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ABSTRACT 
 
 

COMPARISON OF  
GEOSTATISTICS AND ARTIFICIAL NEURAL NETWORKS 

IN RESERVOIR PROPERTY ESTIMATION 
 
 
 

Arzuman, Sadun 

Ph.D., Geological Engineering Department 

Supervisor: Prof. Dr. Nurkan Karahanoğlu 

 
 

September 2009, 145 Pages 
 

In this dissertation, 3D surface seismic data was integrated with the well logs 

to be able to define the properties in every location for the reservoir under 

investigation. To accomplish this task, geostatistical and artificial neural networks 

(ANN) techniques were employed.  

First, missing log sets in the study area were estimated using common 

empirical relationships and ANN. Empirical estimations showed linear dependent 

results that cannot be generalized. On the other hand, ANNs predicted missing logs 

with an very high accuracy. Sonic logs were predicted using resistivity logs with 90% 

correlation coefficient. Second, acoustic impedance property was predicted in the 

study area. AI estimation first performed using sonic log with GRNN and 88% CC 

was obtained. AI estimation was repeated using sonic and resistivity logs and the 

result were improved to 94% CC. 

In the final part of the study, SGS technique was used with collocated 

cokriging techniques to estimate NPHI property. Results were varying due to nature 

of the algorithm. Then, GRNN and RNN algorithms were applied to predict NPHI 

property. Using optimized GRNN network parameters, NPHI was estimated with 

high accuracy.  

 Results of the study were showed that ANN provides a powerful solution for 

reservoir parameter prediction in the study area with its flexibility to find out non-

linear relationships from the existing available data. 

 

Keywords: geostatistics, artificial neural networks, reservoir property estimation 
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ÖZ 
 
 

REZERVUAR PARAMETRE KESTİRİMİNDE 
JEOİSTATİSTİK VE YAPAY SİNİR AĞLARI’NIN 

KARŞILAŞTIRILMASI 
  

 
 

Arzuman, Sadun 

Doktora, Jeoloji Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Nurkan Karahanoğlu 

 
 

Eylül 2009, 145 Sayfa 
 
 

 Bu çalışmada, incelenen rezervuarın her noktasındaki parametreleri 

tanımlayabilmek için, 3B sismik veriler kuyu verileri ile entegre edilmiştir. Bu amacı 

başarabilmek için, jeoistatistik ve yapay sinir ağları (YSA) yöntemleri kullanılmıştır. 

 İlk olarak, mevcut olmayan kuyu logları empirik ilişkilier ve YSA ile 

önkestirilmiştir. Empirik kestirimler doğrusal bağımlı genelleştirilemeyen sonuçlar 

göstermiştir. Diğer tarafttan, YSA mevcut olmayan logları yüksek doğrulukta 

bulabilmiştir. Sonik loglar %90 korelasyon katsayısı ile bulunmuştur. İkinci olarak, 

akustik empedans parametresi çalışma alanında önkestirilmiştir. Sonik log ve GRNN 

tekniği kullanılarak yapılan önkestirim işleminde %88 korelasyon katsayısı elde 

edilmiştir. Akustik empedans kestirimi daha sonra sonik ve rezistivite logları 

kullanılarak tekrar edilmiş ve sonuçlar iyilieştirilmiş ve %94 korelasyon sağlanmıştır. 

 Çalışmanın son kısmında, SGS jeoistatistiksel similasyon algoritması 

collocated cokriging tekniği ile birlikte kullanılarak sonik porozite parametresi 

önkestirilmiştir. Algorıtmanın çalışma prensibinden dolayı sonuçlar çeşitli olmuştur. 

Daha sonra, GRNN algoritması sonik porozite parametresini önkestirmek için 

kullanılmış ve GRNN ile yüksek bir korelasyon sonucu elde edilmiştir.  

 Bu çalışmanın sonuçları, çalışma alanında YSA’nın rezervuar 

parametrelerini önkestirebilmek için çok güçlü bir yöntem olduğunu, mevcut 

verilerden lineer olmayan ilişkiler kurarak göstermiştir. 

 

Anahtar Kelimeler: jeoistatistik, yapay sinir ağları, rezervuar parametre önkestirimi 
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CHAPTER 1 
 

INTRODUCTION 
 

One of the most challenging tasks in today’s reservoir characterization 

studies is the non-existence of abundant hard data, for instance, well logs and cores 

which usually carry high confidence information. Successful and most accurate 

characterization works usually integrate all the available data for the reservoir under 

investigation. Among them, surface seismic (2D & 3D) is not sparse as it is easy to 

obtain with the high details with current acquisition technologies. On the other hand, 

well log and core data usually does not exist or scarce in the beginning of the life of 

the reservoir and expensive to acquire compared to surface seismic. As reservoir 

characterization studies mostly aim to estimate the reservoir properties in a high 

level of detail, the well and core data provide the most important input with high 

resolution information for the limited areal extend around the wells, on the contrary 

surface seismic data bring low degree of resolution over the whole reservoir with 

reasonable amount of budget. Therefore, integrating seismic data into reservoir 

characterization studies is one of the most important targets in practice. In this point 

of view, integrating surface seismic data with the other types of available data 

requires the challenge of combined data having different resolution scales (Figure 

1.1). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.1 Resolution problem for the reservoir characterization studies. The data come 

usually from various sources with different scales.  
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1.1 STATEMENT OF THE PROBLEM 
 

Reservoir description is considerably a difficult task because of the limited 

hard data availability over the existing hydrocarbon fields. Well logs, cores, and 

similar data can be considered as hard data and conventionally these types of data 

are used to characterize the reservoirs. The usage of only one type of data usually 

cannot sufficient for detailed description of the reservoirs. On the other hand, 

surface seismic data, which is considered as soft data, is abundant over the 

exploration and production areas and generally cover whole reservoir area and 

traditionally they are mainly being used for reservoir mapping. 

Integrating well and seismic data bring distinctive advantage for the 

delineation of the reservoirs but it carries two main difficulties; information and 

resolution contained in different data types. In general, seismic data is dependent on 

the acoustic properties of the subsurface but the well log data can provide rock and 

fluid properties and core data allow direct measurement of the rock properties in the 

vicinity of the borehole. Seismic data scale is expressed in meters, however well log 

and core data contain information from cm to mm scale. 

The main objective of this study is to study the relationship between seismic 

and reservoir properties. Particularly, a relationship will be extracted between 

seismic attributes and reservoir properties at the well locations and this relationship 

will be used to estimate the reservoir parameters over the whole reservoir area. 

To accomplish this task, first a methodology will be established to prepare, 

interpret and create a model from the available data set. Second, missing log sets 

will be predicted using empirical and artificial neural network techniques. Third, 

seismic inversion techniques will be reviewed and acoustic impedance property will 

be calculated. Fourth, several seismic attributes will be extracted from the well 

locations and a non-linear relationship will be established between the seismic 

attributes and well log properties. Geostatistical and artificial neural network 

techniques will be used to create this connection, then, outcome of each technique 

will be compared and finally the best relationship will be used to predict the reservoir 

properties over the whole study area. 

 

 

 

 



 3

 
 

1.2 DATA BASE 
 

In this section, available data and the geology of the study area will be 

described. The data set used in the study is publicly available as a part of the 

technology transfer activities of the Secondary Gas Recovery (SGR) program 

funded by the U.S. Department of Energy and the Gas Research Institute (Hardage 

et al., 1996).The study area (Boonsville) is located in Forth Worth Basin in North-

Central Texas (Figure 1.2). 

The data set includes: 

• 3-D seismic data, time migrated, 5.5 mi2  

• 38 wells, digitized 

• Various logs inside the 3-D survey area  

• Interpreted genetic sequences from well logs 

• Petrophysical and reservoir engineering data 

• VSP (Vertical Seismic Profile) and CS (Check Shot) data for one well 

 

 

 

Figure 1.2 Fort Worth and other basins around the study area Boonsville over the Middle 

Pennsylvanian paleogeographic map. Rectangle (filled in black) in the enlarged map 

presents the 3-D seismic area (Hardage et al., 1996). 
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3-D time migrated seismic data set was collected with a dynamite source 

and having 110x110 ft stacking bins with a datum of 900 ft. It has a high signal to 

noise ratio and wide frequency range varying from 10 Hz to 115 Hz. Seismic data 

have 0 to 2,000 ms vertical time range and 1 msec sampling interval (Figure 1.3).  

 

 
Figure 1.3 Seismic base map and well locations over the study area (Hardage et al., 1996). 

 
 

There are 38 wells available inside the study area and all the wells were 

digitized from processed field records with 0.5 ft depth increment. Intensity of the 

wells over the seismic grid is 0.37 sq km/well. As it can be seen in Figure 1.4, 34 

wells have deep-induction resistivity (RILD) logs and some wells have various other 

resistivity type logs including Medium-Induction (RILM), Short-Normal (SN), 

Spherically focused (SFL) logs. All the wells have Self-Potential (SP) logs and 18 

wells have Gamma-Ray (GR), 12 wells having Compensated Neutron (NPHI) and 

14 wells have Bulk Density (RHOB) logs. There are 4 wells with Sonic (DT) log in 

the study area and only one of them has VSP and CS surveys which is located in 

the central-west of the region. VSP data was recorded with a vibroseis source for 

only one well and consist of an offset and zero-offset profiles. Well B-Yates 18D has 

also a checkshot survey recorded with an explosive source. 
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Figure 1.4 Log types histogram in the study area. Resistivity logs are abundant among the 

wells and SP exists for all wells. 

 

General structural settings and the geology of the area can be summarized 

as following: The Fort Worth Basin defined as an asymmetric, wedge-shaped basin 

containing approximately 12,000 ft (3657 m) of sedimentary rocks along the west 

side of the Muenster arch. During a late Mississippian–early Pennsylvanian episode 

of plate convergence, this foreland basin formed in front of the advancing Ouachita 

structural belt as it was thrusted onto the margin of the North America craton. The 

Bend arch is a large, north-plunging, subsurface anticline that extends northward 

from the Llano uplift. Pennsylvanian and younger sediments were deposited on the 

Eastern shelf of the Permian Basin and shaped by the arch which represents the 

westernmost limit of a migrating hinge zone. The Ouachita structural front bounds 

the basin to the east and southeast, the Llano uplift to the south, and the Muenster 

and Red River arches to the north and northeast, and the Bend arch to the west (Hill 

et al., 2007) (Figure 1.5). 
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 6

 
Figure 1.5 Bend arch - Fort Worth Basin with major structural features and location of oil and 

gas fields (Hill et al., 2007). 

 

Structural style of the basin is mostly represented by minor high-angle 

normal faults and graben-type features. These structures are believed to be 

changing their orientations depending on several major tectonic elements. For 

instance, at Boonsville and Newark East fields, well data showed that many normal 

faults trend NE to SW (Hill et al., 2007). A study conducted by Hardage et al. (1996) 

also showed that small-scale faulting and local subsidence in Mississippian to 

middle Pennsylvanian strata is related to karst development and solution collapse in 

the underlying Ordovician Ellenburger Group. A generalized Pennsylvanian 

stratigraphic column for the Fort Worth Basin and the interpreted sequence 

boundaries is shown in Figure 1.6. Defined interval of the Bend Conglomerate is 

from the base of the Caddo Limestone to top of the Marble Falls Limestone and its 

thickness ranges from 1,000 to 1,200 ft (305 to 365 m) (Hardage et al., 1996).  
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Figure 1.6 Generalized Pennsylvanian stratigraphic column for the Fort Worth Basin. The 

data provided for this study is limited to Atokan interval (modified from Zhao et al., 2007 and 

Hardage et al., 1996). Four Maximum Flooding Surface (MFS), from Caddo to Vineyard, 

represent the interval used in this study. 

 

In particular, the Boonsville gas field is located deep on a moderately-sloping 

eastern shelf of the relatively narrow, northern part of the Fort Worth basin. The 

lower Pennsylvanian (Atokan) beds and older rocks dip northeasterly into the basin 

trough, The Atokan appears to enter into a more shaley and finer clastic facies to 

the east and southeast, deeper into the Fort Worth basin. In the area conglomerates 

are thicker, more porous, and more frequent than in the other parts. 

The Atokan is divided into two parts. The "lower" Atokan top is clearly 

marked in the subsurface by the base of a fine grained, silty, glauconitic sandstone 

wedge, which pinches out to the northwest of the field and thickens rapidly and 

considerably to the southeast. The "upper" Atokan consists of silty sandstone wedge 

and a predominantly shale interval to the base of the Caddo (Gardner, 1960). 
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1.3 PREVIOUS STUDIES 
 

 In this section, previously published studies on the same data set and related 

to this research will be summarized. Because the data used in this study are 

available publicly through Bureau of Economic Geology, University of Texas at 

Austin, many researches conducted several studies. 

 The published report completed by Hardage et al. (1996) presented the 

details of the data set including data characteristics, structural, geologic, and 

stratigraphic information. Hardage et al. (1996) conducted a research on identifying 

carbonate karst collapse features and reservoir compartmentalization using 3-D 

seismic and well log data. Lancaster et al. (1996) summarized the application of 3-D 

seismic imaging, detailed sequence stratigraphy, petrophysical analysis, and 

reservoir engineering in an integrated study of reserve growth potential in 

Midcontinent (Pennsylvanian) sandstone natural gas reservoirs in the Boonsville 

(Bend Conglomerate Gas) field. The objectives of their work were to identify 

undrained or incompletely drained reservoir compartments controlled by 

depositional heterogeneity in a low-accommodation, cratonic Midcontinent 

depositional setting, and then, to developing and transfer strategies for infield gas 

reserve growth in these complex, difficult-to-characterize, fluvial and deltaic 

sandstone reservoirs. Lancaster et al. (1996) conducted a research on how to 

calculate facies from wireline logs using deterministic methods. Their study focused 

on developing a deterministic method for identifying facies from logs for use in the 

Boonsville Bend conglomerate, and out of several different approaches they used 

only one system. Their final system consisted of five different computational models, 

all using the same numerical technique but different wireline curve suites. Hamilton 

et al. (1997), focused on the reservoir compartmentalization. In their study, they 

integrated all available data, including geological, engineering and geophysical and 

identified three styles of compartmentalization: structural, stratigraphic and 

combination of two. McCormick et al. (1999), published a paper to describe a 

software tool and interpretation method for that allows one to combine well-based 

interpretation and quantitative analog information from fields or outcrops to make 

testable predictions about the location of geological bodies that are prospective infill 

drilling locations. This tool combines (1) 3D visualization in a common viewing 

environment of diverse data that are viewed at true scale (e.g., 3D  
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surface seismic; vertical seismic profiles, reservoir simulation results, conventional 

wireline and borehole imaging logs, core photographs); (2) a well-based 

interpretation environment; and (3) an archive of digital 3D geological analog shapes 

and textures that one can use to relate textures seen in image logs or core images 

to those observed in analog data, i.e., other fields or outcrops. The key advantages 

of their approach are that preserving information about the interpretation process 

and multiple hypotheses; viewing all data at the appropriate scale; and examining 

the implications of the deterministic geological interpretations within the same data 

volume. Hentz et al. (2006), presented depositional facies, reservoir distribution and 

infield potential of the Lower Atoka Group in the study area. Their study revealed 

that the units are bounded by mostly fourth-order flooding surfaces within prodeltaic 

shales and delta-plain coals. Lower Atoka Group depositional facies interpreted as 

more heterogeneous. Depositional trends shift from SE-NW to NE-SW midway in 

the succession, recording, respectively, a change in primary source area from the 

distant Ouachita Fold belt to the closer Muenster Arch. McDonnel et al. (2007) 

defined the seismically resolvable sag structures, and conducted a detailed 

quantitative analysis of the geometries of these circular features. They compared 

the results with reviews of subsurface collapse mechanisms and strike-slip 

processes that are known to produce subsurface circular to subcircular sag 

geometries in plan view. Finally, they described several constraints for differentiating 

collapse-related sag structures from strike-slip–related sag structures. 

 Xie (2001) completed a PhD dissertation using the same data set focusing 

on “Thin Bed Reservoir Characterization”. In this study, two problems were 

addressed: estimating thin-bed reservoirs and distinguishing thin-bed sandstone 

reservoirs from thin-bed non-reservoir carbonates using seismic attributes. To build 

seismically driven depositional model and reservoir distribution, point-based and 

trace-based seismic attributes were employed. For the point-based application, he 

deployed 6 different seismic attributes and the results were not very satisfying. For 

the trace-based application, he applied Kohonen’s self-organization (SOM) neural 

network recognition algorithm and obtained better results (correlation factor > 70%). 

He, then proposed a new algorithm for seismic facies analysis, which is a modified 

cross-correlation model. “Cross-correlation (R) (1.1) for the two series of signals X(i) 

and Y(i) (i=1,2,3….N): 
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where Xm and Ym are the means of the corresponding series and d is the delay. This 

correlation is representative of similarity of patterns between two time series rather 

than absolute similarity.” Therefore this expression was modified to (1.2): 
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This equation allows for correcting possible horizon mistracking by searching 
an amount of time (d samples specified by the user) in order to find the 
highest value for R. The output values will be continuous from -1 to 1 and 
provide a value for every single trace for R. 
 
To apply this equation to multiple user-specified traces, the following 
expression (1.3) can be used: 

)R.....R.....R,R,Rmax(iR ni321∗=                                                            (1.3) 

where, i is the order of the seismic trace, n is the number of traces selected, 
Ri is the correlation coefficient based on the selected trace.” As a result, it 
was concluded that “the coherence algorithm was not able to reveal subtle 
depositional facies in the thin Caddo sequence. The trace classification 
approach based on neural network clustering provided very good results.  
 

In the second part of this study, thin-bed tuning models have been examined 

using seismic inversion techniques.  

“After evaluating the conventional thin-bed tuning models, ‘A Novel 
Generalized Regression Neural Network Inversion’ (GRNN) was applied 
using four different seismic attributes as an input with 6 wells. As a result, 
sandstone reservoir sections were able to predicted using acoustic 
impedance cube.”  
 
 In the final part, a comparison study between different inversion methods 

was conducted. Two different inversion techniques were used: ‘Probabilistic Neural 

Network’ (PNN) and ‘Constrained Sparse Spike’ (CSSI). “As a result, all three 

inversion models were able to identify the thicker reservoir sandstones and non-

reservoir limestones but the resulting details for thin-beds were varying.” 

 

Tanakov (1997) studied the same data set in his MS thesis subjecting an 

integrated reservoir description of the field. In this study, first a linear velocity 

function was used to converted log data from depth to time and created synthetic  
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seismograms using three wells having sonic and density logs. Following time 

structure interpretation of the Caddo level, depth conversion was produced. 

Variogram analysis was performed on the extracted velocities at the well locations 

and results were kirigged, and then multiplied with the time structure map to obtain 

the final depth map. In the second part of this work, 29 attributes were extracted at 

the well locations over the Caddo level within the several time windows. Then, 

results were cross plotted versus porosity values at the well locations to obtain the 

correlation coefficients (CC). Highest CC found for the seismic amplitude attribute 

having -0.615 value. Another 15 complex attributes run similarly and the highest CC 

observed for the quadrature attribute which is 0.690. After applying the spectral 

decomposition on the seismic volume, highest CC (0.726) found for the 80 Hz 

frequency value. 

In the second part, porosity values at the well locations for the Caddo level 

mapped using variogram analysis. Then, a linear relationship was build with porosity 

to map permeability values. Porosities were mapped with kriging with an external 

drift using the extracted attributes having the highest CC. Same application was 

performed using cokriging algorithm also. Cokriging application repeated using a 

polynomial functions applying the regression analysis to the input variables. The 

results of this analysis were not satisfying then the cokriging results. Permeability 

was also mapped using the similar techniques. 

In the final part, flow simulation, history matching and production forecast for 

secondary oil recovery (SOR) were performed. 
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CHAPTER 2 
 

THEORETRICAL BACKGROUND 
 

Geostatistics is a widely used tool to combine highly accurate but less 

sampled well data with the less precise but more sampled 3D seismic data. The 

usage of geostatistical tools can give reservoir property estimation, uncertainty and 

risk assessment to models. On the other hand, it can easily be derived incorrect 

models if the principal assumptions are neglected. It should be clearly and carefully 

analyzed that if these methods are valid under the studied data set. 

 Hirsche et al. (1998) stated very clearly in their paper how one can avoid 

drawbacks of the geostatistical methods during reservoir characterization studies. 

Gathering all available data is the first step in all reservoir characterization studies. It 

should be noted that poor quality seismic and/or well log data can only result in a 

poor reservoir characterization and the data should always be treated depending on 

its reliability. 

Well logs are considered to be "hard" or precise data because the 

measurements are made in the borehole around the sides of the formation with a 

diversity of tools that are directly related to the reservoir properties (ie. density, 

porosity and permeability). Generally the well logs are acquired for a long period of 

time and different logging and processing parameters can bring an artificial bias in 

the petrophysical parameters. This effect can dangerously degrade the calibration 

between well and seismic data. In most cases the properties are averaged to assign 

a representative value of porosity (or other parameters) for the reservoir zone. 

Therefore, well to seismic calibration can seriously be affected by this averaging 

(Hirsche et al., 1998). 

The surface seismic data is less consistent than well log data because it is 

made remotely and only indirectly related to the reservoir properties (ie. amplitude is 

proportional to reflectivity which is proportional to the changes in acoustic 

impedance which is proportional to density, etc.). Even high quality seismic data can 

have problems because of processing artefacts. In general the seismic attributes 

used in reservoir characterization are extracted from the 3D seismic volume. The 

quality of the interpretation is directly related to the quality of the attribute extracted. 

As a result, if the data quality is not good, it should not be expected that 

geostatistical methods will provide a satisfactory solution (Hirsche et al., 1998). 
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Subsurface are usually contaminated by associated uncertainty, linked 

uncertainty, different scaling problems. Therefore, unconventional approaches bring 

an alternative solution such as soft computing tools (Nikravesh, 2001 and 

Aminzadeh, 2005). Among them Artificial Neural Networks (ANN) were first 

introduced by McCulloch (1943) and became very popular in recent years. ANN can 

be considered as a non-linear processing application that uses biological neuron as 

a model. Therefore, classification, pattern matching, and clustering can be 

performed via learning and training. Traditional mathematical approaches, on the 

other hand, works well for exact computations (Aminzadeh and de Groot, 2006). 

In general, ANN is an attempt to simulate the human neural system and 

adapt artificial systems through software. These algorithms have parallel processing 

capabilities not only by programming but also by training and adaptation.  

A ‘node’ or ‘unit’ is defined as a basic computational element (model neuron) 

(Figure 2.1) and it receives input from other units. ‘Weights’ (w) are associated to 

each input can be modified so that the model starts to learn. The, function ‘f’ of the 

weighted sum of inputs is computed. ‘Net input’ to unit i (or neti) is defined as (2.1) 

(Krose and Smagt, 1996): 

∑ θ+=
j

kjjkk )yw(fy                                                                                 (2.1) 

where; wjk: weight from unit j to unit i and F: unit’s activation function 

 

      
Figure 2.1 The basic components of an artificial neural network. Standard weighted 

summation propagation rule is used in this figure (modified from Krose and Smagt, 1996). 

 

 
Estimating the reservoir properties was usually established by constructing 

the system using known properties with the help of attributes extracted from seismic,  
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well log, core etc. data. This study is followed typically by predicting the properties in 

desired locations using the extracted non-linear relationship. In previous figure, the 

inputs can be considered as seismic, well core etc. data and the output can be the 

desired reservoir property. 

The comparison of the geostatistical and intelligent systems can be 

summarized as following (Table 2.1): 

 

Table 2.1 Comparison of geostatistical and intelligent systems (modified from Nikravesh and 

Aminzadeh, 2001). 

GEOSTATISTICAL INTELLIGENT 

Data assumption: 

A certain probability distribution 

Data assumption: 

Data automatic clustering and expert-

guided segmentation. Classification of 

relationship between data and targets 

Model: 

Weight functions come from variogram 

trend, stratigraphic facies, and 

probability constraints 

Model: 

Weight functions come from supervised 

training based on geological and 

stratigraphic information 

Simulation: 

Stochastic, not optimized 

Simulation: 

Optimized by Genetic Algorithms (GA), 

Simulated Annealing (SA), ANN, and 

Belief Networks 

 

 

The reasons of choice of ANN for prediction studies were summarized briefly 

by Aminzadeh and de Groot (2006) as: 

• Incoherent or contaminated data can be handled 

• Unpredictable situations can be handled by using information from other 

disciplines 

• Relevant information can be extracted quickly from large amounts of 

input 

• Parallel working logic brings performance advantages 

• It is fault tolerant and even if some of the connection does not work the 

whole system continues to work 

• Alters itself to new situations and learns from example 
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2.1 GEOSTATISTICAL METHODS 
 

In geostatistics, statistical distribution of the reservoir properties are 

estimated based on some assumptions and it is important to be sure that the data 

satisfy these assumptions. Constructing a geologic model is also an important step 

of the whole process as it guides the choice of tools used in geostatistical analysis. 

The first step during the data analysis is to review the quality and 

consistency of the data. One of the methods is to generate histograms of the 

reservoir and seismic parameters. To obtain a reliable distribution for well based 

parameters is difficult due to fact that intensity and sample sizes are small and 

sampling is biased. If the distribution exhibits skewness or multiple peaks, this can 

imply the non-normal distribution or non-stationarity case. Establishing a relationship 

between seismic attributes and petrophysical properties can easily affected by 

outliers in the data set. They should be removed to obtain a better spatial 

correlation. On the other hand, they can exhibit value from another population. If this 

is the case, they must be treated separately without simply removing. 

One of the drawbacks of the geostatistical techniques is that the assumption 

of the mean and variance of the reservoir properties derived from the well locations 

is representative of the entire field. This assumption is usually not the case for 

exploration studies as the drilled wells always targeted to specific objective and this 

practice create a bias on the statistical sampling of the reservoir. 

Statistical stationarity is the assumption that the statistics (i.e. mean and 

variance) of the population (reservoir) are consistent throughout the study area. 

Existence of trends in the study area can cause non-stationarity case. This can be 

checked by cross-plotting against mean value of the reservoir property in different 

parts of the reservoir. Trends should be removed before the mapping and modeling 

practices. Another reason for non-stationarity case is the changes in lithology, 

facies, or fluid saturation. For example, if wells from the channel sands and the 

shales are treated as a single population the variance would be overly large and the 

average value of porosity could be completely unrepresentative. This can be 

overcome subdividing the data into separate populations and mapping within each 

group independently. 

Finding a correlation between seismic attributes and reservoir properties is 

simply an empirical relationship. Usual approach to establish such a relationship  
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starts with extracting certain number of attributes over a horizon or through the well 

path and crossplot against the reservoir properties. Using bivariate statistics linear 

relationship between two variables is established. 

Synthetic seismograms also provide a good approach for selecting the 

seismic trace locations where attribute extraction should be done as they provide 

the best match between synthetic and real seismic traces. Seismic attributes often 

need some amount of smoothing prior to extraction. This relationship can be 

established using the correlation coefficient (CC). It is the measure of the linear 

dependency of the two variables and it carries associated uncertainty. This 

uncertainty can be removed by detecting the outliers in the data set. 

Seismic attributes are generally considered to be the best information that 

may be related to reservoir properties. For example, the product of seismic 

inversion, acoustic impedance, is related to porosity, lithology and saturation. 

Correlating the attributes and the properties are directly related to number of 

measurement which is the number of wells in the reservoir characterization studies. 

Generating synthetic seismic traces over the pseudo-wells can improve the reservoir 

property estimation procedure. Building a spatial relationship between these 

variables is another step for correlation. Creating a variogram model and deriving 

maps using kriging associated with error help estimating reservoir properties 

between the wells using weighted average of the property values. This practice 

generally is followed by cokriging to include other variables. Uncertainties can be 

assessed using the cross validation techniques. 

Journel (1994) provides a good summary of the stochastic algorithms: 

A stochastic simulation (imaging) algorithm is a mechanism that allows 
drawing alternative, equiprobable, spatial distributions of objects or pixel 
values. Each alternative distribution constitutes a stochastic image. There 
can be several stochastic images of the same phenomenon and each 
stochastic image/realization/outcome honors (1) specific statistics, such as a 
histogram, covariance, variogram, or correlation coefficient; for example, the 
simulated facies can be made to honor volume proportions, size 
distributions, aspect ratios, etc., and (2) hard and soft data at specific 
locations. Hard data, such as well data, are reproduced exactly by all 
realizations, whereas soft data are reproduced with some degree of 
tolerance. 

 

From the constraining statistics and data honored, one cannot say that one 
realization is better than another. Yet, the various stochastic images differ 
one from another at locations away from the hard data locations. That 
difference provides a visual and quantitative measure of uncertainty about 
the properties being imaged (Journel, 1994). 



 17

“The family of “sequential” procedures all makes use of the same basic 

algorithm shown in Figure 2.2: 

 

1. Choose at random a grid node at which we have not yet simulated a value. 

2. Estimate the local conditional probability distribution (LCPD) at that location. 

3. Draw at random a single value from the LCPD. 

4. Include the newly simulated value in the set of conditioning data. 

5. Repeat steps 1 through 4 until all grid nodes have a simulated value.” 

 

 
Figure 2.2. Sequential simulation of an unknown porosity value in a layer (modified from 

Srivastava, 1994). 

 

The characteristic geostatistical study for reservoir characterization has 

following steps (Chambers et. al., 2000): 

1. Data gathering and preparation (including initial quality control) 

2. Data loading 

3. Exploratory Data Analysis 

  a. univariate and multivariate statistical analysis 

  b. identification and probable removal of outliers 

  c. identification of sub-populations 

  d. data posting 

  e. sampling of seismic attributes at well locations 

4. Spatial Continuity Analysis 

a. calculation of experimental covariance model 

b. interpretation and modeling 

5. Search Neighbourhood Design 

6. Model Cross-Validation 

7. Spatial Interpolation of Reservoir Properties 

8. Conditional Simulation of Reservoir Properties 

9. Model Uncertainty Assessment 
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The continuity of sample properties with distance and direction are defined 

by regionalized variables. For instance, property values of two wells expected to be 

similar if they are close together but as they become apart values tend to be 

different. In this point univariate or bivariate statistics cannot distinguish this spatial 

information. 

 

Univariate (Single-Attribute) Geostatistics 

Statistical analyze of a single variable usually performed with calculating the 

mean, variance and the standard deviation. The results displayed in histogram or 

over the map and spatial information were tried to extract. 

Randomly selected values z from a set of random variable Z can be called 

as a realization. The first moment (mean) of the random variable (expected value) of 

Z is given by the integral over the realizations z of Z (Wackernagel, 2003): 

∫ =⋅= mdz)z(pz]Z[E                                                                              (2.2) 

where; E: expected value, p(z): weights and m: mean. The second moment can be 

defined as an expectation of its squared value: 

∫ =⋅= mdz)z(pz]Z[E 22                                                                           (2.3) 

Variance can be defines as the average squared difference of the observed values 

from the mean. The variance σ2 of the random variable Z can be given as: 
222 ])Z[E(]Z[E)Zvar( −==σ                                                                   (2.4) 

Above equation gives the result of the difference between the second moment and 

the squared first moment. Because the variance involves squared differences, this 

statistic is very sensitive to high/low values. 

 

Bivariate Geostatistics 

These methods carry information about relationship between two variables 

and spatial content of a random function for each observation. The relationship is 

generally analyzed by looking at how one variable changes to another observing the 

values; direct increase or decrease of values in variables. Scatter plot is one of the 

methods of defining the linear relationship as a positive or negative and showing the 

outlier points. H-scatterplot analyzes the spatial continuity of the data by displaying 

all sample pairs which are separated by specific distance in a certain direction. 

Sample point cloud also shows if the relationship getting stronger or not 

(Geovariances, 2008). 
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 “The theoretical covariance σij between two random variables Zi and Zj can 

be defined as” (Wackernagel, 2003): 

)]mZ()mZ[(E])]Z[EZ(])Z[EZ[(E)Z,Zcov( jjiijjiijiij −⋅−=−⋅−==σ   (2.5) 

where mi and mj are the means of the two random variables. 

 Correlation Coefficient (CC) defines the relationship between two variables in 

a range of +1 and -1. Theoretical correlation coefficient can be obtained by dividing 

the covariance by the square root of the variance: 

 
j

2
i

2

ij
ij

σσ

σ
=ρ                                                                                              (2.6) 

 

 Regionalized Variable and Random Function 
 
 Regionalized value is defined as each value measured at the location in the 

given domain. Random variable assumes that regionalized value is outcome of 

some random system. At each point xα, this system produces sample value of z(xα) 

from a random variable Z(xα). 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 The random function model (modified from Wackernagel, 2003) 
 
 

 Figure 2.3 shows that how the data is treated in the random function model. 

First, data values dependent on the location in the domain which means that they 

are regionalized. Second, simple generalized function cannot be used to model 

complex behaviour of the regionalized sample values. Therefore, the data values 

considered as outcomes of the random system (Wackernagel, 2003). 

Properties in the hydrocarbon reservoirs can be thought as random functions 

which has regionalized and random variables. Two components of a random 

function area: 

• Structured Component, consisting of the regionalized variable, which 

exhibits some degree of spatial auto-correlation 

Samples

Random VariableRegionalized Variable

Random Function

RandomnessRegionalization

Samples
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• Local Random Component, consisting of the random variable (also 

referred to as the nugget effect), showing little or no correlation 

 

 Stationary Assumption 

 Stationary assumes that the random function keep the same properties when 

moving from one location to another in a given region. The mean of the data values 

is not depending on the distance (h) separating the data points (xα). Expected value 

of the difference between two random variables is zero (2.7). This is also called 

translation invariance. Note that stationary is a part of the random function model 

not the regionalized variable (Wackernagel, 2003). 

E[Z(xα+h)-Z(xα)] = 0 for all xα, h                                                                 (2.7) 

where; Z(xα), Z(xα +h): random variables, E: expected value, xα: sampled location h: 

distance between sampled locations. 

 Strict stationary assumption is also requires the simplification of the 

distribution of the points. For instance, Gaussian distribution characterize only first 

two moments (second order stationary). Intrinsic stationary characterizes the first 

two moments of the pair of values which employs the variogram concept 

(Wackernagel, 2003). 

 “Stationarity is defined through the first-order (mean) and second-order 

(variability) moments of the observed random function, and degrees of stationarity 

correspond to the particular moments that remain invariant across the study area” 

(Hohn, 1998). For a random variable, Z(xα), observed at location xα, the distribution 

function of Z(xα) has the expectation E Z(xα) = m(xα) which can depend upon x. This 

is the first-order moment. Three second-order moments are useful in geostatistics: 

1.  The variance of the random variable Z(xα): 

                  VAR Z(xα) = E [Z(xα) -  m(xα)]2                                                             (2.8) 

2.  The covariance: 

                  C(xα1 - xα2) = E [Z(xα1) -  m(xα1)] [Z(xα2) -  m(xα2)],                                 (2.9) 

where Z(xα1) and Z(xα2) are two random variables observed at locations xα1 and xα2, 

3.  The semivariogram function: 

 γ(xα1, xα2) = VAR [Z(xα1) -Z(xα2)] / 2                                                       (2.10) 

Under conditions of second-order stationarity, the semivariogram and 

covariance are alternative measures of spatial autocorrelation (Hohn, 1988). 
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Non-Stationary Data 

The sampling scale and the trend scale are the dependency of the data 

considered to be non-stationary. Even though sample distribution is not usually 

under control, enough sampling can make the data stationary. Non-stationary data 

can be thought of composing of two parts, the residual and the trend: 

Z(xα) = Y(xα) + m(xα)                                                                                (2.11) 

where; Y(xα) has an underlying variogram (residual), m(xα) can be approximated by 

a polynomial (trend). If the data is abundant, the trend can be ignored, but if it is 

sparse, the trend should be removed performing the following the steps (Isaaks and 

Srivastava, 1988): 

1.   “Stationarize” the data, 

a.  determine the trend on the sample data (trend surface analysis)  

b.  subtract the trend from the data (usually from the well data) 

2.  Compute the variogram (or correlogram) on the residuals, 

3.  Obtain kriging or conditional simulation of the residuals on the grid, 

4.  Krig the trend to the grid, 

5.  Calculate the final gridded results by adding residuals to the trend.  

 

Spatial Continuity Analysis 

Linear relationships usually cannot describe the phenomenon of the 

subsurface properties. Spatial auto-correlation assumes that variables close to each 

other exhibit a relationship depending on the distance. As a result, values can be 

predicted using other samples. Measuring the spatial continuity can be done using 

variogram and correlogram (auto covariance). 

 In case of two variables, z1 and z2, a residual can be measured by 

multiplying the difference between a value of a variable and its mean and 

experimental covariance becomes the products of average of the residuals 

(Wackernagel, 2003): 

 ∑
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 The covariance shows the power of the relationship with its absolute value 

and similarity or dissimilarity of two variables with its sign. If the units of the variables 

are different and not comparable, each variable were need to be standardized. The 

standardized variable is given as: 
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=   where; s: standard deviation and m: mean                         (2.13) 
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 The measure of the dissimilarity (γ*) between data values zα and zβ which are 

located at points xα and xβ is defined as: 
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* βα
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−
=γ                                                                                     (2.14) 

 If these two points are linked by a vector h (xα -xβ), dissimilarity can be 

rewritten depending on the spacing and orientation (Wackernagel, 2003): 

 ( )2* )x(z)hx(z
2
1)h( αα −+=γ                                                                  (2.15) 

 Plotting dissimilarities against the separation vector produces the variogram 

cloud. The average dissimilarity versus separation vector defines the experimental 

variogram (Figure 2.4): 
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=α

αα −+=γ
n

1

2* )x(z)hx(z
n2
1)h(                                                           (2.16) 

The auto covariance function (Wackernagel, 2003), measures similarity or 

correlation, versus separation distance instead of dissimilarity (Figure 2.4). 
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where; m is the sample mean over all paired points, n(h), separated by distance h. 

 

            
Figure 2.4 Omni-directional variogram and correlogram. The left panel shows omni-

directional variogram (increasing dissimilarity with distance) and the right panel represents 

the correlogram (decreasing correlation with distance). Origin of the two plots shows zero 

variance (Geovariances, 2008). 

 

Creating variograms on the same data set with different directions can 

represent the influence of the anisotropy (Figure 2.5). 
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Figure 2.5 Geometric and zonal anisotropy. The left frame shows same sill in same direction 

with different ranges which characterize the geometric anisotropy, the right frame has 

different sills but same range for changed directions representing the zonal anisotropy 

(modified from Chambers et. al., 2000). 

 

 

In general, variograms and correlograms can measure linear spatial 

dependence, quantify spatial scales, identify and quantify anisotropy and test 

multiple geological scenarios. On the other hand, for non-linear processes they may 

not be the best solution because they represent the linear spatial relationship. If the 

data is not abundant, variogram analysis cannot be performed.  

Spatial relationships of two or more variables can be performed using cross-

correlation study. Cokriging or conditional simulations can benefit from cross 

correlogram or variogram as they compare the known values of one variable to 

known values of different variable (e.g., matching well data with seismic data). The 

cross variogram between two variables can be calculated as (Wackernagel, 2003): 

[ ] [ ])x(z)hx(z()x(z)hx(z(
n2
1)h( jj

n

1
iiij αα

=α
αα −+⋅−+=γ ∑                     (2.18) 

where; zi: primary attribute, zj: secondary attribute and n: number of data points.  

 

Kriging 

One of the most well-known geostatistical techniques is the kriging which 

use the variogram models to exhibit the autocorrelation function between the data 

points. In simple kriging, estimation of a random variable Z(xα) from the known 

variable(s) z measured at locations xα with the following assumptions; a) the random 

variables are subset of a random function Z(x) at any location x, b) the random 

function is second order stationary (the expectation and the covariance are both 

translation invariant over the given domain) which means that the mean of the 

expected value E[Z(x)] is same at any point x and the covariance depends only on 
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the separation vector h not on the location and c) the mean is known (Davis, 2002 

and Wackernagel, 2003): 

 
 E[Z(x+h)] = E[Z(x)]                                                                                   (2.19) 
 
 cov[Z(x+h), Z(x)] = C(h)                                                                           (2.20) 
 
 Simple kriging estimation using a calculated average constant mean 

(stationary assumption) over the whole domain with the knowledge of the 

covariances between the random variables is (Wackernagel, 2003): 

 ∑
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* )m)x(Z(wm)x(Z                                                              (2.21) 

where; wα: weights attached to the residuals Z(xα)-m. The estimation error is then: 
 
 Z*(x0) – Z(x0)                                                                                             (2.22) 
 
 In ordinary kriging, an unknown value of a point in a given region with a 

known variogram can be estimated using the data in the neighborhood. 

 ∑
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where x0: unknown value, wα: weights 

 The entire weights sum up to one and all the data values and the value to be 

estimated should be equal to constant in ordinary kriging. In simple kriging, there is 

no constraint on the weights. Ordinary kriging is an exact interpolator as 

(Wackernagel, 2003): 

 Z*(x0) = Z (xα), if x0 = xα                                                                            (2.24) 
 

 

Cross Validation 

 This technique controls the relationship between the estimated and real data 

values. First, a value of Z*(x[α]), where sampled value Zα is excluded, is estimated 

using the n-1 other samples, then makes the comparison. 

 Z(xα) - Z*(x[α])                                                                                            (2.25) 
 
Equation 2.25 shows how the estimated value at this location closes to the 

surrounding data values. In more general terms, validation can be expressed as 

(Wackernagel, 2003): 
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Comparing the estimated values to the true values provides a re-estimation 

error; RE = Zest-Ztrue, calculates the standardized error;   SE = RE/σkrig, then 

averages the errors for a large number of target points. Any data point whose 

absolute Standardized Error ≥ 2.5 is considered an outlier, based on the fact that the 

data point falls outside the 95% confidence limit of a normal distribution (Figure 2.6). 

 

  

         
 

Figure 2.6 Cross validation example. (a) Re-estimation error where open circles are over 

estimations; solid circles are under-estimations. The solid red circles falls outside the 2.5 

standard deviation from a mean, (b) measured attribute versus re-estimated attribute with 

cross validation test, (c) histogram of standardized error and (d) estimated versus 

standardized error (existence of correlation present a possible bias) (courtesy of IHRDC, 

2009). 

 

Mutivariate Geostatistics & Cokriging 

 Estimating a sparse variable using abundant one or more variables brings a 

need for multivariate regression methods. Among them, cokriging is the most widely 

used technique. Data characteristics for the multivariate case can be summarized as 

follows (Figure 2.7): 

 

 

(a) (b) 

(c) (d) 



 26

a) Entirely heterotopic data: the variables have no common sample locations 

b) Partially heterotopic data: some variables have some common sample locations 

c) Isotropic data: all variables share same sample locations 

 

 

 

 

 

 
                                   (a)                               (b)                                (c) 

Figure 2.7 Isotropy and heterotopy. (a) Entirely heterotopic data, (b) partially heterotopic data 

and (c) isotropic data (modified from Wackernagel, 2003). 

 

From data analysis we might find a good correlation between a property 

measured at well locations and a certain seismic attribute. In such a case, we might 

want to use the seismic information to provide better inter-well estimates than could 

be obtained from the well data alone. Even when the number of primary (well) data 

(e.g., porosity) are sparse, it is possible to use a densely sampled secondary 

attribute (e.g., seismic acoustic impedance), in the interpolation process. Well data 

have excellent vertical resolution of reservoir properties, but poor lateral resolution. 

Seismic data, on the other hand, have poorer vertical resolution than well data, but 

provide densely sampled lateral information. Geostatistical data integration methods 

allow us to profit from on the strengths of both data types, to yield higher quality 

reservoir models. 

 Simple cokriging variable estimation can be performed using the means of 

the variables and the residuals without existence of any data value around the 

estimation point x0 (such as well locations). The mean is specified explicitly and 

assumed to be a global constant. The method uses all primary and secondary data 

according to search criterion (Wackernagel, 2003). 
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 Ordinary cokriging is similar to simple cokriging in that the mean is still 

assumed to be constant but defines the estimation of point x0 in partially heterotopic 

case. Linear combination of weights wi
α of other variable(s) placed around the point 

x0. 

primary data secondary dataprimary data secondary data
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where; i0: particular variable from set of N variables. 

 Collocated cokriging is performed if the interested variable is exist at few 

locations and secondary variable is located all locations. In this system, a 

neighborhood defines the subset of a given data around the estimation location. 

Figure 2.8 shows three different neighborhoods for a single estimation location.  

 

 

 

 

 

 
                                     (a)                            (b)                           (c) 

Figure 2.8 Three different neighborhood cases. a) Full neighborhood, b) multicollocated 

neighborhood and c) collocated neighborhood data (modified from Wackernagel, 2003).  

 

 
 Collocated simple cokriging can be used for collocated neighborhood data 

(Figure 2.7, c). Collocated simple cokriging uses CC instead of cross-covariance 

function as the secondary variable is exist only on the estimation point. If the value 

S(x0) is collocated with the target point Z(x), the estimator becomes (Wackernagel, 

2003): 

 ∑
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 In collocated ordinary cokriging, the weights of the secondary variable should 

sum up to zero and therefore, secondary variable was not used by the system. This 

system uses S(xα) along with the S(x0). For the multicollocated neighborhood data 

(Figure 2.7, b), the ordinary cokriging estimator is: 
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Cokriging and collocated cokriging techniques can be summarized as: 

• Correlated secondary data can be used into the estimation process. 

• Secondary data can be incorporated via a cross-covariance model 

(cokriging) or through the correlation coefficient (collocated cokriging). 

primary data secondary data target pointprimary data secondary data target point



 28

• The cokriging technique honors the primary data (wells) and collocated 

cokriging uses correlation coefficient for data locations away from the wells 

(Dubrule, 1998). 

 The Figure 2.9 presents the illustrative examples of cokriging and 

collocated cokriging. 

 

       

 

 

 

            

                           

                                   

 

 

 

 

                                     

 

 

 

 

Figure 2.9 Kriging, cokriging and collocated cokriging examples. (a) Kriging using only well 

data. (a1) Data points from wells, (a2) variogram model for the well data, (a3) kriged porosity 

data and (a4) seismic acoustic impedance (AI) data. (b) Cokriging example using well and AI 

data. (b1 and b2) Modeled variograms for porosity and AI data, (b3) cross variogram and 

(b4) results of kriging using cross variogram. (c) Collocated cokriging and kring with external 

drift examples. (c1) Modeled variograms, (c2) result of collocated cokriging, (c3) self kriging 

and (c4) result of kriging with external drift (courtesy of IHRDC, 2009). 

 

Conditional Simulation and Uncertainty Estimation 

 Traditionally, lithological units or reservoir properties were analyzed well to 

well and the results produced usually were showed either connected units or pinch 

(a3)(a1) (a2)

(b3) (b4) 

(c2)(c1) (c3) (c4)

(a4) 

(b2)(b1) 
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outs between wells. As a result, mapped units or properties were created smooth 

contours disregarding the higher frequency content in the subsurface (Srivastava, 

1994). Stochastic modeling addresses the conventional modeling approaches as it 

produces many realizations of the subsurface including associated risk and 

uncertainty. 

 Reservoir models always carry an associated uncertainty; on the other hand 

performance of the result usually performed using the “best” outcome. As the 

stochastic models offers many outcomes, the up- and down-sides of the results 

should be carefully handled with the related risk. Considering the heterogeneity in 

the subsurface is another important step during reservoir simulation studies 

(Chambers et. al., 2000). 

Basically, conditional simulation is used to: 

• honor primary and secondary data and spatial covariance model 

• make appropriate data transformations 

• assess uncertainty in the reservoir model 

 

Srivastava (1994) summarizes the simulation methods as: 

• Turning Bands 

• Sequential Simulation 

o Gaussian, Indicator, and Bayesian 

• Simulated Annealing 

• Boolean, Marked-Point Process and Object Based 

• Probability Field 

• Matrix Decomposition Methods 

 

 Turning Bands, first produces a smooth models using kriging and then adds 

some level of noise to be able to include the heterogeneity of the subsurface. 

Sequential type of simulations uses the following methodology (Chambers et. al., 

2000): 

a. A random grid node xi which is not simulated yet, 

b. Estimate the mean (mi) and variance (σi
2) at location xi using kriging from 

the local conditional probability distribution (LCPD) having zero mean 

and unit variance, 

c. Select a random value (ri) using a seed number from the probability 

distribution whose maximum deviation is ±2σ around mi, 
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d. Create a new simulated value Xsi
* = mi + ri, 

e. Place newly simulated value Xsi into data set, 

f. Repeat the steps above until all grid nodes have values. 

 

Sequential Gaussian Simulation (SGS) is used to model continuous 

properties, such as porosity, permeability etc. In Sequential Indicator Simulation 

(SIS), discreate variables, e.g. lithologies, facies are simulated. Bayesian Sequential 

Indicator Simulation (BSIS) provides the usage of seismic attributes combining with 

the well data (Doyen et. al., 1994). Simulated Annealing (SA) creates the reservoir 

model using iterative trial and error procedure and does not includes the explicit 

random function model The resulting model is formulated with an optimization 

process (Deutsch and Cockerham 1994). Boolean, Marked-Point Process and 

Object Based methods require priori knowledge of the object (lithofacies) 

geometries, specific proportions and distribution parameters of the geometries. 

Probability Field Simulation (PFS) technique computes the LCPD using only the well 

data in contrast to SGS method where each value picked from the LCPD considered 

as a hard data (Srivastava, 1994). Matrix Decomposition methods create different 

outcomes by multiplying vectors of random numbers by a precalculated matrix 

obtained from variogram or correlogram (Srivastava, 1994). 

 Conditional simulations create more realistic reservoir models than those of 

kriging type models as they have an ability to reproduce the data histogram and 

structure of the spatial correlation. Hydrocarbon volumes can be simulated in a 

reasonable manner because simulations can reproduce extreme values. 

Simulations can create equi-probable reservoir models with associated uncertainty. 

On the other hand, Models have large data can require more powerful computer 

specifications. Simulation results are very sensitive to variogram parameters (sill, 

nugget, CC etc.). Variability between realizations of the same data can be large if 

the input data is not dense. Even though all the realizations can equally be probable, 

some of them cannot reflect the real subsurface conditions (Dubrule, 1998 and 

Chambers et. al., 2000). 
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2.2 ARTIFICIAL NEURAL NETWORKS 
 

Intelligent computational systems become more popular in the past few 

years especially for the oil industry. These systems can be classified into two 

categories: The first group is the tasks related to improvement for the processing 

and manipulation of the data used in exploration studies and the second group is the 

studies associated to pattern recognition, identification and prediction of different 

rock properties. The latter task is done by training the known rock properties from 

well logs, cores, tests, surface seismic, etc. Then, the extracted relationship is used 

to predict the properties in the locations where there is no measurement available 

(Nikravesh, M., 2001). 

 In general, neural networks are built by processing elements (nodes) 

organized in a certain structure. Nodes are similar to biological neurons that they 

can learn, remember, and apply relationships through training. 

 

A Simple Artificial Neuron 

A ‘node’ or ‘unit’ is defined as a basic computational element (model neuron) 

and it receives input from other units (Figure 2.10). ‘Weights’ (w) are associated to 

each input can be modified so the model starts to learn. Then, function ‘f’ of the 

weighted sum of inputs is computed. ‘Net input’ to unit i (or neti) is defined as: 

∑=
j

jiji )yw(fy                                                                                         (2.31) 

where; wij: weight from unit j to unit i and f: unit’s activation function 

 

 

 

 
 

 

 

 

Figure 2.10 Basic elements of artificial neural network (modified from Schraudolph and 

Cummins, 2009). 

 



 32

A linear model can be defined as: 01 wxwy += and a sum-squared error (E) 

(Figure 2.11) can be written as:  

∑ −=
p

2
pp )yt(

2
1E                                                                                   (2.32) 

where; tp: target value (actual) and yp: model’s prediction 

 

 
Figure 2.11 Sum-squared error model. Error for a range of values of w0 and w1 as a contour 

map (modified from Schraudolph and Cummins, 2009). 

 

Minimizing the Error 

‘E’ gives the predictive error for specific model parameters chosen. 

Therefore, the best (linear) model can be found by minimizing the error. For linear 

models, linear regression can be used but this approach cannot be used for non-

linear models. Even for linear models, the minimal error can be calculated using 

iterative methods. One of them, gradient descent, follows the below sequence: 

 

• Choose random initial values for the model parameters 

• Calculate the gradient ‘G’ of the error function with respect to each model 

parameter 

• Change the model parameter to be able to move in the direction of ‘-G’ 

(decrease of the error) 

• Repeat steps until ‘G’ gets close to zero 

 

The gradient of ‘E’ shows the direction in which the loss function at the 

current setting of the ‘w’ has the steepest slope. To decrease ‘E’, move to the 

opposite direction, ‘-G’ (Figure 2.12) (Schraudolph and Cummins, 2009) 
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. 

 
Figure 2.12 Error function and its relation to w (modified from Schraudolph and Cummins, 

2009). 

 

Linear Model to Neural Network 

Equation 01 wxwy +=  can be expressed as a simple ANN as (Figure 2.13): 

201212 w0.1ywy +=                                                                                (2.33) 

where; y2: output unit, w21=w1: slope of the straight line, w20=w0: interception with the 

y-axis, and 1.0: bias 

 

 
Figure 2.13 Simple artificial neural network elements (modified from Schraudolph and 

Cummins, 2009) 

 

Learning Rate 

Learning rate, μ, determines how much the weights, w, should change at 

each step. If μ is too small, it will take a long time the algorithm to converge. If μ is 

too large, the algorithm diverges (Figure 2.14). 

 

  
Figure 2.14 Effect of learning rate on the ANN process (modified from Schraudolph and 

Cummins, 2009). 
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Multi-Layer Networks 

Additional nodes can be employed to create a best non-linear fit to data 

using non-linear activation functions. Figure 2.15 shows an extra node with an 

activation function and a hidden node. Note that hidden unit also has weight from 

the bias unit. 

 
Figure 2.15 Multi-layer network with a hidden node and activation function (modified from 

Schraudolph and Cummins, 2009). 

 

Hidden Layers 

Adding more hidden units into network can fit more complex models. On the 

other hand, too many hidden layer can degrade the network’s performance. 

Therefore it always a good practice to start the network with a small number of 

hidden units. Theoretical results indicate that given enough hidden units can 

approximate any reasonable function to any required degree of accuracy. In other 

words, any function can be expressed as a linear combination of hyperbolic tangent 

(tanh) functions which is a universal basis function, for instance, sigmodial and 

radial basis functions. 

 

Error Backpropagation 

For the multi-layer networks, there are no target values for the hidden units. 

Re-ordering the units from a group closer to input to a group closer to output creates 

non-cycle pattern it is called feedforward networks (Figure 2.16). To train the 

network based on some training data, first; he gradient needs to be calculated, 

second; the activity of the input unit is determined by the network’s external input, 

for the other units, the activity is propagated in forward direction, and third; the 

output error is calculated and for hidden nodes, the error must be back propagated 

from the output nodes (Schraudolph and Cummins, 2009). 
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Figure 2.16 Multi-layer network pattern. The network does not have to be organized in 

layers, any pattern of connectivity that permits a partial ordering of nodes from input to 

output is allowed (modified from Schraudolph, N., and Cummins, F., 2009). 

 

Overtraining (Overfitting) 

Producing a reasonable approximation usually requires knowledge of 

number of hidden units or weights. Figure 2.17 shows two fitted functions. 

 

 
Figure 2.17 Overtraining phenomenon. Functions g(x) and h(x) show different characteristics 

to fit the data points in circles (modified from Schraudolph and Cummins, 2009). 

 

 

Function g(x), naturally, does not fit well the data points, as it has only two 

intersections; this is called a high biased model. Second plot in Figure 2.17 fits the 

data points very well but it is not able to predict the new values of h(x); this is called 

high variance model. 

To avoid overtraining, the input data is divided into two sets. Training set is 

used to train the network, and the performance of the network is done by validation 

set. No weight updates is performed during validation as this data set is independent 

of the training data. Avoiding overfitting, the network can be stopped at time t where 

the performance of the validation set is optimal (Figure 2.28) (Schraudolph and 

Cummins, 2009). 
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Figure 2.18 Schematic learning curves for the training and validation sets. Overtraining can 

be avoided by stopping the learning at time t (modified from Schraudolph and Cummins, 

2009). 

 

Types of Learning and Training 

There are two types of learning; parameter learning which updates the 

weights and structure learning which changes the node structures. For parameter 

learning, there are three different types of learning approaches: supervised 

reinforced, and unsupervised learning. In unsupervised learning, the structure of the 

data is tried to find. It learns itself; similar inputs activate similar neurons and 

different inputs activate other neurons. In supervised learning, correct target values 

are assumed to be known. The network tries to find the non-linear relationship 

between input and output variables by minimizing the error between predicted and 

actual values. Self Organizing Maps (SOM) uses this method. In reinforced learning, 

the feedback information is either right or wrong. Multi-layer perceptrons (MLP) and 

Radial Basis Functions (RBF) are examples of this network (Aminzadeh and de 

Groot, 2006). 

 

Types of ANN 

MLPs are the most commonly used models which are organized in layers. In 

general, it forms with three layers: an input, a hidden, and an output layer. There is 

no connections are allowed between nodes belonging to same layer. MLPs have the 

ability to extract the relevant features from the input pattern and discard the 

irrelevant ones and once trained it can recognize the input patterns which are not 

part of the training. 

RBF neural networks have similar architectures as MLP networks but it 

differs with handling the weights and activation function. There are only weights 

between output layer and hidden layer and each node in the hidden layer has a 
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unique activation function, called the basis function. 

 Modular Neural Networks are built by cluster of individual neural networks 

that are connected to each other. Each network are controlled by a global expert 

acts as a decision maker. Global expert take the decisions and determine the 

importance of each network and combines them. 

 Self Organizing Networks trains and tests the data set with the known input 

and output values. Kohonen Self Organizing Map (KSOM) and the Unsupervised 

Vector Quantizer (UVQ) are examples of this type of network. GRNN and PNNs are 

the variants of the RBF network (Aminzadeh and de Groot, 2006). 

 ANNs usually do not require preprocessing of input data. On the other hand, 

Principal Component Analysis (PCA) and data equalization (balancing) can improve 

the results. 
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CHAPTER 3 
 

DATA PREPERATION AND METHODOLOGY 
 

As stated in previous chapters, the data used in this study consist of time-

migrated 3D seismic data, 38 wells with various well logs, formation tops of 

sequence boundaries, and VSP and CS from one well in the area. For the initial 

state, all data were loaded into an interpretation system to be able to define the area 

of interest and quality checking. 

 

3.1 METHODOLOGY 
 

 In this dissertation, a methodology was developed to achieve final objective 

(Figure 3.1). 3D seismic data was checked for low signal to noise problems and 

some filter were applied to data for amplitude enhancements. This was followed by 

building the time-depth relationship. Synthetic seismograms were prepared for the 

wells having sonic and density logs (B Yates 11, B Yates 18D, and C Yates 9). This 

work allowed correcting sonic velocities by adjusting synthetic curve to surface 

seismic inside the borehole. Creating T-D link was also allowed tying the formation 

tops to seismic data. 

 Selected four well tops (MFS 90, MFS 70, MFS 53, and MFS 20) will be 

interpreted though the whole area. Seismic time structure maps will be mapped and 

results will be converted to depth using the velocity model prepared with the velocity 

logs extracted from all wells inside the study area. Defining the area of interest will 

allow reducing the dimension of the data set. Then, fault modeling and re-griding of 

the horizons will be preformed and new grid dimension was established in X-Y 

direction. Resolution definition in the Z direction will be built by defining the zones, 

thickness between the stratigraphic intervals, and layering scheme. At the end of 

this work, structural model of the area will be ready. 

 Because not all the well log sets available in the study area, missing logs will 

be estimated using empirical relationships and neural network techniques. The 

results will be compared and most promising outcomes will be used for further 

analysis.  

 In the geostatistical simulation part, empty structural model will be populated 

with the reservoir properties. To accomplish this, first well logs will be upscaled to 

model vertical resolution which is the layer thicknesses. Then, property values will 
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be distributed the area using Sequential Gaussian, Gaussian Random Simulations, 

and Kriging techniques. 

 Seismic inversion will be performed to obtain better resolution in the area 

and obtained acoustic impedances will be extracted from the well locations and will 

be used as an input for the neural network study. 

 Finally, neural networks will be employed to estimate properties in the study 

area. To accomplish this objective, training, validation, and estimation steps will be 

followed and the results will be compared to ones obtained from geostatistical 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Methodology developed for this study. Workflow from data import to model 

construction to property estimation. 

 
 

3.2 SEISMIC AND WELL DATA QUALITY CHECKING AND EDITING 
 

First of all time-migrated 3D seismic data was loaded into an interpretation 

system and quality checked. Figure 3.2 shows the 3D seismic cube loaded. 
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Figure 3.2 Time-migrated 3D seismic data used in this study. 

 

 The 3D seismic data is composed of 110x110 ft bins with a seismic 

reference datum of 900 ft. The total area constitutes a 10,670x14,630 ft (3,25x4,46 

km) rectangle. It has a high signal to noise ratio and wide frequency range varying 

from 10 Hz to 115 Hz. Seismic data have 0 to 2,000 ms vertical time range and 1 

msec sampling interval. The amplitude interval of the data is between -121405 to 

149035. As it can be seen from above figure, the data quality is generally good 

around 600 to 1,200 ms. 

  

 

 
Figure 3.3 Cropped seismic cube and amplitude filter. Figure on the right shows the 

amplitude values on the x-axis and corresponding color as a histogram. Shadowing the 

colors (dark blue area) removes the corresponding amplitudes from the seismic cube. 
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 Because the area of interest does not cover the whole cube, it was cropped 

between 700 and 1,200 ms where the data quality is high. To be able analyze the 

data quality on the cropped volume, an opacity volume was created and low 

amplitude values were diminished (Figure 3.3). 

 

      
Figure 3.4 Original seismic in-line 152 and the result of frequency band filter. Boosting of the 

amplitudes can clearly be seen. Vertical axis is TWT in milliseconds. 

 

Even though seismic quality is above average, some filters were applied to 

enhance the data resolution. Figure 3.4 shows the user-defined frequency band filter 

applied to input seismic trace.  

 Automatic Gain Control (AGC) and Quadrature amplitude are the other 

attributes for increasing the amplitude response in the seismic data. Figure 3.5 

represents the differences between original seismic and the AGC applied section. In 

general post stack processing steps should be taken cautiously as they can artificial 

effect to original amplitudes. Among them, AGC can be considered as one of the 

most unsafe post processing steps. The main purpose of applying these filters to 

seismic data is solely for improving the continuity of the reflectors to help 

interpretation procedure. In the next chapters, amplitude extraction will be performed 

from the seismic data. This extraction will be done from the original seismic data 

directly; no post stack processed version will be used. 
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                            (a)                                           (b)                                        (c) 

Figure 3.5 Amplitude enhancements for the in-line 152. a) Original seismic, b) AGC applied 

same section (RMS window is 9 for the AGC), and c) quadrature amplitude applied version. 

Vertical axis is TWT in milliseconds. 

 

Figure 3.6 shows the existing wells on the basemap. The distribution of the 

wells in the area was good as they were not gathered in a specific partition.  

 

 
Figure 3.6 Basemap showing available wells inside the study area. Symbols show; : gas, 

: oil, : gas with minor oil, : oil and gas, : injection,       : abandoned wells       s                         

respectively. 
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This situation will be very helpful when some relationship will established between 

the properties and seismic attributes. As it was mentioned above, there are 38 wells 

available inside the study area. Wells have various types of logs and all of them 

were loaded into the interpretation system. Please refer to Figure 1.5 for the list of 

the log types. 

 

 
Figure 3.7 B Yates 18D type log. Figure shows SP and GR in this first track and NPHI and 

RILD in the second track. 

 

It will also be useful for the neural network study as the training and 

validation set will be able to separate from each other while representing the whole 

area. Please refer to Appendix A for detailed explanation of the available well logs in 

the study area. 

Several genetic sequence boundaries were available in the study area. 

Figure 3.7 shows loaded formation top for the aim of this study. Among these tops, 

MFS90 (Caddo), MFS70 (Davis), MFS53 (Runaway), and MFS20 (Vineyard) were 

used to interpret four horizons from the 3D seismic data. Full set of interpreted 

genetic sequences can be seen in Appendix A. 

Figure 3.8 shows the NW-SE cross section with main formation tops in the 

study area. In general, logs are in good quality and continuous for most of the types. 

Please refer to Figure 3.6 for the location of the cross section. Please refer to 

Chapter 1 for more information about geological settings of the study area.    
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Figure 3.8 Well correlation section through North-West to South-East representing the 

formation tops used in this study. Refer to Figure 3.5 for the location of the cross section. 

 

Well data generally contains some outliers due to acquisition and/or 

processing related activities. Regardless of the source of these extreme values, they 

need to be corrected, either removed or normalized, before using them especially 

for the study of correlation with the other type of information. The visualization of the 

log data can help for identifying the outliers. But better way to achieve this is plotting 

the log data is better way to search the outliers. Cross-plots not only represents the 

correlation between two or more variables but also give an information about how 

specific log values are correlated laterally from one well to another. 

Figure 3.9 shows an example. Another usage of the cross plots is identifying 

the outliers. Because most of the simulation (estimation) algorithms are very 

sensitive to extreme values, they need to be removed from the data points before 

evaluation. In the first cross plot, there are some outliers indicated by dotted lines. 

They can be simply due to some measurement or processing errors or they can 

indicate some geological phenomenon. Therefore, extreme values should be treated 

carefully. In general, both DT-RHOB and DT-GR cross plots show coherent 

behavior thorough the area meaning that these property values do not change much 

laterally. These outliers should be removed with care as they can represent a 

specific geological phenomenon. Several cross plots were prepared, extreme values 

were removed from the log data and these logs were used for the further evaluation 

through in this study. 
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Figure 3.9 Log to log cross plot for wells B Yates 11, B Yates 18D, and C Yates 9. The first 

plot on the left is SP versus GR and the right plot presents SP versus DT. Each color in plots 

represents different wells. 

 

3.3 SEISMIC TO WELL TIE 
 

After loading all wells with corresponding well tops, time-depth (T-D) data 

were loaded into the system. In the study are, only available T-D data is check-shot 

(CS) data acquired from B Yates 18D well with a vibroseis and dynamite sources. 

Initially, this information was used to build a relationship between depth indexed well 

logs and seismic data. Figure 3.10 a shows the T-D graph for the Well B Yates 18D. 

The fit line shows good relationship with y=1256.39+5.80*x linear correlation. 

 

   
                       (a)                                               (b)                                             (c) 

Figure 3.10 Velocity functions for the well B Yates 18D. (a) Time-depth graph, points in 

yellow represent the values from the check-shot survey, (b) average velocity versus depth 

values, and (c) interval velocity-depth graph. 

 

Another useful information provided was the Vertical Seismic Profile (VSP) 

data on the same well location (B Yates 18D). VSP has several advantages over the 

surface seismic. It is usually free of multiples and does not contain formation 
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invasion and effects of very small-scale lithological changes. Therefore, good source 

to compare well synthetics and surface seismic since it contains very high signal to 

noise ratio (Bacon, 2003). 

VSP for well B Yates 18D was loaded and used for correlating the surface 

seismic. Defining T-D relationship precisely is very important to able to convert time 

related information, mainly seismic, to depth and also placing the depth-indexed well 

log over the seismic and extract information. Different T-D relationship was 

established for the study area and used for velocity model building process. 

Correction of sonic velocities (Figure 3.11) provides more reliable velocities 

as they carry high resolution information.  

 
 

 

Figure 3.11 Sonic correction application for well B Yates 18D. Corrected sonic is in blue 

color in the left track. 
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Figure 3.11 shows original density (RHOB, black curve) and sonic (DLT, red 

curve) in the left track and CS points in the right track for the well B Yates 18D. By 

adjusting drift cure (green in color), DLT is corrected against CS values. Corrected 

DLT is blue curve in the left track. Sonic log contains some artifacts due to changes 

in borehole diameter, invasion of the borehole fluids, very high or low velocity layers 

etc.  

First, only one well was used to populate velocity information to the area. To 

be able to achieve this, synthetic seismogram for this well was created (Figure 

3.12). Synthetic seismograms are helpful mainly for tying the well information, 

mainly formation tops, to surface seismic and correcting the sonic logs using CS 

information. 

 

 
Figure 3.12 Well B Yates 18D synthetic seismogram. Acoustic Impedance curve (in blue) 

obtained from corrected sonic and density curves. Reflection coefficient series are shown in 

green. In the right track, corrected synthetic seismogram is shown in the middle (three 

traces) with surface seismic extracted around the well B Yates 18D. 
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Correcting sonic log was followed by the calculation of the synthetic 

seismogram for the same well. In Figure 3.12, Acoustic Impedance (AI) curve was 

obtained using corrected sonic curve and density curve. AI is simply obtained from 

velocity and density (blue curve). Using AI log, Reflection Coefficient (RC) series 

can be extracted (green curve). 

 

 
                      (a)                                     (b)                                               (c)  

Figure 3.13 Wavelet extraction procedure for the B Yates 18D well. (a) Maximum 

predictability from 20x20 traces around the well B Yates 18D, (b) predictability in percentage 

with lag time and (c) time of maximum predictability with lag time in seconds. Cross sign over 

the white line shows the best location to extract wavelet. 

 

Correcting sonic log was followed by the creation of the synthetic 

seismogram for the same well. In Figure 3.12, Acoustic Impedance (AI) curve was 

obtained using corrected sonic curve and density curve. AI is simply obtained from 

velocity and density (blue curve). Using AI log, Reflection Coefficient (RC) series 

can be extracted (green curve). 

 The final procedure of creating the synthetic seismogram is extracting the 

wavelet. To extract the best representative wavelet, 20x20 traces centered around 

the well were used to calculate maximum predictability with correlating seismic data 

with log derived reflectivity (Figure 3.13). 

 Figure 3.14 presents the final extracted wavelet used in synthetic 

seismogram creation in Figure 3.12. This procedure of obtaining the synthetic 

seismogram is simply represents the forward solution.  

As it can be seen in Figure 3.12, a good match was obtained between the 

synthetic traces and the surface seismic which led to correcting the sonic velocities. 

This match was obtained mainly shifting and squeezing the synthetic seismogram 

reflections against the surface seismic reflections.  Obtained corrected velocities at 

the end of this process can be used for the velocity model which will be constructed 
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but the reliability of the results can be questionable. Therefore, the practice 

performed above is repeated for two other wells, B Yates 11 and C Yates 9, 

 

 
Figure 3.14 Extracted wavelet using the parameters in Figure 3.13. The first panel shows the 

relative amplitude of the zero-phase wavelet, the second panel is the power spectrum, and 

the third panel presents the phase. This wavelet was used to construct the synthetic 

seismogram for the well B Yates 18D. 

 

having sonic and density logs to be able to calculate the synthetic seismogram and 

correct the sonic velocities. But because these two wells are located at the edges of 

the study area, they were not able to present the best velocity distribution in the 

area. As a result, another methodology was followed to build the velocity model 

which will be presented in the following sections. 

 
3.4 SEISMIC INTERPRETATION 

 
 In the study area, nine main sequence boundaries were used and four of 

them interpreted along the 3D seismic data. To preserve the original amplitude 

values and not to cause the loss of information, seismic interpretation was made on 

32-bit data. 

Figure 3.15 and 3.16 presents the interpreted time structure maps of the 

Caddo (MFS90), David (MFS70), Runaway (MFS53), and Vineyard (MFS20) levels. 

For the scope of this study, the interval between Caddo and Vineyard has been 

chosen. Please note that the units are two-way travel time in the maps and the 

results are smoothed with certain length of filters. 



 50

As it can be seen clearly in Figure 3.15, both Caddo and David horizons 

deepens through the north direction. Analyzing the deeper partitions of the Vineyard  

 

 
 

 
 

Figure 3.15 Two-way time structure map of the Caddo (MFS90) and David (MFS70) horizons 

respectively. Please note that, contour interval is 2 ms for Caddo and 2.5 ms for David 

levels, and blue color represents deepening. Circles in white color show well locations in the 

area. Dashed line illustrates the location of the composite seismic line (Figure 3.17). 
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Figure 3.16 Two-way time structure map of the Runaway (MFS53) and Vineyard (MFS20) 

horizons respectively. Please note that, contour interval is 2 ms for both levels, and blue 

color represents deepening. Circles in white color show well locations in the area. Dashed 

line illustrates the location of the composite seismic line (Figure 3.17). 

 

structure map (Figure 3.16) exhibits some depression with a random pattern. These 

depressions having circular to oval shapes with changing areal extends and 
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collapse features appears along northwest-southeast trends and may indicate a 

relationship with the basement faults (Figure 3.17)  (Hardage et al., 1996). 

 

 

 
Figure 3.17 Seismic composite line over the study area. LO Fancher 1 well with its RILD log 

was posted on the line along with the four interpreted horizons. Collapse features can clearly 

be seen on the section near the well. Please refer to Figures 3.15 and 3.16 for the location of 

the seismic line. Dotted straight line shows the location of the time slice at Figure 3.18. 

 

 Hardage et al. (1996), stated that collapse type stratigraphic disruptions 

occurs within the Pennsylvanian section, some of these Ordovician-related structural 

sags were a significant influence on Pennsylvanian and Mississippian 

sedimentation. These zones of collapses are believed to be caused by post-

Ellenburger carbonate solution weathering, which occurred during periods of 

subaerial exposure. 
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Figure 3.18 Variance time slice at 1,093 ms from the seismic survey. Dotted green line 

shows the location of the composite section in Figure 3.12. Circular depression can be seen 

clearly through the time slice. Location of the time slice can be followed on the seismic 

section in Figure 3.17. 

 

 

3.5 VELOCITY MODEL AND DEPTH CONVERSION 
 

 Successful depth conversion is crucial for placing the reflectors from time 

domain to depth domain. The best way to achieve this is use of check-shot (CS) 

information in the boreholes. Check-shots usually provide very precise time-depth 

information and velocities derived from them are trustable. On the other hand, 

because their sampling interval is sparse, 10 to 20, velocities obtained are 

representing coarse information. Conversely, sonic velocities provide very high 

resolution information but they suffer from providing precise velocity values due to 

several reasons discussed before. 

 In this part the velocity model will be built using the check-shots from three 

wells as a guide. Interpreted time values at the horizon well intersections and depth 

values of the formation tops at the same locations will be used to create T-D pairs 

for the wells where no time-depth information is available. Figure 3.19 shows the 

corrected sonic logs using the CS information from the well B Yates 18D. 
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Figure 3.19 Corrected sonic curves for the wells B Yates 18D, B Yates 11, and C Yates 9. In 

the first tracks, red and blue curves show original and corrected sonic curves; in the second 

tracks red line shows interval velocities, green and blue curves show sonic and corrected 

velocities. 

 

 Formation top times which they were created from the derived and adjusted 

CS pairs, checked for errors against time interpretation at well locations. Most of the 

depth conversion issues arise from poor matching of well tops to seismic horizons. 

Therefore, the time values of the formation tops that is created by T-D relationship 

from the wells need to be checked for errors before velocity modeling. 

In Figure 3.20, time interpretation of the Caddo (MFS 90) horizon gridded 

again by tying the MFS 90 top times. The map shows, contours of the Caddo 

horizon and deviation from the formation times presented in colors (red to blue). 

This information is useful primarily for showing the bad well top times that needs to 

be edited before velocity modeling. It can be clearly seen that residuals appear at 

the well locations in the map. This is mainly due to difference in times between wells 

and mapped horizons. Residual maps were prepared for other three horizons also to 

check the consistency between time values. 
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Figure 3.20 Two way time map (ms) of the Caddo horizon overlain by residual values. 

Positive residuals are in blue and negative residuals are in red color. 

 

 Figure 3.21 shows time errors for four horizons. The errors are, for the 

Caddo horizon; -1.55-4.71 ms, for David; -1.77-1.88 ms, for Runaway; -1.63-4.15 

ms, and for Vineyard; -3.26-3.08 ms. 

 

  

                 
Figure 3.21 Time error plots for the horizons Caddo, David, Runaway, and Vineyard. 

Residuals (ms)
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Errors obtained from the well top time are relatively low in value, ranges 

between -1.77 to 4.71 ms. This shows that the errors can be ignored for the velocity 

model building but it can be suggested that further investigation of these error can 

exhibit some more information about the study area. For instance, creating 

variogram of the errors can indicate a direction dependent nature and may be linked 

to a geological phenomenon, e.g., certain facies type, or petrophysical character. 

 Velocity model for the area was built using all wells inside the study area. 

Among them, B Yates 18D has CS and DT logs, B Yates and C Yates 9 have only 

DT logs. T-D information from these log were populated the other wells using the 

relationship between interpreted horizon’s times and formation top’s depths.  

Before building the model, the most commonly used seismic velocities will be 

discussed briefly (Dix, 1955): 

• Average Velocity: defines the velocity of the reflection below a reference 

surface Vave = z / t, where; z is the layer thickness and the t is the one-way travel 

time (OWT). It should be used in geologically simple cases. 

• Interval Velocity: gives the velocity between two reflection levels. It does 

not account for the changes of velocity with depth. They can be used in simple 

geological situations and when well velocities or dense stacking velocities are 

available. Vint = (zi+1 - zi) / (ti+1 - ti), where; z is depth and t is OWT. 

• Instantaneous Velocity: If the velocities continuously change with depth, 

Vins can be expressed as, dz/dt, where; dt is the derivative of the infinitive thickness 

of the layer approached to depth z, t is the OWT. 

• Linear Velocity: Assumes velocity changes with depth proportional to a 

constant k, v = v0 + k*z, where; v0 is the datum velocity, k is the rate of change with 

depth, and z is the depth of the layer. Modified version of this type is the changing 

velocity in each layer: v = v0 + k*(z - z0), where; in each layer, the velocity is 

changes at the rate of k. 

 In this study, v = v0 + k*(z - z0) velocity model will be used. Because this 

model not only consider the velocity at each layer top but also velocity changes 

inside the same layer. v0 was derived from the velocities at the horizon well 

intersections and gridded along the area and k constant was determined 

automatically from the well T-D relationships. Figure 3.22 shows the instantaneous 

velocity cube created which is consistent with the well velocities and T-D 

relationship built from well tops. As it can be noticed, velocities increase with depth 

following the rules of the velocity model mentioned above.  
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Figure 3.22 3D velocity model built for the whole area. Color scale shows the interval velocity 

values in ft/s. 

 

Figure 3.23 shows seismic amplitude section (in-line 153) is overlain by 

interval velocity attribute. Well B Yates 18D with a sonic log and formation tops were 

also posted on the seismic section. 

 

 

            
Figure 3.23 Interval velocity field was posted on seismic in-line 153. Displayed wellbore is B 

Yates 18D with its sonic log and formation tops. Note that vertical axis is in time (ms). 
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As it can be noted from the Figure 3.23, interval velocities vary in both vertical and 

lateral directions presenting the local changes in the seismic data. Because velocity 

boundaries defined from datum to four interpreted horizons, there is clear velocity 

boundaries appear in the section. This 3D velocity field was smoothed and used for 

depth converting the 3D seismic data and interpreted surfaces. 

 Figure 3.24 shows comparison of time and depth converted seismic 

sections. Section on the left hand side is the time version and the right hand side 

section is the depth converted seismic data. The sampling interval of the time 

seismic is 1 ms and the depth seismic has 3.5 ft sampling interval. 

 
 

       
Figure 3.24 Seismic in-line 153 showing time and depth converted versions. Velocity field 

created in previous section is used for conversion. Note that, vertical axis is in ms and ft for 

the time and depth sections respectively. 

 

 After having velocity model for the area, it is now possible to convert each 

item separately to depth, or construct the structural model of the area and convert 

whole model from time to depth.  Second option will be considered in this study. 

Because all the data inside the model were placed on each grid node inside the 3D 

grid, converting whole model in time to depth using the 3D velocity field provides 

consistency. 
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3.6 STATIC MODEL BUILDING 
  
 For reservoir characterization studies, one of the main steps is constructing 

the static model. To achieve this, first, new grid spacing was applied to area to be 

modeled. The grid spacing was chosen as 50x50 ft laterally. Figure 3.25 shows the 

initial model having three zones between the four formation tops. This model 

represents the time domain as the input horizons come from seismic time 

interpretation. 

 

    
Figure 3.25 Initial structural model for the area. Four interpreted horizon were used to build 

the structural model. Three zones can be seen in different colors and the domain is in time 

(ms). 

 

 After completing the initial model, the layers were subdivided into 

stratigraphic intervals. The complete list of formation tops can be seen in Figure 3.7. 

Figure 3.26 shows the updated zoned in the study area. To build this model, first 

time maps of the each formation tops were prepared then the thicknesses were 

calculated for each zone. Then, each thickness was summed up starting from base 

to top. During this operation, the sum normally does not match the top horizon. 

Therefore, a proportional volume correction was applied to thicknesses. The error is 

distributed proportionally into each zone depending to their thickness and the last 

zone thickness at the top matched the upper most horizon. Finally the whole model 

is converted to depth using the smoothed velocity model prepared in the previous 

section. 

 

Time (ms) 
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Figure 3.26 Structural model for the are which was divided into stratigraphic intervals. Each 

colored zone represent different stratigraphic interval. The top horizon is the Caddo (MFS 

90). 

 

 The last step in static model building is defining the fine layering of each 

zone. This operation is necessary to be able to resample the properties into the 

model. The most important parameter for this operation is deciding the layer 

thickness which will be the guide for the well log upscaling in the next chapters. For 

the purpose of this study, each zone is divided into 2 ft intervals which are believed 

to be good representative of the properties. Figure 3.27 shows the layering results 

for one of the zones. 

 

        
 
Figure 3.27 Layering results for the zone 7 (light blue color zone in Figure 3.26). Each layer 

represents 2 ft thickness in vertical direction and the grid on the horizon level shows 50x50 ft 

X-Y spacing. 

Depth (ft) 
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CHAPTER 4 
 

ESTIMATION OF MISSING LOG SETS 
 

 As it can be inferred from the previous chapters, the study area contains 38 

wells with various logs but full suite of well logs is available for only few wells. 

Because the aim of this study to predict the reservoir properties, porosity, saturation, 

net thickness etc., there is a need for complete set of logs due to two main reasons. 

The first one is seismic inversion study will require the Acoustic Impedance (AI) at 

well locations to be able to create reasonable outcomes. The second reason is ANN 

study needs some group of logs to be trained and verified. Therefore, the same type 

of logs should exist in all well locations. 

 There are several approaches to predict missing logs. Among them, 

empirical relationships (e.g. Gardner’s approximation) and regression techniques 

are commonly used ones. In this chapter, estimation techniques will be applied to 

data and results will be compared to ANN estimation outcomes. 

 

4.1 EMPRICAL METHODS 
  
 First, a sonic log will be estimated using Faust relationship. Faust (1953) 

developed the following empirical relationship to estimate sonic logs from resistivity 

logs: 

Sonic Velocity = C1 * (R*Z)1/6                                                                     (4.1) 

where; C1 is a constant term (~2000), R is the resistivity, and Z is the corresponding 

depth. This relationship was applied to few wells having sonic log and results were 

compared. Figure 4.1 and 4.2 show sonic log estimation results for wells Ashe C5, B 

Yates 11, B Yates 18D, and C Yates 9. Since the relationship is linear, predicted 

sonic curves appear as mirror images of the resistivity curves having different 

values. In order to check the consistency of the method, cross plots were created 

between estimated and original sonic values and correlation coefficient was 

obtained. Figures 4.3 and 4.4 present these plots. For the first two wells correlation 

coefficients (CC) are 0.80 and 0.91 respectively and for the other two wells CCs are 

0.85. Correlation between original and estimated log looks very reasonable but due 

to fact that it is built on a linear relationship, results should be used with care as the 

reservoir properties usually exhibits a non-linear relationships in the subsurface. 
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Figure 4.1 Sonic estimation results using Faust’s relationship for wells Ashe C5 and B Yates 

11. Red curve is original DT, black curve shows estimated DT, and yellow curve is RILD. 

 
 

     
 
Figure 4.2 Sonic estimation results using Faust’s relationship for wells B Yates 18D and C 

Yates 9. Red curve is original DT, black curve shows estimated DT, and yellow curve is 

RILD. 
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Figure 4.3 Sonic versus sonic estimated (DLT-E) cross plots for Well Ashe C5 and B Yates 

11 respectively. Correlation coefficient (CC) is 0.80 for the first plot and for the second plot 

CC is 0.91. 

 
 

      
Figure 4.4 Sonic versus sonic estimated (DLT-E) cross plots for Well B Yates 18D and C 

Yates 9 respectively. Correlation coefficient (CC) is 0.85 for the first and second plots. 

 

 
 Another empirical relationship is established by Gardner (1974). In this 

relationship, approximation to density using sonic is given by: 

Density = C2 * DT(1/e)                                                                                  (4.2) 

where; C2 is a constant depending on the rock type, DT is sonic log, and e is the 

exponent (Table 4.1). Figure 4.5 and 4.6 show the result of density approximation 

using Gardner’s relationship. 
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Table 4.1 Gardner’s velocity-density relationship constants for the different lithologies 

(modified from Mavko et. al., 1998). 

 

Lithology C2 e Vp range 
(km/s)

Shale 1.75 0.265 1.5-5.0
Sandstone 1.66 0.261 1.5-6.0
Limestone 1.50 0.225 3.5-6.4
Dolomite 1.74 1.252 4.5-7.1
Anhydrite 2.19 0.252 4.6-7.4  

 
 
 

       
 

Figure 4.5 Density estimation results using Gardner’s relationship for wells B Yates 11, B 

Yates 18D, and C Yates 9. Blue curve is original RHOB, black curve is estimated RHOB and 

red curve is original sonic. 

 
 

   
 
Figure 4.6 Density versus density estimated (RHOB-E) cross plots for Well B Yates 11, B 

Yates 18D, and C Yates 9 respectively. Correlation coefficients (CC) are 0.44, 0.39, and 

0.60 respectively. 
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As it can be inferred from above figures, estimated density curves again 

similar to sonic curves as the approximation equation states. CCs are relatively low 

and these results indicate that using empirical relationships does not generally 

produce reliable results to be able to populate reservoir properties to whole field, 

Therefore, in the next section; a neural network approach will be used for prediction 

purposes. 

 
 

4.2 NEURAL NETWORK APPROACH 
 

As it can be concluded from the previous section, using empirical 

relationships to estimate well logs, in general, does not provide the best solution 

approach. Therefore, ANN techniques will be used to predict missing log sets in the 

study area. ANNs provide a very effective solution for prediction studies with its 

flexibility to find out non-linear relationships from the existing data and applying it to 

estimate missing logs. In this part of the study, two different well logs estimation 

were performed, sonic (DT) and neutron-porosity (NPHI). DT estimation was 

conducted using a single layer network and the results were satisfying. For NPHI 

estimation, a similar method was used together with the Principal Component 

Analysis and Correlation Analysis. It has been observed that improved results were 

obtained. 

Well logs are one of the most commonly used data type in hydrocarbon 

exploration, production and development studies. They contain valuable detailed 

information about subsurface but usually they are too expensive to acquire and 

sparse. On the other hand, the computing techniques bring efficient and low-cost 

solutions to estimation of missing data. Once the relationship has been derived 

between different log types, missing or target log types can be derived. 

The process presented involves usage of artificial neural networks to 

estimate well logs. First, the most correlated logs were selected and then based on 

this selection, two different set of logs were used for DT and NPHI estimation; NPHI-

RHOB-RILD and GR-RILD-DT respectively. 

The objective of this part is to apply neural networks to predict missing log 

sets in the area. The reason of choosing neural networks for this prediction study is 

its ability to establish non-linear relationship between training data and populating 

this relationship to boreholes having missing log types. The most important artifact 

of the technique is the overtraining issue which can be overcome using parameter 

change and result validation. 
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There are three main steps to be followed. The first step involves the editing, 

loading and quality checking of the well log data. The second step is selecting the 

most correlated logs versus other log(s) to be estimated. The last step consists of 

applying the neural network technique to data set for prediction (Arzuman, 2009). 

The main aspects of the ANN are their ability to estimate or classify the data 

sets which can be performed in two ways for the training data: supervised or 

unsupervised. In this study, the supervised training will be used. 

A single hidden layer has been used in this work. In Figure 4.7, there are 

three layers: In the input layer, the nodes (circles) are connected with weights (w), in 

the hidden layer; the nodes carry a nonlinear activation function. 
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Figure 4.7 A multilayer neural network structure with a single hidden layer. Input layer, 

hidden layer and output layer have 2, 3 and 1 neurons respectively. Weights (w) are 

computed, summed and distributed to the output layer with a non-linear activation function, 

f(x) (modified from Schraudolph and Cummins, 2009). 

 

 
 The resistivity log basically measures the formation’s resistivity. The 

resistivity logs can be used to determine hydrocarbons presence, lithology, fluid 

saturations, and compaction, overpressure and shale porosity (Rider, 1986). The 

gamma ray log measures the radioactivity of the uranium, thorium and potassium of 

the formation is generally used to determine the shale volume (Rider, 1986). The 

sonic log determines the formation’s interval transit time and changes with lithology 

and rock texture (Boyer and Mari, 1997). It is mainly used to determine porosity in 

liquid-filled holes. The neutron log detects the hydrogen presence and neutron-

derived porosity can be measured for certain type of minerals as they exhibit known 

responses (Ransom, 1995). The density log measures the overall density (solid 

matrix and fluid in pores) of the formation. It is basically used to determine the 
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porosity and can be useful for lithology, overpressure and fracture identification 

(Rider, 1986). As it can be seen, there are clear relationships between DT, RILD, 

GR, NPHI, and RHOB logs. 

Wireline logs sonic travel time (DT) was estimated based on Deep-Induction 

Resistivity (RILD) and Compensated Neutron Porosity (NPHI) was predicted based 

on Gamma Ray (GR), DT and RILD. Prior to selection of the input logs to be used 

for prediction, logs were normalized and checked for consistency in log cross-plots. 

For the first estimation part, DT log was cross plotted versus NPHI, RHOB, RILD, 

and RHOB was plotted versus NPHI, RILD, and GR (Figure 4.8) for well B Yates 

18D. It was observed that the most correlated log types with the DT were NPHI, 

RHOB, and RILD. Therefore, ANN was initially run using these log types. 

  

  

       

       
Figure 4.8 Log data cross plots for the well B Yates 18D. Cross plots from left top to right 

bottom: NPHI versus DT with CC: 0.89, RHOB versus DT with CC: -0.40, RILD versus DT 

with CC: -0.65, RHOB versus NPHI with CC: -0.36, RHOB versus RILD with CC: 0.07, and 

GR versus RHOB with CC: -0.07. 

 
 

Error measurement is one of the most important criteria for measuring the 

artificial neural network prediction results. Akin et. al. (2008) defines two types of 

error description: “mean squared error (MSE) which is the squared difference 

between the actual output and the predicted output and the absolute relative error 



 68

(ARE) which is the absolute value of the actual output minus predicted output 

divided by the actual output”. 

In this study, three following types of error estimation will be used to decide 

for the best network parameters for prediction. Training error (TE) is the root-mean-

square (RMS) error between the training data and the estimated values. Checking 

error (CE) is the error between the modeled values and the estimated values to 

validate the model. Relative error (RE) is the ratio between the initial checking error 

when the model is created and the current checking error. RE is the RMS error 

normalized by the standard deviation of the training data and therefore ranges from 

0 to 1 (Schlumberger, 2009). 

Two main considerations were pointed out by Akin et. al., (2008) for 

estimation procedure using artificial neural networks: memorizing and over 

saturation. If the training allowed going too far where the TE is notably smaller than 

the CE, the network is over trained. In this point, the algorithm cannot distinguish 

data characteristics any more. This problem can be overcome by dividing the data 

set into two parts (cross validation, CV): one part is used for training to optimize the 

weights and the other part is used to measure the error levels on the training. 

Train and estimation models created by neural networks are iterative 

processes. The results are checked at the end of each iteration and new iteration 

begins depending on the error criteria. Better results can be obtained with more 

iterations but deciding the number of iterations (convergence criteria) is an important 

step for obtaining better estimation results. Maximum number of iterations (MNI) can 

be increased is the error limit (EL) is decreasing even if the iteration maxima is 

reached. If the model converges quickly and reaches the error limit as the RE is still 

diminishing, the EL can be decreased to improve the estimation results. If the EL is 

kept constant and MNI is reached, the estimation process produces the best results 

but they might not be the best outcomes for the particular EL. Increasing the EL and 

decreasing the MNI stop the estimation process earlier. If the results are not good 

as expected, the input data might needed to be rechecked and the network 

parameters could be changed. 

After quality checking and editing of the well logs, the most correlated logs 

were selected based on their correlation strength. Parameter selection for the ANN 

algorithm was done based on the following three factors: MNI, EL, and CV. Figures 

4.9 shows the optimum parameter selection tests for the network algorithm used to 

estimate missing well logs. 
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Figure 4.9 ANN optimum parameters (MNI, EL and CV) selection error plots. In plots (a), 

EL:10 and CV:50 are constant and MNI is 20, 50, and 100 for each error plot. In plots (b), 

MNI: 20 and CV:50 are constant and EL is 5, 10, and 15 for each error plot. 
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Figure 4.9 (continued) In plots (c), MNI:100 and CV:50 are constant and EL is 5, 10, and 15 

for each plot. In plots (d), MNI:100 and EL:10 are constant and CV is 15, 30, and 50 for each 

plots. 

 

In Figure 4.9 (a), EL and CV were kept constants as 10 and 50 respectively 

and effect of MNI on training, checking and relative errors were observed. The effect 

of changing the MNI produced similar responses for all error types. MNI: 20 showed 
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dramatic decrease in all errors until 5th iteration and the errors started to decline 

slowly. Using 50 MNI produced similar response except perturbations between the 

5th and 13th iterations. The errors started to decrease gradually afterwards. Using 

100 MNI created higher errors until 50th iteration and the errors reached the steady 

state condition thereafter. In Figure 4.9 (b), MNI was selected as 20 and CV is 

decided to be 50 as constant and EL is by a factor of 5. As it can be seen clearly, 

perturbations occurred until the 20th iteration to adjust the weights and errors 

reached the almost constant level. In Figure 4.9 (c), MNI: 100 and CV: 50 set as 

constants and EL levels 5, 10 and 15 were tested to check the network 

performance. In general, all errors produced similar responses. Selecting EL as a 

%5 showed decrease in error level until 30th iteration and high perturbations were 

observed afterwards. EL 10% gave smooth reduction in all error types until 50th 

iteration and then produced stable error level. Choosing EL as 15% exhibited 

strange behavior at the 20th iteration with a very high peak and then produced high 

perturbations between the 35th and 75th iterations. In Figure 4.9 (d), effect of the CV 

was tested.  Three cases were selected: 15% CV used 1737 points for training and 

307 points for cross validation. 30% CV used 1431 points for training and 613 points 

for cross validation. 50% CV used 1022 points for training and cross validation. 15% 

CV created high perturbations after the 40th iteration for TE and CE and did not 

show steady error level afterwards. On the other hand, it exhibited an unsteady error 

levels for the RE. 30% CV was increased the error levels in general and reached the 

sill condition after the 40th iteration. Using 50% CV produced similar responses in all 

error types. The errors decreased until the 26th iteration, created perturbations 

between the 26th and 50th iterations and started to become constant. 

Analysis of the error characteristics was suggested that the optimum 

parameters for the ANN algorithm were MNI: 50, EL: 10% and CV: 50%. Table 4.2 

shows the sample calculated error estimations for the ANN algorithm. Following 

parameters were used: Max number of iterations: 20, Error limit: 10% and Cross 

validation: 50%. Each time the relative error reaches for all time low, the results are 

saved and the comment “store” appears in the table.  

The results of the training with optimum parameters can be seen in Figure 

4.10. These results showed that the most correlated log for estimation of DT log was 

NPHI but because it was sparse in the study area, RILD was used to estimate DT 

for the rest of the field.  
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Table 4.2 Petrel ANN run DT estimation error results for the well B Yates 18D.  

 
 

 

 

Figure 4.10 DT estimation results from ANN versus original DT logs. Well B Yates 18D 

estimated DT logs (in black) are displayed along with the original DT logs (in red). The first 

track is NPHI, the second is RHOB, and the third track is RILD results respectively. 
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To obtain the CCs of this training phase, cross plots were also prepared 

(Figure 4.11). From these cross plots, the most correlated log found as NPHI with a 

0.90 correlation coefficient but because there are only few wells having complete 

NPHI log, RILD was used to train and estimate DT. During the training phase, the 

 

 

  
Figure 4.11 Estimated versus original DT log cross plots. Cross plots show trained DT log 

versus original DT logs obtained from NPHI, RHOB, and RILD. CCs are 0.90, 0.48, and 0.89 

respectively. 

 

Training part of the study was repeated using three other wells in the study 

area due to fact that single well cannot be use to populate the relationship obtained 

to whole area.  

 

 
Figure 4.12 DT estimation results from RILD logs. Red color curve represents the original DT 

and black curve show estimated DT logs. 



 74

Previously used well B Yates 18D was not included into this training to compare the 

results from the single well estimation outcome. This comparison basically shows 

the effect of incorporating wells from different parts of the study area to prediction 

study. Training and estimation results can be seen in Figure 4.12. 

To obtain the CCs of this training phase, the cross plots were also prepared 

(Figure 4.13). From these cross plots, the most correlated well found as B Yates 11 

with a 0.91 correlation coefficient. 

 

  
Figure 4.13 Cross plots of the estimated DT log versus original DT logs. Results obtained 

from wells Ashe C5, B Yates 11, and C Yates9. CCs are 0.79, 0.91, and 0.85 respectively. 

  

       
Figure 4.14 DT estimation results for well B Yates 18D using RILD from one and three other 

wells. The first track shows DT estimation (black curve) using RILD from B Yates 18 D well 

and the second track presents the results using wells Ashe C5, B Yates 11, and C Yates9. 

CCs are 0.89 and 0.87 respectively. 
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 Training results were also applied to B Yates 18D well to be able check to 

stability of the network. Figure 4.14 shows the results of this analysis. 

As it can be noticed, CCs of second training is lower than that of the first one 

but because it has a better areal representation of the area, estimating the DT log 

using the first training set was not suggested. Wells chosen for the training phase 

should have a better representation of the area. 

Similar study is executed for the NPHI estimation. Figure 4.15 shows cross-

plot of original NPHI log versus other logs for Well B Yates 18D to determine which 

log to be used for training the ANN. 

 

       

       
Figure 4.15 NPHI versus GR, SP, RILD, RHOB, DT and estimated DT cross plots. CCs are 

0.891, 0.419, -0.792, -0.363, 0.890 and 0.804 respectively (Well B Yates 18D). 

 

It is obvious that the GR is the most correlated log with NPHI and it was used 

to train the network. Training parameters were kept the same and the Figure 4.16 

shows the results of the trained network for five wells, Ashe C6, B Yates 13,     -15, -

18D, and IG Yates 9 in the study area. CC of the training was found as 0.84 using 

the GR log. In general, NPHI estimations were produced meaningful result for all 

wells even though B Yates 15 and -18D correlations were not perfect. Correlation 

coefficient was 0.84. Individual cross plots for each well can be found in Figure 4.17. 
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Figure 4.16 NPHI estimation results for 5 wells (Ashe C6, B Yates 13, -15, -18D, and IG 

Yates 9). Original log is blue in color and CCs are 0.847, 0.763, 0.822, 0.893 and 0.864 

respectively. 

 

 

             

             

Figure 4.17 NPHI versus estimated NPHI cross plots for wells Ashe C6, B Yates 13, -15, -

18D, and IG Yates 9. Corresponding CCs are 0.847, 0.763, 0.822, 0.893 and 0.864 

respectively. 
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Beside Correlation Analysis (CA) which we performed using cross-plots, 

Principal Component Analysis (PCA) another very useful technique to help ANN 

process was used.  PCA simplifies a dataset by reducing multidimensional datasets 

to lower dimension for analysis. The main use of PCA is to reduce the 

dimensionality of a data set while retaining as much information as is possible. PCA 

is a linear transformation that transforms the data to a new coordinate system. The 

new few coordinates contain the most important aspect of the data. 

Figure 4.18 below represents the training results for NPHI estimation for 

wells Ashe 6, B Yates 13, B Yates 15, and LOF  2 using GR, RILD and DT logs at 

the same time. PCA was not used in this training process. 

 

 

 
Figure 4.18 Cross-plot of the training results for the NPHI estimation from GR, RILD and 

estimated DT using wells Ashe 6, B Yates 13, B Yates 15, and LOF  2 (CC=0.884845). 

Table shows the correlation coefficient for the logs against each other. 

 

 NPHI estimation was also performed using PCA analysis. Table 4.3 shows 

PCA for NPHI estimation. Eigenvalues present the relative importance of the 

Principal Components (PCs). The sum of these values equals the number of PCs. 

This is equal to “3” in our example and PC1 has the biggest variation with 84.86% 

contribution in the data set and the PC3 has the lowest one. It should also be noted 

that PC may show a very low eigenvalue but can show a good correlation. 

Therefore, it always a good practice to check the correlation table using CA (linear 

or non-linear). 
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Table 4.3 PCA results for NPHI estimation using RILD, GR, estimated DT for wells Ashe 6, B 

Yates 13, B Yates 15, and LOF 2. 

 

 
 

Based on the result of PCA, PC3 was not included the training process as it 

has the lowest contribution. Figure 4.19 represents the results of the training. As it 

can be noticed from the both training results, reducing the least contributed data and 

dimension from the data set improves the results: CC (no PCA)= 0.884845 and CC 

(with PC1 and PC2)= 0.885236. 

 

 
Figure 4.19 Cross-plot of the training results for the NPHI estimation using PC1 and PC2.  

GR, RILD and estimated DT were used from wells Ashe 6, B Yates 13, B Yates 15, and LOF  

2 (CC=0.885236).  

 

 To represent the contribution of using the more than one type of log and 

PCA into estimation results, three different run were performed for the same four 

wells. The first estimation has been done using only GR log with no PCA, the 
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second estimation with GR, DT, RILD and the third one was done using GR, DT and 

RILD with reducing PC3 (Figure 4.20). 

 

       
                        (a)                                            (b)                                             (c) 

Figure 4.20 Cross-plot of the training results for the NPHI estimation versus original NPHI 

logs with and without PCs. NPHI estimation (a) using GR (CC=0.846961), (b) with GR, DT 

and RILD – no PCA (CC=0.898196) and (c) from PCA 1 and PCA 2 using GR, DT and RILD 

(CC=0.898351). 

 

Figure 4.21 shows the result of above three trainings for NPHI estimation for 

well Ashe C6 corresponding to cross-plots a, b and c in Figure 4.20. 

 

 

 
Figure 4.21 Estimated NPHI log for the well Ashe C6. Dark blue curve in the first track is the 

original NPHI log and the curves in tracks a, b and c represents the estimated NPHI logs 

with GR, GR-DT-RILD-no PCA and GR-DT-RILD-PC1-PC2 respectively. 
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In this section, DT and NPHI logs were estimated using ANN technique. 

Optimal network parameters were selected by analyzing error response of the 

different cases. Among them the best parameters were found as; 50 MNI, 10% EL 

and 50% CV. It was observed that increasing the number of iterations started to 

converge the estimation results after certain number. Defining the correct error limit 

is also critical for the obtaining the best prediction for the ANN algorithm. 

Memorizing problem was overcome by increasing the number of point used for 

training to 50%. Only one hidden layer was used for the network algorithm with a 

hyperbolic tangent activation function. 

Application of the ANN showed that prediction of the DT logs based on NPHI 

and RILD was successful in the study area with very high CC using single well. 

Incorporating other wells lowered the training results slightly. NPHI prediction was 

performed using combination of GR, DT and RILD logs. Incorporating the PCA for 

data reduction improved the estimation results. 

 

4.3 SEISMIC INVERSION 
 

 Interpretation of seismic data is done by using amplitude sections with a 

limited vertical resolution. The picked reflectors which indicate impedance contrast 

between two subsequent the layers, are usually not appropriate for interpolating 

reservoir properties (Duboz et. al., 1998). 

Seismic inversion is the process of determining what physical characteristics 

of rocks and fluids could have produced the seismic record. Simply, it is determining 

the input by looking at the output. Transforming a noisy, processed seismic trace 

into a density log or a sonic log is the inverse of transforming these two logs into a 

synthetic seismogram, hence the name inversion. 

In many cases the physical parameters of interest are impedance, velocity 

and density. It is also possible to move on to an estimation of properties that are 

more familiar like porosity or even sand/shale ratios or gas saturation. The common 

methods of performing seismic inversion attempt to remove the effects of the 

wavelet. This leads to a higher resolution display and in this sense acoustic 

impedance inversion can be thought of as a form of deconvolution. 

Another way to approach the inversion concept is to realize that standard 

acoustic impedance inversion requires model building that usually incorporates well 

log data from all the nearby wells. The forward model is created by carefully 

calibrating the seismic data with log-based synthetic seismograms. Therefore the 
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final inversion result is a data set that ties all the wells and also honors all the 

seismic data. In this sense, inversion can also be considered a sophisticated 

method of integrating well logs and seismic data (Russell, 1988). 

Main advantages of inversion application can be summarized as follows: 

• AI directly represents layer properties; amplitudes are represent a 

contrast between layers 

• AI improves vertical resolution and layering; amplitudes affected by thin 

layer interfaces 

• AI often free from noise and thin layer interfaces; amplitudes disturbed by 

noise and rarely display heterogeneities 

• AI measured at well location; amplitudes do not (Duboz et. al., 1998). 
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Figure 4.22 Schematic diagrams of the forward and inverse modeling concepts. Above 

diagram shows how seismic data is obtained with forward solution and diagram below 

presents the inverse modeling (modified from Russell, 2006). 

 

The synthetic trace was obtained, first by converting the density-velocity 

model (impedance) to reflectivity model which is the ratio of the reflected wave 

amplitude to the incident wave amplitude (Lindseth, 1979). Then, a wavelet was 
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combined with reflectivity series. Inversion starts with removing the wavelet from the 

amplitude preserved seismic trace to produce reflectivity series. The final product, 

acoustic impedance, was created from the reflectivity series (Figure 4.22) (Barclay 

et. al., 2008). 

There are many different techniques used in seismic inversion. These can be 

roughly grouped into two sets of categories: pre-stack vs. post-stack, and seismic 

resolution vs. well log resolution. Pre-stack techniques are usually applied to pre-

processed seismic data before final stack and post-stack inversion applied to 

amplitude preserved stacked data. The combination of these categories yields four 

technical approaches to the inversion problem, and the selection of a specific 

technique depends on the desired objective and the characteristics of the rocks in 

the subsurface. A more detailed grouping of the seismic inversion techniques can be 

summarised as (Russell, 1988). 

 Post-Stack Inversion   Pre-Stack Inversion 

• Model-Based Inversion   Linear Methods 

• Recursive Inversion   Non-Linear Methods 

o Narrow Band 

o Sparse-Spike 

• Traveltime Inversion (Tomography) 

• Wavefield Inversion 

Understanding the process involved in building the seismic data is the first 

step to be able to gain some knowledge from the seismic inversion methods. 

Therefore, the basic convolution model of the seismic trace with its three 

components, reflectivity, seismic wavelet, and noise will be the initial considerations 

for any seismic inversion study (Russell, 1988). 

 Seismic trace simply is obtained by convolving reflectivity series with a 

wavelet (Oldenburg, 1983) or in more simple terms “replacing each RC with a 

scaled version of the wavelet and summing the results” (Russell, 1988). This 

process is usually coarsen the resolution. In time domain, 1D model of the seismic 

trace can be written as: 

s(t) = r(t) * w(t) + n(t)                                                                                  (4.3) 

where; s(t): seismic trace, r(t): earth reflectivity, w(t): seismic wavelet, and n(t): 

additive noise. 

 In the frequency domain, convolution operation multiplies the amplitude 

spectra and adds the phase spectra. If the Fourier transform of the Equation 4.3 was 

taken: 
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S(f) = R(f) x W(f)                                                                                        (4.4) 

where; S(f), R(f), and W(f) are Fourier transform of the s(t), r(t), and w(t) respectively 

and f is the frequency. The amplitude and the phase spectra of the S(f) can be 

represented as (Russell, 1988): 

|S(f)| = |R(f)| x |W(f)|                                                                                   (4.5) 

|θ| (f) = θr(f) +  θw(f)                                                                                    (4.6) 

where; | |: amplitude spectrum and θ: phase spectrum. As it can be noted, in 

frequency domain the problem becomes loss of frequency content.  

 The reflection coefficient series (RC) show the changes of the shape of the 

wavelet due to acoustic impedance (AI) change within the layered subsurface. RC at 

the boundaries of two layers for the normal incidence case is (Oldenburg, 1983): 
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where; ρ: density, V: velocity, Z: AI, and i: layer sequence index. 

 AI usually computed by multiplying the sonic and density logs from the wells, 

then RC can be extracted. In general, correct RC series cannot be estimated from 

seismic trace with the effects of amplitude, noise and wavelet. Therefore, most of 

the post stack inversion methods are only approximations to the real state (Russell 

and Hampson, 1991). 

  

4.4 ACOUSTIC IMPEDANCE ESTIMATION 
 

Because the AI is the product of the density and velocity, it carries important 

information regarding the rock physical properties in the subsurface. Therefore, AI 

logs will be estimated using ANN techniques to assist predicting reservoir properties 

in the next chapter of this study. 

In the study area, there are only three wells, B Yates 11, B Yates 18D, and C 

Yates 9, have DT and RHOB logs to calculate the AI. To compute the AI logs for 

these three wells, first sonic logs were corrected against check-shot values, 

synthetic seismograms were extracted and AI logs were calculated using the 

corrected sonic velocities. Please refer to Chapter 3, Seismic to Well Tie section for 

more detailed explanations on sonic correction and synthetic creation. 

Figure 4.23 shows calculated AI logs along with the corrected DT and RHOB 

logs for the wells B Yates 11, C Yates 9 and B Yates 18D. Computed AI logs 

perfectly follow the main sequence boundaries. One of the most important effects of  
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Figure 4.23 Computed AI logs for the wells having DT and RHOB logs. Orange and blue 

curves in the left tracks shows corrected DT and RHOB logs and black curve in the right 

track show computed AI logs. 

 

the convolution appears as a loss of frequency content of the AI logs due to wavelet. 

Please note that, wavelet used for convolution was extracted along the each 

borehole from the seismic data. 

 Dependency of the AI logs to DT values (Equation 4.7) was presented in 

Figure 4.24. As it can clearly be seen, very high correlation exists between these 

logs. Correlation coefficients are, -0.91, -0.93, and -0.89 for the wells B Yates 11, C 

Yates 9, and B Yates 18D respectively. These results are very encouraging that AI 

logs for the other wells can be easily estimated using this relationship.  

 
 

 
Figure 4.24 Sonic versus Acoustic Impedance cross plots for the wells B Yates 11, B Yates 

18D, and C Yates 9. 
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The drawback at this point is the non-existence of the DT logs for the other wells 

inside the study area. Therefore, first, DT logs will be estimated, and then AI logs 

will be computed for the rest of the area. 

 Estimation of the DT logs was performed using the existing RILD and AI logs 

for the wells B Yates 11, -18D, and C Yates 9 using ANN methodology. The best 

ANN parameters were selected with an error sensitivity analysis similar to one 

applied in Section 4.2. Figure 4.25 shows the estimated DT logs from RILD and AI.  

 

 

 
Figure 4.25 DT prediction results for the wells B Yates 11, B Yates 18D, and C Yates 9. Red 

curve in the tracks show original corrected DT, blue curve estimation results from RILD logs, 

and green curve presents estimation results from AI logs. Lines between wells show the 

main formation tops in the study area. 

 

Estimation of the DT from RILD logs represents a good coherency and most 

of the major deviations of the sonic log were followed by the estimated sonic (blue 

curves in Figure 4.25). Prediction results from AI logs, on the other hand, present 

smoother sonic logs (green curves in Figure 4.25). Another noticeable characteristic 

of this estimation is the loss of frequency content. Sonic estimation contains less 

peaks especially where the original sonic curve exhibits frequent deviations (dotted 

circles in Figure 4.25). This is, again, because of the effect of the wavelet used for 

the AI calculation. 
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To be able to understand the contribution of each log for estimating the DT, 

cross plots have been prepared (Figure 4.26).  

 

    

   
Figure 4.26 Original DT versus estimated DT results from RILD and AI logs. Wells B Yates 

11 is in blue, B Yates 18D is in black, and C Yates 9 is in cyan color respectively. 

 

 
 Cross plots in Figure 4.26 represent very close results. The correlation 

coefficients for the B Yates 11 well are 0.91 and 0.90, for the B Yates 18D well; 0.88 

and 0.88, and for the C Yates 9 well; 0.85 and 0.89. One conclusion that can be 

drawn from this analysis is that there is a high dependency between the sonic and 

AI values that can be used to predict missing DT logs. 

 Even though good estimation results were obtained using the RILD and AI 

logs separately, both logs were used together to predict DT logs to improve the 

accuracy. Figure 4.27 shows the DT estimation using both resistivity and acoustic 

impedance logs. As it can be seen, using both RILD and AI logs produced better DT 

estimation. Even though predicted DT (blue curve) exhibits smoothed DT curve than 

that of the original DT curve, most of the peaks. Comparison of Figure 4.25 and 4.27 

suggests that, using RILD and AI logs produce the best results to predict DT logs in 

the study area. Correlation plots were also prepared to check the quality of the 

estimation. Figure 4.28 shows the correlation cross plots for the original and 

estimated DT logs. 
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Figure 4.27 DT estimation results from RILD and AI logs for the wells B Yates 11, B Yates 

18D, and C Yates 9. Red curve shows original DT and blue curve presents predicted DT 

curves. Lines between the wells show main sequence boundaries in the study area. 

 

 

 
Figure 4.28 DT versus estimated DT cross plots using RILD and AI logs. Plots represent the 

results for the wells B Yates 11, B Yates 18D, and C Yates 9 respectively. 

 
 
 The correlation coefficients for the cross plots are 0.95, 0.93, and 0.95 

respectively for the wells B Yates 11, B Yates 18D, and C Yates 9. These outcomes 

also indicated that AI logs to be used in seismic inversion study can be estimated 

using the DT and RILD logs in the study area. Figure 4.29 shows the calculated AI 

logs for the whole field. As it can be noted some of the wells do not have AI logs due 

to fact that they do not have either RILD or DT logs to be able to calculate the 

acoustic impedance. 
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Figure 4.29 Distribution of the computed AI logs in the study area. 
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CHAPTER 5 
 

ESTIMATION OF RESERVOIR PARAMETERS BASED ON SEISMIC 
 

Availability of 3D seismic data is usually considered as interpretative 

purposes, namely horizon and fault picking and the results are produced an input to 

structural model for the study area. Seismic data measures: travel time, amplitude, 

the character of the events, and the patterns of the events (Sheriff, 1992). Using this 

information, the following parameters can be computed: seismic velocities, contrast 

in rock properties, stratigraphic changes, dip, and discontinuities (Chambers, 2002). 

On the other hand, there is more information that we can extract from 

seismic data to provide inputs for the reservoir property estimation studies. If we 

consider the main sources of reservoir studies are well and 3D seismic data, the 

integration of these two can bring valuable help for defining the parameters at 

undrilled locations. The possible correlation between vertically high resolution well 

logs and laterally dense sampled 3D seismic data can lead to more precise reservoir 

property description. There are several methods are available to accomplish this 

task: geostatistics, artificial neural networks, and regression analysis are some of 

them. 

In this part, reservoir properties, porosity, net thickness, saturation etc. will 

be estimated using well log data and seismic attributes. The results from 

geostatistical algorithms and neural networks will be discussed at the end of the 

chapter. 

 

5.1 SEISMIC ATTRIBUTES 
 Seismic attributes are defined as all of the measured, computed or implied 

quantities obtained from the seismic data. Attributes computed from seismic data in 

time domain (due to fact that positioning of the reflectors) is more precise than those 

in depth domain (Taner, 2000). On the other hand, the correct use of attributes 

requires special processing steps including zero-phase, true amplitude, and 

migration. For AI inversion studies, the data must be zero-phase with true amplitude 

recovered, otherwise the resulting inverted cube will be useless for quantitative 

interpretation (Chambers, 2002). 

 Attributes can be classified into two main group based on their direct 

relations: 
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 Physical Attributes relate the lithology, wave-propagation, and other physical 

properties directly to seismic measurements. They are divided into two categories: 

pre-stack and post-stack attributes and they have two sub-classes; instantaneous 

and wavelet attributes. Instantaneous attributes use sample by sample methodology 

for computation and change of the attribute values can be reflected along time and 

space axis. The wavelet attributes, show he characteristics of wavelet and their 

amplitude spectrum (Taner, 2000). Please refer References section and Appendix C 

for more information on seismic attributes. 

Brown (2001) summarizes the post-stack seismic attributes as: 

 

1- Time 2- Amplitude 3- Frequency 4- Attenuation

1A- Horizon 2A- Horizon 3A- Horizon Attenuation
Time Reflection Amplitude Instantaneous Frequency Inst. Q Factor

Isochron Composite Amplitude Response Frequency Slope Spectral
Trend Relative Impedance Weighted Inst. Freq. Freq.

Residual Reflection Strength Time Derivative Freq. Slope Inst. Freq.
Dip Amplitude Ratio

Azimuth Normalized Amplitude 3B- Window
Difference Average Inst. Freq.

Edge 2B- Window Reflection Width
Illumination Sum of Magnitude RMS Inst. Freq.

Cosine Total Energy No. Of Zero Crossings
Phase Average Magnitude Peak Spectral

Curvature Average Energy Frequency
Roughness Average Reflection Dominant Frequency

RMS Amplitude
1B- Window Average Peak Amplitude Hybrid Attributes
Coherency Variance of Amplitude Arc Length
Continuity Threshold Amplitude Wave Shape

Semblance Maximum Amplitude Loop Area
Covariance Max. Negative Amplitude

Peak-Trough Difference Peak-Trough Difference
Dip Max Correlation Energy Half-Time

Azimuth Max Slope Reflection Strength
Correlation Slope At Half Energy

Signal-To-Noise Ratio Ratio Positive-To-Negative
Parallel Bed Indicator
Chaotic Bed Indicator

Trace Difference

SEISMIC DATA

 
Figure 5.1 Classification of post-stack seismic amplitudes (modified from Brown, 2001). 

 

 At this point, selection of suitable seismic attributes becomes very important 

as they can be misleading for property estimation practices. Cooke (1999) explains  

the usage of seismic attributes for reservoir characterization studies in a detailed 

way. In this study, selected attributes will be discussed in the following paragraphs. 

On the other hand, selecting the proper seismic attributes may not be helpful due to 

assumptions were made, physical correspondence of the attributes, scale 

differences with well logs etc. 
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 Assumptions made for the calculation of seismic attributes basically concern 

to formulations to express the relationship between the seismic signal and interfaces 

in the subsurface. Another one is the geological validity of the relationship between 

attributes and well log data. Scale difference between seismic and log data is also a 

consideration. 

 In recent years, the number of attributes computed from seismic data 

increased parallel to the technological advances. As a result, more attributes 

become available and it was more difficult to select the most appropriate ones. 

Therefore, before starting the use of attributes it will be very efficient to discard the 

attributes producing similar responses. 

 In this study, 25 seismic attributes were extracted from the 3D volume and 

their correlation was checked against several properties. Table 5.1 shows the 

correlation of employed attributes against each other. 

 

Table 5.1 Seismic attributes correlation table calculated in this study. 
AP C CP DF FD GM IF IP IQ RI RA V DD

Apparent Polarity (AP) 1 0.0324 0.2859 0.0016 0.0088 0.0246 0.0033 0.0215 0.0164 0.0583 0.0576 0.0103 0.0063
Chaos (C ) 0.0324 1 0.0190 0.0616 0.0232 0.5155 0.0760 0.0322 0.1240 0.5545 0.5959 0.4548 0.2528
Cosine of Phase (CP) 0.2859 0.019 1 0.0232 0.0053 0.0119 0.0428 0.0044 0.0219 0.0200 0.0227 0.0151 0.0002
Dominant Frequency (DF) 0.0016 0.0616 0.0232 1 0.0009 0.0132 0.8217 0.0178 0.0641 0.2939 0.2779 0.3116 0.1042
First Derivative (FD) 0.0088 0.0232 0.0053 0.0009 1 0.0073 0.0055 0.6862 0.0516 0.0154 0.0156 0.0071 0.0188
Gradient Magnitude (GM) 0.0246 0.5155 0.0119 0.0132 0.0073 1 0.1163 0.0087 0.0656 0.4965 0.5561 0.1190 0.0778
Instantanenous Frequency (IF) 0.0033 0.0760 0.0428 0.8217 0.0055 0.1163 1 0.0354 0.0460 0.1144 0.1028 0.1575 0.2322
Instantaneous Phase (IP) 0.0215 0.0322 0.0044 0.0178 0.6862 0.0087 0.0354 1 0.0352 0.0222 0.0211 0.0095 0.0399
Instantaneous Quality (IQ) 0.0164 0.1240 0.0219 0.0641 0.0516 0.0656 0.0460 0.0352 1 0.1500 0.1454 0.1350 0.0964
Reflection Intensity (RI) 0.0583 0.5545 0.0200 0.2939 0.0154 0.4965 0.1144 0.0222 0.1500 1 0.9919 0.6332 0.2157
RMS Amplitude (RA) 0.0576 0.5959 0.0227 0.2779 0.0156 0.5561 0.1028 0.0211 0.1454 0.9919 1 0.6419 0.2518
Variance (V) 0.0103 0.4548 0.0151 0.3116 0.0071 0.1190 0.1575 0.0095 0.1350 0.6332 0.6419 1 0.2991
Dip Deviation (DD) 0.0063 0.2528 0.0002 0.1042 0.0188 0.0778 0.2322 0.0399 0.0964 0.2157 0.2518 0.2991 1
Envelope (E) 0.0582 0.6145 0.0297 0.3023 0.0254 0.5639 0.0948 0.0241 0.1686 0.9675 0.9790 0.6301 0.2674
Instantaneous Bandwidth (IB) 0.0078 0.2553 0.0350 0.5943 0.0221 0.1666 0.0746 0.0291 0.2975 0.4044 0.3880 0.3533 0.1539
Iso-Frequency Component (IFQ) 0.0250 0.1646 0.0211 0.5277 0.0100 0.0118 0.4955 0.0264 0.0694 0.3048 0.3010 0.3808 0.0015
Local Flatness (LF) 0.0186 0.7072 0.0087 0.0618 0.0199 0.3408 0.1038 0.0321 0.1238 0.4628 0.4903 0.4899 0.2516
Local Structural Azimuth (LSA) 0.0116 0.0223 0.0023 0.0010 0.0093 0.0441 0.0074 0.0042 0.0132 0.0207 0.0179 0.0046 0.0127
Local Structural Dip (LSD) 0.0232 0.4875 0.0348 0.0157 0.0154 0.2622 0.1744 0.0112 0.1523 0.3974 0.4588 0.4839 0.6362
Original Amplitude (OA) 0.3167 0.0403 0.8640 0.0248 0.0084 0.0381 0.0397 0.0009 0.0354 0.0578 0.0619 0.0068 0.0164
Phase Shift (PS) 0.3167 0.0403 0.8640 0.0248 0.0084 0.0381 0.0397 0.0009 0.0354 0.0578 0.0619 0.0068 0.0164
Quadrature Amplitude (QA) 0.0095 0.0275 0.0004 0.0023 0.9620 0.0173 0.0105 0.7131 0.0544 0.0402 0.0395 0.0156 0.0295
Relative Acoustic Amplitude (RAA) 0.0573 0.0447 0.1360 0.0114 0.8284 0.0470 0.0156 0.6624 0.0611 0.0966 0.0954 0.0342 0.0484
Second Derivative (SD) 0.3494 0.0077 0.7420 0.0116 0.0032 0.0150 0.0145 0.0055 0.0397 0.0474 0.0424 0.0027 0.0073
Structural Smoothing (SS) 0.2998 0.0481 0.8330 0.0316 0.0065 0.0491 0.0458 0.0089 0.0319 0.0575 0.0636 0.0051 0.0192  

E IB IFQ LF LSA LSD OA PS QA RAA SD SS
Apparent Polarity (AP) 0.0582 0.0078 0.0250 0.0186 0.0116 0.0232 0.3167 0.3167 0.0095 0.0573 0.3494 0.2998
Chaos (C ) 0.6145 0.2553 0.1646 0.7072 0.0223 0.4875 0.0403 0.0403 0.0275 0.0447 0.0077 0.0481
Cosine of Phase (CP) 0.0297 0.0350 0.0211 0.0087 0.0023 0.0348 0.8640 0.8640 0.0004 0.1360 0.7420 0.8330
Dominant Frequency (DF) 0.3023 0.5943 0.5277 0.0618 0.0010 0.0157 0.0248 0.0248 0.0023 0.0114 0.0116 0.0316
First Derivative (FD) 0.0254 0.0221 0.0100 0.0199 0.0093 0.0154 0.0084 0.0084 0.9620 0.8284 0.0032 0.0065
Gradient Magnitude (GM) 0.5639 0.1666 0.0118 0.3408 0.0441 0.2622 0.0381 0.0381 0.0173 0.0470 0.0150 0.0491
Instantanenous Frequency (IF) 0.0948 0.0746 0.4955 0.1038 0.0074 0.1744 0.0397 0.0397 0.0105 0.0156 0.0145 0.0458
Instantaneous Phase (IP) 0.0241 0.0291 0.0264 0.0321 0.0042 0.0112 0.0009 0.0009 0.7131 0.6624 0.0055 0.0089
Instantaneous Quality (IQ) 0.1686 0.2975 0.0694 0.1238 0.0132 0.1523 0.0354 0.0354 0.0544 0.0611 0.0397 0.0319
Reflection Intensity (RI) 0.9675 0.4044 0.3048 0.4628 0.0207 0.3974 0.0578 0.0578 0.0402 0.0966 0.0474 0.0575
RMS Amplitude (RA) 0.9790 0.3880 0.3010 0.4903 0.0179 0.4588 0.0619 0.0619 0.0395 0.0954 0.0424 0.0636
Variance (V) 0.6301 0.3533 0.3808 0.4899 0.0046 0.4839 0.0068 0.0068 0.0156 0.0342 0.0027 0.0051
Dip Deviation (DD) 0.2674 0.1539 0.0015 0.2516 0.0127 0.6362 0.0164 0.0164 0.0295 0.0484 0.0073 0.0192
Envelope (E) 1 0.4492 0.3098 0.5086 0.0121 0.4661 0.0683 0.0683 0.0484 0.1046 0.0327 0.0720
Instantaneous Bandwidth (IB) 0.4492 1 0.2370 0.2929 0.0156 0.2482 0.0326 0.0326 0.0331 0.0599 0.0211 0.0258
Iso-Frequency Component (IFQ) 0.3098 0.2370 1 0.1683 0.0193 0.0870 0.0133 0.0133 0.0145 0.0280 0.0055 0.0142
Local Flatness (LF) 0.5086 0.2929 0.1683 1 0.0328 0.4363 0.0265 0.0265 0.0264 0.0468 0.0028 0.0341
Local Structural Azimuth (LSA) 0.0121 0.0156 0.0193 0.0328 1 0.0067 0.0022 0.0022 0.0073 0.0017 0.0146 0.0037
Local Structural Dip (LSD) 0.4661 0.2482 0.0870 0.4363 0.0067 1 0.0502 0.0502 0.0246 0.0482 0.0153 0.0570
Original Amplitude (OA) 0.0683 0.0326 0.0133 0.0265 0.0022 0.0502 1 1.0000 0.0051 0.1510 0.8407 0.9746
Phase Shift (PS) 0.0683 0.0326 0.0133 0.0265 0.0022 0.0502 1.0000 1 0.0051 0.1510 0.8407 0.9746
Quadrature Amplitude (QA) 0.0484 0.0331 0.0145 0.0264 0.0073 0.0246 0.0051 0.0051 1 0.9368 0.0070 0.0068
Relative Acoustic Amplitude (RAA) 0.1046 0.0599 0.0280 0.0468 0.0017 0.0482 0.1510 0.1510 0.9368 1 0.1332 0.1441
Second Derivative (SD) 0.0327 0.0211 0.0055 0.0028 0.0146 0.0153 0.8407 0.8407 0.0070 0.1332 1 0.7560
Structural Smoothing (SS) 0.0720 0.0258 0.0142 0.0341 0.0037 0.0570 0.9746 0.9746 0.0068 0.1441 0.7560 1  
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In Table 5.1, color codes represents the correlation degree; colors from white 

to red shows high correlation. As it can be inferred from this table, the highest 

correlations (>0.8) were found between the following attribute pairs (Table 5.2): 

 

Table 5.2 The most correlated seismic attributes and their correlation coefficients (refer to 

Table 5.1 for explanation of the abbreviations). 

OA CP 0.8640
PS CP 0.8640
IF DF 0.8217
QA FD 0.9620
RAA FD 0.8284
RA RI 0.9919
E RI 0.9675
E RA 0.9790
PS OA 1.0000
SD OA 0.8407
SS OA 0.9746
SD PS 0.8407
SS PS 0.9746
RAA QA 0.9368  

 

As it can be inferred from the above table, one of the attributes of each pair 

with high CCs was not used to estimate the properties in the study area. This is 

mainly, due to fact that if two attributes are correlated well, it means that the 

contribution of them and results obtained will be closer to each other. These 

attributes produced from seismic data represent the properties of the reflector 

interfaces and therefore they are limited to resolution of the seismic data. On the 

other hand, acoustic impedance (AI), which was explained and produced in previous 

chapters, exhibit different characteristics. AI is basically the product of velocity and 

density and reflects the rock or layer property. Therefore it can be linked to reservoir 

porosity, pore fluids, lithology etc. 

Principal Component Analysis (PCA) is also applied to remaining attributes 

to be able to reduce the uncorrelated data size and bring up the relationship 

between correlated attributes easily.  

The methodology used in this study is data originated, means that 

relationships between seismic attributes and logs were obtained directly from the 

data itself. Relationships can be allowed or disregarded. Therefore, the data from 

different area may show different relationship characteristics. 
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5.2 GEOSTATISTICAL APPROACH 
 

As it was stated in Chapter 3, in the initial state, the data quality was 

checked and the errors were removed from. To be able to build the static model, fine 

layers with 1 ft intervals were created horizons were embedded into the model. 

 In this part of the study, the reservoir properties will be estimated using 

geostatistical techniques and empty static model will be filled with these properties. 

In the study area, there were several well logs are available. On the other hand, 

gross thickness, net pay, porosity, and water saturation values do not exist as 

continuous logs. Therefore, neutron-porosity (NPHI) log will be considered as a 

reservoir property to be estimated. 

 First of all, NPHI values will be sampled along the main formation tops where 

horizon interpretations were performed. Because NPHI logs are available for 12 

wells among 38 wells, remaining NPHI logs were calculated from estimated AI logs 

using 1-hidden layer GRNN algorithm. Then, geostatistical tools will be employed to 

distribute the values in the area with and without help of the seismic data. 
 Estimated NPHI logs were checked for errors and outliers using histogram 

and well section views. Some degree of smoothing was applied to logs to remove 

the sharp effects of AI logs.  Recalling Chapter 3, Figure 3.27, model is divided into 

cells in X-Y and Z direction and in this stage none of the cells have been assigned a 

value, they are simply empty. To be able to assign them a certain property values, 

well logs needs to be upscaled. Upscaling can be defined as assigning values to 

cells in 3D grid that is penetrated by wells. In this case, each cell should have only 

one value and well log information can be used in property modeling, for instance, 

distribution of property values between wells. 

 

 Upscaling 
Averaging of the log values directly depends on the cell thickness. Figure 5.2 

show this effect. The track on the left is original NPHI log, second track shows 

upscaled NPHI with 2 ft interval, and last track presents upsclaed NPHI log with 10 ft 

layer thickness. As it can be concluded easily, defining finer cell thickness intervals 

allow better representation of the original log curve values. Because the purpose of 

this process to assign values from logs to each cell in the model by averaging 

methods, the final modeled property will be directly depended on the quality of the 
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upscaled logs. In the following figure, it is clear that, smaller cell thicknesses may 

provide more realistic representation of the real situation. 

 
 

 
Figure 5.2 Upscaled NPHI logs for the Well B Yates 18D. The first track is original NPHI log, 

second track is upscaled with 2 ft thickness, and last track is upscaled with 10 ft layer 

interval. 

 
 Quality checking of the upscaled values is another step after the process 

was completed. Figure 5.3 shows the histogram of the original and upscaled logs. 

Values of the upscaled logs are very close to original values. As the 10 ft upscaled 

logs can represent the original values, 10 ft layer thickness will be used through the 

area. 

 

 
Figure 5.3 Histogram of the original, upscaled, and to be modeled NPHI logs. 



 95

 Upscaling the logs into the model will be followed by geostatistical data 

analysis. To be able to define the heterogeneities in the area, first, anisotropies will 

be defined. Variogram analysis will be used to define the anisotropy direction for the 

upscaled properties. Please refer to Chapter 2 for more detailed information about 

variogram analysis. 

 

 Exploratory Data Analysis 
 Figure 5.4 shows the variogram map for the upscaled NPHI logs for the 

following parameters: number of lag in X-Y direction is 4, search distance in X-Y 

direction is 5,000 ft, and vertical search distance is 3 layers. Dotted red line on the 

map represents the major direction for anisotropy, meaning, in this direction sample 

values are close to each other and does not vary. On the other hand dotted black 

arrow is placed perpendicular to major direction and indicates the minor direction for 

anisotropy. In this direction, and within this distance values change rapidly. The 

anisotropy mentioned in this case is the zonal anisotropy, where sills are different 

and ranges are same for different directions. 

 
 

 
Figure 5.4 Variogram map for the upscaled NPHI logs. Empty partitions in the map are areas 

where variance cannot be calculated. 

 

Variogram map presents variograms that have been calculated for several 

directions. The center of the map shows 0.0 lag distance and from this point the lag 

distance increase in different directions. As it can be noted in X-Y axes in the map, 

coordinates do not correspond to distance units in the project; they are simply 
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positive and negative lag distances. Contour values on the map correspond to 

variance values calculated for a specific lag distance on this particular point. 

 Figure 5.5 show vertical and horizontal sample variograms calculated from 

the variogram map of the NPHI upscaled logs. The left window shows the vertical 

sample variogram. The main goal of the horizontal variogram analysis is to: 1) 

determine if anisotropy is present, 2) quantify the degree of anisotropy in terms of 

major and minor variogram model ranges. The blue line was calculated using the 

horizontal search radius of 5,000 ft and 4 lags, and the green line was constructed 

with same radius and same number of lags. In both variograms 30 ft Z-range was 

used. The right window represents sample variogram calculated for horizontal 

direction. X-Y range, number of lags and Z-range were kept same with the vertical 

variograms but the -60 degree which is the major direction (green line) was used for 

the orientation. 

 

        
Figure 5.5 Sample variograms calculated for upscaled NPHI logs. The left plot is the sample 

vertical variogram and the right plot is the sample horizontal variogram for major direction. 

 

 As it can be seen in Figure 5.5, the vertical variogram show more reliable 

curves than that of the horizontal variogram. The reason of this variation is that the 

density of number of samples in vertical and horizontal direction is different. 

Sampling is always denser in vertical direction (throughout the well bore) compared 

to that of the horizontal direction (well spacing). 

After completing the structural model which is a framework of the reservoir 

model the next goal is to populate the entire framework of cells with reservoir 

properties. This could be the discrete data like facies or petrophysical properties like 

porosity, permeability, water saturation etc. Existing well data will be used as the 

control points for feeding the interpolation or simulation algorithms used in this step. 
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(a) (b) (c) 

Many algorithms (depending on the data type and the choice of the algorithm), 

would require parameters which describe the spatial relationship of the data points 

supplied to them. Therefore, finding out the spatial characteristics of the data (how 

do they vary in space, is the variation smooth or sudden, is there any anisotropy 

present i.e. variation specific to any direction, is the distribution of data showing 

some patterns) is a very important step. This can be time consuming but essential 

as the final output from the algorithms are dependant on how these spatial 

characteristics are defined. 

 Data analysis process tries to answer the following questions: 

• Is there a trend in the data set? 

• Is there a pattern by which the facies proportion changes laterally and 

vertically?  

• Is there any pattern of correlation between a seismic attributes and the 

facies? 

• What are the variogram parameters like Range (in the major, minor and 

vertical directions), nugget, and the variogram type etc. for the properties to be 

modeled? 

The first step for the data analysis procedure is the data transformations. 

Figure 5.6 show typical workflow for this process. Transformations were applied at 

the initial state, among them 1D, 2D, 3D, scale shift, and logarithmic are the 

common ones. The importance of removing trend from the data is the assumption of 

stationary. This requires that data should not contain any trend, in other words, the 

mean of he data should not be change with direction.  

 

 

  
 
Figure 5.6 Data transformation process for the NPHI logs. (a) Input histogram of the original 

NPHI logs, (b) trend line for the NPHI values at all well locations (Y-axis) versus depth 

values along Z-axis, and (c) trend-free normally distributed log values. 
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Some certain simulation algorithms, e. g. Gaussian Simulation, require that 

the data should be normally distributed. Removing trend(s) from the data does not 

mean that the final result will be trend free. Back transformation is usually applied to 

data at the last stage of the process and all original values kept as they are. Data 

follows the original distribution and preserves the original trends. 

 

 Variogram Analysis 
The next step is the variogram analysis. As it was discussed in Chapter 2, 

variogram study forms the base of the stochastic modeling process. Basically, it 

describes the natural variations in the data set in specific directions. In general, 

variography involves three steps (please refer to Appendix D for more details on 

variogram parameters): 

• Calculating experimental variogram  

• Create the model variogram  

• Obtain the variogram parameters 

Basically, dissimilarity between data points can be defined by the variogram 

as a function of the distance h, lag distance (Equation 2.16). If two different 

properties were included, the cross variogram (Armstrong, 1998) can be defined by 

Equation 2.18.  

 Now, the effect of parameter selection on variogram modeling will be 

investigated. Figure 5.7 shows the experimental and modeled vertical variograms for 

the NPHI logs. In Figure 5.7 a, upscaled log were used with 10 ft lag distance, 200 ft 

search radius, 50 ft band width. Grey line represents the experimental variogram 

and the blue line shows the modeled variogram. Black squares show averaged 

semi-variance and bars represent the number of sample pairs in each lag. 

Fluctuations on the averaged semi-variance values represent the existence of the 

trend on the data. As it was stated in previous paragraphs, this trend will be 

removed during modeling and added back at the end of the process. Figure 5.7 b 

shows the same upscaled logs with different lag parameter which is 44 ft in vertical 

direction. If we consider that the vertical resolution of the upscaled NPHI log was 10 

ft, obtaining a reasonable variogram model is difficult using coarse lag distances. In 

Figure 5.7 c, the only parameter changed is the search radius, which was selected 

as 100 ft. A dramatic change can easily be seen on the variograms. The last 

variogram model was obtained using the original logs instead of upscaled logs. In 

this model, the number of data points was increased and the effect of the trend is 

smoothly removed due to fact that the data is displayed in real coordinates instead 
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of XYZ coordinate system which was used in previous three modeled variograms. 

As a result, parameter selection for the modeled variograms is direct effects on 

obtaining a better variogram models and eventually producing better realizations of 

the properties. 

 

  
                                   (a)                                                                      (b) 

 
                                   (c)                                                                      (d) 

Figure 5.7 Experimental (grey line) and modeled variograms (blue line) for vertical direction 

for the NPHI logs. See text for more details. 

 
 

 
                                (a)                                                               (b) 
Figure 5.8 Experimental (grey line) and modeled variograms (blue line) for horizontal major 

and minor directions for the NPHI logs. 

 

Because well data is usually sparse in horizontal direction, obtaining a 

considerable variogram model is often difficult (Figure 5.8). Therefore one should 

always expect to get more reasonable variogram models in vertical direction where 
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the sampling is very dense. Another aspect during variogram modeling is the 

considering the stratigraphic intervals in vertical direction. The analysis should be 

done separately for each interval as they may represent different geological 

characteristics. 

 

Sequential Gaussian Simulation (SGS) 
 Now, the upscaled properties can be distributed to area. First, Sequential 

Gaussian Simulation (SGS) algorithm will be used for estimation. In SGS, desirable 

variables were produced using conditional distributors. The algorithm works as 

follows: Z(xn) where x is the location and n=1,2,3,….N. The objective of the 

algorithm is generating multiple realizations of; zl(xn) where, l=1,2,3,….L using data 

itself and variogram models. 

 Multivariate distributions of N-point can be expressed as N-one point 

conditional cumulative distribution functions (CDF) as (Caers, 2000); 

F(x1,…xN; z1,…zN | (n)) = F(xN ; zN | (n + N-1)) * F(xN-1 ; zN-1 | (n + N-2))…(5.1) 

where; F(xN ; zN | (n + N-1)) is the conditional CDF of Z(xN). 

 This decomposition allows producing a realization by visiting each location. 

The algorithm works as following: 

• Determine the CDF representing the model 

• Transform the input data into normal distribution 

• Generate a random path within the grided model and calculate the mean 

and the standard deviation at the first visited grid node x, 

• At unknown point x calculate the value (kriging e.g.) using neighbouring 

data and already estimated values (if exist) 

• Calculate the conditional cumulative distribution function (CCDF) based 

on original and previously simulated data 

• Estimate a simulated value from CCDF, CCDF is updated continuously 

and simulated values is drawn from CCDF  

• Go to another grid node (random path by seed number) 

• Back transform the data into original distribution after simulation is done 

 

In this part, SGS results from upscaled NPHI logs will be discussed and 

then, few well which were not included into the simulation and used for correlation 

purposes. 
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Four different realizations were obtained using random seed numbers. 

Spatial correlation was taken from the variogram analysis mentioned in previous 

paragraphs. Simple kriging was used to estimate unknown values and output 

distribution was taken from the upscaled NPHI logs. Figure 5.9 shows the results of 

SGS algorithm. 

 

  

 

Figure 5.9 SGS realizations using upscaled NPHI logs. 

  

 As it can clearly be seen from the simulation results, each realization has 

different results than the others. This is basically the idea behind the algorithm, the 

cell visitation order to estimate the unknown values decided by the random seed 

number. As the starting point changes, the result changes as well. Histograms of 

these runs can be seen in Figure 5.10. For the first three runs, simulation results are 

similar to upscaled NPHI values, where as, for the last run; there is difference 

through high values between the simulated and upscaled logs. On the other hand, 

original log values have some deviations from the upscaled and naturally simulated 

values. Table 5.3 shows the summary statistics for the simulated property. 

 

Table 5.3 Summary statistics for the SGS simulation results.  

 
 

SGS-1 SGS-2 

SGS-3 SGS-4 
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                                   (Run-1)                                                       (Run-2) 

 
                                   (Run-3)                                                       (Run-4) 

Figure 5.10 Histograms of the simulated, upscaled, and original NPHI logs for four runs 

respectively. 

 

 As it can be inferred from the summary statistics, all statistical 

measurements have same values except summation of the values. This result also 

indicates that SGS outcome changes depending on the start position of the 

estimation. Now, the results can be compared with the upscaled NPHI logs to be 

able to make quality checking of the simulation. NPHI logs were extracted from 

three well locations selected randomly (away from each other) throughout the model 

area. Figure 5.11 shows the comparison of original NPHI logs versus NPHI 

estimations from SGS simulation runs for the wells LO Fancher 1, B Yates 7, and 

Ashe C 1 respectively. Please not that the resolution of the derived synthetic NPHI 

logs from simulation is same as the upscaled logs. 

 SGS simulation results were showed close values at the control well 

locations but considering the precise definition of the reservoir parameters, this 

relationship can be used to some extends. This is mainly due to fact that, small 

number of simulation runs cannot be enough to obtain more precise results. 

Suggestion at this point can be made that it more likely that if the number of 

realizations increase, more realistic results can be obtained as the algorithm, after 

certain number of simulations, will start to produce similar results. 
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                               (SGS-1)                                                           (SGS-2) 

      
                                (SGS-3)                                                          (SGS-4) 

Figure 5.11 Comparison of original NPHI logs and SGS simulation results for the wells LO 

Fancher 1, B Yates 7, and Ashe C 1 respectively. Black curve shows original NPHI logs and 

pink, red, blue, and green curves show the results of the simulations. 

 
 

Cokriging and Collocated Cokriging 
In this part, estimation of the properties will be performed using a secondary 

variable, e.g. a seismic attribute. Kriging is an estimation technique which tries to 

solve the linear equation system with known variogram parameters and unknown 

kriging weights (see Chapter 2). 

In cases, if the primary attribute of interest (such as well data) is sparse, but 

there is an abundance of related secondary information (such as seismic data), it is 
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possible to study the covariance between two or more regionalized variables. Types 

of co-kriging can be summarized as follows: 

 Simple cokriging uses a related secondary 2D attribute to guide the 

interpolation of a primary attribute known only at control points (such as well 

locations). The mean is assumed to be a global constant. Ordinary cokriging is 

similar to Simple cokriging in that the mean is still assumed to be constant, but it is 

estimated using the neighborhood control points rather than specified globally. 

Collocated cokriging is a reduced form of cokriging, which requires knowledge of the 

correlation coefficient between the hard and soft data, and the variances of the two 

attributes. There is also a modified search criterion used in Collocated cokriging. 

This method uses all the primary data, but, in its simplest form, uses only one 

secondary data value, the value at the target grid node (Wackernagel, 2003 and 

Delfiner and Haas, 2005). 

 In this part, NPHI logs will be simulated using co-kriging and collocated co-

kriging, and the results will be discussed afterwards. Same wells and variogram 

settings were used to estimate NPHI with acoustic impedance logs. First of all, AI 

logs were upscaled to model resolution. Figure 5.12 shows the histogram of the AI 

logs along with the upscaled values. 

 
 

 
Figure 5.12 Histogram of the upscaled and original AI logs. 

 

 
 SGS algorithm was run with co-kriging option. Upscaled AI logs were chosen 

as a secondary attribute and output distribution was taken from the upscaled NPHI 

logs. For distribution of the second property (AI), Local Varying Mean (LVM) 

technique was used. LVM uses secondary data as local mean values for the primary  

 



 105

data. The mean varies at each location instead of being constant.  

 ∑ ∑ ⎥
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where; z(xi): data points, m(x): secondary input with positive correlation value, λi: 

weights. The influence of LVM on the z(x0) value is inversely proportional to value of 

the weights. Secondary data should be available for all locations and have same 

units as the primary data (Schlumberger, 2009). The results of the co-kriging can be 

seen in Figure 5.13. 

 

         
Figure 5.13 Result of the SGS with cokriging using NPHI as a primary and AI as a secondary 

data. LVM technique was used for distribution. Black dots on top of the model represent the 

upscaled well locations. 

  

 
 Effects of the LVM can easily be seen from the above figure. Varying mean 

across the model resulted in segmentations over the results. Therefore co-kriging 

simulation was repeated with the same parameters except the output distribution. 

Bivariate distribution was used from the previously simulated NPHI logs. The 

resulting simulation can be seen in Figure 5.14. This simulation result exhibits more 

geologically meaningful distribution. Comparison of both cokriging results can also 

be evaluated from their histograms in Figure 5.15. Distributed NPHI values with LVM 

exhibit very high values compared to those of from bivariate distribution. 
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Figure 5.14 Cokriging SGS simulation results. NPHI used as a primary variable and the AI 

logs used as a secondary variable. Bivariate distribution was used to populate properties. 

Black dots on the top of the model represent the well locations used for upscaling. 

 

 
Figure 5.15 Histogram display of the cokriging results using LVM (on the left) and bivariate 

distribution (on the right). 

 

 Finally, NPHI estimation from SGS simulation using collocated cokriging 

technique was applied to data set. If the cokriging equation was recalled: 

 ∑ ∑μ+λ=
n

i j
jjii0cok )x(Y)x(z)x(Z                                                             (5.3) 

This requires the primary, secondary, and cross variograms and considerably larger 

equation system to solve. On the other hand, collocated cokriging equation: 

 ∑ μ+λ=
n

i
0jii0cok )x(Y)x(z)x(Z                                                                 (5.4) 

requires only primary variogram and uses correlation coefficient of secondary 

variable. 

 



 107

 Same variogram parameters and wells were used to perform collocated co-

kriging for upscaled NPHI logs. AI logs, again, were used as a secondary variable. 

Correlation coefficient between these two variables is -0.88. Figure 5.16 shows the 

results of the simulations. 

 

 

  
Figure 5.16 SGS collocated cokriging realizations. NPHI logs were used for primary and AI 

logs were used as a secondary property. Black dots at the tops surface represent upscaled 

well locations. 

 

 As it can be seen from the Figure 5.16, similar to SGS simulation results, 

each realization has different outcome than the others. This is basically the idea 

behind the algorithm, the cell visitation order to estimate the unknown values 

decided by the random seed number. Summary statistics of these runs can be seen 

in Table 5.4. Each realization has unique summation of total property values, 

whereas number of data points is the same. Another noticeable outcome from the 

statistics of the results is the minimum and maximum values of the upscaled and 

simulations. As the SGS algorithm implies, output distribution should be same with 

the input. 

 
Table 5.4 Summary statistics for the SGS collocated cokriging results. 

 
 

SGS-2 SGS-1 

SGS-3 SGS-4 
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 Final conclusion for the collocated cokriging realization will be drawn posting 

the original NPHI logs over the simulation results. Again, three wells (LO Fancher 1, 

B Yates 7, and Ashe C 1) were used for cross checking the results. Figure 5.17 

shows the correlation between estimated and original NPHI logs. 

 

   
                                (CCK-1)                                                          (CCK-2) 

   
                                (CCK-3)                                                          (CCK-4) 

Figure 5.17 Comparison of original NPHI logs and collocated cokriging simulation results for 

the wells LO Fancher 1, B Yates 7, and Ashe C 1 respectively. Black curve shows original 

NPHI logs and pink, red, blue, and green curves show the results of the simulation. 
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 In this section, NPHI logs were predicted using few simulation algorithms. 

NPHI logs are usually presented in “neutron porosity units” which is directly related 

to the formation’s hydrocarbon index and quantitatively, the water-filled pore spaces 

give a response to the neutron tool, therefore it measures the porosity. 

 Estimation procedure was applied to Atokan Interval in the study area which 

was bounded by MFS 90 and 20. The interval is mainly deposited in either delta or a 

marine basin margin (Hardage, 1996). Atoka interval contains sandstone and tight 

limestone with interbeded shale sequences. After the data were prepared and 

exploratory analysis was performed, four SGS were run to produce NPHI volume in 

the study area. As SGS produces the results by respecting the minimum and 

maximum input data values, all results were fallen into 0.005% and 0.43% NPHI 

interval. On the other hand, all realizations exhibited thin low-value NPHI layers 

across the area between thick high-value sonic porosity zones. These thin layers 

can be thought as a shale sequences between the sandstone and limestones. 

 Simulation was repeated using collocated cokriging algorithm to be able to 

incorporate secondary information as a guide to produce NPHI volume. The results 

of this run also fallen into same min-max NPHI interval as expected but comparing 

the Figures 5.9 and 5.16 showed that using seismic data as a secondary variable 

created more continuous and distinctive low-NPHI thin layers in the study area. 

 As a conclusion, using correlated secondary variable improved the results. 

The correlation coefficient of the original NPHI logs and the estimated NPHI logs 

from collocated cokriging is better than that of the SGS estimation with single 

variable. SGS only uses variogram models to populate the distance dependent 

relationship to areas where no well control is available. Therefore, results are mainly 

depending on the density of the data available (number of wells and logs) and the 

quality of the variogram model which is equal to quality of the relationship if it exists. 

On the other hand, including secondary information into simulation brings an add 

value to results. Final outcomes were proved that using seismically driven 

secondary information; it is possible to predict reservoir properties in the study area 

but still these results needs to be improved. In the next section, seismic attributes 

will be employed to estimate the reservoir properties. 
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5.3 NEURAL NETWORK APPROACH 
 

 In previous chapters, estimation of reservoir properties (data from well logs) 

was discussed and prediction examples were performed. The relationship were 

established between well log itself, namely, non-exist property was estimated using 

the existing data from well logs. 

In this part, the idea of establishing a relationship between reservoir 

properties and seismic attributes at the well locations will be investigated. After this 

link is built, reservoir properties will be able to predict through the whole area of the 

seismic coverage. The relationship found can be linear (e.g. linear multi-regression 

analysis) or non-linear (ANNs). 

Multi-layer feedforwarded neural network (MFNN) algorithm will be used 

mainly for the prediction of properties. Figure 6.18 shows the typical neural system 

for the network architecture. 

 

 
 

 

 

 

 

 

Figure 5.18 A typical neuron architecture for MFNN. ( ∑
−

+=
1n

i
nii )wwx(fy ) (modified from 

Nikravesh et. al.,  2001). 
  

 
 A typical network contains an input layer, an output layer, and at least one 

hidden layer. Each layer communicates with connections having weights (w). In this 

type of network, first, input signals (x) are multiplied by the corresponding weights 

(w), then the weighted input signals are summed, and finally, a non-linear activation 

function (f) is applied to sum outcome. 

 For each connection (pattern), the following equation can be written: 

 nnn2211i wx.......wxwxz θ++++=                                                        (5.5) 

where x is input, w is connection weights, θ is bias, and z is output. Referred 

connections in Equation 5.5 can be written in matrix form Nikravesh et. al., (2001): 
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or it can be rewritten as: 

 z = X1 * wθ = X * w + θ                                                                               (5.7) 

where; [ ]TT |ww θ=θ and [ ]1|XX1 =  

1= column vector of ones with P rows; 

X= PxN matrix with N input and P pattern 

θ= bias vector, vector with P rows of θ and 

w= weights, vector with N rows 

*= Matrix multiplication 

 

 The activation function (f) determines the neuron output depending on its 

activity level. The most commonly used functions are sigmoid functions and they are 

range between 0 and 1. An example logistic function can be written as: 

 xe1
1)x(f −+

=                                                                                             (5.8) 

and hyperbolic tangent function (another sigmoid function) having -1 to +1 can be 

expressed as: 

 xx

xx

ee
ee)xtanh()x(f −
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==                                                                          (5.9) 

 The estimation weights are done during the training phase of the network. 

During training a model is built using the input data provided. The input data in this 

phase should be the part of and representative of the whole input data set. 

Comparison of the network outputs with the desired outputs can be performed and 

error can be written in a square sum fashion: 

 ∑
=

−=
p

1i

2
iik )dy(

2
1e                                                                                  (5.10) 

where y is the network output and d is the desired outcome. The purpose at this 

point is minimizing the error. This can be done by updating the weights and during 

training the error can become smaller. In the theory, this error can become zero with 

enough number of neurons and iterations. On the other hand, this can bring the 
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effect of random noise and specific trends from the data. This problem is called 

overtraining or memorizing. That is why the data is separated into training and 

validation. The training data is used to train the network and validation set is used to 

check the performance of the network. During training, hidden neurons are added 

one at a time and stopped when the best correlation is obtained. Resulting non-

linear model now can be used to predict the properties within the whole area. More 

details regarding the ANNs can be found in Chapter 2.   

 The first step before building the network is the preparation of the input data. 

This step is very important to obtain the best performance from the ANN. As it was 

stated in previous sections, 25 seismic volume attributes were extracted from the 

seismic data. Instead of using all attributes, a selective method was used to 

eliminate the attributes having similar responses. Figure 5.19 shows the extracted 

seismic attributes along the B Yates 18D well. This analysis suggests that some of 

the attributes need not to be involved into ANN study as they have similar 

signatures. Attribute naming convention will be turned to numbers track them easily. 

 

 

 

 
Figure 5.19 Enlarged display of the seismic attributes extracted along the B Yates 18D well. 

Please refer to Table 6.1 for the attribute names. 
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 Attribute elimination is also useful for data dimension reduction which will 

require less computing time. Attributes 1, 2, 3, 5, and 6 were removed as they have 

similar response with the attributes 4 and 7. Attributes 9, 10 and 12 were also 

removed from the list. Attributes 16 to 19 are represent specific responses and they 

were not able to provide a correlation with the other information, therefore they were 

eliminated too. As a result, 12 seismic attributes were involved into ANN study. 

Please note that, vertical extension of the seismic attributes in Figure 5.19 does not 

represent the whole seismic vertical interval. 

 These 12 attributes were extracted along the borehole paths using the time-

depth relationship built in Chapter 3.5. Vertical limits of the attributes were kept 

between the interpreted horizons (MFS90 and MFS20). Because, each attribute has 

its own value limits, all attributes were scaled to -1 to +1. As the attributes are 

definable at each point where well logs exist, upscaling of the log were not 

performed, smoothing operator was applied to wells as the attributes have larger 

sampling intervals then those of the well logs. This scaling was also applied to 

properties to be predicted. In this part, to be able to make the comparison with the 

other estimation techniques applied in previous chapters, NPHI property will be 

estimated based only on seismic attributes. 

 Completing the data preparation in matrix format, basic statistical analyses 

were applied. Following results were based on well B Yates 18 D for demonstrative 

purposes. Regression analysis (Figure 5.20) basically shows the visual trends 

between two properties if it exists and the outliers (extreme values) can be observed 

and eliminated from the data. Frequency distribution is also very helpful for 

visualizing  

 

 
                             (a)                                                                      (b) 

Figure 5.20 Linear regression plot and 3D cross plot for the well B Yates 18D.  (a) NPHI 

versus A-1 attribute and (b) NPHI versus A-2 and A-9 attributes. 
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the value trends in the data. These analyses were performed on the attribute data 

set versus NPHI values. Figure 5.20 shows an example of regression analysis. 

 In previous paragraphs, number of attributes was reduced to 12 to overcome 

data dimensionality problem. In this part, irrelevant attributes among these 12 

attributes will be taken out from the data. This will be done based on Fuzzy Pattern 

Recognition (FPR).  

 Fuzzy logic is simply a tool for overcoming the difficulties that classical logic 

cannot handle. Classical logic proposes “A thing either is or is not” statement giving 

the true or false description where no definition can be possible between. Fuzzy 

logic, in this point, offers a solution of partial truth. In fuzzy logic belonging to a set or 

category is not important in the meaning of absoluteness, the degree of belonging is 

important instead (Aminzadeh and de Groot, 2006). Table 5.5 shows the differences 

between classical and fuzzy logic. 

 

Table 5.5 Classical and fuzzy logic comparison (Aminzadeh and de Groot, 2006). 

 Classical Logic Fuzzy Logic 

Membership  
An element either belongs 

To set or not  

An element belongs to a 

set to a degree 

Degree of membership μ (x) = {0,1} μ (x) = [0,1] 

Binary vs fuzzy unit Bit (0 or 1) 
Fit ( a number between 

0 and 1) 

Boundaries Sharp  Fuzzy 

Overlapping sets 
An element cannot belong to 

two non overlapping sets 

An element can belong 

to two sets having fuzzy 

boundaries 

Law of contradiction A ∩ Ā = Ø A ∩ Ā ≠ Ø 

Excluded middle A ∪ Ā = 1 A ∪ Ā ≠ 1 

 

 

 FPR is based on a logic that as each input parameter impacts the output to a 

certain degree. On the other hand, it may be affected by other parameters in the 

process. For non-linear, complex, and dynamic problems interaction between the 

input parameters must also be taken into account. In other words, the effect of each 

parameter on the output can be more or less (in a non-linear fashion) by the 

existence of other parameters. Therefore, effect of each parameter on to other 
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parameters which produces the results should be analyzed (Intelligent Solutions 

Inc., 2008).  

 Figure 5.21 shows the result of this analysis as a tornado plot. From the 

figure, it is clear that the attributes 1, 3, and 2 have degree of influence higher than 

47%. Therefore, from this point, the other attributes will not be included in the 

estimation process. The most influential attribute is ranked number 1 and is 

normalized to 100% for its contribution to output. The other attributes were 

normalized against 1st ranked attribute. Therefore, 100% influence does not mean 

that attribute A-1 has a 100% percent influence to output. 

 

 

 
Figure 5.21 Degree of influences of each attribute against each other. 

 

 This analysis can be done cross plotting each attribute against output (NPHI) 

and identifying the data points which have an influence on the output. Figure 5.22 

shows results of this analysis. The blue circles represent the original data and the 

red dots in the plot the data were selected for the inspection analysis. In Figure 5.22 

(a), entire data points were divided into 25 segments along X and Y axes which 

produced 25x25 bins. In this case, 17% of the data were selected as a 

representative of the entire data set (red dots). In Figure 5.22 (b), 50 segments were 

produced and selection percentage became 24. In both plots, X and Y axes range 

from -1 to 1. Selection of the points was also done using the fuzzy pattern 

recognition and the most representative data points were selected in both cases. 

The main idea behind this analysis is that selecting the most important points and 

reducing the data density to provide quick inspection for the sensitivity analysis 

(Intelligent Solutions Inc., 2008). 
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                                         (a)                                                                (b) 

Figure 5.22 Data contribution cross-plot (NPHI versus A-3) for quick inspection. The red dots 

are selected data and the blue dots are remaining data. (a) Number of segments is 25 and 

selection is 17% and (b) number of segments are 50 and selection percentage is 24. Both X 

and Y axis range from -1 to 1. 

 
 
  

   

              

   

   
Figure 5.23 Sensitivity analysis for the seismic attributes versus property to be estimated 

(NPHI). Y-axis is relative influence (dimensionless) and the X-axis is attributes scaled from -

1 to 1. 
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 Figure 5.23 represents another technique to analyze the contribution of each 

attribute to the estimation results to be performed. In these graphs, high values with 

positive slope represent the strong positive correlation and low values with negative 

slope show that parameters have dominantly opposite effect (negative correlation) 

on the output. Steepness of the lines also exhibits the degree of influence of the 

input over the predicted output. In Figure 5.23, attributes 1, 3 and 6 show positive 

high influence for the prediction of the NPHI property. Successful application of this 

analysis requires division of the input data set (attributes) based on the regions 

indicated by slopes in the sensitivity graphs. In this study, only the degree of 

influence computed by fuzzy pattern recognition will be used. 

 After completing the statistical analysis on the data set and eliminating the 

irrelevant data, we can start to prepare the input data for the neural network 

analysis. In the study area, there are 38 wells available. Among them, extracted 

attributes of 18 wells used as input (with red symbols), 3 wells (with green symbols) 

were chosen to check the validity of the relationship to be established by the 

network, and 17 wells (with blue symbols) were not included. Figure 5.24 shows the 

distribution of the wells used for neural network study. The criteria for selecting the 

wells for training was the representative of the whole are. Wells with blue symbols 

were not chosen, because the wells chosen for the training were already distributed  

 

 
Figure 5.24 Well locations in the study area. Wells with red symbols are used for training, 

green symbols were used for result testing, and wells with blue symbols were not included 

into the study. 
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in the study area evenly and selecting wells close to each other will increase the 

computation time and will not bring too much additional information as the seismic 

signature of the area represent almost horizontal layers parallel to each other (see 

Chapter 3.4 for more details). 

 The wells LO Fancher 1, B Yates 7, and Ashe C 1 were selected for testing 

the results to be able to make a comparison with the results obtained from the 

geostatistical techniques. 

 In the data preparation part, three seismic attributes were selected, A-1, -2 

and -3. Because the resolution difference between the well logs and seismic data, 

high frequency content is provided selecting Acoustic Impedance (AI) attribute as a 

one of the inputs.  Please note that, AI curves were estimated for all well locations in 

Chapter 5. Selecting the input and output data is followed by classification of the 

data into training, calibration, and verification sets. 20% of the input data is selected 

as a calibration and another 20% was assigned for verification. The selection of the 

sets was done randomly. As a result, 15,994 points for training, 5,331 points for 

calibration and verification were classified. All data is referenced from the sub sea to 

be able to represent the same depth level. 

 Prepared data were fed into the Back Propagation Network (BPN) algorithm. 

The summary of the method was provided in the beginning of this section. Please 

refer to References section for more detailed information. In Figure 5.25, the 

designed network can be seen. After several runs, optimized parameters are found 

between input-hidden layer and hidden-output layer as: 

• Learning rate: 0.3  

• Weight decay: 0.2  

 
 

A-1

A-2

A-3
NPHI

A-1

A-2

A-3
NPHI

 
Figure 5.25 Error Back Propagation network built to estimate NPHI property from seismic 

attributes. 
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For the activation function, tangent hyperbolic function was used; stopping 

condition is set to minimum error calibration. Only one hidden layer was used with 

five neurons. Input layers were represented by three seismic attributes plus well 

identifier. Hidden layer contains 5 neurons and output layer gets information from a 

well identifier. Figure 5.26, 5.27 and 5.28 shows the results for this network. 

 

 

    
                                     (a)                                                                 (b) 

Figure 5.26 BPN algorithm training results for the NPHI estimation. (a) Actual NPHI values 

versus network prediction and (b) error plot for the estimation results. Magenta line 

represents zero error line. 

 

 

    
                                     (a)                                                                 (b) 

Figure 5.27 BPN algorithm calibration results for the NPHI estimation. (a) Actual NPHI 

values versus network prediction and (b) error plot for the calibration results. Magenta line 

represents zero error line. 

 

 Training results showed very good fits with 0.865 R2 value and 0.883 

correlation coefficient (CC). Calibration results have 0.873 R2 value and 0.887 CC, 

and verification results showed 0.863 R2 value and 0.882 CC. These results showed  
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that the high performance of the BPN algorithm for finding out non-linear 

relationships between data points. 

 

 

    
                                     (a)                                                                 (b) 

Figure 5.28 BPN algorithm verification results for the NPHI estimation. (a) Actual NPHI 

values versus network prediction and (b) error plot for the verification results. Magenta line 

represents zero error line. 

 

 
 Now the performance of the BPN network can be tested applying the 

relationship extracted to 3 wells left outside the network training. As it can be seen in 

Figure 5.29, correlation is high between the predicted and actual NPHI logs except 

some peak regions. 

 

 
Figure 5.29 BPN validation results on wells LO Fancher 1, Ashe C1, and B Yates 7. Actual 

NPHI logs are in blue line and predicted logs in red line color. Note that on mismatch on the 

areas where peak values exist. 
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 There are some important points that should be indicated on this high 

performance of the network prediction. First of all, not all NPHI logs from top to 

bottom were considered during training. It was limited to approximately 750 ft 

interval and as it can be observed from the Figure 5.29, the interval chosen for 

training and prediction correspond to smooth transition between NPHI values. 

Especially in the areas where some peaks are observed in the original NPHI logs 

(dotted circles in the Figure 5.29), the quality of the prediction gets lower. 

Incorporating previously estimated acoustic impedance attribute also improved the 

results as it is directly related to estimated log property. Previously smoothed actual 

NPHI logs should be considered as another factor on predicted results. Another 

important factor on the results will be the selection of the most correlated seismic 

attributes as input parameters to the network. Prediction results are, naturally, 

smoother then the actual logs due to fact that resolution difference between the 

seismic attributes and well logs. Considering these factors explained, BPN still 

created better estimation than the geostatistically driven prediction results. 

Correlation analysis for the actual and predicted NPHI property showed 0.89, 0.93, 

and 0.94 for wells LO Fancher 1, Ashe C1, and B Yates 7 respectively. 

 For the BPN network algorithm, “batch” method was used. In this method the 

network examines all the data in the training set and calculate the average error for 

the entire data set before it backpropogates the average error to modify the weights. 

If this method was not used, the modification of the weights was done based on the 

training data set in a random order. 

 General Regression Neural Network (GRNN) algorithm was also used to test 

different network over the estimation results. Basic difference of GRNN methods 

from the BPN is that the weights between hidden and output layers are the target 

values. As a result, the output is a weighted average of the target values. It does not 

use the steepest descent method for error minimization. The main drawback with 

the GRNN methods is that GRNN cannot ignore the irrelevant inputs due to 

dimensionality problem. Therefore, it is suggested to employ this network algorithm 

if the number of inputs is more than 5 or 6 (Intelligent Solutions Inc., 2008). For 

more detailed information about the theory, please refer to paper written by Specht 

(1991). 

 GRRN is performed on the same data set using the “hold out” methodology. 

During this method, each time one case is left out from the network and process is 

repeated until all the cases were removed and put back into the network. In our  
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case, GRNN was applied only to training data set, therefore the network was not 

used any calibration or verification sets. Calibration was performed only using the 

training outputs. 

 Figures 5.30 to 5.32 shows the results of GRNN run on the same training 

data set. The estimation results obtained show lower correlation when compared to 

prediction resulted in BPN network due to reasons explained above paragraphs. 

The R2 value and CC for the training set was 0.658 and 0.823 respectively. For the 

calibration, R2: 0.667 and CC: 0.830, and verification set represented 0.643 R2 and 

0.818 CC values. 

 

 

     
Figure 5.30 GRNN algorithm training results for the NPHI estimation. (a) Actual NPHI values 

versus network prediction and (b) error plot for the estimation results. Magenta line 

represents zero error line. 

 

     
Figure 5.31 GRNN algorithm calibration results for the NPHI estimation. (a) Actual NPHI 

values versus network prediction and (b) error plot for the calibration results. Magenta line 

represents zero error line. 
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Figure 5.32 GRNN algorithm verification results for the NPHI estimation. (a) Actual NPHI 

values versus network prediction and (b) error plot for the calibration results. Magenta line 

represents zero error line. 

 

 

 The performance of the GRNN network can be tested applying the 

relationship extracted to 3 wells left outside the network training. As it can be seen in 

Figure 5.33, correlation is lower the predicted and actual NPHI logs except some 

peak regions. 

 

 
Figure 5.33 GRNN validation results on wells LO Fancher 1, Ashe C1, and B Yates 7. Actual 

NPHI logs are in blue line and predicted logs in green line color. Red color curve represents 

the estimation results form the BPN algorithm.  
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 Comparison of the correlation results of both BPN and GRNN algorithms 

showed that BPN provided slightly better NPHI prediction results than those of the 

GRNN. The main reason for the low performance is believed to be the fact that 

GRNN does not use calibration and verification sets. 

 As it can be seen in Figure 5.33, BPN lower estimated the NPHI values at 

the high porous zones. GRNN, on the other hand, produced mostly inaccurate 

results in the same zones. Because during the prediction study seismic attributes 

and AI logs were used, they may not contain enough physical information where 

porous zones are located. The results can also be affected by the possible fluid fill 

inside the pores. Training, calibration and verification error ranges for the BPN are 

vary between -0.08 and 0.13 in average. GRNN error results fallen between -0.025 

and 0.027.  
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CHAPTER 6 
 

DISCUSSION 
 

In this study, geostatistical and artificial neural network techniques were 

applied to predict reservoir properties in the study area. The final outcome is 

pointing out the existing relationship between various well logs and how ANN 

techniques are capable of predicting them with and without using seismic data. 

One of the major problems in reservoir characterization studies is integrating 

different types of data having various scales, for instance, seismic and well log data. 

Vertical resolution of the well logs was coarsened using upscaling process. It is 

obvious that the loss of information during this process which cannot be 

incorporated to the estimation processes. On the other hand, applying this 

procedure is inevitable due to fact that all information need to be consistent. 

Preparing the existing data to build the structural model of the reservoir is 

another important step. As most of the information was supplied by 3D seismic data, 

eventually there is need for converting time dependent data into depth using 

appropriate velocity function and/or model. In this study, 3 wells were used to extract 

the velocity information and then time depth relationship at the formation tops were 

used to populate velocity field to whole area. Depth conversion using this 

methodology, obviously contain some artefacts. The most important drawback is the 

error associated with the interpretation of the horizons. Predicting the velocities 

using information from limited number wells can also lead to some inaccuracy.  

Geostatistical depth conversion methods may provide more suitable results as they 

can use the spatial distribution of the given information. 

Estimation of the acoustic impedance was performed first based on the 

existing density sonic relationships. In the study area, there are only 3 wells having 

this information. Therefore, sonic logs were predicted using ANN techniques, mainly 

form RILD logs, and then AI property was estimation in the area. As a result, error 

associated with ANN estimation was added to resulting AI prediction. Seismic 

inversion techniques can provide better estimation of the AI property as they relate 

the seismic information directly with in the whole field. 

Finally, sonic porosity property was estimated using BPN and GRNN 

algorithms. During this study, seismic attributes were used as an input for the 

network algorithms along with the AI property. Attributes were extracted along the 
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boreholes as a single trace and than scaled. As a result, single trace carry an 

information for a very limited areal extend. Extracting several traces in the vicinity of 

the borehole can present more meaningful information as the reflectivity already 

contains some information form the neighbourhood areas around the borehole. 

Neural network prediction was performed first using BPN to estimate NPHI 

property. Using appropriate parameters was produced very good estimation results. 

GRNN algorithm prediction was not satisfying. During network runs, a single hidden 

layer was used. Even though, it is stated that using a single hidden layer can solve 

most of the non-linear problems, applying more hidden layers can improve the 

results. 
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CHAPTER 7 
 

CONCLUSIONS 
 

In this study, reservoir parameters, in particular NPHI, were predicted using 

existing other logs and seismic attributes. Geostatistical simulation algorithms and 

artificial neural network techniques were used for property estimation. The major 

results of this estimation study in the Boonsville Field, Forth Worth Basin can be 

summarized as follows: 

Estimation of missing logs using empirical relationships showed linear 

dependency of the equations used. Two cases were examined: DT estimation with 

Fault’s relationship and RHOB estimation using Gardner’s equation. Both methods 

resulted in very low correlations: for density the highest CC found in well B Yates 9 

as a 0.60 and the lowest CC obtained for well B Yates 11 as a 0.44. Faust’s 

approach produced better sonic estimation. For the same wells, approximately 

>0.80 CC was obtained. As a result, empirical relationship cannot be generalized to 

the whole field due to their linear dependency to the proposed equation system. In 

contrary, subsurface usually characterized by heterogeneities and they cannot be 

represented with linear equation systems. 

Prediction of the missing log sets were performed using ANN methods. For 

the B Yates 18 D well, the most correlated logs against DT were found as NPHI, 

RHOB, and RILD. Estimation of DT using RILD log was resulted in 0.79, 0.91, and 

0.85 CC for the wells Ashe C 5, B Yates 11, and C Yates 9 respectively. These 

results showed that in the study area, DT logs can be estimated using existing RILD 

logs with ANN methods considering the careful selection of the optimum network 

parameters. Incorporating more than one well log into the training phase slightly 

lowered the estimation results for the B Yates 18 D well but exhibited better areal 

distribution. 

GR log found to be the most correlated log with NPHI and it was used to 

predict missing NPHI logs in the study area. The results showed high prediction 

accuracy (>0.86 CC). NPHI estimation using RILD and GR slightly reduced the 

estimation correlation but applying PCA removed the irrelevant data and reduced 

the data dimension resulting in enhancement in the prediction accuracy. 

At the end, it was concluded that DT and NPHI logs can be predicted 

accurately in the study area using other correlated logs with ANN methods. 
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Acoustic impedance is another important parameters to be estimated in the 

study area as it can be directly related to the physical rock properties. Because AI is 

the product of the density and velocity, it was calculated directly only for wells B 

Yates 11, C Yates 9, and B Yates 18 D. To estimate AI for the rest of the wells in the 

study area, DT versus AI and RILD correlations were checked and 0.91-0.90, 0.88-

0.88, and 0.85-0.89 CC were found. ANN prediction study for the DT estimation 

using AI and RILD resulted in 0.95, 0.93, and 0.95 CC for the same wells. These 

outcomes proved that AI logs can be estimated with high accuracy in the study area. 

Two simulation algorithms were used to predict the NPHI property; SGS and 

SGS with collocated cokriging. SGS results were mainly respecting the minimum 

and maximum NPHI values at the estimated well locations LO Fancher 1, B Yates 7, 

and Ashe C 1. Because SGS only uses variogram models to populate spatial 

relationship to areas where no well control is available, the results are mainly 

dependent on the density of the data available and the quality of the variogram 

model which is directly dependent on the quality of the relationship if it exists. 

Seismically driven results for the NPHI estimation using collocated cokriging 

algorithm showed improved results but within the limitations of the SGS algorithm. 

As a result, both SGS and collocated cokriging estimations produced meaningful 

NPHI values at the well locations but prediction away from wells needs to be 

carefully handled by producing enough number of simulations to be able to point out 

the best representative realization. 

Finally, the NPHI prediction was performed using BPN and GRNN methods. 

25 seismic attributes were extracted along the well bores and most correlated 

attributes were selected using sensitivity analysis. It was observed that, using fuzzy 

logic to find the degree of influence of the each input against each other fastened 

the process and lowered the data dimension. After several runs, the best network 

parameters were selected and 3 attributes were fed into BPN network to estimate 

NPHI property. Results showed good correlation for the wells LO Fancher 1, Ashe 

C1, and B Yates 7. Less accurate intervals were observed as immediate peaks exist 

in the NPHI log. These less accurate estimations of the BPN network suggested that 

these intervals can correspond to major lithological and/or rock physical changes 

(e.g. fluid fill in porous zones). GRNN technique was also used to predict the NPHI 

property in the study area. Results showed slightly lower correlation than those of 

the BPN runs. As a conclusion, both ANN methods provided a good prediction 

results as they are able to find out and apply the existing non linear relationship in 

the given data set. 
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APPENDIX A 
 

WELL LOG TYPES AND STRATIGRAPHIC NOMENCLATURE  
 

Table A.1 Wells and well log data types available in this study. 
 

WELL NAME SP GR NPHI RHOB PEF DELT MICRO CALI MSFL
Ashe B2 X
Ashe B3 X
Ashe C1 X
Ashe C2 X
Ashe C3 X
Ashe C4 X
Ashe C5 X X X
Ashe C6 X X X X X X
B Yates 2 X
B Yates 3 X
B Yates 7 X
B Yates 11 X X  X X X X
B Yates 13 X X X X X
B Yates 15 X X X X X X
B Yates 18D X X X X X X X X X
Craft WB 12-1 X
Craft WB 21-1 X
Craft WB 21-2 X
C Yates 9 X X X X X X
F Yates 7 X
F Yates 10 X X X
I.G. Yates 3 X
I.G. Yates 4 X
I.G. Yates 9 X X X X X
I.G. Yates 13 X X X X X
I.G. Yates 14 X X X X X
I.G. Yates 18 X X
I.G. Yates 19 X X X X X
I.G. Yates 21 X X
I.G. Yates 31 X X X X X X
I.G. Yates 32 X X
L.O. Fancher 1 X
L.O. Fancher 2 X X X X X
L.O. Fancher 3 X X X X X
L.O. Fancher 4 X X
L.O. Fancher 5 X X X X X
W Dewbre 1 X
W Dewbre 2 X  
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Table A.1 (continued) 
WELL NAME RILD RILM SFL LL3 LL 8 S GRD SN LN LAT
Ashe B2 X
Ashe B3 X
Ashe C1 X
Ashe C2 X
Ashe C3 X
Ashe C4 X
Ashe C5 X X
Ashe C6 X X X
B Yates 2 X X X
B Yates 3 X X X
B Yates 7 X X
B Yates 11 X X X
B Yates 13 X X X
B Yates 15 X X X
B Yates 18D X X X
Craft WB 12-1 X X
Craft WB 21-1 X X
Craft WB 21-2 X
C Yates 9 X X X
F Yates 7 X X
F Yates 10 X X
I.G. Yates 3 X X
I.G. Yates 4 X X
I.G. Yates 9 X X X
I.G. Yates 13 X X X
I.G. Yates 14 X X X
I.G. Yates 18 X X X
I.G. Yates 19 X X X
I.G. Yates 21 X X X
I.G. Yates 31 X X X
I.G. Yates 32 X X X
L.O. Fancher 1 X  X
L.O. Fancher 2 X X X
L.O. Fancher 3 X X X
L.O. Fancher 4 X X X
L.O. Fancher 5 X X X
W Dewbre 1 X X
W Dewbre 2 X X X  
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Figure A.1 Stratigraphic nomenclature used to define Bend Conglomerate genetic 

sequences by Bureau of Economic Geology for Boonsville field (Hardage et. al., 1996). 
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APPENDIX B 
 

BASIC SEISMIC ATTRIBUTES 
 

Theoretical basis of some of the basic attributes (Taner, 2000): 

 

Envelope: 
Analytic trace be given by: F(t)=f(t)+g(t), where f(t) is the real part 

corresponding to the recorded seismic data and g(t), the imaginary part of the 

complex trace, is the Hilbert transform of f(t). Then the envelope is the modulus of 

the complex function: 

)t(g)t(f)t(E 22 +=           

(B.1) 

E(t) represents the total instantaneous energy and its magnitude is of the same 

order as that of the input traces. It varies approximately between 0 and the 

maximum amplitude of the trace. The envelope is independent of the phase and it 

relates directly to the acoustic impedance contrasts. It may represent the individual 

interface contrast or, more likely, the combined response of several interfaces, 

depending on the seismic bandwidth. Trace envelope is a physical attribute and it 

can be used as an effective discriminator for the following characteristics: 

 

• Represents mainly the acoustic impedance contrast, hence reflectivity, 

• Bright spots, 

• Possible gas accumulation, 

• Sequence boundaries,  

• Thin-bed tuning effects 

• Unconformities,  

• Major changes of lithology, 

• Major changes in depositional environment, 

• Lateral changes indicating faulting, 

• Spatial correlation to porosity and other lithologic variations, 

• Indicates the group, rather than phase component of the seismic wave 

propagation 
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Instantaneous Phase: 
The argument of the complex function is the instantaneous phase: 

⎥
⎦

⎤
⎢
⎣

⎡
=

)t,x(f
)t,x(garctan)t,x(Ph           

(B.2) 

Instantaneous frequency is displayed in degrees. The phase information is 

independent of trace amplitudes and it relates to the propagation phase of the 

seismic wave front. Since, most of the time, wave fronts are defined as lines of 

constant phase, the phase attribute is also a physical attribute and can be effectively 

used as a discriminator for geometrical shape classifications: 

• Best indicator of lateral continuity, 

• Relates to the phase component of the wave-propagation. 

• Can be used to compute the phase velocity, 

• Has no amplitude information, hence all events are represented, 

• Shows discontinuity, but may not be the best. It is better for showing 

continuity. 

• Sequence boundaries, 

• Detailed visualization of bedding configurations, 

• Used in the computation of instantaneous frequency and acceleration 

 

Instantaneous Frequency: 
Time rate of change of phase is the instantaneous frequency: 

[ ]
)t(

)t,x(Ph)t,x(Freq
∂

∂
=            

(B.3) 

The computed output is given in units of cycles per second. Instantaneous phase 

represents the phase of the resultant vector of individual simple harmonic motions. 

While individual vectors will rotate in clockwise motion, their resultant vector may, in 

some instances, form a cardioid pattern and appear to turn in the opposite direction. 

We interpret this as the effect of interference of two closely arriving wavelets. This 

can also be caused by the noise interference in the low amplitude zones. 

Instantaneous frequencies are mainly influenced by the bed thickness. 

Instantaneous frequencies relate the wave propagation and depositional 

environment, hence they are physical attributes and they can be used as effective 

discriminators:  
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• Corresponds to the average frequency (centroid) of the power spectrum of 

the seismic wavelet. 

• Seismic character correlator in lateral direction, 

• Indicates the edges of low impedance thin beds, 

• Hydrocarbon indicator by low frequency anomaly. This effect is some times 

accentuated by unconsolidated sands due to the oil content of the pores. 

• Fracture zone indicator, they may appear as lower frequency zones. 

• Chaotic reflection zone indicator, due to excessive scatter, 

• Bed thickness indicator. Higher frequencies indicate sharp interfaces or thin 

shale bedding, lower frequencies indicate sand rich bedding. 

• Sand/Shale ratio indicator in a clastic environment 

 

Relative Acoustic Impedance: 
Seismic trace represents the band limited reflectivity series, which can be 

expressed as: 

)v(In
2
1

v
v

2
1)t(f ρΔ=

ρ
ρΔ

=           

(B.4) 

Therefore, by integrating the zero phase trace, the band-limited estimate of the 

natural log of the acoustic impedance is obtained. Since it is band limited, the 

impedance will not have absolute magnitudes and the stack section is usually the 

estimate of zero offset reflectivity; hence it is called relative acoustic impedance. 

Relative acoustic impedance shows band limited apparent acoustic impedance 

contrast, 

• It relates to porosity 

• High contrast indicates possible sequence boundaries, 

• Indicates unconformity surfaces, 

• Indicates discontinuities 
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APPENDIX C 
 

ACOUSTIC IMPEDANCE ESTIMATION RESULTS 
 
 

   
Figure C.1 NPHI versus estimated AI cross plots. Plots represent results for the wells B 

Yates 18D, IG Yates 19, and LO Fancher 5 with -0.79, -0.93, and -0.83 correlation 

coefficients respectively. 

 

 

   
Figure C.2 NPHI versus NPHI estimated cross plots.  Plots represent results for the same 

wells with 0.82, 0.95, and 0.81 correlation coefficients. 

 

 

 

 

 

 

 

 

 



 142

 

APPENDIX D 
 

VARIOGRAM PRINCIPLES 
 

A variogram is a plot of variability in terms of semi-variance against 

separation distance. It is generated by finding pairs of data with similar separation 

distances and then calculating the degree of dissimilarity between these pairs. 

Figure E.1 is a typical variogram. 

 

 
Figure D.1 Sample variogram and variogram model (Bongarcon, 2004). 

 
 

Sample variogram: Variogram calculated for a sample data set using a 

direction and separation distance. Variogram model: A continuous mathematical 

expression used to describe the sample variogram. The variogram model in Petrel 

also contains information of anisotropy. Range: Describes where the variogram 

model reaches its plateau (i.e. the separation distance where there is no longer any 

change in the degree of correlation between pairs of data values). Sill: The semi-

variance where the separation distance is greater than the range (on the plateau). It 

describes the variation between two unrelated samples. Transformed data should 

have a value of 1 and values much higher or lower than this (e.g. +-0.3) may 

indicate a spatial trend. Nugget: The semi-variance where the separation distance is 

zero. It describes the short scale variation in the data. This is often most accurately 

identified from vertical data where the sampling interval is usually much lower. 

Plateau: The part of the variogram model where an increase in separation distance 

no longer increases the variogram value. Transition: Variogram models that reach a 



 143

plateau are referred to as transition models. Different types of variogram models are 

used to describe the transition. 

Variograms should be calculated in several different directions because 

geological data is usually anisotropic (at least between the vertical and horizontal 

directions). These are commonly chosen as the Major and Minor directions in the 

XY plane and the Vertical direction. The Major direction may not necessarily follow 

the geological layers.  

Major direction: The major direction defines the direction where the sample 

points have the strongest correlation. The angle of this major direction can be 

changed interactively by editing the direction in the search cone. The angle is 

specified as the clockwise angle from the north (in degrees) for the main search 

direction.  Minor direction: This is the minor search direction and is perpendicular to 

the major direction.  

Variogram dip: The dip is specified as the inclination (upward angle) in degrees 

between the major direction and the horizontal. 

The procedure for data sampling in different directions is approximately the 

same; except that the vertical sample variograms always are calculated isotropically 

(i.e. orientation is not used). Nugget, sill and variogram type values will be the same 

in all three directions while the range will vary. 

 

 

 
Figure D.2 Sample variogram calculation features (Schlumberger, 2009). 

Orientation: The direction used in the search for sample pairs for construction of a 

directional sample variogram. The orientation is defined positively clockwise from 

the north direction.  Tolerance: The tolerance in degrees from the orientation for the 

search of sample pairs. Bandwidth: Cut off to prevent the search area from 
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becoming too wide at large separation distances. Search distance: The maximum 

separation distance used in the search for sample pairs. Lag: Subdivisions of the 

range. Lag Tolerance: Distance from the lag at which data will be considered as 

belonging to that lag. This is quoted as a percentage of the lag distance. For 

example, 50% means that all points will belong to one lag, greater than 50% means 

that some same data may be considered in two lags, less than 50% means that 

some data may not be considered (Schlumberger, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 145

 
 

VITA 
 
 
PERSONAL INFORMATION 
Surname, Name: Arzuman, Sadun 

Nationality: Turkish 

Phone: +90 507 3651989 

Email: sadunarzuman@yahoo.com 

 

EDUCATION 
Degree  Institution     Year of Graduation 

MS  Texas A&M University, Geology  2002 

BS  İstanbul Technical Uni., Geophysical Eng. 1998 

 

WORK EXPERIENCE 
Year   Place   Enrollment 

2007-present   Schlumberger  Support Engineer 

2002-2007  TPAO   Geophysicist 
 
 
FOREIGN LANGUAGES 
 
Advanced English 
 
 
PUBLICATIONS 
 
Sadun Arzuman, Application of Petrel Neural Network Tools to Estimate Well Logs, 
Extended Abstract, IPETGAS, Ankara, Turkey, 2009 
 
Sadun Arzuman, Seismic stratigraphic and structural interpretation of the Guassare-
Misoa Interval, Lake Maracaibo, Abstract and Poster, AAPG Student Expo, 2002, 
Oklahoma, USA 
 
 
 


	SadunArzuman_PhD_cover.pdf
	SadunArzuman_PhD_2.pdf

