and near infrared portions of the electromagnetic 

spectrum, which describes the relative amount of photosynthetically active green 

biomass present at the time of imagery. It is a measure of the vegetative cover, which 

is used to determine the density of green areas. The Aster image bands of 3 (NIR) 

and 2 (R) were used to generate this measure, since these bands best highlight the 
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chlorophyll absorption and provide good contrast between vegetation and soil. The 

NDVI was calculated by using NDVI (Figure 3.31a) as given in Equation 40:  

 

NDVI =
RNIR
RNIR

+
−

                 (40) 

 
where NIR= Near Infrared band; R=Red band. 

 
 

 
Figure 3.31. a. Vegetation Index Map of the study region calculated from Aster Image b. The percent 
of vegetation cover after classification of data into 2 classes with threshold 0.3. 
 
 
NDVI values range between -1 and +1, with dense vegetation having higher values 

(e.g., 0.4) (USAID, 2009). The index was classified into 2 classes for further analysis 

and 1 is assigned for vegetated areas and 0 for non-vegetated areas, where 0.3 taken 

as the threshold. Non-vegetated regions occupy 52% of the whole region while 48% 

is the vegetated region (Figure 3.31b). 

 
When the relation between the vegetated areas and landslide occurrence was 

analyzed, it was seen that the vegetation shows a high correlation with landslides. 

When the area of vegetation class is considered, it can be said that 73.5% of the 

landslides occurred in non-vegetated areas (Figure 3.32). This indicates that the 

modification of natural conditions by human activities, such as forest harvesting, has 

significant affect on landslide occurrence (Gorsevski et al., 2006). 
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Figure 3.32. Histogram showing the relationship between NDVI and landslide frequency 

 
 

3.3.1.2 Processing of Geological Data 
 
The geological map of the region was acquired from the General Directorate of 

Mineral Research & Exploration in digital format on 1:25000 scale. The geology 

map incorporates the geological units and the faults lines in the area. The geology 

map has a database concerning the geologic unit names and their ages. The fault map 

has an attribute of types of faults.  The data were originally in .e00 format and were 

converted into .shp format with the projection transformation from WGS84 

geographic coordinate system to National ED50 projection system. In the geological 

map of the study region, 6 different lithologies exist. Figure 3.33 displays the 

distribution of geologic units in the region. As shown in Figure 3.34, the major 

lithological units are represented by Sandstone-Mudstone (70.6%) and Conglomerate 

(23.7%), which constitutes nearly 95% of the study region. The remaining 4 units 

cover only 3% of the region.  
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Figure 3.33. Geological map of the study region overlaid with road network and fault lines. The 
legend refers to 1: Alluvial, 2: Andesite, 3: Sandstone-Mudstone, 4:  Marl  5: Limestone, 6:  
Conglomerate  (GDMRE, 2007)  
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Figure 3.34. Histogram showing the relationship between Geologic units and landslide frequency 

 

 
The correlation analysis shows a high correlation between landslide occurrence and 

the Sandstone-Mudstone unit (Figure 3.34) with approximately 91.3%, whereas the 

rest of the units in the study region do not show a considerable relation to landslide 

occurrence. 
 
Following the geology map, the fault map of the region was also acquired from the 
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General Directorate of Mineral Research and Exploration. The fault line map 

includes 3 different types (types 1, 3, 4) as represented in Figure 3.35. In this study, 

all the types (fault lines) were included in the analysis. A total of 24.171 kilometer-

long fault line was observed in the study area with 39 fault line segments. 52% of the 

fault line segments occupy a length of 30.1 meters and the average length of fault-

lines is 619 meters.  

 

 
Figure 3.35. Fault line map with three different types where Type 1 represents the active faults, Type 
3 and 4 represents half and half approximate fault, overlaid by the landslide map  
 

 

The fault map was transferred into raster format by using distance analysis. The 

distance of each pixel to the nearest line was computed and mapped (Figure 3.36a). 

The maximum distance from the fault line is 8740 m. The distance to fault map 

shows that the faults are dominant in the north-western and south-eastern parts of the 

region, where landslide occurrences are not much frequent (Figure 3.36 a). The 

distance to fault lines map shows a logarithmical distribution, because the frequency 

decreases while the distance from the fault lines increases (Figure 3.36b). The 

distribution of fault distance map has a mean of 2625.87 m. with a standard deviation 

of 1870.46 m. (Figure 3.36 b).  

 
In addition to the lithology, the correlation of the fault distance with landslides was 
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also analyzed. Figure 3.37 shows that the correlation between the fault line distance 

and landslide occurrence increases as the distance decreases. The correlation is 

higher at the distance up to 2000 meters (Figure 3.37). 

 

 
Figure 3.36. a. Distance to fault line map b. Frequency distribution of distance to fault line  
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Figure 3.37. Histogram showing the relationship between distance to fault lines and landslide 
frequency 
 
 
The soil map of the region was acquired from the General Directorate of Village 

Maintenance in digital format on 1:100000 scale. The projection of the data was 

transformed from WGS84 to national projection system (UTM zone 36 ED 50). In 

the soil map of the area, 5 different soil types exist (Figure 3.38). The most common 

soil type in the region is brown forest soil (78%) and the second most common is 

brown forest soil without lime (20%). The remaining 3 units account for only 2% in 

the region (Figure 3.39). The soil map acquired also includes some additional soil 

factors that can be used for the analysis as to land-use type, level of erosion, and soil 

thickness.  
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Figure 3.38. Soil Map showing 5 different types in the study region  
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Figure 3.39. Histogram showing the relationship between soil type and landslide frequency where: 1= Alluvial 
Soil, 2= Brown Forest Soil, 3= Colluvial Soil, 4= Grey Brown Podzol Soil, 5= Brown forest soil without lime 

 

 
The relationship between landslides and the soil type indicate that 80% of landslides 

occur in brown forest soil and 10% occur in brown forest soil without lime (Figure 

3.39). The high correlation of landslide areas with brown forest soil might be due to 

the abundance of this soil type in the region (70%).  

 
The land cover map of the region include a total of 5 different types, as seen in 
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Figure 3.40a. The majority of the area is covered by forests (63%). Dry farming 

follows forests with a portion of 36% (Figure 3.40b). Many studies have revealed a 

clear relationship between land cover and slope stability, especially for shallow 

landslides (Gomez and Kavzoglu, 2005). The analysis of the land cover map of the 

region confirms that landslide activity increases in the region where the original 

vegetation cover has been removed or altered. As can be seen in Figure 3.41, the dry 

farming indicates a clear relationship with landslide occurrence areas. This was 

confirmed by the reports of Bartın General Directorate of Disaster Affairs (GDDA). 

As it is reported by the GDDA, landslides mostly occur in dry farming regions, 

where deforestation takes place. 
 

 
Figure 3.40. a. Land use map of the study region b. The percent frequency of land-use types. 
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Figure 3.41. Histogram showing the relationship between soil type and landslide frequency where: 1= 
Rock And Debris, 2= River Flooding Regions, 3= Dry Farming, 4= Forest, 5= Settlement 
 
 
The depth or thickness of the soil has 4 classes. Very deep soil class has a thickness 
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of 90 cm and covers a larger area; deep soil class has a thickness between 90 and 50 

cm; shallow soil and very shallow soil have a thickness between 50-20 and 20-0 cm. 

respectively (Figure 3.42). Shallow and very shallow soil class areas occupy 93% of 

the region. When there is heavy rain, deeper soil has the capability to store more 

water. 

 

 
Figure 3.42. Soil depth map showing 4 different classes of thickness  
 
 
When the relation between landslide occurrence and soil thickness was analyzed, it 

was observed that 71% of landslide occurrence was in the class of shallow soil 

thickness (Figure 3.43), as this soil class is abundant (98%) in the region.  
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Figure 3.43. Histogram showing the relationship between soil type and landslide frequency where: 
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1=None, 2=Very Deep, 3=Very Shallow, 4=Deep, 5=Shallow 
 
The last data acquired from the General Directorate of Village Maintenance was the 

data for erosion level. The attribute table includes the erosion severity of the region. 

The severity is classified into 4 different levels of erosion (Figure 3.44a). As Figure 

3.44b indicates, 92% of the region has severe erosion level.  

 

 
Figure 3.44. Erosion map showing 4 different classes of the erosion b. Percent frequency of each 
erosion class 
 
 
The relation between erosion and landslide locations indicates that (Figure 3.45) 81% 

of landslides occur in the severe erosion area, as a result of the extensiveness of  

severe erosion class (90%). 12% of landslides occur in the middle erosion class 

(Figure 3.45).  
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Figure 3.45.  Histogram showing the relationship between soil type and landslide frequency where 
1=Less, 2=Middle 3=Severe 4= Very Severe 
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3.3.2 Analyzed Landslide Influencing Factors 
 
The input data in the form of topographic maps, geological maps, soil maps, and 

Aster 3A satellite image were used to extract the variables that may have an 

influence on landslide occurrence. The variables extracted for the analysis, the scale 

of the data, the area and abbreviations are given in Table 3.3. The factors which were 

considered to have an affect on landslide occurrence were topographical elevation, 

slope, aspect, curvature, plan curvature, profile curvature, topographic wetness index, 

NDVI, distance to road, distance to stream network, density of road, density of 

stream network, geological formations (6 units), distance to fault, soil type (5 units), 

land use type (5 units), soil depth (4 units), and erosion level (4 units). In total, 37 

factors were included into analysis. The variables are in two types with regard to 

their scale: Continuous and Categorical.  

 
Table 3.3.Variables considered as landslide influencing factors  
 

Variables Scale of data # of Categories  Category Type Area (km2) Abreviation 

Topographical 
elevation Continous - -  Elev 

Slope Continous - -  Slp 
Aspect Continous - -  Asp 
Curvature Continous - -  Curv 
Plan curvature Continous - -  Plan_Curv 
Profile 
curvature Continous - -  Prof_Curv 

Topographic 
wetness index Continous - -  Wtns 

NDVI Binary 0/1 - - Veg 
Distance to 
Road  Continous - -  DisttoRoad 

Distance to 
Stream 
Network 

Continous - -  DisttoStrm 

Density of 
Road Network Continous - -  DensRoad 

Density of 
Stream 
Network 

Continous - -  DensStrm 

Distance to 
Fault Continous -   DisttoFault 

Alluvial 9.04 Geo_ Allv 
Andesite 0.68 Geo_ And 
Sandstone_Mudst
one 225.26 Geo_ SM 

Limestone 3.23 Geo_ L 
Marl 5.00 Geo_ M 

Geology 
Formations Categorical 6 

Conglomerate 80.74 Geo_ C 
Alluvial Soil 0.03 S_ Allv 
Grey Brown 
Podzolic Soil 6.27 S_ GBPdz 

Colluvial Soil 6.90 S_ Collv 
Brown Forest Soil 233.31 S_ BFS 

Soil Map Categorical 5 

Brown Forest Soil 
without lime 73.82 S_ BFSWL 
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Table 3.3. Variables considered as landslide influencing factors (Continued) 
 

Variables Scale of data # of Categories  Category Type Area (km2) Abreviation 

Rock_And_Debri
s 2.18 LU_ RD 

RiverfloodingReg
ions 0.03 LU_ RF 

Dryfarming 118.71 LU_ DF 
Settlement 1.45 LU_S 

Land Use Categorical 5 

Forest 201.64 LU_ F 
Verydeep 0.38 SD_ VD 
Veryshallow 149.63 SD_ VS 
Deep 12.52 SD_ D Soil Depth Categorical 4 

Shallow 157.80 SD_ S 
Less 0.03 E_ L 
Middle 19.78 E_ M 
Severe 300.16 E_ S Erosion Categorical 4 

Verysevere 0.37 E_VS 
 

 

3.3.3 Statistical Analysis of Data for Each Mapping Unit 
 
Before beginning the susceptibility analysis, the statistical analysis of each data set 

was carried out using the SPSS 13 software. The statistical analysis of the 

independent variables changes depending on the adopted procedure. Hence, the 

mapping unit to be used in the study should be determined initially. Mapping unit is 

the partition of the land surface into homogeneous regions. It is the minimum 

meaningful spatial unit in the analysis, because each unit is assigned a unique 

susceptibility value and each unit has a set of ground conditions that are relatively 

different from its adjacent units. The selection of the mapping unit depends on 

different considerations such as the type and size of the analysis, the scale of data 

that is available for the analysis, and the scale of the final model, and several 

methodological considerations (Beguería and Lorente, 1999). 

 
In this study, two different mapping units were adopted for the analysis. The first one 

was grid, which is considered to present a continuous variation in space, and the 

second selected unit was the slope unit, in which space is subdivided into regions 

based on certain hydrological criteria. Grids are especially adequate to the modeling 

of continuous variables and can adopt the categorical variables. In slope unit 

approach, continuous variables can only be treated by their summary statistics (e.g. 

mean slope, maximum slope, etc.). 

 
After determining the mapping unit types, the following steps for statistical analysis 
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were carried out for each variable at each mapping unit: (i) transformation of 

categorical variables into continuous scale; (ii) selection of independent variables by 

multi colinearity analysis; (iii) normality checks for each variable. 

 
The transformation of categorical variables is essential for further statistical analysis 

to construct a geospatial database in GIS. It involved conversion of the data in 

polygon format to a raster format with a 20-m grid spacing, in which each grid cell 

was assigned a code relevant to the associated variable. The reason for the selection 

of 20 m. resolution was the working scale, which was selected as 1:25000. 

According to the USGS (1993), the positional accuracy needed for 1:25000 scale 

maps must be ±12.5 m., hence the pixel size was selected larger than the accuracy 

level. 

 
Regression analysis, which is used for susceptibility mapping, requires that variables 

should be normally distributed. Therefore, after the transformation of categorical 

variables, normality tests for each variable were applied.  

 
The last step of the statistical analysis involves selection of independent variables by 

multi colinearity analysis. This is also essential prior to the regression analysis. The 

main reason is that when a variable A is highly correlated with variable B and both 

are included in the analysis; A will not contribute to the estimation of the probability 

of landslide occurrence. Thus, the inclusion of both variables will cause an ill-

structured model.   

 

3.3.3.1 Statistical Data Analysis for Grid Mapping Unit 

3.3.3.1.1 Assigning the Data Set to Grid-Based Mapping Unit 
 
Grid units have pros and cons. Grid data processing is fast due to its matrix form, but 

it requires an overwhelming number of grid cells to cover even small areas if the 

selected cell resolution is high. This mostly leads to unmanageable computer 

problems and numerical instability when data have to be processed by statistical 

techniques. Generally speaking, in a grid-based approach, landslide hazard, or the 

probability of occurrence of a landslide at a point within a given time period, is 

treated as a continuous variable. This implies that, in theory, the final user of the map 
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can know exactly the probability of landsliding in a given place. But it is mostly 

problematic to assign landslide occurrence to many different cells that represent a 

single movement (Begueria and Lorente, 1999). In this case, the statistical analysis 

considers that each cell has random independent variables.  

 
It is not an easy task to deal with categorical data in statistical analysis (Baeza and 

Corominas, 2001). Hence, the landslide factors which are in categorical data format 

(Land use, Soil, Geology, Soil depth and Erosion) were converted into a discrete data 

format. The conversion was done by assigning a code in the form of a number, where 

the numbers are simply labels. For this reason, each category of factor has been 

physically represented as binary variables, as a function of the presence/absence or 

1/0 of a class of slope instability factors in the study region. For instance, the soil 

map has five different units (Figure 3.46a). Each unit was represented by polygons in 

GIS environment (Figure 3.46a). These polygons were converted to raster format 

with 20 m grid spacing (Figure 3.46b). For each category of soilmap, a raster data 

layer was obtained by the reclassification and then for each layer, each grid was 

assigned a code representing the soil unit in the center of the cell (Figure 3.46c). 

Therefore, for each soil unit, a value of either 0 or 1 was assigned in each 

corresponding column in the database as shown in the Figure 3.46d. 

 

 
Figure 3.46. Conversion of categorical data to raster format a. The vector layer in the categorical 
format b. Vector layer converted to raster format c. The raster data is reclassified for each category in 
the layer and assigned 0 or 1 value d. Each category layer in raster format is assigned to a database 
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All continuous variables were already in raster format. As a result, the influencing 

factors include 12 continuous data layers and 25 binary data layers, 37 data layers in 

total. Hence, all landslide-related factors were converted into a raster map with a 

resolution of 20 m. 

 
In order to evaluate the landslide characteristics, the landslide inventory map was 

converted to a Boolean layer using ArcMap with a grid resolution of 20 m. This layer 

has 810,005 pixels, where 14.7% are in areas of landslides and were reassigned the 

pixel value of one.  All the other pixels were given a value of zero, thereby 

producing a Boolean layer representing the landslide database to be used in 

susceptibility mapping.   

 
For further statistical analysis and assessment of susceptibility in the study region, a 

geospatial database in GIS was constructed. To store the landslide-related 

information and landslide inventory into a database, mid point of the raster layer was 

created with 20 m intervals. Then this point mesh was overlaid over all the data 

layers created for the analysis for the whole study region (Figure 3.47). The attributes 

of landslides and the previously produced input maps were transferred as separate 

attribute tables of these points. These tables were then merged to construct a 

relational database concerning all of the parameters. Each parameter map was treated 

as a new variable in this database. The database was converted to an ASCII-format 

file that included the UTM coordinates for the centre of each pixel. The ASCII file 

was then input to statistical software for modeling. 

 

 
Figure 3.47. Point mesh overlaid with factor layers 
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3.3.3.1.2 Pre-Analysis of Database 
 
Initially the categorical factors that have regions smaller than 5 km2 were excluded 

from the analysis, and the rest of the data was included in the analysis. Although 

settlement occupies an area of 1.45 km2, it was included in further analysis as it was 

thought to have an affect on landslide occurrence. The reason for the exclusion of 

smaller regions was to reduce the processing time in statistical modeling of the data. 

As a result, the data excluded from the database were: River Flooding Regions of 

Land-Use (LU_RF), Rock and Debris Unit of Land-Use (LU_ RD), Very Deep Soil 

Depth (SD_VD), Less Erosion (E_L), Very Severe Erosion (E_VS), Alluvial Soil 

(S_Allv), Limestone Unit of Geology (Geo_ L), Marl Unit of Geology (Geo_ M), 

Andesite Unit of Geology (Geo_ And). Hence, the data layers were reduced to 28 

factors. 

 
The presence of a strong correlation between variables may reduce the performance 

of a regression model. Thus, the strongly correlated variables should be removed 

before the analysis. The missing data or extreme data was searched initially and then 

the multicollinearity between factors was analyzed. The data set created for analysis 

contains nominal and continuous data. For different data formats different procedures 

were handled in the study. To obtain measures of association for the nominal 

variables, cross tables were used.  The bivariate correlations procedure was useful for 

studying the pairwise associations for a set of continuous variables. Thus, in the first 

part of analysis, the co-linearity of continuous dataset was performed by using the 

correlation matrix. The second part includes the analysis of the co-linearity between 

nominal factors with cross tabulation analysis. Lastly, the correlation analysis 

between nominal and continuous data set was performed through regression analysis.  

Bivariate correlation analysis involves computing the pairwise associations for a set 

of variables. It is useful for determining the strength and direction of the association 

between two scales and ordinal variables. A correlation coefficient is a number 

between -1 and 1, which measures the degree to which two variables are linearly 

related. If there is a perfect linear relationship with the positive slope between the 

two variables, the correlation coefficient is 1. If there is a perfect linear relationship 

with the negative slope between the two variables, the correlation coefficient is -1. A 

correlation coefficient of 0 means that there is no linear relationship between 

javascript:popup(N2BF3D_term,N2BF3D_def);�
javascript:popup(N2BF3D_term,N2BF3D_def);�
javascript:popup(N2C5F1_term,N2C5F1_def);�
javascript:popup(N2BED7_term,N2BED7_def);�
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the variables. There are a number of different correlation coefficients that might be 

appropriate depending on the type of variables being studied.  The Pearson 

correlation coefficient, the Spearman's rho and Kendall's tau-b statistics can be used 

to measure the association between factors. In this study, Spearman's rho was used as 

it is a nonparametric measure of correlation. The Table 3.4 presents the Spearman 

rho coefficients obtained for considered variables.  

There is not yet a certain threshold to assign variables as correlated or not. In this 

study, the coefficients larger than 0.7 were considered as correlated and one of the 

variables in the correlated pair was excluded for further analysis. The statistical 

significance of the correlation is also assessed at 95% significance level. The results 

of correlation matrix demonstrate that Plan Curvature (Plan_Curv) and Profile 

Curvature (Prof_Curv) are significantly associated with the Curvature (Curv). While 

the Plan_Curv has a high positive association, the Prof_Curv has a high negative 

association with the Curv. The density of stream network (DensStrm) also shows a 

high negative correlation with the topographical elevation (Elev) and the density of 

road network (DensRoad) shows a positive high association with the DensStrm. For 

this reason, the Plan_Curv, Prof_Curv, and DensStrm were excluded from the 

analysis. Therefore, Elev, Curv, and DensRoad were included in the regression 

models. 

 

For correlation measure of nominal data, cross tabulation of each pair was 

performed. To test the strength of association in cross tabulation, Phi, Cramer's V 

and contingency coefficient can be used. Phi coefficient is a measure of correlation 

coefficient in its interpretation. Cramer's V is a rescaling of phi, so its maximum 

possible value is always 1. The contingency coefficient takes values between 0 and 

SQRT[(k-1)/k], where k is the number of smaller rows or smaller columns. In this 

study, Phi and Contingency coefficients were used to test the correlation between 

nominal data (Table 3.5). 
 
Table 3.4. Correlation matrix for continuous landslide influencing factors 
 
Table 3.5. Correlation between nominal landslide influencing factors 
 
Table 3.6. Logistic regression modeling for correlation analysis between continuous and nominal 
landslide influencing factors 
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The significance of most of the values is 0.000, indicating a statistical significant 

relationship. However, the coefficient values are lower than 0.5. Hence, although the 

relationship is not accidental, it is also not very strong. Thus, as it is presented by 

bold in Table 3.5, several correlations were observed among landslide influencing 

factors. First, dry farming unit of land use (LU_DF) is related with forest unit of land 

use (LU_F), deep soil (SD_D) and shallow soil (SD_S). Second, brown forest soil 

(S_BFS) is related with brown forest soil without lime (S_ BFSWL). Third, middle 

erosion (E_M) has an association with severe erosion (E_S). Finally, sandstone-

mudstone unit of geology (Geo_ SM) has an association with conglomerate unit of 

geology (Geo_C) and alluvial unit of geology (Geo_ Allv). All these associations 

indicate a statistically significant relationship. As a result, while LU_F, SD_ D, 

SD_S, S_ BFSWL, E_S, Geo_C and Geo_ Allv were excluded, LU_DF, S_BFS, 

E_M, Geo_SM were included in the analysis. 

In the third step, the association between the discrete and continuous pairs was 

analyzed by using a regression model. In this study, the response variable was 

considered as the discrete variable which has a binomial distribution. For this reason, 

a logistic regression was applied (see section 2.3.2.1). In this study, for each discrete 

variable, all continuous variables were modeled. Table 3.6 represents the logistic 

regression results for different combinations of factors. The columns represent the 

independent variables and the rows represent the response variable’s coefficients 

with the significance and coefficient values. It can be seen from Table 3.6 that the 

topographic wetness index (Wtns) has a low coefficient value and it is insignificant 

when it is related to settlement (LU_S). Curvature (Curv) and density of road 

(DensRoad) show insignificance to LU_S, grey brown podzolic soil (S_ GBPdz), 

SD_VS, and E_M. As a result of this analysis, the Wtns, Curv and DensRoad were 

excluded from the further analysis while the topographical elevation (Elev), slope 

(Slp), aspect (Asp), DisttoStrm, DisttoRoad, and DisttoFault were included. The 

resultant data set used for the further statistical analysis is presented in Figure 3.48. 

Hence, after multicolinearity analysis 15 variables were selected to be used in 

susceptibility mapping. 

 

 

http://en.wikipedia.org/wiki/Binomial_distribution�


 

133

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T
ab

le
 3

.6
 L

og
is

tic
 re

gr
es

si
on

 m
od

el
lin

g 
fo

r c
or

re
la

tio
n 

an
al

ys
is

 b
et

w
ee

n 
co

nt
in

uo
us

 a
nd

 n
om

in
al

 la
nd

sl
id

e 
in

flu
en

ci
ng

 fa
ct

or
s 

 

 
L

U
_S

 
Si

g.
 

V
eg

 
Si

g.
 

S_
C

ol
lv

 
Si

g.
 

S_
B

FS
 

Si
g.

 
L

U
_D

F 
Si

g.
 

S_
G

B
Pd

z 
Si

g.
 

SD
_V

S 
Si

g.
 

E
_M

 
Si

g 
W

tn
s 

-.0
17

 
.9

0 
.0

65
 

.0
1 

-.6
9 

.0
0 

.5
8 

.0
0 

-.3
7 

.0
0 

-.2
7 

.0
0 

.5
3 

.0
6 

.5
3 

.0
6 

E
le

v 
-7

.2
0 

.0
0 

1.
94

 
.0

0 
-4

1.
53

 
.0

0 
10

.5
9 

.0
0 

-9
.4

9 
.0

0 
-3

.7
1 

.0
0 

3.
74

 
.0

0 
3.

74
 

.0
0 

Sl
p 

-6
.0

9 
.0

0 
1.

69
 

.0
0 

-9
.1

7 
.0

0 
-.7

9 
.0

0 
-4

.8
5 

.0
0 

-1
.6

1 
.0

0 
-8

.5
9 

.0
0 

-8
.5

9 
.0

0 
A

sp
 

1.
19

 
.0

0 
-.3

3 
.0

0 
-.3

3 
.0

0 
-1

.4
4 

.0
0 

1.
41

 
.0

0 
2.

02
 

.0
0 

-1
.8

3 
.0

0 
-1

.8
3 

.0
0 

D
is

tt
oS

tr
m

 
4.

16
 

.0
0 

1.
14

 
.0

0 
-.7

9 
.0

0 
-2

.3
5 

.0
0 

-.1
1 

.0
0 

2.
38

 
.0

0 
-1

.4
3 

.0
0 

-1
.4

3 
.0

0 
D

is
tt

oR
oa

d 
-1

3.
70

 
.0

0 
1.

69
 

.0
0 

-.8
5 

.0
0 

-2
.4

0 
.0

0 
-2

.8
1 

.0
0 

-1
.5

6 
.0

0 
1.

96
 

.0
0 

1.
96

 
.0

0 
C

ur
v 

1.
69

 
.0

6 
.3

5 
.0

0 
3.

71
 

.0
0 

-.9
4 

.0
0 

1.
47

 
.0

0 
-.9

8 
.2

4 
1.

89
 

.2
2 

1.
89

 
.2

2 
D

is
tt

oF
au

lt 
1.

04
 

.0
0 

.1
6 

.0
0 

-.5
7 

.0
0 

.6
4 

.0
0 

.1
4 

.0
0 

-1
2.

50
 

.0
0 

-.5
8 

.0
0 

-.5
8 

.0
0 

D
en

sR
oa

d 
-.3

4 
.1

5 
-.1

8 
.0

0 
30

.9
9 

.0
0 

13
.4

0 
.0

0 
14

.1
3 

.0
0 

.1
9 

.0
6 

-4
.1

0 
.0

5 
-4

.1
0 

.0
7 

C
on

st
an

t 
-3

.7
1 

.0
0 

-1
.7

2 
.0

0 
-2

4.
66

 
.0

0 
-1

1.
80

 
.0

0 
-9

.4
7 

.0
0 

-1
.8

3 
.0

0 
-3

.7
6 

.0
0 

-3
.7

6 
.0

0 



 

134

Figure 3.48. The resultant variables considered for grid-based analysis 

 

The susceptibility maps were obtained by modeling the relationship between the 

landslide occurances and the selected variables. Generally, these models require 

normally distributed random variables. Therefore, the variables selected by 

multicolinearity analysis to be used for susceptibility mapping, were finally analysed 

by Q-Q plot. For this purpose, Q-Q plots for each variable is drawn and presented in 

Appendix A-1. The Q-Q plot is an effective tool to test the normality of each factor 

considered in the analysis. Q-Q plot is a graphical tool for diagnosing differences in 

distributions (such as non-normality). The points in the Q-Q plot should lie 

approximately in a straight line, since the populations being sampled are in fact 

normal. The purpose of the plot is to check how close the points adhere to the target 

line. Specific departures indicate skewness, heavy or light tails, and possible extreme 

values. Different procedures offer different methods to approximate the normal 

distribution. As a result of the analysis, it is found that topographical elevation 

(Elev), aspect (Aspt), distance to stream network (DisttoStrm), distance to fault 

network (DisttoFault) need transformation for better fit to normal distribution (Table 

A-1 in Appendix A).  

 

 

 

http://en.wikipedia.org/wiki/Normal_distribution�
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3.3.3.2 Statistical Data Analysis for Slope Unit  
 

3.3.3.2.1 Creation of Slope Unit-based Mapping Unit and Assigning the 
Data Set to Each Mapping Unit 

 
The second mapping unit type selected for the susceptibility mapping analysis was 

the slope unit, where space is subdivided into regions based on certain hydrological 

criteria. The slope-unit provides a clear physical relationship between landslide 

occurrence and the fundamental morphological elements of a hilly or mountainous 

region, namely drainage and divide lines (Huabin et al., 2005). 

 
Slope unit also has pros and cons. Slope unit considers hazard to be continuous, 

spatially aggregated, and variable, whereas hazard that is assigned to many different 

grid cells represents a single movement in the grid. Relatively larger mass 

movements can be more logically represented by slope unit procedure because they 

mostly consider the cells that belong to the same landslide (Begueria and Lorente, 

1999). The disadvantage of slope unit is that it requires assigning the same 

probability of landslide occurrence to the entire land unit. Also, it provides no 

information about which part of the slope is more likely to be affected. The final map 

is a zonation of the entire area into homogeneous landslide susceptibility units 

(Huabin et al., 2005).  

 
Physically the slope unit can be considered as the left or right side of a sub-basin of 

any order into which a watershed can be partitioned. Therefore, slope unit can be 

identified by the intersection of a ridge line and a valley line. A GIS-based 

hydrologic analysis and modeling tool, Arc Hydro (Maidment, 2002), was employed 

to obtain the dividing lines for identifying slope units in this study. The procedure 

used to extract slope units is as follows (Figure 3.49): In the first step, the DEM and 

Inverse DEM (InvDEM) are obtained. InvDEM is the reverse DEM, which is 

obtained by turning the high DEM values into low values, and low DEM values into 

high values (Xie et al., 2004). In the second step the hydrological model is applied 

both for the DEM and InvDEM. In the third step, the outline of the watershed 

polygon both for the DEM (Figure 3.50a) and the InvDEM (Figure 3.50c) is 

obtained. The watershed boundaries obtained from the DEM are topologically the 

watershed divides or ridge lines. The watershed boundaries obtained from the 
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InvDEM are topologically the valley line or drainage line (Figure 3.50b, Figure 

3.50c). Then for the fourth step, the watershed boundaries obtained both from the 

DEM and the InvDEM are combined in the GIS environment to generate slope units 

(Figure 3.50d). 

 

The catchment model for obtaining watershed boundary can be described as follows 

(Figure 3.49): The DEM or InvDEM surface is hydrologically connected to obtain 

watershed boundary. For this reason, the low elevation areas in the DEM or 

InvDEM, which are surrounded by higher terrain that disrupts the flow path, are 

filled. The flow direction is calculated by examining the eight neighbors of a cell 

according to the eight direction method and by determining the neighbor with the 

direction of the steepest downhill slope with respect to the cell of interest. Then, the 

associated flow accumulation grid is computed by summing the number of uphill 

cells that “flow” to any other cell. As a result, each cell-value represents the number 

of uphill cells flowing to it. In addition, a grid representing a stream network is 

created by querying the flow-accumulation grid for cell values above a certain 

threshold. This threshold is defined either as a number of cells or as a drainage area 

in square kilometers. In general, the recommended size for stream threshold 

definition is 1% of the maximum flow accumulation (Gopalan et al., 2002). A 

smaller threshold results in denser stream network and usually in a greater number of 

delineated catchments. The watershed boundaries are determined for the DEM or 

InvDEM by following a flow direction grid backward. By this process all of the cells 

that drain through a given outlet are determined. The created grid carries a value in 

each cell indicating to which watershed the cell belongs. 
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Figure 3.49. Flow chart showing the steps to create slope unit 
 
 
For the last step of hydrological procedure, these cells were converted to a polygon 

representing the watershed. More information about the hydrological procedure can 

be acquired from Chinnayakanahalli
 
et al. (2002) and Gopalan et al. (2002). As a 

final step, the slope units were obtained by combining the watershed deduced from 

the DEM and the watershed deduced from the reverse DEM (Figure 3.50d).  
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Figure 3.50. a) Watershed boundaries determined using the DEM. b) Drainage line overlaid with 
watershed of the region c) Watershed boundaries determined using the reverse DEM (shown with red 
lines) overlaid with watershed boundaries present the left (L) or right (R) side of a sub-basin. d) Slope 
unit of region obtained in 3D. 
 

 

The variables that may have an affect to landslide occurrence and that were produced 

to be input into the analysis were described in Figure 3.48. These variables include  

topographical elevation (Elev), slope (Slp), aspect (Asp), curvature (Curv), plan 

curvature (Plan_Curv), profile curvature (Prof_Curv), topographic wetness index 

(Wtns), NDVI (Veg), distance to road (DisttoRoad), distance to stream network 

(DisttoStrm), density of road network (DensRoad), density of stream network 

(DensStrm), geological units (6 units), distance to fault (DisttoFault), soil map (5 

units), land use (5 units), soil depth (4 units) and erosion (4 units), which were 

considered for the slope unit analysis. To adapt the variables so that they were used 

in the slope unit, each data in raster format was statistically analyzed. Zonal 

statistical functions were performed on a per-zone basis. As a result, a single output 

value was computed for each zone.  
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Depending on the region of the landslide boundaries, most of the landslides were 

assigned to each corresponding slope unit. However, there may be some important 

difficulties in assigning landslide occurrence to slope units. Due to the digitization 

errors of landslide polygons, some of the landslides which occupy large regions seem 

to be represented not only on one side of the hill, but also on the other side (Figure 

3.51a, Figure 3.51b). Therefore, the occurrence of a single slide can be assigned to 

two different slope units. On the other hand, some landslides have smaller regions; 

that is why these different slides are assigned to the same slope unit instead of being 

considered as separate occurrences. The best way to overcome this drawback is to 

assign each landslide occurrence to a single slope unit. 

 

 
Figure 3.51. a. Landslide boundaries and slope unit boundary b. DEM overlaid with landslide 
boundaries 
 
 
Due to the problems described above, to assign the presence or absence of each 

landslide to the corresponding slope region, a procedure was adopted. In this 

procedure, an index was determined which shows the percentage of landslide area in 

each slope unit area. The indexes in each slope unit were evaluated to identify a 

threshold value, which is defined as 0.6%. If a landslide occupies less than 0.6% of 

the slope unit, the value of zero was assigned and one was assigned otherwise.  

Figure 3.52 shows how the presence and absence of a landslide value was assigned to 

each slope unit. The slope unit was assigned 0 if the landslide boundary only crossed 

from the corner of that slope unit as presented in slope regions a and b in Figure 3.52. 

In these slopes, it can be clearly seen that the index value was lower than the 

threshold. Otherwise, 1 was assigned to that slope unit. As a result, a total of 91 
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landslide occurrences were assigned to the slope units and there were 138 slope units 

in the study region with landslide-free zones. 

 
 

 
Figure 3.52. Slope Unit map showing landslide and landslide-free regions zooming in the south-
western part to show the logic to assign landslide values. 
 
 
The mean value for each slope unit was calculated and assigned to each slope unit. 

As an example the slope and fault line was presented in Figure 3.53 and Figure 3.54 

respectively. The mean statistics was computed for each slope unit and as a resultant 

map given in Figure 3.53b was acquired having range of 00 to 350. 

 

 

 
Figure 3.53. a) Slope map of the region ranges between 0 and 65.55 b) Slope unit map showing the 
mean slope values assigned to each mapping unit 
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As it can be seen from Figure 3.54a, the distance to the road network ranges between 

0 and 1000 m. The closer the road network to each other, the denser the road network 

on the north-eastern part of the region. The mean computed for all slope units was 

presented in Figure 3.54b. Figure 3.54b indicates that in the north-eastern part of the 

region, the road distance is lower. This is due to denser road network present in the 

north-eastern part of the region; hence, the distance to road line cannot be calculated 

with higher distances.  

 

 

 
Figure 3.54. a. Road distance computed for each cell unit b. Road distance assigned to each slope unit 
by computation of mean value. 
 
 

3.3.3.2.2 Pre-Analysis of Data Set 
 
In the first step, the factors which cover regions smaller than 0.03 km2 were 

excluded from the analysis as they do not contain much information. The data 

excluded were: River flooding regions of land use (LU_RF), rock and debris units of 

land use (LU_ R), very deep soil depth (SD_VD), less erosion (E_L), very severe 

erosion (E_VS), alluvial soil (S_Allv), limestone unit of geology (Geo_ L), marl unit 

of geology (Geo_ M), andesite unit of geology (Geo_And). After the exclusion, the 

data were reduced into 28 variables. These variables were analyzed by using the 

correlation matrix to assess the multicollinearity between factors. For the analysis of 

multicollinearity, the spearsman correlation coefficient was used. Table 3.7 shows 

the highly correlated factors which are considered for slope unit-based mapping unit. 
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The same threshold and significance levels for grid cell analysis were used. The 

severe erosion (E_S) and middle erosion (E_M) show high correlation with colluvial 

soil (S_Collv). In addition, S_Collv shows a high correlation with the alluvial unit of 

geology (Geo_Allv). The curvature (Curv) shows high correlation with plan 

curvature (Plan_Curv) and profile curvature (Profile_Curv). Also, the distance to 

fault (DisttoFault) shows a high correlation with deep soil depth (SD_D). The density 

of road network (DensRoad) and density of stream network (DensStrm) show a high 

correlation with the dryfarming (LU_DF) and colluvial soil (S_Collv), respectively. 

As a result, the E_S, E_M, S_Collv, Plan_Curv, Prof_Curv, DisttoFault, DensRoad 

and DensStrm were excluded from the further analysis. Although LU_DF and LU_F 

show a negative correlation, they were both included into the analysis due to their 

important correlation with landslide.  

 

After the redundant variables were reduced by multicollinearity analysis the data 

normality analyses had to be done before regression modeling. As a result of the 

normality analysis, it was found that dry farming unit of land use (LU_DF), brown 

forest soil (S_BFS), farming unit of landuse (LU_F), brown forest soil without lime 

(S_BFSWL), topographical elevation (Elev), aspect (Asp), distance to stream 

network (DisttoStrm), wetness (Wtns) and curvature (Curv) needed transformation 

for better fit to normal distribution (Appendix A-2). 

 
As a result of the statistical analysis of the data sets, the data set containing 37 

variables were reduced to 15 and 20 variables, for both slope and grid-based 

mapping units, respectively as given in Figure 3.55. The reduced databases obtained 

for both mapping unit type were used for further susceptibility modeling for each 

mapping unit. 

 
 
 
 
 
Table 3.7. Multicollinearity analysis of factors 
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Figure 3.55. The resultant influencing parameters after the statistical analysis 

 
 

3.3.4 Quantitative Susceptibility Mapping Models 
 
In this thesis, three global models, namely, logistic regression (LR), spatial 

regression (SR), artificial neural network (ANN) and a local model, geographically 

weighted regression (GWR), were constructed for quantitative landslide 

susceptibility mapping.  

 

3.3.4.1 Logistic Regression (LR) 
 
LR is basically an extension of multiple regressions in situations where the 

dependent variable is not a continuous one (George and Mallery, 2000). In other 

words, the dependent variable is sampled as a binary variable (i.e. presence/absence 

of landslide). The advantage of logistic regression over the multiple regression and 

discriminant analysis is that logistic regression enables analyzing predictor variables 

of all types (i.e. continuous, discrete, and dichotomous) and allows one to produce 

nonlinear models (Mertler and Vannatta, 2002). 

 
In this thesis, at the beginning 15 independent variables were considered for grid-

based approach and 20 independent variables were considered in the slope unit-based 

approach. The forward stepwise procedure was used to obtain LR models for both 
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grid-based and slope unit-based approaches. The models created for both grid-based 

and slope unit-based approaches were given in Eq. 41 and 42, respectively. As seen 

in Eq. 41 and Eq. 42, although approximately similar morphological, environmental 

and geological factors were included in the analyses, slope unit-based mapping unit 

results in a more simplified form.   

 
 
f(x) = 0.527Elev + 0.133DisttoFault + 1.251S_BFS + 2.118LU_DF + 2.481LU_S+ 
3.690E_M + 1.496Geo_SM - 1.340Slp - 0.686Asp - 1.626 DisttoRoad - 0.146 
DisttoStrm - 0.301Veg - 3.854 S_Collv  - 2.318 S_GBPdz -4.849         (41) 
 

 

f(x) = 32.871DisttoRoad + 5.264S_BFS + 160.502SD_VS+ 30.371Geo_SM + 
18.640Geo_C -52.499LU_F + 10.570            (42)  
 
 
In grid-based mapping unit (Eq.41) factors of slope (Slp), aspect (Asp), distance to 

road network (DisttoRoad), distance to stream network (DisttoStrm), NDVI (Veg), 

colluvial soil (S_Collv), grey brown podzolic soil (S_GBPdz) have a reducing affect 

on landslide occurrence. On the other hand, topographical elevation (Elev), distance 

to fault (DisttoFault), brown forest soil (S_BFS), dry farming (LU_DF), settlement 

(LU_S), middle erosion (E_M), sandstone mudstone (Geo_SM) have contribution to 

landslide occurrence. Among the factors contributing to landslides (Eq. 41), E_M, 

LU_S and LU_DF have the highest contribution. Conversely, S_Collv and S_GBPdz 

types have a reducing effect on landsliding in grid-based approach, which is 

plausible when the spatial distribution of landslides is considered, since very few 

landslides are observed in these soil types. In addition, the grid-based units does not 

represent the physical slopes, hence the model reflects this situation with the negative 

effect of slope parameter on landsliding.  

 

In slope unit-based approach, the regression equation (Eq. 42) involved factors of 

DisttoRoad, brown forest soil (S_BFS), very shallow soil depth (SD_VS), Geo_SM, 

conglomerate unit of geology (Geo_C), and forest (LU_F).  Among these factors, 

LU_F has a reducing affect on landsliding while the rest of the factors in Eq.42 have 

contribution to landsliding. When the coefficients of factors in Eq. 42 were 

examined, it was found that SD_VS and DisttoRoad had the highest effect on the 
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occurrence of landslides in the study region. DisttoRoad indicates the role of human 

effect in the region; hence the analysis shows that human effect has more influence 

than the other factors. 

 

In order to evaluate the significance of the obtained equations in Eq. 41 and Eq. 42, 

training sets that were obtained previously were used for performing chi-square 

Hosmer-Lemeshow test and for evaluating Cox and Snell R2 and Nagelkerke R2 

values (Table 3.8). The -2 Log-likelihood provides an index of model fit. The lower 

the value is, the better the model fits the data. The slope unit-based model results 

indicate that it fits better than grid-based model. The Chi-square value compares the 

actual values for dependent variable with the predicted values. Cox and Snell R2 and 

Nagelkerke R2 were essentially estimates of R2 indicating the proportion of 

variability in the dependent variable which may be accounted for all predictor 

variables included in the model. Larger pseudo-R2 statistics indicate that a high 

amount of variation was explained by the model and it ranges from 0 to 1. As can be 

seen in Table 3.8, the Cox and Snell R2 and Nagelkerke R2 values were higher when 

the model was constructed by using slope unit-based approach. 

 
 
Table 3.8. LR Model test results for grid-based and slope unit-based mapping units 
 

Forwardstepwise 

Training set 

No 

-2 log 

likelihood 

Cox and 

Snell R2 

Nagelkerke 

R2 

Chi-

square 

Grid-based model 1 132987 0.17 0.33 2867 

Slope Unit-based model  2 17.28 0.62 0.87 6.62 

 

 

Landslide susceptibility maps for both data sets were created after obtaining logistic 

regression models. The logit of the f(x) function in Eq.43, P (L), which was defined 

by the logistic function in terms of probability, was calculated for all of the mapping 

units. As f(x) varies from -∞ to +∞, the probability varies from 0, being no 

susceptibility, to 1, being complete susceptibility.  

 

( )

1( )
1 f xP L

Exp−=
+

                          (43) 

  



 

147

The calculated probability values of grid-based and slope unit-based approaches 

were then used to produce thematic landslide susceptibility maps in GIS. Figure 3.56 

shows the susceptibility map produced by LR for grid-based mapping unit. Similarly, 

Figure 3.57 presents the susceptibility map created by logistic regression for slope 

unit-based mapping unit. The landslide susceptibility maps were produced on a 

continuous scale, and for comparison purposes, they were rescaled so that the pixel 

values lie between 0 and 1. 0 indicates the lowest susceptibility and 1 indicates the 

highest susceptibility to landslides. The LR model prediction map created for 

landslide susceptibility for grid-based mapping unit (LR_GRD_SUSCP) is illustrated 

in Figure 3.56 and the LR model prediction map created for landslide susceptibility 

for slope unit-based mapping unit (LR_SU_SUSCP) is illustrated in Figure 3.57. 

Looking at the two maps, it can be said that there are places where differences are 

subtle and there are also areas with dissimilarities. In both of the prediction models, 

the southern parts of the regions are low susceptible to landslides, compared to the 

middle and south-eastern parts of the regions which are high susceptible to landslides 

(Figure 3.56, Figure 3.57). On the other hand, the LR_SU_SUSCP shows the western 

parts of the region to be medium susceptible to landslides as illustrated in Figure 3.57 

by yellow and green colors. 

 

 
Figure 3.56. LR Model prediction map created for landslide susceptibility for grid-based mapping 
unit (LR_GRD_SUSCP) 
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Figure 3.57. LR Model prediction map created for landslide susceptibility for slope unit-based 
mapping unit (LR_SU_SUSCP) 
 
 
The prediction models are also compared by the statistical terms. Therefore, the 

statistics of the original prediction values are computed as presented in Table 3.9. 

The statistical comparison of prediction maps for grid and slope unit-based mapping 

unit indicates that the LR_GRD_SUSCP map has a lower mean value than 

LR_SU_SUSCP (Table 3.9), which means that more areas can be designated as low 

susceptible by LR_GRD_SUSCP. According to the variation of probability values, 

LR_SU_SUSCP shows a higher range of probability value representation with 0.43 

std. dev. value compared to LR_GRD_SUSCP with 0.23 std. dev. values. 

 

Table 3.9. The statistics of the susceptibility models for different mapping units 

Model Mapping Unit Type Min Max Mean Std. Dev. 

LR GRD 0 0.98 0.25 0.23 

 SU 0 1 0.4 0.43 

SR GRD 0.07 0.90 0.5 0.18 

 SU 0.01 0.99 0.5 0.27 

ANN GRD 0.18 0.88 0.33 0.13 

 SU 0.01 0.99 0.41 0.37 

GWR GRD 0.01 0.8 0.27 0.4 

 SU 0 1 0.33 0.32 
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3.3.4.2 Artificial Neural Networks (ANN) 
 

The attractiveness of ANN was due to its performance in learning and adaptivity, 

which allows the system to update its internal structure (Jain et al., 1996). Before 

constracting an ANN model, some initial values such as initial weights, learning rate, 

and momentum coefficients should be determined. In this thesis, the initial values 

were determined depending on the heuristics given in 2.3.2.2. The initial weight 

range was selected as [-1.0; 1.0]. The training rate of an ANN is sensitive to learning 

rate (η). Small numbers of learning rate may cause the training rate to be slow 

because of minor changes in the weights. However, selecting large numbers of 

learning rate may accelerate training and cause oscillates on the error surface and 

never converges by changing the weight vector (Basheer, Hajmeer, 2000, Sönmez et 

al., 2006). In this study, by using the grid-based data set, the learning rate range was 

selected as 0.1. The momentum coefficient is used in weight updating in the back-

propagation algorithm. This allows the learning rate to be larger without instability, 

which speeds the training of network (Heerman and Khazenie, 1992). The 

momentum coefficient was set to 0.95. As a result, a network structure of 15x4x1 

was obtained for grid-based data set. The number of epochs was set to 6000 for the 

analysis. The root mean square error (RMSE) for the stopping criterion was set to 

0.01.  

 
Contrary to the huge data set used in grid-based mapping unit, the data set used in 

slope unit-based mapping unit is smaller. Consequently, the processes can be carried 

out in a shorter time in slope unit-based mapping unit. Thus, three different ANN 

structures were created to select the best one for slope unit-based mapping unit. The 

selected ANN structures for the analysis are 20x2x1, 20x5x1, and 20x11x1. The 

ANN was trained with backpropagation algorithm with a learning rate of 0.1.  The 

number of epochs was set to 8000 for the analysis. The root mean square error 

(RMSE) goal for the stopping criterion was set to 0.01. The relations between the 

number of training cycles and the RMSE for each combination obtained by ANNES 

software were given in Figure 3.58.  
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Figure 3.58. The relations between RMSE and number of training cycle for different 

combinations of hidden neurons  

 
 
From these trials, a learning rate with a value of 0.1 together with 11 hidden neurons 

was selected as the best network structure for the data set in the study region, 

because the RMSE diminishes to a value lower than 0.1 with the use of 11 hidden 

neurons. For this reason, this combination was used to compute the probabilities for 

the whole data set in the study. The performance of ANN is computed to be 0.098, 

which is pretty good. The R2 is computed as 0.44. After the computation of 

prediction values for each case in the study region, the susceptibility maps were 

created, which are given in Figure 3.59 and Figure 3.60, for both grid 

(ANN_GRD_SUSCP) and slope unit-based (ANN_SU_SUSCP) mapping units, 

respectively.  
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Figure 3.59. ANN prediction map created for landslide susceptibility for grid-based mapping 
unit (ANN_GRD_SUSCP) 

 
 

 

Figure 3.60. ANN prediction map created for landslide susceptibility for slope unit-based 
mapping unit (ANN_SU_SUSCP) 
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Visual comparison of both ANN_GRD_SUSCP (Figure 3.59) and ANN_SU_SUSCP 

(Figure 3.60) maps demonstrate that the southern parts of the region are similar and 

represent low susceptibility to landslides. On the other hand, the south-eastern part of 

the region shows medium susceptibility to landslide occurrence and is displayed with 

green, yellow, and orange colors by ANN_GRD_SUSCP and is represented with 

high susceptibility by ANN_SU_SUSCP. 

 
The statistical comparison of the prediction maps presented in Table 3.9 for grid and 

slope unit-based mapping unit displays that the ANN_GRD_SUSCP map and the 

ANN_SU_SUSCP have similar mean values (Table 3.9), whereas the variation of 

probability values in ANN_SU_SUSCP (0.27) is larger than ANN_GRD_SUSCP 

(0.18). This proves that ANN_SU_SUSCP shows a higher range of susceptibility 

values. 

 
 

3.3.4.3 Spatial Regression (SR)  
 
There is not yet specialized software available to carry out the SR process. In this 

thesis, the library of Spatial Econometrics Toolbox in the Matlab environment was 

adopted for modeling SR (LeSage, 2009). The train data obtained was used for the 

modeling, which is described in section 3.4. After the application of spatial 

autoregressive modeling for the dependent variable in grid-based and slope unit-

based approaches, the models developed for the study region were presented in Eq. 

44 and 45, respectively. 

 

 

f(x) = 0.255LU_DF + 0.112S_BFS + 0.508E_M + 0.01371Geo_SM  -   0.304 Elev- 
0.820Slp - 0.297Asp - 0.272DisttoRoad - 0.21Veg – 1.113S_Collv + 0.811326 

         (44) 
 

 

f(x) = 2.45Slp+ 7.648Wtns + 0.893DisttoRoad + 3.605S_BFS + 2.980SD_D+ 
1.71Geo_SM - 2.06Veg- 6.08LU_DF - 7.766LU_F -1.3411S_VS -1.638S_S + 
0.3420                 (45) 
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The developed models for grid-based data set in Eq.44 indicates that factors of dry 

farming (LU_DF), brown forest soil (S_BFS), middle erosion (E_M), and sandstone-

mudstone unit of geology (Geo_SM) have contribution to landsliding while 

topographical elevation (Elv), slope (Slp), aspect (Asp), distance to road network 

(DisttoRoad), NDVI (Veg) and colluvial soil (S_C) have a reducing affect on 

landsliding. When the coefficients of factors in Eq. 44 were examined, it can be seen 

that LU_DF, E_M provide the highest contribution to landsliding, which are 

consistent with the observations in the field. On the other hand, Slp and Veg provide 

the biggest effect on reducing landslides, which is also meaningful. 

 

In slope unit-based approach, regression equation (Eq. 45) involves factors of Slp, 

topographic wetness index (Wtns), DisttoRoad, S_BFS, deep soil depth (SD_D), 

conglomerate unit of geology (Geo_C), Veg, LU_DF, forest (LU_F), very shallow 

soil depth (SD_VS), and shallow soil depth (SD_S). Among these factors, Veg, 

LU_DF, LU_F, SD_VS, and SD_S have a reducing affect on landsliding while the 

rest of the factors in Eq.45 have contribution to landsliding. When the coefficients of 

factors in Eq. 45 were examined, it can be seen that Wtns, S_BFS, and S_D have the 

biggest effect on landslide occurrence in the study region, which is logical. On the 

other hand, Veg, LU_DF, and LU_F have the biggest effect on reducing landslides in 

the study region. 

 
In SR model, the local pseudo R2 showed that nearly 67% and 87% of the variance in 

landslide occurrence is explained by the model for grid-based and slope unit-based 

approaches respectively. The R2 values of SR models provide considerably higher R2 

values than LR models. The susceptibility maps produced by using Eq. 43 were 

given in Figure 3.61 and Figure 3.62 for both grid and slope unit-based mapping unit 

respectively.  
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Figure 3.61. SR prediction map created for landslide susceptibility for grid-based mapping unit 
(SR_GRD_SUSCP) 
 
 

 
Figure 3.62. SR prediction map created for landslide susceptibility for slope unit-based mapping unit 
(SR_SU_SUSCP) 
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Both susceptibility maps based on grid (SR_GRD_SUSCP) (Figure 3.61) and slope 

unit-based (SR_SU_SUSCP) (Figure 3.62) mapping unit with SR model represent 

the southern part of the regions to be low susceptible. Similarly, the eastern parts of 

the regions are illustrated as highly susceptible. However, high susceptibility values 

are distributed more over the western part of the region by SR_SU_SUSCP than by 

SR_GRD_SUSCP. Therefore, it can be concluded that SR_SU_SUSCP has much 

higher susceptibility values than SR_GRD_SUSCP, which might be due to the 

generalization of variable values of slope unit-based mapping unit. 

 
The mean value of SR_GRD_SUSCP and SR_SU_SUSCP is similar (0.5) and 

relatively higher compared to the other LR and ANN models (Table 3.9). For this 

reason, more areas are designated as medium or high susceptible in both maps. The 

variation of probability values is smaller in SR_GRD_SUSCP (0.13) than in 

SR_SU_SUSCP (0.37). As a result, it can be said that the SR_SU_SUSCP has a 

higher range of susceptibility values, which can also be observed in the maps in the 

western part of the region. 

 
 

3.3.4.4 Geographically Weighted Regression (GWR) 
 

Up to now, the applied models of SR, ANN, and LR were a global model, which 

means that one set of result was generated from the analysis and the relationships 

generated were assumed to be the same for the whole region. However, spatial 

phenomena have potential variability across space. According to Fortheringham et al. 

(2000), the relationships might exhibit spatial nonstationary over space due to three 

main reasons. Firstly, spatial variations exist in relationships due to the random 

sampling variations. Secondly, the relationships might be intrinsically different 

across space. Thirdly, it is very difficult to model the reality as some more relevant 

variables are missed or omitted, or as they are represented by an incorrect functional 

form. The global analysis lacks information on spatial variation in the relationships 

being examined (Fortheringham et al., 2000). Recent developments in local spatial 

analysis provide more accurate and realistic representations of the world being 

modeled. So the aim of this part of the study was the local modeling of spatial data, 

where the focus was on testing the presence of “differences” across space rather than 
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assuming that there is no difference.  

 

Geographically weighted regression (GWR), which is a local modeling technique, is 

particularly attractive due to its ability to explore local variations in the study region 

(Paez, 2002). Specialized software, GWR 3.0, was used to undertake the process. 

Once the variables were selected, the Kernel Type was chosen as ‘Fixed’ (Gaussian). 

The kernel bandwidth was determined by cross validation (CV). The dependent 

variable was binary in GWR model, leading to a logistic GWR modeling. GWR 

allows exploration of the relation between landslide occurrence and various factors 

on the cell level. Thus, each cell has unique local regression parameters representing 

the relationship.  

 

For grid-based and slope-based mapping unit, Local pseudo R2 from GWR showed 

that nearly 70% and 87% of the variance in landslide occurrences was explained by 

the model respectively (Figure 3.63, Figure 3.65). Different from the other global 

models, the R2 value ranges between 0.45 and 0.68 (Figure 3.63), and between 0.54 

and 0.87 (Figure 3.65) for grid and slope unit-based mapping units respectively. For 

grid-based mapping unit, the R2 is the highest in the south-eastern and north-western 

parts of the region, where the region is free from landslide. In the mean time, for 

slope unit-based mapping unit, the R2 is the highest in the south-eastern part of the 

region, where the region is free from landslide. The prediction values of GWR for 

grid-based mapping unit also provide a result map similar to LR, SR and ANN 

presented in Figure 3.64. Furthermore, the prediction values of GWR for slope unit-

based mapping unit also provided a result map similar to SR and ANN Figure 3.66.  
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Figure 3.63. The R 2 result map of GWR model for grid-based mapping unit 
 

 

 
 
Figure 3.64. The GWR prediction map created for landslide susceptibility for grid-based mapping 
unit (GWR_GRD_SUSCP) 
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Figure 3.65. The R 2 result map of GWR model for slope unit-based mapping unit  
 
 

 
Figure 3.66. GWR prediction map created for landslide susceptibility for slope unit-based mapping 
unit (GWR_GRD_SUSCP) 
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When the GWR_GRD_SUSCP and GWR_SU_SUSCP maps are compared, it is 

evident that both maps provide similar representations of low susceptibility in the 

southern parts of the region. However, the eastern part of the region does not provide 

a similar pattern like GWR_GRD_SUSCP and GWR_SU_SUSCP in the sense that 

the GWR_GRD_SUSCP brings about high susceptibility and the GWR_SU_SUSCP 

shows medium susceptibility. 

 
The statistical comparison of prediction maps for grid and slope unit-based mapping 

unit for GWR illustrates that the GWR_GRD_SUSCP map has a lower mean value 

than GWR_SU_SUSCP (Table 3.9). Thus, more areas can be designated as low 

susceptible by GWR_GRD_SUSCP. The variation of probability values indicates 

that LR_GRD_SUSCP shows medium susceptibility with 0.4 Std. Dev. value 

compared to GWR_SU_SUSCP with 0.33 Std. Dev. values. 

 

As GWR gives different regression parameters for each cell, they can be mapped so 

that spatial variations of parameters can be examined. The statistics of each variable 

are illustrated inTable 3.10 andTable 3.11 for grid-based and slope unit-based 

mapping units respectively. 

 
 
Table 3.10. Descriptive statistics of GWR parameter estimations for grid-based 
mapping unit 
 
 

Factor Minimum Maximum Mean Std. 
Deviation 

intercept -7.71 -2.47 -4.19 0.94 
Veg -0.76 -0.10 -0.40 0.10 
LU_ DF 1.37 4.77 2.62 0.69 
LU_S 0.35 7.42 3.20 1.63 
S_ GBPdz -0.67 4.18 1.93 0.89 
S_ BFS -2.48 2.02 0.95 0.79 
Geo_ SM 4.13 7.40 4.64 0.54 
Slp -7.85 0.11 -3.97 1.49 
DisttoRoad -5.01 -0.39 -1.81 1.06 
S_ Collv -26.20 -20.51 -23.32 1.46 
SD_VS -21.27 -16.31 -18.82 1.03 
Elev -14.20 -0.99 -6.63 3.34 
Asp -1.07 0.37 -0.06 0.39 
DisttoStrm -1.05 3.16 0.91 0.95 
DisttoFault -0.95 2.24 0.38 0.70 
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Table 3.11. Descriptive Statistics of GWR parameter estimations for slope unit-based mapping unit 
 

Factor Minimum Maximum Mean Std. Deviation 

Intercept -12.01 113.64 22.08 26.54 

LU_ DF -136.06 -2.44 -35.80 31.21 

LU_ F -140.75 -1.87 -37.07 32.68 

Geo_ C -4.42 1.55 -0.79 0.96 

Geo_ SM 1.04 8.25 3.43 1.32 

S_ GBPdz 6.38 24.11 11.00 3.87 

S_ BFS 1.10 17.52 6.91 3.89 

S_ BFSWL -1.45 21.54 6.33 5.33 

DisttoStrm -1.37 5.26 2.49 1.46 

Veg -7.26 4.14 -1.74 2.73 

Slp -5.58 10.23 -0.21 2.98 

DisttoRoad -5.96 6.41 1.44 3.31 

Wtns 10.31 37.37 15.60 5.22 
 

 

It is clear that the magnitude of the relationships between influencing variables and 

landslide occurrence, as well as the significance of them, vary over space. The 

variation of GWR parameters across the study area is mapped for each influencing 

factor. The maps are overlaid by the corresponding maps of t values for each 

parameter respectively. Then, by evaluating the t values that are higher or lower than 

the critical values at 0.05 significance level, the maps are obtained for each 

parameter. These maps present the significant regions, whereas they mask the 

insignificant regions. Therefore, the maps illustrate the variation of GWR parameters 

for significant regions. For instance, for grid-based mapping unit, the vegetation 

(Veg) map of the model indicates a negative propensity to landslide occurrences; 

however, the contribution of this variable to landslide occurrence is different 

throughout the study region, where the coefficient values range between -0.01 and -

0.77. The negative contribution of Veg means that as the Veg increases, the landslide 

occurrence decreases, or vice versa. TheVeg values are not significant in the 

southern and northern parts of the region, for that reason those parts are masked. In 

the rest of the region, however, they are significant and the variation of Veg is 

mapped. The negative effect is lower for the eastern parts of the region and it 

increases across the centre part to the southern part of the region (Figure 3.67).  
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The LU_DF is insignificant in the eastern and south eastern parts of the region and 

significant in the rest of the region. It has a positive contribution to landslide 

occurrence, and the magnitude of the contribution to landslide varies over space 

(Figure 3.68). LU_DF shows a more positive relationship to the eastern and south-

eastern parts of the study area, while the opposite relation occurs in the western and 

north-western parts of the region. Settlement (LU_S) is significant for the whole 

region and it shows a strong positive relation to landslide occurence around the 

center and along a strip running from the north-eastern and south–eastern parts of 

Kumluca watershed (Figure 3.69).  

 
 

 
Figure 3.67. GWR parameter variation accross the study area for vegetation (Veg) 
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Figure 3.68. GWR parameter variation accross the study area for Land-Use Dry Farming (LU_DF) 
 
 

 
Figure 3.69. GWR parameter variation accross the study area for Land-Use Dry Settlement (LU_S) 
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Grey Brown Podzolic Soil (S_GBPdz) shows a strong positive relation to landslide 

occurence along the western part of the region and the magnitude of positive 

contribution to landslide occurence decreases around the centre. In the mean time, it 

shows a negative relation to landslide occurrence through the eastern part of the 

region (Figure B-1 in Appendix B). The parameters of Brown Forest soil (S_BFS) 

are negatively significant throughout the region and it indicates a positive statistical 

relationship to landslide occurrence in the western and south-western parts of the 

region, but a negative relation in the eastern and south-eastern parts of the region 

(Figure B-2 in Appendix B).  
 
Sandstone-Mudstone unit of Geology (Geo_SM) is insignificant in the western part 

of the region and shows a strong positive relation to landslide occurrence around the 

center and the eastern part of the region. The magnitude of positive relation increases 

throughout the western part of the region (Figure B-3 in Appendix B). This positive 

affect can also be identified from the relationship evaluation of Geology with 

landslide occurrence described in section 3.3.1.2. This formation provides the highest 

correlation with landslide.  

 
Slope (Slp) shows a negative significance throughout most of the study area, with the 

exception of the eastern part of the region. It has a high negative relationship to the 

western and north-western parts of the study area and the magnitude of negative 

significance decreases around the centre (Figure B-4 in Appendix B). Distance to 

Road (DisttoRoad) shows an insignificance along a strip running from north to south 

in the western part of the region. The parameters of DisttoRoad indicate a negative 

relation to landslide occurrence throughout the region. It has a stronger negative 

relationship to landslide occurrence in the western part; however, the negative 

relation decreases across the eastern part of the study area (Figure B-5).  

 
Colluvial Soil (S_Colv) is negatively significant throughout the whole region. The 

parameters of S_Colv are of the greatest magnitude, indicating a stronger negative 

statistical relationship to landslide occurrence in the eastern part and the magnitude 

decreases across the western parts (Figure B-6 in Appendix B). Very shallow soil 

depth (SD_VS) is negatively significant throughout the whole region. It shows a 

strong negative relation to landslide occurrence across a curve-shaped region in the 
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northern part of the study area. The magnitude of negative relation decreases from 

the northern to the southern parts (Figure B-7 in Appendix B).  

 
Topographical elevation (Elev) shows an insignificance around the south-western 

part of the region and a negative significance to the rest of the region. It has a strong 

negative relation to landslide occurrence around the eastern part of the region and the 

negative relation decreases around the center (Figure B-8 in Appendix B). The 

Aspect is negatively significant throughout the whole region. It shows a negative 

relation to landslide occurrence around the western and north-western parts of the 

region. However, it has a positive contribution to landslide occurrence in the eastern 

parts of the region (Figure B-9 in Appendix B).  

 
The Distance to Stream (DisttoStrm) has a positive significance throughout the 

whole region. It shows a strong positive relation to landslide occurrence across the 

northern part of the region and the influence decreases around the centre. 

Additionally, it has a negative relation to landslide occurrence in the southern part of 

the study area (Figure B-10 in Appendix B). The Distance to Fault (DisttoFault) 

parameters are positively significant in most of the region except in the eastern part. 

It indicates a positive statistical relationship to landslide occurrence across an L-

shaped region running from the western to the southeastern part of the study area. 

However, it has a negative relationship throughout the southern and northern parts 

(Figure B-11 in Appendix B). 
 
For slope unit-based mapping unit, the Landuse Dry Farming (LU_DF) is 

insignificant in the eastern and southeastern parts of the region and it is significant in 

the rest of the region (Figure B-12 in Appendix B). It has a negative contribution to 

landslide occurrence and the magnitude of the contribution to landslides varies over 

space. The negative contribution is higher along a strip running to the south of 

Kumluca. The negative contribution is lower in the northern parts. Forest (LU_F) 

shows a negative significance throughout most of the study area, with the exception 

of the eastern part of the region. It has a high negative relationship in the west and 

north-west of the study area and the magnitude of negative significance decreases 

around the centre (Figure B-13 in Appendix B).  

 
The Conglomerate unit of Geology (Geo_C) indicates a negative significance 
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throughout the study area, with the exception of the eastern part of the region. It has 

a high negative relationship to the south-western part and the magnitude of negative 

significance decreases around the rest of the region and in the centre (Figure B-14 in 

Appendix B). The parameters of Sandstone-Mudstone unit of geology (Geo_SM) 

indicate a positive significance throughout the region. It has a stronger positive 

relationship to landslide occurrence in the south-eastern part; however, the positive 

relation decreases from the centre to the western and south-western parts of the study 

area (Figure B-15 in Appendix B).  

 
The Grey Brown Podzolic Soil (S_GBPdz) indicates a positive significance 

throughout the study area, with the exception of the south-eastern part of the region. 

It has a high positive relationship across the cetre and the north-western part of the 

region (Figure B-16 in Appendix B). The Brown forest soil (S_BFS) shows a 

positive significance throughout most of the study area, with the exception of the 

south-eastern part of the region. It has a high positive relationship in the eastern and 

south-eastern parts of the study area and the magnitude of negative significance 

decreases in the western and north-western parts of the region (Figure B-17 in 

Appendix B).  

 

The brown forest soil without lime (S_BFSWL) is negatively significant throughout 

the whole region except in the L-shaped region running from the north-eastern to the 

south-eastern part of the study area. It shows little negative relation to landslide 

occurrence around the western part of the region. However, it has a positive 

cotribution to landslide occurrence in the eastern parts of the region and in the 

southern and south-western parts around the centre of Kumluca (Figure B-18 in 

Appendix B). The distance to stream network (DisttoStrm) is insignificant in the 

eastern part of the region and significant in the rest of the region. It has a negative 

relation with landslide occurrence in the eastern part; however, it has a positive 

contribution to landslide occurrence in the western parts. The positive influence 

increases from the northern to the southern part (Figure B-19 in Appendix B).  

 

The vegetation (Veg) is insignificant in the south-eastern part of the region and it is 

significant in the rest of the region. It has a negative relation with landslide 

occurrence in the southern part; however, it has a positive contribution to landslide 



 

166

occurrence in the northern parts (Figure B-20 in Appendix B). The parameters of 

Slope (Slp) are negatively significant throughout the whole region. It indicates a 

positive statistical relationship to landslide occurrence into the south-eastern part of 

the region, but a negative relation to landslide occurrence in the western and south-

western parts of the region (Figure B-21 in Appendix B).  

 
The distance to road network (DisttoRoad) is insignificant in the south-eastern part 

of the region and significant in the rest of the region. It has a negative relation with 

landslide occurrence in the western and southern part; however, it has a positive 

contribution to landslide occurrence around the centre (Figure B-22). The parameters 

of topographic wetness index (Wtns) are positively significant throughout the whole 

region. It indicates a positive statistical relationship to landslide occurrence around 

the center and along a strip running from east to west in Kumluca. The positive 

contribution increases in the south-eastern and north-western parts of the region 

(Figure B-23).  

 
 

3.3.4.5 Performance Testing and Accuracy Assessment for 
Susceptibility Assessment Models 

 
After obtaining the prediction maps, the most essential component is to carry out a 

validation analysis. Without any validation process, the prediction models and the 

maps obtained are totally useless and have hardly any scientific significance (Chung 

and Fabbri, 2003). Thus, for validation of the models, the past landslides were 

partitioned into two subsets. The first subset of data was used for obtaining the 

prediction maps by using the models; the second subset was used as the test data and 

compared with the prediction results for validation and to interpret the differences in 

the performance. 

 
The distribution of past landslides over the entire study area was presented in Figure 

3.70. A space-partition technique was used to divide the entire study area into two 

separated subareas (TEST_LS and TRAIN_LS). For the generation of the first 

subset, 20% from all dormant landslides was selected randomly. To consider the 

physical properties of each landslide region, they were not partitioned into grid cells 

before the selection. The second subset of landslides was composed of active and 
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inactive landslides and was used for modeling. The spatial distribution of the testing 

and training data assessment is shown in Figure 3.70. 

 

 
Figure 3.70. Spatial distribution of testing (TEST_LS) and training (TRAIN_LS) landslide inventory 
data  
 
 
The relative operating characteristics (ROC) curve was used to compare the 

predictive abilities of SR, LR, ANN, and GWR models for both grid and slope unit-

based mapping units. The first subset of data was used for obtaining the prediction 

maps and the second subset was used for validating the model results. The second 

subset of data was compared with LR, SR ANN, and GWR prediction results for 

accuracy analysis by using the ROC curve. The ROC curves illustrate how well the 

models predict a landslide. The plot of the curves offers an excellent visual 

comparison of the models’ performances (Yeşilnacar and Topal, 2005). The further 

the curve lies above the reference line, the more accurate the test becomes. If the 

ROC value is 1, it indicates a perfect fit, whereas ROC equal to 0.5 shows a random 

fit. Sensitivity is the probability that a "positive" case is correctly classified, and is 

plotted on the y-axis in an ROC curve. Specificity is the probability that a "negative" 
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case is correctly classified. The ROC curves for the developed models are given in 

Figure 3.71. Based on their distances from the reference line, it can be concluded that 

all the models display a good performance for predicting landslide occurrences.   

 
For the grid-based mapping unit, the local methods of GWR and SR models show a 

higher predictive performance than the global models. The LR model provides a 

higher performance than the ANN. It is very difficult to say that the SR or the GWR 

model is better than each other. For this reason, it is better to analyze the numerical 

summary of the area under the curve. Table 3.12 indicates that the asymptomatic 

significance of each model is less than 0.05, so all are doing better than guessing. 

From the confidence intervals, it can be seen that GWR model prediction is 

comparatively higher than all the other models with a value of 0.80. Secondly, the 

SR shows the highest performance with a value of 0.77.  LR and ANN provide the 

predictive ability value of 0.74 and 0.72 respectively. As a result, we can say that 

incorporation of spatial correlation in parameters into the analysis increases the 

performance of the susceptibility mapping. 

 

 

Figure 3.71. Prediction accuracy assessment of models by using ROC curve  
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Table 3.12. Area under the curve for grid-based mapping unit 

 

Variable(s) Area Std. 
Error(a) 

Asymptotic 
Sig.(b) 

Asymptotic 95% Confidence 
Interval 

        Lower Bound Upper Bound 

GWR .799 .006 .000 .787 .811 
SR .774 .007 .000 .760 .788 
LR .744 .007 .000 .730 .758 
ANN .718 .009 .000 .700 .736 

 

For slope unit-based mapping unit, by the visual comparison of the models it can be 

clearly identified that the local model GWR provide a better performance than the 

global models as SR, LR, and ANN. When the global models are compared, the SR 

model provides better model performance than the LR model. Also the ANN has a 

better performance than the LR. The worst prediction performance belongs to the LR 

model. The asymptotic significance of each model is less than 0.05, so all are doing 

better than guessing (Figure 3.72).  

 

 

Figure 3.72.Predictive performance of different susceptibility methods for slope unit-based 

mapping unit 
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From the confidence intervals, it can be recognized that the LR model predictions are 

worse than the other (SR, ANN, and GWR) models because the entirety of their 

intervals lies below the SR, ANN and GWR models. It can be concluded that the 

models SR (0.90) and GWR (0.93), and ANN (0.89) provide the highest predictive 

ability compared to the LR (0.82) (Table 3.13). Additionally, the local model (GWR) 

provides better predictive ability for the study region compared to the global models 

(LR, SR, and ANN) by obtaining the largest area under the curve.   

 
Table 3.13. Area under the curve for slope-based mapping unit 
 

Asymptotic 95% Confidence 
Interval Test Result Variable(s) Area Std. 

Error(a) 
Asymptotic 

Sig.(b) Lower Bound Upper Bound 
SR .898 .020 .000 .859 .937 
LR .820 .028 .000 .766 .875 
GWR .932 .015 .000 .903 .961 
ANN .888 .021 .000 .846 .929 
      

 
 

3.3.4.6  Field Evaluation of Landslide Susceptibility Maps 
 
The landslide susceptibility classes for each method were also evaluated by field 

surveys. In the study region there exists 28 villages and approximately 18 villages 

were visited to evaluate the landslide susceptibility, and then the ground truth was 

compared with the model results. The susceptibility of the slopes was evaluated 

based on expert opinion. Depending on expert experiments, the evaluated slopes 

were rated from the first to the third degree, where the first degree indicates highly 

susceptible slope and the third degree indicates the low susceptible slope. The 

evaluation considers the observed morphology, the geologic structure, activity, and 

extends of the landslide. Figure 3.73 is an illustration of a region evaluated with first 

degree of susceptibility in the field surveys. In this case, some deformations can be 

observed on the housedue to the movement of the surface. The ground truth data was 

surveyed by using both the DGPS and Magellan Hand GPS. DGPS has horizontal 

accuracy lower than dm and Magellan Hand GPS has ±3 m. accuracy. As a result of 

the field surveys Figure 3.74a illustrates the region which are observed to have high 

degree of susceptibility, which are displayed with the label “H” on the map.  
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Figure 3.73.Konuklu village showing first degree of risk where the terrain show a clear 
movement with some indicators as house cracks  

 

 

 
Figure 3.74. a. Ground truth data represented with ”H” was overlaid to the DEM of the study 

region and existing landslide location b. The density map of the ground truth observed through 

field surveys with the landslide polygons obtained from MTA. 

 
 
The ground truth data was overlaid by landslide polygon data, which was acquired 

from MTA. Figure 3.74a indicates that some slopes in the south-western part of the 

regions which have high susceptibility were not mapped by MTA. Hence, the slopes 

which were observed to be highly susceptible through field surveys were merged by 

the landslide polygon and a database was constructed to be used for the evaluation of 

model performance. The performance evaluation was done by the computation of 
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error matrix, which was obtained by the overlay of density map and prediction 

models. As a result of this error matrix, the obtained overall accuracy and kappa 

coefficients were evaluated and compared for reliability purposes (Table 3.14).  

 
 
Table 3.14. Error Matrix resulting from the Model prediction classification 
 
 MODEL  H M L Row 

Total 
Producers 
Accuracy 

Users 
Accuracy 

Overall 
Accuracy Kappa

LR H 93626 12193 95 105914 0.35 0.88 0.50 0.25 
 M 109673 59554 11285 180512 0.21 0.33     
  L 65010 209320 249239 523569 0.96 0.48     

  Column 
Total 268309 281067 260619 809995         

 SR H 122829 24082 787 147698 0.46 0.83 0.55 0.33 
  M 117987 132893 67864 318744 0.47 0.42     
  L 27493 124092 191968 343553 0.74 0.56     

  Column 
Total 268309 281067 260619 809995         

ANN H 89698 12093 163 101954 0.33 0.88 0.46 0.19 
  M 102124 78039 54890 235053 0.28 0.33     
  L 76487 190935 205566 472988 0.79 0.43     

  Column 
Total 268309 281067 260619 809995         

GWR H 169686 17157 753 187596 0.63 0.90 0.61 0.43 
  M 65863 88410 20014 174287 0.31 0.51     
  L 32760 175500 239852 448112 0.92 0.54     
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  Column 
Total 268309 281067 260619 809995         

SR H 64 36 5 105 0.69 0.61 0.55 0.34 
  M 12 20 7 39 0.22 0.51     
  L 17 35 55 107 0.82 0.51     

  Column 
Total 93 91 67 251         

LR H 51 30 10 91 0.55 0.56 0.45 0.20 
 M 10 10 4 24 0.11 0.42     
  L 32 51 53 136 0.79 0.39     

  Column 
Total 93 91 67 251         

GWR H 57 25 4 86 0.61 0.66 0.57 0.37 
  M 8 26 3 37 0.29 0.70     
  L 28 40 60 128 0.90 0.47     

  Column 
Total 93 91 67 251         

 ANN H 60 22 11 93 0.65 0.65 0.53 0.30 
  M 18 34 16 68 0.37 0.50     
  L 15 35 40 90 0.60 0.44     
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  Column 
Total 93 91 67 251         
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Descriptive measures such as overall accuracy (Eq. 46) were computed by dividing 

the total number of correctly classified pixels by the total number of reference pixels. 

The accuracy of individual categories can also be calculated by dividing the number 

of correctly classified pixels in each category by either the total number of pixels in 

the corresponding row or column, which is called producers and users accuracy 

respectively. Overall accuracy does not include the errors of omission and 

commission (nondiagonal elements) but only include data along the major diagonal. 

On the other hand, kappa coefficient (Eq. 47) includes both values, which are 

desirable for computation and analysis. 
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Where; 

 

r=the number of rows in the error matrix 

xii=the number of observations in row i and column i (on the major diagonal) 

xi+=the total of observations in row i (shown as marginal total on the right of the 

matrix) 

x+i= the total of observations in column i (shown as marginal total at the bottom of 

the matrix) 

N=the total number of observations included in matrix 

 

The overall accuracy of the LR is 50%; however, the producer’s accuracy ranges 

between 21 and 96 %. Depending on the controls in the study region and depending 

on the accuracy assessment by kappa and overall accuracy assessment (Figure 3.75), 

the SR method with grid-based mapping unit shows a better predictive performance 

compared to the other global prediction models. Furthermore, the local model GWR, 

provide the highest predictive ability compared to the global models (LR, SR, ANN) 

for both grid and slope unit-based mapping unit. 
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Figure 3.75. Accuracy assessment of the prediction models by kappa and overall accuracy 

 

3.4 Comparison of Susceptibility Maps 
 

The realization of four different models with the help of LR, SR, ANN, and GWR 

and two different mapping units, grid and slope unit-based mapping units, led to the 

production of eight different landslide susceptibility maps. The graphical display of 

each prediction map proved to be rather a useful tool in assessing and portraying the 

degree of susceptibility to slope instability in a systematic and standardized way 

(Carrara, 1983). Notwithstanding, each model has a different theoretical basis, which 

may cause to bring about different prediction values for the same region. Therefore, 

they should be compared in order to evaluate the susceptibility model and mapping 

unit differences in the resultant risk maps.   

 
While the models were conducted using different statistical applications, they were 

mapped in GIS environment by using raster calculations. The landslide susceptibility 

maps were produced in a continuous scale where the numerical values lie between 0 

and 1. For interpretation of maps from the end users for decision purposes and for 

comparison purposes, it is more suitable to change the susceptibility maps from 

continuous scale into categorical classes by the defined cutoff values (class 
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boundaries). If the data is known well, then the classes can be defined manually. 

However, for comparison purposes it is important to use the same class boundaries or 

the similar classification scheme for each map in order to avoid misleading results. It 

is not an easy task to categorize continuous data automatically as there are not any 

estimated methods. In most studies, authors use their expert opinion to develop class 

boundaries. In this thesis, four systems of classifiers were taken into consideration 

for the comparison of susceptibility maps. On the other hand, for the comparison of 

risk maps, class boundaries are defined by expert opinion. It is because economical 

values were obtained with monetary terms in risk maps. Hence, the high and low 

class boundaries can be evaluated and determined, whereas for susceptibility maps, 

the data is in the range of 0 and 1 and predetermining which features are grouped 

together is a difficult task. The selection should depend on the characteristics of the 

histograms showing intervals between numerical values. Hence, for the classification 

of susceptibility maps, the so-called standard deviations, equal intervals, quantiles, 

natural breaks, and were considered and the one that best suits the objectives of the 

study was chosen (Ayalew et al., 2004). Changing the classes can create quite 

different-looking maps; therefore, it is critical to select the best scheme. 

 
The standard deviation classification scheme shows how much a feature's attribute 

value varies from the mean. The class breaks are created after calculation of the 

mean and the standard deviations from the mean values. This scheme may be 

suitable for visualization but not appropriate for comparison purposes, because class 

intervals may vary depending on the data set used. The classification scheme that 

relies on the equal interval divides the range of attribute values into equal-sized sub 

ranges by allowing the user to specify the number of intervals. This method 

emphasizes the amount of susceptibility value relative to other values, hence it is not 

found to be practical for the analysis. In quantile classification, each class contains an 

equal number of features. This classification may result in putting widely different 

values into the same class or placing the similar features to adjacent classes. Due to 

this adverse effect, this method was not used in the analysis. Lastly, the natural break 

relies on the division of data based on natural groupings inherent in the data. The 

classification scheme identifies break points by picking the class breaks that best 

group similar values and maximize the differences between classes (Arcmap 9.1, 

2009). Susceptibility maps are mostly multinominal and may show intervals between 
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numerical values. Therefore, the natural break classification scheme was selected for 

the division of features into classes. Based on this method, three susceptibility 

classes were distinguished as low, medium, and high for different models (LR, SR, 

ANN and GWR) and mapping units (grid and slope unit-based mapping unit).  

 
According to the LR-based susceptibility map for grid-based mapping unit 

(LR_GRD_SUSCP), 13% of the study region lies in the high susceptibility zone. 

22% and 65% of the study region are in the medium and low susceptibility zones 

respectively (Figure 3.76). For the LR-based susceptibility map for slope unit-based 

mapping unit (LR_SU_SUSCP), it was found that 36% of the study region lies in the 

high susceptibility zone. 9% and 55% of the study region are in the medium and low 

susceptibility zones respectively (Figure 3.77). Therefore, it can be concluded that 

the slope unit-based susceptibility map has much more susceptible regions than the 

grid-based susceptibility map. This is mainly due to the higher amount of 

generalization in slope unit-based mapping unit. 

 

 

 

Figure 3.76. The classified LR Model prediction map created for landslide susceptibility for 
grid-based mapping unit (LR_GRD_SUSCP) 
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Figure 3.77. The classified LR Model prediction map created for landslide susceptibility for 

slope unit-based mapping unit (LR_SU_SUSCP) 

 
 
When the SR model for susceptibility mapping for grid-based mapping unit 

(SR_GRD_SUSCP) is considered, 18% of the total area is found to be highly 

susceptible. Low and medium susceptibility zones constitute 42% and 39% of the 

area respectively (Figure 3.78). Furthermore, the SR-based susceptibility map for 

slope unit-based mapping unit (SR_SU_SUSCP) illustrates that 40% of the study 

region lies in the high susceptibility zone and 16% and 44% of the study region are 

in the medium and low susceptibility zones respectively (Figure 3.79).  
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Figure 3.78. The classified SR model prediction map created for landslide susceptibility for 
grid-based mapping unit SR_GRD_SUSCP) 

 
 

Figure 3.79. The classified SR model prediction map created for landslide susceptibility for 
slope unit-based mapping unit SR_SU_SUSCP) 
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The prediction results derived from the ANN-based susceptibility map for grid-based 

mapping unit (ANN_GRD_SUSCP) (Figure 3.80) and ANN-based susceptibility 

map for slope unit-based mapping unit (ANN_SU_SUSCP) (Figure 3.81) show that 

13% and 37% of the region fall into high susceptibility class respectively, which 

means that more areas are designated to be in highly susceptible zones by 

ANN_SU_SUSCP. Additionally, 29% and 24% of the region were classified as 

medium, and 58% and 39% of the map were classified as low in the 

ANN_GRD_SUSCP and ANN_SU_SUSCP maps respectively. 

 

 

 

 
Figure 3.80. The classified ANN model prediction map created for landslide susceptibility for 

grid-based mapping unit (ANN_GRD_SUSCP) 
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Figure 3.81. The classified ANN model prediction map created for landslide susceptibility for 
slope unit-based mapping unit (ANN_SU_SUSCP) 

 

 
Eventually, the GWR model for slope and grid-based mapping unit was categorized. 

As shown in GWR-based susceptibility map for grid-based mapping unit 

(GWR_GRD_SUSCP) (Figure 3.82), 23% of the study area was designated to be 

extremely susceptible. The zones which have low and medium levels of 

susceptibility make up 22% and 55% of the region respectively. Correspondingly, the 

GWR-based susceptibility map for slope unit-based mapping unit 

(GWR_SU_SUSCP) (Figure 3.83) indicates high susceptibility to landslide with 

31% of the region and medium and low susceptibility to landslide with 15% and 54% 

respectively.  
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Figure 3.82. The classified GWR model prediction map created for landslide susceptibility for 
grid-based mapping unit (GWR_GRD_SUSCP) 

 
 

 

Figure 3.83. The classified GWR model prediction map created for landslide susceptibility for 
slope unit-based mapping unit (GWR_SU_SUSCP) 
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The resultant maps are sensitive to the selected susceptibility model and mapping 

unit. Each map may estimate the susceptibility differently depending on the adopted 

algorithm. Therefore, in order to see the trends in the estimated values for different 

categories, the whole picture is illustrated with the help of a bar graphic (Figure 

3.84). 
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Figure 3.84 Evaluation of grid and slope unit-based models for different classes 
 
 
When the mapping unit is considered, it can be concluded that the slope unit-based 

models have a tendency to represent larger percentages of the region which are 

highly susceptible to landslide when compared to grid-based models. This result is 

proved by the bar graphic illustrated in Figure 3.85. This might be the result of the 

adopted procedure to assign the variables to the mapping units. In the grid-based 

mapping unit, a grid mesh is overlaid for each variable with the selected size. Then 

the attribute of each variable is assigned to each grid cell. On the other hand, for the 

slope unit case, each variable is overlaid with the slope unit map and then the 

variables are assigned to each slope unit by using zonal statistical functions which 

perform operations on a per-zone basis. Each unit in the slope map contains a 

variation of data values due to the large extend of the unit. Hence, by using the zonal 

statistics, the variation of data is reduced to a single value, which may normally 

cause the smoothing out of the local details and providing a large generalization of 

the variable values. As a result of this process, the models which have been adopted 
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for slope-based mapping unit might predict high percentages of high and low 

susceptibility values.  

 
When the difference of model selection is considered, each model should be assessed 

individually (Figure 3.85). The models adopted by grid-based mapping unit indicate 

that the LR, ANN, and SR have an increasing trend from high to low susceptibility. 

In the mean time, the histogram that belongs to the GWR is negatively skewed, 

indicating that more areas will fall into the low susceptible zone. The GWR and SR 

models, in which the spatial autocorrelation among the regression parameters are 

taken into account, predict higher percentages of high categories compared to the LR 

and ANN. However, the LR and ANN models predict higher percentages of low 

categories compared to the SR and GWR.  
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Figure 3.85. Evaluation of grid-based models for different classes 

 

 

The models adopted by the slope unit-based mapping unit show that all models 

provide a similar distribution of values where the prediction values decrease in the 

medium class whereas they increase in the high and low classes. The LR model 

provides the highest percentages of low estimates like in the grid-based mapping 

unit. This may indicate the tendency of the LR model to estimate large regions of 

low susceptibility. Conversely, the SR model has a tendency to estimate large 

portions of the region at high susceptibility both in grid and slope unit-based 

mapping unit.  
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Figure 3.86. Evaluation of slope unit-based models for different classes 

 
 
The results obtained from the evaluation of Figure 3.84, Figure 3.85 and Figure 3.86, 

provide a relative comparison of the prediction maps and the inclination of each map 

for different categories. In order to verify the obtained results and to decide on 

whether the tendency of each model is right or not, two different comparison 

approaches were followed. In the first approach, the eight susceptibility maps for all 

models and for both mapping units were compared by the historical landslide 

locations respectively. This approach puts forwards a viewpoint towards the 

evaluation of the quality of each model for the estimation of historical slide 

locations.  

 
In the second approach, the similarities and dissimilarities of models were analyzed 

by simply overlaying each map respectively. This provides the ability to compare the 

maps spatially. By this way, the similarities and dissimilarities can be assessed in the 

spatial domain.  

 

3.5 Relative Comparison of the Susceptibility Maps with the Landslide 
Map in terms of Accuracy 

 
In order to verify the practicality of landslide susceptibility maps, each classified 

susceptibility map was compared with the landslide distribution map. This was done 

by calculating the landslide density for each class of susceptibility maps in each unit. 
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This computation was performed in the GIS environment by crossing the various 

classes of the LR, SR, ANN, and GWR susceptibility maps with the landslide 

distribution map for grid and slope unit-based mapping units. The results of the 

entire processes for grid and slope unit-based mappings are presented in the bar 

graphs in Figure 3.87 and Figure 3.88 respectively. In both histograms, the maps 

produced by different models follow a negatively skewed distribution where more 

areas fall into the high susceptible class after their classification into three levels of 

susceptibility by natural break algorithm.  
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Figure 3.87. Bar graphs showing the relative distribution of landslide densities at various 
classes of the LR, SR, ANN, GWR susceptibility maps for grid-based mapping unit 
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Figure 3.88. Bar graphs showing the relative distribution of landslide densities at each 

 susceptibility level for slope unit-based mapping unit 
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In slope unit-based mapping unit, most of the landslide distributions fall into high 

susceptibility class for all maps. On the other hand, in grid-base mapping unit, most 

of the distributions match with the high and medium susceptibility classes to a large 

extend. This may indicate the success of prediction models in identifying landslide 

zones since for all models implemented in both mapping unit types most of the 

historical landslide locations are present at high and medium classes.  

 
It becomes apparent that the landslide density shows variations on high susceptibility 

class in Figure 3.87, where the density values are higher in the GWR (76%) and SR 

(58%) map than in the LR (45%) and ANN (42%) for grid-based mapping unit. 

However, the landslide density has a similar distribution in the high susceptibility 

class in Figure 3.88 with LR (61%), SR (70%), ANN (66%) and GWR (59%) 

mapping methods for slope unit-based mapping unit.   

 
The medium class has different landslide densities for both grid and slope unit-based 

mapping units. The landslide distribution on medium class for grid-based mapping 

units shows higher values compared to the slope unit-based mapping units. Contrary 

to this, the landslide distribution on low class for grid-based mapping unit is lower 

than the slope-based mapping unit. The total landslide distribution for grid and slope 

unit-based mapping unit on low class is 39% and 90% respectively. 

 

The SR (3%) and GWR (6%) have the lowest landslide distribution when compared 

to the LR (12%) and ANN (16%) in the low susceptibility zone of grid-based 

mapping unit. Additionally, the ANN (14%) and SR (18%) have the lowest landslide 

distribution when compared to the LR (29%) and GWR (31%) in the low 

susceptibility zone of slope unit-based mapping unit. In both of the mapping unit 

types, the SR provides lower landslide distribution on low level of susceptibility 

classes. This may indicate that the performance of SR is better when compared to 

other methods for both mapping unit types. 

 
Looking at Figure 3.87, it can be easily concluded that the high and medium 

susceptibility classes of the SR map together captured the locations of landslide 

zones (96%) better than the corresponding counterparts of the LR (87%), ANN 

(84%), and GWR (93%). Additionally, when the Figure 3.88 is evaluated in terms of 
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landslides, the SR map (82%) shows better estimation values, which is followed by 

the ANN (86%), than the LR (70%) and the GWR (68%) when both medium and 

high levels of susceptibility are considered. As a result, it can be concluded that the 

SR provides a better performance when compared to the other methods for both grid 

and slope unit-based mapping units. This might be due to the SR approach to take the 

spatial variations between variables as inputs. However, although the GWR 

considers the spatial variations between variables as well, it has a better performance 

in grid-based mapping unit, whereas it has a lower performance in the slope unit-

based mapping unit type. This might be due to the fact that a grid-based mapping 

unit considers a mapping unit as smaller grid cells. In this case, the variation may 

increase, which may also increase the predictive ability of GWR. In slope unit-based 

mapping unit, on the other hand, each mapping unit is larger in size when compared 

to the grid cell. This results in the reduction of the variability in the data set because 

the value of each slope unit is obtained by generalization of several pixel values, 

which causes a reduction in the predictive ability of GWR. 

 
 

3.5.1 Comparison of the Similarity between the Prediction Maps 
 
By the application of different models such as LR, SR, ANN and GWR in different 

mapping units, a couple of maps were created. In addition to testing the performance 

of these maps, determining the similarity between these maps in an objective way is 

also important. However, in most of the analysis, the comparison of maps in an 

objective way is neglected, which is fundamental (Innovativegis, 2009). Visual 

comparison is mostly limited and subjective. For that reason in this thesis, the map 

similarities are analyzed with quantitative techniques.  

 

Looking at the prediction maps which are illustrated in Figure 3.76, Figure 3.77, 

Figure 3.78, Figure 3.79, Figure 3.80, Figure 3.81, Figure 3.82, and Figure 3.83, it is 

difficult to identify the similarities or dissimilarities between the displays. To 

compare the similarities of the created maps, different methods are presented in the 

literature. One way is comparing the map similarity by the application of non-spatial 

statistical tests such as T test or F test. Another way is the computation of 

“differences” between maps for each cell unit or slope unit, which also provide a 
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viewpoint to determine the spatial distribution of differences. 

 
In the first step, the models are compared quantitatively by statistical tests for each 

mapping unit to test whether the data are significantly different (Berry, 1999). To 

compare the maps quantitatively, the data set was prepared for the analysis. For that 

reason, the maps in GIS were exported to be analyzed in the statistical package. 

Statistical random sampling, specified administrative zones, or inferred spatial 

groupings are some kind of the methods that can be used to determine the data for 

comparison analysis and for the cell unit map analysis. In this study, the random 

sampling and zoning method were combined to be used for the cell unit map 

comparisons. 10,000 units are identified randomly from high, medium, and low 

susceptible zones, whereas, for the slope unit map comparison, all data were used for 

the analysis. 

 

T test was used in the analysis of map similarity. The Paired-Samples T Test 

procedure was used to test the hypothesis that there is no difference between two 

variables. Pairs of models were used for the comparison analysis. The procedure 

produces the Pearson correlation between each pair and also its significance and a 

confidence interval for the average difference (95%). The Pearson correlation 

between the SR_GWR, SR_ANN, LR_SR, LR_GWR, LR_ANN, and ANN_GWR 

shows that the correlation between pairs of models at cell and slope unit-based 

models are significant (Table 3.15).  

 
Table 3.15. Paired samples correlations for cell-based and slope unit-based model pairs 
 

 Cell based models Slope Unit based models 
 Model Pairs Correlation Sig. Correlation Sig. 
SR_GWR .638 .000 .634 .000 
SR_LR  .809 .000 .806 .000 
SR_ANN .573 .000 .571 .000 
LR_GWR .663 .000 .668 .000 
LR_ANN   .648 .000 .652 .000 
ANN_GWR .714 .000 .718 .000 

 
 
The paired-samples t test table displays the average difference between all map pairs 

(Table 3.16). The Std. Dev. column displays the standard deviation of the average 

difference score. The Std. Error Mean column provides an index of the variability 
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one can expect in repeated random samples. 95% confidence interval of the 

difference provides an estimate of the boundaries between which the true mean 

difference lies in 95% of all possible random samples. The t statistic was obtained by 

dividing the mean difference by its standard error. The Sig. (2-tailed) column 

displays the probability of obtaining a t-statistic whose absolute value is equal to or 

greater than the obtained t-statistic. 

 
The H0 hypotesis, which indicates “the maps created with different model pairs are 

similar”, is accepted if the p value or significance is greater than 0.05, otherwise it is 

not accepted. As a result of the t test presented in Table 3.16, it can be concluded that 

for both cell and slope unit maps the SR_GWR and LR_ANN pairs are similar. This 

may be due to the fact that the SR model considers the spatial correlation between 

parameters as in GWR. Therefore, SR resembles local models more compared to the 

other global models of LR and ANN. On the other hand, LR and ANN, which do not 

include the spatial variation of parameters, resemble each other more.  

 
Table 3.16. Paired samples test  
 

Model Pairs    
95% Confidence 
Interval of the 
Difference 

   

Cell Unit Mean Std. 
Deviation 

Std. 
Error 
Mean 

Lower Upper t df Sig. (2-
tailed) 

SR_GWR -.040 .741 .074 -.188 .107 -.542 98 .589 
SR _LR .242 .517 .052 .139 .346 4.667 98 .000 
SR_ANN .162 .765 .077 .009 .314 2.101 98 .038 
LR_GWR .283 .715 .072 .140 .425 3.937 98 .000 
LR_ANN   -.081 .695 .070 -.219 .058 -1.157 98 .250 
ANN_GWR .202 .654 .066 .072 .333 3.072 98 .003 
Slope Unit         
SR_ GWR -.030 .745 .074 -.178 .118 -.403 99 .688 
SR_LR .250 .520 .052 .147 .353 4.809 99 .000 
SR_ANN .170 .766 .077 .018 .322 2.219 99 .029 
LR_GWR .280 .712 .071 .139 .421 3.934 99 .000 
LR_ANN   -.080 .692 .069 -.217 .057 -1.157 99 .250 
ANN_ GWR .200 .651 .065 .071 .329 3.071 99 .003 

 
 

The result of the t tests compares the entire area and does not depict the geographical 

differences between the maps. To analyze the map differences spatially, the 

differences between the maps were computed for the study region. The difference 
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maps between each grid-based and slope unit-based mapping unit were analyzed 

separately. For each mapping unit, six map differences were created, where four 

different methods were compared. The difference maps that illustrate the SR_GWR, 

SR_LR, SR_ANN, LR_ANN, LR_GWR, and GWR_ANN for both grid-based and 

slope unit-based mapping units are shown from Figure C-1 to Figure C-12 in 

Appendix C. These maps illustrate the similar or dissimilar regions in a spatial 

domain. Additionally, similarly and dissimilarly estimated regions were computed in 

percentages for grid and slope units shown in Figure 3.89 and Figure 3.90 

respectively. The second map was subtracted from the first map; so if the difference 

is negative, then it indicates that the second map is overestimated (O) at that location. 

If the difference is positive, the second map is underestimated (U). Finally, if the 

difference is 0, then the maps are similar (S) in those regions.   

 

As a result of difference maps, when both grid and slope unit-based model pairs are 

evaluated, it is seen that the similarity is high within the SR_GWR pair (Figure C-1 

and Figure C-8 in Appendix C). This result is also displayed quantitatively in Figure 

3.89 and Figure 3.90. For example, the spatial distribution of the difference 

computed for SR_GWR grid-based models indicates that the pair maps are fairly 

similar in the north-eastern part and the southern part of the region, where the 

landslide distribution is frequent and less respectively. However, the GWR is 

underestimated in the eastern part of the region and overestimated in the northern 

part. The similar regions at SR_GWR given in Figure 3.89 show that 245 km2 of 

region on both maps are similar, which occupies 75% of all regions and the 

dissimilarity is approximately 24%.   
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Figure 3.89. The area and percentage of different and similar regions between the pair of maps for 
cell-based mapping unit. 
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Figure 3.90. The area and percentage of different and similar regions between the pair of maps 
for slope unit-based mapping unit. 

 

For grid-based mapping unit, the total dissimilarity is higher for SR_ANN (47%) and 

GWR_ANN (34%), correspondingly for slope unit-based mapping unit the 

dissimilarity is higher for LR_GWR (32%) and GWR_ANN (27%). The similarity 

declines from 78% to 53% for SR_ANN maps for grid and slope unit-based mapping 

units respectively.  As a result, it can be concluded that the slope unit-based mapping 

unit provides relatively higher percentages of similarities for each mapping unit type 

when compared to the grid-based mapping unit. The relative comparisons of each 

model in Figure 3.89and Figure 3.90 are the evidence of this result. 
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3.6  Analysis of Triggers 

 
Landslide hazard calculation requires determining the spatial and temporal 

probability of occurrence of damaging events (Bell and Glade, 2004). The overall 

objective of studying the spatial and temporal pattern of landslides is to make a more 

precise prediction of future landslide occurrence. Depending on the literature 

surveys, it can be seen that there has been no study on risk mitigation in the study 

region. However, as the region is highly susceptible to landslides and floods, the 

identification of regional thresholds is an important issue for developing early 

warning systems for civil protection authorities and the population. For this reason, 

in this study, the temporal occurrence of landslides was aimed to be defined, so that 

the susceptibility maps created in the first part can be combined with the probability 

of critical rainfall thresholds to obtain hazard maps. The focus of this part of the 

study is related to the time-varying aspects of landslide hazard on rainfall-induced 

landslides, because precipitation triggers the majority of landslides in the study 

region. The methodology adopted for hazard assessment is presented in Figure 3.91.  
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Figure 3.91. The methodology adopted for analysis of triggers 
 
 
The first part of the methodology involves collection of mainly two types of data, 

triggering event data and dates of landslide occurrences. The second part of the 

methodology is the analysis part, which involves the estimation of critical rainfall 

thresholds based on rainfall records coupled with the documented times of landslide 

events. In this part, the critical rainfall thresholds were estimated for daily and 

antecedent rainfalls by using different methods. The most suitable triggering 

threshold for the purpose of the study was selected for the further analysis.  
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3.6.1 Analysis of Data Used for Triggering Analysis 
 
The Kumluca region is frequently affected by severe meteorological events. Hence, 

for the hazard assessment, triggering data was obtained daily from different stations 

distributed around the Kumluca basin for a 30-year period. In addition to this, the 

dates of past landslide events were reconstructed through technical landslide reports, 

systematic review of newspapers, and interviews with local witnesses. Technical 

landslide reports were obtained from the General Directorate of Disaster Affairs of 

Bartın (Landslide Reports, 1975, 1987, 1993, 1995, 2005). The reports have detailed 

information about the geology, the reasons for landslide occurrences, the number of 

affected people, and the name of the village, but not the exact spatial location of 

these slides.  

 
The reports provided by the Disaster Affairs provide information about the 

movement of the inhabitants due to landslides between 1975 and 2005 for each 

village in the study region. The reports also include the number of conveyed homes, 

the number of people who died, the geological properties of the region, the reasons 

for landslide occurrences, the number of houses and the number of people in each 

village. In the period between 1975 and 2005, approximately 537 houses are reported 

to be conveyed to safer regions. The houses moved in each village and the year of the 

movement are presented in Figure 3.92 a and b. The direct or indirect damage was 

not ascertained in the reports.  

 

Figure 3.92.a. Spatial distribution of the conveyed house frequency after devastating landslide events 
b. Showing the year and the frequency of each devastating landslide event 
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The reports rarely include the exact date of the slides. Depending on the preparation 

date of the report, the year of the slide is known but the exact month and day is not. 

Through systematic review of newspapers, interviews with local witnesses, and 

inspection of technical and scientific reports and the papers, it was found that 

significant slides due to flooding, which are exactly known, occurred on 1st May 

1975, 1st July 1988, 13rd-14th  December 1994, 20th-21st-22nd May 1998, and 17th of 

August 2004. The reported slides in addition to flooding days are 15th February 1985 

and 3rd April 1985.  

 
The historical reports reflect only the minimum number of events that actually 

occurred. For this reason, another category is also possible in the analysis as 

‘‘probably induced landslides”, which means it cannot be assumed that landsliding 

did not occur on these days (Glade et al., 2000). This latter category is obtained by 

analyzing the similar or larger landslide-triggering rainfall amounts on the preceding 

and following days of the hazard. Depending on the reports of 1991 and 1985, it is 

known that landslides occurred in those years; nevertheless, the exact days are not 

provided in the reports. Hence, the most probable days were determined based on the 

previous landslide days. In this approach, the maximum rainfall value was found 

from the meteorological data corresponding to the prior data of the reports depending 

on the known landslide days, and then the maximum rainfall value was compared 

with the daily rainfall of all days in the probable landslide year. The probable days 

for landslides were obtained by determining the rainfall values higher than the 

maximum rainfall value. As a result, six more probable slide days were added to the 

database. In total, there were sixteen landslide events to be used in the further 

analysis (Figure 3.93). In the following calculation, both days with landslides and 

days of probable landslides were treated as landslide events providing a binary 

variable corresponding to the presence or absence of a landslide event.  
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Figure 3.93. The landslide events distribution over months and daily rainfalls on each event 
day. 

 
 
It is extremely important to identify the most suitable rainguage that is associated to 

a slide. Even the closer rainguages can provide different precipitation values 

depending on factors such as topographical elevation, aspect, and even prevailing 

wind direction in the area. The meteorological data acquired from the General 

Directorate of Meteorological Affairs are mostly distributed around the study region. 

In other words, there are no meteorological stations located spatially inside the 

watershed that represents the rainfall characteristics of the region (Figure 3.94). As 

presented in Figure 3.94 most of the stations are closed or do not provide accurate 

measurements. For this reason, only the available station measurements were 

acquired. These stations, which are distributed to the northern part of the study 

region, are: Kozcagiz, Ulus, Bartın, Amasra, Kurucaşile and Arıt (Figure 3.94). The 

characteristics of the available stations for the analysis are given in Table 3.17. 
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Figure 3.94. Meteorological stations distributed around the study region. See Table 3.17 for station 
characteristics.  Legend 1 indicates that the meteorological station measurements are available for 
analysis. 2 indicate the station measurements are not present or the station is closed.  
 
 
Table 3.17. Characteristics of meteorological stations which are available for analysis. 
 

Meteorological 
Station 

Record interval 
 

Elevation 
(m) 

Distance to study 
region (km) 

Kozcagiz 1996-2006 75 16 
Ulus 1975-2006 157 25 
Bartın 1975-2006 35 27 
Amasra 1975-2006 13 39 
Kurucaşile 1989-1990 432 48 
Arıt 1985-1991 365 33 

 
 
The median elevation of the study region corresponds to 50% of the area, which is 

acquired from the hypsometric (area-evelation) curve (Usul, 2005). A hypsometric 

curve is an empirical cumulative distribution function of elevations in a catchment. 

The curve shows the percentages of areas above certain elevations (Figure 3.95). 

From the presented curve, the median elevation value corresponds to approximately 

700 m.  

 

http://en.wikipedia.org/wiki/Empirical_cumulative_distribution_function�
http://en.wikipedia.org/wiki/Catchment�


 

198

 

Figure 3.95. Hypsometric Curve of Bartın Kumluca watershed  

 

There are no meteorological stations at the median elevation of the study region. 

Additionally, the measurements obtained from all stations can not be transformed to 

700 m. height because there is not a good relation depending on the elevation and 

temporal scale of annual precipitation measurements of the stations. In general, a 

station may be ideal for a landslide triggering analysis if the dates of rainfall periods 

overlap with the dates of landslide occurrences, if the station is on median elevation, 

and finally if it is spatially closer to the study region. The landslide occurrence 

information in our study ranges between 1975 and 2004. However, the stations with 

the heighest elevation (Kurucaşile, Arıt) or spatially the closest stations (Kozcağız) 

(Table 3.17) have rainfall measurements which are not obtained in an adequately 

long period to represent the rainfall values recorded during the past landslides. In this 

respect, these stations are not suitable for the aims of the study.  

 
In addition to the above analysis, to determine the rainguage that best represents the 

rainfall characteristics of the region, the correlation analysis between the stations was 

evaluated. In this approach to measure the correlation between the station 

measurements, one of the most devastating event measurements was used, which is 

the 1998 rainfall event. The daily rainfall measurement of May 1998 was plotted for 

each station. The non-measured days in the stations were presented with the cuts on 
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the graph. The plot in Figure 3.96 indicates that the stations (Kozcağız, Ulus, Bartın, 

Amasra) show a similar trend for the May 1998 rainfall. In addition to the daily 

rainfall graphic, the Pearson correlation was computed to evaluate the correlation 

between the stations relatively. The result of the Pearson correlation for each pair of 

stations also indicate the high correlation between stations (Figure 3.97).   

 
As can be seen from Figure 3.97, the Kumluca basin has the highest correlation with 

Bartın station records and it has the most complete rainfall data series, particularly 

the longest (30 years) daily precipitation measurements, hence it was selected as the 

reference station. The reference meteorological station is assumed to be the 

representative of the Kumluca watershed concerning rainfall regime (Figure 3.97). 

 

 
Figure 3.96. The daily rainfall pattern of each station in 1998 May 

 

 
Figure 3.97. The graph showing the correlation between the meteorological stations for  

1998 May. 
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After obtaining the station that best represents the rainfall characteristics of the 

region, the rainfall values were transformed into height of the study region depending 

on the median elevation of the study region. 

 
Rainfall analysis was carried out using 31 years (1975–2006) of daily precipitation 

records registered in the reference meteorological station of Bartın. The mean annual 

precipitation (MAP) at Bartın station is (for this period) 1008.206 mm. A preliminary 

analysis of the rainfall regime shows variability on inter-seasonal scale. Rainfall 

exceeds the mean monthly average rainfall between the first and the second month 

and the eighth and the twelfth month (Figure 3.98). All the dated events reveal that 

they are mainly concentrated between these ranges of months (59%) when extreme 

rainfall occurs, which is the wettest period of the year (Figure 3.93). During the rest 

of the year, landslides occur under low precipitation.  

 

Figure 3.98. The lowest and the highest monthly rainfall average from mean  
 
 

 
Figure 3.99. The annual maximum precipitation in Bartın (reference meteorological station) 
from 1975 to 2006. The horizontal line indicates the mean annual maximum precipitation 
(MAMP) Legend: triangles indicate landslide events triggered with flood; squares indicate 
potential landslide events 



 

201

The annual maximum precipitation and the landslide occurrences at Bartın station 

shown in Figure 3.99 indicate that 76% of the slides occur in lower precipitation 

compared to mean annual maximum precipitation.   

3.6.1.1 Determination of Critical Rainfall Thresholds 
 
It is aimed to define thresholds based on the statistical analysis of the relationship 

between rainfall and occurrence of mass movements. The threshold curves define the 

lowest level of rainfall above which one or more than one landslide can be triggered. 

The rainfall data obtained daily was evaluated first with landslide occurrence days by 

time series analysis. Secondly, the daily data set was tested for suitable probability 

distribution of the data set. After determining that the data set follows the Gumbel 

Distribution, also known as Fisher–Tippett type I Extreme Value distribution, the 

Gumbel extreme value diagram was used to plot data for probability distribution and 

to obtain triggering rainfall values for different return periods. 

 
In addition to the evaluation of daily rainfall data, depending on the interviews with 

the local people and information related to technical documents, it is seen that 

antecedent rainfall influences the groundwater level and soil moisture in the study 

region, which may cause devastating landslides. The 1998 landslide was an example 

of such an event. The landslide occurred three days after the intense rainfall in May 

1998. Thus, the antecedent rainfall data are computed from daily data for different 

time periods. After testing and selecting the right number of antecedent days, they 

were used to obtain the critical rainfall threshold for landslides for different time 

periods. The antecedent rainfall was analyzed first by the Gumbel theoretical 

distribution. Then the intensity duration analysis was performed.  

 
As a result of these critical rainfall analyses, different thresholds were obtained. 

These thresholds were compared to select the most suitable one for the further hazard 

analysis.   

3.6.1.2 Time Series Analysis of Rainfall Pattern with ARIMA Model 
Fitting 

 
The daily rainfall values of Bartın reference station was analyzed with time series 

model. The aim of building a time series model was to forecast the outliers with the 
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fitted model and then analyze if the outliers predicted by the model overlapped with 

the landslide data. Afterwards, to define a critical threshold, Box-Jerkins ARIMA 

model was fit to daily data from a 31–year period.  

 
The ARIMA procedure has three steps as identification, estimation, and diagnosis. In 

the identification step, the order of the ARIMA model was identified by determining 

the three integers as p, d, and q. Before building a tentative model, the nature of the 

data was examined by plotting the daily rainfall over each day. The plot indicates no 

hint of seasonal variations and trends in the data. The values seem to fluctuate with a 

constant variation around a constant mean. Therefore, it was reasonable to believe 

that the time series was stationary (Figure 3.100). 

 

 
Figure 3.100. The time series plot of daily rainfall of Bartın station 

 

To evaluate the stationary of the data, there are more sophisticated methods (Table 

3.18). One way is to apply the unit root tests. The null hypothesis is that the process 

is not stationary. When the Rho value is larger than 0.05, the null hypothesis is 

accepted. If a series is not stationary, the data set should be transformed until it 

becomes stationary. The most common transformation is differencing, which 

replaces each value in the series by the difference between that value and the 

preceding value. Differencing is necessary when the mean is not stationary. 
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Logarithmic and square-root transformations are useful when the variance is not 

stationary, such as when there is more short-term variation with large series values 

than with small series values. According to the test result (Table 3.18), the H0 is 

rejected in favor of H1, on 5% significance level, which indicates that the process is 

stationary.  

Table 3.18. Stationary analysis of data 
Ty pe Lags Pr < Rho 

Zero Mean 0 0.0001 
 1 0.0001 
Single Mean 0 0.0001 
 1 0.0001 
Trend 0 0.0001 
 1 0.0001 

 

Once a stationary series is obtained, the next step is to identify the p and q values, 

which are the orders of autoregression (AR) and moving-average (MA). Pure 

autoregressive and moving-average processes have characteristic signatures in the 

autocorrelation and partial autocorrelation functions. Therefore, the autocorrelation 

function (ACF) and partial autocorrelation function (PACF) are plotted to determine 

the decision levels. 

1. An ACF with large spikes at initial lags that decay to zero or a PACF with a large 

spike at the first and possibly at the second lag indicates an autoregressive process.  

2. An ACF with a large spike at the first and possibly at the second lag and a PACF 

with large spikes at initial lags that decay to zero indicate a moving average process. 

3. The ACF and the PACF both exhibiting large spikes that gradually die out indicate 

that both autoregressive and moving average processes are present.  

As seen obviously, the lags are significant when the lag values pass the red line 

(Figure 3.101, Figure 3.102). Red line indicates the %5 significance level of 

autocorrelations. The ACF plot indicates that the spikes are at the first lag, so this 

signifies an autoregressive process. Another and more informative evidence is on 

autocorrelation values. As indicated in Table 3.19, the first lag shows 

autocorrelation, and it dies out in the further lags.  
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Figure 3.101. Autocorrelation plot of daily rainfall 

 
 

 

Figure 3.102. Partial autocorrelation plot of daily rainfall 
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Table 3.19. Auto correlation values of daily rainfall 
 

Lag  Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error
0 54.45583 1 | |******************** | 0
1 15.09268 0.27715 | |****** | 0.009315
2 4.973635 0.09133 | |** | 0.010004
3 1.903785 0.03496 | |* | 0.010077
4 0.794854 0.0146 | | | 0.010087
5 1.123563 0.02063 | | | 0.010089
6 0.848131 0.01557 | | | 0.010093
7 1.467678 0.02695 | |* | 0.010095
8 0.540696 0.00993 | | | 0.010101
9 0.552005 0.01014 | | | 0.010102

10 0.96001 0.01763 | | | 0.010103
11 -0.01823 -0.00033 | | | 0.010105
12 1.218949 0.02238 | | | 0.010105
13 1.196695 0.02198 | | | 0.01011
14 0.79369 0.01457 | | | 0.010114
15 1.253197 0.02301 | | | 0.010116
16 1.147122 0.02107 | | | 0.01012
17 0.754119 0.01385 | | | 0.010124
18 0.068086 0.00125 | | | 0.010126
19 -0.57908 -0.01063 | | | 0.010126
20 -0.07646 -0.0014 | | | 0.010127
21 -0.28373 -0.00521 | | | 0.010127
22 -0.40666 -0.00747 | | | 0.010127
23 -0.49369 -0.00907 | | | 0.010127
24 0.278758 0.00512 | | | 0.010128
25 1.018968 0.01871 | | | 0.010128
26 0.301703 0.00554 | | | 0.010131
27 1.403869 0.02578 | |* | 0.010131
28 1.385011 0.02543 | |* | 0.010137
29 0.347609 0.00638 | | | 0.010143
30 0.159672 0.00293 | | | 0.010143

 

 
After the identification of likely models, the ARIMA procedure was applied. In the 

ARIMA procedure, different combinations of AR and MA levels are evaluated to get 

the best results. The probability value in the maximum likelyhood estimation is an 

indicator to detect the statistical significance of the model. If the probability value is 

smaller than 0.05, the parameter is significant on 95% significance level. When the 

parameter is significant, it should be involved in the model. Another issue to be 

considered in the significance of the model is the standard squared (SS) error. The 

lower the ss value is, the higher the accuracy of the model is. 

 



 

206

In Table 3.20, the parameter estimate, error, t value, p values and ss values are 

indicated. In all the levels, residuals and sum of square values have a slight 

difference, which does not indicate an improvement between trials. In the Arima 

(1,0,0) and Arima (0,0,1) situations, all p values are smaller than 0.05. Therefore, 

these two models fit data quite sufficiently as all the probability values are smaller 

than 0.05. To identify the better suitable model for the data set, the Acaice 

Information Coefficient (AIC) parameters are compared. The lower the AIC value is, 

the better the model is. As a result, with the lowest AIC value, the Arima (1, 0, 0) is 

suitable and selected for the analysis.   
 
Table 3.20. Maximum Likelihood Estimation 
Parameter Estimate Error t Value Pr > |t| Lag ss AIC 
Arima(1,0,1)     579294 77865.15
MU 2.76415 0.09298 29.73 <.0001 0   
MA1,1 0.05911 0.03356 1.76 0.0782 1   
AR1,1 0.33167 0.03171 10.46 <.0001 1   
Arima(1,0,0)     579443 77866.13
MU 2.76416 0.09137 30.25 <.0001 0   
AR1,1 0.27714 0.00895 30.96 <.0001 1   
Arima(0,0,1)     583670 77949.9
MU 2.76416 0.08317 33.23 <.0001 0   
MA1,1 -0.2547 0.009011 -28.27 <.0001 1   
 
 
The autocorrelogram in Figure 3.103 and partial autocorrelogram in Figure 3.104 

have no spikes, which is also an indication for the evidence of the sufficiency of the 

Arima(1,0,0) model and there is no need to improve the model.  

 

 

Figure 3.103. Autocorrelogram of residuals of ARIMA(1,0,0) 
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Figure 3.104. Partial Autocorrelogram of residuals of ARIMA(1,0,0) 

 
 
After the determination of the suitable model, it was run to predict the outliers. The 

estimated outliers were compared with the rainfall values obtained in a 40-day period 

(20 days before and 20 days after the landslide) when landslides occurred to find out 

whether there were any similar values within this period. The “landslide occurance” 

column in Table 3.21 indicates the range of time when the estimated outliers and the 

recorded rainfall values were relatively closer. Table 3.21 presents that the outliers 

can detect 8 of the 16 landslide occurrences with an approximation of 1 to 20 days. 

Therefore, the resultant outliers of ARIMA(1,0,0) model indicate a reasonable result.  

 
Table 3.21. The outliers detected for the model ARIMA(1,0,0) 
Obs Day Estimate Chi- Square Prob Landslide occurrence 
3450 101.20 1244.2 <.0001 -- 
10088 96.10 1122.18 <.0001 -- 
6035 94.99 1096.28 <.0001 10 days later (7.7.1991) 
6404 90.71 999.74 <.0001 -- 
7502 89.17 966.12 <.0001 -- 
122 86.937 918.11 <.0001 The same day (1.5.1975) 
8686 78.726 752.88 <.0001 -- 
5042 76.05 702.68 <.0001 20 days prior  
9306 75.65 695.39 <.0001 -- 
8559     73.04 648.20    .0001  The same day, one day prior, one day later  (20-22. 05.1998)
6045 71.68 624.25 <.0001 The same day (7.7.1991) 
7925 70.15 597.98 <.0001 ---- 
8963 69.65 589.49 <.0001 --- 
11306 69.07 579.73 <.0001 --- 
3132 68.481 569.77 <.0001 ---- 
10839 82.07 546.53 <.0001 The same day (12.8.2004) 
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The outlier values which estimate eight of the landslide are ranked and the minimum 

rainfall value which triggers a landslide is found to be approximately 71.7 mm by the 

model. Therefore, we can assume a threshold value of 71.7 for triggering of landslide 

occurrences.  

 
 

3.6.1.3  Critical Rainfall Analysis with Gumble Distribution 
Approach 

 

The estimation of return period is usually accomplished by standard statistical 

approaches. These approaches include different types of distributions. The Gumbel 

(Type I Extreme Value distribution) is commonly preferred for the extreme value 

analysis (Usul, 2005; Marques et al., 2007). Therefore, in this study Gumbel extreme 

value diagram was used to plot the data for probability distribution. The plotting 

position of the probability values were computed depending on the Weibull 

definition given by following Eq. 48:  

1+

=

n

m
q                     (48) 

 
 
Where n is the recorded number of years of and m is the rank of the event (smaller to 

larger). The daily precipitation of landslide events were ranked from the smallest to 

the largest and then the plotting position (pp) were calculated (Usul, 2005) as shown 

in Table 3.22. The plotting position defines the probability of nonoccurrence and was 

taken in percentages.  
 
 

Table 3.22. Calculated Plot positions (pp) for daily precipitation of landslides 

 
 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R(mm) 10.9 19.0 20.8 22.6 23.5 26.1 34.8 35.9 43.8 45.3 45.8 50.5 74.8 75.8 91.8 93.2

pp(%) 5.88 11.76 17.65 23.53 29.41 35.29 41.18 47.06 52.94 58.82 64.71 70.59 76.47 82.35 88.24 94.12
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Figure 3.105. Gumble distribution diagram for estimation of rainfall with 50 years return period   

 
The magnitudes of daily precipitations R (mm) of landslides were plotted against the 

plotting position on Gumbel probability papers shown in Figure 3.105. The 

coefficient of determination referred to as R2 is equal to 97%. The coefficient of the 

correlation was computed with the following formulation of Eq.49. 
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where; 

y = daily rainfall that is observed 

=y  mean of the observed daily rainfalls 

ys = simulated daily rainfalls 
 
Data from at least n = 30 years should be included to give an acceptable estimation 

of values related to a 50-year return period. The data set includes landslide 

occurences between 1975 and 2006. The rainfall corresponding to 50-year return 
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period was read from the corresponding line, which is approximately 133 mm for 

rainfall with the probability of occurence of 0.02. For different return periods, the 

rainfall values are presented in Table 3.23. 

 
Table 3.23. Rainfall values estimated from the Gumbel distribution diagram for different return 
periods for daily data 
 

Return 
period 

Rainfall (mm) Probability 
(Ps) 

50 133 0.02 
10 90 0.1 
5 72 0.2 

 
 

3.6.1.4 Antecedent Rainfall Model Construction and the Threshold 
Approach 

 
The literature studies indicate that the antecedent moisture content of the soil is of 

vital importance to threshold values of rainfall because antecedent precipitation 

influences the groundwater levels and soil moisture (Wieczorek, 1987; Aloetti, 2004; 

Guzzetti et al., 2007). Less water is required for slide initiation if the antecedent 

moisture content is high. Antecedent precipitation was used in this study to 

determine when landslides are likely to occur. Antecedent Rainfall Model is 

represented by two factors: rainfall which occurs over a given period preceding a 

given day and the rainfall total on the given day.The Antecedent Rainfall model 

employed by Crozier and Eyles (1980) uses the antecedent rainfall index (Bruce and 

Clark, 1966) calculated as follows: 

 

 
Xn= kP1 + k2 P2 + · · ·k nPn                                (50) 
  
 
 
where X is the antecedent rainfall for day X; P1 is the daily precipitation for the day 

before X; Pn is the daily precipitation for the nth day before day X. k is the constant. 

 
Crozier and Eyles (1980), following Bruce and Clark (1966), used k as 0.84, which 

comes from Ottawa (United States) streamflow data (Glade et al. 2000). In the 

literature, the k values typically range between 0.8 and 0.9 depending on the draining 

capacity and the hydrological characteristics of the area (Capecchi and Focardi, 
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1988, Marques et al. 2007). In this study, k is considered as 0.9, where the analysis 

consists of the computation of the cumulative absolute rainfall. The antecedent 

rainfall was computed for time periods of 1, 2, 3, 5, 10, 15, 20, 30, 45, and 60 days. 

 
To identify the importance selecting the right number of antecedent days, some of 

the selected antecedent rainfalls accumulated over a different number of days were 

compared with the daily rainfall. For a reliable comparison, both the antecedent and 

daily rainfall values were normalized before presenting the graphs (Terlien, 1998). 

The normalized values were compared with the landslide event days exceeding 0.6. 

A comparison of the plots reveals that the considering the antecedent days are 

important for identification of landslide events. The accumulated antecedent rainfall 

of 15 and 20 days proved to give the best distinction between days with landslides 

and days without landslides (see Figure 3.106) for those landslides triggered by high 

daily rainfall amounts. The normalized accumulated plots of antecedent days of 3 

(Figure 3.106a), 5 (Figure 3.106b), 10 (Figure 3.106c), 15 (Figure 3.106d), and 20 

(Figure 3.106e) days provide 31.2, 37.5, 32.2, 62.5, and 68.7% of landslide days. 

Thus, for further analysis, results from antecedent 5 and 20 days were considered for 

modeling the hazard. 
 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 
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(e) 

 
Figure 3.106. Plots of normalized accumulated rainfall versus normalized daily rainfall for 
landslide events shown with pink square and non-landslide events labeled with blue point: a for 
3 days; b for 5 days; c for 10 days; d for 15 days ; e for 20 days 

 
 

3.6.1.4.1 Critical Rainfall Threshold for Antecedent Days by Gumbel 
Distribution Approach 

 

The return period of each rainfall amount and duration combination was computed 

using the Gumbel theoretical distribution. The Gumbel theoretical distribution 

considers the distribution of the largest or the smallest values observed in repeated 

samples. In this extreme distribution, the probability (p) of the occurrence of a 

magnitude which is equal to or greater than any value of the observations (x) and the 

theory of extremes was applied by using the Equation below: 

 
ye

eq
−−

−= 1                  (51) 
 
where y= reduced variate and computed with the equation below as:  
 
y=a(xi-x0)                                (52) 
 
where a=dispersion parameter (a scale parameter), x0 is the location parameter of the 
distribution. 
 

x
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  )(0 anyxx −=                    (54) 

 

Where x  and xσ  are the mean and the standard deviation of the observations 
respectively and they are found by equations as follows: 
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Since the record length is longer than 30 years (1975 to 2006), the values yn and nσ  

are constants and the values are equal to 0.45 and 1.28255 respectively. For each 

antecedent day of each landslide day, the standard deviation, mean, scale parameter, 

and location parameter were computed. Then, by using these parameters for each 

antecedent day, the critical rainfall value was computed for different return periods 

by the eq. (52) and given in the following Table 3.24 . Table 3.24. indicates that in a 

50-year period, if it rains 112.64 mm on one single day, a landslide may occur. Or in 

a 50-year period, if it rains for five days with a daily amount of 41.79 mm, a slide 

may occur.  

 

Table 3.24. The rainfall values for different Return Periods, RP (year) 

 
  Rainfall(mm) Antecedent Rainfall(mm) for 1 Day 

Antecedent 
Day 

RP 50, 
ps(0.02) 

RP 10,  
ps(0.1) 

RP 5, 
ps(0.2) 

RP 50, 
ps(0.02) 

RP 10,  
ps(0.1) 

RP 5, 
ps(0.2) 

1 112.64 78.87 69.00 112.64 78.87 69.00 
5 208.94 140.80 109.84 41.79 28.16 21.97 

20 266.85 231.87 204.15 13.34 11.59 10.21 
 
 

3.6.1.4.2 Estimation of Threshold Values by Using Intensity-Duration 
Curves 

 
The antecedent precipitation values were used to create an intensity duration curve. 

Critical pairs of rainfall amount-duration were defined as proposed by D’Ecclesiis et 
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al. (1991) with reference to the applied studies of Zezere et al. (2004) and Marques et 

al. (2007), depending on the assumption that the critical pair is the combination with 

higher return period. The applied assumption is not physically based; however, it 

provides discrimination between rainfall periods characterized by landslide activities 

and rainfall periods. After determination of higher return period for each event, the 

corresponding antecedent day was determined to compute the intensity (Table 3.25) 

with the given formula: 

 

 
I= Pr/X                                   (57) 
   
where; 

 

I= Intensity 

Pr= Absolute antecedent precipitation for the day with higher return period, 

X=Antecedent day of the higher return period 

 

The results obtained are presented in Table 3.25 and critical amount durations are 
highlighted in bold. 
 
After the computation of critical pairs of rainfall amount–duration for the reported 

landslide events, intensity values corresponding to duration is plotted (Figure 3.107) 

and the regression line that relates Intensity duration is also plotted by using Eq. 57: 

 
 
y=68.527x-0.6243                                                                   (58) 
 
 
where y=intensity, x=duration 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

216

Table 3.25. Absolute antecedent rainfall from 1 to 60 days and corresponding return periods for 
16 landslide events 
 

 
 

 
Figure 3.107. Intensity Duration plot of 16 reported landslide events 
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The threshold indicates that the sustained intensities of 68.53 mm for 1 day, 44.46 

mm for 2 days, 34.51 mm for 3 days, and 25.09 mm for 5 days are sufficient to 

trigger landslides in the study region (Figure 3.107).  

 
 

3.6.1.5 Evaluation Rainfall Thresholds Obtained from Various 
Methods 

 
Calculation of temporal probability of landslide is necessary for landslide hazard 

mapping. The initial step to obtain temporal probability is to estimate the critical 

rainfall thresholds. In this study two different approaches were adopted for daily and 

antecedent rainfall data to relate landslide occurrence to rainfall data. As a result of 

this analysis, different critical rainfall thresholds were estimated. The sensitivity of 

the analysis results was analyzed by comparison of critical thresholds obtained from 

different methods. For comparison, the thresholds obtained for three different 

antecedent days and for a 5-year return period were tabulated (Table 3.26). 5-year 

return period was selected due to the common return period for determination of 

critical rainfall thresholds for the methods.  

 

Table 3.26 indicates that all methods provide similar results for daily rainfall 

threshold which has 71 mm, 72 mm, 68.53 mm and 69 mm for time series, gumbel 

approach for daily data, intensity duration and gumbel approach for antecedent 

rainfall data respectively. Additionally, the rainfall thresholds obtained as a result of 

Intensity Duration (ID) and Gumbel distribution methods resemble for 5 and 20 

antecedent days, namely 125.44 and 109.84, and 211.18 and 204.15 respectively. As 

a result, we can confirm that the rainfall triggering thresholds obtained from either 

method can be used for further hazard analysis. Therefore, by considering that 

landslides are influenced by antecedent rainfalls in the study region, the thresholds 

obtained as a result of antecedent rainfall analysis can be selected. Gumbel 

distribution approach was preferred for further analysis due to the probability of 

obtaining critical rainfall thresholds for three different return periods (5, 10, and 50) 

as illustrated in Table 3.24.  
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Table 3.26. The critical rainfall thresholds obtained from Gumbel analitical process and Intensity 
Duration Curves. 

 Daily Data Analysis Antecedent Data Analysis  

Day 
Time 
Series 

Gumble 
Approach

Intensity 
Duration 

(ID) Gumble Approach 
1 71 72 68.527 69 
5 - - 125.44 109.84 

20 - - 211.18 204.15 
 

 

3.7 Hazard Assessment 
 
After the computation of rainfall triggering threshold value, the hazard map was 

created based on a developed hazard assessment procedure, which was described in 

section 2.3.4.2. As described in this section, the hazard assessment procedure 

requires determination of (Pl|Pt) and Pt in addition to the Ps, which was created in 

susceptibility part.  

 
The folowing approaches were developed to estimate the (Pl|Pt) value. (Pl|Pt) value is 

the conditional probability of having a landslide given that rainfall triggers exceed a 

certain threshold value for a given time period, which is necessary for hazard 

analysis. The proposed approach involves modeling landslide occurrence and rainfall 

values higher than the critical rainfall value by logistic regression. For each critical 

threshold value which was obtained by Gumbel approach, the (Pl|Pt) was computed 

with logistic regression respectively. In this approach, the antecedent rainfall values 

greater or lower than the corresponding critical antecedent rainfall threshold were 

assigned a value of 1 or 0 respectively. In this approach, it was assumed that rainfall 

values that exceed critical threshold may cause a landslide. For instance, critical 

rainfall threshold for five antecedent days is 125.44 mm. Therefore, depending on the 

assumption, the rainfall data set of five antecedent days was transformed to 

dichotomous data type by assigning 1 to rainfalls greater than the threshold and 0 to 

the rest. Relatively, the landslide events were assigned 1 if any occurred on that 

rainfall day, or else 0 was assigned. Then logistic regression was computed. It was 

computed based on the equation: 

 

f(x)=logit((Pl|Pt))= ln((Pl|Pt) /(1−  (Pl|Pt))= β0 +  β1× Rainfall            (59) 
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The result of logistic regression was then evaluated using a chi-square of Hosmer-

Lemeshow test, Cox and Snell R2 and Nagelkerke R2 (Table 3.27). The -2 Log 

likelihood provides an index of model fit. The lower the value is, the better the model 

fits the data. Chi-square value is also similar to the Godness of fit, which compares 

the actual values for cases on dependent variable with the predicted values on the 

dependent variable. Cox and Snell R2 and Nagelkerke R2 are essential estimates of 

R2 indicating the proportion of variability in the dependent variable that may be 

accounted for by all predictor variables included in the equation. Larger pseudo r-

square statistics indicate that more of the variation is explained by the model from a 

minimum of 0 to a maximum of 1. 

 
 

Table 3.27. Model summary of logistic regression for rainfall values greater than the tresholds 

Step 
-2 Log 

likelihood 
Cox & Snell 

R Square 
Nagelkerke 
R Square 

Chie-square 

Daily (69),5 RP 188.65 0.005 0.11 24.112 
Day5 (140.8) ,10 RP 212.7 0.002 0.09 20.96 

Day20 (266.85),50 RP 200.85 .004 0.173 41.628 
 
 
The models created after the regression was presented with Eq. 60-62 for daily, 5-

day threshold and 20-day threshold respectively. 

         
Ln((Pl|Pt) /(1−  (Pl|Pt)) = -5.889 +  4.057 × Rainfalldaily                          (60) 

 
Ln((Pl|Pt) /(1−  (Pl|Pt)) = -6.581+  3.56 × Rainfall5day accum                                                           (61) 
 

Ln((Pl|Pt) /(1−  (Pl|Pt)) = -7.142+  4.292 × Rainfall20dayaccum                          (62)  

 
    
The logit of the f(x) function, P (L), which is defined by the logistic function in terms 

of probability, was calculated for all of the pixels of the study region by using Eq.43.  

The (Pl|Pt) values are obtained by analyzing the probability values where rainfall 

values exceed the critical rainfall value.  

 

After obtaining the (Pl|Pt) values, the Pt value, which is the probability of trigger that 

exceeds a certain threshold, was obtained. For computations of Pt value, Gumbel 

distribution was used. The estimated (Pl|Pt) and Pt values are presented in Table 3.28.  
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Table 3.28. Parameters required for the creation of probabilistic Hazard Maps 
 

Rainfall Treshold Return Period 
(year) 

(Pl|Pt) Gumble, P(t) 

Daily (63) 5 0.16 0.2 
Day5 (140.8) 10 0.14 0.1 
Day20 (266.85) 50 0.06 0.02 

 
 
The triggering scenarios are combined with conditional probability to obtain an 

ultimate probability of trigger that exceeds a certain threshold for annual hazard. The 

ultimate probability of trigger was computed by Eq. 63. 

 

( )∑
=

=
n

i
tiltit PPPP

1
                                 (63) 

 
Where; tP  is the ultimate probability of trigger, n is the number of scenarios. 
 
By taking into account the ultimate probability of trigger and information of spatial 

probability, the yearly hazard probability can be estimated based on Eq 64. The result 

maps are probabilistic landslide hazard maps of Kumluca watershed of Bartın site for 

different mapping model and mapping units. 

 

tS xPPH =                   (64) 

 
Figure 3.108 shows hazard maps produced by the LR, SR, and ANN methods for 

grid-based mapping unit. Similarly, Figure 3.109 presents hazard maps created by 

the LR, SR, and ANN methods for slope unit-based mapping unit. Looking at the 

maps which are obtained by using three different methods in both mapping units, it 

can be seen that the differences are subtle and there are also areas with obvious 

dissimilarities. In LR and ANN maps at both mapping units, the south-eastern and 

north-western parts of the regions have low hazard compared to the spatial regression 

counterpart. This means that more areas can be classified as low susceptible if the 

hazard map is produced by LR or ANN. In contrast, the map from the SR shows 

medium hazard illustrated with yellow, green and light blue for the south-eastern and 

north-western parts of the regions.  
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(a) 

 

 
(b) 
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(c) 

Figure 3.108. Landslide hazard map of Bartın Kumluca region obtained annually for different 
mapping methods where a. LR, b. SR and c. ANN, expressed as annual probability of landslide 
occurrence probability for each pixel  

 
 

 
(a) 
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(b) 

 

 
(c) 

Figure 3.109. Landslide hazard map of Bartın Kumluca region obtained annually for different 
mapping methods where a. LR, b. SR and c. ANN, expressed as annual probability of landslide 
occurrence probability for each pixel  
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The areas which are low hazard at the LR and ANN can then be designated as 

medium hazard by the SR. This situation can also be confirmed by the statistics of 

hazard maps presented in Table 3.29. The mean value of hazard map obtained by the 

SR with grid-based mapping unit (SR_GRD_HAZ) is higher compared to the other 

methods, and the standard deviation of the hazard map obtained by SR with slope 

unit-based mapping unit (SR_SU_HAZ) is the lowest, which indicates that the 

variation of susceptibility is low. 

 
Table 3.29. The statistics obtained from the hazard maps 

 

 Min Max Mean Std. Dev 
LR_GRD_HAZ 0 0.05 0.01 0.01 
SR_GRD_HAZ 0 0.04 0.03 0 
ANN_GRD_HAZ 0.01 0.04 0.02 0.01 
LR_SU_HAZ 0 0.05 0.02 0.02 
SR_SU_HAZ 0 0.05 0.02 0.01 
ANN_SU_HAZ 0 0.05 0.02 0.02 

 
 

3.8 Consequence Analysis 
 
Depending on the definitions of AGS (Australian Geomechanics Society), 

consequence is the outcomes or potential outcomes arising from the occurrence of a 

landslide expressed qualitatively or quantitatively, in terms of loss, disadvantage or 

gain, damage, injury or loss of life (AGS, 2000). The characterization of 

consequence scenarios is based on elements at risk, vulnerability of elements at risk 

and determination of the probabilities of spatial impact and temporal impact (Bell 

and Glade, 2004).  

 

3.8.1 Probability of Spatial Impact 
 
Hazard analysis must necessarily take the run-out distances into account, which is the 

maximum distance that the landslide mass is able to travel in its downslope 

movement (Corominas et al., 2003). Landslide run-out distances need to be estimated 

to calculate the probability of spatial impact P (S|H), which can be input to risk 

studies (Finlay et al., 1999; Bertolo and Wieczorek, 2005). Analytical techniques for 

determining the travel distance may be categorized either as empirical or dynamic in 
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nature (Fannin and Wise, 2001). For regional studies, the input parameters cannot be 

measured easily, therefore simplifying assumptions are often made. In this study, the 

run-out was not estimated. Therefore, a simplifying hypothesis was accepted. This 

hypothesis assumes that susceptibility values at least partially reflect the effects of 

run-out. Because for the majority of the mapped phenomena (slow moving 

landslides), which are used in susceptibility assessment, the deposition area was 

mapped together with the detachment zone (Catani et al., 2005).   

 
 

3.8.2 Probability of Temporal Impact 
 
 
The probability of temporal impact should also be considered in the risk analysis. 

The properties (such as buildings, infrastructure, etc.) are always exposed to threats 

for all the time. For this reason, the probability of temporal impact for properties is 

100% whereas for humans the temporal probability may change depending on the 

occupancy of buildings (e.g. between night and day, week days and weekends; 

summer and winter). Hence, it is necessary to make allowance for the probability that 

persons (or a particular number of persons) will be in the area affected by the 

landslide (AGS, 2000). 

 
Therefore, the duration of people’s stay in their houses or their working in a factory, 

or even pupils’ attending in schools needs to be determined. For varying occupancy, 

it is simply a calculation of the proportion of a day (0 to 1.0) when a certain number 

of people occupy the building (Catani et al., 2005). In this study, the day and night 

are considered for occupancy of houses. In the daytime, people are considered to 

work at farms, and at night, they are thought to be in their houses. 

 
 

3.8.3 Vulnerability Analysis 
 
 
Vulnerability (V) is one of the fundamental components in the assessment of risk 

(Leone et al., 1996). It is defined as the degree of loss of a given element or set of 

elements at risk within the landslide-affected area (Varnes and IAEG 1984; Fell 

1994; Leone et al., 1996; Wong et al., 1997). The vulnerability value is generally 
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expressed on a scale of 0 (no damage) to 1 (total loss). 

 
Vulnerability to a property and to an individual differs (Dai et. al., 2002). Generally, 

to derive a qualitative index for vulnerability of a property, many different cases 

should be evaluated. Physically the run-out distance, the volume, and the velocity of 

sliding, the elements at risk for property (buildings and other structures), and their 

nature, such as the technical resistance of the building (type, nature, age, and the 

like.), and their proximity to the slide should be determined (Finlay, 1996; Dai et al., 

2002). In addition the social, economic, and environmental factors should also be 

combined for an accurate assessment of vulnerability indicator. Hence, it is not 

feasible to derive a vulnerability index for small scale studies. Most of the 

vulnerability assessment publications are related to large-scale studies or on a site-

investigation scale (Leone et al. 1996; Ragozin and Tikhvinsky 2000; Barbat 2003); 

there are relatively few studies on a small-scale risk assessment.  

 
Due to lower resolution on regional scale, it is not an easy task to identify different 

vulnerability values for different types of elements at risk. Thus, in this scale the 

vulnerability indicator is set equal to “1” for all elements at risk (E) and the number 

of persons per building (Epe). It is assumed that if a landslide occurs, it may provide a 

total destruction, which means that a complete loss will occur wherever the event 

happens. Vulnerability and exposure were summarized by the definition of potential 

worth of losses.  The worth of loss (WOL) is the representation of the amount of 

elements at risk when the vulnerability is considered as 1.  
 
 

3.8.4 Elements at Risk 
 
 
One of the essential data for landslide risk assessment is elements at risk. The 

definition of elements at risk is limited due to data constraints and it corresponds to 

the scale of investigation (Bell and Glade, 2004).   

 
The elements at risk can be classified as (AGS, 2000; Düzgün, 2008):  
 

o Property assets, which may be subdivided into portions relative to the hazard 
being considered such as furniture, equipment, personal property, vehicles, 
machines, cars, trains etc. 
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o Humans, who either live, work, or may spend some time in the area affected 
by landsliding and have possibility to be affected from the landslide(s) that 
may cause losses of basically fatality and injury 

 
o Structural elements, such as buildings, roads, railway lines, lifeline networks, 

communication facilities.   
 
o Services, such as water supply or drainage or electricity supply. 

 
o Natural environment involves flora, fauna, landscape, environmental quality, 

which is usually difficult to predict losses since they are mostly intangible. 
 

 

Element at Risk for loss of Property 

 
In this study, among the elements at risk classes described above, the emphasis was 

mostly given to buildings, roads, land-use and infrastructure. For the extraction of 

elements at risk, the relevant information was selected from digital topographic 

maps, as well as from the updated land cover map at a scale of 1:25,000. Sets of 

thematic data were constructed and the information stored in ARC/INFO coverages 

(vector data) is presented in Table 3.30.  

 

A simple classification approach was adopted in which transport, buildings, 

infrastructures and other land uses were divided into subclasses. Using a raster-based 

method, specific vector data layers of elements at risk were transformed into raster 

data with 20 m x 20 m size grid cells.  

 

The element at risk for property (road network, building damage and utility, etc.) was 

represented in monetary terms by first attributing the exposure of each element at 

risk to respective pixels and then overlaying the value of each property on pixel basis 

(Figure 3.114). When more than one type of element at risk was present within the 

same unit area (or pixel), then the sum of the object value it contained was 

considered for a pixel value.  
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Table 3.30. Classification of economic value with loss estimation of the principal elements at 
risk in TL/pixel 

 

Main Subclasses 
 

Data format and 
unit 

Element 
at Risk 

Cost of EAR 
(TL) per 

unit 
 

Loss 
(TL/ 
pixel) 

Road Provincial Highway 
(12 m wide) 

Line_km 29.62 844723 16894 

 Provincial Road (10 
m. wide) 

Line_km 140.61 751100 15022 

 Local Road (8 m. ) Line_km 4.30 659200 13184 
 Pathway Line_km 1044.42 50000 1000 
 Bridge and Cross Line_km 1.28 25000 500 

Building House Point_Number 4694 23600 23600 
 Official Building Point_Number 160 - - 

Infrastructures PowerNetwork 
(Above Ground) 

Line_km 97.29 50.00 1000 

 Telephone Network Line_km 65.78 62.00 1240 
Landuse Agriculture Polygon_hectare 118 800 320 

 
 

The Kumluca watershed has twenty-eight settlements and a total of 4,854 houses 

inside the study boundary. The houses are predominantly wooden and brick and 

mostly built on two floors, where the first floor is generally barn and the second floor 

is the dwelling. The houses are generally aligned through the margin of stream or 

constructed on the slopes. Hence, many of the houses are vulnerable to inundation or 

landslides. As shown in Figure 3.110, the building typology is subdivided into public 

houses and official buildings, where official buildings involve hospitals, educational, 

religious and communication buildings.  

 

The identification of the value or the exposure of each element at risk is a difficult 

task. The value of each class was obtained through interviews with experts in 

different organizations in 2009 as presented in Table 3.30. The cost of buildings was 

obtained from the General Directorate of Disaster Affairs of Bartın. Considering the 

interviews, the cost was assigned to each individual building of house category. No 

cost was defined formally for official buildings; hence they were excluded from the 

data base. At this scale, each house is represented with a point label, where one pixel 

corresponds to an individual house. Thus, the attribute of cost is a unit value and 

assigned to each house as presented in the loss column in Table 3.30.  
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Figure 3.110. Category of the buildings and their spatial distribution over the stream network 

 
 
The road network has five different categories (Figure 3.111). The first type is the 

Provincial highway transmitted through the southern part of the study region which 

is 12 m in width and 29.62 km in lenght. The second type is the Provincial road, 

which connects the Provincial highway to the villages. The local road is 10 m. wide 

and 140.61 km long. The local road is the road inside the district with 8-m width and 

4.3-km lenght. The pathways connect small villages and are distributed throughout 

the mountainous topography with a length of 1044.42 km. The last category is the 

bridges. They cross and involve 1.28 km of the road network.  
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Figure 3.111. The road network categories 

 
 
The infrastructures have two different types (Figure 3.112). The first type is the 

power network, which supplies power to the district with a length of 97.29 km, and 

the second type is the telephone network with a length of 65.78 km. The economic 

value of the road network and the infrastructure per km is supplied by the General 

Directorate of Transportation.  

 
The categorization of cost for road network depends on engineering design and 

materials used for construction. In general terms, the road has better resistance to 

disasters if it has a higher cost. The cost of power and telephone network was 

determined depending on the quality of fiber and/or telephone pole used. An average 

cost was computed by considering the average required for quality, type, and length 

necessities.  

 
To assign the cost value to each pixel, the value for road and infrastructures was 

produced by the conversion of cost per km to cost per pixel by considering 20 m 
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pixel resolution. The value produced after computation is presented in the Loss 

column in Table 3.30.  

 

 
Figure 3.112. The power and road network overlaid on to hillshade of study region 

 
 
The land cover map obtained from the General Command of Mapping presents that 

36% of the region is covered by agricultural fields (Figure 3.113). These fields are 

mostly covered by a variety of harvest yield, such as wheat, corn, chestnut, nut, and 

apple. (Kumluca ve Çevresinden Bilgiler, 2009). However, it is not possible to map 

and collect information on different types of fields at this scale. Depending on the 

interviews from the Soil Yield Government Department (TMO, 2009), wheat and 

corn fields are the dominant types of fields; hence they were concerned for the 

analysis.  An average economic value per hectare was estimated both for wheat and 

corn fields as presented in Cost of EAR (TL) per unit column of Table 3.30. Then for 

the further risk assessments, the cost per hectare for land-use was converted into cost 

per square meters (20 m x 20 m) as presented in Table 3.30. 
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Figure 3.113. Land Use map of the study region 

 
 
Once all the economic costs for buildings, roads, infrastructures, and agricultural 

regions per pixel are prepared, they are added in order to obtain the total cost of 

elements at risk as presented in Figure 3.114. The raster-based elements at risk map 

is a general map created to be used for further risk analysis for different models and 

mapping unit results. 
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Figure 3.114. Elements at risk map generated with monetary terms at pixel basis (TL/per  

pixel) 

 

Elements at Risk for Loss of Life 
 
It is not an easy task to map the number of inhabitants in each house on regional 

scale. However, by reliable assumptions and stepwise estimation on population, risk 

assessment was also carried out for loss of life. The elements at risk for loss of life 

were computed by considering the occupancy of inhabitants in the buildings. Thus, 

the number of inhabitants living in each house was required for the assessment of 

risk to life. For this reason, ARC/INFO coverages of buildings at 1:25000 scale and 

the total population of the settlement was used. As the total population of villages 

and the number of existing houses in each village was known, the number of 

individuals in each house was estimated. For the estimation and assignment of the 

population information for each building, all houses except the houses in boundaries 

of Kumluca town were considered as detached house in the study region. Thus, the 

houses in Kumluca town were excluded by overlaying the boundaries of Kumluca 

town with the building layers.  
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The total number of the buildings in the study region is 4,857, where 5 buildings are 

health centres, 55 buildings are schools, 70 buildings are mosques, and the rest are 

private houses. By the assumption that public facilities have a better construction 

than private houses, these buildings and the houses in the city centre are excluded 

from the building database. Finally, there were 4,707 buildings left with detached 

houses. The total population for the villages is 123,343 for 2007.   

 
In Bartın, there are 202 villages. Hence, assuming that the population is uniformly 

distributed throughout the villages, for each village approximately 610 people can be 

assigned. In Kumluca, there are 28 villages; hence, a population of 17,097 can be 

assigned to all the villages of Kumluca. The number of total detached houses is 

4,707; hence, approximately 4 inhabitants were estimated to be living in each 

building.   

 
Building data layers are transformed into raster data, attributing the number of 

residents in each building to respective grid cells. 4 residents were assigned to each 

building for the risk analysis. Hence, a data layer was created representing the spatial 

pattern of residents, which are points on the map (Figure 3.115). 

 

 
Figure 3.115. The spatial pattern of residents that are points on the map 
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3.9 Risk Assessment 
 
To create risk maps for property and loss of life, two steps are followed. In the first 

step, the consequence map is produced. In the second step, the result of consequence 

layer is multiplied by each hazard probability value for each hazard map.  

 

3.9.1 Risk Analysis for Property 
 
The quantitative analysis of total risk was expressed as expected economic losses on 

a pixel basis, for each pixel. The risk value was assessed on the basis of the product 

of hazard, and consequence parameters as given in Eq. 65; 

 
R(PROP) = P(H)x P(S|H)x V(P|S)xE               (65) 
   
or 
 
R(PROP)  = P(H)x C                (66)  
 
 
As discussed previously, the P(H) is the hazard probability obtained from the 

previous part of the study annually; P(S|H) and V(P|S) were set to 1, considering that 

the event is devastating in the probability of its occurrence. The amount of elements 

at risk is given in Table 3.30. As a result, the quantitative risk for properties is 

expressed as TL/pixel annually, where each pixel has a single risk value. 

 

Quantitative risk maps were created for Kumluca region considering the landslide 

risk for roads, houses, infrastructures, and agriculture. The computation of risk is 

illustrated for LR method and grid and slope unit-based mapping unit in Table 3.31. 

Since it was not possible to illustrate the continous scale hazard values in this 

display, the mean value of hazard was considered.  

 

To create risk maps for property, two steps were followed. In the first step, the 

consequence map was produced by multiplication of P(S|H), V(P|S) and Loss value 

of element at risk for property. In the second step, the resultant consequence layer 

was multiplied by each hazard probability in each hazard map in sequence to 

calculate the risk according to Eq. 66. 
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Table 3.31. Risk calculation for property. Hazard values are mean value and loss value 
according to Table 3.30.  

 
Hazard 
Method Element At Risk E (TL/Pixel) P(H) 

(mean) P(S|H) V(P|S) R(PROP) 

Provincal Highway 16894 0.01 1 1 168.94 

Provincal Road 15022 0.01 1 1 150.22 

Local Road 13184 0.01 1 1 131.84 

Pathway 1000 0.01 1 1 10 

Bridge and Cross 500 0.01 1 1 5 

House 23600 0.01 1 1 236 

Official Building None 0.01 1 1 None 

Power Network 1000 0.01 1 1 10 
Telephone Network 1240 0.01 1 1 12.4 

L
R

_G
R

D
_H

A
Z

 

Agriculture 320 0.01 1 1 3.2 

Provincal Highway 16894 0.02 1 1 337.88 
Provincal Road 15022 0.02 1 1 300.44 
Local Road 13184 0.02 1 1 263.68 

Pathway 1000 0.02 1 1 20 

Bridge and Cross 500 0.02 1 1 10 
House 23600 0.02 1 1 472 
Official Building None 0.02 1 1 None 

Power Network 1000 0.02 1 1 20 

Telephone Network 1240 0.02 1 1 24.8 

L
R

_S
U

_H
A

Z
 

Agriculture 320 0.02 1 1 6.4 

 
 
The illustration of risk maps on a continous scale provides a representation of the 

variation of risk values in the spatial domain. Figure 3.116 illustrates the spatial 

variation of risk values for property in grid–based mapping unit for three different 

methods. The risk maps for property obtained by LR (LR_GRD_RISK_PROP) 

(Figure 3.116a), SR (SR_GRD_RISK_PROP) (Figure 3.116b), and ANN 

(ANN_GRD_RISK_PROP) (Figure 3.116c) indicate that the pattern of risk values 

are similar, whereas the minimum and maximum values range from 1069.25 to 

1575.44. The highest risk is observed in the provincal highway and the provincial 

road. Compared to the SR_GRD_RISK_PROP and ANN_GRD_RISK_PROP, the 

LR_GRD_RISK_PROP highlights the risk to power network on the medium level.  
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(a) 

 

 
     (b) 
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     (c) 

Figure 3.116. The risk to property for grid-based mapping unit for different methods, a. LR, b. SR 

and c. ANN 

 
 
Figure 3.117 illustrates the spatial variation of risk values for risk to property in slope 

unit–based mapping unit for three different methods. The risk maps for property 

obtained by LR (LR_SU_RISK_PROP) (Figure 3.117a), SR (SR_SU_RISK_PROP) 

(Figure 3.117b), and ANN (ANN_SU_RISK_PROP) (Figure 3.117c) indicate that 

the pattern of risk values are similar to each other as in the grid-based maps (Figure 

3.117a, b, c), whereas the minimum and maximum values range from 1827.81 to 

1903.97. The SR_SU_RISK_PROP and ANN_SU_RISK_PROP illustrate the 

highest risk in the provincal highway and the provincial road; however, 

LR_SU_RISK_PROP illustrates the highest risk in the provincial road only.  
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     (a) 
 

 
     (b) 
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     (c) 

Figure 3.117  The risk to property for slope unit-based mapping unit for different methods, a. 
LR, b. SR and c. ANN (TL/per pixel) 

 

 

The risk to property maps obtained by using grid-based and slope unit-based 

mapping unit for different methods were also evaluated by the computation of 

statistics for each map. The statistics obtained from risk maps indicated that the 

maximum values range between 1069.25 and 1903.97, and the mean value ranges 

between 4.36 and 14.31 (Table 3.32). The risk map obtained from the LR model with 

grid-based mapping unit (LR_GRD_RISK) provides the smallest maximum, standard 

deviation and mean value. On the other hand, the largest mean value is obtained from 

the risk map created from SR model with grid-based mapping unit (SR_GRD_RISK) 

with the largest standart deviation. In general, the LR_GRD_RISK and the risk map 

obtained from the ANN model with grid-based mapping unit (ANN_GRD_RISK) 

have smaller maximum, mean, and std.dev values than SR_GRD_RISK, the risk map 

obtained from the LR model with slope unit-based mapping unit (LR_SU_RISK), the 

risk map obtained from the SR model with slope unit-based mapping unit 

(SR_SU_RISK), and the risk map obtained from the ANN model with slope unit-

based mapping unit (ANN_SU_RISK) maps. 
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Table 3.32. The statistics of the property risk maps for different methods and mapping units 
(TL/per pixel) 

 
 Min Max Mean Std. Dev. 
LR_GRD_RISK 0 1069.25 4.36 32.94 
SR_GRD_RISK 0 1575.44 14.31 84.35 
ANN_GRD_RISK 0.01 1144.6 8.34 52.79 
LR_SU_RISK 0 1903.97 10.46 81.9 
SR_SU_RISK 0 1827.81 12.23 79.57 
ANN_SU_RISK 0 1886.21 11.42 82.26 

 
 
The risk values vary spatially depending on the hazard values because the element at 

risk values used for risk computation is stable for different prediction maps. 

Therefore, the range of risk values dependes on the variation on the predicted 

probabilities of hazard maps. For example, the hazard value of a method A and B is a 

and b respectively and the element at risk value is t, then the computed risk value 

will depend on the hazard value. If a is larger than b, then the risk value computed by 

a will be larger than the risk value computed by b.  

 

3.9.2 Risk analysis for Loss of Life  
 
The quantitative map for risk to life for Kumluca was created by considering the 

occupancy of buildings by people. For the estimation and assignment of population 

information for each building, the detached houses were considered and the houses at 

the boundaries of Kumluca town and the official buildings were excluded as 

discussed in the previous part.  

 
The results calculated for risk to life are different from the results of the property risk 

with all ”risk cells“, and the risk was computed for day and night for humans where; 

 
 

R(LOL) = ∑
=

2

1

Epe x H)|P(SP(H)x 
i

                (67) 

 
R(LOL) = nightday Epe) x H)|P(S(P(H)x *0.5Epe) x H)|P(S(P(H)x *0.5 +  (68)  
 
 
 C= P(S|H) x Epe                       (69) 
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During the day, it is assumed that the inhabitants may be out of home and at least one 

inhabitant may be at home and at night all inhabitants are mostly at home. For that 

reason, for night computations, the number of inhabitants at home was considered as 

four, whereas during the day it was considered as one. 

 
As discussed earlier, the P (H) is the hazard map produced in the previous part of the 

study obtained annually; P (S|H) is set to 1 considering that the event is devastating 

in the probability of its occurrence. Table 3.33 illustrates the computation of risk to 

life for different mapping methods and mapping units. Owing to continuous scale of 

hazard, the mean value was used to illustrate the risk computation. The final risk map 

to life was obtained with two steps. In the first step, the consequence map was 

produced by multiplication of P (S|H) by the number of residents in each building. In 

the second step, the result consequence map was multiplied by each probability of 

each hazard map in sequence.  

 

Table 3.33. Risk calculation for life. Hazard values are mean value obtained from Table 3.30 

METHOD P(H) (mean) P(S|H) Eday Enight R(LOL) 
LR_GRD 0.01 1 4 1 0.025 
SR_GRD 0.03 1 4 1 0.075 
ANN_GRD 0.02 1 4 1 0.05 
LR_SU 0.02 1 4 1 0.05 
SR_SU 0.02 1 4 1 0.05 
ANN_SU 0.02 1 4 1 0.05 

 

 

Figure 3.118 illustrates the spatial variation of risk values for risk to life in grid–

based mapping unit for three different methods. The risk maps for loss of life 

obtained by LR (LR_GRD_RISK_POP) (Figure 3.118a), SR (SR_GRD_RISK_POP) 

(Figure 3.118b) and ANN (ANN_GRD_RISK_POP) (Figure 3.118c) indicate that 

the pattern of risk values varies for different mapping methods for grid-based maps 

(Figure 3.118a, b, c). The maximum risk value is similar for SR_GRD_RISK_POP 

and ANN_GRD_RISK_POP, which is 0.164 and 0.162 respectively and higher in the 

LR_GRD_RISK_POP with 0.181 risk value, whereas the variation of values varies 

much for each method. For instance, the SR_GRD_RISK_POP illustrates the 

buildings as high risk regions, and the region surrounded by Kumluca, Kızıllar, and 

Zafer has medium risk. The southern parts of the region are illustrated with a 



 

243

combination of medium and low risk. On the other hand, ANN_GRD_RISK_POP 

and LR_GRD_RISK_POP illustrate the southern parts of the region with low levels 

of risk.  

 

 
     (a) 

 
     (b) 
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     (c) 

Figure 3.118. The risk to population for grid-based mapping unit for different methods, a. LR, 
b. SR and c. ANN  (Loss of Life/per pixel) 

 
 
The ANN_GRD_RISK_POP illustrates the region surrounded by Kumluca, Kızıllar, 

and Zafer with medium risk and high risk regions are mostly the buildings and a S-

shaped region in the south-eastern parts The LR_GRD_RISK_POP illustrates the 

region surrounded by Kumluca, Kızıllar, and Zafer with medium risk and high risk 

values.  

 
For slope unit-based mapping unit, Figure 3.119 illustrates the spatial variation of 

risk values for risk to life for three different methods. The risk maps for loss of life 

obtained by LR (LR_SU_RISK_POP) (Figure 3.119a), SR (SR_SU_RISK_POP) 

(Figure 3.119b), and ANN (ANN_SU_RISK_POP) (Figure 3.119c) provide a similar 

pattern of risk values for different mapping methods for slope unit-based maps 

(Figure 3.119a, b, c). The ANN_SU_RISK_POP and LR_SU_RISK_POP obtained 

lower risk levels, which are close to 0 in the southern parts of the region when 

compared to SR_SU_RISK_POP. The maximum risk value is similar for all mapping 

methods, which is 0.188, 0.184, and 0.187 for LR_SU_RISK_POP, 

SR_SU_RISK_POP, and ANN_SU_RISK_POP respectively. The highest risk values 

are obtained for the inhabitants living in each building for each method.  
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     (a) 
 

 
     (b) 
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     (c) 

Figure 3.119. The risk to population for slope unit-based mapping unit for different methods, a. 
LR, b. SR and c. ANN  (Loss of Life/per pixel) 

 
 

When the statistics of risk maps are compared for grid and slope unit-based mapping 

unit for all methods, it is evident that the ANN_GRD_RISK, LR_SU_RISK, 

SR_SU_RISK, and ANN_SU_RISK have similar mean values (Table 3.34). 

LR_GRD_RISK has the smallest mean and SR_GRD_RISK has the largest mean 

value, which can also be observed in the statistics of hazard (Table 3.34). The risk 

maps to life obtained by grid-based mapping unit provide a lower variation of risk 

values than the risk to life obtained by slope unit-based mapping unit.  
 

Table 3.34. The statistics of the risk maps of life for different methods and mapping units (Loss 
of Life/per pixel) 

 Min Max Mean Std. Dev. 
LR_GRD_RISK 0 0.18 0.01 0.01 
SR_GRD_RISK 0 0.16 0.03 0.01 
ANN_GRD_RISK 0.01 0.16 0.02 0.01 
LR_SU_RISK 0 0.19 0.02 0.02 
SR_SU_RISK 0 0.18 0.02 0.02 
ANN_SU_RISK 0 0.19 0.02 0.02 
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3.10 Comparison of Risk Maps for regional scale 
 
 
The realization of the elements at risk and hazard probabilities for LR, SR, ANN 

models and for grid and slope-based mapping units led to the production of six 

different landslide risk maps for both property and life on local and regional scales. 

The risk maps for property and life portray the expected losses in TL per pixel and 

probability of life loss per pixel respectively. Numerically, for each pixel (20 m2), a 

single value of R (LOP) and R(LOL) was computed. The maps for risk to property 

and risk to life portray the annual economic loss of property and annual probability 

of loss of life respectively. The development, evaluation, and comparison of these 

risk maps were performed within the GIS environment by carrying out some raster 

calculations.  

 

For comparison purposes, six risk maps for both property and life on regional scale 

were rescaled so that the pixel values lie between 0 and 1. Then they were classified 

into three similar class ranges. The class ranges were defined by examining the 

cutoff values at each map. As a result, the risk maps were classified into three 

different levels of risk, putting the pixel ranges of 0 to 0.38 into low, 0.39 to 0.60 

into medium, and 0.61 to 1 into high risk zones for property and life. 

 
Two different approaches were adopted to compare the risk maps for regional scale 

analyses. In the first approach, the categorized risk values were quantified relatively 

by using bar graphs. Therefore, the number of pixels at low, medium, and high range 

classes was computed. The comparison of maps based on the histogram bar graphs 

provides quantitative comparison of the models; however, it does not yield spatial 

differences. Thus, in the second approach the risk maps were overlaid in sequence 

and the differences were computed. By overlaying the risk maps, it is easily possible 

to make a quantitative comparison of the models for similar and dissimilar regions in 

spatial domain. The differences are computed by subtracting the second map from 

the first map. Hence, any negative differences indicate that the second map 

overestimate (O) at that location compared to the first map. The positive difference 

shows that the second map underestimate (U) else if the difference is zero; then the 

maps are similar (S) on those regions. Six different difference maps were created for 

three different models and for two different mapping units. The differences 
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were analyzed for property and life risks individually. In addition to the illustrations 

of similarities in spatial domain, the percentage of pixels at each similarity was 

computed to make a quantitative comparison of risk maps.  

 
The risk maps created after the classification process are illustrated to display the 

variation of risk values spatially in the study region for risk to property (Figure 3.120 

and Figure D-1 to Figure D-5 in Appendix D) and for risk to life (Figure 3.121 and 

Figure D-6 to Figure D-10 in Appendix D). SR_GRD, ANN_GRD, LR_SU and 

SR_SU illustrate the risk to road or infrastructures in addition to houses when the 

spatial distribution of risk values is displayed in Figure D-1, Figure D-2, Figure D-3, 

Figure D-4 respectively when both mapping units are evaluated.  

 
 

 
Figure 3.120. Risk to property for LR model and grid-based mapping unit (LR_GRD) (TL/per  

pixel) 
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Figure 3.121. Risk to life for LR model and grid-based mapping unit (LR_GRD) (Loss of 

Life/per pixel) 

 
 
However, LR_GRD and ANN_SU mostly display the risk values at the buildings in 

Figure 3.121 and Figure D-5 respectively.The categorized risk values were 

quantified by using the bar graphs as shown in Figure 3.122 and Figure 3.123.  
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Figure 3.122. Bar graphs showing the relative distribution of risk levels for property for 
different class ranges 
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Figure 3.123. Bar graphs showing the relative distribution of risk levels for life for different 
class ranges 

 
 
Therefore, the number of pixels at each class range was computed. The study region 

except from elements at risk has low risk values, which cover 99% of the region. 

Therefore, the number of pixels at low class is very high. In general, all risk maps 

were skewed to right, where the high risk class has the lowest number of pixels and 

the low risk class has the highest number of pixels. ANN_GRD (Figure D-2) has the 

highest number of risk values at high class and LR_SU (Figure D-3) follows in the 

second order. SR_SU (Figure D-4) represents most of the elements at risk classes at 

medium class, then SR_GRD (Figure D-1), and LR_SU (Figure D-3) follow.  
 
Contrary to risk to property, the risk to life provides a distribution where the pixels at 

high risk class are higher. The SR_GRD has the highest number of risk values at the 

high risk class whereas the LR_GRD does not have any high risk values. The 

ANN_GRD provides the highest medium, then the LR_GRD comes. However, the 

SR_GRD has the lowest number of pixels in the medium class. 

 

By overlaying the risk maps, a quantitative comparison of the models for similar and 

dissimilar regions at spatial domain is applied. The differences were computed for 

each slope and grid-based mapping unit separately by subtracting the second map 

from the first map, where the differences were represented at the top of Figure 3.124 

and Figure 3.125 in the legend. For each mapping unit, 6 different difference maps 

were created for three different models and for two different mapping units. In 
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addition to the illustrations of similarities in spatial domain, the percentage of pixels 

at each similarity was computed to make a quantitative comparison of risk maps 

(Figure 3.124 and Figure 3.125).  
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Figure 3.124. Bar graphs showing the percentage difference of risk levels based on different 

models and mapping units for property  
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Figure 3.125.Bar graphs showing the percentage difference of risk levels based on different 

models and mapping units for life 

 
 
The similarity values were higher for each model and mapping unit. As described 

before, it is due to the extension of the study region. The southern part of the region 

was at low risk for all risk maps as presented in (Figure 3.120, Figure D-1, Figure D-

2, Figure D-3, Figure D-4, Figure D-5, Figure D-6, Figure D-7, Figure D-8, Figure 



 

252

D-9, Figure D-10 and Figure 3.121) for risk to property and to life. Therefore, the 

number of low risk values was high at each risk map. To compare the similarities, it 

is important to identify the variation of histograms. Thus, the 750,000 pixel values 

were subtracted from all similarity values for both property and population risk 

values. Negative and positive values were fairly lower than the similarity values. 

Therefore, they are kept as the original. Afterwards, the percentage of pixels at each 

similarity class was computed to identify the similarities between risk maps. 

 
As illustrated in Figure 3.124 the SR_LR_GRD shows the highest similarity, then 

LR_ANN_SU, SR_ANN_SU, SR_LR_SU, LR_ANN_GRD and SR_ANN_GRD 

follows the order. Therefore it is evident that while the SR_LR_GRD is more similar, 

SR_ANN_GRD is more dissimilar. This conclusion is also proved by the evaluation 

of negative and positive dissimilarities. SR_ANN_GRD provides the highest 

dissimilarities at both negative and positive classes. 

 
When risk similarities for life are analyzed, it is seen that the LR_ANN_SU, 

SR_ANN_SU, and SR_LR_SU provide the highest similarities (Figure 3.125). This 

can also clearly indicate that the risk maps obtained by slope unit-based mapping unit 

provide higher similarities between LR, SR, and ANN compared to the models 

obtained by grid-based mapping unit. This can be proved by the evaluation of 

negative and positive risk values. The SR_ANN_GRD and LR_ANN_GRD illustrate 

the highest dissimilarities at negative and positive classes.  
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CHAPTER 4  
 

4 IMPLEMENTATION FOR LOCAL SCALE RISK 
ASSESSMENT 

 
 
 

4.1 Determination of High Hazard Zone 
 
The hazard maps produced for regional scale were used for selection of the site for 

local scale risk analysis. Hepler district was identified as one of the high risk zones 

from the risk maps created after modeling the LR, SR, and ANN maps for grid and 

slope-based units. Hepler village was zoomed in to identify the local risk in the study 

region as presented in Figure 4.1-Figure 4.6.  

 

 

 
Figure 4.1. The grid-based LR hazard map levels for Hepler district 
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Figure 4.2. The grid-based SR hazard map levels for Hepler district 
 
 

 
Figure 4.3. The grid-based ANN hazard map levels for Hepler district 
 
 

 
Figure 4.4. The slope unit-based LR hazard map levels for Hepler district 
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Figure 4.5. The slope unit-based SR hazard map levels for Hepler district 
 
 

 
Figure 4.6. The slope unit-based ANN hazard map levels for Hepler district 

 
 

These figures are also the evidence of model performances in the local region. It can 

be clearly seen from the figures that the local slope boundary is represented in the 

middle and/or high risk zone in all of the model results. The slope unit-based LR, 

SR, and ANN maps provide a generalization and they represent the region at high 

risk zone as presented in Figure 4.4, Figure 4.5 and Figure 4.6 respectively. 

However, in the LR, SR, and ANN grid-based mapping units, the spatial distribution 

of high, medium, and low classes differs at the slope boundary and the slope mass is 

represented with high and medium classes dominantly. 
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4.2 Characteristics of the Study Area: Hepler Village  
 
Hepler is a small district located on a hillside. The Hepler region exhibits 

mountainous topographical features, and is frequently subject to heavy precipitation. 

Due to these adverse effects, the region is prone to extensive and severe landslides 

(Ercanoğlu and Gökceoğlu, 2002). There are approximately 45 buildings, many of 

which are constructed on the slope with one and two stories. The population in 

Hepler district is approximately 250, which may change during summer or winter. 

The region covers 0.5 km2 and is located approximately 8 km SW of Kumluca city. 

The 3D view of the study region is given in Figure 4.7. Topographical elevation 

varies from 241 to 527 m above sea level. The predominant slope angle is 

approximately 240 with slope angles ranging from 00 to 650. The vegetation cover 

and land-use mainly consist of woodlands, grass pastures, and rice plantations. 

Depending on the reports of the General Directorates of Disaster Affairs of Bartın, 

the region is settled down on an old landslide mass. Landslide mass is identified in 

lithologic units of Upper Cretaceous age Flysch, which is named as the Ulus 

formation. The Flysch formation is comprised mostly of thick sandstones in the 

lower parts, then sandy, clay schist, clay marl and claystone units on the upper parts. 

On average, the soil varies between 30 and 40 cm in thickness. The Flysch formation 

is saturated due to extreme snowmelt in the winter and rainy season in the spring. It 

is reported that it rains above average during seasonal rains and it snows more than 

1.5 m high. The snow melts slowly and as a result the terrain covered with clay 

absorbs the whole water and become slippery ground. As the terrain becomes 

saturated with water, landslide and mud flows occur. 

 
In 1967, 1985 March, 1998 May, and 2000 June, devastating landslide events 

occurred in Hepler village. 1985 and 1998 slides were reported to be a flow type 

slide. There is no information about the others. 10, 25, and 12 houses were moved 

due to 1985, 1998, and 2000 landslides respectively.  
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Figure 4.7. Location of the study region in 3D View 
 

4.3 Data Acquisition and Preparation 
 
The data sets utilized in this study are from various types of sources and consist of 

mainly fieldwork, documentations, and remotely sensed imagery. As it was not 

possible to collect detailed data, such as slope geometry, strength parameters, and 

geology required for geotechnical models for slope stability analysis, the hazard 

prediction values were obtained from the regional scale hazard maps. The data 

collection for local scale focuses on obtaining rainfall data (Table 4.1) and X, Y, Z 

data for simulation of the run-out, additionally, extensive field works and an analysis 

of remote sensing images for consequence analysis (Table 4.1).  

 
Table 4.1. Characteristics of data for local slope analysis 
 
Implement 

Type 
Data Source Data Type Data 

Format 

Data Coordinate System 

R*  NIK Quickbird 
(10.04.2003) 

Raster R, G, B, NIR : 
4 m  

Pan : 1 m 

WGS_1984_UTM_Zone_36N 

C*  Turkish State 
Meteorological Service 

Rainfall Data for 
Bartın station 

Excel 1998, May 17-
23 hourly data 

 

*R=Risk, C=Consequence 
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Assuming that the same rainfall situation that produced slides in the past will 

produce the same effects in the future, an event like the one in 1998 was simulated. 

The simulation aimed to estimate the velocity of the debris to be input for estimation 

of vulnerability. To start a simulation with FLO-2D, there are two important steps, 

which involve developing the hydrology from hourly rainfalls and obtaining the 

topographic database. In order to develop a hydrograph, the 7-day (1998, May 17-23) 

hourly data was acquired from Bartın station.  

 

In order to determine a detailed topography of the slope and assess the properties of 

the landslide, extensive field work was carried out. The Ashtech Kinematic GPS 

(Global Positioning System) was used to collect the X, Y, and Z coordinates of the 

surface topography with an accuracy of ±0.5m (at 95% confidence interval). When 

terrain conditions were not suitable to collect data point with GPS because of the 

dense vegetation cover or steep slopes, TruPulse 200 Laser Range Finder was used. 

Laser works by sending a laser pulse in a narrow beam towards the object and then 

measuring how long it takes for the pulse to bounce off the target and return to the 

sender. The measurement range of the range finder is up to 3280 ft (1000 m) in 

distance and +/- 90 degrees as inclination. It has an accuracy of +/- 1 ft (+/- 30 cm) in 

distance and +/- 0.25 degrees as inclination. The data points were collected 

homogenously from the whole slope and as a result, the DEM was constructed at 1 m 

grid size with ArcGIS 9.1 software, using triangular irregular network (TIN) 

approach. 

 
In addition to the collection of data points for the topography of slope, field 

observations also focused on the identification of the activity of the slope and the 

vulnerability information of the buildings in the study region. The observed cracks 

and scarps through the field survey were mapped onto the remote sensing image of 

the study region (Figure 4.8).  
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Figure 4.8. The cracks and scarps observed and mapped through field survey at 6-7 June 2009 
 
 
As presented in Figure 4.8, in the southern part of the region, transverse cracks were 

observed. Moreover, the main scarp boundary and crowns were observed at the top 

of the slope. Some of these cracks are shown in Figure 4.9b,Figure 4.9c,Figure 4.9d, 

Figure 4.10a, and Figure 4.11a. The crowns observed through the study region are 

mostly 30-40 cm deep and depending on the interviews with the local people, these 

artifacts occurred between 2008 and 2009. Thus, these fractures indicate that the 

slope mass is still active and slowly moving, which has a potential to damage the 

houses. The upper scarp of the slide is displayed in Figure 4.11b and Figure 4.11c. 

The scarp is approximately 1.8 m in height and approximately 20 m in width. 
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Figure 4.9. The photos of the terrain with scarps and crowns  
 
 

 
Figure 4.10. The anomalies investigated through the field surveys, the photos are overlaid to the 
remote sensing image of the region a. A fracture representation of the region b. The protection wall of 
a house in the region c. The cracks inside the house 
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Figure 4.11. Some photos from the field survey a. The crack on the terrain, b. The toe of the upper 
scarp c. The main scarp and head of the upper scarp d. The deformation observed at the column of the 
building e. The cracks observed outside the building 
 
 
The cracks inside and outside the walls of houses (Figure 4.10c, and Figure 4.11e 

respectively) and some deformations on buildings (Figure 4.11d) were observed 

during the field work. As presented in Figure 4.11d, the column of the house was 

bent on and the stairs were separated (Figure 4.11e) from the main body of the house. 

Local people indicate that these kinds of deformations frequently occur in the 

houses; hence, some houses were even evacuated.  

 
During the field surveys, the population living in the houses is also collected. 

Depending on the interviews with the local people, it can be said that the population 

of each house increases in summer and decreases in winter. Hence, the range of the 

population for most of the houses were collected and added as additional information 

to the database to be used for further risk assessment study. 

 
In the study region, the buildings and the main road were extracted from the remote 

sensing data by the developed algorithm for element at risk studies. Quickbird image 

of the study area, which was acquired on April 10, 2003, was used. The image was 
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acquired with four bands for the study region, where the R, G, B, NIR bands are in 4 

m. spatial resolution and the Pan band is in 1 m spatial resolution at the WGS84 

datum UTM projection 36 North hemispehere zone. The former image has 

2656x3402 pixels and the latter image has 10624x13608 pixels with 16-bit spectral 

resolution.  

 

4.4 Consequence Analysis 
 
This study focuses on the quantitative assessment of risk to property and risk to life 

on local scale. The methodology of the study followed the same procedure with some 

differences in the application of regional risk assessment methodology. The risk 

analysis consists of the following steps: hazard assessment, consequence analysis, 

and risk calculation. To calculate the landslide risk of Hepler village, the spatial and 

temporal probability of occurrence of potential damaging events were adopted from 

regional maps created by different models and mapping units. Therefore, the 

methodology followed the consequence analysis after data collection for further risk 

analysis.  

 
Consequence study involves determination of spatial impact, vulnerability and 

elements at risk for property and life. On local scale, the effect of run-out distance 

was considered for probability of spatial impact. Hence, a physical process model 

Flo 2D was used for modeling the run-out. The vulnerabilities were estimated 

depending on the output of run-out velocity for each building. The distribution of the 

elements at risk in space and time was extracted from the Quickbird image for the 

consequence analysis.  

  

4.4.1 Probability of Spatial Impact 
 
This part of the study aims at determining the affected areas using a model to predict 

landslide prone areas. To define the flow depositions produced from the landslides, a 

two–dimensional Flo2D model (O’Brein et al., 1993) was applied in the study. The 

main aim of running the simulation with Flo-2D was to obtain the velocity of the 

debris flow so that the vulnerability of the buildings could be predicted depending on 

their exposure to slide velocity. In this approach, the spatial vulnerability of 
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building and also the vulnerability of people living on that house may be estimated 

based on these velocity outputs. Flo 2D is a two dimensional finite difference model 

that simulates clear water, flood hazards, mud flows, and debris flows. The objective 

of this model is to estimate the probable range of flow properties in terms of velocity 

and depth to predict a reasonable area of inundation (O’Brein et. al., 1993). 

 
The FLO-2D model developed by O’Brien (Obrien et. al., 1993; O’Brien, 1999) can 

be applied to simulate hyperconcentrated sediment flows such as mudflows and the 

transition from water flows to fully developed mud and debris flows (Bello et. al., 

2003). Hyperconcentrated sediment flows are defined as flood events with sediment 

concentrations that exceed 20% by volume (O’Brien, 1999). 

 
It was aimed to simulate the event occurred in 1998 due to torrential rainfalls 

observed in the Hepler district. During the first two weeks of May 1998, intermittent 

rainfall during a wet rainy season saturated the steep slopes of the Hepler district. As 

it is presented in Figure 4.12, the rainfall data indicates that a low intensity but 

continuous rainfall occurred between May 1 and May 19, with a total amount of 45.4 

mm in the study region. Rainfall intensity increased between the days May 20-22. 

The Bartın station reported that during these three days a total precipitation of 166.3 

mm. occurred. Then, torrential rainfalls over a three-day period (May 20-22) 

spawned landslides throughout the upper slopes of the terrain. Slide surges destroyed 

most of the houses and also killed animals in Hepler. According to local reports, 25 

houses moved after the devastating event. 

 

 
Figure 4.12. The daily rainfall pattern of Bartın station in 1998 May 
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Hence, to simulate the run-out of local slopes in 1998, the 7-day (May 17-23) hourly 

rainfall data was acquired from the Bartın station. In order to create a storm 

distribution, the relative accumulation was computed by using the hourly records of 

7-day precipitation (Figure 4.13). This data was then used to be input to compute the 

hydrograph, which would then be used as input for simulation. In other words, the 

storm distribution was used to compute the discharge (Q m3/s) in each cell in the 

selected region. 

 

 
Figure 4.13. Rainfall distribution at Bartın Station May 17-23, 1998. 
 
 
Two-dimensional governing equations include the continuity equation and the 

equation of motion. For the application of equations, a finite difference model was 

used. More details about the algorithm and the implementation can be found in Flo 

2D user manual 2003. There are two important steps to start a simulation with FLO-

2D. The first step is obtaining the digital terrain model and second step is developing 

the inflow flood hydrology of rainfall. In addition to these, data channel geometry, 

study region limits (coordinates), land-use shape files and tables and floodplain 

roughness of Manning’s Roughness (n-value) are required (GDS help file). Hence, to 

simulate the flow, after division of the topography into uniform square grids, each 

grid is assigned the following information: location, topographical elevation, 

roughness factor, and area and flow width reduction factors. 

 

By using the flow depth, the discharge flow was routed through the grid system. For 

each grid element and time step, the discharge across each of the four boundaries was 

computed and summed. The resultant volume change is uniformly distributed over 
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the available flow area in the element (O’Brein et al., 1993). For both the water and 

mudflow sediment volumes, mass conservation was obtained as the flow hydrograph 

was routed over the grid system. At each time step, the model computes the change 

in water and sediment volumes and the sediment concentration. 

In this study, the mudflow behavior as a function of sediment concentration was 

considered as a landslide property, which is a block sliding failure with internal 

deformation during the slide.  

 
The FLO-2D software package includes a Grid Developer System (GDS) program 

that overlays a grid system on a set of random digital terrain model (DTM) points 

and that interpolates and assigns elevations to grid elements. The GDS reformats the 

topographic data into a file that identifies contiguous grid elements. To create a FLO-

2D grid system and model, the following steps were completed for the analysis. The 

DTM data (terrain data) with 1-m resolution was exported to Ascii grid file to be 

input for the GDS and a 10-m square grid system was prepared (Bertolo and 

Wieczorek, 2005). The channel geometry was estimated through the data collected 

from the fieldwork, visual inspection of remote sensing images and also the slope 

unit model. Then, the shape file slide boundary was imported to the system and the 

simulation area (computational domain) for the FLO-2D model was determined 

based on this boundary. The elevation data was interpolated and FLO-2D grid 

element elevations were assigned to each grid cells. The Manning’s roughness (n-

value) was not present for the study region, hence some general assumptions 

provided by O’Brien 1999 were used as presented in Table E-1 in Appendix E. By 

the field surveys, the region was observed to have dense grass and vegetation; 

therefore, the overland flow manning's n roughness value was considered as 0.32 

depending on the physical surface type in Table E-1 in Appendix E.  

 

After the determination of outflow nodes, the FLO-2D simulated the flooding by 

routing the flood hydrograph. The flow depths and velocities were predicted for 

every grid element in eight potential flow directions for a time step in the order of 

seconds (Garcia et al., 2004). 

 
The FLO-2D results include depth and velocity files that can be imported to the 

MAPPER post-processor program, which graphically displays the output such as 
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maximum flow depth and velocity contours to assist in the interpretation of the 

results. 

 
For each cell of the analysed data, FLO-2D returns volume concentration, velocity, 

discharge and depth during all times in the simulation. The velocity map of the 

simulated slide changes with the volume concentration and ranges between 0.01 and 

1.55 m/s (Figure 4.14). The spatial variation of velocity values over the study region 

and the distribution of houses are also illustrated in Figure 4.15. The velocity map 

was used for further vulnerability estimation.  

 

 
Figure 4.14. The velocity map of the simulation result (m/s) 
 

 
Figure 4.15. The spatial distribution of velocity values over the 3D image of the study region 
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4.4.2 Identification of Elements at Risk by Remote Sensing 
 
 
On local scale, it was possible to focus on a more detailed survey of the buildings, 

condition of them, the number of inhabitants per house, and seasonal or daily 

movement of the population. Hence, during the fieldwork, information in as much 

detail as possible was collected for buildings, the condition of buildings, population, 

and roads. The building features and main local road was also detected by the 

developed algorithm for risk analysis. Since limited information could be surveyed 

about the type and cost of agriculture, it was not considered for vulnerability 

analysis. Most of the houses are one or two-storey buildings and are found in the mid 

part of the landslide. Buildings are predominantly concrete and a few are wooden 

buildings. In Figure 4.11d, a typical house in the district is presented. Additionally, 

the distribution of houses is illustrated in Figure 4.15. In this study, a generic 

algorithm was developed with the collaboration by Computer Vision and Intelligent 

Systems Research Laboratory in Department of Electrical and Electronics 

Engineering, METU to gain an automated way to extract buildings from high 

resolution satellite image. The proposed method consists of mainly four steps: first, 

masking the vegetation and shadow areas and obtaining man-made segments, then 

the main road detection, and then filtering thin and long artifacts by PCA and 

eliminating small segments by morphological operations, and finally classifying the 

resultant image, which is masked by vegetation, shadow and road features. The main 

steps of the methodology are given in Figure 4.16. The algorithm was applied to four 

different subregions as presented in Figure 4.17. 

 



 

268

 
Figure 4.16. Flowchart of the Methodology 
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Figure 4.17. The subregions used for the building detection algorithm 
 
Initially low-resolution multi-spectral imagery (MSS) and high-resolution 

panchromatic imagery (PAN) of Quickbird data were fused by using PANSHARP 

algorithm (Zhang, 2002) of PCI Geomatica. NDVI was calculated by using the near 

infrared (NIR) and Red (R) bands of pan-sharpened image as described previously. 

High index values indicate vegetation regions whereas low values represent man-

made regions. Since the histogram of the index image would  have two classes, a 

suitable threshold was determined according to Otsu’s method (Otsu, 1979), which 

relies on maximizing between class scattering and at the same time minimizing 

within class scattering. To remove the shadow regions, ratio of chromaticity to 

intensity was used and the best performance was obtained in YIQ color space (Tsai, 

2006). RGB space was converted to YIQ space. The shadow regions will have higher 

ratio of Q to I. A suitable threshold was determined by using Otsu’s method. The 

performance of shadow detection method is illustrated in Figure 4.18_4c, where the 

building shadows are clearly identified. At this point, vegetation (Figure 4.18_1b, 

Figure 4.18_2b, Figure 4.18_3b Figure 4.18_4b) and shadow areas (Figure 4.18_1c, 

Figure 4.18_2c, Figure 4.18_3c, Figure 4.18_4c ) were masked out, leaving man-
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made structures to be segmented Figure 4.18). After masking out vegetation and 

shadow regions, the image was then segmented by mean shift segmentation 

algorithm (Comaniciu and Meer, 2002). This algorithm is based on computing mean 

shift vector, which is proportional to the normalized density gradient estimate 

computed with a kernel. The iterative calculation of mean shift vectors converges to 

a stationary point of density, which corresponds to the modes of the image, i.e. 

homogenous structures in general.  

 

 

 

(a) 



 

271

 

(b) 

Figure 4.18. Vegetation mask and shadow mask are summed and overlaid onto the original image a. 
Subregions 1 and 2  b. Subregions 3 and 4. 
 
The pixel points converging to the same mode, i.e. the basins of attractions of 

convergent points, are closer to each other in terms of spatial extend and color 

bandwidth. These pixels were segmented and labeled as the same cluster (Figure 

4.19). In fact, mean shift vectors are aligned towards the similarity of colors 

incorporating spatial information as well. Then, the resultant image obtained by 

mean shift segmentation includes only the building rooftops along with some 

irrelevant segments generated by side effects of the previous masking processes. 

 

For example, in Figure 4.19_1, Figure 4.19_3 and Figure 4.19_4 the road is highly 

correlated with rooftops, and likewise in Figure 4.19_2 bared soil regions are highly 

correlated with rooftops. In order to obtain the main road segments, a methodology 

was proposed based on the hypothesis that road segments were longer and thinner 

than buildings. 
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Figure 4.19 The segmentation result of the original image 
 
 
Ideally, it is expected that road segments are different from building structures in 

length and width as being longer and thinner with undefined branches. With this 

motivation, all the segments were processed one by one to assess the shape 

characteristics of segments in terms of length as a measure. As a first step, each 

segment was filled to cover the holes that may come from small objects. 

Consequently, closing and opening morphological operations were applied. After 

these pre-processing operations, in order to obtain representative one-pixel wide 

skeletons of the segments, the thinning algorithm described by Lam et al. (1992) was 

applied, which generates skeletons of the segment. Skeletons may contain erroneous 

protrusions outgoing from the main body due to the boundary imperfections of 

segments. Thus, to mitigate the effect of undesirable protrusions, end points of the 

skeletons were removed. Finally, the algorithm ends up with a single-pixel wide 

skeleton of the corresponding segment. The length of the skeleton of each segment is 

equal to the number of pixels on the skeleton. The distribution of the length of the 

segments may be regarded as the evaluation criteria of being road or building 

segments. A threshold was applied to eliminate the main road segments, where the 
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threshold is automatically estimated from the distribution of segment lengths. The 

obtained main road segments for each sub region are shown in Figure 4.20.  

 

 
Figure 4.20. Linear Features extracted by the algorithm 
 

After this elimination step, there still occur artifacts of road segments, lengths of 

which are smaller than the determined threshold and comparable to the lengths of the 

buildings. In addition, some artifacts of small sizes compared to the area of buildings 

exist. In the following step, these two types of artifacts are handled. 

 
There are two types of artifacts. One of them is unreasonably small in the area and the 

other one is unreasonably thin but shorter in length than the road threshold defined in 

the previous section. In order to decide on whether a given segment is an artifact or 

not, the principle component analysis (PCA) was applied to each segment in order to 

compute the extend of the segment in terms of principle components. Considering 

thin artifacts, they show large variances along the first principle component but a 

small variance along the second principle component. Therefore, the ratio of the 

corresponding eigen values provides the variances along the corresponding 

eigenvectors and offers a measure of how thin the segment is. Higher ratios represent 
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thin segments. Then, this ratio was threshold in order to detect the artifact segments 

where the threshold value was automatically estimated from the distribution of the 

ratios.  

 

The second type of artifacts, which are small in area but are not thin enough, was 

eliminated by comparing their area to a threshold which is an empirical evidence of 

not being a building. Figure 4.21_1, Figure 4.21_2, Figure 4.21_3 and Figure 4.21_4 

show the delineated candidate buildings detected for each subregion with the 

proposed algorithm and overlaid over the manually labeled ground truth. 

 

 
Figure 4.21. The candidate buildings extracted at the end of the algorithm overlaid on the ground 
truth 
 
 
Road objects are significant infrastructures for the risk analysis. Thus, the roads were 

also considered in the thesis study for the vulnerability analysis and extracted 

automatically by the developed algorithm from the high resolution remote sensing 

image.  

 
In the study region, there are two kinds of roads. One is the Provincial Road and the 
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other is pathways. Figure 4.22 shows the Provincial Road. Pathways link the houses 

to the main road and it is narrower than the Provincial Road. The pathway network is 

not clearly identified from the remote sensing images. Thus, it is aimed to detect the 

Provincial Road from the remote sensing image. The Provincial Road is 

approximately 2 km long and 10 m wide. 

 

 
Figure 4.22. The local main road in the study region  
 
 
The developed algorithm, which was described previously in the building extraction 

part, was used to detect the road. However, in this part the mask obtained from the 

linear feature detection algorithm together with the PCA algorithm was used to 

define the road feature. In other words, the algorithm was run until the fourth step. In 

the building part the PCA was used to define the thin, long artifacts. However, in this 

part these artifacts may be a part of the road feature; hence they are used to 

complement the missing features in linear feature detection algorithm. The results of 

each step are presented in Figure 4.23. As can be seen in the Figure 4.23, the linear 

feature (Figure 4.23_2) and the PCA (Figure 4.23_3) complement each other to 

define the road feature (Figure 4.23_4). Hence, both resultant maps are overlaid to 
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obtain the road feature. Then morphological processes are implemented to clarify the 

feature (Figure 4.23_5). As a result, the Provincial Road is obtained automatically 

from the developed algorithm as shown in step 6 of Figure 4.23, which is overlaid to 

the image.  

 

 
Figure 4.23. The road detection outputs in sequence where 1: The vegetation and shadow mask; green 
is the vegetation and shadow mask, red is the man-made features (road and buildings) 2: The result 
map obtained from the linear feature detection algorithm. 3: The result map after PCA algorithm. 4: 
The result map of both linear feature detection and PCA is overlaid to obtain the road feature 5: The 
morphological processes (imfill imopen, erode, close) implemented to road feature 6: The road feature 
overlaid to the remote sensing image 
 
 
In order to assess the accuracy of the proposed methodology, the original image was 

labeled in the GIS environment (i.e. building pixels are labeled) to obtain a ground 

truth data. The ground truth data, which involves the boundaries of each building and 

the road line, was compared with the resultant image obtained by the methodology 

respectively. Three different regions used for building detection were combined into 

one region. The building features and the road feature were evaluated separately for 
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accuracy assessment. The accuracy assessment involves computation of True 

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 

components by the comparison of ground truth and the resultant image. TP refers to 

the regions determined as a feature (building or road) both in the ground truth and in 

the result image. TN refers to the regions that are not determined as a feature in the 

ground truth and in the result image respectively. FP refers to the features that cannot 

be determined and FN refers to the regions which are determined as features 

although they are not in the ground truth (Shufelt et al., 1997). In addition to these 

components, the split factor (SF) (FP/TP), missing factor (MF) (FN/TP), percent of 

feature determination (PBD)(100*TP/(TP+FN)), and quality percent (QP)(100* 

TP/(TP+FP+FN)) are computed. 

 
The results of the accuracy assessment show that the algorithm provides 95.85% and 

74.28% of PBD for buildings and roads respectively. The QP is calculated as 90.53% 

and 54.73% for buildings and roads respectively. In Table 4.2, it can be concluded 

that the algorithm provides better performance for building extraction compared to 

road detection. This brings about more erroneous detection performance for roads 

compared to buildings. 
 
 
Table 4.2. Accuracy Components 
 

Accuracy Assessment of the Proposed Methodology 
 Number of Pixels % 
 TP TN FP SF MF PBD QP 
BUILDING 215960 176653 13241 0.06 0.04 95.85 90.53 
ROAD 15634 77523 7516 0.48 0.35 74.28 54.73 
 
 
Masking areas which are not man-made structures may cause twofold mistakes as 

either removing the true buildings or roads or not efficiently masking the regions out 

of interest (see Figure 4.18). In this study, the success of masking is evaluated 

empirically. As a further study, the evaluation can be performed by quantitative 

indexes.  
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4.4.3 Vulnerability Assessment 
 
 
Elements at risk (buildings and provincial road) determined from high resolution RS 

image should be quantified for further risk assessment studies. The damage to 

buildings and road (vulnerability) can be estimated by adopting a damage probability 

matrix (Yücemen, 2002; Düzgün, 2008). This approach was used in structural 

earthquake engineering for evaluating the damage for a given building stock at a 

given earthquake intensity (Ko Ko et al., 2004). In this approach, instead of building 

blocks, the buildings and the road were considered separately by damage probability 

matrix. Damage to the buildings and the road was categorized into four groups based 

on the level of damage. Damage state (DS) was considered in four levels, changing 

from none to destruction, in which none and destruction stands for no and complete 

damage. RDR is the range of damage ratio for each damage percentage. RDR is 

defined as 0, 0-10, 20-40 and 50-100 (Table 4.3) (Düzgün, 2008). Central Damage 

Ratio (CDR) is defined as the mean value of RDR. SPD is the probability of 

observing damage state for the given temporal condition (season in a year and time 

in a day). The properties (such as buildings, roads, etc.) are always exposed to threats 

for all the time. Hence the temporal probability is not considered for the vulnerability 

analysis of properties. SPD is computed by considering the spatial vulnerability of 

buildings, which is determined by modeling the landslide velocity using Flo 2D.  

 
The velocity ranges between 0.01 and 1.55 as obtained from the simulation. Hence, 

in the first step the velocity was normalized to 0 and 1. In the second step, the 

velocity map was classified into four different classes depending on the natural break 

method. Finally, the percentage area of each property on each level of landslide 

velocity was computed by the overlay of velocity map with buildings and roads 

respectively. The SDP is the percentage ratio of each feature computed for buildings 

and roads on each velocity level (Table 4.3, Table 4.4). 
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Table 4.3.Damage Probability Matrix for Building 
 

DS RDR (%) CDR (%) SPD 

None 0 0 0.23 

Light 0-10 0.05 0.52 

Moderate 20-40 0.3 0.12 

Destruction 50-100 0.75 0.11 

Mdr (%)     15.00 

 
 
 
Table 4.4. Damage Probability Matrix for Road 
 

DS RDR (%) CDR (%) SDP 

None 0 0 0.71 

Light 0-10 0.05 0.11 

Moderate 20-40 0.3 0.19 

Destruction 50-100 0.75 0.00 

Mdr (%)     6.08 

 
 
The MDR is computed for each damage state by sum of the multiplication of CDR 

and SPD values as presented in Eq. 70 

 

∑
=

=
4

1j
jj xSPDCDRMDR                             (70) 

  
 
Where j is the level of damage state that ranges between 1 and 4, in which 1=None, 

2=Light, 3=Moderate and 4= Destruction 

 

The quantitative risk map to loss of life for Kumluca was created by damage 

probability matrix for landslide. The damage probability matrix was created by 

considering the occupancy of people in the building. In contrast to the property, 

human exposure to the landslide occurrence may vary depend on the temporal 

impact. The day and night and also the summer and winter should be considered for 
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the assessment of consequences. 

 
The study region is a small village where the local people mostly maintain their life’s 

by farming. The occupancy of buildings during the day time, night time, in high 

season time and low season time changes. The local people mostly move to different 

cities for mining works in the low season and turn back for farming in the high 

season. In addition their relatives are coming to spend their summer holiday in the 

high season. Hence, depending on the interviews with the local people, the 

occupancy of each building changes between 3 and 10 people for low and high 

season time, respectively.  

 
Hence, the time which involves 7 months of the year (October, November, 

December, January, February, March, April) may be considered as the low season 

(LS) and the other 5 months may be considered as the high season (HS) (Düzgün, 

2008). The probability of landslide occurrences in low (PLS) and high seasons (PHS) 

can be given as 0.58 (7/12) and 0.42 (5/12) respectively. 

 
During daytime (DT), people were considered to work in the field, and at night (NT), 

they were thought to be in their homes. Hence, a landslide at night may have more 

damage to the life than daytime. As a result, time component of both daily and 

seasonal changes should be considered. In addition to time component, the spatial 

vulnerability of each house should also be considered. Depending on the simulated 

velocity of landslide, the vulnerability of each house was determined. 

 
The probability of observing damage state for a given temporal condition (season in 

a year and time in a day) is expressed by SPD. The SPD was computed by 

considering the time and also the spatial vulnerability of buildings. The assumptions 

are as described below for the SPD computation:  

 

In the high season, it was considered that the number of people in each house is 10 

and in low season it becomes 4. In daytime during the high season, 80% of the 

people were considered to be studying in fields and 20% were at home. In the high 

season at night, all people were considered to be at home but only one person might 

be outside. In the low season in daytime, three of the one person were considered to 

be at home and three of the two people to be outside. At night, 90% were at home 
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and the rest might be outside. In addition to the occupancy of buildings, the spatial 

vulnerability of buildings was also considered. The velocity map was classified into 

four levels, where 1 is the lowest velocity and 4 is the highest velocity. The number 

of buildings on each level was computed. Then it was assumed that if the building 

was on level 4, then it might cause fatality when a landslide occured. If the building 

was on level 1, then nothing would happen, and if it was on level 2 or 3, then some 

injures might happen. 

 
By considering these assumptions, a SPD was computed for the damage probability 

matrix. Depending on the simulated landslide velocities and the survey data, a 

quantitative SPD was defined. SPD values are consistent with each other, where 

MDR for HSNT has the highest value, while MDR for LSDT has the lowest one 

(Table 4.5). Damage state (DS) was considered in three levels which involve none, 

injury, and fatal. The range of damage ratio (RDR) for each damage percentage was 

defined as 0, 10-80 and 80-100 by adopting the assumption of Düzgün, (2008).  

 
Table 4.5. Damage Probability Matrix for Loss of Life 
 

DS RDR (%) CDR (%) HSDT HSNT LSDT LSNT 

None 0 0.00 0.44 0.22 0.41 0.34 

Injury 10-80 45.00 0.53 0.27 0.49 0.41 

Fatality 80-100 90.00 0.10 0.51 0.03 0.25 

Mdr (%)     32.87 57.64 24.74 40.95 

 

 

4.4.4 Risk Asessment 

4.4.4.1 Risk Assessment for Property 
 
Risk to property was obtained for Hepler by considering the roads and buildings on 

local scale. It is better to define a replacement cost for each building, which can be 

estimated by experts in field surveys by taking into account the building material, 

condition, age, topology, size vs. for each house. However, it is quite difficult to 

assess economic values for each building in the study region and there is not a 
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national regulation to define the cost of each house. Hence, the cost of buildings, 

which is determined from the General Directorate of Disaster Affairs of Bartın, was 

used to assign the economical value, which is 23,600 TL/Pixel. The cost of roads was 

obtained from the General Directorate of Transportation for provincial type, which is 

751,100 for one km and computed as 15,022 TL for per pixel.  

 
The risk was computed for each property (building and road) separately. Then the 

results were overlaid. The risk computation involves multiplication of each property 

value with MDR values and then multiplication by hazard value. The hazard values 

were interpreted from the hazard maps produced in the regional part. 

 
RiskPorp= RBuilding+RRoad                      (71) 
 

RiskPorp= H x (MDRBuilding x 23600) + H x (MDRRoad x 15022) 
 
 
As a result, for the assumed damage probability matrix in Table 4.3,Table 4.4, the 

annual risk to Hepler was estimated for TL/pixel cost of damage for grid and slope-

unit based mapping units and for different mapping methods. Figure 4.24 illustrates 

the spatial variation of risk values for risk to property for three different methods for 

grid-based mapping unit. The risk maps for loss of property obtained by LR 

(LR_GRD_RISK_PROP) (Figure 4.24a), SR (SR_GRD_RISK_PROP) (Figure 

4.24b) and ANN (ANN_GRD_RISK_PROP) (Figure 4.24c) provide a similar pattern 

of risk values for road (Figure 4.24a, b, c); however, the risk values vary for houses. 

The ANN_GRD_RISK_PROP illustrates mostly high risk for houses, whereas the 

SR_GRD_RISK_PROP and LR_GRD_RISK_PROP provide medium and high 

levels of risk for houses. The maximum risk value ranges from 138.09 to 70.27 and it 

is the highest in SR_GRD_RISK_PROP. 
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     (a) 

 

 
      (b) 
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(c) 

Figure 4.24. Risk to property for grid-based mapping unit for different methods, a. LR, b. SR and c. 
ANN (TL/Pixel) 
 
 
The risk to property for slope unit-based mapping unit is presented in Figure 4.25 for 

LR (LR_SU_RISK_PROP) (Figure 4.25a), SR (SR_SU_RISK_PROP) (Figure 

4.25b), and ANN (ANN_SU_RISK_PROP) (Figure 4.25c). SR_SU_RISK_PROP 

and ANN_SU_RISK_PROP provide a similar pattern of risk values for both house 

and road features, where the houses are illustrated by high risk values and road is 

presented by low risk values. Moreover, similar to the other two methods, 

LR_SU_RISK_PROP provides low risk values for road, but the risk values vary 

from medium to high for houses. The maximum risk value is the highest in the 

LR_SU_RISK_PROP, which ranges between 163.27 and 133.10. 
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(a) 

 

 
(b) 
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(c) 

Figure 4.25. Risk to property for slope unit-based mapping unit for different methods, a. LR, b. SR 
and c. ANN (TL/Pixel) 
 

 
When the statistics of risk maps are compared (Table 4.6) for grid and slope unit-

based mapping units for all methods, it is evident that the LR_SU_RISK_PROP has 

the largest maximum value with the largest std.dev. and mean value following the 

ANN_SU_RISK_PROP.  

 
Table 4.6. The statistics of the risk maps of loss of property for different methods and mapping units 
(TL/Pixel) 
 

 Min Max Mean Std. Dev. 
LR_GRD_RISK_PROP 4.19 70.27 33.54 21.26 
SR_GRD_RISK_PROP 23.29 138.1 81.59 45.27 
ANN_GRD_RISK_PROP 17.12 94.72 52.87 30.50 
LR_SU_RISK_PROP 36.13 163.28 98.16 54.49 
SR_SU_RISK_PROP 33.88 133.1 89.05 49.3 
ANN_SU_RISK_PROP 37.55 154.35 102.24 56.73 

 
 
The methods obtained by the slope unit-based mapping unit have more variation of 

risk values compared to the methods by grid-based mapping unit. Furthermore, the 

methods obtained by the slope unit-based mapping unit have the largest mean, 
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minimum, and maximum risk values compared to the methods obtained by grid-

based mapping.  

 
 

4.4.4.2 Risk Assessment for Loss of Life 
 
The landslide risk of loss of life can be computed by the sum of the multiplication of 

H and MDR values for damage states for loss of life as given in Eq (72): 

 
 

( ) ( )[ ]LSNTLSDTLSHSNTHSDTHSLOL MDRMDRPMDRMDRPHR +++=              (72)  
 
 
For each mapping unit and mapping method, different hazard values were obtained 

from the region-based hazard maps. As a result, different annual risk maps for loss of 

life were estimated, which is illustrated in Figure 4.26. The risk of loss of life for 

grid-based mapping unit is presented in Figure 4.26 for LR (LR_GRD_RISK_POP) 

(Figure 4.26a), SR (SR_GRD_RISK_POP) (Figure 4.26b) and ANN 

(ANN_GRD_RISK_POP) (Figure 4.26c). LR_GRD_RISK_POP and 

SR_GRD_RISK_POP provide a similar pattern of risk values for loss of life, where 

the maximum value of risk varies from 0.0153 to 0.03004 respectively. 

LR_GRD_RISK_POP and SR_GRD_RISK_POP illustrate the houses located in the 

eastern part of the slope with low risk; however, these houses are presented by 

medium to high risk values by ANN_GRD_RISK_POP. Furthermore, the houses 

located in the northern part of the region parallel to main road are illustrated with 

medium to low risk values by LR_GRD_RISK_POP and SR_GRD_RISK_POP, 

which are seen as low to medium risk values by ANN_GRD_RISK_POP.  
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(a) 

 

 
(b) 
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(c) 

Figure 4.26. Risk of loss of life for grid-based mapping unit for different methods, a. LR, b. SR and c. 
ANN (Loss of Life/Pixel) 
 
 
The risk to property for slope unit-based mapping unit is presented in Figure 4.27 for 

LR (LR_SU_RISK_POP) (Figure 4.27a), SR (SR_SU_RISK_POP) (Figure 4.27b), 

and ANN (ANN_SU_RISK_POP) (Figure 4.27c). The SR_SU_RISK_PROP 

provides risk values which are the same for all the houses in the region. The 

LR_SU_RISK_POP and ANN_SU_RISK_POP provide reverse risk values for risk 

to life. For example, the houses in the northern part of the region aligning along the 

road are illustrated with low risk values by LR_SU_RISK_POP (Figure 4.27a), 

whereas these houses are represented by high risk values by ANN_SU_RISK_POP 

(Figure 4.27c). Furthermore, the houses in the eastern part display low risk in 

LR_SU_RISK_POP, which display high risk in ANN_SU_RISK_PROP. 
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(a) 

 

 
(b) 
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(c) 

Figure 4.27. Risk of loss of life for slope unit-based mapping unit for different methods, a. LR, b. SR 
and c. ANN (Loss of Life/Pixel) 
 
 
The values for risk of loss of life are meaningful when at least the first four digits are 

considered (e.g. values between 0.0336 and 0.0321 in Figure 4.27) because when 

compared to the cost values of property, which is relatively much higher, the number 

of inhabitants considered for risk computations for loss of life is quite low. This 

cause the probability value of risk to loss of life to be relatively lower than the 

probability value of risk to loss of property. Therefore, the first four digits of risk 

values are evaluated to assess the statistics of risk maps. When the statistics of risk 

maps are compared (Table 4.7) for grid and slope unit-based mapping units for all 

methods, it is evident that there is no variation of risk values because all methods 

have zero standart deviation in both mapping units. The largest maximum value of 

risk of loss of life is computed by LR_SU_RISK_POP and the smallest maximum 

value is obtained by LR_GRD_RISK_POP. The mean values of risk to life range 

from 0.01 to 003 and the minimum mean in the risk map is obtained by 

LR_GRD_RISK_POP.  
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Table 4.7 The statistics of the risk maps of loss of life for different methods and mapping units (Loss 
of Life/Pixel) 
 

 Min Max Mean Std. Dev. 
LR_GRD_RISK_POP 0.0028 0.0153 0.01 3.47x10-3 

SR_GRD_RISK_POP 0.0188 0.03004 0.03 2.44 x10-3 
ANN_GRD_RISK_POP 0.0188 0.0267 0.02 2.14 x10-3 
LR_SU_RISK_POP 0.0308 0.0355 0.03 1.94 x10-3 
SR_SU_RISK_POP 0.0289 0.0289 0.03 0 
ANN_SU_RISK_POP 0.0336 0.0321 0.03 0.62 x10-3 

 
 

4.5 Comparison of Risk Maps on Local Scale 
 
The realization of damage probability matrix and hazard values from the result of 

LR, SR, and ANN models for grid and slope based mapping units led to the 

production of six different landslide risk maps for both property and life. The risk 

maps obtained as a result of the analysis mostly depend on the selected models and 

the mapping unit. The risk map is the product of hazard times consequences. The 

consequences and the hazard are a single value; hence, the risk maps depend on the 

variation of probability values. These changes of probability values depend on the 

selected model and the mapping unit. Hence, the distribution of risk levels varies 

depending on the theoretical basis of different models and the selected mapping unit. 

 

The classification procedure for comparison purposes is described in section 3.10. 

Depending on this procedure, the risk maps in local scale are classified into three 

different levels of risk similar to regional scale, putting the 0 to 0.38 range of pixels 

into low, 0.39 to 0.60 into medium, and 0.61 to 1 ranges of pixels into high risk 

zones for property and life. 

 

The classification results of risk maps based on grid-based mapping unit for property 

are illustrated in Figure 4.28 and Figure E-1 and Figure E-2 in Appendix E. 

Furthermore, the classification results of risk maps based on slope unit-based 

mapping units for property are illustrated in Figure 4.29 and Figure E-3 and Figure 

E-4 in Appendix E. The risk to property maps for grid and slope unit based mapping 

units are presented quantitatively in Figure 4.30. There are more low risk classes 

produced by the LR_GRD model (Figure 4.28), which means most properties can be 

classified as low annual economic loss, when compared to the other models. In 
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contrast, ANN_SU (Figure E-4 in Appendix E) shows a lower risk class. This has 

been confirmed by the corresponding histogram (Figure 4.30) generated on the basis 

of the defined intervals. SR_GRD (Figure E-1), ANN_GRD (Figure E-2) and SR_SU 

(Figure E-3) do not represent any classes in the medium class. Except for the 

LR_GRD (Figure 4.28) model-based risk map, the rest of the maps were designed to 

represent equal levels of high risk class. This might be due to the fact that the higher 

economical loss value belongs to the road and the road overlaid by the hazard values 

provides the higher class. The threshold selected for the classification of risk maps 

then might provide the same number of higher risk class, which involves the road 

feature. 

 
Figure 4.28. Risk to property map created based on the LR model at grid-based mapping unit 
(LR_GRD) (TL/Pixel) 
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Figure 4.29. Risk to property map created based on the LR model at slope unit-based mapping unit 

(LR_SU) (TL/Pixel) 
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Figure 4.30. Bar graphs showing the relative distribution of risk levels for property 
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To analyze the map differences spatially, 6 different difference maps were created, 

among which 3 different methods are compared for each cell-based and slope unit-

based maps. As shown in Figure 4.31 and Figure E-5 and Figure E-6 in Appendix E 

the difference maps created are SR_LR, SR_ANN, and LR_ANN for grid-based 

mapping unit respectively. Moreover, as presented in Figure 4.32 and Figure E-7 and 

Figure E-8 in Appendix E the difference maps created are SR_LR, SR_ANN, and 

LR_ANN for slope unit-based mapping units, respectively. Furthermore, the similar 

overestimated and underestimated regions are computed quantitatively to analyze the 

map similarity where the area and percentages are shown in Figure 4.36. 

 

 
Figure 4.31. Difference of risk to property maps between SR and LR models at grid-based 

mapping unit (SR_LR_GRD) 

 
 
 



 

296

A large proportion of road feature is predicted as low risk level and most of the 

buildings are estimated as high risk level for both LR (Figure 4.29) and SR (Figure 

E-3 in Appendix E) models for slope-based mapping units (88%); a smaller degree of 

disagreement exists between models SR and LR for slope-based mapping units 

(SR_LR_SU) (Figure 4.36) for the southern part of the road feature and few 

buildings (12.4 %) as presented in the spatial domain in Figure 4.32. 

 

 
Figure 4.32. Difference of risk to property maps between SR and LR models at slope unit-based 

mapping unit (SR_LR_SU) 
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Figure 4.33. Bar graphs showing the percentage difference of risk levels based on different 

models and mapping units for property  

 
 
SR_ANN_GRD (66%) (Figure E-5 in Appendix E), LR_ANN_GRD (65%) (Figure 

E-6 in Appendix E), SR_ANN_SU (68%) (Figure E-7 in Appendix E), and 

LR_ANN_SU (56%) (Figure E-8 in Appendix E) difference maps provide nearly 

similar percentages of features in the same class, whereas the risk difference maps 

based on the SR and LR models at grid-based mapping unit (SR_LR_GRD) (Figure 

4.31) provide the lowest similar regions (31%) (Figure 4.36). SR_LR_GRD risk 

difference maps provide the dissimilarity (69%) at most of the road features in the 

northern parts of the region and in most of the buildings in the southern part of the 

region (Figure 4.31). There is a positive dissimilarity, which means that the LR-

based risk map overestimates the risk compared to the SR-based risk models for grid-

based mapping unit (Figure 4.31).  

 

The ANN-based risk maps provide a positive mismatch (34%) compared to the SR-

based risk map at grid-based mapping unit (Figure 4.36) (Figure E-5 in Appendix E), 

conversely the ANN-based risk map provides a negative disagreement (35%) 

compared to the LR-based risk map in grid-based mapping unit (Figure 4.36) (Figure 

E-6 in Appendix E),. The ANN-based risk maps provide a similar level of 

dissimilarity (32%) compared to the SR (Figure 4.36) (Figure E-7 in Appendix E) 

and LR (Figure 4.36) (Figure E-8 in Appendix E) risk maps in slope-based mapping 

unit, additionally the ANN-based risk maps provide a smaller degree of disagreement 

(12%) for the LR-based risk map. 
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The risk maps to life created based on the SR, LR, and ANN models and slope and 

grid-based mapping units are also compared spatially. Therefore, the risk maps 

created for risk to loss of life were initially reclassified into three different risk 

classess as described in in section 3.10. The risk maps to loss of life classified are 

presented in Figure 4.34 and Figure E-9 and Figure E-10 in Appendix E for grid-

based mapping unit and Figure 4.35 and Figure E-11 and Figure E-12 in Appendix E 

for slope unit-based mapping unit. In addition spatial distribution of to risk maps to 

loss of life, the risk levels are analyzed quantitatively (Figure 4.36). In the resultant 

maps of risk to life, the higher levels of low risk zone are represented in the SR_SU 

model-based risk map (Figure 4.36). The rest of the models provide fewer numbers 

of pixels on low risk levels of risk to life. The risk maps obtained from the slope-

based mapping unit does not determine medium level risk. This might be due to the, 

physical properties of the mapping unit type. The slope-based units divide the terrain 

depending on the natural boundaries in terms of hydrological lines. The slope units 

that crossed the buildings at Hepler village correspond to a single or two different 

slope units. Hence, the probability of susceptibility values does not show variability 

compared to grid-based mapping unit. As a result, the risk to life values may get one 

or maximum two different values which correspond to higher or lower values of risk 

on these maps. LR_GRD (Figure 4.34), SR_GRD (Figure E-9 in Appendix E), 

LR_SU (Figure 4.35), and ANN_SU (Figure E-12 in Appendix E) show similar 

numbers of risk to life on a high level, whereas the ANN_GRD (Figure E-10) has 

lower number of pixels on the high level of risk. SR_SU (Figure E-11) does not have 

a high risk level, which means all features on SR_SU risk map are classified as low 

annual probability of loss of life. 

 
A large proportion of risk to life units in the north-eastern part of the buildings which 

were predicted as high risk level by the SR-based risk maps (SR_GRD) (Figure E-9 

in Appendix E) are also classified as high risk by the LR based risk model 

(LR_GRD)(82%) (Figure 4.34) in grid-based mapping unit. 
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Figure 4.34. Risk to life map created based on the LR model at grid-based mapping unit 

(LR_GRD) (Loss of Life/Pixel) 

 
 



 

300

 
Figure 4.35. Risk to life map created based on the LR model at slope unit-based mapping unit 

(LR_SU) (Loss of Life/Pixel) 
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Figure 4.36. Bar graphs showing the relative distribution of risk levels for life 
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The difference maps are obtained for risk to loss of life as presented in Figure 4.37 

and Figure E-13 and Figure E-14 for SR_LR_GRD, SR_ANN_GRD and 

LR_ANN_GRD, respectively for grid-based mapping unit and Figure 4.38 and 

Figure E-15 and Figure E-16 in Appendix E for SR_LR_SU, SR_ANN_SU and 

LR_ANN_SU, respectively for slope unit-based mapping unit. In addition to the 

spatial distribution illustration of the difference maps it is also presented 

quantitatively in Figure 4.39.  

 

 
Figure 4.37. Difference of risk to life maps between SR and LR models at grid-based mapping 

unit (SR_LR_GRD) 
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Figure 4.38. Difference of risk to life maps between SR and LR models at slope unit-based 

mapping unit (SR_LR_SU) 

 
 
The similarities between the risk maps indicate that a smaller degree of agreement 

exists between SR_LR_SU (Figure 4.38), SR_ANN_SU (Figure E-15 in Appendix 

E), and LR_ANN_SU (Figure E-16 in Appendix E) with 22.6% and SR_ANN_GRD 

(Figure E-13 in Appendix E) and LR_ANN_GRD (Figure E-14 in Appendix E) 

difference maps with 30.6% (Figure 4.39). The SR-based risk maps (Figure E-11 in 

Appendix E) estimate all buildings as low risk to life for slope-based mapping unit, 

whereas LR-based (Figure 4.35) and ANN-based (Figure E-12 in Appendix E) risk 

maps predicted the buildings in the southern part of the region to display with high 
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and medium level risk respectively. Hence, the SR _LR_SU (Figure 4.38) and 

SR_ANN_SU (Figure E-15 in Appendix E) difference maps has 77% negative 

dissimilarity, which means that the SR-based risk model was underestimated at these 

buildings. In grid-based mapping unit, the SR (Figure E-9 in Appendix E) and LR 

(Figure 4.34) risk maps have lower levels of negative dissimilarities with 17% and 

20% but higher percentages of dissimilarities on positive level with 52.5% and 42% 

respectively (Figure 4.39). The LR (Figure 4.35) and ANN (Figure E-12 in Appendix 

E) based risk maps provide higher positive dissimilarities (78%) in the slope-based 

mapping unit. This is due to the fact that the LR-based risk map estimates the 

southern part of the buildings to display high risk to life and the same regions are 

predicted as medium on the ANN-based risk maps.  
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Figure 4.39. Bar graphs showing the percentage difference of risk levels based on different models 
and mapping units for life 
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CHAPTER 5 

1.  

CONCLUSION  
 
 

5.1. Overview of the Results 

 

The main objective of this thesis, which is the development of a comprehensive 

landslide risk assessment methodology for landslides, is successfully achieved for Bartın 

Kumluca region. In addition to the main objective of developing the methodology, 

several sub objectives, which are described in section 1.3, are also evaluated at the end 

of the implementation of the methodology.  

 

This thesis presents comparative studies on different modeling approaches and different 

mapping units to create risk maps for landslides. It is not easy to recommend a single 

approach of mapping method or mapping unit as the most suitable one. Indeed, the 

selection of the approach or mapping unit to be adopted depends on the study area and 

economic concerns. 

 

The risk assessment is carried out for two different scales, local and regional, 

considering the specific characteristics of Bartın related to data availability for each 

stage of risk. The methodology involves quantitative assessment of risk for both scales 

based on GIS and RS techniques. Each component of risk, i.e. hazard assessment, 

vulnerability and consequence analysis, was quantitatively assessed for each scale. Each 

component of risk assessment procedure requires the incorporation of diverse disciplines 

due to its multidisciplinary structure. It requires highly advanced statistical background 
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as well as background on geology, economics and hydrology. To begin with, the spatial 

information or data in catalogs required for each component of risk differs depending on 

the types of data and the methods for obtaining them. The data acquired from different 

sources and organizations may have different scales, data formats, projections and types 

as every organization has its own rules, formats and standards in data production. In 

order to achieve reliable risk maps, the consistency of data format is crucial for the 

analysis. 

 
While both landslide inventory and influencing factors are necessary to obtain 

susceptibility maps, triggers are the required data for hazard assessment of temporal 

probability and a list of elements at risk are required to create a consequence map. Data 

may be acquired by field mapping or measurements, existing maps or laboratory 

analysis. In the last decade, the remote sensing imagery has proven to be a very 

important tool for capturing, displaying, and determining the relevant data such as 

landslide inventories, digital elevation models, elements at risk and land-use maps, 

which may be required at different stages of the risk assessment procedure. Additionally, 

GIS is an important tool to be used to store, monitor, evaluate, compile, manipulate, and 

manage data in each step of quantitative risk assessment. Moreover, the mapping and the 

visualization of the spatial distribution of the maps, and the evaluation of simple 

statistics of the data were done in GIS environment in an objective way compared to 

laborious and time-consuming hand-made products. In order to create reliable risk maps, 

it is crucial to obtain data as complete as possible in spatial and temporal domain in 

order to reduce uncertainty. Quantitative risk maps provide opportunity for decision 

makers to perform cost-benefit analyses quantitatively for proper land-use planning. In 

addition, it is useful when the authorities would like to provide information about the 

landslide risk. Therefore, it is very important to identify the potential landslide 

occurrence areas and risk to property and life. 

 

The main component of risk assessment procedure requires obtaining the spatial 

probability for landslide occurrence. The resultant risk maps change depending on the 
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adopted mapping method, the mapping unit, and the scale of susceptibility assessment. It 

is therefore important to test the effects of several susceptibility methods and mapping 

units on the resultant risk maps on different scales. Much of the landslide susceptibility 

and hazard work is based on the assumption that “the past is key to the future”. 

Therefore, based on this assumption, influencing factors are evaluated with historical 

landslide locations to predict the spatial probability of future landslides. Data collection 

is directly related to the scale. Therefore, for regional scale, hazard and risk assessment 

data in the form of maps are obtained, whereas for local scale data is compiled based on 

extensive field surveys and risk assessment procedures are adopted. Before the 

susceptibility analysis, the analysis of data set prior to constructing the database for 

further analysis is crucial, which may involve the transformation of qualitative variables 

into continuous scale, testing the multicolinearity etc.. The construction of database may 

vary depending on the adopted mapping unit; therefore, it is crucial to identify the 

mapping unit type, which can be basically grid cells, slope units, terrain units, 

topographic units, or unique conditions units. The adoption of different mapping unit 

types may cause the creation of different susceptibility maps with similar susceptibility 

methods. This might be the result of the adopted procedure to assign the variables to the 

mapping units. The adopted procedure initially creates the mapping unit with the 

selected size. The selection of the size of each mapping unit is intrinsically subjective or 

depends on the algorithm adopted for the creation of mapping unit. This may result in a 

cumbersome computational process with a small-size unit or the reduction of 

information with a large-size unit. By overlying the mapping unit onto variables, each 

unit that is assigned a value for each factor is taken into consideration and each unit is 

treated as a case or a sampling unit in the analysis. The value assigned to each mapping 

unit may change depending on the adopted mapping unit type. In the grid-based 

mapping unit approach, by considering the mapping scale, each cell may be assigned the 

exact value of each variable. For instance, for a 1:25000 scale, 20 m. grid cell is the 

minimum size to obtain variables. Therefore, each grid has a unique value of that 

variable. However, each slope or the other type of mapping unit may vary in size and 

each unit holds a variation of values. Generally, zonal statistical functions are used, 



 307

which perform operations on a per-zone basis to assign the variable values to each unit. 

By using the zonal statistics, the variation of data is reduced to a single value, which 

may normally cause the smoothing out of the local details and providing a large 

generalization of the variable values. This may also result in the generalization of the 

maps obtained by smoothed local details in each mapping unit. 

 

In addition to the mapping unit, the selected mapping method also influences the result 

of susceptibility maps, and ultimately that of risk maps. Notwithstanding, depending on 

the adopted algorithm, each model has different theoretical basics which may enable us 

to provide different prediction values for the same region and for the same mapping unit 

type. Although there are various methods of obtaining susceptibility maps, the efficiency 

and performance of each method should be evaluated. Global models like LR and ANN 

ignore spatial dependence of data between the observations in susceptibility assessment. 

However, to assess the probability of landslide, it is important to understand the spatial 

correlation between landslide occurrences and influencing factors. By including these 

relations, the predictive ability of the developed model increases. In this study 

innovative SR and GWR techniques were adopted and applied for landslide risk 

assessment on different scales. 

 

Compared to various other methods and models applied in other countries, these models 

consider spatial variability in the parameters and provide better representations of 

landslide susceptibility for different mapping unit types. Unlike SR, where regression 

coefficients for each independent variable and the intercept are obtained for the whole 

study region, in GWR the regression coefficients as well as the significance of the 

relationships between the influencing variables and the landslide occurrence are 

computed for each spatial zone. Therefore, the regression coefficients can be mapped for 

each spatial zone by GWR, which results in the mapping and visualization of local 

details.  
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In order to assess the accuracy and to evaluate the performance of SR, LR, ANN, and 

GWR models for both grid- and slope unit-based mapping units, the relative operating 

characteristics (ROC) curve was evaluated in addition to field surveys.  In the ROC 

curve evaluation it is seen that for both grid- and slope unit-based mapping units, the 

models considering spatial correlation, GWR and SR show a higher predictive 

performance with values of 0.80 and 0.77 (Figure 3.105) and 0.93 and 0.90  (Figure 

3.107), respectively than the conventional models of LR and ANN. This result is also 

supported by field surveys, where the model results are compared with the ground truth 

data.  

 

In addition to the accuracy assessment, the obtained susceptibility results are also 

evaluated in terms of two different comparison approaches. In the first approach, four 

susceptibility maps obtained from LR, SR, ANN, and GWR for both grid- and slope 

unit-based mapping units were compared with historical landslide locations. This 

approach provides insight into the evaluation of the quality of each model for the 

estimation of historical slide locations. In the second approach, the similarities and 

dissimilarities of models were analyzed by simply overlaying each map. This provides 

ability to compare the maps spatially.  

 

In slope unit-based mapping unit, many of the landslide distributions fall into the high 

susceptibility class for all mapping types. On the other hand, in grid-based mapping unit, 

many of the distributions match with the high and medium susceptibility classes to a 

large extend. This may indicate the success of prediction models for identification of 

landslide zones since for both mapping unit types and for all models, most of the 

historical landslide locations are present in high and medium classes (Figure 3.123 and 

Figure 3.124) 

 

SR provides a better performance when compared to the other methods for both grid 

(96%) and slope unit-based (82%) mapping units for the estimation of landslide 

occurrences in high and medium susceptibility classes. This might be due to the 
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approach of SR to take spatial variations between variables as inputs. However, GWR 

also considers the spatial variations between variables on a local scale. It has a better 

performance in grid-based mapping unit when compared to slope unit-based mapping 

unit type. This might be due to the fact that a grid-based mapping unit considers the 

mapping unit as smaller grid cells where the variation may increase, which may also 

increase the predictive ability of GWR. In slope unit-based mapping unit, each mapping 

unit is larger in size when compared to grid cell, where parameters are obtained by 

generalization of information at smaller grid cells overlain by the corresponding slope 

unit (3.193).  

 

In the second approach: To analyze the similarity between susceptibility maps, 

difference maps were analyzed. As a result of the difference maps for both cell and slope 

unit-based model pairs, it is seen that the similarity is high between the SR and GWR 

(Figure 3.129 and Figure 3.136 in spatial domain and Figure 3.127 and Figure 3.128 

quantitatively). This may be the result of characteristics of both models which depend on 

the consideration of the spatial correlation of parameters between variables. 

 

When mapping units are compared in terms of similarity, it is seen that the slope unit-

based mapping unit provides relatively higher percentages of similarities for each 

mapping method compared to the grid-based mapping unit (Figure 3.127 and Figure 

3.128). This might be due to the larger unit size and the generalization of variable values 

of slope unit-based mapping unit. 

 

As a result of the whole susceptibility assessment methodology, it can be concluded that 

the landslide susceptibility mapping performance is enhanced by using spatial regression 

and geographic weighted regression.  

 

In order to obtain temporal probability, the relation between triggering events (rainfall or 

earthquakes) and landslide occurrence dates is required. Therefore, an extensive 

landslide inventory data, in which the landslides are dated, are required in addition to 
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triggering measurements. If the considered trigger is rainfall, it is extremely important to 

identify the most suitable rain gauge that is associated with a slide. The rainfall 

intensities or antecedent rainfall can be assessed to estimate the rainfall thresholds by 

using different methods. In this thesis study, as the landslides in Kumluca Basin is 

mostly triggered by rainfalls, the relation between landslides and rainfall intensity is 

analyzed. To estimate the temporal probability the initial step is to obtain the rainfall 

trigger. The critical rainfall thresholds were estimated by using daily and antecedent 

rainfalls and landslide occurrence dates based on three different approaches: Time 

Series, Gumble Distribution and Intensity Duration Curves. The first approach was to 

investigate the appropriate time series model for daily rainfall data and then use the 

model to determine a threshold for landslide triggering rain. The second approach was to 

investigate the Gumbel distribution graphically and analytically to determine thresholds 

for daily and antecedent rainfalls, respectively. Lastly the third approach was the 

creation of rainfall intensity–duration relationships for antecedent rainfall events that 

caused landslides. 

 

In addition to triggering threshold, it is necessary to obtain the conditional probability of 

having a landslide given that rainfall triggers exceed a certain threshold value for a given 

time period for hazard analysis. In this respect, a new approach is proposed, which  

involves modeling landslide occurrence and rainfall values higher than the critical 

rainfall value by using logistic regression. This approach is successfully implemented in 

Bartın region to obtain temporal probability. The temporal probability of landside is 

combined with spatial probability to obtain hazard maps by the proposed methodology. 

 

Consequence analysis, which involves elements at risk and vulnerability, is crucial for 

risk mapping. The elements at risk values and vulnerability values depend very much on 

the scale of the investigation. Thus, the changes in consequence in different scales 

should be considered to assess changes in the resultant maps. On regional scale, more 

general data is used where generalizations are adopted. On the other hand, on local scale 

the data used is more detailed and uncertainty in the results is diminished.   
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For regional scale analysis, the element at risk is mostly derived from existing cadastral 

databases as it is very expensive and sometimes unaffordable to create data for the 

numerous run-outs of slopes. In addition, population data may be derived from existing 

census data. Therefore, the element at risk used in the analysis, mostly depends on the 

availability of digital databases and the accuracy also depends on the existing database. 

In the thesis, the elements at risk were obtained from existing digital databases and the 

inhabitants were estimated per house basis in rural areas using the population density of 

Kumluca settlement, which shows a possible solution for obtaining elements at risk for 

risk studies over large areas. This technique could be used to estimate population per 

house whenever buildings in digital format and population information of that city are 

present. For local scale analysis, it is possible to do a detailed survey of elements at risk 

and to obtain population information for each building in the field. The elements at risk 

can also be obtained by high resolution remote sensing images by the developed 

algorithms in an automatic or semiautomatic way. However, the accuracy of the 

extraction of each element depends on the algorithm. As a result of the algorithm, the 

features obtained may not be the real features or the features on the ground truth may not 

be detected by the algorithm. In addition to the performance of algorithm in the 

extraction of elements at risk, the size of each element may also be crucial while 

obtaining vulnerabilities. The elements at risk may change depending on the extent of 

each element covered by the run-out. Here it is also important to indicate the accuracy of 

the run-out model that is used.   

 

Due to the unavailability of data related with the exposure (physical, natural, economic, 

social and the like) of each element at risk, the estimation of vulnerability value is 

limited. The generalization is adopted in the thesis study for vulnerability because it is 

not possible to estimate the run–outs, the technical resistance of buildings (type, nature, 

age, and so on), and their proximity to the slide, additionally, the social, economic and 

environmental factors for an accurate assessment of vulnerability indicator for landslide 

locations on regional scale. Hence, it is not feasible to derive a vulnerability index for 



 312

small scale studies. On the other hand for local scale analysis, the vulnerability was 

estimated by adopting a “damage probability matrix“approach. As a result the 

quantitative risk maps were obtained for both local and regional scale by thedeveloped 

methodology for risk assessment through combination of hazard maps with the 

consequence maps. 

 

To assess the effect of susceptibility mapping unit and mapping method on the risk 

maps, the risk values were categorized since it was not possible to evaluate the 

differences on a continuous scale. Therefore, the adoption of a classification procedure 

has an utmost importance in the visualization and comparison of different maps. The 

change in cutoff values may cause a change in class ranges, which may result in 

different evaluations of each class. In this thesis, similar cutoff values were adopted for 

both local and regional scale risk maps by analyzing the most proper cutoff values in 

each map. The conclusions derived from the comparison of risk maps are as follows: 

The realization of elements at risk and hazard probabilities for LR, SR, ANN models 

and for grid and slope-based mapping units led to the production of six different 

landslide risk maps for both property and life on local and regional scale. On regional 

scale, risk values for property are higher in the risk map which is created based on the 

ANN model in the grid-based mapping unit (ANN_GRD) (Figure 3.202) and then in the 

risk map based on the LR model in slope unit-based mapping unit (LR_SU) (Figure 

3.202). The properties which are in the higher risk class at ANN_GRD (Figure 3.191) 

are the buildings around the Kıyıklar village. For the LR_SU (Figure 3.192), the 

properties in higher classes are the buildings distributed around Kumluca, Konuklu and 

Zafer. In the medium class, the highest risk values belong to the risk maps which are 

based on the SR model for both slope (SR_SU) and grid-based mapping units 

(SR_GRD) (Figure 3.202). The properties which belong to this medium class for SR_SU 

(Figure 3.193) are the provincial highway, provincial road, and also the buildings 

distributed around the central and eastern parts of the region. Additionally, for SR_GRD 

(Figure 3.202) the buildings distributed around the eastern, western, and central parts of 

the region are in the medium class. The SR_GRD and LR_GRD provide the highest 
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similar risk values for property (Figure 3.203). In addition to this, the comparison of 

different methods for both grid and slope unit-based mapping units also reveal a high 

degree of similarities. Here it is important to indicate that the similarities are high due to 

the large number of low risk values around the region. Contrary to risk to property, in 

risk to life, the risk map based on the SR model for grid-based mapping unit (SR_GRD) 

has the highest number of risk values in the high risk class. Additionally, the ANN 

model in grid-based mapping unit (ANN_GRD) provides the highest medium risk class 

(Figure 3.202). The risk to life values are represented for each building in the region. 

The similarity of risk to life values for slope unit-based mapping unit is higher when 

compared to grid-based mapping unit for SR, LR, and ANN values (Figure 3.204).  

 

On local scale, the risk values for property show similar values to high risk values for 

SR and ANN for grid-based mapping unit and SR, ANN, and LR for slope unit-based 

mapping unit (Figure 4.37). Low risk values are larger in the grid-based mapping unit 

based on the LR model. The risk to property does not provide medium class risk values 

with the selected range for SR_GRD, ANN_GRD, and SR_SU. The similarity between 

risk values is higher in the LR and SR-based risk maps in slope unit-based mapping unit, 

whereas the dissimilarity is higher in the grid-based mapping units for SR and LR.   

 

For risk to life, the SR model provides a larger number of pixels in the low risk class for 

slope unit-based mapping unit. Depending on the mapping unit, the slope of Hepler may 

get varying hazard values for grid-based mapping unit, however, one or two hazard 

values for slope unit-based mapping unit. Therefore, risk to life values do not provide 

any medium class for slope unit-based mapping units for the SR, LR, and ANN models 

(Figure 4.42). The similarity between maps is prominent in the grid-based mapping unit 

for the SR and LR models (Figure 4.43).  
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5.2. Conclusions 

 

The conclusions and also the contribution of this thesis to literature derived from the 

development of the methodology and from the implementation of the methodology are 

as follows: 

 

Landslide risk assessment is still in its developing stage, and most countries do not have 

a standardized landslide risk assessment programme. In Turkey, there are even no 

studies for risk mapping for landslides. Therefore, this study contributes to the literature 

by designing a quantitative systematic risk assessment methodology.  

 

As quantitative risk assessment methodology requires allaborative data collection, the 

thesis contributes in providing a schematic overview of the main data sets required for 

the components of landslide risk assessment. 

 

In the literature, there are very few studies dealing with the comparison of different 

susceptibility assessment methods and none describe its effect on the resultant risk maps. 

However, any change in the landslide susceptibility map implies high degree of 

dissimilarity in hazard and ultimately in risk maps especially when different statistical 

methods and mapping units are used on different scales. Therefore, this research is 

contributes by investigating the effect of different susceptibility assessment models, 

mapping units, and scales on the resultant risk maps.  

 

In addition to the existing methods, a new approach to enhance the performance of 

susceptibility assessment method, which considers the spatial correlation structure of the 

parameters, was proposed. These, innovative techniques SR and GWR were adapted and 

proposed for landslide susceptibility assessment on different scales. As a result of these 

models it is observed that the predictive ability of the susceptibility maps are increased 

considering the spatial variability. Moreover, the conventional LR and ANN models are 

also adopted in this study. As a result the influence of four different susceptibility 
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mapping methods on the resultant risk maps was investigated by using two different 

mapping units, namely slope unit-based and grid-based mapping units in local and 

regional scale. 

 

The critical rainfall thresholds were estimated by using three different approaches 

namely Time Series, Gumble Distribution and IntensityDuration Curves. Time series 

model is a new approach proposed in the syudy to obtain the rainfall trigger when the 

landslide days and daily rainfall is present.  As a result of the comparison of different 

methods to obtain triggering threshold, they provide similar results when they are 

compared on the same return period level. 

 
To obtain temporal probability, a new approach is proposed in this thesis, which 

involves modeling landslide occurrence and rainfall values higher than the critical 

rainfall value by logistic regression. The conversion from susceptibility to hazard 

involves the combination of temporal probability of landside with spatial probability by 

the proposed methodology. The proposed methodology also contributes in transforming 

spatial occurrence probabilities obtained from susceptibility mapping into temporal 

occurrences probabilities (hazard maps). 

In this thesis study, a loss estimation approach due to landslides was developed for 

regional and local scales. The thesis study adapted the 3D procedure of Düzgün and 

Lacasse (2005) for consequence analysis, which involves scale, elements at risk and 

magnitude of the devastating event. For regional scale analysis, the elements at risk were 

obtained from existing digital cadastral databases in GIS environment. On the other 

hand, on local scale the elements at risk are obtained by high resolution remote sensing 

images. The elements at risk on local scale were obtained in an automatic way by the 

new developed algorithm which is another contribution of the thesis.  

 

In the thesis, the use of run-out modeling opens a new possibility to assess the 

vulnerability values quantitatively on local scale. The velocity values were evaluated 

with the number of inhabitants per house to evaluate the vulnerabilities. Furthermore, 
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the vulnerability of buildings and road were estimated by adopting the damage 

probability matrix approach. On the other hand, for regional scale analysis, a 

generalization approach was adopted for vulnerability values and each element at risk 

was evaluated in monetary terms in the thesis.  

 

The risk maps were obtained by the evaluation of hazard and consequence maps for each 

element at risk. A combined landslide risk map was obtained by adding risk for each 

element at risk. As a result, quantitative risk maps were produced on a continuous scale 

where numerical values indicate the distribution of risk including the annual probability 

of expected loses in TL per pixel and the annual probability of life loss per pixel for 

property and life, respectively.  

 
The effect of susceptibility mapping unit and mapping method on the risk maps on 

regional and local scale was assessed which is another contribution to the related 

literature.  Here it can be concluded that in all cases different levels of risk values may 

be obtained for different reasons which may be given as: The replacement of cost values 

of properties may vary for different features. It is high for road and building and low for 

infrastructures and land-use features per unit. Therefore, low values of risk may be 

obtained for different maps since low replacement cost values may correspond to low 

hazard values. Additionally, high risk values may be obtained by corresponding to high 

replacement cost features with high hazard values. The relative distribution of elements 

at risk is also important for the variability of obtaining different risk classes. The low 

density of elements at risk in high hazard may provide low risk values. Furthermore, risk 

values for regional and local scale vary depending on the susceptibility assessment 

method and the mapping unit used. The risk map comparison illustrates this concept 

markedly. Any change in the landslide susceptibility map implies a high degree of 

dissimilarity in hazard and ultimately in risk maps, especially when different statistical 

methods and mapping units are used on different scales. The reason is that, in its 

simplest form risk is defined by multiplication of hazard and consequences, where 

hazard is the product of susceptibility and trigger. The hazard, elements at risk and 
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vulnerability values are similar for all of the risk maps, whereas spatial probabilities 

vary depending on the model and mapping unit for susceptibility assessment. The spatial 

probability values of a method may vary depending on the adoption of different mapping 

units, likewise in a unique mapping unit different methods provide different probability 

values for each pixel due to model differences. Therefore, any change in spatial 

probability causes a change in hazard and hence in risk maps. As a result, the selection 

of the mapping unit and also the susceptibility model influence the resultant risk map to 

a great extent.  

 

5.3. Future Work and Recommendations 

 

The influencing factors considered in the analysis are limited to the availability of the 

data and economical conditions. It is possible to obtain various data sets relevant with 

the characteristics of landslides. Obtaining a large set of data may be cumbersome in 

further computer processing for modeling of susceptibility. For instance, when a small 

size of mapping unit is used for a large area where each unit keeps relevant information 

for each influencing factor, a bulk of data is acquired, which may not be easy to handle. 

Therefore, it is crucial to select the appropriate size of mapping unit. In addition, the 

consideration of relevant influencing factors is also important; therefore, the irrelevant 

influencing factors should be reduced by measuring the correlations between factors to 

obtain a smaller but a more efficient data set. Hence, it is recommended to adopt a 

preliminary analysis for indicators for susceptibility assessment.  

 
GIS is efficiently used for different stages of risk mapping but is insufficient for 

modeling susceptibility. The data set created for modeling susceptibility is transmitted 

into other software apart from GIS for statistical treatment of data, which may take time. 

Therefore, for future studies certain modeling approaches may also be adopted by the 

GIS environment and risk assessment processes may be automated in a single 

environment.   
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For obtaining the elements at risk for local scale, the data is mostly acquired by field 

surveys, which are very expensive. The developed algorithm to obtain features from 

high resolution remote sensing images provides an automatic way for obtaining these 

features. The cost of these images is comparatively lower for a small region than field 

observations when considering transportation and individual expenses in addition to 

expenses for equipments. However, for the future work, this algorithm can be improved 

to reduce errors by adapting new image processing methods suitable for rural areas.  

 

The assessment of vulnerability differs for different scales and there is not a common 

method of vulnerability assessment in landslide risk mapping. In this thesis, for local and 

regional scales appropriate vulnerability indicators were designed and applied. The 

vulnerability approach designed for local scale is based on damage probability matrix 

and run-out velocity, which may bring a new possibility to assess the vulnerability 

values quantitatively. The use of the velocity value of run-out is new for vulnerability 

assessment and several issues such as rheology computation and model calibration are 

needed to be incorporated into the analysis. In addition to temporal impact, which is 

considered in the vulnerability approach, the probability of being in run-out zone for 

elements at risk, the construction type, the replacement cost of particular buildings etc. 

may also be considered for further vulnerability assessment studies.  

 
For comparison and visualization purposes, it is crucial to identify cutoff values for 

classification of quantitative risk maps. It is not an easy task to evaluate the maps on a 

continuous scale and the selection of different methods for the visualization of different 

maps may be misleading for end users, who will provide decisions based on the 

interpretation of these maps. There are yet no internationally accepted classification 

procedures for visualization or comparison of risk mapping. However, for a true 

evaluation and comparison of maps, a common standard would be highly valuable. 

 
For future studies, Interferometric Synthetic Aperture Radar (InSAR) can be used for 

measuring surface displacements by using the technique of Persistent Scatter 

Interferometry (PSI), which uses a large number of radar images and works as a time 
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series analysis for a number of fixed points in the terrain with stable phase behavior over 

time, such as rocks or buildings. As a result of these analyses, the vulnerabilities of 

buildings can be estimated for regional scale analysis. Additionally, stable GPS 

measurements can be surveyed for different time periods to model the movement on a 

local slope.  
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APPENDIX A 
 

Q-Q PLOTS 
 

Table A-1. The Q-Q plot for factors considered in grid-based mapping unit 
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Table A-2. The Q-Q plot for factors considered in slope unit-based mapping unit 
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APPENDIX B 

 

MAP of GWR PARAMETER DISTRIBUTION  

 

 
Figure B-1. GWR parameter variation across the study area for Greybrown Podzolic Soil (S_GBPdz) 
for grid-based mapping unit 
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Figure B-2. GWR parameter variation across the study area for Brown Forest Soil (S_BFS) for grid-
based mapping unit 
 

 
Figure B-3. GWR parameter variation across the study area for Sandstone-Mudstone unit of Geology  
(Geo_SM) for grid-based mapping unit 
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Figure B-4. GWR parameter variation across the study area for Slope (Slp) for grid-based mapping 
unit 
 

 
Figure B-5.  GWR parameter variation across the study area for Distance to Road (DisttoRoad) for 
grid-based mapping unit 
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Figure B-6. GWR parameter variation across the study area for Colluvial Soil (S_Colv) for grid-based 
mapping unit 
 
 

 
Figure B-7. GWR parameter variation across the study area for very shallow soil depth (SD_VS) for 
grid-based mapping unit 
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Figure B-8. GWR parameter variation across the study area for Elevation (Elev) for grid-based 
mapping unit 
 
 

 
Figure B-9. GWR parameter variation across the study area for Aspect (Asp) for grid-based mapping 
unit 
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Figure B-10. GWR parameter variation across the study area for Distance to Stream (DisttoStrm) for 
grid-based mapping unit 

 
Figure B-11. GWR parameter variation across the study area for Distance to Fault (DisttoFault) for 
grid-based mapping unit 
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Figure B-12. GWR parameter variation across the study area for Land use Dry Farming (LU_DF) for 
slope unit-based mapping unit 
 
 

 
Figure B-13.  GWR parameter variation across the study area for Forest (LU_F) for slope unit-based 
mapping unit 
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Figure B-14. GWR parameter variation across the study area for the Conglomerate unit of Geology 
(Geo_C) for slope unit-based mapping unit 
 

 
Figure B-15. GWR parameter variation across the study area for the Sandstone Mudstone unit of 
geology (Geo_SM) for slope unit-based mapping unit 
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Figure B-16. GWR parameter variation across the study area for the Grey brown podzolic soil 
(S_GBPdz) for slope unit-based mapping unit 
 

 
Figure B-17. GWR parameter variation across the study area for the brown forest soil (S_BFS) for 
slope unit-based mapping unit 
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Figure B-18. GWR parameter variation across the study area for the brown forest soil without lime 
(S_BFSWL) for slope unit-based mapping unit 
 

 
Figure B-19. GWR parameter variation across the study area for the distance to stream network 
(DisttoStrm) for slope unit-based mapping unit 
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Figure B-20. GWR parameter variation across the study area for the distance to vegetation (Veg) for 
slope unit-based mapping unit 
 

 
Figure B-21. GWR parameter variation across the study area for the distance to Slope (Slp) for slope 
unit-based mapping unit 
 

 377



 
Figure B-22. GWR parameter variation across the study area for the distance to distance to road 
network (DisttoRoad) for slope unit-based mapping unit 
 

 
Figure B-23. GWR parameter variation across the study area for the distance to topographic wetness 
index (Wtns) for slope unit-based mapping unit 
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APPENDIX C 
 

THE SPATIAL DISTRIBUTION OF SIMILARITY AND 

DISSIMILARITY BETWEEN SUSCEPTIBILITY MAPS  
 

 
Figure C-1. Map similarity computed for SR_GWR for grid-based mapping unit 
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Figure C-2. Map similarity computed for SR_LR for grid-based mapping unit 

 

 
Figure C-3. Map similarity computed for SR_ANN for grid-based mapping unit 
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Figure C-4. Map similarity computed for LR_ANN for grid-based mapping unit 

 

 
Figure C-5. Map similarity computed for LR_GWR for grid-based mapping unit 

 381



 
Figure C-6. Map similarity computed for ANN_GWR for grid-based mapping unit 

 

 
Figure C-7. Map similarity computed for SR_LR slope unit-based mapping unit. 
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Figure C-8. Map similarity computed for SR_GWR slope unit-based mapping unit. 

 

 
Figure C-9. Map similarity computed for SR_ANN slope unit-based mapping unit. 
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Figure C-10. Map similarity computed for LR_ANN slope unit-based mapping unit. 

 

 
Figure C-11. Map similarity computed for LR_GWR slope unit-based mapping unit. 
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Figure C-12. Map similarity computed for ANN_GWR slope unit-based mapping unit. 
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APPENDIX D 
 

RISK MAPS CREATED FOR REGIONAL SCALE  

 

 
Figure D-1. Risk to property for SR model and grid-based mapping unit (SR_GRD) 

 
 

 
Figure D-2. Risk to property for ANN model and grid-based mapping unit (ANN_GRD) 
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Figure D-3. Risk to property for LR model and slope unit-based mapping unit (LR_SU) 

 

 

 
Figure D-4. Risk to property for SR model and slope unit-based mapping unit (SR_SU) 
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Figure D-5. Risk to property for ANN model and slope unit-based mapping unit (ANN_SU) 

 
 

 
Figure D-6. Risk to life for SR model and grid-based mapping unit (SR_GRD) 
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Figure D-7. Risk to life for ANN model and grid-based mapping unit (ANN_GRD) 

 
 

 
Figure D-8. Risk to life for LR model and slope unit-based mapping unit (LR_SU) 
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Figure D-9. Risk to life for SR model and slope unit-based mapping unit (SR_SU) 

 
 

 
Figure D-10. Risk to life for ANN model and slope unit-based mapping unit (ANN_SU) 
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APPENDIX E 
 

Table E-1. Overland Flow Manning's n Roughness Value. 1Adapted from COE, 1997 
 

Surface n-value 
Dense turf 0.17 - 

0.80 
Bermuda and dense grass, dense 
vegetation 

0.17 - 
0.48 

Shrubs and forest litter, pasture 0.30 - 
0.40 

Average grass cover 0.20 - 
0.40 

Poor grass cover on rough surface 0.20 - 
0.30 

Short prairie grass 0.10 - 
0.20 

Sparse vegetation 0.05 - 
0.13 

Sparse rangeland with debris 
0% cover 
20 % cover 

 
0.09 - 
0.34 
0.05 - 
0.25 

Plowed or tilled fields 
Fallow - no residue 
Conventional tillage 
Chisel plow 
Fall disking 
No till - no residue 
No till (20 - 40% residue cover) 
No till (60 - 100% residue cover) 

 
0.008 - 
0.012 
0.06 - 
0.22 
0.06 - 
0.16 
0.30 - 
0.50 
0.04 - 
0.10 
0.07 - 
0.17 
0.17 - 
0.47 

Open ground with debris 0.10 - 
0.20 

Shallow glow on asphalt or 
concrete (0.25" to 1.0") 

0.10 - 
0.15 

Fallow fields 0.08 - 
0.12 

Open ground, no debris 0.04 - 
0.10 

Asphalt or concrete 0.02 - 
0.05 
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RISK MAPS AT LOCAL SCALE for LOSS of PROPERTY 

 

 
Figure E-1. Risk to property map created based on the SR model at grid-based mapping unit 
(SR_GRD) 
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Figure E-2. Risk to property map created based on the ANN model at grid-based mapping unit 
(ANN_GRD) 
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Figure E-3. Risk to property map created based on the SR model at slope unit-based mapping unit 
(SR_SU) 
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Figure E-4. Risk to property map created based on the ANN model at slope unit-based mapping unit 
(ANN_SU) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 395



COMPARISON of RISK MAPS AT LOCAL SCALE for  LOSS of 

PROPERTY 

 
Figure E-5. Difference of risk to property maps between SR and ANN models at grid-based mapping 
unit (SR_ANN_GRD) 
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Figure E-6. Difference of risk to property maps between LR and ANN models at grid-based mapping 
unit (LR_ANN_GRD) 
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Figure E-7. Difference of risk to property maps between SR and ANN models at slope unit-based 
mapping unit (SR_ANN_SU) 
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Figure E-8. Difference of risk to property maps between LR and ANN models at slope unit-based 
mapping unit (LR_ANN_SU) 
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RISK MAPS AT LOCAL SCALE for LOSS of LIFE 

 
Figure E-9. Risk to life map created based on the SR model at grid-based mapping unit (SR_GRD) 
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Figure E-10. Risk to life map created based on the ANN model at grid-based mapping unit 
(ANN_GRD) 
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Figure E-11. Risk to life map created based on the SR model at slope unit-based mapping unit 
(SR_SU) 
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Figure E-12. Risk to life map created based on the ANN model at slope unit-based mapping unit 
(ANN_SU) 
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COMPARISON of RISK MAPS AT LOCAL SCALE for  LOSS of LIFE 

 

 
Figure E-13. Difference of risk to life maps between SR and ANN models at grid-based mapping unit 
(SR_ANN_GRD) 
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Figure E-14. Difference of risk to life maps between LR and ANN models at grid-based mapping unit 
(LR_ANN_GRD) 
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Figure E-15. Difference of risk to life maps between SR and ANN models at slope unit-based 
mapping unit (SR_ANN_SU) 
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Figure E-16. Difference of risk to life maps between LR and ANN models at slope unit-based 
mapping unit (LR_ANN_SU) 
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