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ABSTRACT

A SCRIPT BASED MODULAR GAME ENGINE FRAMEWORK FOR AUGMENTED

REALITY APPLICATIONS

Kuru, Muhammed Furkan

M.Sc., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Tolga Can

September 2009, 71 pages

Augmented Reality (AR) is a technology which blends virtual and real worlds. The

technology has various potential application domains such as broadcasting, architecture,

manufacturing, and entertainment. As the tempting developments in AR technology contin-

ues, the solutions for rapid creation of AR applications become crucial. This thesis presents

an AR application development framework with scripting capability as a solution for rapid

application development and rapid prototyping in AR. The proposed AR framework shares

several components with game engines. Thus, the framework is designed as an extension of

a game engine. The components of the framework are designed to be changable in a plug-in

system. The proposed framework provides the developers with the ability of agile coding

through the scripting language. Our solution embeds a dynamic scripting programming lan-

guage (Python) in a strictly typed static programming language (C++) in order to achieve

both agility and performance. The communication between the AR framework components

and the scripting programming language is established through a messaging mechanism.

Keywords: augmented reality, virtual reality, scripting, game engine
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ÖZ

ARTIRILMI� GERÇEKL�K UYGULAMALARI �Ç�N BET�K D�L� TABANLI B�R

UYGULAMA GEL��T�RME ÇERÇEVES�

Kuru, Muhammed Furkan

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Tolga Can

Eylül 2009, 71 sayfa

Art�r�lm�³ Gerçeklik (AG) sanal ve gerçek dünyay� birle³tiren bir teknolojidir. Bu teknolo-

jinin yay�mc�l�k, mimari, üretim ve e§lence gibi bir çok potansiyel uygulanma alan� vard�r.

AG teknolojisindeki geli³meler devam ederken, bu teknoloji üzerinde h�zl� ve kolay uygulama

geli³tirme çözümlerinin önemi artmaktad�r. Bu tezde betik dil destekli bir AG uygulama

geli³tirme çerçevesi sunulmaktad�r. Bu AG çerçevesindeki betik dilinin çevikli§iyle birlikte

AG bile³enleri kullan�larak uygulama geli³tirilebilir. AG bile³enleri oyun motorlar�ndaki

bile³enlere benzer oldu§undan AG çerçevesi bir oyun motorunun geni³letilmi³ ³ekli olarak

tasarland�. Bununla birlikte, AG çerçevesinin bile³enleri de§i³tirilebilir bir ³ekilde tasarlan-

m�³t�r. Dinamik bir betik programlama dili (Python) statik tip ba§lamal� bir dil (C++)

içerisine gömülerek hem çeviklik hem de performans hede�enmi³tir. AG bile³enleri ile betik

programlama dili aras�ndaki ileti³im bir mesajla³ma yöntemiyle olu³turulmu³tur.

Anahtar Kelimeler: art�r�lm�³ gerçeklik, sanal gerçeklik, betik dil, oyun motoru
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CHAPTER 1

INTRODUCTION

Augmented Reality (AR) is an interactive visualization technology in which virtual and real

worlds are combined together to create a visually enhanced environment. AR di�ers from

Virtual Reality (VR) in the sense that the environment created in VR is entirely virtual

whereas AR mixes the real and virtual environments. In AR, the user's or real objects'

position and orientation are tracked and virtual objects are superimposed into the user's

surrounding environment. The technology uses a composition of techniques from computer

vision and computer graphics �elds.

AR can be applied to a wide range of domains such as broadcasting, computer games,

medical training, architecture, entertainment, and manufacturing [1, 2]. In addition, as the

tempting and promising development in AR continues, the solutions for building AR systems

become crucial in the software market.

1.1 Motivation and Problem De�nition

AR systems add a new dimension to visualization and interaction techniques. However, the

development of an AR system is not a trivial task. AR systems include too many components

each of which requires comprehensive knowledge and programming skill. In addition, for

speci�c solutions, di�erent components need to be incorporated into the system. Moreover,

since AR itself is a new technology, each of its components is under research and development,

thus are likely to be replaced by improved and better components. But still, the overall

architecture is the same for most AR applications and a common framework with a modular

structure can be developed. It is crucial for a modular AR framework to support substitution

of components with alternatives without a�ecting the application's overall structure. Even

if it is not required to change the underlying components, the framework can be used for

1



rapid application development.

Generally, in AR systems two main capabilities are needed: 1. Visualization 2. Track-

ing. The visualization problem is the one that is solved during game or VR application

development. From software development and design perspective, AR applications can be

thought as an extension to computer games or game-like multimedia softwares since they

share functional properties such as real-time 3-dimensional (3D) rendering, user input han-

dling, sound playing, physics, events and timers. However, game development itself is also

a tedious task as it requires the programmer to implement these functionalities. But, in

order to simplify game development and favor software reusability, the idea of Game Engine

(GE) frameworks have come out. The philosophy behind the Game Engine framework is

that the common parts in game development should be extracted and reused. This is nec-

essary for building reusable, tested software infrastructure containing middle-ware software

as sub-components. There is no speci�c de�nition of GE but GEs are the main independent

components of games. They should be independent of the actual game project. So, GEs do

not carry any game speci�c code [34]. This is achieved by separating the game content and

capabilities to be used. A game engine just de�nes the application's potential abilities and

di�erent games can be created using the same game engine with di�erent CG materials and

game logic. Even though, the name includes the word "game", the usage of game engines

is not restricted to computer games domain. It can be used for various kinds of multimedia

projects, simulations, and real-time visualizations. Incorporating a game engine into an AR

system reduces the complexity by creating a level of abstraction for the problems similar to

game development involved in AR.

The tracking problem can be solved in various ways depending on the application type

(e.g. indoor, or outdoor) and speci�cations. There have been studies in tracking techniques

and di�erent kinds of solutions exist such as computer vision based, inertial tracking, and

GPS [35]. By providing a common interface, existing tracking solutions can be incorporated

into an AR system.

Establishing an extended game engine with tracking capability enables us to develop

various kinds of applications using the framework by favoring code reuse. Moreover, em-

bedding a readable simple scripting language let the developers save time by facilitating the

development of applications.

In this thesis, we propose a modular game engine framework for AR applications that is

powered by scripting ability which enables rapid prototyping and application development.

Firstly, for the framework development, an extensible game engine is to be designed as the

2



baseline. The game engine will handle the real-time and 3D rendering issues. Moreover, it

may bring additional features commonly needed in games such as sound playing, graphical

user interface, physics, and network support. 3D tracking, live image data acquisition,

and other requirements will be satis�ed through the extension of the game engine. In the

framework, the tracking module will be plugged to the system as an input module providing

user's position and orientation. The framework is to be powered by the scripting capability

in Python, which provides us with fast development through less coding with simple syntax.

1.2 Related Work

There are a number of frameworks that encapsulate algorithms, implementation, and hard-

ware communication. However, the software engineering concepts for system-wide AR de-

velopment are not yet widely used in the AR community and a complete framework ready

to develop AR applications is missing.

ARToolkit [16] is an example of a simple and minimal AR framework. It has vision-

based tracking ability using a set of markers with pattern matching. The virtual objects are

rendered as simple graphics using OpenGL for visual augmentation. In fact, ARToolkit is a

software library rather than a framework. In a broad sense, it just provides the developer

with an application programming interface (API) that enables the developer to call a set

of library functions. However, it does not provide a pluggable interface for tracking and

rendering. Thus, if a developer wants to change the underlying OpenGL renderer, the

problem arises. Despite its simplicity, the library has been widely adopted and various AR

applications have been developed with ARToolkit because of its popularity. ARToolkit is far

from a scalable framework but the computer vision based tracking part of ARToolkit library,

as any other tracking library, can be plugged into our proposed AR system by implementing

a layer as an interface.

The DWARF project [3] proposed a high-level modular design concept that di�ers from

traditional AR software designs. The framework in the DWARF project includes a set of

services. Each service is a separate component that provides abilities to other components

by revealing its needs. The connection between the services are established by matching one

service's need to another service's ability. For example, trackers gather the pose informa-

tion. Providing position and orientation data can be de�ned as their ability. A renderer

needs position data in order to align virtual objects properly. So a renderer component

and a tracker component, for example a 3D-renderer and a vision-based tracker, is matched

3



for augmentation. This system provides us with a very �exible architecture and enables

us to replace any module with another one having the same interface, namely needs and

abilities. This type of architecture abstracts the inter-module communication and module

dependency. Thus changing a module's implementation in software or hardware does not

a�ect the remaining system as long as the need and ability pins are not changed. We tried

to adopt the modularity approach of DWARF in our framework and extend it with scripting

capability. Without the scripting capability, the DWARF lacks support for rapid develop-

ment of application behaviour which frees the developer from the burden of dealing with the

underlying modules and low-level programming issues.

The Studierstube project [25] is a software framework that provides the foundation and

basic software design layers. The goal of this framework is to support the technical require-

ments of AR applications. It has a reusable architecture and the underlying tracking system

can be con�gured. It combines 3D tracking, rendering, and output to AR and VR devices.

It has user management functions and distributed applications. This framework is used for

developing mobile, collaborative, and ubiquitous AR applications. However, this framework

also lacks scripting support which is crucial for rapid application development. Because,

the implementation of the application logic in a strictly typed static language rather than a

dynamic scripting language, increases the application development time.

1.2.1 Scripting Languages

There are various scripting languages each of which has its own advantages and disadvan-

tages. For the candidate scripting languages in our proposed AR framework, integrability is

the most critical feature. Thus, we examine the scripting languages which were designed to

be embeddable in applications.

Lua [23] is a lightweight embeddable scripting language which provides a procedural

syntax similar to Pascal language. It is fast and easily integrable to C language. Its syntax

is simpler than C. In order to embed Lua in other applications, it provides an easy to use C

API. Lua is widely used in contemporary computer games.

Perl [22] is another dynamic scripting language that is mostly used in web programming

and system administration. It focuses on application-oriented tasks. However, its syntax is

not highly readable.

Embeddable Common Lisp [17] is a functional programming language which is an

implementation of Common Lisp that can be embedded into C programming language.

However, it lacks popularity and documentation, particularly in game scripting.

4



Tcl [28] is designed to be an extension language for rapid prototyping, testing and graph-

ical user interfaces. It has a �exible syntax which you can incorporate new control structures.

However, Tcl holds all the data as strings which causes a performance drop due to data types'

conversion to and from strings.

Visual Basic [31] is a beginner programming language with easy syntax which is pro-

prietary to Microsoft. It is mostly used for developing Windows graphical user interface

applications. It can be used by applications through component object model inter-process

communication.

Python [18] is a general purpose dynamic programming language which can be used as

a glue language as well. It provides high code readability through clear syntax. It is widely

used as a scripting language in various types of applications, e.g. web, graphics, simulation,

and computer games. Its has a broad standard library.

All of these scripting language alternatives are suitable for being embedded in our pro-

posed AR framework. However, Tcl, Lua, and Python are one step ahead of others because

of their easy integration with C++. We have chosen Python since it has more beginner docu-

mentation and more readable syntax like pseudocode. Moreover, Python has more extension

libraries than Lua and Tcl.

1.3 Contributions

Our contribution in this thesis is a proposal of a scripting-based AR framework design

and implementation. In this framework, we propose a scripting ability to program AR

applications. It promises a reduction in the complexity and line of code needed to create

AR applications. The focus is reusability and rapid development during the design and

development.

Flexibility and extensibility

The system is designed to favor a �exible structure through the pluggable module in-

terface. According to application needs, proper modules are plugged to the main core. A

module can be de�ned as a component that is specialized to execute a speci�c job with an

interface. The system can be extended by implementing new modules. For example, be-

sides the basic modules such as the renderer and image processing modules, a sound player

module can be attached to the system in order to increase augmentation by sound e�ects.

Moreover, the ability to substitute a module with a new module is required to follow the fast

developments in the area of underlying technologies. A di�erent tracking method may be
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incorporated to the system by just substituting the tracker module. Therefore, changes to

the tracking module should be independent of the remaining parts. The modular structure

just de�nes the interfaces and any two modules having the same interface can be replaced

with each other.

Simple and rapid development

The level of abstraction in the framework is su�ciently high to support rapid develop-

ment of AR applications. A large number of existing frameworks are commonly based on

strictly typed languages that require compilation. Therefore they oppose frequent changes

and it increases the development time. On the contrary, scripting languages allow rapid

development by avoiding heavy programming task and strict style.

The editing and testing phase is pretty slow while writing in a static and strictly typed

language such as C++. C++ is designed with an emphasis on run-time performance and

any feature which has possible performance drawback is excluded from the language [27].

However, a dynamic scripting language does not require compiling and linking. It reduces

development time by faster coding. The trade-o� between run-time performance and de-

velopment time is an important issue, especially in the course of real-time applications.

Because of the critical performance issues, the system module's core functionalities can be

implemented in C++ and an interface for the use of the scripting language can be de�ned.

We choose this approach in our proposed framework.

Besides the abstraction provided by the modular structure, scripting brings another

abstraction layer that separates the application speci�c data and the underlying implemen-

tation. Using a scripting language is an easy way to glue the modules together. In addition,

a high level of reusability is achieved by the use of scripts. The application speci�c logic

and data can be de�ned by written scripts and the capabilities are reused behind the scene.

Since, scripting languages generally have a simple syntax and usage, learning and using it

does not require high programming skills. Additionally, the script-writers do not need to

know anything about the background technology, they have to focus merely on the data and

logics. In this thesis, Python programming language is used as the scripting medium.

In this thesis, in order to demonstrate the e�ectiveness of the proposed AR framework,

we develop a proof of concept AR application. We show that by taking advantage of the

scripting capability, AR applications can be developed rapidly.
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1.4 Organization of the Thesis

In Chapter 2, the background on AR technology is described. Chapter 3 summarizes the

overall structure of the proposed AR framework and its components. In Chapter 4, the design

and implementation details of the framework's scripting power are presented. Chapter 5

demonstrates the development of an AR application using our proposed framework. Finally,

we conclude and present future work in Chapter 6.
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CHAPTER 2

BACKGROUND ON AUGMENTED

REALITY

2.1 Introduction

Computer-generated imageries (CGI) have been widely used in games, movies, commercials,

and television broadcasting. Most of the time, CGIs are not used singly in pure form but

rather they are combined with real world visuals. However, merging 3-dimensional (3D)

virtual objects into the real world visuals is a tedious and time-consuming work. 3D and

2D graphics artists need hours for proper alignment of virtual objects into videos frame by

frame. The e�orts pay o� as the composite end product becomes impressive and realistic.

This way a seamless interaction can be achieved between virtual and real objects. But, still

the user interaction from the viewer's point of view is missing. The user can not manipulate

the virtual objects and can not change the viewing angle since the video is an o�ine material

Figure 2.1: Example of Augmented Reality
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and static. Thus, the result of merging process is far from interaction. A real-time merger

is required for viewing both real and virtual objects in order to experience interaction.

Augmented Reality (AR) is a new technology to present a solution for blending virtual and

real world with real-time user interaction. An example of AR image is shown in Figure 2.1.

There is a 3D CG ninja model that is aligned properly into the real scene, providing the user

with a level of interaction.

2.2 Augmented Reality versus Virtual Reality

Augmented Reality is similar to Virtual Reality (VR) in the way of using CG materials as

content to generate virtual objects. In virtual reality, the user's scene is completely computer

generated and VR attempts to make users perceive virtual environment as real. In order

to reach realistic scenes, VR requires high quality models for building the environment and

powerful hardware for achieving smooth rendering performance in real time. On the contrary,

Augmented Reality does not need to generate all the environment synthetically. AR acquires

user's surrounding visual data from capture devices and video streams in order to use the

real visuals as background environment. Then, the virtual objects are superimposed onto

video frame sequence. A visual from real environment and a synthetic virtual environment

are blended together to form an augmented visual.

In comparison to VR, the rendered scene content in AR is minimized and this reduces

the requirement of high computing power for rendering. Another contrast between AR and

VR is that Augmented Reality needs to register virtual objects precisely with real objects,

whereas Virtual Reality does not have any problem related to registration since every object's

position and orientation is de�ned and rendered accordingly. Registration refers to proper

alignment and superimposition of virtual and real objects. Except the registration problem

and the quantitative di�erence in CG rendering, AR and VR share common problems to be

handled in order to create applications of their type.

2.3 Augmented Reality Applicable Domains

The concept of augmenting real world by virtual objects is a promising way of information

visualization. It can be applied to various domains by AR systems. Consider visiting a

foreign touristic city, and not having any knowledge about the nearby historical places.

Instead of a guide, an AR system can help you retrieve the related information, instruct
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Figure 2.2: Example of indoor AR using Head Mounted Display

you to the right direction and augment the real world with audio-visuals. Head Mounted

Display (HMD)s can be used for augmentation from your point of view. The signs in the real

world can be translated to your language, audio and visual information can be acquired from

internet. Your surrounding can be turned into a vivid environment. AR can be e�ective

indoors as well. The user may interact with the 3D virtual objects that appear in front of

him. An indoor HMD usage example is shown in Figure 2.2.

Another domain that AR can be applied is medical training. Students can learn about

the surgery using an AR system that visualizes the invisible inner parts of human body.

The surgery can be simulated using the AR system. Even the operations may be executed

through the AR system's visual guidence.

During live broadcasting, especially in sports, 3D and 2D virtual advertisements can be

blended into the scene as they are part of the game �eld or grandstands. Statistics and

information about the game or players can be displayed over the live stream.

AR can be used in manufacturing and maintenance of machineries as well. The usage

guidelines of tools in the industry could be visualized using AR. For example, 3D models and

arrows can be drawn to instruct the user how to insert, put, remove tool's pieces. Informative

text can be displayed throughout the guidence as well [1].

Computer games, as the most entertaining applications, can be enriched by AR. AR-

Quake [29] is an example of outdoor �rst-person-shooter AR game. It gives opportunity to

play legendary game Quake outside with global positioning system (GPS) data for de�ning

the user's position and compass for the orientation.
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Figure 2.3: Monitor-Based AR Display (Courtesy of J.Vallino) [30]

2.4 Augmented Reality Environment

A typical AR environment consists of a set of hardwares and AR software. The overall sys-

tem requires technology to get and process information, then display images of augmented

view accordingly. The devices used in AR system directly a�ects the quality of the user's

experience of feeling immersed in the mixed environment and the seamless interaction be-

tween real and virtual. Generally, a camera, a display device, and computers are used for

basic AR setup environment.

2.4.1 Camera, Display, and Computers

Cameras are the devices that enable us to acquire the video images from the real world. The

video images can be used as a source for gathering information about the user's context in

real world. They can be rendered as background environment. Di�erent types of display

devices can be used for setting up a visualization medium.

Monitor-Based Systems

Monitor-based systems are the simplest and most common approach for AR systems. In

this system a monitor is used to display the generated augmented scene. The real-time

video stream of the real environment is gathered via a camera frame by frame continuously.

The frames are fed to the AR system. Then the camera's pose (3D coordinates and orien-

tation) in the real world can be calculated using vision-based approaches. The system is

diagrammed in Figure 2.3. This system requires only a personal computer (PC) and any

kind of camera plugged to the PC. Setting up this kind of system is a�ordable and simple.

Low-cost consumer products such as web cameras having USB or Firewire interface or analog
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Figure 2.4: Video see-through HMD AR system (Courtesy of J. Vallino) [30]

cameras through a capture card can be connected to the PC. The image quality is limited

by the camera's properties such as resolution and frames per second. The disadvantage of

this system is that the user may have di�culty in sensing the mixed environment interaction

from a display device. It achieves the real and virtual blending but the interaction level is

not high enough because the user may feel like an outside viewer. The interaction level may

be increased by placing the camera in a proper position to see user actions front and the

screen displays what the camera captures. The images taken from camera should be �ipped

vertically to enable this e�ect. This way the user has feeling of a mirror [9] and see himself

in action.

Video See-Through Systems

Head-mounted Displays (HMD) are widely used both in VR and AR to immerse the user

completely in the computer generated scenery. The user wearing an HMD is able to see the

images in front of himself. HMD is worn on the head and consists of two display screens

for eyes. The augmented scene is �tted into the user's �eld of view increasing the sense

of presence in the mixed scene. A scheme of video see-through system for AR is shown in

Figure 2.4. The di�erence between this system and a VR HMD is the addition of a video

camera attached to HMD. Using video see-through HMD system, the user does not see the

the real world directly. The real world is rendered from the video frames and it may reduce

the image quality depending on the camera used.
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Figure 2.5: Optical see-through HMD AR system (Courtesy of J.Vallino) [30]

Optical See-Through Systems

Optical see-through systems provide us with a better HMD con�guration for AR. Instead

of drawing the real world with reduced quality, transparent displays like glasses are used to

pass the light from environment to the user's eyes directly. Virtual objects are blended in

these displays in the same way as video see-through displays. Figure 2.5 depicts this system.

Since the real world is not rendered through a camera, HMDs used in this system do not

have resolution limits. They do not even require cameras if computer-vision techniques are

not used for tracking purposes. Inertial trackers on the HMD estimates the pose of the user's

head. However, the quality of virtual images are still limited by the hardware capabilities.

The mere disadvantage of this system is that the see-through displays are still not in the

range of a�ordable costs for consumers.

2.4.2 User-Interaction Devices

In an interactive environment created by an AR system, the user interaction with the en-

vironment should be emphasized as much as visualization. Haptic input devices such as

force-feedback gloves can be used to give the user feeling virtual objects as if they are in his

hand. Another example for a tangible AR interface is shown in an application developed by

Kato et al. [15]. In this example the user can select and manipulate virtual furniture in an

AR living room design application. The motions of the paddle are mapped to gesture based

commands, such as tilting the paddle to place a virtual model in the scene and hitting a

model to delete it. An example image is shown in Figure 2.6. New interaction techniques

have been researched to increase the interaction level [35].
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Figure 2.6: A real paddle is used to pick up, move, drop, and destroy virtual models (Courtesy

of Hirokazu Kato)

2.5 Tracking Methods

It is crucial that the position and orientation of the user be tracked precisely for proper

registration in AR. Registration can be de�ned as aligning virtual objects with the real

world. Several approaches have been developed for tracking the user or an object in the

real environment. They can be grouped into two: Sensor-Based Tracking and Computer

Vision-Based Tracking.

2.5.1 Sensor Based Tracking

By sensor-based tracking techniques, the user or a real object can be tracked using inertial,

magnetic, acoustic, and mechanical sensors. These types of sensors have both advantages

and disadvantages. For example, magnetic sensors have a high update rate and are light-

weighted, but they are noisy and can be distorted by any material containing metallic sub-

stance that disturbs the magnetic �eld [35]. Another example is inertial sensors. They are

used in HMDs to track the head's motions. They contain gyroscopes and accelerometers.

Gyroscopes measure rotation rate whereas accelerometers measure linear acceleration vectors

with respect to the inertial reference frame. To eliminate the e�ect of gravity, the accela-

ration due to the gravity should be subtracted from the observed acceleration value. The

gyroscope determines the relative orientation changes with respect to the reference frame.

But the accumulation of signal and error may raise the problem of increasing orientation

drift. A magnetic compass may be incorporated to compansate the accumulative errors but

they are also subject to errors by ferrous materials [33]. In order to achieve accurate tracking

vision based tracking can be incorporated into a sensor-based system in a hybrid-manner.
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Figure 2.7: Sample ARToolkit markers (Courtesy of Hirokazu Kato)

2.5.2 Computer-Vision Based Tracking

Vision based tracking techniques use image processing methods to calculate the camera's

position and orientation relative to the real world objects. This is the most active tracking

research area in AR. In this technique, the video input provides the information about

the camera's pose relative to the scene. The intrinsic parameters of the camera and the

information in the video frames can be used to calculate the camera position and orientation.

In video frames, features can be tracked to extract the scene information. Since �nding

strong features in video frames can be di�cult, manual markers are placed in the real scene

to aid the tracking. In this feature based method, a correspondance is found between the

2D image features of the markers and 3D world model coordinates. The camera's position

and orientation is calculated using this correspondance. Using the image processing methods

arti�cial markers can be tracked in real-time. The ARToolKit library can track black and

white square markers with pattern matching [16]. In this library, every image frame captured

from camera is thresholded into binary values. Then the black regions that can be �tted

into a region by four lines are found by segmentation and edge detection techniques. These

image regions are normalized and then checked against a pattern database, if a match is

found, the region is marked as the identi�ed region. Figure 2.7 shows two example markers

used in ARToolkit. After marker identi�cation, the position and orientation of the marker

is calculated with respect to the camera. Then, the virtual objects linked to the identi�ed

marker can be aligned and blended in the video frame. The �ow diagram of a marker based

AR system is shown in Figure 2.8.

An alternative to the pattern matching method is the Reactivision's topological �ducial

tracking [4]. In this method, instead of checking 2D patterns against a database, a topology

of the image is extracted and the regions having the same topology of markers are marked

as candidates. This method does not require line �tting or edge detection and it does not
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Figure 2.8: A marker based AR system

Figure 2.9: Sample Reactivision �ducials [4]

restrict the marker's shape to square but it can only estimate 2D positions and orientation

lacking 3D pose estimation. Example �ducials are shown in Figure 2.9.

These types of marker-tracking techniques are simple and they can exhibit high perfor-

mance. Having a simple set up with a PC and USB camera, an interactive environment with

decent frame rates can be created. However, any occlusion of some part of the markers may

lead the system lose tracking or match wrong markers. Ongoing researches in vision based

tracking are focused on the robustness of these systems.

The markers are usually unnatural shapes which are placed in the environment to fa-

cilitate the tracking. Generally, they are colored black and white in order to maximize the

contrast and minimize the e�ect of the light in the environment. This way a better thresh-

olding can be applied without losing any part of the marker due to poor lighting conditions.
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The regions in the marker shape can be identi�ed by segmentation successfully. Moreover,

they have features such as strong edges and corners. These all make tracking the markers

easier. But in a large-scale environment, the use of markers is not feasible. For this reason,

instead of using arti�cial �ducial markers, the natural features in a scene such as points,

lines, edges, and textures can be used to calculate camera pose. After determining camera

position and orientation from known visual features, the system can dynamically update the

pose calculation by using natural features acquired consequently. In this way the system

can provide us with robust tracking even when the original natural features are no longer

in view. There are various natural feature tracking techniques which are applied to AR. In

recent years, research on natural feature tracking has been highly active one in computer

vision [35].
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CHAPTER 3

AUGMENTED REALITY GAME ENGINE

FRAMEWORK

In this chapter, our proposed framework and its components are described. Our AR frame-

work is built upon a main core to which any functional component can be attached. The

main core does not execute anything but updates every component in each cycle. The 3D

render engine, the Script Manager, and Input-Output handler are the basic required com-

ponents that are statically binded to the core. A general view of the framework can be seen

in Figure 3.1. Graphical User Interface (GUI), Image Processor, Sound Library, and Video

Player can be plugged to the main core depending on the application needs. Additional

components, for example a Physics Component, can be incorporated into the AR system

like these plug-ins. The core and static components are implemented in C++. However,

plugins can be implemented in both C++ and Python programming languages.

3.1 Render Engine

Render engines are the most critical components of Game Engines. The render engine

component is tightly connected to the main core and forms the basis of our framework. The

term rendering can be used to de�ne the operation of generating images from model data in

the process of virtual visualization. The model data holds the visual information of 2D or

3D objects, that is the shape geometry and material properties such as texture, lighting, and

shading. The generated output would be a 2D image that can be saved in a �le or displayed

on the monitor device immediately.

Depending on the scene complexity in terms of both object and light quantity and the

techniques used for rendering objects, the rendering process may need extensive computing

time. However, real-time applications such as computer games and in our case AR appli-
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Figure 3.1: General view of the framework

cations need real-time rendering. The user should see the output immediately without any

delay. Thus, the rendering process should be executed at a rate more than 24 frames per

second which is the minimum rate for smoothness for the human eye. The video adapters

with 3D hardware acceleration capability generates the required computing power to aid the

system achieve acceptable frame drawing rates.

In the framework, the render engine is the part that is responsible for all the rendering

process. 2D and 3D rendering is executed using the render engine as an interface between

the framework and the video output hardware. Its basic abilities are:

- 2D and 3D computer graphics drawing: 2D graphics include digital images, text,

and 2D geometric shapes. 2D graphics do not have any depth. The graphical user interface

elements are examples of 2D graphics.

3D computer graphics are the visuals of 3D geometries. The model data of 3D objects are

used for visualization. Rendering 3D graphics is performed by calculating the viewing angle,

3D model's position, and orientation in the virtual world coordinates. The �nal graphic

output would be a 2D graphic that can be displayed on monitor devices.

- Lighting and Shading: Lighting is the crucial ability to create realistic images. If

the building blocks of the geometries, namely the polygons, are �lled with �at colors, the

�nal shape would be sketch-like and far from realistic view. In order to increase photo

realistic e�ects, the virtual light sources are de�ned and positioned in the environment and

the objects in the scene are colored according to the light intensity. The light sources can
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di�use di�erent colors. The amount of re�ecting light of the object varies by the incoming

light angle. The objects seem shaded as in the real world. They can re�ect the light or seem

transparent and shine. The specular light is the light that heads towards the user with a

steep angle from shiny surfaces.

- Texture Mapping: The geometric shapes can be wrapped by texture images to

increase reality. For example, in order to draw a 3D earth, a primitive sphere object is

created and the polygons of the sphere are �lled from a 2D image �le of the earth.

- Render to Texture: This is a feature for creating picture in picture e�ects in the

scene. Some part of the scene is rendered as a 2D image and that is used as a texture on a

object in the scene. This feature is also essential for background video drawing in monitor

and video see-through based augmented reality. The real world stream is loaded to the

de�ned texture data space and then rendered accordingly.

The render engine has some additional high level abilities such as scene management to

control and manage the virtual objects. It is also capable of drawing video stream data to the

background for achieving augmented visual. The render engine basicly keeps geometry data

of the scene and the camera properties. For every frame it calculates the drawing position

and color of the entities in the scene and �lls the framebu�er accordingly, �nally creating a

2D image on the screen.

In order to create a 3D augmented scene, the virtual camera should be con�gured to

match with the real camera in the real environment. The virtual objects drawn in the 3D

virtual environment will seem as if they are part of the real world.

As the underlying 3D renderer, we choose open-source Object-oriented Rendering Engine

(Ogre3D) [26].

3.1.1 Object-Oriented Rendering Engine (Ogre3D)

Ogre3D is one of the leading open source projects which is ranked in top 100 on source-

forge.net. It has all the features to satisfy the render engine requirements described above.

Ogre3D is not a Game Engine; it is just a render engine. It has numerous capabilities such

as polygon rendering (shader language support), geometry encapsulation, material system,

object oriented scene management, and a robust plug-in system. It can run both on Direct3D

and OpenGL graphic library APIs [13]. Ogre3D has a consistent documentation and active

forum support which allow us to use it e�ectively and �nd solutions easily for the problems

encountered.

From the design perspective, Ogre3D sits on the heart of our C++ side. Most of the
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Figure 3.2: Scripting mechanisim for Render Engine function calls

code pieces invoke Ogre3D methods. However, the scripting power let us encapsulate the

Ogre3D API. Through the Script Manager, the Python scripts call Ogre3D functions but

the Python side does not know anything about Ogre3D. The orders or messages sent from

the Python side, are independent of their corresponding implementation by the underlying

render engine. The scripting part does not carry anything related to the render engine.

Thus, the script writer does not need to know about Ogre3D. This mechanism is shown in

Figure 3.2.

3.2 Input Library

In AR applications, acquiring inputs from the user is essential in order to enhance the level

of user interaction. Apart from the conventional user input devices such as mice, keyboards,

and joysticks, the haptic input devices such as gloves or accelerometers (e.g. Nintendo's Wii

Remote [20]) can be plugged into the system. We choose the Object-oriented Input System

(OIS) [32] as the input handler in our framework.

3.2.1 OIS

OIS is an open-source object oriented input system. It is written in C++ and easily inte-

grated with Ogre3D. It supports mice, keyboards, joysticks, and Wii remote. In our frame-

work, input devices are initialized by the OIS library. The library supports both bu�ered and
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unbu�ered mode. The inputs taken from input devices through this library are fed to the

Script Manager's "input listeners". This way a connection between inputs and the scripting

is established. In scripting part, one can add a listener for key events such as "key pressed"

and "key released". Logical connection between keys and their corresponding triggering ac-

tions is formed by listener and observer pattern in the scripting part. This mechanism will

be described throughly in the Scripting chapter.

3.3 Graphical User Interface (GUI)

GUI is an important way of interacting with software applications. In our framework, 2D

buttons and texts are rendered using a GUI library that is compatible with the render

engine Ogre3D. There are many alternative GUIs, each of which has several advantages and

disadvantages. We chose ButtonGUI, that is written with a very minimalistic approach,

as our GUI component. We implemented the wrapping of the ButtonGUI library to our

scripting language Python. ButtonGUI can use both 2D and 3D geometry on the buttons.

It can render any type of fonts with Unicode support. The GUI elements can be created and

changed dynamically by the scripting capability. ButtonGUI also allows us to de�ne separate

material scripts for mouse events such as onClick, onRelease, mouseOver, and mouseO�. It

also sends messages when a button's position is changed or it is dropped on any other button.

The button events can be associated with triggering function calls at the Python side. This

way, the logic behind the GUI elements can be written by Python scripts.

3.4 Image Processing Component

In our framework, for vision-based augmented reality applications, a component which is

responsible for acquiring video images and processing the image frames is required. This

module is an interface between a video acquisition device or video �le and the renderer. In a

video see-through or monitor based AR system, the acquired images should be displayed in

front of user. Image grabber takes frames from the source and sends to the renderer. Most

of the time, the renderer draws the real world images to the background, behind all of the

virtual objects. Apart from background drawing, the images are sent to an image processing

library in which the user's context in the real world is extracted. Computer-vision libraries

which uses marker-based techniques in order to search for markers and calculate the position

and pose information of the user or a real object are incorporated in the image processing
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module. The position and orientation information is fed into the render engine which re-

arranges the camera or virtual objects' positions accordingly. We use an exclusive image

processing library, developed by RotaSoft company [24], in the Image Processing Compo-

nent for marker identi�cation and tracking. The library has been developed together with

our AR Framework. This image processing library is tightly connected to the main core and

the render engine. It basicly acquires image frames from video sources through DirectShow

[19] API. On every frame, it sends the frames to the render engine. The render engine draws

the frames on the background for monitor-based and video see-through based AR setups.

The library adapts a topological marker search approach similar to the Reactivision library

[14]. In every frame, it searches for markers. After identifying a marker in an image frame, it

calculates the marker's position and orientation relative to the camera. The steps of marker

detection are listed below.

• Acquire image frame.

• Binarize image by applying an adaptive threshold.

• Apply segmentation in order to de�ne regions.

• Generate frame's topological tree.

• Search for markers whose topology trees are de�ned in advance.

• Calculate position and orientation of the marker using the marker features such as

corners and inner regions

The design and implementation details of this underlying image library is out of this thesis'

scope.

3.5 Sound Library

The sound playing capability of an AR system is crucial for the enhancement of the aug-

mentation level. The visual animations lacking sound would diminish the user's feeling of

being in the mixed environment. The Sound Library is designed to provide sound playing

capability to our AR framework. We chose the open source OpenAL library [11] as the un-

derlying sound player library which is easily integrated to the AR system. OpenAL supports

concurrent sound playing, mono and stereo sounds. It is also designed for 3D positional

sounds. It has hardware acceleration support. Many commercial applications, especially

games, use OpenAL [11].
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3.6 Video Player

Video Player component is designed in order to support picture-in-picture e�ects. The

streaming videos can be drawn on both 2D screen and 3D virtual objects. For example,

a video can be displayed on the screen of a virtual television, which is rendered in the 3D

scene. The Video Player uses the wmvideo plugin [12], an open source video plugin which

has been implemented using DirectShow API [19].

3.7 Script Manager

Script Manager is responsible for handling scripts written for developing applications using

the AR framework. The Script Manager is the communication interface between the scripting

language Python and the core language C++. It interprets the incoming messages from the

Python side and dispatches them to the components in the AR framework in order to be

handled. It is also designed for sending messages to the Python side from the components on

the C++ side. The details of the communication and the scripting architecture is described

in the Scripting chapter.
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CHAPTER 4

SCRIPTING

4.1 Introduction

The scripting power of the AR framework provides a Rapid Application Development (RAD)

environment by allowing us to control AR components in a �exible way. Normally, most of

the components of the AR framework have been developed in C++, which is a strongly

typed system programming language. Using the framework, any AR application can be

developed in C++ as well. However, the development time of an application in C++ in-

creases because of the long edit-compile-link-run cycles. A higher level interpreted scripting

language, on the contrary, needs just edit-run development cycle and it handles some pro-

gramming details automatically. This provides the programmer with less coding to achieve

the same job. Moreover, since the programmer does not deal with low level programming

issues, such as memory handling, he can solely focus on the application itself. This increases

the productivity and make the application contain fewer bugs. Certainly, there is a trade-

o� between development time and performance. Using a scripting language may decrease

the execution speed and increase memory consumption. This is due to the missing compile

time optimizations. Nevertheless, as the computing power of computers increases rapidly,

the performance loss caused by scripting overhead becomes negligible, especially considering

the dramatic decrease in the development time and the signi�cant increase in programmer

productivity and software reuse by use of scripting languages [21].

The main reason for using a scripting language in our AR Framework is to develop AR

applications rapidly without getting into complicated C++ syntax. The AR application

developer should be able to create applications by just writing scripts and run them with

the already compiled and linked executables. We chose Python as the scripting language

and integrated it with C++. Throughout this process, we followed these steps:
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1. Choose a scripting language

2. Design a communication mechanism

3. Design an event triggering system for the game logic

Before going into the details of this process, we may have a quick look at how to program

in the scripting language.

4.1.1 A Quick Look at Script Programming

The scripts in the AR framework are written in Python programming language. The main

executable, which is developed in C++, imports and interprets the written Python scripts.

The structure of the scripting has been built on three logical units: Sensors, Controllers, and

Actuators. Sensors sense whenever an event happens, such as a key press, mouse movement,

and a marker visibility. Sensors are linked to Controllers, which controls the activation

of the Actuators. The actuators are the actual units that have e�ect on the application.

For example, they can change position, motion, visibility, and size of an object. Sensors,

Controllers, and Actuators are connected in a Link. The application levels or scenes are

composed of Links. Thus, we build an application by creating Links and adding them to

the Scenes.

For example, we can create a 3D cube when the scene is loaded and rotate it around

y-axis by pressing "space" key. We use CreateModelActuator for loading and rendering 3D

cube geometry stored in cube.mesh �le. PositionSetActuator is used to locate the cube in

x,y,z coordinate system relative to the marker. We use RotateActuator and KeySensor to

associate the "space" key with rotation of the cube.

# we create a Scene instance

Scene01 = Scene("Scene01")

# add Links to the Scene instance

Scene01.addLink(Link([ActuatorSensor("sceneLoadedSensor", "onScene01")],

ANDController(""),

[CreateModelActuator("CubeCreate", "Cube", "cube.mesh")

,PositionSetActuator("CubePos", "Cube", (0, 0, 0))

]

))

# when space key is pressed, cube is rotated

Scene01.addLink(Link([KeySensor("", "Space")],

26



ANDController(""),

[RotateActuator("CubeRot", "Cube", (0, 90, 0))

]

))

The details of the scripting and its usage are described in this chapter.

4.2 Scripting Language

There were two alternatives for incorporating a scripting language to the AR system:

1. Design a new scripting language

2. Use an existing embeddable scripting language

At �rst, we thought of designing our own scripting language with a very simple, human-

readable syntax. But after exploring this idea, we discarded it because of the need of extra

development time for designing the scripting language and implementing a parser and man-

ager for it. Designing an exclusive scripting language for the AR framework seemed to be

risky because it might make us lose our focus.

As an alternative, choosing an existing scripting language and embedding it has several

advantages. It lets developers start faster. There is no need to spend time for development

or maintenance. Moreover, a language we would design would not be as e�cient as the

existing scripting languages which are robust and cleverly designed. As scripting language

alternatives, we considered Lua [23] and Python [18], both of which are easily embeddable

scripting languages and used in several games and multimedia applications. We chose Python

as our scripting language because of its broad documentation, extension libraries, being

widely-used, and our familiarity with its syntax.

4.3 General Scripting Structure

Most of the components of the AR framework are developed in C++. These components,

e.g. Image Processor, Sound Manager, and Video Player are time-critical so they have to

bene�t from the C++'s high performance. The Script Manager component handles Python

scripts through the Script Manager. The Script Manager creates the connection between two

languages: one strongly typed static language, 'C++', and one typeless dynamic language

'Python'. The AR framework can be viewed as two main parts:
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Figure 4.1: The Scripting Structure and The Developer Roles

C++ Side: the core engine

Python Side: the interface

C++ has been used as the core system language and Python has been used as a 'glue'

language to create applications. Python scripts do not de�ne new capabilities. Instead, they

just create the logical links between components. The interfaces for communicating with

components are de�ned in Python and their corresponding handlers are implemented in C++

in order to achieve better performance. If performance is not an issue, the implementation

can be done on the Python side as well, without the need for communication with C++.

From developers' point of view, there are two roles de�ned: AR Framework Developer

and Application Developer. AR Framework Developer can add new capabilities by writing

Python interface classes and their corresponding delegate classes on the C++ side. There is

no restriction for the framework developer.

An application developer (script writer) does not have to go into details on the C++

side. He only uses the AR system's capability by just looking at the abilities provided by

interfaces on Python and selecting any of them. He does not need to know anything related to

implementation details running in the background. This working mechanism and developer

roles are plotted in Figure 4.1.
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Using this structure, the designed division of labor between C++ and Python provides

a signi�cant software re-usability. In order to develop AR applications, the framework com-

ponents developed in C++ can be used with Python scripts without rebuilding.

4.4 C++ and Python Integration

In our AR Framework, Boost Python library has been used to export C++ classes to Python

and embed Python in C++. Boost [7] is a robust open source package that provides vari-

ous portable C++ libraries. Its Boost.Python package has an easy high-level interface for

exporting C++ data to Python and vice versa. Any class de�ned in C++ can be exported

to Python using the Boost library. Sometimes wrapper classes are needed to be written

in order to comply with data types and interfaces. Boost.Python library generates Python

dynamic link library (DLL) �les with .pyd extension that can be used from a Python shell

or embedded Python.

4.5 Communication Between C++ and Python

All of the framework component classes and methods could be exported to Python using

Boost Python library and they could be accessed by the Script Writer. But it would make

the Script Writer have excessive control over components' parts. A level of encapsulation

seemed to be necessary to restrict and control Python script usage. In addition, this type

of complete exposure to Python by exporting all of the capabilities as it is, would only

simplify code writing using Python's syntax. What we want was some sort of independence of

scripting from the underlying components on the C++ side. Thus, instead of a direct access

to component elements (classes and functions), we considered building another layer between

Python and C++. This layer would be taking orders from Python scripts and send them

to the corresponding connected component. Even if any underlying component changes,

the written Python script will not need any change but this intermediate communication

layer would just call the replaced component. Two di�erent approaches were followed while

implementing this layer.

In the �rst approach, the layer was implemented as wrapper classes for every component.

The wrapper classes become like an interface to component classes. They have their own

methods that are needed on the Python side and they use the component classes as delegates.

In Python scripts, the Script Writer might use the Python extension of these wrapper classes.
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Figure 4.2: Actuator Sharing Between C++ and Python

If any component changes or replaced by another one, only the delegate component class of

the wrapper class requires to be changed. If the replaced component has di�erent interface,

the wrapper class will change its delegate method invocation. There is no need to change

anything on the Python side, as it does not carry any component speci�c code. We used

this wrapping mechanism for some of the components in the AR framework, e.g. GUI.

However, instead of this class wrapping mechanism, we considered adapting a messaging

system as a communication between C++ and Python. We treated every order from Python

side as messages to be handled on the C++ side. We named the messages as 'actuators'.

Every capability that we wanted to be available on Python side has been de�ned as an

'Actuator'. A C++ class that is to be shared with Python, has been created for each

Actuator. This Actuator class has data �elds that carry the message information. In Python,

another Actuator class is de�ned that uses this shared class as data holder. This is depicted

in Figure 4.2.
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Figure 4.3: Actuator Handling

4.6 Actuator Handling

On the C++ side, we de�ne an ActuatorHandler which will be responsible for handling the

received Actuator. The ActuatorHandler uses the component available as a delegate to do

the desired job. The Python script just creates the actuator and �lls its parameters and

sends it to the ActuatorList. ActuatorList is monitored by ActuatorManager in every frame.

ActuatorManager is in Script Manager component and responsible for dispatching Actuators

in the ActuatorList to their corresponding ActuatorHandlers looking at their type. Actuator

Handling steps are shown in Figure 4.3

The connection between ActuatorManager and ActuatorHandlers is established in a way

that it needs minimum code change whenever a new capability is added to the system by

implementing a new ActuatorHandler. The class should be inherited from ActuatorHandler

class and override the handleActuator() method. If any time dependent action is to be de-

�ned, handleActuator(�oat t) method should be implemented to de�ne the behaviour of the

handler. There are also isActive(), isDead() methods to decide whenever the ActuatorHan-

dler has to be run and should be deleted respectively. After an ActuatorHandler �nishes its

job and gets into the dead state, the ActuatorListener on the Python side is noti�ed with
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Figure 4.4: The sequence diagram of Actuator Handling
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the Actuator ID. The sequence diagram of this process is shown in Figure 4.4.

As an example to this message system, let us think, we need to give the Script Writer

an ability to change virtual lights in the augmented 3D scene. First of all, we de�ne a

'LightActuator' on the C++ side. It will be shared by Python as a data change medium.

We expose the 'LightActuator' to the Python using Boost.Python library. We write an

encapsulating 'LightActuator' class on Python side that creates an instance of the shared

'LightActuator'.

Step 1: Actuator De�nition on the C++ side

class LightActuator: public Actuator {

public:

LightActuator() : Actuator() {

create = false;

}

std::string lightName;

bool create; // create or change

double posx, posy, posz; // 3D position of light

double difr, difg, difb; // diffuse colors

int type; // 0 point, 1 directional, 2 spot light

virtual Type getType()

{

return LIGHT;

}

};

Step 2: Export Class to Python

...

using namespace boost::python;

BOOST_PYTHON_MODULE( Actuator )

{

class_<LightActuator, bases<Actuator>>("LightActuator")

.def_readwrite("lightName", &LightActuator::lightName)

.def_readwrite("create", &LightActuator::create)

.def_readwrite("type", &LightActuator::type)

.def_readwrite("posx", &LightActuator::posx)

.def_readwrite("posy", &LightActuator::posy)

.def_readwrite("posz", &LightActuator::posz)

.def_readwrite("difr", &LightActuator::difr)

.def_readwrite("difg", &LightActuator::difg)

.def_readwrite("difb", &LightActuator::difb);

}

Step 3: Python Interface class encapsulating the data holder
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# Creates light with

# name: lightName, 3D pos: pos, diffuse color: color, light type: type

class CreateLightActuator(Actuator):

def __init__(self, name, lightName, pos, color, type = 0):

self.actuator = ActuatorModule.LightActuator()

Actuator.__init__(self, name)

self.actuator.lightName = lightName

self.actuator.create = True

self.actuator.type = 0

self.actuator.posx = pos[0]

self.actuator.posy = pos[1]

self.actuator.posz = pos[2]

self.actuator.difr = color[0]

self.actuator.difg = color[1]

self.actuator.difb = color[2]

def onUpdate(self):

activeActuatorList.append(self.actuator) #fill actuatorlist

The above steps set up the data exchange part. In addition, we need to de�ne how to handle

LightActuator in LightActuatorHandler on the C++ side. After implementing LightActua-

torHandler, we need to add some dispatcher code in ActuatorManager class to send incoming

LightActuators to LightActuatorHandlers.

Step 4: ActuatorHandler De�nition

class LightActuatorHandler: public ActuatorHandler {

...

virtual void handleActuator() {

Light *light;

if (actuator.create) {

try {

light = mSceneMgr->getLight(actuator.lightName);

}

// if the light- does not exist

catch (Ogre::Exception& e) {

light = mSceneMgr->createLight(actuator.lightName);

}

}

try {

light = mSceneMgr->getLight(actuator.lightName);

light->setPosition(actuator.posx, actuator.posy, actuator.posz);

switch(actuator.type) {

case 0:

light->setType(Light::LT_POINT);

break;

case 1:

light->setType(Light::LT_DIRECTIONAL);
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break;

case 2:

light->setType(Light::LT_SPOTLIGHT);

{Vector3 dir(-light->getPosition());

dir.normalise();

light->setDirection(dir);

}

break;

default:

break;

}

light->setDiffuseColour(ColourValue(actuator.difr, actuator.difg, actuator.difb));

light->setSpecularColour(ColourValue(1, 1, 1));

...

Step 5: Dispatching Actuator to ActuatorHandler in ActuatorManager

...

boost::python::object cur = actList[i];

Actuator &s = boost::python::extract<Actuator&> (cur);

switch(s.getType())

{

...

case Actuator::LIGHT:

activeHandlers.push_back(new LightActuatorHandler(static_cast<LightActuator&> (s), mSceneMgr));

break;

...

The class diagram of Actuator handling mechanism in general is shown in 4.6
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Figure 4.5: The class diagram of Actuator Handling
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This messaging method provides an encapsulation between scripting and components.

The scripting part becomes loosely coupled with the components. In addition, the Script

Writer just sends messages by creating Actuator instances from the Python side and he does

not need to know anything about how they are handled on the C++ side.

4.7 Messaging from C++ to Python

The one way communication from Python to C++ may not be enough for the Script Writer

to create AR applications. He may need to inquiry the state of the system, receive messages

and user inputs or even ticks for every new frame. In C++, the Script Manager is responsible

for sending messages to the Python side. We adapted a structure with the listener-observer

pattern [10].

The scripting architecture and messaging between C++ and Python is shown in Fig-

ure 4.6.

We de�ne Listener classes in Python and append any data to these Listeners from C++.

Using Boost.Python library, C++ can reach these Python Listener class instances.

There are 4 types of Listeners:

KeyListener: The Script Manager, on the C++ side, is connected to the Input Library.

It appends user input keys to the KeyListener.

ActuatorListener: ActuatorManager class in the Script Manager appends �nished ac-

tuators' IDs to this Listener.

MarkerListener: This Listener is fed by the Image Processor Component with the

recently detected marker ID, position, and orientation.

AlwaysListener: This Listener is noti�ed by the Script Manager for every frame tick.

4.8 Message Triggering

The data �ow starts from the C++ side and reaches to the Python Listeners. ActuatorMan-

ager and the Script Manager notify listeners. The listeners then notify the Sensors. The

triggering continues over Controllers and Actuators, ends up back on the C++ side through

ActuatorManager's ActuatorList. [ Sensors -> Controllers -> Actuators ] connectivity and

triggering is encapsulated in the Link class. The message triggering is shown in Figure 4.7
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Figure 4.6: Scripting architecture built between C++ and Python
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Figure 4.7: Triggering Steps

4.8.1 Sensor-Controller-Actuator Structure

We use the Sensor, Controller, and Actuator structure which forces event-driven program-

ming. The �ow of the application is controlled by events that are sensed by Sensors. We are

inspired by Blender Game Engine [6] which uses this structure to create computer games

rapidly using the 3D graphics prepared in Blender. The logical elements in this structure,

e.g. Actuators and Sensors are independent of the objects they a�ect. The pattern is very

similar to the command pattern [10]. Actuators are like command objects which change the

properties of the object whose ID is given as a parameter. An alternative to this method

could have been achieved by exposing all the components' classes and methods to Python.

This way an imperative object-oriented script writing could be possible. But, the scripts

would be closely coupled with underlying components. Any change on the C++ side would

a�ect the Python scripts immediately. Wrapper classes can be written to encapsulate the

underlying components in order to remove the scripts' dependency. However, it would not

be practical to wrap and expose every class. Instead, Python side classes and methods can

be written in order to hide Actuator creation and sending.
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4.8.2 Sensors

Sensors are designed to sense the key, action, marker, and frame change events on Python

side. There are 4 kinds of sensors:

KeySensor: It checks if the pressed key is the same as this sensor's key.

AlwaysSensor: This sensor is activated for every frame.

ActuatorSensor: It checks if actuator which �nished its execution has the same name

with this sensor's registered actuator name.

MarkerSensor: It checks if the current marker is the same as this sensor's marker.

The Sensors are registered to the related Listeners. For example, a KeySensor("A"),

that is used to sense if user presses key "A", registers itself to KeyListener. KeyListener gets

noti�cation from the C++ side for every key strokes and for every registered KeySensor it

checks if the key labels match. Then it noti�es the Sensor accordingly. If user presses key

"A", the registered KeySensor("A") will be activated.

4.8.3 Controllers

The triggering between Sensors and Actuators is established through Controllers. When a

Sensor in a Link is activated, it checks the Controller and if the controller returns true it

sends its Actuators to the ActuatorList. There are 3 types of Controllers.

ANDController: This controller triggers Actuators when all of the sensors in the Link

become noti�ed.

ORController: This controller triggers Actuators when at least one of the sensors in

the Link become noti�ed.

PythonController: This controller holds a link to the Python function returning true

or false. It triggers Actuators whenever the Python script returns true.

Additional Controllers may be added to the system.

4.8.4 Triggering on Key Inputs

On the C++ side, the Script Manager receives both bu�ered and unbu�ered keys via OIS

library. It feeds these keys to the KeyListener instance on the Python side. The active

KeySensors registered to the KeyListener are activated depending on the key value. The

triggering to the Actuators continues if the Controllers which are linked to the KeySensors

return true value. The actuators are appended into the ActuatorList. The sequence diagram

of key input triggering is shown in Figure 4.8.
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Figure 4.8: The sequence diagram of key input triggering
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4.8.5 Triggering on New Frames

The Script Writer might need a Python function called or message sent to the C++ side on

every frame. In order to provide this, the Script Manager noti�es AlwaysListener instance

on the Python side. The active AlwaysSensors, which are registered to the AlwaysListener,

are activated on every new frame. The cascaded triggering continues till the Actuators

depending on the Controller's return values.

4.8.6 Triggering on Events

Most of the time, it may be needed that events trigger other events. In our scripting architec-

ture, the actuators generate a message after they are handled. The ActuatorManager class

in the Script Manager, feeds the handled Actuators' IDs to the ActuatorListener instance on

the Python side. The active ActuatorSensors, which are registered to the ActuatorListener

are activated depending on the Actuator ID. As an example, an ActuatorSensor can be de-

�ned to be activated after 5 seconds passed. At �rst, a TimerActuator with a unique ID and

5 seconds parameters. The ActuatorSensor instance is created with this TimerActuator's

ID as its parameter. After the TimerActuator is sent to the ActuatorList and handled on

the C++ side, its ID is fed to the ActuatorListener. Then the ActuatorSensor instance is

noti�ed.

4.8.7 Triggering on Marker Inputs

Markers that are visible on the acquired real world images are treated as inputs. The

Image Processor component is designed to notify MarkerListener on every new real world

frame. MarkerSensors are de�ned to sense marker changes on the Python side. The active

MarkerSensors, which are registered to the MarkerListener, are noti�ed whenever a marker

with the same ID is detected in the Image Processor component. The marker IDs are integer

values starting from 1. The marker data appended to the MarkerListener, contains position

and orientation values. They are used by PositionSetActuator and OrientationSetActuator

in order to register 3D objects with the marker in the real world.

4.8.8 Actuators

As previously described, Actuators carry the action messages from Python to C++. They

have an onUpdate method which appends the Actuator to the end of the ActuatorList queue.

Some of the Actuators are listed below.
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1. AnimationActuator: It creates 3D models. It can play, pause or stop an animation

of a 3D object. This actuator is also used for changing visibility property of 3D objects.

2. PositionActuator: It sets the 3D position (x, y, z) of a virtual object. It is also used

for registering the root scene node, to which all the objects are connected, relative to

the marker.

3. OrientationActuator: It sets the orientation (w, x, y, z) of an object in 3D space. It

is also used for registering the root scene node, to which all the objects are connected,

relative to the marker.

4. AlignActuator: It consists of a PositionActuator and an OrientationActuator. It

aligns the root scene node with the visible marker in the real images.

5. RotateActuator: It rotates an object in 3D space around 3 axes (pitch, yaw, roll).

6. ScaleActuator: It scales an object in 3D space relative to 3 axes (x,y,z) de�ned by

the marker plane.

7. SceneActuator: It handles scene changes by resetting every animation object, delet-

ing timers, destroying sounds, stoping and clearing videos. It also can change the

overall speed of animation speed in the AR application. It supports pause, play mode

for the applications.

8. TimerActuator: It creates timers and it can be used for callbacks and delays in the

applications.

9. CameraActuator: It handles the virtual camera's position, orientation in the 3D

scene. It can be used to give camera e�ects in the virtual world.

10. MaterialActuator: It changes the materials (textures, colors, opacity), visual prop-

erties of objects in the 3D scene.

11. ModelActuator: It is similar to the AnimationActuator but it only deals with static

objects (objects without animation or motion). It is used for simplicity.

12. MovableTextActuator: It creates 3D texts that face to the virtual camera in the

3D scene. It can be used to label and tag virtual objects. In addition, it can be used

for debug purposes in a scene including too many objects.
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13. OverlayActuator: It creates 2D texts and images on the screen. It can be used to

give textual and visual information. It can be used for debugging as well.

14. ParticleActuator: It creates, starts, stops, and destroys particle e�ects in the 3D

scene.

15. SoundActuator: It creates sound objects from sound �les using SoundPlugin com-

ponent. It is used for playing, pausing and stopping sounds by SoundActuatorHandler

using SoundPlugin API calls.

16. VideoActuator: It is similar to SoundActuator. It is used for playing, pausing,

stopping videos by VideoPlayerActuatorHandler using VideoPlugin API calls.

The class diagram of the Python side containing Actuators is shown in Figure 4.9 and

Figure 4.10.
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Figure 4.9: Python class diagram
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Figure 4.10: Python class diagram continued
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4.8.9 Links

Links hold Sensor, Controller, and Actuator arrays. The logical connection between these 3

elements are encapsulated in Links. Links form the building blocks of Scenes.

4.8.10 Scenes

Each part, scene, and level in the game logic is de�ned in Scene class. Actually a level is

created by the composition of Links (used for active messages and logic). So, Scene is just

a container of Links. Scene speci�es the active messages, active sensors, and actuators by

updating listeners.

Python Side Scene, Link, Sensor, Controller, and Actuator class diagram and encapsu-

lation structure is shown in Figure 4.11.
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Figure 4.11: Python Class Diagram and Encapsulation of Sensor, Controller, and Actuators
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The general view of the scene management via message triggering is diagrammed in

Figure 4.12.

Figure 4.12: Python Scene Management

4.9 Loading Scenes

The Script Manager loads Scenes through importing only one Python �le: scenario.py.

This �le consists of Scene imports and Marker associations. Depending on the application's

complexity, countless Scene �les can be created and these �les can be imported in scenario.py.

Any common order that will a�ect all of the Scenes can be written in this �le. For example,
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every Scene can be matched with a distinct Marker, such that whenever the Marker becomes

visible, the Scene is loaded. The changing Scene conditions are de�ned in scenario.py as

well. Some part of an example scenario.py �le is shown below.

SCENE_COUNT = 10

Scenes = [ ]

# import all the scenes from scenes folder.( Scene01, Scene02,...)

for i in xrange(1, SCENE_COUNT+1):

scene_str = "0" + str(i) if (i < 10) else str(i)

import_str = 'from ' + "scenes.Scene" + scene_str + ' import Scene' + str(i)

exec import_str

append_str = "Scenes.append(Scene"+ str(i)"

exec append_str

# associate Marker1 with Scene1, Marker2 with Scene2, ...

# when Marker1 becomes visible in Scene1,

# its position and orientation will be used to align virtual objects

for i in xrange(len(Scenes)):

Scenes[i].addLink(Link([MarkerSensor("", i + 1)], ANDController(""),

[AlignActuator("MarkerCenterAlign")]))

# marker change conditions: when Marker1 is found in a scene other than Scene1, Scene1 is loaded.

for i in xrange(1, SCENE_COUNT+1):

for j in xrange(len(Scenes)):

if j == i:

continue

Scenes[i].addLink(Link([MarkerSensor("", j + 1)], ANDController(""),

[ChangeSceneActuator("onScene" + str(j + 1), Scenes[j], listeners)],

))

4.10 Example Scripting Usage

An AR application, which is developed through our proposed framework, will be composed

of various Scenes. Every Scene is used as a level or stage in the application. The Script

Writer will just add new Scenes. Every Scene can be written in a separate Python �le

(.py extension) starting with Scene01.py and incrementing the numeric part. (Scene02.py,

Scene03.py ...)

Creating a Scene is just adding Links to the Scene. Scene class' addLink method is used

to add Links. Scene is to be initialized with a scene name. The convention is to give the

same name with the Scene variable.
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Example: Scene01 = Scene("Scene01")

The starting state is speci�ed by the Link that has the ActuatorSensor with actuator

name "onSceneXX" (XX digits). This is not strict and other methods may be used for

de�ning the entry point.

An example Scene �le is shown below. It creates a light in the 3D world and plays a

music �le when the Scene is loaded. After the music ends, a ninja model created and it walks

from left to the right relative to the Marker if there is any associated:

Scene01 = Scene("Scene01")

ninja_scale = (0.5, 0.5, 0.5)

ninja_start_pos = (-200, 0, 200)

ninja_dest = (200, 0, 200)

Scene01.addLink(Link([ActuatorSensor("Scene01LoadedSensor", "onScene01")],

ANDController(""),

[

CreateLightActuator("LightCreator1", "Light1", (500,500,0) , (1, 1, 1), 0)

,SoundPlayerActuator("TestSound", "test.wav" , play = True, loop = False)

]))

Scene01.addLink(Link([ActuatorSensor("TestSoundFinished", "TestSound")]

ANDController(""),

[ CreateAnimationActuator("CreateNinja", "Ninja", "ninja.mesh")

,ScaleSetActuator("NinjaScale", "Ninja", ninja_scale)

,PositionSetActuator("NinjaPos", "Ninja", ninja_start_pos)

,AnimationActuator("NinjaWalk", "Ninja",

playAnim = "walk", loop = True, dest=, turn=True))

]))

4.11 Graphical User Interface Control

We followed a di�erent control mechanism for GUI elements. Instead of sending messages by

actuators to the GUI component, we created a wrapper class PyButtonManager that provides

an interface for controlling all of the GUI component (buttonGUI) elements and events on

the Python side. The PyButtonManager creates only one GUI instance and registers the

underlying buttonGUI to the renderer Ogre3D. A higher level of encapsulation is achieved

by writing a Button class on the Python side, which uses PyButtonManager as a delegate

for creating, changing, hiding, showing GUI elements.

All of the GUI elements (texts, images, buttons, areas) are de�ned of type Button. Each

Button has a unique id. Its material properties, size (width, height), 2D position, alignment

and, text can be changed dynamically. In addition, Buttons which contain an input �eld,
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have additional getInputText method for getting input text values from the user. Buttons

may contain extra child Buttons. Their layout can be arranged by changing position and

alignment values of the items in the script �les. For every Scene �le, an additional GUI �le

may be attached. The Scene �le imports the GUI �le and GUI code. In consequence, the

application code is seperated into two di�erent �les.

The event handling of Buttons is performed by de�ning various Button actions: OnClick,

OnRelease, MouseOver, MouseO�, MouseWheelUp, MouseWheelDown. Any Python method

can be registered to any action of a Button. In order to access to the other AR components

by GUI element actions, still actuators are used. Actuators are created and their onUpdate

methods are invoked in a Python method. Then, the Python method is registered to a

Button's event. For example, changing the visibility of a 3D screen object in the scene by

pressing a mouse button on a Button would require a Python method that creates Mod-

elVisibilityActuator instance and calls its onUpdate method. Then this method needs to

be registered to the Button's OnClick event. The implementation of this process is shown

below.

def flipScreenVisibility():

mActuator = ModelVisibilityActuator('screenVisibilityFlipper', 'ScreenNode', flip = True)

mActuator.onUpdate() # add Actuator to the ActuatorList in order to be handled on the C++ side

screenVisButton = Button('visButton', 'visButtonMaterial', (128, 128), pos = (10, 10),

align = relativePosition.TopLeft, onClick = flipScreenVisibility)

The Buttons are rendered according to the their associated material �le by the renderer.

In the material �le, their color, texture images, and opacity are de�ned. For every Button

action event, di�erent material can be de�ned in order to achieve fancy visual e�ects. For

example, by adding a buttonMaterial.mouseOver material script, a di�ent image can be

displayed on a Button whenever mouse cursor goes over it.

4.12 Extension to the Sensor-Controller-Actuator Structure

Most of the time, the Script Writer accesses to the AR components through Python scripts.

However, he sometimes does not need any component access. Rather than sending a message,

he may just need to invoke a Python method. He can keep the state of application objects

on the Python side in any data structure making use of the Python which is very capable

language supporting object-oriented programming by classes. But the data on the Python
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side may need to be kept synchronized with the C++ side objects. The Script Writer may

keep synchronization and change the state on the Python side on every frame or on an event

change.

By extending the Link structure, we provide the ability of Python method registration

to the Links. We enable Python methods to be called on any event change. In the Sensor-

Controller-Actuator pattern, we add a new �eld Method to the end of the Link. Similar to

the way of sending Actuators to the ActuatorList, the Methods are invoked whenever the

sensors are activated and the controllers return true value. The Link structure may involve

both Actuators and Methods. They are de�ned in two seperate lists. The Python methods

with arguments may be invoked by adding them to Methods as well. Method list contains

(method, [args]) tuples. If method does not need any argument, args list can be omitted.

Example Link:

Class Car:

...

def up(self):

if self.speed <= 4:

self.speed += 1

self.update()

def down(self):

if self.speed > 1:

self.speed -= 1

self.update()

...

scene.addLink(Link([KeySensor("", "Up")],

ANDController(""),

[ ], #Actuators (empty)

[(car.up)] #Methods

))

scene.addLink(Link([KeySensor("", "Down")],

ANDController(""),

[ ],#Actuators (empty)

[(car.down)] #Methods

))
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CHAPTER 5

RESULTS

In this chapter, we present a case study in which an AR application has been accomplished

by using our proposed AR framework. This case study shows the simple usage of the frame-

work for rapid application development by describing the steps followed for creating an AR

advertisement tool which augments physical ad papers and brochures.

In addition, in this chapter, we evaluate the development time of the application, per-

formance, disadvantages, and advantages of script usage.

5.1 Augmented Reality Advertisement Tool

AR Advertisement Tool is designed to be an attractive promotion tool, particularly for

commercial products. It is inspired from the Magic Book [5] which displays virtual items

on a real book through the AR displays. Basically, this AR Advertisement Tool is an

interactive brochure creator. Even though the brochure paper used is not di�erent from a

standard brochure in terms of appearance, when it is seen through AR displays, it turns into

a material which enables us to see any virtual 3D model and animation on it. The users can

see the product's 3D model on the paper from all angles. In addition, 2D videos or images

can be displayed in a frame area on the paper. The 3D �ctional objects and characters

visible on the brochure move as the brochure's real world position changes. Thus, the user

gets the chance of seeing the models of the product he wants from any position and angle he

wants without using keyboard and mouse but only by translating and rotating the brochure.

AR Advertisement Tool is also designed to enable the users to see the products they

want at any place. Particularly for the customers who do not want to spend time in stores,

the application may be downloaded and the user may print a copy of the brochure. The

commercial products models pop out from the concrete paper brochure as they use it with
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their computer in the display.

In this case study, we decided to prepare an advertisement brochure for a car. The user

will see a 3D model of the car as he holds the brochure in the camera's range of vision. It

will be possible to change the color of the car by key inputs and GUI elements. The 3D

models of the interior parts of the car will be displayed on another page of the brochure.

5.1.1 Digital Content Creation

The digital content (3D models, animations, textures) of the application may be produced

using external tools. There are various digital content creation tools for creating models,

animations, terrains, etc. These tools may use proprietary formats for the digital content.

So, they need to be exported to our proposed AR framework's underlying render engine

Ogre3D. There are exporters for most of the modelling tools. For our application, the 3D

models and animations of the car and its sub-parts are exported to the render engine format.

5.1.2 Layout and Markers

Depending on the brochure page count and layout, we may choose any number of markers

up to the maximum number of Markers de�ned in the Image Processor Component. Since,

we have only two pages, one marker for each page and two markers in total are enough for

the application. We choose Marker with label 1 and Marker with label 2. The brochure

sheets need to be at least as large as the preferred marker dimensions. As the markers get

smaller, it becomes di�cult to track them when they get farther from the camera. It is

best to choose 10 cm square markers for 40-50 cm distance from the camera. The markers

are placed on the brochure pages. The remaining empty parts of the pages are reserved for

textual and visual information. The pages may be �lled in any style without occluding the

markers. The �nal layout of the brochure pages are shown in Figure 5.1 and Figure 5.2.
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Figure 5.1: The �rst page of the brochure

5.1.3 Scenes

We separate the pages of the brochure into two di�erent Scenes. Then, we create one �le

for each Scene: Scene01.py and Scene02.py.

In Scene01.py �le, we create a Scene object with name 'Scene01' in Python. Then, the

Links, which are needed to create models and form the logical connections, are added to the

Scene.

Whenever the �rst Scene is loaded, the 3D model of the car is rendered on the AR

display. We want a background music play as well. CreateAnimationActuator is used for

creating the 3D model. The car model is also scaled and positioned using ScaleSetActuator

and PositionSetActuator respectively. In addition we need a virtual light source in order to

see the virtual objects in their di�use colors. Otherwise, they are rendered in only ambient

colors. A LightActuator instance can be used to create the virtual point light. The �rst part

of the Scene �le is shown below:

Scene01 = Scene("Scene01")

car_scale = (1.0, 1.0, 1.0)

car_pos = (0, 0, 0) #just center on the marker

car_rotate_sec = 0.3 # 30 degree rotation seconds

car_rotates = True
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Figure 5.2: The second page of the brochure

car_rot_actuator = RotateActuator("CarRot", "Car", (0.0, 30, 0), time = car_rotate_sec)

Scene01.addLink(Link([ActuatorSensor("Scene01LoadedSensor", "onScene01")],

ANDController(""),

[

CreateLightActuator("LightCreator1", "Light1", (500,500,0) , (1, 1, 1), 0)

,SoundPlayerActuator("BackgroundMusic", "music01.wav" , play = True, loop = True)

,CreateAnimationActuator("CreateCar", "Car", "car-main.mesh")

,ScaleSetActuator("CarScale", "Car", car_scale)

,PositionSetActuator("CarPos", "Car", car_pos)

,car_rot_actuator

]))

We may add a constant rotate around vertical y-axis perpendicular to the brochure plane.

This is achieved by creating a RotateActuator and an ActuatorSensor for perpetual rotation.

#continuous rotate link for car

Scene01.addLink(Link([ActuatorSensor("CarRotFinishedSensor", "CarRot")], \

ANDController(""),

[

car_rot_actuator

]))

We may add a key binding for pausing and restarting the rotation of the car:
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def carRotationFlip():

global car_rotates

if (car_rotates):

SensorInactivate("", "CarRotFinishedSensor").onUpdate()

else:

SensorActivate("", "CarRotFinishedSensor").onUpdate()

car_rot_actuator.onUpdate()

car_rotates = not car_rotates

# space key stops/starts rotation

Scene01.addLink(Link([KeySensor("", "Space")],

ANDController(""),

[ ],

[(carRotationFlip)]

))

A GUI button may be used for pausing and restarting the rotation of the car as well.

The button is placed to the top right position of the screen. The button's visual properties

are de�ned in a material �le. The material name is given as second parameter to Button

class:

rotBut = Button("rotB", "rotButMaterial", (50, 50), align = relativePosition.TopRight,

pos = (10, 10), onClick = carRotationFlip)

We choose "tab" key for changing the color of the car from a given color set with (red,

green, blue, alpha) values.

color_set = [(1,0,0,1), (1,1,0,1), (1,1,1,1), (0.5, 0.5, 0.5, 1)]

color_index = 0

def carChangeColor():

color_index = color_index + 1

if (color_index >= len(color_set))

color_index = 0

MaterialActuator("CarMaterial", "Car", color_set[color_index]).onUpdate()

# tab key changes color

Scene01.addLink(Link([KeySensor("", "Tab")],

ANDController(""),

[ ],

[(carChangeColor)]

))

In addition, we can add another GUI button for changing the color or texture of the

3D car model. This GUI button is positioned below the rotation button. The method

carChangeColor is registered to the button's onClick event.
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Figure 5.3: A snapshot of the �rst scene in AR advertisement tool

colorBut = Button("colorB", "colorButMaterial", (50, 50), align = relativePosition.TopRight,

pos = (10, 100), onClick = carChangeColor)

A snapshot of the �rst Scene is shown in Figure 5.3.

Similar to the Scene01.py �le, in Scene02.py, we create a Scene object with name

'Scene02'. Then we create Links to form the application logic.

When the second Scene starts, a point light source is positioned in the scene and one of

the interior parts of the car is displayed on the brochure. A music �le starts playing in loop.

Scene02 = Scene("Scene02")

Scene02.addLink(Link([ActuatorSensor("Scene02LoadedSensor", "onScene02")],

ANDController(""),

[

CreateLightActuator("LightCreator2", "Light2", (500,500,0) , (1, 1, 1), 0)

,SoundPlayerActuator("BackgroundMusic", "music02.wav" , play = True, loop = True)

]

))

Four di�erent sub-parts of the car are modelled and they are exhibited one at a time.

For each of these 3D models CreateAnimationActuator, ScaleSetActuator and PositionSe-

tActuator are needed. At the beginning, only one of them is visible.
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models = [{"name" : "Steer", "mesh_name" : "car_steer.mesh", "scale" : (2, 2, 2)}

,{"name" : "Engine", "mesh_name" : "car_engine.mesh", "scale" : (1, 1, 1)}

,{"name" : "Interior", "mesh_name" : "car_interior.mesh", "scale" : (1, 1, 1)}

,{"name" : "Interior-Detail", "mesh_name" : "car_int_det.mesh", "scale" : (1, 1, 1)}

]

models_pos = (0, 0, 0) # all of the 3D models are positioned exactly on the marker.

active_model = 0

Scene02.addLink(Link([ActuatorSensor("Scene02LoadedSensor", "onScene02")],

ANDController(""),

[ CreateAnimationActuator("", model["name"], model["mesh_name"], visible = False)

for model in models

] +

[ ScaleSetActuator("", model["name"], model["scale"])

for model in models

] +

[ PositionSetActuator("", model["name"], models_pos)

for model in models

] +

[ ModelVisibilityActuator("", models[active_model]["name"], visible = True) ]

))

The "space" key is registered for changing the active visible object. It makes the visible

object vanish and another object get rendered.

def changeVisibleModel():

ModelVisibilityActuator("", models[active_model]["name"], visible = False).onUpdate()

active_model = active_model + 1

if (active_model >= len(models))

active_model = 0

ModelVisibilityActuator("", models[active_model]["name"], visible = True).onUpdate()

# space key changes active visible model

Scene02.addLink(Link([KeySensor("", "Space")],

ANDController(""),

[ ],

[(changeVisibleModel)]

))

Similar to the rotation and color change GUI buttons, a button may be drawn to the

screen for switching between the 3D models. The method changeVisibleModel is registered

to the button's onClick event.

changeModelBut = Button("switchB", "switchButMaterial", (50, 50), align = relativePosition.TopRight,

pos = (10, 100), onClick = changeVisibleModel)

A snapshot of the second Scene is shown in Figure 5.4. Depending on the application's extra

requirements, any additional program logic may be added to the Scene �les. Apart from

scene creation, the transitions between scenes and common properties of the Scenes have to
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Figure 5.4: A snapshot of the second scene in AR advertisement tool

be de�ned. The scenario.py is the Python �le that is loaded by the core. In this �le, we need

to import our two Scenes. We want Scene01 is loaded whenever Marker1 becomes visible.

Likewise, Scene02 is to be loaded as Marker2 becomes visible. We use MarkerSensors and

ChangeSceneActuators in order to switch Scenes.

# scenario.py

# Scene files are in scenes folder

from scenes.Scene01 import Scene01

from scenes.Scene02 import Scene02

Scene01.addLink(Link([MarkerSensor("Marker2Sensor", 2)],

ANDController(""),

[ChangeSceneActuator("onScene2", Scene02, listeners)]

))

Scene02.addLink(Link([MarkerSensor("Marker1Sensor", 1)],

ANDController(""),

[ChangeSceneActuator("onScene1", Scene01, listeners)]

))

The whole scene objects are to be drawn relative to the associated marker. The created

3D models are connected to a root scene graph node, "RootSceneNode". For every associated

marker observation, this root node is aligned with the marker in the real world image.
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# aligns RootSceneNode (parent node of all objects)

# with the marker in the real image

Scene01.addLink(Link([MarkerSensor("Marker1Sensor", 1)],

ANDController(""),

[AlignActuator("", "RootSceneNode")]))

Scene02.addLink(Link([MarkerSensor("Marker2Sensor", 2)],

ANDController(""),

[AlignActuator("", "RootSceneNode")]))

5.2 Evaluation

5.2.1 Development Time

As we use a very high level scripting language (Python), we can express 100 to 1000 instruc-

tions per statement. In addition, a set of useful data structures already exists in Python

scripting language. Thus, compared to C++, we can write fewer lines of code to express the

same application behaviour. Through the less coding, we bene�t a reduction in development

time. In various types of application development, the scripting version requires less code

and development time. The di�erence varies from a factor of two to a factor of 60 [21]. In our

case study, we only write around 100 lines of code. The C++ version would take at least 500

lines of code. If we consider the implementation of the built-in Python data structures such

as lists and dictionaries, it would reach 750 lines of code. In addition, there is no compile

step in Python. After writing or changing the script �le, we can run the main executable in

order to test it. This also reduces the debugging time.

Using our proposed framework, 3 interns, who are second and third grade Computer

Science students, have developed "Canl� Kitap" applications at Rotasoft company [24]. In

average, they have learned the Python and scripting syntax in 1 week. After having the 3D

and 2D materials ready, the script writing part has taken 3 weeks time for a book with 16

scenes. The scene �les contained 100 lines of code in average.

5.2.2 Performance

AR applications need real-time performance for seemless user interaction. Thus, performance

is a critical issue for the AR framework. The graphics rendering can be loaded on the

video adapter with hardware acceleration. Yet, the Image Processor requires high central

processing unit (CPU) time. Embedding the Python programming language in C++ and

implementing a communication layer, gives rise to an overhead. This overhead's size changes

depending on the application's instructions.
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Python is a slower language than C++. Particularly, the performance di�erence become

obvious in �oating point operations, tight loops, and function calls [8]. However, Python can

be used as a glue language rather than implementation of jobs which need high CPU usage.

In our scripting structure, the Python side is responsible for establishing and controlling the

logical bricks of the application. We avoid the implementation of the underlying components

in Python.

Python script codes are invoked by the noti�cation of the Sensors when an event happens.

For example, in our case study, whenever the "space" key is pressed, the KeySensor is noti�ed

and ModelVisibilityActuator is added to the queue which is shared by Python and C++.

Among the Sensors, only the AlwaysSensor is noticed every frame and the Controllers and

Actuators connected to this sensor are activated in every frame. This requires the message

transfer in every frame which causes a noticeable drop in frame rate. Still, smooth frame

rates are achieved in a 1.83 gigahertz machine with 1024 megabytes (MB) of random access

memory (RAM) and a hardware accelerated video adapter that has an exclusive 128 MB

RAM. Average, best and worst FPS results for our case study is shown in Table 5.1. The

results are taken from Ogre3D log �le. We have tested the two scenes separately. In addition,

we have tested the empty scene performance with and without the camera. The results show

that major drop in FPS is due to scene geometry complexity and image processing. The

screen resolution is 640 x 480 and the hardware consists of 1.83 ghz CPU, 1 GB RAM, and

NVidia 7300 video adapter.

Table 5.1: FPS results

Scene Triangle Count Average FPS Best FPS Worst FPS

Empty (w/o camera) ~0 582.98 598.402 568.432

Empty ~0 450.506 481.629 372.627

Scene01 ~50.000 150.078 458.541 83.7487

Scene02 ~15.000 269.162 451.548 100.298

Scripting Overhead

In order to estimate the overhead caused by the scripting, we have added counters in the

Script Manager code where it invokes Python methods. The pinpoints to the Python side
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are the listeners. Thus, we have calculated the latencies in milliseconds during the commu-

nication to Python listeners. The scripting complexity changes depending on the number

of Sensors, Controllers, Actuators, and Python methods. In our case study, the �rst scene

(Scene01) has 5 Links with 5 Sensors, 5 Controllers, 12 Actuators, and 2 methods in total.

The second scene has 5 Links with 5 Sensors, 5 Controllers, 24 Actuators, and 2 methods

in total. The scripting complexity of the scenes are similar. So, for testing purpose, we

added a test scene 100 extra Links having an AlwaysSensor with a Python method just

printing short text to the console. The results shown in Table 5.2 are obtained from 20.000

frames. The empty scenes shown in the table contain only 2 active Links. Amongst the

listeners, AlwaysListener noti�cation is dominant. Likewise, the increase in latency due to

many ActuatorSensors can be seen in the test scene result. As the number of active sensors

and actuators increases, the delay caused by the scripting overhead increases.

Table 5.2: Scripting Latency Results

Scene Total Latency Duration FPS Average Load

Empty (w/o camera) 17 ms 34.46 sec 580 0.05%

Empty 21 ms 41.66 sec 480 0.0504%

Scene01 77 ms 132.15 sec 151 0.0583%

Scene02 61 ms 62.5 sec 320 0.098%

Test (+100 AlwaysSensor) 340 ms 54.05 sec 370 0.63%

5.2.3 Disadvantages

The scripting in Python has few disadvantages apart from the performance drop. There

may be problems during script �le writing. Since Python forces indentation for scope and

�ow control, mixing tab and space characters may cause syntax errors. We encountered

indentation errors while copying from other Python �les. We had import problems with �les

created in di�erent editors. Because, di�erent end of line conventions in Windows and Unix

was problematic while importing the �le from the embedded Python. Still, the �le format

can be set to UNIX format in advance to solve this problem.

Python has no type checking before run-time. This may lead to errors in run-time when

an object is wrongly passed as a parameter to a function. But through the Python's excep-
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tion message, it can easily be �xed. During the development and testing, we encountered

confusing errors in the output �le. Still, after tracing the error message, we �xed the bug

quickly.

5.2.4 Advantages

The scripting increases the productivity and development quality by making the developer

focus merely on the application behaviour. In addition, coding in a scripting language,

particularly in Python, is enjoyable. Thanks to its simpler syntax, Python is much easier to

learn than C++. Python removes the burden of manual memory management. Moreover,

Python has numerous extension modules which can be imported with a single line. For

example, if we need an XML parser, we may use the Python's xml module by just writing

"import xml".
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CHAPTER 6

CONCLUSIONS

The presented thesis work focused on the design of a reusable augmented reality framework.

The demonstrative application showed how to develop an AR application by making use

of the scripting capability of the AR framework. The high-level scripting capability of the

proposed AR framework provides a rapid development environment. As Python scripting

language has a simpler syntax than C++, it is easier to learn. In addition, particularly,

the abstraction layer between the core and the application through scripting increases the

productivity of the application developers by freeing them from the implementation details

of the core functionalities.

The designed messaging mechanism between two di�erent programming languages (C++

and Python) brings an important encapsulation level. Embedding Python in the C++

enabled us to bene�t from the simple syntax of the Python compared to C++ complex

style. Furthermore, instead of a strictly typed static language, the dynamic typing and

binding feature of Python provides a much free environment. The code writing takes much

less time by avoiding compile time and speeding up the edit-test cycle. The developers may

express the orders with fewer lines of code by high level instructions of the scripting language.

The scripting has signi�cant memory and instruction overhead which may reduce the

application's speed. Particularly, the tight loops on the Python side may degrade the per-

formance considerably. However, the operations that need tight loops can be implemented

on the C++ side and exported to the Python side. Embedding a dynamic language like

Python or exporting methods and classes to the Python accomplishes �exible structure for

rapid application development.
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6.1 Future Work

6.1.1 Object-oriented Programming in Scripting

The scripting language, Python, in the AR system, has a very high-level syntax. However,

the coding style is not object-oriented. It is like event-driven programming where the �ow

of the program is determined by events. The current Sensor-Controller-Actuator structure

does not hold the objects in a data structure which causes the loss of object states. The

objects are reached through their ID, and the operations on the objects are executed through

actuators. For example, a 3D car model object is created by CreateAnimationActuator and

it is positioned by using PositionSetActuator which takes the object ID and the position as

parameters. However, car.setPosition(pos) would be an object-oriented way to change the

position of the car. In current implementation, Python classes can be created to associate

with the objects. In addition, the Actuators can be hidden in object's class functions. For

example, a Car class can be written to hold the state of a car such as its velocity, position,

and visibility. The methods of Car class can make use of Actuators. For example, setPosition

method may create a PositionSetActuator and invoke its onUpdate method. When the scene

is loaded the car instance registers its functions and actuators to the Scene instance. In order

to force object-orientation in the scripting, a generic solution can be provided by an Object

class implementation on the Python side and all of the 3D models and animation classes

may inherit from this class. The script statements sometimes seem confusing because of long

Link creation strings. It may become clearer in imperative style with object instances.

6.1.2 Automatic Script Generation

The script writer have to know the Python programming language for building scripts. How-

ever, for simple AR application and development and prototyping, the scripts can be auto-

matically generated through a graphical user interface by a user without any programming

language knowledge. The Link structure and its coding is suitable for creation through

a GUI. Blender game engine [6] provides a GUI with buttons to create logical bricks for

game development. In a similar way, a user may create AR application by just selecting

appropriate Sensors, Controllers, and Actuators in a GUI panel.

6.1.3 Run-time Coding

A shell access to the embedded Python may provide extra �exibility, particularly for proto-

typing and testing. While an AR application is running in the background, we may change
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the application behaviour through a simple shell. In order to change the objects' properties,

we may create Actuator instances and activate them. The shell may be implemented as a

separate Python thread that is created by the embedded Python.

6.1.4 Support for other Scripting Languages

The same scripting structure can be developed for other scripting languages such as Lua,

Ruby, and Perl. The Script Manager's interface to the Python can be altered in order

to embed an alternative language. The underlying components and the handlers of the

Actuators do not need to be modi�ed. The classes and methods on the Python side can be

de�ned and implemented in the alternative scripting language.
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