
DESIGN AND IMPLEMENTATION OF
A HYBRID AND CONFIGURABLE ACCESS CONTROL MODEL

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES
OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

UĞUR TURAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

DESIGN AND IMPLEMENTATION OF A HYBRID
AND CONFIGURABLE ACCESS CONTROL MODEL

submitted by Uğur Turan in partial fulfillments of the requirements
for the degree of Master of Science in Computer Engineering,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyiğit
Head of Department, Computer Engineering

Dr. Attila Özgit
Supervisor, Department of Computer Engineering, METU

Examining Committee Members:

Prof. Dr. M. Ufuk Çağlayan
Department of Computer Engineering, Boğaziçi University

Dr. Attila Özgit
Department of Computer Engineering, METU

Assoc. Prof. Dr. Halit Oğuztüzün
Department of Computer Engineering, METU

Dr. Cevat Şener
Department of Computer Engineering, METU

M.Sc. Mert Özarar
Department of Computer Technology and Information Systems, Bilkent
University

 Date: September 11, 2009

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and
ethical conduct. I also declare that, as required by these rules
and conduct, I have fully cited and referenced all material and
results that are not original to this work.

Name, Last name : Uğur Turan

Signature :

iii

ABSTRACT

DESIGN AND IMPLEMENTATION OF A HYBRID

AND CONFIGURABLE ACCESS CONTROL MODEL

Turan, Uğur

 M.S., Department of Computer Engineering

Supervisor : Dr. Attila Özgit

September 2009, 85 pages

A hybrid and configurable access control model is designed to satisfy the
requirements of using different access control models in the same schema. The
idea is arised to completely combine and configure the two main access control
models, discretionary and mandatory which have been widely used in many
systems so far with their advantages and disadvantages. The motivation
originates from the fact that; in real life usage, discretionary based systems
needs some strict policies and mandatory based systems needs some
flexibility. The model is designed to combine these two appoaches in a single
and configurable model, with some required real life extensions, in a conflict-
free fashion and configurable degree of combination. Implementation of the
model has been done and main important cases which shows the power and
expressiveness of the model are designed and implemented. The
authorization process is in the responsibility of the model which can be
combined with secured authentication and auditing schemas. The new
approaches as Role-Based, Context-Based and Temporal access control can
easily be embedded in the model due to its generic and modular design.

Keywords: Access Control, Discretionary, Mandatory, Hybrid Access

Control, Configurable Access Control

iv

v

ÖZ

HİBRİT ve AYARLANABİLİR ERİŞİM KONTROL MODELİ

TASARIMI VE UYGULAMASI

Turan, Uğur

 Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Dr. Attila Özgit

Eylül 2009, 85 sayfa

Bir hibrit ve ayarlanabilir erişim kontrol modeli olan bu model, değişik erişim
kontrol modellerini aynı şema altında kullanma gereksinimini karşılamak
amacıyla tasarlanmıştır. Bu şekilde bir yazılım tasarlama fikri; avantajları ve
dezavantajları ile birçok sistemde yaygınca kullanılan isteğe bağlı ve zorunlu
erişim kontrol modellerini tamamen birleştirme ve ayarlanabilir hale getirme
düşüncesinden ortaya çıkmıştır. Gerçek hayattaki kullanımlarda zorunlu
erişim kontrol modellerinin bazı durumlarda esnekliğe izin verme, isteğe bağlı
olanlarının ise bazı durumlarda sıkı kurallar uygulama ihtiyacı, bu
motivasyonu ortaya çıkaran gerçekler olmuştur. Bu yazılım; bu iki erişim
kontrol yaklaşımını, ayarlanabilir tek bir modelde bazı açılımlar
tanımlayarak istenilen ölçüde çelişkilerden arındırarak birleştirmek üzerine
tasarlanmıştır. Modelin kodlama aşaması tamamlanmış ve modelin gücü ve
etkisini gösteren durumlar tasarlanmış ve kodlanmıştır. Yetkilerdirme
aşamasından sorumlu olan model, güvenli kimlik doğrulama ve kayıt alma
şemaları ile entegre edilebilir özelliğe sahiptir. Rol tabanlı, durum tabanlı ve
zaman ayarlı erişim kontrol yaklaşımları, modelin genelgeçer ve modüler
tasarımı sayesinde kolay bir şekilde yazılıma eklenebileceklerdir.

Anahtar Kelimeler: Erişim Kontrol, İsteğe Bağlı, Zorunlu, Hibrit Erişim
Kontrol, Ayarlanabilir Erişim Kontrol

To My Father

vi

ACKNOWLEDGEMENTS

I would like to thank to my supervisor Dr. Attila Özgit for his guidance,

criticism and encouragements throughout the research.

I would also thank Mert Özarar for his suggestions.

vii

TABLE OF CONTENTS

ABSTRACT..iv

ÖZ...v

ACKNOWLEDGEMENTS...vii

TABLE OF CONTENTS ...viii

CHAPTERS

1. INTRODUCTION ..1

1.1 Description and Objectives of the Study2

1.2 Organization of the Thesis ...3

2. RELATED WORK...5

2.1 Related Work on Access Control...5

2.2 Access Control Issue in Operating Systems......................7

2.3 Related Work on Hybrid Systems and Motivating

Factors..10

3. DESIGN OF THE MODEL WITH FORMAL AND PSEUDO
CODE DEFINITIONS ...13

3.1 Design Architecture...13

3.2 Formal Model ..15

3.3 Pseudo Code Definitions ..29

4. IMPLEMENTATION OF THE MODEL SOFTWARE.........49

viii

4.1 Architectural Design...49

4.2 Database Design..50

4.3 Analysis of Software Design Choices...............................52

4.4 Technology Choices...53

4.5 API Methods..53

5. CASE STUDIES..57

5.1 Aim of Case Studies..57

5.2 Case Study Examples..58

5.2.1 Blacklist Example ..58

5.2.2 MAC Exception Example.......................................68

5.2.3 DAC Restriction Example......................................74

6. SUMMARY, CONCLUSIONS & FUTURE WORK..............80

6.1 Summary..80
6.2 Conclusions..80
6.3 Future Work..81

REFERENCES ...83

ix

CHAPTER 1

INTRODUCTION

Access control has been a popular subject in software arena since the

usage of digital resources which have been thought to have a degree of

confidentiality, has increased in probability and easiness by the

improvement of technology and the popularity of information sharing in

digital environments. The increasing demand on the internetworking

and related concepts brings the confidentiality problem with their

widely usage as the degree of information sharing should have been

controlled by defining limitations and restrictions on specified criteria.

These criteria might depend on an operation, a user, a role or even time

in order to apply some rules.

The main purpose of access control is to define limitations or

restrictions to a user for the actions and operations that can be applied

upon a digital resource [24]. Many different access control models have

been proposed to satisfy different needs and criteria for different

problem domains. Basically, all access control models have been based

on two main perspectives, namely discretionary and mandatory.

Discretionary Access Control (DAC) means that the rules specifying

what is allowed or not, should be defined and controlled by the owner or

originator of digital resource. Access control model of the first operating

systems has been mainly based on this idea in order to give user a full

controlled space to be used individually [12]. On the other hand,

Mandatory Access Control (MAC) specifies that a central authority

should define the rules [20]. In MAC, it is prohibited for users to use

1

initiative for the rules since the access control policy has been

predefined among the system. In addition, Role-Based Access Control

(RBAC) can be stated as the third main access control paradigm, yet

the idea behind this subject have been evolved by the fact that rules

should be stated for the roles and user can be mapped to the roles in a

dynamic and limited manner according to some criteria [23]. RBAC can

be configured as having mandatory or discretionary properties for its

rules [18]. Briefly, these two main access control structures can be used

in coordination with other criteria as time, domain, roles etc.

Nowadays, the need for access control is strictly increasing and huge

problem domains are evolved to enforce access control regulations. DAC

assumes the domain as personal, giving the complete control to the

owner of resource; while, MAC assumes the domain as military,

assuring the complete dependence of the users to the rules proposed by

the authority of the system. As problem domains are getting larger and

intersecting with each other, the requirement for a flexible Access

Control Model (ACM) satisfying discretionary and mandatory needs

together, has been arisen. Enterprise domains are getting larger since

digital information should be shared among different departments.

Workers might have personal information in the domain and they

might want to share them with other coworkers. However for the sake

of security, other coworkers should not be from a different department

as there should not be a probability of sharing of enterprise information

in this way by a misusing worker. On the other way, military domains

might need for exceptional situations in access control model for the

urgent cases, as commander might want to send an urgent message for

a lower ranking soldier, which should be hidden from the others. These

ideas yield to a hybrid and configurable ACM in which existing ACM’s

can be applied in configurable extent and contradictions or security

leaks which has a probability to emerge after this combination should

have been assured to non-exist.

2

1.1. Description and Objectives of the Study

In this study, a new hybrid and configurable ACM is defined to satisfy

multi perspective requirements of problem domains. The model is based

on discretionary and mandatory access control perspectives and builds

a configurable base for the composition. The main motivation behind

this study is to be able to define exceptional cases for MAC and

authority-based limitation for DAC. Different concepts like blacklists in

access control are introduced to increase the adaption of the system to

real world requirements. As a result, the composition of existing access

control approaches makes this new hybrid model with the configurable

structure.

The system is designed to be configured according to problem

requirements. Additionally, the degree of composition of mandatory and

discretionary rules and even their precedence is also made configurable.

Consequently, the model fixes the problems in domains where one-way

approaches cannot be fully adequate. The system is designed as a new

authorization model as it is available to be combined with powerful

authentication and auditing mechanisms to serve as a trusted base for

all problem areas [24]. Besides, the configurable structure of the model

brings the advantage of modularity and ability to extend the model

with new concepts.

1.2. Organization of the Thesis

The thesis manuscript continues with Chapter 2, containing the

description of the related work on access control mechanisms and

especially with the studies on merging discretionary and mandatory

access control models. Afterwards Chapter 3 is about the design of the

formal model that is presented as both mathematical and pseudo code

3

4

definitions. Chapter 4 is completely about the implementation details of

the software and database. Finally the thesis is completed by a

conclusion chapter and future work, which consists of the planned

functionalities and paradigms to be embedded into the model.

CHAPTER 2

RELATED WORK

2.1. Related Work on Access Control

Access control paradigm is mainly based on two entities; namely, object
and subject [20]. Object can be defined as entities upon which have a
probability to be acted an operation. On the other hand, subject can be
defined as entities that can access to an object in order to accomplish an
operation. Hence, access control is mainly the control of the actions of
subjects upon objects. The control should include accessibility and
authorization and also act as a guard between subjects and objects. The
main challenge in access control paradigm is the interchangeable role of
entities between being a subject and object. For instance, if a user
executes a program then the user acts as a subject and program is the
object. After then, let the program reads a file. For this operation the
program has become the subject and the target file is the object. This
makes the definition of rules more complex and hard to maintain. In
addition to that, granularity of subjects and objects is another main
issue in access control paradigm. In the example above, the portion of
the program code (even a thread), which tries to read the file, can be
manipulated as a subject and the portion of file that is tried to be read
can be treated as object. The granularity of subject and object
definitions is a matter of choice in access control design, and complexity
of time and space should be considered while setting the degree of
granularity.

The main approaches of access control are mainly classified into two
categories: discretionary and mandatory. Discretionary perspective

5

simply gives the responsibility to the owner of the object whereas
mandatory approach prefers a system authority based model [20].
Moreover, a third access control approach, RBAC states role-user
relationship depending on some criteria and for the role-object right
mapping either discretionary or mandatory approach might be selected
[18, 23]. Many different approaches, taking different criteria such as
time, content, context etc. are still exist, nonetheless these criteria
forms an additional layer on mandatory or discretionary controls.

The only choice for an ACM is not only between discretionary or
mandatory approach. The rights of the subject upon objects can be
programmatically stored as Access Control Matrix (ACMX), Access
Control List (ACL) or Capability List (CL). Lampson has first defined
this concept on the basis of operating systems [16]. This model is
refined by Graham and Denning as taking the complexity criteria into
account [11]. The formalization of the model has been done by Harrison,
Ruzzo, and Ullmann (HRU model) and this formalization led to
concrete complexity and efficiency analysis of the model [12]. ACMX
takes each subject as row and each object as column, storing the rights
of a subject for an object in a cell. This is a wide approach however it
has probability to be a sparse matrix. ACL is the column wise storage of
ACMX for each object. The advantage of this approach is to have less
storage in comparison to a sparse ACMX. However, it becomes harder
to get a subject’s rights in this implementation. The contra verse of this
approach is the CL approach, with row wise storage for each subject.
The preference among these three types should be application specific
[24]. Due to complexity issues, Sandhu has shown that safety problem
remains undecidable in general whereas Typed Access Matrix (TAM)
model has been defined with unchangeable type of subjects and object
to make the problem decidable [22]. This assumption defines a better
way to prove security of a system nevertheless the strong typed
structure should be taken into account in the design process of a system
since it becomes harder to apply this argument to an existing system.

Another main preference for an access control approach is prioritizing
integrity or confidentiality. This applies mainly to mandatory

6

approaches where these two preferences generally named as Biba
Model and Bell-LaPadula Model. In these models, the main operations
are nothing but read and write. Biba states no read-down, no write-up
principle for the integrity problem [7]. On the contrary, Bell-LaPadula
states no read-up, no write-down principle to satisfy confidentiality
requirements [2]. Those rules are dual in nature and this discussion
brings out that a system should make a selection between these two
models. There has been made a different modeling for the mandatory
systems, namely lattice-based which builds clearance structure into a
lattice with single root [21].

It is important to make a remark that access control model takes its

place between authentication and authorization. The model should be

applied to build a mechanism to serve as a Reference Monitor in

cooperation with authentication and auditing mechanisms [24].

2.2. Access Control Issue in Operating Systems

General purpose and multi-user operating systems have mainly
preferred DAC as the main access control mechanism. Because of being
user-oriented system software, DAC gives users extent flexibility in
order to manage their personal collections. However, system files and
folders exist in the same file system and this coexistence evolves some
security leaks while being used with DAC. To handle this issue,
operating systems have tried to integrate some restrictions on DAC for
the system resources.

Transitivity of user rights can be stated as a second security problem in
operating systems. Subjects are only defined as user types; so
executable programs are started and acted by the privileges of the user
running it. This property makes the operating systems vulnerable to
the Trojan Horses since a modified program might open doors to
unwanted parties while user is unaware of happenings in background.
Operating systems have been trying to solve these two issues over years

7

and there are different partials solutions to these problems in different
operating systems.

MS Windows family of operating systems are using access control lists
for storing rules (Figure-2.1) and a DAC based access control
mechanism is preferred mainly.

Figure 1.2.1: Windows ACL

There are two main user types, normal user and administrator.
Administrator has full privilege over the system nevertheless normal
user has a limited control area. Vista has offered User Account

8

Control (UAC) to start every user as standard user and grant
administrator privilege if user is an administrator o can be
authenticated as administrator. However if authentication is done as
administrator, UAC works only as a pop-up question (Figure-2.2).

Figure 1.2.2: Windows UAC

Windows has a predefined user as System user in order to accomplish
operating system based issues. Every modification is done to limit DAC
with system regulations.

Linux based operating systems enforces DAC as ‘r’, ‘w’, ‘x’ attributes of
objects for owner, group and other users. This is depicted in Figure-2.3.

This approach is the same as ACL and transitivity of user rights can be
granted or rejected by a special attribute ‘s’. Linux has different user
types as admin and normal as Windows, and user is asked admin
authentication when needed. For traditional usage, initially providing
user with admin authentication is not mainly preferred even by
administrators in Linux.

9

Figure 1.2.3: Linux ACL

Linux has a special feature named SELINUX that enforces mandatory
and role-based access control in addition to DAC. Security roles and
classification levels are introduced to the Linux kernel and least
required privilege has to be supplied for the kernel operations. The
project is not compatible with some regularly used networking issues so
it has not been popular for this compatibility problem. Generally,
operating systems have a common perspective to the access control
paradigm by offering and modulating DAC. Restrictions to the DAC for
system objects are added however they could not turn to MAC totally
since personalization is in high degree in their usage.

2.3. Related Work on Hybrid Systems and Motivating Factors

The need for combining mandatory and discretionary approaches has
been realized staring with even initial systems. Early works on the
target subject have dealt with the operating system security and tried
to limit discretionary user space by mandatory regulations, using file
name and extensions [8, 14]. Brewer and Nash has developed a security
policy named “Chinese Wall” which gives discretionary dataset
selection freedom to users among a conflict of interest group as these
selections are used to clarify mandatory rules [9]. Since the policy has
focused on commercial security, total configurability that also

10

takes place in this study is restricted in the policy. Actually, “Chinese
Wall” is not the start point of this perspective; Walter has described an
information flow schema for operating systems. In this schema,
processes has rights on an object according to previous objects it has
been granted permission [27]. Another work has been completed by
McColumn where associating every ACL with the object and granting of
a right is done according to the intersection of associated ACL’s [17].
Restrictions has been introduced and propagated with the object in the
system that is more limited than pure discretionary systems. The
perspective has dealt mainly with information flow security. The idea is
close to this study except the interaction of different ACL’s can also be
configured in the process of granting access and the originating
restrictions is not totally discretionary.

Another work has been done to handle multi-policy access control
models in the same system [3]. However, it has been assumed that the
object is managed with only one policy, which is not a combination
actually; it can be regarded as different policies are living in the same
system with clear borders among them. Besides, works on overriding
discretionary access control has been done by defining not only granting
or rejecting accesses but concentrating on also possible rights [19, 25].
The need is basically the same; improving mandatory with flexibility
and limiting discretionary with bordered flexibility; however the
improving and limiting should be managed and controlled as well.
Bertino has presented exception based access control mechanism to
manage the possible rights and relate the exceptions with the context
[4]. The target was object-oriented systems and the exceptions say the
last word in access control after the policy. The idea is a kind of base for
this study and the motivation is getting the idea broader and
configurable.

Earlier studies on hybrid access control mechanisms present a base and
background for this study. As stated above, the general approach is
limiting discretionary or making mandatory flexible. They have
satisfied these issues according to the needed extent for their domain
nevertheless many multi-domain systems need a fully configurable

11

12

model. In addition to that, it should be clearly stated that the subject
allowing the limitation or flexibility should also be controlled and
limited for the extent of the restriction or exceptions discussed above.
This will lead to a multiple root hierarchy where all domains can reside
in their spaces and another normal or administrative subject should
control every right including change the nature of a right by adding
limitation or flexibility. This perspective could be reasoning for modern
operating systems where there is not a clear distinction between DAC
in user space and MAC in system space which is the optimal access
control mechanism in operating systems.

This manuscript continues with the design (Chapter 3), in which the

perspective of the proposed access control model is going to be revealed.

Mathematical model and pseudo code procedure details are clearly

stated and in addition to that remarks and discussions are made for the

durability and integrity of the access control model.

CHAPTER 3

DESIGN OF THE MODEL WITH FORMAL AND

PSEUDO CODE DEFINITIONS

Design concepts, mathematical description of access control model and

pseudo code descriptions of the procedures are defined and described in

this chapter of the thesis. Set and Relation based modeling are chosen

for the completeness of our formal model. The pseudo code descriptions

of the procedures are described as a practical proof of concept of the

model. On the other hand, the design of the model should be carefully

examined for the remarks and statements that are going to build a

basis for future additions that might be intended for the extensions to

this study.

3.1. Design Architecture

The design architecture of the proposed model represented in Figure-
3.1 has been built in order to satisfy the needs of the model presented
in previous chapter. The model is mainly composed of subjects,
compartments and objects. Subject can be utilizer or owner of a
compartment. Every compartment has a different access control
schema in order to satisfy the needs of multi-domain environments. The
operations can be divided into two as object operations and
compartment operations. Compartment operations exist for
management issues whereas object operations are the ones on which
access should be controlled.

13

Figure 3.1.1: Design Architecture

If we map objects to files, then compartments mean more than folders
since it has utilizers, owner and management rules. Subjects can be a
combination of single real users such as person, process etc. (defined as
actors in Formal Model), in order to satisfy possible security
concurrency needs in future. A subject should be at least a utilizer of
the compartment in order to access objects in that compartment. Every
utilizer has a mandatory security level and every object has a security
level and discretionary set. When this fact is combined with
independent access control schema of different compartments, multiple
access control models can reside together in the model.

The model is not designed as a single root hierarchy as security admin
is only responsible for creation of compartments and owners
compartment operation rights. Security Admin has no access for the
objects. All objects in a compartment are managed mainly by the owner
and secondly by utilizers. This hierarchy has been done in order to
avoid vulnerabilities of single root hierarchies in trust mechanism.
Security admin is able to limit owner’s compartment operation rights
and is able to determine which compartment operation rights can be
shared by other utilizers. Some compartment operations are only owner

14

specific. In addition to that some object operations are owner specific,
too. Object operations can be expressed in combination of basic
operations and all access control rules are for basic operations. In order
for an operation to be granted to a subject, all basic operations building
the operation should be granted. The operations and basic operations
are only textual namings with no induced meaning for the model, as the
model should be categorized as an external reference monitor.

Object creation is another newly approached issue in the model. Every
utilizer has default security settings which are to be inherited by the
objects created. The security settings are both for mandatory and
discretionary. The ability of extending or reducing mandatory or
discretionary defaults is another compartment operation right given by
the owner.

The model has also a blacklist structure to guarantee the access control
in future. In access control models there is an existing vulnerability
such that the subject’s access to an object is prohibited in the first
place; nevertheless by changing the mandatory security level of a
subject, the access might be falsely granted in the future. In order to
prohibit the access completely for the future including all modifications,
there should be added a blacklist entry for the basic operation. Blacklist
entries have highest priorities to deny the access.

Finally, the model satisfies the needs of mandatory exceptions and
discretionary limitations by satisfying both properties in the same
compartment. Furthermore, multi-compartment model serves for multi-
domain environments where all operations, objects and rights are
totally different in compartments for a subject.

3.2. Formal Model

This section is dedicated to formal description of our proposed access
control model. The descriptions consist of textual and formal definitions
of the entities in the model and relations among entities are also

15

defined using both ways. The terms “system” and “model” are used
interchangeably throughout the manuscript.

Definition 0: AAllpphhaabbeett

Alphabet is a set of letters, which constructs the words used by entity
nomenclature in the system.

Alphabet = { a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x,
y, z, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }

Alphabet is described as a set in order to configure local preferences
easily.

Definition 1: LLaanngguuaaggee

Language is a set of words, which are used by entity nomenclature in
the system.

Language = (a + b + c + d + e + f + g + h + i + j + k + l + m + n +
o + p + q + r + s + t + u + v + w + x + y + z + 1 + 2 + 3 + 4 + 5 + 6

+ 7 + 8 + 9 + 0) +

The nomenclature policy of the system is left to the implementation
preferences.

Definition 2: S

16

Suubbjjeecctt

A Subject is an active entity, which is capable of accessing to objects. In
the model, subjects refer to real and unique users of the system.

Definition 3: OObbjjeecctt

An Object is a passive entity, which can be accessed by subjects. In the
model, there is a clear distinction between the terms object and subject
according to their types. If an entity is to be treated as both subject and
object in a system using the model, it should be defined for both classes
to the system independently.

Definition 4: S

17

Seeccuurriittyy__AAddmmiinn

“Security Admin” is a special subject that is responsible for
administrative issues and/or operations in the system. The role and
capabilities of a security admin are clearly defined in the end of this
section.

Definition 5: BBaassiiss__SSuubbjjeecctt__SSeett

Basis_Subject_Set is simply the set of unary subjects in the system.

Basis_Subject_Set = { x | x is a Subject }

Definition 6: AAccttoorr__SSeett

This set is spanning Basis_Subject_Set and includes the subjects
constructed by one or more unary subjects. The elements of this set are
mentioned as “Actor” hereafter. An actor that has n elements (where n
≥ 2) is treated as a different entity from the subjects it is composed of.

Actor_Set = { x | x ⊆ Basis_Subject_Set }

The “Actor” definition builds a compatible base for the solution of
problems that need to treat multiple subjects as a single entity. The
concept allows a subject, having completely different rights than other
subjects all of which composing the same actor.

Definition 7: OObbjjeecctt__SSeett

Object_Set is the set of objects in the system.

Object _Set = { x | x is an Object }

Object is the only source in this model for which any access operation is
granted or rejected.

Definition 8: CCoommppaarrttmmeenntt

Compartment is a tuple, containing the set of element objects and its

alias for nomenclature.

Compartment = ({ o | o ∈ Object_Set }, n ∈ Language)

Compartments constitute clear borders for different domains in the
model. They are different from directories in ordinary file system, as it
will be seen that they have their own access control logic.

Definition 9: C

18

Coommppaarrttmmeenntt__SSeett

Compartment_Set is the set of compartments in the system.

Compartment_Set = { x | x is Compartment }

Property 0: There cannot be two or more compartments with the same
name.

∀cs1∀cs2∀cn1 (((cs1,cn1) ∈ Compartment _Set ∧ (cs2,cn1) ∈

Compartment_Set) ⇒ (cs1 = cs2))

Property 1: An object cannot be an element of more than one different
compartment.

∀o∀c1∀c2 ((o ∈ Object_Set ∧ c1 ∈ Compartment _Set ∧ ∃cs∃cn (o ∈

cs ∧ c1 = (cs,cn)) ∧ c2 ∈ Compartment_Set ∧∃cs∃cn (o ∈ cs ∧ c2 =

(cs,cn))) ⇒ (c1 = c2))

This property makes the model a multi-domain environment where
different object from different domains can reside.

Definition 10: CCoommppaarrttmmeenntt__OOwwnneerrsshhiipp

Every compartment has an owner, which is an Actor.

Compartment_Ownership = { (c,s) | c ∈ Compartment_Set ∧ s ∈

Actor_Set}

The ownership, as opposed to being a “utilizer” of a compartment

for an Actor, gives some responsibilities for the compartment to the
owner Actor, which is defined soon in this section.

Property 2: A compartment should have only one owner.

∀c∀s1∀s2 (((c,s1) ∈ Compartment_Ownership ∧ (c,s2) ∈

Compartment_Ownership) ⇒ (s1 = s2)) ∧∀c (c ∈ Compartment_Set

⇒ ∃s ((c,s) ∈ Compartment_Ownership))

The property should be carefully examined that the only owner of
compartment is an actor that can be composed of many subjects
according to the definition of Actor.

Definition 11: C

19

Coommppaarrttmmeenntt__UUttiilliizzeerrss

Every compartment has a set of Actors, which are
compartment_utilizers (i.e. “utilizer”) of the compartment.

Compartment_Utilizers = { (c,s) | c ∈ Compartment_Set ∧ s = { z | z ∈

Actor_Set }}

This utilizer relationship can be described as the ability to request for
right for an operation to an object in the compartment.

Property 3: If an object is the owner of a compartment then the object
cannot be the utilizer of the same compartment.

∀o∀c ((c,o) ∈ Compartment_Ownership ⇒ ∃x ((c,x) ∈

Compartment_Utilizers ∧ o ∉ x))

Definition 12: SSttaattuuss__SSeett

Actors, objects and compartments can be disabled or enabled. This can
be used as a step in access control procedure.

Status_Set = { (x,y) | (x ∈ Object_Set V x ∈ Actor_Set V x ∈

Compartment_Set) ∧ y ∈ {enabled, disabled} }

Property 4: An actor, compartment or object can have only one
referring element in Status_Set.

∀x ∀y ∀z (((x,y) ∈ Status_Set ∧ (x,z) ∈ Status_Set) ⇒ (z = y))) ∧

∀x ((x ∈ Object_Set V x ∈ Actor_Set V x ∈ Compartment_Set) ⇒ (

∃z ((x,z) ∈ Status_Set))

Property 5: All enabled objects should be element of a compartment.

∀o ((o ∈ Object_Set ∧ (o,enabled) ∈ (Status_Set) ⇒ (∃c (c

∈ Compartment _Set ∧ ∃cs∃cn (o ∈ cs ∧ c = (cs,cn))))

The model has no physical object deletion procedure as deleting an
object means that making it disabled without being element of a
compartment. As a result, all enabled objects or objects that can be
enabled, should be element of a compartment.

Definition 13: S

20

Seeccuurriittyy__LLeevveell__SSeett

Every compartment has a set of defined security levels with their
nonnegative integer value and alias.

Security_Level_Set = { (c,l) | c ∈ Compartment_Set ∧ l = { (t,w) | t

∈ Ν ∧ w ∈ Language} }

The entries for a compartment in the security level set refer to
mandatory security levels in the system. The nonnegative integer field
in these levels is designed to help building a dynamic level hierarchy in
the implementation phase.

Property 6: There cannot be two or more security level defined for a

compartment, with the same integer value or same name.

∀c∀l∀x∀y∀z∀w (((c,l) ∈ Security_Level_Set ∧ (x,y) ∈ l ∧ (z,w) ∈ l)

⇒ (x ≠ z ∧ y ≠ w))

Property 7: There cannot be two or more security level set defined for
a compartment.

∀c∀l1∀l2 (((c,l1) ∈ Security_Level_Set ∧ (c,l2) ∈ Security_Level_Set)

⇒ (l1 = l2))

Definition 14: A

21

Accttoorr__SSeeccuurriittyy__LLeevveell

Every actor has a compartment-specific security level for the
compartments for which the actor is utilizer or owner of.

Actor_Security_Level = { (c,s,l) | ((c,s) ∈ Compartment_Ownership V

∃x ((c,x) ∈ Compartment_Utilizers ∧ s ∈ x)) ∧ ∃w((c,w)

∈ Security_Level_Set ∧ l ∈ w) }

Property 8: There should be only one security level for an actor,
among the security levels defined for the compartment for which the
actor is utilizer or owner of.

∀c∀s∀l1∀l2 (((c,s,l1) ∈ Actor_Security_Level ∧ (c,s,l2)

∈ Actor_Security_Level) ⇒ (l1 = l2)) ∧ ∀c∀s (((c,s) ∈

Compartment_Ownership V ∃x ((c,x) ∈ Compartment_Utilizers ∧ s ∈

x)) ⇒ ∃l ((c,s,l) ∈ Actor_Security_Level))

Property 9: Only the owner actor of a compartment can have 0 as
integer value for its security level in a compartment. This can be
regarded as the maximum security level in access control function

definition, which will be defined soon.

∀c∀s (((c,s) ∈ Compartment_Ownership) ⇒ ∃l ∃k ((c,s,l) ∈

Actor_Security_Level ∧ l = (0, k))) ∧ ∀c∀s((∃x ((c,x) ∈

Compartment_Utilizers ∧ s ∈ x)) ⇒ ∃l ∃m∃k ((c,s,l) ∈

Actor_Security_Level ∧ l = (m, k) ∧ m ≠ 0))

Definition 15: BBaassiicc__OOppeerraattiioonnss

The set of basic operations for a compartment, which can be a part of
operations, are acted by actors upon objects in the compartment.

Basic_Operations = { (c,bop) | c ∈ Compartment_Set ∧ bop = { n | n

∈ Language } }

Definition 16: OOppeerraattiioonnss

The set of operations for a compartment is defined as subset of the
Basic_Operations set defined for that compartment.

Operations = { (c,op) | c ∈ Compartment_Set ∧ op = { (x,y) | ∃w (w =

{ z | (c,z) ∈ Basic_Operations } ∧ x ⊆ w ∧ y ∈ Language) } }

The one crucial point is basic operations are for the permission control
nevertheless actions by actors will refer to the operations. This design
approach inhibits contradictory issues in the system as granted
operation ‘x’ consists of {a,b} nevertheless denied one ‘y’ consists of {b,c}.
The question is the basic operation ‘b’ is permitted or not. In addition to
that if the indivisibility of these operations ‘x’ or ‘y’ are guaranteed by
the mechanism then they can also be defined as basic operations, as
well.

Definition 17: OOwwnneerr__SSppeecciiffiicc__OOppeerraattiioonnss

22

Owner_Specific_Operations are the set of operations that only owner
actor can process to all objects in the same compartment.

Owner_Specific_Operations = { removeObject, changeAllPermission }

These rights clearly shows that owner actor in a compartment is a
privileged actor responsible for all actions in the compartment.

23

Definition 18: OObbjjeecctt__SSeeccuurriittyy

Every object in the compartment has a security level as mandatory
security level for each basic operation defined for that compartment
and set of actors allowed discretionally.

Object_Security = { (o,b,d,m) | o ∈ Object_Set ∧ ∃co (∃cs∃cn (o ∈ cs

∧ co = (cs,cn)) ∧ ∃bop ((co,bop) ∈ Basic_Operations ∧ b ∈ bop)) ∧

d ⊆ { p | ∃c((∃x ((c,x) ∈ Compartment_Utilizers ∧ p ∈ x) V (c,p)

∈ Compartment_Ownership) ∧ ∃cs∃cn (o ∈ cs ∧ c = (cs,cn))) } ∧

∃c∃w(c ∈ Compartment_Set ∧ ∃cs∃cn (o ∈ cs ∧ c = (cs,cn)) ∧ (c,w)

∈ Security_Level_Set ∧ m ∈ w) }

Access Control List is preferred for the system instead of Access Control
Matrix, since not all actors are completely related with all objects, an
access control matrix for this model can be sparse.

Property 10: There should be only one element for an object and a
basic operation in the Object_Security set.

∀o∀b1∀d1∀m1∀d2∀m2 (((o,b,d1,m1) ∈ Οbject_Security ∧ (o,b,d2,m2)

∈ Οbject_Security) ⇒ ((d1 = d2) ∧ (m1 = m2))) ∧ ∀o∀b ((o ∈

Object_Set ∧ ∃co (∃cs∃cn (o ∈ cs ∧ co = (cs,cn)) ∧ ∃x ((co,x) ∈

Basic_Operations ∧ b ∈ x))) ⇒ ∃m∃d ((o,b,d,m) ∈ Object_Security)

)

24

Definition 19: AAccttoorr__CCoommppaarrttmmeenntt__DDeeffaauullttss

It is the default security schema for the objects added to a given
compartment by the utilizer actor. Owner actor needs no such default.

Actor_Compartment_Defaults = { (c,s,b,d,m) | ∃x ((c,x) ∈

Compartment_Utilizership ∧ s ∈ x) ∧∃x ((c,x) ∈ Basic_Operations ∧

b ∈ x) ∧ d ⊆ { p | ∃x ((c,x) ∈ Compartment_Utilizership ∧ p ∈ x) V

(c,p) ∈ Compartment_Ownership } ∧ ∃r ((c,r) ∈ Security_Level_Set ∧
m ∈ r) }

Defaults of an actor restrict an actor for the new object created by her.

Property 11: There should be only one element defined for a utilizer
actor in a given compartment, in Actor_Compartment_Defaults set.

∀c∀s∀b∀d1∀m1∀d2∀m2 ((((c,s,b,d1,m1) ∈

Actor_Compartment_Defaults ∧ (c,s,b,d2,m2) ∈

Actor_Compartment_Defaults) ⇒ ((d1 = d2) ∧ (m1 = m2))) ∧ ∀c∀s (

(∃x ((c,x) ∈ Compartment_Utilizers ∧ s ∈ x) ⇒ ∀b∃d∃m ((c,s,b,d,m)

∈ Actor_Compartment_Defaults))

Definition 20: CCoommppaarrttmmeenntt__OOppeerraattiioonnss

It is the set of operations that are relevant to the compartment
administrative issues.

Compartment_Operations = {addObject, extendDiscDefaults,
reduceDiscDefaults, makeHigherMandDefaults,

makeLowerMandDefaults}

These operations are administrative or restrictive operations that can
be acted in a compartment rather than the ordinary operations that are

acted upon objects.

Definition 21: O

25

Owwnneerr__SSppeecciiffiicc__CCoommppaarrttmmeenntt__OOppeerraattiioonnss

It is the set of operations, which are relevant to the compartment
administrative issues; nevertheless owner cannot give permission to
other compartment utilizers to do these operations. These operations
are given as a right to the owner actor of the compartment upon
creation of the compartment.

Owner_Specific_Compartment_Operations = { addSecurityLevel,
addUtilizerActor, removeUtilizerActor, changeUtilizersDefault,

changeUtilizersSecurityLevel,
giveUtilizersCompartmentOperationRight,

cancelUtilizersCompartmentOperationRight }

This set defines the compartment operations, which are specific to the
owner because of security issue.

Definition 22: CCoommppaarrttmmeenntt__OOwwnneerrsshhiipp__RReessttrriiccttiioonnss

It consists of three sets; one of which has elements from
Compartment_Operations and defines the owner’s
Compartment_Operations rights, the second has elements from
Compartment_Operations as well and defines what kind of
Compartment_Operations can be given as a right to the other utilizers
from the owner and the last defines which
Owner_Specific_Compartment_Operations, owner actor has. This can
be defined in the creation time of a compartment, owner changing
process or modification of owner actor’s rights done by the security
admin. The ones in Owner_Specific_Compartment_Operations cannot
be given to others, too.

Compartment_Ownership_Restrictions = { (c,s,z,t,d) | (c,s)

 ∈ Compartment_Ownership ∧ z ⊆ CompartmentOperations ∧ t ⊆

CompartmentOperations ∧ d ⊆

Owner_Specific_Compartment_Operations }

As it can be inferred, the utilizer actors are restricted by their
permissions and defaults, while the owner actor is just restricted by his
power. The degree of restriction is configurable which makes the model
adaptive to all domains.

Property 12: If there are any CompartmentOperations, which the
owner actor can give to other utilizers, then
giveOthersCompartmentOperationRight should exists among owner
actor’s Owner_Specific_Compartment_Operations rights.

∀c∀s∀z∀t∀d (((c,s) ∈ Compartment_Ownership ∧ (c,s,z,t,d)

∈ Compartment_Ownership_Restrictions ∧ t ≠ ∅) ⇒ (

giveOthersCompartmentOperationRight ∈ d))

This property is actually for the cross control of the permissions.

Property 13: The set of Compartment_Operations which owner can
give to utilizers should be a subset of the set that owner actor can
perform.

∀c∀s∀z∀t∀d (((c,s) ∈ Compartment_Ownership ∧ (c,s,z,t,d)

∈ Compartment_Ownership_Restrictions ∧ t ≠ ∅) ⇒ (t ⊆ z))

Property 14: There should be only one element, for all owner actors
and for all compartments, in Compartment_Ownership_Restrictions
set.

∀c∀s ((c,s) ∈ Compartment_Ownership ⇒ ∃z ∃t ∃d((c,s,z,t,d)

∈ Compartment_Ownership_Restrictions)) ∧ ∀c ∀s ∀z1 ∀t1 ∀d1 ∀z2

∀t2 ∀d2 (((c,s,z1,t1,d1) ∈ Compartment_Ownership_Restrictions ∧

(c,s,z2,t2,d2) ∈ Compartment_Ownership_Restrictions) ⇒ (z1 = z2 ∧

t1 = t2 ∧ d1 = d2))

26

Definition 23: U

27

Uttiilliizzeerr__CCoommppaarrttmmeenntt__OOppeerraattiioonnss

It defines which utilizer in the compartment has what kind of
Compartment_Operations rights.

Utilizer_Compartment_Operations = { (c,s,o) | (∃x ((c,x) ∈

Compartment_Utilizers ∧ s ∈ x)) ∧ o ⊆ Compartment_Operations }

Property 15: There should be only one element, for all utilizers and for

all compartments, in Actor_Compartment_Operations set.

∀c∀s∀o1∀o2 (((c,s,o1) ∈ Utilizer_Compartment_Operations ∧

(c,s,o2) ∈ Utilizer_Compartment_Operations) ⇒ (o1 = o2)) ∧ ∀c ∀s

(∃x ((c,x) ∈ Compartment_Utilizers ∧ s ∈ x) ⇒ ∃z ((c,s,z) ∈

Utilizer_Compartment_Operations))

Property 16: The Compartment_Operations rights of utilizer actors
can include a Compartment Operation not existing in the set which
owner actor can give them because of a later modification by a special
actor named ‘Security Admin’ as changing compartment owner or direct
modification on owner actors rights, which will be defined later, on
Compartment_Operations, the set of which can be given by the owner
actor. However no utilizer can have more Compartment_Operation
rights in comparison to owner.

∀c∀s1∀s2 ∀o ∀t ∀z ∀d ((∃x ((c,x) ∈ Compartment_Utilizers ∧ s1 ∈ x)

∧ (c,s1,o) ∈ Utilizer_Compartment_Operations ∧ (c,s2)

∈ Compartment_Ownership ∧ (c,s2,z,t,d)

 ∈ Compartment_Ownership_Restrictions) ⇒ (o ⊆ z))

Definition 24: OOppeerraattiioonn__BBllaacckklliisstt

It defines the blacklisted actors for basic operations of objects. The
actors added need not to be a utilizer actor of same compartment

which the object is belonging to. In addition to that the owner actor can
be added to the blacklist.

Operation_Blacklist = { (o, v, s) | o ∈ Object_Set ∧ ∃co (∃cs∃cn (o ∈

cs ∧ co = (cs,cn)) ∧∃x ((c,x) ∈ Basic_Operations ∧ v ∈ x)) ∧ s

∈ Actor_Set }

Definition 25: CCoommppaarrttmmeenntt__AACCMM__SScchheemmaa

It defines how access control check in a compartment will be done. The
options are only mandatory, only discretionary, mandatory or
discretionary, both mandatory and discretionary. This configuration
will be the major modifiable step in access control method, which will
be given as pseudo code later.

Compartment_ACM_Schema = { (c,s) | c ∈ Compartment_Set ∧ s ∈ {

M, D , DVM, D∧M} }

This schema defines the behavior of the compartment in the process of
granting or denying an access right. In addition to that, having
different schemas make compartments totally independent from each
other.

Property 17: There should be only one element for all compartments
in Compartment_ACM_Schema set.

∀c∀s1∀s2 (((c,s1) ∈ Compartment_ACM_Schema ∧ (c,s2)

∈ Compartment_ACM_Schema) → (s1 = s2)) ∧ ∀c (c is

Compartment → ∃s ((c,s) ∈ Compartment_ACM_Schema))

28

Definition 26: S

29

Seeccuurriittyy__AAddmmiinn__OOppeerraattiioonnss

It is the set of operations that can only be carried out by security
admin. These operations are necessary for the administration of the
ACM.

Security_Admin_Operations = { defineSubject, defineActor,

createCompartment, deleteCompartment, setObjectEnabled,

setObjectDisabled, setActorEnabled, setActorDisabled,

setCompartmentEnabled, setCompartmentDisabled, addOperation,

changeCompartmentOwner, removeActor,

changeOwnersCompartmentOperationRestrictions, addToBlacklist,

removeFromBlacklist, removeOperation, removeSubject }

Remark: Recall that, since Security_Admin is not an element of
Actor_Set, these special actors do not have rights or process abilities
that an ordinary actor possesses.

3.3 Pseudocode Definitions

These definitions are referring to the procedural logic of the model.

addObject

An actor is trying to add an object to a compartment with its
discretionary set and mandatory security level for each basic operation
defined for that compartment.

IF the object is already in the compartment

OR

 the actor is neither owner nor utilizer of that compartment

OR

 the actor is disabled

OR

 the compartment is disabled

OR

 the security level given for any basic operation is not

defined for that compartment

OR

any of the given basic operations is not defined for that

compartment

OR

 any of the actors in the discretionary set for all basic

operations is neither utilizer nor owner of the compartment

OR

 “addObject” does not exist among the compartment operation

rights of that actor

OR

 (the actor is not owner AND any of the discretionary sets

for a basic operation contains an actor which does not

exist in the actor’s default discretionary set for that

basic operation AND “extendDiscDefaults” does not exist

among the compartment operation rights of that actor)

OR

 (the actor is not owner

AND

any of the discretionary sets for a basic operation does not

contain an actor that exists of the actor’s default

discretionary set for that basic operation

AND

“reduceDiscDefaults” does not exist among the compartment

operation rights of that actor

)

OR

 (the actor is not owner AND any of the mandatory security

levels for a basic operation is lower in integer value

-meaning a more secure level- than the actor’s default

mandatory security level for that basic operation, comparing

security levels by their integer value AND

“makeLowerMandDefaults” does not exist among the compartment

operation rights of that actor)

OR

 (the actor is not owner AND any of the mandatory security

levels for a basic operation is higher than the actor’s

default mandatory security level for that basic operation,

comparing security levels by their integer value AND

“makeHigherMandDefaults” does not exist among the

compartment operation rights of that actor)

THEN
30

 do nothing

ELSE

 define object to the system by adding to the object set

 add object to that compartment

 set status of the object as enabled

 add all discretionary sets and mandatory security levels for

all basic operations for that object

ENDIF

Owner_Specific_Compartment_Operations

addSecurityLevel

Owner is trying to add new security level for the owned compartment.

IF the actor is not owner of that compartment

OR

 the actor is disabled

OR

 the compartment is disabled

OR

 there is a security level defined for that compartment with

the same integer value or the same name with the new

security level

OR

 “addSecurityLevel” does not exist among compartment

operation rights of the owner for that compartment

THEN

 do nothing

ELSE

 add the new security level for that compartment

ENDIF

addUtilizerActor

Owner is trying to add an actor as utilizer to the owned compartment.

IF the actor which is trying to do the operation, is not owner

of the compartment

OR

 the actor to be added is already utilizer or owner of that

compartment

31

OR

 the owner is disabled

 OR

 the compartment is disabled

 OR

 the security level for the new utilizer is not defined for

that compartment

OR

 the integer field of the security level of the new utilizer

is 0

OR

 any of the mandatory security levels given for each basic

operation as defaults is not defined for that compartment

OR

 any of the actors in discretionary set given for each basic

operation as defaults is neither utilizer nor owner of that

compartment

OR

 “addUtilizerActor” does not exist among compartment

operation rights of the owner for that compartment

OR

 any of the given basic operations in defaults is not defined

for that compartment

OR

 the compartment operation rights given for the new actor is

not subset of the set of compartment operations which can be

granted to utilizers by the owner

THEN

 do nothing

ELSE

 add the actor as utilizer to that compartment

 define the security level of the new actor for that

compartment

define the defaults of the new actor for each basic

operation for that compartment

 define the set of allowed compartment operations for the new

utilizer in that compartment

ENDIF

removeUtilizerActor

Owner is trying to remove utilizer actor from owned compartment.

32
IF the actor which is trying to do the operation, is not owner

of the compartment

OR

 the actor to be removed is not utilizer of that compartment

OR

 the owner is disabled

OR

 the compartment is disabled

OR

 “removeUtilizerActor” does not exist among compartment

 operation rights of the owner for that compartment

THEN

 do nothing

ELSE

 remove the utilizer actors from compartment utilizers set

 remove the security level entry defined for the utilizer

actor in that compartment

 remove the actor from all discretionary set entries for all

basic operations defined for that compartment

 remove all compartment default entries for the actor in that

compartment

 remove compartment operations entry for that actor in that

compartment

ENDIF

changeUtilizersDefault

The owner is trying to change the defaults of a utilizer actor for a basic
operation in owned compartment.

IF the actor which is trying to do the operation, is not owner

of the compartment

OR

 the actor whose defaults to be changed for a basic operation

is not utilizer of that compartment

 OR

 the owner is disabled

OR

 the compartment is disabled

 OR

 the security level for the new default is not defined for

that compartment

OR

 any of the actors in discretionary set given for the new

33

default is not utilizer or owner of that compartment

 OR

 “changeOthersDefault” does not exist among compartment

operation rights of the owner for that compartment

 OR

 the given basic operation for the new default is not defined

for that compartment

THEN

 do nothing

ELSE

 change default entry of the actor for that basic operation

with the new default entry

ENDIF

changeUtilizersSecurityLevel

The owner is trying to change mandatory security level of a utilizer
actor in an owned compartment.

IF the actor which is trying to do the operation, is not owner

of the compartment

OR

 the actor whose security level to be changed is not utilizer

of that compartment

OR

 the owner is disabled

 OR

 the compartment is disabled

 OR

 the new security level of the utilizer is not defined for

that compartment

OR

 the integer field of the new security level is 0

OR

 changeUtilizersSecurityLevel does not exist among

 compartment operation rights of the owner for that

compartment

THEN

 do nothing

ELSE

 change the security level entry for the utilizer in that

compartment

ENDIF

34

giveUtilizersCompartmentOperationRight

The owner is trying to give new compartment operation right to utilizer
actor in that compartment.

IF the actor which is trying to do the operation, is not owner

of the compartment

OR

 the actor to whom new compartment operation right to be

given is not utilizer of that compartment

 OR

 the owner is disabled

 OR

 the compartment is disabled

 OR

 giveUtilizersCompartmentOperationRight does not exist among

compartment operation rights of the owner for that

compartment

OR

 the new compartment operation does not exist among the set

of compartment operations defined for the compartment

 OR

 the new compartment operation is not an element of the set

of compartment operations which can be granted to other

utilizers by the owner

OR

 the new compartment operation is an element of the set of

compartment operations that the utilizer already has right

THEN

 do nothing

ELSE

 add the compartment operation entry for the utilizer actor

in that compartment

ENDIF

cancelUtilizersCompartmentOperationRight

The owner is trying to cancel the compartment operation right of a
utilizer actor in that compartment.

IF the actor which is trying to do the operation, is not owner

35

of the compartment

OR

 the actor to whom new compartment operation right to be

given, is not utilizer of that compartment

OR

 the owner is disabled

 OR

 the compartment is disabled

 OR

 cancelUtlizersCompartmentOperationRight does not exist among

compartment operation rights of the owner for that

compartment

OR

 the compartment operation does not exist among the set of

compartment operations defined for the compartment

OR

 the compartment operation is not an element of the set of

compartment operations that the utilizer already has right

THEN

 do nothing

ELSE

 remove the compartment operation entry for the utilizer

actor in that compartment

ENDIF

Owner_Specific_Basic_Operations

changeAllPermissions

The owner is trying to change the security settings of the object for a
basic operation in owned compartment.

IF the actor trying to do the operation is not the owner of the

compartment

OR

 the object is not in that compartment

 OR

 the owner is disabled

 OR

 the compartment is disabled

 OR

the object is disabled

36

 OR

 the new security level is not defined for that compartment

 OR

 the given basic operation is not defined for that

compartment

OR

 any of the actors in discretionary set given for the basic

operation is not utilizer or owner of that compartment

THEN

 do nothing

ELSE

 change the object’s mandatory and discretionary security

entries for the basic operation in that compartment

ENDIF

removeObject

The owner is trying to remove the object from the owned compartment.

IF the actor which is trying to do the operation, is not owner

 of the compartment

 OR

 the object is not in that compartment

 OR

 the owner is disabled

 OR

 the compartment is disabled

 OR

the object is disabled

THEN

 do nothing

ELSE

 remove object from compartment

 change object’s enable/disable status as disabled

 remove all discretionary and mandatory security entries of

that object for all basic operations defined for that

compartment

ENDIF

37

Access_Control_Method

hasRight

The actor is trying to get authorization for processing the operation on
an object in same compartment

IF the actor trying to do the operation, neither owner nor

utilizer of the compartment

 OR

 the object is not in that compartment

 OR

 the actor is disabled

 OR

 the compartment is disabled

 OR

the object is disabled

 OR

the operation is not defined for that compartment

 OR

the actor is blacklisted for the object for any of the basic

operations which are elements of the operation tried to be

processed

OR

(

(the compartments ACM schema is ‘M’ AND the security level

of the actor for that compartment is higher than the

security level defined for the object in that compartment

for all basic operations which are elements of the operation

tried to be processed, comparing security levels by their

integer value)

OR

(the compartments ACM schema is ‘D’ AND the actor is not an

element of the discretionary set defined for the object in

that compartment for all basic operations which are elements

of the operation tried to be processed)

 OR

(the compartments ACM schema is ‘D∨M’ AND (the actor is not

an element of the discretionary set defined for the object

in that compartment for all basic operations which are

elements of the operation tried to be processed AND the

security level of the actor for that compartment is higher

than the security level defined for the object in that

compartment for all basic operations which are elements of

38

the operation tried to be processed, comparing security

levels by their integer value)

 OR

(the compartments ACM schema is ‘D∧M’ AND (the actor is not
an element of the discretionary set defined for the object

in that compartment for all basic operations, which are

elements of the operation tried to be OR the security level

of the actor for that compartment is higher than the

security level defined for the object in that compartment

for all basic operations, which are, elements of the

operation tried to be processed, comparing security levels

by their integer value)

)

THEN

do nothing

ELSE

 grant permission

ENDIF

Security_Admin_Operations

addSubject

Security Admin is trying to add a new subject to the system.

IF the subject already exists

THEN

 do nothing

ELSE

add new subject to subject set

ENDIF

addActor

Security Admin is trying to add a new actor to the system.

IF the actor already exists

 OR

any of the composing subjects does not exist

THEN

39

 do nothing

ELSE

add new actor to actor set

make actor enabled

ENDIF

enableObject

Security Admin is trying to enable an object in a compartment.

IF object is enabled

 OR

object is not in any compartment

 OR

object does not exist in the compartment

THEN

 do nothing

ELSE

 change object’s status to enabled

ENDIF

disableObject

Security Admin is trying to disable an object in a compartment.

IF object is disabled

 OR

object does not exist in the compartment

THEN

 do nothing

ELSE

 change object’s status to disabled

ENDIF

enableActor

Security Admin is trying to enable an actor.

IF actor is enabled

THEN

 do nothing

ELSE

40

 change actor’s status to enabled

ENDIF

disableActor

Security Admin is trying to disable an actor.

IF actor is disabled

THEN

 do nothing

ELSE

 change actor’s status to disabled

ENDIF

enableCompartment

Security Admin is trying to enable a compartment.

IF compartment is enabled

THEN

 do nothing

ELSE

 change compartment’s status to enabled

ENDIF

disableCompartment

Security Admin is trying to disable a compartment.

IF compartment is disabled

THEN

 do nothing

ELSE

 change compartment’s status to disabled

ENDIF

createCompartment

Security Admin is trying to create compartment.

IF there exists a compartment with the same name

41

OR

 owner name exists among utilizer names

 OR

 any of the security levels given for the new utilizers does

not exist in given security level set for the new

compartment

OR

 any of the security levels given for the new utilizer’s

defaults for each basic operation does not exist in given

security level set for the new compartment

OR

 any of the basic operations given for the new utilizer’s

defaults does not exist in given basic operation set for the

new compartment

OR

any of the basic operations given for the operations does

not exist in given basic operation set for the new

compartment

OR

any of names given for the utilizer’s discretionary default

does not exist as utilizer or owner name for the new

compartment

OR

 any of the compartment operations for the utilizers does not

exist in compartment operation set

OR

 any of the compartment operations for the owner does not

exist in compartment operation set

OR

any of the compartment operations, which can be given by

owner, does not exist in compartment operation set

OR

any of the owner specific compartment operations which owner

has does not exist in owner specific compartment operation

set

OR

 owner can give any operation to utilizers nevertheless

“giveUtilizersCompartmentOperationRight” does not exist in

the owner’s specific compartment operation set

OR

 any of the security level’s degree given for the new

utilizers is negative

OR

the compartment operation set given for the new utilizers is

42

not a subset of the compartment operation set which contains

the compartment operations owner has right to do

OR

the compartment operation set given for the owner that

contains the compartment operations owner can grant to

utilizers, is not a subset of the compartment operation set

which contains the compartment operations owner has right to

do

OR

the given security level set for the new compartment

contains elements with same name or integer value

OR

 the given ACM schema for the new compartment is not defined

in the system

THEN

 do nothing

ELSE

 add compartment to compartment set

 add compartment ownership entry for the new compartment and

given owner actor

 add compartment utilizership entries for the new compartment

and for all given utilizer actors

 add security level entries for the new compartment,

including the one with integer value 0 for the owner

 add actor security level entries for the new compartment and

for all given utilizer actors and given owner actor

 add basic operation entries for the new compartment

 add operation entries for the new compartment

 add actor compartment default entries for the new

compartment for all given utilizer actors and for all

basic operations

 add compartment ownership restrictions entry for the new

compartment and for given owner

 add actor compartment operations entries for the new

compartment for all given utilizer actors and given

owner actor

 add ACM schema entry for the new compartment

 make compartment enabled

ENDIF

removeCompartment

Security Admin is trying to remove a compartment.

43

remove all security levels defined for that compartment

change all compartment objects’ status to disabled

remove compartment ownership entry for that compartment

remove all compartment utilizership entries for that compartment

remove enable/disable status of that compartment

remove all security level entries of utilizer and owner actors for

that compartment

remove all basic operations defined for that compartment

remove all operations for that compartment

remove all object security entries for that compartment

remove all compartment default entries for all utilizer actors,

 defined for that compartment

remove compartment ownership restriction entry for the owner,

defined for that compartment

remove all actor compartment operations entries for all utilizers,

 defined for that compartment

remove all blacklist entries defined for the objects in that

 compartment

remove ACM schema entry for that compartment

remove compartment from existing compartments

addOperation

Security Admin is trying to add new operation for a compartment.

IF any basic operation constructing the operation is not

defined for the compartment

OR

 any operation defined for that compartment has the same name

with that operation

THEN

 do nothing

ELSE

 add operation for that compartment

ENDIF

addToBlacklist

Security Admin is trying to add new blacklist entry for an actor, which
is to be blacklisted for an object and for a basic operation that is defined
for a compartment.

44

IF basic operation is not defined for that compartment

OR

object is not in the compartment

THEN

 do nothing

ELSE

 add blacklist entry for that object and basic operation

ENDIF

removeFromBlacklist

Security Admin is trying to remove blacklist entry for an actor that
exists for an object and for a basic operation, which is defined for a
compartment.

IF the blacklist entry for the object and basic operation does

not exists

OR

basic operation is not defined for that compartment

OR

object is not in the compartment

THEN

 do nothing

ELSE

 remove blacklist entry for that object and basic operation

ENDIF

changeCompartmentOwner

Security Admin is trying to change owner of a compartment.

IF new owner of the compartment is already owner of that

compartment

THEN

 do nothing

ELSE

 IF new owner of the compartment is already utilizer of

that compartment

THEN

 remove compartment utilizership of new owner for that

compartment

 remove security level entry of the new owner for that

45

compartment

 remove the new owner from all discretionary sets for

all basic operations and for all objects in that

compartment

 remove compartment default entries for the new owner

for that compartment

 remove compartment operation entries for the new owner

for that compartment

ENDIF

change old owner’s compartment ownership entry with new

owner for that compartment

change old owner’s security level entry with new owner for

that compartment

change old owner’s compartment ownership restriction entry

with new owner for that compartment

change old owner’s compartment operation entry with new

owner for that compartment

change old owner with new owner in all discretionary sets

for all basic operations and for all objects in that

compartment

ENDIF

changeCompartmentOwnershipRestrictions

Security Admin is trying to change owner’s compartment restrictions
for a compartment, which are the compartment operations, that owner
has right to do, the compartment operations that owner has right to
grant to a utilizer and the owner specific compartment operations that
owner has right to do.

IF the compartment operations which owner can grant to

utilizers is not subset of the compartment operations which

owner can do

OR

the compartment operations which any utilizer can do is not

subset of the compartment operations which owner can do

THEN

 do nothing

ELSE

 IF the compartment operations which owner can do is not

46

empty set

AND

 “giveUtilizersCompartmentOperationRight” does not

exist among the compartment operations which owner can

do

THEN

 do nothing

 ELSE

 change owners compartment operation restrictions for

that compartment

 ENDIF

ENDIF

removeActor

Security Admin is trying to remove actor from the system

IF there exists a compartment which the actor is owner of

THEN

 do nothing

ELSE

 remove all blacklist entries for the actor

 remove all compartment operation rights for the actor

 remove all compartment default entries for the actor

 remove the actor from all discretionary sets of object

security entries

 remove all actor security level entries for the actor

 remove enable/disable entry for the actor

 remove all compartment utilizership entries for the actor

ENDIF

removeOperation

Security Admin is trying to remove an operation for a compartment.

IF the operation is not defined for that compartment

THEN

 do nothing

ELSE

 remove operation for that compartment

ENDIF

47

48

removeSubject

Security Admin is trying to remove a subject from the system.

IF any actor in the system has the subject in its definition

THEN

 do nothing

ELSE

 remove subject from subject set

ENDIF

CHAPTER 4

IMPLEMENTATION OF THE MODEL SOFTWARE

4.1. Architectural Design

Figure 4.1.1: Model Architecture

The model architecture (Figure 1.1.1) is designed as an independent

entity and interfaced by an Application Programming Interface

(API). API includes the implementation of the procedures given in

pseudo code definitions. The requesting entity of the access control

mechanism could be either an application or operating system.

Every operation, for which the request has come, has been defined

to the model and the result should be performed according to the

response the model gives. The API and DB can completely be

thought as a black box responsible for authorization. According to

this perspective, the model can be marked as a network unit, too.

49

50

The architecture is designed as, the integration of the API and

requesting each operation to the API, are the responsibilities of the

application.

4.2. Database(DB) Design

The entity-relationship diagram of the model (Figure 1.2.1)
represents DB structure. To point out, there are many conditional
actions in the model as seen in pseudo code definitions. There are
two alternatives as assertions for these conditions, at DB layer or at
code layer. Defining these assertions at DB layer might cause DB
dependent behaviors, which decreases the independency of the
design. Instead, code based high level assertions have been chosen
to avoid this behavior.

Figure 4.2.1: DB Entity Relationship Diagram

51

52

4.3. Analysis of Software Design Choices

The software should be investigated on three main criteria;
efficiency, concurrency and durability. These are the main factors
that can directly affect the performance of the software. Efficiency
factor is critical for the real time systems, assuming that every
operation should be intercepted by the API to grant or deny the
operation. Nevertheless the software should not be investigated
completely, since main functionality of the API lies on “hasRight”
method. Other methods are administrative whereas hasRight will
be in each operation of the outer architecture. The performance of
the API is directly dependent with the DB performance. Among the
implementation, the base of software has been built compatible
with running as a web-service. There might be architectures, which
will use API as a reference guard in between application and
database instead of using as a library. On these architectures, an
extra communication cost may be added to each inquiry.

Concurrency is the second criteria for the software as it has been
designed to response to multiple requests in a synchronized fashion.
The model has been implemented in a manner that all methods are
atomic and all atomic requirements are single methods. The
application using the API, should not define any extra methods,
which are composed of at least two API methods. All methods in
API has transaction rollback mechanism, any change destructing
the integrity of the information in the database can be rolled back.

Durability can be seen as the last main criteria for the software
since a failure in the system might be resulted as no operation can
be carried out since the response of the API is the main prerequisite
for every operation. The multiple cluster approach can be used in
web service implementation to decrease the load between them. In
addition to that, when API used as a library, the durability is going
to be in responsibility of DB and main architecture.

53

4.4. Technology Choices

The main aim of the implementation phase of the study is to prove
the concept based on the defined model Java is chosen as the
programming language to utilize the advantages of a pure object
oriented environment and Java 1.5 is selected as the application
framework. An object-oriented analysis for high cohesion has been
done for the processes in the model. The model is implemented as
an API that can be used in any application for asking user rights.
The modular design of the model makes the architecture compatible
to serve as a web service.

Netbeans 5.5 is used as Integrated Development Environment
(IDE) in development phase. MySQL 5.0 is selected as Database
Management System (DBMS) and Hibernate 3 is used as Object-
Relation Mapping (ORM) technology for persistency and database
independent design. It is important to point out that the model is
designed as a separate entity and the responsibility to ask the
model for the permissions in each action, is completely of the
application using the API. As a result, native libraries are no more
needed since operations are only literals for the model as described
above.

4.5. API Design

API design has been done by one to one correspondence with pseudo
code definitions. All methods have been defined as static as the
classes are defined stateless so there is no need for objects in API
usage. The parameters are defined as String in order to satisfy the
consistency with web services. Method names and parameters are
listed in detail in Figure 4.5.1.

54

Method Summary

static int addActor(java.lang.String SAName, java.lang.String actorName,
java.lang.String[] subjectNames)

static int addObject(java.lang.String actorName, java.lang.String objName,
java.lang.String compName, java.lang.String[] basicOps,
java.lang.String[] level, java.lang.String[][] discSet)

static int addOperation(java.lang.String SAName,
java.lang.String compName, java.lang.String opName,
java.lang.String[] basicOpNames)

static int addSecurityLevel(java.lang.String ownerName,
java.lang.String compName, java.lang.String levelName,
int levelDegree)

static int addSubject(java.lang.String SAName,
java.lang.String subjectName)

static int addToBlacklist(java.lang.String SAName,
java.lang.String bopName, java.lang.String objName,
java.lang.String compName, java.lang.String actorName)

static int addUtilizerActor(java.lang.String ownerName,
java.lang.String compName, java.lang.String actorName,
java.lang.String levelName, java.lang.String[] basicOps,
java.lang.String[] level, java.lang.String[][] discSet,
java.lang.String[] compOps)

static int cancelUtilizersCompartmentOperationRight(java.lang.String o
wnerName, java.lang.String compName, java.lang.String utilName,
java.lang.String coOpName)

static int changeAllPermissions(java.lang.String ownerName,
java.lang.String compName, java.lang.String objName,
java.lang.String bopName, java.lang.String levelName,
java.lang.String[] discSet)

static int changeCompartmentOwner(java.lang.String SAName,
java.lang.String compName, java.lang.String newOwnerName)

static int changeCompartmentOwnershipRestrictions(java.lang.String S
AName, java.lang.String compName, java.lang.String ownerName,
java.lang.String[] ownerCompOps,
java.lang.String[] ownerGiveCompOps, java.lang.String[
] ownerSpecificCompOps)

55

static int changeUtilizersDefault(java.lang.String ownerName,
java.lang.String compName, java.lang.String utilName,
java.lang.String bopName, java.lang.String levelName,
java.lang.String[] discSet)

static int changeUtilizersSecurityLevel(java.lang.String ownerName,
java.lang.String compName, java.lang.String utilName,
java.lang.String levelName)

static int createCompartment(java.lang.String SAName,
java.lang.String compName, java.lang.String ownerName,
java.lang.String[] utilizerNames, java.lang.String[] levelNames,
int[] levelDegrees, java.lang.String[] utilizerLevels,
java.lang.String[] basicopNames, java.lang.String[] opNames,
java.lang.String[][] opBops, java.lang.String[][][
] utilizerDiscDefaults, java.lang.String[][] utilizerMandDefaults,
java.lang.String[][] utilizerCompOps, java.lang.String[
] ownerCompOps, java.lang.String[] ownerGiveCompOps,
java.lang.String[] ownerSpecificCompOps,
java.lang.String acmSchema)

static int disableActor(java.lang.String SAName,
java.lang.String actorName)

static int disableCompartment(java.lang.String SAName,
java.lang.String compName)

static int disableObject(java.lang.String SAName,
java.lang.String compName, java.lang.String objName)

static int enableActor(java.lang.String SAName,
java.lang.String actorName)

static int enableCompartment(java.lang.String SAName,
java.lang.String compName)

static int enableObject(java.lang.String SAName,
java.lang.String compName, java.lang.String objName)

static int giveUtilizersCompartmentOperationRight(java.lang.String ow
nerName, java.lang.String compName, java.lang.String utilName,
java.lang.String coOpName)

static int hasRight(java.lang.String actorName, java.lang.String compName,
java.lang.String objName, java.lang.String opName)

static int removeActor(java.lang.String SAName,
java.lang.String actorName)

static int removeCompartment(java.lang.String SAName,

56

java.lang.String compName)

static int removeFromBlacklist(java.lang.String SAName,
java.lang.String bopName, java.lang.String objName,
java.lang.String compName, java.lang.String actorName)

static int removeObject(java.lang.String ownerName,
java.lang.String compName, java.lang.String objName)

static int removeOperation(java.lang.String SAName,
java.lang.String compName, java.lang.String opName)

static int removeSubject(java.lang.String SAName,
java.lang.String subjectName)

static int removeUtilizerActor(java.lang.String ownerName,
java.lang.String compName, java.lang.String utilName)

Figure 4.5.1: API Methods

 57

CHAPTER 5

CASE STUDIES

5.1. Aim of Case Studies

The power of the model should be expressed by real life examples
and this chapter is written to express full functionality of the
model. Three case studies should be examined in comparison to
existing access control models.

First case study reveals the power of blacklist structure. In the
example, blacklist entry guards all future access to the object.
University department is selected as example domain. In the
example, criticism letter for an academician cannot be read by her,
even one day she becomes the head of department.

In second case, a software company is selected as domain and as
the requirement of the domain; mandatory access control is the
main access control schema of the domain nevertheless the model is
configured as to serve discretionary exceptions to mandatory model.

Last case is in the same domain while it reflects the personal
storage of the domain. As the domain is personal, discretionary
access control is the dominant schema in compartment whereas
mandatory regulations limit the freedom of discretionary access
control. With this feature users cannot share even their personal
objects even with their friends outside the project.

5.2 Case Study Examples

5.2.1 Blacklist Example

58

Figure 5.1: Blacklist Example

59

Figure 5.2: Blacklist Example (cont’d)

60

Figure 5.3: Blacklist Example (cont’d)

61

Figure 5.4: Blacklist Example (cont’d)

62

Figure 5.5: Blacklist Example (cont’d)

63

Figure 5.6: Blacklist Example (cont’d)

64

Figure 5.7: Blacklist Example (cont’d)

65

Figure 5.8: Blacklist Example (cont’d)

66

Figure 5.9: Blacklist Example (cont’d)

67

Figure 5.10: Blacklist Example (cont’d)

5.2.2 MAC Exception Example

68

Figure 5.11: MAC Exception Example

69

Figure 5.12: MAC Exception Example (cont’d)

70

Figure 5.13: MAC Exception Example (cont’d)

71

Figure 5.14: MAC Exception Example (cont’d)

72

Figure 5.15: MAC Exception Example (cont’d)

73

Figure 5.16: MAC Exception Example (cont’d)

5.2.3 DAC Restriction Example

74

Figure 5.17: DAC Restriction Example

75

Figure 5.18: DAC Restriction Example (cont’d)

76

Figure 5.19: DAC Restriction Example (cont’d)

77

Figure 5.20: DAC Restriction Example (cont’d)

78

Figure 5.21: DAC Restriction Example (cont’d)

79

Figure 5.22: DAC Restriction Example (cont’d)

CHAPTER 6

SUMMARY, CONCLUSIONS & FUTURE WORK

6.1. Summary

To sum up; after a brief literature survey on access control mechanisms
and their combination, a new configurable and hybrid access control
model has been built with its formal background. The model is
primarily focused on the defined requirements in real life and three
major case studies have been investigated in order to express the power
of the model in the process of handling real life requirements.
Implementation details of the model have been given and efficiency
considerations have been made.

6.2. Conclusions

The need for a hybrid access control model has been increasing with the
increasing demand on complex organizations containing multiple sub-
organizations with different duties. A hybrid access control model for
this need has been defined, mathematical and implementation details
behind the model have been described in this work. The model is aimed
to handle the requirements of the systems that contain independent
modules and a hybrid access control approach containing discretionary
and mandatory in each model. The model is designed to handle
exceptions for each access control schema. Verification of the model has
partly been done by case studies nevertheless a complete verification of
the model is to be discussed in a different study because of its
complexity.

80

The implementation details of the model can be changed according to

the environment and the target usage. The system can be used in every

platform whose access operations to sources should be controlled by a

high level system. The main advantage of using the system is to enrich

mandatory regulations by adding discretionary exceptions and to bound

discretionary freedom with mandatory regulations. In addition, other

concepts such as blacklists and compartment operations access control

have been defined and integrated to the model. The model can be used

as an external server to query access control requests and modifications

where the integrated usage as an API has already been supported. The

model builds a modular base for this approach; many concepts and

approaches are going to be added to the model to fulfill the

requirements of different domains as a future work.

6.3. Future Work

The system has been designed as a base unit for further development
and the modular architecture of the components makes improvement
easier and fast. The overall view of the model to the access control
domain resides on combining mandatory and discretionary approaches
on a single and configurable basis. Therefore other approaches on
different dimensions of the model can be extended and improved in a
straightforward manner. The main targets of the future work of the
model should be seen from this perspective.

First of all, in many systems there is not a clear distinction between
objects and subjects. The role meanings are exactly different
nevertheless the roles can interchange for an action for a specific entry.
The model resolves this issue by the requirement of defining the entity
as an object and a subject independently. The dynamic type property
can be added to the system as determining security rules and roles
dynamically according to action performed [26]. In addition to that role

81

82

based access control can be added to the system by defining a layer
between subjects and roles for arranging all security rules and settings
according to those. Temporal issues and periodicity constraints can be
added to the model; as role assignment, blacklist entries, permissions
can be made temporal [5, 6]. Provisional approaches can be made
concrete as actions have prerequisite actions to be permitted [15].

Finally, the term “compartment” can be enriched within an
organizational point of view [1]. In the model, compartments are
independent entries where all security rules and schemas are defined
for each compartment differently. The term organization includes a
hierarchical structure including compartment-to-compartment
relationships. This improvement makes the model much more modular
nevertheless the efficiency and time complexity should be clearly
investigated before.

REFERENCES

[1] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F.

Cuppens, Y. Deswarte, A. Mi`ege, C. Saurel, and G. Trouessin.
Organization Based Access Control. In Proceedings of IEEE 4th
International Workshop on Policies for Distributed Systems and
Networks, Lake Como, Italy, June 2003.

[2] D.E., Bell, and L.J. LaPadula. Secure computer systems:
mathematical foundations and model. M74-244, The MITRE
Corp., Bedford, Mass., May 1973.

[3] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A System to
Specify and Manage Multipolicy Access Control Models. In
Proceedings of the IEEE 3rd International Workshop on Policies
for Distributed Systems and Networks, 2002.

[4] E. Bertino, P. Samarati, S. D. C. D. Vimercati, and E. Ferrari.
Exception based information flow control in object-oriented
systems. ACM Transactions on Information and System Security
(TISSEC), 1998.

[5] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access
control model supporting periodicity constraints and temporal
reasoning. ACM Trans. Database Syst. 23, 3, 231–285, 1998.

[6] E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A temporal role-
based access control model. In Proceedings of the Fifth ACM
Workshop on Role Based Access Control, 21–30, 2000.

[7] K. J. Biba. Integrity considerations for secure computer systems.
Technical Report TR-3153, The Mitre Corporation, Bedford, MA,
April 1977.

83

[8] W. E. Boebert, and C. T. Ferguson. A partial solution to the
discretionary Trojan horse problem. In Proc. of the 8th Nat.
Computer Security Conf., pages 141–144, Gaithersburg, MD,
1985.

[9] D. Brewer and M. Nash. The Chinese wall security policy. In
Proceedings of the Symposium on Security and Privacy, IEEE
Press, Los Alamitos, Calif., pp. 215–228., 1989.

[10] E. Cohen, R. K. Thomas, W. Winsborough, and D. Shands. Models
for coalition-based access control (CBAC). In Proceedings of the
seventh ACM Symposium on Access Control models and
technologies (SACMAT), pp. 97–105, June 2002.

[11] G. S. Graham, and P. J.Denning. Protection—principles and
practice. AFIPS Conf. Proc., Vol. 40, SJCC, AFIPS Press,
Montvale, N.J., pp. 417--429., 1972.

[12] M. A. Harrison, W. L. Ruzzo, and J.D. Ullman. On protection in
operating systems. Proc. Fifth Symposium on Operating Systems
Principles, The University of Texas at Austin, pp. 14-24., 1975.

[13] T. Jaeger, X. Zhang, and F. Cacheda. Policy management using
access control spaces. ACM Transactions on Information and
System Security, 6(3):327–364, 2003.

[14] P. A. Karger. Limiting the damage potential of discretionary
Trojan Horses. In Proc. IEEE Symposium on Security and Privacy,
pp. 32–37, Oakland, CA, 1987.

[15] M. Kudo. Provision Based Access Control Model. International
Journal of Information Security. Springer. 2002.

[16] B. Lampson. Protection. ACM Oper. Syst. Rev. 8, 1, 18–24., 1974.

[17] C. Mccollum, J. Messing, and L. Notargiacomo. Beyond the pale of
MAC and DAC—Defining new forms of access control. In
Proceedings of the Symposium on Security and Privacy, IEEE
Press, Los Alamitos, Calif., 190–900., 1990.

84

85

[18] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based
access control to enforce mandatory and discretionary access
control policies. ACM Trans. Inf. Syst. Sec. 3, 2., 2000.

[19] E. Rissanen, B. Sadighi Firozabadi, M.J. Sergot. Towards a
mechanism for discretionary overriding of access control (position
paper). In: Proc. 12th International Workshop on Security
Protocols, Cambridge, April 2004.

[20] P. Samarati, and S. D. C. D. Vimercati. Access Control: Policies,
Models, and Mechanisms. In Proc. of the 2nd FOSAD, LNCS,
pages 137–196, Springer – Verlag , 2001.

[21] S. Sandhu. Lattice-based access control models. IEEE Computer,
November 1993.

[22] R. Sandhu. The Typed Access Matrix Model, IEEE Symposium on
Security and Privacy, 1992.

[23] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control: A multi-dimensional view. In
Proceedings of the 10thConference on Computer Security
Applications (Dec.). IEEE Computer Society Press, Los Alamitos,
CA, 54–62., 1994.

[24] R. Sandhu, and P. Samarati. Access controls, principles and
practice. IEEE Communications, 32(9), pp. 40-48, 1994.

[25] A. Stoughton. Access flow: A protection model which integrates
access control and information flow. In Proc. of the IEEE
Symposium on Security and Privacy, pp. 9–18, Oakland, CA, 1981.

[26] J. Tidswell, and J. Potter. A Dynamically Typed Access Control
Model. Proceedings of the Third Australasian Conference on
information Security and Privacy, London, 1998.

[27] K. Walter, G. W. F. Ogden, W. C. Rounds, F. T. Bradshaw, S. R.
Ames, and D. G. Sumaway. Primitive models for computer
security. Technical Report TR ESD-TR-4-117, Case Western
Reserve University, 1974.

	1_Title
	2_Approval
	3_Declaration
	4_Abstract
	5_Dedication
	6_Acknowledgements
	7_TOC
	8M1_Introduction_UT_1.1
	CHAPTER 1
	INTRODUCTION
	1.1. Description and Objectives of the Study
	1.2. Organization of the Thesis

	8M2_Related_Work_UT_1.1
	CHAPTER 2
	RELATED WORK

	8M3_Design_UT_1.1
	CHAPTER 3
	DESIGN OF THE MODEL WITH FORMAL AND PSEUDO CODE DEFINITIONS
	3.3 Pseudocode Definitions
	Owner_Specific_Compartment_Operations
	Access_Control_Method
	Security_Admin_Operations

	8M40_Implementation_UT_1.1
	CHAPTER 4
	IMPLEMENTATION OF THE MODEL SOFTWARE

	8M41_Implementation_UT_1.1
	CHAPTER 5
	CASE STUDIES

	8M42_Implementation_UT_1.1
	8M5_Conclusion_UT_1.1
	CHAPTER 6
	SUMMARY, CONCLUSIONS & FUTURE WORK

	9_References

