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ABSTRACT

IMAGE ANNOTATION WITH SEMI-SUPERVISED CLUSTERING

Sayar, Ahmet
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatos Tunay Yarman Vural

December 2009, 144 pages

Image annotation is defined as generating a set of textualsafor a given image, learning

from the available training data consisting of visual imagatent and annotation words.

Methods developed for image annotation usually make usegbdm clustering algorithms
to quantize the visual information. Visual codebooks aneegated from the region clusters
of low level visual features. These codebooks are then, mdtavith the words of the text

document related to the image, in various ways.

In this thesis, we propose a new image annotation techniglieh improves the represen-
tation and quantization of the visual information by emjmgythe available but unused in-
formation, called side information, which is hidden in thestem. This side information is
used to semi-supervise the clustering process which crélagevisterms. The selection of
side information depends on the visual image content, thetation words and the relation-
ship between them. Although there may be marfijedént ways of defining and selecting
side information, in this thesis, three types of side infation are proposed. The first one
is the hidden topic probability information obtained augditally from the text document

associated with the image. The second one is the orientatidrthe third one is the color
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information around interest points that correspond tdoetitlocations in the image. The
side information provides a set of constraints in a semesuped K-means region clustering
algorithm. Consequently, in generation of the visual tefram the regions, not only low
level features are clustered, but also side informatiorsézitto complement the visual infor-
mation, called visterms. This complementary informatisrexpected to close the semantic
gap between the low level features extracted from eachmegiad the high level textual in-
formation. Therefore, a better match between visual codlelamd the annotation words is
obtained. Moreover, a speedup is obtained in the modifiedgésra algorithm because of the
constraints brought by the side information. The proposgor#hm is implemented in a high

performance parallel computation environment.

Keywords: image annotation, semi-supervised clusteKagieans, SIFT, MPI, visterm, doc-

ument
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YARI DENETIML | KUMELEME ILE GORUNTU ETIKETLEME

Sayar, Ahmet
Yiksek Lisans, Bilgisayar Muhendisligi Bolim

Tez Yoneticisi : Prof. Dr. Fatos Tunay Yarman Vural

Aralik 2009, 144 sayfa

Goruntu etiketleme, mevcut etiketlenmis gorungitien kimelerinden 6grenerek, verilen bir

resim icin bir dizi kelime Uretilmesi olarak tanimlankbi

Otomatik goruntu etiketleme yontemlerinde gors#ilgi nicelemek icin genelde bolge kiime-
leme algoritmalari kullanilmaktadir. Gorsel kod tabtglebolgelerden elde edilen disuk
diuzeyli gorsel ozniteliklerin kiimelenmesiyle eldeiled Bu kod tablolari goruntu etiket-

leriyle degisik yontemler kullanilarak eslestirigktedir.

Bu tezde, etiketlenmis goruntulerde mevcut ancakakuiimayan bilgileri kullanarak kiimele-
me islemini iyilestiren yeni bir goruintl etiketlemeknigi onerilmektedir. "Ek bilgi” adi

verilen bazi oznitelikler kimeleme islemini denetldmigin kullaniimaktadir. Bu tezde,
iic tip ek bilgi 6nerilmektedir. Ilki, goruntii etiketlerini kapsayan metin dokiimamadan

otomatik olarak elde edilen gizli konu olasiliklari bilgis. Diger ikisi goruntiiniin dnemli
yerlerini isaret eden ilgi noktalar etrafindan elde ediyon ve renk bilgileridir. Bu ek bilgiler,
yarl denetimli k-ortalama bolge kiimeleme algoritmadhiradizi kisit saglamak amaci ile

deg@erlendirilirler. Bdylece, bolgelerin kimelemede sadece dusik seviyeli gorsel dznitelik-
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ler degil, ayni zamanda bu ek bilgiler de kullaniimis oBu tamamlayici ek bilginin gorinti
bolgelerinden elde edilen dusuk seviyeli oznitadikile yiksek seviyeli metin bilgisi arasina

anlambilimsel a¢1g1 kapatmasi beklenir.

Sonug olarak, gorsel kod tablolari ve gorintl etikelirkeleri arasinda daha iyi bir iliski
elde edilmis olur. Ayrica, uyarlanan K-ortalama algoamda kullanilan kisitlar nedeniyle
algoritma performansinda hizlanma saglanmisBnerilen algoritma yiiksek performansli

paralel hesaplama ortaminda gerceklenmistir.

Anahtar Kelimeler: goriuntl etiketleme, yari-denetikiimeleme, K-ortalama, SIFT, MPI,

gorsel terim, dokiiman
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CHAPTER 1

INTRODUCTION

With the recent developments in digital image acquisitiod atorage technologies, amount
of collections that carry images continue to increase; Wdride Web leading the way. Man-
aging large amount of such collections is an important task tequires searching these
collections with high accuracy andhieiency. An intuitive way of searching through these
collections is the Query-By-Example (QBE) method, whichlso known as Content Based
Image Retrieval (CBIR). This method has been the subjeatmgiderable amount of research
in the last decade, surveys of which can be found in [1] and [RICBIR, a sample image
is given as a query, and the retrieval engine is expecteddaHim most resembling image(s)
in the collection based on visual content of the query imagéhough implemented in the
early image retrieval systems [3], [4], [5], [6], [7], [819], [10]; this method did not find its
way in recent retrieval architectures. The reason for tssilt is two-folded. First, it is not
easy for users to find sample query images to retrieve similas. Second, it is flicult to
design a retrieval system, which models the visual contetiteoimages and similarity met-
rics, especially when the background of the image contdifjects that are not of interest to

the user.

Annotating images with textual keywords and performingrggsethrough these keywords has

recently emerged as a better alternative.

Image annotation can be defined as the process of assignymgpids to a given image.
Since manual annotation of images is expensive, autonigtarforming this process by
a computer system is of significant importance. Not onlyngigextual keywords instead
of providing similar images is more convenient, but alsorgurg an image in a database

with textual keywords gives more satisfactory results carag to low-level visual features,



(a) (b)
Cape Town, South Africa, Bee, omaraenero, purple
Londolozi purple flowers, flowers,
flower, purples,
photoshop, border,
yellow and black bee,
black bee, yellow bee,
green, green stem,
adobe, adobe photoshop

Figure 1.1: Sample images and their annotations from ttekiRlveb site.

such as, color and texture, used in CBIR systems. This fagtastly, attributed to the large

semantic gap between the low-level features and semamttertioof images.

There is a variety of image collections that could benefitnfrautomatic image annotation.
Some of them include museum collections, satellite imageedical image databases, astro-
physics images and general-purpose collections on thedWdide Web such as Flickr [11]
and Video Google [12]. Considering the well-known Flickrimgite [11], which contains sev-
eral billion photos, searching through these images is atdautask. Unfortunately, some of
the images have no annotation labels; some images are tathstdjectively without reflect-
ing the content of the image as shown in Figure 1 (a); and sdrife@amages are annotated

in detail as in Figure 1(b) but requiring substantial marefialrt.

The available image annotation approaches can be catedanizwo groups. First approach
is to construct a statistical model that correlates imagéufes with textual keyword anno-
tations [13], [14], [15], [16], [17], [18], [19], [20], [21][22]. Second approach is based on
finding the most similar images to a given query image extrg¢he visual features and using
the annotation of those images as the query result [23], Rdth of these approaches require
extraction of low level visual features from images, eittiebe used in the construction of a

statistical model or in direct comparison of images withreaiher.
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There are many ways of extracting the low level visual fezddrom images [25]. The avail-
able methods can be categorized in threféedent groups. First group of methods involve
dividing the image into a grid of rectangles with a predefisest and extracting features
from each of the rectangles. Second group of methods emplageé segmentation algo-
rithms to find regions and extract features in these locatidinird group of methods extract
a set of interest points to find critical locations in the irmamd extracting features around
these points. Low level features, extracted from imagesraimly based on either color or
texture information. Some methods cluster low level vigaatures into so called "visterms”
to obtain a discrete representation of visual propertigsiages to enable the match between
visual and textual information. This approach also simgsifihe computation and reduces

complexity.

Most of the studies that use statistical models in automatage annotation have been in-
spired from the research, related to text information egal. One of the pioneer works
proposed by Mori et al. [13] use a co-occurrence model beivilee words and visterms
obtained from low-level features of grid rectangles. Amotivork proposed by Duygulu et.
al. [14] describes images using a vocabulary of vistermsst,Fd segmentation algorithm is
employed to create regions for each image. Then, the vigadlifes are extracted from the
regions. The crucial point of this approach is to represeatvisual information by a set of
visterms, which are created using a clustering algorithivenl a statistical machine transla-
tion model is used to translate the visterms to keywords1%j [ Blei and Jordan develop a
model, called Latent Dirichlet Allocation (LDA) to modelija distribution of image and text
data. This model finds conditional relationships betweéentavariable representations of
image region and word sets. In [16], Jeon et. al. describgémagions using a vocabulary of
visterms, as in [14]. However, they use cross-media relmvamodels (CMRM) to annotate
images. Continuous-space relevance model of Lavrenkoi$ldiite diferent than CMRM
model where low level visual features are not clustered wgterms, but using continuous
features results in better annotation at the expense adaserd computational complexity. In
[18], Li et. al. use two dimensional Hidden Markov Modelsahed from rectangular grid
of images to correlate with concepts. This model has beenowep to come up with a real
time image annotation system in a recent study [19]. Monagle{20] model an image and
it's associated text captions as a mixture of latent aspebit®ey use latent aspects learned

from text captions to train visual feature probabilities,tsat latent aspects can be assigned



to a new image. Based on these latent aspects most likelgdpkibns are output as anno-
tation result. Carneiro et. al. [21] learn Gaussian miximels from images to compute a
density estimate for each word that are used to annotateesnagjng minimum probability

of error rule. Liu et. al. [22] propose graph learning to teamage-to-image, image-to-word
and word-to-word relationships. Word-to-word relatioipshare used to refine annotations

obtained from the other two types of relations.

Recently, there have been attempts to attack image aroroaibblem by directly finding the
visually nearest neighbors of an image in an annotated setagjes and using the annotation
results of the corresponding similar images. In [23], Omtirand Yarman Vural propose a
two layered architecture to compute keyword probabilitiesthe first layer, keyword prob-
abilities are computed based on the distance of the speaoifiddvel visual features of the
guery image to those of the training set individually. In feegond layer, these probabilities
are combined, for obtaining the majority voting decisions dpposed to previous models,
this method extracts low level features from the whole imiagéead of a specific region. In
[24], Wang propose a similar approach where image annatéidased on finding the vi-
sually similar images to a query image. In this model, fotiply annotated query images,
existing annotation keywords is used to limit the searcltspand to cope with the increased

computational complexity hash codes are used in compaaofeisual features.

All of the approaches to image annotation, mentioned aboyejaite far from the require-
ments of the end user. Therefore, one can claim that the netteveloped for automatic
image annotation are still in their infancy and there is glamy to reach the ultimate goal to

automatically annotate large image databases for a spapjficcation domain.
There are two major contributions in this thesis:

First, we propose a new method to partially close the semgat, which can be explained as
the huge diterence between complex high level semantic knowledge antbiel visual fea-
tures such as color, texture and shape. For this purposgpauis to improve the information
content of the system. This task is achieved by introducsgide’information” to the system.
The side information is simply defined as the already avkd|diut unused information in the
annotation system. One may use the side information to inepttee visual features extracted
from the image regions. This improvement comes from guidiregclustering process with

side information that co-exists with the visual featurekistering of low level visual features



is performed in such a way that features with the same sigenr#tion are constrained to
fall in the same clusters. By elevating the information eanf visual features by the com-
plementary side information, we expect to close the semaaip between low level visual

features and the high level annotation text.

There are many ways of defining and using side information.ugéethree dierent types of
side information in this thesis. The first one is based ondndmbpic probabilities obtained
from annotation keywords associated with images. The hiddgic probabilities are com-
puted by the PLSA algorithm [26]. This side information is@dated with visual features
extracted from image regions obtained from N-Cut regiomsagation algorithm [27]. The
other two side information are visual, namely orientatiad aolor information both of which
are extracted from interest points that correspond tacatitocations in images. The orienta-
tion information is the dominant direction obtained frora fieaks in a histogram of gradient
orientations of points around interest points. The coldorimation is based on LUV color
features [28] around interest points. Both of these siderimétion are used in clustering of

SIFT features [29] extracted from images.

The definition of side information is not unique and depenu¢he visual and textual content
of the image. For example, if one needs to train the data sehéword "zebra”, the side
information should somehow support the detection of s¢ripeéhereas if the word is "bus”,
one needs to support the low level shape features. From twe @bpgument, one can see that
the definition of side information is critical. If supporiwside information is not available,
then the use of other inappropriate side information mayl #pe training stage, resulting in

even a poorer performance.

The benefits we obtain by using "side information” availabl¢he annotated images besides
the visual features that are clustered, are two-foldedst,Fitusters become more homoge-
neous with respect to the provided side information. Hettoey have sharper probability
density functions, which reduce the overall entropy of th&tesm. Since visual features be-
come less random, we improve the annotation performana@an8ewe can complete cluster-
ing in less time, since we compare a visual feature with raifahe cluster centers but with
only a subset of it, depending on the constraints providethbyside information. We fur-
ther reduce the time to cluster visual features by using alleawersion of both the standard

K-means and the proposed algorithm.



The second major contribution in this thesis deals with #o& bf a detailed comparison mea-
sure that compares two image annotation algorithms basédeonper-word performances.
Two annotation algorithms mayftir in such a way that, some words are estimated better
by one of the algorithms, while some words are poorly estihatTo be able to compare
two image annotation algorithms based on their per-wortbpmances, we introduce a new
curve that enables one to see the distribution of relativeyoed performances of two dif-
ferent annotation algorithms, by plotting per-word averpgecision dierence values, sorted
from highest to lowest. Moreover, we introduce three newritebased on this curve that
show the percentage of words that are better estimated bgfahg two algorithms and the

total average performances of words that are estimateeaitse than the other algorithm.

1.1 Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2iges background knowledge
for state of the art techniques in image annotation and qaiun of visual features related
to this thesis. First, image representations for low levslial features including color and
texture are discussed. Next, state of the art image anootakyorithms are discussed under
two headings: image annotation algorithms using quaniiredje regions and image anno-
tation algorithms using continuous features. For visualuiee quantization, semi-supervised

clustering algorithms are explained under search basediatahce metric based categories.

In Chapter 3, the proposed system, Semi Supervised Anot&iSA) is discussed in detalil.
First, image annotation problem is introduced formallyxt\detection and extraction of low
level visual features are given. Then, Side Informationcepn is introduced and defined.
Next, the rationale behind the semi-supervised clustesingsual features, instead of plain
clustering is explained and the algorithm that employs ithe isformation in semi-supervised
clustering of low level visual features is described. Hinale discuss parallel version of the

algorithm and computational complexity for both serial @adallel versions of the algorithm.

Chapter 4, presents thorough experiments, to test therpaafwe of SSA and compare it to
the state of the art annotation algorithm PLSA-Words [20istf-data set used in the ex-
periments is explained. Next, the performance metrics ameusgsed and a new per-word

performance comparison curve and three metrics based ®uhie are introduced. Then,
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estimation of system parameters by cross validation isidsed. Next, overall and per-word
performance of the system are given. Finally, we show thatalhentropy of the system is re-
duced by making use of side information. The conclusion amaté directions are presented

in Chapter 5.



CHAPTER 2

STATE OF THE ART TECHNIQUES FOR IMAGE
ANNOTATION AND SEMI-SUPERVISED CLUSTERING

This chapter aims to discuss the state of the art image aiomotachniques, their superior-
ities and weaknesses. The major approaches used in imageatom are overviewed and
compared. For this purpose; first, the techniques for imageesentations used in annotation

algorithms are presented.

It is well known that one of the major steps of image annotat®to represent the visual
information of the image content. Therefore, we start bylarpg the major visual features
used in image annotation problem, together with their isgamation. Considering the large
variety of the features and their large variances, one ngedsantize the feature space in

order to make the annotation of visual information by finitener of words.

As it will be seen in the subsequent chapter, the major dmrttan of this thesis is to close
the semantic gap between the visual and textual repressniaitimages. We propose to
semi-supervise the quantization of the visual featureordier to support our approach, we

review the major semi-supervised clustering algorithmihiis chapter.

2.1 Representation of Visual Information for Annotation

State of the art image annotation algorithms extract ugwadiual features either from the
whole image [23], [24], or select regions of interest frome image first, and then extract
low level features from these regions separately. Theréhaee major approaches for region

selection. The first approach is to divide the image intoargjiby a region segmentation

8



algorithm [14] such as Normalized Cut [27]. The second apginds to divide the image into
regions by using a grid of rectangles of fixed size [13], [180], [21]. The third way is
to automatically find out regions of interest by an algoritbath as dference of Gaussians
(DoG) point detector [29] and extracting features from éheegyions where interest points are

taken as maximaninima of the Diference of Gaussians (DoG) that occur at multiple scales.

Extracting features from the whole image is a global apgrdhat is a simple method and it
may work well for data sets where very similar images aregmeslf there is an annotated
image in the training set, which is very similar to the quanage, the same annotation is
attributed to the unlabeled images. Despite of its simplittie major disadvantage of this
method is its inability to generalize. Since images are ddfiny the overall content, the
method is unable to learn the objects that can be presentimagpe individually. Another

problem is its inability to recognize an image if some of tihgeots are occluded or displayed

in a different way.

Finding out regions of interest is a local approach. Thishoéthas the advantage of being
able to better generalize. As the number of image labele&se, local approaches are more
advantageous because of their ability to recognize at tfeeblevel. Another advantage of
local approaches is its robustness to occlusion. Dividiegrmage into regions or performing
segmentation lies somewhere between global and local apipes. Since segmentation is an

ill-posed problem, one may prefer using grids instead aigisi segmentation method.

Visual information is represented as a set of low level Vigemtures extracted from the whole
image, or regions selected as explained above. In the foltpgection, we discuss common

low level visual features that are used in the state of themage annotation algorithms.

2.1.1 Feature Spaces for Image Annotation

In most common features for image annotation, color andutexinformation are utilized.
The other common features are some shape features, sudioasf the region area to the
perimeter squared, the moment of inertia, the ratio of th@rearea to that of its convex hull,
region size and region position [14]. Blob feature consgtof a mixture of color, texture,
and aforementioned other information employed by Duygsilused in [16], [30], [15] [17],

[20] as well as others for comparison purposes. It is an opeblegm to close the semantic
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gap that is indicated by thefficulty of reaching high level semantic knowledge represknte

by annotation keywords through low level features such & ,dexture and shape.

Low level features used in the state of the art image anwootatigorithms can be classified
into two groups: color features and texture features. Infoflewing sections, we discuss

common visual features based on color and texture.

2.1.1.1 Color Features

Colors are represented in a variety of color spaces. Commes are RGB [13], [14], LAB
[14], HSV [20], YBR [21] and LUV [18]. RGB Color Space is mosbrmmonly employed
color space for digital images and general storage formatdmeras. Unlike RGB, LAB
is designed to approximate human vision. HSV is good for figénsity white lights, and
different surface orientations relative to the light source.RYias the ability to reduce the
redundancy present in RGB color channels and can separaiealice and chrominance
components. LUV provides perceptual uniformity, approates human vision, but has the

disadvantage of being computationally expensive.

Frequently used color features are color histogram [18], [@lor average and standard devi-
ation [14], [18], pixel color concatenation [21], Color Layt, Scalable Color, Color Structure
MPEG-7 features [23]. Color histograms are computed in tnwihieee dimensional formats
depending on whether all three (RGB in [13]) components efdblor space are used or just
only two (Hue-Saturation (HS) in [20]). Each color compoheorresponding to the pixels
of an image or a region is quantized into some fixed numberlagégzand accumulated in the
corresponding bins. Since images with the same color codtstnibution, but with a dter-
ent physical layout end up with the same histogram, thisifedtas diiculty to discriminate
especially in large datasets. Color average and standaratide features are calculated by
averaging and finding out the standard deviation of all tlxelpifor each color component.
Since this feature is a summary of image content, it can bd fmesmall image patches
and is not suitable for a global image representation. Rigler concatenation corresponds
to simple concatenation of color component values of allgixels. This feature requires
extensive storage and processing power; because of the sggadgrements and the incurred
high dimensionality of the feature space. Color Layoutespnts the spatial layout of color

images. Scalable Color is basically a color histogram ir+i8& Color Space that is encoded
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by a Haar transform. Color Structure is a feature capturiotty bolor content and informa-
tion about the spatial arrangement of the colors. Color LgyScalable Color, and Color

Structure features use spatial information with the aim oferdiscriminative power.

2.1.1.2 Texture Features

Texture feature refers to repeating pattern of spatiaktians in image intensity that can be
identified with descriptions such as fine, coarse, graineldsamoth. Various texture features
used for annotation are edge histogram [13], [23], meamtwikenergy [14], SIFT [20],

wavelet transforms [18] and Homogeneous Texture [23].

In edge histogram feature, edge orientation value of eaa pf an image is quantized into
some fixed number of values and accumulated in the correspmpiihs. Edge histogram
feature captures spatial distribution of edges. It is nyaiisied to identify non-homogeneous
texture regions. Mean orientation energy, Gabor filterstémthogeneous texture are all based

on a series of multi-scale and multi-orientation cosine uhagd Gaussian kernels.

Since we compare our method with the state of the art imagetation algorithm of [20], we
employ Scale Invariant Feature Transform (SIFT) featusas §0], which will be explained

in the following subsection.

Scale Invariant Feature Transform (SIFT) SIFT features are extracted using the local
histograms of edge orientation from a local interest ar&. [Zhe most widely used local
interest area selection method isfierence of Gaussians (DOG) [29]. Some other mostly
used interest point detectors are Harris Corner Deteciidr Fast Hessian [32] and Features
from Accelerated Segment Test (FAST) [33], Saliency Dete[34] and Maximally Stable

Extremum Regions [35].

Difference of Gaussians (DOG) In this method, area of interest is selected based on the
maxima and minima of the flerence of Gaussian (DOG) operator. It is scale, orientainzh

illumination invariant. Dfferent scales can be represented by scale-space functioadlas:

L(x Yy, o) = G(XY, o) = 1(XY), (2.1)
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wheresx is the convolution operato6(x,y, o) is a variable-scale Gaussian functienis the
Gaussian parameter aihgk, y) is the input image. Stable interest points are identifiedgus

the Difference of Gaussians operator which is defined as:

D(xy,0) = L(X Y, ko) — L(X,V,0), (2.2)

wherek corresponds to the smoothing factor. A pyramid oft&ience of Gaussians is gen-
erated from the input image. Each layer of the pyramid ctssitdiference of Gaussians
obtained by taking the fference of successively blurred images for a given scaleceSsive
layers of the pyramid are obtained by downsampling the impage by a factor of two and
further obtaining the diierence of Gaussians for the corresponding scale. If the auntb

scale space levels is given sgthe smoothing factok can be computed ds= 25,

The interest points are found by comparing each pixel wihirrimediate 8 neighbors, 9
neighbors in the preceding scale space level and 9 neighbdhe following scale space
level for a total of 26 neighbors. All pixels correspondiegtiaxima or minima among all its

neighbors are considered as interest points.

The detection process is scale, illumination and oriemaitivariant.

SIFT Feature Extraction Before computing the interest point descriptor, an origotais
assigned to each interest point. The interest point ddecrip then represented relative to
this orientation, resulting in invariance to rotation. &niation assignment is performed as

follows:

First, the scale of the interest point is used to select thes§an smoothed image L. Next

gradient magnitude is computed as follows:

m(x,y) = \/(L(x+ Ly)-L(x-1Ly)?+ (L(xy+1)-L(xy—-1))?. (2.3)

The orientation is computed using:

0(x,y) = arctan L(x,y+ 1) - L(x,y—1))/(L(x+ 1Ly) - L(x=-1,y)). (2.4)

An orientation histogram with 36 bins is constructed eachdpanning 10 degrees. A neigh-

boring window is formed for each interest point using a Geusseighted circular window
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with a o~ which is 1.5 times that of the scale of the interest point Haigkl in the window

is then added to the histogram bin weighted by its gradiergnitade and by its Gaussian
weight within the window . The peaks in the histogram coroegpto dominant orientations.
The orientations corresponding to the highest peak andsgbakare within 80% of the high-
est peaks are assigned to the interest point. In the caseltyplmorientations , an additional
interest point is created having the same location and ssatbe original interest point for

each additional orientation.

To compute SIFT descriptor, the neighborhood of 16x16 piebund the found interest
point is divided into a grid of 4x4 blocks and a gradient ordion histogram of each 4x4
block is computed. Since there are 16 histograms each h&@vimigs corresponding to each

orientation, the final SIFT feature ends up in a 128 elemectove

Since SIFT features are local, they are robust to occlusminciutter and have the ability to
generalize to a large number of objects. One shortcomingFer & the added complexity

compared to global features.

The above mentioned visual features are only a few of tremenhdmount of other features.
The reason that we focus on these features is two foldeddykirsour experiments we em-
ploy the defacto standard data base Corel, which is usednmouigtrations of most of the
image annotation systems. This database is heavily cleaiad by color and texture. Sec-
ondly, the selected visual features are also employed fe sfahe art image annotation sys-
tems. Therefore, the above features enable us to make féormpance comparisons between

the proposed work of this thesis and the other availablerittmos.

2.2 Automatic Image Annotation Techniques

In this section, techniques for automatic image annotasi@discussed. Let us start by
formally defining image annotation problem. Suppose thattthining setS , consists of

n images in set = {Ij}’j‘=1 and associated text documents in Bet {Di}i”=1 pairs, where

S = {(I1,D1), (I2,D2), ..., (In, Dn)}. Suppose also that, each imageonsists of regions and
represented by, = {rj1,rj2,....,rjng)}, Whererjm is the feature vector associated with region

mof imagel; andN(j) is the number of regions for imade Let,

R={r11, ..., rang), 21, ---» Fan(2)s 'nts - Frann)J -
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Each text documerid; consists of words obtained from a dictionavy, where
Di = {Wiz, Wiz, ..., Wik (i)} »
wij is j-th word of text documenD;, wj; € W,
W = {wordy, wordy, ...,word, } ,
L is the size of the dictionarW, andK(i) is the number of words for text documebt.

Given a query imag® whereQ = {rg1,rgz2,....fon@)} » N(Q) is the number of regions
in image Q, image annotation can defined as finding a functi(®@) = A whereA =
{Wa 1, WA 2, ... Wak(a) » K(A) is the number of words in annotatiohandw,; is obtained

from dictionaryW.

Over the past decades, there is a vast amount of work on inmemgeéadion problem. A good

source of references can be found in [2] and [36].

There are many problems with the currently available imagetation techniques. In order
to develop a working, real life image annotation system,résearcher on this field should

attack three major obstacles:

First of all, as in all of the computer vision applicationspgantic gap problem still remains
as an unsolved issue. Although the low level feature extmadcechniques are well studied,
it is still very difficult today for automated high level semantic concept utaeding based
on these low level features. This is due to the so called "s¢imgap” problem, which can
be explained as theftiiculty of representing complex high level semantic knowktigough
low level visual features such as color, texture and shaés i$ still an open problem and
under research from a variety of disciplines involving gattrecognition, image processing,

cognitive science and computer vision.

Second problem of the image annotation literature is thatetlis not a consistent way of
measuring the performance to evaluate the image annotattmiques. Currently, the per-
formance of the image annotation algorithms is measured/ayiety of metrics used in CBIR
systems. In most of the systems, [13], [14], [16], [17], [Piécision and recall have been
adopted. Liu et. al. [22] use precision and recall as wellaslver of words with non-zero
recall. Monay et. al. [20] uses mean average precision aigirtinat it is more important to

use such a metric since main purpose of annotation is retri@®lei and Jordan, [15] used
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annotation perplexity. Barnard et. al. [30] defined threffedint scores. First measure is
Kullback-Leibler divergence between predictive and tawgerd distributions. Second mea-
sure is so called normalized score that penalizes incdkegmtord predictions. Third measure
is the coverage, which is based on the number of correct atioies divided by the number of
annotation words for each image in the ground truth. In tmetations, some words might be
more important than others and some words could be acceptaatr@ct even though they are
not in the ground truth, but if they are semantically simil@hese considerations should be
taken into account for measuring the performance of imagetation algorithms. Moreover,
the available metrics do not compare the image annotatgoritims based on their per-word

performances.

Third problem is the lack of a standard image data set, whislers statistically meaningful
and stable images with reasonably many text annotationsi.dlal., [13], used a multimedia
encyclopedia, in [14], [16], [17], [21], [22], [23] part oh&é Corel data set have been used.
They have used 4500 images for training, 500 images fongegtirposes. In [30] and [20]
a bigger part Of Corel photos have been used. The dataseusigegonsist of 10 subsets
collected from 16000 photos, each set on the average haifi inages for training and
1750 images for testing. Recently there have been attemptsetimages from world wide
web [19], [24], [37], [22] but the number of images used isykw compared to what is
needed in a real practical image annotation system. In B8J00 images collected from
Flickr web site have been used. In [24], there are 450 imaghkscted from Google image
search engine and in [37], there are 5260 images colleated Yahoo image search engine.
In [22] 9046 web images on 48 topics have been used. Unfdelynanone of the above
mentioned data sets contairfistient number of samples, which are consistently annotated t

yield an appropriate training set.

Corel data set is criticized of having visually very similarages in the set [37]. This property
of Corel makes it easy to find a similar image to a given quegenand use its annotation.
Although, it is not unrealistic to find images with very siarilcontent in real, large data
bases, such as world wide web consisting of billions of patiessame technique cannot be
used since there would be many images matching the samd fgabares but with possibly
quite diferent content. Other data set collections obtained fromwitte have the problem
of possible noise, since annotations might not be corredtcam be done dierently from

person to person. Some annotated sample images from Flafkisite are shown in Figure
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Blue, Green, Cloud, brunswick, maine, snow, purple, flogeass

Drive-by, Forest, Meadow, sun, light, trees,

Motion, Tree, Yellow, scenic, landscape,

out of the car, Blue Green, Seen in Explore
Horse

Figure 2.1: Sample images and their annotations from tlekmRlveb site.

2.2. Annotations "Drive-by, Motion, out of the car, Seen ixpore, brunswick, maine” are

very subjective and quite flicult to learn from the attached images.

In the following sections, we give an overview for the majonatation algorithms discussing
the pros and cons. First; algorithms, where low level imaggures are quantized using
a clustering algorithm are explained. Then, we presentriéifigos, where low level visual
features are used as they are, without any quantization.orlepperformance results are
based on two dierent datasets obtained from Corel data set. The first orse508¥) images
[14] and the second dataset consists of 10 subsets collizotadl6000 images [30], that we

refer to as Corel2002 and Corel2003 data sets, respectively

2.2.1 Image Annotation Using Quantized Image Regions

Automatic annotation of images, depending on their comegtires learning of image con-
tent. In this sense, annotation problem can be consideradn@sture of classification and
CBIR problem. Therefore, the techniques are similar to ¢figarning the visual content of

images and associating the visual content to a set of woadls#m be considered as classes.

One of the approaches to automatic image annotation inrs@®gmenting the image into re-
gions and representing these regions by low level featufrée. low level features are then
quantized by clustering to obtain visterms. Therefore péation problem is reduced to find-
ing the correlation between annotated words and visternist, Fow level visual features

such as color and texture are computed for each region. Nswuslly a standard clustering
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method, such as the K-means algorithm [38] is used to clwitenl features obtained from
image regions. By assigning the cluster label to each regiatiscrete representation for
image is obtained. The clustering process reduces the datignal cost of automatic im-
age annotation, since we use just a cluster label calledrmisto represent a region instead
of a multidimensional low level visual features vector. §approach opens the door to the

annotation problem using text based methods [14], [16], [20

2.2.1.1 Co-occurrence Model

Work by Mori et al. [13] is one of the first attempts at image @tation, where the images
are first tiled into grids of rectangular regions. Next, acoourrence model is applied to
words and low-level features of grid rectangles. Visuatdess extracted from each grid
rectangle are clustered to obtain visual terms by usingltiser labels that are briefly called
visterms. Using Bayes rule, the conditional multinomiablpability P(word|visterm;) of

keywordword; for a given clustewisterm; is estimated by:

P(vi stermj|wor d;) P(wor d;)

klz—_:]_ P(vister m; [wi) P(Wi)

P(word;|visterm;) = (2.5)

The conditional multinomial probability?(visterm;jword;) of clustervisterm; for a given
keywordword; is approximated by dividing the total number of wordg in clustervisterm;
for wordword; by the total number of instanceswbrd; in the data sety;; and approximating
the multinomial probabilityP(word;) of word word; by dividing the total number of instances
of word; in the data setn;; by the total number of words in dathl; Note that, although a
word can be related to only one cluster (visterm), all theditional visterm probabilities are
updated given a word. Hence, the approximation of conditionultinomial probability of a
cluster, by dividing the total number of words in that clugtethe total number of instances

of that word may not be accurate. So, the conditional prdipabiecomes

. (myim)(niIN) i (2.6)

M .
£ PNy
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where,m;; is the total number of wordsord; in clustervisterm; ,

L
Mj = Z Mik
k=1
the total of all words in clustevisterm;, n; the total number of instances wbrd; in the data

set, and
L
N = Z Nk
k=1

andL is the size of the dictionary. Next, an image can be annotatéide testing stage as
follows: First, the test image is tiled into grid of rectagglas in training images. Next, the
corresponding cluster is computed for each such rectarigiegd, an average of the likeli-

hoods of the nearest cluster is computed. Finally, keywtrdshave largest average of the

likelihoods are output as the annotation result.

This model has a reported precision of 0.03 and recall of 6rDZorel2002 data set reported
by [17]. The main reason for this low performance is the aggion that each keyword

is associated with a cluster, although it is likely that mtiven one cluster determines one
of the keywords associated with an image. Another drawbaadkat frequent words are
mapped to almost every visterm. In addition, many trainixaneples are needed to correctly

approximate the conditional visterm probabilities.

2.2.1.2 Translation Model

In this model [14], the annotation of images is considered &anslation of visual informa-
tion to text words similar to translating an English text tefich. The lexicon of the visual
language is the visual terms obtained by clustering imag®mes. Although in the original
paper, these visual terms are called blobs, we call therarist to maintain the consistency
among all models. Let us assuwisterm, is the visterm associated with regiomof image

li. In this model, itis assumed that each visterm is assignadviord. Assignment probability
of regionrix to wordw;j is shown byP(a;; = k). Translation probability ofi stermyy into w;;

is shown byP(tj; = k). Given an imagé; and an annotatiod;, the probability of annotating

I; with Dj is computed as follows:

K(i) K(i) N()
POlly) = [ [ Paait) = | | > Ptij = WPG@; =K) , 2.7)
j=1 j=1 k=1
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whereP(tjj = k) is the probability of translatingistermy into wi; and P(a;; = k) is the
probability of assigningix region tow;j By maximizing the likelihood of the training images,

these translation probabilities can be computed:

n

s)=] [P@i =] P(t = WP@ij; = k) . (2.8)

i=1 i=1 j=1 k=1

The Expectation-Maximization algorithm is applied to firg toptimal solution that corre-

spond to translation probabilitid¥(t;; = k) and assignment probabilitiéXa;; = k).

This method performs better than Co-occurrence Model [1i#} & precision of 0.06 and
recall of 0.04 on Corel2002 data set. However, the methadsalkers from the same major
assumption that each keyword is associated with a vistelthpuegh a keyword represents

potentially more than one region.

2.2.1.3 Cross Media Relevance Model (CMRM)

In this model [16], it is assumed that for a pdie {Q, A} of an imageQ and its annotatior,
there exists some underlying probability distributiB|J) which is called relevance model
of J. Similar to previous models, low level visual features fronage regions are clustered
to obtain visterms. Since we do not have any way of obser#irfgr a query imageQ,
the probability of observing a word is approximated by the conditional probability wf
given that we observ®. AssumeQ = {vistermgq 1, Vistermg o, ..., Vistermg n(q)}, Vistermgk
corresponds to the visual term obtain from clustering thagenregiorrgk andN(Q) is the

number of regions in imag®. Hence, conditional word probability can be written as

P(WJ) ~ PWQ) . (2.9)
On the other hand, the joint probability wfandQ can be estimated as follows:

PW. Q) = > P(S)P(W, QIS)) , (2.10)
i=1

whereS; = (|i, Di).
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Assuming observation of words and visterms are mutuallgpetident, we can rewrite the

above equation as:

n K(i)
PW, Q) = > PS)PWIS) | | Pvistermysy) , (2.11)
i=1 k=1

whereP(S;) is assumed to be a uniform distributio®(w|S;) andP(vi stermix|S;) are assumed
to be multinomial distributions that are computed usingsim@othed maximum likelihood as

follows:

#(A, Si) N #(A,S)
N() ST

PWS)) = (1-es) (2.12)

#(vistermy, Sj) #(vistermy, S)

P(vistermy|S;) = (1 - Bs;) K0 +Bs, -

(2.13)

where #{v, S;) is the frequency ofvord; in image annotatior; and #vord;, S) is the num-
ber of words in the training set, iétermy, S;) is the frequency o¥istermy in imagel; and
#(vistermy, S) is the number ofistermy in the training sety); andg); are smoothing param-
eters. In this model, words in the training set are propagtien test image based on their

similarity to the training images.

The precision and recall performance of this method is tegaas 0.10 and 0.09, respectively
for the Corel2002 data set. Although it performs better theanslation Model, because of

the joint probability estimation, which assumes mutuaépehdence of annotation words and
low level visual features, this method can not reach theoperdince level of the methods that

estimate conditional probabilities directly.

2.2.1.4 PLSA-Words

PLSA-Words algorithm is based on Probabilistic Latent Ssimdndexing method given in
[20]. The algorithm links text words with image regions. Tf@vchart of the PLSA-Words
feature extraction process is given in Figure 2.2. For eathihg image, two types of features
are extracted. SIFT features are extracted from interestpoetected by Dierence of Gaus-

sians feature detector. Hue-Saturation (HS) featuresxaracted from a grid of rectangles.
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Both SIFT and HS features are clustered with K-means to misiparate visual codebooks.
Visual Codebook-1 and Visual Codebook-2 are obtained fr@raHd SIFT features, respec-
tively. Both of these codebooks are used in the PLSA-Worgisridhm. For a query image,

visual features are extracted as explained above to findbiinesponding visterms.

For each documerD; in the training set, a topiz is chosen according to a multinomial
conditioned on the index The words are generated by drawing from a multinomial dgnsi
conditioned orz. In PLSA, the observed variableis an index into some training set. In
PLSA, assuming T topic€); corresponding tath document anevord; corresponding tgth

word, word document joint probability(word;, D;) is given by:

;
P(wordj, Dj) = P(Di) )" Pu(word;|z)Pw(zID;) (2.14)
t=1

Maximum likelihood parameter estimation is performed wifie expectation maximization
algorithm. The number of parameters for PLSA grows lineaiitjh the number of documents

in the training set.

Details of the PLSA-Words algorithm are given in Algorithm 1

Algorithm 1 PLSA-Words algorithm.

1: Using PLSA algorithm computB,(word;|z) andP(z|D;) probabilities.

2: Keeping Pw(z|D;) probabilites computed in the previous step fixed,
computd (visterm;|z) probabilities using PLSA algorithm.

3: Using query image visual words am}(visterm;j|z) probabilities computed in the pre-
vious step, computBy(z|query) probabilities using PLSA algorithm.

4: Compute conditional distribution of text words using thédwing: P(wordj|query) =
él Put(word;|z)Pra(z|query)

5. Output the most probable words for the given query image.

PLSA-Words performs better than CMRM with respect to mearagye precision measure
when SIFT and HS are used as low level features. PLSA-Word<CAtRM mean average
precision performances are 0.19 and 0.13, respectivelyaalZD03 data set. This perfor-
mance increase is due to the fact that instead of using trereqty strong mutual indepen-
dence assumption for text words and visterms as is the casklRM method, PLSA-Words

computes the conditional probabilities for a text wordsegiwisterms by using the product
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of estimated probabilities for text words given a hiddenidppnd estimated hidden topic
probabilities for a query image based on its visterms andymalizing over the hidden top-

ics. However, in this algorithm visterms are obtained thioa standard K-means clustering
algorithm. In this thesis, we improve the clustering precased for obtaining visterms using
side information and get better results than PLSA-Wordshieg mean average precision of

0.21. This is the best reported result, so far, in the cutieméiture on Corel2003 dataset.

2.2.2 Image Annotation Using Continuous Features

Continuous features correspond to using low level visuatufies, without any quantization
as is the case in the previous sub section. Although discegeesentation simplifies the
image representation and reduces the annotation complixitay lose some important in-
formation about the visual content of the image. In thisisa¢csome of the major studies for
image annotation using continuous features are discussente low level visual features are

extracted from the images and directly matched to the atiootevords.

2.2.2.1 Hierarchical Model

In this model [30], images and corresponding text words areegated by nodes arranged in a
tree structure. In this tree representation, the nodeseaii@/leaf nodes correspond to topics
and leaf nodes correspond to clusters obtained from thedog! Visual features and textual
words associated with images. The arcs of the tree linkingra to children correspond
to the hidden topic hierarchy. Arcs just above the leaf naesespond to association of
clusters with the most specific topics. Each cluster takasepin one of the leaf nodes and
associated with a path from root to the leaf. Hence, the noldsgr to the root are shared by
many clusters, and nodes closer to leaves are shared by d¢eygeers. This model creates a
hierarchical context structure, nodes closer to the rooesponding to more general terms

such asanimal and the ones close to leaves corresponding to more speeifis guch asat.

Image regions are generated assuming a Gaussian distritfoti the feature space. On the
other hand, words are generated using a multinomial digiob. Denoting low level image
features used for regiam; of imagel; by bjj, and lettingb; denote the set of low level visual

features for image;, the word and image region observation probabilities araprded as
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follows:

P(Di, 1) = > p© [ | [ pwil,p(iD)I* [ [ 1] pebll,op(iin)}?,  (2.15)
c weD; | beli |
wherec is cluster index] is tree level,D; is sample documeng; andZ, are normalization
constants dfering numbers of words and regions in each image.andZ, constants are

computed as follows:

Nw
71 = , 2.16
1 Nuro, (2.16)
Np
Zy = — 2.17
2 No. (2.17)

whereN,,p, denotes the number of words in documént while N,, denotes the maximum

number of words in any document, similarly same denotatppii@s toNy, andNp.

To compute the multinomial and Gaussian distribution pa&tans, the Expectation Maxi-

mization algorithm of [39] is used.

There are three major approaches to implement hieraramiodéls [30], which are explained

as follows:

Model I-O In this model, the joint probability of a tree level dependdycon the sample

document and computed as follows:

POiL1) = D p© [ | 1D pewl,op@io)i™ [ [ pbl,op(ii® . (2.18)

c weD; | bel; |

Because of the dependency of the tree level to the specifitntieats in the training set, this

model is not a truly generative model.

Model I-1 In this model, the joint probability of a tree level dependsboth sample docu-

ment and the cluster. It is computed as follows:
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PO 1) = p© [ | 1D powil,optlic, D= [ 1D ploll, pdic, D)% . (2.19)
[§ weD; | beli |
This model stfers from the same problem as the previous model. Both of theskels show

similar performance.

Model I-2  In this model, the joint probability of a tree level depend$ymn the cluster and
it is computed as follows:
PO 1) = > p© [ [ 1D powil.ptioN [ |1 pibil. o)pliic)] = . (2.20)
c weD; | beli |

In this model, estimation is performed only at the clustgeletraining data is marginalized

out. This method gives better performance compared to #heéqurs two models.

In all of the above models, three performance measures ate &gst measure is Kullback-
Leibler (KL) divergence between predictive and target wdistributions. Second measure
is normalized score (NS) that penalizes incorrect keywoedligtions. Third measure is the
coverage (C) that is based on the number of correct annasadiivided by the number of an-
notation words for each image in the ground truth. Experismare performed on Corel2003
data set. Since Model I-O and Model I-1 performances ardasiymesults are reported only
for 1-0. Best results for I-0 are K£0.099, NS-0.174 and &0.688, while best reported per-
formances for I-2 are KE0.104, NS0.179 and &0.747 changing by the chosen topology
of the tree structure or type of prior probability compudas of tree levels. One can conclude
that there is not a significantféierence among the three models discussed above. However,
note that all of them outperform the Translation Model tlsatrdported to be KE0.073,
NS=0.111 and &0.433 for the three measures mentioned above. These maamladstie
same drawback as the CMRM method discussed in the previatisrsesince they use the

poor assumption of mutual independence between textualsnard visual features.

2.2.2.2 Annotation Models of Blei and Jordan

Blei and Jordan [15] propose thredfdrent hierarchical probabilistic models for matching

the image and keyword data. Both region feature vectors apd/drds are assumed to be
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conditional on latent variables. The region feature vexctoe assumed to have multivariate
Gaussian distribution with diagonal covariance and thevieegls have multinomial distribu-

tion over the vocabulary.

Model |: Gaussian multinomial mixture model (GMM) In this model, a single variable
is assumed to be generating both words and image regionsjoifthgorobability for latent

class z, annotated words D and image regions can be commuteliosvs:

N(i) K(i)
P 1i, D)) = p(@d) | | p(rijlz o) | | pwiiz ) , (2.21)
j=1 k=1

whereA is the parameter corresponding to the probability distidiouof the hidden variable
z, which can take simply as uniform distributiop. and o are the parameters of the Gaus-
sian distribution ang is the parameter of multinomial distribution that are estied by the

Expectation Maximization [39] algorithm.

Conditional distribution of words given an image can be catag using the Bayes rule and
marginalizing out the hidden factar

PWIQ) = > p(AQ)PWI) - (2.22)

z

In this model, it is assumed that textual words and imageoregare to be generated by the

same hidden factor.

Model 2: Gaussian Multinomial Latent Dirichlet Allocation  Although in Gaussian multi-
nomial mixture model, the textual words and images are géeeby the same latent variable,
in Gaussian Multinomial Latent Dirichlet Allocation (LDAgach document is considered to
consist of several topics and word and image observatiangemerated from thesefidirent

topics. In this method, the following generative procegeselace:

1. A Dirichlet random variabl®, is sampled based on the paramet¢40].

2. Conditional ond, a multinomial random variable and conditional orz a Gaussian

random variable, is sampled for each image region.

3. Conditional orp, a multinomial random variabkeand conditional o, a multinomial

random variablev is sampled for each textual word.
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Formally, the joint probability for latent class z, annethivords D and image regions can be

computed as follows:

NO) K(i)
p(li, D1, 6,2 V) = p(@le) | | p@l0)p(rijizi, . o) | ]| p(vide) pwiklz B) - (2.23)
j=1 k=1

Parameters of these conditional distributions are appratéd using variational inference

methods [15].

Model 3. Correspondence LDA In this model, first image region features are generated
and keywords are generated next. Annotation keywords arergied, conditioned on the

hidden factor related to the selected region.

The generative process that takes place in this method dlaw$:

1. A Dirichlet random variabl@ is sampled based on the paramei¢40].

2. Conditional ond, a multinomial random variable and conditional orz a Gaussian

random variable, with parameterg ando is sampled for each image region.
3. For each textual word, the following steps are performed:
(a) A uniformly distributed random variableis sampled based on parameter of the

number of textual words in the image.

(b) Conditional onz andy, a multinomial random variables with parametes is

sampled.

Formally:

N(i) K(i)
p(i, Di,6.2.y) = pl) | | p@10)p(rijlzi, 1. 0) | | POING) pwiklyko 28) , (2.24)
j=1 k=1

wherey is assumed to have uniform distribution taking values nagigiom 1 toN(i).

The independence assumptions in this model is somewheredetGaussian multinomial
mixture model and Gaussian Multinomial Latent Dirichletoslation model. In the former,

there is a strong dependence assumption between imagesemio annotation keywords;
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while in the latter, no correspondence is assumed betweagamegions and the annotation

keywords.

Annotation Models of Blei and Jordan [15] are measured byia@agannotation keyword)
perplexity. While the number of hidden factors increasenfrb to 200; caption perplexity
for Gaussian multinomial mixture model (GMM) remains ard@® to 63, caption perplexity
for Gaussian Multinomial Latent Dirichlet Allocation mddsteadily increases from 65 to
80 and for Correspondence LDA model steadily decreases Ti@ito 50. Note that lower
numbers mean better performance in perplexity measure. ngratl these models, GMM
performs the worst and the Correspondence LDA model pegfdha best. GMM's major
weakness is the assumption that the same hidden topic geméxth the image regions and
textual words. Gaussian Multinomial Latent Dirichlet Adltion model assumes that textual
words and image regions are generated Wiedint hidden topics, hence lacking a direct
correspondence. Last model lies somewhere between Moded Madel 2, but shows the
greatest performance owing to the flexibility that multipg&tual words can be generated for

the same regions, and the textual words can be generatedfsoimset of the image regions.

2.2.2.3 Automatic Linguistic Indexing of Pictures by a Staistical Modeling Approach

In this model [18], each image is annotated by using a cayegbrch itself is described by a
number of keywords. Categories are manually annotatedrapar@d to hidden topics used
in PLSA-Words algorithm, where topics are obtained autosaly using PLSA algorithm.
Categories in this model are used in a similar way to topid3LiBA-Words algorithm in the
sense that both algorithms first try to identify the relatgalds or categories first, then choose

annotation words based on statistical properties.

In the model, images are divided into rectangular grids sfzehich reduced to half, each
time in a pyramid fashion and features extracted from thestngles are modeled as two-
dimensional Multi-resolution Hidden Markov Model (2D MHMMFeature vectors are as-
sumed to be drawn from a Gaussian distribution. The 2-diroeab nature of the Hidden
Markov Model captures the relationship between grid regies Given a test image, the sim-
ilarity of the image to each 2D-MHMM model estimated for eaeltegory is computed. Test
image is annotated by key words selected from the desarmipficategories yielding highest

likelihoods. Words are selected according to their stagissignificance, which is based on
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the occurrence of the word in the top most predicted categori

This model assumes that a category is already assigned lioreage, and uses aftirent
dataset than the other methods. Therefore, it is not pestildirectly compare this method

with the other methods discussed in this thesis.

2.2.2.4 Continuous Relevance Model

Continuous-space relevance model [17] is an improveme@M&M model that is based
on the quantized image regions. In generating visual feafurontinuous probability den-
sity functions are used to avoid the abrupt changes relategidantization. In this model,
it is assumed that for a palr = {Q, A} of an imageQ and its annotatiorA, whereQ =
{ro1,rQ2 - ron@! » N(Q) is the number of regions in imag®, low level visual fea-
tures corresponding to regions are denotedGwhereG = {gqg1,902, - JoN©Q) A =
{Wa 1, WA 2, ..., Wak(a) » K(A) is the number of words in annotati@y the joint probability of

observing words and image regions is computed as follows:

n K(A) N(K)
QA = > Ps(S) | [ PuwailS)] | | Pr@wigew)PslrioniS)ddor »  (2.25)
i=1 =1 k=1 %

whereS; = (|i, Di).

Ps is assumed to have uniform distributioRg(r|g) probability distribution is used to map
low level visual feature generator vect@to actual image regions For every image region,

one corresponding generator is used. The following digiob is assumed fdPg:

1/Ng ifG(r) =g } 2,26

0 otherwise

Pr(rlg) = {

whereNy is assumed to be a constant independergt of

Given a modeb; the following Gaussian distribution is used to generatdrttege features:

N()
Po9S) = 3, T oG- GO NGl @2)

i=1

whereG(r;) is the feature vector of a region in imageandk is the length of the low level

visual feature vector.
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The word probability estimated based on multinomial disition with Dirichlet smoothing
can be computed as follows:

HPw + NW,Si

Pu(wS) = LPuT WS
M(WISi) 7+ S Nor s

whereu is an empirically selected constapiy is the relative frequency of observing the word

in the training setNy,s; is the number of times wordl occurs in the observatioD,;.

As expected, this model performs better than its discratateopart, Cross Media Relevance
Model with precision and recall values of 0.16 and 0.19 a®epd to 0.10 and 0.09, respec-
tively on Corel2002 data set. Because of the joint probgisistimation that assumes mutual
independence of annotation words and low level visual feafuthis method can not reach to

the performance level of method that estimates conditiprababilities directly.

2.2.2.5 Supervised Learning of Semantic Classes for ImagenAotation and Retrieval

Model

In this model [21] , image features are extracted from oygileg regions based on a sliding
window over the image. In this model, it is assumed that fanaamgeQ and its annotatior,
whereQ = {rg1,rg2, .- r'on@} » N(Q) is the number of regions in imag@g, low level visual

features corresponding to regions are denote@byhereG = {go 1, 902, ---» 9Q.N(Q)}-

First, for each image a class conditional density congjstiha mixture of 8 Gaussians is

estimated using the following equation:

8
Pow(alli, word)) = " x¥G(li, ', 5F) , (2.28)
k=1

wheren!‘,u!‘, ZF are maximum likelihood parameters for imalgdased on mixture compo-
nentk. Next, by applying hierarchical EM algorithm [41] to the igealevel mixtures com-

puted in the previous step, class conditional density stingi of a mixture of 64 Gaussians
is computed for each word as follows:

64

Pew(gw) = > mhG(g. 1, ) (2.29)
k=1

where &, 1k, =K are maximum likelihood parameters for wondbased on mixture com-

ponentk. For a given query imagé®, for each wordword;, the following conditional log
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probability is computed using Bayes rule as follows:

log Pwic(word;|Q) = log Pgw(Qlword;) + log Pw(word;) — log P(Q) , (2.30)

wherePy(word;) is taken as the proportion of training set images contginior d; andPg(Q)

is taken as a constant.

This method has been compared with Co-occurence Modelslateon Model and CMRM
mentioned in the previous sections. It has the highest regpqrecision and recall values
of 0.23 and 0.29, respectively on Corel2002 data set. Theoreéor this performance is
that there is no mutual independence assumption of anootatords and low level visual
features. The class conditional density is computed dyregthout resorting to joint density
estimation. Annotation problem is reduced to a multicldassification problem, where each
class corresponds to an annotation keyword. Class condititensities are computed directly
using hierarchical density model proposed in [41]. Regioinsize 8x8 are extracted with a
sliding window that moves by two pixels between consecufiigmenes. Having many local
regions increases the information introduced into thessgsand provides similar advantages
obtained from interest point detectors, where local festare extracted. The method is

computationally expensive and has been implemented orsteclof 3,000 machines.

2.2.2.6 Hierarchical Image Annotation System Using Holist Approach Model (HANO-
LISTIC)

In this model [23], image features are extracted from thelevimnage instead of making use
of regions. It uses hierarchical annotation architectuedled HANOLISTIC (Hierarchical
Image Annotation System Using Holistic Approach), whichsists of two layers. In the first
layer, each node computes the probability of a keyword basefdizzy knn [42] algorithm,
according to the distance of the query image to the imagé®itraining set based on a distinct
feature such as color structure or edge histogram. In trenseayer, called meta layer, the
output of these nodes is summed for each word to find the ni@dy Wwords. Details of the

algorithm are given in Algorithm 2.

Surprisingly, this model performs quite well with precisiand recall values of 0.35 and
0.24, respectively on Corel2002 data set. This performanpartly due to the nature of the

Corel dataset as stated in [37], where many similar imagesiexhe database with the same
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Algorithm 2 Details of the HANOLISTIC algorithm.

1. Compute low level visual features based on each distinttifea

2: For each distinct low level feature vector, compute animigbrobabilities for each an-
notation wordword; based on fuzzy knn algorithm[42].

3: Feed annotation probabilities computed for each word tortee layer.

4: In the meta layer, simply sum the annotation probabilitieis ach word giving each
distinct feature equal importance.

5. Qutput the most likely words as annotation result.

annotation words and the size of the dataset is small.

Although this method performs well on the Corel dataset,ag b generalization problem
for image representations when the visual content of thelevimmage does not match the
multiple annotation words. Thus, any change in image cantédhresult in a diferent image
representation, which makes ifffiitult to obtain invariance to rotations. Although simpljcit

is a major advantage, as the number of images grows in thealaiabecomes more and
more likely to have two semanticallyftirent images having the same global representation.
Another disadvantage is the inadequacy of the global reptason as the size of the text
vocabulary increases. It becomes more and mdiecudli to represent a variety keywords

based on single whole image content as the number of keyvirrosases.

2.3 Quantization of Visual Features in Image Annotation

One of the major steps in the image annotation is to quartigeisual features, so that one
can match the visual features to textual words. A commonnigcle used for this purpose
is to cluster the visual features. Clustering has a longohisand covers a wide area in
pattern recognition. It is defined loosely as the processrgédinzing a collection of data
items into groups, such that elements in each group are rsor@ldr” to each other than the
elements in other groups, according to a similarity metticistering is usually performed in
an unsupervised manner without using any additional in&dion other than the data elements

themselves.

In this thesis, we propose to use semi-supervised clugt@rsiead of using a standard clus-

tering algorithm for the quantization of the visual feagtirédence, this section is devote to
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overview the major semi-supervised clustering algorithms

If additional information is used to guide or adjust the thuiisg, this process is called semi-
supervised clustering. Constraints are usually providethé form of either "must-link”
constraints or "can-not link” constraints. The additiomdbrmation can be incorporated by
defining a set of constraints and using these constrainiagltite clustering. "Must-link”
constraints consist of a set of data point pairs, where ti@m the pair indicate that they
should belong to the same cluster. Similarly "cannot-lickhstraints consist of a set of data

point pairs where the points in the pair indicate that theyusthbelong to dierent clusters.

Specifically, assume that the set of data points to be ckestisiX = {x}{;, and the set of

K disjoint partitions obtained after clustering is indicatmy{Ck}{f:l, wheren is the number
of data points an is the number of clusters. Must-link constraints are ingideby Cy.

and its elements consist af;(X;) pairs such that ik € Cy thenx; € Cy, k = 1..K as well.
Similarly cannot-link constraints are indicated @y, and its elements consist of(x;) pairs

such that ifx; € Cy thenx; ¢ Cy for k = 1.K.

There are two types of semi-supervised clustering appesaatamely, search based and dis-

tance metric based. In the following subsections, thesbadstshall be briefly explained.

2.3.1 Search based Semi-supervised Clustering: COP-KMeamlgorithm

In search based semi-supervised clustering approach.tahdasd clustering algorithm is
modified so as to adhere to the constraints provided to thésgmervisor. Demiriz et. al.

[43] use a clustering objective function modified to incliedgenalty term for not specified
constraints. In COP-KMeans algorithm [44], it is enforckdttconstraints are satisfied during
cluster assignment process. In [45], constraint inforamais used for better cluster initializa-

tion. Law et. al. [46] use a graphical model, based on vamati techniques.

COP-Kmeans involves two types of constraints: must-linkst@ints and cannot-link con-
straints. Must-link constraints indicate that the datanelets must belong to the same cluster.
Cannot-link constraints are used to provide the necessémymation for the two data ele-

ments must not belong to the same cluster.
COP-Kmeans algorithm is based on the well known K-meangighgo [38]. The K-means
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algorithm uses an iterative refinement heuristic thatstaytpartitioning the input points into
K initial sets. Initial sets are formed either randomly or iogking use of some heuristic
data. Next, the mean point, or centroid, of each set is ctled! Then, a new patrtition is
obtained by assigning each point to the closest centroién;Time centroids are recalculated
based on the new patrtition, and algorithm iterates untiVeayence, which is achieved when
the point assignment to clusters no longer changes theeclcsiters. The objective function
minimizes the overall distance between the data points k@dluster means. One of the
popular objective functions is defined as the Euclidearadist between the samples and the

centroids:

K
0=), D (x—m). (2:31)

i=1 xjeCj

whereK is the number of clusters;; indicates partition, andy; is the centroid that cor-
responds to the mean of all the poinse C;. Finding the global optima for the objective
function is known to be NP-complete [47]. Although, there arany diferent varieties of K-
means Clustering, the basic algorithm given below is thekst and widely used in diverse

fields of pattern recognition.

Algorithm 3 Basic K-means Clustering algorithm.

Require: A set of data pointX = {Xj}?zl.

Ensure: Disjoint k partitions{Ci}}<:l satisfying the K-means objective functi@n
1: Initialize cluster centroidisui}!‘=1 at random
2: repeat
3 t<0
4:  Assign each data poin to the clustei” wherei* = argmax||x; —,ui(t)||2
[

5:  Re-compute cluster meapgﬂ) -5 > X
G et
i
6 tet+1

7: until convergence

In COP-Kmeans, data point assignment step is modified s@#uit data point is assigned to
the closest cluster which does not violate any constraiht® such cluster exists, algorithm

fails.

Algorithm details of the COP-Kmeans are given in Algorithm 4
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Algorithm 4 The COP-Kmeans algorithm.

Require: A set of data pointX = {Xj}T:y must-link constraint€y,. , cannot-link constraints
CcL.

Ensure: Disjoint k partitions{Ci}=<=1 satisfying the K-means objective functi@n

1: Initialize cluster centroidisui}!‘:1 at random

2: repeat

3 1«0

4:  Assign each data poing to the clustei” wherei* = argmax||x; — yi(t)n2 such that
ConstraintViolation( x;j, Cj, Cu,CcL) is false |

5. Re-compute cluster meap§™) « —L. > «x
G xeCt+D
I

6: te—t+1

7. until convergence

Algorithm 5 ConstraintViolation.

Require: data pointx, clusterS, must-link constraint€y, cannot link constraint€c,_ .

1. ForeachX; xuL) € Cue If XuL ¢ S, return true
2: Foreach x; xcL) € CeL If XcL ¢ S, return true

3: Otherwise, return false
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2.3.2 Distance Metric based Semi-supervised Clustering

In distance metric based semi-supervised clustering apprathe distance metric used in
the clustering algorithm is trained so as to satisfy the ttamgs given in semi-supervision.
Distance metric techniques used in this approach includsefeShannon divergence trained
using gradient descent [48], Euclidean distance metricifieoldoy a shortest-path algorithm
[49], Mahalanobis distance metric trained by convex opation [50], learning a margin-
based clustering distance metric using boosting [51]niegra distance metric transformation

that is globally linear but locally non-linear [52].

2.3.3 Summary

In this chapter, we provide the background information alfoeimajor visual image represen-
tation technigues used in image annotation studies, nac@ty and texture. We discussed
the state of the art image annotation algorithms under twegeoaies: algorithms based on
low level visual features that are quantized using a clusjealgorithm and algorithms that
use continuous low level features. Finally, we focus on tiseal feature quantization tech-
nigues which is one of the core steps of image annotation. i9éeisk several techniques for
clustering including search based semi-supervised clogtalgorithms and distance metric

based semi-supervised clustering algorithms.
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CHAPTER 3

SSA: SEMI SUPERVISED ANNOTATION

In this chapter, we introduce a new technique for image atioot, which improves the rep-

resentation of low level visual features to get vistermse ploposed technique, called Semi
Supervised Annotation (SSA), is based on the assumptiaihtbie is already available "side

information” in the annotation system which is not utilizeyg the annotator. Therefore, this
side information can be utilized to improve the performahgelecreasing the randomness
of the overall system. The side information can be addeddatinotation system by semi-
supervising the clustering process of the visual infororaéixtracted from the image regions,

which is expected to sharpen the probability density flumctf each visterm.

The concept of semi-supervised clustering and making us@aritized image regions have
been introduced in Chapter 2. Now, we propose to use the s@peirvised clustering for
guantizing image regions. Our motivation is to guide thestdting of visual features using

the extra available side information.

At this point the crucial question needs to be answered isthalgfine and formalize the "side
information”. As an example, one such information, may b kgbels to infer the concepts
and using these concepts to guide the clustering of visafifes. While constructing visual
words based on a specific feature, a potential guidance nrag fmm making use of other

related visual features.

In the following sections, SSA is explained in detail. In @t 3.1, the image annotation
problem, in the framework of our proposed system, is forneali Region selectors and low
level features used in our system are described in SectibnTden, in Section 3.3 the pro-
posed semi-supervised clustering algorithm, which ctegtee low level image features using

"side information” is explained. Parallel version of thersesupervised clustering algorithm
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is described in Section 3.6. Finally, computational comipyefor SSA is discussed in Section

3.7.

Part of the work presented in this thesis, has already apgeaif53], [54], and [55].

Table 3.1: Nomenclature.

S Training set

S Size of the training set

Sj=(;,Dy) Pair of imagej and text documeng

[ Image]j

Dj Text document

w Dictionary

w Size of the dictionary

Word ith word from the dictionary

Wi Binary variable indicating whether wolYord; appears in assa-
ciated text document

RS Set of region selector algorithms

a Number of region selector algorithms

RS; Region selector algorithrin

Tk The set of visual feature types for region sele@®8xg

ty Number of visual feature types used for region seleB@y

FeatureType | ith feature type for region selectBSy
Lji Set of visual features obtained from region sele&8y based on
feature typej

Fik Visual features extracted from imagebased on visual featurg
FeatureTypeq using region selectdRSy

Fikim Visual feature obtained from thmth region or point okth region
selector for imageé; based on visual feature tydg

Vj Sets of visterms obtained by quantizing the low level vigaat
tures found under all region selectors for imgge

Vik Visterms obtained from low level features under regioncele
RSk

Vik Set of visterms extracted fronhj based on visual featurge
FeatureTypeq using region selectdRSy

Q Query image

N(Q) Number of regions in query imade

rom mth region in imageQ

FQ Visual features corresponding to regions of query im@ge

FQoqi Visual features corresponding it region in query imag€®

A Annotation keywords of query imade

K(A) Number of annotation keywords for query ima@e

Wai ith annotation keywords for query image
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3.1 Image Annotation Problem

In this section, we shall formalize the Image Annotationbbem, for the development of the

proposed system, Semi Supervised Annotation presentbé subsequent sections.

Mathematically speaking, the training stconsists ofsimage and text document pairs, as

follows;

S ={(l1,D1), (12, D2), ..., (Is, D)} , (3.1)
wherelj andD; corresponds to the image and associated text document ghtpeair of the
training set. Each text documely consists of words obtained from a dictionavy,

W = {Word;, Word,, ..., Word,,} , (3.2)
wherew is the size of the dictionary, and

Dj = {wy, Wo, ..., Wy} , (3.3)

wherew; is a binary variable indicating whether wovdord; appears in associated text docu-

mentD; of the jth pair of the training set or not.

Each imagé; consists of visual features obtained from potentially mamging regions or
points generated from a set of segmentation or regions@fast detector algorithms, such as
normalized cut segmentation algorithm [14] offierence of Gaussians (DoG) point detector

[29]. Let us call these algorithms Region Selectors and défia set of such algorithms as:
RS = {RS1, RSy, ..., RS,} , (3.4)

wherea is the number of region selectors.

A set of visual feature typ€gy is used for each region select®®y. Let, the number of visual
feature types used for region seled®8y bety. Define the set of visual feature types used for

region selectoRSy as:

Ty = {FeatureType, FeatureTypec, ..., FeatureTypeg, } . (3.5)

Imagel; consists ol many sets of visual features obtained from the region smiect
lj ={lj1, lj2, ..., lja} (3.6)
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wherel jk corresponds to visual features obtained from region seI&Sy. Let,
Lk = {Fjkt, Fijis - F it} » (3.7)

whereF jy indicates the visual features, extracted frigibased on visual featufeeatur €T ypeyg
using region selectdRSy. The number of visual features employed by a visual featype t
Tk for an imagd  is denoted byfj,, and the set of visual features obtained from an image

based on visual feature tydg using region selectdRSg is shown by:
Fiw = {Featurejq1, Featurejp, ..., Featurejk”jkl} . (3.8)

Featurejum corresponds to the low level feature obtained fromrtitle region or point okth

region selector for imagh, based on visual feature tygg.

Vj consists of sets of visterms obtained by quantizing the ésellvisual features found under
all region selectors,

Vj={Vj1UVjpU..UVja}. (3.9)

whereVji corresponds to visterms obtained from low level featureuregion selectdrSy.

Let,
Vik = {Vjkt U Vjke U ... U Vjig, } , (3.10)

whereVjy indicates the set of visterms extracted frhrbased on visual featufeeatureTypey

using region selectdrSy :
Vik = {Vistermjk|1,VisIermjk|2, ...,ViSermjkI fjkl} . (3.11)
Given a query imag® whereQ = {rgi,ro2,....ron)} » N(Q) is the number of regions in

imageQ, and low level visual features corresponding to regionsdareted byFQ where

FQ={FQq1, FQqp2, ..., FQqn(g)}, image annotation is defined as finding a function

FQFQ) =A

, WhereA = {Wa 1,Wa2, ..., Wa k) » K(A) is the number of words in annotatighandwa; is

obtained from dictionaryV.
Nomenclature table corresponding to the notations usddsrséection is given in Table 3.1.

After the above formal representation of the image anrmigtroblem, in the following sec-

tions, we formally introduce the necessary concepts suahage document, text document,
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text dictionary, visual dictionary, region selectors aod level visual features and their rela-

tionships.

3.2 Region selectors and Visual Features

In chapter 2, we have discussed the available region sedeatwl feature spaces for image
annotation in the literature. The design of the feature epat pattern recognition problems
is still an art rather than an engineering issue and depemdkeoapplication domain. The
selection of feature spaces has a great impact on the penficemof the image annotation
problem. In this thesis, we did not focus on developing neatifiee spaces , but we investigate
the same three region selectors and feature spaces thabéaweised in the state of the art
image annotation algorithm of [20], to be able to comparepimposed algorithm SSA to
that of [20]. The first one is normalized cut segmentationosiiced by [14]. The second
one is uniform grid, which divides the image into a set of amif regions [20]. The last
one is Diference of Gaussians (DoG) point detector [29]. We emplfigreint sets of visual

features for each region selector, which is explained helow

3.2.1 Visual Features for Normalized Cut Segmentation

Blob features obtained from the regions extracted by therdtized Cut Segmentation method,
originally used in [30] consists of a combination of sizesition, color, texture and shape vi-
sual features that are represented in a 40 dimensionalréeatator. The low level visual

features used in Blob Feature are given in Table 3.2.

There are many studies [16], [30], [15] [17], [20], which @s® investigate the pros and cons
of the blob features. Concatenation of all the incompatialer, texture and shape features
yields a high dimensional and sparse vector space. In ouiarpithis feature space bears
many problems, such as curse of dimensionality and statististability. However, in order

to make our results compatible with that of [20], we used liéaiures.
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Table 3.2: Low level visual features used in Blob Feature.

Low level feature Description Dimension
Size Portion of the image covered hy 1
the region
Position Coordinates of the region center 1
Ave RGB Average of RGB 3
Ave LAB Average of LAB 3
Ave rg Average of rg, 3
where ER/(R+G+B),
g=r=G/(R+G+B)
RGB stddev Standard deviation of RGB 3
LAB stddev Standard deviation of LAB 3
rg stddev Standard deviation of rg| 3
where ER/(R+G+B),
g=r=G/(R+G+B)
Mean Oriented Energy 12 Oriented filters in 30 degree 12
increments
Mean Diterence of Gaussians4 Difference of Gaussians Filtefs 4
Boundaryarea ratio of the area to the perimeter 1
squared
Moment-of-inertia the moment of inertia about the 1
center of mass
Convexity ratio of the region area to that of 1
its convex hull
Total 40
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3.2.2 Visual Features for Grid Segmentation

We use Hue-Saturation (HS) feature after dividing the imat®rectangles using a uniform
grid as in [20]. To obtain illumination invariance, coloriginitness value is discarded from
the Hue-Saturation-Value (HSV) color space. A two-dimenal histogram is obtained by

guantizing the Hue and Saturation values separately.

3.2.3 Visual Features for Interest Points

We use three types of visual features for interest pointgubdference of Gaussians region
selector. The first one is the orientation value assignedhth énterest point. Orientation
information is lost in standard SIFT descriptor, since thierest point is aligned along the
dominant orientation direction. Although this approachintans the rotation invariance,
some valuable information is lost for objects that are uguh$played in a known orientation
direction or when a similar local structure is displayed iffetent orientations on the same

scene.

The second visual feature we use is color information ardbhednterest point as in [28].
Since SIFT descriptor does not have any color content, édsanable to associate SIFT de-
scriptor with color. This approach captures the texturerimiation created by certain colors.
LUV color space is chosen because of its perceptual propeiding from the linearization
of the perception of the color distances, and it is known tokweell in image retrieval ap-
plications [28], [56], [57]. LUV values are computed on a ddmv normalized to cover the
area given by interest point descriptor. The mean and stdmf#iation values are computed
along each color space dimension and concatenated undsarttevector. Each entry of this

vector is normalized to unit variance to avoid dominatiouofiinance.

The third visual feature we use underfirence of Gaussians is the standard SIFT descriptor
[29]. SIFT features are extracted using the local histografredge orientation from each in-
terest point. SIFT features are robust to occlusion andeclanhd have the ability to generalize

to a large number of objects, since they are local.

The visual features, obtained above or other availableifeatxtraction algorithms, enable

us to characterize the low level visual content of the imaga tertain extent. These rep-
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resentations bear several problems: First of all, the higtedsional feature spaces require
combinatorially explosive number of samples to yield aistigally stable data set, which is
practically impossible. Reduction of dimension is emptbye some of the systems, but this
time there is a traddébbetween the information loss and statistical stabilityetkif we create

a very high dimensional vector space, the low level feataregar from representing the high
level concepts carried under the annotation words. A thiothlem comes from the locality of
the visual features. This local information extracted framegion angbr around an interest
point is not one-to-one neither onto with the textual woldsorder to improve the common

image annotation systems one need to attack the problemsomehabove.

There is a tremendous amount of studies to create a featace,swell suited to a specific
application domain [2]. In this thesis, we approach the abmentioned problems from an
information theoretic point of view. Given a set of low leYehtures=Q and a dictionaryV,
the annotation functiofr(Q, FQ) = A for a query imageQ, requires a labeling process for
the regions of the vector space createdHy. At this point, most of the image annotation
algorithms cluster low level visual features. The clustgrprocess does not only label the
low level features with high level concepts but also, eralalenore compact image repre-
sentation and a lower computational complexity [13], [14K], [20]. The crucial point is
how to cluster the low level image features to represent legdl document words. One may
improve the clustering process by employing a type of sugenv, called semi-supervised
clustering. In the following sections, we introduce theagpt of "side information”, discuss
the diference between commonly used clustering algorithm of Kasead the proposed
method of semi-supervised clustering, using side infoianatWe, finally, describe, the code

book construction methods using the proposed semi-sigaehalustering method.

3.3 Side Information for Semi Supervision

In a general sense, side information can be defined as anyokimformation, which is

already available, but not used in the clustering procedsvoflevel visual features. Side
information is already in annotation system, but it is soavemeglected or unused in the
clustering of visual features. It can be based either onaVigatures or on annotation key-
words. We classify side information into two groups basedvbether it is obtained from the

whole image or from the image regions. If side informationhtained from the whole image
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or annotation keywords, we call it as global, if it is obtalrfeom image regions or interest

points we call it as local side information.

We use side information in such a way that, while clusterirsyial features, those with the
same side information are constrained to fall in the sanse@ts. By grouping visual features
with the same side information together, we hope to obtaistels that are more homoge-
neous with respect to the provided side information. Tloeeefwe expect to have clusters
with sharper probability density functions. Consequertdigtributions of visual features be-

come less random resulting in better annotation perforeanc

We quantize side information by clustering the side infdrorafeatures to obtain groups
corresponding to each cluster label. For each side infoomatve define two functions. First
function assigns each visual feature to a group or a set afpgrdepending on the specific
side information, the visual feature associated with. Tim&tion is side information specific.

Second function assigns a visual cluster to a group or a ggFbaps.

Mathematically speaking, let us assui@e = {Sl;}, denote the set of side information,
we employ and we havei many diferent types of them. For each side informati®h,

i = 1..s we assume cluster labels are grouped gygp many categories. Although it can be
done in a variety of dferent ways, we simply assign visual clusters to groups doetheh
group is assigned approximately equal number of clusteselpecifically, for a region;m,
and its associated side informati&h;;,, we have a function performing region assignment
RegionAssignments; (rjm) = Gijm <€ {1,...,0s);}, and a function performing cluster assign-
ment for a clusteCy, Cluster Assignments, (Cx) = g, g = 1..gs),. Note that ifSl; is a global
side information,Slijm is same for all the regionsy, within an image. Otherwis8l;jm, is

obtained from the region corresponding {g.

3.3.1 Representation of Side Information

Although it can be formulated in manyfterent ways, in this thesis, we define threffedent

types of side information. The first one comes from the textdeent consisting of annotated
keywords associated with images. Since this side infoonast global, the same side infor-
mation is associated with visual features extracted frdrthalregions of a given image. We

guantize this side information by obtaining hidden topiokabilities from the PLSA algo-

45



rithm proposed in [26], so that each hidden topic correspdadh group in our terminology.
We assign visual features to only "highly likely” topics éuips). Highly likely topics are
determined by K-means clustering applied to the topic fuiities obtained for an image
through PLSA algorithm where K is chosen as 2, corresponttiriikely” and "not likely”

topics, in a sense acting as a threshold.

The second side information we define, is the orientatioormétion around each interest
point. This side information is used for supervising thestduing of SIFT features. Orienta-
tion information is readily available in Berence Of Gaussians region selector. Orientation
of an interest point is computed as follows. For an interesttgat pixelP(X, y) at regionr jm,

orientation side information is computed as follows [29]:

Next, an orientation histogram is computed from these gradirientations of sample points
that are within a region around the interest point. The daition histogram consists of 36 bins
covering the 360 degree range of orientations. Then, eanpleas weighted by its gradient
magnitude and by a Gaussian-weighted circular window witbede which is 1.5 times of the
interest point. Dominant directions of these local gradieare found by choosing the peaks
in the orientation histogram. The side information, cquaexls to the dominant directiah
computed for each interest point. We quantize the orierigtinto NO number of bins as
follows:

orientation = 1 + round((6 + x)/(2 = mr) =« (NO — 1)) . (3.13)

The assignment of a SIFT feature to an orientation grouprigoeed directly using the above

formula.

The third side information we use, is the color informatioowand each interest point. This
side information is used for supervising the clustering BiTSfeatures as well. Color in-

formation around each interest point is obtained by comgutiUV color features around
interest points as discussed in [28]. First, LUV values amaputed on an 11x11 grid nor-
malized to cover the local area given by the interest poitéaler resulting in a feature vector
of dimension 121. Next, the mean and standard deviationdgon €UV color dimension is

computed and concatenated resulting in a 6-dimensionabveleinally, each dimension of
this vector is normalized to unit variance. The quantizatdthis color information intoNC

number of bins is made through K-means algorithm choosing K@ A SIFT feature is
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assigned to a color group by simply choosing the nearesipgresed on Euclidean distance

of the color information around its interest point.

One may ask why we choose the above mentioned features t@ diérside information.
Unfortunately, at this point, we have no formal answer te tiuestion, nor we have a system-
atic way of selecting and defining the side information. Hesveintuitively speaking, all the
above mentioned features provide extra information togaittd bring constraints to the clus-
tering process. This extra side information somehow nasrihe semantic gap between the
visual and textual features. It should be noted that theme isnique and complete definition

of side information for a given image representation.

3.4 Semi-supervised Clustering versus Plain Clustering fo/isual Feature Quan-

tization

As it is mentioned before, in most of the image annotationhods the visual features are
clustered to obtain visterms using a standard K-meansitdgurin this method, data points
are distributed to K clusters in such a way that each data peiongs to the cluster with the
nearest mean. Hence, all the information we use in K-meassecing is the low level visual

features. If we can provide more information to the clusgprocess, indicating whether two
data points co-exist in the same cluster or not, we can gedrltistering results as reported

by recent research on semi-supervised clustering [43], [48], [46], [48], [50], [51], [52].

The important question is how to define and feed this infoionato the clustering process.
It is not feasible to get this information from the users. Hwer, one should note that there
exists some implicit information in annotated images besithe visual features, which might
consistently co-occur with the visual feature to be cleleisuch as annotation keywords,
position of low level visual features and information retjag other low level visual features.
This additional information called "side information” che used in providing the constraints

to the semi-supervised clustering process automatically.

We can embed the available side information to the clusigpiocess of visual features as
follows. First, we represent and quantize the available siformation, by clustering side
information features collected from the annotated imagesbtain groups, where each side

information cluster label corresponds to a group. Quatitizeof side information can be
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done in many ways. As this can be done with standard K-meguositiim, other hard or soft

clustering [58], [59] methods can be used as well.

Next, each visual feature data poiR}m, associated with the co-existing side information
Slijm, are assigned to a group or set of gro@s,. Finally, we constrain the visual feature
clustering process with the available side informationhsa visual points that fall in the same

cluster should all have the same group label assignments.

Recently, there have been attempts to improve clusteririgode employing some constraints
[44]. If this additional information is used to guide or asljihe clustering, this process
is called semi-supervised clustering. There are two typesmi-supervised clustering ap-
proaches, namely, search based and distance metric baseelarth based semi-supervised
clustering approach, the clustering algorithm is modifiecas to adhere to the constraints
provided to the algorithm. In distance metric based sempesused clustering approach, the
distance metric used in the clustering algorithm is traiseds to satisfy the constraints given

in semi-supervision.

The closest approach of semi-supervised clustering tois@@®P-Kmeans [44], where con-
straints are provided in the form of must-link and canniok-Iconstraints specifying that two
visual features must belong to the same cluster and twolsatures must not belong to the
same cluster, respectively. Our approach in providing ttaimés is diferent than [44] in the

sense that in [44], a must-link constraint between two daiatg indicate that they belong to
the same cluster, in our case, assigning group label(s)ktodsta point provides a constraint
that the data point belongs to one of the clusters labeldditginssigned group(s). We do not

use any cannot-link constraints.

We gain two major benefits by using the available "side infation” in the annotated images
besides the visual features that are clustered. Firstexpected that clusters become more
homogeneous with respect to the provided side informafitverefore, clusters have sharper
probability density functions resulting in less overaltrepy of the system and the distribution
of visual features being clustered becomes less random. eBsedsing the entropy of the
overall system, we hope to increase the annotation perfiweméSecond, we reduce the search
space during clustering since we compare a visual featuteneit all of the cluster centers
but with only centers of those clusters that are assignetidovisual feature based on its

associated side information. Therefore, we get betteppmdnce as far as the computational
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complexity of the clustering is concerned.

In the next sections, we describe how to obtain code bookgjtisis side information through

semi-supervised clustering.

3.5 Code Book Construction by Semi Supervised Clustering

Our code-book construction method for visterms is a modifezgion of K-Means to include
semi-supervision. We constrain the clustering by emplpyhe side information. For this
purpose, we determine the groups with the same side infamand enforce the clustering
algorithm to assign the visual features to only one of thestels within the same group
or groups determined according to the available side indtion. Therefore, this method
constrains the visual feature clustering process with ttaélable side information so that

visual points that fall in the same cluster should all haveesime group label assignments.

Initially the total number of groups is chosen as the numbbelasses in the side informa-
tion. Next, we simply assign visual clusters to groups, s #ach group is assigned to
approximately equal number of clusters, assuming viswdlifes that co-exist with each side
information group have equal chance of being assigned tofthye visual clusters. Note that,
other variations such as assigning clusters to groups lmséteir number of occurrence in

the training set could be used as well.

Next, each visual featurg;m, associated with the co-existing side informati®h;m, are
assigned to a group or set of groupgm. The visual featuréj, is assigned to the nearest or
k-nearest of thgs, groups with respect to a distance metric, such as the Eaclidistance of
the side information featur8ljjm, to group cluster centers. The rest of the algorithm applies
a modified version of the standard K-means algorithm. lihtiaisual features are included
randomly in of the clusters that are assigned to anggf. Then, mean of each cluster is
computed. Next, each visual feature is included in the slosleister that is assigned to any
of Gjjm. Iteration continues until the convergence. The detailthefmethod are given in

Algorithm 6.

Once a visual codebook is constructed, visual featkgsof query images are assigned to

the codebook depending on the type of the co-existing siftenmation Slijy,. If the side
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Algorithm 6 Code Book Construction using Semi-supervised Clusterilggithm.

Require: A set of data pointX = {Featurejm}, j = 1..s, m = 1..f;, extracted from regions
rim Where f; is the number of regions in imade, each point corresponds to low level
visual feature obtained from regian of imagel;, text documentD; associated with
imagel j, given side informatior®l;.

Ensure: Disjoint K partitions{Ck}lf=1 satisfying the K-means objective functi@n

1: Choose total number of grougs;; depending on side informatidsil;

2: Label each cluste€y, k = 1..K with one of thegs, groups so that each group has approx-
imately equal number of clusters, whefeis the total number of clusters using cluster
assignment functio@luster Assignmentsy, .

3: Construct a set of group labelG);m based oriRegionAssignments; (rjm) that each visual
featureFeaturejm, can be assigned.

4: Assign eachFeaturejy, randomly to one of the clusters labeled with one of the groups

within Gjjm.
5. repeat
6: Re-compute cluster means
1
i — — Z X (3.14)
ICul &2
k
7:  Assign eacleaturejy, to the nearest cluster labeled with one of the groups caorebp
ing toG;jjm as follows: Using Euclidean Distance functioncomputed(F eatur ejm, 1)
for k = 1..K. AssignFeaturejy, to k* where
d(Featurejm, ux) <= d(Featurejm, ux),k = 1..K.
8: until no feature to cluster assignment changes

9: if Side informationSl; is based on annotation keywortifen

10:  Apply Linear Discriminant Analysis to the clustering reisugo as to obtain a transfor-
mation matrixU as explained in Subsection 3.5.0.1

11:  Update cluster centerg and test image visual Blob features basedJon

12: end if
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information is based on visual featuFgm, then it is assigned to the nearest cluster within
the groupsGijm based on the side information featu8g;. If the side information is based
on the annotation keywords, visual featug, is assigned to the nearest cluster within the

codebook.

Since during codebook construction, a visual feature igyasd to only one of the clusters
labeled with its assigned group, it is not assigned to theedbcluster among all the clusters,
but only to one of the clusters under the same group as itsSriolenation. In dfect, clusters
with different assigned group labels might have means that are ddseclidean Space as
opposed to the cluster means that are computed throughastKémeans clustering algo-

rithm.

An example of the block diagram representation for the feastissignment is shown in Figure
3.1. In this example, we have 8 groups for 8 distinct classebenside informationSl;

, corresponding to 8 directions. We have 32 visual clust&ach group is assigned to 4
clusters. Visual featurg; is assigned to group 2, since its co-existing side inforomel;j;

is closest to group 2. Visual featufg, is assigned to group 1, since its co-existing side
information Sl;j, is closest to group 1. During codebook construction we compésual
featureFj; with only cluster centers 5 through 8, and visual featkife with only cluster
centers 1 through 4. Therefore, in this example it is posditit any of the cluster centers 1
through 4, might be close in Euclidean space to any of thaeslwenters 5 through 8. This
possibility does not create any problem for query imageufest associated with visual side
information, since they are compared with clusters onlygassl to them. However, since
visual features of query images associated with textua sitbrmation are compared with
all the clusters in the codebook, we need a mechanism toaepausters that are assigned

to different groups.

In case the side information is based on textual annotatiomsy to keep clusters as apart
from each other as possible, and visual features within eadier as close in Euclidean
distance as possible, we apply Linear Discriminant Analysithe clustering results in order
to obtain a transformation matrix that we further apply t® tisual features of the test image.

Details of the Linear Discriminant Analysis method are givie the next subsection.
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Figure 3.1: The block diagram for a sample cluster assigmmoegroups.

3.5.0.1 Linear Discriminant Analysis for Projection of Visual features

Given a set of featureBeature®, wherec is the cluster label obtained by semi-supervised
clustering,c = 1..K, andi is the sample id in theth cluster,i = 1..n; andn. is the number

of data points withircth cluster. Our goal for using Linear Discriminant Analy8ifA) is

to find a projection of the visual features that separate liiders as much as possible while

keeping the visual features within clusters as close aslgess

Let, uc denote the mean of the individual clusigrwhereu. can be computed using the

following equation:

Nc
ue = (1/n; eature” . .
(/m) > F - (3.15)
i=1
The overall mean becomes:
K ne _
u=(1/n eature” | .
(1/n) F - (3.16)
c=1 i=1

K
wheren = Y ng.
c=1

The within-class scatter matrid,, and the between-class scatter malvix can be computed
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as follows:

K N
My = (1/n) Z Ne Z(Feature"i — ue)(Feature® — )T, (3.17)
c=1 i=1
K
Mo = (1/1) ) ne(ue = 1) (te = 11)" - (3.18)
c=1

Our goal is to find a transformation matiik, such that

UTMpU
u* = argmaxw .
u  IUTMuUJ

(3.19)
The projection matrixJ* can be computed from the eigenvectorsMyf*M,,. Projected new
cluster means for the visual code-book, and projected featctors for test images are com-

puted using:

Hc = UT(/JC -4, (3.20)

Featurejm = UT (Featurejm — u) . (3.21)

This transformation makes the clusters as apart from eder as possible while keeping the

features within a cluster as close as possible.

3.5.1 SSA-Topic: Semi-supervised Clustering Using Text Joc Information as Side

Information

As itis mentioned in Section 3.3, one of the methods to defiaside information is to use the
text topic probabilities extracted from the PLSA algorithiinese probabilities may guide the
clustering process to quantize the visual information tpriowe the relationship between the
text topic information and the visual information. It is eqbed that this approach decreases

the semantic gap between the visual and the textual words.

In this method, we determine the groups to which the visuauies will be assigned based
on the text topic information and enforce the clusteringpatgm, such that visual features

are assigned only to one of the clusters labeled with thgmesdigroup or groups.
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Figure 3.2: Flow chart for SSA-Topic.

The flowchart of the SSA-Topic algorithm is given in Figur@.3Note thatSl;jy, is same for
all Fjm since the side information is based on annotation keywogisce each annotation
potentially consists of several topics, we use a set of grangtead of just one group for
feature assignment. To compute the set of groups to be asktgrvisual features, initially
image annotations are fed into PLSA algorithm that has bésusked in Chapter 2. Using
this algorithm, the hidden topic probabilities are comduta each image annotation. Using
a standard K-means algorithm and choosing K as 2, two setgldém topic probabilities
are obtained that correspond to "high” and "low” probakilibpics. These high probability
topics correspond to the set of groups for visual featurggassent. Note that, for feature
assignment, we could select the most likklppics based on an arbitrary numiéeor could
cluster topic probabilities by choosing K as greater thans?eiad of 2 before choosing the
cluster that corresponds to "high” probability topics. Titeason for choosing number of
topic probability clusters as 2, is simply to use clusteragga threshold to choose "high”
probability topics. Image regions are obtained from N-Guir(nalized cut) segmentation
algorithm [14]. Low level features called "Blob featuresroesponding to these regions
are computed as discussed in sub-section 3.2.1, to obtaln fBatures. These features are
clustered using SSA-Topic Algorithm details of which areegi in Algorithm 7 that takes as
input "high” probability topics obtained from image annitas.
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The Semi-supervised Clustering algorithm using text tapiormation is a specific instance
of the general Semi-supervised Clustering algorithm dhioed in Section 3.5. The details
of the algorithm are given in Algorithm 7. Since, the sideonmhation is based on the textual

keywords, Linear Discriminant Analysis is applied to thestering results.

The above mentioned semi-supervised clustering can bédeved as both search based and
distance metric based, since it not only guides the clugebut also improves the distance
metric by transforming the feature space through appboati Linear Discriminant Analysis

algorithm.

3.5.2 Semi-supervised Clustering Using Complementary isl Features as Side Infor-

mation

As it is explained in the previous subsection, topic prolit#s serve as side information to
yield "better” clusters in terms of text topics. Another wafyusing side information may
be to accentuate some of the visual information in the imag@ns. The choice of the
complementary visual feature depends on the database phckéipn domain. For example,
in Corel data set, the objects are heavily described by @idior orientation information.
It is expected that using additional color @mdorientation information to semi-supervise the

clustering process improve the homogeneity of the clustéhsrespect to orientation or color.

This method is a type of search based Semi-supervised @Ghgstaethod, since it only guides
the clustering, but does not improve the distance metrippssed to the SSA-Topic method
introduced in the previous section, where the feature sjzackkanged by the application of
Linear Discriminant Analysis algorithm. Grouping clustdyased on side information adds
another dimension to visual code-book so that clustersdenoot only the visual information

but also the side information attached to these visual featu

The flowchart of the Semi-supervised Clustering using Qaition, as side information (SSA-
Orientation) method and Semi-supervised Clustering uSiolgr Information as side infor-
mation (SSA-Color) method are given in Figure 3.3 and in Feg8.4, respectively. For
both of these methods, interest points are found out autcatigitby difference of Gaussians

(DoG) point detector [29] as discussed in Section 2.1.1.2.
For SSA-Orientation method, two types of information ar@kayed from each interest point.

55



Algorithm 7 SSA-Topic Algorithm.

Require: A set of data pointX = {Featurejn}, j = 1..s, m = 1.f;, wheref; is the number

of visterms in imagéd , each point corresponds to low level Blob feature obtaimechf
regionm of imagel; after Normalized Cut Segmentation, text documBptassociated

with imagel;.

Ensure: Disjoint K partitions{Ck}fj=1 satisfying the K-means objective functi@n

1:

10:

11:

Set number of groupg as the possible number of topitsso that groups are represented
by topic numbers. We use group and topic interchangeablyimihis algorithm.
Label each clusteCy, k = 1..K with one of theT groups so that each group has approxi-
mately equal number of clusters, whéfes the total number of clusters.
Using PLSA method of Subsection 2.2.1.4 , for eighcompute topic probabilityPx
wherej = 1..s, k= 1..T, T is the number of topics.
Using a standard K-means algorithm on the topic probadsliiomputed in the previous
step, and choosing#2 to act as a threshold to find high and low topic probabiljtfesl
outCj; andCj, sets. If the mean of s€;j; is higher than the mean @fj,, take the likely
topicsGijm = Cj1, otherwise také&ijm = Cj> wherej = 1..s, for imagel j associated with
text documenD;.
Assign eachFeaturej, randomly to one of the clusters labeled with one of the groups
within Gjjm.
repeat

Re-compute cluster means

o= — ' x (3.22)

Assign eaclieaturejy, to the nearest cluster labeled with one of the groups coorebp
ing to Gjjm as below: Using Euclidean Distance functidncomputed(F eatur ejm, 1)

for k = 1..K. AssignFeaturejm to k* where
d(Featurejm, ux) <= d(Featurejm, ux),k = 1..K.

until no feature to cluster assignment changes
Apply Linear Discriminant Analysis to the clustering resudo as to obtain a transforma-
tion matrixU as explained in Subsection 3.5.0.1

Update cluster centerg and test image visual Blob features basedJon
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Figure 3.4: Flow chart for SSA-Color.

First is the dominant orientation of the interest point,osetis the SIFT descriptor as de-
scribed in Chapter 2. Note that SIFT descriptor does noyaarentation information since,

interest points are normalized along the most dominanttiine to obtain the descriptor.

For SSA-Color method, two types of information are used &mheinterest point. First infor-
mation is the color category around each interest poinginet through K-means clustering
of LUV color features around interest points as discussgd8h Second information is the

SIFT descriptor as explained in Section 2.1.1.2.

Note that, SSA-Orientation and SSA-Color algorithms arecsjr instances of the gen-

eral Semi-supervised Clustering algorithm proposed is shiidy. The details of the SSA-
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orientation method and SSA-Color method are given in Athani 8 and in Algorithm 9,

respectively.

For SSA-Orientation, total number of groups correspondthéototal number of possible
orientation values. RegionAssignment function for eadiTSfleature constructs the set of
group labels using only one element that correspond to tiemtation value of the interest

point corresponding to the SIFT descriptor.

Algorithm 8 SSA-Orientation Algorithm.

Require: A set of data pointX = {Featurejy}, j = 1..s, m= 1..f;, wheref; is the number of
SIFT features in imagg, each point corresponds to low leveth SIFT feature obtained
from imagel; after Difference of Gaussians feature detection, for each SIFT &atur
Orientationjy, values corresponding to the orientation of the interesttpoi

Ensure: Disjoint k partitions{Ck}l*j=1 satisfying the K-means objective functi@n

1: Set number of groupg as the possible number of orientations so that groups are-rep
sented by orientation numbers. We use group and orientatierchangeably within this
algorithm.

2: Label each cluste€y, k = 1..K with one of theg groups so that each group has approxi-
mately equal number of clusters, whéfes the total number of clusters.

3: Assign eachFeaturej,, randomly to one of the clusters labeled withij, =
{Orientationjm}.

4: repeat

5:  Re-compute cluster means

o= — 3> x (3.23)

6:  Assign eachFeaturejy to the nearest cluster labeled with one of the groups labeled
with Gjjm = {Orientationjn} as below: Using Euclidean Distance functidncompute

d(Featurejm, ux) for k = 1..K. AssignFeaturejm, to K* where
d(Featurejm, ux-) <= d(Featurejm, ux),k = 1..K.

7. until no feature to cluster assignment changes

For SSA-Color, total number of groups correspond to therccétegory quantization level

obtained from K-Means clustering of LUV color feature arduinterest points as explained
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in Section 3.3. RegionAssignment function for each SIFTueaconstructs the set of group
labels using only one element that correspond to the cotegoay of the interest point cor-

responding to the SIFT descriptor.

Algorithm 9 SSA-Color Algorithm.

Require: A set of data pointX = {Featurejy}, j = 1..s, m= 1..f;, wheref; is the number of
SIFT features in imagh, each point corresponds to low levath SIFT feature obtained
from imagel; after Difference of Gaussians feature detection, for each SIFT &gatur
LUVjn values corresponding to the color of the interest point.

Ensure: Disjoint k partitions{Ck}I'f:l satisfying the K-means objective functi@n

1: Cluster the set of data poinéé= {LUVjny}, ] = 1.s, m = 1.f;, wherefj is the number
of SIFT features in imagg to g groups using standard K-Means algorithm. Assign each
SIFT point to aColorCategoryjm, j = 1..s, m = 1..f; depending on its corresponding
cluster. We use group and color category interchangealiljimthis algorithm.

2: Label each cluste€y, k = 1..K with one of theg groups so that each group has approxi-
mately equal number of clusters, whéfes the total number of clusters.

3: Assign eachFeaturej,, randomly to one of the clusters labeled witij, =
{ColorCategoryjm}.

4: repeat

5. Re-compute cluster means

Mk < —— X (324)

6:  Assign eachFeaturejy, to the nearest cluster labeled with one of the groups labeled
with Gjjm = {ColorCategoryjm} as below: Using Euclidean Distance functidncom-

puted(Featurejm, uk) for k = 1..K. AssignFeaturejm to k* where
d(Featurejm, ux) <= d(Featurejm, ux),k = 1..K.

7. until no feature to cluster assignment changes

3.6 Parallelization of the Clustering Algorithm

A close look at the K-means algorithm indicates that the aaaipnal complexity is in the

order of O(sKdL), wheresis the number of data pointk is the number of clustersl is the
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dimension of the feature vector ahds the number of iterations. This requires impractically

long time, when implemented on a high end single processchime.

To obtain speedup in computation time and divide the memaguirement to multiple pro-
cessors, we use parallelism in standard K-means and sgmivssed K-Means algorithms.

Our approach is based on [60] that is outlined in Algorithm 10

The most common approach for implementing parallelism issage passing which is based
on communicating through sending of messages to recipi®liésuse Message Passing In-
terface (MPI), which is a standardized and widely used ffipfar message passing [61, 62].

MPI commands employed in this study are outlined in Table 3.3

Table 3.3: MPI Commands Used in Parallel Clustering.

MPI Command Decription

MPI_Commsize() return the number of processes
MPI_Comm.rank() return the process identifier
MPI_Bcast(A, root) broadcast the value of var|-

able "A” from the process with
"root” identifier to all of the pro-
cesses

MPI_Allreduce(A, B, MPLSUM) | sum the local values of variable
"A” of all the processes and dig
tribute the result back to the prg
cesses in variable "B”

3.7 Computational Complexity of SSA Algorithm

We first analyze the computational complexity of the segaewersion of the K-means algo-
rithm. The computational complexity depends on the numbeisaal features to be clustered
s, the dimension of the visual featudg and the number of iterationg, while converging.
Each addition, multiplication or comparison operationaasidered as one floating point op-
eration (flop). At each iteration of a loop, Euclidean diseafrom each point to each cluster
center and cluster means are computed. Euclidean distaftzdations take &Kd + sK + sd
flops [60]. Cluster center calculations takKe flops. Assuming that the time for each flop to

betfiops, the overall computational complexity of the sequentiahiéans algorithm is:
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Algorithm 10 Outline of the Parallel Semi-supervised K-means Algorithm

Require: A set of data pointX = {X;

n
j=1

Ensure: Disjoint k partitions{Ck}I'f:l satisfying the K-means objective functi@n

1:

2:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24

25:

26:

27

28:

p = MPI_Comm._size&() / number of processes
r = MPI_Commrank() // process identifier
MSE = 0// mean squared error
OIdMSE = o // old mean squared error
if (r =0) then
Initialize cluster centroidgu;} , at random
end if
MPI _Beast({ux}f ;. 0)
Initialize semi-supervision constraints
while MSE < OIdMSE do
OldMSE <« MSE
MSE’ « 0// mean squared error withith cluster
for i =1tokdo
n’ « 0//the number of data points withith cluster for process
ui < 0// mean ofith cluster for process
end for
for j=r=(n/p)+1to( +1)=*(n/p) do
Assign data poink; to the clusteii* wherei* = argmax||x; — will%. Only consider
clusters that satisfy semi-supervision constraintsI
N, N+ 1w, — wi + X
MSE’ « MSE’ + [Ixj — pi-|I?
for i =1tokdo
MPI_AllReduce(r, ni, MPI_SUM)
MPI_AllReduce(u , ui, MPl_SUM)
N — max(, 1); ui < wi/M;
end for
MPI_AllReduce(MSE’, MSE, MPI_SU M)
end for

end while
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Parallel version of K-means algorithm reduces distanceutation time by distributing the
number of visual features amoRgprocessors. For the sake of simplicity, assume stati-

vided byP without any remainder. If all th&-cluster centers are available to each processor,
we can divides features amon@ processors and compute distance to center calculations in a
parallel fashion. Hence, the number of flops for Euclideastadice calculations are reduced

by P. Thus, total time for distance calculations isi3l + sK)/P + sdtfjgps.

Parallel computation requires that at each iteration, rerbpoints within a cluster and the
sum within each cluster are distributed to other procegsesume that each transfer operation
takestrequce time, which is reported for most architectures to@gogP) [63]. Hence, the

elapsed total time is:

3sKd + sK + sd

Cparallel_kmeans = [ P Ltfiop + KdLtreduce - (3.26)

In semi-supervised sequential clustering, since eachalvisature is compared with cluster
centers belonging to one gfgroups and each group has equal number of clusters, the dis-
tance calculations take $8d + sK + sd)/g)Ltiop time. Therefore, the overall computational

complexity becomes:

3sKd + sK + sd
Csemi_sequential_kmeans = # + Kd Ltfiop - (3.27)

In parallel version of semi-supervised clustering; theetispent in distance calculations is
reduced byP, due to the same reasoning behind the parallel version dtémelard K-means

clustering. Then, the overall complexity becomes,

3sKd + sK + sd

Cseni_parallel_kmeans = [

As indicated in [60], communication cost among processec®ines insignificant compared

to the distance calculation if

Pt
reduce __ s, (3.29)
3tf|op
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Since the left hand side of the equation is a machine constasincreases, distance calcu-

lation cost gradually dominates the communication cost.

Both sequential and parallel versions of semi-supervisastaring have less time complexi-

ties due to the reduction of factgr in distance calculations.

3.8 Summary

In this chapter, we introduce a hew image annotation systaited Semi Supervised Anno-

tation (SSA).

The proposed SSA system, utilizes the unused availableniafiion to guide and restrict the
clustering of low level visual features. For this purpo$e toncept of "side information” is

introduced. Then, this general concept is instantiatedsioyguthe local and global properties
of the images in the database. The side information is usedrto-supervise the clustering
process. Clustering of low level visual features is perfednin such a way that features
with the same side information are constrained to fall in $hene cluster groups. Semi-
supervised clustering enables us to have clusters witlpsh@robability density functions

which in turn reduce the overall entropy of the system. Byo#tg the randomness, we get
better annotation performances as will be demonstratdttingxt chapter. Moreover, during
the clustering process, we compare the visual features nathall of the cluster centers,

but with only those assigned to them based on their siderirdton. Hence, we get better
performance with respect to the computational complexity. speed up both standard K-
means and SSA algorithms, we introduce parallel versiodsd@stuss theféciency gained

in the computational complexity.
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CHAPTER 4

EXPERIMENTAL ANALYSIS OF SEMI SUPERVISED IMAGE
ANNOTATION AND PERFORMANCE METRICS

In this chapter, we shall present an experimental analysiseoproposed Semi-Supervised
Annotation System, SSA and compare it to the PLSA-Wordsclvis the state of the art

image annotation algorithm proposed in [20].

First, we describe the data set used in the experiments, Wextiscuss the performance met-
rics in image annotation problem. These performance nsediie used to obtain the optimal
parameters of the proposed semi-supervised image armmtathnique using cross valida-
tion. Then, we show that in terms of mean average precisiofonpeance SSA performs
better than PLSA-Words. Next, we analyze the performancevped. Then, we show that
entropy of the SSA system is decreased when compared witA®RU&ds. We conclude the

chapter by discussing the weaknesses and superioritibg prbposed technique.

4.1 Data Set

We use the same data set as in [20], which is a subset of thé dadee It contains mostly

outdoor scene photographs taken by professional photogrsp

Sample images from the data set are given in Figure 4.1. Hatdhe number of annotation
words for each image changes between 1 and 5. Note also éaftials "sky” and "water”
appear more frequently than for example "clouds”. Data sasists of ten subsets each of
which is divided into training and testing sets. Training &ed test set constitute 75% and

25% of the subset, respectively. The number of images anduhber of text words used

64



clouds, plane, sky, water mountain, sky, water island, trexer

iguana, lizard, rock

city, mountain, ,skyn

clouds, sky,vgater

clouds, sky, sun, tree

g——

jet, plane, sky

clouds, sun, water bird, grass jet, plane, sky

E= 5

city, clouds, sky, sun boats plane, sky

Figure 4.1: Sample images and their annotations from thel@ata set.
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Table 4.1: The average and standard deviation of the nunfberages in training and test
subsets, and the number of words used in each subset.

Training | Test | Number of Words
Mean 5244 | 1750 161
Standard Deviation 39 26 9

Table 4.2: Twenty words (ranked in decreasing order) thatiomost frequently in each
subset for subsets 1-5.

Subset# 1| Subset# 2| Subset # 3| Subset# 4| Subset#5
water water water water water
sky sky tree trees sky
tree tree sky sky tree
people people people people people
buildings grass grass grass flowers
grass building rocks rock grass
clouds rock flowers snow buildings
rock mountain | mountain | mountains rock

birds flowers snow building | mountains
mountain | close-up fish flower snow
stone clouds buildings bird clouds
snow snow ocean ocean leaves
street plane clouds stones fish
plane fish birds boat plants
flowers street closeup clouds boats
pattern jet gardens plants close-up
jet field coral coral closeup
texture cat leaves field cat
fish horses plants leaves stone
coast pattern boats fish street

in annotations are flerent in each subset. The total number of annotation word87s
For these 10 subsets, the average number of images, theaistatabiation of the number of
images, and the average number of words used in ten trainghdgest subsets is provided in

Table 4.1, to give an idea about the statistical properti¢iseodata set.

Each image in the data set is annotated with 1-5 words. Weguéncies in the first subset
are given in Figures 4.2. Word frequencies in all the 10 sighsan be found in Appendix A.

The distribution of words in all subsets looks similar anghty skewed. Twenty words that
occur most and least frequently in each subset are givenble3&.2 (Sets 1-5), 4.3 (Sets

6-10) and 4.4 (Sets 1-5), 4.4 (Sets 6-10), respectively.
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Word Frequencies — Subset # 1
First five words : water sky tree people buildings
Last five words: formula f-16 dunes candy bay
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Figure 4.2: Word frequencies in subset 1. Words are sorteddban their frequencies in
decreasing order from left to right. Most frequent and Ié@sfuent 5 words are listed at the
top of the figure.
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Table 4.3: Twenty words (ranked in decreasing order) thatiomost frequently in each
subset for subsets 6-10.

Subset # 6| Subset# 7| Subset# 8| Subset# 9| Subset # 10
water water water water water
sky tree sky sky sky
people people tree people tree

tree sky people tree people
buildings grass grass grass flowers
flowers buildings snow snow mountain
mountain birds buildings | building snow
grass rock mountain | mountains rocks
snow close-up flowers flowers buildings
clouds snow rocks rocks grass
rock mountains| clouds clouds clouds
plants cat birds fish plants
birds clouds street bird leaves
leaves street close-up boat plane
fish fish field closeup fish
boats stone boats ground ocean
ocean flowers fish sand jet
horses beach patterns plants coast
plane boats plants bear boats
field vegetables| texture street stones

Table 4.4: Twenty words (ranked in decreasing order) thatioteast frequently in each
subset for subsets 1-5.

Subset # 1| Subset# 2| Subset# 3| Subset# 4| Subset# 5
ships pillar relief roofs saguaro
saguaro goats kitten island palm
roofs f-18 furniture harbor hillside
perch door floor farm herd
courtyard display sign dog carvings
castle bobcat prototype dock bushes
seals ship peaks cheetah roofs
prototype hotel park formation dall
outside grapes kauai entrance butterfly
detall fan goats dunes bay
tables designs bay crop wood
shrine costume | anemone| sponge slope
paintings | vegetation| sponges | costumes goats
light smoke slope arches frozen
kauai restaurant sail ship formation
formula giraftfe island kitten flags
f-16 courtyard | formation iguana columns
dunes caterpillar flag herd architecture
candy bottles f-18 floor plain
bay bengal bush bottles detall
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Table 4.5: Twenty words (ranked in decreasing order) thatioteast frequently in each
subset for subsets 6-10.

Subset # 6 | Subset# 7| Subset # 8| Subset# 9| Subset # 10
skyline tail reefs saguaro town
petals pyramid hotel rabbit saguaro
butterfly palm horns plain waterfall
village jaguar grapes harbor tracks
formula grapes flight courtyard shrine
fan cliff face carvings peaks
doorway art bushes rapids outside
caribou paintings | branches | hillside antlers
zebra mMoss beetle formula restaurant
roofs mosque | vineyard bengal candy
palm lake slope tail kauai
herd bay runway sun entrance
entrance village night shrine design
white-tailed stairs lake shadow castle
turn shrine kitten race hotel
waterfall ships hut museum furniture
castle rabbit herd man f-18
bull kauai grizzly herd f-16
bear dog costume f-18 columns
baby beetle bottles castle bay

4.2 Performance Measurement

To be able to compare our method with the systems in thetiterawe use the same metrics
that have been used previously, namely, precision, repdlMean Average Precision (MAP)
values. For every annotation word, precision and recalbmspmuted. Precision is the number
of correctly annotated images divided by the total numbemaiges annotated by that word.
Recall is the number of images correctly annotated by a giverd divided by the total
number of images that have that word in the training set . iflcecand recall values are
averaged over all words. More precisely, lettiQgbe a query imagel; is its true annotation,
A is the estimated annotation, precision and recall valuea fiven wordw is computed as

follows:

size({Qilw e T; and w € Aj})

precisionW) = = giomwe A)

=1.NQ, (4.1)

69



size({Qilw e T; and w € Aj})
size({Qilw € Ti}) ’

recall(w) = i =1.NQ, (4.2)

where NQ is the number of images in the test set d@gCondition;} corresponds to the

subset ofQ such thatCondition; is satisfied for each of its elements.

Mean Average Precision (MAP) is calculated as in [20] by cotimg the mean of average
precisions over all words. To compute average precisior) (AR word; first, all images are
ordered based on their probabilities in the model; nexteémh rank for which corresponding
image is relevant to the word, a precision showing the péagenof images that are correctly
guessed up until to that rank is computed and then, thesésjorex are averaged over all
such ranks. More precisely, if relevant images for a wernd denoted byel(w) = {Qjlw €
Ti}, total number of words in dictionary ik, image corresponding toank is denoted by

I (w, rank), percentage of images that are correctly guessed up agtigivenrank is denoted

by RankPrecision(w, rank) :

> RankPr eci sion(w, rank)
I (w,rank)er el (w)
AP(wW) = 4.3
(w) raw) (4.3)
and

L .

2 AP(])
MAP = —— (4.4)

In the next sub-section, a new criterion, called Comparafotwerage Precision Curve (CAP
Curve) is introduced. Based on CAP, three metrics are defmedmpare per-word average

precision performances of annotation algorithms.

4.3 Comparison of Average Precisions

In this section, we define a new function,so-called CAP cufge comparing the perfor-
mances of image annotation algorithms. Two annotationrifgons may difer in such a way
that, some words are estimated better by one of the algasitmd vice versa. Simply com-

paring the popular annotation metrics, MAP, precision callevalues for two algorithms do
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not give any indication about the percentage of words trebatter estimated by any of the
two algorithms. We suggest computing the total averageopeence of words that are esti-
mated bettg¢worse than any other algorithm. Moreover, comparing MABcjgion or recall
values, does not give any idea about the distribution ofivel@er-word performances of two
different annotation algorithms. To be able to see this digioibwisually, we sort per-word
average precision fierence values and plot thesdfeience values sorted from highest to
lowest. CAP Curve of annotation algorithAy with respect to annotation algorithiéy, is

defined by subtracting the per-words average precisioresalfiA, from those ofA;.

CAP Curve of Algorithm 1 with respect to Algorithm 2

0.6

Average Precisions

03 ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160

Words

Figure 4.3: A sample CAP Curve that shows performance of ilym 1 with respect to
Algorithm 2. CAP-percent-better shows the percentage oflsravhere Algorithm 1 performs
better. CAP-total-better and CAP-total-worse, corresptmareas above and below axis,
respectively. Higher CAP-total-better and lower CAP-tatarse indicate the superiority of
Algorithm 1 compared to Algorithm 2. CAP-percent-bett8/1563, CAP-total-better:7.73,
CAP-total-worse:3.29.

We define three new metrics based on CAP Curve, namely, CAd&ipicbetter, CAP-total-

better and CAP-total-worse.
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Firstly, CAP-percent-better is defined as the number of wthdt are better estimated By
compared tdA, divided by the total number of words. Secondly, CAP-totettdr is the total

of average precision fierences for words that are better estimatedApy Thirdly, CAP-
total-worse is the total of average precisioff@liences for words that are better estimated by

Ao.

A sample CAP Curve is presented in Figure 4.3. Note that, tine af values above and
below the x-axis correspond to CAP-total-better and CABHworse, respectively. In CAP-
percent-better value, 783, 78 corresponds to the number of words before the curgs go

below x-axis whereas 153 is the total number of words.

In evaluation of image annotation algorithms, a varietytbfo performance metrics has been
used. Blei and Jordan, [15] uses annotation perplexityn&aret. al. [30] use threeftirent
scores, namely, Kullback-Leibler divergence betweeniptied and target word distributions,
normalized score that penalizes incorrect keyword priediistand the coverage. There is not
any consensus as to which metric "best” measures the imaggadion performance, which

requires further research in this area.

4.4 Estimation of Hyper-parameters of SSA by Cross-validabn

One of the important parameters used in PLSA-Words and S8 igrid size, where the HS
features are extracted. It is clear that the optimum grid depends on the size of images in
the database. The optimal value is determined by crossat@iidamong window sizes rang-
ing from 10 to 100 in increments of 10. Figures 4.4 and 4.5 sin@&n average performance
for cluster sizes 500 and 1000, respectively. As it can ba seboth figures performance

increases steadily as the window size decreases.

72



MAP for HS (# of clusters corresponding to visterms: 500)
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Figure 4.4: Cross Validation MAP results for HS for grid sizeanging from 10x10 to
100x100 for 500 visterms. Grid window size is shown in pareses. As the window size gets
smaller, mean average precision values get higher consister all the number of hidden
topics ranging from 10 to 250 in increments of 10.
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MAP for HS (# of clusters corresponding to visterms: 1000)
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Figure 4.5: Cross Validation MAP results for HS for grid sizeanging from 10x10 to
100x100 for 1000 visterms. Grid window size in parenthesas. the window size gets
smaller, mean average precision values get higher consister all the number of hidden
topics ranging from 10 to 250 in increments of 10.

MAP performances on the cross validation set for SSA-Topit BLSA-Words Blob vis-
terms are given in Figures 4.6, 4.7. As it can be seen from gluees, for both 500 and 1000
visterms, SSA gives better performances compared to PL8&AISY for number of hidden
topics higher than 40 and 60, respectively. For smaller rarrobhidden topics, SSA- Topic
performs poorer, most probably because relatively coangies cannot provide enough in-
formation constraints to the clustering process, sinces$ohat are too general are likely to
correspond to every type of visual Blob feature. For 500vias, the MAP performances for
PLSA-Words and SSA-Topic reach maximum of 0.14 and 0.16 @t 130 hidden topics,
respectively. For 1000 visterms, the MAP performances td8/ARWords and SSA-Topic
reach maximum of 0.14 and 0.17 at 140 and 150 hidden topisgectvely.
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MAP for Blob (# of clusters corresponding to visterms: 500)
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Figure 4.6: Cross Validation MAP results for PLSA-Words \8SA-Topic using 500 vis-
terms. Mean average precision values for SSA-Topic is sterdly better than PLSA-Words
for number of hidden topic values higher than 30.
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MAP for Blob (# of clusters corresponding to visterms: 1000)
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Figure 4.7: Cross Validation MAP results for PLSA-Words &SA-Topic using 1000 vis-
terms. Mean average precision values for SSA-Topic is sterdly better than PLSA-Words
for number of hidden topic values higher than 60.

MAP performances on the cross validation set for SSA-Oaiott SIFT visterms based on
group sizes 4 and 8 for 500 clusters are given in Figure 4.8A-SBentation with group
size 8, performs consistently better than the one with gz 4 for all hidden topic sizes.
Comparison of MAP performances based on 500 visterms for-G8éntation and PLSA-
Words is given in Figure 4.9. SSA-Orientation performs éstesitly better than PLSA-Words
reaching its maximum of 0.14 at 230 hidden topics. PLSA-Wdras the best result of 0.12
at 220 hidden topics.
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MAP for SIFT (# of clusters corresponding to visterms: 500)
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Figure 4.8: Cross Validation MAP results for SSA-Orierdatiusing 500 visterms. Mean
average precision values for SSA-Orientation with grouge 8 is consistently better than
SSA-Orientation with group size 4 for all the number of hiddepic values.

77



MAP for SIFT (# of clusters corresponding to visterms: 500)
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Figure 4.9: Cross Validation MAP results for PLSA-Words &SA-Orientation using 500
visterms. Mean average precision values for SSA-Orientais consistently better than
PLSA-Words for all the number of hidden topics.

MAP performances on the cross validation set for SSA-Oaiott SIFT visterms based on
group sizes 4 and 8 for 1000 clusters are given in Figure 4&K0is the case for 500 clusters,
SSA-Orientation with group size 8, performs consistenditdr than the one with group size
4 for all hidden topic sizes. Comparison of MAP performanicased on 1000 visterms for
SSA-Orientation and PLSA-Words is given in Figure 4.11. SSientation performs con-

sistently better than PLSA-Words. SSA-Orientation and RI\VZords reach their maximum

MAP values of 0.14 and 0.12 at 240 and 210 hidden topics.
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MAP for SIFT (# of clusters corresponding to visterms: 1000)
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Figure 4.10: Cross Validation MAP results for SSA-Orieimiatusing 1000 visterms. Mean
average precision values for SSA-Orientation with grouge 8 is consistently better than
SSA-Orientation with group size 4 for all the number of hiddepics.

79



MAP for SIFT (# of clusters corresponding to visterms: 1000)
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Figure 4.11: Cross Validation MAP results for PLSA-Words VSSA-Orientation using
1000 visterms. Mean average precision values for SSA-@tien is consistently better than
PLSA-Words for all the number of hidden topics.

MAP performances on the cross validation set for SSA-ColBif Sisterms based on group
sizes of 8, 16, 32 and 64 for 500 clusters are given in Figur2 4MAP values for SSA-Color
with group sizes 32 and 64 are very close, and consistentigridean those with group sizes
8 and 16 for all hidden topic sizes. Comparison of MAP perfamages based on 500 visterms
for SSA-Color and PLSA-Words is given in Figure 4.13. Fortelaiclden topic number, group
size that gives the maximum MAP value is used. SSA-Colomper$ consistently better than
PLSA-Words reaching its maximum of 0.17 at 240 hidden topRsSA-Words reaches its
maximum MAP value of 0.12 at 220 hidden topics.
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Figure 4.12: Cross Validation MAP results for SSA-Colomgsb00 visterms. Mean average
precision values for SSA-Color gets higher as group sizeases in general. Mean average
precision values for group sizes 16 and 32 are close to eheln depending on the number
of topics, one or the other shows higher performance.
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MAP for SIFT (# of clusters corresponding to visterms: 500)
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Figure 4.13: Cross Validation MAP results for PLSA-Words &SA-Color using 500 vis-
terms. Mean average precision values for SSA-Color is sterdly better than PLSA-Words
for all the number of hidden topics.

MAP performances on the cross validation set for SSA-ColBif Sisterms based on group
sizes of 8, 16, 32 and 64 for 1000 clusters are given in Figuké 4 MAP values for SSA-
Color with group sizes 64 are slightly better than the onédnwgitoup size 32, and both are
consistently better than those with group sizes 8 and 16lifbidden topic sizes. Compari-
son of MAP performances based on 1000 visterms for SSA-GoldrPLSA-Words is given
in Figure 4.15. SSA-Color performs consistently bettentRh SA-Words reaching its maxi-
mum of 0.17 at 220 hidden topics. PLSA-Words reaches its maxi MAP value of 0.12 at
210 hidden topics.
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MAP for SIFT (# of clusters corresponding to visterms: 1000)
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Figure 4.14: Cross Validation MAP results for SSA-Colomgsi000 visterms. Mean average
precision values for SSA-Color gets higher as group sizesases for all the number of
hidden topics.
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MAP for SIFT (# of clusters corresponding to visterms: 1000)
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Figure 4.15: Cross Validation MAP results for PLSA-Words 8SA-Color using 1000 vis-
terms. Mean average precision values for SSA-Color is sterdly better than PLSA-Words
for all the number of hidden topics.

We fixed total number of visterms to 2000 to be able to do a faingarison with [20]. Using
500 or 1000 clusters for SSA-Color, SSA-Orientation, SS¥%i¢ and HS features, we made
experiments on cross validation dataset for all combinataf cluster sizes such that the total
number of clusters is 2000. Table 4.6 shows the resultsratdior each such combination
sorted from the lowest to highest MAP value top to bottom. Wentl out that the cluster
sizes combination that gives the highest MAP score is tHeviuhg: 500 SSA-Orientation
features with a group size of 8, 500 SSA-Color features wijhoaup size of 64 and 1000 HS
features. SSA-Topic feature although better than plaiit Béature did not make into the best
cluster combination. The highest MAP score has been olatdore240 hidden topics, among

the number of hidden topics ranging from 10 to 250 in incretseh10.
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Table 4.6: Cross-validation Performance Results.

Rank Type Group Size | Cluster # | # Topics | MAP

1 SSA-Orientation 4 1000 140 0.1855
SSA-Topic 140 1000

2 HS (10x10) 1000 250 0.1862
SSA-Topic 250 1000

3 SSA-Color 64 1000 210 0.188
SSA-Topic 210 1000

4 SSA-Orientation 8 500 250 0.2068
HS (10x10) 500
SSA-Topic 250 1000

5 SSA-Color 64 500 240 0.2074
HS (10x10) 500
SSA-Topic 240 1000

6 SSA-Orientation 8 1000 250 0.2095
HS (10x10) 500
SSA-Topic 250 500

7 SSA-Color 64 1000 200 0.2101
HS (10x10) 500
SSA-Topic 200 500

8 SSA-Color 64 500 220 0.212
HS (10x10) 1000
SSA-Topic 220 500

9 SSA-Orientation 8 1000 240 0.2128
HS (10x10) 1000

10 | SSA-Orientation 8 500 250 0.2132
HS (10x10) 1000
SSA-Topic 250 500
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Table 4.7: Cross-validation Performance Results (Coatiju

Rank Type Group Size | Cluster # | # Topics | MAP

11 SSA-Color 64 1000 250 0.214
HS (10x10) 1000

12 SSA-Color 64 500 240 0.2197
SSA-Orientation 8 500
SSA-Topic 240 1000

13 SSA-Color 64 1000 250 0.2231
SSA-Orientation 8 1000

14 SSA-Color 64 500 240 0.2239
SSA-Orientation 8 1000
SSA-Topic 240 500

15 SSA-Color 64 1000 250 0.2244
SSA-Orientation 8 500
SSA-Topic 250 500

16 SSA-Color 64 500 220 0.2263
SSA-Orientation 8 500
HS (10x10) 500
SSA-Topic 220 500

17 SSA-Color 64 1000 240 0.2279
SSA-Orientation 8 500
HS (10x10) 500

18 SSA-Color 64 500 240 0.2287
SSA-Orientation 8 1000
HS (10x10) 500

19 SSA-Color 64 500 240 0.2302
SSA-Orientation 8 500
HS (10x10) 1000
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Table 4.8: Overall Performance Results.

PLSA- SSA PLSA- SSA
WORDS HS(10x10) || WORDS HS(30x30)
HS(10x10) HS(30x30)

Mean per-word precision| 0.15 0.17 0.17 0.18

Mean per-word recall 0.28 0.31 0.30 0.32

Mean average precision | 0.18 0.21 0.20 0.21

Table 4.8 shows mean per-word precision, recall and MAPegfar PLSA-Words and SSA.
When we compare SSA with PLSA-Words; we see an increase aisa, recall, and mean
average precision values both when the window size is taket0®10 obtained by cross-
validation and the window size is taken as 30x30 as in [20]e@ble to directly compare

results of SSA with PLSA-Words.

4.5 Per-word Performance of SSA compared with PLSA-Words

In this section we will compare per-word performance of SSthwhat of PLSA-Words.

In Figure 4.16, we show the CAP Curve of SSA with respect to RN%rds based on the
first subset of the data set. The result is quite interesflig values above the x-axis show
the words, where SSA better performance, while the valuksibe x-axis shows the words
where PLSA-Words has better performance. Note that theélzeza above the x-axis cor-
responding to CAP-total-better is larger than that of treadvelow the x-axis correspond-
ing to CAP-total-worse, showing that the overall perforcgif SSA is higher compared to
PLSA-Words. Moreover, 66 percent of the words are bettemastéd by SSA compared to
PLSA-Words. This plot shows the importance of the designd# mformation. It is intuitive
that the selection of the side information depends on ttaiogiship between visual content
of regions and the actual annotation words. It is highBiclilt to find generic side informa-
tion that is valid for all the words in the vocabulary. Howgvene may expect to extract this

information to cover the wide range of words.

Relative MAP improvement for the best 20 words is shown inuFégt.17 and the correspond-
ing test images with highest average precision improverigrihe first 8 words is given in
Figure 4.18. Words that show the highest improvement cporeds to objects that have a

known color and consistent orientation.
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CAP Curve of SSA-Color&Orientation with respect to PLSA-Words
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Figure 4.16: CAP Curve of SSA with respect to PLSA-Words. G#dPcent-better shows
the percentage of words where SSA performs better. CARetter and CAP-total-worse,
correspond to areas above and below axis, respectivelyhediGAP-total-better and lower
CAP-total-worse indicate the superiority of SSA compamedPLSA-Words. CAP-percent-
better:102153, CAP-total-better:6.96, CAP-total-worse:2.43.
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The word "Zebra” shows the highest performance gain becatigs distinctive black and
white color, and discriminative stripes texture havingiifietent orientations. In regular SIFT
feature, since interest point are normalized along the chmsiinant orientation, the fact that
there is the same texture withflidirent orientations on the same image is ignored. With the
proposed SSA method, the orientation side informationttagewith SIFT feature captures

the stripe texture which occurs infiirent orientations for zebra.

The images annotated with "Runway” have usually gray bamkgd with blue sky and gray
colored planes. Since the planes are usually pictured \elgare on the ground, the orien-
tation side information corresponding to the body and tliestay relatively same. Top and
bottom of the body consists of horizontal edges , while thiehss mostly diagonal edges.
Therefore, using color as side information captures theasid/gray background, while the

orientation as side information captures the planes.

Pillars have usually brownish color with mostly verticatlyiented textures. Pumpkins have
a distinctive orange color, standing on the ground somesashthaving face pictures on them
with consistent orientations. Hence, using color and ¢aigrn as side information in SSA,

enables the system to identify both of these objects cdyrect

Although "black” does not correspond to a specific objedining images annotated with
"black” have bears and helicopters. Although the color @emation information, when used
separately, are not enough to discriminate these objdetsambination of them enables the

system to increase the performance of identifying them.

Images annotated with "tracks” usually have gray backgdowith green grass on the side so
that using color as side information enables the systemn@city recognize track objects.
Cars displayed on the ground have relatively stable ottientavalues, top and bottoms of
which having horizontal orientation values. Hence, themation side information correctly

captures the car objects.

Perch has mostly a greenish color, and pictured while tregtanding straight with consistent
orientation values. Saguaro has green color and a staliectiigee orientation. Therefore,
using color and orientation as side information enablesyistem to correctly recognize both

of these objects.
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Words where PLSA-Words perform worse than SSA-Color&Orientation
Average Precisions for 20 words
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Figure 4.17: Relative average precision improvement febtst 20 words. Average precision
difference is highest to lowest sorted from left to right.
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Relative MAP reduction for the worst 20 words with respecE8A is shown in Figure 4.20
and the corresponding test images with highest probalukigrease for the first 8 words is
given in Figure 4.21. As expected, the words that have thesbwerformance correspond
to objects that do not have any specific color or a consistgahtation. The word "face”
corresponds to human face, pumpkins prepared for Halloyweeried as a face, or side of
mountain in image annotations as it can be seen in Figure 4Cidhsequently, the word
"face” represents a variety of colors and textures havifigint orientations resulting in bad
performance. The word "texture” does not correspond to @egific object. Therefore, the
annotations do not have any consistency in terms of neitbler aor orientation of textures.
The word "branches” usually corresponds to gray, brownisigreen color. Although the
corresponding number of colors are not many, since theretiany consistency in the orien-
tations, the performance is worse in the SSA compared to PIMBAds. The same reasoning
as why performance decrease occurs for the word "texturpliegpto the word "pattern” as
well. Images annotated by "pattern” do not have any consigtén terms of neither color
nor orientation of textures. The images annotated with tbedwion” although has usually
brownish color, there does not seem to be any texture in timages showing a consistent
orientation. "Coral” images have many colors and they docaoty any specific orientation
consistency. Images annotated with "Birds” have many soéord they are pictured in a va-
riety of orientations either standing or flying infliirent directions. Although images with
"Forest” annotation have either white or green color in caminthere is not any specific

orientation.

The above analysis indicates that the definition of the gsidflerination depends on several

characteristics of both visual and textual words and thain@ex relationship.
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Test Set Images where
PLSA-Words performs worse than SSA-Color&Orientation

Figure 4.18: Test images with highest average precisiomaugment for the best 8 words.
Model probability improvement of test images decreasetdefight, top to bottom. Each row
corresponds to a word. Words top to bottom: zebra, runwlgy i pumpkins, black, tracks,
perch, saguaro.
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Training Set Images for Word: face

Figure 4.19: Training images for the word "face”. "Face” aponds to dierent objects,
namely, human face, pumpkins and side of a mountain.
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Words where PLSA-Words perform better than SSA-Color&Orientation
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Figure 4.20: Relative average precision reduction for thest20 words. Average precision
difference is highest to lowest sorted from left to right.
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To see the ffects of SSA-Orientation and SSA-Color features, the fahgsubsections dis-
cuss experiments using SSA-Color only or SSA-Orientatioly &eatures using 500 clusters

compared it with PLSA-Words method using only 500 reguld&TStlusters.

4.5.1 Per-word Performance of SSA-Orientation compared wh PLSA-Words

In Figure 4.22, we present CAP Curve of SSA-Orientation wegpect to PLSA-Words. The
values above the x-axis show the words where SSA-Orientgtgsforms better compared
to PLSA-Words, while the values below the x-axis shows thedsavhere PLSA-Words
has better performance. Note that the black area above #xésxs larger than that of the
area below the x-axis showing that the overall performarfic€ ®A-Orientation is higher
compared to PLSA-Words. Although the percentage of words dhe better estimated by
SSA-Orientation is not high with a CAP-percent-better eatf 0.55, CAP-total-better is

approximately 72 percent higher than CAP-total-worse.

Relative MAP improvement for the best 20 words is shown iuFegt.23 and the correspond-
ing test images with highest average precision improverferthe first 8 words is given in
Figure 4.25. Words that show the highest improvement cpomeds to those objects that
have a consistent orientation. Therefore, supervisiorhefctusters with the orientation as
side information improves the relationship between theds@nd the visual features. For
the images annotated with "Runway”, since planes are ysaa#l pictured while they are
on the ground, the orientation values corresponding to duy land the tail stay relatively
same, top and bottom of the body being horizontal with diafjéeatures on the tail. The
images annotated with "Sculpture” correspond to stableatbjthat have usually vertical ori-
entations. Although images annotated with "Birds” areygiet in a variety of orientations,
either standing or flying in dlierent directions, these variations seem to be captured By SS
A close look into the training set shows that a relativelyhhmprcentage of images is anno-
tated by the word "Bird” as shown in Figure 4.24 suggestirag ttumber of training images
has a positive influence in SSA. The "turn” word corresporadscene where the side of the
road has features orientations of which have regularlyemging orientations. This property
seems to be captured by the SSA-Orientation feature negutftibetter performance. Body,
legs and trunks of elephants are usually pictured in the sametations. Images annotated

with "Saguaro” has consistently the same orientation. Krohelephants show the similar
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Test Set Images where
PLSA-Words performs better than SSA-Color&Orientation

Figure 4.21: Test images with lowest average precisionatemiu for the worst 8 words.
Model probability reduction of test images decrease leftight, top to bottom. Each row
corresponds to a word. Words top to bottom: face, textuemdir, pattern, lion, coral, birds,

forest.
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CAP Curve of SSA-Orientation with respect to PLSA-Words
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Figure 4.22: CAP Curve of SSA-Orientation with respect t&&REWords for 500 visterms.
CAP-percent-better shows the percentage of words where@&htation performs better.
CAP-total-better and CAP-total-worse, correspond to si@zove and below axis, respec-
tively. Higher CAP-total-better and lower CAP-total-wermdicate the superiority of SSA-
Orientation compared to PLSA-Words. CAP-percent-bé&#t53, CAP-total-better:3.74,
CAP-total-worse:2.18.
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Words where PLSA-Words perform worse than SSA-Orientation
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Figure 4.23: Relative average precision improvement ferdst 20 words for PLSA-Words
vs. SSA-Orientation (500 clusters). Average precisidiedence is highest to lowest sorted
from left to right.

improvement as the word "elephants” itself. Crystal olgeatthough do not have a specific
orientation, usually display the same detail consisteintlgtifferent orientations in the same

image. This fact is captured byftrent visterms in SSA resulting in better performance.

Relative MAP reduction for the worst 20 words with respecB®A-Orientation is shown in
Figure 4.26 and the corresponding test images with highrestapility decrease for the first

8 words is given in Figure 4.27. Since the word "black” does cmrespond to a specific
object, there is not any consistency in orientations whedult in worse performance in SSA,
as expected. Since windows are shown in a variety féédint angles and shapes there is not
any consistency in orientation. The word "night” might paielly refer to many objects with

potentially diferent orientations. The words "fungus”, "snake”, "lighjda’smoke” do not

have any consistent orientations either resulting in wpeséormance, as expected.

98



Occurence counts in training set for most frequent 20 words
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Figure 4.24: Occurrence counts in training set for mostuesd 20 words. A relatively high
percentage of images are annotated by the word "Bird”. Wittuiad 300 annotated images,
the word "bird” ranks as the sixth most frequently annotatedd.
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Test Set Images where
PLSA-Words performs worse than SSA-Orientation

Figure 4.25: Test images with highest average precisiomaugment for the best 8 words
for PLSA-Words vs. SSA-Orientation (500 clusters). Modallability improvement of test
images decrease left to right, top to bottom. Each row cpaords to a word. Words top to
bottom: runway, sculpture, birds, turn, elephants, sagueunk, crystal.
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Words where PLSA-Words perform better than SSA-Orientation
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Figure 4.26: Relative average precision reduction for tbestn20 words for PLSA-Words vs.
SSA-Orientation (500 clusters). Average precisidiietience is highest to lowest sorted from
left to right.

The above analysis reveals that for the words where PLSAd®\performs better than SSA-
Orientation; one needs to update the orientation sidernmtion. Let us, now, investigate the

behaviors of color side information in the following sulesen.

4.5.2 Per-word Performance of SSA-Color compared with PLSANords

In Figure 4.28, we present CAP Curve of SSA-Color with resped®LSA-Words for 500

visterms. The values above the x-axis show the words, whafeSolor has a better perfor-
mance, while the values below the x-axis shows the wordsevReSA-Words has a better
performance. Note that the black area above the x-axis gedahan that of the area be-

low the x-axis showing that the overall performance of SS#eCis higher compared to
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Test Set Images where
PLSA-Words performs better than SSA-Orientation

Figure 4.27: Test images with lowest average precisionatentu for the worst 8 words for
PLSA-Words vs. SSA-Orientation (500 clusters). Model ptaility reduction of test images
decrease left to right, top to bottom. Each row correspoadsword. Words top to bottom:
black, windows, night, fungus, snake, light, grass, smoke.
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CAP Curve of SSA-Color with respect to PLSA-Words
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Figure 4.28: CAP Curve of SSA-Color with respect to PLSA-Wofor 500 visterms. CAP-
percent-better shows the percentage of words where SSé«-@eiforms better. CAP-total-
better and CAP-total-worse, correspond to areas above elod laxis, respectively. Higher
CAP-total-better and lower CAP-total-worse indicate thpesiority of SSA-Color compared
to PLSA-Words.

PLSA-Words. With a CAP-percent-better value of 0.59, dligmore than half of the words
are better estimated by SSA-Color. CAP-total-better to €étBl-worse ratio is 3.26, show-
ing that the average precision performance of better-estidhwords for SSA-Color is much

higher compared to PLSA-Words.

Relative MAP improvement for the best 20 words is shown inuFégt.29 and the correspond-
ing test images with highest average precision improverigrihe first 8 words is given in
Figure 4.30. Words that show the highest performance ingmn@nt correspond to the objects
that have a consistent color. Pumpkins have consistendliggar color showing the greatest
improvement among all words. Crystal objects usually haderdn variations of purple.
Fungus, mushrooms and nest usually have the same green #dtiesigh face and vegeta-

bles correspond to a variety of colors in training set; faegetables and pumpkins co-occur
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Words where PLSA-Words perform worse than SSA-Color
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Figure 4.29: Relative average precision improvement ferdst 20 words for PLSA-Words
vs. SSA-Color (500 clusters). Average precisioffatence is highest to lowest sorted from
left to right.

in many images as seen in Figures 4.31 and 4.32. Hence, tfegrpance increase seen for
pumpkins is seen for the words "face” and "vegetables” ad.viillars have usually brown
color. As shown in Figure 4.33 test images with the same g#ts the highest improvement,

using color as side information.

Relative MAP reduction for the worst 20 words with respecd®A-Color is shown in Figure
4.34 and the corresponding test images with highest prityatieécrease for the first 8 words
is given in Figure 4.35. Annotation "Herd” corresponds tages with a variety of dier-
ent colors depending on the type of animal the herd consfstSimce annotation "Black”
corresponds to flierent objects, namely, bears and helicopters havifigrdnt textures, and
even some brown Bears are annotated as "Black”, performdecease occurs for the word

"Bear”. Images annotated with "Black” in the training sefstsown in Figure 4.36. Images
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Test Set Images where
PLSA-Words performs worse than SSA-Color

Figure 4.30: Test images with highest average precisiomdagment for the best 8 words for
PLSA-Words vs. SSA-Color (500 clusters). Model probapilihprovement of test images

decrease left to right, top to bottom. Each row correspoadsword. Words top to bottom:
pumpkins, crystal, fungus, mushrooms, face, vegetabiike,sp nest.
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Co-occurence counts of "face" for most frequent 20 words
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Figure 4.31: Co-occurrence counts of words for the wordéfac’Face” and "vegetables”
co-occur in many images. "pumpkins” is the second most fatjy co-annotated word for
"face”.
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Co-occurence counts of "vegetables" for most frequent 20 words
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Figure 4.32: Co-occurrence counts of words for the word &talgle”. "vegetable” and
"pumpkins” co-occur in many images. "pumpkins” is the masguently co-annotated word
for "vegetable”.
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Test Set Images for Word: pillars

o

Figure 4.33: Testing set images for the word "pillars”. Mbgeobability of test images
decrease left to right, top to bottom.
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annotated with "Windows”, "Candy”, "Light”, "Snake” and "&@Idings” have a variety of
colors. Although tracks have the same background cologllystihey appear with cars with

different colors.

Words where PLSA-Words perform better than SSA-Color
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Figure 4.34: Relative average precision reduction for tbesin20 words for PLSA-Words vs.
SSA-Color (500 clusters). Average precisioffelience is highest to lowest sorted from left
to right.
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Test Set Images where
PLSA-Words performs better than SSA-Color

Figure 4.35: Test images with lowest average precisionatentu for the worst 8 words for
PLSA-Words vs. SSA-Color (500 clusters). Model probapitieduction of test images de-
crease left to right, top to bottom. Each row corresponds wmid. Words top to bottom:
herd, black, windows, candy, light, snake, buildings, ksac
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Training Set Images for Word: black

Figure 4.36: Training images for the word "black”. "Blackdicesponds to dierent objects,
namely, bears and helicopters.
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4.6 Entropy Measure of SIFT, SSA-Color and SSA-OrientationFeatures

In the previous sections, we see that the overall performamrease is obtained for SSA-
Color and SSA-Orientation features compared to PLSA-Wofd20]. In this section, we
analyze and compare the proposed SSA system and PLSA-Wadtlusespect to the en-
tropy of the clusters, consisting of visterms. This analyaiows us to further understand
the reason for the performance increase in the proposed B8Atlam. We predict that this
performance increase results from the fact that by usirdg”siformation” available in the
annotated images besides the visual features, clusteosneemore homogeneous with re-
spect to the provided side information. Therefore, clsstercome sharper and the overall

entropy of the system is reduced.

We compute the entropy of SIFT for PLSA-Words, SSA-Color &%h\-Orientation features
assuming that data points obey a Gaussian mixture distibuSpecifically, given a set of
data pointsFeature®, wherec is the cluster label obtained by standard K-means or semi-
supervised clustering, = 1..K, andi is the sample id in theth cluster and = 1..n¢, n. is the
number of data points withiath cluster, we first compute meag, covariance matrix. and

the prior probability of clustec by dividing the number of points within clustery the total

number of points using,

priore = Kn—c ) (4.5)
2 Nk

k=1

The probability density function dfeature is computed using the Gaussian mixture assump-

tion, from
K
p(Feature) = Z priorc pc(Feature) , (4.6)
c=1
and
1 _
pc(Feature) = PSR exp(-5 (Feature - ue) ES Y (Feature — ue)) (4.7)
C

whered is the dimension of th&eature.
Given a set of data point& = {Featurejm}, j = 1.s, m = 1..f;, wheref; is the number
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Entropy for Subset # 1
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Figure 4.37: Log entropy of SIFT, SSA-Color and SSA-OriéintaFeatures for Subset 1.

of regions in imagé;, corresponding to low level visual feature obtained fromige m of

imagel j;, we compute entropy using:

s fj
entropy(Feature) = — Z Z p(Featurejm)log(p(Featurejm)) . (4.8)
j=1 m=1

Entropy computations of PLSA-Word SIFT, SSA-Color and SSéentation features for the
first subset of the training set can be seen in Figure 4.3tofnwalues for all the rest of 9
subsets are given in Appendix B. Since some of the covariaratgces become singular, we
compute entropy after reducing feature dimension in therood 10 to 90 percent in incre-
ments of 10 using principle component analysis [64]. Infal subsets, a similar behavior is
observed. The entropies for SSA-Color and SSA-Orientar@reduced significantly com-

pared to the entropy of PLSA-Words SIFT. The entropy for SS#er is lower compared
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to SSA-Orientation. This result is consistent with the maa@rage precision performances
of SSA-Color, SSA-Orientation and PLSA-Words. As can bendad-igures 4.13 and 4.9,
mean average precision values for SSA-Color, SSA-Oriemtaand PLSA-Word SIFT are
around 0.16, 0.13 and 0.11 after 100 number of hidden topid¢s, also, observe that the
entropy values stabilize after 30 percent of feature rednchte and continue to increase, as
the dimension reduction rate gets higher. This is an exgeetsult since the majority of the

information is lost during the dimension reduction.

4.6.1 Summary

In this chapter, we conduct a thorough numerical analysishi® proposed SSA algorithm.
We also compare it to the state of the art PLSA-Words algorithFirst, the structure of

dataset is explained. Then, in addition to the most fredyeised precision, recall and MAP
performance metrics, we introduce CAP Curve. Based on CARe_we define three new
metrics, namely, CAP-percent-better, CAP-total-bettat & AP-total-worse metrics. Next,
estimation of system hyper-parameters by cross-validasiprovided. Then, performance of

the proposed system is compared with PLSA-Words and arthipzgetail.

We observe that the proposed SSA-Topic, SSA-Color and S8&atation algorithms per-
form better than PLSA-Words in cross validation tests. VW®,ashow that SSA outperforms
PLSA-Words in Corel2003 data set based on precision, red#iP metrics as well as the

proposed ones based on CAP Curve.

Finally, we measure the entropies of the low level featui@cep. We observe that the en-
tropies for SSA-Color and SSA-Orientation are reducediggmtly compared to the entropy
of PLSA-Words SIFT. This reduction confirms our predictitimst decreasing the randomness
in the system enables us to get better annotation resutts gie side information introduced

to the system makes clusters of visual features sharper.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

Automatic image annotation can be defined as generatingo@aehotation words for a given
image database, using the training data consisting of image their annotations. The recent
availability of large annotated image data sets, requiteirate and fast methods for image

annotation.

In this thesis, we propose a hew method to improve the imagetation process by enhanc-
ing the information content of the system. This task is agdeby introducing the "side
information” concept, which is used to close the semantlytween the visual and textual

information.

Side information is simply defined as the available, but edusmformation in the image,
extracted during the representation of visual/antextual features. This information is em-
ployed to improve the visual ajut textual features extracted from the images. One way of
utilization of side information is to constrain the clustey of visual features. In most of the
image annotation systems, visual features are clustergdaotize and then to be matched
with the annotation words. It is well known that the corrasgence between the clusters
of visual features and the words is rather poor due to the Isegeantic gap between the
low level features based on color, texture /mnghape and high level context information of
words. Side information is used in such a way that, whileteliisg visual features, those

features with the same side information are constrainedlltinfthe same group of clusters.

To embed the available side information to the clusteriragess of visual features, first, we
define and quantize the side information. For this purposeluster the side information fea-
tures collected from the annotated images. Each clusterl tddtained this way corresponds

to a group. We assign visual clusters to groups, so that eacip gs assigned approximately
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equal number of clusters. Next, each visual feature is &gsolcwith a group or set of groups
depending on its co-existing side information. For cluagerof visual features, we use a
modified version of K-Means. We constrain the visual feattltestering process with the
available side information, in such a way that visual pofatng in the same cluster should

all have the same group associations.

Although it can be formulated in manyftBrent ways, in this thesis, we define threffedent
types of side information. The first one is the annotationwayls, which is global, high
level information for the annotated image. This informatis associated with visual fea-
tures extracted from all the regions of a given image and earepresented by the hidden
topic probabilities obtained during the PLSA algorithm.d#ien topics of PLSA algorithm
correspond to a presumed group of words, which correspandddpic. To associate with
visual features, we select "highly likely” topics after staring the hidden topic probabilities
into two "likely” and "not likely” clusters. Then, we ass@te the hidden likely topics to
the "Blob features” extracted from regions obtained thfodgCut region segmentation al-
gorithm. To keep clusters as apart from each other as pessilal visual features within each
cluster as close in Euclidean distance as possible, we ajpdar Discriminant Analysis to

the clustering results.

The second side information we define is the orientatiorrinégion. This side information is
used for semi-supervising the clustering of SIFT featu@$entation information is extracted
from an interest point based on an orientation histogrampeed from gradient orientations
of sample points that are within a region around the intgoesit. The dominant direction
obtained from the peaks in the orientation histogram is aseithe side information. The ori-
entation information based on the dominant direction imtjgad into a number, depending

on the number of groups desired for this side information.

The third side information we define, is the color informatiaround each interest point.
Color information is obtained through K-means clusterifguwv color features around inter-
est points. We associate this side information with SIFTuiess as in the case for orientation
side information. Both orientation and color side inforimmatprovide additional cues for

clustering of SIFT features resulting in better annotatesults.

We compare the proposed system SSA to PLSA-Words based cisipre recall and MAP

metrics that are most frequently used in the literature.hls thesis, we propose a new set
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of metrics based on the CAP Curve. The proposed metrics ayehemdy in comparing the
performances of two annotation systems. The distributiorlative per-word performances
of two different annotation algorithms, can be seen by making use of QA&f#e. Moreover,
metrics defined on CAP Curve enable one to see the percenfagerds that are better
estimated by any of the two algorithms and the total averag®pnances of words that are
estimated bett@worse than the other algorithm. We demonstrate that SSA fpgter results

compared to PLSA-Words on all the metrics mentioned above.

Both standard K-means and semi-supervised K-Means digwiproposed in this study have
been implemented in a high performance parallel computaivironment. Parallelism has
been implemented with MPI library, based on message pas8iath sequential and paral-
lel versions of semi-supervised clustering algorithmsehlags computational complexity in

distance calculations based on the number of groups useibdfomformation.

We obtain two major benefits by using the "side informatiouditable in the annotated im-
ages besides the visual features that are clustered. Wistshow that the overall entropy
of the system is reduced due to the information induced irgoal features through the side
information. Clusters become more homogeneous with réspélce provided side informa-
tion and have sharper probability density functions. Byudag the randomness of visual
features, we improve the annotation performance. Secongk we compare a visual feature
with not all of the cluster centers, but with only a subsettpfiepending on the constraints
provided by the side information, we can complete clusteiinshorter time compared to the
classical clustering algorithms. The more the number ofigsove choose for side informa-

tion, the less computation overhead for distance calaratie obtain.

One should note that, the selection and definition of sidamétion requires careful analysis
of the application domain. The questions of what side inftfom to use and which visual
features to associate with do not have easy answers. Sideniation selected based on
intuition needs to be validated through cross-validatesid in the training set. Moreover, it
is difficult to find generic side information, which is valid for il words in the vocabulary.
Selected side information might give better annotatiomltegor some words but not for the
others depending on the visual representation of wordsages. Therefore, selection of side
information is a domain dependent process and needs to Inedédi improve the information

content of the low level visual feature clusters.
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5.1 Future Directions

The following are some directions for future research:

e We only used some of the side information that is availablmamges together with their
annotations. Other information such as position of regicars be used as side infor-
mation to improve annotation performance. Some of the Visotent always appears
relatively at the same positions within an image. For exanigky” is usually at the
top pixelgareas whereas "grass” usually appears at the bottom of Bn&gmstraining

clustering of visual features depending on the positionhinigprove performance.

e Not all the textual words benefit equally for specific sideomfation as far as the
annotation performance is concerned. An annotation madeth uses a dierent set
of visterms constructed fromféierent side information for each word might give better
annotation results. For example, for word "pumpkin”, whislheavily represented by
the orange color, it might be better to use visterms obtaired color side information
whereas for "walls” which usually have vertical edges, anaation model based on

visterms obtained from orientation side information coodgdused.

e Bag of words representation obtained from local featuresten criticized for losing
information about the spatial relationship between irgepoints. Using visual fea-
tures obtained from segmented regions as side informatiolodal features within the
regions might be a remedy to this problem. Associating tlallfeatures with side
information at the region level adds context to local feesuHence, local information

is combined with more global ones elevating the informationtent of local features.

e It is possible to define a hierarchical SSA by using globaé sidormation such as
annotation keywords, for visual features from segmentgibns, and using visterms
obtained this way as side information for local featuresimitach segmented region.
Propagating global side information towards the localudezd might increase the an-

notation performance.

e Another open issue in this thesis is to make use of not onlyattadable but unused
side information in images together with their annotatjdmst also, to employ other

external information sources such as WordNet [65]. Wordplewides information
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about semantically related words that can be integratediris\aith image annotations
as side information. Wordnet can be used to extract additieide information based
on the annotation keywords by finding semantically simileywords. We expect that
the hidden topics obtained from annotation keywords comtbirith the semantically

related words provide better annotation results when usatta information.

¢ We have used semi-supervised clustering of visual featedmique only in the con-
text of image annotation. Recently, there has been an isiagaterest of using visual
codebooks in other problem domains such as object categjorizand image retrieval
[66], [67], [68], [69], [70], [71], [72], [73], [74] as wellWe expect that semi-supervised
clustering of visual features using visual side informatiomcreases the performance

of these methods.

As outlined above, there are many ways to improve the praposethod in this thesis. How-
ever, the crucial issue remains is how to improve the infdionacontent of the annotation

system for closing the semantic gap.
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APPENDIX A

WORD FREQUENCIES IN ALL 10 SUBSETS OF THE
TRAINING SET

Word Frequencies — Subset # 1
First five words : water sky tree people buildings
Last five words: formula f-16 dunes candy bay
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Figure A.1: Word frequencies in subset 1. Words are sortsgdan their frequencies in
decreasing order from left to right. Most frequent, andtéasjuent 5 words are listed at the
top of the figure.
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Word Frequencies — Subset # 2
First five words : water sky tree people grass
Last five words: giraffe courtyard caterpillar bottles bengal
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Figure A.2: Word frequencies in subset 2. Words are sortsgdan their frequencies in
decreasing order from left to right. Most frequent, andtiéasjuent 5 words are listed at the
top of the figure.

126



Word Frequencies — Subset # 3
First five words : water tree sky people grass
Last five words: island formation flag f-18 bush
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Figure A.3: Word frequencies in subset 3. Words are sortsgdan their frequencies in
decreasing order from left to right. Most frequent, andtiéasjuent 5 words are listed at the
top of the figure.
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Word Frequencies — Subset # 4
First five words : water trees sky people grass
Last five words: kitten iguana herd floor bottles
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Figure A.4: Word frequencies in subset 4. Words are sortsgdan their frequencies in
decreasing order from left to right. Most frequent, andtiéasjuent 5 words are listed at the
top of the figure.
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Word Frequencies — Subset # 5
First five words : water sky tree people flowers
Last five words: flags columns architecture plain detail
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Figure A.5: Word frequencies in subset 5. Words are sortsgdan their frequencies in
decreasing order from left to right. Most frequent, andtiéasjuent 5 words are listed at the
top of the figure.

129



Word Frequencies — Subset # 6
First five words : water sky people tree buildings
Last five words: waterfall castle bull bear baby
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Figure A.6: Word frequencies in subset 6. Words are sortsgdan their frequencies in
decreasing order from left to right. Most frequent, andtiéasjuent 5 words are listed at the
top of the figure.
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Word Frequencies — Subset # 7
First five words : water tree people sky grass
Last five words: ships rabbit kauai dog beetle
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Figure A.7: Word frequencies in subset 7. Words are sortsgdan their frequencies in
decreasing order from left to right. Most frequent, andtiéasjuent 5 words are listed at the
top of the figure.
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Word Frequencies — Subset # 8
First five words : water sky tree people grass
Last five words: hut herd grizzly costume bottles
0.08 T T T T

0.07

0.06

0.05

Frequencies
o
o
I

0.03

0.02

0.01

0 20 40 60 80 100 120 140 160 180
Words

Figure A.8: Word frequencies in subset 8. Words are sortsgdan their frequencies in
decreasing order from left to right. Most frequent, andtiéasjuent 5 words are listed at the
top of the figure.
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Word Frequencies — Subset # 9
First five words : water sky people tree grass
Last five words: museum man herd f-18 castle
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Figure A.9: Word frequencies in subset 9. Words are sortsgdan their frequencies in
decreasing order from left to right. Most frequent, andtiéasjuent 5 words are listed at the
top of the figure.
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Word Frequencies — Subset # 10
First five words : water sky tree people flowers
Last five words: furniture f-18 f-16 columns bay
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Figure A.10: Word frequencies in subset 10. Words are sdrésgd on their frequencies in
decreasing order from left to right. Most frequent, andtiéasjuent 5 words are listed at the
top of the figure.
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APPENDIX B

ENTROPY VALUES FOR SUBSETS 2-9 OF THE TRAINING
SET

Entropy for Subset # 2
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Figure B.1: Log entropy of SIFT, SSA-Color and SSA-Orieimtat-eatures for Subset 2.
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Entropy for Subset # 3
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Figure B.2: Log entropy of SIFT, SSA-Color and SSA-Orieiotat-eatures for Subset 3.
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Entropy for Subset # 4
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Figure B.3: Log entropy of SIFT, SSA-Color and SSA-Orieiotat-eatures for Subset 4.
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Entropy for Subset # 5
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Figure B.4: Log entropy of SIFT, SSA-Color and SSA-Orieiotat-eatures for Subset 5.
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Entropy for Subset # 6
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Figure B.5: Log entropy of SIFT, SSA-Color and SSA-Orieiotat-eatures for Subset 6.
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Entropy for Subset # 7
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Figure B.6: Log entropy of SIFT, SSA-Color and SSA-Orieiotat-eatures for Subset 7.
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Entropy for Subset # 8
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Figure B.7: Log entropy of SIFT, SSA-Color and SSA-Orieiotat-eatures for Subset 8.
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Entropy for Subset # 9
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Figure B.8: Log entropy of SIFT, SSA-Color and SSA-Orieiotat-eatures for Subset 9.
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Entropy for Subset # 10
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Figure B.9: Log entropy of SIFT, SSA-Color and SSA-Orieiatat-eatures for Subset 10.
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