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ABSTRACT

FUZZY DECISION FUSION FOR SINGLE TARGET CLASSIFICATION IN VRELESS
SENSOR NETWORKS

GOk, Sercan
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Adnan Yazicl

December 2009, 60 pages

Nowadays, low-cost and tiny sensors are started to be commonly uset diegeloping
technology. Wireless sensor networks become the solution for a variefyptitations such
as military applications. For military applications, classification of a target in a beltle
plays an important role. Target classification can be ddifeegvely by using wireless sensor
networks. A wireless sensor node has the ability to sense the raw sigadhdaattlefield,
extract the feature vectors from sensed signal and produce a lasalfication result using
a classifier. Although only one sensor is enough to produce a classificasalt, decision
fusion of the local classification results for the sensor nodes improvesifatation accuracy
and loads lower computational burden on the sensor nodes. Decision pesformance can

also be improved by picking optimum sensor nodes for target classification.

In this thesis, we propose fuzzy decision fusion methods for single takgssification in
wireless sensor networks. Our proposed fusion algorithms use fugyftr selecting the
appropriate sensor nodes to be used for classification. Our solutiovid@better classifica-
tion accuracy over some popular decision fusion algorithms. In additiorstorfalgorithms,

we present some techniques for feature vector size reduction orr s@uss, and training set
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formation for classifiers.

Keywords: Wireless Sensor Networks, Classification, Fusion, FuazycL



Oz

KABLOSUZ ALGILAYICI A GLARDA TEK HEDEF SINIFLANDIRMASI iCiN
BULANIK KARAR B IRLESTIRMESI

GOk, Sercan
Y uksek Lisans, Bilgisayar Mhendislgi

Tez Yoneticisi : Prof. Dr. Adnan Yazici

Aralik 2009, 60 sayfa

Gunumizde gelisen teknoloji ile itsik maliyetli ve Kiclk algilayicilar yaygin olarak kul-
lanilmaya baslandi. Kablosuz algilayi@lar askeri uygulamalar gibi bircok uygulamaya
¢ozim oldu. Savas alaninda bir hedefin siniflandiriimasi, askeri uygulamial@miemli bir

rol oynamaktadir. Kablosuz algilayid@lari kullanarak etkili bir bicimde hedef siniflandirmasi
yapilabilir. Kablosuz bir algilayici, savas alanindaki ham sinyal verisiniecama, algilanan
sinyaldendznitelik vekbrleri cikarma, ve siniflandirici kullanarak yerel siniflandirma sonucu
Uretebilme yeteneklerine sahiptir. Sadece bir algilayicinin siniflandirma saretebilmek

icin yeterli olmasina r@men, algilayicilarin yerel siniflandirma sonuclarinin karar birlestirmesi,
siniflandirma d@rulugunu gelistirir ve algilayicilaiizerine daha az hesaplaniafieti yikler.

Karar birlestirme performansi da hedef siniflandirmasi icin en ideal algikr secerek

gelistirilebilir.

Bu tez calismasinda, kablosuz algilayiglaada tek hedef siniflandirmasi icin bulanik karar
birlestirme yntemleridnerilmektedir. Onerilen birlestirme algoritmalari siniflandirma icin
kullanilacak uygun algilayicilari se¢cmek i¢in bulanik mgnkullanmaktadir. @zimimiz,

bazi pojiiler karar birlestirme algoritmalarindan daha iyi bir siniflandirmgrdiagu sunmak-
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tadir. Birlestirme algoritmalarina ek olarak, algilayiciladdaitelik vekbri boyut azaltma ve

siniflandiricilar igirdgrenim Kimesi olusturma icin bazi teknikler sunulmaktadir.

Anahtar Kelimeler: Kablosuz Algilayici &ar, Siniflandirma, Birlestirme, Bulanik Mantik
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CHAPTER 1

INTRODUCTION

Due to recent improvements in hardware technology, the extensive wgieetdss sensors
has expanded into many application areas. Being small, low-cost and leergizvices,
wireless sensors are considered to beféinient option to deploy on real time environments.
Sensor nodes can communicate with each other through wireless charstelsaalata. Data
is gathered on a sink node (base station), and end-users examine theldsgtquently. Such
co-operation and co-ordination of sensor nodes construct a kindtaork, which is called
wireless sensor network (WSN). In WSN applications, sensor nodassaally not deployed

to pre-determined locations. Instead of that, random deployment ofrsaagweferred.

Each sensor in WSN has to deal with its local computing process, sigregsiog and wire-
less communication; however, they have some challenges to face. Someethatienges

are listed [4] below:

e Sensor nodes are deployed in an ad hoc manner. That is, sensar aredspread
out to the environment randomly, with no foreknown locations. Tough @ggdgcal

conditions can complicate the survival of the sensor nodes.

e In most WSN, sensor nodes are once deployed and then they sunvireioown. Hu-

man interaction is at minimum level. It is almost impossible to repair a sensor node

once it is damaged in the event of deployment or as a result of unexpastednmen-

tal conditions.

e Sensor nodes have limited energy and limited computing pow@ciéht algorithms

and communication methods may minimize the complexity of computing and energy

consumption.



e Sensor nodes have to be aware of the change in the environment. Ngw sedes
added to the WSN, failing sensor nodes and other environmental chaargetect the
traffic in WSN.

Besides these challenges, wireless sensor networks have somememisréo work more
stable and robust. Considering these requirements in the design of netvairles likelihood
of the developing successful operations and applications. Main reeemts of the wireless

sensor networks can be listed as [30]:

e To make a full advantage of wireless sensor networks, sensor noalgsl e deployed
in large numbers. These large numbered sensor nodes should bdledrdtiiently

by clustering.

e Since sensor nodes have limited energy, minimizing the energy should be the majo

issue.
e Sensor nodes have small memoriefident use of memory is required.

e Each sensor produces data for its sensor network. Data aggregstiioums be done

among individual sensor nodes in a cluster and among clusters in a network

e Random deployment of the nodes makes self-organization ability of the ssreémsor
nodes a requirement. Network should reconfigure itself to performepiopnd to

adapt to the changing conditions.

e Efficient signal processing inside of a single sensor node as well as dhtkeaision

fusion among all sensor nodes should be designed carefully for betferpance.

e Wireless sensor nodes should have the ability to execute and returnajpegagions on

the data they sense.

Wireless sensor nodes have the ability to monitor several ambient conditidhs These
ambient conditions can be counted as; humidity, temperature, vehicular muydigigning
condition, pressure, soil makeup, noise levels, and so on. Evieyatit ambient condition
has diferent characteristics and it is handled by fiedtent kind of modality on each sensor
node. The examples of modalities are seismic, low sampling rate magnetic, thesual, v

infrared, acoustic, and radar modality [18]. While some sensor nodedesigned to sense
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using only one modality, some sensor nodes can use several modalitiessorgs Every sin-
gle modality can be related toftérent application areas of WSN. However, some applications

may require multi-modality sensor nodes to perform better.

Wireless sensors are extensively used in many various applications tMitzst common

application areas can be categorized as follows [2]:

e Wireless sensor networks can be used in military applications. Using the rapid d
ployed, self-organized and fault-tolerant properties of sensorsduktlefields are
appropriate places for sensor nodes. Monitoring friendly forcesipetent and am-
munition, reconnaissance of opposing forces and terrain, targetiddyadtie damage

assessment are some applications of wireless sensor networks for military.

e Environmental applications are also using wireless sensor networkenViirenmental
application examples can be counted as; tracking the movement of small artirts,
or insects, monitoring the conditions about agriculture, detecting foresafiror water

pollution, flood and soil erosion.

e Some useful wireless sensor network applications have been employedlin &rea.
Patients who need to be monitored constantly can take the advantage ofrezoess
Tele-monitoring of human physiological data, tracking and monitoring doetwigpa-
tients inside a hospital, drug administration in hospitals are some common health ap-

plications of wireless sensor networks.

e Many home applications make use of wireless sensor networks. Some ®rileckeo
vices such as micro-wave ovens or refrigerators can interact withataehto perform
more economically, morefigciently and more safely. Moreover, these devices can be

controlled remotely by wireless sensors.

e Other than above, wireless sensor networks application may include:cEmantal
control in dfice buildings, interactive museums, detecting and monitoring car thefts,

managing inventory control and vehicle tracking and detection.

The scenarios, in which wireless sensor networks are applicableoandess. More useful

and practical applications can be developed in near future.
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In military applications, monitoring battlefield (sensor field) is an important qund2etec-

tion of a target, classification of the target and tracking of the target aresgential steps
and extensive researches have been made on these three opelti@msa target intrudes
a battlefield, sensor nodes detect the target. After ensuring that thetargetin the battle-
field, sensor nodes try to classify the target. Tracking of the target feltbe classification
process. By accomplishing these three steps, necessary informatigtrtaiget is retrieved

and defense mechanism becomes ready to act.

Target classification in battlefields is the main issue discussed in this thesigieitaruding
the battlefield should be classified accurately so that the related precacdiorse taken.
Target classification is a complicated process, in which many design iskegddae and play
important role on classification accuracy. Collaborative signal prowesdgorithms, feature
extractions, classifier design and choice, deployment and locations sétiser nodes, the
modality types of the sensor nodes, data and decision fusion are all ptrésatassification

process and many studies have been done on each of these topics.

Since data coming from just one sensor node is not reliable inside a wisellessr network,
some fusion mechanisms have been developed. By fusing among sedssy not only the
performance of the wireless sensor network increases, but alsgyermrsumption can be
lowered by only keeping the related sensor nodes busy. In [32], sduwamtages of using

multiple sensors deployment over one sensor deployment are mentioned:

e Fusion is beneficial because when the entire sensor nodes sensa¢iestres, they
can provide redundant information. Fusion removes overall uncertaimdytherefore

increases accuracy.

e Having each sensor responsible for a subset of the network, morderoemtary in-
formation is gathered. In this way, the big picture of the wireless sensooretan

be seen.
¢ If the fusion among sensor nodes is done in parallel, higher procegsteg snay be

achieved.

Today many applications include some level of uncertainty. Criteria abowhkcations
may not always be defined precisely. Fuzzy logic is a commonly usedseayiegion tech-

nique dealing with uncertainty, vagueness or impreciseness. In [3y et is defined as
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a class with a continuum of grades of membership. TliEemince of fuzzy set from crisp
set is that fuzzy set members can have wider membership values thanetnmsprabers. A
member in a crisp set is either is a member of the set or not. However, memileesfozzy
set have some membership values showing the grade of membership. Fyizzyg Epplied
to both inputs and outputs of the system and this enables the performancémprbged

significantly.

In this thesis, we mainly focus on the decision fusion of the target classificaficoustic
feature vectors which are sensed by the wireless sensor nodesedranuecal classifica-
tion of the sensor nodes. Acoustic feature vectors can have high dimeresio reduction
is needed to decrease the complexity on a sensor node. After a sedgomakes its lo-
cal classification, it produces a result defining the target detectedoé&alrclassification, a
classifier and a training set formed by previously obtained data are cheBaeision fusion
is later done among the sensor nodes’ results to produce the final reswatr ktudy, we
develop fuzzy fusion techniques for makini@ent and accurate decision fusion among sen-
sor nodes. Although various fuzzy approaches are studied in WSk, ¢xésts no known
fuzzy decision fusion method applied to target classification problem in W@&Nevaluate
the performance of newly developed fuzzy decision fusion techniguerssowme popular de-
cision fusion methods. Moreover, some optimizations in the feature vectaesiaetion and

generation of training sets are done.

The remainder of the thesis is arranged as follows. In the next chaptkgtound informa-
tion and related work about target classification problem and fuzzyoappes for wireless
sensor networks are given. Later in Chapter 3, we mention about defision for classifi-
cation process in WSN including our fuzzy decision fusion techniques withing examples.
Besides decision fusion techniques, optimizations in feature vector sizeti@uand train-
ing set generation take place again in Chapter 3. Next, the evaluation ammsigualéusion
methods is made using real data in Chapter 4. Finally in Chapter 5, we corbritieesis

and discuss about some possible future works.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background

In this section we give some background information about target clagificprocess in

wireless sensor networks and basics of fuzzy set theory.

In Figure 2.1 sample classification fusion process for WSN is shown [6& sensor nodes
sense the signal and extract the relevant feature vectors. Thesifielason sensor nodes
make local classification based on the feature vectors and training setsiddeusion is

then done by a fusing algorithm using the decisions generated by all thers@tes where a
final result is formed. Fusion center node can be any node randomégcho aggregate the

data from other sensor nodes.

Sensor Node 1 » Feature Extraction Classification
Sensor Node 2 » Feature Extraction Classification
Fusion Center Classification Output
Node
Sensor Node n Feature Extraction Classification

Figure 2.1: Classification fusion process for WSN

Feature extraction, local classification and fusion are the main parts it témgsification.
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2.1.1 Feature Extraction

Feature extraction is an important concept for target classification in VVB&lperformance
of the classifiers increases if the quality of the extracted feature vectarod gnough to
process [28]. Feature extraction depends on robust signal gingefRaw time-series sig-
nals (acoustic, seismic, thermal, etc.) are processed to form featuresveBtonple feature

extraction process is shown in Figure 2.2.

TIME SERIES DATA
(RAW SIGNAL)

SIGNAL PROCESSING

<>

LSIGNAL TRANSFORM (FFT, WAVELET]

AND SPECTRAL ANALYSIS)

<5

FEATURE REDUCTION

l

L FEATURE VECTORS J

Figure 2.2: Block diagram of classical feature extraction

Feature extraction starts with the processing of the received raw timea-dat&signals. Sig-
nal processing phase is an optional phase to increase the signal quij$], DC (Direct
Current) component of the original signal is eliminated and noise from igaal signal is
removed during signal processing phase. After the signal procgssasg, signal transform
phase begins. Three most popular transforms for feature extractiéiaatr Fourier Transform

(FFT), Wavelet Transform and Spectral Analysis.

Fourier Transform (FT) is a calculation in which signal wave can be setonly in time
domain but also in frequency time domain. Generally, a signal wave is shoavgramph with
time as the horizontal axis, and the amplitude as the vertical axis. Howeveredys of FT,
signal wave can also be examined in frequency as the horizontal aki§{Pdnalyze continu-
ous waveform, data should be sampled in order to produce the time serissretelsamples.
Such discrete samples are handled by Discrete Fourier Transforn).(DFdther words, FT

requires continuous input functions whereas DFT requires discreti¢ fpctions. Finally,
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FFT is an dicient method to compute DFT of a time series. By carrying ouffments of

the DFT iteratively, FFT saves considerable amount of time [8].

Like FT, wavelet transform is another mathematical tool for signal analgéis Wavelet
transform decomposes the input signal inthetient scales with éierent levels of resolution.
Since wavelet transform is based on a square-integrable functionrang theory represen-
tation, decomposition into scales is possible. Unlike FT, wavelet transfoonidas local
representation of the signal in both time and frequency. When time-freguerolution is

needed, wavelet transform is suitable for analyzing a signal [26].

Spectral analysis reveals the frequency information of a target, anelsses a major feature
[6]. Amplitude statistics, shape statistics and peak locations can be deowed$ing spectral

analysis [28].

Power Spectrum Density (PSD) values can be generated after FFTveletveransforms.
PSD values are the energy distributions of frequency features [&]fetiure vectors used by

the classifiers can be chosen among the PSD values.

After signal transform phase, some reduction is made on feature vedteegure vectors
may come large in size, and not every value they carry has the same imgortSome
features are very close to each other among classification classespthehey have very
little effect on the classification process. Removing unimportant feature vecibspeed
up the classification computations. Principal Component Analysis (PCA) isllakmown
technique to reduce the feature vector size. PCA tries to reduce theefesitciiors to a
suficient set. The most important information is kept untouched in the featurbysaténear
transformation matrix. The eigenvectors of the feature vector covariaatix construct the
linear transformation matrix [28]. However, since computation of the eigeoksis dificult,
PCA is not preferred in some applications [6]. In Chapter 3, we redwcsitie of the feature

vectors by comparing values of the feature vectors for the classificdéieses.

2.1.2 Local Classification

In the process of target classification in WSN, local classification takee @ter feature
vectors are extracted from sensor nodes. Wireless sensor nodeduallly perform their

local classifications before they go into fusion for the final result. Afteal@lassification
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phase, every sensor node has a result for the target. In local dassiii phase, a good
classifier has to be selected for proper classification. For classifiexetote, they need a
training set of feature vectors as an input besides feature vector tadsified. Training set
includes features with right class labels attached to them. The classifier iné&kesces
using the samples in the training set. Right choice of the training set yields blet$sifica-
tion accuracy. There are three types of classifiers used extensiviglsgit classification in
WSN. They are k-Nearest Neighbor (KNN), Maximum Likelihood (MLYeBupport Vector

Machine (SVM) classifiers. Brief information about the three classifidistesd below [17]:

e kNN classifier is an easy yet a powerful classifier. When an inputifeaector arrives
to be tested, the Euclidean distance is calculated between feature vectail trel
vectors in the training set. Then the nearest k feature vectors from thmgyaet are
determined. The class labels of the nearest k feature vectors are timémed by
majority voting rule. That is, the class label with a maximum count among ndarest
feature vectors is chosen as the result. If k is selected as 1, then kNIt asnearest
neighbor classifier. KNN produces very accurate results; howewenjitnot be suitable

if the training set size increases, as it requires too much memory spacevaad po

e In ML classifier, the distribution of feature vectors with the same class lakiblnw

a training set is modeled as a mixture of Gaussian density functions. As the name

implies, ML tries to find the training feature vector with the maximum likelihood to
input feature vector. In other words, the principle can be stated as: dfirgbtimate
for the input feature vector, which maximizes the likelihood of observing @de¢ldata

which were actually observed (training set feature vectors) [11].

e The key idea in SVM is to map the current feature vector space to a higtierepace.

For a feature vector space with N dimension, SVM maps this N dimension spane to

M dimension space (M- N). By raising feature vector space, the training set feature

vectors become more separable, therefore easy to classify. Theatisagly of SVM is
that training phase can take long time. However, once the training set is dedhpte

calculation is rather easy. Generallyffdrent SVM training is needed for each class.



2.1.3 Fusion

Fusion for target classification is the process of aggregating data fresetisor nodes and
deciding on a final classification result. Bffieient fusion, not only the performance of the
overall system increases but also WSN does not need to depend @oitg from only one
sensor node. Various fusion types exist in target classification in WBNeTfusion methods

can be counted as: Temporal fusion, multi-modality fusion and multi-sensionf{32].

e Temporal fusion is a time based method. Sensor nodes detect a targtratmlsense
and extract data from the target. The data gathered while the target isgpaan be
fused. Signals detected havdfdient timestamps. Therefore, they can be treated as

independent data and can be fused in a sensor node.

e Like temporal fusion, multi-modality fusion is done inside a sensor node (nudz
operation). If the sensor nodes have the ability to sense data ufiegedt modalities
(acoustic, seismic, thermal, etc.), the results coming from these modalities fuesetle

The data for fusion is considered as independent, since it comes ffi@redt channels.

¢ The final main type of fusion is multi-sensor fusion. This fusion is done ansengor
nodes and it is commonly used in target classification process. To haraeainty

and remove the faulty sensor nodes out, multi-sensor fusion is required.

Decision fusion is a type of multi-sensor fusion. In decision fusion, thememodes make
local decisions, and fusion is made among these decisions. The datarfusede indepen-
dent. Although any fusion type in the classification process might be callddtasusion,
Brooks et al. define data fusion as the fusion of correlated data [Shb@mtion of the fea-
ture vectors from all sensor nodes can be considered as data flikmpros and cons of data

fusion versus decision fusion can be listed as follows [5]:
e Decision fusion presents lower computational burden and fewer amofutriairong

data. It is preferable when training data is not very large.

e Data fusion gives better performance at the cost of computational anchanication

burden for correlated measurements.

10



e Data fusion is preferred to be used among modalities (seismic, acoustic, @tle

sensor node) whereas decision fusion is better to be used acrossrsemss.

e Some recent results [7] show that decision fusion performs better imarscevhere

some sensor nodes are malfunctioning.

Decision fusion for target classification in WSN can be done by usingtyasfemethods.
Different parameters present in the sensor network environment mayegnoaity techniques

and combinations for decision fusion. Some possible fusion scenarias &bows:

e Majority voting is the simplest but anffecient fusion technique. After all the sensor
nodes make their local classifications and yield a decision, the decisioeadbrclass
label are counted. After this step, thredfelient versions of majority voting behave
differently [24]. In unanimous voting, all the sensor nodes should agréleeosame
decision. That s, the count of the decided class should be equal tortiteenof sensor
nodes. Another version is simple majority, in which the majority of the sensasod
should decide on the same class label to make that class label be chasenidge of
a class label should exceed %50 to be selected. In plurality voting, thdabetsvith
highest count is selected whether sum of the votes exceeds %50 orerwraBy the

term majority voting implies the third version, plurality voting.

e Other fusion techniques apart from majority voting are mainly based on thenpters
gathered from the WSN environment. These parameters can be distegeesr(nodes
- target distance [10] or sensor nodes - sink node distance [27fglggoperties such
as signal quality, signal energy and signal to noise ratio (SNR) [1@k®mecnergies
[27], and so on. Combinations using these parameters are commonly usedaln
goal is to select the optimum sensor node(s) for classification. Maximum #eifRos
(MAP) Bayesian [10] and Dempster-Shafer [6] algorithms work on thiecjple of
giving probability or belief values to sensor nodes. dipx algorithm [10], only the
sensor nodes within a given distance are considered. After the searsodetermined

in the given distancealax algorithm works like majority voting algorithm.

e Fuzzy logic is again a good technique for better classification in WSN. Tizarders
above can be integrated into fuzzy fusion techniques. Two or more peaTEe

fuzzified and then based on some fuzzy rules; the defuzzified resulleadyptimum
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sensor node(s) selection.

2.1.4 Basics of Fuzzy Set Theory

Fuzzy sets are introduced by L. Zadeh in 1965. Fuzzy set theory is tinecoracept of fuzzy
logic. In crisp set theory, an element is either belongs to the set or notfiditea of the

crisp set can be expressed as in Equation 2.1 [23].

1, if xis an element of set A
HA(X) = (2.1)
0, if xis not an element of set A
In Equation 2.1ua(X) represents the characteristic function for set A. According to definition

if xis a member of the s&%, ua(x) has the value of 1. On the other hand, wheis not a

member of the seA, ua(X) has the value of 0.

In fuzzy set theory, the situation mentioned about the crisp set theoryeisded. The mem-
bership function for a fuzzy set may generate a real value in the inf@t&[34]. Fuzzy sets

can be generalized as in Equation 2.2 [23].

A={Xpa(X) | X € X} (2.2)

In Equation 2.2 X denotes the universe of discourse amdenotes elements of itia(X) is a

membership function ot in A.

Designing robust membership functions is very important for fuzzy sétan@ing the param-
eters of the membership functions may caustedént results in fuzzy systems [23]. Fuzzy
membership functions must map each element of a set to a continuous memuaishiprm

0 to 1. Several basic functions are used in fuzzy systems to generayemiezbership func-
tions. Some examples are Triangular, Trapezoidal, Gaussian, Bell amd@a membership

functions [15]. Figure 2.3 shows the examples of these fuzzy membersiupdus.

Fuzzy membership functions are chosen according to data to be uses, tii@dunctions
used may dter from application to application. The most commonly used fuzzy membership

functions are triangular and trapezoidal fuzzy membership functions.
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Triangular Trapezoidal

Gaussian Bell

Sigmodial

Figure 2.3: Example sets of membership functions
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Fuzzy inference is a framework for depending on the concepts; &etapeory, fuzzy if-then
rules and fuzzy reasoning [15]. Fuzzy inference system has threeamaceptual compo-

nents [15]:

e First component isule base. It contains a selection of fuzzy if-then rules.

e Second component ssdatabase or dictionary, which has the definitions of the mem-

bership functions used.
e Last component is named esasoning mechanism, where inference procedure is real-

ized based on the fuzzy rules to produce a conclusion.

Fuzzy inference systems actually map crisp input value(s) into a crisp toudfue [19].

Blocks of a simple fuzzy inference system is shown in Figure 2.4 [23].

Fuzzy Rule Base

tput
output(s)

input(s) Fuzzification Defuzzification

A4

A 4

Fuzzy Inference Engine

Figure 2.4: Basic fuzzy inference system

In the fuzzification phase, the input variables are fuzzified. The Vasahitially have crisp
inputs and they have to be converted. Membership functions are creataitithe input and
output variables. The degree is calculated based on the input variateging to their
appropriate fuzzy sets using membership functions [13]. Membershgtidms are labeled

with some linguistic terms such aggh, low, small, big etc.
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Fuzzy rule base is comprised of fuzzy if-then rules. Every fuzzy @rfee system has set of
fuzzy if-then rules with meaningful linguistic interpretations. These fuz#iéh rules may
be obtained from numerical data or some experts familiar with problem [18&mple if-then

rule has the following format [15]:

if xis Athenyis B (2.3)

In 2.3, x is the input variable whilg is the output variable. A denotes the linguistic variable
for input variable and B denotes the linguistic variable for output varidbies A’ is called
antecedent andy“is B” is called consequence. These defined ruléscathe fuzzy infer-
ence system. All the related fuzzy if-then rules are used when a deéazpifitput value is

generated for a given input value.

Fuzzy inference engine performs the inference operations usingzhg ifules for a reason-
able output [23]. There are three common types of fuzzy inferenderagsnamely Mamdani
fuzzy model, Sugeno fuzzy model and Tsukamoto fuzzy model [23]. mi&ia diterence
among these inference systems are about their fuzzy rule conse@@nt®itferent fuzzy
rule consequents lead tofiirent aggregation and defuzzification procedures [23]. Typical

properties of these fuzzy inference systems are listed below:

e Mamdani proposed Mamdani fuzzy inference system to control a steginesand
boiler combination by control rules of some human operators [14]. In Mainfdazy
inference system, first the fuzzy inputs are fuzzified in fuzzificatiorsphafter fuzzi-
fication phase, the rule evaluation is performed. Mamdani fuzzy rules tmavform
expressed in 2.4 witl; andY are the input and output linguistic variables, respec-
tively, and with A; and B being linguistic labels with fuzzy sets associated defining

their meaning [9].

if X1is Ay and ... andX, is A, thenY is B (2.4)

If a fuzzy rule has more than one antecedent, then logical operatorsn@®njum)
and AND (minimum) are used to estimate the result number. If OR operator is used
highest number is chosen, while if AND operator is used, lowest humbédroisen.

When the input values are zero, the output value is also zero. Aggregsdtibe rule
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outputs is performed after rule evaluation process. This kind of agipagarms a
fuzzy set for Mamdani fuzzy inference system. In the final phasdui®y set, which
is the output of the rule aggregation phase, is defuzzified. The all fseizig reduced
to a single crisp value. This crisp value is considered as the result of kg fogic

inference process. Centroid method is generally used for defuzzifiqa®g.

e Takagi, Sugeno, and Knag proposed Sugeno fuzzy inferencersjist¢ Typical fuzzy
rule for Sugeno fuzzy inference system is given in 2.5 where A andzByfsets in
the antecedent ardis a crisp function for consequent. It can be observed that, the

consequent part contains a function unlike Mamdani fuzzy infereysters.

if Xxis Athenyis B thenz=f(x,y) (2.5)

f(x, y) function is a polynomial with the input variablesandy most of the times.
However, it can also be any function that describes output of the sysitéim the fuzzy
region specified by the antecedent of the rule [15]. The constructi®@ugéno fuzzy
inference system is usually realized in two steps [1]. In the first step;rdigigtion of
the fuzzy sets in the rule antecedents is done. Then, the parametersdontiegjuent

functions are estimated. These consequent functions are chosen tedse lin

e Last fuzzy inference system to be mentioned is Tsukamoto fuzzy inferstem. In
Tsukamoto fuzzy inference system, the consequent of each fuzzgnifrthe is repre-
sented by a fuzzy set with a monotonical membership function [29]. Fér rede, the
output is defined as a crisp value and overall output is the weightedgavefeeach
rule’s output [14]. Since each rule infers a crisp output and outputeeofules are
aggregated using the method of weighted average, Tsukamoto fuzzgrioéesystem

avoids the time-consuming process of defuzzification [15].

Last phase of a fuzzy inference system is defuzzification. By doifggdiication, the fuzzy
results of the outputs are transformed into crisp values [23]. The most colypmsed de-
fuzzification technique is centroid of area. Equation of the centroid eftei@hnique is shown

in Equation 2.6 [15]. In Equation 2.6¢ is the aggregated output membership function.

(2.6)



2.2 Related Work

In this section, we mention about the related work done for the classificatamegs and

fuzzy logic approaches in WSN.

2.2.1 Classification Process in WSN

Many studies have been done about target classification in WSN. Evenrifan focus is on
a specific part of the classification process, almost every study inciides classification

cycle for performance evaluation.

Duarte et al. provide a baseline study in vehicle classification in distributesbsaetworks
(DSN) [10]. In this paper, whole classification process for senstwvarés is conducted using
real data set. Data is collected in a wireless distributed sensor networkS)\é&xperiment
at Twenty-nine Palms, CA in November 2001. Seventy-five sensor ravdassed to classify
four target vehicle classes: Assault Amphibian Vehicle (AAV), Main Batdakr(M1), High

Mobility Multipurpose Wheeled Vehicle (HMMWYV) and Dragon Wagon (DWerSor nodes
are capable of recording acoustic, seismic and infrared signal. In thEs tlvee also use a
subset of this dataset in order to evaluate our fuzzy decision fusion dsettieatures are
extracted using FFT. After feature extraction, local classification is deimg kNN, ML and

SVM classifiers. The performance of these classifiers is compare@ifmis and acoustic
modalities. Fusion algorithms such as majority voting, nearest neighbor, M&®Ed8an and
dmax algorithms are applied and compared using classification results of theseSsace

Duarte et al. provide a real dataset to research community; many clagsifistudies use

this dataset for evaluating target or vehicle classification algorithms.

Another classification process for sensor networks is studied by Wahg82]. In this study,
classification process starts with feature extraction as usual. Feataresraed by Wavelet
analysis cofficients and PSD values. As a classifier, KNN classifier is chosen. Aftésywa
local classification time based temporal fusion is made. Up to this point, thegsracdone
for both acoustic and seismic signal feature vectors. Multi-modality fusion isemmgnted
to fuse results from acoustic and seismic channels. A method called BekKanoadedge
Space (BKS) is used for multi-modality fusion. In this algorithm all the possilalgsdabel

combinations are formed, and then the combinations are assigned to a ciddsaksdn on
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training sets. The majority voting is applied to assigned class labels. For examopsder
a problem with two class labels; andw, and two classifier€; andC,. The all possible
class label combinations avewy, wiw,, Wowy andw,w, meaning first class label is from
C1 and second class label is frd@?. These four combinations are assigned to a class label
w1 or Wy according to their occurrence in training sets. Suppase has occurred 15 times
in training sets, 10 times with true class lalal and 5 times with class lab&l,. Thenw;
is assigned to this combination. When all four combinations find their comelspp class
labels, most found class label is the result of multi-modality fusion [24]. Wieemporal
fusion and multi-modality fusion is completed, Multi-Resolution Integration (MRJ&athm
is used for multi-sensor fusion. The basic idea is to form an overlap funoticoutputs of
the sensors and resolve this function at various successively fiessaf resolution. Wang
et al. also presented the architecture in this study called Mobile-agerd-b&¢ (MADSN).
In MASDN, a mobile-agent-based collaborative sensor fusion is usecrl&p functions
are calculated as in MRI, and then a mobile-agent carries these funatmmshe sensor
node to a second sensor node. The overlap functions of two sendes @moe combined
and the result is carried to another sensor node. If the classificatiemaagcis achieved
at the final sensor node, the process is terminated. Otherwise, the mgdieemntinues
its migration. Classification accuracy using 1-sec segments, temporal-fosidtirmodality

fusion and fusion by MASDN architecture is evaluated in the end of the study

Study of Sayeed et al. is about detection, classification and tracking in[DBNIn clas-
sification part, some information is given about the spectral featuresfasethssification.
Acoustic and seismic PSD of tracked and wheeled vehicles are shown ih déta three
classifiers, KNN, ML and SVM are used for classification. To compargetotassifiers, avail-
able feature vector data is divided into three parts. When first part isl{élseeother parts are
used for training. Same procedure holds for second and third paristethnique is called
3-way cross validation. The kNN with ¥ 1, ML and SVM classifiers are compared using

low bandwidth seismic data and wide band acoustic data.

Classification fusion in WSN has also been studied by Chun-Ting et al.lfGhis study,
acoustic signals are used for classification. Wavelet transforms of thustacsignals are put
into process and also a comparison is made between FFT and wavelatrtran€fiassifier
choice is a weighted kNN classifier. Weighted kNN classifier works like kiNidgifier how-

ever the training set feature vectors have some weights according to tindinidan distance
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to input feature vector. Study includes comparison of weighted KNN classsifer KNN clas-
sifier. Dempster-Shafer theory is used for fusion. Sensor nodegsjgiits according to their
weighted kNN classification. Therefore, in this application, behavior ahpser-Shafer
theory is similar to both data fusion and decision fusion. Outputs of weight&tdtaksifier
construct the belief functions to the sensor nodes, and then the desiredr 10de(s) are
selected based on the belief functions. The classification accuraciegaoityneoting fusion

algorithm and Dempster-Shafer theory are compared.

Tian et al. study target classification on ground sensor systems [28]ewAfeature ex-
traction algorithm, Spectral Statistics and Wavelet{Goients Characterization (SSWCC) is
proposed for extracting more robust feature vectors. SSWCC hatatfgtical features com-
ing from PSD, spectral and wavelet analysis. PCA is used for redtioingjze of the feature
vectors. The loss of energy in PCA calculation andtkee on the kNN classification are ex-
amined. Moreover, the performance of théetient classifiers and trainirigest set selection

is evaluated.

2.2.2 Fuzzy Logic Approaches in WSN

Having the power of dealing with uncertainty, fuzzy logic is used widely in Vépplications.

In this part, we mention some remarkable studies about fuzzy logic in WSN.

Cluster-head selection in WSN is a popular and recent topic studied uginglagic. Study
of Gupta et al. is an example work of this area [13]. In this study, sermigare separated
as clusters and a cluster-head is selected for each cluster. The bleatlsrare responsible for
the data aggregation within its cluster. The fuzzy variables include senderanergy level,
sensor node concentration and sensor node centrality. Based orfubegeariables and
fuzzy rules, sensor node cluster-head election chance is calculatseahblious that sensor
nodes having lower energies, lower concentrations and closer censrpbisess less chance
of cluster-head election than the sensor nodes having higher enérgies; concentrations
and nearer centralities. At the last part of the study, the cluster-heetibal@lgorithms in
different scenarios are compared with fuzzy approach. Another stutlyster-head election
in WSN belongs to Kim et al. [16]. Similar to study of Gupta et al., in this studyssen
node energy and local distance of the sensor node (the sum of dstaeteesen the current

sensor node and all the nodes within a distance r) are fuzzy variablestezhead election
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chance is calculated depending on these fuzzy variables and fuzsy Rileposed cluster-
head election algorithm using fuzzy logic is compared with previous clusi@d-lelection
algorithms on network lifetime, standard deviation of the energy remaining wieefirst

node is dead, cluster formation and number of clugéve nodes for every round.

Fuzzy fusion methods are studied by Samarasooriya et al. [25] andaByZT]. In the study
of Samarasooriya et al., local decisions, that are generated by sedes, are considered
with having various degree of accuracy. Each sensor node has itslkxaion result and
an error probability. These error probabilities are modeled using fuzzig.loTherefore,
multi-sensor fusion is done among sensor nodes having fuzzy erioatphties. The global
decision is made and then fuzzy result is defuzzified. Su et al. use fiazayfusion in
cluster-based wireless sensor network. The goal is to makéiaieet fusion algorithm to
minimize the energy spent for sensing, processing, communication anegaggn of more
useful and reliable data. The fuzzy variables are distance (distahwedresensor node and
sink node) and quality of received SNR at the sink node. The expaatey dbutput is named
as state. State variable represents the magnitude of participation for an. ofigponost of
the fuzzy systems, state variable has values depending on the fuzdylemaad fuzzy rules.
The reported magnitude value based on the higivegihted defuzzified value and the error
between the initial and the estimated magnitude value based on the highiglsted average

defuzzified value are compared using Mamdani and Tsukamoto fuzzgivte methods.

Although many fuzzy fusion studies are done in research community, ag fugion method
is known to be applied to target classification problem in WSN. In our thegisjaveloped
fuzzy decision fusion mechanism for single target classification in WSKfuay decision

techniques improves classification accuracy for the target classificatbtemn in WSN.
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CHAPTER 3

DECISION FUSION FOR CLASSIFICATION PROCESS

In this chapter, we propose fuzzy decision fusion methods for singlettalgssification in
WSN. In addition to our approach, we mention the details of three decisi@nfakyorithms
which we use for comparison with our algorithm at Chapter 4. These tlhgeethms are
majority voting, nearest neighbor anl,x decision fusion algorithms. For all algorithms
mentioned, we also present running examples. Before getting into the déthidsdecision
fusion algorithms, we first go over the feature reduction and trainingoseiation approach

we use throughout the classification process.

3.1 Feature Reduction

The feature extraction techniques, which transform time-series signaldata) into fea-
ture vectors, may result in high-dimensional feature vectors. Most eéthigh-dimensional
feature vectors behave similarly and therefore become redundantv@aise for calcula-
tions on sensor nodes by reducing feature vector dimensionfeati\es algorithm should be
implemented. We have implemented a feature reduction algorithm based oftfénerdies
between feature vectors offtérent target classes. Training sets are used figréint classes
to calculate the dierence. We pick dominant feature vectors which may help us through
the target classification. The feature vectors which show similarity frons d¢taslass are

eliminated. The algorithm used for a given test run we use is shown in AlgoBth.

Algorithm 3.1 tries to find thefcoyn feature vectors for a given test ruReg. Firstly, the
average values of feature vectors are calculated for each run uainimpdr set,T. The test

run is held out from the training set to perform more realistic classificatiomtier words,
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n <« Number of classes

fcount < Desired feature vector count

T « Training set

FTDIFFSUM[FC] « sum

. end for

: SortFTDIFFSUM according to sum values of feature vector columns

. Pick fcount feature vector columns from sortéd DIFFSUM

AVGMAT « Matrix for average values of feature vectors for each class

SUMMAT <« Matrix for summation of feature vectors for each class

Riest < Test run
forall runRin T do
if Reg = Rthen
Continue for the next run in training set
end if
W « Class in the rufirR
SUMMAT[W] « Column-wise summation of all feature vectors For
end for
AVGMAT « Column-wise average of all rows BUMMAT
FTDIFFSUM « Sum of diferences for each feature vector
for all Feature vector columRC in AVGMAT columnsdo
fori=1tondo
sum« 0
for j=i+1tondo
sum « Difference betweeRC[i] and FC[ ]
end for
end for

Algorithm 3.1: Feature Reduction Algorithm for a Given Test Run
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the reduction of feature vectors for a given test run is riigcéed by the feature vectors in
that test runSUMMAT structure has the column-wise summation of the feature vectors for
each class anAVGMAT structure has the averaged values of feature vectors for each class.
After all classes have averaged feature vector values, dominamtdeattors are determined
using the data iIlVGMAT. To determine dominant feature vectorgfetiences of the feature
vectors of classes are calculated. Sum difedences for each feature vector is kept in the
structureFTDIFFSUM. The fcoune feature vectors having highestfidirence values are
selected as the basis feature vectors. For example, consider a case witliget classes.
The diference of feature vectors for these two classes is calculated for eaitine vector,

and fcount dominant feature vectors are selected. When the target class courgdsttien
three diference calculations are done (These calculations are between fissanthsecond
class, between first class and third class, and lastly between secosdcthshird class).
These three dlierence values are later summed to get a sindterénce value. Thefcount
feature vectors are chosen. Obviously, this algorithm wofisiently when the target class
count is small. As the order of the algorithm is polynomidh — 1)/2 difference calculations

are required fon target classes.

In Figure 3.1, averaged acoustic feature vectors of AAV and DW vehaile shown. Feature
vectors for AAV and DW vehicles are provided by DARPA SensIT proj&0]. Horizontal
axis represents the 50 feature vectors and vertical axis represérgsofahese feature vec-
tors. The acoustic feature vectors in this figure are averaged foradash to test an AAV

run.

The diferences for averaged feature values for two vehicles mentioned ab®whown in
Figure 3.2. The absolute values of théfeiience value between two classes are calculated
for each feature vector separately. Horizontal axis again reprebert® feature vectors and

vertical axis representsftiérence value.
In Figure 3.2, 5 feature vectors having higheditatence values are 5, 11, 4, 7, 10 respectively.

If desired feature vector count is 5, then these feature vectors eddarstarget classification

process.
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Figure 3.1: Averaged feature vectors for AAV and DW Vehicles

3.2 Training Set Formation

Training sets are mainly used by classifiers to classify a target. Classifieratainput
feature vector and they come to a conclusion by evaluating the relationsiipdreinput
feature vector and the feature vectors in the training sets. Proper fomwdtibe training
sets yields better classification results. In this thesis, node-based tra@tingre used. For
example, if the aim is to try forming a training set for a test run in the local claasin
process of Node 1, only the Node 1 feature vectors from all sampleesoept test run are

collected. The algorithm is shown in Algorithm 3.2.

In Algorithm 3.2, Nodes structure has the sensor nodes data BiodesFT structure has
feature vectors for each sensor node. First of all, the input testRi, is excluded from

the runs which form the training set similar to the algorithm for feature reducfioaining

set is kept in the structure. The feature vectors in the remaining runs are candidates for the
training set. For each run, feature vectors belonging to a specific nodmizined.NodesF T
structure used in this algorithm holeskey >< value > pairs. Sensor nodes are the keys and
feature vectors are the values. For example, all the feature vectdvedier 1 can be reached
atNodesFT[ 1], for node 41 aNodesFT[41] and so on. Therefore, every sensor node becomes

the owner of its training set for a given test run.
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Figure 3.2: Diterence values of feature vectors for AAV and DW Vehicles

Node-based training sets approach reduces the training set sizearabid Small training
sets mean less computation on the sensor nodes in local classificatiorspi®gdhis way,

execution becomes faster and sensor node consumes less energy.

3.3 Majority Voting Decision Fusion

In majority voting decision fusion (MVDF), every voter has one vote to wseselecting
any candidate [31]. The candidate which collects highest number of igosesected among
other candidates. We refer to third version of majority voting, plurality votwith the term
majority voting. It is beneficial because its simplicity and low error count. Tigersghm
fails only when majority of the votes belongs to more than one target classaldtithm we

implement for MVDF is depicted in Algorithm 3.3.

In Algorithm 3.3,Nodes structure has the sensor nodes dataModesLC structure has the
local classification result for each sensor node.The algorithm begingywiitly over all the
sensor nodes in the system. The local classification result for eachr serte is obtained.
Counts of the class labels are stored in the strucll@assCount. After a pass through sensor
nodes,ClassCount is filled with the counts of the class labels. Then, tiesultClass, the

class label with highest number of countgdlassCount, is picked. A condition may prevent
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10:

11:

12:

T « Training set
Riest < Test run
Nodes « Sensor nodes array
NodesFT « Sensor nodes - feature vectors structure
for all Sensor Nodé& in Nodes do
forall runRin T do
if Rees = Rthen
Continue for the next run in training set
end if
NodesFT[S] « Feature Vectors of node for runR
end for

end for

Algorithm 3.2: Node-Based Training Set Generation for a Given Test Ru

10:

11:

12:

13:

Nodes « Sensor nodes array

NodesLC « Sensor nodes - local classification result matrix

ClassCount « Class count - Sensor nodes matrix

for all Sensor Nodé& in Nodes do
class « Find local classification result iNodesLC for sensor nod&
IncrementClassCount[class]

end for

resultClass « Class label with highest count @assCount

if No other class with same count exisiGhassCount then
SelectresultClass as the final decision

else
Reject the data sample

end if

Algorithm 3.3: Majority Voting Decision Fusion
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resultClass from being the final decisionresultClass should be the only highest counted
class label irClassCount. If this circumstance is providedgsultClass can be announced
as the final decision. Otherwise, if the circumstance fails, the sample dataefdVDF is

rejected, no decision is found.

Although MVDF provides an easy implementation, it also contains some draab&irst

of all, since no weight is given to any sensor node, all the sensor rrodansidered to be
equal. However, some sensor nodes can be more reliable due to theirdeaatistructures.
These sensor nodes should be treaté@i@dintly from other regular sensor nodes. Moreover,
data can be rejected in MVDF. Having same number of highest countedattets prevents

system from producing a final decision.

3.3.1 Running example for MVDF

In this part, we introduce a running example to show how the MVDF algorithrksvdn this
example, we simply use five sensor nodes namsg)ys2, s3, 4 andsb and also three class
labelscl, c2 andc3. Table 3.1 presents the classification results for MVDF algorithm through

five sample points.

Table 3.1: Sample classification flow for MVDF algorithm

SP|sl|s2|s3| 4| s5| Result
cl|cl|{cl|c2|c3|cl
cl|cl|c2|c2|c2|c2
c3|[c3|c3|c3|c3|c3
c2|lcl|c2|c2|c2|c2
cl|cl|c2|c2|c3| Reject

g W NP

In Table 3.1, rows show the sample points to be classified. First column iarfgule points,
the next five columns are for local classification results of sensor nagdinal column
is for fused classification result. In each row, the classification fusiowne dccording to
MVDF algorithm. At sample points from 1 to 4, the class labels of the sensashack
simply counted and the class label with highest count is selected as theeoll However,
at sample point 5, the class labelsandc2 both appear twice. In this case, the sample point

is rejected and no result is generated.
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3.4 Nearest Neighbor Decision Fusion

Nearest neighbor decision fusion (NNDF) is anoth@ceent decision fusion technique. Un-
like MVDF, NNDF does not treat every sensor node in the same way. iBtende between
the target and a sensor node is calculated for each sensor nodeca@eaation of the dis-
tances, the sensor node closest to the target is chosen [10]. Thelassification result
for this sensor node is the final decision result. The implementation details OfNibd-

algorithm is shown in Algorithm 3.4.

1. Nodes « Sensor nodes array

2: NodesLC « Sensor nodes - local classification result matrix

3: Distances « Target distance - Sensor nodes matrix

4: for all Sensor Nod& in Nodes do

5. dist « Calculate the distance between the target and sensorShode
6: Distanceq[S] « dist

7: end for

8: SortDistances

9: closestS « Select the sensor node with minimum distanc®istances

10: SelectNodesLC[closestS] as the final decision

Algorithm 3.4: Nearest Neighbor Decision Fusion

Like in Algorithm 3.3, in Algorithm 3.4Nodes structure has the sensor nodes data and
NodesLC structure has local classification result for each sensor node. Ansttueture
Distances exists for the data of the distance between target and sensor nodey, ties
distance of the all sensors to the target is calculated@isthnces is filled with this data.
The distances are sorted and the sensor node having the minimum distanedamét is
found out.closestS represents this sensor node. The local classification resdibs#stS is
accepted as the final decision. If more than one sensor node has thengamam distance

to the target, the first sensor node evaluated is picked.

NNDF may produce good results using the advantage of being close toget teowever,
relying on a single node can be hazardous. If the nearest sensersnatehow produces

faulty results, then the system always obtains wrong data.
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3.4.1 Running example for NNDF

A running example of NNDF algorithm is demonstrated in this section. Like atd®e8.3.1,
we use five sensor nodes namsly s2, s3, s4 ands5 and also three class labelk, c2 and

c3. Table 3.2 shows the classification results for NNDF algorithm througlsé&wgple points.

Table 3.2: Sample classification flow for NNDF algorithm

P | sl-Dist | s2-Dist | s3—-Dist | s4—-Dist | s5-Dist | Result
c1-100 | c1-180 | c1-250 | c2-300 | c3—-300 | c1
cl-75 | c1-100 | c2-200 | c2-250 | c2-275 | cl
c3-100 | c3-80 | c3-100 | c3-150 | c3-200 | c3
c2-150 | c1-100 | c2-50 | c2-100 | c2—-150 | c2
cl-200 | c1-150 | c2-100 | c2-80 | c3-80 | c2

g Bl w| N R0

In Table 3.2, rows and columns demonstrate same values as in Table 3.1 witteatian. In

this table, the distance between the sensor node and target is given witbahadgsification

result separated by a hyphen for each sample point. In NNDF algorithnsetteor nodes

with minimum distance to the target are preferred. Therefore, at samples fiaim 1 to 4,

cl, cl, c3 andc2 are selected respectively for having minimum distances. At sample point 5,
both s4 andsb have same minimum distance to the target. In this case, the first sensor node
evaluateds4, is selected in order not to reject the sample point. Therefyrbeing the local

classification result o#4, is the final result for sample point 5.

3.5 dyax Decision Fusion

Like NNDF, dnax Decision Fusion (DMDF) is also related to the distances between the sensor
nodes and target. NNDF algorithm decides on the final decision resut s a single
sensor node. However, in DMDF several sensor nodes may act itetbsification process.

A distance valued, is chosen for DMDF algorithm. The sensor nodes ,of which distances to
the target exceeds the valdehave no &ect on decision fusion. The remaining sensor nodes
are put into majority voting process to determine a final decision. Figure 3.8dftas the

DMDF sensor selection method.

In Figure 3.3, the rectangle with represents the target. The sensor nodes withindthe
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Figure 3.3:dyax decision fusion sensor node selection

distance are labeled witk sign. The decision fusion for DMDF algorithm is done using only

theseX signed sensor nodes.

A more formal definition of the DMDF algorithm is given in Equation 3.1 [10] denotes the

weight ofith sensor node. The weight of a sensor node is either 0 or 1, baseddistatsce

to target.

Wi = (3.1)

0 otherwise

DMDF implementation details can be seen in Algorithm 3bdes denotes the sensor nodes
data andNodesLC denotes local classification result for each sensor node in Algorithm 3.5.
Like NNDF, the distance of the all sensors to the target is calculatedastdnces is filled

with this data in the first place. THeistances structure is then sorted according to distance
values. The sensor nodes having the distance value less than or equaletaetermined.
ClassCount structure is filled with number of class labels of these sensor nodes. All the
other sensor nodes are eliminated. HoweVv&Sensor is determined for future use in case

it is needed. TBSensor is the sensor node which is closest to the target among the sensor
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15:

16:

17:

18:

19:

20:

21:

22:

23:

24

25:

26:

27:

28:

29:

Nodes <« Sensor nodes array
NodesLC « Sensor nodes - local classification result matrix
ClassCount « Class label - count matrix
Distances « Target distance - Sensor nodes matrix
d < ddistance value
TBSensor « Tie break sensor node number
for all Sensor Nodé& in Nodes do
dist < Calculate the distance between the target and sensorShode
Distanced[S] « dist
end for
SortDistances according to distance values
for all Sensor Node - Distance P&D in sortedDistances do
if Distance ofSD less than or equal td then
Node < Sensor node dbD
Class « Classification result fronNodesLC for sensoiNode
IncrementClassCount[Class]
else
TBSensor < Sensor node oD
Break for loop
end if
end for
if ClassCount has 0 value for all classes or i@Sensor is found wherClassCount has
more than one class having same highest cthen
closestS < Sensor node having the closest distance
Find the classification result froldodesLC for sensorclosestS
else if ClassCount has more than one class having same highest ¢bant
Find the classification result frofdodesL.C for sensoiTBSensor
else
Find the class with highest count@lassCount
end if

Algorithm 3.5: dyax Decision Fusion
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nodes having distance to the target greater thadsingClassCount, a class label reported
from maximum number of chosen sensor nodes is determined. This clabss|#e final
classification result. I€lassCount has 0 value for all classes or i@Sensor is found when
ClassCount has more than one class having same highest count, decision of the strssst
node is taken into account like in the NNDF algorithmClassCount has more than one class

having same highest count, decision of Ti&Sensor is the final decision result.

DMDF algorithm has a place between MVDF and NNDF algorithms. If the serstes are

too far to the target andlvalue is small, then DMDF starts to act like NNDF algorithm. On the
other hand, making value big and deploying sensor nodes close to target may convert DMDF
algorithm into MVDF algorithm. Therefore, selection of th@alue plays an important role.

The deployment of the sensor nodes should be studied enough bebidand thed value.

3.5.1 Running example for DMDF

We present a running example of DMDF algorithm in this section. Like at Se&ti®.1, we
use five sensor nodes namely, s2, s3, s4 ands5 and also three class labels, c2 andc3.
In Table 3.3, the classification results for NNDF algorithm through five sapglets can be

seen.

Table 3.3: Sample classification flow for DMDF algorithm

P | sl-Dist | s2—-Dist | sS3—-Dist | s4—-Dist | s5— Dist | Result
cl1-100 | c1-275 | c1-300 | c2-450 | c3-500 | cl1
cl-75 c1-100 | c2-200 | c2—-300 | c2-450 | c1
c3-100 | c3-80 c2-100 | c1-150 | c2-200 | c3
c2-150 | ¢c1-100 | c2-50 c1-100 | c2-300 | c2
cl1-270 | c1-300 | c2—260 | c2—-280 | c3-380 | c2

g Bl w| N R0

In Table 3.3, rows and columns illustrate same values as in Table 3.2 with dstarssnsor
node columns. In DMDF algorithm, several fusion rules are applied. We88 ad value

in this example. At sample point 1, all the sensor nodes are eliminated edcdpécause

their distances to the target are greater tdaalue. The local classification resuit of sl

is selected. If we look into sample point 2, we can see that sensor sbds&ands3 have

lower distances thad value. The label with highest count among these three sensor nodes is

cl. None of the sensor nodes are eliminated duttwreshold at sample point 3. However,
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there are two class labels with highest count, nane8lyandc2. Since no tie break sensor
node exists, the sensor node with minimum distars2e s selected. The tie break sensor
nodesb takes scene at sample point 4. Since more than one label has same ¢oginesb
decides the final result. Unlike at sample point 3, all the sensor nodesaxice threshold
value at sample point 5. But the solution is same, the sensor node with minimuncdis

is selected with the resut®.

3.6 Fuzzy Decision Fusion

In this section, we present our fuzzy decision fusion (FDF) method fglesitarget classi-
fication in WSN. In this approach, we use the power of fuzzy logic in thesdetfusion
phase of the classification process. When all the sensor nodes in thedé¢ghe their final
decision on the target, they transmit these results to a sink node. The siekealidzes the

fusion process. The result found after the fusion process is the@sait.

We use two fuzzy input variables for our FDF algorithm. The first fuzpuiris the distance
between the sensor node and the target in WSN. While the target is moving aai&N, the
position of the target is recorded. Knowing the deployment positions ofth&os nodes, the
distance can be calculated. Based on the data of DARPA SensIT prbjgca[trapezoidal
and triangular membership function is defined for fuzzy input vari@bhktance. The fuzzy
set formed by this membership function and corresponding linguistic statesissn Figure
3.4.

The crispDistance input values are fuzzified using the membership functions in Figure 3.4.
The linguistic variables fobistance arenear, medium and far. Fornear and far linguistic
variables, trapezoidal membership function is used. However, werriefiegular member-

ship function for the linguistic variableedium.

The second fuzzy input variable is the energy of the acoustic signeivestby the sensor
nodes. The energy information for sensor nodes while the target imgdlssough the WSN,
is again received from DARPA SensIT project [10]. Likestance, Energy is represented
by trapezoidal and triangular membership functions and correspondingdiitgvariables.

Figure 3.5 shows the fuzzy set fenergy.
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Figure 3.4: Fuzzy set fdDistance variable

Three linguistic variables foEnergy are low, medium and high. Since the energy values
differ enormously fronhow linguistic variable tchigh linguistic variable, we do not prefer to
show all the membership functions on a same graph. Instead of that, ateelgnaph is used
for each membership function of the linguistic variablesEokrgy. Figure 3.5 (i) depicts
the membership function dbw linguistic variable whilemedium linguistic variable takes
place in Figure 3.5 (ii)low linguistic variable has a trapezoidal membership function while
medium linguistic variable has a triangular membership function. The last linguistichlaria
high, is shown in Figure 3.5 (iii). Likéow linguistic variable high linguistic variable has a
trapezoidal membership function. Actuahigh energy values can pass the value 1. For the
clarity of the graph, we shohigh energy values up to 1. In our algorithms, the energy values

greater than 1 are still considered belongingigh linguistic variable with a degree 1.

The fuzzy variableChance represents the fuzzy output. Simil@hance output variable is
used in [16].Chance determines the election chance of the sensor nodes being used in deci-
sion fusion for target classificatiorChance has nine linguistic variables and therefore nine

membership functions. Fuzzy set f6hance is in Figure 3.6.

In Figure 3.6, nine linguistic variables are demonstrated. TheddgteowFar), LM(LowMedium),
LN(LowNear), MF(MediumFar), MM(MediumMedium), MN(MediumNear), HF (HighFar),
HM(HighMedium) andHN(HighNear). Only LF andHN membership functions are trape-
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Figure 3.6: Fuzzy set faChance variable

zoidal. All the other linguistic variables have triangular membership functions.

These three fuzzy sets are basically formed based on the data proyid®&RPA SensIT

project [10]. Many other fuzzy sets can be constructed by evaluatenddta in the process.

As mentioned above, the fuzzified inputs are applied to the fuzzy rulesufduzzy decision
algorithm, we have defined nine fuzzy rules. These nine fuzzy rulebeaeen in Table
3.4 similar to the fuzzy rules in [16]. These fuzzy rules make use of ANDaipeas the
conjunction of the antecedents. For example, Rule 1 states thBiislance is far AND
Energy is low thenChance is LF”. One may think that a sensor node closest to the target
should have the highest signal energy. Actually, this situation can be tmmest of the
cases. However, in real world environment, even if the sensor nodiesis o target, it may
not get the highest signal energy due to some environmental factotd@riing. Random
deployment may force sensor nodes to settle in holes or instable arease Otién hand,
some sensor nodes may have high signal energy values becauseepfwiois and so on.
These sensor nodes are eliminated if they are not close to the target.viéio@mar approach
provides a clear distinction between sensor nodes having similar locatisignat energies.
When one input variable is similar among the sensor nodes, the other injalileanakes

the diference.

In our approachDistance and Energy fuzzy input variables do not have same weights on

36



Table 3.4: Fuzzy rules for FDF algorithm

Rule No | Distance | Energy | Chance
1 far low LF

2 medium | low LM

3 near low LN

4 far medium | MF

5 medium | medium | MM

6 near medium | MN

7 far high HF

8 medium | high HM

9 near high HN

the fuzzy output variabl€hance. This situation can be observed by considering the rules in
Table 3.4. Depending on the data we used, we prefer to give more weidinengy fuzzy
variable tharDistance fuzzy variable. Therefore, in this approach, sensor nodes having mo
energy have more chance of being elected than the sensor nodesd¢iasadistances to the

target.

We use Mamdani fuzzy inference system in our approach. We choasedihi inference
system over Sugeno and Tsukamoto inference systems because itteabesteficial situa-
tions. The main reason we prefer Mamdani inference system is that it isvetaitd easy to
implement. Moreover, it has widespread acceptance. Mamdani infesgataam is also well

suited for human input [20].

Suppose two crisp input valueBjstance = 120 andEnergy = 0.01 are given. Firstly, the
intersection points for the variables should be determined on the fuzzyfsBistance and
Energy. Figure 3.7 and Figure 3.8 depict the fuzzification of the crisp input veiethe

input variabledistance and Ener gy respectively.

In Figure 3.7,Distance fuzzy variable has the degrees of membershipn@z8, 0.2 medium
and Ofar for input x = 120. The degrees of membership t6nergy variable are dow,
0.67medium and Ohigh for input x = 0.01. Onlymedium membership function foEnergy

variable is depicted in Figure 3.8 becalise andhigh membership values are 0.

After crisp input values are fuzzified, the rule evaluation phase startsur approach, we

have nine fuzzy if then rule listed in Table 3.4. In Table 3.5, nine rule evah&ta Distance
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Figure 3.7: Fuzzification of crispistanceinput x= 120

andEnergy input variables are shown.

Table 3.5: Fuzzy rule evaluation f@ri stance and Energy input variables

Rule No | Distance Energy Chance
1 far =0 low=0 LF=0
2 medium=0.2 | low=0 LM=0
3 near = 0.3 low=20 LN=0
4 far =0 medium=0.67 | MF =0
5 medium= 0.2 | medium=0.67 | MM = 0.2
6 near = 0.3 medium=0.67 | MN = 0.3
7 far =0 high=10 HF =0
8 medium=0.2 | high=0 HM =0
9 near = 0.3 high=10 HN=0

In Table 3.5, nine fuzzy rules are evaluated and corresporitagce values are calculated.
Since the operator in the antecedent part is AND for all the fuzzy rulesgmam operator is
used. InRule No 5, Distance has the value of.@ andEnergy has the value of 87. Applying

minimum operator, @ is obtained foMM linguistic variable aChance.

After rules are evaluated, the aggregation of the rule outputs shouldrigze dtne resulting
output area is shown in Figure 3.9. The shaded areas belong to the lingaistislesM M
and MN for Chance fuzzy set. The other linguistic variables are not shaded in the figure

because they have the degree of membership value 0 as the output eftubgien.
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The centroid of the shaded area in Figure 3.9 is then calculated. This ensid value is
the defuzzified chance value for the crisp inputs. In Equation 3.2, ¢dtirarea is calculated
as integral over the shaded area @rance fuzzy set in Figure 3.9. The defuzzified chance

value for crisp input®istance = 120 andEnergy = 0.01 is approximately 56.07.

defuzz fied chance value = ~ 56.07 (3.2)

Our fuzzy decision fusion algorithm can be seen in Algorithm 3.6. For thisrigfgn, the
sensor nodes have to complete their local classifications iNtldesLC structure. InNodes
structure, sensor nodes are kept. For all of the sensor nodes thedibietween the sensor
node and target is calculated. Like distance, we calculate the signalyeradng for all the
sensor nodes. The defuzzified chance value is then calculated vebeddistance and signal
energy fuzzy input variables as well as fuzzy rules in Table 3.4. Thwleded defuzzified
chance values for each sensor is kepNiodesCH. When the defuzzified chance value is
calculated for all sensor nodes, we try to find the class which has theshigha chance by
simply adding chance values from sensor nodes for each class tefpafdese values are
stored inWeightCount. The class having the highest total chanc&eghtCount, is the final
result. However, if there is a situation where more than one class havingrtiestgéghest total
chance, then the algorithm continues. In this case, we pick the sensmroptsbnsor Node,

having highest defuzzified chance value. The class label of thisiseade is determined to
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be final classification result for the classification process. If the highefsizzified chance
value is owned by more than onefférent sensor nodes, the first sensor node evaluated is

picked since no further separation can be made at this level.

3.6.1 Running example for FDF

In this section, a running example about FDF algorithm is told. Five semstmsnamell,
s2, s3, A andsb and also three class labels, c2 andc3 are used as at Section 3.3.1. The

classification results for FDF algorithm through five sample points are sirowable 3.6.

Table 3.6: Sample classification flow for FDF algorithm

P|sl-Chc| s2-Chc | s3—Chc | s4-Chc | s5-Chc | Result
cl-80 |c1-80 |cl-50 |c2-60 |c3-75 |cl
cl-75 | cl1-60 | c2-70 | c2-90 | c2-90 |c2
c3-75 | c3-80 |[c2-80 |cl-75 | c2-50 |c3
c2-90 | c1-80 |[c2-50 |cl1-75 | c2-60 |c2
cl1-50 [ c1-90 | c2-80 | c2-60 |c3-60 |cl

gl wl N+ n

Like in Table 3.2, rows and columns show same values in Table 3.6. Hovdéstamnce values
coming with sensor nodes are replaced with defuzzified chance valtisample points from

1 to 4, the defuzzified chance values are simply added by each classlaBsdabel with
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Nodes < Sensor nodes array

NodesLC « Sensor nodes - local classification result matrix

NodesCH « Sensor nodes - chance matrix

WeightCount < Class label - total chance matrix

for all Sensor Nodé in Nodes do
distance < Distance between the target and sensor ride
energy « Signal energy for sensor no&e
chance « Defuzzified chance value fali stance andenergy
NodesCH[S] « chance

end for

for all Sensor Node - Chance P&C in sortedNodesCH do
Node < Sensor node d6C
Class « Classification result fronNodesLC for sensomNode
IncremeniWeightCount[Class] with chance ofSC

end for

if WeightCount has more than one class having same highest wéight

optSensorNode <+ Sensor node having the highest chance

Find the classification result frolodesLC for sensomoptSensor Node

else
Find the class with highest weight iWeightCount

end if

Algorithm 3.6: Fuzzy Decision Fusion
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highest total defuzzified chance value is selected. However, at saoiptépcl andc2 have
same total defuzzified chance value 140. In this case, the sensor itbdiéghiest defuzzified

chance values2, is chosen with the final resudi.

3.7 Fuzzy Decision Fusion with Threshold

This algorithm is highly similar to the FDF algorithm mentioned at Section 3.6. Theyfuz
input or output variables and fuzzy rules for the FDF algorithm can aspblied to the fuzzy
decision fusion with threshold (FDFWT) algorithm. The FDF algorithm usethallsensor
nodes in the environment to produce a classification result. All the sepsesrctontribute
the final result with their defuzzified chance values. However, in somatigins, some sensor
nodes with low defuzzified chance values should be removed from thefidaton process.

These sensor nodes may mislead the whole classification process.

In FDFWT algorithm, we define a threshold chance value for sensoisndde sensor nodes
having defuzzified chance value lower than the threshold value are elimhin&@aly the

sensor nodes having the defuzzified chance value above the thrashelohsidered in fusion
operation. The magnitude of the chance values from remaining senses acglconsidered.

The algorithm is shown in Algorithm 3.7.

In Algorithm 3.7, sensor nodes are keptNodesand local classification result for each sensor
node is kept irfNodesLC. FDFWT algorithm starts like FDF algorithm. When the defuzzified
chance values are calculated for all sensor nodésoniesCH, reduction of the sensor node
begins using threshold value. The sensor nodes having lower dedazeifance value than
theT value are eliminated/VeightCount representing the total defuzzified chance values for
each class is filled with the data from the remaining nodes. The class label wiltigthest
total defuzzified chance value WeightCount is selected as the final classification result.
Unfortunately, some exceptional situations may occur in the algorithm. If nsosenode

is higher than or equal to threshold value, thatisightCount has 0O value for all classes,
then we look intooptSensorNode. Same procedure is applied when TiBSensor is found
whenWeightCount has more than one class having same highest copt@nsorNodeis the
node of which local classification result has the highest defuzzifiedogh@alue among all

sensor nodes. Since the local classification resuttfitiensor Node is known beforehand, we
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Nodes « Sensor nodes array
NodesLC « Sensor nodes - local classification result matrix
NodesCH « Sensor nodes - chance matrix
WeightCount « Class label - total chance matrix
T « Threshold value
TBSensor « Tie break sensor node number
for all Sensor Nodé& in Nodes do
distance < Distance between the target and sensor ridde
energy « Signal energy for sensor no&e
chance « Defuzzified chance value fali stance andenergy
NodesCH[S] « chance
end for
SortNodesCH according to chance values
for all Sensor Node - Chance P&C€ in sortedNodesCH do
if Chance ofSC greater than or equal b then
Node < Sensor node dbC
Class « Classification result fronNodesLC for sensoiNode
IncrementWeightCount[Class] with Chance ofSC
else
TBSensor < Sensor node d6C
Break for loop
end if
end for
if WeightCount has 0 value for all classes or Ai@Sensor is found whenWeightCount
has more than one class having same highest ¢bant
optSensorNode < Sensor node having the highest chance
Find the classification result froikodesLC for sensooptSensor Node
else if WeightCount has more than one class having same highest ¢bant
Find the classification result frofdodesL.C for sensoimTBSensor
else
Find the class with highest count WieightCount
end if

Algorithm 3.7: Fuzzy Decision Fusion with Threshold
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reach to the final classification result usiogSensorNode. Moreover, if more than one class
has the same highest defuzzified chance values among remaining sedesy the problem
still exists. In this case, the tie break sensor noSensor, says the last word. The tie
break sensor node is the sensor node having the highest defuzhifiedecvalue below the
threshold. No further action is done if there is more than one class havirgathe highest
defuzzified chance value below the threshold in the last situation. Whenrtikem occurs,

the first tie break sensor node evaluated is chosen.

3.7.1 Running example for FDFWT

For FDFWT algorithm, we present a running example in this part. We usesdivsos nodes
namelysl, s2, s3, s4 andsb and also three class label$, c2 andc3 as at Section 3.3.1.
In Table 3.7, the classification results for FDFWT algorithm through five $aupgints are

demonstrated.

Table 3.7: Sample classification flow for FDFWT algorithm

P|sl-Chc| s2-Chc | s3-Chc | s4—-Chc | s5-Chc | Result
cl1-20 | cl1-40 |cl1-25 | c2-60 |c3-50 |c2
cl-75 | cl1-60 | c2-90 | c2-30 |c2-45 |cl
c3-90 | c3-80 |[c2-85 |cl-75 | c2-85 |c3
c2-60 | c1-90 | c2-85 |cl-55 | c2-30 |c2
cl-20 c1-30 | c2-25 c2-25 | c3-40 c3

gl & w N~ ;

In Table 3.7, rows and columns show same values in Table 3.2 with defuzdifeedte value
attached to local classification results of the sensor nodes. The samplissixetimple shows
similarities with the DMDF running example. In this example, we use threshold Vialue
as 50. At sample point 1, only sensor no#leexceeds the threshold value? is the final
classification result. Sensor nodsls s2 ands3 have defuzzified chance values greater than
threshold value at sample point 2. When the values are added accordiaggdabels¢l is
selectedcl has the total value 135 whit2 has 90. None of the sensor nodes are eliminated
because of the threshold value at sample point 3. Since no tie break sedgoexists, the
sensor node with the highest defuzzified chance valliesays the last word. The equality
arised from the sum of the defuzzified chance values can be brokiéam tmgak sensor node,

sb, at sample point 4. Contrary to sample point 3, no sensor node is abled¢edihe
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threshold value at sample point 5. The sensor node with highest dedazeifance value is

selected again, which & with resultc3.
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CHAPTER 4

EVALUATION

In this chapter, we will evaluate the performance of our fuzzy decisisiofualgorithms with
three accepted decision fusion algorithms; majority voting decision fusiaresieneigh-
bor decision fusion andnyax decision fusion algorithms. Before the analysis of the results,
the testing environment for evaluation is described. Thréerdint scenarios are presented

according to sensor node deployments.

4.1 Testing Environment

In this work, we use the subset of the data provided by DARPA Senglj€qir[10] which

is called SITEX02. 75 sensor nodes are deployed on a desert arénee fexperiment. The
sensor nodes deployed along an east - west road, a south - naitlamdaan intersection
area. The target vehicles follow east to west road, west to north rehda@th to east road.
The sensor nodes have acoustic (microphone), seismic (geophariejraned (polarized IR

sensor) modalities.

The data set provided is composed of runs. A run is the drive of a vahidagh the testing
field. We try to classify two kinds of military vehicles: AAV and DW. We choosgyahe

east - west road for testing path for simplicity. We pick 17 sensors whiltect@ata from
the targets using this path. The runs through the east - west road ard néméhe name of
the vehicle and times of three. For example, AAV3 run represents thedirsifrthe AAV

vehicle through the east - west road while AAV6 represents the secoraf the AAV vehicle
through same path. We use three AAV runs named AAV3, AAV6, AAV9 and DW runs
DW3, DW6, DW9 and DW12.
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In our tests, we use acoustic features. Advantages of the acousticseasn be counted as
having long sensing range and high-fidelity, no line-of-sight requirénieing co-operable
and having passive nature. Moreover, acoustic sensors prodernable signal processing
[3]. The data set includes the acoustic feature vectors for eachrssst® and for each run.
The extracted features are based on the frequency spectrum aftiacgignal. FFT of the
signals is calculated for every 512 points yielding 512 FFT points. Firspbit is chosen.
These points are averaged by pairs resulting 50-dimensional FFd-fesdare vectors. We
reduce this number using our feature reduction technique. We usefgatilife vector after
reduction. Our classifier choice is kNN classifier due to fficiency and simplicity. The k

value in the tests for KNN classifier is 7.

The target positions for every 0.75 seconds for each run and posidfasensor nodes are
provided. However, the target positions are in Universal Transevdiercator (UTM) coor-

dinates. The UTM distance between target and sensor nodes are tealaigdang Simpson'’s
Rule provided in [22]. Moreover, DARPA data set has energy fileg&mh run. Energy val-
ues are calculated in 0.75 seconds intervals like target positions. THaes &g determined
by Constant False Alarm Rate (CFAR) detection algorithm. No information igged about

the time of feature extraction on sensor nodes. In other words, fordfispmoment, the

position of the target and the signal energy received by the senses laoel known. But, for
that specific moment, it cannot be derived which feature vector set msogxtt from a sensor
node. Therefore, we assume all the used sensors record the entira ofdtie target. When
the feature vector set has more time points from target time points, we simply @uapefe

vector time points to target time points.

Our metric for evaluating decision fusion algorithms is classification rate to meakssifi-
cation accuracy. To compute the classification rate, we use Equation 4R.[@¢notes the
classification rate percentage whilg, e« denotes number of samples classified correctly and
Notar denotes the number of total samples. To test the classification rate foragwse the
data of all six other runs as training set. We use our node-based tragtifymation when

obtaining data from training sets.

_ Neorrect-100
Ntotal

Re 4.1)

Average of the classification rate results for seven runs determine thedér@entage rate
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for a decision fusion algorithm. Our comparison is based on this averdagsification rate

value.

We compare fuzzy decision fusion algorithms with MVDF, NNDF and DMDROMDF, we

use the value 250 as the threshold distance whlue

Three diferent sensor node deployment scenarios are presented in the follsggtigns.
In the first scenario, sensor nodes are scattered through the tathewlpile in the second
scenario, sensor nodes are gathered. Last scenario containssehws picked for east -

west road.

4.2 Scenario 1: Scattered Sensor Node Deployment

In this scenario, we test decision fusion algorithms for scattered seaderdeployment. In
Figure 4.1, a sample path for the AAV vehicle and positions of the senseibustrated. 9

sensor nodes are used for this scenario.
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Figure 4.1: Scattered sensor nodes layout and sample AAV target path

First of all we try to find best threshold value for FDFWT algorithm. The sifasation rate
values of seven runs for threshold value from 20 to 70 are calculataetlle B.1 lists the

produced results. Bold written classification rates show the maximum ratesjpmcific run.
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Table 4.1: Classification rate of FDFWT usindfdrent threshold(T) values for Scenario 1

RunName | T=20| T=30| T=40| T=50| T=60| T=70
AAV3(%) | 1344 | 2131 | 2262 | 2459 | 2721 | 33.44
AAV6(%) | 80.50 | 7358 | 7421 | 7233 | 7484 | 7421
AAV9(%) | 5063 | 5949 | 5823 |5949 | 6076 | 62.03
DW3(%) | 90.91 | 7889 | 7537 | 7419 | 7419 | 7361
DW6(%) | 98.86 | 9425 | 9310 | 9080 | 89.08 | 8851
DW9(%) | 5063 | 4810 | 4684 | 4684 | 4810 | 55.70
DW12(%) | 73.10 | 66.20 | 6414 | 6483 | 6344 | 60.00
AVG(%) 65.44 | 6312 | 6207 | 6187 | 6252 | 6393

As seen in Table 4.1, FDFWT algorithm reaches the maximum classification hate tive
threshold value is 20. We compare the FDFWT algorithm with other decisioonfaggo-

rithms with this threshold value.

After we find the best threshold value for FDFWT algorithm, we can comfpagelecision
fusion algorithms for scattered sensor deployment. Table 4.2 shows tisdicti®n rates
of MVDF, NNDF, DMDF, FDF and FDFWT algorithms. Highest rates for a are again

written in bold font.

Table 4.2: Classification rate of decision fusion algorithms for Scenario 1

Run Name | MVDF | NNDF | DMDF(d = 250) | FDF | FDFWT(T = 20)
AAV3(%) | 229 | 1311 | 4.26 885 | 13.44
AAV6(%) | 7925 | 5283 | 76.73 7924 | 80.50
AAVO(%) | 2911 | 2025 | 2911 4936 | 50.63
DW3(%) | 99.12 | 7801 | 97.36 9267 | 9091
DW6(%) | 100.00 | 9655 | 100.00 100.00| 98.86
DW9(%) | 3291 | 3671 | 4051 4684 | 50.63
DW12(%) | 8690 | 6000 | 91.72 7655 | 7310
AVG(%) | 6137 |5107 | 6281 64.79 | 65.44

According to Table 4.2, FDFWT has the best classification rate among deéisimn al-
gorithms for scattered sensor node deployment. FDF algorithm comesisa&ftenFDFWT
algorithm. NNDF algorithm takes the last place.
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4.3 Scenario 2: Gathered Sensor Node Deployment
Scenario 2 has 9 sensor nodes as in Scenario 1. However, sedsgrare gathered in this
time. Sensor nodes layout and a sample AAV vehicle target path are givegure 4.2 for

gathered sensor node deployment.

x
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Figure 4.2: Gathered sensor nodes layout and sample AAV target path

We find the threshold value for FDFWT algorithm which provides the bessiflaation rate
for gathered sensor deployment. In Table 4.3, FFTWT algorithm clagsfioates are listed.

Threshold value is ranging from 20 to 70.

Table 4.3: Classification rate of FDFWT usindtdrent threshold(T) values for Scenario 2

RunName | T=20| T=30| T=40| T=50| T=60| T=70
AAV3(%) | 1460 | 2287 | 2452 | 2837 | 2866 | 33.61
AAV6(%) | 85.53 | 7895 | 7895 | 8026 | 8224 | 8290
AAVO(%) | 98.94 | 98.94 | 98.94 | 98.94 | 98.94 | 98.94
DW3(%) | 94.72 | 8827 | 8622 | 8651 | 8387 | 8299
DW6(%) | 100.00| 9943 | 9885 | 9885 | 9885 | 9885
DW9(%) | 851 2766 | 3191 | 3511 |3511 |4255
DW12(%) | 4231 | 4385 | 4615 | 4615 | 4615 | 46.92
AVG(%) 6352 | 6571 | 6651 | 6774 | 6769 | 69.54

The best classification rate is reached with the threshold value 70 for HDIRWathered

sensor deployment. This threshold value is used for comparing FDFWT thién decision
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fusion algorithms.

For Scenario 2, Table 4.4 illustrates comparison of the five decision fulgjoritam. Thresh-
old is 70 for FDFWT and distance is 250 for DMDF algorithms. Bold valuedfaerighest

values provided by an algorithm within a run.

Table 4.4: Classification rate of decision fusion algorithms for Scenario 2

Run Name | MVDF | NNDF | DMDF(d = 250) | FDF | FDFWT(T = 70)
AAV3(%) | 248 | 3140 | 551 992 | 3361
AAV6(%) | 9013 | 67.76 | 8158 90.79 | 8290
AAVO(%) | 9680 | 8298 | 9468 98.94 | 98.94
DW3(%) | 100.00 | 9853 | 99.71 9912 | 8299
DW6(%) | 100.00 | 100.00 | 100.00 100.00| 9885
DW9(%) | 213 | 638 | 213 532 | 4255
DW12(%) | 3692 | 2385 | 36.92 4154 | 46.92
AVG(%) | 6121 |5870 | 6008 6366 | 69.54

Like in Scenario 1, in Scenario 2 FDFWT algorithm has the best classificatienFDF has
the second place. However, the classification rafeidince is bigger this time between fuzzy

approaches and the others. NNDF algorithm has the worst percentage.

4.4 Scenario 3: All Sensor Node Deployment

Last scenario includes all 17 sensors for testing. Layout of this 1sbsemwith sample AAV

target path is depicted in Figure 4.3.

As in the previous two scenarios, we start with choosing the best threghlokel for FDFWT
algorithm. Table 4.5 lists the classification rates for FDFWT using all senstesnd hreshold

values are again in the interval of 20 and 70.

Based on the results in Table 4.5, threshold value chosen is 30. FDFWmjzaced with

other decision fusion algorithms with this value as it happens in the previenasos.

Table 4.6 shows the classification rates for five decision fusion algorithmksaresor node

deployment. Threshold for FDFWT is 30 and distance is again 250 for DMDF
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Figure 4.3: All sensor nodes layout and sample AAV target path

Table 4.5: Classification rate of FDFWT usindtdirent threshold(T) values for Scenario 3

RunName | T=20| T=30| T=40|T=50| T=60|T=70
AAV3(%) | 6.89 1653 | 1763 | 2259 | 2645 | 30.03
AAV6(%) | 84.28 | 7862 | 7862 | 7862 | 7799 | 7547
AAV9(%) | 8936 | 92.55 | 9043 | 8298 | 7660 | 76.60
DW3(%) | 98.24 | 9032 | 8622 | 8475 | 8211 | 7977
DW6(%) | 98.28 | 91.38 | 8851 | 8678 | 8563 | 8219
DW9(%) | 7.45 2447 | 2660 | 2660 | 2979 | 37.23
DW12(%) | 79.31 | 7517 | 7241 | 69.66 | 6897 | 6621
AVG(%) 66.26 | 67,01 | 6577 | 6457 | 6393 | 6393

In this case FDFWT algorithm has the best classification rate. FDF is slightlyewtban
FDFWT. MVDF takes the third place in scenario with deployment of all theasnNNDF

is again in the last place.

4.5 Overall Evaluation

Based on the data presented in the previous three scenarios, Figuas 44 shown.

In Figure 4.4, averaged overall evaluations are depicted. Accordirgstdts, FDFWT has
the best classification results among all the decision fusion algorithms. F€asd and

MVDF is the third. Like in all the scenarios, NNDF is in the last place.
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Table 4.6: Classification rate of decision fusion algorithms for Scenario 3

Run Name | MVDF | NNDF | DMDF(d = 250) | FDF | FDFWT(T = 30)
AAV3(%) | 220 | 17.91 | 248 496 | 1653
AAV6(%) | 92.45 | 5283 | 8583 8994 | 7862
AAVO(%) | 7447 | 2234 | 6383 9043 | 92.55
DW3(%) | 100.00 | 87.39 | 99.41 100.00| 90.32
DW6(%) | 100.00 | 9310 | 9655 100.00| 9138
DW9(%) | 426 | 27.66 | 4.26 319 | 2447
DW12(%) | 8345 | 6690 | 87.59 8000 | 7517
AVG(%) | 6526 |5259 | 6281 6693 | 67.01

. \VDF
[ NNDF
C—JowmbF
[ FoF
. FOFWT

Classification Rate (%)

Figure 4.4: Overall evaluation of decision fusion algorithms

The fuzzy approaches perform the best approach when the sestses are gathered. When
the distance factor is almost same for all sensor nodes in this scenariastiuecd based
decision fusion algorithms experience more failure. Since sensors @ tcleeach other,
they all may have a wrong classification result together. In scatteredytephd, sensor
nodes can have fiierent classification results and a wrong result can be eliminated due to

sensor nodes being in veryflidirent locations.

According to [6], AAV vehicle moves at low speed in the run AAV3 and DWhiede has
a relatively high speed in the run DW9. This explains why the classificatis e seri-
ously wrong in these runs. However, fuzzy approaches performeti tretter than the other
decision fusion algorithms for this runs. Signal energy variable makes ifiesahce. The

distance based decision fusion algorithms are good at vehicles at ngre®al.sSince the
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fuzzy approaches both include the distance and signal energy vari#tidy perform better

overall.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, two fuzzy decision fusion methods for target classification$iN\Wave been
developed. We applied fuzzy logic in order to improve the accuracy of ldesification
process. Additionally, feature reduction and training set formation teaksigre provided as

a part of this work.

Our feature reduction technique is based on th#edince values of the class labels. The
dominant feature vectors having the highesfedence values among classes are determined
and these feature vectors are used for target classification. Byingdaatures, the time spent
for local classification on a sensor node is diminished which in turn coraditjeincreases

the dficiency of the algorithm.

Our training set formation approach again focuses on reducing the timé @péntra-node
computations for local classifications. We propose node-based traieirfgrsnation. To
classify an input feature vector for a specific node, only the trainindeseétire vectors for
that specific sensor node are used. The other feature vectors areddor this sensor node

as they do not have observable contribution.

The fuzzy decision fusion algorithm is our first approach on decisisiofu We use fuzzy
input variablesEnergy and Distance. The only fuzzy output variable €hance. Based on
the distance and energy values of the sensor nodes and fuzzy rdédazaified chance value
is calculated for each sensor node. Having higher energy and ristance leads a sensor

node to have a higher defuzzified chance value. Defuzzified chahgesvare added class-
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wise and the class having the highest total defuzzified chance value a$esedes the final

result.

Fuzzy decision fusion with threshold algorithm has the same preliminaries vagy fie-
cision fusion. The defuzzified chance value is also calculated for eatdos node in this
algorithm. However, the sensor nodes having lower defuzzified cheahge than the thresh-
old value are eliminated. After elimination of the sensor nodes, algorithm belile fuzzy

decision fusion algorithm.

We evaluate our two decision fusion algorithms with three popular decisi@nfatgorithms:
Majority voting, nearest neighbor amld,x algorithms. We use real data set for classification
process. Both of the fuzzy based algorithms proposed in this thesismpeséiter classifica-

tion accuracy compared to these three known decision fusion algorithmsmekaluations.

To conclude, fuzzy decision algorithms have a high potential to improveifitasi®n accu-

racy for target classification in WSN.

5.2 Future Work

In this thesis, we evaluate decision fusion algorithms according to their otasisifi accu-
racies. Some further research may be done for evaluating other parsmEte instance,
the sensor energy level can be considered in classification prochesdetision algorithm
consuming least energy can be found. The fusion algorithms may beeathangmproved
to consume less energy. In the same manner, the time spent to execute dasisiomlgo-
rithms may be compared. The compatibility of the decision fusion algorithms magehan
based on these evaluation criteria. The ultimate decision fusion algorithm wieids best

results for each parameter can be designed.

Feature extraction can also be studied alone. THeetof the feature extraction technique on
classification accuracy may be examined. The observation is made betweagadsification
accuracy based on random features and the classification accasszydn robust and healthy

features.

Different modalities may haveftirent results. The optimum modality for specific target clas-

sification problem can be found. Data sensed for all the available modalitigsecaompared
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for the best classification result.

Classifiers also have somé&ext on classification accuracy. Several classifiers can be tested
for fusion algorithms. The behavior of the fusion algorithms with local clasgifin results
formed from diferent classifiers may be observed. The best classifier- fusion atgquir

may be discovered.

Since the classification algorithm involves many parameters during prabessptimization
of these parameters seems to be endless. A positive change in a parandtave negative
result on other parameter. Nevertheless, a stable model with optimum paaifnebrist
feature vectors, suitable modalities, the most appropriate classifier andtdesining set,

best fusion algorithms) can be developed for further study.
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