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ABSTRACT

FUZZY DECISION FUSION FOR SINGLE TARGET CLASSIFICATION IN WIRELESS
SENSOR NETWORKS

Gök, Sercan

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazıcı

December 2009, 60 pages

Nowadays, low-cost and tiny sensors are started to be commonly used dueto developing

technology. Wireless sensor networks become the solution for a variety ofapplications such

as military applications. For military applications, classification of a target in a battlefield

plays an important role. Target classification can be done effectively by using wireless sensor

networks. A wireless sensor node has the ability to sense the raw signal data in battlefield,

extract the feature vectors from sensed signal and produce a local classification result using

a classifier. Although only one sensor is enough to produce a classification result, decision

fusion of the local classification results for the sensor nodes improves classification accuracy

and loads lower computational burden on the sensor nodes. Decision fusion performance can

also be improved by picking optimum sensor nodes for target classification.

In this thesis, we propose fuzzy decision fusion methods for single targetclassification in

wireless sensor networks. Our proposed fusion algorithms use fuzzy logic for selecting the

appropriate sensor nodes to be used for classification. Our solutions provide better classifica-

tion accuracy over some popular decision fusion algorithms. In addition to fusion algorithms,

we present some techniques for feature vector size reduction on sensor nodes, and training set
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formation for classifiers.

Keywords: Wireless Sensor Networks, Classification, Fusion, Fuzzy Logic
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ÖZ

KABLOSUZ ALGILAYICI A ĞLARDA TEK HEDEF SINIFLANDIRMASI İÇİN
BULANIK KARAR B İRLEŞṪIRMEṠI

Gök, Sercan

Yüksek Lisans, Bilgisayar M̈uhendislĭgi

Tez Yöneticisi : Prof. Dr. Adnan Yazıcı

Aralık 2009, 60 sayfa

Günümüzde gelişen teknoloji ile d̈uş̈uk maliyetli ve k̈uçük algılayıcılar yaygın olarak kul-

lanılmaya başlandı. Kablosuz algılayıcı ağları askeri uygulamalar gibi birçok uygulamaya

çözüm oldu. Savaş alanında bir hedefin sınıflandırılması, askeri uygulamalar ic¸in önemli bir

rol oynamaktadır. Kablosuz algılayıcı ağları kullanarak etkili bir biçimde hedef sınıflandırması

yapılabilir. Kablosuz bir algılayıcı, savaş alanındaki ham sinyal verisini algılama, algılanan

sinyaldenöznitelik vekẗorleri çıkarma, ve sınıflandırıcı kullanarak yerel sınıflandırma sonucu

üretebilme yeteneklerine sahiptir. Sadece bir algılayıcının sınıflandırma sonucuüretebilmek

için yeterli olmasına răgmen, algılayıcıların yerel sınıflandırma sonuçlarının karar birleştirmesi,

sınıflandırma dŏgruluğunu geliştirir ve algılayıcılar̈uzerine daha az hesaplama külfeti yükler.

Karar birleştirme performansı da hedef sınıflandırması için en ideal algılayıcıları seçerek

geliştirilebilir.

Bu tez çalışmasında, kablosuz algılayıcı ağlarda tek hedef sınıflandırması için bulanık karar

birleştirme ÿontemleriönerilmektedir. Önerilen birleştirme algoritmaları sınıflandırma için

kullanılacak uygun algılayıcıları seçmek için bulanık mantığı kullanmaktadır. Ç̈ozümümüz,

bazı pop̈uler karar birleştirme algoritmalarından daha iyi bir sınıflandırma doğruluğu sunmak-
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tadır. Birleştirme algoritmalarına ek olarak, algılayıcılardaöznitelik vekẗorü boyut azaltma ve

sınıflandırıcılar için̈oğrenim k̈umesi oluşturma için bazı teknikler sunulmaktadır.

Anahtar Kelimeler: Kablosuz Algılayıcı Ăglar, Sınıflandırma, Birleştirme, Bulanık Mantık
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CHAPTER 1

INTRODUCTION

Due to recent improvements in hardware technology, the extensive use ofwireless sensors

has expanded into many application areas. Being small, low-cost and low-power devices,

wireless sensors are considered to be an efficient option to deploy on real time environments.

Sensor nodes can communicate with each other through wireless channels toshare data. Data

is gathered on a sink node (base station), and end-users examine the datasubsequently. Such

co-operation and co-ordination of sensor nodes construct a kind of network, which is called

wireless sensor network (WSN). In WSN applications, sensor nodes are usually not deployed

to pre-determined locations. Instead of that, random deployment of sensors is preferred.

Each sensor in WSN has to deal with its local computing process, signal processing and wire-

less communication; however, they have some challenges to face. Some of these challenges

are listed [4] below:

• Sensor nodes are deployed in an ad hoc manner. That is, sensor nodes are spread

out to the environment randomly, with no foreknown locations. Tough geographical

conditions can complicate the survival of the sensor nodes.

• In most WSN, sensor nodes are once deployed and then they survive on their own. Hu-

man interaction is at minimum level. It is almost impossible to repair a sensor node

once it is damaged in the event of deployment or as a result of unexpectedenvironmen-

tal conditions.

• Sensor nodes have limited energy and limited computing power. Efficient algorithms

and communication methods may minimize the complexity of computing and energy

consumption.
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• Sensor nodes have to be aware of the change in the environment. New sensor nodes

added to the WSN, failing sensor nodes and other environmental changes can affect the

traffic in WSN.

Besides these challenges, wireless sensor networks have some requirements to work more

stable and robust. Considering these requirements in the design of networkenables likelihood

of the developing successful operations and applications. Main requirements of the wireless

sensor networks can be listed as [30]:

• To make a full advantage of wireless sensor networks, sensor nodes should be deployed

in large numbers. These large numbered sensor nodes should be controlled efficiently

by clustering.

• Since sensor nodes have limited energy, minimizing the energy should be the major

issue.

• Sensor nodes have small memories. Efficient use of memory is required.

• Each sensor produces data for its sensor network. Data aggregationsshould be done

among individual sensor nodes in a cluster and among clusters in a network.

• Random deployment of the nodes makes self-organization ability of the wireless sensor

nodes a requirement. Network should reconfigure itself to perform properly and to

adapt to the changing conditions.

• Efficient signal processing inside of a single sensor node as well as data and decision

fusion among all sensor nodes should be designed carefully for better performance.

• Wireless sensor nodes should have the ability to execute and return queryoperations on

the data they sense.

Wireless sensor nodes have the ability to monitor several ambient conditions [12]. These

ambient conditions can be counted as; humidity, temperature, vehicular movement, lightning

condition, pressure, soil makeup, noise levels, and so on. Every different ambient condition

has different characteristics and it is handled by a different kind of modality on each sensor

node. The examples of modalities are seismic, low sampling rate magnetic, thermal, visual,

infrared, acoustic, and radar modality [18]. While some sensor nodes are designed to sense
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using only one modality, some sensor nodes can use several modalities for sensing. Every sin-

gle modality can be related to different application areas of WSN. However, some applications

may require multi-modality sensor nodes to perform better.

Wireless sensors are extensively used in many various applications today. Most common

application areas can be categorized as follows [2]:

• Wireless sensor networks can be used in military applications. Using the rapid de-

ployed, self-organized and fault-tolerant properties of sensor nodes, battlefields are

appropriate places for sensor nodes. Monitoring friendly forces, equipment and am-

munition, reconnaissance of opposing forces and terrain, targeting, and battle damage

assessment are some applications of wireless sensor networks for military.

• Environmental applications are also using wireless sensor networks. Theenvironmental

application examples can be counted as; tracking the movement of small animals,birds

or insects, monitoring the conditions about agriculture, detecting forest fire, air or water

pollution, flood and soil erosion.

• Some useful wireless sensor network applications have been employed in health area.

Patients who need to be monitored constantly can take the advantage of sensor nodes.

Tele-monitoring of human physiological data, tracking and monitoring doctorsand pa-

tients inside a hospital, drug administration in hospitals are some common health ap-

plications of wireless sensor networks.

• Many home applications make use of wireless sensor networks. Some electronic de-

vices such as micro-wave ovens or refrigerators can interact with eachother to perform

more economically, more efficiently and more safely. Moreover, these devices can be

controlled remotely by wireless sensors.

• Other than above, wireless sensor networks application may include: Environmental

control in office buildings, interactive museums, detecting and monitoring car thefts,

managing inventory control and vehicle tracking and detection.

The scenarios, in which wireless sensor networks are applicable, are countless. More useful

and practical applications can be developed in near future.
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In military applications, monitoring battlefield (sensor field) is an important concept. Detec-

tion of a target, classification of the target and tracking of the target are theessential steps

and extensive researches have been made on these three operations.When a target intrudes

a battlefield, sensor nodes detect the target. After ensuring that there is atarget in the battle-

field, sensor nodes try to classify the target. Tracking of the target follows the classification

process. By accomplishing these three steps, necessary information about target is retrieved

and defense mechanism becomes ready to act.

Target classification in battlefields is the main issue discussed in this thesis. A target intruding

the battlefield should be classified accurately so that the related precautionscan be taken.

Target classification is a complicated process, in which many design issues take place and play

important role on classification accuracy. Collaborative signal processing algorithms, feature

extractions, classifier design and choice, deployment and locations of thesensor nodes, the

modality types of the sensor nodes, data and decision fusion are all parts of the classification

process and many studies have been done on each of these topics.

Since data coming from just one sensor node is not reliable inside a wirelesssensor network,

some fusion mechanisms have been developed. By fusing among sensor nodes, not only the

performance of the wireless sensor network increases, but also energy consumption can be

lowered by only keeping the related sensor nodes busy. In [32], some advantages of using

multiple sensors deployment over one sensor deployment are mentioned:

• Fusion is beneficial because when the entire sensor nodes sense the same features, they

can provide redundant information. Fusion removes overall uncertaintyand therefore

increases accuracy.

• Having each sensor responsible for a subset of the network, more complementary in-

formation is gathered. In this way, the big picture of the wireless sensor network can

be seen.

• If the fusion among sensor nodes is done in parallel, higher processing speed may be

achieved.

Today many applications include some level of uncertainty. Criteria about theapplications

may not always be defined precisely. Fuzzy logic is a commonly used representation tech-

nique dealing with uncertainty, vagueness or impreciseness. In [34], fuzzy set is defined as
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a class with a continuum of grades of membership. The difference of fuzzy set from crisp

set is that fuzzy set members can have wider membership values than crisp set members. A

member in a crisp set is either is a member of the set or not. However, members ofthe fuzzy

set have some membership values showing the grade of membership. Fuzzy logic is applied

to both inputs and outputs of the system and this enables the performance to beimproved

significantly.

In this thesis, we mainly focus on the decision fusion of the target classification. Acoustic

feature vectors which are sensed by the wireless sensor nodes are used in local classifica-

tion of the sensor nodes. Acoustic feature vectors can have high dimensions and reduction

is needed to decrease the complexity on a sensor node. After a sensor node makes its lo-

cal classification, it produces a result defining the target detected. Forlocal classification, a

classifier and a training set formed by previously obtained data are needed. Decision fusion

is later done among the sensor nodes’ results to produce the final result. In our study, we

develop fuzzy fusion techniques for making efficient and accurate decision fusion among sen-

sor nodes. Although various fuzzy approaches are studied in WSN, there exists no known

fuzzy decision fusion method applied to target classification problem in WSN.We evaluate

the performance of newly developed fuzzy decision fusion techniques over some popular de-

cision fusion methods. Moreover, some optimizations in the feature vector sizereduction and

generation of training sets are done.

The remainder of the thesis is arranged as follows. In the next chapter, background informa-

tion and related work about target classification problem and fuzzy approaches for wireless

sensor networks are given. Later in Chapter 3, we mention about decision fusion for classifi-

cation process in WSN including our fuzzy decision fusion techniques with running examples.

Besides decision fusion techniques, optimizations in feature vector size reduction and train-

ing set generation take place again in Chapter 3. Next, the evaluation among decision fusion

methods is made using real data in Chapter 4. Finally in Chapter 5, we concludethe thesis

and discuss about some possible future works.

5



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background

In this section we give some background information about target classification process in

wireless sensor networks and basics of fuzzy set theory.

In Figure 2.1 sample classification fusion process for WSN is shown [6]. The sensor nodes

sense the signal and extract the relevant feature vectors. Then, classifiers on sensor nodes

make local classification based on the feature vectors and training sets. Decision fusion is

then done by a fusing algorithm using the decisions generated by all the sensor nodes where a

final result is formed. Fusion center node can be any node randomly chosen to aggregate the

data from other sensor nodes.

Sensor Node n

Sensor Node 1

Sensor Node 2

.

.

.

Feature Extraction

Feature Extraction

Feature Extraction

.

.

.

Classification

Classification

Classification

.

.

.

Fusion Center 

Node

Classification Output

Figure 2.1: Classification fusion process for WSN

Feature extraction, local classification and fusion are the main parts in target classification.
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2.1.1 Feature Extraction

Feature extraction is an important concept for target classification in WSN.The performance

of the classifiers increases if the quality of the extracted feature vector is good enough to

process [28]. Feature extraction depends on robust signal processing. Raw time-series sig-

nals (acoustic, seismic, thermal, etc.) are processed to form feature vectors. Sample feature

extraction process is shown in Figure 2.2.

TIME SERIES DATA

(RAW SIGNAL)

FEATURE REDUCTION

SIGNAL TRANSFORM (FFT, WAVELET

AND SPECTRAL ANALYSIS)

SIGNAL PROCESSING

FEATURE VECTORS

Figure 2.2: Block diagram of classical feature extraction

Feature extraction starts with the processing of the received raw time-series data signals. Sig-

nal processing phase is an optional phase to increase the signal quality.In [28], DC (Direct

Current) component of the original signal is eliminated and noise from the original signal is

removed during signal processing phase. After the signal processingphase, signal transform

phase begins. Three most popular transforms for feature extraction are Fast Fourier Transform

(FFT), Wavelet Transform and Spectral Analysis.

Fourier Transform (FT) is a calculation in which signal wave can be seennot only in time

domain but also in frequency time domain. Generally, a signal wave is shown ina graph with

time as the horizontal axis, and the amplitude as the vertical axis. However, bymeans of FT,

signal wave can also be examined in frequency as the horizontal axis [21]. To analyze continu-

ous waveform, data should be sampled in order to produce the time series of discrete samples.

Such discrete samples are handled by Discrete Fourier Transform (DFT). In other words, FT

requires continuous input functions whereas DFT requires discrete input functions. Finally,
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FFT is an efficient method to compute DFT of a time series. By carrying out coefficients of

the DFT iteratively, FFT saves considerable amount of time [8].

Like FT, wavelet transform is another mathematical tool for signal analysis[26]. Wavelet

transform decomposes the input signal into different scales with different levels of resolution.

Since wavelet transform is based on a square-integrable function and group theory represen-

tation, decomposition into scales is possible. Unlike FT, wavelet transform provides local

representation of the signal in both time and frequency. When time-frequency resolution is

needed, wavelet transform is suitable for analyzing a signal [26].

Spectral analysis reveals the frequency information of a target, and serves as a major feature

[6]. Amplitude statistics, shape statistics and peak locations can be derived from using spectral

analysis [28].

Power Spectrum Density (PSD) values can be generated after FFT or wavelet transforms.

PSD values are the energy distributions of frequency features [6]. The feature vectors used by

the classifiers can be chosen among the PSD values.

After signal transform phase, some reduction is made on feature vectors. Feature vectors

may come large in size, and not every value they carry has the same importance. Some

features are very close to each other among classification classes; therefore they have very

little effect on the classification process. Removing unimportant feature vectors will speed

up the classification computations. Principal Component Analysis (PCA) is a well known

technique to reduce the feature vector size. PCA tries to reduce the feature vectors to a

sufficient set. The most important information is kept untouched in the feature setsby a linear

transformation matrix. The eigenvectors of the feature vector covariancematrix construct the

linear transformation matrix [28]. However, since computation of the eigenvectors is difficult,

PCA is not preferred in some applications [6]. In Chapter 3, we reduce the size of the feature

vectors by comparing values of the feature vectors for the classification classes.

2.1.2 Local Classification

In the process of target classification in WSN, local classification takes place after feature

vectors are extracted from sensor nodes. Wireless sensor nodes individually perform their

local classifications before they go into fusion for the final result. After local classification
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phase, every sensor node has a result for the target. In local classification phase, a good

classifier has to be selected for proper classification. For classifiers to execute, they need a

training set of feature vectors as an input besides feature vector to be classified. Training set

includes features with right class labels attached to them. The classifier makesinferences

using the samples in the training set. Right choice of the training set yields betterclassifica-

tion accuracy. There are three types of classifiers used extensively intarget classification in

WSN. They are k-Nearest Neighbor (kNN), Maximum Likelihood (ML) and Support Vector

Machine (SVM) classifiers. Brief information about the three classifiers islisted below [17]:

• kNN classifier is an easy yet a powerful classifier. When an input feature vector arrives

to be tested, the Euclidean distance is calculated between feature vector andall the

vectors in the training set. Then the nearest k feature vectors from the training set are

determined. The class labels of the nearest k feature vectors are then combined by

majority voting rule. That is, the class label with a maximum count among nearestk

feature vectors is chosen as the result. If k is selected as 1, then kNN is called as nearest

neighbor classifier. kNN produces very accurate results; however itmay not be suitable

if the training set size increases, as it requires too much memory space and power.

• In ML classifier, the distribution of feature vectors with the same class label within

a training set is modeled as a mixture of Gaussian density functions. As the name

implies, ML tries to find the training feature vector with the maximum likelihood to

input feature vector. In other words, the principle can be stated as: Findan estimate

for the input feature vector, which maximizes the likelihood of observing of those data

which were actually observed (training set feature vectors) [11].

• The key idea in SVM is to map the current feature vector space to a higher vector space.

For a feature vector space with N dimension, SVM maps this N dimension space toan

M dimension space (M> N). By raising feature vector space, the training set feature

vectors become more separable, therefore easy to classify. The disadvantage of SVM is

that training phase can take long time. However, once the training set is completed, its

calculation is rather easy. Generally, different SVM training is needed for each class.
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2.1.3 Fusion

Fusion for target classification is the process of aggregating data from the sensor nodes and

deciding on a final classification result. By efficient fusion, not only the performance of the

overall system increases but also WSN does not need to depend on datacoming from only one

sensor node. Various fusion types exist in target classification in WSN. Three fusion methods

can be counted as: Temporal fusion, multi-modality fusion and multi-sensor fusion [32].

• Temporal fusion is a time based method. Sensor nodes detect a target and start to sense

and extract data from the target. The data gathered while the target is passing can be

fused. Signals detected have different timestamps. Therefore, they can be treated as

independent data and can be fused in a sensor node.

• Like temporal fusion, multi-modality fusion is done inside a sensor node (intra-node

operation). If the sensor nodes have the ability to sense data using different modalities

(acoustic, seismic, thermal, etc.), the results coming from these modalities can befused.

The data for fusion is considered as independent, since it comes from different channels.

• The final main type of fusion is multi-sensor fusion. This fusion is done amongsensor

nodes and it is commonly used in target classification process. To handle uncertainty

and remove the faulty sensor nodes out, multi-sensor fusion is required.

Decision fusion is a type of multi-sensor fusion. In decision fusion, the sensor nodes make

local decisions, and fusion is made among these decisions. The data fusedmust be indepen-

dent. Although any fusion type in the classification process might be called asdata fusion,

Brooks et al. define data fusion as the fusion of correlated data [5]. Combination of the fea-

ture vectors from all sensor nodes can be considered as data fusion.The pros and cons of data

fusion versus decision fusion can be listed as follows [5]:

• Decision fusion presents lower computational burden and fewer amounts of training

data. It is preferable when training data is not very large.

• Data fusion gives better performance at the cost of computational and communication

burden for correlated measurements.
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• Data fusion is preferred to be used among modalities (seismic, acoustic, etc. inside a

sensor node) whereas decision fusion is better to be used across sensor nodes.

• Some recent results [7] show that decision fusion performs better in a scenario where

some sensor nodes are malfunctioning.

Decision fusion for target classification in WSN can be done by using variety of methods.

Different parameters present in the sensor network environment may provide many techniques

and combinations for decision fusion. Some possible fusion scenarios areas follows:

• Majority voting is the simplest but an efficient fusion technique. After all the sensor

nodes make their local classifications and yield a decision, the decisions foreach class

label are counted. After this step, three different versions of majority voting behave

differently [24]. In unanimous voting, all the sensor nodes should agree onthe same

decision. That is, the count of the decided class should be equal to the number of sensor

nodes. Another version is simple majority, in which the majority of the sensor nodes

should decide on the same class label to make that class label be chosen. Percentage of

a class label should exceed %50 to be selected. In plurality voting, the classlabel with

highest count is selected whether sum of the votes exceeds %50 or not. Generally the

term majority voting implies the third version, plurality voting.

• Other fusion techniques apart from majority voting are mainly based on the parameters

gathered from the WSN environment. These parameters can be distances (sensor nodes

- target distance [10] or sensor nodes - sink node distance [27]), signal properties such

as signal quality, signal energy and signal to noise ratio (SNR) [10], sensor energies

[27], and so on. Combinations using these parameters are commonly used. The main

goal is to select the optimum sensor node(s) for classification. Maximum A Posterior

(MAP) Bayesian [10] and Dempster-Shafer [6] algorithms work on the principle of

giving probability or belief values to sensor nodes. Indmax algorithm [10], only the

sensor nodes within a given distance are considered. After the sensors are determined

in the given distance,dmax algorithm works like majority voting algorithm.

• Fuzzy logic is again a good technique for better classification in WSN. The parameters

above can be integrated into fuzzy fusion techniques. Two or more parameters are

fuzzified and then based on some fuzzy rules; the defuzzified result maylead optimum
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sensor node(s) selection.

2.1.4 Basics of Fuzzy Set Theory

Fuzzy sets are introduced by L. Zadeh in 1965. Fuzzy set theory is the main concept of fuzzy

logic. In crisp set theory, an element is either belongs to the set or not. A definition of the

crisp set can be expressed as in Equation 2.1 [23].

µA(x) =



























1, if x is an element of set A

0, if x is not an element of set A
(2.1)

In Equation 2.1,µA(x) represents the characteristic function for set A. According to definition,

if x is a member of the setA, µA(x) has the value of 1. On the other hand, whenx is not a

member of the setA, µA(x) has the value of 0.

In fuzzy set theory, the situation mentioned about the crisp set theory is extended. The mem-

bership function for a fuzzy set may generate a real value in the interval[0,1] [34]. Fuzzy sets

can be generalized as in Equation 2.2 [23].

A = {x, µA(x) | x ∈ X} (2.2)

In Equation 2.2,X denotes the universe of discourse andx denotes elements of it.µA(x) is a

membership function ofx in A.

Designing robust membership functions is very important for fuzzy sets. Changing the param-

eters of the membership functions may cause different results in fuzzy systems [23]. Fuzzy

membership functions must map each element of a set to a continuous membershipvalue form

0 to 1. Several basic functions are used in fuzzy systems to generate fuzzy membership func-

tions. Some examples are Triangular, Trapezoidal, Gaussian, Bell and Sigmodial membership

functions [15]. Figure 2.3 shows the examples of these fuzzy membership functions.

Fuzzy membership functions are chosen according to data to be used. Thus, the functions

used may differ from application to application. The most commonly used fuzzy membership

functions are triangular and trapezoidal fuzzy membership functions.
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Figure 2.3: Example sets of membership functions

13



Fuzzy inference is a framework for depending on the concepts; fuzzyset theory, fuzzy if-then

rules and fuzzy reasoning [15]. Fuzzy inference system has three main conceptual compo-

nents [15]:

• First component isrule base. It contains a selection of fuzzy if-then rules.

• Second component isa database or dictionary, which has the definitions of the mem-

bership functions used.

• Last component is named asreasoning mechanism, where inference procedure is real-

ized based on the fuzzy rules to produce a conclusion.

Fuzzy inference systems actually map crisp input value(s) into a crisp output value [19].

Blocks of a simple fuzzy inference system is shown in Figure 2.4 [23].

DefuzzificationFuzzification

Fuzzy Inference Engine

Fuzzy Rule Base

input(s)input(s) output(s)

Figure 2.4: Basic fuzzy inference system

In the fuzzification phase, the input variables are fuzzified. The variables initially have crisp

inputs and they have to be converted. Membership functions are created for all the input and

output variables. The degree is calculated based on the input variables belonging to their

appropriate fuzzy sets using membership functions [13]. Membership functions are labeled

with some linguistic terms such ashigh, low, small, big etc.
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Fuzzy rule base is comprised of fuzzy if-then rules. Every fuzzy inference system has set of

fuzzy if-then rules with meaningful linguistic interpretations. These fuzzy if-then rules may

be obtained from numerical data or some experts familiar with problem [19]. Asample if-then

rule has the following format [15]:

if x is A theny is B (2.3)

In 2.3, x is the input variable whiley is the output variable. A denotes the linguistic variable

for input variable and B denotes the linguistic variable for output variable.“ x is A” is called

antecedent and “y is B” is called consequence. These defined rules affect the fuzzy infer-

ence system. All the related fuzzy if-then rules are used when a defuzzified output value is

generated for a given input value.

Fuzzy inference engine performs the inference operations using the fuzzy rules for a reason-

able output [23]. There are three common types of fuzzy inference systems namely Mamdani

fuzzy model, Sugeno fuzzy model and Tsukamoto fuzzy model [23]. Themain difference

among these inference systems are about their fuzzy rule consequents [33]. Different fuzzy

rule consequents lead to different aggregation and defuzzification procedures [23]. Typical

properties of these fuzzy inference systems are listed below:

• Mamdani proposed Mamdani fuzzy inference system to control a steam engine and

boiler combination by control rules of some human operators [14]. In Mamdani fuzzy

inference system, first the fuzzy inputs are fuzzified in fuzzification phase. After fuzzi-

fication phase, the rule evaluation is performed. Mamdani fuzzy rules have the form

expressed in 2.4 withXi andY are the input and output linguistic variables, respec-

tively, and with Ai and B being linguistic labels with fuzzy sets associated defining

their meaning [9].

if X1 is A1 and ... andXn is An thenY is B (2.4)

If a fuzzy rule has more than one antecedent, then logical operators OR (maximum)

and AND (minimum) are used to estimate the result number. If OR operator is used,

highest number is chosen, while if AND operator is used, lowest number is chosen.

When the input values are zero, the output value is also zero. Aggregation of the rule

15



outputs is performed after rule evaluation process. This kind of aggregation forms a

fuzzy set for Mamdani fuzzy inference system. In the final phase, thefuzzy set, which

is the output of the rule aggregation phase, is defuzzified. The all fuzzyset is reduced

to a single crisp value. This crisp value is considered as the result of the fuzzy logic

inference process. Centroid method is generally used for defuzzification [13].

• Takagi, Sugeno, and Knag proposed Sugeno fuzzy inference system [14]. Typical fuzzy

rule for Sugeno fuzzy inference system is given in 2.5 where A and B fuzzy sets in

the antecedent andz is a crisp function for consequent. It can be observed that, the

consequent part contains a function unlike Mamdani fuzzy inference system.

if x is A theny is B thenz = f(x, y) (2.5)

f(x, y) function is a polynomial with the input variablesx and y most of the times.

However, it can also be any function that describes output of the systemwithin the fuzzy

region specified by the antecedent of the rule [15]. The construction ofSugeno fuzzy

inference system is usually realized in two steps [1]. In the first step, determination of

the fuzzy sets in the rule antecedents is done. Then, the parameters for theconsequent

functions are estimated. These consequent functions are chosen to be linear.

• Last fuzzy inference system to be mentioned is Tsukamoto fuzzy inference system. In

Tsukamoto fuzzy inference system, the consequent of each fuzzy if-then rule is repre-

sented by a fuzzy set with a monotonical membership function [29]. For each rule, the

output is defined as a crisp value and overall output is the weighted average of each

rule’s output [14]. Since each rule infers a crisp output and outputs ofthe rules are

aggregated using the method of weighted average, Tsukamoto fuzzy inference system

avoids the time-consuming process of defuzzification [15].

Last phase of a fuzzy inference system is defuzzification. By doing defuzzification, the fuzzy

results of the outputs are transformed into crisp values [23]. The most commonly used de-

fuzzification technique is centroid of area. Equation of the centroid of area technique is shown

in Equation 2.6 [15]. In Equation 2.6,µC′ is the aggregated output membership function.

zCOA =

∫

z
µC′(z)zdz
∫

z
µC′(z)dz

(2.6)
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2.2 Related Work

In this section, we mention about the related work done for the classification process and

fuzzy logic approaches in WSN.

2.2.1 Classification Process in WSN

Many studies have been done about target classification in WSN. Even if the main focus is on

a specific part of the classification process, almost every study includeswhole classification

cycle for performance evaluation.

Duarte et al. provide a baseline study in vehicle classification in distributed sensor networks

(DSN) [10]. In this paper, whole classification process for sensor networks is conducted using

real data set. Data is collected in a wireless distributed sensor networks (WDSN) experiment

at Twenty-nine Palms, CA in November 2001. Seventy-five sensor nodesare used to classify

four target vehicle classes: Assault Amphibian Vehicle (AAV), Main Battle Tank (M1), High

Mobility Multipurpose Wheeled Vehicle (HMMWV) and Dragon Wagon (DW). Sensor nodes

are capable of recording acoustic, seismic and infrared signal. In this thesis, we also use a

subset of this dataset in order to evaluate our fuzzy decision fusion methods. Features are

extracted using FFT. After feature extraction, local classification is doneusing kNN, ML and

SVM classifiers. The performance of these classifiers is compared for seismic and acoustic

modalities. Fusion algorithms such as majority voting, nearest neighbor, MAP Bayesian and

dmax algorithms are applied and compared using classification results of the sensors. Since

Duarte et al. provide a real dataset to research community; many classification studies use

this dataset for evaluating target or vehicle classification algorithms.

Another classification process for sensor networks is studied by Wang et al. [32]. In this study,

classification process starts with feature extraction as usual. Features are formed by Wavelet

analysis coefficients and PSD values. As a classifier, kNN classifier is chosen. Afterwards,

local classification time based temporal fusion is made. Up to this point, the process is done

for both acoustic and seismic signal feature vectors. Multi-modality fusion is implemented

to fuse results from acoustic and seismic channels. A method called Behavior-Knowledge

Space (BKS) is used for multi-modality fusion. In this algorithm all the possible class label

combinations are formed, and then the combinations are assigned to a class label based on
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training sets. The majority voting is applied to assigned class labels. For example, consider

a problem with two class labelsw1 andw2 and two classifiersC1 andC2. The all possible

class label combinations arew1w1, w1w2, w2w1 andw2w2 meaning first class label is from

C1 and second class label is fromC2. These four combinations are assigned to a class label

w1 or w2 according to their occurrence in training sets. Supposew1w1 has occurred 15 times

in training sets, 10 times with true class labelw1 and 5 times with class labelw2. Thenw1

is assigned to this combination. When all four combinations find their corresponding class

labels, most found class label is the result of multi-modality fusion [24]. Whentemporal

fusion and multi-modality fusion is completed, Multi-Resolution Integration (MRI) algorithm

is used for multi-sensor fusion. The basic idea is to form an overlap function on outputs of

the sensors and resolve this function at various successively finer scales of resolution. Wang

et al. also presented the architecture in this study called Mobile-agent-based DSN (MADSN).

In MASDN, a mobile-agent-based collaborative sensor fusion is used. Overlap functions

are calculated as in MRI, and then a mobile-agent carries these functions from one sensor

node to a second sensor node. The overlap functions of two sensor nodes are combined

and the result is carried to another sensor node. If the classification accuracy is achieved

at the final sensor node, the process is terminated. Otherwise, the mobile-agent continues

its migration. Classification accuracy using 1-sec segments, temporal-fusion, multi-modality

fusion and fusion by MASDN architecture is evaluated in the end of the study.

Study of Sayeed et al. is about detection, classification and tracking in DSN[17]. In clas-

sification part, some information is given about the spectral features usedfor classification.

Acoustic and seismic PSD of tracked and wheeled vehicles are shown in detail. The three

classifiers, kNN, ML and SVM are used for classification. To compare these classifiers, avail-

able feature vector data is divided into three parts. When first part is tested, the other parts are

used for training. Same procedure holds for second and third parts. This technique is called

3-way cross validation. The kNN with k= 1, ML and SVM classifiers are compared using

low bandwidth seismic data and wide band acoustic data.

Classification fusion in WSN has also been studied by Chun-Ting et al. [6].In this study,

acoustic signals are used for classification. Wavelet transforms of the acoustic signals are put

into process and also a comparison is made between FFT and wavelet transform. Classifier

choice is a weighted kNN classifier. Weighted kNN classifier works like kNN classifier how-

ever the training set feature vectors have some weights according to their Euclidean distance
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to input feature vector. Study includes comparison of weighted kNN classifier over kNN clas-

sifier. Dempster-Shafer theory is used for fusion. Sensor nodes getweights according to their

weighted kNN classification. Therefore, in this application, behavior of Dempster-Shafer

theory is similar to both data fusion and decision fusion. Outputs of weighted kNN classifier

construct the belief functions to the sensor nodes, and then the desired sensor node(s) are

selected based on the belief functions. The classification accuracies of majority voting fusion

algorithm and Dempster-Shafer theory are compared.

Tian et al. study target classification on ground sensor systems [28]. A new feature ex-

traction algorithm, Spectral Statistics and Wavelet Coefficients Characterization (SSWCC) is

proposed for extracting more robust feature vectors. SSWCC has the statistical features com-

ing from PSD, spectral and wavelet analysis. PCA is used for reducingthe size of the feature

vectors. The loss of energy in PCA calculation and k effect on the kNN classification are ex-

amined. Moreover, the performance of the different classifiers and training/ test set selection

is evaluated.

2.2.2 Fuzzy Logic Approaches in WSN

Having the power of dealing with uncertainty, fuzzy logic is used widely in WSNapplications.

In this part, we mention some remarkable studies about fuzzy logic in WSN.

Cluster-head selection in WSN is a popular and recent topic studied using fuzzy logic. Study

of Gupta et al. is an example work of this area [13]. In this study, sensor nodes are separated

as clusters and a cluster-head is selected for each cluster. The cluster-heads are responsible for

the data aggregation within its cluster. The fuzzy variables include sensor node energy level,

sensor node concentration and sensor node centrality. Based on thesefuzzy variables and

fuzzy rules, sensor node cluster-head election chance is calculated. It is obvious that sensor

nodes having lower energies, lower concentrations and closer centralities possess less chance

of cluster-head election than the sensor nodes having higher energies,higher concentrations

and nearer centralities. At the last part of the study, the cluster-head election algorithms in

different scenarios are compared with fuzzy approach. Another study oncluster-head election

in WSN belongs to Kim et al. [16]. Similar to study of Gupta et al., in this study, sensor

node energy and local distance of the sensor node (the sum of distances between the current

sensor node and all the nodes within a distance r) are fuzzy variables. Cluster-head election
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chance is calculated depending on these fuzzy variables and fuzzy rules. Proposed cluster-

head election algorithm using fuzzy logic is compared with previous cluster-head election

algorithms on network lifetime, standard deviation of the energy remaining whenthe first

node is dead, cluster formation and number of clusters/alive nodes for every round.

Fuzzy fusion methods are studied by Samarasooriya et al. [25] and Su etal. [27]. In the study

of Samarasooriya et al., local decisions, that are generated by sensornodes, are considered

with having various degree of accuracy. Each sensor node has its local decision result and

an error probability. These error probabilities are modeled using fuzzy logic. Therefore,

multi-sensor fusion is done among sensor nodes having fuzzy error probabilities. The global

decision is made and then fuzzy result is defuzzified. Su et al. use fuzzydata fusion in

cluster-based wireless sensor network. The goal is to make an efficient fusion algorithm to

minimize the energy spent for sensing, processing, communication and aggregation of more

useful and reliable data. The fuzzy variables are distance (distance between sensor node and

sink node) and quality of received SNR at the sink node. The expected fuzzy output is named

as state. State variable represents the magnitude of participation for an output. As most of

the fuzzy systems, state variable has values depending on the fuzzy variables and fuzzy rules.

The reported magnitude value based on the highest/weighted defuzzified value and the error

between the initial and the estimated magnitude value based on the highest/weighted average

defuzzified value are compared using Mamdani and Tsukamoto fuzzy inference methods.

Although many fuzzy fusion studies are done in research community, no fuzzy fusion method

is known to be applied to target classification problem in WSN. In our thesis, we developed

fuzzy decision fusion mechanism for single target classification in WSN. Our fuzzy decision

techniques improves classification accuracy for the target classification problem in WSN.

20



CHAPTER 3

DECISION FUSION FOR CLASSIFICATION PROCESS

In this chapter, we propose fuzzy decision fusion methods for single target classification in

WSN. In addition to our approach, we mention the details of three decision fusion algorithms

which we use for comparison with our algorithm at Chapter 4. These three algorithms are

majority voting, nearest neighbor anddmax decision fusion algorithms. For all algorithms

mentioned, we also present running examples. Before getting into the details of the decision

fusion algorithms, we first go over the feature reduction and training set formation approach

we use throughout the classification process.

3.1 Feature Reduction

The feature extraction techniques, which transform time-series signal (raw data) into fea-

ture vectors, may result in high-dimensional feature vectors. Most of these high-dimensional

feature vectors behave similarly and therefore become redundant. To save time for calcula-

tions on sensor nodes by reducing feature vector dimensions, an effective algorithm should be

implemented. We have implemented a feature reduction algorithm based on the differences

between feature vectors of different target classes. Training sets are used for different classes

to calculate the difference. We pick dominant feature vectors which may help us through

the target classification. The feature vectors which show similarity from class to class are

eliminated. The algorithm used for a given test run we use is shown in Algorithm 3.1.

Algorithm 3.1 tries to find thefCount feature vectors for a given test run,Rtest. Firstly, the

average values of feature vectors are calculated for each run using training set,T . The test

run is held out from the training set to perform more realistic classification. In other words,
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1: n← Number of classes

2: fCount ← Desired feature vector count

3: AVGMAT ←Matrix for average values of feature vectors for each class

4: S UMMAT ←Matrix for summation of feature vectors for each class

5: T ← Training set

6: Rtest ← Test run

7: for all run R in T do

8: if Rtest = R then

9: Continue for the next run in training set

10: end if

11: W ← Class in the runR

12: S UMMAT [W] ← Column-wise summation of all feature vectors forR

13: end for

14: AVGMAT ← Column-wise average of all rows inS UMMAT

15: FT DIFFS UM ← Sum of differences for each feature vector

16: for all Feature vector columnFC in AVGMAT columnsdo

17: for i = 1 to n do

18: sum← 0

19: for j = i + 1 to n do

20: sum← Difference betweenFC[i] andFC[ j]

21: end for

22: end for

23: FT DIFFS UM[FC] ← sum

24: end for

25: SortFT DIFFS UM according to sum values of feature vector columns

26: Pick fCount feature vector columns from sortedFT DIFFS UM

Algorithm 3.1: Feature Reduction Algorithm for a Given Test Run
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the reduction of feature vectors for a given test run is not affected by the feature vectors in

that test run.S UMMAT structure has the column-wise summation of the feature vectors for

each class andAVGMAT structure has the averaged values of feature vectors for each class.

After all classes have averaged feature vector values, dominant feature vectors are determined

using the data inAVGMAT . To determine dominant feature vectors, differences of the feature

vectors of classes are calculated. Sum of differences for each feature vector is kept in the

structureFT DIFFS UM. The fCount feature vectors having highest difference values are

selected as the basis feature vectors. For example, consider a case with two target classes.

The difference of feature vectors for these two classes is calculated for each feature vector,

and fCount dominant feature vectors are selected. When the target class count is three, then

three difference calculations are done (These calculations are between first class and second

class, between first class and third class, and lastly between second class and third class).

These three difference values are later summed to get a single difference value. ThenfCount

feature vectors are chosen. Obviously, this algorithm works efficiently when the target class

count is small. As the order of the algorithm is polynomial,n(n− 1)/2 difference calculations

are required forn target classes.

In Figure 3.1, averaged acoustic feature vectors of AAV and DW vehicles are shown. Feature

vectors for AAV and DW vehicles are provided by DARPA SensIT project [10]. Horizontal

axis represents the 50 feature vectors and vertical axis represents value of these feature vec-

tors. The acoustic feature vectors in this figure are averaged for eachclass to test an AAV

run.

The differences for averaged feature values for two vehicles mentioned aboveare shown in

Figure 3.2. The absolute values of the difference value between two classes are calculated

for each feature vector separately. Horizontal axis again representsthe 50 feature vectors and

vertical axis represents difference value.

In Figure 3.2, 5 feature vectors having highest difference values are 5, 11, 4, 7, 10 respectively.

If desired feature vector count is 5, then these feature vectors are used for target classification

process.

23



0 5 10 15 20 25 30 35 40 45 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Feature Vectors

F
ea

tu
re

 V
ec

to
r 

V
al

ue

 

 
aav
dw

Figure 3.1: Averaged feature vectors for AAV and DW Vehicles

3.2 Training Set Formation

Training sets are mainly used by classifiers to classify a target. Classifiers take an input

feature vector and they come to a conclusion by evaluating the relationship between input

feature vector and the feature vectors in the training sets. Proper formation of the training

sets yields better classification results. In this thesis, node-based training sets are used. For

example, if the aim is to try forming a training set for a test run in the local classification

process of Node 1, only the Node 1 feature vectors from all sample runsexcept test run are

collected. The algorithm is shown in Algorithm 3.2.

In Algorithm 3.2, Nodes structure has the sensor nodes data andNodesFT structure has

feature vectors for each sensor node. First of all, the input test run,Rtest, is excluded from

the runs which form the training set similar to the algorithm for feature reduction. Training

set is kept in the structureT . The feature vectors in the remaining runs are candidates for the

training set. For each run, feature vectors belonging to a specific node iscombined.NodesFT

structure used in this algorithm holds< key >< value > pairs. Sensor nodes are the keys and

feature vectors are the values. For example, all the feature vectors forNode 1 can be reached

atNodesFT[1], for node 41 atNodesFT[41] and so on. Therefore, every sensor node becomes

the owner of its training set for a given test run.
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Figure 3.2: Difference values of feature vectors for AAV and DW Vehicles

Node-based training sets approach reduces the training set size considerably. Small training

sets mean less computation on the sensor nodes in local classification process. By this way,

execution becomes faster and sensor node consumes less energy.

3.3 Majority Voting Decision Fusion

In majority voting decision fusion (MVDF), every voter has one vote to use for selecting

any candidate [31]. The candidate which collects highest number of votesis selected among

other candidates. We refer to third version of majority voting, plurality voting,with the term

majority voting. It is beneficial because its simplicity and low error count. The algorithm

fails only when majority of the votes belongs to more than one target class. Thealgorithm we

implement for MVDF is depicted in Algorithm 3.3.

In Algorithm 3.3,Nodes structure has the sensor nodes data andNodesLC structure has the

local classification result for each sensor node.The algorithm begins withgoing over all the

sensor nodes in the system. The local classification result for each sensor node is obtained.

Counts of the class labels are stored in the structureClassCount. After a pass through sensor

nodes,ClassCount is filled with the counts of the class labels. Then, theresultClass, the

class label with highest number of counts inClassCount, is picked. A condition may prevent
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1: T ← Training set

2: Rtest ← Test run

3: Nodes← Sensor nodes array

4: NodesFT ← Sensor nodes - feature vectors structure

5: for all Sensor NodeS in Nodes do

6: for all run R in T do

7: if Rtest = R then

8: Continue for the next run in training set

9: end if

10: NodesFT [S ] ← Feature Vectors of nodeS for run R

11: end for

12: end for

Algorithm 3.2: Node-Based Training Set Generation for a Given Test Run

1: Nodes← Sensor nodes array

2: NodesLC ← Sensor nodes - local classification result matrix

3: ClassCount ← Class count - Sensor nodes matrix

4: for all Sensor NodeS in Nodes do

5: class← Find local classification result inNodesLC for sensor nodeS

6: IncrementClassCount[class]

7: end for

8: resultClass← Class label with highest count inClassCount

9: if No other class with same count exist inClassCount then

10: SelectresultClass as the final decision

11: else

12: Reject the data sample

13: end if

Algorithm 3.3: Majority Voting Decision Fusion
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resultClass from being the final decision.resultClass should be the only highest counted

class label inClassCount. If this circumstance is provided,resultClass can be announced

as the final decision. Otherwise, if the circumstance fails, the sample data forthe MVDF is

rejected, no decision is found.

Although MVDF provides an easy implementation, it also contains some drawbacks. First

of all, since no weight is given to any sensor node, all the sensor nodesare considered to be

equal. However, some sensor nodes can be more reliable due to their locations or structures.

These sensor nodes should be treated differently from other regular sensor nodes. Moreover,

data can be rejected in MVDF. Having same number of highest counted classlabels prevents

system from producing a final decision.

3.3.1 Running example for MVDF

In this part, we introduce a running example to show how the MVDF algorithm works. In this

example, we simply use five sensor nodes namelys1, s2, s3, s4 ands5 and also three class

labelsc1, c2 andc3. Table 3.1 presents the classification results for MVDF algorithm through

five sample points.

Table 3.1: Sample classification flow for MVDF algorithm

S P s1 s2 s3 s4 s5 Result
1 c1 c1 c1 c2 c3 c1
2 c1 c1 c2 c2 c2 c2
3 c3 c3 c3 c3 c3 c3
4 c2 c1 c2 c2 c2 c2
5 c1 c1 c2 c2 c3 Re ject

In Table 3.1, rows show the sample points to be classified. First column is for sample points,

the next five columns are for local classification results of sensor nodesand final column

is for fused classification result. In each row, the classification fusion is done according to

MVDF algorithm. At sample points from 1 to 4, the class labels of the sensor nodes are

simply counted and the class label with highest count is selected as the final result. However,

at sample point 5, the class labelsc1 andc2 both appear twice. In this case, the sample point

is rejected and no result is generated.
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3.4 Nearest Neighbor Decision Fusion

Nearest neighbor decision fusion (NNDF) is another efficient decision fusion technique. Un-

like MVDF, NNDF does not treat every sensor node in the same way. The distance between

the target and a sensor node is calculated for each sensor node. Aftercalculation of the dis-

tances, the sensor node closest to the target is chosen [10]. The localclassification result

for this sensor node is the final decision result. The implementation details of theNNDF

algorithm is shown in Algorithm 3.4.

1: Nodes← Sensor nodes array

2: NodesLC ← Sensor nodes - local classification result matrix

3: Distances← Target distance - Sensor nodes matrix

4: for all Sensor NodeS in Nodes do

5: dist ← Calculate the distance between the target and sensor nodeS

6: Distances[S ] ← dist

7: end for

8: SortDistances

9: closestS ← Select the sensor node with minimum distance inDistances

10: SelectNodesLC[closestS ] as the final decision

Algorithm 3.4: Nearest Neighbor Decision Fusion

Like in Algorithm 3.3, in Algorithm 3.4Nodes structure has the sensor nodes data and

NodesLC structure has local classification result for each sensor node. Another structure

Distances exists for the data of the distance between target and sensor nodes. Firstly, the

distance of the all sensors to the target is calculated andDistances is filled with this data.

The distances are sorted and the sensor node having the minimum distance to the target is

found out.closestS represents this sensor node. The local classification result ofclosestS is

accepted as the final decision. If more than one sensor node has the sameminimum distance

to the target, the first sensor node evaluated is picked.

NNDF may produce good results using the advantage of being close to the target. However,

relying on a single node can be hazardous. If the nearest sensor node somehow produces

faulty results, then the system always obtains wrong data.
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3.4.1 Running example for NNDF

A running example of NNDF algorithm is demonstrated in this section. Like at Section 3.3.1,

we use five sensor nodes namelys1, s2, s3, s4 ands5 and also three class labelsc1, c2 and

c3. Table 3.2 shows the classification results for NNDF algorithm through fivesample points.

Table 3.2: Sample classification flow for NNDF algorithm

S P s1− Dist s2− Dist s3− Dist s4− Dist s5− Dist Result
1 c1− 100 c1− 180 c1− 250 c2− 300 c3− 300 c1
2 c1− 75 c1− 100 c2− 200 c2− 250 c2− 275 c1
3 c3− 100 c3− 80 c3− 100 c3− 150 c3− 200 c3
4 c2− 150 c1− 100 c2− 50 c2− 100 c2− 150 c2
5 c1− 200 c1− 150 c2− 100 c2− 80 c3− 80 c2

In Table 3.2, rows and columns demonstrate same values as in Table 3.1 with an exception. In

this table, the distance between the sensor node and target is given with the local classification

result separated by a hyphen for each sample point. In NNDF algorithm, thesensor nodes

with minimum distance to the target are preferred. Therefore, at sample points from 1 to 4,

c1, c1, c3 andc2 are selected respectively for having minimum distances. At sample point 5,

both s4 ands5 have same minimum distance to the target. In this case, the first sensor node

evaluated,s4, is selected in order not to reject the sample point. Thereforec2, being the local

classification result ofs4, is the final result for sample point 5.

3.5 dmax Decision Fusion

Like NNDF, dmax Decision Fusion (DMDF) is also related to the distances between the sensor

nodes and target. NNDF algorithm decides on the final decision result based on a single

sensor node. However, in DMDF several sensor nodes may act in the classification process.

A distance value,d, is chosen for DMDF algorithm. The sensor nodes ,of which distances to

the target exceeds the valued, have no effect on decision fusion. The remaining sensor nodes

are put into majority voting process to determine a final decision. Figure 3.3 illustrates the

DMDF sensor selection method.

In Figure 3.3, the rectangle withT represents the target. The sensor nodes within thed
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distance are labeled withX sign. The decision fusion for DMDF algorithm is done using only

theseX signed sensor nodes.

A more formal definition of the DMDF algorithm is given in Equation 3.1 [10].wi denotes the

weight of ith sensor node. The weight of a sensor node is either 0 or 1, based on itsdistance

to target.

wi =



























1 di ≤ dmax

0 otherwise
(3.1)

DMDF implementation details can be seen in Algorithm 3.5.Nodes denotes the sensor nodes

data andNodesLC denotes local classification result for each sensor node in Algorithm 3.5.

Like NNDF, the distance of the all sensors to the target is calculated andDistances is filled

with this data in the first place. TheDistances structure is then sorted according to distance

values. The sensor nodes having the distance value less than or equal tod are determined.

ClassCount structure is filled with number of class labels of these sensor nodes. All the

other sensor nodes are eliminated. However,TBSensor is determined for future use in case

it is needed.TBSensor is the sensor node which is closest to the target among the sensor
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1: Nodes← Sensor nodes array

2: NodesLC ← Sensor nodes - local classification result matrix

3: ClassCount ← Class label - count matrix

4: Distances← Target distance - Sensor nodes matrix

5: d ← d distance value

6: TBSensor← Tie break sensor node number

7: for all Sensor NodeS in Nodes do

8: dist ← Calculate the distance between the target and sensor nodeS

9: Distances[S ] ← dist

10: end for

11: SortDistances according to distance values

12: for all Sensor Node - Distance PairS D in sortedDistances do

13: if Distance ofS D less than or equal tod then

14: Node← Sensor node ofS D

15: Class← Classification result fromNodesLC for sensorNode

16: IncrementClassCount[Class]

17: else

18: TBSensor← Sensor node ofS D

19: Break for loop

20: end if

21: end for

22: if ClassCount has 0 value for all classes or noTBSensor is found whenClassCount has

more than one class having same highest countthen

23: closestS ← Sensor node having the closest distance

24: Find the classification result fromNodesLC for sensorclosestS

25: else ifClassCount has more than one class having same highest countthen

26: Find the classification result fromNodesLC for sensorTBSensor

27: else

28: Find the class with highest count inClassCount

29: end if

Algorithm 3.5:dmax Decision Fusion
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nodes having distance to the target greater thand. UsingClassCount, a class label reported

from maximum number of chosen sensor nodes is determined. This class label is the final

classification result. IfClassCount has 0 value for all classes or noTBSensor is found when

ClassCount has more than one class having same highest count, decision of the closestsensor

node is taken into account like in the NNDF algorithm. IfClassCount has more than one class

having same highest count, decision of theTBSensor is the final decision result.

DMDF algorithm has a place between MVDF and NNDF algorithms. If the sensor nodes are

too far to the target andd value is small, then DMDF starts to act like NNDF algorithm. On the

other hand, makingd value big and deploying sensor nodes close to target may convert DMDF

algorithm into MVDF algorithm. Therefore, selection of thed value plays an important role.

The deployment of the sensor nodes should be studied enough before deciding thed value.

3.5.1 Running example for DMDF

We present a running example of DMDF algorithm in this section. Like at Section 3.3.1, we

use five sensor nodes namelys1, s2, s3, s4 ands5 and also three class labelsc1, c2 andc3.

In Table 3.3, the classification results for NNDF algorithm through five samplepoints can be

seen.

Table 3.3: Sample classification flow for DMDF algorithm

S P s1− Dist s2− Dist s3− Dist s4− Dist s5− Dist Result
1 c1− 100 c1− 275 c1− 300 c2− 450 c3− 500 c1
2 c1− 75 c1− 100 c2− 200 c2− 300 c2− 450 c1
3 c3− 100 c3− 80 c2− 100 c1− 150 c2− 200 c3
4 c2− 150 c1− 100 c2− 50 c1− 100 c2− 300 c2
5 c1− 270 c1− 300 c2− 260 c2− 280 c3− 380 c2

In Table 3.3, rows and columns illustrate same values as in Table 3.2 with distances at sensor

node columns. In DMDF algorithm, several fusion rules are applied. We use 250 asd value

in this example. At sample point 1, all the sensor nodes are eliminated excepts1, because

their distances to the target are greater thand value. The local classification resultc1 of s1

is selected. If we look into sample point 2, we can see that sensor nodess1, s2 ands3 have

lower distances thand value. The label with highest count among these three sensor nodes is

c1. None of the sensor nodes are eliminated due tod threshold at sample point 3. However,
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there are two class labels with highest count, namelyc3 andc2. Since no tie break sensor

node exists, the sensor node with minimum distance,s2, is selected. The tie break sensor

nodes5 takes scene at sample point 4. Since more than one label has same highestcount,s5

decides the final result. Unlike at sample point 3, all the sensor nodes exceed the threshold

value at sample point 5. But the solution is same, the sensor node with minimum distance,s3,

is selected with the resultc2.

3.6 Fuzzy Decision Fusion

In this section, we present our fuzzy decision fusion (FDF) method for single target classi-

fication in WSN. In this approach, we use the power of fuzzy logic in the decision fusion

phase of the classification process. When all the sensor nodes in the WSNdecide their final

decision on the target, they transmit these results to a sink node. The sink node realizes the

fusion process. The result found after the fusion process is the finalresult.

We use two fuzzy input variables for our FDF algorithm. The first fuzzy input is the distance

between the sensor node and the target in WSN. While the target is moving inside a WSN, the

position of the target is recorded. Knowing the deployment positions of the sensor nodes, the

distance can be calculated. Based on the data of DARPA SensIT project [10], a trapezoidal

and triangular membership function is defined for fuzzy input variableDistance. The fuzzy

set formed by this membership function and corresponding linguistic states is shown in Figure

3.4.

The crispDistance input values are fuzzified using the membership functions in Figure 3.4.

The linguistic variables forDistance arenear, medium and f ar. For near and f ar linguistic

variables, trapezoidal membership function is used. However, we prefer triangular member-

ship function for the linguistic variablemedium.

The second fuzzy input variable is the energy of the acoustic signal received by the sensor

nodes. The energy information for sensor nodes while the target is passing through the WSN,

is again received from DARPA SensIT project [10]. LikeDistance, Energy is represented

by trapezoidal and triangular membership functions and corresponding linguistic variables.

Figure 3.5 shows the fuzzy set forEnergy.
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Figure 3.4: Fuzzy set forDistance variable

Three linguistic variables forEnergy are low, medium and high. Since the energy values

differ enormously fromlow linguistic variable tohigh linguistic variable, we do not prefer to

show all the membership functions on a same graph. Instead of that, a separated graph is used

for each membership function of the linguistic variables ofEnergy. Figure 3.5 (i) depicts

the membership function oflow linguistic variable whilemedium linguistic variable takes

place in Figure 3.5 (ii).low linguistic variable has a trapezoidal membership function while

medium linguistic variable has a triangular membership function. The last linguistic variable,

high, is shown in Figure 3.5 (iii). Likelow linguistic variable,high linguistic variable has a

trapezoidal membership function. Actuallyhigh energy values can pass the value 1. For the

clarity of the graph, we showhigh energy values up to 1. In our algorithms, the energy values

greater than 1 are still considered belonging tohigh linguistic variable with a degree 1.

The fuzzy variableChance represents the fuzzy output. SimilarChance output variable is

used in [16].Chance determines the election chance of the sensor nodes being used in deci-

sion fusion for target classification.Chance has nine linguistic variables and therefore nine

membership functions. Fuzzy set forChance is in Figure 3.6.

In Figure 3.6, nine linguistic variables are demonstrated. These areLF(LowFar), LM(LowMedium),

LN(LowNear), MF(MediumFar), MM(MediumMedium), MN(MediumNear), HF(HighFar),

HM(HighMedium) andHN(HighNear). Only LF andHN membership functions are trape-
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Figure 3.5: Fuzzy set forEnergy variable
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Figure 3.6: Fuzzy set forChance variable

zoidal. All the other linguistic variables have triangular membership functions.

These three fuzzy sets are basically formed based on the data provided by DARPA SensIT

project [10]. Many other fuzzy sets can be constructed by evaluating the data in the process.

As mentioned above, the fuzzified inputs are applied to the fuzzy rules. Forour fuzzy decision

algorithm, we have defined nine fuzzy rules. These nine fuzzy rules canbe seen in Table

3.4 similar to the fuzzy rules in [16]. These fuzzy rules make use of AND operator as the

conjunction of the antecedents. For example, Rule 1 states that “IfDistance is f ar AND

Energy is low thenChance is LF”. One may think that a sensor node closest to the target

should have the highest signal energy. Actually, this situation can be true at most of the

cases. However, in real world environment, even if the sensor node is close to target, it may

not get the highest signal energy due to some environmental factors andblocking. Random

deployment may force sensor nodes to settle in holes or instable areas. On the other hand,

some sensor nodes may have high signal energy values because of noise, wind and so on.

These sensor nodes are eliminated if they are not close to the target. Moreover, our approach

provides a clear distinction between sensor nodes having similar locations orsignal energies.

When one input variable is similar among the sensor nodes, the other input variable makes

the difference.

In our approach,Distance and Energy fuzzy input variables do not have same weights on
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Table 3.4: Fuzzy rules for FDF algorithm

Rule No Distance Energy Chance
1 f ar low LF
2 medium low LM
3 near low LN
4 f ar medium MF
5 medium medium MM
6 near medium MN
7 f ar high HF
8 medium high HM
9 near high HN

the fuzzy output variableChance. This situation can be observed by considering the rules in

Table 3.4. Depending on the data we used, we prefer to give more weight on Energy fuzzy

variable thanDistance fuzzy variable. Therefore, in this approach, sensor nodes having more

energy have more chance of being elected than the sensor nodes havingclose distances to the

target.

We use Mamdani fuzzy inference system in our approach. We choose Mamdani inference

system over Sugeno and Tsukamoto inference systems because it has some beneficial situa-

tions. The main reason we prefer Mamdani inference system is that it is intuitive and easy to

implement. Moreover, it has widespread acceptance. Mamdani inferencesystem is also well

suited for human input [20].

Suppose two crisp input values,Distance = 120 andEnergy = 0.01 are given. Firstly, the

intersection points for the variables should be determined on the fuzzy sets of Distance and

Energy. Figure 3.7 and Figure 3.8 depict the fuzzification of the crisp input valuesfor the

input variablesDistance andEnergy respectively.

In Figure 3.7,Distance fuzzy variable has the degrees of membership 0.3near, 0.2medium

and 0 f ar for input x = 120. The degrees of membership forEnergy variable are 0low,

0.67medium and 0high for input x= 0.01. Onlymedium membership function forEnergy

variable is depicted in Figure 3.8 becauselow andhigh membership values are 0.

After crisp input values are fuzzified, the rule evaluation phase starts. In our approach, we

have nine fuzzy if then rule listed in Table 3.4. In Table 3.5, nine rule evaluations forDistance
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Figure 3.7: Fuzzification of crispDistance input x= 120

andEnergy input variables are shown.

Table 3.5: Fuzzy rule evaluation forDistance andEnergy input variables

Rule No Distance Energy Chance
1 f ar = 0 low = 0 LF = 0
2 medium = 0.2 low = 0 LM = 0
3 near = 0.3 low = 0 LN = 0
4 f ar = 0 medium = 0.67 MF = 0
5 medium = 0.2 medium = 0.67 MM = 0.2
6 near = 0.3 medium = 0.67 MN = 0.3
7 f ar = 0 high = 0 HF = 0
8 medium = 0.2 high = 0 HM = 0
9 near = 0.3 high = 0 HN = 0

In Table 3.5, nine fuzzy rules are evaluated and correspondingChance values are calculated.

Since the operator in the antecedent part is AND for all the fuzzy rules, minimum operator is

used. InRule No 5, Distance has the value of 0.2 andEnergy has the value of 0.67. Applying

minimum operator, 0.2 is obtained forMM linguistic variable atChance.

After rules are evaluated, the aggregation of the rule outputs should be done. The resulting

output area is shown in Figure 3.9. The shaded areas belong to the linguisticvariablesMM

and MN for Chance fuzzy set. The other linguistic variables are not shaded in the figure

because they have the degree of membership value 0 as the output of rule evaluation.
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The centroid of the shaded area in Figure 3.9 is then calculated. This crisp centroid value is

the defuzzified chance value for the crisp inputs. In Equation 3.2, centroid of area is calculated

as integral over the shaded area forChance fuzzy set in Figure 3.9. The defuzzified chance

value for crisp inputsDistance = 120 andEnergy = 0.01 is approximately 56.07.

de f uzzi f ied chance value =

∫

z
µChance(z)zdz
∫

z
µChance(z)dz

≈ 56.07 (3.2)

Our fuzzy decision fusion algorithm can be seen in Algorithm 3.6. For this algorithm, the

sensor nodes have to complete their local classifications in theNodesLC structure. InNodes

structure, sensor nodes are kept. For all of the sensor nodes the distance between the sensor

node and target is calculated. Like distance, we calculate the signal energy value for all the

sensor nodes. The defuzzified chance value is then calculated based on the distance and signal

energy fuzzy input variables as well as fuzzy rules in Table 3.4. The calculated defuzzified

chance values for each sensor is kept inNodesCH. When the defuzzified chance value is

calculated for all sensor nodes, we try to find the class which has the highest total chance by

simply adding chance values from sensor nodes for each class separately. These values are

stored inWeightCount. The class having the highest total chance inWeightCount, is the final

result. However, if there is a situation where more than one class having the same highest total

chance, then the algorithm continues. In this case, we pick the sensor node, optSensorNode,

having highest defuzzified chance value. The class label of this sensor node is determined to
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be final classification result for the classification process. If the highest defuzzified chance

value is owned by more than one different sensor nodes, the first sensor node evaluated is

picked since no further separation can be made at this level.

3.6.1 Running example for FDF

In this section, a running example about FDF algorithm is told. Five sensor nodes namelys1,

s2, s3, s4 ands5 and also three class labelsc1, c2 andc3 are used as at Section 3.3.1. The

classification results for FDF algorithm through five sample points are shownin Table 3.6.

Table 3.6: Sample classification flow for FDF algorithm

S P s1−Chc s2−Chc s3−Chc s4−Chc s5−Chc Result
1 c1− 80 c1− 80 c1− 50 c2− 60 c3− 75 c1
2 c1− 75 c1− 60 c2− 70 c2− 90 c2− 90 c2
3 c3− 75 c3− 80 c2− 80 c1− 75 c2− 50 c3
4 c2− 90 c1− 80 c2− 50 c1− 75 c2− 60 c2
5 c1− 50 c1− 90 c2− 80 c2− 60 c3− 60 c1

Like in Table 3.2, rows and columns show same values in Table 3.6. However,distance values

coming with sensor nodes are replaced with defuzzified chance values. At sample points from

1 to 4, the defuzzified chance values are simply added by each class. Theclass label with
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1: Nodes← Sensor nodes array

2: NodesLC ← Sensor nodes - local classification result matrix

3: NodesCH ← Sensor nodes - chance matrix

4: WeightCount ← Class label - total chance matrix

5: for all Sensor NodeS in Nodes do

6: distance← Distance between the target and sensor nodeS

7: energy← Signal energy for sensor nodeS

8: chance← Defuzzified chance value fordistance andenergy

9: NodesCH[S ] ← chance

10: end for

11: for all Sensor Node - Chance PairS C in sortedNodesCH do

12: Node← Sensor node ofS C

13: Class← Classification result fromNodesLC for sensorNode

14: IncrementWeightCount[Class] with chance ofS C

15: end for

16: if WeightCount has more than one class having same highest weightthen

17: optSensorNode← Sensor node having the highest chance

18: Find the classification result fromNodesLC for sensoroptSensorNode

19: else

20: Find the class with highest weight inWeightCount

21: end if

Algorithm 3.6: Fuzzy Decision Fusion
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highest total defuzzified chance value is selected. However, at sample point 5,c1 andc2 have

same total defuzzified chance value 140. In this case, the sensor node with highest defuzzified

chance value,s2, is chosen with the final resultc1.

3.7 Fuzzy Decision Fusion with Threshold

This algorithm is highly similar to the FDF algorithm mentioned at Section 3.6. The fuzzy

input or output variables and fuzzy rules for the FDF algorithm can also be applied to the fuzzy

decision fusion with threshold (FDFWT) algorithm. The FDF algorithm uses allthe sensor

nodes in the environment to produce a classification result. All the sensor nodes contribute

the final result with their defuzzified chance values. However, in some situations, some sensor

nodes with low defuzzified chance values should be removed from the classification process.

These sensor nodes may mislead the whole classification process.

In FDFWT algorithm, we define a threshold chance value for sensor nodes. The sensor nodes

having defuzzified chance value lower than the threshold value are eliminated. Only the

sensor nodes having the defuzzified chance value above the thresholdare considered in fusion

operation. The magnitude of the chance values from remaining sensor nodes are considered.

The algorithm is shown in Algorithm 3.7.

In Algorithm 3.7, sensor nodes are kept inNodes and local classification result for each sensor

node is kept inNodesLC. FDFWT algorithm starts like FDF algorithm. When the defuzzified

chance values are calculated for all sensor nodes inNodesCH, reduction of the sensor node

begins using threshold value. The sensor nodes having lower defuzzified chance value than

theT value are eliminated.WeightCount representing the total defuzzified chance values for

each class is filled with the data from the remaining nodes. The class label with the highest

total defuzzified chance value inWeightCount is selected as the final classification result.

Unfortunately, some exceptional situations may occur in the algorithm. If no sensor node

is higher than or equal to threshold value, that isWeightCount has 0 value for all classes,

then we look intooptSensorNode. Same procedure is applied when noTBSensor is found

whenWeightCount has more than one class having same highest count.optSensorNode is the

node of which local classification result has the highest defuzzified chance value among all

sensor nodes. Since the local classification result foroptSensorNode is known beforehand, we
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1: Nodes← Sensor nodes array

2: NodesLC ← Sensor nodes - local classification result matrix

3: NodesCH ← Sensor nodes - chance matrix

4: WeightCount ← Class label - total chance matrix

5: T ← Threshold value

6: TBSensor← Tie break sensor node number

7: for all Sensor NodeS in Nodes do

8: distance← Distance between the target and sensor nodeS

9: energy← Signal energy for sensor nodeS

10: chance← Defuzzified chance value fordistance andenergy

11: NodesCH[S ] ← chance

12: end for

13: SortNodesCH according to chance values

14: for all Sensor Node - Chance PairS C in sortedNodesCH do

15: if Chance ofS C greater than or equal toT then

16: Node← Sensor node ofS C

17: Class← Classification result fromNodesLC for sensorNode

18: IncrementWeightCount[Class] with Chance ofS C

19: else

20: TBSensor← Sensor node ofS C

21: Break for loop

22: end if

23: end for

24: if WeightCount has 0 value for all classes or noTBSensor is found whenWeightCount

has more than one class having same highest countthen

25: optSensorNode← Sensor node having the highest chance

26: Find the classification result fromNodesLC for sensoroptSensorNode

27: else if WeightCount has more than one class having same highest countthen

28: Find the classification result fromNodesLC for sensorTBSensor

29: else

30: Find the class with highest count inWeightCount

31: end if

Algorithm 3.7: Fuzzy Decision Fusion with Threshold
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reach to the final classification result usingoptSensorNode. Moreover, if more than one class

has the same highest defuzzified chance values among remaining sensor nodes, the problem

still exists. In this case, the tie break sensor node,TBSensor, says the last word. The tie

break sensor node is the sensor node having the highest defuzzified chance value below the

threshold. No further action is done if there is more than one class having thesame highest

defuzzified chance value below the threshold in the last situation. When this problem occurs,

the first tie break sensor node evaluated is chosen.

3.7.1 Running example for FDFWT

For FDFWT algorithm, we present a running example in this part. We use five sensor nodes

namelys1, s2, s3, s4 ands5 and also three class labelsc1, c2 andc3 as at Section 3.3.1.

In Table 3.7, the classification results for FDFWT algorithm through five sample points are

demonstrated.

Table 3.7: Sample classification flow for FDFWT algorithm

S P s1−Chc s2−Chc s3−Chc s4−Chc s5−Chc Result
1 c1− 20 c1− 40 c1− 25 c2− 60 c3− 50 c2
2 c1− 75 c1− 60 c2− 90 c2− 30 c2− 45 c1
3 c3− 90 c3− 80 c2− 85 c1− 75 c2− 85 c3
4 c2− 60 c1− 90 c2− 85 c1− 55 c2− 30 c2
5 c1− 20 c1− 30 c2− 25 c2− 25 c3− 40 c3

In Table 3.7, rows and columns show same values in Table 3.2 with defuzzifiedchance value

attached to local classification results of the sensor nodes. The samples in this example shows

similarities with the DMDF running example. In this example, we use threshold valueT

as 50. At sample point 1, only sensor nodes4 exceeds the threshold value.c2 is the final

classification result. Sensor nodess1, s2 ands3 have defuzzified chance values greater than

threshold value at sample point 2. When the values are added according toclass labels,c1 is

selected.c1 has the total value 135 whilec2 has 90. None of the sensor nodes are eliminated

because of the threshold value at sample point 3. Since no tie break sensor node exists, the

sensor node with the highest defuzzified chance value,s1, says the last word. The equality

arised from the sum of the defuzzified chance values can be broken bytie break sensor node,

s5, at sample point 4. Contrary to sample point 3, no sensor node is able to exceed the

44



threshold value at sample point 5. The sensor node with highest defuzzified chance value is

selected again, which iss5 with resultc3.
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CHAPTER 4

EVALUATION

In this chapter, we will evaluate the performance of our fuzzy decision fusion algorithms with

three accepted decision fusion algorithms; majority voting decision fusion, nearest neigh-

bor decision fusion anddmax decision fusion algorithms. Before the analysis of the results,

the testing environment for evaluation is described. Three different scenarios are presented

according to sensor node deployments.

4.1 Testing Environment

In this work, we use the subset of the data provided by DARPA SensIT project [10] which

is called SITEX02. 75 sensor nodes are deployed on a desert area for the experiment. The

sensor nodes deployed along an east - west road, a south - north road and an intersection

area. The target vehicles follow east to west road, west to north road and north to east road.

The sensor nodes have acoustic (microphone), seismic (geophone) and infrared (polarized IR

sensor) modalities.

The data set provided is composed of runs. A run is the drive of a vehiclethrough the testing

field. We try to classify two kinds of military vehicles: AAV and DW. We choose only the

east - west road for testing path for simplicity. We pick 17 sensors which collect data from

the targets using this path. The runs through the east - west road are named with the name of

the vehicle and times of three. For example, AAV3 run represents the first run of the AAV

vehicle through the east - west road while AAV6 represents the second run of the AAV vehicle

through same path. We use three AAV runs named AAV3, AAV6, AAV9 and four DW runs

DW3, DW6, DW9 and DW12.
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In our tests, we use acoustic features. Advantages of the acoustic sensors can be counted as

having long sensing range and high-fidelity, no line-of-sight requirement, being co-operable

and having passive nature. Moreover, acoustic sensors provide reasonable signal processing

[3]. The data set includes the acoustic feature vectors for each sensor node and for each run.

The extracted features are based on the frequency spectrum of acoustic signal. FFT of the

signals is calculated for every 512 points yielding 512 FFT points. First 100point is chosen.

These points are averaged by pairs resulting 50-dimensional FFT-based feature vectors. We

reduce this number using our feature reduction technique. We use [7x1]feature vector after

reduction. Our classifier choice is kNN classifier due to its efficiency and simplicity. The k

value in the tests for kNN classifier is 7.

The target positions for every 0.75 seconds for each run and positionsof sensor nodes are

provided. However, the target positions are in Universal Transverse Mercator (UTM) coor-

dinates. The UTM distance between target and sensor nodes are calculated using Simpson’s

Rule provided in [22]. Moreover, DARPA data set has energy files foreach run. Energy val-

ues are calculated in 0.75 seconds intervals like target positions. These values are determined

by Constant False Alarm Rate (CFAR) detection algorithm. No information is provided about

the time of feature extraction on sensor nodes. In other words, for a specific moment, the

position of the target and the signal energy received by the sensor nodes are known. But, for

that specific moment, it cannot be derived which feature vector set is extracted from a sensor

node. Therefore, we assume all the used sensors record the entire motion of the target. When

the feature vector set has more time points from target time points, we simply map feature

vector time points to target time points.

Our metric for evaluating decision fusion algorithms is classification rate to measure classifi-

cation accuracy. To compute the classification rate, we use Equation 4.1 [6]. Rc denotes the

classification rate percentage whilencorrect denotes number of samples classified correctly and

ntotal denotes the number of total samples. To test the classification rate for a run,we use the

data of all six other runs as training set. We use our node-based training set formation when

obtaining data from training sets.

Rc =
ncorrect.100

ntotal
(4.1)

Average of the classification rate results for seven runs determine the final percentage rate
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for a decision fusion algorithm. Our comparison is based on this averaged classification rate

value.

We compare fuzzy decision fusion algorithms with MVDF, NNDF and DMDF. InDMDF, we

use the value 250 as the threshold distance valued.

Three different sensor node deployment scenarios are presented in the followingsections.

In the first scenario, sensor nodes are scattered through the target path while in the second

scenario, sensor nodes are gathered. Last scenario contains all thesensors picked for east -

west road.

4.2 Scenario 1: Scattered Sensor Node Deployment

In this scenario, we test decision fusion algorithms for scattered sensor node deployment. In

Figure 4.1, a sample path for the AAV vehicle and positions of the sensors are illustrated. 9

sensor nodes are used for this scenario.
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Figure 4.1: Scattered sensor nodes layout and sample AAV target path

First of all we try to find best threshold value for FDFWT algorithm. The classification rate

values of seven runs for threshold value from 20 to 70 are calculated. Table 4.1 lists the

produced results. Bold written classification rates show the maximum rate for aspecific run.
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Table 4.1: Classification rate of FDFWT using different threshold(T) values for Scenario 1

Run Name T = 20 T = 30 T = 40 T = 50 T = 60 T = 70
AAV3(%) 13.44 21.31 22.62 24.59 27.21 33.44
AAV6(%) 80.50 73.58 74.21 72.33 74.84 74.21
AAV9(%) 50.63 59.49 58.23 59.49 60.76 62.03
DW3(%) 90.91 78.89 75.37 74.19 74.19 73.61
DW6(%) 98.86 94.25 93.10 90.80 89.08 88.51
DW9(%) 50.63 48.10 46.84 46.84 48.10 55.70
DW12(%) 73.10 66.20 64.14 64.83 63.44 60.00
AVG(%) 65.44 63.12 62.07 61.87 62.52 63.93

As seen in Table 4.1, FDFWT algorithm reaches the maximum classification rate when the

threshold value is 20. We compare the FDFWT algorithm with other decision fusion algo-

rithms with this threshold value.

After we find the best threshold value for FDFWT algorithm, we can comparefive decision

fusion algorithms for scattered sensor deployment. Table 4.2 shows the classification rates

of MVDF, NNDF, DMDF, FDF and FDFWT algorithms. Highest rates for a run are again

written in bold font.

Table 4.2: Classification rate of decision fusion algorithms for Scenario 1

Run Name MVDF NNDF DMDF(d = 250) FDF FDFWT (T = 20)
AAV3(%) 2.29 13.11 4.26 8.85 13.44
AAV6(%) 79.25 52.83 76.73 79.24 80.50
AAV9(%) 29.11 20.25 29.11 49.36 50.63
DW3(%) 99.12 78.01 97.36 92.67 90.91
DW6(%) 100.00 96.55 100.00 100.00 98.86
DW9(%) 32.91 36.71 40.51 46.84 50.63
DW12(%) 86.90 60.00 91.72 76.55 73.10
AVG(%) 61.37 51.07 62.81 64.79 65.44

According to Table 4.2, FDFWT has the best classification rate among decision fusion al-

gorithms for scattered sensor node deployment. FDF algorithm comes second after FDFWT

algorithm. NNDF algorithm takes the last place.
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4.3 Scenario 2: Gathered Sensor Node Deployment

Scenario 2 has 9 sensor nodes as in Scenario 1. However, sensor nodes are gathered in this

time. Sensor nodes layout and a sample AAV vehicle target path are given inFigure 4.2 for

gathered sensor node deployment.
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Figure 4.2: Gathered sensor nodes layout and sample AAV target path

We find the threshold value for FDFWT algorithm which provides the best classification rate

for gathered sensor deployment. In Table 4.3, FFTWT algorithm classification rates are listed.

Threshold value is ranging from 20 to 70.

Table 4.3: Classification rate of FDFWT using different threshold(T) values for Scenario 2

Run Name T = 20 T = 30 T = 40 T = 50 T = 60 T = 70
AAV3(%) 14.60 22.87 24.52 28.37 28.66 33.61
AAV6(%) 85.53 78.95 78.95 80.26 82.24 82.90
AAV9(%) 98.94 98.94 98.94 98.94 98.94 98.94
DW3(%) 94.72 88.27 86.22 86.51 83.87 82.99
DW6(%) 100.00 99.43 98.85 98.85 98.85 98.85
DW9(%) 8.51 27.66 31.91 35.11 35.11 42.55
DW12(%) 42.31 43.85 46.15 46.15 46.15 46.92
AVG(%) 63.52 65.71 66.51 67.74 67.69 69.54

The best classification rate is reached with the threshold value 70 for FDFWT in gathered

sensor deployment. This threshold value is used for comparing FDFWT with other decision
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fusion algorithms.

For Scenario 2, Table 4.4 illustrates comparison of the five decision fusion algorithm. Thresh-

old is 70 for FDFWT and distance is 250 for DMDF algorithms. Bold values arethe highest

values provided by an algorithm within a run.

Table 4.4: Classification rate of decision fusion algorithms for Scenario 2

Run Name MVDF NNDF DMDF(d = 250) FDF FDFWT (T = 70)
AAV3(%) 2.48 31.40 5.51 9.92 33.61
AAV6(%) 90.13 67.76 81.58 90.79 82.90
AAV9(%) 96.80 82.98 94.68 98.94 98.94
DW3(%) 100.00 98.53 99.71 99.12 82.99
DW6(%) 100.00 100.00 100.00 100.00 98.85
DW9(%) 2.13 6.38 2.13 5.32 42.55
DW12(%) 36.92 23.85 36.92 41.54 46.92
AVG(%) 61.21 58.70 60.08 63.66 69.54

Like in Scenario 1, in Scenario 2 FDFWT algorithm has the best classificationrate. FDF has

the second place. However, the classification rate difference is bigger this time between fuzzy

approaches and the others. NNDF algorithm has the worst percentage.

4.4 Scenario 3: All Sensor Node Deployment

Last scenario includes all 17 sensors for testing. Layout of this 17 sensors with sample AAV

target path is depicted in Figure 4.3.

As in the previous two scenarios, we start with choosing the best thresholdvalue for FDFWT

algorithm. Table 4.5 lists the classification rates for FDFWT using all sensor nodes. Threshold

values are again in the interval of 20 and 70.

Based on the results in Table 4.5, threshold value chosen is 30. FDFWT is compared with

other decision fusion algorithms with this value as it happens in the previous scenarios.

Table 4.6 shows the classification rates for five decision fusion algorithms in all sensor node

deployment. Threshold for FDFWT is 30 and distance is again 250 for DMDF.
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Figure 4.3: All sensor nodes layout and sample AAV target path

Table 4.5: Classification rate of FDFWT using different threshold(T) values for Scenario 3

Run Name T = 20 T = 30 T = 40 T = 50 T = 60 T = 70
AAV3(%) 6.89 16.53 17.63 22.59 26.45 30.03
AAV6(%) 84.28 78.62 78.62 78.62 77.99 75.47
AAV9(%) 89.36 92.55 90.43 82.98 76.60 76.60
DW3(%) 98.24 90.32 86.22 84.75 82.11 79.77
DW6(%) 98.28 91.38 88.51 86.78 85.63 82.19
DW9(%) 7.45 24.47 26.60 26.60 29.79 37.23
DW12(%) 79.31 75.17 72.41 69.66 68.97 66.21
AVG(%) 66.26 67,01 65.77 64.57 63.93 63.93

In this case FDFWT algorithm has the best classification rate. FDF is slightly worse than

FDFWT. MVDF takes the third place in scenario with deployment of all the sensors. NNDF

is again in the last place.

4.5 Overall Evaluation

Based on the data presented in the previous three scenarios, Figure 4.4 can be shown.

In Figure 4.4, averaged overall evaluations are depicted. According toresults, FDFWT has

the best classification results among all the decision fusion algorithms. FDF is second and

MVDF is the third. Like in all the scenarios, NNDF is in the last place.
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Table 4.6: Classification rate of decision fusion algorithms for Scenario 3

Run Name MVDF NNDF DMDF(d = 250) FDF FDFWT (T = 30)
AAV3(%) 2.20 17.91 2.48 4.96 16.53
AAV6(%) 92.45 52.83 85.83 89.94 78.62
AAV9(%) 74.47 22.34 63.83 90.43 92.55
DW3(%) 100.00 87.39 99.41 100.00 90.32
DW6(%) 100.00 93.10 96.55 100.00 91.38
DW9(%) 4.26 27.66 4.26 3.19 24.47
DW12(%) 83.45 66.90 87.59 80.00 75.17
AVG(%) 65.26 52.59 62.81 66.93 67.01
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Figure 4.4: Overall evaluation of decision fusion algorithms

The fuzzy approaches perform the best approach when the sensornodes are gathered. When

the distance factor is almost same for all sensor nodes in this scenario, the distance based

decision fusion algorithms experience more failure. Since sensors are close to each other,

they all may have a wrong classification result together. In scattered deployment, sensor

nodes can have different classification results and a wrong result can be eliminated due to

sensor nodes being in very different locations.

According to [6], AAV vehicle moves at low speed in the run AAV3 and DW vehicle has

a relatively high speed in the run DW9. This explains why the classification rates are seri-

ously wrong in these runs. However, fuzzy approaches performed much better than the other

decision fusion algorithms for this runs. Signal energy variable makes this difference. The

distance based decision fusion algorithms are good at vehicles at normal speed. Since the

53



fuzzy approaches both include the distance and signal energy variables, they perform better

overall.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, two fuzzy decision fusion methods for target classification in WSN have been

developed. We applied fuzzy logic in order to improve the accuracy of the classification

process. Additionally, feature reduction and training set formation techniques are provided as

a part of this work.

Our feature reduction technique is based on the difference values of the class labels. The

dominant feature vectors having the highest difference values among classes are determined

and these feature vectors are used for target classification. By reducing features, the time spent

for local classification on a sensor node is diminished which in turn considerably increases

the efficiency of the algorithm.

Our training set formation approach again focuses on reducing the time spent on intra-node

computations for local classifications. We propose node-based training set formation. To

classify an input feature vector for a specific node, only the training setfeature vectors for

that specific sensor node are used. The other feature vectors are ignored for this sensor node

as they do not have observable contribution.

The fuzzy decision fusion algorithm is our first approach on decision fusion. We use fuzzy

input variablesEnergy andDistance. The only fuzzy output variable isChance. Based on

the distance and energy values of the sensor nodes and fuzzy rules, adefuzzified chance value

is calculated for each sensor node. Having higher energy and nearerdistance leads a sensor

node to have a higher defuzzified chance value. Defuzzified chance values are added class-
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wise and the class having the highest total defuzzified chance value is selected as the final

result.

Fuzzy decision fusion with threshold algorithm has the same preliminaries with fuzzy de-

cision fusion. The defuzzified chance value is also calculated for each sensor node in this

algorithm. However, the sensor nodes having lower defuzzified chancevalue than the thresh-

old value are eliminated. After elimination of the sensor nodes, algorithm behaves like fuzzy

decision fusion algorithm.

We evaluate our two decision fusion algorithms with three popular decision fusion algorithms:

Majority voting, nearest neighbor anddmax algorithms. We use real data set for classification

process. Both of the fuzzy based algorithms proposed in this thesis perform better classifica-

tion accuracy compared to these three known decision fusion algorithms in these evaluations.

To conclude, fuzzy decision algorithms have a high potential to improve classification accu-

racy for target classification in WSN.

5.2 Future Work

In this thesis, we evaluate decision fusion algorithms according to their classification accu-

racies. Some further research may be done for evaluating other parameters. For instance,

the sensor energy level can be considered in classification process. The decision algorithm

consuming least energy can be found. The fusion algorithms may be changed or improved

to consume less energy. In the same manner, the time spent to execute decisionfusion algo-

rithms may be compared. The compatibility of the decision fusion algorithms may change

based on these evaluation criteria. The ultimate decision fusion algorithm whichyields best

results for each parameter can be designed.

Feature extraction can also be studied alone. The affect of the feature extraction technique on

classification accuracy may be examined. The observation is made between the classification

accuracy based on random features and the classification accuracy based on robust and healthy

features.

Different modalities may have different results. The optimum modality for specific target clas-

sification problem can be found. Data sensed for all the available modalities can be compared
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for the best classification result.

Classifiers also have some effect on classification accuracy. Several classifiers can be tested

for fusion algorithms. The behavior of the fusion algorithms with local classification results

formed from different classifiers may be observed. The best classifier- fusion algorithm pair

may be discovered.

Since the classification algorithm involves many parameters during process,the optimization

of these parameters seems to be endless. A positive change in a parameter can have negative

result on other parameter. Nevertheless, a stable model with optimum parameters (robust

feature vectors, suitable modalities, the most appropriate classifier and decent training set,

best fusion algorithms) can be developed for further study.
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