
FEATURE ORIENTED DOMAIN SPECIFIC LANGUAGE FOR DEPENDENCY
INJECTION IN DYNAMIC SOFTWARE PRODUCT LINES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ORÇUN DAYIBAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

FEATURE ORIENTED DOMAIN SPECIFIC LANGUAGE FOR
DEPENDENCY INJECTION IN DYNAMIC SOFTWARE PRODUCT LINES

submitted by ORÇUN DAYIBAŞ in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyiğit _____________________
Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Oğuztüzün _____________________
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ali Doğru _____________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Oğuztüzün _____________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Nihan Kesim Çiçekli _____________________
Computer Engineering Dept., METU

Asst. Prof. Dr. Erol Şahin _____________________
Computer Engineering Dept., METU

Dr. Bülent Mehmet Adak _____________________
Senior Software Engineer, Aselsan Inc.

 Date: _____________________

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last name : ORÇUN DAYIBAŞ

 Signature :

 iv

ABSTRACT

FEATURE ORIENTED DOMAIN SPECIFIC LANGUAGE FOR DEPENDENCY

INJECTION IN DYNAMIC SOFTWARE PRODUCT LINES

Dayıbaş, Orçun

M.Sc., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Halit Oğuztüzün

September 2009, 61 pages

Base commonality of the Software Product Line (SPL) Engineering processes is to

analyze commonality and variability of the product family though, SPLE defines

many various processes in different abstraction levels. In this thesis, a new approach

to configure (according to requirements) components as building blocks of the

architecture is proposed. The main objective of this approach is to support domain

design and application design processes in SPL context. Configuring the products is

made into a semi-automatic operation by defining a Domain Specific Language

(DSL) which is built on top of domain and feature-component binding model

notions. In order to accomplish this goal, dependencies of the components are

extracted from the software by using the dependency injection method and these

dependencies are made definable in CASE tools which are developed in this work.

Keywords: Software Product Line, Domain-specific Language, Variability

Management, Feature-component binding, Dependency Injection.

 v

ÖZ

DEVĐNGEN YAZILIM ÜRÜN HATLARINDA BAĞIMLILIK ĐLETĐMĐ ĐÇĐN
YETENEK YÖNELĐMLĐ ALANA ÖZGÜ DĐL

Dayıbaş, Orçun

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Halit Oğuztüzün

Eylül 2009, 61 sayfa

Yazılım Ürün Hattı (YÜH) mühendisliği, her ne kadar farklı seviyelerde çesitli

süreçler tanımlasa da süreçlerin temel ortaklığı ilgili ürün ailesi üzerinde

değişkenliklerin ve ortaklıkların çözümlenmesidir. Bu tez çalışmasında, mimari yapı

taşları olarak yazılım bileşenlerinin, (gereksinimlere göre) yapılandırılması için yeni

bir yaklaşım sunulmaktadır. Bu yaklaşımın temel amacı, YÜH bağlamında alan

tasarımı ve uygulama tasarımı aşamalarının desteklenmesidir. Alan ve özellik-bileşen

eşleme modellerindeki unsurlar üzerine kurulmuş bir alana özgü dil tanımı

getirilerek, ürün yapılandırma işlemleri yarı otomatikleştirilmiştir. Bu amaca

ulaşmak için bağımlılık iletimi yöntemi kullanılarak bileşenler arası bağımlılıklar

yazılım dışından kurulabilir hale getirilmiş, çalışma kapsamında geliştirilen

bilgisayar destekli yazılım mühendisliği (CASE) araçları ile de ilgili bağımlılıklar

yapılandırılabilir hale gelmiştir.

Anahtar Kelimeler: Yazılım ürün hattı, Alana özgü dil, Değişkenlik yönetimi,

Yetenek-bileşen eşlemesi, Bağımlılık iletimi.

 vi

ACKNOWLEDGEMENTS

I would like to express my special appreciation to my family for their unconditional

support and understanding throughout this thesis work.

This study was partially supported by The Scientific and Technological Research

Council of Turkey (TÜBĐTAK) under the BĐDEB grant programme.

 vii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ .. v

ACKNOWLEDGEMENTS.. vi

TABLE OF CONTENTS... vii

LIST OF TABLES.. ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS.. xii

CHAPTERS

1. INTRODUCTION ... 1

1.1 Background... 1

1.2 Scope and Objectives.. 2

1.3 Contributions .. 3

1.4 Document Organization.. 4

2. SOFTWARE REUSE .. 5

2.1 Overview .. 5

2.2 Reuse In Software... 6

2.3 Domain Engineering Processes .. 10

2.3.1 Feature-Oriented Domain Analysis (FODA).. 10

2.3.2 Organization Domain Modeling (ODM).. 11

2.3.3 Reuse-driven Software Engineering Business (RSEB) .. 13

2.3.4 Feature-Oriented Reuse Method (FORM).. 15

2.4 Software Product Line Processes ... 16

2.4.1 Product Line Software Engineering (PuLSE)... 22

2.4.2 KobrA... 23

2.4.3 Component-oriented Platform Architecting Method (CoPAM)................................... 24

2.4.4 Product Line ULM Based Software Engineering (PLUS).. 25

2.5 Discussion... 26

 viii

3. VARIABILITY MANAGEMENT AND FEATURE MODELING 27

3.1 Variability Management ... 27

3.1.1 Variability Modeling .. 29

3.2 Feature Modeling.. 30

3.2.1 Feature Modeling Tools ... 33

3.3 Discussion... 33

4. DEPENDENCY INJECTION FOR DYNAMIC SPL... 35

4.1 Dynamic Software Product Lines... 35

4.2 Dependency Injection... 37

4.3 Kutulu DSL for Modeling .. 38

4.3.1 Meta-models of Language Elements .. 40

4.3.2 Kutulu CASE Tools.. 42

4.3.3 Using Kutulu Generator for Assembler Configuration... 44

5. CASE STUDIES.. 48

5.1 MVC, Factory Design Patterns and Two Alternative Features 48

5.2 Sample Product of TADES SPL... 50

6. CONCLUSION AND FUTURE WORK .. 56

REFERENCES .. 57

 ix

LIST OF TABLES

TABLES

Table 1 - Some Variability Mechanisms.. 14

Table 2 - Some DSPL features and dependency injection... 38

 x

LIST OF FIGURES

FIGURES

Figure 1 - Raising the level of reuse .. 7

Figure 2 - Customizability vs. Reuse Granularity.. 7

Figure 3 - A framework for Software Reuse.. 9

Figure 4 - ODM Process Tree .. 12

Figure 5 - Flow of artifacts in RSEB ... 13

Figure 6 - FORM Engineering Processes... 15

Figure 7 - Software Product Line Engineering Framework....................................... 16

Figure 8 - Application design sub-process... 20

Figure 9 - PuLSE Overview... 22

Figure 10 - UML-based Component Modeling in KobrA ... 23

Figure 11 - CoPAM as a method family .. 24

Figure 12 - Evolutionary Software Product Line Engineering Process 25

Figure 13 - Early and delayed variabilities .. 28

Figure 14 - Sample for Orthogonal Variability Modeling (OVM) 30

Figure 15 - Feature diagram notations ... 31

Figure 16 - De facto sample of the feature diagrams; a simple car............................ 31

Figure 17 - Sample feature configurations and their feature diagram 32

Figure 18 - Tree display and graph display of a model in pure::variant 33

Figure 19 - SPL vs. DSPL on variability management.. 36

Figure 20 - The dependencies for a Dependency Injector. .. 37

Figure 21 - Using Kutulu DSL in SPL Process ... 39

Figure 22 - Domain meta-model of Kutulu DSL... 41

 xi

Figure 23 - Feature-binding meta-model ... 42

Figure 24 - Implementation of Kutulu CASE Tools (Editors)................................... 43

Figure 25 - Implementation of Spring.NET Generator.. 44

Figure 26 - Spring.NET objects XML schema .. 45

Figure 27 - Sample model in Kutulu feature-component binding editor 48

Figure 28 - Sample model in Kutulu domain editor .. 49

Figure 29 - Generated Spring.NET configuration.. 50

Figure 30 - Sample TADES application module ... 50

Figure 31 - TADES Log operations in Kutulu domain editor 51

Figure 32 - TADES Met operations in domain editor.. 52

Figure 33 - Sample part of TADES feature tree .. 52

Figure 34 - Feature bindings of log and met operations .. 53

Figure 35 - Generated configuration .. 54

Figure 36 - Configured TADES application .. 55

Figure 37 - Configuration change in TADES application ... 55

 xii

LIST OF ABBREVIATIONS

C2 Command & Control

CASE Computer Aided Software Engineering

CMMI Capability Maturity Model Integration

COTS Commercial off-the-shelf

DARPA Defense Advanced Research Projects Agency

DI Dependency Injection

DSL Domain Specific Language

DSPL Dynamic Software Product Line

E-R Entity-relationship

EMF Eclipse Modeling Framework

GMF Graphical Modeling Framework

IDE Integrated Development Environment

J2EE Java Platform, Enterprise Edition

M2T Model-to-Text

MVC Model-View-Controller

NATO North Atlantic Treaty Organization

OVM Orthogonal Variability Modeling

RLF Reuse Library Framework

SPL Software Product Line

SPLE Software Product Line Engineering

UML Unified Modeling Language

VSL Variability Specification Language

 1

CHAPTER 1

1. INTRODUCTION

1.1 Background

Every software development project, in general, produces two types of software:

custom software and standard software (COTS – Commercial off-the-shelf

Software). Custom software is built on special order and tailored to the specific

requirements of one customer. Standard software, on the other hand, is supposed to

meet the needs of many customers. Once developed, standard software is produced

in a mass production process by duplicating the distribution medium. The main

problems of both types of software are: custom software causes high development

costs and standard software is cheaper, but barely meets exactly the customers'

requirements. Therefore, any effort to make custom software more economic or to

make standard software more customized feature-rich is vastly important for

software engineering discipline. Software product line engineering (SPLE) is one of

the most promising efforts in that manner [1, 2].

Clements et al. define the term “Software Product Line (SPL)” as follows: “A

software product line is a set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a particular market segment

or mission and that are developed from a common set of core assets in a prescribed

way” [1]. For the sake of establishing of understanding this term better, let us retrace

the important parts of the definition: First of all, “set of software-intensive systems”

remarks that the term covers more than just a methodology for single

software/system development project; it bounds a family of software systems (or

systems involving software as an essential ingredient) [1] and regulates relations

among them. Second, “managed set of features” remarks that commonality among

 2

the members of the family is feature-based and managed in that concept. “A

particular market segment” expression remarks that SPL is mainly a market-driven

concept. Czarnecki et al. define this aspect of the SPL as a main difference from

“system family” concept [3]. Then, “common set of core assets” remarks that

products of the SPL share common building blocks namely assets. In detail, SPLE

deals with discovering these assets and managing their adaptability to specific

product requirements. Last, but not least, “prescribed way” expression remarks that

reuse in SPL is managed and enforced.

In the light of above definition, it can be deduced that the following aspects are

crucial and indispensible parts of the SPL development project:

• Scoping: Drawing the boundaries of the concerning market (domain) and

defining legacy or future product for this market.

• Domain Design: Designing the technical core assets in architectural

perspective and defining data flow between them.

• Application Design: Designing the product according to individual

requirements of it.

Section 2.4 is solely related to the SPL hence, there is no need for further explanation

for the introduction section. In the frame of this thesis work, it has been suggested a

supporting mechanism in order to make above aspects of SPLE methodology easier.

Following sections refer to content of this frame and give more detailed information

about that.

1.2 Scope and Objectives

In this study, a feature-oriented dependency injection method has been developed in

order to manage building parts of the product (some or all of the common core

assets). The main motivation is that externalized dependencies of dependency

injection approach and data flow (relations) of the domain design in SPL context are

 3

similar way of defining software architecture. It can be deduced that defining

production plan (feature configuration) for a family member of the SPL (product)

and mapping this plan to the reference architecture supports the application design

process. Therefore, supporting these two processes with a robust strategy makes the

SPL process easier to apply.

SPLE is relatively new area of subject and there is no any dominant methodology for

developing a brand new SPL. Therefore, some of these methodologies are out of

scope for this study. Feature-oriented approach for requirements and component-

oriented approach as an architectural definition are seized in this work. As a

consequence, SPLE methodologies which are able to adopt these approaches in

principle can also be evaluated in the scope of thesis work.

1.3 Contributions

The main contribution of the study lies in defining a semi-automatic method for

component binding as a foundation of variability management of SPL. In this

approach, binding relations and specific attributes of the component defines specific

feature of the product and injected dependencies makes the product be able to handle

this requirement (feature). As previously mentioned, SPL is a strictly managed way

of reuse and this study assists that notion by defining a DSL (named as “Kutulu”) to

manage architectural reuse assets. Furthermore, externalizing dependencies (to inject

declaratively) and defining a way of binding them after deployment also cause SPL

to gain dynamic notion.

In the literature, there are some methods in order to make construction of the

component based reuse infrastructure easier (E. Almeida et al. list some remarkable

methods in [4]). Lots of CASE tools are also available for software architects which

are considered to use these methods in their process. On the other hand, very few of

them complete solution and traceable to the implementation level. These features can

also be evaluated as other beneficial contribution of this study.

 4

1.4 Document Organization

This thesis work includes five chapters. Chapter 2 is about the state-of-art on reuse in

software intensive systems. SPLE that this work has been motivated from is also

described in details in this chapter. Chapter 3 defines the variability management and

feature modeling concepts. These definitions also introduce our approach in this

work. Chapter 4 introduces dynamic software product line and dependency injection

as an enabling method for DSPL. This chapter also locates the introduced approach

in the big picture of the SPLE by mentioning our DSL definition and its usage with

CASE tools. Case study of the proposed methods is implemented in the chapter 5 and

all of the thesis work is concluded in chapter 5.

 5

CHAPTER 2

2. SOFTWARE REUSE

2.1 Overview

The term “Software Crisis” is coined by F. L. Bauer at the first NATO Software

Engineering Conference in 1968 [5]. This term is still popular and that case makes

some people discuss that “Software Engineering” term is an oxymoron [6].

In 1957, “programmer” was not acceptable answer of “What is your profession?”

question [7]. Today, this profession is very well known and widely accepted one.

Furthermore, programming work is done in teams consisting of project managers,

requirements analysts, software engineers, documentation experts, and programmers.

So many professionals collaborate in an organized manner on a project but many

basic problems about programming (or constructing software) still remain.

“Software Crisis” refers to the difficulty of writing correct, understandable, and

verifiable computer programs. The roots of the crisis are complexity, expectations,

and change. E. W. Dijkstra expressed his hope at the first NATO Software

Engineering Conference [5]; “The general admission of the existence of the software

failure in this group of responsible people is the most refreshing experience I have

had in a number of years, because the admission of shortcomings is the primary

condition for improvement”.

After nearly fifty years of progress, software development has remained as a craft

and has yet to emerge into a science. Many beneficial programming practices and

project management methodologies have been developed in this period of time. The

most common characteristic of these practices and methodologies is reuse notion.

 6

2.2 Reuse In Software

Every building block of the system demands some amount of resource in any kind of

engineering area. Therefore, reusing pre-implemented (or designed) building blocks

is fairly common in diverse engineering areas. In this respect, software is not an

exception although software engineering is less mature than the most of the others

[6].

There are different reusable assets in a software development project; source codes,

executable components, requirements, test cases, etc… Using these building blocks

for more than once brings many benefits:

• Shorter delivery time: One or more of the assets is not required to be

implemented hence, development time decreases.

• More reliability: Pre-used asset means it is tested before. It is expected to be

more reliable than brand new implemented one. Therefore, overall reliability

of the system increases, also.

• More standard implementation: If reuse increases, more standard

implementation is also achieved by less effort. This also one of the main

pivot points of the first two items.

Reuse in software is evolutionary concept. In early days, code snippet (functions)

was the main object to be reused. In the earliest systems, memory was so expensive

that it was often necessary to save memory by using callable functions [8]. Sharing

code snippets is vastly labour-intensive work and it’s very difficult to manage this

type of reuse. As time passed, abstraction increased and coarse-grained reuse objects

have been substituted by fine-grained ones. Respectively, objects, components &

frameworks, domain models took place in order to manage software reuse.

 7

Figure 1 – Raising the level of reuse [8]

Figure 1 depicts the chronological order of the reuse abstractions. In this context, it

can be deduced that abstraction constantly increases and reusable building blocks are

getting bigger. Raising the level of abstraction brings some new problems and

questions. Thus, there is no any commonly accepted level, today. For instance, object

is still commonly used abstraction level in many projects. Using a higher abstraction

level has a trade-off that has to be considered; customization.

Figure 2 - Customizability vs. Reuse Granularity

 8

For instance, using function-level reuse is more customizable than using object-level

one and again, component-level reuse is less customizable than object-level one. It is

obvious that detailed analysis is required in order to achieve goal; increasing reuse

without concession in customization. A. Abran et al. describe software reuse as being

a key factor in maintaining and improving productivity in the development of

software [9]. They also state that effective software reuse requires a strategic vision

that reflects the “unique power and requirements” of reuse techniques.

W.C. Lim, classifies reuse techniques as technical ones and non-technical ones [10].

As Figure 3 depicts, non-technical aspects are also as crucial as technical ones. On

the other hand, in scope of this study, technical aspects (processes and tools) of

software reuse are focused on. Following sections cover some pioneering software

reuse techniques and they are mostly technical according to above classification.

 9

Figure 3 – A framework for Software Reuse (adapted from [10])

 10

2.3 Domain Engineering Processes

Domain engineering is the activity of collecting, organizing, and storing past

experience in building systems or parts of systems in a particular domain in the form

of reusable assets, as well as providing an adequate means for reusing these assets

when building new systems [3]. Domain engineering is one of the first mature reuse

efforts and it is still an accepted approach, today. Below techniques fulfil the domain

engineering frame with their own methods.

2.3.1 Feature-Oriented Domain Analysis (FODA)

Domain engineering has several steps but its first step is “domain analysis”. FODA is

a domain analysis method that focuses on the features of the domain elements

(systems). It identifies three phases [11]:

• Context Analysis: The context analysis defines the context of the domain

like its scope, constrains and relations between the other domains. In other

words, it defines boundaries of the domain.

• Domain Modeling: Creating domain model. Produced domain model is

assembly of the other elements; E-R model, feature model, functional model

and domain terminology dictionary.

• Architecture Modeling: Creating architectural elements in order to solve

problems which are defined in the preceding step.

Context analysis is documented in a context model. This model includes some

structure diagrams and data-flow diagrams of target domain. If there exists any

related higher level domains or sub-domains, relations of them and relations of in-

domain structures are defined in this model. K.C. Kang et al. state that the diagrams

of the context model can be informal block diagrams [11].

 11

Scoped domain in context analysis phase is analyzed in order to identify

commonalities and variabilities in domain modeling phase. As stated previously,

feature model is one of the outputs of this phase. Feature is a kind of abstraction to

deal with requirements. Therefore feature model depicts the implemented

requirements of the domain in a hierarchical structure. E-R diagram is also one of

models of the domain modeling phase. E-R diagram depicts the domain entities and

their inter-relations.

After the domain modeling, the first implementation related phase takes place,

namely, architectural modeling. In this phase, outputs of the previous phases are

represented in developer point of view. Main activity of architectural modeling phase

is mapping domain model to architectural structures. Consequently, domain analysis

ends up with this phase and there is adequate information in order to start

development of the identified domain assets (reusable components and libraries).

2.3.2 Organization Domain Modeling (ODM)

Organization Domain Modeling (ODM) had been developed in the frame of DARPA

(Defense Advanced Research Project Agency) STARS (Software Technology For

Adaptable, Reliable Systems) program [12]. ODM was not one of the main

objectives of the STARS program. It raised from the design process of “Reuse

Library Framework – RLF”, a knowledge-based reuse support environment [3] [13].

ODM is chiefly developed by Mark Simos and it dates back to late of 80’s. ODM has

been applied on several projects from companies like Hewlett-Packard, Lockheed

Martin, Rolls-Royce [14]. Thus, it is very mature domain engineering method.

ODM assumes that there is a complex structure of interrelationships between other

projects, stakeholders and economic objectives of organizations. Therefore, these

relationships must be recognized and be clearly exposed by analyzing domain of the

concerning organization.

 12

Figure 4 - ODM Process Tree [14]

M. Simos et al. describe ODM process in three main phases (see Figure 4): Plan

Domain, Model Domain and Engineer Asset Base [14]:

• Plan Domain: This phase consists of defining and scoping domain. Firstly,

objectives of the process are defined and a boundary of the domain (scope) is

determined. Scoping domain is very crucial for the process. In single system,

scope is shaped by the requirements which are usually are given. On the other

hand, scoping a domain means we have to consider multiple application

contexts. Finally, domain is also defined in this phase according to previous

steps.

• Model Domain: Firstly, information acquisition task is planned and domain

information is collected from concerning persons or objects (legacy systems,

literature about the domain, etc…). Domain is described after adequate

 13

information is collected. This step covers textual descriptions and/or visual

descriptions. Finally, defined domain is revised and refined. The main

objective of this phase is to produce a domain model to describe common and

variant features of the systems within the domain.

• Engineering Asset Base: This phase is the only step which is related to

implementation. In this phase asset base is scoped, architected and

implemented. Asset base has to have constraints on configurations of features

that supported for the selected (scoped) customer settings.

ODM is comprehensive domain engineering method and it is adaptable to specific

organization needs. It gives special importance to integrate organizational and

technical aspects of the domain engineering.

2.3.3 Reuse-driven Software Engineering Business (RSEB)

Reuse-driven Software Engineering Business (RSEB) is a model-driven large scale

reuse method [15]. Although it was first introduced in 1997, it is based on practices

which are conducted by Hewlett-Packard and Intecs corporations and date back to

1988.

Figure 5 - Flow of artifacts in RSEB [3]

 14

RSEB is based on the UML notation and it brings object-oriented notion to the

domain engineering. Similar to Unified Process [16], RSEB is an iterative and use-

case-centric method [3]. RSEB splits domain engineering into two sub-processes;

“Application Family Engineering” that develops a layered architecture and

“Component System Engineering” that develops systems of reusable components. In

RSEB, application engineering is called “Application System Engineering” that

develops selected applications.

RSEB also emphasizes modelling variability by using extended UML notation. A

variation point identifies one or more locations at which the variation will occur [15].

Variation points are implemented in more concrete models using different variability

mechanisms. Examples of the variability mechanisms are summarized in Table 1.

Table 1 - Some Variability Mechanisms ([3], [15])

Mechanism Type of Variation Point Type of
Variant

Use Particularly When

Inheritance Virtual Operation
Subclass or

Subtype
Specializing and adding

selected operations, while
keeping others

Extensions Extension Point
Extension Attaching several variants at

each variation point at the same
time

Uses Use Point
Use Case Reusing abstract use case to

create a specialized use case

Configuration Configuration Item Slot
Configuration

Item
Choosing alternative functions

and implementations

Parameters Parameter
Bound

Parameter
Selecting between alternative

features

Template
Instantiation

Template Parameter
Template
Instance

Doing type adaption or
selecting alternative pieces of

code

Generation
Parameter or Language

Script

Bound
Parameter or
Expression

Doing large-scale creation of
one or more types or classes

from a problem-specific
language

In RSEB, variability is expressed at the highest level in the form of variation points

(especially in use cases), which are then implemented in other models using various

variability mechanisms [3].

 15

Griss et al. report that use case based approach is insufficient in practice [17]. They

have summarized their experience which is in telecom domain. They have also

introduced new method, namely FeatuRSEB, in order to handle shortcomings of the

RSEB in [17].

2.3.4 Feature-Oriented Reuse Method (FORM)

FORM (Feature-Oriented Reuse Method) is a systematic method that focuses on

capturing commonalities and differences of applications in a domain in terms of

features and using the analysis results to develop domain architectures and

components [18]. FORM extends FODA (see Section 2.3.1) by comprising design

and implementation processes. It mainly deals with how to build domain

architectures and reusable components.

Figure 6 - FORM Engineering Processes (adopted from [18])

FORM also has two separate processes: Domain engineering and application

engineering (see Figure 6). Domain engineering process consists of activities for

analyzing systems in a domain and creating reference architectures and reusable

components based on the analysis results [18]. The reference architectures and

 16

reusable components are expected to accommodate the differences as well as the

commonalities of the systems in the domain. The application engineering process

consists of activities for developing applications using the artefacts created in domain

engineering [18].

2.4 Software Product Line Processes

Until 1998, the software reuse processes were only related to domain engineering

issues [4]. Later, Software Product Line approach has been introduced [1]. As

previously mentioned, Software Product Line is a method for developing software

applications with mass customization. SPL defines processes to facilitate the

development of a family of products in a pre-defined market more economically.

SPL relies on a fundamental distinction between development for reuse (Domain

engineering) and development with reuse (Application engineering) [19].

Figure 7 - Software Product Line Engineering Framework (adapted from [19])

 17

Product management deals with the economic aspects of the software product line

and in particular with the market strategy. Its main concern is the management of the

product portfolio of the company or business unit [19]. This phase is very crucial for

the other sub-processes of SPL. According to J. Bayer et al. [17], domain engineering

approaches have three shortcomings;

• Misguided scoping of application area

• Lack of operational guidance

• Overstressed focus on organizational issues

In SPL context, the first two issues are mainly handled in this phase. Thus, this case

also conveys the importance of the product management phase.

The domain requirements engineering sub-process encompasses all activities for

eliciting and documenting the common and variable requirements of the product line

[19]. Domain requirements engineering differs from requirements engineering for

single systems because of following points [19]:

• The requirements are analysed to identify those that are common to all

applications and those that are specific for particular applications (i.e. that

differ among several applications).

• The possible choices with regard to requirements are explicitly documented

in the variability model, which is an abstraction of the variability of the

domain requirements.

• Based on the input from product management, domain requirements

engineering anticipates prospective changes in requirements, such as laws,

standards, technology changes, and market needs for future applications.

 18

The domain requirements engineering sub-process defines requirements and their

variabilities explicitly. These assets are inputs of the domain design sub-process. The

domain design sub-process encompasses all activities for defining the reference

architecture of the product line. The reference architecture provides a common, high-

level structure for all product line applications [19]. Although variabilities are

exposed in the previous sub-process (domain requirements engineering), they are all

external variabilities (visible to end user). Therefore, internal variabilities (technical

and non-visible to end user) are firstly exposed in the domain design sub-process.

The domain design activities produce reference architecture (product line

architecture) as an output. This architecture is a roadmap for the succeeding sub-

process, namely, domain realisation.

The domain realisation sub-process encompasses building of the previously defined

architecture (reference architecture). Acquisition of the each the asset can be one of

the make/buy/mine/commission options [20]:

• Make: the asset is built in-house. The main advantage of this option is the

level of control that it implicates. The organisation has full control over the

specification and implementation of the asset, limited only by its own

capabilities. This is especially valuable when the assets are distinguishing for

the product line, for example because they enable an innovative feature.

• Buy: the asset is bought as an off-the-shelf product (COTS). Commodity

assets that are readily available in the market are often cheaper when bought

from others. Examples are not only operating systems (e.g. Windows, Linux),

middleware software (e.g. J2EE, .NET), but also development tools and

processes (e.g. RUP, CMMI).

• Mine: the asset is reused from an existing system within the company. In this

case, the organisation opens its lumber room and searches its existing systems

for an asset to be used. Their freedom is limited by the range of assets that are

 19

available, and how easy it is to adapt them to the platform. Especially if the

system being mined has reached end-of-life or is out of use, getting high-

quality assets out of it can take significant reverse engineering effort. In some

cases, an application-specific asset can be taken and turned into a common

asset. If the application engineering process responsible for the asset is still

running, this can be relatively easy.

• Commission: the asset is assigned to be built by a third party. The asset’s

specifications are created in-house, but it is left to a third party to implement

it. This may well create a gap between the ones who make the specifications

and the ones who implement it. This implicates the risk with it that the

implementation does not meet the original intention of the asset. This risk

should be addressed properly, e.g. by putting effort in creating very high

quality specifications, or installing extra communication mechanisms and

short feedback loops.

Domain testing is responsible for the validation and verification of reusable

components. Domain testing tests the components against their specification, i.e.

requirements, architecture, and design artefacts. In addition, domain testing develops

reusable test artefacts to reduce the effort for application testing. The input for

domain testing comprises domain requirements, the reference architecture,

component and interface designs, and the implemented reusable components. The

output encompasses the test results of the tests performed in domain testing as well

as reusable test artefacts [19].

Up to this point, all sub-processes of the domain engineering process have been

explained. The other process of the SPL is application engineering and it has also

respective sub-processes like the ones of domain engineering. For many aspects, the

application engineering process resembles a single software development process.

On the other hand, it uses domain engineering outputs in its each respective sub-

process. This case differs the application engineering from a single software

development process.

 20

Application requirements are used to define a particular product. Therefore, the

application requirements engineering sub-process involves definition activities of

these requirements. Application requirements engineering differs from requirements

engineering for single systems for the following reasons [19]: Firstly, requirements

elicitation is based on the communication of the available commonality and

variability of the software product line. Most of the requirements are not elicited

anew, but are derived from the domain requirements. Secondly, during elicitation,

deltas between application requirements and domain requirements must be detected,

evaluated with regard to the required adaptation effort, and documented suitably. If

the required adaptation effort is known early, trade-off decisions concerning the

application requirements are possible to reduce the effort and to increase the amount

of domain artefact reuse.

Application design sub-process is the process that deals with derivation of the

application design from reference architecture. Variation points of the reference

architecture are bound with the variants of concerning application. The requirements

of the application are satisfied by resulting architecture; the application architecture.

Figure 8 - Application design sub-process

 21

The application realisation sub-process creates the considered application. The main

concerns are the selection and configuration of reusable software components as well

as the realisation of application-specific assets. Reusable and application-specific

assets are assembled to form the application [19]. Reusable components have to have

some binding mechanisms for their internal variabilities. Hence implementation of

the application also covers configuring these components. F. Van Der Linden et al.

state that making configuration method more uniform is less error-prone, and

specialised configuration components or tool support are also options to do this more

efficiently [20].

The application test sub-process is the final (for a single iteration) process of the

application engineering. It is the process of ensuring that the product has specified

features and quality. According to [19], the major differences from single-system

testing are:

• Many test artefacts are not created anew, but are derived from the platform.

Where necessary, variability is bound by selecting the appropriate variants.

• Application testing performs additional tests in order to detect defective

configurations and to ensure that exactly the specified variants have been

bound.

• To determine the achieved test coverage, application testing must take into

account the reused common and variable parts of the application as well as

newly developed application-specific parts.

Following sections briefly summarizes some leading SPL methods. Each one of

these methods fulfils SPLE framework with their own approaches.

 22

2.4.1 Product Line Software Engineering (PuLSE)

PuLSE is developed by Fraunhofer Institute for Experimental Software Engineering

(IESE). PuLSE defines four different deployment phases and components that are

consistently used in these phases.

Figure 9 - PuLSE Overview [21]

Deployment phases are the main processes of the PuLSE. J. Bayer et al. define them

like below [21]:

• Initialization: baseline the enterprise and customize PuLSE as a result.

• Infrastructure Construction: scope, model and architect the product line

infrastructure.

• Infrastructure Usage: use the infrastructure to create product line members.

 23

• Evolution and Management: evolve the infrastructure over time and manage

it.

Technical components are the main building blocks of the deployment phases. They

involve technical know-how that makes possible these phases like how to scope, how

to model, how to develop, etc... Support components are guidelines which are used

during deployment of the SPL.

PuLSE is very comprehensive method to implement SPL. It has very well

documented processes and CASE tool supports (e.g. DIVERSITY/CDA which is

developed to support modeling phase of the PuLSE).

2.4.2 KobrA

KobrA is customized version of the PuLSE process. It is component-based software

engineering approach and its product line aspects are based on the PuLSE [22].

KobrA uses UML models in order to identify components.

Figure 10 - UML-based Component Modeling in KobrA [22]

 24

A component (komponent in Figure 9) is described in two distinct groups. First,

specification models cover external features of a component that are visible to other

components. These features can be seen as requirements of any given component.

Other group (realization models) covers internal structures of the component and it

can be seen as architecture of the component.

2.4.3 Component-oriented Platform Architecting Method (CoPAM)

P. America et al. define CoPAM as a method family that involves methods in order

to share know-how among the developers of various product families and their

family engineering methods.

Figure 11 - CoPAM as a method family [23]

For each product family, the CoPAM approach advocates the development of a

specific family engineering method from the method family, in a step called method

engineering [4]. CoPAM has two main sub-processes; platform engineering and

 25

product engineering. The first process deals with developing reusable components

and the second one deals with developing products using these reusable components.

2.4.4 Product Line ULM Based Software Engineering (PLUS)

PLUS [24] was introduced by H. Gomaa in 2004. PLUS method can be seen as an

extended form of the UML-based single system development methods (e.g. Comet

which is also introduced by H. Gomaa).

Figure 12 - Evolutionary Software Product Line Engineering Process [24]

PLUS follows a process model which is called as ESPLEP (Evolutionary Software

Product Line Engineering Process). This model is adoptable to RUP (Rational

Unified Process) and Spiral software development models. It can be deduced that

ESPLEP has been influenced mainly from RUP. PLUS also uses UML extension

mechanisms (stereotype, constraint, tag) in order to support product line modeling.

 26

2.5 Discussion

In this chapter, notion of the software reuse has been discussed. Two fundamental

reuse processes have been handled. Firstly, domain engineering processes and

secondly, software product line processes have been mentioned. For the sake of

brevity, some pioneering methods of these processes are also mentioned in this

chapter.

In this thesis work, feature-oriented approach of FODA, CASE tool supported

approach of the PuLSE and component-oriented architectural approach of the KobrA

have been adopted. Albeit, the work is directly coupled none of these processes, all

of them some how inspired it. For instance, meta-model of defined DSL has

“feature” element that stands for encapsulated requirement(s). Architectural building

blocks are also abstracted as “component” in this DSL.

 27

CHAPTER 3

3. VARIABILITY MANAGEMENT AND FEATURE
MODELING

3.1 Variability Management

Variability management is one of the fundamental principles of the SPLE. K. Pohl et

al. define “variability” as follows: “To facilitate mass customization the platform

must provide the means to satisfy different stakeholder requirements. For this

purpose the concept of variability is introduced in the platform. As a consequence of

applying this concept, the artefacts that can differ in the applications of the product

line are modeled using variability” [19]. This definition clearly depicts the difference

of the SPLE approach from other reuse methodologies. The applications are

considered as variations of common theme in SPLE [20]. These variations are

located (variation points) on the artefacts in prescribed way. The variants (possible

values of the variation points) are also a managed set of artefacts. Therefore,

adapting the common theme is under the control of variation management process.

Variabilities are divided into two separate class; internal and external ones. This

classification is based on user perception and user visible ones are named as external

where non-visible ones are named as internal variabilities. K. Pohl et al. defines this

classification as follows; “As external variability is visible to customers, they can

choose the variants they need. This can happen either directly or indirectly. In the

former case, customers decide for each variant whether they need it or not. In the

latter case product management selects the variants thereby defining a set of different

applications among which the customers can choose. The two cases can also be

combined, i.e. product management defines a set of applications but only binds a part

of the external variability. Thus the customers are able to decide about the unbound

variants themselves… All decisions that concern defining and resolving internal

 28

variability are within the responsibility of the stakeholders representing the provider

of a software product line. The customer does not have to take internal variability

into account when deciding about variants.” [19]. External variability is used to

satisfy user needs and internal variability is used to enable this kind of features in the

product.

Another concern of the variability management is when it is decided that some

variant instance is used, known as the binding time. Variability binding can be

handled at different phases. Generally, these phases are compile time, link time and

run time. Any given SPL may use all or subset of these binding time options.

Variabilities can be named as early or delayed, relatively (see Figure 13).

Figure 13 – Early (1) and delayed (2) variabilities [25]

Managing differences between products of the SPL is main purpose of the variability

management and this objective is one of the aspects that differs the SPL from the

single software development process. In fact, software variability is very different

 29

from the SPL variability. SPL handles commonalities among the products (its

members) hence variable artefact of the products may be common. In this case, this

artefact is a commonality for the SPL although it is software variability in its

products.

Variability exists throughout the whole process of the SPL. Specifically, domain

engineering and application engineering processes handle variability as follows [26]:

• In domain engineering process, variability is identified, designed and

implemented for reuse. It includes: variability identification, variability

analysis & design and variability implementation.

• In application engineering process, the variability in product line is tailored

and configured while developing a new member of family products. It

includes: variability customization, variability configuration and variability

binding.

Modeling is a kind of way to represent and share complex information in more

abstract form. In this respect, modeling variabilities is very helpful and wise aspect

of the variability management process.

3.1.1 Variability Modeling

As stated in the previous sections, variability management is distributed over the

other sub-processes of the SPL. Therefore, it is demanded a shared information

model. Modeling variability is very important for the SPL. It depicts variability

power of the SPL and this is the base of many important decisions like making a new

product, member of the SPL (scoping).

 30

Figure 14 – Sample for Orthogonal Variability Modeling (OVM) [19]

There are some methods in order to model variability like Variability Specification

Language / VSL [27], Decision-Oriented Variability Modelling / DoVML [28],

UML extensions [29] [30], Orthogonal Variability Modeling / OVM [19]. Some of

these methods are related only a subset of the sub-processes of the SPL, and some of

them are generic methods. Furthermore, none of these methods are more widely

accepted than the feature diagrams (feature modeling) in order to model

requirements.

3.2 Feature Modeling

A feature model is a hierarchically arranged set of features. Relationships between a

parent (or compound) feature and its child features (or sub-features) are categorized

as follows [31]:

• And — all sub-features must be selected,

• Alternative — only one sub-feature can be selected,

• Or — one or more can be selected,

• Mandatory — features that required, and

• Optional — features that are optional.

 31

Feature diagrams are graphical representations of the feature models hence, they also

involve all contents of the feature model and they represent these contents

graphically. A. Metzger et al. define feature diagrams are used in many diverse

purposes and their notations also vary [32]. Figure 15 shows the common graphical

notations of the feature diagrams.

Figure 15 - Feature diagram notations

The feature diagram of the any given SPL is a way to specify product derivations of

this SPL. In this respect, a valid feature configuration which is a set of selected

features defines a product of SPL (whether its member or not). It’s also stated that

the products of the SPL are a set of bound variabilities and commonalties of this

SPL. Therefore, it is also possible to use feature models to manage variabilities.

Figure 16 - De facto sample of the feature diagrams; a simple car [33]

 32

According to the above feature diagram (Figure 16): Any given car has to have a

body, transmission, engine and horse power but it is optional that the car pulls a

trailer. Transmission of the car is automatic or manual. Its engine works with

gasoline or electric or the both of them (hybrid). Its horse power is one of these

classifications; low, medium, high.

Above paragraph is a textual definition of the sample feature diagram. In this respect,

it does not define any specific configuration instance of the feature model. Possible

options have to be selected in order to get a valid feature configuration that defines a

product. For instance, again according to the diagram in Figure 16, it is a valid

feature configuration: carBody, manual, electric, gasoline, mediumPower,

pullsTrailer.

Figure 17 - Sample feature configurations and their feature diagram

It is possible to derivate many distinct feature configurations from even tender

feature diagrams. It may become cumbersome task to handle these diagrams. In this

respect, D. Batory proposed a grammar for feature models [31] in order to handle

more comprehensive models. Figure 17 depicts feature diagram and some sample

configurations that obey to the model which is defined by this feature diagram. It can

 33

be easily deduced that supporting feature modeling activity with a tool is a wise

choice.

3.2.1 Feature Modeling Tools

Feature modelling is important activity and its usage is very common in diverse

application areas (not only software development). Thus, there are many feature

modelling CASE tools which are ready to use; pure::variant from Pure Systems [34],

fmp from University of Waterloo [35], Captain Feature [36], FeatureIDE from

University of Magdeburg [37].

Figure 18 - Tree display(1) and graph display(2) of a model in pure::variant

3.3 Discussion

Variability management is very crucial for any given SPL process. In this respect,

this management activity is determinative part of the general SPL process; well

managed variabilities contribute to make the SPL more effective.

 34

Modeling is an indispensable part of the variability management. Therefore it is also

crucial for the SPL process. Feature modeling is a very suitable way to model

variabilities, and it is widely accepted by the SPL community. Kutulu DSL does not

cover feature models but it covers feature-component bindings. Thus, it is assumed

that one analyzed feature-to-feature dependencies in the previous phases of the SPL

process and final form of them is a resolved feature set (valid feature configuration;

see Figure 17). It has been defined in more detail in following chapter.

 35

CHAPTER 4

4. DEPENDENCY INJECTION FOR DYNAMIC SPL

4.1 Dynamic Software Product Lines

Software engineers are faced with increasing pressure to deliver high-quality

software more economically. It is also desired that the delivered software has high

degree of adaptability. In this respect, software reuse has evolved from reuse of code

snippets to large-scale software product lines. Recently, Dynamic Software Product

Line (DSPL) extended the SPL with dynamic features.

S. Hallsteinsen et al. state that any given DSPL has subset of the following features

[38]:

• Dynamic variability (configuration and binding at runtime)

• Changes binding several times during its lifetime

• Variation points change during runtime; variation point addition (by

extending one variation point)

• Deals with unexpected changes (in some limited way)

• Deals with changes by users, such as functional or quality requirements

• Context awareness (optional) and situation awareness

• Autonomic or self-adaptive properties (optional)

• Automatic decision making (optional)

 36

• Individual environment/context situation instead of a “market”.

The product of a DSPL is capable of adapting to diverse operating environments

after deployment. This is very important capability, especially for the closed run-time

environments that do not allow remote access and easy configuration changes. This

situation is not exceptional in domains like defence. Therefore, SPL development

efforts for this type of domain (or market) have to consider dynamic notions.

However, a more adaptable system requires more configurations to be supported and

each new configuration item increases the complexity of variability management

exponentially [39]. Accordingly, we have to set up some mechanisms in order to

handle variability and these mechanisms have to support our management processes.

Figure 19 - SPL vs. DSPL on variability management

Although traditional SPL engineering recognizes that variation points are bound at

different stages of development, and possibly also at runtime, it typically binds

variation points before delivery of the software [38]. In contrast, DSPL typically

binds variation points at run-time.

Binding time of the variations is a common and determinative property of DSPLs. It

is generally very hard to classify any given SPL as a dynamic or not because DSPL

is an extension to SPL process. As previously mentioned, some dynamic properties

 37

may be included by the SPL and more of these properties make the SPL in question

more dynamic.

4.2 Dependency Injection

Dependency Injection (DI) is a style of object configuration in which an object’s

fields are set by an external entity. In other words, objects are configured by an

external entity. Dependency injection is an alternative to having the object configure

itself (setting its own fields with self created instances). Using this style provides

dependency agnostic (actually, it is only depended to interface definition) code and

externalized dependencies. Some empirical studies state that dependency injection is

not widely used because it is not common part of the software design courses [40].

Although DI has not deserved value recently, it is increasing its popularity in

software development area, nowadays.

The following example DI implementation is taken from [41] and it shows the basic

idea of DI. In naïve form, MovieLister creates MovieFinderImpl and uses this object

via MovieFinder interface. Therefore, it is dependent on both of these two classes.

On the other hand, using DI style changes these dependencies (see Figure 20). In this

case, external entity (Assembler) injects appropriate implementation

(MovieFinderImpl) into the MovieLister object. Then, it uses this injected object via

MovieFinder interface. It only depends on this interface, not its implementation.

Figure 20 - The dependencies for a Dependency Injector [41].

 38

DI is a very appropriate style for implementing a DSPL. An external entity

(assembler) can easily manage dependencies on behalf of the actual product and this

entity encapsulates all component configurations. The assembler injects all

dependencies at start-up time or later execution time of the product. Thus, DI can be

regarded as an enabling style for the dynamic product line architecture in this thesis

work.

Table 2 shows some DSPL features and respective DI contributions. Albeit, this list

is very appropriate to be extended, even these items prove that DI is a suitable style

for DSPL.

Table 2 - Some DSPL features and dependency injection

DSPL Feature How DI contributes to enable this?
Dynamic variability;
configuration and binding at
runtime

Assembler can configure and bind the
variation points at runtime.

Changes binding several times
during its lifetime

Assembler can have an external method
which binds variation points and this
method can be invoked several times.

Deals with unexpected changes
(in some limited way)

In the exceptional cases, assembler can
bind the variation point with pre-defined

variant.

Deals with changes by users, such
as functional or quality
requirements

Configuration of the assembler can be
visible to user (for instance options screen

in GUI) hence; binding scheme can be
changed by users.

Autonomic or self-adaptive
properties
Automatic decision making

Status information (situation) can be input
for the assembler. Therefore it analyzes

this input and decides the bindings.

4.3 Kutulu DSL for Modeling

Modeling architectural artefacts by defining traceability links to the concerning

requirements is not an easy task. Therefore, supporting modeling process is a wise

choice. In this respect, by using DSL, designing reference architecture with pre-

defined components (domain design) and then for each feature, constructing

traceability links between features and components (called the feature-component

binding) provide solid foundation to expose dependencies. DSL (as the term

 39

suggests) is a language dedicated to a particular domain. Therefore, any given DSL is

a mediator which is used for expressing a problem in its domain.

In the frame of this work, a visual DSL has been introduced in order to support

domain and application design processes of the SPLE, namely “Kutulu DSL”. The

main objective of the Kutulu DSL is to be able to express features and components of

the SPL (step 1-2 refer to this expression activity in Figure 21) in accordance to a

common meta-model. These expressions are usable for an external entity which is

employed to set up dependencies.

In previous sections, fundamental SPLE processes and how they can attain

dynamism with dependency injection have been explained. It is clear that in order to

employ an external entity (assembler) to inject dependencies we have to provide

enough information to this entity. According to our method this information can be

captured by the Kutulu DSL during domain design. Later, it can be used in

application design (see Figure 21, step 2).

Figure 21 - Using Kutulu DSL in SPL Process

 40

In Figure 21, black arrows refer to original SPLE processes and gray ones refer to

Kutulu extensions. Respectively, reference architecture and feature-component

bindings are defined in DSL (see Figure 21, step 1). Application design is expressed

by activating/deactivating features on model (see Figure 21, step 2). Identified

dependencies are transformed into a configuration for assembler (see Figure 21, step

3). Assembler uses these configurations at run time.

As mentioned in section 2.4, requirements which are analyzed in the preceding

process (domain requirements engineering), are input of the domain design process

and product line architecture (reference architecture) is the main output of it.

According to Kutulu approach, abstract requirements (features) have to be mapped to

components in this phase and these mappings have to be expressed in the Kutulu

DSL (specifically, the feature-component binding model). Inter-relations of the

components are also important information sources to decide dependencies. Hence,

modeling components and their relations (Domain model) in terms of Kutulu DSL

are also crucial to apply our method. After these steps, identified dependencies can

be injected by the DI assembler at run time. Although, it is possible to implement a

custom-made assembler, using a widely accepted assembler (COTS) is more reliable

way. In this respect, a separate transformation is defined. It exports the configuration

that can be processed by a DI assembler (e.g. Spring, Spring.NET, Google Guice).

4.3.1 Meta-models of Language Elements

Kutulu DSL is based on two meta-models. The first one is the domain meta-model

which is used to model components and their inter-relations. Each domain model is

composed of the component and relation definitions. Component definitions simply

refer to implementation assets, whereas relation definitions refer to different

situations according to their types. There are three types of relations in the DSL.

Assume that there is a relation between two different components; A and B.

• Uses Relation: A calls a method of B and B is used by A.

 41

• Creates Relation: A calls the constructor method of B (this is the case where

A is the factory of B).

• Event Relation: A publishes an event which is related to B.

Figure 22 - Domain meta-model of Kutulu DSL

The other meta-model component of the language is the feature-binding meta-model

which enables the modeling of feature-component bindings. Each feature is related to

some components and enabling any given feature for the product means binding

some properties of its related components and activating them in the product. Thus,

our language has to cover feature, component and property as essential concepts. As

we stated in section 2.3, properties can be concrete value, reference value. Moreover,

heterogeneous collections (uniform or mixed type of elements) of these values are

also valid property instances. Therefore, list type property also must take place in

language meta-model. Below diagram depicts the feature-binding meta-model of the

Kutulu DSL.

 42

Figure 23 - Feature-binding meta-model

4.3.2 Kutulu CASE Tools

Presently, there are two modeling tools in Kutulu project: the domain editor and the

feature-binding editor. As explained in the previous sections, there are also two main

information sources in domain design process, namely, the domain and feature-

binding models. These models can be composed by using concerned editors. Thus,

dependencies are readily expressed in our DSL. The third tool transforms (see Figure

21, step 3) DSL expressions into a configuration for the assembler.

Eclipse is a very suitable platform to develop graphical/textual editors (e.g. IDEs).

Therefore, there is no need to implement the editors from scratch. In this frame,

Kutulu CASE tools had been built on top of Eclipse platform. In this platform, GMF

is a framework which is used for implementing graphical editors [42]. Both of the

Kutulu editors (domain modeling and feature-component binding) are GMF-based

editors. GMF uses EMF meta-models to construct a graphical editor. Therefore,

meta-model has to be defined as EMF model in order to implement GMF-based

 43

editor. Then, the editor is generated by using some other manual configurations. On

the other hand, there exists a tool that handles these manual configurations in order to

make editor development easier. EuGENia (part of the Epsilon project [43]) is a tool

that automatically generates these manual configurations according to the defined

annotations in the EMF model. Therefore, it is also possible to directly generate the

editors from meta-model with some annotations.

Figure 24 - Implementation of Kutulu CASE Tools (Editors)

The main objective of these tools is to generate assembler configuration (see step 3

in Figure 21). Therefore, crucial last step of the process is M2T transformation which

is handled by another tool called Kutulu generator. Generation is coupled with the

assembler hence; the generator is implemented separately for the specific assembler.

In the present work, a simple generator has been developed for Spring.NET DI

assembler as a proof of concept. This generator is implemented as an EGL (Epsilon

Generation language) script which is interpreted by EGL generator (part of the

Epsilon project) [44].

 44

4.3.3 Using Kutulu Generator for Assembler Configuration

Spring.NET is one of the leading application frameworks for the .NET application

development platform. Spring.NET provides comprehensive infrastructural support

for developing .NET applications. It allows one to remove incidental complexity

when using the base class libraries facilitate best practices, such as test driven

development, easy practices [45].

Spring.NET has many different modules and each of these modules has many crucial

features. Spring.Core is one of these modules and it is used to configure applications

using dependency injection. The design of Spring.NET is based on the Java version

of the Spring Framework [46], which is used in many different applications world

wide.

Kutulu generator transforms user-defined dependencies into the form of

configuration which is understandable by DI assembler, in this case Spring.NET

assembler.

Figure 25 - Implementation of Spring.NET Generator

 45

Figure 26 - Spring.NET objects XML schema

 46

Figure 26 shows the XML schema of the Spring.NET objects. In this schema, there

are many different information sources to be used in dependency injection operation

by Spring.Core (Container / Assembler). Important information sources in “objects”

section of the schema are explained below:

• For each (container handled) object of the application there is a “object”

element. This element has to have “id”, “type” attributes and it may has

“property” elements.

o “id” attribute: Alias name of the object which is valid within the scope

of the configuration file. All other objects that reference the

concerning object use this alias name.

o “type” attribute: Compound information of the object. It holds both

class name of the object and its namespace information

(implementation details of the object).

o “property” element(s): All variable properties of the object are bound

via these elements.

• For each property of the object there is a “property” element. There are three

types of properties; reference, value and list properties. “property” element

has “name” attribute which is independent from its type. “reference” type

property has “ref” attribute, “value” type property has “value” attribute and

“list” property has “list” element.

o “name” attribute: Name of the property which is both valid in the

configuration file and in the implementation class.

o “ref” attribute: Reference value of the property. This value must be a

valid alias name of the object in the related configuration file.

 47

o “value” attribute: Concrete value of the property. This value is

evaluated as a primitive type.

o “list” element: If the property type is “list”, there must be a multiple

value in it. Each member of this list may be a list (recursively) or one

of the other two types (reference and value).

• For each list type property of the object, there is a “list” element. This

element has “element-type” attribute that defines the type of the members. It

encapsulates its members as inner elements.

Above elements are only small part of the configuration schema but they are

adequate for the common object bindings. Kutulu generator maps these elements of

the simplified schema to the elements of DSL meta-model definitions (see section

4.3.1).

 48

CHAPTER 5

5. CASE STUDIES

5.1 MVC, Factory Design Patterns and Two Alternative
Features

Assume that, we are implementing an SPL for Fire Support Command and Control

systems. The requirement analysis revealed that our SPL must support two different

features as display option: UMPC (Ultra Mobile Personal Computer) display, which

is suitable for tiny screens, and PC display, which is suitable for regular screens.

Furthermore, we require our products to handle variability at run-time. During

domain design, it is agreed that MVC (Model-View-Controller) and Factory design

patterns will be used. As a sample implementation, we modelled “Target module” of

the system which shows a list of targets in the final product.

Figure 27 - Sample model in Kutulu feature-component binding editor

 49

According to our simple feature-component binding definition, UMPCDisplay

feature sets ViewFactory property of TargetGUIController component to

SmallViewFactory reference value and PCDisplay feature sets same property to

NormalViewFactory reference value.

During the application design process, the developer uses the feature-component

binding editor in order to customize the particular product by selecting the activity

status of the features. Current model (Figure 27) proves that PCDisplay feature is

active for the product.

Figure 28 - Sample model in Kutulu domain editor

Figure 28 illustrates the implementation of the MVC design pattern for Target

module. Note that there is a factory that provides platform independence to controller

component.

As stated in section 4.2, we provide the notion of dynamism by using DI. We

decided to use Spring.NET as DI assembler for this project. In this case, we have to

run Kutulu transform tool to generate configuration for this assembler (currently,

 50

Spring.NET is only DI assembler which is supported by Kutulu transform tool).

Following configuration is generated for above DSL definitions.

Figure 29 - Generated Spring.NET configuration

5.2 Sample Product of TADES SPL

TADES is a SPL which is developed by Aselsan Inc. [47] in order to satisfy demands

of the technical fire support C2 software market. TADES defines tiered architecture

for applications and it also uses some very well known design patterns (e.g. Abstract

Factory, MVC) in its reference architecture. Full details of the reference architecture

are commercially confidential hence it has been partially analyzed in this work.

Figure 30 - Sample TADES application module

 51

Typical architectural view of the TADES application module is depicted in Figure

30. All presentation logic is encapsulated in a view component and creation of this

component is managed by a factory (ViewFactory in Figure 30). GUI Manager (GM

in Figure 30) manages all GUI related operations and forwards model updates to

view and vice versa. Business Manager (BM in Figure 30) encapsulates all business

logic. There may be lots of other architectural relations like that pattern application

and these relations are also needed to be expressed in Kutulu domain editor (see

Figure 21, step 1).

Figure 31 - TADES Log operations in Kutulu domain editor

Figure 31 depicts the part of the TADES domain model. Shown part covers the log

operation components and other components that have relationship to them. Another

part of the domain model is also listed below. This part includes the components that

deal with meteorological report operations (relation labels are omitted for the

simplicity all relations are “uses”).

 52

Figure 32 - TADES Met operations in domain editor

Below feature tree is part of the actual TADES feature tree. As stated previously, full

tree is out of this work’s scope, due to the commercial confidentiality. On the other

hand this partial tree is also adequate to prove the concept.

Figure 33 - Sample part of TADES feature tree

 53

Assume that there exists simple application that manages fire support meteorological

reports in the scope of the TADES SPL. Application engineer has defined this

product as a valid feature configuration of the feature tree (Figure 33). It is assumed

that the defined product uses event log as log registry and there is no need for user

management (authentication, registration, etc…). As meteorological reports, it

supports both high altitude and ground met reports.

Figure 34 – Feature bindings of log and met operations

Up to this point, domain design phase activities have been completed. Domain and

feature-binding models are ready to be used in application design. Application

engineer is able to define product configuration by using feature-binding editor (see

 54

Figrue 34). In this editor, each feature has an activity flag and application engineer

activates demanded features by using these flags (see Figure 21, step 2).

Finally, Kutulu Spring.NET generator gets defined two model file and generates

below configuration file (see Figure 21, step 3).

Figure 35 - Generated configuration

As previously mentioned, Spring.NET Core component uses generated configuration

file hence; Figure 36 shows the part of the sample product screen. Two menu items

of “met reports” proves that the both feature is active and main data grid is also

shows event log entries of application.

 55

Figure 36 - Configured TADES application

Assume that the product configuration has been changed. Thus, there is no need for

ground met report and all logs will be stored in text file. Application engineer

activates appropriate features and re-generates the configuration. Application reboots

and changed configuration applies to the product (see Figure 37).

Figure 37 – Configuration change in TADES application

 56

CHAPTER 6

6. CONCLUSION AND FUTURE WORK

This thesis presents a contribution about dynamic software product line approach.

The main motivation is to find a declarative way to realize the DSPL concept. This

study demonstrates that inversion of control is a very appropriate way to implement

DSPL. Furthermore, it also contributes to conventional SPL approach.

Firstly, architectural DSL definitions (domain model) are transported to a running

application by a CASE tool. This extension makes domain design process easier for

the designers, especially in posterior cycles of domain engineering. Secondly, Kutulu

DSL and its CASE tools provide semi-automatic architectural variability

management. An application engineer only activates the required features to

customize the reference architecture in application design process.

DI style is applied in order to bring dynamism to the products of the SPL. Presently,

the Kutulu generator has limited support for DI assemblers (currently only one) and

it is planned to be extended.

Although our case studies only exhibit start-up time product customization, it is also

possible to apply more sophisticated run time variability bindings. Altering

assembler configurations according to the run time environment parameters is one

possible way to implement adaptive assemblers. Custom-made assemblers can be

implemented as a future work. In this case, required extensions to the DSL must be

considered to work with these assemblers more effectively.

 57

REFERENCES

[1] P.Clements, L. Northrop, “Software Product Lines: Practices and Patterns”,
Addison Wesley, 2001

[2] Jan Bosch, “Design and Use of Software Architectures”, Addison-Wesley,
ACM Press Books, 2000

[3] Krysztof Czarnecki, Ulrich Eisenecker, “Generative Programming: Methods,
Tools, and Applications”, Addison-Wesley Professional, 2000

[4] Eduardo Santana de Almeida, et al. “C.R.U.I.S.E. - Component Reuse In
Software Engineering”, CESAR e-books, 2007

[5] F.L. Bauer et al., “Report on Software Engineering Conference”, Garmich,
Germany, NATO Science Committee, 1968

[6] “Software Engineering” an Oxymoron?, http://squab.no-ip.com/collab/
uploads/61/IsSoftwareEngineeringAnOxymoron.pdf, last visited on August 2009

[7] Edsger W.Dijkstra, “The Humble Programmer”, ACM Annual Conference,
Boston, 1972

[8] A.Kleppe, J.Warmer,W. Bast, “MDA Explained: Model-driven Achitecture:
Practice and Promises”, Addison Wesley, 2004

[9] Alain Abran et al., “SWEBOK – Guide to the Software Engineering Body of
Knowledge”, IEEE, 2004

[10] Wayne C. Lim, "Managing Software Reuse", Prentice Hall PTR, 2004

 58

[11] Kyo Kang et al., "Feature-Oriented Domain Analysis (FODA) Feasibility
Study", Technical Report CMU/SEI-90-TR-021, Software Engineering Institude -
Carnegie Mellon, 1990

[12] M. A. Simos, “Organization Domain Modeling: A Tailorable, Extensible
Framework for Domain Engineering”. Proceedings of the 4th International
Conference on Software Reuse (ICSR ’96), pp. 230 - 232

[13] “Reusability Library Framework AdaKNET and AdaTAU Design Report.
Technical Report”, PAO D4705-CV-880601-1, Unisys Defense Systems, System
Development Group, Paoli, Pennsylvania, 1988

[14] M. Simos, D. Creps, C. Klinger, L. Levine, and D. Allemang. "Organization
Domain Modeling (ODM) Guidebook, Version 2.0", Informal Technical Report for
STARS, STARS-VC-A025/001/00, 1996

[15] Ivar Jacobson, I. Jacobson, M. Griss,"Software Reuse: Architecture, Process
And Organization For Business Success", Addison-wesley Professional, 1997

[16] “Rational Unified Process – Best practices for Software Development Teams
– Rational Software Whitepaper”, Rational Software, 2001

[17] M. L. Griss, J. Favaro, M. D’Allessandro, “Integrating Feature Modeling with
the RSEB”, Proceeedings of Fifth International Conference on Software Reuse, IEEE
Computer Society Press, 1998

[18] Kyo C. Kang et al., “FORM: A feature-oriented reuse method with domain-
specific reference architectures”, Ann. Softw. Eng., Vol. 5, pp. 143-168, 1998

[19] K. Pohl, G. Böckle, F. Van Der Linden, “Software Product Line Engineering:
Foundations, Principles and Techniques”, Springer, 2005

[20] F. Van Der Linden, K. Schmid, E. Rommes, “Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering”, Springer, 2007

 59

[21] Joachim Bayer et al., “PuLSE: A Methodology to Develop Software Product
Lines”, Proceedings of the symposium on Software reusability, ACM, pp. 122 - 131,
1999

[22] C. Atkinson et al., “Component-Based Software Engineering: The KobrA
Approach”, Proceedings of the First Software Product Line Conference, 2000

[23] Pierre America et al., "CoPAM: a compact-oriented platform architecting
method family for product family engineering", Proceedings of the first conference
on Software product lines : experience and research directions: experience and
research directions, pp. 167-180, 2000

[24] Hassan Gomaa, “Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures”, Addison Wesley Longman
Publishing Co. Inc, 2004

[25] Jilles van Gurp, “Variability in Software System The Key to Software
Reuse”, Licentiate thesis, Department of Software Engineering and Computer
Science - Blekinge Institute of Technology, Karlskrona, 2000

[26] Jianhong Ma, Runhua Tan, "Handling Variability in Mass Customization of
Software Family", International Federation for Information Processing (IFIP),
Volume 207, Knowledge Enterprise: Intelligent Strategies In Product Design,
Manufacturing, and Management, Springer, Boston, pp. 996-1001, 2006

[27] M. Becker, “Towards a General Model of Variability in Product Families”,
Proceedings of the First Workshop on Software Variability Management, Groningen,
February 2003

[28] Deepak Dhungana, Paul Grünbacher, “Understanding Decision-Oriented
Variability Modelling”, First Workshop on Analyses of Software Product Lines, in
collocation with the 12th International Software Product Line Conference, Limerick,
2008

[29] H. Gomaa, M.E. Shin, “Multiple-View Meta-Modeling of Software Product
Lines”, 8th International Conference on Engineering of Complex Computer Systems
(ICECCS 2002), IEEE Computer Society, pp. 238-246, 2002

 60

[30] M. Clauss, “Modeling variability with UML”, Young Researchers Workshop
Part of the Third International Symposium on Generative and Component-Based
Software Engineering (GCSE 2001), Erfurt, 2001

[31] D. Batory, “Feature Models, Grammars, and Propositional Formulas”,
Proceedings of Software Product Line Conference (SPLC), 2005

[32] Andreas Metzger, Patrick Heymans, "Comparing Feature Diagram Examples
Found in the Research Literature", Technical Report, Software Systems Engineering
University of Duisburg-Essen, 2007

[33] Arie van Deursen, Paul Klint, "Domain-Specific Language Design Requires
Feature Descriptions", Journal of Computing and Information Technology, 2001

[34] pure::variants, http://www.pure-systems.com/pure_variants.49.0.html, last
visited on August 2009

[35] Feature Modeling Plug-in, http://gsd.uwaterloo.ca/projects/fmp-plugin/, last
visited on August 2009

[36] Captain Feature, http://sourceforge.net/projects/captainfeature/, last visited on
August 2009

[37] FeatureIDE, http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/,
last visited on Agust 2009

[38] S. Hallsteinsen, M. Hinchey, Sooyong Park, K. Schmid, "Dynamic Software
Product Lines", IEEE Computer Society Computer Magazine Volume: 41 Issue: 4,
pp. 93-95, 2008

[39] Andrew Hunt, David Thomas, "The Pragmatic Programmer: From
Journeyman to Master", Addison-Wesley Professional, 1999

[40] Hong Yul Yang, Ewan Tempero, Hayden Melton, “An Empirical Study into
Use of Dependency Injection in Java”, 19th Australian Conference on Software
Engineering, 2008

 61

[41] Inversion of Control Containers and the Dependency Injection pattern,
http://martinfowler.com/articles/injection.html, last visited on August 2009

[42] Graphical Modeling Framework, http://www.eclipse.org/modeling/gmf/, last
visited on August 2009

[43] The Epsilon Book, http://www.eclipse.org/gmt/epsilon/doc/book/, last visited
on August 2009

[44] L. M. Rose, R. F. Paige, D. S. Kolovos, F. A. Polack, "The Epsilon
Generation Language", Lecture Notes In Computer Science; Vol. 5095, Proceedings
of the 4th European conference on Model Driven Architecture: Foundations and
Applications, Berlin, pp. 1-16, 2008

[45] Spring.NET, http://www.springframework.net, last visited on August 2009.

[46] Spring Source, http://www.springsource.org, last visited on August 2009.

[47] Aselsan Inc., http://www.aselsan.com.tr, last visited on August 2009.

