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ABSTRACT

DISCRETE TIME/COST TRADE-OFF PROJECT SCHEDULING WITH A
NONRENEWABLE RESOURCE

Kirbryik, Selin
M.Sc., Department Industrial Engineering
Supervisor : Prof. Dr. Meral Azizoglu

Co-Supervisor : Asst. Prof. Dr. Ferda Can Cetinkaya

November 2009, 71 pages

In this thesis, we consider a discrete time/cost trade-off problem with a single
nonrenewable resource. We assume the resource is released at some prespecified
time points and at some prespecified quantities. We also assume that the costs due to
the activities are incurred at their completions. Our aim is to minimize total project

completion time.

We formulate the problem as a pure integer programming model. We show that the

problem is strongly NP-hard. We find lower bounds by pure linear programming and

mixed integer linear programming relaxations of the model. We develop three
heuristic procedures using the optimal solutions of mixed integer linear program and

pure linear program.

The results of our computational study reveal the satisfactory performance of our

heuristic procedures.

Keywords: Project scheduling, discrete time/cost trade-off, nonrenewable resource.
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YENILENEMEYEN KAYNAKLA KESIKLI ZAMAN/MALIYET ODUNLESIM
PROIJE CIZELGELEMESI

Kirbryik,Selin
Yiiksek Lisans, Endiistri Miihendisligi Bolimii
Tez Yoneticisi : Prof. Dr. Meral Azizoglu

Ortak Tez Yoneticisi: Yrd. Dog. Dr. Ferda Can Cetinkaya

Kasim 2009, 71 sayfa

Bu tezde, yenilenemeyen kaynakla kesikli zaman/maliyet 6diinlesim problemi ele
alimmugtir. Kaynagin dnceden belirlenmis zamanlarda ve miktarlarda agiga ¢iktigini
varsayiyoruz. Ayni zamanda, maliyetlerin de aktivite tamamlanma zamanlarinda
gergeklestigini  varsaytyoruz. Amacimiz, toplam proje tamamlanma siiresini

minimuma indirmektir.

Problem salt tamsay1 programlama seklinde formiile edilmistir. Problemin NP-zor
oldugunu gosterdik. Alt sinirlar, salt tamsayir programlama ve modelin karma
tamsayr programlamasinin gevsetilmesiyle elde edildi. Karma tamsay1 lineer

programlamanin optimal sonuglariyla iki sezgisel yontem gelistirilmistir.

Elde ettigimiz sonuglar, yaptigimiz sezgisel prosediirlerin performanslarinin tatmin

edici oldugunu gostermektedirler.

Anahtar Kelimeler: Proje Cizelgeleme, kesikli zaman/maliyet Odiinlesimi,

yenilenemeyen kaynak.
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CHAPTER 1

INTRODUCTION

A project is a set of interrelated activities to be conducted to achieve a
prespecified goal. Project management is planning, organizing, directing,
scheduling and controlling the resources, the budget and achieving a satisfactory
performance from them. With the current advances in business structures and
enterprises, project management concept gained considerable importance in the
last decades. Project scheduling defines the start and completion time of the
activities with precedence relations and resource constraints. Project scheduling is

the core of project management.

In project scheduling, several resources need to be considered. The studies that
involve resource are mainly of two types: time/cost trade-off problems and

resource constrained problems.

Resource-constrained project scheduling problems apply when there are concerns
on the availability of the resources. More resources can be dedicated to the
activities in consideration to minimize the total duration of the project. Resource
leveling problem arises when the objective is to keep the resource amount at a
certain level. Resource allocation minimizes the total duration subject to a limited

resource.

In a project there might be many limited resources that are ready to be used; either

in renewable or nonrenewable forms. Manpower, machines, equipments can be

1



considered as renewable resources which are available at each time period

whereas money is a limited nonrenewable resource.

Time/Cost Trade-off models form an important body of the project scheduling
problems. These problems do not consider any limit on the availability of the
resources; but assume different alternatives for processing an activity. They
assume that the time to perform an activity can be reduced if extra cost is paid.
These problems are referred to as discrete time/cost trade-off problems if there are
a defined number of alternatives to perform each task. These alternatives are

defined such that a smaller duration alternative has higher cost.

Time/Cost trade-off problems can be of three types; deadline, budget and curve.
The deadline problem aims to minimize the project cost while constrained to
finish the project at a certain deadline. The budget problem minimizes the
completion time of the project within a given budget. The Time/Cost curve
problem considers both time and cost aspects and finds a set of nondominated

solutions from a set of feasible time-cost pairs.

In practice, Time/Cost trade-offs and resource constraints may also appear
together in the same environment. In this study, we consider such an environment.
We assume that there are discrete alternatives to perform each task and there is a

single nonrenewable resource that is released at some specified time points.

In project scheduling problems, generally it is assumed that the total budget of the
project is given at the beginning in advance or at the end of the project as a total
payment. If all budget becomes available at the beginning then the problem
reduces to the budget problem. If the total payment is received at the completion
then the deadline problem that forces the earliest possible project completion time
becomes a good fit. In many practical situations, the payments are received
progressively at certain time points, but not entirely at the beginning or end of the
project. Generally these payment points are the end of the pre-defined milestone

2



activities. Also, all projects have budget consumption according to the work that
are done by their activities. These budget consumptions should also be optimized
to secure the completion of the project i.e., the cost incurred by the activities or

total payment to the project should not exceed the total reserved budget.

The time period between two consecutive milestone events is referred to as an
interval. The points at each which payments are received are referred to as
milestone events. We assume the resources are nonrenewable in the sense that if
the amount released at the beginning of the interval is not entirely used in the
interval, the unused amount is transferred to the next interval. Hence the unused
amounts accumulate, not lost, unlike the renewable resource case. Our aim is to
minimize the project completion time in such a way that at each interval total
budget available is no less than total budget consumed by the assigned activities.
The decision is to select the time/cost pair for each activity, among the select of

specified modes.

The rest of the thesis is organized as follows; in Chapter 2, the related literature
survey 1is discussed In Chapter 3, problem definition together with the
mathematical model is given. In Chapter 4, modification to the model, its linear
programming relaxation and heuristic procedures are discussed. Chapter 5
presents our computational study. In the last chapter, Chapter 6, conclusions and

suggestions for further studies are given.



CHAPTER 2

PROJECT SCHEDULING: BASICS AND LITERATURE SURVEY

In this chapter, the basics of the project scheduling will be reviewed and related
literature is discussed. We will give the mathematical models for different types

of discrete time/cost trade-off and resource- constrained problems.
2.1 Project Management in General

Project Management Institute defines project as a temporary endeavor undertaken
to create a product or service. Project management is planning, organizing,
directing, scheduling and controlling the resources, the budget and achieving a

satisfactory performance from them.
2.2 Project Scheduling in General

Project Management means planning, controlling and organizing a project. Project
Scheduling is the core of the Project Management and specifies the start and
ending times of the activities. The precedence relations, durations, costs are the
characteristics of the activities (Fulkerson, 1961, I¢meli et al., 1993). An activity
has immediate predecessor(s) which are to be completed before the current could
start, similarly, immediate successor(s) which could start only if the current
activity is completed (Demeulemeester and Herroelen, 2002, Weglarz, 1998).

Project network depicts these precedence relations.



There are two types of networks used to present the activities and precedence
relations; AoA (activity on arc) and AoN (activity on node). In AoA
representation, activities are represented by arcs and in AoN, activities are
represented by nodes. When using an AoA representation for a network, two
dummy nodes are needed to initiate and finish the project; i.e. the beginning and
the end. For a sample project whose data are given in Table 2.1, we give the AoN
and AoA network representations in Figure 2.1 and Figure 2.2 respectively

(Elmaghraby, 1970).

Table 2.1 The Activities of a Sample Network

Activity Duration Cost Immediate Immediate
Predecessor(s)| Successor(s)
A 2 5 - B,C
B 4 3 A D
C 5 3 A D
D 3 7 B,C E
E 4 2 D -

Figure 2.1 AoN Representation of the Network



Figure 2.2 AoA Representation of the Network

Note that in Figure 2.2, in AoA representation we have a dummy arc for

connecting activity C to D.

2.2.1 Project Scheduling with No Resource Constraints (Time Based)

When there are no resource constraints in a project scheduling problem, then this
problem is called as a time based problem and can be solved by using critical path
method (CPM) if it is deterministic or by project evaluation review technique

(PERT) if it is stochastic.

CPM method is generated to find the best schedule that minimizes the total cost of
the project (Moder, et al., 1983). A project can have both direct and indirect costs,
where direct costs indicate the activity costs and indirect costs indicate the costs
incurred throughout the entire project. There are several advantages of CPM

which are;

e Planning: Defining the objectives and providing basis to those
objectives.

e Communication: Documenting and associating time and cost
relations.

e Psychological: Positive outcome to the project team if applied

properly.



e Control: Defines the distinctive points in a project and makes it
easier to control.
e Training: Gives a good insight for the team and the managers on

how to control the project and develop for the other projects.

To perform CPM and PERT, every task should be well-defined with a definite
start and ending point. The relations and sequence of the tasks should determined

beforehand (Wiest and Levy, 1969).

After determining the characteristics, the longest path is found through the
network. This is called the critical path of the network which is made up of critical
activities and the completion time of the last activity determines the total length of

the project.

2.2.2 Project Scheduling with Resource Constraints

A project scheduling problem with resource constraints is called a Resource-
Constrained Project Scheduling Problem (RCPSP). The resource-constrained
project scheduling problems, a problem may be activity based or project based

(Klein, 1999).

2.2.2.1 Time/Cost Trade-off (Activity Based)

Time/Cost Trade-off Problem can be defined as an activity based resource-
constrained project scheduling problem. A time/cost trade-off problem may have

either continuous alternatives or discrete alternatives.

2.2.2.1.1 Continuous Alternatives

If a time/cost trade-off problem has discrete alternatives, then there are no single
modes of time and cost that can be used directly. Instead a function is specified

for the time and cost pairs for a problem.



2.2.2.1.2 Discrete Alternatives

In many real life applications, there are several alternatives to conduct a job in
terms of time and cost. In project scheduling literature these problems are
referred as time/cost trade-off problems. The alternatives are referred to as modes
in discrete time/cost trade-off problems (DTCTP). (De ef al., 1995, Kolisch and
Padman, 2001, Demeulemeester ef al., 1996).

Despite its practical importance, the discrete time/cost modes can be used to

represent a continuous time/cost curve as mentioned by Elmaghraby (1977).

Table 2.2 tabulates an example of time-cost alternatives for the activities of a
project. In this table the second column shows the activity modes. Activity A has
three modes with different duration and cost values. In DTCTP, only one mode is

to be selected for each activity.

Table 2.2 Sample Modes of Activities in a Project

.. . Immediate Immediate
Activity Mode Duration Cost Predecessor(s)| Successor(s)
1 1 10
2 2 5
A 3 3 4 - B,C
4 5 2
5 10 1
1 2 15
B 2 4 3 A D
3 6 2
1 1 15
2 3 6
C 3 2 1 A D
4 5 3
D L 3 ! B,C E
2 10 2
1 2 8
E 2 4 2 D -
3 7 1




There are three types of discrete time/cost trade-off problems (DTCTP) studied. A
project that is to finish within a certain time interval (due date) is said to be a
deadline problem while minimizing the total cost of the project. On the other
hand, a budget problem focuses on minimizing the completion time of the project
within a given budget. A time/cost curve problem in DTCTP problems is

simultaneously selecting the non-dominated pairs of time and total cost values.

Below are the mathematical formulations of the problems.

Indices:
i:activity index i=12,....N+1
j:mode index j=1,...,m

N + 1 is the dummy activity indicating the finish of the project
Parameters:

m; = number of modes of the activity i

¢;j = cost of activity i at mode j

d;; = duration of activity i at mode j

P; = set of immediate predecessors of activity i

Decision Variables:

CT; = Completion time of activity i

v = { 1, ifactivity i is assigned to mode j
y 0, otherwise



CTy41 = Total project completion time

Constraints:

zj.”ixijzl i=1,.,N+1 2.1)
CTy =2 CTyp + X4 dyx;  i=1.,N+1 VkePp (2.2)
CT; = 0 (2.3)
x;; € {0,1} i=1,.,N; j=1,..,m (2.4)

Equation set (2.7) indicates that each activity should be conducted at exactly one
mode. Second equation set (2.2) gives the immediate precedence relations of the
activities given in set P;, i.e. activity &’s immediate successor is activity i. The
next equation set (2.3) states that the completion time of the activities is

nonnegative. x;; is the binary variable of the model.

There exists Y., m; number of x;j binary variables, N + 1 number of CT;

variables. Totally there are N + YV, |P; | number of constraints.

Pre-mentioned types of DTCTP’s are based on the above decision variables and

constraints. Below are the formulations of these problems.
Deadline Problem:

The deadline problem minimizes the total cost of the project subject to a given

deadline.

The additional constraint set states that the total project completion time cannot

exceed the deadline of the project (7) (Equation (2.5)).

CTysr <T (2.5)
10



The objective function given in (2.6) minimizes the total cost.
m
M X cijxyj (2.6)

Demeulemeester (1998) and Hafizoglu and Azizoglu (2008) are some researchers

that study the deadline problem.
Mathematical Model of Deadline Problem
min YN, Z;.nzil CijXij

Subject to (2.1), (2.2), (2.3), (2.4), (2.5).
Budget Problem

The budget problem minimizes the completion time of the project subject to a

given budget.

The additional constraint set states that the cost incurred by all activities cannot

exceed the budget of the project (B) (Equation 2.7).
(i 2721 CijXij < B (2.7)

The objective function of the budget problem is given in (2.8) and minimizes the

completion time of the project.
min CTy41 (2.8)

Hazir et al. (2009) and Degirmenci and Azizoglu (2008) are some researchers that

study the budget problem.

Mathematical Model of Deadline Problem

11



min CTy4q
Subject to (2.1), (2.2), (2.3), (2.4), (2.7).
Time/Cost Curve Problem

Time/Cost Curve Problem finds the set of non-dominated solutions with respect to
total cost and completion time criteria. A solution S is said to be non-dominated if
there does not exist any other solution S’ such that Cy,;(S) < Cy;1(S) and
Y Y cijxi;(S) <X Y ¢ijx;;(S) with strict inequality holding at least once. Finding
the time/cost curve is important as the optimal solution of a nondecreasing

function of total cost and completion time is in the nondominated solution set.

Demeulemeester (1998) use the deadline problem to construct the time/cost trade-

off curve. Alternatively the budget problem can be used to construct this curve.
2.2.2.2 Resource Constrained Project Scheduling Problem

Several approaches like linear and integer programming, dynamic programming,
implicit enumeration, bounded enumeration and heuristic programming are used
to solve resource-constrained project scheduling problems (RCPSP) (Herroelen,

1972).

The integer programming (0-1) model that was suggested by Gonguet minimizes
the completion time of the project where the binary decision variables control the
start time of each activity. At each time interval, demand of each type of resource

should not exceed its available amount.

Pritsker et al. (1969) allow preemptions and assume different arrival times and
due dates for the activities. They propose integer programming (0-1) model for
three possible objective functions; minimizing the completion time, minimizing

total lateness and minimizing the lateness penalty. According to their model, the

12



time periods are determined based on the activities’ arrival times, precedence

relations and due dates.

Herroelen et al. (1998) state that in most of the cases the objective in project
scheduling problems is minimizing the completion time of the project, which is a
regular objective function. However in recent years, focus is shifted to non-
regular objective functions such as maximizing the net present value (NPV). A
non-regular objective function can be described as a function that does not worsen
even if there is a delay on some activities. Maximizing NPV is also called
payment scheduling problem in the literature. There is no constraint regarding
resource usage and activities have fixed durations which involve cash flow

payments and receipts.

In discrete time/resource trade-off problems, it is assumed that all the activities
are conducted on one single mode and on one single time period with a restriction
of renewable resource(s) in a single period and subject to precedence relations.
Below is the formulation of the discrete time/resource trade-off resource-

constrained problem. (Herroelen et al.,1998)

Indices:

i: activity index i=12,...,n
j:mode index j=1,...,m
t: time index t=01,...,T

N + 1 is the dummy activity indicating the finish of the project

Parameters:

m; = number of modes of the activity i

13



1;; = resource usage of activity i at mode j
d;; = duration of activity i at mode j
P; = set of immediate predecessors of activity i
e; = critical path based earliest start time of activity
i based on the modes with the smallest duration.
l; = critical path based latest start time of
activity i based on the modes with the smallest duration
a = constant renewable resource availability per period

Decision Variables:

o = { 1, ifactivity i is assigned to mode j started at time ¢
yt = 0, otherwise

Mathematical Model:

Min B, tXng, (2.9)

Subject to

S T o X = 1 (2.10)

S S (t+ di)xipe < TTE T, tage vk € P, (2.11)
?’:Jil ;-n=i1 Tij Zﬁ;gﬁ:&faiﬁeo Xijs = a (2.12)

14



xc € {0,1} (2.13)

Equation set (2.9) minimizes the completion time of the project subject to
equation sets (2.10), (2.11), (2.12) and (2.13) which assigns activities to one mode
at one time, arranges precedence relations of activities, maintains the renewable
resource usage per period of time and forces the decision variables to be binary,

respectively.

The above formulation can be extended by adding nonrenewable and doubly-
constrained resource constraints with different types of objective functions. When
a resource constrained project scheduling problem involves multiple renewable,
nonrenewable and doubly-constrained resource restrictions with trade-offs, then
the associated problem is called Multi Mode Resource-Constrained Project

Scheduling Problem (MRCPSP) (Herroelen et al., 1998).

In 1982, Talbot proposed a non-preemptive case for RCPSP with time/cost trade-
offs. In non-preemptive cases, an activity in the whole project cannot be split and
proceed by the successor activity. Talbot (1982) uses two types of objectives;
minimizing the project completion time and minimizing the overall project costs.
Three types of resources are considered in this model; renewable, nonrenewable
and doubly-constrained. Here renewable and nonrenewable resources are

available to a certain extent for the whole project. Below is the formulation of the

model:

Indices:

i: activity index i=12,...,n
j:mode index j=1,...,m
t: time index t=01,...,T

15



Parameters:

m; = number of modes of the activity i

1;jr = renewable resource r usage of activity i at mode j

W; i, = nonrenewable resource n usage of activity i at mode j

d;; = duration of activity i at mode j

P; = set of immediate predecessors of activity i

e; = critical path based earliest start time of activity i based on the modes
with the smallest duration.

[; = critical path based latest start time of activity i based on the modes
with the smallest duration

R, = available renewable resource of r at time t

W, = available nonrenewable resource of n at time ¢t

Decision Variables:

o = { 1, ifactivity i is assigned to mode j started at time ¢
yt — 0, otherwise

Mathematical Model:

mn . t X, ; .
Min $70 S, X, 2.14

t=en

Subject to

16



i yli
Y B e xije =1 (2.15)

— N T e+ X T (6~ didXige  VKE P, (2.16)
M1 Z;nzil Z::tlij_l TijrXijq < Ryt (2.17)
i1 Z;n=i1 iLeiWianijt =W, (2.18)

xije € {0,1} (2.19)

The objective function minimizes the project completion time as stated in
Equation set (2./4). Equation set (2.15) ensures that an activity is completed once
at one time in one mode. The next equation set (2./6) gives the precedence
relations of the activities. Resource constraints are given by the equation sets
(2.17) and (2.18). The first one, regarding renewable resources ensures the
availability of the resources at each time period. The second equation which
considers nonrenewable resources constrains the limit of the resource for the
entire project. Doubly constrained resources may be given as a combination of
both resource constraints i.e., 1;; = W;;,/d;; where r and n can be considered as
the same type of resources. Equation set (2./9) forces the decision variables to be

binary.
2.3 Most Closely Related Problems
Nonrenewable Resource Constraints

Carlier and Rinooy Kan (1982) show that a single nonrenewable resource problem
with the following settings is polynomially solvable. The single resource is

released at prespecified time points at prespecified quantities.

Hence our problem with fixed modes is polynomially solvable.
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Budget Problem

When all units of the single resources are released at time zero at prespecified
quantity B, our problem reduces to the budget problem in discrete time/cost trade-

off scheduling.
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CHAPTER 3

THE MODEL

In this chapter, firstly we define the problem. Then the chapter continues with the

construction of the model for our problem.

3.1 Problem Definition

In the literature, mostly renewable resources are used as the resource type, which
includes manpower, equipments or machines. When nonrenewable resources are
considered, like the capital budget, it is assumed that the resource is available as a
lump sum in the lifetime of the project. Thus theoretically, it is assumed that the
total budget of a project is available either in the beginning or at the end of the
project. However, this is not common in practice. Mostly, dedicated budget is
released at certain time intervals corresponding to the either completion or
beginning of an activity or regular time periods. These certain time instants that
the budget is released are said to be milestones. Thus at each milestone event,

there is resource inflow.

If the budget releases are at time instants ¢;, ,, and ¢3;, then the budget released at

t> covers the costs of the completed activities in interval (t;, t;].

In the model, only one nonrenewable resource, say budget, is used. After each
time instant if the total budget released is not entirely used by the activities, then

the remaining amount is transferred to the next time interval to be used.

19



In our model, we assume a cost is incurred whenever an activity is complete and

money is received at certain time instants, called milestones.

The model constructed takes the mode selection decisions into account in terms of
time/cost trade-off. There are several modes with different time and cost pairs. We

assume the activities can be shortened whenever additional money is spent.

In this model it is important to define the time intervals, as the activity selections
are also based on time, . Completion time of an activity should lay between two

or more consecutive time instants.

In the following section, mathematical representation of the problem described

above is given.

3.2 The Model

We first define the indices, parameters, decision variables and constraints.

Indices:

i: activity index

j:mode index

t: time index

Parameters:

n = number of activities in the project

m; = number of modes of the activity i i=12,...,n+1

T1 = number of time instants at which money is released
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c;; = cost of activity i at mode j

ij
i =12,.....n+1, j=1,....m;

pij = processing time of activity i at mode j

Note that P;;, > P;j, implies ¢;;, < ¢;j,.

B; = Budget released at time ¢ t=01,...,T
P; = set of immediate predecessors of activity i i=12,...,n+1
If activity & is immediate predecessor of activity 7, then P; includes £.

I; = time instant [ at which tth payment is recieved t=01,...,T

Decision Variables:

o = { 1, ifactivity i is assigned to mode j started at time ¢
ut 0, otherwise

CT; = completion time of activity i
k —i activity i is successor of k

Mathematical Model:

Min CT, 4 (3.1
N Y xige = 1 vi (3.2)
CT; = CTy + Y72 Nt—y DijXije Vi, k € P (3.3)

i=1 Z;-nzil t=1CijXije < L= By Tt=1 (3.4
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CT; < Z;nzll ZZ=1 Iexije (3.5)

CT; = Z;n=i1 Y-+ 1) Xijt (3.6)
CTy, =0 (3.7)
CT; =0 (3.8)
Xijc = 0 and integer (3.9

The model has three indices; i j and ¢ which identifies

activities i = 0,1, ... ... ,n+1; modes j=1,.... ,m; and time interval t =

There are n activities with one sink (dummy) node, n + 1, at the end to identify
the project completion time. The number of modes is limited to the activities’
maximum mode number, m;.Time index ¢, starts from 0 to 7 where T is the last

time interval’s end.

Minimizing the total completion time is the objective which Equation (3.7) below

indicates.

There are several constraints to be satisfied while minimizing the project duration.
Equation set (3.2) ensures that each activity i is conducted exactly at one mode

and at one time interval.

Constraint set (3.3) satisfies the precedence relations. The completion time of
activity i is no smaller the processing time of activity i added to the predecessor
activity k’s completion time, i.e., the start time of a successor activity cannot be

greater than the completion time of the predecessor.
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Constraint set (3.4) guarantees that the total amount needed by all activities that
are assigned to intervals /,...,7 cannot exceed to the total amount released at time

intervals /,...,7.
Constraint sets (3.5) and (3.6) define the interval at which activity i is completed.

Constraint (3.7) states that the project starts at time zero. That is the completion

time of the dummy activity is zero.

Constraint set (3.8) is sign constraint. However the set is redundant as there is a

single source activity with start time of zero.

Constraint set (3.9) is for binary variables. Note that we do not include the upper

bound on x;;; values, as equation set (3.2) satisfies x;;; < 1 relation.
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CHAPTER 4

SOLUTION PROCEDURES

In this chapter, we first discuss our lower bounding procedures and then present
the heuristic procedures. All our procedures are based on linear programming

relaxation (LPR) of the original model.
4.1 Lower Bounds

We develop two lower bounding procedures one is based on pure LP relaxation
and the other one is based on strengthened LP relaxation of the model. The latter
model has integer variables, but fewer in the number, when compared with the

original model.
4.1.1 Lower Bound 1

We simply relax the integrality constraints on the x;;; values and solve the
resulting linear program. In doing so, we replace x;;;€ {0, 1} with constraints
Xije < land x;; = 0 for all 7 ,j, z. The optimal project completion time value of

the resulting LPR model is a lower bound on the optimal project completion time.

We let this lower bound be LB;.

In the LB; solution, one or both of the following cases may be observed.
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Case 1. An activity may be assigned to more than one period, i.e., x;;; > 0 for

more than one ¢.

Case 2. An activity can be assigned to more than one mode, i.e., x;;; > 0 for

more than one ;.

It is possible to strengthen the lower bound, by preventing the occurrence of any
one of the cases. For example the occurrence of Case 1 can be avoided by
imposing a constraint that forces the completion of each activity to be in exactly
one period. We next explain our strengthened lower bound that bases on this

imposed constraint.
4.1.2 Lower Bound 2
Consider the following decision variable:

_ { 1, ifactivity i is completed in period t
Yit 0, otherwise

The following two constraint sets are included to the LP relaxation together with

new decision variables y;;s.
YeYie =1 Vi (4.1)
2 Xije = Vit Vi, t (4.2)

Constraint set (4.1) requires each activity’s completion is assigned to at most one

period. Constraint set (4.2) relates the continuous x;;, values to new integer

variables y;;'s.

The resulting model is a mixed integer linear program (MILP). We let the optimal
completion time of the MILP be LB,. Note that LB, provides a lower bound on

the optimal project completion as it does not avoid multimode assignment i.e.,
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Case 2 can still occur. However, it is easier to solve as it includes much fewer
binary decision variables due to the fact that there are n X T binary
variables y;;’s in MILP, and there are (}j_;m;) X T binary variables x;;;’s in

the original model.

LB, > LB; as it puts an additional restriction to the linear program. However it is
harder to solve the mixed integer linear program as it includes binary decision

variables.

Alternately, Case 2 might be avoided by introducing the following decision

variables and constraint sets (4.3) and (4.4).

7 = { 1, ifactivity i is assigned to its j** mode
i 0, otherwise

wherei=1,...,nandj = 1,....., m;
Ytz =1 vi (4.3)
Xt Xije = Zij Vi, j (4.4)

This model requires );i-; m; binary decision variables which is much more than

n X T in particular when n>T.

We did not try for this alternative, as our experiments have shown that the MILP
to find LB, results with many binary variables and few continuous variables,

hence there are too few mode splitting.
4.2 Heuristic Procedures

In this section, we propose three heuristic procedures, i.e., upper bounds. All
upper bounds use the optimal solutions of the MILP that allows mode splitting.

The first heuristic makes the mode assignments using the partial or full mode
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assignments made by MILP. Using these modes it finds an optimal solution
considering the budget releases and usages. The second heuristic takes the full
mode assignments from the MILP solutions and fixes these activities to the modes
assigned by the MILP. The unassigned modes are the ones that receive partial
assignments by the MILP. These mode assignments are done optimally by using
the original IP. This step is done in exponential time, however, at reduced
problem. The third heuristic uses pure LP relaxation results to make partial mode
assignments. Using new modes it finds an optimal solution considering the budget

releases and usages.

Below are the detailed descriptions of the heuristic procedures.

4.2.1 Heuristic 1

If the mode assignments are known, the budget allocation problem reduces to the
nonrenewable resource constrained time problem. This problem can be solved in
polynomial time using the algorithm proposed by Carlier and Rinooy Kan (1982).
For the sake of completeness we state the steps of this polynomial time algorithm.

We need the following notation to state the algorithm.

P;= time to perform activity i at fixed mode.

A= total amount of resource released till the end of the period .

Resource release profile plots 7 versus A;.

R; = total amount of resource required till the end of period # when the activities

are scheduled according to the latest start schedule.

Resource requirement profile plots ¢ versus R;.

Algorithm Y:
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Step 1. If Ry £ A for all periods ¢, then the resource requirement
profile is beneath the resource release profile, and then stop.

The latest start schedule is optimal.

Step 2. Shift the resource requirement profile to the right until all
points of the profile lie on or below the resource release

profile.

Shifting the line is equivalent to increasing the project completion time. With
minimum shift, the project completion time is minimized subject to budget

constraints.

Our heuristic procedure sets the activity modes using the optimal MILP solution.
We mention the fractional mode assignments such that the budget constraint is not
violated. Hence, we increase the fractional processing time till it fits to defined
mode. We make the increase as small as possible to favor our objective of
minimizing the total project completion time. We take the full mode assignments,
if any made by MILP. After all activities are set to one mode, we apply Algorithm

Y to find the optimal completion times subject to given mode assignments.

After we obtain a schedule by implementing Algorithm Y, we shorten the project
duration by reducing the task times of some activities. The activities that could
reduce the project duration are the critical ones that are not already assigned to
their shortest duration mode and that would not violate the budget constraints
when assigned to its next shorter mode. We let the set of such activities as Set CP.
We select the activity having the longest completion time in Set CP and assign it
to its next shorter mode. After the reassignment, we shift the other activities to the
left of the schedule; therefore reduce their completion times, as long as budget
constraint permits. We stop when there is no further room for improvement, i.e.,
Set CP is empty or when the new schedule’s total completion time is found out to
be higher than that of original schedule’s.
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Below is the algorithmic description of our first heuristic procedure.

Step 1.

Step 2.

Step 3.

Step 4.

Let tipbe the processing time of activity i returned by the

MILP.

Set activity i to mode j; such that ¢;;, 1 < t;p < ¢,

i.e., the mode having the smallest processing time that is no

smaller than #;zp.

Let ti = tiji Vi

Find the project completion time using Algorithm Y with

fixed t; values.
Define the critical activities.

Let CP be the set of critical activities whose durations can
be reduced without violating the budget constraint and

increasing the project duration.
Stop if CP is empty.
Let r be the task in CP that has the highest completion time.

Let j, be the current mode of task r. Assign task r to its next

shortest duration mode, i.e., mode j,+1.

Shift all activities that follow, i.e., all successors of task r to
the right of the schedule as much as possible (as long as

budget constraint permits).

Go to Step 3.
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In Step 1, we solve the MILP heuristically. The heuristic solution to MILP is
found by giving 10% optimality gap to our IP-solver. We use 10% gap, as our
initial experimentation has revealed that with this gap we still find satisfactory
solutions for our heuristics as we observe that attaining optimal solutions is not
easy. Moreover, optimal solutions are not essential as they are eventually used to

produce approximate solutions.

Step 2 runs in polynomial time as Algorithm Y is polynomial-time. The
improvement steps, i.e., Steps 3 and 4 iterate at most },;(m; — 1) times, as at
worst case all activities may be at their longest modes and can be shifted to their

shortest modes. Hence, the improvement step runs in polynomial time.
4.2.2 Heuristic 2

The heuristic runs in two steps. In the first step, the MILP with mode splitting is
solved and the full mode assignments are fixed. In the second step, the mode
assignments (that are partial in the MILP solutions) are made optimally using the

IP. Below is the stepwise description of Heuristic 2.

Algorithm X:
Step 1. Solve the MILP, by allowing a % gap allowance
Let Sip be the set of activities that are fully assigned to a
single mode. Let k; be the mode index at which x;;,, = 1
fori e Sip.
Step 2. Set X¢xjk, =1 for each ieS;p and find the mode

assignments for each i & S;p by solving the original IP.

Heuristic 2, without improvement steps (i.e., Steps 3 and 4) dominate Heuristic 1

as it does the mode assignments for all i € S;p optimally whereas Heuristic 1
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does those assignments heuristically. In other words, Heuristic 1 pre-sets the

mode assignments whereas Heuristic 2 decides on their values.

After the improvement steps, there is no domination between Heuristic 1 and

Heuristic 3.
4.2.3 Heuristic 3

Note that Heuristics 1 and 2 run in exponential time. A polynomial time heuristic
is also generated by implementing Heuristic 1 with pure linear program. In doing

so, the t; values are found from LP using the found expression.

mi

Z tl-jxijt Vi

T
ti =

t=1j=1
where x;; is the optimal values of the assignment variables found by LP.

For the sake of completeness, we give the stepwise description of Heuristic 3.

Algorithm Z:

Step 1. Let tiLp be the processing time of activity i returned by the
LP.

Set activity i to mode j; such that
tij—1 <tlip =t

i.e., to a mode having smallest processing time that is no

smaller than t;p.

Step 2. Let ti = ti]'i Vi
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Using t; values, find the project completion time using

Algorithm Y.

Step 3. Define the critical activities.

Let CP be the set of critical activities whose durations can
be reduced without violating the budget constraint and

increasing the project duration.

Stop if CP is empty.

Step 4. Let r be the task in CP that has the highest completion time.

Let j, be the current mode of task . Assign task r to its next

shortest duration mode, i.e., mode j,+1.

Shift all activities that follow, i.e., all successors of task r to
the right of the schedule as much as possible (as long as

budget constraint permits).

Go to Step 3.

Note that all steps of the heuristic run in polynomial time unlike Heuristic 2 that

runs in exponential time.

Figure 4-1 demonstrates the data flowchart of the solution procedures described

above.
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) Intervals) Successors Predecessors Modes
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Integer Programming
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Linear Programming
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H tic 2
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Figure 4.1 Flowchart Diagram of Data Flow and Solution Procedures

4.3 An Illustrative Example

In this section, an illustrative example will be solved to demonstrate the solution

procedures.
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4.3.1 Problem Data

Our example problem (P) has 15 activities with alternate time/cost modes. Table
4.1 shows the predecessor — successor relations of P, and Figure 4.1 shows the

associated network.

Table 4.1 Predecessor and Successor Relations of P

Activity Immediate Immediate
Predecessor(s)| Successor(s)

1 - 3.4,5

2 - 6,7

3 1 9,10

4 1 13

5 1 8

6 2 12

7 2 11,14

8 5 13

9 3 13

10 3 15

11 7 12

12 6,11 15

13 4,8,9 15

14 7 15

15 10,12,13,14 -
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Figure 4.2 Network Diagram of P

Each activity has at most 9 modes and least 1 mode. Tables 4.2 and 4.3 tabulate

the times and costs for the activity modes.

Table 4.2 Times for the Activity Modes of P

Activity { Mode | | Mode 2 | Mode 3 | Mode 4 | Mode 5| Mode 6 | Mode 7 | Mode 8 | Mode 9
1 16 13 12 11 10 7 4 2 -
2 13 10 7 5 3 - - - -
3 7 4 3 ©o- - - - - -
4 13 10 7 5 3 - - -
5 17 i5 13 10 3 7 5 3 -
6 11 10 7 6 4 1 - - -
7 10 7 5 2 - - - - -
8 12 10 7 6 4 1 - - -
9 15 14 11 8 5 4 2 - -
10 7 4 3 - - - - - -
1 4 1 - - - - - - -
12 i7 15 14 11 8 5 2 - -
13 2 - - - - - - -
14 19 17 15 12 10 7 6 3
15 21 18 15 14 11 8 5 4 2
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Table 4.3 Costs for Activity Modes of P

Activity | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | Mode 6 | Mode 7 | Mode 8 | Mode 9
1 2 13 16 17 31 35 47 70 -
2 6 38 45 52 96 - - - -
3 38 71 85 - - - - - -
4 6 38 45 52 96 - - - -
5 10 24 28 39 40 77 94 98 -
6 7 19 35 57 67 71 - - -
7 15 16 25 75 - - - - -
8 11 27 35 65 81 90 - - -
9 13 29 41 54 75 77 97 - -
10 28 71 85 - - - - - -
11 52 73 - - - - - - -
12 22 27 30 35 36 37 99 - -
13 32 - - - - - - - -
14 39 55 57 63 69 72 86 97 -
15 8 19 22 30 33 42 62 73 76

The problem is solved four times for the following cases which are generated

randomly:

Case 1.
Case 2.
Case 3.
Case 4.

Narrow time interval, low budget

Narrow time interval, high budget

Wide time interval, high budget

Wide time interval, low budget

Table 4.4 tabulates the values used in each of the four cases showing time interval

and budget release values
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Table 4.4 Parameters of P

Case 1 | time ntervals [budget release Case 3 | time intervals [budget release
t1 4 77 t1 8 154
t2 28 85 t2 56 170
3 35 79 t3 70 158
t4 42 89 t4 84 178
t5 60 61 t5 120 122
Case 2 | time intervals [budget release Case 4 | time intervals [budget release
tl 4 154 tl 8 77
2 28 170 t2 56 85
t3 35 158 t3 70 79
t4 42 178 t4 84 89
t5 60 122 t5 120 61

4.3.2 Solution Procedures

The problem is solved firstly as an integer programming, and then its LP

relaxation is solved. After that, the MILP model that requires the execution of the

activity within the same time interval is solved.

Our first heuristic procedure takes the solutions of MILP and allocates the

nonrenewable resource based on the activity durations found by the MILP.

Our second heuristic procedure takes the integer variables of the optimal mixed

integer program, and solved the IP for the continuous variables.

Third heuristic uses the same logic with Heuristic 1, where instead of the mixed

integer program’s results; it uses the LP’s.
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4.3.3 Results

We first solve the IP. The optimal solution for each case found by IP solution is

given in Table 4.5.

Table 4.5 IP Solution of P
IP solution
Z*
Case 1 43
Case 2 31
Case 3 55
Case 4 79

Then, solve the MILP. The optimal solution (0% gap) for each case is given in
Table 4.6 together with the # of fractional activities and # of integers.

Table 4.6 MILP Solution of P

MILP
z f offr‘a.ct‘:lonal # of mtegers
activities
43 4 11
31 3 12
54.667 1 14
77.765 1 14

Note that according to this solution, the following activities are to be fixed (Table
4.7).
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Table 4.7 Fixed Activities of MILP

Case 3

Activity [ Mode

Time

10
11

12
13
14
15

Case 4

Activity | Mode

Time

10
11

12
13
14

Case 1

Activity | Mode

Time

10
11

13
14
15

Case 2

Activity | Mode

Time

10

11

12
13
15
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The remaining activities are set to the following modes when implementing

Heuristic 1 (Table 4.8).

Table 4.8 Assigned Modes of the Remaining Activities

Case 1 Case 3
Activity| Cost |Duration Chosen Activity| Cost |Duration Chosen
Mode Mode
13 13 2 1 2 16 1
5 24 15 2
7 16 7 2
12 30 14 3
Case 2 Case 4
. .| Chosen L .| Chosen
Activity | Cost |Duration Mode Activity | Cost |Duration Mode
1 47 4 7 15 42 8 6
5 28 13 3
14 69 10 5

Hence the problem is reduced to the single mode nonrenewable resource
allocation problem. Shifting algorithm (Heuristic 1) produces the following task

completion times (Table 4.9).
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Table 4.9 Completion Times of the Activities by Heuristic 1

Case 1 Case 2 Case 3 Case 4
Activity FLHE]‘:h Activity FL;Eh Activity FLH?:‘:h Activity FL;tseh
1 14 1 5 1 16 1 40
2 17 2 16 2 16 2 40
3 26 3 15 3 30 3 54
4 41 4 30 4 45 4 69
5 29 5 18 5 33 5 57
6 29 6 27 6 30 6 54
7 24 7 22 7 26 7 50
8 41 8 30 8 45 8 69
9 41 9 30 9 45 9 69
10 43 10 32 10 47 10 71
11 29 11 27 11 30 11 54
12 43 12 32 12 47 12 71
13 43 13 32 13 47 13 71
14 43 14 32 14 47 14 71
15 45 15 34 15 55 15 79

The total completion time of the project is given below for each case found by

implementing Heuristic 1 (Table 4.10).

Table 4.10 Completion Times of the Project by Heuristic 1

Cases Total Completion Time
Case 1 45
Case 2 34
Case 3 55
Case 4 79

41



When implementing Heuristic 2, solution of the MILP is used to find the project
completion time. Like Heuristic 1, binary activities found by MILP are fixed and
remaining activities’ modes are found optimally by solving IP. The completion

time of the project found by Heuristic 2 is given below (Table 4.11).

Table 4.11 Completion Times of the Project by Heuristic 2

Cases Total Completion Time
Case 1 43
Case 2 32
Case 3 55
Case 4 79

Heuristic 3 uses LP relaxation solutions to implement the shifting algorithm.

Table 4.12 shows the completion times of the activities produced by Heuristic 3.
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Table 4.12 Completion Times of the Activities by Heuristic 3

Case 1 Case 2 Case 3 Case 4
Activity II;?;:S; Activity ;?ntle:}: Activity Iﬁiﬁ: Activity %ﬁi‘
1 32 1 24 1 49 1 90
2 33 2 26 2 54 2 88
3 42 3 31 3 58 3 101
4 57 4 39 4 69 4 115
5 45 5 33 5 59 5 105
6 45 6 36 6 66 6 106
7 40 7 32 7 61 7 98
8 57 8 39 8 69 8 115
9 57 9 39 9 69 9 115
10 59 10 41 10 71 10 117
11 45 11 36 11 66 11 106
12 59 12 41 12 71 12 117
13 59 13 41 13 71 13 117
14 59 14 41 14 71 14 117
15 61 15 43 15 73 15 121

The total completion times of the project found by Heuristic 3 for all cases are

given below (Table 4.13).

Table 4.13 Completion Times of the Project by Heuristic 3

Cases Total Completion Time
Case 1 61
Case 2 43
Case 3 73
Case 4 121
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The task completion times are then reduced to the following values by the

Improvement Algorithm (Table 4.14).

Table 4.14 Completion Times of the Heuristics after Improvement Algorithm

Cases Improved Heuristic 2 Improved
Heuristic 1 | (10% Gap) | Heuristic 3
Case 1 45 45 61
Case 2 34 32 43
Case 3 55 55 73
Case 4 79 79 121

Since the number of activities is very small, it is found out that the solutions are

already giving the best possible results, so the effect of the improvement

algorithm cannot be observed from this illustrative example.
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CHAPTER 5

COMPUTATIONAL RESULTS

In this chapter, we design an experiment to test the performances of our heuristic
procedures. We first discuss our data generation scheme, state our performance

measures and then discuss the results of our experiment.
5.1 Data Generation

We take our data basically from Akkan et al. (2005). According to their scheme,
the durations are generated from uniform discrete distribution between 3 and 123.
The durations are then sorted in their non-increasing order such that t;, refers to
the k" smallest duration. The minimum cost, ¢,, is generated from discrete
uniform distribution between 5 and 15. Thereafter, c,_; is set to (cj + Si) X

(tx — ty_1) where sp_; € U [sy, S, + 3] or sp_1 € U [max(1, s, —3), skl

We take 15 test problems from the below ranges of the number of the activities

(Table 5.1).

Table 5.1 Range of the Problem and Number of Instances

Range # of instances
[30,35] 5
[40,45] 5
[85,90] 5
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For each activity, the number of modes is generated from uniform discrete

distribution between 1 and 10.

In our experiments, we analyze the effects of interval lengths and budget values

on the performances of the algorithms. We generate interval lengths to represent

two cases:
Case 1. Narrow Time Intervals
Case 2. Wide Time Intervals

To assign interval lengths, the average and minimum processing time of each
activity is taken. In order not to generate trivial-to-solve problems, for narrow
intervals, approximately 1/3 of the sum of average of all activities’ processing
time is set as the last interval. Remaining time interval lengths are randomly

generated. For wide intervals; two folds of the narrow interval values are used.

For each interval length, we generate the budget values to represent the following

two cases:
Case 1. High Budget Releases
Case 2. Low Budget Releases

To assign budget release amounts, the average and minimum costs of each
activity is taken. In order not to generate trivial-to-solve problems, for low
amounts, approximately 1/3 of the sum of average of all activities’ cost is set as
the total cost through the project. Each budget release is randomly generated
ensuring the total cost remains as determined. For high amounts; two folds of the

low amount budget release values are used.
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Two cases for interval lengths and two cases for budget values together give four

different combinations. For each of the 15 problem instances, we consider these 4

cases. Hence we generate and solve a total of 60 problem instances.

5.2 Performance Measures

In this section, we describe our performance measures used to evaluate the

efficiency of our IP to find optimal solution, MILP and pure LP to find lower

bounds and heuristic approaches.

For IP we use maximum and average Central Processing Unit (CPU) time in

seconds as performance measurcs.

We evaluate the lower bounds by the following measures:

ii.

iil.

CPU times in seconds (average, maximum)
Percent Deviation from the Optimal Solution (% DEV) (average,

maximum).

We calculate the % DEV of problem instance i as follows;

OPT, — LB;
% DEVl = W x 100
i

where

LB; = Lower bound value found by MILP or LP for problem

instance i

OPT; = Optimal solution value of problem instance i

Number of fractional activities and percent of integer variables

(average, maximum)
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We evaluate the heuristic procedures by the following measures:

11.

1il.

CPU times in seconds (average, maximum)
Percent Deviation from the Optimal Solution (% DEV) (average,

maximum).

We calculate the %6 DEV of problem instance i as follows:

i _ H, - OPT,
%o DEV; = W x 100
i

where
H; = Solution value found by the heuristic for problem instance i

Number of times (out of 5 problem instances) the optimal solution

is reached.

All mathematical models are solved by the GAMS Base Module version 23.0.2
WIN 9396.9411 VIS x86/MS Windows with CPLEX solver. The algorithms used

in the heuristics are coded in C programming language.

The instance runs are performed on the Intel® Core ™2 Duo CPU 2.26 GHz and
3.45 GB of RAM computer.

5.3 Analysis of Results

We present the performances of the integer program (IP) and lower bounds

(MILP, LP) in Table 5.2. The table reports the average and maximum CPU times

to achieve the optimal solutions to IP, MILP and LP by using GAMS with
CPLEX solver.
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As can be observed from the Table 5.2, LP can be solved in negligible time. It
takes less than 1 second to get the lower bound, in majority of the combinations.
The performance of LP does not deteriorate with an increase in the problem sizes.
For example when n increases from 40 to 85, the average CPU times increase
from 0.47 to 0.91 seconds when budget releases are low and the interval lengths
are wide. The same results hold for other combinations. However, for MILP and
IP, the CPU times increase drastically with an increase in problem size. The
difference becomes much pronounced when n gets larger. For example when n
increases from 30 to 40, the average CPU times by IP increase from 8.22 to 88.14
seconds when the budget releases are low and interval length is narrow. For this
combination, when 7 increases from 40 to 85, the average CPU times increase
from 88.144 to 371.85 seconds. When budget releases are low and interval lengths
are wide, 1 problem instance out of 5 remain unsolved in one hour for =85, thus
it dominates the other values when finding the average CPU time of 824.72
seconds. These observations are in line with MILP results. For example when n
increases from 30 to 40, the average CPU times by MILP increase from 14.43 to
29.94 seconds when the budget releases are low and interval length is narrow. For
this combination, when 7 increases from 40 to 85, the average CPU times increase
from 29.94 to 1020.49 seconds. 1 problem instance out of 5 remains unsolved in

one hour and this instance plays a dominant role in high average CPU time.

The majority of the instances are solved easier by MILP than by IP. However
there are some expectations like when n=85 the budget releases are and high
interval length is narrow, and the average CPU time of IP is 14.68 seconds
whereas the average CPU time of MILP is 22.27 seconds. This is due to the fact
that the MILP solution tries to reach the optimal value by searching every
possibility before reaching to it. For example for some instances, although it has
found the optimal solution in MILP, it didn’t stop until it finished its search

around the optimal, which is counted as CPU time at the end.
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Note that the easily solvable problem instances are observed when budget releases
are lower and the intervals are wider. The lower the budget releases, the easier the
solutions, as the search of the solutions begin from the first modes of the time-cost
pair. Thus, iterations of the solution generate lower number of decision variables
compared to the higher budget releases. For example when budget releases are
low and time intervals are wide, for n=85, average CPU time is 77. 54 seconds,
whereas when the budget releases increase, average CPU times increase
drastically to 589.36 seconds in wider intervals. Similarly, wider intervals also
generate easier solutions, since the construction logic of MILP is based on
conducting the activity within a single time interval. Thus, the wider the time
interval, the shorter the solution time would be. For example for n=40, when the
budget is low and intervals are wide, the average CPU time is 14.89 seconds,
whereas when the intervals are narrower, the average CPU time increases to 29.94
second. However this is based on both the intuition and outcomes of the solution

instances. Thus, there may be some exceptions.

Table 5.3 reports the average and maximum deviations of the lower bounds from

the optimal solutions, as the percentage of the optimal solution.

As can be observed from the table, the deviations by LPs are high; the majority of
the deviations are between 20% and 35%. The LP deviations do not deteriorate
with an increase in problem sizes. The wider interval instances return slightly
bigger deviations, as the search of the solutions begin from the first modes of the
time-cost pair. First modes have lower costs and higher durations. Thus, the
program finds a solution easily but with a worse deviation. For example, for n=85,
when the budget releases are high and interval lengths are narrow, deviation is
10.09% whereas when the intervals are wide, it increases to 17.63%. The
deviations of MILP are very low, all deviations are below 8%, and they are
consistent over all problem combinations. This supports that the MILP can be

used to estimate the optimal solution.

51



91'9C | €9°LI LTTIT | 6001 8¢L (44 4 €C9 (44 06-S8
¥9'8C | LT6I e€SIE IL81 I's I18°¢ 8L 60'Y Sv-0v | YSIH
YL'8C | T8YC | ¢6'ST | 18'IC S0'¢C 9I'1 S0'¢ 60°'C ge-0¢
86°SE | 81'9C | 9I'¥E | ¥P¥C 90°¢ LSE 98V 6v'¢ 06-S8
19°C¢ | STST | LV'6T | 60'¥%C 9°¢ 8¢ 98¢ §C¢ S-0t MO7]
ISvYC | SL'IT | €V€EC | 6S'1C So'1 90°1 6L'¢ 181 Se-0¢
XB]N [98e1oay | xeNy [oGeroay | xe|Ny |S8eroay | xey | 98eioay

ang | aseoy
[eAIU] SPIAA [BAIIU] MOLIEN [eAIU] SPIAA [BAIIU] MOLIRN worqoig | 193png

d1 dTIN

suonnjos dI Pue JIIIN JO UOHRIAI( JUSOISJ YL €°G J[qeL

52



Tables 5.4 and 5.5 report the percentages of integer variables and fractional

activities of the optimal relaxations returned by MILP and LP, respectively.

As can be observed from Table 5.4, percentages of integer variables of the MILP
are mostly above 50 whereas the percentages of integer variables of LP are either
0 or very close to 0. Similarly, percentages of fractional activities are mostly less
than 30 whereas the percentages of integer variables of LP are close to 100.
Tables 5.4 and 5.5 complement each other. As the number of fractional activities
increases, the number of integer variables decreases. Almost all the activities are
fractional in LP solutions, which leads to a worse approximation compared to the
MILP solutions. As stated above, wider intervals in the MILP solutions give
smaller percentages of fractional activities as the construction idea of the MILP is
based on conducting the activity within a single time interval. This follows, when
the interval is wide, the percentage of integer variables would be higher based on
our intuition which is also supported by our experiments. For example when
budget releases are low and interval lengths are wide, for n=85, percentage of
integer variables is 76.43 for the MILP, whereas the percentage is 0 for LP
solution. These results have motivated us to the MILP as a starting point of our

heuristic procedures.
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We next report on the performance of our MILP and heuristic procedures
regarding the gap analysis. Table 5.6 reports the CPU times and percent
deviations for the MILP solution. Tables 5.7 and 5.8 report the CPU times and

percent deviations for our heuristic procedures.

Note that Heuristics 1 and 2 require the MILP solutions. The MILP can be solved
optimally or by allowing some gap of optimality. The solutions with smaller gaps
are likely to be more satisfactory, however they are obtained with high

computational effort, i.e., in high CPU times.

In our initial experiments, to see the effect of o (percentage gap) on the solution
times and quality of the solutions, we considered the problem instances with 85
activities. We tried a=0% (optimal), a=5%, a=10% and 0=15% cases. Table 5.6
reports the average and maximum CPU times to solve the MILP for different
values of a. The Table 5.6 also reports the time to obtain an optimal solution via
IP. As can be observed from the table, the CPU times drop considerably with an
increased a value. The CPU times with a=0%, is generally higher than the
solution times of IP. Note that when the budget releases are low and time intervals
are narrow the average CPU time of MILP is 1020.49 seconds and the average
CPU time of IP is 371.86 seconds. For this combination, for 0=5%, 10% and 15%,
we obtain CPU times of 135.21, 107.47 and 99.45 seconds respectively that are
much lower than that of IP (371.86 seconds). For all problem combinations, the

CPU times with 0=10% and a=15% are very close.
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Tables 5.7 and 5.8 report the average CPU times and percent deviations of the
heuristic procedures (Heuristic 1 and Heuristic 2) that use the solutions of MILP

with different o values.

As can be observed from the tables the deviations with a=10% are close to the
deviations with 0=5%. On the other hand, the CPU times with 0=5% are higher.
Note from the tables that for Heuristic 1, the CPU times of 135.52, 55.03, 15.74
and 42.36 for a=5% are higher than the respective CPU times of 107.80, 36.24,
13.52, and 29.43 for a=10%. The same conclusions can be made for Heuristic 2.
We observe that in general, better deviations are due to a=10% gap than a=15%
gap for both heuristics. Note that for Heuristic 1, the average deviations of 21.54,
14.75, 34.77 and 32.81% (for combinations 1, 2, 3 and 4) for a=10% are no higher
than their respective deviations of 24.98, 14.89, 34.77 and 34.36% for a=15%.

These observations are true for Heuristic 2 too.

As a=10% catches the trade-off between the CPU times and percent deviations

better than 0=5% and a=15%, we choose a=10%.

Table 5.9 tabulates the CPU times of the IP and Heuristics after improvement.
CPU time for the Improved Heuristic 1 is the sum of MILP (with 10% gap)
solution time and improvement stage, Heuristic 2’s CPU time corresponds to the
sum of MILP (with 10% gap) solution time and IP solution time, and CPU time
for the Improved Heuristic 3 is the sum of LP solution time and the time spent in
improvement stage. Improvement stage is performed simply by loops and shifting
algorithms in polynomial time. Thus has a negligible CPU time. As can be
observed from the table, Heuristic 3 runs the quickest. However, Heuristics 1 and
2 run in exponential time as can be observed from the tabulated values. The CPU
times of the Improved Heuristic 1 are lower than those of Heuristic 2. For
Improved Heuristic 1 and Heuristic 2, mostly as the number of activities

increases, the average CPU time also increases. This is also valid for Improved
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Heuristic 3, however the highest average CPU time is of 1.69 seconds, which is

still very low.

Table 5.10 tabulates the percent deviations of the Heuristics after improvement.
The averaged percent deviations obtained by Improved Heuristic 1 are all smaller
than 12, except one instance when n=40, budget release is low and the interval
length is wide. For this combination, the average value is dominated by one
instance. The 118.93% deviation of this single instance raised the average
deviation to about 30%. In Heuristic 2, the percent deviations of the instances are
all smaller than 7%. As can be observed from the table, for the instances of #=30
and n=85 majority of the percent deviations are lower than those of n=40.
Improved Heuristic 3’s percent deviations are still higher those of the other two

heuristics. They are mostly smaller than 63% with some exceptions.
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Tables 5.11 and 5.12 together reveal the improvement procedures improve the
performance of heuristic procedures considerably. Tables 5.11 and 5.12 tabulate
the CPU times and the percent deviation of Heuristics and Improved Heuristics,

respectively.

As can be seen from the Table 5.11, the average CPU times of Improved
Heuristics are slightly higher than the original Heuristics. For example, when
n=40, the budget is low and the interval length is wide, the average CPU time of
Heuristic 1 is 11.97 seconds, whereas the Improved Heuristic 1 has an average
CPU time of 12.25 seconds. This indicates an effective approach in terms of CPU

time.

As can be observed from Table 5.12, the improved heuristics have lower
percentage deviations than those of their original versions. The highest reductions
due to the improvements are observed when the budget releases are higher and the
interval lengths are narrower. This is due to the fact that the Improvement
Algorithm tends to reduce the activity completion times and force them to fit in
one interval. For example, when the budget releases are low, the reductions are
3.35%, 26.77% and 22.99% when the interval lengths are narrow, whereas 4%,
18.62% and 21.48% when the interval lengths are wide for n=30, n=40 and n=85

respectively.
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Table 5.13 gives the number of times each heuristic returns an optimal solution

for every instance.

Table 5.13 The Number of Instances that Return Optimal Solution

Improved Heuristic 1 Heuristic 2 Improved Heuristic 3
Budget | Problem - - -
Release Size Narrow Wide | Narrow Wide | Narrow Wide
Interval | Interval | Interval | Interval | Interval | Interval
30-35 0 0 1 0 0 0
Low 40-45 1 0 2 1 0 0
85-90 0 0 1 0 0 0
30-35 0 0 1 1 0 0
High 40-45 0 0 3 1 0 0
85-90 1 1 3 2 2 1

The performances after the improvement are very satisfactory. As can be seen
from the Table 5.13, in 3 out of 5 instances, Heuristic 2 finds the optimal solution
when the budget releases are high and the interval lengths are narrow for n=40
and n=85. Heuristic 2 returns at least 1 optimal solution out of 5, for all instances
except for two combinations when #=30 and »=85, when the budget releases are
low and interval lengths are wide. Although the Improved Heuristic 3 returns high
CPU times, when n=85 and budget releases are high, it finds optimal solutions in

3 out of 10 problem instances.

Our recommendation to the project managers is to use Heuristic 3, when obtaining
quick solutions is more important than the quality of the solutions. If the quality
of the solutions is more important, i.e., the quick deliveries are essential then

Heuristic 1 should be used.
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CHAPTER 6

CONCLUSIONS

In this thesis, we consider a discrete time/cost trade-off problem with a single
resource constraint. The single resource is assumed to be nonrenewable, hence can
well be represented by monetary units. The resource is released at some
prespecified time points at some prespecified quantities. It is assumed that the cost
incurred by an activity is charged at the end of its completion. A feasible solution
is the one that consumes no more than total amount released at any time point.
When all money is released at the beginning of the project’s start then the problem

reduces to the discrete time/cost trade-off budget problem which is strongly NE-

hard. This follows our problem with arbitrary resource release times is strongly

NP-hard.

We first formulate the problem as a pure Integer Programming (IP) model. The
model decides on the completion time each activity as well as its mode. We
observe that the Linear Programming Relaxation (LPR) produces satisfactory
results in terms of number of continuous variables. We strengthen the LPR model
by introducing an integer variable to prevent the assignment of an activity to more
than one completion time. In the resulting Mixed Integer Linear Program (MILP)
model we still have continuous decision variables due to splits in mode
assignments. We use the optimal objective function value of the MILP model as
an under-estimate, i.e., lower bound, on the optimal project completion time. We

develop three heuristic procedures that use the approximate solutions of MILP
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and LPs. Our first heuristic fixes the assignments made by MILP and solves the
remaining problem to optimality. The other heuristics use the solutions of MILP
and LP to find mode assignments. Given the mode assignments the completion
times are found by shifting algorithm and then reduced by improvement

algorithm.

The results of our experiments reveal that the first heuristic finds solutions that are
very close to the optimal however with high computational effort. The other
heuristics find quick solutions that are reasonably close to the optimal. We also
observe that the number activities, budget amounts and interval lengths have

significant effects on the performance.

Future research may consider the following areas:

e Renewable resources can be included.

e More than one nonrenewable resource might be studied.

Different payment schedules may be investigated. These schedules may include
the payments at the start times of the activities or the payments at the

completion/start times of defined milestone activities.
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