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ABSTRACT 
 
 

ADAPTIVE NEURAL NETWORK APPLICATIONS ON MISSILE 
CONTROLLER DESIGN  

 
 
 
 

Sağıroğlu, Serkan 

M.Sc., Department of Aerospace Engineering 

 Supervisor : Asst. Prof. Dr. Đlkay Yavrucuk 

 
 

September 2009, 127 pages 
 
 
 

In this thesis, adaptive neural network controllers are designed for a high subsonic 

cruise missile. Two autopilot designs are included in the study using adaptive neural 

networks, namely an altitude hold autopilot designed for the longitudinal channel 

and a directional autopilot designed for heading control. Aerodynamic coefficients 

are obtained using missile geometry; a 5-Degree of Freedom (5-DOF) simulation 

model is obtained, and linearized at a single trim condition. An inverted model is 

used in the controller. Adaptive Neural Network (ANN) controllers namely, model 

inversion controllers with Sigma-Pi Neural Network, Single Hidden Layer Neural 

Network and Background Learning implemented Single Hidden Layer Neural 

Network, are deployed to cancel the modeling error and are applied for the 

longitudinal and directional channels of the missile. This approach simplifies the 

autopilot designing process by combining a controller with model inversion 

designed for a single flight condition with an on-line learning neural network to 

account for errors that are caused due to the approximate inversion. 

Simulations are performed both in the longitudinal and directional channels in order 

to demonstrate the effectiveness of the implemented control algorithms. The 
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advantages and drawbacks of the implemented neural network based controllers are 

indicated. 

Keywords: Model Inversion, Adaptive Controller, Adaptive Neural Network, 

Missile Controller, Missile Autopilot  
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ÖZ 
 
 

UYARLANAB ĐLĐR YAPAY SĐNĐR AĞLARI UYGULAMALARIYLA  
FÜZE KONTROLCÜSÜ TASARIMI  

 
 
 
 

Sağıroğlu, Serkan 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

          Tez Yöneticisi : Yar. Doç. Dr. Đlkay Yavrucuk 

 
 

Eylül 2009, 127 sayfa 
 
 
 

Bu tezde bir yüksek ses altı seyir füzesi için uyarlanabilir yapay sinir ağı 

kontrolcüleri tasarlanmıştır. Bu çalışmada uyarlanabilir yapay sinir ağları yöntemi 

ile iki adet otopilot tasarımı içerilmiştir, yani düşey kanal için irtifa tutma otopilotu 

tasarlanmış, yatay kanal kontrolü için istikamet otopilotu tasarlanmıştır. 

Aerodinamik katsayılar füze geometrisi kullanılarak elde edilmiş, 5 serbestlik 

dereceli benzetim modeli elde edilmiş, tek bir trim koşulu için doğrusallaştırılmıştır. 

Kontrolcü içinde bir tersleme modeli kullanılmıştır. Uyarlanabilir yapay sinir ağı 

kontrolcüleri, yani Sigma-Pi yapay sinir ağı, tek gizli katmanlı yapay sinir ağı, arka 

planda öğrenme uygulanmış tek gizli katmanlı yapay sinir ağı, modelleme hatasını 

gidermek için yerleştirilmi ş ve füzenin düşey ve yatay kanalları için uygulanmıştır. 

Bu yaklaşım tek bir uçuş koşulunda tersleme kontrolcüsü tasarımı ile çevrim içi 

öğrenen yapay sinir ağını birleştirip yaklaşık terslemenin sebep olduğu hataları 

hesaba katarak otopilot tasarım sürecini basitleştirmektedir. 

Uygulanan kontrol algoritmalarının etkinliğini göstermek amacıyla düşey ve yatay 

kanallar için benzetimler yapılmıştır. Uygulanan yapay sinir ağı kontrolcülerinin 

avantajları ve eksikleri gösterilmektedir. 
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Literature Survey and Motivation 
 
 
 
Cruise missiles are defined as guided weapon system which use aerodynamic lift in 

order to maintain a certain altitude profile and are continuously powered by an air 

breathing or solid rocket engine. The major advantages of cruise missiles are their 

long range, low detectability and high accuracy [1]. 

The design cost is crucial for this type of munitions. The higher survivability and 

kill probability of cruise missiles justifies the design cost; providing a challenge for 

the missile system designers. 

In this thesis, a high subsonic cruise missile is used as a case study. Modern high 

subsonic cruise missiles are required to fly in a wide envelope with regard to speed, 

altitude and angle of attack (α). This translates into nonlinear dynamics and 

aerodynamics usually observed as high levels of uncertainty during modeling and 

design [2]. 

Accurate system modeling is important in the design phase of a flight controller to 

maintain stable flight and reasonable control. Parametric uncertainty (changing 

mass, aerodynamic characteristics, variation in dynamic pressure), un-modeled 

dynamics, actuator displacement and rate saturation and assumptions made during 

control design itself may mainly cause errors on system modeling [3]. In addition, 

in high angle of attack, the dynamics of vehicles are uncertain and control 
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effectiveness is highly nonlinear. The highly nonlinear aerodynamics is not easily 

understood and expensive to model, because aerodynamic data for vehicles 

operating under such conditions is difficult to obtain [4]. The use of nonlinear 

actuation systems also increases the complexity of the control design and modeling 

[5]. Applied control laws are usually demonstrated on simulations with nonlinear 

aerodynamic and engine models, actuator models with position and rate saturations, 

and wind disturbance in order to approximate the real case as much as possible [6]. 

However, these approximations are usually not successful. 

Several classical and modern control-law methods [7] are applied for controller 

design. They performed offline at a limited number of Linear Time Invariant (LTI) 

models. These models represent different conditions in the flight envelope, The 

time consuming and costly part of most of these linear controller designs is the need 

to determine the controller parameters (i.e. controller gains) for all possible flight 

conditions in system modeling. Long and tedious processes for arranging gains in 

the flight controller software (i.e. extensive gain scheduling computations [7]) are 

time consuming [2]. If the missile has large flight envelopes, the conventional 

approaches with gain scheduling might require many flight conditions to be tested. 

The number of required gains to be scheduled becomes very large [8]. Moreover, 

proper gain scheduling requires accurate aerodynamic models [9]. Therefore, it 

requires expensive wind tunnel testing, necessary for comparing and verifying the 

aerodynamic model of the missile mostly obtained from Computational Fluid 

Dynamics (CFD) tools or empirical formulae. On the other hand, these “Gain-

Scheduling” based control techniques may not compensate these errors on system 

modeling and give unexpected results for the initial design. Since “Gain-

Scheduling” based control techniques do not globally have the desirable properties 

exhibited locally by its constituent point designs, it is not suitable for highly 

nonlinear dynamics and different flight conditions in the flight envelope [2]. 

The modeling error between the mathematical model and the real system may cause 

performance degradation even if nonlinear controllers are used [10]. Many 

nonlinear control approaches tend to generate large actuators’ commands or rates 

and have poor performance when actuators become saturated; this is the result of 
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actuator nonlinearity. Parametric uncertainty also limits the operational envelope of 

the vehicle where nonlinear control designs are valid. Un-modeled dynamics and 

input saturation can also limit the achievable bandwidth of the system [11] and 

cause robustness problems [10]. Due to these problems, nonlinear control 

approaches have not been commonly used on missiles [6]; missile control design 

has still been dominated by classical control techniques [2]. Although gain 

scheduling has historically been proven to be successful in a variety of applications, 

future designs will need more advanced methods which explicitly account for the 

nonlinearities of the system related to flight condition [5]. 

Nevertheless, substantial advances in nonlinear control have been recorded in the 

1990’s, due to theoretical achievements and the availability of powerful computer 

hardware and user-friendly nonlinear simulation software [6]. Dynamic model 

inversion (a popular feedback linearization method [12]) reduces design cost of a 

flight control system in comparison to a gain schedule design [13], [14]. 

Schumacher and Khargonekar [15] analyzed theoretically the stability of the flight 

control system with the two-timescale separation assumption and Lyapunov theory. 

It refers to the inversion of the aerodynamic force or moment equations of motion. 

The primary difficulty associated with the use of this type of feedback linearization 

is that a detailed and accurate knowledge of the nonlinear plant dynamics is 

required. Uncertain aerodynamic effects make this difficult, because aerodynamic 

coefficients are nonlinear functions of several physical variables difficult to identify 

accurately [10]. The technique assumes exact knowledge of aerodynamic 

coefficients and aircraft configuration parameters (e.g., reference wing area, mean 

aerodynamic chord, mass, moment of inertia) in the entire flight envelope. In 

practice, this assumption is not valid. Since this approach depends on state feedback 

and dynamic model inversion and is sensitive to modeling error [16], it will raise 

issues related to robustness. Hence, further study on robustness is necessary. A 

secondary issue is that accurate full-envelope nonlinear inversion is 

computationally intensive. A high-fidelity nonlinear force and moment model must 

be constructed and inverted in real time. Therefore the modeling errors in some 

aerodynamic coefficients deteriorate the nonlinear controller performance. 
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One approach to the problem is to implement Adaptive Neural Networks (ANNs) to 

nonlinear controllers [10], [17], [18]. The method proposed in [19] is that neural 

networks can be used in conjunction with any nominal controller, like dynamic 

inversion based controller [20] for linearized systems. Feedback linearization (i.e. 

dynamic model inversion) [12], [21] is a well known nonlinear control approach 

that can be combined with a Neural Network (NN). It simplifies the controller 

design by combining an inverted approximate model designed at a single flight 

condition with an online learning NN to account for errors due to the approximate 

inversion [2]. A key property of the ANN based nonlinear controller architecture is 

their ability to learn on line and to eliminate the need for an extensive design 

process to provide satisfactory stability. Stability analysis for the control of similar 

nonlinear systems using nonlinearly parameterized networks first appeared using a 

discrete time formulation in [22] and using a continuous time formulation in [23]. 

Extensions to non-similar systems together with applications in flight control can be 

found in [13], [24], [25], [26]. Research has shown that online learning NNs are 

well suited to cancel model inversion errors in such controllers [13], [27]. 

A NN can be thought of as a parameterized class of nonlinear maps [14]. This 

property applies to simple, or complex dynamic systems, time invariant or time 

varying systems, noise-free or noise-corrupted systems, and linear or nonlinear 

systems [2]. Using their universal approximation capability, the adaptive controller 

based on NNs can be designed without significant prior knowledge of the system 

dynamics [28]. Unnikrishnan et al [19] explained this type of controller design in 

two steps: (i) synthesis of a set of NNs that capture the unmodeled dynamics and 

parametric uncertainties of the plant online (ii) computation of a controller that 

drives the states of the plant to that of a desired nominal model. It eliminates the 

limitations in the plant inputs, such as: actuator displacement limits, actuator rate 

limits, linear input dynamics, and time delay [8]. The method of pseudo-control 

hedging (PCH) [3], [8], [29] is the one which was used to protect the adaptation 

process from actuator limits and dynamics (i.e. actuator saturation) by modifying 

the inner-loop reference model dynamics in a way that allows continued adaptation. 
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Several authors have used NNs to solve problems optimally associated with control 

of nonlinear systems [30], [31], [32]. It has been applied to control of a wide variety 

of nonlinear dynamic systems especially flight controllers [33], [34], [35]. Many 

successful results in advanced flight control systems have been achieved by Calise 

and others [13], [24], [36], [37]. In flight control problems, the applications of 

ANNs can also be found in Refs. [2], [38], [39]and [40]. These control methods 

have been successfully applied to fighter aircraft [13], [41], unmanned aircraft 

control [42], [43], helicopter control [44], reusable launch vehicles [8] and in 

advanced missile guidance techniques [45], [46], [47], [48]. The neural adaptive 

control system has been successfully demonstrated in high-fidelity simulations of 

both fixed-wing [49] and rotary-wing aircraft [44]. They are also used in 

development of fault-tolerant flight control systems for civilian transport aircraft 

[50]. The ANN approach is used for the F/A-18 aircraft in simulation in [13] and 

further developed in [26]. Leitner et al [26] designed an online adaptive NN for use 

in a nonlinear helicopter flight controller. In [26] the network helped the system 

tracking performance in the face of significant modeling errors. This approach was 

later modified and used in the Reconfigurable Control for Tailless Fighters 

(RESTORE) program [42], [43], using a dynamic inversion control law in an 

explicit model following architecture. The reconfigurable control law on X-36 

tailless fighter aircraft was examined for the adaptation of unknown failures and 

damage in [51]. This same approach also has been applied and flown on the Joint 

Direct Attack Munition (JDAM) [45], [46], [47], [52] and [53], in which the LQR 

based flight control system was replaced with a dynamic inversion based scheme 

augmented with a NN based model reference adaptive control. 

In [54] wing rock dynamics of an aircraft at moderate high angles of attack was 

controlled successfully via NN based adaptive control. The results in [54] show that 

the Single Hidden Layer Neural Network (SHL NN) adapts much more rapidly than 

the Linear in the Parameters Sigma-Pi Neural Network (LIP NN) in command 

tracking, despite having far fewer neurons, and both NN based designs significantly 

outperform the classical adaptive controller in both regulation and tracking. 

Narendra and Parthasarathy et al [55] view NNs as highly nonlinear control 



 6 

elements that offer distinct advantages over conventional linear parameter adaptive 

controllers in achieving desired system performance. 

Lewis et al [56] discussed an online NN that approximates unknown functions and 

is used in controlling the plant. Krstic et al [57], [58] have developed a technique 

for the control of feedback linearizable systems with input unmodeled dynamics. A 

robust adaptive control methodology that uses SHL feed-forward NNs has been 

presented by McFarland et al [59]. Balakrishnan and Huang [60] developed a 

Lyapunov equation based theory for robust stability of systems in the presence of 

uncertainties. 

Lian et al [33] proposed an adaptive robust BTT autopilot design to treat the 

uncertainties efficiently without prior knowledge of the bounds on the uncertainties. 

Huang and Lin [61] applied sliding mode control to cope with model uncertainty of 

the BTT missile autopilot design. However, these schemes require a tedious design 

procedure to perform input/output feedback linearization [28]. Feed-forward NNs 

with sigmoid hidden units are analyzed in detail for BTT autopilot design [28]. This 

scheme combines NNs and the sliding-mode control technique. 

In [62], the authors applied ANNs to design a pitch-plane autopilot for a medium-

range air-to-air missile maneuvering at an unrealistically high angle of attack. An 

early application of this theory to the missile autopilot design problem is found in 

[63]. The preliminary study presented in [62] indicated that NNs are capable of 

attaining sufficiently high learning rates to make adaptation feasible even during the 

most demanding aerial engagements. McFarland et al [9] used NN implemented 

controller to enable a single controller to handle multiple versions of guided 

munitions. In [4] and [27], McFarland et al used feed-forward NNs implemented 

approximate inversion with one sigmoidal hidden layer for an agile antiair-missile 

autopilot and demonstrated the effectiveness of the resulting autopilot. Their online 

learning and functional approximation capabilities and ideal structures for parallel 

processing [64], [65] make NNs an excellent candidate for uncertain aerodynamic 

effects and replacement of missile gain tables. Ref. [66] is an example of a missile 

autopilot using NNs. In [4], McFarland et al claimed that robust, nonlinear, and NN 
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based control algorithms are suitable for use in agile missile flight control. The 

success of dynamic model inversion on missile autopilot design was shown in [67]. 

A short-coming of dynamic model inversion is that it can not be applied directly to 

non-minimum phase plants. The transfer function from the control surfaces to 

acceleration (at the center of gravity (Cg)) is mostly non-minimum phase for tail-

mounted surfaces [9]. The tail-controlled airframe has a tail normal force opposite 

to the direction of the desired maneuver acceleration, which causes small initial 

airframe acceleration in the wrong direction. Analytically, this effect manifests as a 

right-half-plane zero in the transfer function from the control surface deflections (δe 

and δr) to the accelerations normal to the missile’s longitudinal axis (az and ay) at 

the missile Cg, thus tending to limit the speed of response of the guidance system 

[68]. Different approaches are proposed in [67], [69], [70], [71] and attempted to 

eliminate the non-minimum phase characteristics of the plants. A method which is 

described in [67] is called output redefinition and it is an example to solve non-

minimum phase problems. “Output redefinition” is originally proposed in [72], the 

inner loop variable is defined as a linear combination of the state variables. This 

allows the designer to place the zero of the associated transfer function at a 

desirable location. Thus, for instance, a combination of both angle-of-attack and 

pitch rate could be used to define the commanded inner loop variable [9]. Since the 

non-minimum phase characteristic prevents accurate dynamic inversion, the 

problem is eliminated by controlling attitude instead of acceleration. 

There is a research interests in improving adaptive NNs in the field of advanced 

flight control system design. Most of the previous NN training laws have NN 

weight dynamics that are of low rank, nearly unity [12]. There is no known reason 

why these dynamics could not be full rank [73]. A new adaptive NN control 

concept is proposed in [14], [73] , and [74] which learns the plant dynamics by an 

online trained NN and augments the capability of background learning (BL) using 

previously recorded data to improve system performance. In this concept, online 

learning architectures are used to compensate for dynamic inversion error caused by 

system uncertainties and uncertain environment and BL overcomes the low rank of 

most NN training approaches resulting in faster adaptation to the unknown 
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dynamics [14]. Furthermore, using combined online and BL methods provides long 

term learning in the adaptive flight controller, which enhances performance of the 

controller when it encounters a maneuver that has been performed in the past [14]. 

The BL law is a projection of the current learning law into the null space of the 

current learning (LIP NN [14] and SHL NN [74]). The network update law uses 

both the current (i.e. online) information and stored (i.e. background) information. 

The resulting adaptive element is able to retain long term memory without 

compromising its responsiveness to sudden changes in the environment [74]. 

In this study, the traditional gain scheduling [2] based control architecture is 

replaced by online learning NN architectures trained with a LIP NN, SHL NN, BL 

implemented SHL NN. The main advantage of these approaches is that online 

learning neural controllers will replace gain-scheduling activities, which can 

potentially be very large [2]. They can account for non-linearity and uncertainty 

both in the controls as well as in the states. Moreover, it decreases the dependency 

on accurate aerodynamic models. This control architecture requires only an 

approximate linear model at a single operating point. Therefore, at the beginning of 

this study, the aerodynamic coefficients of the cruise missile are obtained by 

defining the geometry and using empirical tools. Next, a plant model is obtained by 

substituting the aerodynamic coefficients into the equations of motion. Then they 

are linearized at a single flight condition (i.e. trim condition). As a result, the linear 

model is obtained from a priori knowledge of the missile dynamics. Next, dynamic 

model inversion control is applied. Since the missile is dynamically a nonlinear 

system, operation at any other flight condition will result in an inversion error. 

Then, an online ANN is added to compensate for the inversion error [25]. The 

weights of these NNs are adjusted to eliminate the effect of the modeling error [10]. 

The network weight update law ensures boundedness of both tracking error and 

adaptive NN weights [9], [13], [27]. Many of the results for this approach involving 

ANNs are derived from Lyapunov stability theory [75]. For a complete proof of 

stability, the reader may refer to [76] and [77]. According to the Lyapunov theory 

based proof the signals including tracking errors are uniformly bounded and the 
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weights of the online NNs that are initialized at zero tend to constant values [13], 

[25], [38], [39]. 

Modeling errors may mainly come from linearization, approximate inversion, 

aerodynamic modeling, thrust modeling, un-modeled dynamics (imperfect 

modeling) and assumptions made during controller design or sudden changes in 

missile dynamics. First, the missile generally has highly nonlinear dynamics and it 

is difficult to accurately model. There are inconsistencies between the actual 

dynamics and its mathematical model. During the simulation, the missile confronts 

with different flight conditions in the flight envelope, operation at any other flight 

condition will result in an inversion error. Second, highly nonlinear aerodynamic is 

difficult to model, aerodynamic coefficients are nonlinear functions of several 

physical variables, the aerodynamic coefficients obtained from tabulated results and 

interpolation can not represent actual aerodynamic condition. In addition, the 

elements of linearized matrices includes these aerodynamic coefficients, thus 

dynamic model inversion using these matrices can not be exact. This will cause an 

inversion error. Fourth, thrust force changes nonlinearly with respect to altitude. 

Changes in missile altitude and variation in dynamic pressure will be an error 

source potentially. Reduced order modeling can cause errors as well. The 

inconsistencies between assumptions and actual case can also result in modeling 

errors. Transformation of aerodynamic parameters, which are the elements of 

matrices, from inertial frame to body frame can also cause errors. Therefore, online 

NNs (longitudinal and directional channels) are designed to eliminate these errors. 

They are used to cancel errors by observing the tracking error between the 

commanded input to the missile and missile response. These errors are used to 

update the network. Therefore, the NN adaptation attempts to cancel the inversion 

error. 

The performance of the controller is demonstrated using the nonlinear 5-DOF high 

subsonic cruise missile simulation code in MATLAB-SIMULINK. 
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1.2. Scope 
 
 
 
“Adaptive Neural Network Applications on Missile Controller Design” is a topic of 

research interest. In this thesis, various NN based control techniques are studied on 

generic cruise missile geometry with the physical characteristics shown in Table 1-

1. 

The missile is a skid-to-turn (STT) missile and it is a cruciform missile with a plus 

tail configuration. Banking of the missile is not required to maneuver immediately 

in any plane. Sets of controls at right angles permit the missile to turn immediately 

in any plane without the necessity of its banking (Φ=0) [68], [78]. The autopilot 

axes are located in the planes of the control surfaces in this type of missile, so that 

only two surfaces are deflected by the pitch autopilot (δe) and two by the yaw 

autopilot (δr) [68]. 

 

Table 1-1 GENERIC CRUISE MISSILE CHARACTERISTICS 

 

Length 4 m  

Diameter 0.4 m  

Wing/Tail Span 0.9 m  

Control Tail Control 

Cruise Speed 0.8 Mach 

Launch mass 500 kg 

Fuel weight 50 kg 

Center of gravity location 2 m (from nose) 
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The ANN augmented model inversion control is a viable candidate for a missile 

autopilot implementation. This approach is applied in designing a missile altitude 

hold autopilot and directional autopilot. Attitude Command Attitude Hold (ACAH) 

response type is used in the autopilots. Their effectiveness is illustrated using 

numerical results from nonlinear 5-DOF simulation studies of a high subsonic 

cruise missile. Simulation results of a linearized model inversion controller without 

NN, and distinct online learning neural networks (LIP NN, SHL NN and BL 

implemented SHL NN) applied adaptive controllers for longitudinal (pitch) and 

directional (yaw) channel are shown, and the effectiveness of on-line learning 

neural controllers for on-line control laws in a high subsonic cruise missile are 

compared and evaluated. Simulations are performed, but two of them have been 

chosen, which are related to the scope of this thesis. The objective is to present 

results between model inversion controllers proposed in [2] and on-line learning 

NN implemented model inversion controllers on missile autopilot applications. The 

capability of adapting to errors caused by the linearized inverted model is 

demonstrated for different types of pitch and yaw NN. In the first simulation 

scenario, the aim is comparison of the LIP NN and SHL NN on the improvement of 

the inversion error compensation. In the second simulation scenario, the scope is to 

show the improvement of SHL NN implementation with aiding BL algorithm in its 

weight adaptation process.  

It is shown that neural-based control laws for the autopilot functions do not need 

any gain scheduling in nonlinear 5-DOF simulation. 

To deal with problems encountered during the implementation phase of the 

algorithm some improvements are made such as utilizing learning rate for the 

computation of NN compensation to nonlinearity. Moreover, some precautions are 

taken such as checking the trajectory of the missile to validate them. 

1.3. Outline  
 
 
 
The remaining part of the thesis is organized as follows: 
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Chapter-2 discusses system modeling that includes missile guidance planning, 

aerodynamic modeling, thrust modeling and missile nonlinear 5-DOF mathematical 

model with given assumptions, altitude hold guidance and the directional guidance 

concepts, and the architecture of 5-DOF simulation. 

Chapter-3 describes the main steps for the development and implementation of LIP 

NN and SHL NN based altitude hold controller, and its architecture. 

Chapter-4 demonstrates the main steps for the development and implementation of 

LIP NN and SHL NN based directional autopilot, and architecture of heading hold 

controller. 

Chapter-5 contains a description of BL implemented NN adaptation method. The 

improvement related to this new method is also described in this chapter with the 

comparison of the previous application. 

Chapter-6 provides numerical simulation results for a high subsonic cruise missile 

demonstrating the feasibility of this autopilot design techniques. The performance 

of each controller are also compared and evaluated in this chapter. 

Finally, conclusions about this thesis, the problems of the controller architecture 

and future research directions are discussed in Chapter-7. 
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CHAPTER 2 
 
 
 

MISSILE FLIGHT DYNAMICS MODELING 
 
 
 
 

Five degrees of freedom (5-DOF) Matlab-Simulink model is created to demonstrate 

the effectiveness of the controllers. It includes only directional and longitudinal 

motion of the missile, and the roll motion in the lateral plane is ignored.  

5-DOF simulation implies flight model of a missile that can be described by a 

number of nonlinear first order differential equations. These equations can be 

analyzed in two groups: kinematics equations and dynamic equations. In this 

chapter, the sub models of the missile flight model will be described briefly 

according to assumptions described in Section 2.1 and simulation architecture of 5-

DOF equations of motion will be given. 

2.1 Assumptions 
 
 
 
The simulation uses nonlinear aerodynamics and uses the following assumptions: 

1) Missile is a rigid body; therefore aeroelastic effects are not included in the 

equations. The missile body does not change in size or shape. The forces 

acting between individual elements of mass are eliminated. 

2) Ixx, Iyy, Ixz are constant for a given rigid body due to usual symmetry of 

missile about the x-y plane. 
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3) The missile has a vertical plane of symmetry about the x-z plane. The y-axis 

is the perpendicular to this plane of symmetry and is a principal axis. 

(Ixy=Iyz=0) 

4) The missile is a cruciform missile with rotational symmetry (Iyy=Izz and 

Ixz=0). (Cruciform missiles commonly have four similar fixed wing panels 

and four movable tail fins mounted together at a common chord and 

displaced one from the next by π/2 radians of arc [68].) 

5) The missile is a skid-to-turn (STT) missile and it has a plus tail 

configuration. Banking of the missile is not required to maneuver 

immediately in any plane (Φ=0). Roll moments can be neglected (L≈0). 

6) Earth rotation is neglected. Related centrifugal and Coriolis accelerations 

can be neglected. 

7) The earth is treated as flat and stationary in inertial space. This allows us to 

declare the Earth frame as the inertial frame. 

8) The missile has an aerodynamic symmetry in roll. Therefore the 

aerodynamic forces and moments acting on the missile are assumed to be 

invariant with the roll position of the missile relative to the free-stream 

velocity vector. 

9) The attitudes (q, r) and altitude (h) of the missile which is measured by 

gyroscope and altimeter sensors respectively located on the missile that the 

input axes of the sensors are coincident with the missile body axes. To keep 

the simulation simple, higher order sensor dynamics and sensor errors are 

neglected. 

10) Thrust is generated along the x-axis of the missile body and thus thrust 

forces pass through the Cg. (Ty=Tz=0) 

11) There is no wind during the flight. 
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With these assumptions, the airframe motion can be described by translations of the 

center of gravity and by rotations about this point. In addition, they simplify the 

equations of motion by eliminating the aerodynamic cross-coupling terms between 

the roll motion and the pitch and yaw motions. 

2.2 5-DOF Dynamic Model 
 
 
 
This model contains the dynamic equations of missile. These equations are derived 

by applying Newton’s laws of motion that relate the summation of the external 

forces and moments to the linear and angular accelerations of the body. First, a 

typical six degrees of freedom (6-DOF) missile model is handled. 6-DOF means 

longitudinal, lateral, vertical movements and attitude of the motion which are 

presented at Figure 2.1. 

 
 
 

 
 

Figure 2.1 Representation of the Missile’s Six Degrees of Freedom [68] 
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The 6-DOF equations of motion consist of three translations, and three rotations, 

usually along and about the missile body axes. In this study, the roll rate (p) is set to 

zero in the simulation model. The missile initial roll angle (Φ) and initial roll rate 

(p) are 0. Since the missile is a cruciform missile and it has a plus tail configuration, 

sets of controls at right angles permit the missile to turn immediately in any plane 

without the necessity of banking (skid-to-turn missile Φ=0) [68], [78]. From 

assumptions 4 and 5, roll moment coefficient is set to zero and Iyy equals to Izz, thus 

roll acceleration equals to zero. This can be realized from equation (2.7) in Section 

2.2.2. Therefore roll motion is ignored, and the simulation is called as 5-DOF. 

The translational equations of motion are obtained from Newton’s second law. 

Newton states that the summation of all external forces acting on a body is equal to 

the time rate of the momentum of the body with respect to the inertial frame. The 

rotational equations of motion are derived from Euler's law, i.e. the time rate of 

change of angular momentum equals to the summation of externally applied 

moments. In deriving these equations of motion, the assumptions which were 

described in Section 2.1 were used. 

The relationships between the forces/moments acting on the missile and the 

kinematics state (position, velocity, attitude, angular velocity) of the missile were 

established in 5-DOF. Since the missile is subject to the aerodynamic forces, thrust 

forces and the gravitational acceleration (g) during flight, we can conclude that the 

external forces and moments acting on a missile are generated by the aerodynamic 

effects, propulsion and the gravity. As the results of these effects, the components 

of the inertial position vector were changed on longitudinal, lateral and directional 

plane. Moreover, yaw and pitch attitudes were also changed. 

2.2.1 Translational Motion 
 
 
 
Firstly, the translation of a rigid body can be expressed mathematically by the 

following equations: 
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Total external forces consist of aerodynamic forces, thrust and the gravitational 

forces. 
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In equations (2.3), the first term is related to aerodynamic forces, second term is 

related to thrust forces, and the third term is related to gravitational forces. Then 

equations (2.3) are substituted into the first terms of equations (2.2) and the final 

translational motion equations (2.4) are obtained. Substituting for the aerodynamic 

forces and using previously stated assumptions, the following is obtained. 
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2.2.2 Rotational Motion 
 
 
 
The rotation of a rigid body is expressed mathematically by the following 

equations: 
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Then, moments due to aerodynamic forces on missile are substituted into equations 

(2.6) and the final rotational motion equations (2.7) are obtained. According to 

assumption 10, there is no moment arm; therefore moments caused by propulsive 

forces are zero about the Cg. The details of the Thrust Model will be given in 

Section 2.5. Since gravitational forces apply at the Cg, it has no moment 

contribution. Substituting for the aerodynamic moments and using previously stated 

assumptions, the following is obtained. 
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The reader may refer to [68] and [79] for derivation of the translational and 

rotational equation in detail. 
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2.3 Aerodynamic Model 
 
 
 
The motion of the air around a missile generates pressure and velocity variations, 

which produce aerodynamic forces and moments. One of the fundamental problems 

in flight mechanics is the mathematical modeling of the aerodynamic forces and 

moments. In the previous section the relationships between aerodynamic forces and 

translational motion and the relationships between aerodynamic moments and 

rotational motion were shown. The calculation of aerodynamic forces and moments 

acting on a missile and aerodynamic coefficients is explained next.  

2.3.1 Aerodynamic Parameters 
 
 
 
Aerodynamic coefficients are the functions of the flight parameters. These 

parameters are angle of attack (α), side slip angle (β), the control surface deflections 

(δe and δr), the body angular rates (q and r), the time rates of α and β in addition to 

Missile Mach Number (M) in this study. 

Angle of Attack (α): The angle between the x-axis and the projection of the missile 

velocity vector on the x-z (reference) plane. It is positive when the missile velocity 

component along the z-axis is negative. Downward direction is taken as positive z-

axis. 








=
u

w
arctanα         (2.8) 

Angle of Sideslip (β): The angle with which the missile velocity vector makes with 

the x-z (reference) plane of the missile. Rightward direction is taken as positive y-

axis when the missile is looked from the top. 
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Figure 2.2 Demonstrations of Angle of Attack and Side-Slip Angle [80] 
 
 
 

Control Surface Deflections (δe and δr): These deflections are provided by the 

control surfaces and are defined in terms of the fin deflections in the following 

manner: 

2
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        (2.10) 

In equations (2.10) δi denotes the deflection of control fin i for i=1, 2, 3 and 4. The 

fin arrangement of the considered cruciform missile is given in Figure 2.3 with the 

positive rotation senses of the fins. Since the missile is cruciform and has a plus tail 

configuration, elevator deflection does not have any contribution on missile 

directional plane and rudder deflection does not have any contribution on missile 

longitudinal plane. The graphs related to this issue will be given in Appendix A. 
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Figure 2.3 Arrangement of Fin from the Rear View of the Missile [80] 
 
 
 

Mach number (M):  The ratio of the airspeed to the speed of sound. If a  is the 

speed of the sound, then Mach number can be expressed as: 

a

Vmissile=Μ          (2.11) 

where 222 wvuVmissile ++= and a can be stated as RTa γ= where R is the 

universal air gas constant, T is the ambient temperature which changes with 

altitude, and γ is the specific heat ratio of the air. 

Dynamic Pressure (Q): Pressure on missile created due to dynamic motion. 

2

2

1
missileVQ ρ=         (2.12) 

Air Density (ρ): It is the mass of air per unit volume. 

It should be noted that air density, ambient pressure, ambient temperature, speed of 

sound parameters are calculated according to the U.S. Standard Atmosphere 1976 

model. 
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2.3.2 Aerodynamic Force and Moment Coefficients 
 
 
 
In order to calculate aerodynamic forces and moments’ contribution in equation 

(2.4) and (2.7), we need the aerodynamic coefficients. These coefficients are found 

using the Missile DATCOM software [81]. This software finds the combined 

effects of many different variables on the magnitude of aerodynamic coefficients. 

These variables are configuration geometry, angle of attack, missile size, free-

stream velocity, density of the undisturbed air, Reynolds number (i.e., as it relates to 

viscous effects), and Mach number (i.e., as it relates to compressibility effects) [68]. 

Then force and moment coefficients table are created. The relationships between 

aerodynamic variables and coefficients will be shown on graphs in Appendix A. 

Force and moment coefficients can be found from these lookup tables that are 

created from sideslip angle, rudder (yaw fin) deflection, elevator (pitch fin) 

deflection, Mach number, angle of attack respectively. In addition, dynamic 

derivatives of aerodynamic coefficients table are also generated according to Mach 

number. Finally, functional forms of these coefficients are generated. 

The derivation of non-dimensional form of aerodynamic forces and moment 

coefficients can be found as follows: 
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Aerodynamic coefficients are expressed in (2.13) as linear functions of angle of 

attack (α), side-slip angle (β), fin deflections (δe, δr), missile Mach number (M), 

body angular rates (q and r), the time rates of α and β. Note that the roll motion is 

neglected. Therefore CL is set to zero. 
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2.4 Kinematics Model 
 
 
 
Kinematics deals with the motion of bodies without reference to force or mass [82]. 

Kinematics equations are the results of transformation matrix applications that form 

a relationship between the reference axis systems using Euler angles [79]. These 

angles (Φ, θ, ψ) are defined as the missile’s attitude with respect to the Earth-fixed 

frame in Figure 2.4. 

 
 
 

 
 

Figure 2.4 Representation of the Kinematics Relation for the Missile [68] 
 
 
 

In this study, two orthogonal-axes systems need to be defined to develop the 

kinematics model of the missile. They are as follows: 

1) Earth-fixed frame (i.e. the inertial frame) (Assumptions 6 and 7) is fixed in 

space, and Newton’s Laws of Motion are valid on this frame. In Figure 2.5, we will 

denote the Earth-fixed frame by (Xe, Ye, Ze). In this right-handed coordinate system 

(NED system), the Xe−Ye lie in the horizontal plane and the Ze-axis points down 

vertically in the direction of gravity. It should be noted that the position of the 

missile’s Cg at any instant of time is given in this coordinate system. 



 24 

2) The conventional body frame is selected, denoted by (Xb, Yb, Zb). It moves with 

the missile. The center of this frame is at the Cg of the missile, the body coordinate 

system in this study is a right-handed system with the positive Xb-axis along the 

missile’s longitudinal axis (missile’s center line), the Yb-axis positive to the right in 

the horizontal plane which is designated as the pitch axis and the Zb-axis positive 

down which is the yaw axis. This coordinate frame is similar to the north-east-down 

frame.  

 
 
 

 
 

Figure 2.5 Orientation of the missile axes with respect to the Earth-fixed axes 
[68] 

 
 
 

The guided weapons reference axis system is generally centered on the Cg and 

fixed in the body. Therefore, in this study, the kinematics model is involved in the 

transformation of the translational and rotational motion equations that described in 

Section 2.2 from body frame to inertial reference frame. This model calculates body 

attitudes in the form of Euler angles (Φ, θ, ψ) and the transformation matrices in 

order to achieve these transformations. 

For translational motion: 
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where BIT /  is the transpose of direction cosine matrix that converts body velocities 

into inertial velocities. 
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Substituting equation (2.15) into equation (2.14), the following is obtained. 
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For rotational motion: 
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where BIR /  is the rate transformation matrix that converts body angular rates into 

Euler rates. 
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Substituting equation (2.18) into equation (2.17), the following is obtained. 
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After these calculations, Euler angles of the missile are obtained by the integration 

of the Euler rates. For calculating the inertial position, inertial velocities are 
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integrated. As a result, the missile attitude and location of its Cg are calculated with 

respect to an Earth (inertial) reference point (i.e. launch point). 

2.5 Thrust Model 
 
 
 
The thrust model is used during the maneuver starting from the firing phase until 

the termination phase. It is divided into two successive phases: 

1) Boost Phase: It comprises the flight from the firing instant to the end of the 

booster thrust. In this phase, boost motor provides 40000 N thrust for 4 seconds in 

order to achieve cruise speed, and then it finishes. During this period, there is no tail 

fin deflection. 

2) Sustain Phase: It comprises the flight from the firing instant of the flight motor to 

the termination instant. The Thrust Model, which is described in this section, 

explains this phase. 

The Thrust Model is similar to the model described in [1]. Here the model is 

assumed to resemble a turbojet engine with a 5000 N static thrust. The Turbojet 

engine shall operate throughout the flight in order to sustain the required missile 

speed. 

This engine will be assumed to have a maximum thrust of 5000 N at sea level. The 

variation of available maximum thrust with respect to altitude can be represented by 

equation (2.15). 

( ) mhforhhThT MAX 5000010797.00021.0)( 2 ≤≤+⋅−⋅⋅=   (2.20) 

where 

TMAX : Maximum available thrust at sea level (5000 N) 

h : Altitude, [km] 
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Equation (2.20) is derived from [83] which gives information about typical turbojet 

engine characteristics. In order to maintain the pre-determined cruise speed of 0.8 

M, magnitude of the thrust is adjusted by the method described below. 

1) Turbojet engine is assumed to be capable of increasing and decreasing its thrust 

level linearly at a rate of 300 N/s. 

2) Although, the engine is assumed to have a 300 N/s thrust increment rate 

capability, the thrust control command will be calculated according to the measured 

Mach number. If Mach number is below 0.75 or greater than 0.85, engine is 

commanded to work at its limits (300 N/s). If Mach number is between 0.75 and 

0.85, a quadratic function is used to calculate the thrust control gain, K. The thrust 

control law is given below: 

KtTT iCOMiCOM ⋅∆+=+1         (2.21) 

where 

TCOM : Thrust control command 

∆t : Time step 

K : Thrust control gain 

And K is defined by the following: 

Mach < 0.75    => K = 300 N/s 

0.75 < Mach < 0.85  => ( ) 1200002 ⋅∆⋅∆= MMsignK   (2.22) 

Mach > 0.85   => K = -300 N/s 

The thrust control command, TCOM is limited to a minimum value of 1000 N for all 

altitudes in order to avoid sudden decreases and oscillations in the missile speed. 
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2.6 Guidance Model 
 
 
 
The Guidance Model is used to command the required movement of the cruise 

missile according to the target trajectories and planned waypoints. In other words, 

inputs for an autopilot system are generated from this model. 

2.6.1 Altitude Hold Guidance 
 
 
 
During cruise phase, the difference between commanded altitude and missile 

altitude is given according to a planned height trajectory. After cruise phase 

(terminal phase), the difference between the height of the target and missile altitude 

is the input for the altitude hold autopilot. It is shown in Figure 2.6. 

 
 
 

 
 

Figure 2.6 Generation of Altitude Hold Autopilot Command 
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( ) missilecomerr hsCFhh −⋅= )(       (2.23) 

where 
13

1
+

=
s

CF(s) the command filter transfer function and herr is the Altitude 

Hold Autopilot Input. 

2.6.2 Directional Guidance 
 
 
 
Normally, autopilot inputs are determined by the seeker and guidance systems. 

However, in this study there is no seeker model. Since the target used in this model 

is assumed slow, the motion in the longitudinal axis is neglected. Therefore the 

requirement for the seeker detection is only in the directional plane. Therefore 

instead of making a seeker model, it was assumed that the way points are tracked 

ideally via Inertial Navigation Systems (INS) during cruise phase and the LOS rates 

of the target are provided perfectly in terminal phase of the flight. These LOS rates 

are used in Guidance Model to obtain directional autopilot command. 

The generation of the directional autopilot command is based on the LOS rate 

following reference [68], [84]: 
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BIR /  is the rate transformation matrix that converts body angular rates into Euler 

rates which is defined in Section 2.4. 
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    (2.24) 
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Equation (2.24) is used for the cruise phase in order to find the LOS (line-of-sight) 

rate on the directional plane (yawλ& ) which is the third term of the LOS rate vector. 

2) Terminal Phase 
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BIR /  is the rate transformation matrix that converts body angular rates into Euler 

rates which is defined in Section 2.4. 
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     (2.25) 

Equation (2.25) is used for the terminal phase in order to find the LOS (line-of-

sight) rate on the directional plane (yawλ& ) which is the third term of the LOS rate 

vector. 

Then from equation (2.26), heading command is calculated by using Proportional 

Navigation [68], [84]. If the missile is sustaining at a constant velocity and we are 

considering long times of flight it is reasonable to assume that a given change in 

body direction will result in the same change in flight path direction [85]. If the 

motion of the missile on directional plane is considered, missile yaw flight path 

angle rate can be accepted as its heading rate (equation (2.26)). 

∫=⇒=

=

dt

N

comcomyawcom

yawguidanceyaw

ψψγψ

λγ

&&&

&&
       (2.26) 

 

N guidance is the guidance constant. 
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The block diagram of directional guidance algorithm is shown in Figure 2.7. 
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Figure 2.7 Generation of Directional Autopilot Command 
 
 
 

2.7 Autopilot 
 
 
 
Autopilot Model will be described in detail in Chapter 3, 4 and 5 respectively. This 

model generates required deflection angles which are the inputs for the missile 

plant. 

2.8 Simulation Architecture 
 
 
 
The mathematical architecture of the 5-DOF simulation is generated by the models 

described above. First, according to the initial conditions, Aerodynamic Parameters 

are calculated. Next body forces X, Y, Z and moments M, N are computed by the 
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help of the Aerodynamic Model. L is set to zero. In parallel, thrust forces are 

calculated from Thrust Model. Then these forces and moments are substituted into 

the Dynamic Model, and body translational accelerations and body angular 

accelerations are obtained. These accelerations are integrated for computing body 

angular rates and body velocities. Next, body angular rates are transformed into 

Euler rates and body velocities are converted to inertial velocities using the 

Kinematics Model. When they are integrated, Euler angles and location of the 

missile Cg with respect to inertial frame are found. Then transformation matrices 

that transform from inertial coordinates to body coordinates (DCM) are found by 

substituting Euler angles into Kinematics Model. According to the target 

trajectories and planned waypoints, guidance algorithms generate the autopilot 

commands. Autopilots Model, which will be described in the following sections, 

uses these commands in order to find fin deflections for desired missile motion. 

Next, dynamic parameters related to the motion of the missile are computed. Then 

by using these parameters and fin deflections, aerodynamic coefficients are 

calculated in the Aerodynamic Model. This cycle repeats at every time step of the 

simulation. 
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The flow chart of the simulation architecture is shown in Figure 2.8. 

 
 
 

 
 

Figure 2.8 Simulation Architecture 
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CHAPTER 3 
 
 
 

ADAPTIVE NEURAL NETW ORK BASED ALTITUDE HOLD 
AUTOPILOT  

 
 
 
 

The altitude hold autopilot allows a cruise missile to hold its altitude, climb or 

descend according to a planned altitude trajectory. After reaching the desired 

intermediate cruise or sea-skimming altitude, an altitude autopilot is used to 

maintain this altitude against atmospheric disturbances and gravity. The mission of 

the autopilot is to minimize the deviation between the actual altitude and the desired 

altitude [1]. 

In this chapter, the design steps of an altitude hold autopilot of a high subsonic 

cruise missile with NN architecture are explained. In Section 2.2, the missile 

dynamic model is described in detail. At this instant, the equations derived in this 

model are linearized at an equilibrium point (i.e. trim condition) under the 

assumptions in Section 2.1. Next, the linear state equations are obtained to use in 

the nonlinear model inversion controller. Finally, the ANNs based model inversion 

applied to the missile altitude hold capability is demonstrated. Note that the actuator 

dynamics is not modeled in this architecture, but the deflection and deflection rate is 

limited. 

3.1 Linearization 
 
 
 
In this section, the equations (2.7) are linearized under designated assumptions. We 

are interested in the motion on the longitudinal and directional plane, and we 
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neglect the roll motion. Therefore, the linearization of the equations related to pitch 

angular acceleration and yaw angular acceleration is performed. 

First, by substituting related aerodynamic coefficients from equation (2.13) into 

equation (2.7), equation (3.1) is obtained. 
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Next, equation (3.1) is derived with respect to aerodynamic variables, linearized at 

an equilibrium point (i.e. trim condition) and state space forms of the equations 

(equation (3.2)) are obtained. For a mechanical system, the conditions for 

equilibrium are defined by the following: 

∑∑ == 0Moments  and  0Forces  

In terms of the system state vector, the equilibrium (trim) is defined as the 

following: 

( ) constant,,0 === EEEE UUXfX&  

where X denotes the states, U denotes the input and subscript E denotes the 

equilibrium. 

Trim conditions are determined by flying the missile at a certain altitude and 

observing the states and inputs where they are constant. This altitude is chosen 

because of considered sea-skimming cruise altitude. 
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Table 3-1 Trim Condition Parameters 

 

Altitude (h) 15 m  (from sea level) 

Density (ρ) 1.23 kg/m3 

Cruise Velocity (Vcruise) 0.8 M 

Sideslip Angle (βtrim) 0.1° 

Speed of sound (a) 340 m/sec 

Angle of attack (αtrim) 5° 

Elevator Deflection (δetrim)  -3° 

Rudder Deflection (δrtrim) -0.5° 

 
 
 

According to the designated trim condition which is given on Table 3-1, 

aerodynamic coefficients are found from aerodynamic tables, their changes with 

respect to aerodynamic parameters are calculated and substituted into the matrices 

in equation (3.2). The elements of A1, A2 and B matrices are given in Appendix B. 

The matrices in equation (3.2) are different from the actual matrices which 

represents the real dynamics. In reality, there are high nonlinearities in the missile 

motion, thus these matrices do not represent the real motion because of 

linearization. Here,q& , r&denotes the pitch and yaw angular accelerations obtained 

from linearized equations. 
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In practice A1, A2 and B are not represented nor exactly known [5], [25], [38], [39], 

thus the estimate of A1, A2 and B are used in Model Inversion Controller. 1Â , 2Â  

and B̂  matrices denotes estimates of the linearized matrices. In equation (3.3), 1Â  

and 2Â  matrices indicate the estimated aerodynamic stability derivatives, and B̂  

represents the estimated aerodynamic control derivatives at the trim condition. 

Body velocities u, v, w are calculated with respect to body fixed frame (slow 

translational states) and q, r are body angular rates about the body fixed axes (fast 

rotational states). δe and δr are the control inputs and eδ̂ , rδ̂ are their estimates for 

longitudinal and directional dynamics respectively. 
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1Â , 2Â  and B̂  matrices are different from actual matrices. Here, q&̂ , r&̂denotes the 

estimated pitch and yaw angular accelerations respectively, which are obtained from 

the linearized and estimated rotational equations of motion. 

3.2 Neural Network Based Inversion Architecture 
 
 
 
In literature, the altitude hold autopilot architecture is generally established with an 

altitude (hcom) commanded outer loop and body pitch rate (q) commanded [86] or 

normal acceleration (an) commanded [1] inner loop. However, if the inner loop 

controller input is normal acceleration (an), the transfer function between elevator 

deflection (δe) and normal acceleration (an) at the center of gravity always has a 

zero on the right half s-plane for tail-controlled missiles. This zero in the right half 

s-plane causes non-minimum phase characteristics on the missile [9] that is 

described in Section 1.1. This condition prevents accurate model inversion. In 

addition, for the pitch rate loop, the transfer function from elevator deflection (δe) to 

body pitch rate (q) has a zero very close to the origin (i.e. near the imaginary axis); 

therefore it produces a very slow mode when the inversion is not exact [9]. It is 
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difficult to achieve design criteria such as rise time and settling time. Therefore 

altitude hold design is carried out by using pitch angle (θ) for the inner loop, and 

implementing an altitude (hcom) commanded outer loop to map from an altitude 

error to pitch attitude command to the inner loop proposed in [87] and [88]. Missile 

speed (i.e. Missile Mach number) control is not included in the Altitude Hold 

Autopilot. On the other hand, Missile Mach number is controlled by a Thrust Model 

which is described in Section 2.5. The detailed information about this model can be 

found in [1]. Moreover, any lateral dynamics effect is neglected in the controller 

design. Therefore the only motion considered is in the vertical plane [89]. 

This section contains the architecture of the ANN implemented dynamic model 

inversions on missile altitude hold application. It is based on the neural network 

applications as described in [13], [25], [36], [38], [39]. In addition, the altitude hold 

application is taken from [87]. This architecture is shown in Figure 3.1. Since the 

primary effect of the longitudinal control is a change in pitch attitude, the attitude 

response to a longitudinal control input is important [2]. As a result, the architecture 

is based on ACAH for the longitudinal inner loop and a Proportional with an 

Integral and Derivative Controller for the outer loop. The outer loop converts 

altitude error into pitch angle command for the inner loop. 
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Figure 3.1 Altitude Hold Autopilot 
 
 
 

3.2.1 Inner Loop Design 
 
 
 
In the preceding section, linearized and estimated equations of rotational motion 

(equation (3.3)) are obtained. At this stage, these equations are inverted and the 

approximate model inversion of the missile plant is formed. By inverting these 

equations, a relationship between desired angular accelerations and estimations of 

required control deflections is established. The desired angular accelerations are 

commanded and the corresponding estimated fin deflections ( eδ̂ , rδ̂ ) are found from 

equation (3.4) which represents the approximate inversion. 
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Here, any cross-coupling between fast rotational states and slow translational states 

is neglected in the inversion [38], [39]. Since the B̂  matrix is a square matrix and 

non-singular, it can be inverted. 

Since it is not straight forward to exactly know, measure or estimate these dynamic 

equations, an approximation has to be used. Here, an inversion for one flight 

condition as in equation (3.4) will be an approximation for the rest of the flight 

conditions [2]. Operations at any other flight condition will cause an inversion error. 

Therefore Neural Networks (NNs) are designed for cancelling the error between the 

true model and approximate one. ANNs and inverted model are combined in order 

to reduce and cancel this error. 
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Figure 3.2 Application of Model Inversion on both longitudinal and directional 
control 

 
 
 

Note that equation (3.4) will also be used for the directional autopilot. 

From the altitude hold autopilot architecture in Figure 3.1, the pseudo control, Uθ is 

found by the following equation: 

θθθθ __ _ UadUpdU fcom −+= &&       (3.5) 
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Uad_θ is the adaptive signal that represents the neural network output on the pitch 

plane. The proportional plus derivative contribution is shown by Upd_θ and fcom _θ&&  

is the command filtered Euler angular acceleration for pitch. 

According to the ACAH implementation, Uθ is equivalent to desired Euler angular 

acceleration for pitch. However we need body angular accelerations in equation 

(3.4), so it will need to be transformed to the body axes reference frame [25]. The 

transformation in Figure 3.2 is made by the following equations: 

θφθψθφφψθφφφθφ

θφθψθφφψθφφφθφ

ψθ

ψθ

sincoscossincoscoscossin
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−++−=

UUr

UUq
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desired
 (3.6) 

Here Uψ denotes desired Euler angular acceleration for yaw. Note that it is obtained 

from directional autopilot architecture. 

The proportional plus derivative dynamics for the pitch plane is obtained by: 

( ) ( )θθKdθθKpUpd_θ com_fcom_f
&& −+−=      (3.7) 

The gains Kp and Kd are used to define the error dynamics. These dynamics are 

designed faster than the command filter, and slow enough not to be affected by the 

actuator dynamics. However, actuator dynamics are not modeled in this study, so 

we will look for the relationship between command filter and error dynamics. The 

selection of this parameter will be explained in Section 3.2.2. 

The true dynamics are not given by the linear approximated model in equation 

(3.3). There may be errors due to reasons which described in Section 1.1. The 

model inversion error can be defined as the difference between the actual values of 

the rotation and the approximated one (equation (3.8)). 
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If equation (3.3) substitutes into equation (3.8), the following equation is obtained: 
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From equation (3.9), we can define Euler pitch angular acceleration as: 

θθ εθ += U&&          (3.10) 

Combining equation (3.5), (3.7), and (3.10) we obtain: 

( ) ( ) ( ) θεθθθθθ −=−+−+− ___ UadKdθθKp fcomcom_ffcom
&&&&&&    (3.11) 

On the right hand side of equation (3.11), network compensation error is generated. 

In the ideal case, it is equal to 0. It is expected that ANN output cancels the model 

inversion errors. If it occurs, consider the desired error dynamics (i.e. NN output 

cancels the inversion error), the equation (3.11) becomes: 

( ) ( ) ( ) 0__ =−+−+− desiredfcomdesiredcom_fdesiredfcom KdθθKp θθθθ &&&&&&    (3.12) 

The details of ANN architecture will be described in Section 3.3. 

3.2.2 Command Filter Design and Inner Loop Error Dynamics 
 
 
 
Feedback linearization separates the flight dynamics into fast and slow dynamics by 

using timescale properties [90], [91]. Command filter and PD error dynamics are 

designed with the consideration of the timescale separation. 

The command filter serves both to limit the input rate, and as a model for desired 

response. Bandwidth separation (time scale separation) of the command filter and 

the adaptation dynamics are important for getting desired response from the missile. 

As a result, the command filter must be slower than the missile error dynamics on 

pitch attitude. Therefore, consider the pitch attitude error dynamics of the missile 

(equation (3.11)). Define pitch attitude tracking error as θθcom_f −=θ~  and take the 

Laplace transform. 
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Then the transfer function from inversion error compensation of pitch motion to 

pitch attitude error becomes: 
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where errnw denotes natural frequency, ζerr is damping ratio of the error dynamics. 

From equation (3.14), the relationship for error dynamics can be taken as a second-

order system. Therefore we have to determine a set of specifications for the desired 

error dynamics. 

Since the missile can be specified as an under-damped system, the design process is 

performed according to the transient response characteristics of an under-damped 

second-order system (equation (3.15)) such as the settling time (ts), rise time (tr), 

max % overshoot are specified according to [92]. 
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where wn denotes natural frequency, ζ is the damping ratio [92]. As can be seen 

above, the value of ζ is usually determined from the requirement of allowable 

maximum % overshoot, and thus settling time is determined primarily by the 

natural frequency [92]. 
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For time scale separation, the slower response is required a command filter 

compared to error dynamics. In order to find the error dynamics of the missile, the 

natural frequency and damping ratio of the missile airframe (AF) must be found. 

According to [93], the missile airframe natural frequency (wAF) and damping ratio 

(ζAF) for longitudinal motion is found as: 
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Aerodynamic parameters in the above equations are found using the trim 

conditions. After finding missile airframe natural frequency from equation (3.16) 

and damping ratio from equation (3.17), the error dynamics can easily be 

determined. 

According to [92], for a desirable transient response of a second order system, the 

damping ratio ζ must be between 0.4 and 0.8. Small values of ζ (ζ<0.4) yield 

excessive overshoot in the transient response, a system with a large value of ζ 

(ζ>0.8) responds sluggishly. Moreover, under-damped systems (0 < ζ < 1) with ζ 

between 0.5 and 0.8 gets close to the final value more rapidly than critically damped 

(ζ = 1) or over-damped systems (ζ > 1) [92]. So the calculated damping ratio can not 

be selected for missile longitudinal dynamics. 

As a result, we consider the 2% design criteria for settling time, its minimum occurs 

at ζ value around 0.76 [92]. Then desired damping ratio (ζAF) is selected as 0.75 

instead of its current value of 0.06. 
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Since the actual natural frequency is generally not attainable, the error dynamics is 

considered slower than the missile dynamics. So they are selected to satisfy the 

following criterion: 

AFerrAFerrn andww ζζ ≈<       (*) 

To sum up, by using relation (*), equation (3.13) and (3.15), the parameters related 

to error dynamics are tabulated as: 

 

Table 3-2 Missile Parameters Related to Longitudinal Error Dynamics 

 

Airframe Natural Frequency (wAF) 5.21 rad/sec 

Airframe Damping Ratio (ζAF) 0.75 

Error Dynamics Natural Frequency 

( errnw ) 
4.50 rad/sec 

Error Dynamics Damping Ratio (ζerr) 0.75 

Error Dynamics Settling Time (ts) 1.19 sec 

Error Dynamics Maximum % Overshoot 2.84 

Error Dynamics Rise Time (tr) 0.82 sec 

errnerr wKd ⋅⋅= ζ2  6.75 

2

errnwKp =  20.25 

 
 
 

Next, making the command filter response slower compared to error dynamics, 

command filter transient response characteristics can be determined according to 

the following relation: 
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errCFnCF andww
err

ζζ ≈<        (**) 

To sum up, by using relations (**), equation (3.15), the parameters related to 

command filter are tabulated as: 

 

Table 3-3 Longitudinal Command Filter Parameters 

 

Natural Frequency (wCF) 3.0 rad/sec2 

Damping Ratio (ζCF) 0.75 

Settling Time (ts) 1.78 sec 

Maximum % Overshoot 2.84 

Rise Time (tr) 1.22 sec 
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If the values are substituted into equation (3.18), the command filter transfer 

function is obtained as: 
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The same methodology will also be used for directional autopilot. 

3.2.3 Outer Loop Design 
 
 
 
When designing control systems, the timescale separation between the inner-loop 

attitude control and outer-loop altitude control systems is commonly used. It allows 
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the inner loop and outer loop to be designed separately but requires the outer-loop 

bandwidth to be lower than that of the inner loop [3]. 

The outer loop altitude-hold is a simple Proportional Integral Derivative (PID) 

controller by taking the time scale separation into account. It takes the commanded 

reference altitude (hcom) and the current missile altitude (h) as an input and outputs 

the pitch angle (θ), required to maintain or reach the commanded reference altitude. 

Proportional control is used for quick response, integral control is used for 

eliminating steady state error and derivative control is used for damping oscillations 

in this autopilot architecture. 

The gains Kp_h (Proportional Gain), Ki_h (Integral Gain) and Kd_h (Derivative 

Gain) are selected and tuned by observing step response characteristics generated 

through the 5-DOF simulation [89], [92]. Based on the planned altitude trajectory 

the missile climbs to 400 meters initially, then follows different altitudes and 

descends to cruise altitude during the simulation studies. Therefore, the step altitude 

command will be selected as 400 meters for tuning gains. Although this value is an 

excessive value for the corrections against disturbances, such a value may be 

required while accomplishing the pre-programmed cruise altitude profile [1]. The 

graphs related to gain selection and explanations for PID controller design are given 

in Appendix C. 

 

Table 3-4 PID GAINS 

 

Kp_h Ki_h Kd_h 
0.005 0.0005 0.01 

 
 
 

3.3 Online Learning Neural Network Architecture 
 
 
 
Online Learning NNs (i.e. learning-while-controlling [38]) implies that the NN has 

the capability of changing in real time the values of the numerical components that 
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make up its architecture [2]. In this section, two types of online neural network are 

explained. These networks can consist of almost any feed-forward structure that is 

linear in its parameters or nonlinearly parameterized. Linearly parameterized neural 

networks are also called Sigma-Pi Networks and nonlinearly parameterized neural 

networks are defined as Single Hidden Layer Networks. Each approach has been 

applied in designing the inner loop attitude controller of the missile altitude hold 

autopilot for compensating the inversion error described in Section 3.2.1. Numerical 

results from nonlinear 5-DOF simulation studies will be presented and compared 

for each network in Chapter 6. 

3.3.1 Linear In the Parameters Sigma-Pi Neural Networks 
 
 
 
The Linear in the Parameters Sigma-Pi Neural Networks (LIP NNs) have one 

output layer and no hidden layers [94] and are universal approximations [95]. In this 

architecture, it is assumed that the inversion error is decoupled (i.e. pitch and yaw 

motions are decoupled) for reducing the size and complexity of Neural Networks. 

The dimension of the NN increases exponentially with the number of network 

inputs [13]. Therefore for the ANN in the longitudinal channel, its inputs are only 

the longitudinal states, the longitudinal pseudo control and bias terms. If there was 

coupling, the NN theoretically would need feedback from the directional state to be 

able to approximate the modeling error. In that case, coupling terms have to be used 

as NN inputs. Figure 3.3 shows a general architecture of LIP NN [25], [39]. 
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Figure 3.3 LIP NN Structure 
 
 
 

NN weights Wi’s constitute a vector of neural network weights, shown in Figure 

3.3. These variable network weights can be updated by learning’ laws derived from 

Lyapunov stability theorem [25]. Here neuron interactions are provided using 

Kronecker products [19]. The basis functions Vi are constructed by grouping 

normalized inputs into three categories similarly described in [5], [13], [25], [36], 

[38], and [39]. 

Modeling errors may mainly come from the inconsistencies between the actual 

highly nonlinear missile dynamics and its mathematical model. Moreover only 

linearized model is used in the inversion. Controllers are designed for a certain 

altitude, dynamic pressure etc. They all represent only one flight condition. On the 

other hand, the equations of motion can be linearized for all possible flight 

conditions and inverted. In other words, A1 and A2 matrices are scheduled, but this 

is a long design process. Artificial NNs, which have the ability to approximate 

general continuous nonlinear functions, are ideal for canceling these model errors 
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[3], [5], [13]. NN inputs are selected of parameters needed to approximate the 

model uncertainty. 

The first group of network inputs is used to compansate for the model inversion 

error due to changes in airspeed, since the stability and control derivatives are 

strongly dependent on dynamic pressure. 

[ ]2
2 missilemissile VVBiasC =        (3.20) 

The second group consists of normalized longitudinal state variables, the pseudo 

control and a bias term. Because the plant is nonlinear and uncertain in the control 

similarly in the states, the inversion error is a function of both state and pseudo 

control. 

[ ]θθ UqvuBiasC =2       (3.21) 

Since the input to the LIP NN includes the pseudo control signal Uθ and it is a 

function of the NN output (Uad_θ), therefore a fixed-point assumption on Uad_θ is 

needed [5], [25], [38], [39]. Uθ is an input to the NN through a squashing function 

(Figure 3.1). Squashing functions guarantee the existence of at least one fixed point 

solution and boundedness of the input to error dynamics (equation (3.28)) [5], [25], 

[38], [39]. Squashing function for longitudinal NN is: 
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The third group is used to approximate effects of transformation between the body 

frame and the inertial frame. This is related to changes in pitch attitude. 

[ ]θBiasC =2         (3.23) 

It should be noted that for all groups bias values are selected according to scaled 

(normalized) values of the inputs. 
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Finally, the vectors of basis functions are composed of products of the elements 

belonging to each group of input (C1, C2, and C3) and are related to each other via 

the Kronecker product. 

)),,(( 321 CCCkronkron=β        (3.24) 

where 

[ ]T
nm yxyxyxyxkron K2111),( =      (3.25) 

The relationship between the inputs and outputs of the longitudinal network is 

established by the following equation: 

( )biasUXWU T
AD ,,_ θθ β⋅=        (3.26) 

The model inversion error can be accurately produced at the network output using 

equation (3.26). In this equation, W denotes the vector of current variable network 

weights, β is a vector of network basis functions (kronecker product of inputs), and 

X  represents the normalized states. Adaptation of weights in the neural network is 

derived using Lyapunov’s theory [13], [25], [76]. The weight update rule is found 

as: 

WbPbPW

TT

learning ⋅⋅⋅







⋅−⋅⋅⋅








⋅Γ−=

θ
θµβ

θ
θ

&&
& ~

~

~

~
    (3.27) 

This law guarantees bounded weights and errors. The first term is derived from 

Lyapunov stability approach, and the second term assures the boundedness of the 

NN weights. The second term provides additional robustness by introducing 

damping [25]. P and b parameters are derived from equation (3.28) which 

represents error dynamics. 
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As a result, b is defined as: 
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P is calculated using the following Lyapunov function [4]. Lyapunov equation is 

defined as: 
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Q is a positive definite matrix (i.e. identity matrix). From Lyapunov stability 

analysis of the error dynamics (equation (3.30)), P is derived as: 
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The details of the derivation are explained in [5] and [25]. 

The selection of acceptable values for the fixed parameters in the NN such as 

Γlearning (learning rate) and µ (modification term) required trial-and-error simulation 

studies because these parameters can affect the missile response. Both of these 

parameters must be selected as positive. The details of this type of neural network 

structure are explained in [4], [9] and [48] 

Identical construction of the LIP NN applies to the directional autopilot in Chapter 

4. 

3.3.2 Single Hidden Layer Neural Networks 
 
 
 
The Single Hidden Layer Neural Networks (SHL NNs) are an extension of the 

architecture described in the previous section. The adaptation law in this 
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architecture is also designed based on a Lyapunov stability analysis of the error 

signals [96]. 

SHL NNs are also universal approximators [65], [97]. Hence, given a sufficient 

number of hidden layer neurons and appropriate inputs, it is possible to train the 

network online to cancel model error [13], [23], [98]. Figure 3.4 shows the structure 

of a generic SHL NN. 

 
 
 

 
 

Figure 3.4 SHL NN Structure 
 
 
 

It has an output Uad_θ which is adapted to cancel the model inversion error. Uad_θ 

can be expressed as: 
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Here, N1 is the number of inputs; N2 is the number of hidden layer neurons and it 

has one output. θw,1 is the outer layer threshold, bw is the outer layer bias, Wj,1 

represents the outer layer weights. θv,j is the inner layer threshold, bv is the inner 

layer bias, Vi,j denotes the inner layer weights. Xi represents the neural network 

normalized inputs. The scalar function σj is hidden layer activation function. The 

form of the hidden-layer activation function is a design parameter; this function is 

selected as sigmoidal activation function: 

( )
jj zajj

e
z ⋅−+

=
1

1σ         (3.33) 

The constant aj is a distinct value for each hidden-layer neuron (j=1, 2…, N2) 

which is so called activation potential. zj is the input to the jth hidden layer neuron. 

The relation between input and output of the SHL NN can be established in matrix 

form as: 

( ) ( )XVWXVWUad TTσθ =,,_       (3.34) 

In this architecture, the inputs to the network are selected as: 
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The number of inputs are equal to 11 (i.e. N1=11) and bv ≥ 0. ║Z║F is the frobenius 

norm of the Z matrix that contains all tunable weight parameters. 
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In this architecture the following definitions are used which were described in this 

section: 
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where N2 is selected as 18 and bw ≥ 0. There is one hidden layer which includes 18 

neurons. 
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Since there is only one output, N3 is equal to 1. 

The adaptation law of the NN weights are found by: 
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where learningΓ  and learningγ  are learning rates of the inner and outer layer NNs 

respectively. σ ′  is a matrix that contains derivatives of the sigmoid vector 

described in equation (3.38). 
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Details on the NN architecture and derivation of adaptation rule can be found in 

[97], [99], [100], [101], and [102]. 

The performance and the acceptability of SHL NN Controller are related to the 

performances of its training algorithm [3]. Therefore the selection of acceptable 

values for learningΓ , learningγ  (learning rates) and µ (modification term) in adaptation 

rule are tuned via trial-and-error simulation studies. The performance of missile 

longitudinal controller with these neural network architectures will be given in 

Chapter 6. 

Similar architecture of this network is also applied to the directional autopilot. 
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CHAPTER 4 
 
 
 

ADAPTIVE NEURAL NETW ORK BASED DIRECTIONAL 
AUTOPILOT  

 
 
 
 

In this chapter, the directional autopilot with NN architecture is explained. The 

ANN based model inversion is now applied on the missile directional control. It is 

carried out by using a yaw angle for the control loop. Yaw angle is calculated by 

integrating yaw rate mapping from a LOS rate on the yaw axis that comes from 

LOS guidance law to rate command [87]. 

The target used in this case study can only move in the directional plane (x-y plane). 

Therefore, the cruise missile is designed to fly on the x-y plane with respect to the 

target trajectories (terminal phase) or planned waypoints (Mid-Course Phase). This 

operation can be performed by using a directional autopilot. This autopilot allows 

the missile to turn to a guided heading and to hold its position at that heading. It 

uses directional guidance command for the required movement of the cruise missile. 

4.1 Neural Network Based Inversion Architecture 
 
 
 
This section includes the architecture of the ANN implemented dynamic model 

inversion on the directional autopilot application. It is based on neural network 

applications similar to the preceding chapter. This architecture is shown in Figure 

4.1. The architecture is based on an ACAH for directional loop which is proposed in 

[87]. Command filter and PD error dynamics are also designed with the 

consideration of the timescale separation. 
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Figure 4.1 Directional Autopilot  
 
 
 

Equation (3.4) is also used for the directional autopilot in order to derive the error 

dynamics. From the directional autopilot architecture in Figure 4.1, the pseudo 

control, Uψ is found by the following equation: 

ψψψψ __ _ UadUpdU fcom −+= &&       (4.1) 

Uad_ψ is the adaptive signal that represents the neural network output on the yaw 

plane. The proportional plus derivative contribution is shown by Upd_ψ, and 

fcom _ψ&&  is the filtered Euler angular acceleration command. 

According to attitude command attitude hold implementation, Uψ is equivalent to 

the desired Euler angular acceleration for yaw. However we need the body angular 

accelerations in equation (3.4), so it will need to be transformed to the body axes 

reference frame [25]. The transformation has been made in equation (3.6). 
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The proportional plus derivative dynamics for the yaw plane is obtained by: 

( ) ( )ψψψψψ && −+−= fcomcom_f KdKpUpd_ _      (4.2) 

The gains Kp and Kd are used to define the error dynamics. These dynamics are 

designed similar to those of the longitudinal channel. The selection of this 

parameter has been explained in Section 4.1.1. 

The inversion error ψε  is defined in equation (3.9). So yaw angular acceleration is 

defined as: 

ψψ εψ += U&&          (4.3) 

Combining equation (4.1), (4.2), and (4.3) we obtain: 

( ) ( ) ( ) ψεψψψψψψψ −=−+−+− ____ UadKdKp fcomfcomfcom &&&&&&   (4.4) 

On the right hand side of equation (4.4), network compensation error is generated. 

In the ideal case, it is equal to 0. It is expected that ANN output cancels the model 

inversion error. If it occurs, consider the desired error dynamics (i.e. neural network 

output cancels the inversion error), equation (4.4) becomes: 

( ) ( ) ( ) 0___ =−+−+− desiredfcomdesiredfcomdesiredfcom KdKp ψψψψψψ &&&&&&  (4.5) 

Details of neural network architecture will be described in Section 4.2. 

4.1.1 Command Filter Design and Error Dynamics  
 
 
 
The command filter must be slower than the missile error dynamics on the yaw 

attitude control. Therefore, the design process is similar to those on the longitudinal 

channel. Firstly, the yaw attitude tracking error is defined as ψψψ −= com_f
~  and the 

Laplace transform is performed. 
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Then the transfer function from the inversion error compensation of yaw motion to 

yaw attitude error becomes: 
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where errnw denotes natural frequency, ζerr is damping ratio of the error dynamics. 

From equation (4.7), the relationship for error dynamics can be taken as an under-

damped second-order system similar to methodology described in Section 3.2.2. 

Using time scale separation, the command filter must have slower response than 

those of error dynamics. Finding the error dynamics of the missile, the natural 

frequency and damping ratio of the missile frame (AF) on directional plane must be 

found. According to [93], since the missile is symmetric in the x-z and x-y planes, 

the missile airframe natural frequency (wAF) and damping ratio (ζAF) for directional 

motion can be found as: 
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Aerodynamic parameters in the above equations are found using in the trim 

conditions. After finding missile airframe natural frequency for directional channel 

from equation (4.8) and damping ratio from equation (4.9), the error dynamics can 

be determined. 
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According to reasons similar to those described in Section 3.2.2, the calculated 

damping ratio can not be selected for missile directional dynamics. 

As a result, we consider the 2% design criteria for settling time similar to those for 

pitch attitude. Then the desired damping ratio (ζAF) is selected as 0.75 instead of 0.3. 

Since actual natural frequency is generally not attainable, the error dynamics is 

considered slower than the missile dynamics. It should be noted that it has similarity 

with longitudinal autopilot. So they are selected for obeying the following criterion 

(*): 

AFerrAFerrn andww ζζ ≈<       (*) 

To sum up, by using relation (*), equation (4.6) and (3.15), the parameters related to 

error dynamics are tabulated in Table 4-1. 

 

Table 4-1 Missile Parameters Related to Directional Error Dynamics 

 

Airframe Natural Frequency (wAF) 6.25 rad/sec 

Airframe Damping Ratio (ζAF) 0.75 

Error Dynamics Natural Frequency 

( errnw ) 
5.0 rad/sec 

Error Dynamics Damping Ratio (ζerr) 0.75 

Error Dynamics Settling Time (ts) 1.07 sec 

Error Dynamics Maximum % Overshoot 2.84 

Error Dynamics Rise Time (tr) 0.73 sec 

errnerr wKd ⋅⋅= ζ2  7.50 
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2

errnwKp =  25 

 
 
 

Next, making the command filter response slower compared to error dynamics, 

command filter transient response characteristics can be determined according to 

the relations (**): 

errCFnCF andww
err

ζζ ≈<        (**) 

To sum up, by using relations (**), equation (3.15), the parameters related to 

command filter are tabulated in Table 4-2. 

 

Table 4-2 Directional Command Filter Parameters 

 

Natural Frequency (wCF) 4.35 rad/sec2 

Damping Ratio (ζCF) 0.75 

Settling Time (ts) 1.23 sec 

Maximum % Overshoot 2.84 

Rise Time (tr) 0.84 sec 
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If the determined values are inserted in equation (4.10), the command filter transfer 

function is obtained as: 

( ) 9225.185250.6

9225.18

35.475.035.42

35.4
222
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sssscom

com_f

ψ
ψ

  (4.11) 
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4.2 Online Learning Neural Network Architecture 
 
 
 
The neural network design process in Section 3.3 is applied to the directional 

autopilot. Numerical results using the nonlinear 5-DOF simulation will also be 

presented and compared for each network in Chapter 6. 

4.2.1 Linear In the Parameters Sigma-Pi Neural Network 
 
 
 
Here neuron interactions are also provided using Kronecker products [19] and Wi’s 

constitute a vector of neural network weights. The basis functions Vi are 

constructed by grouping normalized inputs into three categories due to similar 

reasons that were described in Section 3.3.1. 

The first group is defined as: 

[ ]2
1 missilemissile VVBiasC =        (4.12) 

The second group consists of normalized directional and lateral state variables, the 

pseudo control and a bias term. 

[ ]ψψφ UrpvBiasC =2       (4.13) 

Similar to longitudinal NN, squashing function for directional NN used in this case 

study is: 

25.0
1

1
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
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+
= ×− ψUe

FunctionSquashing     (4.14) 

The third group is used to approximate effects of transformation between the body 

frame and the inertial frame by including changes in heading angle. 

[ ]ψBiasC =2         (4.15) 
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It should be noted that for all categories, bias values are selected according to scaled 

(normalized) values of the inputs. 

Finally, the vectors of basis functions are composed of all possible products of the 

elements belonging to each group of input (C1, C2, and C3) and are related to each 

other via the Kronecker product. 

)),,(( 321 CCCkronkron=β        (4.16) 

Similar to the longitudinal network, the relationship between the inputs and outputs 

of the directional network is established by the following equation: 

( )biasUXWU T
AD ,,_ ψψ β⋅=        (4.17) 

By equation (4.17), the model inversion error can be accurately produced at the 

network output. Adaptation of weights in the neural network is derived using 

Lyapunov theorem similar to that described in Chapter 3. The adaptation rule is 

formed as: 
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In Section 3.3.1, b was defined in equation (3.29) and P was defined in equation 

(3.31). Equation (4.19) represents the error dynamics. 
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The selection process of acceptable values for the fixed parameters in the 

directional neural network such as Γlearning (learning rate) and µ (modification term) 

are identical to those in Chapter 3. Detailed explanations are given in [4], [9] and 

[48]. 



 65 

4.2.2 Single Hidden Layer Neural Networks 
 
 
 
The architecture of this network is established similar to those described in Section 

3.3.2. 

It has an output Uad_ψ to eliminate model error in the directional channel. 
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jww XVbWbUad ψσψψ     (4.20) 

The scalar function σj is hidden layer activation function, selected identical to those 

in Section 3.3.2. 

The relation between input and output of the SHL NN can be established in matrix 

form as: 

( ) ( )XVWXVWUad TTσψ =,,_       (4.21) 

In this architecture, the inputs to the network are selected as: 

[ ] T

Ffcomfcomfcomv rvZUadbX ψψψψψψ _~~
___ &&&&=  (4.22) 

The number of inputs are equal to 10 (i.e. N1=10) and bv ≥ 0. ║Z║F is the frobenius 

norm of the Z matrix that contains all tunable weight parameters. In this 

architecture, the same definitions are used which were described in Section 3.3.2. 

Similar to longitudinal network, the adaptation law of the directional neural network 

weights are obtained as: 
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where learningΓ  and learningγ  are learning rates of the inner and outer layer neural 

networks respectively. learningΓ , learningγ  (learning rates) and µ (modification term) in 

adaptation rule are tuned via the same methodology described in Section 3.3.2.  

The performance of missile directional controller with these neural network 

architectures will be given in Chapter 6. 
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CHAPTER 5 
 
 
 

BACKGROUND LEARNING IMPLEMENTED NEURAL NETWORK 
ADAPTATION  

 
 
 
 

The approach defined in the preceding chapters use only the instantaneous states to 

tune the adaptive gains [14]. Hence, the error parameterization has no real long term 

memory. That is, the adaptive element rapidly forgets its adaptation profile when 

the system changes domain of the state space [74]. As a result, they can not show 

any improvement in performance when performing maneuvers that have been 

performed previously. 

In this chapter a new approach proposed in [14], [73], [74] is explained, known as 

Background Learning Neural Networks. This application can be separated into two: 

(1) Online Learning and (2) BL via recorded data. In other words, it combines 

distinct current online learning algorithms with a BL concept. 

5.1 Background Learning Implemented Neural Network Architecture 

 
 
 
In this method, recorded data is also used for learning. This increases available 

information for learning, thus give better results. It helps to overcome the ‘rank-1’ 

limitation (Section 5.1.1) and shows the properties of semi global learning [73]. 

Faster adaptation can be obtained for the variations in the flight dynamic regime. It 

provides the additional DOF to improve the control system performance when 

subsequently repeated commands are given [14]. Since neural networks weights 

will indicate quicker convergence to constant values, it can be concluded that the 

NN is able to adapt to the unknown model error faster when BL is used. 
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This approach has been applied in the longitudinal channel of the inner loop attitude 

controller of the altitude hold autopilot and also in the directional NN of the 

directional autopilot. Numerical results obtained from nonlinear 5-DOF simulation 

studies will be presented in Chapter 6 with the results compared with SHL NN 

architectures. 

5.1.1 Rank-1 Limitation 
 
 
 
Fact 1: A matrix of rank one has the simple form A=u.vT. Where A is (n x m) 

matrix, u is (n x 1) vector and v is (m x 1) vector. 

According to Fact 1, the rank of the NN weight dynamic is always at most 1. This 

is the case when only current data is used for NN training. Thus, Neural Network 

adaptation law can search its weights only along one direction in the underlying 

vector space at that instant [74]. It causes no performance improvement on the 

maneuvers that have been performed previously. Detailed explanation related to this 

topic can be found in [14], [73] and [74]. 

5.1.2 Combination of Online & Background Learning Law 
 
 
 
Johnson et al [73] explained methods for BL that use both recorded and current data 

concurrently. However, BL yields undesirable effects on the response of online 

learning in these methods. Chowdhary et al [74] proved the elimination of this 

problem by using orthogonal projection method. In this study, the method of 

orthogonal projection is used for BL law. Online learning part has SHL NN 

architecture, which was described in Sections 3.3.2 and 4.2.2. 

According to [74], the required conditions for no interaction between online and BL 

response can be expressed as: 

0=σT
BW&          (5.1) 
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0=Γ XV learning
T

B
&         (5.2) 

In the above equation, the subscript B denotes the BL law. From equation (5.1) and 

(5.2), the orthogonal projection of the learning law for the W and the V matrix of 

the SHL NN can be found as: 
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In the above equation, the subscript O denotes the SHL NN learning law.  

BL trains the SHL NN using both recorded data and current data concurrently to 

improve global learning behaviour of the NN. It also ensures long term adaptation. 

In this method, it is provided by current data and the data recorded that satisfies the 

selection criteria. Total BL can be found by summing the individual contributions 

of this recorded data point adaptation and then taking the orthogonal projection of 

total contribution into the null space of the online learning. 

The combined online and BL law can be defined as: 
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If equation (3.41) and (3.42) are inserted into equation (5.5) and (5.6) respectively, 

the adaptation of the combined online and BL laws are obtained as follows: 
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Here, 
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 is residual signal for longitudinal channel 
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~
 is residual signal for directional channel 

θθ Ui −=∆ &&   is stored estimate of the model error for longitudinal channel 

ψψ Ui −=∆ &&   is stored estimate of the model error for directional channel 

When BL is on, the difference between the stored estimate of model error and the 

current estimate of model error reduces with time. The above equations indicate that 

the NN is concurrently adapting to various data points, exhibiting semi global 

learning [14]. 

Detailed description and proof of this NN architecture can be found in [14], [73] 

and [74]. 
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5.1.3 Selection of Data Points for Background Learning 
 
 
 
BL selection points are part of the design of the combined online and BL NN 

architecture [74]. In this study, the data point selection criterion is chosen as: 

( ) ( )
XT

p
T

p

XX

XXXX
ε>

−⋅−
       (5.9) 

In the above criterion, the subscript p denotes the index of the last data point 

recorded. It implies that new points are stored whenever the difference between the 

current input and the last recorded data point is greater than some specified amount 

[73]. In other words, the data candidates for storage must be sufficiently different 

from the last data point recorded [74]. Detailed explanation on some methods of 

selecting data points can be found in [73]. 
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CHAPTER 6 
 
 
 

SIMULATION RESULTS 
 
 
 
 

In this chapter, we will examine the performances of the adaptive controllers using 

the nonlinear 5-DOF missile simulation code. ACAH is desired in both autopilots. 

The results of NN architectures on missile autopilots are included here. For these 

purposes, NN algorithms have been tested in two different scenarios in order to 

evaluate the performance of the implemented NN algorithm. The results are 

obtained by modeling and inverting the missile about the trim condition, the 

parameters of which are given in Table 3-1. 

6.1 Comparison of LIP NN & SHL NN 
 
 
 
In the first simulation scenario, the objective is to present comparisons of the results 

of the linearized model inversion controller without NN, and online learning neural 

networks (LIP NN and SHL NN) applied adaptive controllers for longitudinal and 

directional channel. The capability of adapting to errors caused by the linearized 

inverted model is demonstrated. The inversion error compensation is evaluated by 

comparison of the LIP NN and SHL NN results. 

The results obtained for three different controllers are shown in Figures from 6.2 to 

6.16. The missile is commanded to its first way point on the x-y plane and certain 

altitude on the –z direction, then required heading command is calculated on x-y 

plane and altitude command is generated according to the defined altitude profile. 

Required pitch angle command for the inner loop is calculated from the altitude 

error that is generated from the outer loop. The graphs given below represent the 
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comparison of the commanded input and output that the missile performs for three 

different controllers. 

The simulation trajectory is shown in Figure 6.1. It is a scenario where the missile 

reaches an altitude following the terrain and finally hitting a moving target. 
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Figure 6.1 Missile and Target Trajectory 
 
 
 

6.1.1 Pitch Angle Response 
 
 
 

Figure 6.2 shows the missile pitch angle (θmissile) response with the associated 

command (θcom_f) and Figure 6.3 shows the error (θerr). It is observed that slightly 

better performance is achieved when the SHL NN based adaptive controller is used. 

On-line learning NNs improved the performance of the linear inverted controller. 
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Figure 6.2 Pitch Angle (θmissile) Response Comparison 
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Figure 6.3 Pitch Angle Error (θerr) Comparison 



 

 75 

6.1.2 Yaw Angle Response 
 
 
 

In Figure 6.4 and Figure 6.5 the performance of the controllers can be observed for 

the yaw angle response. It is observed that the SHL NN eliminates the model 

inversion error better than the LIP NN. 
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Figure 6.4 Yaw Angle (ψ) Response Comparison 
 
 
 

In Figure 6.5, error compensation for yaw channel is demonstrated and both NN 

performances are acceptable. Since model tracking error is high for yaw channel 

inversion controller, using NN cancels these errors. 
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Figure 6.5 Yaw Angle Error (ψerr) Comparison  
 
 
 

6.1.3 Altitude Response 
 
 
 

In Figure 6.6 and Figure 6.7, the altitude hold controller performance is shown for 

cases with LIP NN, SHL NN and without a neural network. The performance of the 

missile with SHL NN is seen to be better. Especially, examining the results of 

Figure 6.7, the error profile for SHL NN between the filtered command and the 

missile altitude is preferable. Examining Figure 6.6, the missile could not follow the 

desired trajectory, since nonlinear inverted controllers without NN commanded high 

deflection angles which are out of range on both channels and they could not be 

performed. Another advantage of the NN implementation to nonlinear controller is 

seen here, NN eliminates input saturations. As a result, the missile could follow the 

planned altitude and the mission was accomplished. 
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Figure 6.6 Altitudes (h) Following Comparison  
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Figure 6.7 Altitude Error ( herr) Comparisons 
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6.1.4 Missile Mach number 
 
 
 
Figure 6.8 shows that the Missile Mach number (M) is controlled by the Thrust 

Model described in Section 2.5 and held constant around the cruise velocity 

corresponding to M = 0.8. From this figure, it is seen that the system follows the M 

command better when a SHL NN is used. 
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Figure 6.8 Missile Mach number 
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6.1.5 Adaptation Response 
 
 
 

From Figure 6.9 to 6.12, the adaptation performance of the two different ANNs are 

shown. Adaptation signals generated from the SHL NN have lower bounds than 

those of the LIP NN. In addition, if Figure 6.11 and Figure 6.12 are compared, it 

can be observed that the SHL NN weights on the pitch (longitudinal) channel have 

faster convergence properties, and adaptation for yaw (directional) channel is faster. 

 
 
 

0 50 100 150 200 250
-200

-150

-100

-50

0

50

100

150
Teta Adaptation Comparison

time [sec]

T
e

ta
 a

d
a

pt
at

io
n

 [d
e

g
/s

e
c2 ]

 

 

Teta adaptation with LIP NN
Teta adaptation with SHL NN

 
 

Figure 6.9 Adaptation signal in pitch channel (Uad_θ) 
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Figure 6.10 Adaptation signal in yaw channel (Uad_ψ) 
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Figure 6.11 LIP NN Weights (W) in pitch and yaw channel 
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Figure 6.12 SHL NN Outer Layer Weights (W) in pitch and yaw channel 
 
 
 

6.1.6 Actuator Deflections 
 
 
 

In flight controller design, the measure of the autopilot command and rate is 

important and they must have limits in order to avoid from actuator saturations and 

flight instability. Although the actuator dynamics were not modelled, the deflection 

and deflection rates are limited in the simulation in order to see the relation between 

the behaviour of the commands and the missile response. From Figure 6.12 to 6.16, 

it is observed that the actuator deflection angle and rate commands for the required 

altitude and guided heading angle command are suitable for a typical actuator 

system when NN applied to nonlinear controller. If Figure 6.13 and 6.14 are 

observed, it can be seen that rudder and elevator deflection angle was out of range 

and in Figure 6.15 and 6.16; elevator and rudder deflection rates were too high and 

unstable when NN was not used, and this condition caused sudden changes in the 
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motion of the missile and so caused instability. On the other hand, the system 

gained stable characteristics by using NN. 

 
 
 

0 50 100 150 200 250
-5

-4

-3

-2

-1

0

1

2

3

4

5
Elevator Deflections Comparison

time [sec]

e
le

va
to

r 
de

fle
ct

io
n 

[d
e

g]

 

 

elevator with LIP NN
elevator with SHL NN
elevator without NN

 
 

Figure 6.13 Elevator Deflections with Different Controller 
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Figure 6.14 Rudder Deflections with Different Controller 
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Figure 6.15 Elevator Deflections Rate with Different Controller 
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Figure 6.16 Rudder Deflections Rate with Different Controller 
 
 
 

6.2 Comparison of SHL NN & BL implemented SHL NN 
 
 
 
In the second scenario, the target of interest is to present comparisons of the results 

of the linearized model inversion controller without NN, on-line learning SHL NN 

and BL implemented SHL NN applied adaptive controllers for longitudinal (pitch) 

and directional (yaw) channels. Using NN for the pitch and yaw channels eliminate 

the inversion errors. In addition, the results show that background learning 

implementation enhances the performance of the adaptive controller when the 

missile performs a maneuver that has been recorded in the past. BL implementation 

to an online network is described in Chapter 5. 

The ability of the algorithms is shown from Figure 6.18 to 6.34. The missile is 

commanded by a sinusoidal heading angle input on the x-y plane whereas its 

movement is determined by sinusoidal altitude input on the x–z plane. Sinusoidal 



 

 85 

inputs are given to the missile autopilots; this type of maneuver is mostly difficult to 

perform by a missile. On the other hand, the aim of selecting such a scenario is to 

test the ability and observe the performance of the controllers when it encounters a 

repeated maneuver. Required pitch angle command for the inner loop is calculated 

from the altitude error that is generated from the outer loop. 

The missile trajectory is illustrated in Figure 6.17. It is a scenario where the missile 

performs a repeated maneuver on the x-y plane and x-z plane. 
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Figure 6.17 Missile Trajectory 
 
 
 

6.2.1 Pitch Angle Response 
 
 
 

Figure 6.18 shows the missile pitch angle (θmissile) response with the associated 

command (θcom_f) and Figure 6.19 shows the error (θerr). According to these results, 

on-line learning NNs improved the performance of linear inverted controller. It is 
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observed that better performance was achieved when the BL implemented SHL NN 

based adaptive controller was used. Background learning addition to on-line 

learning SHL NN improved the error compensation. The ability of the BL 

implemented SHL NN adaptive controller under a complex longitudinal missile 

motion showed better results. By recording past data and using those for NNs 

weight adaptation process, it is seen that the controller performance improves and 

exhibits long term learning. 
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Figure 6.18 Pitch Angle (θmissile) Response Comparison 
 
 



 

 87 

 

0 20 40 60 80 100 120 140 160 180
-25

-20

-15

-10

-5

0

5

10
Teta Error Comparison

time [sec]

T
et

a 
e

rr
o

r [
de

g
]

 

 

Teta error with SHL NN
Teta error with BL+SHL NN
Teta error without NN

50 100 150

-3

-2

-1

0

1

2

 

 

Teta error with SHL NN
Teta error with BL+SHL NN
Teta error without NN

 
 

Figure 6.19 Pitch Angle (θerr) Error Comparison 
 
 
 

6.2.2 Yaw Angle Response 
 
 
 

Plots in Figure 6.20 and Figure 6.21 present the performances of the controllers for 

yaw angle response. It is concluded that the BL implemented SHL NN eliminates 

the model inversion error better than the SHL NN for heading control. Hence BL 

augmentation provides long term memory and shows improvement in performance 

of the controller when performing maneuvers that have been performed previously. 
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Figure 6.20 Yaw Angle (ψmissile) Response Comparison 
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Figure 6.21 Yaw Angle (ψerr) Error Comparison 
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6.2.3 Altitude Response 
 
 
 

In Figure 6.22 and Figure 6.23, the altitude hold controller performance of the 

missile is shown for cases with SHL NN, BL implemented SHL NN and without a 

neural network. Especially, upon examining the results on Figure 6.23, the error 

profile for both NNs between the filtered command and the missile altitude has 

stable oscillation characteristics when sinusoidal input is commanded for both 

controls. Since classical gain control is applied to the outer loop of altitude 

autopilots, the improvement is not observed on error profile. If NN application was 

applied to the outer loop of the autopilot, the altitude response might improve. 
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Figure 6.22 Altitudes (h) Following Comparison 
 
 



 

 90 

 

0 20 40 60 80 100 120 140 160 180

-30

-20

-10

0

10

20

30

40

Altitude Error Comparison

time [sec]

A
lti

tu
de

 e
rr

o
r 

[m
]

 

 

Altitude error with SHL NN
Altitude error with BL+SHL NN
Altitude error without NN

 
 

Figure 6.23 Altitude Error (herr) Comparisons 
 
 
 

6.2.4 Missile Mach number 
 
 
 
Figure 6.24 indicates that as time proceeds, Mach varies within a range between 

0.75 and 0.85. Missile Mach number (M) is also controlled to hold cruise velocity 

around 0.8 M. The control algorithm varies M related to the altitude change. From 

this figure, it is concluded that M variation is satisfactory and similar to each other 

as expected for all controllers. 
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Figure 6.24 Missile Mach number 
 
 
 

6.2.5 Adaptation Response 
 
 
 

From Figure 6.25 to Figure 6.30, adaptation performance of the two different ANNs 

are shown. If BL augmented and without hidden (V) and outer (W) layer weights 

graphs are compared, it can be observed that the BL implementation provides faster 

convergence properties and long term adaptation of weights on both channels due to 

retaining the adaptation in the history. As a result, the adaptation signal generated 

from BL augmentation demonstrates sudden changes for yaw channel in Figure 

6.26 to cancel unknown model errors without affecting the online adaptation. In 

addition, BL algorithms overcome the rank-1 limitation of weights. This allows the 

learning law to search for the ideal NN weights along any direction in the whole 

parameter space for various flight conditions which can be seen in Figure 6.28 and 

6.30. 
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Figure 6.25 Adaptation signal in pitch channel (Uad_θ) 
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Figure 6.26 Adaptation signal in yaw channel (Uad_ψ) 
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Figure 6.27 SHL NN Weights (W) in longitudinal and directional channel  
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Figure 6.28 BL NN Weights (W) in longitudinal and directional channel 



 

 94 

 

0 50 100 150 200
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
SHL NN Hidden Layer Weights on pitch 

time [sec]

V
 te

ta

 

 

V teta

0 50 100 150 200
-1

-0.5

0

0.5

1

1.5

2
SHL NN Hidden Layer Weights on yaw 

time [sec]
V

 p
si

 

 

V psi

 
 

Figure 6.29 SHL NN Weights (V) in longitudinal and directional channel 
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Figure 6.30 BL NN Weights (V) in longitudinal and directional channel 
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6.2.6 Actuator Deflections 
 
 
 

The measure of the autopilot command and rate is important. Although the actuator 

dynamics were not modelled, by observing the graphs from Figure 6.31 to 6.34, the 

relation between the behaviour of the commands and the missile response can be 

realized. In Figures 6.31 and 6.32, it is observed that the actuator deflection 

responses of both controllers for the sinusoidal altitude and heading angle command 

are mostly suitable for a typical actuator system. However, looking at the response 

of BL implemented SHL NN controller, deflection rate values are high. The Pseudo 

Control Hedging could be used to eliminate this problem of the controller. 
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Figure 6.31 Elevator Deflections with Different Controller 
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Figure 6.32 Rudder Deflections with Different Controller 
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Figure 6.33 Elevator Deflections Rate with Different Controller 
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Figure 6.34 Rudder Deflections Rate with Different Controller 
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CHAPTER 7 
 
 
 

CONCLUSION 
 
 
 
 

This thesis presents the design and evaluation of missile autopilots using different 

neural networks structures and demonstrates the feasibility of applying these 

approaches to missile controller design. Various NN based adaptive controllers are 

studied on generic cruise missile autopilots. The architecture of the autopilots is 

based on feedback linearization (i.e. model inversion). System modeling 

uncertainties on missile dynamics result in control tracking errors due to 

approximate model inversion. NN adaptation attempts to cancel the inversion 

errors. 

LIP NN, SHL NN, and BL implemented SHL NN architectures are applied to 

missile altitude hold and directional autopilots to cancel these errors by observing 

the tracking error between the commanded input to the missile and missile 

response. LIP NN and SHL NN uses only the current states and tracking errors to 

tune the adaptive gains, on the other hand BL implemented SHL NN uses recursive 

error based NN training by both the instantaneous and recorded states. To examine 

the NN effectiveness on inversion errors, simulations have been performed, but two 

of them have been chosen, which are related to the scope of this thesis. According 

to results obtained from nonlinear 5-DOF simulation studies, implemented NN 

algorithms have become successful on high subsonic cruise missile autopilots. From 

the first scenario, it is observed that SHL NN with an arbitrary number of neurons is 

better to cancel the errors than a LIP NN applied one. These results do not 

contradict with the results in [54] and [55]. In the second simulation scenario, the 

improvement of SHL NN implementation with aiding background learning 
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algorithm in its weight adaptation process has been demonstrated. The resulting BL 

adaptation retains the important information in the past which increases the rank of 

the NN training law (i.e searching NN weights more than one direction) and 

improves the performance of the control system by adding DOF. Moreover, BL 

algorithm provides concurrent adaptation to various data points; therefore BL 

implemented SHL NN exhibits semi global learning. Consequently, missile 

controller performance is improved when the missile performs a maneuver that is 

encountered in the history of the flight. 

It can be seen that ANN controllers can accomplish appropriate compensation of 

modeling error in missile control. The differences in the responses of controller 

performances with and without these networks show that using ANN in nonlinear 

controllers improves performance. The availability of efficient and fast learning 

algorithms such as BL algorithm improves the NN performance. This design 

process avoids the need for pre-computation, storing and interpolation between a 

large numbers of feedback gains of a typical missile autopilot and compensates for 

nonlinearities and model uncertainties. In other words, these controllers help 

avoiding the time-consuming and tedious gain scheduling process. Especially, this 

control method can be beneficial for missiles with large flight envelopes, since the 

conventional gain scheduling techniques ultimately increases design time and cost. 

The following recommendations can be given for future research on this topic: 

• The degree of freedom of the flight simulation model can be increased. (i.e 

roll motion and roll autopilot can be added to the simulation) 

• Some error modeling can be performed for missile sensors. 

• The seeker can be modeled. 

• Earth's curvature and rotation can be modeled. In that case, flight line will 

be always parallel to the earth surface. Related centrifugal and Coriolis 

accelerations due to Earth rotation must be taken into account in the 

equations of motion with respect to inertial reference frame. 
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• Atmospheric disturbances can be modeled. 

• A wider research can be performed for alternative guidance algorithms. 

• Although adaptive control can eliminate the need for accurate aerodynamic 

data, more accurate simulation which is verified with flight test results is 

needed to validate the design. 

• Actuator model can be added to the simulation and Pseudo Control Hedging 

(PCH) technique can be applied to the autopilot model. 
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APPENDIX A 
 
 
 

AERODYNAMIC CHARACTERISTICS OF THE MISSILE 
 
 
 
 

Longitudinal Plane 

The missile in this study has a plus tail configuration. Therefore, rudder deflection 

(δr) does not have any contribution on missile longitudinal plane. In other words, 

static pitch moment coefficient about the Cg (Cm) remains constant related to 

change in δr. This case is shown on the figure below: 
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Figure A.1 Cm variation with different tail deflections  
At M=0.8, α=5º, β=0.1º (trim values) 
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As can be seen from Figure A.2, Cm variation due to change in side slip angle (β) 

can be neglected. Thus, it does not depend on β. 
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Figure A.2 Cm variation with different alpha (α) and beta (β)  
At M=0.8, δe = -3º, δr = -0.5º (trim values) 

 
 
 

As a result, rudder deflection (δr) and side slip angle (β) does not have any 

contribution on missile longitudinal motion. Therefore, Cm can be expressed as: 

( )αδ ,,Μ= emm CC        (A-1) 

In addition, according to above figures, Cm variations with alpha (α) are negative 

( 0<
∂

∂
α

mC
). So it can be concluded that the missile has positive pitch stiffness 

properties on the longitudinal plane. 
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Figure A.3 Cm variation for different alpha (α) and Mach  
At β=0.06º, δe = -3º, δr = -0.5º (trim values) 
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Figure A.4 Cm variation for different alpha (α) and elevator deflections (δe) 
At β=0.1º, M=0.8, δr = -0.5º (trim values) 
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The variations of Cm at trim values according to Mach Number (M) and angle of 

attack (α) are shown on Figure A.3. From Figure A.4, it can be observed that Cm 

variations with elevator deflections (δe) are negative ( 0<
∂
∂

e

mC

δ
). So it can be 

concluded that the Missile DATCOM notation is true for the longitudinal plane. 
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Figure A.5 Cz variation for different deflections  
At M=0.8, α=5º, β=0.1º (trim values) 

 
 
 

It can be observed from Figure A.5 that static force coefficient along z-direction 

(Cz) remains constant due to change in rudder deflection (δr). 
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Figure A.6 Cz variation with different alpha (α) and beta (β)  

At M=0.8, δe = -3º, δr = -0.5º (trim values) 
 
 
 

From Figure A.6, variation of Cz due to change in side slip angle (β) can be ignored. 

As a result, Cz can be expressed as: 

( )αδ ,,Μ= ezz CC         (A-2) 

Directional Plane 

Elevator deflection (δe) does not have any contribution on missile directional 

motion. In other words, static yaw moment coefficient about the Cg (Cn) remains 

constant related to change in δe. This case is shown on the Figure A.7 next page: 
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Figure A.7 Cn variation with different deflections  
At M=0.8, α=5º, β=0.1º (trim values) 
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Figure A.8 Cn variation with different alpha (α) and beta (β)  
At M=0.8, δe = -3º, δr = -0.5º 
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As can be seen from Figure A.8, Cn does not change very much due to change in 

angle of attack (α). Thus, dependency on α for Cn is negligible. As a result, elevator 

deflection (δe) and angle of attack (α) does not have any contribution on missile 

directional motion. Therefore, Cn can be expressed as: 

 

( )Μ= ,, rnn CC δβ         (A-3) 

In addition, according to above figures, Cn variations with beta (β) are positive 

( 0>
∂

∂
β

nC
). So it can be concluded that the missile has positive yaw stability 

properties on the directional plane. 
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Figure A.9 Cn variation with different Mach (M) and beta (β)  
At α=5º, δe = -3º, δr = -0.5º (trim values)  

 
 
 

The variations of Cn at trim values according to Mach Number (M) and side slip 

angle (β) are shown on Figure A.9. 



 

 116 

 

-20

0

20

-15-10-5051015
-60

-40

-20

0

20

40

60

 

delta rudder

Cn variation with different delta rudder & beta

beta

 

C
n

Cn variation with beta =-15:15:3 & delta rudder =-15:15:3

 
 

Figure A.10 Cn variation with different beta (β) and rudder deflections (δr)  
At α=5º, M=0.8, δe = -3º (trim values) 

 
 
 

From Figure A.10, it can be observed that Cn variations with rudder deflections (δr) 

are positive ( 0>
∂
∂

r

nC

δ
). So it can be concluded that the Missile DATCOM notation 

is true for the directional plane. 
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Figure A.11 Cy variation for different deflections  
At M=0.8, α=5º, β=0.1º (trim values) 

 
 
 

It can be observed from Figure A.11 that static force coefficient along y-direction 

(Cy) remains constant due to change in elevator deflection (δe). 
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Figure A.12 Cy variation with different alpha (α) and beta (β)  
At M=0.8, δe = -3º, δr = -0.5º (trim values) 

 
 
 

From Figure A.12, variation of Cy due to change in angle of attack (α) can be 

ignored. As a result, Cy can be expressed as: 

( )Μ= ,, ryy CC δβ         (A-4) 
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APPENDIX B 
 
 
 

LINEARIZATION OF THE ROTATIONAL EQUATIONS OF 
MOTION 

 
 
 
 

Symbolic Linearization is made by “Jacobian” command in Mapple 10 Software 

program and the equations below are reached: 
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Elements of matrix A2 
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APPENDIX C 
 
 
 

PID CONTROLLER GAIN SELECTION 
 
 
 
 

The gains Kp_h, Ki_h and Kd_h are selected and tuned by giving 400 meters step 

altitude input to the 5-DOF simulation. The response graphs according to different 

gains and gain selection procedure are explained in this section. 

Firstly, the graphs are obtained for only different Kp_h. Then considering the fast 

response, oscillation and steady state error criteria, the appropriate Kp_h value is 

determined. The graphs are shown below. 
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Figure C.1 Altitude Response for Kp_h=0.002 and step input =400 m 
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Figure C.2 Altitude Response for Kp_h=0.003 and step input =400 m 
 
 
 

If Figure C.2 compared with Figure C.1, it is observed that the increase on Kp_h 

causes an increase on the oscillation and decrease on the steady state error. The 

following graphs also support this consideration. In addition, since the system 

response is converged to a constant altitude value, it can be realized that the system 

has stability for altitude control. 
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Figure C.3 Altitude Response for Kp_h=0.005 and step input =400 m 
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Figure C.4 Altitude Response for Kp_h=0.006 and step input =400 m 
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From Figure C.3 and C.4, larger Kp_h shows quick response and has much low 

steady state error, but higher gain results in higher oscillation. Therefore Kp_h must 

be chosen related to these conditions. The priority is given to fast response 

characteristics for altitude hold. As a result, Kp_h is selected as 0.005. 

Secondly, the steady state error has to be compensated. So we need an integral 

contribution to the controller. Ki_h is selected considering fast convergence to 

steady state value and low oscillation. 
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Figure C.5 Altitude Response for Kp_h=0.005 Ki_h=0.0002  
Step input =400 m 
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Figure C.6 Altitude Response for Kp_h=0.005 Ki_h=0.0005  
Step input =400 m 
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Figure C.7 Altitude Response for Kp_h=0.005 Ki_h=0.0008  
Step input =400 m 
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According to the above figures, lower Ki_h causes slow convergence to steady state 

value and higher Ki_h results in higher oscillation. Since the response can not avoid 

from oscillation, Ki_h is chosen as 0.0005 and the derivative contribution is needed 

for the controller. There must be a reason for this oscillation. If the vertical speed is 

not included in the autopilot architecture, the missile would tend towards pitching 

the nose too high and entering a stall or losing all lift. Therefore derivative 

controller is added for including the climb rate error as input to autopilot. By using 

climb rate error, the relation can be established between vertical speed of the missile 

and altitude response. 

Finally, derivative gain (Kd_h) is added and final configuration of the PID 

controller is obtained. The step input response for PID controller is shown on Figure 

C.8. Kd_h is selected as 0.01. As a result, this controller provides the system with 

quick response (Proportional gain), zero steady state error (Integral gain) and 

damped oscillations (Derivative gain). 

 
 
 

0 50 100 150 200 250
-50

0

50

100

150

200

250

300

350

400

450

Altitude Comparison Kp
h
=0.005 Ki

h
=0.0005 Kd

h
=0.01

time [sec]

h 
[m

]

 

 
hcom filtered

h missile

h-error

 
 

Figure C.8 Altitude Response for Kp_h=0.005 Ki_h=0.0005 
Kd_h= 0.01 Step input =400 m 


