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ABSTRACT

ADAPTIVE NEURAL NETWORK APPLICATIONS ON MISSILE
CONTROLLER DESIGN

Sairoglu, Serkan
M.Sc., Department of Aerospace Engineering

Supervisor  : Asst. Prof. Dilkay Yavrucuk

September 2009, 127 pages

In this thesis, adaptive neural network controli@rs designed for a high subsonic
cruise missile. Two autopilot designs are inclustethe study using adaptive neural
networks, namely an altitude hold autopilot desiyf@ the longitudinal channel
and a directional autopilot designed for headingtimd. Aerodynamic coefficients
are obtained using missile geometry; a 5-DegreEreédom (5-DOF) simulation
model is obtained, and linearized at a single tondition. An inverted model is
used in the controller. Adaptive Neural Network (RNcontrollers namely, model
inversion controllers with Sigma-Pi Neural Netwo8&ingle Hidden Layer Neural
Network and Background Learning implemented Singlidden Layer Neural
Network, are deployed to cancel the modeling eaod are applied for the
longitudinal and directional channels of the mesiThis approach simplifies the
autopilot designing process by combining a corgrolith model inversion
designed for a single flight condition with an amel learning neural network to

account for errors that are caused due to the appate inversion.

Simulations are performed both in the longitudisadi directional channels in order

to demonstrate the effectiveness of the implemerdentrol algorithms. The



advantages and drawbacks of the implemented neetabrk based controllers are
indicated.

Keywords: Model Inversion, Adaptive Controller, Audeve Neural Network,
Missile Controller, Missile Autopilot



0z

UYARLANAB iLiR YAPAY SINiR AGLARI UYGULAMALARIYLA
FUZE KONTROLCUSU TASARIMI

Sairoglu, Serkan
Yiuksek Lisans, Havacilik ve Uzay MuhendisBolumu

Tez Yoneticisi : Yar. Dog. Dilkay Yavrucuk

Eylul 2009, 127 sayfa

Bu tezde bir yuksek ses alti seyir flzesi icin Ugm@abilir yapay sinir &
kontrolclleri tasarlanmgtir. Bu ¢algmada uyarlanabilir yapay siniglar yéntemi
ile iki adet otopilot tasarimi iceriltir, yani digey kanal icin irtifa tutma otopilotu
tasarlanmy, yatay kanal kontroli icin istikamet otopilotu aasnmstir.
Aerodinamik katsayilar flize geometrisi kullanilaralde edilmg, 5 serbestlik
dereceli benzetim modeli elde edikmiek bir trim kgulu icin dgzrusallgtiriimistir.
Kontrolcu iginde bir tersleme modeli kullanilghr. Uyarlanabilir yapay sinir @a
kontrolculeri, yani Sigma-Pi yapay sinigiatek gizli katmanl yapay sinirgg arka
planda @renme uygulanmitek gizli katmanli yapay sinirga, modelleme hatasini
gidermek icin yerlgtirilmi s ve fuzenin dgey ve yatay kanallari icin uygulangtr.
Bu yaklgim tek bir ugy kosulunda tersleme kontrolciist tasarimi ile ¢cevrim igi
Ogrenen yapay sinir @ni birlestirip yaklasik terslemenin sebep olgu hatalari

hesaba katarak otopilot tasarim sirecini basitheektedir.

Uygulanan kontrol algoritmalarinin etkigini gostermek amaciyla gély ve yatay
kanallar icin benzetimler yapilgtir. Uygulanan yapay sinirga kontrolctlerinin

avantajlari ve eksikleri gosterilmektedir.

vi



Anahtar Kelimeler: Model Tersleme, Uyarlanabilir idmlcil, Uyarlanabilir Yapay

Sinir Agl, Fuze Kontrolclsu, Fuze Otopilotu
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CHAPTER 1

INTRODUCTION

1.1 Literature Survey and Motivation

Cruise missiles are defined as guided weapon systeioh use aerodynamic lift in
order to maintain a certain altitude profile and aontinuously powered by an air
breathing or solid rocket engine. The major advgegaof cruise missiles are their

long range, low detectability and high accuracy [1]

The design cost is crucial for this type of mumiso The higher survivability and
kill probability of cruise missiles justifies thesign cost; providing a challenge for

the missile system designers.

In this thesis, a high subsonic cruise missilessduas a case study. Modern high
subsonic cruise missiles are required to fly inidenenvelope with regard to speed,
altitude and angle of attack:)( This translates into nonlinear dynamics and
aerodynamics usually observed as high levels oémainty during modeling and

design [2].

Accurate system modeling is important in the degigase of a flight controller to
maintain stable flight and reasonable control. P&tac uncertainty (changing
mass, aerodynamic characteristics, variation inadyn pressure), un-modeled
dynamics, actuator displacement and rate saturatghassumptions made during
control design itself may mainly cause errors ostesy modeling [3]. In addition,

in high angle of attack, the dynamics of vehiclee ancertain and control



effectiveness is highly nonlinear. The highly naekr aerodynamics is not easily
understood and expensive to model, because aenoéyndata for vehicles
operating under such conditions is difficult to aht [4]. The use of nonlinear
actuation systems also increases the complexitigeotontrol design and modeling
[5]. Applied control laws are usually demonstratad simulations with nonlinear
aerodynamic and engine models, actuator modelspaisition and rate saturations,
and wind disturbance in order to approximate tla¢ case as much as possible [6].

However, these approximations are usually not ssfae

Several classical and modern control-law methodsafé applied for controller
design. They performed offline at a limited numbétinear Time Invariant (LTI)
models. These models represent different conditionthe flight envelope, The
time consuming and costly part of most of thesedicontroller designs is the need
to determine the controller parameters (i.e. ctletrgains) for all possible flight
conditions in system modeling. Long and tediouscesses for arranging gains in
the flight controller software (i.e. extensive gaicheduling computations [7]) are
time consuming [2]. If the missile has large flighihvelopes, the conventional
approaches with gain scheduling might require nféagkt conditions to be tested.
The number of required gains to be scheduled besamey large [8]. Moreover,
proper gain scheduling requires accurate aerodymanudels [9]. Therefore, it
requires expensive wind tunnel testing, necessargdmparing and verifying the
aerodynamic model of the missile mostly obtainedmfr Computational Fluid
Dynamics (CFD) tools or empirical formulae. On tb#er hand, these “Gain-
Scheduling” based control techniques may not cosgtenthese errors on system
modeling and give unexpected results for the initlesign. Since “Gain-
Scheduling” based control techniques do not glgldadive the desirable properties
exhibited locally by its constituent point designs,is not suitable for highly

nonlinear dynamics and different flight conditianghe flight envelope [2].

The modeling error between the mathematical modelthe real system may cause
performance degradation even if nonlinear contrsllare used [10]. Many
nonlinear control approaches tend to generate lacggators’ commands or rates

and have poor performance when actuators becomeatad; this is the result of



actuator nonlinearity. Parametric uncertainty dilsits the operational envelope of
the vehicle where nonlinear control designs arédvéln-modeled dynamics and
input saturation can also limit the achievable bedth of the system [11] and
cause robustness problems [10]. Due to these pnsblenonlinear control
approaches have not been commonly used on mig€jtemissile control design
has still been dominated by classical control tepes [2]. Although gain
scheduling has historically been proven to be ssfoéin a variety of applications,
future designs will need more advanced methods whkiglicitly account for the

nonlinearities of the system related to flight citiod [5].

Nevertheless, substantial advances in nonlineatraomave been recorded in the
1990’s, due to theoretical achievements and thdadoiity of powerful computer
hardware and user-friendly nonlinear simulationtwafe [6]. Dynamic model
inversion (a popular feedback linearization metfib2]) reduces design cost of a
flight control system in comparison to a gain sclleddesign [13], [14].
Schumacher and Khargonekar [15] analyzed theohgtidee stability of the flight
control system with the two-timescale separatisuagption and Lyapunov theory.
It refers to the inversion of the aerodynamic foocenoment equations of motion.
The primary difficulty associated with the use listtype of feedback linearization
is that a detailed and accurate knowledge of thelimmar plant dynamics is
required. Uncertain aerodynamic effects make tiffecdlt, because aerodynamic
coefficients are nonlinear functions of severalgtgl variables difficult to identify
accurately [10]. The techniqgue assumes exact kmigeleof aerodynamic
coefficients and aircraft configuration paramet@rg., reference wing area, mean
aerodynamic chord, mass, moment of inertia) in enére flight envelope. In
practice, this assumption is not valid. Since #pproach depends on state feedback
and dynamic model inversion and is sensitive to elind error [16], it will raise
issues related to robustness. Hence, further studyobustness is necessary. A
secondary issue is that accurate full-envelope imeat inversion is
computationally intensive. A high-fidelity nonlineforce and moment model must
be constructed and inverted in real time. Theretbee modeling errors in some

aerodynamic coefficients deteriorate the nonliroemtroller performance.



One approach to the problem is to implement Adapteural Networks (ANNS) to
nonlinear controllers [10], [17], [18]. The methpdoposed in [19] is that neural
networks can be used in conjunction with any nomaantroller, like dynamic
inversion based controller [20] for linearized gyst. Feedback linearization (i.e.
dynamic model inversion) [12], [21] is a well knowmonlinear control approach
that can be combined with a Neural Network (NN)siinplifies the controller
design by combining an inverted approximate mocdedighed at a single flight
condition with an online learning NN to account #arors due to the approximate
inversion [2]. A key property of the ANN based niaehr controller architecture is
their ability to learn on line and to eliminate theed for an extensive design
process to provide satisfactory stability. Stapifihalysis for the control of similar
nonlinear systems using nonlinearly parameterizgadorks first appeared using a
discrete time formulation in [22] and using a cootius time formulation in [23].
Extensions to non-similar systems together witHiaafions in flight control can be
found in [13], [24], [25], [26]. Research has shottat online learning NNs are

well suited to cancel model inversion errors infsaontrollers [13], [27].

A NN can be thought of as a parameterized classoofinear maps [14]. This
property applies to simple, or complex dynamic eys, time invariant or time
varying systems, noise-free or noise-corruptedesyst and linear or nonlinear
systems [2]. Using their universal approximatiopataility, the adaptive controller
based on NNs can be designed without significaior fxnowledge of the system
dynamics [28]. Unnikrishnan et al [19] explainedsttype of controller design in
two steps: (i) synthesis of a set of NNs that capthe unmodeled dynamics and
parametric uncertainties of the plant online (@mputation of a controller that
drives the states of the plant to that of a desmachinal model. It eliminates the
limitations in the plant inputs, such as: actuatisplacement limits, actuator rate
limits, linear input dynamics, and time delay [8he method of pseudo-control
hedging (PCH) [3], [8], [29] is the one which wased to protect the adaptation
process from actuator limits and dynamics (i.euattr saturation) by modifying

the inner-loop reference model dynamics in a way étiows continued adaptation.



Several authors have used NNs to solve problemmalty associated with control
of nonlinear systems [30], [31], [32]. It has bexplied to control of a wide variety
of nonlinear dynamic systems especially flight colters [33], [34], [35]. Many
successful results in advanced flight control systdiave been achieved by Calise
and others [13], [24], [36], [37]. In flight confr@roblems, the applications of
ANNSs can also be found in Refs. [2], [38], [39]aj#®D]. These control methods
have been successfully applied to fighter aircfa8], [41], unmanned aircraft
control [42], [43], helicopter control [44], reudablaunch vehicles [8] and in
advanced missile guidance techniques [45], [46]],[#48]. The neural adaptive
control system has been successfully demonstratduigh-fidelity simulations of
both fixed-wing [49] and rotary-wing aircraft [44]They are also used in
development of fault-tolerant flight control systerfor civilian transport aircraft
[50]. The ANN approach is used for the F/A-18 aftin simulation in [13] and
further developed in [26]. Leitner et al [26] dastgl an online adaptive NN for use
in a nonlinear helicopter flight controller. In [Réhe network helped the system
tracking performance in the face of significant mlatly errors. This approach was
later modified and used in the Reconfigurable QGunfor Tailless Fighters
(RESTORE) program [42], [43], using a dynamic irsien control law in an
explicit model following architecture. The reconfigble control law on X-36
tailless fighter aircraft was examined for the addpn of unknown failures and
damage in [51]. This same approach also has bgdred@nd flown on the Joint
Direct Attack Munition (JDAM) [45], [46], [47], [SRand [53], in which the LQR
based flight control system was replaced with aadyie inversion based scheme

augmented with a NN based model reference adaguiveol.

In [54] wing rock dynamics of an aircraft at moderdigh angles of attack was
controlled successfully via NN based adaptive @nirhe results in [54] show that
the Single Hidden Layer Neural Network (SHL NN) ptsamuch more rapidly than
the Linear in the Parameters Sigma-Pi Neural Nekw@iP NN) in command

tracking, despite having far fewer neurons, andh Ipditl based designs significantly
outperform the classical adaptive controller in Hbategulation and tracking.

Narendra and Parthasarathy et al [55] view NNs ikl nonlinear control



elements that offer distinct advantages over cotimeal linear parameter adaptive

controllers in achieving desired system performance

Lewis et al [56] discussed an online NN that appmates unknown functions and
is used in controlling the plant. Krstic et al [5738] have developed a technique
for the control of feedback linearizable systemghwiput unmodeled dynamics. A
robust adaptive control methodology that uses Sekdfforward NNs has been
presented by McFarland et al [59]. Balakrishnan &hdhng [60] developed a
Lyapunov equation based theory for robust stabdityystems in the presence of

uncertainties.

Lian et al [33] proposed an adaptive robust BTTopidt design to treat the
uncertainties efficiently without prior knowledgétbe bounds on the uncertainties.
Huang and Lin [61] applied sliding mode controktipe with model uncertainty of
the BTT missile autopilot design. However, thedeesees require a tedious design
procedure to perform input/output feedback linestron [28]. Feed-forward NNs
with sigmoid hidden units are analyzed in detailBd T autopilot design [28]. This
scheme combines NNs and the sliding-mode contcbinigue.

In [62], the authors applied ANNs to design a pitéine autopilot for a medium-
range air-to-air missile maneuvering at an unréediBy high angle of attack. An
early application of this theory to the missileapilot design problem is found in
[63]. The preliminary study presented in [62] iratied that NNs are capable of
attaining sufficiently high learning rates to maldaptation feasible even during the
most demanding aerial engagements. McFarland ] alsed NN implemented
controller to enable a single controller to handbltiple versions of guided
munitions. In [4] and [27], McFarland et al use@ddorward NNs implemented
approximate inversion with one sigmoidal hidderelajor an agile antiair-missile
autopilot and demonstrated the effectiveness ofdhkalting autopilot. Their online
learning and functional approximation capabiliteesd ideal structures for parallel
processing [64], [65] make NNs an excellent candidar uncertain aerodynamic
effects and replacement of missile gain tables. €l is an example of a missile

autopilot using NNs. In [4], McFarland et al claid#at robust, nonlinear, and NN



based control algorithms are suitable for use ieanissile flight control. The

success of dynamic model inversion on missile alabgesign was shown in [67].

A short-coming of dynamic model inversion is thatan not be applied directly to
non-minimum phase plants. The transfer functiormfrthe control surfaces to
acceleration (at the center of gravity (Cg)) is tiyoeon-minimum phase for tail-
mounted surfaces [9]. The tail-controlled airfrah@es a tail normal force opposite
to the direction of the desired maneuver accelamatwhich causes small initial
airframe acceleration in the wrong direction. Aniallly, this effect manifests as a
right-half-plane zero in the transfer function fralhe control surface deflections: (
andd;) to the accelerations normal to the missile’s laminal axis (2 and g) at
the missile Cg, thus tending to limit the speedesiponse of the guidance system
[68]. Different approaches are proposed in [678][§70], [71] and attempted to
eliminate the non-minimum phase characteristicthefplants. A method which is
described in [67] is called output redefinition aihds an example to solve non-
minimum phase problems. “Output redefinition” isgamally proposed in [72], the
inner loop variable is defined as a linear combamabf the state variables. This
allows the designer to place the zero of the aassgtitransfer function at a
desirable location. Thus, for instance, a combomabf both angle-of-attack and
pitch rate could be used to define the commandeeritoop variable [9]. Since the
non-minimum phase characteristic prevents accuiteamic inversion, the

problem is eliminated by controlling attitude iredieof acceleration.

There is a research interests in improving adagtids in the field of advanced
flight control system design. Most of the previoNsl training laws have NN
weight dynamics that are of low rank, nearly uitg]. There is no known reason
why these dynamics could not be full rank [73]. Awnadaptive NN control
concept is proposed in [14], [73] , and [74] whielrns the plant dynamics by an
online trained NN and augments the capability afkgaound learning (BL) using
previously recorded data to improve system perfocealn this concept, online
learning architectures are used to compensateyf@rdic inversion error caused by
system uncertainties and uncertain environmentBdndvercomes the low rank of

most NN training approaches resulting in faster ptation to the unknown



dynamics [14]. Furthermore, using combined onlind BL methods provides long
term learning in the adaptive flight controller, ialn enhances performance of the
controller when it encounters a maneuver that le@s lperformed in the past [14].
The BL law is a projection of the current learniilagv into the null space of the
current learning (LIP NN [14] and SHL NN [74]). Theetwork update law uses
both the current (i.e. online) information and stbii.e. background) information.
The resulting adaptive element is able to retainglderm memory without

compromising its responsiveness to sudden changés ienvironment [74].

In this study, the traditional gain scheduling [B&sed control architecture is
replaced by online learning NN architectures trdiméth a LIP NN, SHL NN, BL
implemented SHL NN. The main advantage of thesecagbes is that online
learning neural controllers will replace gain-sahled activities, which can
potentially be very large [2]. They can account f@an-linearity and uncertainty
both in the controls as well as in the states. Meee, it decreases the dependency
on accurate aerodynamic models. This control achite requires only an
approximate linear model at a single operating fodiherefore, at the beginning of
this study, the aerodynamic coefficients of theisgumissile are obtained by
defining the geometry and using empirical toolsxtiNa plant model is obtained by
substituting the aerodynamic coefficients into #guations of motion. Then they
are linearized at a single flight condition (i.8mt condition). As a result, the linear
model is obtained from a priori knowledge of thessile dynamics. Next, dynamic
model inversion control is applied. Since the nhesgs dynamically a nonlinear
system, operation at any other flight conditionlwésult in an inversion error.
Then, an online ANN is added to compensate foritiversion error [25]. The
weights of these NNs are adjusted to eliminateetfexrt of the modeling error [10].
The network weight update law ensures boundednke$&®th tracking error and
adaptive NN weights [9], [13], [27]. Many of thestéts for this approach involving
ANNSs are derived from Lyapunov stability theory [7&or a complete proof of
stability, the reader may refer to [76] and [77tcArding to the Lyapunov theory

based proof the signals including tracking errais aniformly bounded and the



weights of the online NNs that are initialized at@tend to constant values [13],
[25], [38], [39].

Modeling errors may mainly come from linearizaticapproximate inversion,
aerodynamic modeling, thrust modeling, un-modelegnadhics (imperfect
modeling) and assumptions made during controllesigiieor sudden changes in
missile dynamics. First, the missile generally haghly nonlinear dynamics and it
is difficult to accurately model. There are incatsncies between the actual
dynamics and its mathematical model. During theutation, the missile confronts
with different flight conditions in the flight eniape, operation at any other flight
condition will result in an inversion error. Secomighly nonlinear aerodynamic is
difficult to model, aerodynamic coefficients areniioear functions of several
physical variables, the aerodynamic coefficientsioled from tabulated results and
interpolation can not represent actual aerodynacoiadition. In addition, the
elements of linearized matrices includes these dyeamic coefficients, thus
dynamic model inversion using these matrices cdrbaaxact. This will cause an
inversion error. Fourth, thrust force changes maarly with respect to altitude.
Changes in missile altitude and variation in dyrampressure will be an error
source potentially. Reduced order modeling can eaesors as well. The
inconsistencies between assumptions and actual caaselso result in modeling
errors. Transformation of aerodynamic parametersichv are the elements of
matrices, from inertial frame to body frame caroatause errors. Therefore, online
NNs (longitudinal and directional channels) areigi®sd to eliminate these errors.
They are used to cancel errors by observing thekitrg error between the
commanded input to the missile and missile respombese errors are used to
update the network. Therefore, the NN adaptatitengits to cancel the inversion

error.

The performance of the controller is demonstratdguthe nonlinear 5-DOF high

subsonic cruise missile simulation code in MATLABY®JLINK.



1.2. Scope

“Adaptive Neural Network Applications on Missile @Gtooller Design” is a topic of
research interest. In this thesis, various NN basedrol techniques are studied on
generic cruise missile geometry with the physidealracteristics shown in Table 1-
1.

The missile is a skid-to-turn (STT) missile andsifa cruciform missile with a plus
tail configuration. Banking of the missile is netquired to maneuver immediately
in any plane. Sets of controls at right angles |getfme missile to turn immediately
in any plane without the necessity of its bankidg-Q) [68], [78]. The autopilot
axes are located in the planes of the control sasfan this type of missile, so that
only two surfaces are deflected by the pitch alwbpge) and two by the yaw
autopilot ¢;) [68].

Table 1-1 GENERIC CRUISE MISSILE CHARACTERISTICS

Length 4m

Diameter 0.4m

Wing/Tail Span 0.9m

Control Tail Control
Cruise Speed 0.8 Mach
Launch mass 500 kg

Fuel weight 50 kg

Center of gravity location 2 m (from nose)
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The ANN augmented model inversion control is a Matandidate for a missile
autopilot implementation. This approach is appiiedlesigning a missile altitude
hold autopilot and directional autopilot. Attitu@®mmand Attitude Hold (ACAH)
response type is used in the autopilots. Theircéffeness is illustrated using
numerical results from nonlinear 5-DOF simulatidmdges of a high subsonic
cruise missile. Simulation results of a lineariraddel inversion controller without
NN, and distinct online learning neural networkdRLNN, SHL NN and BL
implemented SHL NN) applied adaptive controllers fongitudinal (pitch) and
directional (yaw) channel are shown, and the affeness of on-line learning
neural controllers for on-line control laws in aglhisubsonic cruise missile are
compared and evaluated. Simulations are perforinetdiwo of them have been
chosen, which are related to the scope of thisigh@$e objective is to present
results between model inversion controllers progose[2] and on-line learning
NN implemented model inversion controllers on néssiutopilot applications. The
capability of adapting to errors caused by the diteed inverted model is
demonstrated for different types of pitch and yaM.Nn the first simulation
scenario, the aim is comparison of the LIP NN ahid 8IN on the improvement of
the inversion error compensation. In the secondilsition scenario, the scope is to
show the improvement of SHL NN implementation wailing BL algorithm in its

weight adaptation process.

It is shown that neural-based control laws for #luopilot functions do not need

any gain scheduling in nonlinear 5-DOF simulation.

To deal with problems encountered during the imgletation phase of the
algorithm some improvements are made such asinglilearning rate for the
computation of NN compensation to nonlinearity. Blwrer, some precautions are

taken such as checking the trajectory of the neigsilvalidate them.

1.3. Ouitline

The remaining part of the thesis is organized 4sviss:

11



Chapter-2 discusses system modeling that includssilen guidance planning,
aerodynamic modeling, thrust modeling and missilelinear 5-DOF mathematical
model with given assumptions, altitude hold guidaaad the directional guidance

concepts, and the architecture of 5-DOF simulation.

Chapter-3 describes the main steps for the devedopand implementation of LIP
NN and SHL NN based altitude hold controller, aisdairchitecture.

Chapter-4 demonstrates the main steps for the al@vent and implementation of
LIP NN and SHL NN based directional autopilot, ardhitecture of heading hold

controller.

Chapter-5 contains a description of BL implemeniid adaptation method. The
improvement related to this new method is also mesd in this chapter with the

comparison of the previous application.

Chapter-6 provides numerical simulation resultsddrigh subsonic cruise missile
demonstrating the feasibility of this autopilot @gstechniques. The performance

of each controller are also compared and evaluattds chapter.

Finally, conclusions about this thesis, the prolsleon the controller architecture

and future research directions are discussed ipt€hd.
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CHAPTER 2

MISSILE FLIGHT DYNAMICS MODELING

Five degrees of freedom (5-DOF) Matlab-Simulink relod created to demonstrate
the effectiveness of the controllers. It includedyodirectional and longitudinal

motion of the missile, and the roll motion in tlaelral plane is ignored.

5-DOF simulation implies flight model of a missiteat can be described by a
number of nonlinear first order differential eqoas. These equations can be
analyzed in two groups: kinematics equations andadyc equations. In this
chapter, the sub models of the missile flight moddl be described briefly
according to assumptions described in Section 2dlsamulation architecture of 5-

DOF equations of motion will be given.

2.1 Assumptions

The simulation uses nonlinear aerodynamics andthse®llowing assumptions:

1) Missile is a rigid body; therefore aeroelastic eféeare not included in the
equations. The missile body does not change in @izghape. The forces

acting between individual elements of mass areieéited.

2) I lyy, Ix; are constant for a given rigid body due to usyahraetry of

missile about the x-y plane.

13



3)

4)

5)

6)

7

8)

9)

The missile has a vertical plane of symmetry allogitx-z plane. The y-axis
is the perpendicular to this plane of symmetry asda principal axis.
(IxyZIyZ:O)

The missile is a cruciform missile with rotatiorsymmetry (J,=I,, and
Ixz=0). (Cruciform missiles commonly have four simifated wing panels
and four movable tail fins mounted together at anwmwmn chord and

displaced one from the next B2 radians of arc [68].)

The missile is a skid-to-turn (STT) missile and has a plus tail
configuration. Banking of the missile is not reguir to maneuver

immediately in any planeZ{=0). Roll moments can be neglect&e).

Earth rotation is neglected. Related centrifugadl &woriolis accelerations

can be neglected.

The earth is treated as flat and stationary intimespace. This allows us to

declare the Earth frame as the inertial frame.

The missile has an aerodynamic symmetry in roll.eréfore the
aerodynamic forces and moments acting on the miss# assumed to be
invariant with the roll position of the missile ative to the free-stream

velocity vector.

The attitudesd, r) and altitude If) of the missile which is measured by
gyroscope and altimeter sensors respectively Idoatethe missile that the
input axes of the sensors are coincident with tiesite body axes. To keep
the simulation simple, higher order sensor dynaraitd sensor errors are

neglected.

10)Thrust is generated along the x-axis of the miskiey and thus thrust

forces pass through the Cgy£T,=0)

11)There is no wind during the flight.
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With these assumptions, the airframe motion caddseribed by translations of the
center of gravity and by rotations about this polntaddition, they simplify the
equations of motion by eliminating the aerodynanrass-coupling terms between

the roll motion and the pitch and yaw motions.

2.2 5-DOF Dynamic Model

This model contains the dynamic equations of nésdihese equations are derived
by applying Newton’s laws of motion that relate themmation of the external
forces and moments to the linear and angular aatielas of the body. First, a
typical six degrees of freedom (6-DOF) missile madehandled. 6-DOF means
longitudinal, lateral, vertical movements and at# of the motion which are

presented at Figure 2.1.

Zy

Figure 2.1 Representation of the Missile’s Six Deges of Freedom [68]
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The 6-DOF equations of motion consist of three diaions, and three rotations,
usually along and about the missile body axeshigdtudy, the roll ratgpf is set to
zero in the simulation model. The missile initiallrangle @) and initial roll rate
(p) are 0. Since the missile is a cruciform missild & has a plus tail configuration,
sets of controls at right angles permit the mistléurn immediately in any plane
without the necessity of banking (skid-to-turn niess®=0) [68], [78]. From
assumptions 4 and 5, roll moment coefficient isteetero and,|, equals to 4, thus
roll acceleration equals to zero. This can be zedlifrom equation (2.7) in Section

2.2.2. Therefore roll motion is ignored, and thawdation is called as 5-DOF.

The translational equations of motion are obtaifreth Newton’s second law.
Newton states that the summation of all externadds acting on a body is equal to
the time rate of the momentum of the body with eesfo the inertial frame. The
rotational equations of motion are derived fromegsl law, i.e. the time rate of
change of angular momentum equals to the summatfoexternally applied
moments. In deriving these equations of motion, @issumptions which were

described in Section 2.1 were used.

The relationships between the forces/moments aatingthe missile and the
kinematics state (position, velocity, attitude, alag velocity) of the missile were
established in 5-DOF. Since the missile is subj@the aerodynamic forces, thrust
forces and the gravitational acceleration (g) dyfight, we can conclude that the
external forces and moments acting on a missilgganerated by the aerodynamic
effects, propulsion and the gravity. As the resaftshese effects, the components
of the inertial position vector were changed orglardinal, lateral and directional

plane. Moreover, yaw and pitch attitudes were alanged.

2.2.1 Translational Motion

Firstly, the translation of a rigid body can be egsed mathematically by the

following equations:
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dt

Z F=m ELVS;@E} =m I:Edvmsgle:| +m EﬁWIaody meissile) (21)
inertial body

u=zFx—qw+rv

m
,_ D F 2.2
V= L-ru+ pw (2.2)
m
. ZFZ
W= - pv+aqu
m

Total external forces consist of aerodynamic fordbsust and the gravitational

forces.

ZFX=X+L—gsin€ x=cxeref
m m
-

> F, =Y+-L+gsingcosd = Y:CYM (2.3)
m m

ZFZ=Z+%+gcos¢cosé? Z=CZeref

In equations (2.3), the first term is related toodgnamic forces, second term is
related to thrust forces, and the third term isitedd to gravitational forces. Then
equations (2.3) are substituted into the first &wh equations (2.2) and the final
translational motion equations (2.4) are obtairfabstituting for the aerodynamic

forces and using previously stated assumptiondptimving is obtained.

u:CX&+T—X—gsin6’—qw+rv

m
\’/:CY&+gsin @cos @ —ru+ pw (2.4)
W:C2ﬂ+gcos¢cosé’—pv+qu
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2.2.2 Rotational Motion

The rotation of a rigid body is expressed matheradlyi by the following

equations:
ZM :(d_HJ + Woogy X Hinertia (2.5)
dt inertial
L ly ~ 12 Sef Iref
p:ZI: +qr(WI ) ZL:CLQlir
g= =M (=) Ly o, Q89 e (2.6)
Iy Iy Iy,
: N o — | Sref Iref
rzzl: +pq( I W) ZN:CNQlir

Then, moments due to aerodynamic forces on miasdesubstituted into equations
(2.6) and the final rotational motion equations7j2are obtained. According to
assumption 10, there is no moment arm; thereformemds caused by propulsive
forces are zero about the Cg. The details of theusthModel will be given in

Section 2.5. Since gravitational forces apply a¢ #@g, it has no moment
contribution. Substituting for the aerodynamic maiseand using previously stated

assumptions, the following is obtained.

ly |
ooc, Qud et 0y -1a)
IXX IXX
q=CMQSref Iref ‘o (1, - 1) 2.7)
IW IW
e~ |
oo, Qe v (o)

The reader may refer to [68] and [79] for derivatiof the translational and

rotational equation in detail.
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2.3 Aerodynamic Model

The motion of the air around a missile generatesqure and velocity variations,
which produce aerodynamic forces and moments. @tteedundamental problems
in flight mechanics is the mathematical modelingtlué aerodynamic forces and
moments. In the previous section the relationshgis/een aerodynamic forces and
translational motion and the relationships betweemnodynamic moments and
rotational motion were shown. The calculation afoagnamic forces and moments

acting on a missile and aerodynamic coefficienexygained next.

2.3.1Aerodynamic Parameters

Aerodynamic coefficients are the functions of theght parameters. These
parameters are angle of attael, Gide slip angle), the control surface deflections
(de andoy), the body angular rateq éndr), the time rates aof andg in addition to
Missile Mach Number (M) in this study.

Angle of Attack (a): The angle between the x-axis and the projectiadh@imnissile
velocity vector on the x-z (reference) plane. Ip@sitive when the missile velocity
component along the z-axis is negative. Downwardction is taken as positive z-

axis.

u

a= arctarEV—vj (2.8)

Angle of Sideslip #): The angle with which the missile velocity vectorkes with
the x-z (reference) plane of the missile. Rightwdirgction is taken as positive y-

axis when the missile is looked from the top.

B= arctarE j (2.9)

missile
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Figure 2.2 Demonstrations of Angle of Attack and Slie-Slip Angle [80]

Control Surface Deflections §. and d;): These deflections are provided by the

control surfaces and are defined in terms of thedeflections in the following

manner:

J = 52 _54
¢ 2
J = 0~ 0
' 2

(2.10)

In equations (2.10); denotes the deflection of control fin i for i=1,2and 4. The

fin arrangement of the considered cruciform misslgiven in Figure 2.3 with the

positive rotation senses of the fins. Since thesitieiss cruciform and has a plus tail

configuration, elevator deflection does not havey awntribution on missile

directional plane and rudder deflection does natehany contribution on missile

longitudinal plane. The graphs related to thisessill be given in Appendix A.
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Figure 2.3 Arrangement of Fin from the Rear View ofthe Missile [80]

Mach number (M): The ratio of the airspeed to the speed of souna Is the

speed of the sound, then Mach number can be exgrass

M = —misile (2.11)

where V.. =VU*+V* +w? and a can be stated as=./)RT where R is the

universal air gas constant, T is the ambient teaipez which changes with
altitude, and is the specific heat ratio of the air.

Dynamic Pressure Q): Pressure on missile created due to dynamic motion.
_1 2
Q—Epvmwe (2.12)

Air Density (p): It is the mass of air per unit volume.

It should be noted that air density, ambient pressambient temperature, speed of
sound parameters are calculated according to tBe $tandard Atmosphere 1976
model.
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2.3.2Aerodynamic Force and Moment Coefficients

In order to calculate aerodynamic forces and mogierdntribution in equation
(2.4) and (2.7), we need the aerodynamic coeffisiehhese coefficients are found
using the Missile DATCOM software [81]. This softafinds the combined
effects of many different variables on the magretuwd aerodynamic coefficients.
These variables are configuration geometry, andlat@ack, missile size, free-
stream velocity, density of the undisturbed airyidds number (i.e., as it relates to
viscous effects), and Mach number (i.e., as itesléo compressibility effects) [68].
Then force and moment coefficients table are ccealde relationships between
aerodynamic variables and coefficients will be sham graphs in Appendix A.
Force and moment coefficients can be found fronsehokup tables that are
created from sideslip angle, rudder (yaw fin) dgften, elevator (pitch fin)
deflection, Mach number, angle of attack respebtivén addition, dynamic
derivatives of aerodynamic coefficients table ds® generated according to Mach

number. Finally, functional forms of these coeftfitis are generated.

The derivation of non-dimensional form of aerodymanforces and moment

coefficients can be found as follows:

C, =C.(8.9,,0..M,a)

r»“e?

C, =C,(8.5.M)+C, (M) L
st
c, :CZ(Je’M’a)JrCm(M);/In:l (2.13)
6, =G0 M.a)+ G ) ql:je +Cma(M)g\/::f“e—Czl):;fg
C, =C.(8.5.M)+C, (M) ref +Cn,-3(M)fvIref re oo

missile missile

Aerodynamic coefficients are expressed in (2.13)iresar functions of angle of
attack ¢), side-slip angle/), fin deflections §e o;), missile Mach number (M),
body angular rategj(andr), the time rates ok andf. Note that the roll motion is

neglected. Therefor€, is set to zero.

22



2.4 Kinematics Model

Kinematics deals with the motion of bodies withoeference to force or mass [82].
Kinematics equations are the results of transfaonanatrix applications that form
a relationship between the reference axis systesimg) LEuler angles [79]. These
angles @, 0, y) are defined as the missile’s attitude with respet¢he Earth-fixed

frame in Figure 2.4.

Figure 2.4 Representation of the Kinematics Relatiofor the Missile [68]

In this study, two orthogonal-axes systems needédodefined to develop the

kinematics model of the missile. They are as fodow

1) Earth-fixed frame (i.e. the inertial frame) (Assptions 6 and 7) is fixed in
space, and Newton’s Laws of Motion are valid o thame. In Figure 2.5, we will
denote the Earth-fixed frame by (X, Z). In this right-handed coordinate system
(NED system), the &Y, lie in the horizontal plane and the-axis points down
vertically in the direction of gravity. It shouldebnoted that the position of the

missile’s Cg at any instant of time is given instbbordinate system.
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2) The conventional body frame is selected, denbte@Xp, Yp, Z,). It moves with
the missile. The center of this frame is at theo€the missile, the body coordinate
system in this study is a right-handed system whth positive X-axis along the
missile’s longitudinal axis (missile’s center ling)e Y,-axis positive to the right in
the horizontal plane which is designated as thehpitxis and the yZaxis positive
down which is the yaw axis. This coordinate frasisimilar to the north-east-down

frame.

Earth-fixed
{or, nertial)

v 1 Z,
) A 3 ¥ o G
£ {

Zy

Figure 2.5 Orientation of the missile axes with rgsect to the Earth-fixed axes
[68]

The guided weapons reference axis system is géneemtered on the Cg and
fixed in the body. Therefore, in this study, thaeéinatics model is involved in the
transformation of the translational and rotatiomation equations that described in
Section 2.2 from body frame to inertial referen@afe. This model calculates body
attitudes in the form of Euler angle®,(d, ) and the transformation matrices in

order to achieve these transformations.

For translational motion:

X u
yi= T,5 |V (2.14)
z w
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whereT,,; is the transpose of direction cosine matrix ttaatverts body velocities
into inertial velocities.
cosgdcogy singsin@cogy —cospsing  cospsin@cosy +singsing

T,,s =| cosfsing singsingsing +cospcosy cosgsindsing —singcosy (2.15)
-sind singcosd cospcosd

Substituting equation (2.15) into equation (2.1H¢, following is obtained.
X| |cosfcogy singsindcogy —cospsing  cospsindcogy +singsing | u
y|=| cosfsing singsingsing +cospcogy cospsingsing —singcosy || v (2.16)

Z -sin@ singcosd cospcosd w

For rotational motion:

@ p
6|=R, |4 (2.17)
Y r

where R ,; is the rate transformation matrix that convertgypangular rates into

Euler rates.

1 singtan@ cosptand

R/e=|0 cosp -sing (2.18)
0 sing cosp
cosd cosd

Substituting equation (2.18) into equation (2.1, following is obtained.

@| |1 singtand cosptané | p
6|=|0 cosp -sing | q (2.19)
W 0 sing cosy r

cosd cosf

After these calculations, Euler angles of the rfesaie obtained by the integration

of the Euler rates. For calculating the inertialsifion, inertial velocities are
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integrated. As a result, the missile attitude anwiion of its Cg are calculated with

respect to an Earth (inertial) reference point (aanch point).

2.5 Thrust Model

The thrust model is used during the maneuver staftom the firing phase until

the termination phase. It is divided into two swsiee phases:

1) Boost Phase: It comprises the flight from thendj instant to the end of the
booster thrust. In this phase, boost motor provitl#00 N thrust for 4 seconds in
order to achieve cruise speed, and then it finishasng this period, there is no tail

fin deflection.

2) Sustain Phase: It comprises the flight fromfihieg instant of the flight motor to
the termination instant. The Thrust Model, whichdescribed in this section,

explains this phase.

The Thrust Model is similar to the model described[1]. Here the model is
assumed to resemble a turbojet engine with a 50G&@ahc thrust. The Turbojet
engine shall operate throughout the flight in orttessustain the required missile

speed.

This engine will be assumed to have a maximum thotuS000 N at sea level. The
variation of available maximum thrust with resptecaltitude can be represented by

equation (2.15).
T(h) =T, [{0.00210h% -0.0797h+1) for 0<h<5000m (2.20)

where
Tuax : Maximum available thrust at sea level (5000 N)
h > Altitude, [km]
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Equation (2.20) is derived from [83] which givesammation about typical turbojet
engine characteristics. In order to maintain the-getermined cruise speed of 0.8
M, magnitude of the thrust is adjusted by the mettescribed below.

1) Turbojet engine is assumed to be capable oéasing and decreasing its thrust

level linearly at a rate of 300 N/s.

2) Although, the engine is assumed to have a 309€ tNfust increment rate
capability, the thrust control command will be cddéted according to the measured
Mach number. If Mach number is below 0.75 or gredten 0.85, engine is
commanded to work at its limits (300 N/s). If Masmber is between 0.75 and
0.85, a quadratic function is used to calculatetltinest control gain, K. The thrust

control law is given below:

Teomisa = Teom i +ALLK (2.21)

where

Tcom : Thrust control command
At : Time step

K : Thrust control gain

And K is defined by the following:

Mach < 0.75 => K =300N/s
0.75 < Mach < 0.85 => K =sign(AM )M 2 120000 (2.22)
Mach > 0.85 => K =-300N/s

The thrust control commandicowm is limited to a minimum value of 1000 N for all

altitudes in order to avoid sudden decreases aritlad®ns in the missile speed.
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2.6 Guidance Model

The Guidance Model is used to command the requmesiement of the cruise
missile according to the target trajectories armhpéd waypoints. In other words,

inputs for an autopilot system are generated fitamrhodel.

2.6.1 Altitude Hold Guidance

During cruise phase, the difference between comedhnatitude and missile
altitude is given according to a planned heighjettmry. After cruise phase
(terminal phase), the difference between the heagkthe target and missile altitude

is the input for the altitude hold autopilot. ItsBown in Figure 2.6.

Designated Target
Height

Planned Altitude
Trajectory

Altitude
Command

hcam

hcam

Terminal
Phase

Cruise
Phase

Command Filter
Command Filter

Filtered
command
Filtered
command

Missile Altitude

hmissile

Altitude Hold
Autopilot Input

<~

Figure 2.6 Generation of Altitude Hold Autopilot Command
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herr = (hcom [CF (S)) - hm'ssile (223)

1

3 1the command filter transfer function amd, is the Altitude
S +

where CF(s) =

Hold Autopilot Input.

2.6.2 Directional Guidance

Normally, autopilot inputs are determined by theksx and guidance systems.
However, in this study there is no seeker modelc&the target used in this model
is assumed slow, the motion in the longitudinalsaisi neglected. Therefore the
requirement for the seeker detection is only in dwectional plane. Therefore
instead of making a seeker model, it was assumedthie way points are tracked
ideally via Inertial Navigation Systems (INS) dugioruise phase and the LOS rates
of the target are provided perfectly in terminahgh of the flight. These LOS rates
are used in Guidance Model to obtain directionébpilot command.

The generation of the directional autopilot commasidased on the LOS rate
following reference [68], [84]:

1) Cruise Phase

CommandedVaypointPosition =[X,,,Y,,.0] =WP,
MissileInertialPosition =X, Y. 0 =M,
CommandedVaypointVelocity =[0,00] =V,p
Missile Inertial Velocity = [Xm,Ym ,O] =V,

R,z is the rate transformation matrix that convertsypangular rates into Euler

rates which is defined in Section 2.4.

(2.24)

= LOS rates
(\Npp_Mp)[(WPp_Mp)
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Equation (2.24) is used for the cruise phase iemtd find the LOS (line-of-sight)

rate on the directional planeiygw) which is the third term of the LOS rate vector.

2) Terminal Phase

TargetlnertialPosition :[XT,YT,ZT] =T,
MissilelnertialPosition :[Xm,Ym,Zm] =M,
TargetinertialVelocity :[XT,YT,ZT] =V,
MissilelnertialVelocity :[Xm,Ym,Zm] =V,

R,z is the rate transformation matrix that convertsjpangular rates into Euler

rates which is defined in Section 2.4.

A i
/ir_oh :R/ (Tp_Mp)x(\/T_VM)
/ipltc ° (Tp -M p)[QTp - Mp)

yaw

= LOSrates (2'25)

Equation (2.25) is used for the terminal phasertento find the LOS (line-of-
sight) rate on the directional planéygN) which is the third term of the LOS rate

vector.

Then from equation (2.26), heading command is ¢ated by using Proportional
Navigation [68], [84]. If the missile is sustainiag a constant velocity and we are
considering long times of flight it is reasonabteassume that a given change in
body direction will result in the same change iight path direction [85]. If the
motion of the missile on directional plane is cdesed, missile yaw flight path
angle rate can be accepted as its heading ratat{eq(2.26)).

Vo = N gicoree

guidance “'yaw (226)
wcom = yyaw = (/lcom = Iwcomdt

N gudance IS the guidance constant.
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The block diagram of directional guidance algoritisnshown in Figure 2.7.
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Figure 2.7 Generation of Directional Autopilot Comnand

2.7 Autopilot

Autopilot Model will be described in detail in Chtap 3, 4 and 5 respectively. This
model generates required deflection angles whiehthe inputs for the missile

plant.

2.8 Simulation Architecture

The mathematical architecture of the 5-DOF simatats generated by the models
described above. First, according to the initialdibons, Aerodynamic Parameters

are calculated. Next body forc&s Y, Z and moment®1, N are computed by the

31



help of the Aerodynamic Model is set to zero. In parallel, thrust forces are
calculated from Thrust Model. Then these forces mwodhents are substituted into
the Dynamic Model, and body translational accelenst and body angular
accelerations are obtained. These accelerationstegrated for computing body
angular rates and body velocities. Next, body angtates are transformed into
Euler rates and body velocities are converted trtial velocities using the
Kinematics Model. When they are integrated, Eulegles and location of the
missile Cg with respect to inertial frame are foumtlen transformation matrices
that transform from inertial coordinates to bodymbnates (DCM) are found by
substituting Euler angles into Kinematics Model. cAaing to the target
trajectories and planned waypoints, guidance dlyms generate the autopilot
commands. Autopilots Model, which will be describedthe following sections,
uses these commands in order to find fin deflestiftor desired missile motion.
Next, dynamic parameters related to the motiorhefrhissile are computed. Then
by using these parameters and fin deflections, dyeamic coefficients are
calculated in the Aerodynamic Model. This cycleaa{s at every time step of the

simulation.
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The flow chart of the simulation architecture i®wh in Figure 2.8.

nitialize the
simulation

Figure 2.8 Simulation Architecture
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CHAPTER 3

ADAPTIVE NEURAL NETW ORK BASED ALTITUDE HOLD
AUTOPILOT

The altitude hold autopilot allows a cruise misdilehold its altitude, climb or
descend according to a planned altitude trajectéiyer reaching the desired
intermediate cruise or sea-skimming altitude, atitudle autopilot is used to
maintain this altitude against atmospheric distodes and gravity. The mission of
the autopilot is to minimize the deviation betwéles actual altitude and the desired
altitude [1].

In this chapter, the design steps of an altitudiel laaitopilot of a high subsonic
cruise missile with NN architecture are explainéd. Section 2.2, the missile
dynamic model is described in detail. At this im$tahe equations derived in this
model are linearized at an equilibrium point (itegm condition) under the
assumptions in Section 2.1. Next, the linear stafeations are obtained to use in
the nonlinear model inversion controller. Finallye ANNs based model inversion
applied to the missile altitude hold capabilitydsmonstrated. Note that the actuator
dynamics is not modeled in this architecture, hatdeflection and deflection rate is

limited.

3.1 Linearization

In this section, the equations (2.7) are linearizeder designated assumptions. We

are interested in the motion on the longitudinadl atirectional plane, and we
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neglect the roll motion. Therefore, the lineariaatof the equations related to pitch

angular acceleration and yaw angular accelerasipeiformed.

First, by substituting related aerodynamic coefints from equation (2.13) into

equation (2.7), equation (3.1) is obtained.

o qlref alref Xo | QSref Iref I, =1
a=[Culama)sCo) B e I ¢ e 08  plesle)

missile missile Y yy

rlref Blref X
M) +C_, (M) +C, -2
! ””( "N Iref

missile

]Qaerlreupq(lxx—lw)

f:(Cn(ﬁx&rrM)*'Cnr( | I

missile z

where

rlref

CY :Cy(IB!Jr'M)+Cyf(M)

missile

qglref

CZ :Cz(ae’M’a)-'-czq(M)

missile

Next, equation (3.1) is derived with respect toodgnamic variables, linearized at
an equilibrium point (i.e. trim condition) and saspace forms of the equations
(equation (3.2)) are obtained. For a mechanicaltesys the conditions for

equilibrium are defined by the following:

Y Forces= 0 and ) Moments= 0

In terms of the system state vector, the equiliorigerim) is defined as the

following:
0= X, = f(Xg,Ug), Ug =constant

where X denotes the stated) denotes the input and subscriptdenotes the

equilibrium.

Trim conditions are determined by flying the miesiét a certain altitude and
observing the states and inputs where they aretamnsThis altitude is chosen

because of considered sea-skimming cruise altitude.
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Table 3-1 Trim Condition Parameters

Altitude (h) 15m (from sea level)
Density f) 1.23 kg/m3

Cruise Velocity Veris) 0.8 M

Sideslip Angle £yim) 0.1°

Speed of sound) 340 m/sec

Angle of attack dyim) 5°

Elevator Deflectiondeyim) -3°

Rudder Deflectiond{im) -0.5°

According to the designated trim condition which geven on Table 3-1,

aerodynamic coefficients are found from aerodynataldes, their changes with
respect to aerodynamic parameters are calculawd@vstituted into the matrices
in equation (3.2). The elementsA&f, A2 andB matrices are given in Appendix B.
The matrices in equation (3.2) are different frohe tactual matrices which
represents the real dynamics. In reality, therehagh nonlinearities in the missile
motion, thus these matrices do not represent tke neotion because of

linearization. Herej, r denotes the pitch and yaw angular accelerationsiradat

from linearized equations.

] e 5] 2

w
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In practiceAl, A2 andB are not represented nor exactly known [5], [238]] [39],
thus the estimate @&f1, A2 andB are used in Model Inversion Controlle&l, A2
and B matrices denotes estimates of the linearized oestriln eguation (3.3)/,3\1

and A2 matrices indicate the estimated aerodynamic dtaldérivatives, andB
represents the estimated aerodynamic control desdga at the trim condition.
Body velocitiesu, v, w are calculated with respect to body fixed framews

translational states) argl r are body angular rates about the body fixed afeest (
rotational states). andd, are the control inputs and,, 5, are their estimates for

longitudinal and directional dynamics respectively.

M [do| v [Az]ﬂ[s][m BH 03

w

Al, A2 and B matrices are different from actual matrices. He}ef denotes the

estimated pitch and yaw angular accelerations otispéy, which are obtained from

the linearized and estimated rotational equatidmsation.

3.2 Neural Network Based Inversion Architecture

In literature, the altitude hold autopilot architee is generally established with an
altitude bhem) commanded outer loop and body pitch rafecdommanded [86] or
normal acceleration {pcommanded [1] inner loop. However, if the inneop
controller input is normal acceleration,)athe transfer function between elevator
deflection §c) and normal acceleration,jaat the center of gravity always has a
zero on the right half s-plane for tail-controllessiles. This zero in the right half
s-plane causes non-minimum phase characteristicshenmissile [9] that is
described in Section 1.1. This condition prevertsusate model inversion. In
addition, for the pitch rate loop, the transferdiion from elevator deflectiordd) to
body pitch rated) has a zero very close to the origin (i.e. nearithaginary axis);

therefore it produces a very slow mode when thersion is not exact [9]. It is
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difficult to achieve design criteria such as rigeet and settling time. Therefore
altitude hold design is carried out by using pitsigle ¢) for the inner loop, and
implementing an altitudeh{,m) commanded outer loop to map from an altitude
error to pitch attitude command to the inner looppesed in [87] and [88]. Missile
speed (i.e. Missile Mach number) control is notluded in the Altitude Hold
Autopilot. On the other hand, Missile Mach numtzecaentrolled by a Thrust Model
which is described in Section 2.5. The detailednmfation about this model can be
found in [1]. Moreover, any lateral dynamics efféxztneglected in the controller

design. Therefore the only motion considered théwvertical plane [89].

This section contains the architecture of the ANMplemented dynamic model
inversions on missile altitude hold applicationidtbased on the neural network
applications as described in [13], [25], [36], [3E&9]. In addition, the altitude hold
application is taken from [87]. This architectuseshown in Figure 3.1. Since the
primary effect of the longitudinal control is a clgg in pitch attitude, the attitude
response to a longitudinal control input is impott2]. As a result, the architecture
is based on ACAH for the longitudinal inner loopdaa Proportional with an
Integral and Derivative Controller for the outemopo The outer loop converts

altitude error into pitch angle command for theeintoop.
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Figure 3.1 Altitude Hold Autopilot

3.2.1 Inner Loop Design

In the preceding section, linearized and estimagdations of rotational motion
(equation (3.3)) are obtained. At this stage, thegeations are inverted and the
approximate model inversion of the missile plantftasmed. By inverting these
equations, a relationship between desired anguleglerations and estimations of

required control deflections is established. Theirdd angular accelerations are
commanded and the corresponding estimated finctifies (Se,ci) are found from

equation (3.4) which represents the approximatersion.

’ch"’

RS bl 2] -

desired r
w
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Here, any cross-coupling between fast rotatioratestand slow translational states

is neglected in the inversion [38], [39]. Since tBematrix is a square matrix and

non-singular, it can be inverted.

Since it is not straight forward to exactly knoweasure or estimate these dynamic
equations, an approximation has to be used. Hereinwersion for one flight
condition as in equation (3.4) will be an approxiima for the rest of the flight
conditions [2]. Operations at any other flight cieeh will cause an inversion error.
Therefore Neural Networks (NNs) are designed forceding the error between the
true model and approximate one. ANNs and invertedehare combined in order

to reduce and cancel this error.

. A2 x q
Boom_t oI r ~
com_ o ‘+ . - Ooesired B -1
; onversion To -
Upd t‘ Uy Body Axes
— Jad 6- J
Angular 5
Accelelatlo @ ] qe
Desired \\‘ U . 5 required
wcom_f +
Und v— U - Conversion To Al x| v -
pay \ v Body Axes A 5
¥ desired w rdurim
— Jad y—

Figure 3.2 Application of Model Inversion on both bngitudinal and directional

control

Note that equation (3.4) will also be used fordirectional autopilot.

From the altitude hold autopilot architecture igute 3.1, the pseudo contrbly is

found by the following equation:

,=Upd_6+8,.

—VUad _¢&
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Uad 0 is the adaptive signal that represents the newaaork output on the pitch

plane. The proportional plus derivative contribatie shown byJpd 6 and &

com__ f

is the command filtered Euler angular accelerdafiompitch.

According to the ACAH implementatiotl, is equivalent to desired Euler angular
acceleration for pitch. However we need body angatzxelerations in equation
(3.4), so it will need to be transformed to the yades reference frame [25]. The

transformation in Figure 3.2 is made by the follogvequations:

Oesrea =Up COSP—0 @sing+U, singeosd+ peospeot -y Gsingsing

.. . ) (3.6)
Fesired = ~U SIN@— 6 pcosp+U , cospeosd ¢ gsingcod -y Gcospsing

HereU, denotes desired Euler angular acceleration for. jéote that it is obtained

from directional autopilot architecture.

The proportional plus derivative dynamics for tlitelp plane is obtained by:

Upd_6 = Kp (0., ~0)+ Kd (60 —6) 3.7)

com f

The gainsKp andKd are used to define the error dynamics. These digsaare

designed faster than the command filter, and sleaugh not to be affected by the
actuator dynamics. However, actuator dynamics atemodeled in this study, so
we will look for the relationship between commaiitef and error dynamics. The

selection of this parameter will be explained ict®m 3.2.2.

The true dynamics are not given by the linear agprated model in equation
(3.3). There may be errors due to reasons whicleridbesl in Section 1.1. The
model inversion error can be defined as the diffeeebetween the actual values of

the rotation and the approximated one (equatid)).3.

|:59:| :|:C?d$iredi|_|:(?j| (3.8)
&y desired r

If equation (3.3) substitutes into equation (3tBg, following equation is obtained:
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From equation (3.9), we can define Euler pitch dangaicceleration as:
d=U,+¢, (3.10)

Combining equation (3.5), (3.7), and (3.10) we obta

(écom_f - €)+ Kp(eoom_f _0)+ Kd (9

com_ f

~6)=Uad _0-¢, (3.11)

On the right hand side of equation (3.11), netwamkpensation error is generated.
In the ideal case, it is equal to 0. It is expedtet ANN output cancels the model
inversion errors. If it occurs, consider the desiezror dynamics (i.e. NN output

cancels the inversion error), the equation (3.Etpmes:

(écom_f - édesired )+ Kp (ecom_f - gdsired )+ Kd (gcom_f - edsired ): 0 (312)

The details of ANN architecture will be describadSection 3.3.

3.2.2 Command Filter Design and Inner Loop Error Dyhamics

Feedback linearization separates the flight dynammto fast and slow dynamics by
using timescale properties [90], [91]. Commancefiland PD error dynamics are

designed with the consideration of the timescabasion.

The command filter serves both to limit the inpater and as a model for desired
response. Bandwidth separation (time scale sepajadif the command filter and
the adaptation dynamics are important for gettiegirdd response from the missile.
As a result, the command filter must be slower ttrenmissile error dynamics on

pitch attitude. Therefore, consider the pitch atk& error dynamics of the missile

(equation (3.11)). Define pitch attitude trackingoe asd =9 -6 and take the

com_f

Laplace transform.
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$?6 +Kd 36 +Kp@ =Uad_6-¢,
(i (3.13)

0 +(27,, v, )36 +w, *[B =Uad_6-¢,

nerr nerr

Then the transfer function from inversion error gaemsation of pitch motion to
pitch attitude error becomes:

ZI6) _ 1
(Vad_6-¢,)9) s +(27,, O, )E+w,°

nerr

(3.14)

where w,, denotes natural frequencis, is damping ratio of the error dynamics.

From equation (3.14), the relationship for erronayics can be taken as a second-
order system. Therefore we have to determine afsgiecifications for the desired

error dynamics.

Since the missile can be specified as an under-ddragstem, the design process is
performed according to the transient response ctarstics of an under-damped
second-order system (equation (3.15)) such asdtikng time (), rise time (@,

max % overshoot are specified according to [92].

for 0<(<1
4
¢ X W,

- arctarE “1252 ] (3.15)
{ =

t. = for 2%criterion

S

w, Q/1-¢2
¢
max% overshoot = (exp*™ ) 100

wherew, denotes natural frequency,is the damping ratio [92]. As can be seen
above, the value of is usually determined from the requirement of vafible
maximum % overshoot, and thus settling time is mieiteed primarily by the

natural frequency [92].
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For time scale separation, the slower responseedgined a command filter
compared to error dynamics. In order to find th®redynamics of the missile, the
natural frequency and damping ratio of the misailérame @AF) must be found.
According to [93], the missile airframe naturalduency War) and damping ratio

(¢aF) for longitudinal motion is found as:

X
—1[Cm0, -Cpy—3 ],OVZmis;ue Sef Iref

2 Iref
—_ [ _ — rad 316
Wpe =4/~ M, = I, =521 Aec ( )
1 2
ECZG PV “rissie Sref Wpe
Z — ZHWAF — me‘S‘le = 006 (317)
AF T = = Ui
2M, 1 Xeg )
> Cio —Cz4 Iref PV “nmisite Sef Iref
20
Iy

Aerodynamic parameters in the above equations atedf using the trim
conditions. After finding missile airframe natufaéquency from equation (3.16)
and damping ratio from equation (3.17), the errgmainics can easily be

determined.

According to [92], for a desirable transient resgf a second order system, the
damping ratiol must be between 0.4 and 0.8. Small valueg ¢f<0.4) yield
excessive overshoot in the transient response sterywith a large value af
(¢>0.8) responds sluggishly. Moreover, under-dampetiesns (0 < < 1) with {
between 0.5 and 0.8 gets close to the final valoeemapidly than critically damped
(=1) or over-damped systenisX(1) [92]. So the calculated damping ratio can not
be selected for missile longitudinal dynamics.

As a result, we consider the 2% design criterias@gdtling time, its minimum occurs
at ¢ value around 0.76 [92]. Then desired damping réiie) is selected as 0.75

instead of its current value of 0.06.

44



Since the actual natural frequency is generallyattainable, the error dynamics is
considered slower than the missile dynamics. Sy #re selected to satisfy the

following criterion:
Wnerr < WAF and Zerr = ZAF (*)

To sum up, by using relation (*), equation (3.184 43.15), the parameters related

to error dynamics are tabulated as:

Table 3-2 Missile Parameters Related to LongitudinieError Dynamics

Airframe Natural Frequencyvr) 5.21 rad/sec

Airframe Damping Ratio{) 0.75

Error Dynamics Natural Frequency

4 .50 rad/sec
(w

Nerr )

Error Dynamics Damping Ratidgf) 0.75

Error Dynamics Settling Timegft 1.19 sec

Error Dynamics Maximum % Overshoot 2.84

Error Dynamics Rise Time|t 0.82 sec
Kd =2[{,, [W,,, 6.75
Kp=w,,* 20.25

Next, making the command filter response slower maned to error dynamics,
command filter transient response characteristans lse determined according to

the following relation:
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Wee <W,  and (g = (**)

To sum up, by using relations (**), equation (3,18)e parameters related to

command filter are tabulated as:

Table 3-3 Longitudinal Command Filter Parameters

Natural Frequencywcr) 3.0 rad/set
Damping Ratio{cr) 0.75
Settling Time (3 1.78 sec
Maximum % Overshoot 2.84

Rise Time () 1.22 sec
Qcom_f 3 WCF2

= 3.18
Ocorm s+ ZZCFWCFS-I-WCFZ ( :
If the values are substituted into equation (3.18g command filter transfer

function is obtained as:

ecom_f _ 32 9

= = 3.19
6 s’ +(2@B075)s+3% s?+455+9 (3.19)

com

The same methodology will also be used for direai@utopilot.

3.2.3 Outer Loop Design

When designing control systems, the timescale atiparbetween the inner-loop

attitude control and outer-loop altitude contrastgyns is commonly used. It allows
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the inner loop and outer loop to be designed sé&ggrhaut requires the outer-loop
bandwidth to be lower than that of the inner 108p [

The outer loop altitude-hold is a simple Proportiointegral Derivative (PID)
controller by taking the time scale separation @toount. It takes the commanded
reference altitudeh(,y) and the current missile altitudl) (@s an input and outputs
the pitch angled), required to maintain or reach the commandedeate altitude.
Proportional control is used for quick responsegedmal control is used for
eliminating steady state error and derivative amng used for damping oscillations

in this autopilot architecture.

The gains Kp_h (Proportional Gain), Ki_h (Integin) and Kd_h (Derivative
Gain) are selected and tuned by observing stepmsspcharacteristics generated
through the 5-DOF simulation [89], [92]. Based twe planned altitude trajectory
the missile climbs to 400 meters initially, thenldas different altitudes and
descends to cruise altitude during the simulattadies. Therefore, the step altitude
command will be selected as 400 meters for tunaigsy Although this value is an
excessive value for the corrections against disturbs, such a value may be
required while accomplishing the pre-programmedseraltitude profile [1]. The

graphs related to gain selection and explanationBtD controller design are given

in Appendix C.

Table 3-4 PID GAINS
Kp_h Ki_h Kd_h
0.005 0.0005 0.01

3.3 Online Learning Neural Network Architecture

Online Learning NNs (i.e. learning-while-controtifi38]) implies that the NN has

the capability of changing in real time the valeéshe numerical components that
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make up its architecture [2]. In this section, thypes of online neural network are
explained. These networks can consist of almostfeeg-forward structure that is
linear in its parameters or nonlinearly parameggtid.inearly parameterized neural
networks are also called Sigma-Pi Networks andineatly parameterized neural
networks are defined as Single Hidden Layer NetaoBach approach has been
applied in designing the inner loop attitude coliegroof the missile altitude hold
autopilot for compensating the inversion error diéga in Section 3.2.1. Numerical
results from nonlinear 5-DOF simulation studiesl Wi presented and compared

for each network in Chapter 6.

3.3.1 Linear In the Parameters Sigma-Pi Neural Netarks

The Linear in the Parameters Sigma-Pi Neural NetsvdtIP NNs) have one
output layer and no hidden layg®gl] and are universal approximations [95]. In this
architecture, it is assumed that the inversionreég@ecoupled (i.e. pitch and yaw
motions are decoupled) for reducing the size andpdexity of Neural Networks.
The dimension of the NN increases exponentiallyhwilie number of network
inputs [13]. Therefore for the ANN in the longitadi channeljts inputs are only
the longitudinal states, the longitudinal pseudotem and bias terms. If there was
coupling, the NN theoretically would need feedb&okn the directional state to be
able to approximate the modeling error. In thatcasupling terms have to be used
as NN inputs. Figure 3.3 shows a general architeafiLIP NN [25], [39].
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NN weights Wi's constitute a vector of neural netkaveights, shown in Figure
3.3. These variable network weights can be updayddarning’ laws derived from
Lyapunov stability theorem [25]. Here neuron intti@ns are provided using
Kronecker products [19]. The basis functions Vi a@@nstructed by grouping
normalized inputs into three categories similargscribed in [5], [13], [25], [36],
[38], and [39].

Modeling errors may mainly come from the inconsistes between the actual
highly nonlinear missile dynamics and its matheo@timodel. Moreover only
linearized model is used in the inversion. Congnsllare designed for a certain
altitude, dynamic pressure etc. They all represefyt one flight condition. On the
other hand, the equations of motion can be linedrifor all possible flight
conditions and inverted. In other wordd, and A2 matrices are scheduled, but this
is a long design process. Artificial NNs, which bathe ability to approximate

general continuous nonlinear functions, are idealcnceling these model errors

49



[3], [5], [13]. NN inputs are selected of paramstereeded to approximate the

model uncertainty.

The first group of network inputs is used to congzde for the model inversion
error due to changes in airspeed, since the dtakihd control derivatives are
strongly dependent on dynamic pressure.

Vinssie (3.20)

C, =|Bias V

missile

The second group consists of normalized longitudstate variables, the pseudo
control and a bias term. Because the plant is neatiand uncertain in the control
similarly in the states, the inversion error isuadtion of both state and pseudo

control.
CZ:[Bias uvqéd Ug] (3.21)

Since the input to the LIP NN includes the pseudotol signalUy, and it is a
function of the NN outputad_#), therefore a fixed-point assumption dad 6 is
needed [5], [25], [38], [39]Uy is an input to the NN through a squashing function
(Figure 3.1). Squashing functions guarantee thst@xce of at least one fixed point
solution and boundedness of the input to error dyos (equation (3.28)) [5], [25],
[38], [39]. Squashing function for longitudinal Nbt

Sguashing Function= ((M%XUJ - 0.5} 2 (3.22)

The third group is used to approximate effectsrafgformation between the body

frame and the inertial frame. This is related tarayes in pitch attitude.
C, =[Bias 4] (3.23)

It should be noted that for all groups bias valaes selected according to scaled

(normalized) values of the inputs.
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Finally, the vectors of basis functions are comgos€ products of the elements
belonging to each group of inpuE4 C,, andCs) and are related to each other via

the Kronecker product.

B =kron(kron(C,,C,),C;) (3.24)
where
kron(x,y) =[xy, XY, . XYl (3.25)

The relationship between the inputs and outputshef longitudinal network is

established by the following equation:
U o =WT B(X,U,, bias) (3.26)

The model inversion error can be accurately prodwtethe network output using
equation (3.26). In this equatiow denotes the vector of current variable network
weights,f is a vector of network basis functions (kronegkeaduct of inputs), and
X represents the normalized states. Adaptation ajhi&in the neural network is
derived using Lyapunov's theory [13], [25], [76]n& weight update rule is found

as:

~ T ~T
W = _rlearning [Eg‘:| Epmm_ﬂ[w:g} DP[H)

This law guarantees bounded weights and errors. fifsteterm is derived from

w (3.27)

Lyapunov stability approach, and the second tersuras the boundedness of the
NN weights. The second term provides additionalustess by introducing
damping [25]. P and b parameters are derived from equation (3.28) which

represents error dynamics.

@ ) Lip E id} E@ * m {Uad_6-5,)= AEEZ} +bfUad_6-¢,)  (3.28)
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As a resultp is defined as:

b—o' 3.29
1 -

P is calculated using the following Lyapunov functi4]. Lyapunov equation is
defined as:

AP+PA=-Q = Q=l,,= 1O a oas| O (3.30)
01 ~Kp -Kd

Q is a positive definite matrix (i.e. identity miajt From Lyapunov stability

analysis of the error dynamics (equation (3.30)¥ €kerived as:

Kd, 1 1
_| Kp 2Kd 2Kp 3.31
P= 1 1+Kp ( )
2Kp 2KpKd

The details of the derivation are explained ingb¢l [25].

The selection of acceptable values for the fixedapeters in the NN such as
Fearning (I€arning rate) ang (modification term) required trial-and-error siratibn
studies because these parameters can affect tlslemmigsponse. Both of these
parameters must be selected as positive. The sleffathis type of neural network
structure are explained in [4], [9] and [48]

Identical construction of the LIP NN applies to thieectional autopilot in Chapter
4,

3.3.2 Single Hidden Layer Neural Networks

The Single Hidden Layer Neural Networks (SHL NNsg an extension of the

architecture described in the previous section. HEuaptation law in this
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architecture is also designed based on a Lyaputabilisy analysis of the error

signals [96].

SHL NNs are also universal approximators [65], [9gnce, given a sufficient
number of hidden layer neurons and appropriatet&éptiis possible to train the
network online to cancel model error [13], [23]8]9Figure 3.4 shows the structure

of a generic SHL NN.

Xni

Figure 3.4 SHL NN Structure

It has an output/ad 6 which is adapted to cancel the model inversioaretad_6#

can be expressed as:

N2 N1
Uad_6=hb6,,+> W, ,laj(bbevyj +>V,, xij (3.32)
j=1 i
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Here,N1 is the number of input®y2 is the number of hidden layer neurons and it
has one outputty,: is the outer layer thresholdy bs the outer layer bias, W
represents the outer layer weighig; is the inner layer threshold, s the inner
layer bias,Vi; denotes the inner layer weights. represents the neural network
normalized inputs. The scalar functiepis hidden layer activation function. The
form of the hidden-layer activation function is @stgn parameter; this function is
selected as sigmoidal activation function:
1

oi\z,|=——= 3.33

J(J) 1+e—ajﬁj ( )
The constang; is a distinct value for each hidden-layer neurpl,(2..., N2)

which is so called activation potentiaglis the input to thé'jhidden layer neuron.

The relation between input and output of the SHL &v be established in matrix

form as:
Uad _6W,V,X)=W"olvX) (3.34)

In this architecture, the inputs to the networksekected as:

ecom_

, Uad_6 [Z]. u w q} " (3.35)

com_ f com_ f

The number of inputs are equal to 11 (Né=11) and b> 0. || Z|| is the frobenius

norm of the Z matrix that contains all tunable Weigarameters.

vV 0
Z { } (3.36)
0w
In this architecture the following definitions aneed which were described in this
section:
.
z=V'X=[z z, ... Z,,) (3.37)
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o(2)=b, o(z)o(z,) ... ... olz,)] ' (3.38)

Hv,l HV,NZ
\" cee eV

v=| o (3.39)
Vil -+ o+ VNine

whereN2 is selected as 18 ang b 0. There is one hidden layer which includes 18

neurons.
Hw,l HW,N?:
W, W,
w=| T LN (3.40)
WN2+1,1 WN2+:LN3

Since there is only one outpi3 is equal to 1.

The adaptation law of the NN weights are found by:

V=—rwnngt%x%q EPEHJNVTWWJ:F} P b
6 8

. g : o]

E— [Hg} Phir-o v D<)+ytv{§} EP[ED”NV] (3.42)

where T,ine aNd Vi, @re learning rates of the inner and outer layersNN

W% (3.41)

respectively. ' is a matrix that contains derivatives of the sigin@ector

described in equation (3.38).

0
90(z)
o(z)= ‘951 (3.43)
0 aa(ZNZ)
| 0z,
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Details on the NN architecture and derivation ofdtion rule can be found in
[97], [99], [100], [101], and [102].

The performance and the acceptability of SHL NN @uler are related to the
performances of its training algorithm [3]. Themefahe selection of acceptable

values forT, (learning rates) and (modification term) in adaptation

learning * Ylearning
rule are tuned via trial-and-error simulation ségdi The performance of missile
longitudinal controller with these neural networkctdtectures will be given in
Chapter 6.

Similar architecture of this network is also apglie the directional autopilot.
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CHAPTER 4

ADAPTIVE NEURAL NETW ORK BASED DIRECTIONAL
AUTOPILOT

In this chapter, the directional autopilot with NiMchitecture is explained. The
ANN based model inversion is now applied on thesit@sdirectional control. It is

carried out by using a yaw angle for the contralploYaw angle is calculated by
integrating yaw rate mapping from a LOS rate on yhes axis that comes from

LOS guidance law to rate command [87].

The target used in this case study can only moveeiirectional plane (x-y plane).
Therefore, the cruise missile is designed to flytloa x-y plane with respect to the
target trajectories (terminal phase) or plannedpmays (Mid-Course Phase). This
operation can be performed by using a directionébilot. This autopilot allows

the missile to turn to a guided heading and to hisigposition at that heading. It

uses directional guidance command for the requiredement of the cruise missile.

4.1 Neural Network Based Inversion Architecture

This section includes the architecture of the ANhblemented dynamic model
inversion on the directional autopilot applicatidh.is based on neural network
applications similar to the preceding chapter. Tdrishitecture is shown in Figure
4.1. The architecture is based on an ACAH for diogal loop which is proposed in
[87]. Command filter and PD error dynamics are aldesigned with the

consideration of the timescale separation.
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Figure 4.1 Directional Autopilot

Equation (3.4) is also used for the directionabpilot in order to derive the error
dynamics. From the directional autopilot architeetin Figure 4.1, the pseudo

control,U, is found by the following equation:
U, =Upd _¢/ +y, ¢ —Uad _¢ (4.1)

Uad_y is the adaptive signal that represents the newwaork output on the yaw
plane. The proportional plus derivative contribatis shown byUpd y, and

Deom_ ¢ Is the filtered Euler angular acceleration command

According to attitude command attitude hold implenagion, U, is equivalent to
the desired Euler angular acceleration for yaw. el®v we need the body angular
accelerations in equation (3.4), so it will needototransformed to the body axes

reference frame [25]. The transformation has beadenin equation (3.6).

58



The proportional plus derivative dynamics for tla@wplane is obtained by:
Upd_l// =Kp ((//oom_f _l//)+ Kd (wcom_f ‘40) (42)

The gainsKp andKd are used to define the error dynamics. These digsaare
designed similar to those of the longitudinal channThe selection of this

parameter has been explained in Section 4.1.1.

The inversion errog, is defined in equation (3.9). So yaw angular aregion is

defined as:

g=U,+¢, (4.3)
Combining equation (4.1), (4.2), and (4.3) we afntai

Wem_ = @)+ KD W =)+ Kd oo ~9)=Vad _y ¢, (4.4)

On the right hand side of equation (4.4), netwasknpensation error is generated.
In the ideal case, it is equal to 0. It is expedtest ANN output cancels the model
inversion error. If it occurs, consider the desieedr dynamics (i.e. neural network

output cancels the inversion error), equation (Beomes:
(wcom_f _wdesjred )+ Kp (l//com_f _wdesjred )+ Kd (wcom_f _l/ldesjred): 0 (45)
Details of neural network architecture will be désed in Section 4.2.

4.1.1 Command Filter Design and Error Dynamics

The command filter must be slower than the missii®r dynamics on the yaw
attitude control. Therefore, the design procesinslar to those on the longitudinal

channel. Firstly, the yaw attitude tracking ererdefined agy =y, -¢ and the

Laplace transform is performed.
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S +Kd 6 +Kpl =Uad_¢~¢,
0 (4.6)

szw + (2 gerr |jwnerr) B;w +Wnerr2 W :Uad—w _84(/

Then the transfer function from the inversion emwompensation of yaw motion to

yaw attitude error becomes:

O 1 4.7)
Vad_y-¢, )9 s +(27,, s +w,,’

where w,, denotes natural frequenci, is damping ratio of the error dynamics.

From equation (4.7), the relationship for error ayrics can be taken as an under-

damped second-order system similar to methodoleggribed in Section 3.2.2.

Using time scale separation, the command filter tnmas’e slower response than
those of error dynamics. Finding the error dynano€ghe missile, the natural
frequency and damping ratio of the missile frai€)(on directional plane must be
found. According to [93], since the missile is syatnt in the x-z and x-y planes,
the missile airframe natural frequenaya) and damping ratiofs) for directional

motion can be found as:

1 Xeg 2
5 Cn,[? +CY’BE pV missile Sef Iref
- — = rad 4.8
W =N, = - = 625180/ (4.8)
%CYﬂ PV nisiie Sef Wy
Car = YoV = MViissie =03 (4-9)

2N X
A ;[Cnﬁ +Cyp Ir;?} oV 2nisile Sref Iref

2%

z

Aerodynamic parameters in the above equations awedf using in the trim
conditions. After finding missile airframe natufeéquency for directional channel
from equation (4.8) and damping ratio from equa(®®), the error dynamics can

be determined.
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According to reasons similar to those describe®éattion 3.2.2, the calculated

damping ratio can not be selected for missile timaal dynamics.

As a result, we consider the 2% design criteriastgdtling time similar to those for
pitch attitude. Then the desired damping rafi@)(is selected as 0.75 instead of 0.3.

Since actual natural frequency is generally natidible, the error dynamics is
considered slower than the missile dynamics. lukhbe noted that it has similarity

with longitudinal autopilot. So they are selected dbeying the following criterion

(*):
Wnerr < WAF and Zerr = ZAF (*)

To sum up, by using relation (*), equation (4.6)l 48.15), the parameters related to
error dynamics are tabulated in Table 4-1.

Table 4-1 Missile Parameters Related to DirectiondError Dynamics

Airframe Natural Frequencyvr) 6.25 rad/sec

Airframe Damping Ratiollar) 0.75

Error Dynamics Natural Frequency

5.0 rad/sec
( Wnerr )

Error Dynamics Damping Ratidgf) 0.75

Error Dynamics Settling Timegft 1.07 sec

Error Dynamics Maximum % Overshoot 2.84

Error Dynamics Rise Time|t 0.73 sec

Kd =2[,, [w,,, 7.50
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nerr

Next, making the command filter response slower maned to error dynamics,
command filter transient response characteristéns loe determined according to

the relations (**):
Wee <W,  and g =4, **)

To sum up, by using relations (**), equation (3,18)e parameters related to

command filter are tabulated in Table 4-2.

Table 4-2 Directional Command Filter Parameters

Natural Frequencywcr) 4.35 rad/sec
Damping RatiodcF) 0.75
Settling Time (3 1.23 sec
Maximum % Overshoot 2.84

Rise Time () 0.84 sec
Veoms _ W

(4.10)

=— >
Yoom S +2{ceWer S+ Wee

If the determined values are inserted in equatdob(), the command filter transfer

function is obtained as:

Yoot _ 435 B 189225

Won S +(20435[D75)s+ 435 s +6.5250+18.9225

(4.11)
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4.2 Online Learning Neural Network Architecture

The neural network design process in Section 3.3pglied to the directional
autopilot. Numerical results using the nonlineaDGF simulation will also be

presented and compared for each network in Chépter

4.2.1 Linear In the Parameters Sigma-Pi Neural Netark

Here neuron interactions are also provided usirani&cker products [19] and Wi's
constitute a vector of neural network weights. Thasis functions Vi are
constructed by grouping normalized inputs into ¢hategories due to similar

reasons that were described in Section 3.3.1.
The first group is defined as:
C = |_Bia-S Viissle Vmissi|e2J (4.12)

The second group consists of normalized directiamal lateral state variables, the

pseudo control and a bias term.
CZ:[Bias vV pr ey UwJ (4.13)

Similar to longitudinal NN, squashing function fdirectional NN used in this case

study is:

Sguashing Function = ((1%] - 0.5} 2 (4.14)
+e ¢

The third group is used to approximate effectsrangformation between the body

frame and the inertial frame by including changekeading angle.

C, =[Bias ¢] (4.15)
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It should be noted that for all categories, bidsesare selected according to scaled

(normalized) values of the inputs.

Finally, the vectors of basis functions are comgoskall possible products of the
elements belonging to each group of inpgy, C;, andCs3) and are related to each

other via the Kronecker product.
B =kron(kron(C,,C,),C,) (4.16)

Similar to the longitudinal network, the relationsbetween the inputs and outputs

of the directional network is established by thikofeing equation:
U , =W B(X,U,, bias) (4.17)

By equation (4.17), the model inversion error candecurately produced at the
network output. Adaptation of weights in the neunsftwork is derived using
Lyapunov theorem similar to that described in Caa@ The adaptation rule is

formed as:

- gl gl
W=-T_. | (PHCB- < | 0P [y (W 4.18
learning I:Ew:| w ﬂl:w:l//:| Eb” ( )

In Section 3.3.1pb was defined in equation (3.29) afRdwas defined in equation

(3.31). Equation (4.19) represents the error dynami

FHO ing}[ﬂmad—w‘fw):Afﬁg}fb@ad_w—ew) (4.19)

g] [-Kp -

The selection process of acceptable values for fiked parameters in the
directional neural network such Bgaring (l€arning rate) ang (modification term)
are identical to those in Chapter 3. Detailed exaimns are given in [4], [9] and
[48].
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4.2.2 Single Hidden Layer Neural Networks

The architecture of this network is establishedilainio those described in Section
3.3.2.

It has an output/ad_y to eliminate model error in the directional channe
N2 N1
Uad _¢ =byp,, + 3 W, ,p{twv,j 2V XJ (4.20)
=1 i
The scalar functiow; is hidden layer activation function, selected ot to those

in Section 3.3.2.

The relation between input and output of the SHL & be established in matrix

form as:
Uad _g(W,V,X)=W"o{VTX) (4.21)

In this architecture, the inputs to the networksakected as:

X:[bv w w wcom_f wcom_f wcom_f Uad_l// ”Z”FV r] ' (422)

The number of inputs are equal to 10 (Né=10) and b> 0. || Z || is the frobenius
norm of the Z matrix that contains all tunable wigparameters. In this

architecture, the same definitions are used whiefewescribed in Section 3.3.2.

Similar to longitudinal network, the adaptation lafithe directional neural network

weights are obtained as:

V = T iring [%x EEQ PHW' & +,u[“[ } P DDH m/] (4.23)

|
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< §

W = Y eing [Hg EP[H)[@J—J’W/TD()tUEV{ } EPE[D”EN] (4.24)

where e nng and Vi, @re learning rates of the inner and outer layerale
networks respectively, ., .o » Vieaming (I€Qrning rates) ang (modification term) in

adaptation rule are tuned via the same methodaleggribed in Section 3.3.2.

The performance of missile directional controlleithwthese neural network

architectures will be given in Chapter 6.
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CHAPTER 5

BACKGROUND LEARNING IMPLEMENTED NEURAL NETWORK
ADAPTATION

The approach defined in the preceding chapter®uolsethe instantaneous states to
tune the adaptive gains [14]. Hence, the errormpatarization has no real long term
memory. That is, the adaptive element rapidly ftgges adaptation profile when
the system changes domain of the state spaceAg44. result, they can not show
any improvement in performance when performing ro@ees that have been

performed previously.

In this chapter a new approach proposed in [14],[[74] is explained, known as
Background Learning Neural Networks. This appl@attan be separated into two:
(1) Online Learning and (2) BL via recorded data.other words, it combines

distinct current online learning algorithms witlBh concept.

5.1 Background Learning Implemented Neural NetworkArchitecture

In this method, recorded data is also used fomlegr This increases available
information for learning, thus give better resultshelps to overcome the ‘rank-1’
limitation (Section 5.1.1) and shows the propertéssemi global learning [73].

Faster adaptation can be obtained for the varigtiorthe flight dynamic regime. It

provides the additional DOF to improve the contsgktem performance when
subsequently repeated commands are given [14].eSiecral networks weights
will indicate quicker convergence to constant vajue can be concluded that the

NN is able to adapt to the unknown model errorgiasthen BL is used.
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This approach has been applied in the longitudihahnel of the inner loop attitude
controller of the altitude hold autopilot and also the directional NN of the

directional autopilot. Numerical results obtainednfi nonlinear 5-DOF simulation
studies will be presented in Chapter 6 with theultesscompared with SHL NN

architectures.

5.1.1 Rank-1 Limitation

Fact 1: A matrix of rank one has the simple form A=u.Where A is (n x m)

matrix, u is (n x 1) vector and v is (m x 1) vector

According toFact 1, the rank of the NN weight dynamic is always atstrib This
is the case when only current data is used for Mdishing. Thus, Neural Network
adaptation law can search its weights only along dinection in the underlying
vector space at that instant [74]. It causes ndopmance improvement on the
maneuvers that have been performed previously.ilBétexplanation related to this
topic can be found in [14], [73] and [74].

5.1.2 Combination of Online & Background Learning Law

Johnson et al [73] explained methods for BL that lsth recorded and current data
concurrently. However, BL yields undesirable eféecin the response of online
learning in these methods. Chowdhary et al [74vedothe elimination of this
problem by using orthogonal projection method. s tstudy, the method of
orthogonal projection is used for BL law. Onlineaieing part has SHL NN

architecture, which was described in Sections ZaB4.2.2.

According to [74], the required conditions for mearaction between online and BL

response can be expressed as:

W, 0 =0 (5.1)
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vIT X =0 (5.2)

B " learning

In the above equation, the subscript B denote8thlw. From equation (5.1) and
(5.2), the orthogonal projection of the learning or the W and the V matrix of
the SHL NN can be found as:

. O'O'T .
WB = (l _EJ NVO (53)
v _ | rIearning D( D(T D]_Iearning W
s =| | ——5 o (5.4)
X D]_Iearning |:Irleaming D(

In the above equation, the subscfiptienotes the SHL NN learning law.

BL trains the SHL NN using both recorded data andent data concurrently to
improve global learning behaviour of the NN. ItabBnsures long term adaptation.
In this method, it is provided by current data #mel data recorded that satisfies the
selection criteria. Total BL can be found by sumgnihe individual contributions
of this recorded data point adaptation and themgathe orthogonal projection of

total contribution into the null space of the oeliearning.

The combined online and BL law can be defined as:

. . . oo’ P .
W =W, +W, = [ | ——— | Wy, |+W, (5.5)
0 0) =
v _v +V‘ — | rIearning D( D(T D]-Iearning : V +v (5 6)
= Vg o XT [I]-|eaming D]-leaming X i=1 > ° .

If equation (3.41) and (3.42) are inserted intoatigum (5.5) and (5.6) respectively,

the adaptation of the combined online and BL lavesabtained as follows:
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“|(-5)

S tiratan )

X'

v - [{I _ rIearning

(5.7)
+ (_ Viearning [ﬁS[ﬁO’—Cf' v’ D<)+ ﬂ[ﬂ]% |XN])
X X My ) 2 X, W' @, -A, )W @]
T earring D(]D'Zﬂ: e +ﬂ[m(WT [, ‘Ai}‘ v
(5.8)

+(_rlearning
Here,
S=| - EP[E)
_g_
el
S= l{ (P [
Y]
A =6-U,
Ai =lﬁ‘U¢

X sW' @ + s v))

is residual signal for longitudinal channel

is residual signal for directional channel

is stored estimate of the model error for longjival channel

is stored estimate of the model error for di@mwil channel

When BL is on, the difference between the stordinase of model error and the

current estimate of model error reduces with tifriee above equations indicate that

the NN is concurrently adapting to various datanfsi exhibiting semi global

learning [14].

Detailed description and proof of this NN architeet can be found in [14], [73]

and [74].

70



5.1.3 Selection of Data Points for Background Leaing

BL selection points are part of the design of tleenbined online and BL NN

architecture [74]. In this study, the data poirlesgon criterion is chosen as:

(X_XF’))(T[)EX_XP)MX (5.9)

In the above criterion, the subscript p denotesitliex of the last data point
recorded. It implies that new points are storedvelver the difference between the
current input and the last recorded data pointéatgr than some specified amount
[73]. In other words, the data candidates for gfermust be sufficiently different
from the last data point recorded [74]. Detaileghlaration on some methods of

selecting data points can be found in [73].
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CHAPTER 6

SIMULATION RESULTS

In this chapter, we will examine the performanckthe adaptive controllers using
the nonlinear 5-DOF missile simulation code. ACAdHdesired in both autopilots.
The results of NN architectures on missile autdpilare included here. For these
purposes, NN algorithms have been tested in twierdifit scenarios in order to
evaluate the performance of the implemented NN rdlgn. The results are
obtained by modeling and inverting the missile d@bthe trim condition, the

parameters of which are given in Table 3-1.

6.1 Comparison of LIP NN & SHL NN

In the first simulation scenario, the objectivedgpresent comparisons of the results
of the linearized model inversion controller with®N, and online learning neural
networks (LIP NN and SHL NN) applied adaptive coftérs for longitudinal and
directional channel. The capability of adaptingetwors caused by the linearized
inverted model is demonstrated. The inversion ezommpensation is evaluated by
comparison of the LIP NN and SHL NN results.

The results obtained for three different contrallare shown in Figures from 6.2 to
6.16. The missile is commanded to its first waynpain the x-y plane and certain
altitude on the —z direction, then required headingymand is calculated on x-y
plane and altitude command is generated accordiriget defined altitude profile.
Required pitch angle command for the inner loogakulated from the altitude

error that is generated from the outer loop. Traplys given below represent the
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comparison of the commanded input and output tiamntissile performs for three

different controllers.

The simulation trajectory is shown in Figure 61lisla scenario where the missile

reaches an altitude following the terrain and finhltting a moving target.

3D Missile/Target Orbit
PN
- | SO
B P U
T Lo Lo S
- L= I N N I
-7 ! L-71 -7 RN N
- L-"1 T = T~ [
450 — _ - _ - | ™o N
_L- I i o Tl e
400 -~ : T I 4/,4‘\\ N N SRS
B S A | L |—Missile| T~
s /"’/\r L,/T ! ! T~ || =—Target \‘r i
- - n | ~ 1 < RS
300 //"V [ I L | | :«\ Pe e ! \“
e LT R e A
250 -7 - L=" L T | ™~ IR [N ! \\‘ >y
3 Iy Y | i Y N A G
£ L Lo | N N S o Sl
N 200 oLt T AR N TR !
[P o S S O
150 : | T :\\\ N \{
T ~ T
I S ~ -
100 r L ~ ! ~ !
I N
- v o~
I N I
L | I
o [
4 L |
x 10"

Figure 6.1 Missile and Target Trajectory

6.1.1 Pitch Angle Response

Figure 6.2 shows the missile pitch angl.die) response with the associated
command fcm 1) and Figure 6.3 shows the errék(). It is observed that slightly
better performance is achieved when the SHL NN dbasaptive controller is used.

On-line learning NNs improved the performance @flihear inverted controller.
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Figure 6.3 Pitch Angle Error (f«r) Comparison
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6.1.2 Yaw Angle Response

In Figure 6.4 and Figure 6.5 the performance ofciwtrollers can be observed for

the yaw angle response. It is observed that the SHL eliminates the model
inversion error better than the LIP NN.
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Psi Comparison without NN | = missile response
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Psi Comparison with LIP NN | —— missile response
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S

Psi[deg]

=)
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Figure 6.4 Yaw Angle {») Response Comparison

In Figure 6.5, error compensation for yaw chansetiemonstrated and both NN

performances are acceptable. Since model trackimy & high for yaw channel
inversion controller, using NN cancels these errors
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Psi Error Comparison 2
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Figure 6.5 Yaw Angle Error (yer;) Comparison

6.1.3 Altitude Response

In Figure 6.6 and Figure 6.7, the altitude holdtoaier performance is shown for
cases with LIP NN, SHL NN and without a neural natew The performance of the
missile with SHL NN is seen to be better. Espegiadixamining the results of
Figure 6.7, the error profile for SHL NN betweere tfiltered command and the
missile altitude is preferable. Examining Figuré,&@he missile could not follow the
desired trajectory, since nonlinear inverted cdlgrs without NN commanded high
deflection angles which are out of range on botanclels and they could not be
performed. Another advantage of the NN implemeaotato nonlinear controller is
seen here, NN eliminates input saturations. Assaltethe missile could follow the

planned altitude and the mission was accomplished.

76



Altitude (h) Comparison
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6.1.4 Missile Mach number

Figure 6.8 shows that the Missile Mach number (M)xontrolled by the Thrust
Model described in Section 2.5 and held constaourad the cruise velocity
corresponding to M = 0.8. From this figure, it &g that the system follows the M

command better when a SHL NN is used.

Missile Mach Number Comparison
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Figure 6.8 Missile Mach number
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6.1.5 Adaptation Response

From Figure 6.9 to 6.12, the adaptation performaridbe two different ANNs are

shown. Adaptation signals generated from the SHL iNNe lower bounds than
those of the LIP NN. In addition, if Figure 6.11daRigure 6.12 are compared, it
can be observed that the SHL NN weights on théhgitingitudinal) channel have

faster convergence properties, and adaptationdar(gdirectional) channel is faster.
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Figure 6.9 Adaptation signal in pitch channel Jad_6)
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Psi Adaptation Comparison
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Figure 6.12 SHL NN Outer Layer Weights (W) in pitchand yaw channel

6.1.6 Actuator Deflections

In flight controller design, the measure of theaopilbt command and rate is

important and they must have limits in order toidvicom actuator saturations and
flight instability. Although the actuator dynamiag&re not modelled, the deflection
and deflection rates are limited in the simulatioorder to see the relation between
the behaviour of the commands and the missile resppd=rom Figure 6.12 to 6.16,
it is observed that the actuator deflection angle m@te commands for the required
altitude and guided heading angle command are bdeitior a typical actuator

system when NN applied to nonlinear controller.Fifjure 6.13 and 6.14 are

observed, it can be seen that rudder and elevaftection angle was out of range
and in Figure 6.15 and 6.16; elevator and rudd#éecten rates were too high and

unstable when NN was not used, and this conditearsed sudden changes in the
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motion of the missile and so caused instability. tba other hand, the system

gained stable characteristics by using NN.

Elevator Deflections Comparison

5 T T T T
| | | |
| | | |
| | | |

L1 i R CT T T TSIt T R
| | | |
| | | |

] 4 [ 1o [ 11
| | | |
| | | |
| |

2 ------ B —elevator WithLIPNN | - - == — - = — 4 -+-H—
| — elevator with SHL NN |

[l [ R elevator withoutNN | _ _ _1_ _ _ _ _ | R R

elevator deflection [deg]

time [sec]

Figure 6.13 Elevator Deflections with Different Cotroller
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Rudder Deflections Comparison
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Figure 6.14 Rudder Deflections with Different Contoller
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Figure 6.15 Elevator Deflections Rate with DifferenController
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Rudder Deflections Rate Comparison
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Figure 6.16 Rudder Deflections Rate with DifferenController

6.2 Comparison of SHL NN & BL implemented SHL NN

In the second scenario, the target of interesi @résent comparisons of the results
of the linearized model inversion controller withdIN, on-line learning SHL NN
and BL implemented SHL NN applied adaptive congnalifor longitudinal (pitch)
and directional (yaw) channels. Using NN for thielpiand yaw channels eliminate
the inversion errors. In addition, the results shtvat background learning
implementation enhances the performance of the tagagontroller when the
missile performs a maneuver that has been recondig@ past. BL implementation

to an online network is described in Chapter 5.

The ability of the algorithms is shown from Figusel8 to 6.34. The missile is
commanded by a sinusoidal heading angle input enxty plane whereas its

movement is determined by sinusoidal altitude inputthe x—z plane. Sinusoidal
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inputs are given to the missile autopilots; thigetyf maneuver is mostly difficult to
perform by a missile. On the other hand, the ainsedécting such a scenario is to
test the ability and observe the performance ofcthr@rollers when it encounters a
repeated maneuver. Required pitch angle commanthéoinner loop is calculated

from the altitude error that is generated fromaheer loop.

The missile trajectory is illustrated in Figure B.1t is a scenario where the missile

performs a repeated maneuver on the x-y plane anplane.

3D Missile Orbit
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Figure 6.17 Missile Trajectory

6.2.1 Pitch Angle Response

Figure 6.18 shows the missile pitch anghgigie) response with the associated
command §.om 1) and Figure 6.19 shows the errég{). According to these results,

on-line learning NNs improved the performance og&éir inverted controller. It is
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observed that better performance was achieved wigeBL implemented SHL NN
based adaptive controller was used. Backgroundnilegraddition to on-line
learning SHL NN improved the error compensation.e Tability of the BL
implemented SHL NN adaptive controller under a clExdongitudinal missile
motion showed better results. By recording past dgaid using those for NNs
weight adaptation process, it is seen that theralbet performance improves and

exhibits long term learning.
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Figure 6.18 Pitch Angle @missiie) Response Comparison
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Teta Error Comparison
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Figure 6.19 Pitch Angle @«) Error Comparison

6.2.2 Yaw Angle Response

Plots in Figure 6.20 and Figure 6.21 present thilopaances of the controllers for
yaw angle response. It is concluded that the BUemgnted SHL NN eliminates
the model inversion error better than the SHL NNHeading control. Hence BL
augmentation provides long term memory and showsamement in performance

of the controller when performing maneuvers thathiaeen performed previously.
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Figure 6.21 Yaw Angle () Error Comparison
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6.2.3 Altitude Response

In Figure 6.22 and Figure 6.23, the altitude hotohtmoller performance of the
missile is shown for cases with SHL NN, BL implerreechSHL NN and without a
neural network. Especially, upon examining the lteson Figure 6.23, the error
profile for both NNs between the filtered commandl dhe missile altitude has
stable oscillation characteristics when sinusoidg@ut is commanded for both
controls. Since classical gain control is applied the outer loop of altitude
autopilots, the improvement is not observed onrgsrofile. If NN application was

applied to the outer loop of the autopilot, théwadte response might improve.
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Figure 6.22 Altitudes f) Following Comparison
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Altitude Error Comparison
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Figure 6.23 Altitude Error (her) Comparisons

6.2.4 Missile Mach number

Figure 6.24 indicates that as time proceeds, Maofey within a range between
0.75 and 0.85. Missile Mach number (M) is also oalied to hold cruise velocity

around 0.8 M. The control algorithm varies M retate the altitude change. From
this figure, it is concluded that M variation igistactory and similar to each other

as expected for all controllers.
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Missile Mach Number Comparison
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Figure 6.24 Missile Mach number

6.2.5 Adaptation Response

From Figure 6.25 to Figure 6.30, adaptation peréoroe of the two different ANNs
are shown. If BL augmented and without hidden (W) @uter (W) layer weights
graphs are compared, it can be observed that thenBlementation provides faster
convergence properties and long term adaptatieveaihts on both channels due to
retaining the adaptation in the history. As a redbke adaptation signal generated
from BL augmentation demonstrates sudden changegafe channel in Figure
6.26 to cancel unknown model errors without affegtthe online adaptation. In
addition, BL algorithms overcome the rank-1 limiatof weights. This allows the
learning law to search for the ideal NN weightsngl@ny direction in the whole
parameter space for various flight conditions witeln be seen in Figure 6.28 and
6.30.
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6.2.6 Actuator Deflections

The measure of the autopilot command and rate poitant. Although the actuator
dynamics were not modelled, by observing the grdpm Figure 6.31 to 6.34, the
relation between the behaviour of the commandsthadnissile response can be
realized. In Figures 6.31 and 6.32, it is obsertieat the actuator deflection
responses of both controllers for the sinusoid#tbide and heading angle command
are mostly suitable for a typical actuator systelowever, looking at the response
of BL implemented SHL NN controller, deflection eatalues are high. The Pseudo

Control Hedging could be used to eliminate thisopgm of the controller.
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Figure 6.31 Elevator Deflections with Different Cottroller
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Rudder Deflections Comparison
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Figure 6.32 Rudder Deflections with Different Contoller
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Figure 6.33 Elevator Deflections Rate with DifferenController
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Rudder Deflections Rate Comparison
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Figure 6.34 Rudder Deflections Rate with DifferenController
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CHAPTER 7

CONCLUSION

This thesis presents the design and evaluationisdile autopilots using different
neural networks structures and demonstrates thsibity of applying these

approaches to missile controller design. Various Iddded adaptive controllers are
studied on generic cruise missile autopilots. Trehigecture of the autopilots is
based on feedback linearization (i.e. model ineesi System modeling

uncertainties on missile dynamics result in contt@cking errors due to
approximate model inversion. NN adaptation attentptscancel the inversion

errors.

LIP NN, SHL NN, and BL implemented SHL NN architects are applied to
missile altitude hold and directional autopilotscencel these errors by observing
the tracking error between the commanded inputht® missile and missile
response. LIP NN and SHL NN uses only the curréates and tracking errors to
tune the adaptive gains, on the other hand BL implged SHL NN uses recursive
error based NN training by both the instantaneousracorded states. To examine
the NN effectiveness on inversion errors, simulaibave been performed, but two
of them have been chosen, which are related tedbpe of this thesis. According
to results obtained from nonlinear 5-DOF simulatstndies, implemented NN
algorithms have become successful on high subsounise missile autopilots. From
the first scenario, it is observed that SHL NN wvatharbitrary number of neurons is
better to cancel the errors than a LIP NN applied.oThese results do not
contradict with the results in [54] and [55]. Iretsecond simulation scenario, the

improvement of SHL NN implementation with aiding ckground learning
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algorithm in its weight adaptation process has lmonstrated. The resulting BL
adaptation retains the important information in plast which increases the rank of
the NN training law (i.e searching NN weights mdhan one direction) and
improves the performance of the control system tigiry DOF. Moreover, BL
algorithm provides concurrent adaptation to varialzda points; therefore BL
implemented SHL NN exhibits semi global learningon€equently, missile
controller performance is improved when the mispggforms a maneuver that is

encountered in the history of the flight.

It can be seen that ANN controllers can accompdippropriate compensation of
modeling error in missile control. The differendesthe responses of controller
performances with and without these networks shmat tising ANN in nonlinear

controllers improves performance. The availabitify efficient and fast learning

algorithms such as BL algorithm improves the NN f@®nance. This design

process avoids the need for pre-computation, gfoaimd interpolation between a
large numbers of feedback gains of a typical maésailtopilot and compensates for
nonlinearities and model uncertainties. In otherrdsp these controllers help
avoiding the time-consuming and tedious gain scleglyprocess. Especially, this
control method can be beneficial for missiles wWatge flight envelopes, since the

conventional gain scheduling techniques ultimaitetyeases design time and cost.
The following recommendations can be given for fettesearch on this topic:

» The degree of freedom of the flight simulation mozkn be increased. (i.e

roll motion and roll autopilot can be added to $iaulation)
* Some error modeling can be performed for missifesges.
* The seeker can be modeled.

« Earth's curvature and rotation can be modeledhan ¢ase, flight line will
be always parallel to the earth surface. Relatedribegal and Coriolis
accelerations due to Earth rotation must be také#n account in the

equations of motion with respect to inertial refere frame.
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Atmospheric disturbances can be modeled.
A wider research can be performed for alternativid@nce algorithms.

Although adaptive control can eliminate the needafccurate aerodynamic
data, more accurate simulation which is verifiedhwiight test results is

needed to validate the design.

Actuator model can be added to the simulation esel&o Control Hedging
(PCH) technigue can be applied to the autopilotehod

100



[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

Avcioglu, H. Tolga, “A Tool for Trajectory Planning an@fformance Verification
of Cruise Missiles”, M.S Thesis Study at METU Agrase Engineering
Department, Sept 2000.

Napolitano Marcello R., Kincheloe M., “On-line Ledmg Neural Network
Controllers for Autopilot Systems”, AIAA /Journalf ciGuidance, Control, and
Dynamics, Vol 33 No 6, Nov/Dec 1995.

Johnson, E. N., Kannan, S. K., “Adaptive Traject@gntrol for Autonomous
Helicopters”, Georgia Institute of Technology Schob Aerospace Engineering
Publications, 2005.

McFarland, M. B., Calise, A. J., “Neural NetworksdaAdaptive Nonlinear Control
of Agile Anti air Missiles”, AIAA/ Journal of Guidace, Control, and Dynamics,
Vol. 23 No. 3, May/June 2000

Calise, J., Rysdyk, T., “Nonlinear Adaptive Fligi@ontrol Using Neural
Networks”, Georgia Institute of Technology Schodl Aerospace Engineering
Publications, 1998

Steinberg, M. L., “Comparison of Intelligent, Adagt, and Nonlinear Flight
Control Laws”, AIAA/ Journal of Guidance, Contralpd Dynamics Vol. 24, No. 4,
July—August 2001.

Stevens, B.L., Lewis, F.L., “Aircraft Control andnh&ilation”, John Wiley & Sons,
Inc., New York, 1992

Johnson, E. N., Calise, A. J., “Limited Authoritydédptive Flight Control for
Reusable Launch Vehicles”, AIAA/ Journal of Guidan€ontrol, and Dynamics,
Vol. 26,No. 6, Nov-Dec 2003, pp. 906-913.

Calise, J., Sharma, M., “Adaptive Autopilot Design Guided Munitions”, AIAA
/Journal of Guidance, Control, and Dynamics, VoIN85, pp. 837-843, Sept/Oct
2000.

Taeyoung, L., Youdan, K., “Nonlinear Adaptive FlighControl Using
Backstepping and Neural Networks Controller”, AlAAburnal of Guidance,
Control, and Dynamics, Vol. 24 No. 4, July/Augu8d2

Nesline, F.W., P. Zarchan, "Why Modern Controll&s Unstable In Practice",

AIAA/ Journal of Guidance, Control, and DynamiclV7, No. 4, 1984, p 495-
500.

101



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Isidori, A., “Nonlinear Control Systems”, Third Eain, Springer-Verlag, London,
1995.

Kim, B. S., Calise, A. J., “Nonlinear Flight ConitrtJsing Neural Networks”,
AIAA /Journal of Guidance, Control, and DynamicsplV20 No 1, pp. 26-33,
Jan/Feb 1997.

Chowdhary, G., Johnson, E. N., “Adaptive Neuralvidek Flight Control Using
both Current and Recorded Data”, Proceedings of 20@7 AIAA Guidance
Navigation and Control Conference, Hilton Head, t8aCarolina.

Schumacher, C., and Khargonekar, P. P., “StabAlitglysis of a Missile Control
System with a Dynamic Inversion Controller,” AlAAJournal of Guidance,
Control, and Dynamics, Vol. 21, No. 3, 1998, pp3-5815.

Brinker, J. S., and Wise, K. A., “Stability and Fg Qualities Robustness of a
Dynamic Inversion Aircraft Control Law”, AIAA/ Joual of Guidance, Control,
and Dynamics, Vol. 19, No. 6, pp. 1270-1277, 1996.

Lewis, F. L., Yesildirek, A., and Liu, K., “Multilger Neural-Net Robot Controller
with Guaranteed Tracking Performance,” IEEE Tratisas on Neural Networks,
Vol. 7, No. 2, March 1996, pp. 388—-399.

Farrell, J. A., “Stability and Approximator Convergce in Nonparametric
Nonlinear Adaptive Control,” IEEE Transactions oauxal Networks, Vol. 9, No.
5, 1998, pp. 1008-1020.

Unnikrishnan, N., Balakrishnan, S. N., “Missile Igitudinal Autopilot Design

Using a New Model-Following Robust Neuro-Adaptiver@oller”, Proceedings
of the 2004 AIAA Guidance, Navigation, and Contfbnference, Providence,
Rhode Island.

Padhi, R., Balakrishnan, S. N. “Implementation dbtPCommands in Aircraft
Control: A New Dynamic Inversion Approach”, AIAA @Glance, Navigation, and
Control Conference, Austin, Texas, Aug-11-14, 2003.

Khalil, H., “Nonlinear Systems”, Prentice Hall, ln&Second Edition, New Jersey,
1996

Chen, F. C., Khalil, H. K, “Adaptive control of nlimear systems using neural
networks”, International Journal of Control, Vob,3No. 6, pp. 1299-1317, 1992.

Yesildirek, A., Lewis, F. L., “Feedback linearizati using neural networks”,
Automatica , Vol. 31, No. 11, pp. 1659-1664, 1995.

Calise, A., Lee, S., and Sharma, M., “Developmehiaoreconfigurable flight
control law for tailless aircraft,” AIAA/ Journal foGuidance, Control, and
Dynamics, Vol. 24, No. 5,2001, pp. 896-902.

Rysdyk, T., Calise, J., “Adaptive Model Inversiofight Control for Tiltrotor
Aircraft’, American Helicopter Society $4Annual Forum, May. 20-22 1998

102



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Leitner, J., Calise, A. J., and Prasad, J. V. Rndlysis of Adaptive Neural
Networks for Helicopter Flight Controls”, Journaf &Guidance, Control, and
Dynamics, Vol. 20, No. 5, 1997, pp. 972-979.

McFarland, M. B., Calise, A. J., “Neural-AdaptiveiNinear Autopilot Design for
an Agile Anti-Air Missile”, AIAA Guidance, Navigatin, and Control Conference,
San Diego, California, July, 1996.

Fu, Li-Chen, Chang, Wei-Der, Yang, Jung-Hua and ,K@ie-Son, “Adaptive
Robust Bank-to-Turn Missile Autopilot Design Usihigural Networks”, AIAA/
Journal of Guidance, Control, and Dynamics, Vol.126. 2, March/April 1997.

Johnson, E. N., “Limited Authority Adaptive Fligh€ontrol’, Ph.D. Thesis,
Georgia Institute of Technology, 2000.

Hunt, K. J., “Neural Networks for Controller SystemA Survey”, Automatica,
Vol. 28, No. 6, 1992, pp. 1083-1112.

White, D. A., and Sofge, D., “Handbook of IntelligeControl”, Van Nostrand
Reinhold, New York, 1992, Chaps. 3, 5, 8, 12, 13.

Balakrishnan, S. N., and Biega, V., “Adaptive CriBased Neural Networks for
Aircraft Optimal Control,” AIAA/ Journal of Guidamg Control, and Dynamics,
Vol. 19, No. 4, July- August 1996, pp. 893-898

Lian, K.-Y., Fu, L.-C., Chung, D.-M., and Kuo, T.;SAdaptive Robust Autopilot
Design for Bank-to-Turn Aircraft,” Proceedings ofm&rican Control Conference,
1993, pp. 1746-1750.

Lane, S. H., and Stengel, R. F., “Flight Controkige Using Non-Linear Inverse
Dynamics”,Automatica, Vol. 24, No. 4, 1988, pp. 478-483.

Romano, J. J., and Singh, S. N., “I-O Map Inversitero Dynamics and Flight
Control,” IEEE Transactions on Aerospace and Ebeotr Systems, Vol. 26, No. 6,
1990, pp. 1022-1029.

Calise, A. J., Lee, H., and Kim, N., “High bandviidadaptive flight control”,
Proceedings of AIAA Guidance, Navigation, and Cohi€onference, August,
2000.

Nardi, F. and Calise, A., “Robust Adaptive Nonlin€ontrol using Single Hidden
Layer Neural Networks,” Proceedings of the IEEE fécence on Decision and
Control, 2000.

Calise, A. J., Rysdyk, R. T., “Nonlinear Adaptiveor@rol of Tiltrotor Aircraft
Using Neural Networks”, SAE/AIAA World Aviation Cgmess, Oct. 14-16 1997

Calise, J., Rysdyk, T., “Adaptive Model Inversiotight Control for Tiltrotor

Aircraft’, AIAA / Guidance, Navigation and Contr@lonference, Aug. 1997, Paper
No: 97-3758.

103



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Singh, S. N., Yim, W., and Wells, W. R., “Direct &ptive and Neural Control of
Wing-Rock Motion of Slender Delta Wings,” AIAA/ Jmal of Guidance, Control,
and Dynamics, Vol. 18, No. 1, 1995, pp. 25-30.

Wise, K. A., “Reconfigurable Systems for Taillesglier Aircraft - RESTORE”,
Final Report, AFRL-VA-WP-TR-99-3067.

Wise, K., and Brinker, J., “Reconfigurable Flighor@rol for a Tailless Advanced
Fighter Aircraft”, Proc. of the AIAA GNC ConferencBoston, MA, August, 1998,
pp. 75-87.

Wise, K., Brinker, J., Calise, A., Enns, D., Elgaes M., and Voulgaris, P., “Direct
Adaptive Reconfigurable Flight Control For A TadkeAdvanced Fighter Aircraft”,
Int. Journal of Robust Nonlinear Control, Specigdue on Reconfigurable Flight
Control, Vol. 9, pp. 999-1012, 1999.

Leitner, J., Calise, A., and Prasad, J. V. R., ‘isia of Adaptive Neural Networks
for Helicopter Flight Controls,” Proceedings of tAéAA Guidance, Navigation,
and Control Conference, Baltimore, MD, 1995, pl-879

Sharma, M., Calise, A. J. and Corban, J. E. “Agpion of an Adaptive Autopilot
Design to a Family of Guided Munitions”, Proceedinddf the AIAA GNC
Conference, Denver, CO, August, 2000, AIAA Paper 2a00-3969.

Sharma, M., and Calise, A. “Neural Network augmeéamaof Existing Linear
Controllers”, Proc. of the AIAA GNC Conf., MontreaCanada, August, 2001,
AIAA Paper No, 2001-4163.

Corban, J., Burkemper, V., Holt, K., J., Calise,aid Sharma, M., “Flight Test Of
An Adaptive Autopilot For Precision Guided Munitgh Proc. of the AIAA
Missile Sciences Conference, 2002.

McFarland, M., “Adaptive Nonlinear Control of Mitess Using Neural Networks”,
Ph.D. thesis, Georgia Institute of technology, Atita GA, July 1997.

Kim, B.S., Calise, A.J., “Nonlinear Flight ContrdJsing Neural Networks,”
Proceedings of the AIAA Guidance, Navigation, anentfol Conference,
Scottsdale, AZ, 1994, pp. 930-940.

Idan, M., Johnson, M., Calise, A. J., “A Hierarcidiépproach to Adaptive Control
for Improved Flight Safety”, AIAA/ Journal of Guidae, Control, and Dynamics,
Vol. 25, no. 6, 2003, pp. 1012-1020.

Brinker, J. S., Wise, K. A., “Flight Testing of Redigurable Control Law on the
X-36 Tailless Aircraft”, AIAA/ Journal Of Guidanc&ontrol, and Dynamics Vol.
24, No. 5, September—October 2001.

Sharma, M., Wise, K., Lavretsky, E., “Applicatiomda Flight Testing of an

Adaptive Autopilot on Precision Guided MunitiondProc. Of the 2006 AlAA
Guidance, Navigation, and Control Conference, KaystCO, August 2006.

104



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Wise, K., Lavretsky, E., Zimmerman, J., Francis-Js. Dixon, D., and Whitehead,
B., “Adaptive Flight Control of a Sensor Guided Mion”, Proceedings. Of the
AIAA Guidance, Navigation and Control Conference3.

Calise, A. J., Shin, Y., Johnson, M. D., “A Compan Study of Classical and
Neural Network Based Adaptive Control of Wing RocRtoceedings of the 2004
AIAA Guidance, Navigation, and Control Conferenepvidence, Rhode Island.

Narendra, K. S., Parthasarathy, K., “ldentificatiand Control of Dynamical
Systems Using Neural Networks”, IEEE TransactiondNeural Networks, Vol. 1,
No. 1, 1990, pp. 4-27.

Lewis, F.L., Jagannathan, S. and Yesildirek, Agtikal Network Control of Robot
Manipulators and Nonlinear Systems”, Taylor anchEis, UK, 1999

Krstic, M., Sun, J., and Kokotovic, P. V., “Contafl feedback linearizable systems
with input unmodeled dynamics”, Proceedings of3Bed Conference on Decision
and Control, Lake Buena Vista, FL, pp 1633-1638419

Krstic, M., Kanellakopoulos, I., and Kokotovic, Rlonlinear and Adaptive Control
Design, Wiley, New York, 1995, Chap. 2.

McFarland, M. B., Rysdyk, R. T., and Calise, A. ‘Robust Adaptive Control
Using Single — Hidden - layer Feedforward Neuratweks”, Proceedings of the
American Control Conference, pp 4178-4182, Jun®199

Balakrishnan, S. N. and Huang, Z., “Robust Adaptiveritc Based
Neurocontrollers for Helicopter with Unmodeled Urteenties”, Proceedings of the
2001 AIAA conference on Guidance, Navigation anehi@u.

Huang, J., and Lin, C.-F., “Sliding Mode Control BAVE DASH Il Missile
Systems”, Proceedings of American Control Confeze893, pages: 183-187.

McFarland, M. B., Calise, A. J., “Neural Networks fStable Adaptive Control of
Air-to-Air Missiles”, Proceedings of the AIAA Guidae, Navigation, and Control
Conference, AIAA, Washington, DC, 1995, pp. 128(88.2

Tahk, M., Briggs, M., and Menon, P. K. A., “Applit@an of Plant Inversion via
State Feedback to Missile Autopilot Design,” Pratiegs of the 27th Conference
on Decision and Control, 1986, pp. 730-735.

Funahashi K., “On the Approximate Realization ofn@ouous Mappings by
Neural Networks”, Neural Networks, vol.2, pp.182212989.

Hornik K., Stinchcombe M., White H., “Multilayer Edforward Networks Are
Universal Approximators”, Neural Networks, vol.2).p59-366, 1989.

McDowell, D. M., Irwin, G. W., and McConnell, G.,Ohline Neural Control
Applied to a Bank-to-Turn Missile Autopilot,” Proegings of the AIAA Guidance,
Navigation, and Control Conference, AIAA, Washingt®C, 1995, pp. 1286
1294,

105



[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Ryu, J.-H., Park, C.-S., and Tahk, M. J., “Planvieirsion Control of Tail Controlled
Missiles,” Proceedings of the 1997 AIAA Guidance vigation and Control
Conference, AIAA, Reston, VA, pages: 1691-1696.

Siouris, George M., “Missile Guidance and Contrgst®ms”, Springer-Verlag,
Inc., New York, 2004.

Sastry, S., Nonlinear Systems: Analysis, Stabiktyd Control, Springer—Verlag,
New York, 1999, pages: 425-433, 468-498.

Martin, P., Devasia, S., and Paden, B., “A Différ&mok at Output Tracking:
Control of a VTOL Aircraft,” Automatica, Vol. 32, 1, 1996, pp. 101-107.

Tahk,M.-J., Briggs, M. M., and Menon, P. K. A, “Blications of Plant Inversion
via State Feedback to Missile Autopilot Design,b&redings of the 27th IEEE
Conference on Decision and Control, IEEE, PiscayahNd, 1988, pp. 730-735.

Hedrick, J. K., Gopalswamy, S., “Nonlinear Flighor@rol Design via Sliding
Methods”, AIAA/ Journal of Guidance, Control, and/amics, Vol. 13, No. 5,
1990, pp. 850-858.

Johnson, E. N., Ohy, Seung-Min, “Adaptive Contraligg Combined Online and
Background Learning Neural Network”, AIAA/ Jourrafl Guidance, Control, and
Dynamics, 2004

Chowdhary, G., Johnson, E. N., “Theory and FligbstTValidation of Long Term
Learning Adaptive Flight Controller”, Proceedingsthe 2008 AIAA Guidance
Navigation and Control Conference, Honolulu, Hawaii

Hadad, W., Chellebaonia V., Nonlinear Dynamical t&8ys and Control, A
Lyapunov Based Approach, Preprint, 2006.

McFarland, M. B., “Adaptive Nonlinear Control of B&iles,” Ph.D. Dissertation,
School of Aerospace Engineering, Georgia Inst.exfhhology, Atlanta, GA, Sept.
1997

Wise, K. A., "Robust Stability Analysis of AdaptivMissile Autopilots”,
Proceedings of the 2008 AIAA Guidance Navigatiord &ontrol Conference,
Honolulu, Hawaii.

Nielsen, Jack N., “Missile Aerodynamics”, McGrawHHBook Company, Inc.,
New York, 1960.

Kihg, K. Caglar, “Autopilot And Guidance Algorithms For InfrateGuided
Missiles”, M.S Thesis Study at METU Electrical aidectronics Engineering
Department, December 2006.

Ozkan, B., “Dynamic Modeling, Guidance, and Cont@fl Homing Missiles”,
PhD. Thesis at METU Mechanical Engineering Depantim8eptember 2005.

“Missile Datcom User's Manual-1997 FORTRAN 90 REYD®I”, [On-line]
Available: http://www.scribd.com/doc/12516547/MissDATCOM-Users-Guide.

106



[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Zipfel, P. H., “Modeling and Simulation of Aerosga¥ehicle Dynamics”, AlIAA,
American Institute of Aeronautics and Astronautiog,, Second Edition, Virginia,
2007.

Cohen, H., Rogers, G. F. C., Saravanamuttoo, H.].Gas Turbine Theory,
Longman, 1972.

Shneydor, N. A., “Missile Guidance and Pursuit Kiragics, Dynamics and
Control”, Horwood Publishing Chichester, Englan€98.

Garnell P., East D. J., “Guided Weapon Control 8ysf’, Pergamon Press Ltd.,
Oxford, London, England 1977.

Blakelock, J.H., “Automatic Control of Aircraft anMlissiles”, Second Edition,
John Wiley & Sons Inc., USA, 1991.

Kargin, V., Yavrucuk]., “Development of A Flight Control System for a MAn
Autonomous Landing”, AIAC-2007-105.

McLean, D., “Automatic Flight Control Systems”, Btiee-Hall International (UK)
Ltd, Hertfordshire, 1990.

Nelson, R.C., “Flight Stability and Automatic Cauit; Second Edition, McGraw-
Hill Inc., Singapore, 1998.

Menon, P., Badgett, M., and Walker, R., “Nonlinddlight Test Trajectory
Controllers for Aircraft,” Journal of Guidance, Qosl, and Dynamics, Vol. 10,
No. 1, 1987, pp. 67-72.

Snell, S. A,, Enns, D. F., and Garrard, W. L., INonlinear Inversion Flight
Control for a Supermaneuverable Aircraft”, AIAA/utaal of Guidance, Control,
and Dynamics, Vol. 15, No. 4, 1992, pp. 976-984.

Ogata, K., “Modern Control Engineering”, Third Hdit, Prentice-Hall Inc., New
Jersey, 1997.

Zarchan, P., “Tactical and Strategic Missile Guikn Third Edition, AIAA,
American Institute of Aeronautics and Astronautios,, Virginia, 1997.

Hassoun, M. H., “Fundamentals of Artificial Neufdetworks”, the MIT Press,
Cambridge, Massachusetts, 1995.

Sanner, R. M., and Slotine, J. J. E., “Gaussianwbldt for Direct Adaptive
Control,” IEEE Transactions on Neural Networks, V8] No. 6, 1992, pp. 837—
863.

Rysdyk, T. Rolf, “Adaptive Nonlinear Flight ContfolPh.D. Thesis, Georgia
Institute of Technology, November 1998.

Spooner, J. T., Maggiore, M., Ordonez, R., and iRas&. M., “Stable Adaptive

Control and Estimation for Nonlinear Systems, Nearad Fuzzy Approximator
Techniques”, Wiley, 2002.

107



[98] McFarland, M., and Calise, A., “Multilayer neuratworks and adaptive nonlinear
control of agile anti-air missiles”, Proceedingstloé AIAA Guidance, Navigation,
and Control Conference, AIAA Paper 97-3540, Audlef7.

[99] Kim, Y. H., Lewis, F.L., “High Level Feedback Cookrwith Neural Networks”,
World Scientific Series in Robotics and Intellig&ytstems Vol. 21, World Science
Publishing Co. Pte. Ltd. 1998.

[100] Lewis, F. L., “Nonlinear Network Structures for Eback Control”, Asian Journal
of Control, Vol.1, pages: 205-228, December 1999

[101] Haykin Simon, “Neural Networks a Comprehensive Fation”, Second Edition,
Prentice Hall USA, 1998.

[102] Johnson, E. N., Kannan, S. K., “Adaptive Flight @ohfor an Autonomous Un-

manned Helicopter”, Proceedings of the AIAA Guidanldavigation, and Control
Conference, AIAA Paper 2002-4439, Monterey, CA, Ast2002.

108



APPENDIX A

AERODYNAMIC CHARACTERISTICS OF THE MISSILE

Longitudinal Plane

The missile in this study has a plus tail configiora Therefore, rudder deflection
(or) does not have any contribution on missile lordjital plane. In other words,
static pitch moment coefficient about the G@y)( remains constant related to

change iny,. This case is shown on the figure below:

Cm variation with different tail deflections
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Figure A.1 C,, variation with different tail deflections
At M=0.8, a=5°, #=0.1° (trim values)
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As can be seen from Figure AQy, variation due to change in side slip anghe (

can be neglected. Thus, it does not depengl on

Cm variation with different alfa & beta
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Figure A.2 C, variation with different alpha (&) and beta §)
At M=0.8, d¢ = -3°,6; = -0.5° (trim values)

As a result, rudder deflectiony;] and side slip anglef) does not have any

contribution on missile longitudinal motion. Thevet, C,, can be expressed as:
C,=C, (5. M,a) (A-1)

In addition, according to above figures,, variations with alphadf are negative

aC,,
oa

properties on the longitudinal plane.

<0). So it can be concluded that the missile hastipespitch stiffness

(
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Cm variation with different Mach & alfa

Figure A.3 C, variation for different alpha () and Mach
At p=0.06°0, = -3°,4, = -0.5° (trim values)

Cm variation with different delta elevator & alfa
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Figure A.4 C, variation for different alpha (a) and elevator deflections dg)
At p=0.1°, M=0.8,d; = -0.5° (trim values)
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The variations ofC,, at trim values according to Mach Number (M) andlarof
attack ¢) are shown on Figure A.3. From Figure A.4, it de@nobserved that,

. : . . C .
variations with elevator deflection®e] are negative %qu))' So it can be

e

concluded that the Missile DATCOM notation is tfoe the longitudinal plane.

Cz variation with different tail deflections
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Figure A.5 C, variation for different deflections
At M=0.8, a=5°, #=0.1° (trim values)

It can be observed from Figure A.5 that static doocoefficient along z-direction

(C) remains constant due to change in rudder dedlec}).
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Cz variation with different alpha & beta
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Figure A.6 C, variation with different alpha (&) and beta f)
At M=0.8, de = -3°,0; = -0.5° (trim values)

From Figure A.6, variation o€, due to change in side slip angi#® ¢an be ignored.

As a resultC, can be expressed as:
C,=C,(,,M,a) (A-2)

Directional Plane

Elevator deflection &) does not have any contribution on missile diewl
motion. In other words, static yaw moment coeffitiabout the CgQ,) remains

constant related to changedin This case is shown on the Figure A.7 next page:
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Cn variation with different tail deflections
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Figure A.7 C, variation with different deflections
At M=0.8, a=5°, #=0.1° (trim values)

Cn variation with different alpha & beta

Cn variation with alpha=-18:20:2 & beta =-15:15:3
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Figure A.8 C, variation with different alpha (&) and beta )
At M=0.8, de = -3°,0, = -0.5°
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As can be seen from Figure A@, does not change very much due to change in
angle of attackd). Thus, dependency anfor C,is negligible. As a result, elevator
deflection §¢) and angle of attackz) does not have any contribution on missile

directional motion. Therefor&;, can be expressed as:

Cn = Cn (:3’ 6r ! M) (A'S)

In addition, according to above figureS, variations with beta/) are positive

aC,
3

>0). So it can be concluded that the missile hastipesiaw stability

properties on the directional plane.

Cn variation with different Mach & beta

| Cnvariation with beta =-15:15:3 & Mach =0.3 > 1.5
T T = =
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Figure A.9 C, variation with different Mach (M) and beta (8)
At a=5°,d¢ = -3°,0; = -0.5° (trim values)

The variations ofC, at trim values according to Mach Number (M) andesslip

angle f) are shown on Figure A.9.
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Cn variation with different delta rudder & beta

Cn variation with beta =-15:15:3 & delta rudder =-15:15:3
| ' Bl

| I
— !
60—~ I N

I

I
I

40—+~

T
I
I
I
——— L
I
I

20—+~

|
l
l
e e
I

[
|
I e B e

|
|
|
|
1
|
|
|
|
1
|
|
|
|
1
|
|
-20 — |
!
|
|
|
|

-40
>
-60 =
1 5 10 . 20 delta rudder
beta

Figure A.10 G, variation with different beta (f) and rudder deflections ¢;)
At a=5° M=0.8,0, = -3° (trim values)

From Figure A.10, it can be observed tBatvariations with rudder deflections)

are positive % >0). So it can be concluded that the Missile DATCOMation

r

is true for the directional plane.
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Cy variation with different tail deflections
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Figure A.11 G variation for different deflections
At M=0.8, a=5°, #=0.1° (trim values)

It can be observed from Figure A.11 that staticdocoefficient along y-direction

(Cy) remains constant due to change in elevator deftee).
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Cy variation with different alfa & beta

L ! L
- Cy variation with alpha=-18:20:2 & beta =-15:15:3 ‘
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beta

Figure A.12 C, variation with different alpha (&) and beta )
At M=0.8, de = -3°,0; = -0.5° (trim values)

From Figure A.12, variation o€, due to change in angle of attaak) Can be

ignored. As a resulC, can be expressed as:

C,=C,(8,3.M) (A-4)
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APPENDIX B

LINEARIZATION OF THE ROTATIONAL EQUATIONS OF
MOTION

Symbolic Linearization is made by “Jacobian” comuohan Mapple 10 Software
program and the equations below are reached:

Elements of matrix Al

A111=puS)reﬂrc—:f Cm+gcmqlref+1cma|ref_ C,+C glref | Xq |,
[ 2 Vowe 2V = Iref

W missile
(B.1)
9C, u_),10C, ugiref _1Cy,uqlref
oMV, .a) 2M avi, 2 V3

missle missle

missle

1 Ve SefIref | 10C,, udiref _1C,, udlref
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Elements of matrix A2
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APPENDIX C

PID CONTROLLER GAIN SELECTION

The gains Kp_h, Ki_h and Kd_h are selected anddunyegiving 400 meters step
altitude input to the 5-DOF simulation. The resmogsaphs according to different

gains and gain selection procedure are explainddsrsection.

Firstly, the graphs are obtained for only differ&mut_h. Then considering the fast
response, oscillation and steady state error @jténe appropriate Kp_h value is
determined. The graphs are shown below.
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Figure C.1 Altitude Response for Kp_h=0.002 and speinput =400 m
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Altitude Comparison Kph:0.003
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Figure C.2 Altitude Response for Kp_h=0.003 and speinput =400 m

If Figure C.2 compared with Figure C.1, it is obh&e#f that the increase on Kp_h
causes an increase on the oscillation and decasbe steady state error. The
following graphs also support this consideratiom. dddition, since the system
response is converged to a constant altitude valaan be realized that the system

has stability for altitude control.
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Altitude Comparison Kph:0.005
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Figure C.3 Altitude Response for Kp_h

Altitude Comparison Kp,=0.006
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Figure C.4 Altitude Response for Kp_h
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From Figure C.3 and C.4, larger Kp_h shows quidpoase and has much low
steady state error, but higher gain results indngiscillation. Therefore Kp_h must
be chosen related to these conditions. The pridstygiven to fast response

characteristics for altitude hold. As a result, Kps selected as 0.005.

Secondly, the steady state error has to be comehsg8o we need an integral
contribution to the controller. Ki_h is selectednsmlering fast convergence to

steady state value and low oscillation.
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Figure C.5 Altitude Response for Kp_h=0.005 Ki_h=0@002
Step input =400 m
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Altitude Comparison Kp,=0.005 Kih=0.0005
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Figure C.6 Altitude Response for Kp_h=0.005 Ki_h=0@005
Step input =400 m
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Figure C.7 Altitude Response for Kp_h=0.005 Ki_h=0@008
Step input =400 m
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According to the above figures, lower Ki_h caudes/sonvergence to steady state
value and higher Ki_h results in higher oscillati®mnce the response can not avoid
from oscillation, Ki_h is chosen as 0.0005 anddbgvative contribution is needed
for the controller. There must be a reason for ¢isisllation. If the vertical speed is
not included in the autopilot architecture, the sikswould tend towards pitching
the nose too high and entering a stall or losingliil Therefore derivative
controller is added for including the climb rateoeras input to autopilot. By using
climb rate error, the relation can be establishettvben vertical speed of the missile
and altitude response.

Finally, derivative gain (Kd_h) is added and finabnfiguration of the PID
controller is obtained. The step input responsdtbr controller is shown on Figure
C.8. Kd_h is selected as 0.01. As a result, thrgrodler provides the system with
quick response (Proportional gain), zero steadye seror (Integral gain) and
damped oscillations (Derivative gain).
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Figure C.8 Altitude Response for Kp_h=0.005 Ki_h=@005
Kd_h=0.01 Step input =400 m
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