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ABSTRACT 

DISCRETE TIME/COST TRADE-OFF PROJECT SCHEDULING WITH A 
NONRENEWABLE RESOURCE 

 

Kırbıyık, Selin 

M.Sc., Department Industrial Engineering 

Supervisor   : Prof. Dr. Meral Azizoğlu 

Co-Supervisor : Asst. Prof. Dr. Ferda Can Çetinkaya 

 

November 2009, 71 pages 

 

In this thesis, we consider a discrete time/cost trade-off problem with a single 

nonrenewable resource. We assume the resource is released at some prespecified 

time points and at some prespecified quantities. We also assume that the costs due to 

the activities are incurred at their completions. Our aim is to minimize total project 

completion time. 

We formulate the problem as a pure integer programming model. We show that the 

problem is strongly NP-hard. We find lower bounds by pure linear programming and 

mixed integer linear programming relaxations of the model. We develop three 

heuristic procedures using the optimal solutions of mixed integer linear program and 

pure linear program. 

The results of our computational study reveal the satisfactory performance of our 

heuristic procedures. 

Keywords:  Project scheduling, discrete time/cost trade-off, nonrenewable resource. 
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ÖZ 

YENİLENEMEYEN KAYNAKLA KESİKLİ ZAMAN/MALİYET ÖDÜNLEŞİM 
PROJE ÇİZELGELEMESİ 

 

Kırbıyık,Selin 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Meral Azizoğlu 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Ferda Can Çetinkaya 

 

Kasım 2009, 71 sayfa 

 

Bu tezde, yenilenemeyen kaynakla kesikli zaman/maliyet ödünleşim problemi ele 

alınmıştır. Kaynağın önceden belirlenmiş zamanlarda ve miktarlarda açığa çıktığını 

varsayıyoruz. Aynı zamanda, maliyetlerin de aktivite tamamlanma zamanlarında 

gerçekleştiğini varsayıyoruz. Amacımız, toplam proje tamamlanma süresini 

minimuma indirmektir. 

Problem salt tamsayı programlama şeklinde formüle edilmiştir. Problemin NP-zor 

olduğunu gösterdik. Alt sınırlar, salt tamsayı programlama ve modelin karma 

tamsayı programlamasının gevşetilmesiyle elde edildi. Karma tamsayı lineer 

programlamanın optimal sonuçlarıyla iki sezgisel yöntem geliştirilmiştir.  

Elde ettiğimiz sonuçlar, yaptığımız sezgisel prosedürlerin performanslarının tatmin 

edici olduğunu göstermektedirler. 

Anahtar Kelimeler:  Proje Çizelgeleme, kesikli zaman/maliyet ödünleşimi, 

yenilenemeyen kaynak. 
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CHAPTER 1 

 

INTRODUCTION 

 

A project is a set of interrelated activities to be conducted to achieve a 

prespecified goal. Project management is planning, organizing, directing, 

scheduling and controlling the resources, the budget and achieving a satisfactory 

performance from them. With the current advances in business structures and 

enterprises, project management concept gained considerable importance in the 

last decades. Project scheduling defines the start and completion time of the 

activities with precedence relations and resource constraints. Project scheduling is 

the core of project management.   

In project scheduling, several resources need to be considered. The studies that 

involve resource are mainly of two types: time/cost trade-off problems and 

resource constrained problems. 

Resource-constrained project scheduling problems apply when there are concerns 

on the availability of the resources. More resources can be dedicated to the 

activities in consideration to minimize the total duration of the project. Resource 

leveling problem arises when the objective is to keep the resource amount at a 

certain level. Resource allocation minimizes the total duration subject to a limited 

resource.  

In a project there might be many limited resources that are ready to be used; either 

in renewable or nonrenewable forms. Manpower, machines, equipments can be 
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considered as renewable resources which are available at each time period 

whereas money is a limited nonrenewable resource.  

Time/Cost Trade-off models form an important body of the project scheduling 

problems. These problems do not consider any limit on the availability of the 

resources; but assume different alternatives for processing an activity. They 

assume that the time to perform an activity can be reduced if extra cost is paid. 

These problems are referred to as discrete time/cost trade-off problems if there are 

a defined number of alternatives to perform each task. These alternatives are 

defined such that a smaller duration alternative has higher cost. 

Time/Cost trade-off problems can be of three types; deadline, budget and curve. 

The deadline problem aims to minimize the project cost while constrained to 

finish the project at a certain deadline. The budget problem minimizes the 

completion time of the project within a given budget. The Time/Cost curve 

problem considers both time and cost aspects and finds a set of nondominated 

solutions from a set of feasible time-cost pairs. 

In practice, Time/Cost trade-offs and resource constraints may also appear 

together in the same environment. In this study, we consider such an environment. 

We assume that there are discrete alternatives to perform each task and there is a 

single nonrenewable resource that is released at some specified time points. 

In project scheduling problems, generally it is assumed that the total budget of the 

project is given at the beginning in advance or at the end of the project as a total 

payment. If all budget becomes available at the beginning then the problem 

reduces to the budget problem. If the total payment is received at the completion 

then the deadline problem that forces the earliest possible project completion time 

becomes a good fit. In many practical situations, the payments are received 

progressively at certain time points, but not entirely at the beginning or end of the 

project. Generally these payment points are the end of the pre-defined milestone 
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activities. Also, all projects have budget consumption according to the work that 

are done by their activities. These budget consumptions should also be optimized 

to secure the completion of the project i.e., the cost incurred by the activities or 

total payment to the project should not exceed the total reserved budget. 

The time period between two consecutive milestone events is referred to as an 

interval. The points at each which payments are received are referred to as 

milestone events. We assume the resources are nonrenewable in the sense that if 

the amount released at the beginning of the interval is not entirely used in the 

interval, the unused amount is transferred to the next interval. Hence the unused 

amounts accumulate, not lost, unlike the renewable resource case. Our aim is to 

minimize the project completion time in such a way that at each interval total 

budget available is no less than total budget consumed by the assigned activities. 

The decision is to select the time/cost pair for each activity, among the select of 

specified modes. 

The rest of the thesis is organized as follows; in Chapter 2, the related literature 

survey is discussed In Chapter 3, problem definition together with the 

mathematical model is given. In Chapter 4, modification to the model, its linear 

programming relaxation and heuristic procedures are discussed. Chapter 5 

presents our computational study. In the last chapter, Chapter 6, conclusions and 

suggestions for further studies are given.  
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CHAPTER 2 

 

PROJECT SCHEDULING: BASICS AND LITERATURE SURVEY 

 

In this chapter, the basics of the project scheduling will be reviewed and related 

literature is discussed. We will give the mathematical models for different types 

of discrete time/cost trade-off and resource- constrained problems. 

2.1 Project Management in General 

Project Management Institute defines project as a temporary endeavor undertaken 

to create a product or service. Project management is planning, organizing, 

directing, scheduling and controlling the resources, the budget and achieving a 

satisfactory performance from them. 

2.2 Project Scheduling in General 

Project Management means planning, controlling and organizing a project. Project 

Scheduling is the core of the Project Management and specifies the start and 

ending times of the activities. The precedence relations, durations, costs are the 

characteristics of the activities (Fulkerson, 1961, İçmeli et al., 1993). An activity 

has immediate predecessor(s) which are to be completed before the current could 

start, similarly, immediate successor(s) which could start only if the current 

activity is completed (Demeulemeester and Herroelen, 2002, Weglarz, 1998). 

Project network depicts these precedence relations. 
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There are two types of networks used to present the activities and precedence 

relations; AoA (activity on arc) and AoN (activity on node). In AoA 

representation, activities are represented by arcs and in AoN, activities are 

represented by nodes. When using an AoA representation for a network, two 

dummy nodes are needed to initiate and finish the project; i.e. the beginning and 

the end. For a sample project whose data are given in Table 2.1, we give the AoN 

and AoA network representations in Figure 2.1 and Figure 2.2 respectively 

(Elmaghraby, 1970). 

 

Table 2.1 The Activities of a Sample Network 

 

 

 

Figure 2.1 AoN Representation of the Network 

 

Activity Duration Cost Immediate 
Predecessor(s)

Immediate 
Successor(s)

A 2 5 - B,C
B 4 3 A D
C 5 3 A D
D 3 7 B,C E
E 4 2 D -
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• Control: Defines the distinctive points in a project and makes it 

easier to control. 

• Training: Gives a good insight for the team and the managers on 

how to control the project and develop for the other projects. 

To perform CPM and PERT, every task should be well-defined with a definite 

start and ending point. The relations and sequence of the tasks should determined 

beforehand (Wiest and Levy, 1969). 

After determining the characteristics, the longest path is found through the 

network. This is called the critical path of the network which is made up of critical 

activities and the completion time of the last activity determines the total length of 

the project. 

2.2.2 Project Scheduling with Resource Constraints 

A project scheduling problem with resource constraints is called a Resource-

Constrained Project Scheduling Problem (RCPSP). The resource-constrained 

project scheduling problems, a problem may be activity based or project based 

(Klein, 1999).  

2.2.2.1 Time/Cost Trade-off (Activity Based) 

Time/Cost Trade-off Problem can be defined as an activity based resource-

constrained project scheduling problem. A time/cost trade-off problem may have 

either continuous alternatives or discrete alternatives. 

2.2.2.1.1 Continuous Alternatives 

If a time/cost trade-off problem has discrete alternatives, then there are no single 

modes of time and cost that can be used directly. Instead a function is specified 

for the time and cost pairs for a problem. 
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2.2.2.1.2 Discrete Alternatives  

In many real life applications, there are several alternatives to conduct a job in 

terms of time and cost.  In project scheduling literature these problems are 

referred as time/cost trade-off problems. The alternatives are referred to as modes 

in discrete time/cost trade-off problems (DTCTP). (De et al., 1995, Kolisch and 

Padman, 2001, Demeulemeester et al., 1996). 

Despite its practical importance, the discrete time/cost modes can be used to 

represent a continuous time/cost curve as mentioned by Elmaghraby (1977).  

Table 2.2 tabulates an example of time-cost alternatives for the activities of a 

project. In this table the second column shows the activity modes. Activity A has 

three modes with different duration and cost values. In DTCTP, only one mode is 

to be selected for each activity. 

 

Table 2.2 Sample Modes of Activities in a Project 

 

Activity Mode Duration Cost
Immediate 

Predecessor(s)
Immediate 

Successor(s)
1 1 10
2 2 5
3 3 4
4 5 2
5 10 1
1 2 15
2 4 3
3 6 2
1 1 15
2 3 6
3 4 4
4 5 3
1 3 7
2 10 2
1 2 8
2 4 2
3 7 1

E D -

C A D

D B,C E

A - B,C

B A D
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There are three types of discrete time/cost trade-off problems (DTCTP) studied. A 

project that is to finish within a certain time interval (due date) is said to be a 

deadline problem while minimizing the total cost of the project. On the other 

hand, a budget problem focuses on minimizing the completion time of the project 

within a given budget. A time/cost curve problem in DTCTP problems is 

simultaneously selecting the non-dominated pairs of time and total cost values.  

Below are the mathematical formulations of the problems. 

Indices: 

݅: activity index                           ݅ ൌ 1,2, … . , ܰ ൅ 1                        

݆: mode index                                ݆ ൌ 1, … . , ݉௜  

ܰ ൅ 1 is the dummy activity indicating the ϐinish of the project 

Parameters: 

݉௜ ൌ number of modes of the activity ݅ 

ܿ௜௝ ൌ cost of activity ݅ at mode ݆ 

݀௜௝ ൌ duration of activity ݅ at mode ݆ 

௜ܲ ൌ set of immediate predecessors of activity ݅ 

Decision Variables: 

ܥ ௜ܶ ൌ Completion time of activity ݅ 

௜௝ݔ ൌ  ൜ 1,    if activity ݅ is assigned to mode ݆     
     0,    otherwise                                                      
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ܥ ேܶାଵ ൌ Total project completion time 

Constraints: 

∑ ௜௝ݔ
௠೔
௝ ൌ 1           ݅ ൌ 1, … , ܰ ൅ 1                (2.1) 

ܥ ܶ࢏ ൒ ܥ ܶ࢑ ൅ ∑ ݀௜௝ݔ௜௝
௠೔
௝ୀଵ       ݅ ൌ 1, … , ܰ ൅ ݇׊        1 א ௜ܲ         (2.2) 

ܥ ܶ࢏ ൒ 0                                            (2.3) 

௜௝ݔ א ሼ0,1ሽ                               ݅ ൌ 1, … , ܰ  ;   ݆ ൌ 1, … , ݉௜         (2.4) 

Equation set (2.1) indicates that each activity should be conducted at exactly one 

mode. Second equation set (2.2) gives the immediate precedence relations of the 

activities given in set Pi, i.e. activity k’s immediate successor is activity i. The 

next equation set (2.3) states that the completion time of the activities is 

nonnegative. ݔ௜௝ is the binary variable of the model.  

There exists ∑ ݉௜
ே
௜ୀଵ  number of ݔ௜௝  binary variables, ܰ ൅ 1  number of ܥ ௜ܶ 

variables. Totally there are ܰ ൅  ∑ | ௜ܲ
ே
௜ୀଵ | number of constraints. 

Pre-mentioned types of DTCTP’s are based on the above decision variables and 

constraints. Below are the formulations of these problems. 

Deadline Problem: 

The deadline problem minimizes the total cost of the project subject to a given 

deadline.  

The additional constraint set states that the total project completion time cannot 

exceed the deadline of the project (T) (Equation (2.5)). 

ܥ ேܶାଵ ൑ ܶ                  (2.5) 
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The objective function given in (2.6) minimizes the total cost. 

∑ ∑ ܿ௜௝ݔ௜௝
௠೔
௝ୀଵ

ே
௜ୀଵ                 (2.6) 

Demeulemeester (1998) and Hafızoğlu and Azizoğlu (2008) are some researchers 

that study the deadline problem. 

Mathematical Model of Deadline Problem 

݉݅݊  ∑ ∑ ܿ௜௝ݔ௜௝
௠೔
௝ୀଵ

ே
௜ୀଵ    

Subject to (2.1), (2.2), (2.3), (2.4), (2.5). 

Budget Problem 

The budget problem minimizes the completion time of the project subject to a 

given budget.  

The additional constraint set states that the cost incurred by all activities cannot 

exceed the budget of the project (B) (Equation 2.7). 

∑ ∑ ܿ௜௝ݔ௜௝
௠೔
௝ୀଵ

ே
௜ୀଵ ൑  (2.7)                           ܤ

The objective function of the budget problem is given in (2.8) and minimizes the 

completion time of the project. 

݉݅݊ ܥ ேܶାଵ                               (2.8) 

Hazır et al. (2009) and Değirmenci and Azizoğlu (2008) are some researchers that 

study the budget problem. 

Mathematical Model of Deadline Problem 
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݉݅݊ ܥ   ேܶାଵ   

Subject to (2.1), (2.2), (2.3), (2.4), (2.7). 

Time/Cost Curve Problem 

Time/Cost Curve Problem finds the set of non-dominated solutions with respect to 

total cost and completion time criteria. A solution S is said to be non-dominated if 

there does not exist any other solution S’ such that ܥேାଵሺܵ ′ሻ ൑ ேାଵሺܵሻܥ  and 

∑ ∑ ܿ௜௝ݔ௜௝ሺܵ ′ሻ ൑ ∑ ∑ ܿ௜௝ݔ௜௝ሺܵሻ with strict inequality holding at least once. Finding 

the time/cost curve is important as the optimal solution of a nondecreasing 

function of total cost and completion time is in the nondominated solution set. 

Demeulemeester (1998) use the deadline problem to construct the time/cost trade-

off curve. Alternatively the budget problem can be used to construct this curve. 

2.2.2.2  Resource Constrained Project Scheduling Problem 

Several approaches like linear and integer programming, dynamic programming, 

implicit enumeration, bounded enumeration and heuristic programming are used 

to solve resource-constrained project scheduling problems (RCPSP) (Herroelen, 

1972).  

The integer programming (0-1) model that was suggested by Gonguet minimizes 

the completion time of the project where the binary decision variables control the 

start time of each activity. At each time interval, demand of each type of resource 

should not exceed its available amount. 

Pritsker et al. (1969) allow preemptions and assume different arrival times and 

due dates for the activities. They propose integer programming (0-1) model for 

three possible objective functions; minimizing the completion time, minimizing 

total lateness and minimizing the lateness penalty. According to their model, the 
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time periods are determined based on the activities’ arrival times, precedence 

relations and due dates.  

Herroelen et al. (1998) state that in most of the cases the objective in project 

scheduling problems is minimizing the completion time of the project, which is a 

regular objective function. However in recent years, focus is shifted to non-

regular objective functions such as maximizing the net present value (NPV). A 

non-regular objective function can be described as a function that does not worsen 

even if there is a delay on some activities. Maximizing NPV is also called 

payment scheduling problem in the literature.  There is no constraint regarding 

resource usage and activities have fixed durations which involve cash flow 

payments and receipts.  

In discrete time/resource trade-off problems, it is assumed that all the activities 

are conducted on one single mode and on one single time period with a restriction 

of renewable resource(s) in a single period and subject to precedence relations.  

Below is the formulation of the discrete time/resource trade-off resource-

constrained problem. (Herroelen et al.,1998) 

Indices: 

݅: activity index                ݅ ൌ 1,2, … . , ݊                       

݆: mode index                     ݆ ൌ 1, … . , ݉௜  

:ݐ time index                     ݐ ൌ 0,1, … . , ܶ 

ܰ ൅ 1 is the dummy activity indicating the ϐinish of the project  

Parameters: 

݉௜ ൌ number of modes of the activity ݅ 
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௜௝ݎ ൌ resource usage of activity i at mode ݆ 

݀௜௝ ൌ duration of activity ݅ at mode ݆ 

௜ܲ ൌ  ݅ et of immediate predecessors of activityݏ

݁௜ ൌ critical path based earliest start time of activity  

          ݅ based on the modes with the smallest duration. 

݈௜ ൌ critical path based latest start time of   

 activity ݅ based on the modes with the smallest duration  

ܽ ൌ  constant renewable resource availability per period 

Decision Variables: 

௜௝௧ݔ ൌ  ൜ 1,    if activity ݅ is assigned to mode ݆ started at time ݐ    
        0,    otherwise                                                                                         

 

Mathematical Model: 

∑ ݊݅ܯ ௟೙ݐ
௧ୀ ௘೙

 ௡ଵ௧                         (2.9)ݔ

Subject to 

∑ ∑ ௜௝௧ݔ ൌ 1௟೔
௧ୀ ௘೔

௠೔
௝ୀଵ                           (2.10) 

∑ ∑ ൫ݐ ൅ ݀௜௝൯ݔ௜௝௧ ൑ ∑ ∑ ௞௝௧ݔݐ
௟ೖ
௧ୀ௘ೖ

௠ೖ
௝ୀଵ

௟೔
௧ୀ௘೔

௠೔
௝ୀଵ ݇׊   א ௜ܲ          (2.11) 

∑ ∑ ௜௝ݎ ∑ ௜௝௦ݔ ൑ ܽ௠௜௡ ሺ௧ିଵ,௟೔ሻ
௦ୀ௠௔௫ሺ௧ିௗ೔ೕ,௘೔ሻ

௠೔
௝ୀଵ

ேାଵ
௜ୀଵ               (2.12) 
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௜௝௧ݔ א ሼ0,1ሽ                            (2.13) 

Equation set (2.9) minimizes the completion time of the project subject to 

equation sets (2.10), (2.11), (2.12) and (2.13) which assigns activities to one mode 

at one time, arranges precedence relations of activities, maintains the renewable 

resource usage per period of time and forces the decision variables to be binary, 

respectively. 

The above formulation can be extended by adding nonrenewable and doubly-

constrained resource constraints with different types of objective functions. When 

a resource constrained project scheduling problem involves multiple renewable, 

nonrenewable and doubly-constrained resource restrictions with trade-offs, then 

the associated problem is called Multi Mode Resource-Constrained Project 

Scheduling Problem (MRCPSP) (Herroelen et al., 1998).    

In 1982, Talbot proposed a non-preemptive case for RCPSP with time/cost trade-

offs. In non-preemptive cases, an activity in the whole project cannot be split and 

proceed by the successor activity. Talbot (1982) uses two types of objectives; 

minimizing the project completion time and minimizing the overall project costs.  

Three types of resources are considered in this model; renewable, nonrenewable 

and doubly-constrained. Here renewable and nonrenewable resources are 

available to a certain extent for the whole project. Below is the formulation of the 

model: 

Indices: 

݅: activity index                ݅ ൌ 1,2, … . , ݊                        

݆: mode index                     ݆ ൌ 1, … . , ݉௜  

:ݐ time index                     ݐ ൌ 0,1, … . , ܶ 
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Parameters: 

݉௜ ൌ number of modes of the activity ݅ 

௜௝௥ݎ ൌ renewable resource ݎ usage of activity ݅ at mode ݆ 

௜௝௡ݓ ൌ nonrenewable resource ݊ usage of activity ݅ at mode ݆ 

݀௜௝ ൌ duration of activity ݅ at mode ݆  

௜ܲ ൌ set of immediate predecessors of activity ݅  

݁௜ ൌ critical path based earliest start time of activity  ݅ based on the modes  

          with the smallest duration. 

݈௜ ൌ critical path based latest start time of activity ݅ based on the modes    

         with the smallest duration  

ܴ௥௧ ൌ  available renewable resource of ݎ at time ݐ  

௡ܹ ൌ  available nonrenewable resource of ݊ at time ݐ  

Decision Variables: 

௜௝௧ݔ ൌ  ൜ 1,    if activity ݅ is assigned to mode ݆ started at time ݐ    
        0,    otherwise                                                                                         

Mathematical Model: 

∑ ݊݅ܯ ∑ ௟೙ݐ
௧ୀ ௘೙

௠೙
௝ୀଵ  ௡௝௧                (2.14)ݔ

Subject to 
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∑ ∑ ௜௝௧ݔ ൌ 1௟೔
௧ୀ ௘೔

௠೔
௝ୀଵ                             (2.15) 

െ ∑ ∑ ௜௝௧ݔݐ ൅ ∑ ∑ ሺݐ െ ݀௞௝ሻݔ௞௝௧
௟ೖ
௧ୀ௘ೖ

௠ೖ
௝ୀଵ

௟೔
௧ୀ௘೔

௠೔
௝ୀଵ k׊   א ௜ܲ           (2.16) 

∑ ∑ ∑ ௜௝௥x௜௝௤ݎ
௧ାௗ೔ೕିଵ
௤ୀ௧

௠೔
௝ୀଵ ൑ ܴ௥௧

ே
௜ୀଵ                                       (2.17) 

∑ ∑ ∑ ௜௝௡x௜௝௧ݓ
௟೔
௧ୀ௘೔

௠೔
௝ୀଵ ൑ ௡ܹ

ே
௜ୀଵ    (2.18) 

௜௝௧ݔ א ሼ0,1ሽ                             (2.19) 

The objective function minimizes the project completion time as stated in 

Equation set (2.14). Equation set (2.15) ensures that an activity is completed once 

at one time in one mode. The next equation set (2.16) gives the precedence 

relations of the activities. Resource constraints are given by the equation sets 

(2.17) and (2.18). The first one, regarding renewable resources ensures the 

availability of the resources at each time period. The second equation which 

considers nonrenewable resources constrains the limit of the resource for the 

entire project. Doubly constrained resources may be given as a combination of 

both resource constraints i.e., ݎ௜௝௥ ൌ  ௜௝௡/݀௜௝ where r and n can be considered asݓ

the same type of resources. Equation set (2.19) forces the decision variables to be 

binary. 

2.3 Most Closely Related Problems 

Nonrenewable Resource Constraints 

Carlier and Rinooy Kan (1982) show that a single nonrenewable resource problem 

with the following settings is polynomially solvable. The single resource is 

released at prespecified time points at prespecified quantities.  

Hence our problem with fixed modes is polynomially solvable. 
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Budget Problem  

When all units of the single resources are released at time zero at prespecified 

quantity B, our problem reduces to the budget problem in discrete time/cost trade-

off scheduling. 
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CHAPTER 3 

 

THE MODEL  

 

In this chapter, firstly we define the problem. Then the chapter continues with the 

construction of the model for our problem. 

3.1 Problem Definition 

In the literature, mostly renewable resources are used as the resource type, which 

includes manpower, equipments or machines. When nonrenewable resources are 

considered, like the capital budget, it is assumed that the resource is available as a 

lump sum in the lifetime of the project. Thus theoretically, it is assumed that the 

total budget of a project is available either in the beginning or at the end of the 

project. However, this is not common in practice. Mostly, dedicated budget is 

released at certain time intervals corresponding to the either completion or 

beginning of an activity or regular time periods. These certain time instants that 

the budget is released are said to be milestones. Thus at each milestone event, 

there is resource inflow.  

If the budget releases are at time instants t1, t2, and t3, then the budget released at 

t2 covers the costs of the completed activities in interval ሺݐଵ,   .ଶሿݐ

In the model, only one nonrenewable resource, say budget, is used. After each 

time instant if the total budget released is not entirely used by the activities, then 

the remaining amount is transferred to the next time interval to be used.  
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In our model, we assume a cost is incurred whenever an activity is complete and 

money is received at certain time instants, called milestones. 

The model constructed takes the mode selection decisions into account in terms of 

time/cost trade-off. There are several modes with different time and cost pairs. We 

assume the activities can be shortened whenever additional money is spent. 

In this model it is important to define the time intervals, as the activity selections 

are also based on time, t. Completion time of an activity should lay between two 

or more consecutive time instants.  

In the following section, mathematical representation of the problem described 

above is given.  

3.2 The Model  

We first define the indices, parameters, decision variables and constraints. 

Indices: 

݅: activity index                               

݆: mode index                      

:ݐ time index                      

Parameters: 

݊ ൌ number of activities in the project  

݉௜ ൌ number of modes of the activity i                               ݅ ൌ 1,2, … . , ݊ ൅ 1          

ܫܶ ൌ number of time instants at which money is released 
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ܿ௜௝ ൌ cost of activity ݅ at mode ݆           

݅   ൌ 1,2, … . , ݊ ൅ 1, ݆ ൌ 1, … . , ݉௜           

௜௝݌ ൌ processing time of activity ݅ at mode ݆  

Note that ௜ܲ௝భ ൐ ௜ܲ௝మ implies ܿ௜௝భ ൏ ܿ௜௝మ. 

௧ܤ ൌ Budget released at time ݐ                                                         ݐ ൌ 0,1, … . , ܶ 

௜ܲ ൌ set of immediate predecessors of activity ݅                        ݅ ൌ 1,2, … . , ݊ ൅ 1          

If activity k is immediate predecessor of activity i, then ௜ܲ includes k. 

௧ܫ ൌ time instant ܫ at which t୲୦ payment is recieved                      ݐ ൌ 0,1, … . , ܶ 

Decision Variables: 

௜௝௧ݔ ൌ  ൜ 1,    if activity ݅ is assigned to mode ݆ started at time ݐ    
        0,    otherwise                                                                                        

ܥ ௜ܶ ൌ            completion time of activity ݅    

݇ ՜ ݅            activity ݅ is successor of  ݇    

Mathematical Model: 

ܥ ݊݅ܯ ௡ܶାଵ   (3.1) 

∑ ∑ ௜௝௧ݔ ൌ 1்
௧ୀଵ

௠೔
௝ୀଵ  (3.2) ݅׊               

ܥ ௜ܶ ൒ ܥ ௞ܶ ൅ ∑ ∑ ௜௝௧ݔ௜௝݌
்
௧ୀଵ

௠೔
௝ୀଵ ,݅׊  ݇ א  ௜ܲ (3.3) 

∑ ∑ ∑ ܿ௜௝ݔ௜௝௧ ൑ ∑ ௧ܤ
ఛ
௧ୀଵ

ఛ
௧ୀଵ

௠೔
௝ୀଵ

௡
௜ୀଵ       ߬ ൌ 1                                              (3.4) 
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ܥ ௜ܶ ൑ ∑ ∑ ௜௝௧ݔ௧ܫ
்
௧ୀଵ

௠೔
௝ୀଵ                                                                               (3.5) 

ܥ ௜ܶ ൒ ∑ ∑ ሺݐܫെ1 ൅ 1ሻܶ
ൌ1ݐ

݉݅
݆ൌ1  ௜௝௧                                                                       (3.6)ݔ

ܥ ଴ܶ ൌ 0                                                (3.7) 

ܥ ௜ܶ ൒ 0                                                            (3.8) 

௜௝௧ݔ ൒ 0 and integer                                                          (3.9) 

The model has three indices; i, j and t, which identifies 

activities  ݅ ൌ 0,1, … … , ݊ ൅ 1 ; modes  ݆ ൌ 1, … … , ݉௜  and time interval ݐ  ൌ

0, … … , ܶ.  

There are n activities with one sink (dummy) node, ݊ ൅ 1, at the end to identify 

the project completion time. The number of modes is limited to the activities’ 

maximum mode number, ݉௜.Time index t, starts from 0 to T where T is the last 

time interval’s end. 

Minimizing the total completion time is the objective which Equation (3.1) below 

indicates.  

There are several constraints to be satisfied while minimizing the project duration. 

Equation set (3.2) ensures that each activity i is conducted exactly at one mode 

and at one time interval.  

Constraint set (3.3) satisfies the precedence relations. The completion time of 

activity i is no smaller the processing time of activity i added to the predecessor 

activity k’s completion time, i.e., the start time of a successor activity cannot be 

greater than the completion time of the predecessor.  
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Constraint set (3.4) guarantees that the total amount needed by all activities that 

are assigned to intervals 1,…,τ cannot exceed to the total amount released at time 

intervals 1,…,τ. 

Constraint sets (3.5) and (3.6) define the interval at which activity ݅  is completed. 

Constraint (3.7) states that the project starts at time zero. That is the completion 

time of the dummy activity is zero.  

Constraint set (3.8) is sign constraint. However the set is redundant as there is a 

single source activity with start time of zero. 

Constraint set (3.9) is for binary variables. Note that we do not include the upper 

bound on  ݔ௜௝௧ values, as equation set (3.2) satisfies  ݔ௜௝௧ ൑ 1 relation.  
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CHAPTER 4 

 

SOLUTION PROCEDURES 

 

In this chapter, we first discuss our lower bounding procedures and then present 

the heuristic procedures. All our procedures are based on linear programming 

relaxation (LPR) of the original model. 

4.1 Lower Bounds 

We develop two lower bounding procedures one is based on pure LP relaxation 

and the other one is based on strengthened LP relaxation of the model. The latter 

model has integer variables, but fewer in the number, when compared with the 

original model. 

4.1.1 Lower Bound 1  

We simply relax the integrality constraints on the  ݔ௜௝௧ values and solve the 

resulting linear program. In doing so, we replace  ݔ௜௝௧∈ {0, 1} with   constraints 

௜௝௧ݔ  ൑ 1 and  ݔ௜௝௧ ൒ 0 for all i ,j, t. The optimal project completion time value of 

the resulting LPR model is a lower bound on the optimal project completion time. 

We let this lower bound be LB1. 

In the LB1 solution, one or both of the following cases may be observed.  
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Case 1. An activity may be assigned to more than one period, i.e.,  ݔ௜௝௧ ൐ 0 for 

more than one t. 

Case 2. An activity can be assigned to more than one mode, i.e.,  ݔ௜௝௧ ൐ 0 for 

more than one j. 

It is possible to strengthen the lower bound, by preventing the occurrence of any 

one of the cases. For example the occurrence of Case 1 can be avoided by 

imposing a constraint that forces the completion of each activity to be in exactly 

one period. We next explain our strengthened lower bound that bases on this 

imposed constraint. 

4.1.2 Lower Bound 2  

Consider the following decision variable: 

௜௧ݕ ൌ  ൜ 1,    if activity ݅ is completed in period ݐ 
      0,    otherwise                                                         

The following two constraint sets are included to the LP relaxation together with 

new decision variables ݕ௜௧s. 

∑ ௜௧ݕ ൌ ௧݅׊                   1              (4.1) 

∑ ௜௝௧ݔ ൌ ,݅׊               ௜௧ݕ ௝ݐ              (4.2) 

Constraint set (4.1) requires each activity’s completion is assigned to at most one 

period. Constraint set (4.2) relates the continuous ݔ௜௝௧  values to new integer 

variables ݕ௜௧′s. 

The resulting model is a mixed integer linear program (MILP). We let the optimal 

completion time of the MILP be LB2. Note that  LB2 provides a lower bound on 

the optimal project completion as it does not avoid  multimode assignment i.e., 
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Case 2 can still occur. However, it is easier to solve as it includes much fewer 

binary decision variables due to the fact that there are ݊ ൈ  ܶ binary 

variables  ݕ௜௧’s in MILP, and there are  ሺ∑ ݉௜ሻ  ൈ௡
௜ୀଵ ܶ binary variables  ݔ௜௝௧’s in 

the original model. 

LB2 ≥ LB1 as it puts an additional restriction to the linear program. However it is 

harder to solve the mixed integer linear program as it includes binary decision 

variables. 

Alternately, Case 2 might be avoided by introducing the following decision 

variables and constraint sets (4.3) and (4.4). 

௜௧ݖ ൌ  ൜ 1,    if activity ݅ is assigned to its ݆௧௛ mode 
   0,    otherwise                                                        

 

where i = 1,...., n and j = 1,......, mi 

∑ ௜௝ݖ
௠೔
௝ୀଵ ൌ  (4.3)                  ݅׊      1

∑ ௜௝௧ݔ ൌ ,݅׊                 ௜௝ݖ ݆௧              (4.4) 

This model requires ∑ ݉௜
௡
௜ୀଵ  binary decision variables which is much more than 

݊ ൈ ܶ in particular when n>T. 

We did not try for this alternative, as our experiments have shown that the MILP 

to find LB2 results with many binary variables and few continuous variables, 

hence there are too few mode splitting. 

4.2 Heuristic Procedures 

In this section, we propose three heuristic procedures, i.e., upper bounds. All 

upper bounds use the optimal solutions of the MILP that allows mode splitting. 

The first heuristic makes the mode assignments using the partial or full mode 
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assignments made by MILP. Using these modes it finds an optimal solution 

considering the budget releases and usages. The second heuristic takes the full 

mode assignments from the MILP solutions and fixes these activities to the modes 

assigned by the MILP. The unassigned modes are the ones that receive partial 

assignments by the MILP. These mode assignments are done optimally by using 

the original IP. This step is done in exponential time, however, at reduced 

problem. The third heuristic uses pure LP relaxation results to make partial mode 

assignments. Using new modes it finds an optimal solution considering the budget 

releases and usages. 

Below are the detailed descriptions of the heuristic procedures. 

4.2.1 Heuristic 1 

If the mode assignments are known, the budget allocation problem reduces to the 

nonrenewable resource constrained time problem. This problem can be solved in 

polynomial time using the algorithm proposed by Carlier and Rinooy Kan (1982). 

For the sake of completeness we state the steps of this polynomial time algorithm. 

We need the following notation to state the algorithm. 

Pi = time to perform activity i at fixed mode. 

At= total amount of resource released till the end of the period t. 

Resource release profile plots t versus At. 

Rt = total amount of resource required till the end of period t when the activities 

are scheduled according to the latest start schedule. 

Resource requirement profile plots t versus Rt. 

Algorithm Y: 
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Step 1.  If Rt ≤ At for all periods t, then the resource requirement 

profile is beneath the resource release profile, and then stop. 

The latest start schedule is optimal. 

Step 2.  Shift the resource requirement profile to the right until all 

points of the profile lie on or below the resource release 

profile. 

Shifting the line is equivalent to increasing the project completion time. With 

minimum shift, the project completion time is minimized subject to budget 

constraints. 

Our heuristic procedure sets the activity modes using the optimal MILP solution. 

We mention the fractional mode assignments such that the budget constraint is not 

violated. Hence, we increase the fractional processing time till it fits to defined 

mode. We make the increase as small as possible to favor our objective of 

minimizing the total project completion time. We take the full mode assignments, 

if any made by MILP. After all activities are set to one mode, we apply Algorithm 

Y to find the optimal completion times subject to given mode assignments.  

After we obtain a schedule by implementing Algorithm Y, we shorten the project 

duration by reducing the task times of some activities. The activities that could 

reduce the project duration are the critical ones that are not already assigned to 

their shortest duration mode and that would not violate the budget constraints 

when assigned to its next shorter mode. We let the set of such activities as Set CP. 

We select the activity having the longest completion time in Set CP and assign it 

to its next shorter mode. After the reassignment, we shift the other activities to the 

left of the schedule; therefore reduce their completion times, as long as budget 

constraint permits. We stop when there is no further room for improvement, i.e., 

Set CP is empty or when the new schedule’s total completion time is found out to 

be higher than that of original schedule’s. 
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Below is the algorithmic description of our first heuristic procedure. 

Step 1.  Let  tiLP be the processing time of activity i returned by the 

MILP. 

Set activity i to mode ji such that   ݐ௜,௝೔ିଵ ൏ ௜௅௉ݐ ൑  .௜௝೔ݐ

i.e., the mode having the smallest processing time that is no 

smaller than tiLP. 

Step 2.   Let ݐ௜ ൌ   ௜׊     ௜௝೔ݐ

Find the project completion time using Algorithm Y with 

fixed ti values. 

Step 3.  Define the critical activities. 

Let CP be the set of critical activities whose durations can 

be reduced without violating the budget constraint and 

increasing the project duration. 

Stop if CP is empty. 

Step 4. Let r be the task in CP that has the highest completion time. 

Let jr be the current mode of task r. Assign task r to its next 

shortest duration mode, i.e., mode jr+1. 

Shift all activities that follow, i.e., all successors of task r to 

the right of the schedule as much as possible (as long as 

budget constraint permits). 

Go to Step 3.  
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In Step 1, we solve the MILP heuristically. The heuristic solution to MILP is 

found by giving 10% optimality gap to our IP-solver. We use 10% gap, as our 

initial experimentation has revealed that with this gap we still find satisfactory 

solutions for our heuristics as we observe that attaining optimal solutions is not 

easy. Moreover, optimal solutions are not essential as they are eventually used to 

produce approximate solutions. 

Step 2 runs in polynomial time as Algorithm Y is polynomial-time. The 

improvement steps, i.e., Steps 3 and 4 iterate at most ∑ ሺ݉௝ െ 1ሻ௝  times, as at 

worst case all activities may be at their longest modes and can be shifted to their 

shortest modes. Hence, the improvement step runs in polynomial time. 

4.2.2 Heuristic 2 

The heuristic runs in two steps. In the first step, the MILP with mode splitting is 

solved and the full mode assignments are fixed. In the second step, the mode 

assignments (that are partial in the MILP solutions) are made optimally using the 

IP. Below is the stepwise description of Heuristic 2. 

Algorithm X: 

Step 1.  Solve the MILP, by allowing α % gap allowance 

Let SLP be the set of activities that are fully assigned to a 

single mode. Let  ݇௜  be the mode index at which ݔ௜௞೔ ൌ 1  

for i ∈ SLP. 

Step 2.  Set ∑ ௜௞೔೟ݔ ൌ 1௧  for each i∈SLP and find the mode 

assignments for each ݅ ב S୐P by solving the original IP. 

Heuristic 2, without improvement steps (i.e., Steps 3 and 4) dominate Heuristic 1 

as it does the mode assignments for all ݅ ב S୐P  optimally whereas Heuristic 1 
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does those assignments heuristically. In other words, Heuristic 1 pre-sets the 

mode assignments whereas Heuristic 2 decides on their values. 

After the improvement steps, there is no domination between Heuristic 1 and 

Heuristic 3. 

4.2.3 Heuristic 3 

Note that Heuristics 1 and 2 run in exponential time. A polynomial time heuristic 

is also generated by implementing Heuristic 1 with pure linear program. In doing 

so, the ti values are found from LP using the found expression. 

௜ݐ ൌ  ෍ ෍ ݅׊      ௜௝௧ݔ௜௝ݐ
௠೔

௝ୀଵ

்

௧ୀଵ

 

where ݔ௜௝௧ is the optimal values of the assignment variables found by LP. 

For the sake of completeness, we give the stepwise description of Heuristic 3. 

Algorithm Z: 

Step 1. Let tiLP be the processing time of activity i returned by the 

LP. 

 Set activity i to mode ݆௜ such that 

௜௝ିଵݐ ൏ ௜௅௉ݐ ൑  ௜௝೔ݐ

i.e., to a mode having smallest processing time that is no 

smaller than tiLP. 

Step 2.  Let ݐ௜ ൌ  ݅׊      ௜௝೔ݐ
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Using ti values, find the project completion time using 

Algorithm Y. 

Step 3.  Define the critical activities. 

Let CP be the set of critical activities whose durations can 

be reduced without violating the budget constraint and 

increasing the project duration. 

Stop if CP is empty. 

Step 4. Let r be the task in CP that has the highest completion time. 

Let jr be the current mode of task r. Assign task r to its next 

shortest duration mode, i.e., mode jr+1. 

Shift all activities that follow, i.e., all successors of task r to 

the right of the schedule as much as possible (as long as 

budget constraint permits). 

Go to Step 3.  

Note that all steps of the heuristic run in polynomial time unlike Heuristic 2 that 

runs in exponential time.    

Figure 4-1 demonstrates the data flowchart of the solution procedures described 

above. 
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Figure 4.1 Flowchart Diagram of Data Flow and Solution Procedures 

 

4.3 An Illustrative Example 

In this section, an illustrative example will be solved to demonstrate the solution 

procedures. 

Parameters 
(Budget Releases and Time 

Intervals)

Integer Programming 
(IP)

Mixed Integer Linear 
Programming

 (MILP with 10% Gap)

Linear Programming 
(LP)

xi jt values

Improved 
Heuristic 1

Heuristic 2
Improved 
Heuristic 3

xi jt values

xi jt values xi jt values xi jt valuesxi jt values

Immediate 
Successors

Immediate 
Predecessors

Time/Cost 
Modes

Immediate 
Predecessors
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4.3.1 Problem Data 

Our example problem (P) has 15 activities with alternate time/cost modes. Table 

4.1 shows the predecessor – successor relations of P, and Figure 4.1 shows the 

associated network. 

 

Table 4.1 Predecessor and Successor Relations of P 

 

 

Activity
Immediate 

Predecessor(s)
Immediate 

Successor(s)
1 - 3,4,5
2 - 6,7
3 1 9,10
4 1 13
5 1 8
6 2 12
7 2 11,14
8 5 13
9 3 13
10 3 15
11 7 12
12 6,11 15
13 4,8,9 15
14 7 15
15 10,12,13,14 -
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Table 4.3 Costs for Activity Modes of P 

 

 

The problem is solved four times for the following cases which are generated 

randomly: 

Case 1. Narrow time interval, low budget 

Case 2. Narrow time interval, high budget 

Case 3. Wide time interval, high budget 

Case 4. Wide time interval, low budget 

Table 4.4 tabulates the values used in each of the four cases showing time interval 

and budget release values 

 

 

 

 

Activity Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9
1 2 13 16 17 31 35 47 70 -
2 6 38 45 52 96 - - - -
3 38 71 85 - - - - - -
4 6 38 45 52 96 - - - -
5 10 24 28 39 40 77 94 98 -
6 7 19 35 57 67 71 - - -
7 15 16 25 75 - - - - -
8 11 27 35 65 81 90 - - -
9 13 29 41 54 75 77 97 - -
10 28 71 85 - - - - - -
11 52 73 - - - - - - -
12 22 27 30 35 36 37 99 - -
13 32 - - - - - - - -
14 39 55 57 63 69 72 86 97 -
15 8 19 22 30 33 42 62 73 76
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Table 4.4 Parameters of P 

 

 

4.3.2 Solution Procedures 

The problem is solved firstly as an integer programming, and then its LP 

relaxation is solved. After that, the MILP model that requires the execution of the 

activity within the same time interval is solved. 

Our first heuristic procedure takes the solutions of MILP and allocates the 

nonrenewable resource based on the activity durations found by the MILP.  

Our second heuristic procedure takes the integer variables of the optimal mixed 

integer program, and solved the IP for the continuous variables. 

Third heuristic uses the same logic with Heuristic 1, where instead of the mixed 

integer program’s results; it uses the LP’s. 

Case 1 time intervals budget release Case 3 time intervals budget release
t1 4 77 t1 8 154
t2 28 85 t2 56 170
t3 35 79 t3 70 158
t4 42 89 t4 84 178
t5 60 61 t5 120 122

Case 2 time intervals budget release Case 4 time intervals budget release
t1 4 154 t1 8 77
t2 28 170 t2 56 85
t3 35 158 t3 70 79
t4 42 178 t4 84 89
t5 60 122 t5 120 61
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4.3.3 Results 

We first solve the IP.  The optimal solution for each case found by IP solution is 

given in Table 4.5. 

Table 4.5 IP Solution of P 

 

 

Then, solve the MILP. The optimal solution (0% gap) for each case is given in 

Table 4.6 together with the # of fractional activities and # of integers. 

 

Table 4.6 MILP Solution of P 

 

 

Note that according to this solution, the following activities are to be fixed (Table 

4.7). 

 

z*
Case 1 43
Case 2 31
Case 3 55
Case 4 79

IP solution

z # of fractional 
activities

# of integers

43 4 11
31 3 12

54.667 1 14
77.765 1 14

MILP
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Table 4.7 Fixed Activities of MILP 

 

 

Activity Mode Time Activity Mode Time
2 1 2 2 1 2
3 1 2 3 1 2
4 1 3 4 1 2
6 1 3 5 1 2
8 1 4 6 1 2
9 1 3 7 1 2
10 1 4 8 1 2
11 1 3 9 1 2
13 1 4 10 1 2
14 1 4 11 1 2
15 9 5 12 1 2

13 1 2
14 1 2
15 6 2

Activity Mode Time Activity Mode Time
2 1 2 1 1 2
3 1 2 2 1 2
4 1 2 3 1 2
6 1 2 4 1 2
7 3 2 5 1 3
8 1 2 6 1 2
9 1 2 7 1 2
10 1 3 8 1 3
11 1 2 9 1 2
12 6 3 10 1 3
13 1 3 11 1 2
15 9 3 12 1 2

13 1 4
14 1 4

Case 1 Case 3

Case 2 Case 4
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The remaining activities are set to the following modes when implementing 

Heuristic 1 (Table 4.8). 

 

Table 4.8 Assigned Modes of the Remaining Activities 

 

 

Hence the problem is reduced to the single mode nonrenewable resource 

allocation problem. Shifting algorithm (Heuristic 1) produces the following task 

completion times (Table 4.9). 

 

 

 

 

Activity Cost Duration Chosen 
Mode

Activity Cost Duration Chosen 
Mode

1 13 13 2 1 2 16 1
5 24 15 2
7 16 7 2
12 30 14 3

Activity Cost Duration
Chosen 
Mode Activity Cost Duration

Chosen 
Mode

1 47 4 7 15 42 8 6
5 28 13 3
14 69 10 5

Case 2 Case 4

Case 3Case 1
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Table 4.9 Completion Times of the Activities by Heuristic 1 

 

 

The total completion time of the project is given below for each case found by 

implementing Heuristic 1 (Table 4.10). 

 

Table 4.10 Completion Times of the Project by Heuristic 1 

 

Activity Late 
Finish

Activity Late 
Finish

Activity Late 
Finish

Activity Late 
Finish

1 14 1 5 1 16 1 40
2 17 2 16 2 16 2 40
3 26 3 15 3 30 3 54
4 41 4 30 4 45 4 69
5 29 5 18 5 33 5 57
6 29 6 27 6 30 6 54
7 24 7 22 7 26 7 50
8 41 8 30 8 45 8 69
9 41 9 30 9 45 9 69

10 43 10 32 10 47 10 71
11 29 11 27 11 30 11 54
12 43 12 32 12 47 12 71
13 43 13 32 13 47 13 71
14 43 14 32 14 47 14 71
15 45 15 34 15 55 15 79

Case 1 Case 2 Case 3 Case 4

Cases
Case 1
Case 2
Case 3
Case 4

34
55
79

Total Completion Time
45



42 

 

When implementing Heuristic 2, solution of the MILP is used to find the project 

completion time. Like Heuristic 1, binary activities found by MILP are fixed and 

remaining activities’ modes are found optimally by solving IP. The completion 

time of the project found by Heuristic 2 is given below (Table 4.11). 

 

Table 4.11 Completion Times of the Project by Heuristic 2 

 

 

Heuristic 3 uses LP relaxation solutions to implement the shifting algorithm. 

Table 4.12 shows the completion times of the activities produced by Heuristic 3. 

 

 

 

 

 

 

 

 

 

 

Cases
Case 1
Case 2
Case 3
Case 4

55
79

Total Completion Time
43
32
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Table 4.12 Completion Times of the Activities by Heuristic 3 

 

 

The total completion times of the project found by Heuristic 3 for all cases are 

given below (Table 4.13). 

 

Table 4.13 Completion Times of the Project by Heuristic 3 

 

Activity Latest 
Finish

Activity Latest 
Finish

Activity Latest 
Finish

Activity Latest 
Finish

1 32 1 24 1 49 1 90
2 33 2 26 2 54 2 88
3 42 3 31 3 58 3 101
4 57 4 39 4 69 4 115
5 45 5 33 5 59 5 105
6 45 6 36 6 66 6 106
7 40 7 32 7 61 7 98
8 57 8 39 8 69 8 115
9 57 9 39 9 69 9 115

10 59 10 41 10 71 10 117
11 45 11 36 11 66 11 106
12 59 12 41 12 71 12 117
13 59 13 41 13 71 13 117
14 59 14 41 14 71 14 117
15 61 15 43 15 73 15 121

Case 1 Case 2 Case 3 Case 4

Cases
Case 1
Case 2
Case 3
Case 4 121

Total Completion Time
61
43
73
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The task completion times are then reduced to the following values by the 

Improvement Algorithm (Table 4.14). 

 

Table 4.14 Completion Times of the Heuristics after Improvement Algorithm 

 

 

Since the number of activities is very small, it is found out that the solutions are 

already giving the best possible results, so the effect of the improvement 

algorithm cannot be observed from this illustrative example. 

 

 

 

 

 

 

 

 

Cases Improved 
Heuristic 1

Heuristic 2 
(10% Gap)

Improved 
Heuristic 3

Case 1 45 45 61
Case 2 34 32 43
Case 3 55 55 73
Case 4 79 79 121
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CHAPTER 5 

 

COMPUTATIONAL RESULTS 

 

In this chapter, we design an experiment to test the performances of our heuristic 

procedures. We first discuss our data generation scheme, state our performance 

measures and then discuss the results of our experiment. 

5.1 Data Generation 

We take our data basically from Akkan et al. (2005). According to their scheme, 

the durations are generated from uniform discrete distribution between 3 and 123. 

The durations are then sorted in their non-increasing order such that ݐ௞  refers to 

the ݇௧௛  smallest duration. The minimum cost,  ܿ௠  is generated from discrete 

uniform distribution between 5 and 15. Thereafter, ܿ௞ିଵ  is set to ሺܿ௞ ൅ ௞ሻݏ ൈ

ሺݐ௞ െ ׫ ߳ ௞ିଵݏ ௞ିଵሻ whereݐ  ሾݏ௞, ௞ݏ ൅ 3ሿ or ݏ௞ିଵ ߳ ׫ ሾmaxሺ1, ௞ݏ െ 3ሻ ,   .௞ሿݏ

We take 15 test problems from the below ranges of the number of the activities 

(Table 5.1). 

 

Table 5.1 Range of the Problem and Number of Instances 

 

Range
[30,35]
[40,45]
[85,90]

# of instances
5
5
5
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 For each activity, the number of modes is generated from uniform discrete 

distribution between 1 and 10. 

In our experiments, we analyze the effects of interval lengths and budget values 

on the performances of the algorithms. We generate interval lengths to represent 

two cases: 

Case 1.  Narrow Time Intervals 

Case 2.  Wide Time Intervals 

To assign interval lengths, the average and minimum processing time of each 

activity is taken. In order not to generate trivial-to-solve problems, for narrow 

intervals, approximately 1/3 of the sum of average of all activities’ processing 

time is set as the last interval. Remaining time interval lengths are randomly 

generated. For wide intervals; two folds of the narrow interval values are used. 

For each interval length, we generate the budget values to represent the following 

two cases: 

Case 1.  High Budget Releases 

Case 2.  Low Budget Releases 

To assign budget release amounts, the average and minimum costs of each 

activity is taken. In order not to generate trivial-to-solve problems, for low 

amounts, approximately 1/3 of the sum of average of all activities’ cost is set as 

the total cost through the project. Each budget release is randomly generated 

ensuring the total cost remains as determined. For high amounts; two folds of the 

low amount budget release values are used.  
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Two cases for interval lengths and two cases for budget values together give four 

different combinations. For each of the 15 problem instances, we consider these 4 

cases. Hence we generate and solve a total of 60 problem instances. 

5.2 Performance Measures 

In this section, we describe our performance measures used to evaluate the 

efficiency of our IP to find optimal solution, MILP and pure LP to find lower 

bounds and heuristic approaches. 

For IP we use maximum and average Central Processing Unit (CPU) time in 

seconds as performance measures. 

We evaluate the lower bounds by the following measures: 

i. CPU times in seconds (average, maximum) 

ii. Percent Deviation from the Optimal Solution (% DEV) (average, 

maximum).  

We calculate the % DEV of problem instance i as follows; 

ܧܦ % ௜ܸ ൌ
ܱܲ ௜ܶ െ ௜ܤܮ

ܱܲ ௜ܶ
ൈ 100 

where 

LBi = Lower bound value found by MILP or LP for problem 

instance i 

  OPTi = Optimal solution value of problem instance i 

iii. Number of fractional activities and percent of integer variables 

(average, maximum)  
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We evaluate the heuristic procedures by the following measures: 

i. CPU times in seconds (average, maximum) 

ii. Percent Deviation from the Optimal Solution (% DEV) (average, 

maximum).  

We calculate the % DEV of problem instance i as follows: 

ܧܦ % ௜ܸ ൌ
௜ܪ െ ܱܲ ௜ܶ

ܱܲ ௜ܶ
ൈ 100  

where 

Hi = Solution value found by the heuristic for problem instance i 

iii. Number of times (out of 5 problem instances) the optimal solution 

is reached. 

All mathematical models are solved by the GAMS Base Module version 23.0.2 

WIN 9396.9411 VIS x86/MS Windows with CPLEX solver. The algorithms used 

in the heuristics are coded in C programming language.  

The instance runs are performed on the Intel® Core ™2 Duo CPU 2.26 GHz and 

3.45 GB of RAM computer. 

5.3 Analysis of Results 

We present the performances of the integer program (IP) and lower bounds 

(MILP, LP) in Table 5.2.  The table reports the average and maximum CPU times 

to achieve the optimal solutions to IP, MILP and LP by using GAMS with 

CPLEX solver.   
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As can be observed from the Table 5.2, LP can be solved in negligible time. It 

takes less than 1 second to get the lower bound, in majority of the combinations. 

The performance of LP does not deteriorate with an increase in the problem sizes. 

For example when n increases from 40 to 85, the average CPU times increase 

from 0.47 to 0.91 seconds when budget releases are low and the interval lengths 

are wide. The same results hold for other combinations. However, for MILP and 

IP, the CPU times increase drastically with an increase in problem size. The 

difference becomes much pronounced when n gets larger. For example when n 

increases from 30 to 40, the average CPU times by IP increase from 8.22 to 88.14 

seconds when the budget releases are low and interval length is narrow. For this 

combination, when n increases from 40 to 85, the average CPU times increase 

from 88.144 to 371.85 seconds. When budget releases are low and interval lengths 

are wide, 1 problem instance out of 5 remain unsolved in one hour for n=85, thus 

it dominates the other values when finding the average CPU time of 824.72 

seconds. These observations are in line with MILP results. For example when n 

increases from 30 to 40, the average CPU times by MILP increase from 14.43 to 

29.94 seconds when the budget releases are low and interval length is narrow. For 

this combination, when n increases from 40 to 85, the average CPU times increase 

from 29.94 to 1020.49 seconds. 1 problem instance out of 5 remains unsolved in 

one hour and this instance plays a dominant role in high average CPU time. 

The majority of the instances are solved easier by MILP than by IP. However 

there are some expectations like when n=85 the budget releases are and high 

interval length is narrow, and the average CPU time of IP is 14.68 seconds 

whereas the average CPU time of MILP is 22.27 seconds. This is due to the fact 

that the MILP solution tries to reach the optimal value by searching every 

possibility before reaching to it. For example for some instances, although it has 

found the optimal solution in MILP, it didn’t stop until it finished its search 

around the optimal, which is counted as CPU time at the end. 



50 

 

A
ve

ra
ge

M
ax

A
ve

ra
ge

M
ax

A
ve

ra
ge

M
ax

A
ve

ra
ge

M
ax

A
ve

ra
ge

M
ax

A
ve

ra
ge

M
ax

30
-3

5
8.

22
14

.4
4

21
.5

9
85

.4
2

14
.4

3
22

.1
4

13
.1

3
25

.4
8

0.
43

0.
47

0.
41

0.
48

40
-4

5
88

.1
4

35
6.

66
21

.9
6

37
.3

9
29

.9
4

72
.0

3
14

.8
9

25
.3

9
0.

53
0.

63
0.

47
0.

49
85

-9
0

37
1.

85
89

7.
32

82
4.

72
36

00
10

20
.4

9
36

01
77

.5
4

11
9.

98
1.

06
1.

22
0.

91
1.

09
30

-3
5

11
.9

4
31

.8
1

12
.1

9
47

.3
4

17
.5

36
.1

3
7.

15
13

.5
8

0.
47

0.
56

0.
38

0.
45

40
-4

5
38

.1
1

12
5.

49
30

.1
7

11
7

20
.6

4
80

.9
5

21
.4

1
69

.1
9

0.
45

0.
49

0.
45

0.
47

85
-9

0
14

.6
8

36
.5

1
43

.1
5

11
2.

59
22

.2
7

62
.4

2
58

9.
36

26
05

.5
1.

01
1.

16
0.

98
1.

11

W
id

e 
In

te
rv

al

Lo
w

H
igh

Bu
dg

et
 

Re
lea

se
Pr

ob
lem

 
Si

ze

IP
M

IL
P

LP
N

ar
ro

w
 In

te
rv

al
W

id
e 

In
te

rv
al

N
ar

ro
w

 In
te

rv
al

W
id

e 
In

te
rv

al
N

ar
ro

w
 In

te
rv

al

Ta
bl

e 
5.

2 
Th

e 
C

PU
 T

im
es

 (s
ec

on
ds

) o
f t

he
 IP

, M
IL

P 
an

d 
LP

 M
od

el
s 



51 

 

Note that the easily solvable problem instances are observed when budget releases 

are lower and the intervals are wider. The lower the budget releases, the easier the 

solutions, as the search of the solutions begin from the first modes of the time-cost 

pair. Thus, iterations of the solution generate lower number of decision variables 

compared to the higher budget releases. For example when budget releases are 

low and time intervals are wide, for n=85, average CPU time is 77. 54 seconds, 

whereas when the budget releases increase, average CPU times increase 

drastically to 589.36 seconds in wider intervals. Similarly, wider intervals also 

generate easier solutions, since the construction logic of MILP is based on 

conducting the activity within a single time interval. Thus, the wider the time 

interval, the shorter the solution time would be. For example for n=40, when the 

budget is low and intervals are wide, the average CPU time is 14.89 seconds, 

whereas when the intervals are narrower, the average CPU time increases to 29.94 

second. However this is based on both the intuition and outcomes of the solution 

instances. Thus, there may be some exceptions. 

Table 5.3 reports the average and maximum deviations of the lower bounds from 

the optimal solutions, as the percentage of the optimal solution. 

As can be observed from the table, the deviations by LPs are high; the majority of 

the deviations are between 20% and 35%. The LP deviations do not deteriorate 

with an increase in problem sizes. The wider interval instances return slightly 

bigger deviations, as the search of the solutions begin from the first modes of the 

time-cost pair. First modes have lower costs and higher durations. Thus, the 

program finds a solution easily but with a worse deviation. For example, for n=85, 

when the budget releases are high and interval lengths are narrow, deviation is 

10.09% whereas when the intervals are wide, it increases to 17.63%. The 

deviations of MILP are very low, all deviations are below 8%, and they are 

consistent over all problem combinations. This supports that the MILP can be 

used to estimate the optimal solution. 
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Tables 5.4 and 5.5 report the percentages of integer variables and fractional 

activities of the optimal relaxations returned by MILP and LP, respectively. 

As can be observed from Table 5.4, percentages of integer variables of the MILP 

are mostly above 50 whereas the percentages of integer variables of LP are either 

0 or very close to 0. Similarly, percentages of fractional activities are mostly less 

than 30 whereas the percentages of integer variables of LP are close to 100. 

Tables 5.4 and 5.5 complement each other. As the number of fractional activities 

increases, the number of integer variables decreases. Almost all the activities are 

fractional in LP solutions, which leads to a worse approximation compared to the 

MILP solutions. As stated above, wider intervals in the MILP solutions give 

smaller percentages of fractional activities as the construction idea of the MILP is 

based on conducting the activity within a single time interval. This follows, when 

the interval is wide, the percentage of integer variables would be higher based on 

our intuition which is also supported by our experiments. For example when 

budget releases are low and interval lengths are wide, for n=85, percentage of 

integer variables is 76.43 for the MILP, whereas the percentage is 0 for LP 

solution. These results have motivated us to the MILP as a starting point of our 

heuristic procedures. 
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We next report on the performance of our MILP and heuristic procedures 

regarding the gap analysis. Table 5.6 reports the CPU times and percent 

deviations for the MILP solution. Tables 5.7 and 5.8 report the CPU times and 

percent deviations for our heuristic procedures. 

Note that Heuristics 1 and 2 require the MILP solutions. The MILP can be solved 

optimally or by allowing some gap of optimality. The solutions with smaller gaps 

are likely to be more satisfactory, however they are obtained with high 

computational effort, i.e., in high CPU times. 

In our initial experiments, to see the effect of α (percentage gap) on the solution 

times and quality of the solutions, we considered the problem instances with 85 

activities. We tried α=0% (optimal), α=5%, α=10% and α=15% cases. Table 5.6 

reports the average and maximum CPU times to solve the MILP for different 

values of α. The Table 5.6 also reports the time to obtain an optimal solution via 

IP. As can be observed from the table, the CPU times drop considerably with an 

increased α value. The CPU times with α=0%, is generally higher than the 

solution times of IP. Note that when the budget releases are low and time intervals 

are narrow the average CPU time of MILP is 1020.49 seconds and the average 

CPU time of IP is 371.86 seconds. For this combination, for α=5%, 10% and 15%, 

we obtain CPU times of 135.21, 107.47 and 99.45 seconds respectively that are 

much lower than that of IP (371.86 seconds). For all problem combinations, the 

CPU times with α=10% and α=15% are very close. 
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Tables 5.7 and 5.8 report the average CPU times and percent deviations of the 

heuristic procedures (Heuristic 1 and Heuristic 2) that use the solutions of MILP 

with different α values.  

As can be observed from the tables the deviations with α=10% are close to the 

deviations with α=5%. On the other hand, the CPU times with α=5% are higher. 

Note from the tables that for Heuristic 1, the CPU times of 135.52,  55.03, 15.74 

and 42.36 for α=5% are higher than the respective CPU times of 107.80, 36.24, 

13.52, and 29.43 for α=10%. The same conclusions can be made for Heuristic 2. 

We observe that in general, better deviations are due to α=10% gap than α=15% 

gap for both heuristics. Note that for Heuristic 1, the average deviations of 21.54, 

14.75, 34.77 and 32.81% (for combinations 1, 2, 3 and 4) for α=10% are no higher 

than their respective deviations of 24.98, 14.89, 34.77 and 34.36% for α=15%. 

These observations are true for Heuristic 2 too. 

As α=10% catches the trade-off between the CPU times and percent deviations 

better than α=5% and α=15%, we choose α=10%. 

Table 5.9 tabulates the CPU times of the IP and Heuristics after improvement. 

CPU time for the Improved Heuristic 1 is the sum of MILP (with 10% gap) 

solution time and improvement stage, Heuristic 2’s CPU time corresponds to the 

sum of MILP (with 10% gap) solution time and IP solution time, and CPU time 

for the Improved Heuristic 3 is the sum of LP solution time and the time spent in 

improvement stage. Improvement stage is performed simply by loops and shifting 

algorithms in polynomial time. Thus has a negligible CPU time. As can be 

observed from the table, Heuristic 3 runs the quickest. However, Heuristics 1 and 

2 run in exponential time as can be observed from the tabulated values. The CPU 

times of the Improved Heuristic 1 are lower than those of Heuristic 2. For 

Improved Heuristic 1 and Heuristic 2, mostly as the number of activities 

increases, the average CPU time also increases. This is also valid for Improved 
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Heuristic 3, however the highest average CPU time is of 1.69 seconds, which is 

still very low. 

Table 5.10 tabulates the percent deviations of the Heuristics after improvement. 

The averaged percent deviations obtained by Improved Heuristic 1 are all smaller 

than 12, except one instance when n=40, budget release is low and the interval 

length is wide. For this combination, the average value is dominated by one 

instance. The 118.93% deviation of this single instance raised the average 

deviation to about 30%. In Heuristic 2, the percent deviations of the instances are 

all smaller than 7%. As can be observed from the table, for the instances of n=30 

and n=85 majority of the percent deviations are lower than those of n=40. 

Improved Heuristic 3’s percent deviations are still higher those of the other two 

heuristics. They are mostly smaller than 63% with some exceptions.  
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Tables 5.11 and 5.12 together reveal the improvement procedures improve the 

performance of heuristic procedures considerably. Tables 5.11 and 5.12 tabulate 

the CPU times and the percent deviation of Heuristics and Improved Heuristics, 

respectively. 

As can be seen from the Table 5.11, the average CPU times of Improved 

Heuristics are slightly higher than the original Heuristics. For example, when 

n=40, the budget is low and the interval length is wide, the average CPU time of 

Heuristic 1 is 11.97 seconds, whereas the Improved Heuristic 1 has an average 

CPU time of 12.25 seconds. This indicates an effective approach in terms of CPU 

time. 

As can be observed from Table 5.12, the improved heuristics have lower 

percentage deviations than those of their original versions. The highest reductions 

due to the improvements are observed when the budget releases are higher and the 

interval lengths are narrower. This is due to the fact that the Improvement 

Algorithm tends to reduce the activity completion times and force them to fit in 

one interval. For example, when the budget releases are low, the reductions are 

3.35%, 26.77% and 22.99% when the interval lengths are narrow, whereas 4%, 

18.62% and 21.48% when the interval lengths are wide for n=30, n=40 and n=85 

respectively. 
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Table 5.13 gives the number of times each heuristic returns an optimal solution 

for every instance. 

 

 

The performances after the improvement are very satisfactory. As can be seen 

from the Table 5.13, in 3 out of 5 instances, Heuristic 2 finds the optimal solution 

when the budget releases are high and the interval lengths are narrow for n=40 

and n=85. Heuristic 2 returns at least 1 optimal solution out of 5, for all instances 

except for two combinations when n=30 and n=85, when the budget releases are 

low and interval lengths are wide. Although the Improved Heuristic 3 returns high 

CPU times, when n=85 and budget releases are high, it finds optimal solutions in 

3 out of 10 problem instances.  

Our recommendation to the project managers is to use Heuristic 3, when obtaining 

quick solutions is more important than the quality of the solutions. If the quality 

of the solutions is more important, i.e., the quick deliveries are essential then 

Heuristic 1 should be used. 

Narrow 
Interval

Wide 
Interval

Narrow 
Interval

Wide 
Interval

Narrow 
Interval

Wide 
Interval

30-35 0 0 1 0 0 0
40-45 1 0 2 1 0 0
85-90 0 0 1 0 0 0
30-35 0 0 1 1 0 0
40-45 0 0 3 1 0 0
85-90 1 1 3 2 2 1

Improved Heuristic 3

Low

High

Budget 
Release

Problem 
Size

Improved Heuristic 1 Heuristic 2

Table 5.13 The Number of Instances that Return Optimal Solution 
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CHAPTER 6 

 

CONCLUSIONS 

 

In this thesis, we consider a discrete time/cost trade-off problem with a single 

resource constraint. The single resource is assumed to be nonrenewable, hence can 

well be represented by monetary units. The resource is released at some 

prespecified time points at some prespecified quantities. It is assumed that the cost 

incurred by an activity is charged at the end of its completion. A feasible solution 

is the one that consumes no more than total amount released at any time point. 

When all money is released at the beginning of the project’s start then the problem 

reduces to the discrete time/cost trade-off budget problem which is strongly NP-

hard. This follows our problem with arbitrary resource release times is strongly 

NP-hard. 

We first formulate the problem as a pure Integer Programming (IP) model. The 

model decides on the completion time each activity as well as its mode. We 

observe that the Linear Programming Relaxation (LPR) produces satisfactory 

results in terms of number of continuous variables. We strengthen the LPR model 

by introducing an integer variable to prevent the assignment of an activity to more 

than one completion time. In the resulting Mixed Integer Linear Program (MILP) 

model we still have continuous decision variables due to splits in mode 

assignments. We use the optimal objective function value of the MILP model as 

an under-estimate, i.e., lower bound, on the optimal project completion time.  We 

develop three heuristic procedures that use the approximate solutions of MILP 
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and LPs. Our first heuristic fixes the assignments made by MILP and solves the 

remaining problem to optimality. The other heuristics use the solutions of MILP 

and LP to find mode assignments. Given the mode assignments the completion 

times are found by shifting algorithm and then reduced by improvement 

algorithm.  

The results of our experiments reveal that the first heuristic finds solutions that are 

very close to the optimal however with high computational effort. The other 

heuristics find quick solutions that are reasonably close to the optimal. We also 

observe that the number activities, budget amounts and interval lengths have 

significant effects on the performance. 

Future research may consider the following areas: 

• Renewable resources can be included. 

• More than one nonrenewable resource might be studied. 

Different payment schedules may be investigated. These schedules may include 

the payments at the start times of the activities or the payments at the 

completion/start times of defined milestone activities. 
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