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ABSTRACT 
 
 

GENETIC ALGORITHMS FOR DISTRIBUTED DATABASE DESIGN 
AND DISTRIBUTED DATABASE QUERY OPTIMIZATION 

 
 

Sevinç, Ender 
Ph.D., Department of Computer Engineering 
Supervisor : Assoc. Prof. Dr. Ahmet Coşar 

 

October 2009, 95 pages 

 

The increasing performance of computers, reduced prices and ability to connect 
systems with low cost gigabit ethernet LAN and ATM WAN networks make 
distributed database systems an attractive research area. However, the complexity of 
distributed database query optimization is still a limiting factor. Optimal techniques, 
such as dynamic programming, used in centralized database query optimization are 
not feasible because of the increased problem size. The recently developed genetic 
algorithm (GA) based optimization techniques presents a promising alternative. We 
compared the best known GA with a random algorithm and showed that it achieves 
almost no improvement over the random search algorithm generating an equal 
number of random solutions. Then, we analyzed a set of possible GA parameters 
and determined that two-point truncate technique using GA gives the best results.  

 

New mutation and crossover operators defined in our GA are experimentally 
analyzed within a synthetic distributed database having increasing the numbers of 
relations and nodes. The designed synthetic database replicated relations, but there 
was no horizontal/vertical fragmentation. We can translate a select-project-join 
query including a fragmented relation with N fragments into a corresponding query 
with N relations. Comparisons with optimal results found by exhaustive search are 
only 20% off the results produced by our new GA formulation showing a 50% 
improvement over the previously known GA based algorithm. 

 

 

Keywords: Query optimization, Distributed database, Genetic algorithm,  Mutation, 
Crossover. 
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ÖZ 
 
 

DAĞINIK VERİTABANI IÇIN GENETİK ALGORİTMA 
VE DAĞINIK VERİTABANI SORGU OPTİMİZASYONU 

 
 

Sevinç, Ender 
Doktora, Bilgisayar Mühendisliği Bölümü 
Tez Yöneticisi : Doç. Dr. Ahmet Coşar 

 

Ekim 2009, 95 sayfa 

 

Bilgisayarların artan performansı, düşen fiyatlar, ucuz ATM geniş alan ağlarına ve 
gibabit Ethernet’li yerel alan ağlarına bağlanabilen sistemler dağınık veritabanı 
sistemlerini dikkat çekici kılmaktadır. Bununla birlikte, dağınık veritabanı sorgu 
optimizasyonu hala kısıtlayıcı bir faktördür. Merkezi veritabanı sorgu 
optimizasyonunda kullanılan dinamik programlama gibi en iyiyi bulan teknikler 
artan problem boyutu sebebiyle efektif değildir. Yeni geliştirilen genetik algoritma 
(GA) tabanlı optimizasyon teknikleri gelecek vaadeden bir alternatiftir. En iyi 
bilinen GA’yı rasgele çalışan bir teknikle kıyasladık ve bunun, neredeyse eşit sayıda 
üretilen rasgele çözümlerden daha iyiyi başaramadığının gösterdik. Sonrasında, 
GA’nın kullandığı parametre setini inceledik ve deneysel olarak, hangi 
parametrelerin bütün performansta etkili olduğunu gösterdik. 

 

Bizim GA’da tanımlanan yeni mutasyon ve çaprazlama operatörleri deneysel olarak 
artan sayıda tabloların ve sitelerin olduğu suni dağınık veritabanında analiz edildi. 
Bu suni veritabanında tabloların kopyaları olmakla beraber, yatay/dikey bölümleme 
yoktu. N sayıda bölümlü bir tabloyu ihtive eden bir  select-project-join sorgusu, N 
sayıda tabloyu ihtiva eden bir sorguya dönüştürülebilir. Tüm olasılıkların 
hesaplandığı en iyi sonuçlar, bizim yeni GA formülasyonumuzdan %20 daha 
iyiyken, önceden bilinen GA tabanlı çözümden %50 daha iyidir.  

 

 

Anahtar Kelimeler: sorgu optimizasyonu, dağınık veritabani, genetic algoritma, 
mutasyon, çaprazlama 



vi 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To My Family 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 

 
 
 
 
 
 
 
 

ACKNOWLEDGMENTS 
 
 
 

I would like to express my deepest gratitude to my supervisor Assoc.Prof. Dr. 

Ahmet Coşar for their guidance, advice, criticism, encouragements and insight 

throughout the research. 

 

I would also like to thank Prof. Dr. Adnan Yazıcı and Prof. Dr. İsmail Hakkı 

Toroslu for his suggestions and comments. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



viii 

 
 
 
 
 
 
 
 

TABLE OF CONTENTS 
 

ABSTRACT...............................................................................................................iv 

ÖZ...............................................................................................................................v 

ACKNOWLEDGMENTS........................................................................................vii 

TABLE OF CONTENTS........................................................................................viii 

CHAPTER 

1. INTRODUCTION ........................................................................................1 

2. PREVIOUS WORKS………………………….............................................5 

2.1 Distributed Database System ................................................................5 

2.2 Heuristic-based Query Optimization.....................................................8 

2.3 Genetic Algorithm Based Solutions………………………………….11 

2.4 Exhaustive Search Methods………………………………………….18 

 2.4.1 IDP1…………………………………………………………….21 

2.5 Randomized Search Methods………………………………………...24 

2.5.1 Iterative Improvement (II) ………………………….................25 

2.5.2 Simulated Annealing (SA) ………………………….................26 

2.5.3 Two Phase Optimization (2PO) …………………….................27 

3. DISTRIBUTED QUERY OPTIMIZATION ……......................................29 

3.1 A New Genetic Algorithm Formulation..............................................29 

3.2 Chromosome Structure……………....................................................30 

3.3 Optimization model..............................................................................32 

3.4 Query Execution Model……………...................................................33 

3.5 New-Crossover……………………………………………………….40 

3.6 New-Mutation………………………………………………………..45 

4. EXPERIMENTAL SETUP AND RESULTS ………………..…………...51 

4.1 Experimental Setup ...……………..……………………………........51 

4.2 Experimental Results ……………......................................................53 



ix 

5. DESIGN OF DISTRIBUTED DATABASE SCHEMA USING A 

GENETIC ALGORITHM………………….………………………………………57 

5.1 Distributed Database Schema Chromosome and Query Structure......58 

5.2 Genetic algorithm for DDB Chromosome...........................................60 

 5.2.1 Crossover ………………………….…………………………..60 

 5.2.2 Mutation  ………….………..………………………………….62 

5.3 System Structure ...………………......................................................62 

5.4 Distributed Database Schema Design .................................................63 

5.5 Experimental Setup and Results..........................................................68 

 5.5.1 Comparison of ESA,NGA and RGA …………………….........69 

5.6 DDB Design Using Relation Clustering…..........................................72 

6. CONCLUSIONS..........................................................................................77 

REFERENCES .........................................................................................................79 

APPENDICES 

Appendix A: Test case 1 for DDB schema………………….…..................82 

Appendix B: Test case 2 for DDB schema …..............................................83 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



x 

 
 
 
 
 
 
 
 

LIST OF TABLES 
 
 
 

TABLES 

 

Table 1.1: Comparison of Query Optimization Algorithms …………......................2 

Table 2.1: Gene structures for sample query execution plans .................................15 

Table 2.2: Implementation specific parameters for 2PO..........................................28 

Table 3.1: Parameter values for Genetic Algorithm.................................................31 

Table 3.2: Relation Schema……………………………………..............................34 

Table 3.3: Selection probability of a gene in New-mutation....................................35 

Table 3.4: Types of Genetic Algorithms………………………...............................39 

Table 5.1: Fragmentation of the relations…………………………….……………59 

Table 5.2: Replication of the fragments/relations…………………….……………59 

Table 5.3: Queries, frequencies and issuing nodes………………………………...62 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xi 

 
 
 
 
 
 
 
 

LIST OF FIGURES 
 
 
 

FIGURES 

 

Figure 2.1: Distributed Database Environment …………..........................................7 

Figure 2.2: Dynamic Query Optimization Algorithm…….......................................10 

Figure 2.3: (Classic) Dynamic Programming Algorithm…......................................20 

Figure 2.4: Iterative Dynamic Programming (IDP1) with Block Size “k” ...............23 

Figure 2.5: Iterative Improvement ...........................................................................26 

Figure 2.6: Simulated Annealing .............................................................................27 

Figure 3.1: Chromosome Structure...........................................................................31 

Figure 3.2: Optimization model................................................................................32 

Figure 3.3: Query Execution Plan.............................................................................33 

Figure 3.4: The performance of NGA for increasing crossover percentages ……..37 

Figure 3.5: The performance of NGA for increasing mutation rates ……………...38 

Figure 3.6: The performance of NGA for increasing initial population size ……...38 

Figure 3.7: Solution quality based comparison of selection and crossover type 

combinations …………………………………………………………..39 

Figure 3.8: Parent Chromosomes .............................................................................40 

Figure 3.9: Crossover Implementation (P1XP2) ......................................................42 

Figure 3.10: Crossover Implementation (P2XP1)  ...................................................43 

Figure 3.11: Chromosome with condition numbers and costs of the genes……….46 

Figure 4.1: File Descriptions………………..…………………………..………….52 

Figure 4.2: The effect of increasing number of nodes………………………..……54 

Figure 4.3: The effect of increasing number of relations…………………………..55  

Figure 5.1: Chromosome Structure of a Distributed Database Schema ….……….58 

Figure 5.2: Crossover operation for a Distributed Database Sch. Chromosome…..61 



xii 

Figure 5.3: Nested Genetic Algorithm for DDB Design ………….………………65 

Figure 5.4: The performance of DGA for increasing crossover percentages ……..66 

Figure 5.5: The performance of DGA for increasing mutation rates ……………...67 

Figure 5.6: The performance of DGA for increasing initial population size...…….67 

Figure 5.7: Optimization Times of DDB Design Algorithms ……………………..70 

Figure 5.8: Query Execution Times of optimized DDB……………………….......71 

Figure 5.9: CGA Pseudocode……………………………………….……………...73 

Figure 5.10: Query Execution Times of DGA and Clustered DGA………..……...74 

Figure 5.11: Optimization Times of DGA and Clustered DGA…………………...75 

Figure 5.12: Query Execution Times of DGA and Clustered DGA……………….76 

 

 



 1

 

 

 

 

 

CHAPTER 1 

 

 

INTRODUCTION 
 

 

Distributed database systems have been an active research area since mid 70s. The 

increasing performance, reduced workstation prices, ability to connect these systems 

with low cost gigabit ethernet networks makes distributed databases still very 

attractive for building modern high performance systems. However, the complexity 

of distributed database query optimization has been a limiting factor. Using 

centralized database query optimization techniques such as dynamic programming is 

not feasible because of the increased problem size due to a large number of input 

parameters (fragmentation, replication and network connections) in addition to the 

database query. The development of genetic algorithm (GA) based optimization 

techniques in 1990s presents a promising alternative methodology.  

 

Optimizing queries is a major problem in distributed database systems, particularly 

when files are fragmented or replicated and copies stored at different nodes in the 

network. A distributed query optimization algorithm must select relations and 

determine how and where (at which node) those files will be processed, also 

deciding if a semijoin is also taken into consideration. Processing decisions must 

include both the files to be retrieved to the related site and the evaluation order of 

the conditions. We aim to extend the scope of distributed query optimization 

research by developing a model that, for the first time, includes heuristic algorithms 
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in a randomized approach. In this thesis, NGA which has been developed as a 

genetic algorithm based solution, quickly produces efficient query execution plans 

and reduces the optimization time of queries when compared to previously suggest 

genetic algorithms.  

 

Table 1.1 : Comparison of Query Optimization Algorithms 

Algorithms 

Opt. 

Timing 

Objective 

Function 

Opt. 

Factors 

Network

Topology

Semi 

Joins 

Stats* Fragments 

Dist. 

INGRES 
Dynamic 

Response 
Time or 
total cost 

Msg. size, 

Proc. Cost 

Point-to-
point or 

LAN 
No 1 Horizontal

R* Static Total cost 
# msg., 

msg.size, 

IO, CPU 

Point-to-
point or 

LAN 
No 1,2 No 

SDD-1 Static Total cost msg.size Point-to-
point 

Yes 1,3,4,5 No 

GA Static Total cost msg.size Point-to-
point 

Yes 1,3,4,5 No 

NGA Static Total cost 
Msg.size, 

IO, CPU 
Point-to-

point 
Yes 1,3,4,5 Horizontal

* 1=relation cardinality, 2=number of unique values per attribute, 3=join selectivity 

factor, 4= size of projection on each join attribute, 5= attribute size and tuple size. 

 

One of the early distributed database management systems, SDD-1 [2], which was 

designed for slow wide area networks, made extensive use of semijoin operations. 

Later systems, such as R* [14, 23] and Distributed-INGRES [5], assumed faster 

networks and did not employ semijoins. Both R* and SDD-1 use static query 

optimization and they don’t change the query execution plan during run-time, while 

Distributed-INGRES dynamically generates query execution plans at run-time using 

the available information (e.g. number of records returned in the intermediate 

results). R*, SDD-1 and Genetic algorithm (GA) [21] did not consider horizontal or 

vertical fragments, while Distributed-INGRES and our New Genetic Algorithm 



 3

(NGA) handles horizontal fragments. Except GA and NGA, none of the systems 

consider replication as seen in Table1.1. 

 

In [21] a genetic algorithm based solution was given for the distributed database 

query optimization problem. Their model considered replication and semijoin 

operators, using the total cost of CPU processing, disk I/O and communication times 

for optimization. A comprehensive distributed database design approach using GA 

technique is presented in [15] which do not consider network latency or operation 

parallelism. In [10] this GA model was extended by including network latency and 

considering parallel processing in cost calculations. This extended model was used 

for designing efficient distributed databases that can make use of inherent 

parallelism in distributed databases. 

 

Genetic algorithms may offer a powerful and domain-independent search method for 

a variety of tasks. But the applications for optimizing a distributed query have major 

drawbacks that are originating from strategy. Briefly in here, we shall try to solve 

this problem and make some adaptations for Genetic Algorithm with respect to the 

nature of the distributed query.  

 

Since considering all possible alternatives for join sites, join order, replica selection, 

semijoins and join algorithm, causes distributed query optimization to take an 

exceptionally long time, genetic algorithm based solutions are very attractive. Using 

GA we can explore a very large search space considering all possible parameters 

while we can keep the search time low by maintaining and working on a relatively 

small set of alternative solutions and try to improve parts of a query execution plan 

where the execution costs are very high thus making it likely to find many good 

alternatives. 

 

However, it is not a very good idea to expect even very simple optimization 

decisions to be randomly made by a GA. For example, if we know on which site a 
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join operation will be performed, it is very simple to find out which one of the 

replicas of an input relation would take the minimum time to be input to the join 

operation. Therefore, we need a mechanism to combine GA with other optimization 

techniques to perform a more effective search for finding better solutions in less 

time. 

 

We show that a much more efficient GA search can be done by modifying the 

mutation operator in such a way that mutation of one part of a gene will also 

automatically cause another related part of the same gene to be modified accordingly 

such that these two parts of the same gene do not contain conflicting decisions made 

by each other. In fact, even in the formulation of GA given in [21] this approach is 

partially used since changing the join order of relations can generate invalid plans, 

where relations without a common join attribute can be placed next to each other. 

This problem has been taken care of by employing a so-called “inversion” operator 

instead of a random mutation operator. On the other hand, in our model we do not 

have such an additional artificial operator, but we handle this problem inside the 

mutation operator. 

 

This thesis is organized as follows. In Section 2, we give previous work using 

heuristic algorithms and genetic algorithm based solutions for distributed database 

query optimization we explain previous works using heuristic and genetic algorithm 

based solutions for distributed query optimization. In Section 3, our genetic 

algorithm formulation is described. Section 4 presents the results of the experiments 

using a set of queries on synthetic distributed database schemas. Section 5, 

distributed database schema is designed by using our genetic algorithm and its 

performance is compared experimentally with that of exhaustive search algorithm. 

Finally, section 6 concludes this work and discusses possible future work. 
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CHAPTER 2 
 

 

PREVIOUS WORKS 

 
 

Earlier work on distributed database query optimization use several techniques 

which are listed below; 

• sub-optimal greedy heuristics [19],  

• genetic algorithm based solutions [6, 16],  

• dynamic programming [7, 12, 22] and  

• other randomized techniques [9].  

These techniques will be discussed after the explanation of a distributed database 

system.  

2.1.  Distributed Database System 

A distributed database (DDB) is a collection of multiple, logically interrelated 

databases distributed over a computer network. A distributed database management 

system (distributed DBMS) is defined as the software system that permits the 

management of the DDB and makes the distribution transparent to the users. We use 

the term distributed database system (DDBS) to refer to the combination of the DDB 

and the distributed DBMS. Assumptions regarding the system that underlie these 

definitions are:  
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Data is stored at a number of sites. Each site is assumed to logically consist of a 

single processor, resources included in a single system. Even if some sites are 

multiprocessor machines, the distributed DBMS is not concerned with the storage 

and management of data on this parallel machine. 

 

• The processors at these sites are interconnected by a computer network 

rather than a multi-processor configuration. The important point here is the 

emphasis on loose interconnection between processors which have their own 

operating systems and operate independently. Even though shared-nothing 

multiprocessor architectures are quite similar to the loosely interconnected 

distributed systems, they have different issues to deal with (e.g., task 

allocation and migration, load balancing, etc.). 

 

• The DDB is a database, not some “collection” of files that can be 

individually stored at each node of a computer network. This is also the same 

distinction between a DDB and a collection of files managed by a distributed 

file system. To form a DDB, distributed data should be logically related, 

where the relationship is defined according to some structural formalism, and 

access to data should be at a high level via a common interface. The typical 

formalism that is used for establishing the logical relationship is the 

relational model. In fact, most existing distributed database system research 

assumes a relational system.  

 

• The system has the full functionality of a DBMS. It is neither a distributed 

file system nor a transaction processing system. Transaction processing is 

not only one type of distributed application, but it is also among the 

functions provided by a distributed DBMS. However, a distributed DBMS 

provides other functions such as query processing, structured organization of 

data, and so on that transaction processing systems do not necessarily deal 

with. [20] 

 



Most of the existing distributed systems are built on top of local area networks in 

which each site is usually a single computer. The database is distributed across these 

sites such that each site typically manages a single local database in Figure 2.1. This 

is the type of system that we concentrate on for the most part of this study. However, 

next generation distributed DBMSs will be designed differently as a result of 

technological developments -especially the emergence of affordable multiprocessors 

and high-speed networks- the increasing use of database technology in application 

domains which are more complex than business data processing, and the wider 

adoption of client-server mode of computing accompanied by the standardization of 

the interface between the clients and the servers. Thus, the next generation 

distributed DBMS environment will include multiprocessor database servers 

connected to high speed networks which link them and other data repositories to 

client machines that run application code and participate in the execution of database 

requests. 
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A distributed DBMS as defined above is only one way of providing database 

management support for a distributed computing environment. A classification of 

 
 

Figure 2.1: Distributed Database Environment [20] 

Site 2 

Site 1

Site 5 

Site 3 Site 4 
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possible design alternatives along three dimensions are listed as autonomy, 

distribution, and heterogeneity.  

 

 Autonomy refers to the distribution of control, and indicates the degree to 

which individual DBMSs can operate independently. Three types of 

autonomy are tight integration, semi-autonomy and full autonomy (or total 

isolation). In tightly integrated systems a single-image of the entire database 

is available to users who want to share the information which may reside in 

multiple databases. Partially autonomous systems consist of DBMSs that can 

(and usually do) operate independently, but have decided to participate in a 

federation to make their local data shareable. In totally isolated systems, the 

individual components are stand-alone DBMSs. 

 

 Distribution dimension of the taxonomy deals with data. We consider two 

cases, namely, either data are physically distributed over multiple sites that 

communicate with each other over some form of communication medium or 

they are stored at only one site. 

 

 Heterogeneity can occur in various forms in distributed systems, ranging 

from hardware heterogeneity and differences in networking protocols to 

variations in data managers. The important ones from the perspective of 

database systems relate to data models, query languages, interfaces, and 

transaction management protocols. The taxonomy classifies DBMSs as 

homogeneous or heterogeneous.[20] 

2.2   Heuristic-based Query Optimization  

The objective function of the algorithm is to minimize a combination of both the 

communication time and the response time. However, these two objectives may be 

conflicting. For instance, increasing communication time (by means of parallelism) 

may well decrease response time. 
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Thus, the function can give a greater weight to one or the other. This query 

optimization algorithm ignores the cost of transmitting the data to the result site. The 

algorithm also takes advantage of fragmentation, but only horizontal fragmentation 

is handled. 

Since both general and broadcast networks are considered, the optimizer takes into 

account the network topology. In broadcast networks, the same data unit can be 

transmitted from one site to all the other sites in a single transfer, and the algorithm 

explicitly takes advantage of this capability. For example, broadcasting is used to 

replicate fragments and then to maximize the degree of parallelism. 

 

The input to the algorithm is a query expressed in tuple relational calculus (in 

conjunctive normal form) and schema information (the network type, as well as the 

location and size of each fragment). This algorithm is executed by the site, called the 

master site, where the query is initiated.  

 

One of the best known heuristic-based techniques used for distributed query 

optimization is the Distributed INGRES algorithm [5] which is derived from 

Centralized INGRES [18]. It uses a dynamic approach making optimization 

decisions at run-time in addition to pre-execution time. The Dynamic Query 

Optimization Algorithm (D*-QOA) [19], is given below: 

 

In Figure 2.2, all monorelation operations (e.g., selection and projection) that can be 

detached (i.e. can be evaluated independently of other relations) are first processed 

locally [Step (1)]. Then, the reduction algorithm is applied to the original query 

[Step (2)]. Reduction is a technique that isolates all irreducible sub-queries and 

monorelation sub-queries by detachment. Monorelation sub-queries are ignored 

because they have already been processed in step (1). Thus, the REDUCE procedure 

produces a sequence of irreducible sub-queries q1 → q2 → · · · → qn, with at most 

one join attribute (or join attributes for a composite key) in common between two 

consecutive sub-queries.[19] 

 



based on the list of irreducible queries isolated in step (2) and the size of each 

fragment, the next sub-query, MRQ′, which has at least two variables, is chosen at 

step (3.1) and steps (3.2), (3.3), and (3.4) are applied to it. Steps (3.1) and (3.2) are 

discussed below. Step (3.2) selects the best strategy to process the query MRQ′. This 

strategy is described by a list of pairs (F, S), in which F is a fragment to transfer to 

the processing site, S. Step (3.3) transfers all the fragments to their processing sites. 

 

Input: MRQ: multi-relation query 

Output: result of the last multi-relation query 

begin 

for each detachable OVQi in MRQ do  

    run(OVQi){OVQ is a monorelation query}                   (1) 

endfor 

MRQ′ list ← REDUCE(MRQ)  

{MRQ replaced by n irreducible queries}                     (2) 

while (n<>0) do {n is the number of irreducible queries}    (3) 

{choose next irreducible query involving the smallest 
fragments} 

 MRQ′ ← SELECT QUERY(MRQ′ list);                      (3.1) 

{determine fragments to transfer and processing site for MRQ′} 

 Fragment-site-list← SELECT STRATEGY(MRQ′);           (3.2) 

{move the selected fragments to the selected sites} 

 for each pair (F, S) in Fragment-site-list do 

      move fragment F to site S                        (3.3) 

 endfor 

 execute MRQ′;                                        (3.4) 

 n ← n − 1 {output is the result of the last MRQ′} 

endwhile 

end. { Dynamic*-QOA }

 

Figure 2.2: Dynamic Query Optimization Algorithm [19] 

 

 

Finally, step (3.4) executes the query MRQ′. If there are remaining sub-queries, the 

algorithm goes back to step (3) and performs the next iteration. Otherwise, it 

terminates. [19] 
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Optimization occurs in steps (3.1) and (3.2). The algorithm has produced sub-

queries with several components and their dependency order (similar to the one 

given by a relational algebra tree). At step (3.1) a simple choice for the next sub-

query is to take the next one having no predecessor and involving the smaller 

fragments. This minimizes the size of the intermediate result(s), hopefully 

generating a plan with minimal total query evaluation cost. 

 

At step (3.2), the next optimization problem is to determine how to execute the sub-

query by selecting the fragments that will be moved and the sites where the 

processing will take place. For an n-relation sub-query, fragments from n-1 relations 

must be moved to the site(s) of fragments of the remaining relation, Rp, and then 

replicated there. Also, the remaining relation may be further partitioned into k 

“equalized” fragments in order to increase parallelism. This method is called 

fragment-and-replicate and performs a substitution of fragments rather than of 

tuples. The selection of the remaining relation and of the number of processing sites 

k on which it should be partitioned is based on the objective function and the 

topology of the network. Replication is cheaper in broadcast networks than in point-

to-point networks.  

 

Furthermore, the choice of the number of processing sites involves a trade-off 

between response time and total time. A larger number of sites decreases response 

time (by parallel processing) but increases total time, in particular increasing 

communication costs [5].  

2.3  Genetic Algorithm Based Solutions 

A Genetic Algorithm (GA) is a general purpose search algorithm which applies 

principles of natural selection to a randomly generated pool of genetic populations 

consisting of chromosomes each representing a complete solution to the problem at 

hand, and using these initial solutions tries to evolve better solutions to the problem 

[6]. The basic idea is to maintain a population of chromosomes, which represent 

candidate solutions to the target problem that evolve over time through a process of 
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mating to merge two solution chromosomes to produce a new solution. Random 

mutations are also employed to ensure that a better (possibly optimal) solution not 

existing in the chromosome pool can also be randomly generated. Thus, finding an 

optimal solution will be guaranteed if the GA algorithm is run for a very long time. 

Each chromosome in the population is calculated an associated fitness value to 

choose competitive chromosomes that will form the next generation. Two operators 

used for this purpose are crossover and mutation.  

 

Given a logical database (tables), a set of queries representing the update and 

retrieval requirements of a set of database users, and a network environment in 

which the system is to be implemented, the goal of a DDB design approach is to: (1) 

allocate data fragments to nodes in the network and (2) design query processing 

strategies for each query that most efficiently meet the identified needs. The first 

goal, termed data allocation, has been addressed by a number of researchers in a 

variety of network settings. All assume a fixed or extremely limited set of query 

processing strategies. The second goal, termed operation allocation or query 

optimization, has also been addressed by a number of researchers. 

 

Each query has an origination node and a destination node at which the query results 

are required. Data may be accessed from and processed at different nodes within the 

network in an order determined by the database management system. If a retrieval 

query can be decomposed into independent sub queries, then judicious replication 

and placement of data can enable query-processing strategies that take advantage of 

parallelism [29] and data reduction by semi-join [3, 30] to reduce the response time 

for the query. 

 

Of potential interest to parallelism in DDB design is query optimization in the 

context of multiprocessor computer architectures. Due to the proximity of 

processors and memories and the high-bandwidth bus architectures common in such 

systems, these models assume that communication time is insignificant compared to 

processor time and either ignore it completely or consider only the extra CPU 
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instructions stemming from communications. Hence, from the perspective of DDB 

in a high-speed wide area network where nodes are separated by hundreds of miles 

and latency is a significant component of response time, these models are of limited 

use.[10] 

 

Genetic algorithms (GA) are a class of robust and efficient search methods based on 

the concept of adaptation in natural organisms [6, 8]. The basic concepts of GAs are:  

• A representation of solutions, often in the form of bit strings, likened to 

genes in a living organism;  

• A pool of solutions likened to a population or generation of living organisms, 

each having a genetic make-up;  

• A notion of “fitness”, which governs the selection of parents who will 

produce offspring in the next generation; 

• Genetic operators, which derive the genetic make-up of an offspring from 

that of its parents (and possible random “mutation”); and  

• A survival procedure that determines which parents and offspring are 

retained in the solution pool at each generation (often the survival procedure 

is “survival of the fittest”). 

 

A genetic algorithm begins by randomly generating an initial pool of solutions (i.e., 

the population). During each iteration (generation), the solutions in the pool are 

evaluated using some measure of fitness or performance. After evaluating the fitness 

of each solution in the pool, some of the solutions are selected to be parents. The 

probability of any solution being selected is typically proportional to its fitness. 

Parents are paired and genetic operators applied to produce new solutions 

(offspring). A new generation is formed by selecting solutions (parents and 

offspring), typically based on their performance, so as to keep the pool size constant. 
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The genetic operators commonly used to produce offspring are crossover, mutation, 

and inversion. Crossover is the primary genetic operator. It operates on two 

solutions (parents) at a time and generates offspring by combining segments from 

each parent. A simple way to achieve crossover is to select a cut point at random and 

produce offspring by concatenating the segment of one parent to the left of the cut 

point with that of the other parent to the right of the cut point. Mutation generates a 

new solution by randomly modifying one or more gene values of an existing 

solution. 

 

Mutation operator serves to guarantee that the probability of searching any subspace 

of the solution space is never zero. Inversion generates a new solution by reversing 

the gene order of an existing solution. Under inversion, two cut points are chosen at 

random and an offspring is produced by switching the end points of the middle 

segment. 

 

As crossover produces new offspring, with solutions for parts of a problem, having 

good performance, begin to emerge in multiple solutions. Solutions with good 

performance typically contain a number of good DB schemas. Such solutions are 

more likely to be selected as parents than those with poor performance (which are 

expected not to contain as many good schemas). Thus, over successive iterations 

(generations), the number of good schemata represented in the pool tends to 

increase, the number of bad schemata tends to decrease and the average performance 

of the pool tends to improve. 

 

A genetic algorithm stops when a given stopping condition is satisfied. Common 

stopping rules for genetic algorithms are maximum number of iterations and percent 

difference in the performance of the best and worst solutions. For real-time 

applications like distributed query optimization, a genetic algorithm can be stopped 

after a certain amount of time, or whenever the processor is ready to execute the 

query. 



The gene structure for distributed database query optimization GA solutions consists 

of four parts, each corresponding to one of the four decisions in the distributed 

database query optimization model: [21] 

• Selecting a replica of a relation 

• Semijoin operations to reduce the communication cost 

• Join site selection, and  

• Join order.  

 

 

Table 2.1 shows the gene structures for two sample execution plans for a distributed 

query having 3 join conditions in a 5-node distributed DBS having 4 relations. It 

also illustrates the effects of genetic operators on chromosomes.  

 

 

Table 2.1: Gene structures for sample query execution plans [21] 

Solution Execution Plan Copy Id. Semijoin Join Site Join Order

1 Sample Plan 1 1 3 4 4 01 10 00 0 0 4 0 2 1 

2 Sample Plan 2 2 3 4 3 01 00 00 0 0 0 0 1 2 

3 Crossover 1,2 1 3 4 3 01 10 00 0 0 4 0 2 1 

4 Mutation 3 1 3 4 4 11 10 00 1 0 4 0 2 1 

5 Inversion 3 1 3 4 3 01 10 00 0 0 4 2 0 1 

 

 

The third column, “Copy Id”, represents the site number of the chosen replica for the 

input base files (relations). For example, the value “3” in “1 3 4 4” means that the 

second file (R2) will be taken from Site3. The “Semijoin” column identifies the type 

of semijoin operation to be employed on the inputs of three join operations. “00” 

means no semijoin operation will be performed on the input relations, while “10” 

and “01” represent that left and right join inputs, respectively, will be subjected to 

semijoin operations for reducing communication time, “11” is not an allowed value. 

The selection of the site where the join operation will be performed is given in the 
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“Join Site” column. For example the value “0 0 4” means the 1st and 2nd join 

operations will be performed at site S0 and 3rd join operation at site S4. The 

traditional problem of ordering the execution of joins is given by the last column 

where a permutation of the join values (0, 1 and 2) is given. The value “0 2 1” for 

join order means 1st join J0 will be performed, then result of J0 will be input to join J2 

and finally the result calculated so far will be input to J1. The join attributes for 

individual join operations are given in the query input and is the same for all 

chromosomes.  

 

This genetic algorithm uses uniform crossover [25] to combine file copy selections 

and a random mutation operator. In uniform crossover, the child inherits a value for 

each gene position from one or the other parent with probability 0.5 (i.e., randomly). 

Solution 3 illustrates a possible result of applying the uniform crossover operator to 

solutions 1 and 2. The first and third file sites were (randomly) taken from solution 

1, the second and fourth from solution 2 (genes from solution 2 are shown in bold). 

Solution 4 shows a mutation of Solution 3 where R004 (4th file/relation) is randomly 

selected to be mutated. The mutation which is shown as underlined randomly 

changes its selected replica location from site S3 to site S4 (it must be mutated to a 

feasible site where a replica of the corresponding relation exists). A typical mutation 

probability (0.005) is used as suggested in the literature [6]. 

 

Semijoin operators are represented by a pair of bits, one pair for each join. If an 

elementary semijoin is to be performed, the value of the bit corresponding to the 

reducer file is set to 1, otherwise it is 0. As illustrated in the Semijoin column of 

Table 2.1, the semijoin strategy for solution 1 is “01 10 00” specifying the semijoin 

R2  R1 and R2  R3. A uniform crossover operator and a standard mutation 

operator are used to generate new semijoin solutions (again constrained to ensure 

feasibility). Again, solution 3 illustrates a possible result of applying the uniform 

crossover operator to solutions 1 and 2. In solution 3, values shown in bold come 

from solution 2 and the others come from solution 1.The semijoin strategy for join J1 

is taken from solution 1, those for joins J0 and J2 are taken from solution 2. 
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Join site decisions are represented by a vector with a value for each join in the 

query. Each value in the vector represents the site at which the join is performed. As 

illustrated in the Join Site column of Table 2.1, the join sites for solution 1 are given 

by 0 0 4, indicating that J0 and J1 are performed at site S0, and J2 is performed at site 

S4. Again, a uniform crossover operator and a standard mutation operator are used to 

generate new join site solutions. Since join operations can be performed at any site, 

feasibility is not an issue. 

 

Join order decisions are represented as a list of joins where the sequence indicates 

the order in which joins are performed. Alternatively, join order decisions can be 

represented as a list of files, where the sequence indicates the order in which files 

are joined. However, this type of representation cannot represent bushy query plans 

and plans for cyclic queries.  As illustrated in the Join Order column of  Table 2.1, 

the join order for solution 1 is given by 0 2 1, indicating that J0 is performed first, J2 

next, and J1 last. Standard crossover operators are not viable for this type of 

representation as they are likely to generate illegal solutions. There are several 

crossover operators that always produce legal solutions for this type of 

representation. They include edge recombination [28] and uniform order crossover 

[4]. This genetic algorithm employs uniform order crossover which outperformed 

edge recombination in our experiments. In a uniform order crossover operator, gene 

positions for which a child will inherit values from the first parent are randomly 

determined. Then values for the rest of the gene positions are determined based on 

the gene value order in the second parent. To illustrate how a uniform order 

crossover operator works, consider the following join orders: 

 

2 1 3 0       (J2 J1 J3 J0), 

1 3 0 2       (J1 J3 J0 J2). 

 

Suppose that the second and fourth gene positions are inherited from the first parent. 

We then have the following partial solution: –1 – 0 (J1 is performed second and J0 is 

performed last). In the second parent, the order of the values not present in the 
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partial solution is 3 2 (J3 is performed before J2), thus we have 3 1 2 0. Solution 3 in 

Table 2.1 illustrates a possible result of applying the uniform order crossover 

operator to solutions 1 and 2. The second gene value is (randomly) inherited from 

solution 1 and the rest of the gene values are determined by the second parent. 

 

Standard mutation operators frequently generate illegal solutions for this type of 

representation. Thus, an inversion operator is used instead of a mutation operator to 

Inversion generates a new solution by reversing the gene order of an existing 

solution. Under inversion, two cut points are chosen at random and an offspring is 

produced by switching the end points of the middle segment. Since standard 

mutation operators frequently generate illegal solutions for this type of 

representation, an inversion operator is used instead of a mutation operator to 

incorporate randomness. Solution 5 in Table 2.1 illustrates a possible result of 

applying the inversion operator to Solution 3. The order of the first two joins is 

reversed from <J0, J2> to <J2, J0>. 

Since GA’s objective is to minimize the query processing cost, the cost function is 

mapped to the following fitness function to calculate fitness for each solution, S: 

 

Fitness (S) : 1- cost (S) / k, (2.1)

where k is a normalizing constant [21]. 

 

2.4 Exhaustive Search Methods  

Researchers and practitioners have been interested in distributed database systems 

since the 1970s. At that time, the main focus was on supporting distributed data 

management for large corporations and organizations that kept their data at different 

offices or subsidiaries. In some aspects, the early distributed database systems were 

ahead of their time. First, communication technology was not stable enough to ship 

megabytes of data as required for these systems. Second, large businesses somehow 
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managed to survive without sophisticated distributed database technology by 

sending tapes, diskettes, or just paper to exchange data between their offices. 

 

A large number of alternative enumeration algorithms have been proposed in the 

literature; Steinbrunn et al. [24] contains a good overview, and Kossmann and 

Stocker [12] evaluate the most important algorithms for distributed database 

systems. In the following, dynamic programming is described. This algorithm is 

used in almost all commercial database products, and it was pioneered in IBM's 

System R project [22]. The advantage of dynamic programming is that it produces 

the best possible plans if the cost model is sufficiently accurate. The disadvantage of 

this algorithm is that it has exponential time and space complexity so that it is not 

viable for complex queries; in particular, in a distributed system, the complexity of 

dynamic programming is prohibitive for many queries. An extension of the dynamic 

programming algorithm is known as Iterative DP. This extended algorithm is 

adaptive and produces as good plans as basic dynamic programming for simple 

queries and "as good as possible plans" for complex queries for which dynamic 

programming isn’t viable. [12] 

 

We will first describe the classic dynamic programming algorithm [22], which is 

used in most commercial state-of-the-art optimizers today, then Iterative dynamic 

programming (IDP) [12] will be described. Figure 2.3 gives the classical dynamic 

programming algorithm. The algorithm works in a bottom-up way as follows;  

 

First of all access-plans for all Tables Ri are generated (Lines 1 to 4). Such plans 

consist of operators like table_scan(Ri) or index_scan(Ri). They are inserted in a 

table-structure ‘optPlan’ which is set-indexed. This phase is called access-root 

phase. After that, in the following join-root phase (Lines 5 to 13) building-blocks of 

ascending size are produced. First 2-way joins by calling the joinPlans function on 

two access-plans, then 3-way join plans by combinations of all 2-way join plans and 

access-plans and so on up to n-way join plans. 
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Figure 2.3: (Classic) Dynamic Programming Algorithm 

Input: Select-project-join (SPJ) query q on relations 
R1,……..,Rn 

Output: A query plan for q 
1:  for i = 1 to n do { 
2:   optPlan({Ri}) = accessPlans(Ri) 
3:   prunePlans(optPlan({Ri})) 
4: }   
5:  for i = 2 to n do 
6:   for all S  {R1,……..,Rn} such that |S| = i do {  ⊆
7:    optPlan(S) = Ø;  
8:    for all O  S do {  ⊂
9:     optPlan(S) = optPlan(S) ∪   
             joinPlans(optPlan(O),optPlan(S − 

O)) 
10:     prunePlans(optPlan(S)) 
11:    }  
12:   }  
13:  return optPlan({R1,……..,Rn}) 

 

 

 

The advantage of dynamic programming in contrast to full enumeration is that it 

discards inferior building blocks after every step. This approach is called pruning. A 

(sub-) plan A is inferior to Plan B, if it is in relevant plan parameters at most as good 

but in at least one property worse than B. Only the best (comparable) plans are 

retained in optPlan, such that only these plans will be considered as building-blocks 

in later steps. If two plans are incomparable, both are retained in optPlan. For 

example, A sort-merge-join B and A hash-join B are incomparable if the sort-merge-

join is more expensive than the hash-join because the sort-merge-join produces 

ordered results which might help to reduce the cost of later operations. Pruning 

should be carried out as early as possible to avoid the unnecessary enumeration of 

inferior plans. In the algorithm of Figure 2.3 all bushy plans are considered as an 

extension to the originally proposed left-deep variant by Selinger [22]; most 

commercial query optimizers that are based on dynamic programming do the same 

thing. The complexity of this algorithm is O(3n) [17, 27]. 
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It has been shown in [17, 27] that the time complexity of dynamic programming is 

O(3n) and the space complexity is O(2n) in a centralized system. In the following, in 

a distributed system the time complexity of dynamic programming is O(s3 * 3n) and 

the space complexity is O(s * 2n + s3), where s is the number of sites at which a copy 

of at least one of the tables involved in the query is stored plus the site at which the 

query results need to be returned. s, thus, is a variable whose value depends on the 

query and which might be smaller or larger than n, depending on the number of 

replicas of the tables used in the query. 

 

The time complexity of dynamic programming is О(s3 * 3n) in a distributed database 

system. 

 

In [12] Iterative Dynamic Programming (IDP) was introduced with two versions. 

It’s claimed to be a new class of query optimization algorithms that is based on 

iteratively applying dynamic programming and a combination of dynamic 

programming and the greedy algorithm. In all, eight different IDP variants have 

been shown to differ in three ways:  

(1) when an iteration takes place (IDP1 vs. IDP2),  

(2) the size of the building blocks generated in every iteration (standard vs. 

balanced), and  

(3) the number of building blocks produced in every iteration (bestPlan vs. 

bestRow). 

2.4.1 IDP1 

“IDP1-standard-bestPlan" works essentially in the same way as dynamic 

programming with the only difference that IDP1 respects that the resources (e.g., 

main memory) of a machine are limited or that a user or application program might 

want to limit the time spent for query optimization. 

 

To see how IDP1 does this it is assumed that a machine has enough memory to keep 

all access plans, 2-way, 3-way, . . . , k-way join plans (after pruning) for a query with 
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exactly n tables., and also n > k. In such a situation, dynamic programming would 

crash or be the cause of severe paging of the operating system when it starts to 

consider (k + 1)-way join plans because at this point the machine's memory is 

exhausted. IDP1, on the other hand, would generate access plans and all 2-way, 3-

way, . . . , k-way join plans like dynamic programming, but rather than starting to 

generate (k + 1)-way join plans, IDP1 would break at this point, select one of the k-

way join plans, discard all other access and join plans that involve one of the tables 

of the selected plan, and restart in order to build (k + 1)-way, (k + 2)-way, . . . join 

plans using the selected plan as a building block. That is, just like the greedy 

algorithm breaks after two-way join plans have been enumerated, IDP1 breaks after 

k-way join plans have been enumerate, the memory is full, or a time-out is hit.  

 

For k = 2, IDP1 behaves exactly like the greedy algorithm and for k = n, IDP1 

behaves like dynamic programming. For 2 < k < n, the complexity of IDP1 is that the 

IDP1 algorithm of Figure 2.4 has polynomial time and space complexity of the order 

of O (s3 * nk). In this analysis, k (the size of the building blocks) is considered to be 

constant, and s (the number of sites) and n (the number of tables) are the variables 

which depend on the query to optimize. 



 23

  
Figure 2.4: Iterative Dynamic Programming (IDP1) with Block Size “k” [12] 

Input: SPJ query q on relations R1,…..,Rn, maximum block size k 
Output: A query plan for q 
1:  for i = 1 to n do { 
2:   optPlan(fRig) = accessPlans(Ri) 
3:   prunePlans(optPlan({Ri})) 
4:  } 
5:  toDo = { R1,…..,Rn} 
6:  while |toDo| > 1 do f 
7:   k = min {k, |toDo|} 
8:   for i = 2 to k do { 
9:    for all S ⊆  toDo such that |S| = i do { 

10:     optPlan(S) = Ø; 
11:     for all O ⊂ S do { 
12:      optPlan(S) = optPlan(S)∪    
     joinPlans(optPlan(O), optPlan(S - O)) 
13:      prunePlans(optPlan(S)) 
14:    } 
15:   } 
16:  } 
17:  find P, V with P ∈ optPlan(V), V ⊆  toDo, |V|=k such that 

eval(P) = min{eval(P’) | P’∈ optPlan(W), W ⊆  toDo, |W| = k } 

18:  generate new symbol: Τ 
19:  optPlan({T}) = {P} 
20:  toDo = toDo - V ∪  {T} 
21:  for all O ⊆  V do delete(optPlan(O)) 

22:  } 
23: finalizePlans(optPlan(toDo)) 
24: prunePlans(optPlan(toDo)) 
25: return optPlan(toDo) 

 

 

In a centralized database system, the time complexity of the IDP1 algorithm (Figure 

2.4) is claimed to be the order of O(nk) for 2 < k < n. Time Complexity of IDP1 in a 

distributed database system, the time complexity of the IDP1 algorithm is of the 

order of O(s3 * nk ) for 2 <k < n, where the space complexity is the space complexity 

of the IDP1 algorithm is of the order of O(s * nk + s3 ) for 2 < k < n. 

 

In the same study also another variant IDP2 is introduced. In fact, the figure shows 

the “standard-bestPlan" variant of this algorithm. This basic variant of the 
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algorithm is a similar idea to apply dynamic programming in order to re-optimize 

certain parts of a plan has also been proposed in form of the bushhawk algorithm. 

We’ll not go in detail for this variant. 

  

Comparing IDP1 and IDP2, it is observed that the mechanisms are essentially the 

same: both algorithms apply heuristics (i.e., plan evaluation functions) in order to 

select sub-plans, and both algorithms make use of dynamic programming. Also, both 

algorithms can (fairly) easily be integrated into an existing optimizer which is based 

on dynamic programming. The difference between the two algorithms is that IDP2 

makes heuristic decisions and applies dynamic programming after that; IDP1, on the 

other hand, starts with dynamic programming and makes heuristic decisions only 

when it is necessary. In other words, IDP1 is adaptive and k is an optional parameter 

of the algorithm which may or may not be set by a user in order to limit the 

optimization time. Another difference is that IDP2 has lower asymptotic complexity 

than IDP1. 

 

In the study, eight different IDP variants are identified. The experiments showed that 

what they call as “balanced“ IDP with “bestRow" should be used. No clear winner 

could be identified between the basic algorithm variants IDP1 and IDP2. The overall 

picture is that IDP2 is faster than IDP1 and produces as good plans as IDP1. On the 

negative side, however, IDP2 requires a-priori tuning by a user or system 

administrator (i.e., setting of the k parameter) whereas IDP1 is adaptive. The 

conclusion is that both IDP1 and IDP2 should be combined. That is, the optimizer 

should use IDP2 with some default value of k in its main loop (e.g., k = 15), and the 

optimizer should employ IDP1 (rather than dynamic programming) whenever it 

optimizes a building block. This way, the optimizer will always safely generate 

plans because IDP1 is adaptive, and users can overwrite the default value of k in 

order to use IDP2 to speed-up the optimization process [12]. 

2.5  Randomized Search Methods 

Since exhaustive search algorithms used commonly by current optimizers are 

inadequate for large queries, new query optimization algorithms are developed.  
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Randomized algorithms are successful samples in this area. Two such algorithms, 

Simulated Annealing [11] and Iterative Improvement [16] are the best known. Then 

Two Phase Optimization technique has been proposed for the optimization of large 

queries [9]. 

 

Randomized algorithms usually perform random walks in the state space via a series 

of moves. The states that can be reached m one move from a state ‘S’ are called the 

neighbors of ‘S’. A move is called uphill (downhill), if the cost of the source state 

‘S’ lower (higher) than the cost of the destination state. A state is a local minimum if 

in all paths starting at that state any downhill move comes after at least one uphill 

move. A state is a global minimum if it has the lowest cost among all states. A state 

is on a plateau if it has no lower cost neighbor and yet it can reach lower cost states 

without uphill moves. 

2.5.1. Iterative Improvement (II) 

The generic Iterative Improvement (II) algorithm is presented in Figure 2.5. The 

inner loop of II is called a local optimization. A local optimization starts at a random 

state and improves the solution by repeatedly accepting random downhill moves 

until it reaches a local minimum. II repeats these local optimizations until a stopping 

condition is met, at which point it returns the local minimum with the lowest cost 

found. 

 

As time approaches infinity, the probability that II will visit the global minimum 

increases. However, given a finite amount of time, the algorithm’s performance 

depends on the characteristics of the cost function over the state space and the 

connectivity of the latter as determined by the neighbors of each state. 



 
 

Figure 2.5 : Iterative Improvement 

procedure II() { 
minS = S∞; 
while not (stopping_condition) 

do { 
S = random state, 
while not (local_minimum(S)) 
do { 

S’ = random state in neighbors(S), 
if cost(S’) < cost(S) then S = S’, 
} 

if cost(S) < cost(minS) then minS = S, 
} 
return(minS), 

} 

 

2.5.2  Simulated Annealing (SA)  

A local optimization in Iterative Improvement performs only downhill moves. In 

contrast Simulated Annealing (SA) does accept uphill moves with some probability, 

trying to avoid being caught in a high cost local minimum. The genetic algorithm, 

Simulated Annealing, is shown in Figure 2.6. The inner loop of SA is called a stage. 

Each stage is performed under a fixed value of a parameter T, called temperature, 

which controls the probability of accepting uphill moves. The probability is equal to 

e-ΔC/T, where ΔC is the difference between the cost of the new state and that of the 

original one. Thus, the probability of accepting an uphill move is a monotonically 

increasing function of the temperature and a monotonically decreasing function of 

the cost difference Each stage ends when the algorithm is considered to have 

reached an equilibrium Then, the temperature is reduced according to some function 

and another stage begins, i.e., the temperature is lowered as time passes The 

algorithm stops when it’s considered to be frozen, i.e., when the temperature is equal 

to zero. It has been shown theoretically that, under certain conditions satisfied that 

by some parameters of the algorithm, as temperature approaches to zero, the 

algorithm converges to the global minimum.  
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A minimum state of another algorithm is selected as initial, S0. Then SA is 

converged to this stage which is found to be as the minimum.  

 

 

Figure 2.6 : Simulated Annealing 

procedure SA() {  
S=S0, 
T=T0, 
minS = S; 
while not (frozen)  

do { 
while not (equilibrium)  
do {  
S’ = random state neighbors(S),  

ΔC= cost(S’) - cost(S), 

If (ΔC<=0) then S = S’, 

If (ΔC>0) then S = S’ with probability e-ΔC/T, 
if cost(S) < cost(minS) then minS = S,  

}  
T = reduce(T),  

}  
return(minS),  
} 

 

2.5.3 Two Phase Optimization (2PO)  

Two Phase Optimization (2PO) algorithm, a combination of II and SA will be 

introduced. As the name suggests, 2PO can be divided into two phases. In phase 1, 

II is run for a small period of time, i.e., a few local optimizations are performed. 

Then the output of that phase, which is found as the best local minimum found will 

be the initial state of the next phase. In phase 2, SA is run with a low initial 

temperature. Intuitively, the algorithm chooses a local minimum and then searches 

the area around it, still being able to move in and out of local minima, but practically 

unable to climb up very high hills. Thus, 2P0 is appropriate when such an ability is 

not necessary for proper optimization, which is the case for select-project-join query 

optimizations. 
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The neighbors of a state, which is a join-processing tree (e.g. a plan), are determined 

by a set of transformation rules. Each neighbor is the result of applying one of these 

rules to some internal nodes of the original plan once, replacing them by some new 

nodes, and usually leaving the rest of the nodes of the plan unchanged. There are 

known to be several sets of transformation rules. 

 

For II, SA and 2PO, some specific parameters are listed in Table 2.2. 

 

Table 2.2: Implementation specific parameters for 2PO [9] 

Parameter Value 
stopping_condition(II phase) 10 local optimizations 
Initial state S0 (SA phase) minS of II phase 
Initial temperature T0 (SA phase) 0.1*cost(S0) 
 

 
The parameters in Table 2.2 explain the definition of a local minimum for II. A state 

that satisfies the above operational definition is called r-local minimum. Every local 

minimum is an r-local minimum, but the converse is not true. r-local minimum as the 

stopping criterion for a local optimization implies that some downhill moves may be 

occasionally missed and a state may be falsely considered as a local minimum. But 

it is claimed that the saving in execution time by using this approximation outweighs 

the potential misses of real local minima. As the result, the performance of Two 

Phase Optimization algorithm is superior to those of the other algorithms. 
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CHAPTER 3 

 

 

DISTRIBUTED QUERY OPTIMIZATION 
 

 

3.1    A New Genetic Algorithm Formulation 

 

Our goal in this work is to develop a genetic algorithm based heuristic for the 

optimization of distributed queries and we present a New Genetic Algorithm (NGA) 

and evaluate its performance compared to an existing GA algorithm. A total of three 

algorithms will be discussed in order to show that NGA has a better performance 

when compared to others.  

 

In order to see how close are the GA generated solutions to the optimum solutions 

we first implemented an Exhaustive Search Algorithm (ESA) which takes a very 

long to return a plan but makes it possible to evaluate performance of the GA 

algorithms. Another technique to decide whether a given GA algorithm is good we 

have implemented a second algorithm that randomly generates an equal number of 

random solutions. If a given GA algorithm shows no (or very little) improvement 

compared to the completely random algorithm, then we can that the proposed 

mutation and crossover operators for the GA make no positive contribution to the 

search process. This algorithm is called as “Random” and shown in the experiments 

in the next section. 



 30

As mentioned before there is already a GA based algorithm proposed in [21]. We 

will call it Rho’s Genetic Algorithm (GA) throughout this study. As discussed in 

section 2.3, GA has a comprehensive query optimization model that, integrates copy 

identification, join order, join site selection, and reduction by semijoins into a single 

model. It exploits the concepts of gainful semijoins and pure join attributes. It 

considers both network communication and local processing costs. Sites and 

communication links can be heterogeneous in terms of unit costs and capacities.  

 

The last algorithm is our GA based algorithm with new mutation and crossover 

operators (NGA). We also use a greedy algorithm that improves a given plan by 

selecting copies of replicated relations at the nearest site. 

3.2   Chromosome Structure 

All possible query execution plans will be represented using a chromosome 

structure. This representation is the same as the one used in GA. The chromosome 

has n genes each one for a join condition given in the query. The gene order says in 

which order joins are evaluated and at which node. Execution starts with G1 on the 

left-hand side and finishes with the last Gene, Gn seen on the right-hand side. 

 

N shows the number of irreducible sub-queries in the query. In all our examples, the 

queries are assumed to contain such joins. In other words, queries will not be tried to 

be optimized. 

 

The chromosome structure of a query is shown in Figure 3.1. 

 



G1 G2 Gn……..

n is the number of irreducible joins

Cond. 
num

Node
num

Semi 
join

Copy
Site

Gi

Figure 3.1: Chromosome Structure 
 

The chromosome structure of a query is shown in Figure 3.1. Each gene, Gi, has the 

following information; 

• Condition number 

• Node number 

• Semijoin bits (2 bits) and  

• Copy Site  

 

Below, the crossover and mutation operators in NGA will be explained. In this 

paper, our proposed crossover is named as New-Crossover and mutation as New-

Mutation. In our work we use two-point crossover with 50% truncation technique 

since it is shown to be better than other alternatives in a set of distributed database 

design experiments [1]. Rest of the parameters for our GA is listed in Table 3.1. 

 

Table 3.1: Parameter values for Genetic Algorithm 

Initial Pool Size 100 

Mating Population 50 

Convergence Ratio 95% 

Crossover type Truncate, 2-point 

Truncate ratio 50% 

Crossover Ratio 0.7 (70%) 

Mutation ratio 0.005 (0.5%) 
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3.3  Optimization model 

The model is given as graph G containing a set of conditions, nodes and input 

relations residing at various sites. 

 

G = (C, N, S), where C is the set of conditions in the query graph, N is the set of 

nodes and S denotes set of source sites/nodes. 

 

The model used in this work is explained in Figure 3.2. 

 

N1 
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Figure 3.2: Optimization model 

 

Each condition, CiЄC, has input fragments (Fn) of relations at various sites, Sn. Then 

each condition is evaluated at NiЄN, then the result (Ri) is sent to the next node 

which might also be the same as Ni. Since we’re working with distributed queries, 

horizontal fragments or replicas must be taken into consideration for the condition to 

be evaluated. Each of the fragments or replicas (Fn) are fetched from (Sn) sites, 

optionally performing a semijoin operation. These operations are all done in parallel; 

maximum of these operations is the communication time to get the needed files from 

the residing sites (Sn).  

 

After deciding the best QEP, the Master Node which the query is issued by will 

order the related nodes to execute the sub queries that they are responsible for. 

{F1,F2…} 
S2 ….Sn 

{F3,F4…}S1

S2 …Sn

C1 C2

N2

R1 R2

Nn 

Cn 

N2

R1 R2 RnC1 C2

S1 



Semi join technique has also been implemented for D-QOA if feasible, which is 

different from the execution strategy. This is also another ongoing study for D-QOA 

which was presented shortly [19].  

3.4  Query Execution Model 

The model is given as a graph G = (C, S, F) containing a set of join conditions(C), 

sites(S) and input relations/fragments residing at various sites(F). 

 

Each join condition, Ci, has input fragments/replicas (Fj) of relations stored at sites, 

Sk. Each condition is evaluated at site Sk, after which the result (Rj) is sent to the next 

site which might also be the same as Sk. Since we’re working with distributed 

queries, horizontal fragments or replicas of a relation must be taken into 

consideration for a join operation to be evaluated. Optionally, a semijoin operation 

can be performed on each Fj. These operations are all done in parallel, and the 

longest of these operations is the communication time to transfer the input 

relations/fragments from their sites.  

 

Query Execution Plan (QEP) which is prepared using Query Execution Model is 

given in Figure 3.3. Dashed lines denote semijoin operations.  
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Figure 3.3 : Query Execution Plan 
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The cost of an execution plan, denoted by Cost(P) is calculated by using Formula 

3.1 and 3.2 below.  

 

Cost (P) = ∑ comm_cost(Reli, Ski) + ∑ Proc_cost (Cj) + ∑ comm_cost(Rk) 

                 i=0..n            j=0..m                    k=0..m 
(3.1) 

Comm_cost (Reli,Sk)= max | (comm_cost(Fij,Sk), where Reli has NFi fragm. 
    j=0..NFi 

(3.2) 

 

Our formula contains three different areas. First we begin with the communication 

costs of the related relations. In order to execute a sub query, firstly the 

fragments/replicas (Fi) of those relations must be fetched to the sites, Sk. This is 

done in parallel in our model, thus the cost will not be the total of the whole time but 

the maximum of them. For example, if R001 and R002 are to be fetched for a sub 

query then max communication time of the decided fragments/replicas will be taken 

as the communication time of the related files.  

 

Then secondly we see Proc_cost(Cj) which denotes the local processing cost of the 

ith sub query. All the calculations are done due to related formulas. Test bed has 

been explained in Table 3.1, 3.2 and 3.3. 

 

Table 3.2: Relation Schema 

Relation ID Attributes 

Rel_1000 (attr1, attr2, attr3, attr4, attr5) 

Rel_1001 (attr1, attr6, attr7, attr8, attr9, attr10) 
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Rel_1002 (attr6, attr11 attr12, attr13,attr14,attr15) 

Rel_1003 (attr11, attr16, attr17, attr18, attr19, attr20) 

Rel_1004 (attr16, attr21, attr22, attr23, attr24, attr25) 

Rel_1005 (attr21, attr26, attr27, attr28, attr29, attr30) 

 

• All key fields are 4-byte, rest of the fields are all assumed 6-byte long.  

• Rel_1000 has 120000, Rel_1001 has 100000, Rel_1002 has 80000, 

Rel_1003 has 60000, Rel_1004 has 40000 and Rel_1005 has 30000 tuples. 

• Any relation is vertically fragmented.  

• If horizontally fragmented, then the total number of tuples for that 

relation is randomly separated among the fragments. 

 

 

Table 3.3 : Selectivity Factors among Relations 

Percentage 
(%) 

Rel_ 
1000   

Rel_ 
1001   

Rel_ 
1002   

Rel_ 
1003   

Rel_ 
1004   

Rel_ 
1005   

Rel_1000   --- 21 16 34 60 12 

Rel_1001   21 --- 28 45 36 34 

Rel_1002   16 28 --- 43 5 30 

Rel_1003   34 45 43 --- 39 33 

Rel_1004   60 36 5 39 --- 29 

Rel_1005   12 34 30 33 29 --- 
 

 

For local processing times, only Block Nested Loop (BNL) has been used. In this 

type of calculations, BNL is commonly used for the sake of simplicity and gives 

results realistic enough. Other types of indexing (B+ tree, hash index, sort merge 



joins etc.) are out of vision throughout this study, since BNL works regardless of 

indices. According to Formula 3.3, BNL is evaluated; 

Local Processing Cost (Proc_cost(Cj))= N + M *  ⎥⎥
⎤

⎢⎢
⎡

− 2B
N  (3.3)

where M is the number of pages of bigger relation, N is that of smaller relation and 

B is the number of Buffer Pages 

 

 

If the number of Buffer Pages (B) are big enough to hold the smaller relation, 

namely B>N+2, and the smaller relation fits in the memory then Formula 3.4 is 

used; 

 

Local Processing Cost (Proc_cost(Cj)) = M + N (3.4)

 

One of two more pages is used for reading the larger relation page-by-page and the 

other page will serve as an output buffer. 

 

All network wide communications are calculated due to bandwidths listed in the 

same section. All data have been first thought as packets and then time is assessed 

due to those packets to take time through the WAN/LAN environment. 

 

Another important parameter for executing the queries is their selectivity. Selectivity 

Factor (SF) has been taken due to database statistics. The selectivity factors for input 

relations are given in Table 3.3, and they are used for calculating the expected size 

of join results that will greatly affect the communication costs in a distributed 

database environments. All formulations use the same value any time for the same 
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process. Experiments are done in order to find out which strategy is better than the 

others under the same conditions. 

 

There are three parameters of NGA that will greatly affect the performance of a GA 

based optimization algorithm. These parameters are (1) mutation percentage, (2) 

crossover percentage and (3) initial population size. In order to decide best values 

for these we performed three experiments plotting performance graphics for varying 

values of them.  

 

The results in Figure 3.4, Figure 3.5, and Figure 3.6 show that a crossover 

percentage of 0.6, mutation rate of 0.015, and initial population size of 100 gives the 

best results. In fact larger population sizes will slightly improve the solutions but 

only at the cost of an exponential increase in the GA runtime. 

 

Solution Quality of NGA
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Figure 3.4 : The performance of NGA for increasing crossover percentages 
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Solution Quality of NGA
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Figure 3.5 : The performance of NGA for increasing mutation rates 
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Figure 3.6 : The performance of NGA for increasing initial population size 

 

The crossover operation also has two widely used methods, one-point and two-point. 

In one-point a random position is selected on the chromosome and genes up to this 

point are copied from the first (second) parent and remaining genes are copied from 

the corresponding positions of the second (first) parent. In two-point crossover two 
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random points are selected on the chromosome and the genes between these two 

points are swapped. Both one-point and two-point crossover will generate two new 

individuals. 

 
Table 3.4: Types of Genetic Algorithms 

Genetic Algorithm Selection Type Crossover Type 
GA1 Tournament One-point 

GA2 Tournament Two-point 

GA3 Roulette Wheel One-point 

GA4 Roulette Wheel Two-point 

GA5 Truncate One-point 

GA6 Truncate Two-point 

 

In order to decide what combination of one-point/two-point crossover and 

tournament/roulette-wheel/truncate methods will give the best GA method, we have 

implemented 6 combinations as defined in Table 3.4, and compared them 

experimentally. The results are shown in Figure 3.7; 
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Figure 3.7 : Solution quality based comparison of selection and crossover type 
combinations 
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3.5  New-Crossover 

The number of genes for crossover is determined by multiplying the crossover ratio 

with the total number of genes in the chromosome. Typically, 60%-70% is 

commonly used. We have taken the crossover ratio as 60% since it has proven to be 

the best as shown in Figure 3.4 for NGA. In GA usually the crossover point is 

decided randomly, but in NGA it is determined by a heuristic. This crossover 

heuristic uses costs of genes for this purpose. The minimal cost subsequence of 

genes is selected for crossing.  

 

We will use chromosomes shown in Figure 3.8 to explain New-Crossover. The 

examples in this chapter are designed with respect to a query having eight 

irreducible sub-queries (n=8). Regard of being a randomized approach, rest of the 

values are used as in Table 3.1. 
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Figure 3.8: Parent Chromosomes (only condition numbers and cost of the genes   
are shown) 
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Definition(minimal k-length block): A minimum cost ‘k-length’ subsequence of 

genes is called a minimal k-length block in a chromosome and it has the lowest cost 

compared to all other ‘k-length’ subsequences of genes in that chromosome. 
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k-length subsequence is evaluated with Formula 3.5 below; 

  

k = Crossover Percentage*Chromosome Length (3.5) 

 

For applying the New-Crossover operator, the first step is to find a minimum cost 

subsequence of genes. Our subsequence length, k will be evaluated as 5, since the 

sample chromosome length is 8 and the crossover percentage is 0.6. Consequently, 

we need to find a 5-gene sequence which has the minimum cost relatively. In a 

DDBS such a minimum cost subsequence of genes will tend to use a minimal 

number of nodes resulting in minimal communication cost and joins with smaller 

input relations resulting in smaller intermediate results. 

 

In Parent 1, we have four alternative 5-length blocks. These are;  

• “C1 C8 C3 C5 C7” 

• “C8 C3 C5 C7 C2”  

• “C3 C5 C7 C2 C4” 

• “C5 C7 C2 C4 C6” 

 

When we evaluate costs of all these blocks, the last one, “C5 C7 C2 C4 C6”, is 

found to have the least cost when compared to others. The total cost (calculated by 

summing the gene costs under condition numbers in Figure 3.9) of this block is 25 

seconds and is the smallest one in Parent1. 

 

In the example in Figure 3.9, last 5 genes are taken from Parent 1 and then put into 

the same gene position in the generated offspring. Then, the first 3 absent genes are 

taken from Parent 2 preserving the order in which they appear in Parent 2. 

 



Parent 1 Parent 2 
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Figure 3.9 : Crossover Implementation (P1XP2) 

 

Definition (New-Crossover): New-crossover is an operator which takes a minimal 

k-length block from the 1st parent and preserves the positions and orders of these 

genes in the generated offspring. Then, the rest of the genes are copied from the 2nd 

parent in the order they appear in Parent 2. 

 

When Parent 1 and Offspring 1, shown in Figure 3.9, are compared, it is seen that 

only the order of the first 3 genes of Parent1 are changed. This process saves time 

and decreases the “Optimization Time” of the query.  

 

Here last 5 genes are taken from Parent 1 and then put to the same place in 

offspring. Then for the first 3 absent genes are taken from Parent 2 within the order 

that they take place in their original chromosome.  

 

When the Parent 1 and Offspring 1 shown in Figure 3.9 are compared, in fact we’ve 

changed only the sequence of the first 3 genes of Parent1 and that is also quite 

appropriate for the evolution strategy of GA. Here, we check a different 

configuration of the first 3 genes over a known to be min cost 5-gene order. The trial 

is done over a known good sub tree, thus we prune the trials for the genes which are 

currently in the sub tree. Since we have a min cost order of genes selected from 

Parent 1 then rest is tried for a better solution. But now we’re trying on a smaller set 

than original.  
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We believe that this strategy increment the possibility to reach a better sequence, if 

there is. It must always be kept in mind that despite of trying to find a better 

solution, this process might produce worse results as well because of randomness 

originating from its nature. Finally, this process is going to gain time and decrease 

the “Optimization Time” of the query. While gaining this time, there will be no loss 

in the other goal, namely “Query Execution Time”. 

 

As the result, this is believed and proven to be a very suitable way of handling 

crossover operator of NGA for a distributed query, which we called New-Crossover. 

In our experiments, NGA produced better results than usual GA for almost every 

occasion.  

 

To explain more clearly, now let’s do vice versa and see how Parent 2 will be 

crossed with Parent 1(P2 X P1) in order to produce Offspring 2. 

 

Parent 1 Parent 2 
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Figure 3.10: Crossover Implementation (P2XP1) 

 

Parents are the same as presented in Figure 3.8. Similarly, we’ve chosen a 5-gene 

sequence which has the minimum cost order when compared to other gene 

sequences. In Figure 3.6, “C7 C1 C6 C2 C4” order is chosen from Parent 2. Then 

other places of the offspring are filled with the genes of Parent 1 in their original 

order. In this example, the genes with the condition numbers C8 and C3 is put to the 

first two spaces and C5 to the last place in the Offspring 2. 

C1 
 1 

C8 
 7 

C3 
 17 

C5 
 9 

C7 
 3 

C2 
 5

C4 
6

C6 
2

C5 
9

C3 
5

C7 
 1

C1 
8

C6 
 14 

C2 C4 C8 
 3  1 2

C8 C3 C7 C1 C6 C2 C4 C5 
Offspring 2:    



 44

In this example, there is a probability of failure in producing a better result than 

original. This causes from the place of the sub tree. As you can see in the example, 

we’ve taken “C7 C1 C6 C2 C4” from Parent 2 (P2), because that sequence has the 

least cost relatively. But in front of those genes, there are other genes with the 

conditions C5 and C3 in P2. For the min cost 5-gene order “C7 C1 C6 C2 C4” in P2, 

C5 and C3 executed first, in other words the attributes for C5 and C3 have been 

fetched then our sub tree is executed. But in the offspring, we put C8 and C3 at the 

beginning which might possibly affect the cost of our min cost 5-gene order, and 

this election will affect the fetched attributes/relations in our sub tree. Unfortunately, 

the functional dependency for our sub tree might be possibly lost at that moment. 

This situation is the only drawback and inevitable occasion of this process. But you 

can meet with such a drawback more often in usual GA. 

 

New-Crossover is found to be effective esp. if the sub tree is at the beginning or at 

the end of the parent chromosome. In such cases, we have the same environment as 

in the original one then we have a good opportunity to catch a better one, if there is 

of course. If the sub tree is located at the end or at the beginning, all functional 

dependencies will be preserved, and we have possibility to try another combination 

at the same time. The process is done on a smaller set of genes over a known good 

order of genes, which increments the possibility to reach better.  

 

New-Crossover seems to be extracted or inferred from the idea that lies behind the 

Dynamic Programming which is one of the most important goals of this study. By 

taking a good known set of genes, in fact we prune rest of combinations for that set 

and do not need to look for better in that set. But we must not forget that this is just a 

possibility. It’s believed that the way handling the problem improves the power of 

GA. It can be alleged that New-Crossover is an effective modified version of GA for 

distributed queries. 

 

In both algorithms, the cost of each gene is known. Another important point is that 

decreasing or increasing the Crossover Rate is whether helpful or not for the 
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optimization of the query. That is a good future work in this study. But in briefly, it 

can be inferred that there must be an optimal point for this rate of a dist. query. If it 

is bigger or smaller than the optimal number then catching a sub tree will get harder, 

which shall degrade the overall performance of usual GA.   

 

Now let’s continue with our other operator, namely mutation operator which we call 

New-Mutation. This operator has an important effect for getting such a success in 

attaining the goals of this study as well. Let’s explain how New-Mutation is done 

and achieved performance in the “optimization time” and “query execution time” of 

the query for NGA.  

3.6  New-Mutation 

New-mutation operator modifies one of the join node number, chosen replica, and 

semijoin option of a gene. This operator works similar to the one used in [21]. 

However, the gene selection criterion is different and uses the cost of individual 

genes for assigning mutation probabilities. This is a randomized algorithm and 

involves the following technique:  

 

The costs of the genes are used as a selection probability which is obtained 

by dividing gene cost to the total chromosome cost. Then, a random number is 

generated and this number is used to select one of the genes for mutation where the 

probability of selection of a gene is proportional to its cost.  

 

Mutation operator has two common uses in usual GA. Firstly, two bits/genes or 

whatever the single unit is, has been changed and secondly, which is commonly 

done in bitwise chromosomes, a bit is randomly chosen then flipped. These kinds of 

changes are in fact opposite to the nature of a query. Because, if a change is done in 

the execution sequence of the query totally regardless of the dependencies in QEP, 

then you cannot infer that the offspring has been derived from a good parent. This 

will most probably result in poor performance, since the result will be come out 

from an unknown execution sequence. 



In NGA, New-Crossover is done among genes, it is a gene level operation, but New-

Mutation is done one level below, within the units that a gene has. As mentioned in 

Section 3.2, Chromosome Structure, each gene has three main data. which are 

sequentially; Condition Number, Node Number and Semi join sections. The Node 

Number section holds the information of the node number for that gene. An example 

for New mutation is shown in Figure 3.11. 
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Figure 3.11: Chromosome with condition numbers and costs of the genes 

Cost C1 C8 C3 C5 C7 C2 C4 C6
 1 7 17 9 3 5 6 2 50 

 

 

Because of three main reasons listed below, New-Mutation is done at Node Number 

level represented in the chromosome structure. These are; 

• Replacement at the gene level actually is done via New-Crossover, in other 

words we don’t need to do same level operation with New-Mutation 

operator. The function of New-Crossover is to look for a better complete 

order over a smaller set of known order of genes. New-Mutation operator 

would rather operate on the sub sections of a gene. 

• Secondly, we need a method to handle to correct the number of node. You 

can only reach the expected result unless there is a misplacement of the 

genes in the chromosome structure. Because hence that if the order of genes 

are correct but if the nodes are wrong, then there is no way to reach 

optimum. You must handle the Node Number of a distributed query in 

DDBMS for optimization, this is a must. On the other hand, after long trials 

this operator is found to be very powerful for decreasing the time for 

executing the distributed query. Even the experimental results showed that 

this method produces better results when compared to New-Crossover. 
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• Finally, elections of the most costly gene and changing the node number and 

semi join option of that gene have an important positive effect on the 

performance. This tendency is believed to originate from getting rid of 

network comm. cost. This does not always result as expected, but for 

generally speaking, executing the sub query at a wrong node result in worse 

performance according to our overall studies. Network comm. costs must be 

a great concern if the distributed environment has small and varying 

bandwidths among nodes [10]. This seems to be a very realistic situation on 

the other hand. This tendency can also be observed in Dynamic*-Query 

Optimization Algorithm.  

 

 

There is always a possible danger for executing a query having many conditions in 

its “WHERE” clause. This danger originates from the nature of randomized 

algorithm. As known, these algorithms decide in condition number, node number 

and a semi join randomly. Though we try to do some operations deliberately, in fact 

at the beginning everything is handled randomly, and many other operations are 

done complying with the nature of GA. We choose the gene for New mutation in the 

same way as done in Roulette Wheel Selection. 

 

The idea behind the roulette wheel selection technique is that each individual is 

given a chance to become a parent in proportion to its fitness. The chance of 

selecting a parent can be seen as spinning a roulette wheel with the size of the slot 

for each parent being proportional to its fitness. Obviously those with the largest 

fitness (slot sizes) have more chance of being chosen. Thus, it is possible for one 

member to dominate all the others and get selected a high proportion of the time. 

 

 

 

 



Table 3.5: Selection probability of  a gene in New-mutation 

Number of gene 1 2 3 4 5 6 7 8 

Cost of gene 1 7 17 9 3 5 6 2 

Selection 
Probability 0.02 0.14 0.34 0.18 0.06 0.10 0.12 0.04 

where N is the number of individuals in the population.  

 

Table 3.5 shows the selection probabilities for an 8-gene chromosome given in 

Figure 3.11. The 3rd gene has the highest cost and, the 1st gene has the smallest cost, 

therefore they have the highest and lowest, respectively, probabilities for being 

mutated. 

 

Pi = costi / ∑ costj 
=

N

j 1
(3.6)

 

So, the bigger the cost of a gene is, the more probable for selection is. The 

probability of the Gene i is shown in Formula 3.6. 

 

While candidate solutions with a higher fitness will be less likely to be eliminated, 

there is still a chance that they may be. With roulette wheel selection there is a 

chance some weaker solutions may survive the selection process; this is an 

advantage, as though a solution may be weak, it may include some component 

which could prove useful following the recombination process. 

 

Definition (New Mutation): New-mutation is an operator which does the selection 

according to the cost of each gene found in the chromosome rather than electing 

randomly. This process forces the cost of the genes to be in a reasonable range to an 

extent. 

 48



 49

The analogy to a roulette wheel can be summarized as each candidate solution 

represents a pocket on the wheel; the size of the pockets is proportionate to the 

probability of selection of the solution. Selecting N chromosomes from the 

population is equivalent to playing N games on the roulette wheel, as each candidate 

is drawn independently. 

 

New-mutation has the following advantages and differences when compared to 

usual Mutation; 

• New-mutation proves to produce very effective results with respect to usual 

Mutation. Since usual mutation handles the chromosome structure too 

clumsily, most of the time produces worse results. Because of that reason, 

New-mutation is faster and more likely to reach the result when compared to 

the mutation operator of usual GA 

• New-mutation resembles usual mutation by means of changing one bit (Node 

Number) of the Chromosome or the semijoin option, 

• New-mutation makes the change in harmony with the nature of QEP. It is not 

related with the condition of the gene, but that of node number.  

• The most costly genes are more probable to be elected. This forces the cost 

of the genes to be in a reasonable range to an extent, and produces in very 

effective results. 

 

The last two fields of a gene is Semijoin and Copy Site sections. Semijoin consists 

of 2 bits. It might have 4 different values. These values are explained below; 

1. ‘00’, There is no semijoin 

2. ‘01’, Related colons are taken from the 2nd relation and sent to the site 

that 1st relation resides. 

3. ‘10’, Related colons are taken from the 1st relation and sent to the site 

that 2nd relation resides.  
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4. ‘11’, Both relations send their attribute colons to the site where that 

condition will be executed. 

  

‘Copy site’ is a vector for each relation. Each value in this vector shows the site 

number from where that relation will be accessed. This vector is similar to ‘CopyId’ 

attribute of [21] which presented in Table 2.1.  
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CHAPTER 4 

 

EXPERIMENTAL SETUP AND RESULTS 

 

4.1  Experimental Setup 

In order to compare NGA with ESA (Exhaustive Search Algorithm), we composed a 

synthetic distributed database schema. An interconnection network with 1Gbps 

Ethernet links is assumed. Each node is assumed to be able to communicate with 

any other node, without considering multi-hop transmissions and store-and-forward 

delays. Current technology with Gbps LAN/WAN links with very low delay 

protocols (e.g. MPLS and ATM) make our assumptions realistic and low cost. 

 

A total of 6 distinct relations has been defined and presented in Table 3.2. Since we 

are not comparing join methods, we don’t attempt to locally optimize a given 

query’s access paths [13]. All queries are assumed as irreducible. 

 

Each processing node is assumed to have the following specifications: 

• Number of Buffers  = 102 (each one page size) 

• Page Size   = 10240 bytes 

• Td (Disk I/O Time) = 0.01 sec (per page) 

• RAM Size   = 128 MB 
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All nodes are homogenous, in other words, all have the same RAM size, number of 

buffer pages and page sizes. The files used for the implementation are explained in 

Figure 4.1 below; 

 

 

 

 

1. environmental_values.txt contains; 

BufferSize, RAMSize, disk I/O time and PageSize = (In bytes)  

2. environmental.txt contains the values of  

number of the nodes in the WAN, query_initiated_node, sql file to use; e.g. "4"= 
sql4.sql and finally deployment = "4r_1r" means 4 relation and 1 is replicated 

3. GA values.txt contains; 

Initial_population, Crossover Percentage and Mutation Percentage.  

4. hops.txt holds the info among the nodes in terms of hop numbers between 
each of the node in matrix style, 

5. rels_3r : only 3 relation, node number and tuple num is given, 

6. rels_3r_1f : (similar)3 rels , 1 is fragmented, 

7. rels_3r_1f_1r : (similar)3 rels , 1 is fragmented, 1 is replicated, 

8. rels_3r_1r : 3 rels, 1 is replicated, 

9. rels_4r : only 4 relation, node number and tuple num is given, 

10. rels_4r_1f : 4 rels , 1 is fragmented, 

11. rels_4r_1f_1r : 4 rels , 1 is fragmented, 1 is replicated, 

12. rels_4r_1r : 4 rels, 1 is replicated, 

13. schema_chr_vals.txt : issuing_nodes, their frequencies and issued sqls 
will be executed in the given sequence. 

14. sql3-6 and sql5__0-9 are different sqls having different number of rels 
given as the last number of the file. 

15. pool.txt: Assignment table of relations which is created by clustering.  
 

Figure 4.1 : File Descriptions 



Since the GA model given in [21] ignores selection operations, we also consider 

only queries with join operations in our experiments. This way we can perform and 

give a fair comparison of our NGA with [21].  

4.2   Experimental Results 

5 different test distributed database schemas have been prepared for each of the 

experiments. These schemas form the X-axis of the graphs. Y-axis shows the 

solution quality times obtained for each schema.  

 

The results will be mainly examined by using 2 different scenarios; 

1) Number of nodes is increased from 2 to 6 as the other parameters remain the 

same. Same query is used for each case. This query is a linear type one which 

refers to 4 relations. 

2)  Number of relations is increased from 2 to 6 as the other parameters remain 

unchanged. For each query, Qi the number of relations in it is i. All queries are 

linear type and total number of nodes is assumed as 4 for any case. 
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Figure 4.2: The effect of increasing number of nodes 
 

 

 

Figure 4.2 shows the effect of increasing “Number of Nodes”. In Figure 4.2(a) ESA 

gives the optimum value and helps us to evaluate the performance of GA algorithms 

by comparing how close it is to the optimum value. We also give results for a 

“Random” algorithm which randomly generates the same number of solutions as the 

GA algorithms and we use it to determine if the GA contributes positively to finding 

and developing better solutions to the problem. If a GA performs worse than the 

“Random” algorithm, we can safely conclude that its crossover/mutation operators 

and selection strategy are ineffective. Our experiments show that NGA finds 

acceptable good solutions when compared to ESA and GA. Also, when the problem 

size increases, the time needed for ESA grows exponentially as shown in Figure 

4.2(b), making ESA too costly and NGA a very competitive alternative. 
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Figure 4.3: The effect of increasing number of relations 
 

 

 

Figure 4.3 presents the effects of increasing “Number of Relations” on performance. 

Figure 4.3(a) shows the “Solution Quality” which is the execution time of the query 

plan found for answering the query. When the problem size is small all algorithms 

produce very close cost solutions, but as the problem size increases ESA will 

produce about 10% to 15% better solutions than NGA.  
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In Figure 4.3(b), it is seen that as problem size grows with the number of relations, 

the optimization (execution) time of the ESA algorithm increases exponentially. 

Thus, we can say that as problem size (esp. number of relations) grows, NGA 

becomes a much better alternative than ESA and GA. 
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CHAPTER 5 

 

 
DESIGN OF DISTRIBUTED DATABASE SCHEMA USING A GENETIC 

ALGORITHM 

 

 

One of the aims of this thesis is generation of a distributed database schema with a 

randomized approach for a given environment. An environment is composed of the 

following information; 

• Queries, 

• Query issuing nodes and frequencies of those queries, 

• Relations, 

• Nodes and network bandwidths (LAN/WAN), 

 

Firstly, we have to decide the solution strategy of this problem. We again use usual 

genetic algorithm (GA). The values are as listed in Table 3.1. Our chromosome 

structure will be different than our NGA chromosome. Each chromosome is a 

solution for the problem and denotes a different Distributed Database Schema. 

Relation and nodes, all calculations with respect to queries will be done for each of 

the chromosomes. Although it seems to be cumbersome process, we’ll control this 

evaluation process time by our standard operators. 

 



5.1 Distributed Database Schema Chromosome and Query Structure 

The chromosome structure of a Distributed Database Schema (DDB_Sch) is 

explained in Figure 5.1. 

 

 58

……. Gene 1 Gene 2 Gene 3 Gene n 

Fragment ID Node number 

 
 
 
 
 
 
 
 

Figure 5.1: Chromosome Structure of a Distributed Database Schema 
 
 

The chromosome has genes holding the information of the DDB Schema. It has the 

following fields; 

• Fragment ID 

• Node number 

 

“Fragment ID” is the physical name of the table of a logical relation. Table 5.1 and 

5.2 shows how those are assumed and handled in our model. In Table 5.1 and 5.2, 

fragmentation and replication is shown since our algorithm can handle both 

fragmentation and replication of those fragments/relations. 

 

“Fragment ID” is composed of relation name, fragment name and replica name.  

 

The id of Rel_xxxyyzz denotes that ‘xxx’ logical relation number, where ‘yy’ 

denotes the fragment number and ‘zz’ denotes the replica number. For example, 

Rel_10020102 is used as the following; 
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Rel_1002 is the relation name, ‘01’ shows that this is the first fragment. This also 

means that there are at least two fragments. If there is no fragmentation, then that 

number must be ‘00’. Then, the final two digits, ‘02’, show that this entity is the 

second replica of that fragment. If there is no replication then replica number should 

be ‘00’. 

 

Table 5.1 : Horizontal Fragmentation of the relations 

Logical Relation Name Fragment number ID 

Rel_1000 1 1000 00 zz 

1001 01 zz 
Rel_1001 2 

1001 02 zz 

Rel_1002 1 1002 00 zz 

1003 01 zz 

1003 02 zz Rel_1003 3 

1003 03 zz 

Rel_1004 1 1004 00 zz 

 

In Table 5.2, how the replication is done will be described. 

 

Table 5.2 : Replication of the fragments/relations 

ID Replica number Fragment ID 
Number of 

fragments 

1000 00 zz 1 1000 00 00 1 

1001 01 zz 1 1001 01 00 2 

1001 02 01 3 1001 02 zz 3 

1001 02 02 4 
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1001 02 03 5 

1002 00 01 6 
1002 00 zz 2 

1002 00 02 7 

1003  01 01 8 
1003 01 zz 2 

1003 01 02 9 

1003 02 zz 1 1003 02 00 10 

1003 03 zz 1 1003 03 00 11 

1004 00 01 12 
1004 00 zz 2 

1004 00 02 13 

 

 

Table 5.2 shows the physical entities derived from the logical relations. As 

mentioned in Table 3.2, all relations have changing number of cardinals. If any 

relation is fragmented then the total number of tuples for that relation is randomly 

separated among the fragments.  

 

Since ESA response time has too big value, we have used a test bed consisting 5 

nodes with 5 relations for the DDB Schema algorithm experiments. On the other 

hand, this type test bed is believed to be enough to show the performances of the 

algorithms. 

5.2 Genetic algorithm for DDB Chromosome 

5.2.1 Crossover 

The crossover operator has the goal of combining good solutions of one generation 

producing offspring which will hopefully be superior to its parents. One of the 

characteristics of the DDB chromosome is that each Fragment ID is contained 

exactly once in each chromosome. It’s a unique number. 



A possible crossover operator for a DDB chromosome is explained in Figure 5.2. 

Numbers of the genes denotes the Fragment IDs. 
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Figure 5.2: Crossover operation for a Distributed Database Schema Chromosome 

 

 

Crossover operator for a DDB Chromosome works as follows; 

1. Two parent chromosomes are chosen with respect to GA type, which is 

Truncate method with 2-point crossover type as discussed in Table 3.1 and 

3.4. 

2. The genes those will not be crossed are carried to the offspring in their order. 

3. Finally, the genes which will be crossed are substituted with the genes of 

other parent (P2). 

 

One of the problems that one might meet while deciding the design of a DDBMS is 

that each relation tends to be at the same node or two nodes at most. This tendency 

originates from the communication cost. Because if you place all the fragments at 

the same node, then it means that there will be no communication cost and this 

results as better performance for that DDB Chromosome, this behavior is centralized 

and out of the vision of this study. 

 

We made some more assumptions in order to avoid from such a situation that all the 

fragments comes together at the same node. In the experiments, some assumptions 

are made to overcome such problems. These assumptions are helpful for also 

creating more realistic cases. 
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5.2.2 Mutation 

Mutation operator has a similar process as usual GA. As it is not allowed that the 

same Fragment ID appears twice in a DDB Chromosome, the mutation operator 

simply changes the node numbers of two random genes. The order of the genes has 

no importance.  

 

It is advisable to perform only a few mutations per generation. Otherwise, the 

evolution process might be severely disrupted. Commonly used value (1%) is used 

for DDB Mutation as well. On the other hand, for a randomized algorithm several 

tests have been held and for both crossover and mutation percentages, the optimum 

values are found. These will be explained in Section 5.4. 

5.3 System Structure 

Table 3.1 shows the logical structure of the relations used throughout this study. 

Here the “Fragment ID” denotes the physical name/fragment of that relation, and 

the “Node number” shows simply the node number where that physical entity is 

residing at. 
 
 
 

Table 5.3: Queries, frequencies and issuing nodes 

No Queries Frequ
ency 

Node 
# 

1 

 

SELECT  <selection_list> 

FROM  Rel_1000, Rel_1001, Rel_1002, Rel_1003 

WHERE  Rel_1000.attr_1 = Rel_1001.attr_1 
 AND Rel_1001.attr_6 = Rel_1002.attr_6 
 AND Rel_1002.attr_11 = Rel_1003.attr_11 
 AND Rel_1002.attr_12 <  some_val  

 

300 0 

2 

 
SELECT  <selection_list> 

FROM  Rel_1000, Rel_1001, Rel_1002, Rel_1003  

WHERE  Rel_1000.attr_1 = Rel_1001.attr_1 
 AND Rel_1001.attr_6 = Rel_1002.attr_6 
 AND Rel_1002.attr_11 = Rel_1003.attr_11 
 AND Rel_1000.attr_2 >=  some_val  
 

200 2 
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In Table 5.3, two sample queries referencing four relations are presented and used 

for DDB chromosome experiments as root. ‘<selection_list>’ part of the 

sample SQLs denote a set of several attributes of the relations that are done on 

select-project-joins and ‘some_val‘ is any value which the selection of records are 

done with regard to. These two values are assumed to be assigned with respect to 

database statistics in our experiments.  

 

The queries with their frequencies and the issuing nodes are also given in the same 

table. These assumptions are similar to real life, e.g., in a DDBMS 500 queries are 

run totally in a selected period of time and in that period 1st query is run from the 2nd 

node 300 times in that DDBMS as shown in Table 5.3. This value is assumed and 

can be obtained from a DB expert in real life applications as statistical information.  

5.4 Distributed Database Schema Design 

Chromosome structure is the same as presented in Section 5.1. Distributed queries 

are executed for each instance of DDB Schemas. These queries are assumed as in 

Table 5.3. This set may have queries up to the number ‘k’. In this study, our query 

set composes of 2 queries, i.e., k=2. Each query is optimized due to NGA separately 

and DDB schema has a weighted cost for that set. 

 

For the calculation of DDB chromosome, query frequencies are assumed to be found 

with respect to the following Formula 5.1 in that DDBMS. 

 

Frequency (Fri) = How many times query i issued (5.1)

where ‘i’ is the number of that query. 

 

In our DDBMS model, it assumed to be 5 relations and the whole data is partitioned 

among 13 fragments. Now we have to decide the places of those entities. This will 

be modeled with our Distributed Database Schema (DDB_Sch) chromosome. Each 

of them represents a different schema. All queries will be executed by the issuing 



node.  Within that schema we will get a response time totally. Then with respect to 

our Fitness Function (SolDDB), Formula 5.2, we will have the DDB Schema. 

 

 

Fitness Function (SolDDB)= min (Cost of DDB_Sch) 

 

 

(5.2)

 
 

Cost of DDB_Sch (CostDDB_Sch) is the weighted cost of the response time of each 

query. The weighted cost of queries is obtained by the help of the frequencies of 

each query (Fri).  

 

Frequency of a query is simply proportion of the execution number of that query to 

that of total. By the Formula 5.3 we get the “CostDDB_Sch of chromosome”; 

 
 
 

 

CostDDB_Sch = ∑
= ki ..0

Fri * Response Time of Queryi 

 

 

(5.3)

where k is the number of total queries. 
 
 

The queries, their frequencies and the issuing nodes are given in Table 5.1. By the 

help of these input values, CostDDB_Sch of all DDB chromosomes can be evaluated. 

The minimum one will be our DDB Schema, which is the goal of this study.  

 

For solving the distributed database design problem we employ a nested genetic 

algorithm as defined in [10, 15, 21]. In the outer loop, the usual GA creates the DDB 

Schema and in the inner loop New GA (NGA) optimizes single distributed queries 

separately on that schema. Our design id presented in Figure 5.3. Each single query 

is evaluated with respect to the allocated DDB schema. In other words, each single 

query optimization is dependent on DDB schema is optimized by NGA in our 
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model. In the experiments, we compare our algorithm with Exhaustive Search 

Algorithm (ESA) and another nested genetic algorithm in [10, 15, 21]. For ESA, in 

the outer loop ESA is used for creation of DDB schema creation and in the inner 

loop ESA is used to optimize the distributed queries.   
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Figure 5.3 Nested Genetic Algorithm for DDB Design 

1.   Generate initial pool of solutions {Outer Loop} 

 l.a. Randomly generate a feasible data allocation (to be feasible, 

each file (fragment) must be allocated to at least one node), 

 l.b. Use the (nested) operation allocation genetic algorithm to 

allocate operatio execution plan, 

 1.c. Repeat step 1 until the initial solution pool is generated. 

2.   Iterate through successive generations: 

 2.a. Probabilistically select two parent solutions from the 

solution pool (2-point, Truncate Method is used), 

 2.b. Produce a new data allocation by applying crossover or 

mutation (the mutation rate is an input parameter), 

 2.c. Use the (nested) operation allocation genetic algorithm to 

allocate operations for this data allocation (offspring), thus producing 

a complete query execution plan for this data allocation, 

  {Inner Loop} 

  2.c.1. Use NGA for query optimization, 

  2.c.2. Calculate total cost of all queries. 

 2.d. If the new solution is better than the worst solution in the 

solution pool, add it to the pool and remove the worst solution, 

 2.e. Repeat until the worst solution is within x% of the best. 

 

 

For the other nested genetic algorithm, GA algorithm is used both for data allocation 

and for the operation allocation. GA is described as in [10, 15] for the outer loop and 

in the inner loop Rho’s GA is used as described in [21]. This algorithm is named as 

RGA in the following experiments. 



Our nested genetic algorithm, DDB Design Algorithm (named as DGA) and in the 

outer loop usual GA works but in the inner loop NGA is used for single distributed 

query optimization briefly. DGA operates as in Figure 5.3. 

 

All DDB schemas are evaluated and the election is done according to GA rules, 

where the results will be presented in the following section. Each chromosome 

obtained by GA is a solution for us and all of them will be evaluated with respect to 

Formula 5.2 and 5.3. In fact, Formula 5.2 is our Fitness Function for GA. 

 

For a DDB Schema chromosome several tests have been done in order to find 

relatively optimum values for crossover and mutation percentage and the initial 

solution size.  The results are presented in Figure 5.4, Figure 5.5, and Figure 5.6. 

They show us that a crossover percentage of 0.7, mutation rate of 0.01, and initial 

population size of 12 gives the best results for a DDB Schema chromosome for GA. 

For the experiment presented in Figure 5.6, larger population sizes will slightly 

improve the solutions but only at the cost of an exponential increase in the GA 

runtime. 
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Figure 5.4 : The performance of DGA for increasing crossover percentages 
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Figure 5.5 : The performance of DGA for increasing mutation rates 
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Figure 5.6 : The performance of DGA for increasing initial population size 
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5.5 Experimental Setup and Results 

In our experiments we try to find a DDB Schema in such an environment which is 

designed as in the following; 

• Relations are created, fragmented and replicated as in Table 5.1, 5.2, 

• Queries, their frequencies and the issuing node are the same as in Table 

5.3, 

• Each node is assumed to be able to communicate with any other node, 

without considering multi-hop transmissions and store-and-forward delays. 

• Relation Schema and the selectivities are as in Table 3.2 and 3.3, 

• In order to avoid from the situation that all the fragments comes together 

at the same node, at least half of the nodes have been assigned at least one fragment. 

• If any relation is fragmented, each fragment has equally divided number 

of total records presented in Table 3.2. 

 

Our experiment parameters are read from text files and documented in the thesis for 

simplicity. All tests are done and discussed using 6 different cases listed below. 

Since ESA shall produce a hyperbolically execution time a small test-bed is used; 

1. 3 Node-3 Relation: There are only 3 nodes and all relations are not 

replicated, 

2. 3 Node-3 Relation and 1 Relation replicated: There are 3 nodes again, and 

one of the randomly selected relation is replicated once, 

3. 4 Node-4 Relation: There are now 4 nodes and 4 relations, and any of the 

relations is replicated, 

4. 4 Node-4 Relation, 1 Relation replicated: There are 4 nodes again, and one 

of the relations is replicated once, 

5. 5 Node-5 Relation: There are 5 nodes and 5 relations in the WAN, and any 

of the relations is replicated, 

6. 5 Node-5 Relation, 1 Relation replicated: There are 5 nodes again, and one 

randomly selected relation is replicated once. 
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Although DGA can evaluate DDB Schema cost for the fragmented relations, it is not 

used since RGA has not this capability. Because of that, all relations are assumed 

not to be fragmented or as only one fragment. Replicas are included for test cases. 

 

In all cases, one of the relations is statically assigned to a node and then others are 

placed in order to get the minimum response time according to the algorithm, e.g., 

2nd relation is assumed to be placed at Node 3, then the rest of the relations are 

decided according to the algorithm. This is done for the cases that take place as in 

real world problems. In some of the cases we might need to place a relation to a site 

compulsorily, or we might not have possibility to move a relation to any other place, 

and then the other relations must be placed with respect to that relation. For such 

cases in distributed database design issue, our application has solutions as well.  

5.5.1 Comparison of ESA, DGA and RGA 

The result of any case for DGA and ESA is the arithmetic mean of 20 independent 

runs for the outer loop, and any outer loop which is a DDB schema, is again the 

arithmetic mean of 20 independent runs of the inner loop. Inner loop denotes the 

algorithms, e.g. NGA and GA that are discussed and presented in Section 4 for a 

single distributed query optimization. Inner loop runs on the schema that comes 

from the outer loop for that instance.  

 

 



0

1

2

3

4

5

6

7

1 2 3 4 5 6

Cases

ra
tio

 w
rt

 D
G

A

ESA
DGA
RGA

 

Figure 5.7 : Optimization Times of DDB Design Algorithms 

 

Figure 5.7 is important since the total response time of DGA and DGA is presented 

for evaluating the each case. As the node number and relation numbers increases, its 

response time increases hyperbolically.  

 

The result in Figure 5.7 is obtained with respect to DGA. DGA is taken as 1 and 

ESA and RGA results are relatively presented. If we closely examine Figure 5.7 we 

can see that though DGA works approx. 20% less in time than RGA and it finds 

better results than RGA as shown in Figure 5.8. It is believed that this difference 

originates from the power of NGA for solving single distributed query. Since ESA 

works combinatorial, as the node and relation number increases, its response time 

increases hyperbolically. 
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Figure 5.8 : Query Execution Times of optimized DDB.  

 

In the inner loop, the results are evaluated for each of the single DDB queries and 

the outer loop evaluates the DDB schema cost with respect to these results within 

that schema by using the Formulas 5.2 and 5.3. 

 

When we look at Figure 5.8, ESA, DGA and RGA is compared relatively. ESA 

value is taken as 1 and others find the execution time as ESA time fold. Execution 

time is the time obtained by the Formula 5.3.  Since ESA finds the optimum value, 

the execution time of DGA and RGA are higher than that of ESA. If Figure 5.8 is 

closely examined, DGA finds approx. 3% higher than ESA while RGA finds 

approx. 9% higher than that. On the other hand, by the help of DGA, GA used for 

DDB chromosomes finds results close to optimal within its execution time. The 

response time is believed to be reasonable and DGA might be used for real-life 

problems. The experiments for a better performance of a DDB chromosome will be 

a good future work.  
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We prepared a test case for two input queries listed in Table 5.3 which will use a 

horizontally fragmented relation. The first case is shown for the frequencies in 

Appendix-A. 

 

When we modify the frequencies of queries we observe that the storage location of a 

fragment will be changed. The algorithms obtain optimal execution times for both 

queries. If we use the 1st frequency for the 2nd query and similarly the 2nd frequency 

for the 1st query then the results are changed. This is the 2nd test case 2 and shown in 

Appendix-B. 

 

The test cases show also that DGA results finds better results when compared to 

DDB results, and close to that of ESA.  

5.6 DDB Design Using Relation Clustering  

We defined a method, relation clustering, that gathers related relations into same or 

adjacent nodes in order to increase the performance of DDB Design Algorithm. The 

query plans are for these DDB designs are calculated using DGA and we achieve 

about 30% improvement in query execution results.  

 

At the beginning, a pool has been created. This pool is used as the initial pool for the 

randomized algorithm rather than creating the initial pool randomly. That causes a 

remarkable performance increase as the search space size gets bigger. Figure 5.10 

and 5.11 show that Clustered DGA, which will be abbreviated as CGA, reaches 

better results faster than usual DGA. 

 

Relation clustering is done with respect to the following code, as presented in Figure 

5.9; 
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In Figure 5.10 (a), the query execution times found by DGA and Clustered DGA 

(CGA) are shown. In Figure 5.10(b), relative comparison of both algorithms is 

presented. It is noticeable that CGA proves to get a linear better performance while 

the search space increases. Cases are the same as listed in section 5.5.  

 

 

Input: N number of queries in Query_list 

Output: place M number of relations in a DDB referenced by 

queries in Query_list. 

 
begin 
 
for i= 0..N {  
    CALCULATE_COST(Qi)                              (1) 
} 
QL ← SORT_DESCENDING{Q0..QN};       (2) 
//sort the queries wrt their costs, the most costly is at the top 
 
do { 
  for k= 0..M { // for all Relations      (3) 
   for i= 0..N {  // for all queries     (3.1) 
     if (Relk is statically assigned to a Node) continue;  (3.2) 
     if (Rel is not referenced by Q ) continue;    (3.3) k i

     if(RELk is not assigned to any Node) {    (3.4) 
 PLACE RELk TO ASSIGNED_NODE(RELk,Qi);    
        RelCOST  = Cost(Qi); k

        continue; 
     } 
     Change Node of REL  (Q , Probability);     (3.5) k j

// Probability ={Cost (Qi) / (Cost (Qi)+ RelCOSTk) 
   } 
  } 
  CREATE A INDIVIDUAL FOR INITIAL SOLUTION POOL;    (4) 
}  
while (a solution set list of relations are assessed)   (5) 
 
end.  
 

Figure 5.9: CGA Pseudocode 
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Figure 5.10 : Query Execution Times of DGA and Clustered DGA 

 

Response time of both DGA and CGA is presented in Figure 5.11. Since CGA 

works on known good set, it reaches the result quicker than DGA. 
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Figure 5.11 : Optimization Times of DGA and CGA 

 

 

We also made similar experiments to make sure that relation clustering increases the 

performance. Figure 5.11 is prepared as the node number increases in WAN. Here 

we can observe a performance increase about 20%. Node number and relation 

number changes as shown in cases, might affect the result differently, since these 

parameters have different weights in the result. Optimization Time is not shown 

since it has a similar attitude as in Figure 5.11. 
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Figure 5.12 : Query Execution Times of DGA and Clustered DGA 

 

Finally, we think that a relation/database deployment is the first point in the 

distributed query optimization area. This study is done to help database managers in 

order to decide their database schema. A distributed database schema inference with 

a minimum cost is the main goal of this thesis. 
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CHAPTER 6 

 

 

CONCLUSIONS 
 

 

In this work we have evaluated a thorough set of alternatives for a GA based 

solution to the distributed database query optimization problem. In order to be able 

to evaluate the performance of our NGA algorithm, we have compared it with a 

previously defined GA. We have also implemented exhaustive and random 

algorithms so that we will have upper (given by random algorithm) and lower(given 

by exhaustive algorithm) bounds for the solution costs determined by GA. If a 

genetic algorithm cannot produce better results than a random search algorithm, then 

it has no useful contribution to the problem solution. Our experimental results show 

that our proposed NGA is about 10% to 15% worse than the best achievable solution 

while its execution times are much lower than the exhaustive algorithm. 

 

We have also investigated the effect of increasing number of nodes and number of 

relations in a distributed database. Our results show that the costs of the plans 

produced by NGA are very close to the optimal plans produced by the exhaustive 

algorithm. The execution time of NGA grows almost linearly (as expected from a 

genetic algorithm). NGA gives better plans than a previously derived genetic 

algorithm, GA.  
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As future work, we are planning to extend our exhaustive algorithm to work on a 

parallel processing machine such as Intel HPC grid and determine and compare 

results with our NGA for 10-20 node distributed database systems with a 

comparable number of relations. Development of algorithms for query optimization 

on distributed database systems with various LAN/WAN links and bandwidths 

especially in the domain of data warehouse applications [26] would also be a very 

interesting research direction as such systems are becoming more and more 

widespread with the huge cost reductions in high capacity hardware and high-speed 

WAN links. 

 

We have started evaluating our NGA heuristic on other types of queries in addition 

to linear type ones. We expect to get better good performance for star and tree type 

distributed database queries when compared to other GAs.  

 

Our genetic algorithm is also tried as DDB Design Algorithm (named as DGA) and 

our test results show that DGA finds better designs when compared to other known 

DDB Design Algorithms presented in Section 5.4 [10, 15, 21]. The results are close 

to that of an exhaustive algorithm, ESA, but as the search space gets bigger, DGA 

will become to be the most preferred algorithm as a DDB Design algorithm because 

of its low execution time compared to exponential increase in execution time of 

ESA. 

 

We also defined a method, relation clustering that gathers related relations into same 

or adjacent nodes in order to increase the performance of DDB Design Algorithm. 

The query plans are for the DDB designs are calculated using DGA and we achieve 

about 30% improvement in query execution results.  
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APPENDIX A 

 

 

Test case 1 for DDB schema 

 
1. ESA, Response Time: 3640 msecs, Query Execution Time: 9.366 secs. 
Relation_ID : 10000000, Node_number : 2 
Relation_ID : 10010000, Node_number : 2 
Relation_ID : 10020000, Node_number : 2 
Relation_ID : 10030000, Node_number : 0 
 
2. NGA, Response Time: 1633 msecs, Query Execution Time: 10.263 secs. 
Relation_ID : 10000000, Node_number : 2 
Relation_ID : 10010000, Node_number : 2 
Relation_ID : 10020000, Node_number : 2 
Relation_ID : 10030000, Node_number : 1 
 
3. DDB, Response Time: 1679 msecs, Query Execution Time: 10.955 secs. 
Relation_ID : 10000000, Node_number : 2 
Relation_ID : 10010000, Node_number : 2 
Relation_ID : 10020000, Node_number : 2 
Relation_ID : 10030000, Node_number : 2 
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APPENDIX B 

 

 

Test case 2 for DDB schema 

 
1. ESA, Response Time: 3359 msecs, Query Execution Time: 11.194 secs. 
Relation_ID : 10000000, Node_number : 2 
Relation_ID : 10010000, Node_number : 1 
Relation_ID : 10020000, Node_number : 1 
Relation_ID : 10030000, Node_number : 0 
 
2. NGA, Response Time: 1663 msecs , Query Execution Time: 12.301 secs. 
Relation_ID : 10000000, Node_number : 2 
Relation_ID : 10010000, Node_number : 1 
Relation_ID : 10020000, Node_number : 1 
Relation_ID : 10030000, Node_number : 0 
 
3. DDB, Response Time: 1719 msecs, Query Execution Time: 12.482 secs. 
Relation_ID : 10000000, Node_number : 2 
Relation_ID : 10010000, Node_number : 1 
Relation_ID : 10020000, Node_number : 1 
Relation_ID : 10030000, Node_number : 0 
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