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ABSTRACT

ON FINITE GROUPS ADMITTING A FIXED POINT FREE ABELIAN OPERATOR

GROUP WHOSE ORDER IS A PRODUCT OF THREE PRIMES

Mut Sağdıçoğlu, Öznur

Ph.D., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Gülin Ercan

August 2009, 54 pages

A long-standing conjecture states that if A is a finite group acting fixed point freely on a

finite solvable group G of order coprime to |A|, then the Fitting length of G is bounded by

the length of the longest chain of subgroups of A. If A is nilpotent, it is expected that the

conjecture is true without the coprimeness condition. We prove that the conjecture without

the coprimeness condition is true when A is a cyclic group whose order is a product of three

primes which are coprime to 6 and the Sylow 2-subgroups of G are abelian. We also prove

that the conjecture without the coprimeness condition is true when A is an abelian group

whose order is a product of three primes which are coprime to 6 and |G| is odd.

Keywords: finite groups, fixed point free automorphisms, Fitting length.
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ÖZ

MERTEBESİ ÜÇ ASAL SAYININ ÇARPIMI OLAN ABEL GRUPLARI SABİT

NOKTASIZ OPERATOR GRUBU KABUL EDEN SONLU GRUPLAR

Mut Sağdıçoğlu, Öznur

Doktora, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Gülin Ercan

Ağustos 2009, 54 sayfa

Bir sonlu A grubu, |G| ve |A| aralarında asal olan sonlu ve çözülebilir bir G grubu üzerinde

sabit noktasız etki ediyorsa, G grubunun Fitting uzunluğunun A grubunun altgrup dizileri

içinde en uzun olanının uzunluğu ile sınırlanabilirliği uzun zamandır varolan açık bir sorudur.

A grubunun nilpotent olması durumunda bu sorunun aralarında asallık şartı olmaksızın da

doğru olması beklenmektedir. Biz mertebesi 6 ile aralarında asal üç asal sayının çarpımı

olan döngüsel bir A grubunun Sylow 2-altgrupları abel olan bir sonlu G grubu üzerinde

sabit noktasız etki etmesi durumunda bu varsayımın |G| ve |A| aralarında asal olmaksızın

da doğru olduğunu kanıtladık. Bu sonucun bir çıkarımı olarak da, mertebesi 6 ile aralarında

asal üç asal sayının çarpımı olan abel bir A grubunun, mertebesi tek sayı olan sonlu G

grubu üzerinde sabit noktasız etki etmesi durumunda bu varsayımın |G| ve |A| aralarında
asal olmaksızın da doğru olduğunu gösterdik.

Anahtar Kelimeler: sonlu gruplar, sabit noktası olmayan otomorfizmalar, Fitting uzunluğu
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CHAPTER 1

INTRODUCTION

Let A be a subgroup of the automorphism group of a finite group G. The centralizer

CG(A) of A in G is defined as CG(A) = {g ∈ G | ga = g for all a ∈ A }. We say that A acts

fixed point freely on G if the centralizer CG(A) is trivial. Assume further that |A| and |G|
are relatively prime. Then by the classification of finite simple groups [11, Theorem 1.48],

G is solvable. For a solvable group G, the Fitting subgroup F (G) is defined as the subgroup

generated by all normal nilpotent subgroups of G. When G is a finite solvable group, F (G)

is the largest normal nilpotent subgroup of G and it is nontrivial. Then the Fitting series of

G is defined by

F0(G) = 1 and Fi(G)/Fi−1(G) = F (G/Fi−1(G))

for i ≥ 1 and the Fitting length f = f(G) is the least integer such that Ff (G) = G.

In 1900, Frobenius conjectured that G has to be nilpotent whenever A is a fixed point

free automorphism of prime order. Fiftynine years later, Thompson settled this conjecture

without assuming the solvability of G [18]. This theorem is the starting point for further

investigation of the structure of finite groups G with a subgroup A of AutG such that

CG(A) = 1. Then Frobenious’ conjecture has extended to the following form:

Conjecture A. Let A be a finite group acting fixed point freely on a finite solvable

group G of order coprime to |A|. Then the Fitting length f(G) is bounded by the length of

the longest chain of subgroups of A, denoted by l(A).

If A is solvable, then l(A) is exactly the number of primes (counted with multiplicities)

dividing |A|, because of the fact that an abelian series, a series whose factors are abelian

for a finite group, can be refined to a composition series whose factors are of prime order.

Thus, the length of the longest chain of subgroups of A is exactly the number of primes (not

neccesarily distinct) dividing |A|.
Berger made a great progress towards the answer of this problem. He settled Conjecture A
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if A is a nilpotent group which has no section isomorphic to the wreath product of two groups

of order p for any prime p, [2]. More generally, for a solvable group G, Thompson proved

that f(G) ≤ 5l(A)f(CG(A)) where A is a solvable subgroup of AutG with (|G|, |A|) = 1 (see

[19]). This result was improved by Kurzweil as f(G) ≤ f(CG(A)) + 4l(A) [21].

In 1984 Turull [24, Theorem 3.3] showed that given A up to isomorphism, we can find

infinitely many G’s such that f(G) is exactly the number of primes dividing the order of A

counted with multiplicities. In other words, if the inequality f(G) ≤ l(A) is true, then it is

the best possible bound. We shall explain this result in Chapter 2. In the same year, Turull

also found a bound including the case where the group of automorphism does have some

fixed points. More precisely, he proved that if G is a finite solvable group and A is a solvable

group of automorphisms of G with (|G|, |A|) = 1, then f(G) ≤ 2l(A) + f(CG(A)) as an

improvement of Thompson’s work (see [25]). Of course as a corollary of this result we have

f(G) ≤ 2l(A) if A acts fixed point freely on G . In 1986, Turull handled the problem under

the assumption that A acts with regular orbits and proved the following: if a finite group A

acts fixed point freely and coprimely on a finite (solvable) group G, and also if A acts with

regular orbits, then f(G) ≤ l(A) [26]. In other words Conjecture A is true when A acts with

regular orbits. A finite group A acts with regular orbits if for every proper subgroup B of

A and every elementary abelian B-invariant section S of G, B has a regular orbit on S, i.e.

there is v ∈ S such that CB(v) = CB(S). For example, an abelian group A acts with regular

orbits on G if (|A|, |G|) = 1. To see this, it suffices to show that for each B ≤ A and for

each irreducible elementary abelian B-invariant section S of G, there exists v ∈ S such that

CB(v) = CB(S). Let 0 6= v ∈ S. If CB(v) 	 CB(S), then there exists b ∈ CB(v) − CB(S).

Now CS(b) = 1 as CS(b) is a B-invariant subgroup of S, a contradiction.

Later on Turull obtained a stronger result in 1990, namely he showed in [27] that if A is

a finite group acting on a finite solvable group G such that (|G|, |A|) = 1 and if A acts with

regular orbits, then f(G) ≤ l(A) + l(CG(A)).

However without the coprimeness condition, there is still not much known. We should

immediately note that some coprimeness condition is necessary in general, since it was shown

by Bell and Hartley in [1] that any finite non-nilpotent group can act fixed point freely on

solvable groups with arbitrarily large Fitting length with (|G|, |A|) 6= 1. Hence we expect

that the conjecture is true when the coprimeness condition is replaced by the assumption that

A is nilpotent. This question is still unsettled and can be stated as the following modified

version of Conjecture A.

Conjecture B. Let A be a finite nilpotent group acting fixed point freely on a finite
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solvable group G. Then f(G) ≤ l(A).

In [20], Kei-Nah showed that Conjecture B is true in the case where A is a cyclic group

whose order is a product of two distinct primes. After almost two decades, Ercan and Güloğlu

obtained a result that takes Kei-Nah’s work one step further by setting the Conjecture B

when A is cyclic of order pqr for pairwise distinct primes p, q and r. Namely they showed

that the Fitting length of G is at most 3 in this case [4].

Apart from these, fixed point free automorphisms are closely related to Carter subgroups

of solvable groups. A Carter subgroup is any nilpotent self-normalizing subgroup of a finite

solvable group. In a rather lengthy and well-known paper, Dade proved that there is an

exponential function e such that if G is a finite solvable group and C is its Carter subgroup,

then f(G) ≤ e(l(C)) [3]. Dade conjectured in the same paper that perhaps one could show

that there is a linear bound. Even though Dade made this conjecture in 1969, it is still

not known whether Dade’s conjecture is true or false. A special case of Dade’s conjecture

is that there is a linear function h such that f(G) ≤ h(l(C)) whenever C is a nilpotent

finite group which acts fixed point freely on the solvable finite group G. Indeed, under these

hypothesis, C is a self-normalizing nilpotent subgroup of GC, that is, a Carter subgroup of

GC: For if N = NG(C), then [N, C] ≤ N ∩C = 1 and so C is self-normalizing in GC. Hence

any answer to Dade’s conjecture is also an upper bound for f(G) under the hypothesis of

Conjecture B. To prove the conjecture of Dade, some additional conditions are imposed on

the groups G and C. For example in 1995, Turull proved that if C is a finite abelian group

with squarefree odd exponent acting fixed point freely on the finite solvable group G, then

f(G) ≤ 5l(C) [28]. In 2008, Ercan and Güloğlu improved this result by showing that the

truth of Conjecture B under some additional hypothesis. More precisely they obtained the

following two results [5]:

• Let A be a finite abelian group acting fixed point freely on a finite group G of odd

order. If A has squarefree exponent coprime to 6, then f(G) ≤ l(A).

• Let G be a finite (solvable) group of order coprime to 6. If C is a Carter subgroup of

G, then f(G) ≤ 2(2l(C) − 1).

Note that these two results are established without the coprimeness condition. The first

one improves Turull’s bound given in Theorem 3.4 of [28] and the second one improves the

bound given in Theorem 8.5 of Dade’s paper [3].

In this thesis, we studied a minimal configuration in which A has nonsquarefree exponent

and prove the following result:

3



Theorem. Let G be a finite group admitting a fixed point free automorphism 〈α〉 whose
order is a product of three primes which are coprime to 6. If the Sylow 2-subgroups of G are

abelian, then G has Fitting length at most 3.

As we pointed out the importance of this result is the possibility of allowing nonsquarefree

exponents. To be precise, it settles Conjecture B when A is cyclic whose order is a product of

three primes under an additional hypothesis on G. However if A is a p-group for some prime

p, then because of its fixed point free action on G, |A| and |G| must be coprime (Proposition

2.1.8). Since A acts with regular orbits by a previous remark, a result of Turull shows that

f(G) ≤ l(A) [26]. Moreover, as we mentioned before, by a result due to Ercan and Güloğlu,

if the order of A is a product of three distinct primes, then the Fitting length of G is at most

3 even without assuming that |A| is coprime to 6 and the Sylow 2-subgroups of G are abelian

[4]. Also the last result mentioned above due to Ercan and Güloğlu (2008), establishes that

f(G) ≤ 3 when A is abelian of square free exponent coprime to 6 and G is of odd order.

Thus, the problem is reduced to the case where A is cyclic of order p2q where p and q are

distinct primes. In our main theorem we study the case under a weaker condition on G by

assuming that Sylow 2-subgroups of G are abelian. As an immediate consequence of our

main result we state the following Corollary.

Corollary. Let A be a finite abelian group whose order is a product of three primes

coprime to 6. Assume that A acts fixed point freely on a finite group G of odd order. Then

f(G) ≤ 3.

When |GA| is divisible by the primes 2 and 3, it is a well-known fact that the study of

such problems needs much more effort. Therefore our theorem requires |A| to be coprime to

6 and G to have abelian Sylow 2-subgroups.

The outline of the thesis is as follows:

Section 1 and 2 of Chapter 2 give the necessary preparation from group theory and their

representations. Most of them are well known results which will be referred throughout

the thesis. Section 3 of Chapter 2 contains a collection of three important results due to

Shult, Gagola and Gross which will be referred throughout the thesis. Section 4 of Chapter

2 contains an example due to Turull [24], which guarantees that the bound given in our main

result is the best possible bound.

Chapter 3 includes our technical results pertaining the proof of the main result.

Finally in Chapter 4, we state and prove the main result. A contradiction will be deduced

over a series of steps, from the assumption of the existence of a counterexample. This chapter

also contains a corollary.
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The main result of this thesis is from the article [6].
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CHAPTER 2

PREPARATORY CHAPTER

2.1 Group Theoretical Part

In this section we shall give necessary preparation from group theory. Most of them are well

known results which will be referred throughout the thesis.

Proposition 2.1.1. (a) (Frattini Argument) Let H be a normal subgroup of G and P be a

Sylow p-subgroup of H. Then G = HNG(P ).

(b) (The Three Subgroup Lemma) Let A, B and C be three subgroups of G such that

[A,B, C] = 1, [B, C,A] = 1. Then [C, A, B] = 1.

Proof. [10] 1.3.7 and 2.2.3.

Proposition 2.1.2. For a solvable group G we have CG(F (G)) ≤ F (G) and equality holds

if F (G) is an abelian group.

Proof. [10] 6.1.3.

Proposition 2.1.3. A minimal normal subgroup of a solvable group G is an elementary

abelian p-subgroup for some prime p.

Proof. [10] 2.4.1 (v)

Proposition 2.1.4. Let G be a finite solvable group. Then Φ(F (G)) ≤ Φ(G). Also

F (G/Φ(G)) = F (G)/Φ(G).

Proof. [10] 6.1.6 (ii).

Proposition 2.1.5. The Frattini factor group P/Φ(P ) of a p-group P is elementary abelian.

Furthermore, Φ(P ) = 1 if and only if P is elementary abelian.
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Proof. [10] 5.1.3.

Proposition 2.1.6. Let G be a finite solvable group, K C G and K ≤ Or(G). Then

Or(G)/K = Or(G/K).

Proof. Let X/K = Or(G/K). As K ≤ Or(G) we get that X is an r-group. Since X/KCG/K

we have X C G and hence X ≤ Or(G). Thus X/K ≤ Or(G)/K ≤ X/K. Hence X/K =

Or(G)/K.

Proposition 2.1.7. Let H be a solvable group of Fitting length n. Then f(H/Fi(H)) = n−i

and Fj(H/Fi(H)) = Fj+i(H)/Fi(H) for all 1 ≤ j ≤ n− i, 1 ≤ i < n.

Proof. Consider the Fitting series of H, which is

1 C F (H) C F2(H) C . . . C Fi(H) C Fi+1(H) C . . . C Fn(H) = H

and let H = H/Fi(H). Then we have

1 = Fi(H) C Fi+1(H) C . . . C Fn(H) = H

Now F (H) = F (H/Fi(H)) = Fi+1(H)/Fi(H) = Fi+1(H).

Now suppose that Fj−1(H) = Fj−1+i(H). Then

Fj(H)/Fj−1(H) = F (H/Fj−1(H)) = F (H/Fj−1+i(H))

= F (H/Fi(H)/Fj−1+i(H)/Fi(H))

∼= F (H/Fj−1+i(H)) = Fj+i(H)/Fj−1+i(H)

∼= Fj+i(H)/Fi(H)/Fj−1+i(H)/Fi(H)

= Fj+i(H)/Fj−1+i(H)

and hence Fj(H) = Fj+i(H). Thus by induction we get that Fj(H) = Fj+i(H), for all

1 ≤ j ≤ n − i. Hence Fn−i(H) = Fn−i+i(H) = Fn(H) = H and f(H) = n − i. This proof

also shows that Fj(H/Fi(H)) = Fj+i(H)/Fi(H).

Proposition 2.1.8. Let A be a p-group of automorphisms of a group G with the property

that CG(A) = 1. Then G is a p′-group.

Proof. [10] 6.2.3.

Proposition 2.1.9. Let A be a p′-group of automorphisms of the p-group P .

(a) [P,A, A] = [P,A]. In particular, if [P, A,A] = 1, then A = 1.

(b) P = [P, A].CP (A). In particular if [P, A] ≤ Φ(P ), then A = 1.

(c) If P is abelian, then P = [P, A]⊕ CP (A).

7



Proof. [10] 5.3.6, 5.3.5 and 5.2.3.

Proposition 2.1.10. Let φ be a fixed point free automorphism of a group G. Then every

element of G can be expressed in the form x−1(xφ) and (xφ)x−1 for suitable x in G.

Proof. [10] 10.1.1.(i).

Proposition 2.1.11. If φ is a fixed point free automorphism of G, then φ leaves invariant

a unique Sylow p-subgroup P of G for each prime p in π(G). Furthermore, P contains every

φ-invariant p-subgroup of G.

Proof. [10] 10.1.2.

Proposition 2.1.12. Let φ be a fixed point free automorphism of a group G and let H be a

φ-invariant normal subgroup of G. Then φ induces a fixed point free automorphism of G/H.

Proof. [10] 10.1.3.

Proposition 2.1.13. (Thompson) If a group G admits a fixed point free automorphism of

prime order then G is a nilpotent group.

Proof. [10] 10.2.1.

Definition 2.1.1. (Definition 1.1, [25]) We say that a sequence of B-invariant subgroups of

G (P̂i), i = 1, . . . , h, is a B-tower of G if the following are satisfied:

(1) π(P̂i) = {pi} consists of a single prime for i = 1, . . . , h;

(2) P̂i normalizes P̂j, for i < j;

(3) We set Ph = P̂h and Pi = P̂i/CP̂i
(Pi+1), i = 1, . . . , h − 1, and Pi is not trivial for

i = 1, . . . , h;

(4) pi 6= pi+1, i = 1, . . . , h− 1.

h is called the height of the tower.

Proposition 2.1.14. (Theorem 3.1, [25]) Let A be a group of prime order acting on a group

G with (|A|, |G|) = 1. Let (P̂i), i = 1, . . . , h, be a A-tower and assume that A centralizes

P̂k (possibly with k = 0 and P̂k = 1). Then there exists a j ≥ k such that (CP̂i
(A)),

i = 1, . . . , j − 1, j + 1, . . . , h satisfies conditions (1), (2), (3) of the definition of A-tower. If

2 - |P̂k we may take j > k.

Proposition 2.1.15. (Thompson A × B Lemma) Let H be a finite group that acts as an

automorphisms on a finite p-group G, and suppose that H = A × B is an internal direct

8



product of a p-group A and a p′-group B. Suppose that B fixes every element of G that A

fixes. Then B acts trivially.

Proof. [10] Theorem 5.3.4.
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2.2 Representation Theoretical Part

In this section we shall give necessary preparation from representation theory. Most of them

are well known results which will be referred throughout the thesis.

Proposition 2.2.1. Every irreducible representation of a p-group on a vector space over a

field of characteristic p is trivial. Equivalently a nontrivial p-group does not possess a faithful

irreducible representation on a vector space over a field of characteristic p.

Proof. [10] 3.1.2.

Proposition 2.2.2. If G possesses a faithful irreducible representation on a vector space

over a field of characteristic p, then G has no nontrivial normal p-subgroups.

Proof. [10] 3.1.3.

Proposition 2.2.3. If D is an irreducible representation of an abelian group G with kernel

K, then G/K is a cyclic group. In particular a noncyclic abelian group does not possess a

faithful irreducible representation.

Proof. [10] 3.2.3.

Proposition 2.2.4. If a group G possesses a faithful irreducible representation, then it has

a cyclic center.

Proof. [10] 3.2.2.

Proposition 2.2.5. Let φ be a representation of G on a vector space V over a field F .

Assume that either F is of characteristic 0 or of characteristic prime to |G|. Suppose

V = V1 ⊃ V2 ⊃ . . . ⊃ Vn+1 = 0

is sequence of φ(G)-invariant subspaces such that φ(G) acts trivially on each Vi/Vi+1. Then

φ is the trivial representation on V .

Proof. [10] Theorem 3.3.4.

Proposition 2.2.6. (Maschke’s theorem) Let V be a kG-module and assume that either k

is of characteristic 0 or relatively prime to |G|. Then V is completely reducible.

Proof. [10] 3.3.1
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Proposition 2.2.7. (Clifford’s theorem) Let V be an irreducible FG-module and let H be

a normal sugbroup of G. Then V is the direct sum of H-invariant subspaces Vi, 1 ≤ i ≤ r,

which satisfy the following conditions:

(i) Vi = Xi1 ⊕Xi2 ⊕ . . .⊕Xit, where each Xij is an irreducible H-submodule, 1 ≤ i ≤ r,

t is independent of i, and Xij, Xi′j′ are isomorphic H-submodules if and only if i = i′.

(ii) For any H-submodule U of V , we have U = U1 ⊕ U2 ⊕ . . .⊕ Ur, where Ui = U ∩ Vi,

1 ≤ i ≤ r. In particular, any irreducible H-submodule of V lies in one of the Vi.

(iii) For x in G, the mapping π(x) : Vi → Vix, 1 ≤ i ≤ r, is a permutation of the

set S = {V1, V2, . . . , Vr} and π induces a transitive permutation representation of G on S.

Furthermore, HCG(H) is contained in the kernel π.

The subspaces Vi, 1 ≤ i ≤ r, are often referred to as the Wedderburn components of V

with respect to H.

Proof. [10] 3.4.1.

Definition 2.2.1. Let R be the ring of algebraic integers in C. Fix a prime p and choose a

maximal ideal M of R containing pR. Let F = R/M be a field of characteristic p, and let

∗ : R → F

be the natural ring homomorphism.

Let us set U = {ε ∈ C| εm = 1 for some integer m not divisible by p} ⊆ R, the multi-

plicative group of p′-roots of unity.

Let G0 be the set of p-regular elements of a finite group G (that is, the set of elements

g ∈ G such that the order of g is not divisible by p). Suppose that χ : G → GL(n, F ) is

a representation of G. If g ∈ G0, then since the restriction of ∗ to U is an isomorphism

U → F× of multiplicative groups (see [17, Lemma 2.1]), all the eigenvalues of χ(g) (which lie

in F× since F is algebraically closed (see [17, Lemma 2.1]) and χ(g) is an invertible matrix)

are of the form ε∗1, . . . , ε
∗
n for uniquely determined ε1, . . . , εn ∈ U . We say that ϕ : G → C

defined for g ∈ G0 by

ϕ(g) = ε1 + . . . + εn

is the Brauer character of G afforded by the representation χ. Notice that ϕ is uniquely

determined (once M has been chosen) by the equivalence class of the representation χ. We

say that ϕ is irreducible if χ is irreducible.

Proposition 2.2.8. (Fong-Swan Theorem) Let G be a finite p-solvable group and ϕ be an

irreducible Brauer character of G, then there must exist an ordinary irreducible character of
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G such that χo = ϕ where o denotes restriction to the set of p-regular elements of G. Such

character is called a lift of ϕ.

Proof. [17] Theorem 10.1 (Fong-Swan).

Proposition 2.2.9. Let P be a p-subgroup of a group G and QCA ≤ NG(P ). Suppose that

p does not divide the order of Q and Q � CG(P ). Let P0 be a minimal element of the set

{V |V ≤ P, A ≤ NG(V ), Q � CG(V )}. Then
(i) P0/Φ(P0) is an irreducible A-module with [Q, P0] = P0,

(ii) [Φ(P0), Q] = 1,

(iii) P0 is a special group.

Proof. For any A-invariant proper subgroup W of P0 we get [W,Q] = 1. In particular

[Q,Φ(P0)] = 1 and (ii) follows. Let P = P0/Φ(P0). Then P = [P ,Q]⊕CP (Q) by Proposition

2.1.9 (c). If [P , Q] < P , then by Proposition 2.1.9 (a), [P , Q] = [P , Q, Q] < [P ,Q] and so

[P , Q] = 1. It follows that [P0, Q] = 1 by Proposition 2.1.9 (d) which is not possible. Thus

[P , Q] = P and CP (Q) = 1. Now let 1 6= W = W/Φ(P0) be an A-invariant submodule of

P . If W < P , then W < P0 and we have [W,Q] = 1. This gives that [W, Q] = 1 and hence

W ≤ CP (Q) = 1 which is not possible. This shows that P is an irreducible A-module. Now

[P , Q] = P , so we have [P0, Q]Φ(P0) = P0 and hence [P0, Q] = P0.

Now suppose that P0 is not elementary abelian group i.e. Φ(P0) 6= 1. Since [Q,Φ(P0)] =

1 we get that [Q,Φ(P0), P0] = 1. Also since [Φ(P0), P0, Q] = 1 by the three subgroup

lemma 2.1.1 (b) we have [P0, Q,Φ(P0)] = [P0, Φ(P0)] = 1 . Thus Φ(P0) ≤ Z(P0). Now

Z(P0)/Φ(P0) is an A-invariant submodule of the irreducible A-module P = P0/Φ(P0). As

P0 is nonabelian group, we must have Z(P0)/Φ(P0) = 1 and hence Z(P0) ≤ Φ(P0). Thus

Z(P0) = Φ(P0). Since P0/Φ(P0) = P is an abelian group, then P ′
0 ≤ Φ(P0) As [P0, Q] = P0

we get [P0/P ′
0, Q] = P0/P ′

0. But P0/P ′
0 is an abelian group, so P0/P ′

0 = [P0/P ′
0, Q] ⊕

CP0/P ′0(Q) by Proposition 2.1.9 (c) and hence CP0/P ′0(Q) = 1 or CP0(Q) ≤ P ′
0. Thus Φ(P0) =

CP0(Q) ≤ P ′
0 and hence P ′

0 = Φ(P0). Thus P ′
0 = Φ(P0) = Z(P0).

Now let x, y ∈ P0 and z = [x, y], then z ∈ P ′
0 = Z(P0) and hence [z, 〈x, y〉] = 1.

Then zp = [x, yp]. But yp ∈ Z(P0) as Po/Z(P0) is an elementary abelian group. Thus

zp = [x, y]p = [x, yp] = 1. As P ′
0 is an abelian group which is generated by elements of order

p, then P ′
0 = Φ(P0) = Z(P0) is an elementary abelian group. Therefore P0 is special.

Proposition 2.2.10. Let N C G with G/N cyclic and let ϑ be an irreducible character of

N which is invariant in G. Then ϑ is extendible to G.
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Proof. [16] 11.22.

Proposition 2.2.11. Let V be a simple kG-module, where k is a field.

(a) If N ≤ Z(G), then V |N is homogeneous.

(b) If V is faithful for Z(G), then Z(G) is cyclic.

Proof. [12] Corollary B.9.4.

Proposition 2.2.12. Let G = HA be a finite group where H C G and H ∩ A = 1, and let

V be a finite dimensional, irreducible KG-module for some field K. Let W be a Wedderburn

component of V with respect to H. Then the stability group of W in G is HB, where B is

a subgroup of A, and W is an irreducible KHB-module. Furthermore, if A acts fixed point

freely on V , then B acts fixed point freely on W

Proof. The first statement follows directly from Theorem 2.2.7. Next assume that CW (B) 6=
0. Let t = |HA : HB| be the number of Wedderburn components of V with respect to

H. Since |HA : HB| = |A : B|, we can write V |H = W a1 ⊕ W a2 ⊕ . . . ⊕ W at where

A = ∪t
i=1Bai. Now there is a nontrivial element w ∈ CW (B) such that

∑t
i=1 wai 6= 0.

Since (wa1 + wa2 + . . . + wat)a = wa1a + wa2a + . . . + wata and A = ∪t
i=1Bai, we can write

wa1a+wa2a+ . . .+wata = wb1as1 +wb2as2 + . . .+wbtast = wa1 +wa2 + . . .+wat as w ∈ CW (B)

and bi ∈ B for i = 1, 2, . . . , t. Thus
∑t

i=1 wai ∈ CV (A), which is impossible.

Proposition 2.2.13. ([15, Theorem]) Let A act on a solvable group H and suppose that A

has a normal p-complement for every prime p | |H|. Then the following are equivalent:

(1) A fixes an irreducible character 6= 1 of H,

(2) A fixes an element 6= 1 of H,

(3) A fixes a class 6= 1 of H.

Proposition 2.2.14. ([25, Theorem 2.1]) Let B 6= 1 be a cyclic r-group for some prime r.

Let A = Ω1(B). Suppose G C GB, r - |G| and P ⊆ G, P C GB is a p-group (p a prime)

such that

(1) Φ(Φ(P )) = 1;

(2) Φ(P ) ⊆ Z(P );

(3) If p 6= 2, exp(P )=p.

Let k be a field such that char(k) - rp. Let M be a kGB-module. Set P0 = ∩kerM̂ , where

M̂ ranges through the irreducible P -submodules M̂ of M |P such that [A,P ] is not trivial on
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M̂ . Assume P 6= P0. Let Ω be a GB-stable subset of M∗ (the dual of M) which linearly

spans M∗. We set

M0 = {v ∈ M : for every f ∈ Ω− CΩ(A) , f(v) = 0}.

Let T ⊆ CG(B) ∩ CG(Φ(P )) be a t-subgroup (t a prime). Assume that T ⊆ P and if

Φ(P ) 6= 1 there is H an h-subgroup (h a prime) such that H ⊆ CG(Φ(P )), B normalizes H,

H/CH(P ) is elementary abelian and [H, P ] = P . We set T0 = P0 ∩ T .

Then CM *M0 and T0 ⊇ CT (CM (B)/CM0(B)).

Proposition 2.2.15. ([12, Theorem 9.18]) Let E be an extraspecial p-group of order p2t+1,

H be a cyclic p′-subgroup of AutG, and G denote the semi direct product of EH. Assume that

H acts regularly on E/Z(E) and trivially on Z(E). Let K be a field containing a primitive

pth root of unity whose characteristic does not divide |G|, and let V be a KG-module such

that VE is irreducible and faithful for E. Then there exists δ = ±1 such that |H| divides
pt − δ and a 1-dimensional KH-module U such that

(i) if δ = 1, then VH
∼= m(KH)⊕ U , and

(ii) if δ = −1, then VH ⊕ U ∼= m(KH)

where m = (pt−δ)/|H| and m(KH) denotes the direct sum of m copies of the regular module

KH.

Definition 2.2.2. Let G be a solvable group and A act on G. A subgroup P is called a

generating A-support subgroup of G if:

1) P C GA, P ⊆ G and P is a p-group for some prime p.

2) There are GA-invariant subgroups P1 and H such that

A) P1 ⊆ Z(P ), P/P1 is elementary abelian and GA-completely reducible,

B) H ⊆ CG(P1),

C) H/H ∩ CG(P/P1) is elementary abelian for some prime r,

D) H acts nontrivially on each H-chief factor of P/P1.

We call the A-support of G (denoted suppA(G)) the subgroup generated by all subgroups

S ⊆ G such that S C GA and either S is abelian or a generating A-support subgroup of G.

Definition 2.2.3. Let A be a finite group and π a set of primes. We say that A is π-regular

if:

1) π(A) ∩ π = ∅;
2) For any p ∈ π and any elementary abelian p-group H on which A acts and any section

S of HA, if all abelian normal subgroups of S are cyclic, S has a self-centralizing cyclic
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normal subgroups;

3) For any section S of A and any chief factor X of S, S/CS(X) has a regular orbit on

X;

4) If {3, 5} ⊆ π, any chief 2-factor of A is cyclic and if further 8||A|, either A is super-

solvable or it has a normal Sylow 2-subgroups;

5) No section of A is isomorphic to Zr

∫
Zs (any r, s > 1) or to GN(ε, pn, q) where p ∈ π,

n = 1 is an integer, q | |Gal(ε, pn)| is a prime and if ε 6= 1 π(Fε(pn)) ∩ π 6= ∅.

Proposition 2.2.16. [22, Proposition 4.5] Let GA be a finite group where G/GA is solvable

and V a kGA-module. Assume the following:

1) k is a splitting field for all subgroups of GA;

2) V |G is homogeneous and faithful;

3) CV (A) = 0;

4) A is char(k) ∪ π(G)-regular.

Then

CV (CA(suppA(G))) = 0.

Proposition 2.2.17. Let G be a group, k be a field and V be a faithful and irreducible kG-

module. Let k be an extension of k and V = V ⊗k k. Let N be an irreducible kG-submodule

of V . Then

1) Let H ≤ G. Then CV (H) = CV (H)⊗k k. In particular, CV (x) = CV (x)⊗k k for any

x ∈ G.

2) N is faithful as kG-module.

Proof. 1) V = V ⊗k K is a left kG-module, where (ag)(v ⊗ x) = gv ⊗ ax, for any a, x ∈ k,

g ∈ G, v ∈ V . Let {v1, . . . vn} be a basis for V over k and let B be a basis for k over k.

Then we have

V = V ⊗k (
∑

b∈B

bk) =
∑

b∈B

(V ⊗k bk) =
∑

b∈B

(V ⊗k b)

Let now v ∈ CV (H). Then there exist pairwise different elements b1, . . . , bs in B such that

v =
∑s

i=1 xi ⊗ bi with suitable xi ∈ V , i = 1, . . . , s and we have hv =
∑s

i=1 hxi ⊗ bi =
∑s

i=1 xi ⊗ bi for any h ∈ H.

Because of the direct sum decomposition V =
∑

b∈B(V ⊗k b), the above equation yields

that hxi⊗ bi = xi⊗ bi. Since we are considering the tensor product of two vector spaces, the

equation hxi ⊗ bi − xi ⊗ bi = (hxi − xi)⊗ bi = 0 gives that hxi − xi = 0 for any i = 1, . . . , s;
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i.e. xi ∈ CV (h) for any h ∈ H. Thus we get v ∈ CV (H) ⊗k k. Obviously we also have

CV (H)⊗k k ≤ CV (H). Hence CV (H) = CV (H)⊗k k.

2) Let K be the kernel of the representation of G afforded by N . For x ∈ K, N ≤
CV (x) = CV (x)⊗k k by part 1). Hence CV (K) 6= 1. As CV (K) is normalized by G, we have

CV (K) = V , because of the irreducibility of V . As V is a faithful kG-module, K = 1, i.e.

N is a faithful kG-module.

Definition 2.2.4. Let X,Y be subgroups of a group G. For an element g ∈ G a set of the

form

XgY = {xgy : x ∈ X, y ∈ Y }

is called an (X,Y )-double coset of G.

Proposition 2.2.18. (Mackey’s theorem) Let X and Y be subgroups of a group G, and let

{g1, . . . , gm} be a full set of (X, Y )-coset representatives of G. If V is a KX-module, then

(V G)Y
∼=

m⊕

i=1

((V ⊗ gi)Xgi∩Y )Y .

Here V ⊗ gi is viewed as a K(Xgi ∩ Y )-module via the action

(v ⊗ gi)xgi = vx⊗ gi

for all xgi ∈ Xgi ∩ Y .

Proof. [12] B.6.20.
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2.3 Theorems which will be used througout the thesis

A theorem due to Shult

Lemma 2.3.1. Let N be a normal subgroup of a group G and (|G/N |, |N |) = 1. Then there

exists a subgroup B of G such that G = NB and N ∩B = 1. Furthermore if both G and N

act on a set Ω transitively, then B ≤StabG(ω) for some ω.

Proof. The first statement is a consequence of Schur-Zassenhaus theorem (see [10, Theorem

6.2.1]). Assume that both G and N act on a set Ω transitively. Since |Ω| = |G : StabG(ω)| =
|N :StabN (ω)|, StabN (ω)CStabG(ω) and (|StabG(ω)/StabN (ω)|, |StabN (ω)|) = 1, we have

by Schur-Zassenhaus theorem (see [10, Theorem 6.2.1]), StabG(ω) =StabN (ω)K for some

K ≤StabG(ω) and |K| = |B|. Then K is a complement of N in G and so there is g ∈ G

with Kg = B. Thus B ≤StabG(ωg).

Lemma 2.3.2. Suppose that V is a kGA-module where k is a field, G C GA, (|G|, |A|) = 1

and A acts faithfully on G. Then if V |G is faithful, V is a faithful kGA-module.

Proof. Let K =Ker(GA on V ). Since (|G|, |A|) = 1, K = (G∩K)(A∩K). By the hypothesis

K = A ∩K, that is K ≤ A. On the other hand, [K, G] ≤ K ∩G, as K C GA and G C GA.

It follows that K ∩G = 1 and so [K, G] = 1. This forces that K = 1 as A acts faithfully on

G.

Theorem 2.3.1. (Shult’s Theorem) (Theorem 4.1, [30]) . Let A be an abelian group of

operators acting on a solvable group G of order prime to |A|, and suppose that |G| is not

divisible by any prime p such that pf + 1 is a divisor of the exponent of A for some positive

integer f . Form the semidirect product H = GA and let V be a faithful KH-module, where

K is a splitting field for all subgroups of H and which has characteristic not dividing |A|.
Suppose further that

(i) V is a sum of equivalent indecomposable KH-modules,

(ii) A acts in fixed point free manner on the elements of V in this representation,

(iii) G has no normal p-groups, where p =charK. (If charK=0, this requirement can be

ignored.)

Then there exists a non-trivial subgroup B C A such that B fixes G elementwise.

Proof. We use induction on |GA|+ dimKV .

(1) V is an indecomposable KGA-module:
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Let V = V1 ⊕ . . . ⊕ Vt where Vi are equivalent indecomposable KGA-modules for i =

1, . . . , t. As Ker(GA on Vi)=1 for i = 1, . . . , t, we can apply induction to ViGA and we get

a contradiction. Thus V is an indecomposable KGA-module.

(2) V is an irreducible GA-module:

Assume not. Let W be a maximal KGA-submodule of V and let K=Ker(G on V/W ).

Now K C G, and so Op(K) ≤ Op(G) = 1, i.e., K has no normal p-subgroup. Let K0 =

Op′(K). Since Op′(K)charK CGA , K0 is GA-invariant. Now K0 can be regarded as a group

of operators of order prime to p, acting on an elementary abelian group V . Now CV/W (K0) =

V/W as K0 ⊆Ker(G on V/W ). Then CV (K0)W/W = V/W since (|K0|, |V |) = 1. By the

same reason V = [V, K0]⊕CV (K0). Since K0 CGA, each component is GA-invariant. Then

(1) implies that CV (K0) = 1 or V . If it is not 1, then V = W , impossible. Also CV (K0) 6= V

because V is faithful as a GA-module and K0 6= 1. This contradicts the indecomposibility

of V . Thus V is irreducible as a GA-module.

(3) V |G is homogeneous:

By Clifford’s theorem 2.2.7 we may write as V |G = W1⊕ . . .⊕Ws where Wi are homoge-

neous KG-modules for i = 1, . . . , s. Now A permutes them transitively. Let S =StabA(W1).

Then |A : S| = s. If S = 1, then |A| = s and V = ⊕a∈AW a
1 . It follows that CV (A) 6= 0

because for any 0 6= ω ∈ W1, 0 6= ∑
a∈Aωa ∈ CV (A), a contradiction. Thus S 6= 1. If

S < A, then CW1(S) = 0, and so CWi(S) = 0 for each i = 1, . . . , s by Proposition 2.2.12.

Let G = G/Ker(G on Wi). We will see that Op(G) = 1: Let Ti = Op(G) 6= 1. Now

TicharG C GA. Since Wi is an irreducible KGS-module and Ti C GS, by Clifford’s theorem

2.2.7, Wi is a sum of conjugate irreducible Ti-modules. Since Ti is a p-group and charK=p,

we see that any irreducible Ti-module in Wi is trivial by Proposition 2.2.1. Thus Ti ≤Ker(G

on Wi)=1. Now we are ready to apply induction to the action of GS on Wi. Then there is

1 6= a ∈ A such that [G, a] = 1. Note that if A =
∑s

i=1 Sai, then V = W a1
1 ⊕ . . . ⊕W as

1 .

Hence Ker(G on Wi)=Ker(G on W ai
1 )=Ker(G on W1)ai . Hence [G, a] = [G, a]a

−1
i ≤Ker(G

on W1) as A is abelian, and so [G, a] ⊆Ker(G on Wj) for j = 1, . . . , s. Thus [G, a] = 1, a

contradiction. This shows that S = A and so V |G is homogeneous.

(4) Let M be a maximal normal A-invariant subgroup of G, containing G′. Then V |M
is homogeneous.

Since G is solvable, there exists a maximal normal A-invariant subgroup M , necessarily

containing G′. We show that G/M is elementary abelian: There is a prime q such that

Oq(G/M) 6= 1. Let X/M = Oq(G/M). Now X is a normal A-invariant subgroup of

G. It follows that X = G by the maximality of M . So G/M is a q-group. Similarly if
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Φ(G/M) = Y/M 6= 1, then Y is a normal A-invariant subgroup of G and so Y/M = 1.

Thus G/M is elementary abelian and it may be regarded as an A-module over the field of

q elements. By the maximality of M , it is an irreducible A-module. Since A is abelian,

A/B is cyclic where B =Ker(A on G/M). Since V is irreducible and M C GA, V |M =

U1 ⊕ . . .⊕ Uk where U1, . . . , Uk are homogeneous modules by Clifford’s theorem 2.2.7. Now

GA/M permutes U1, . . . , Uk transitively. As V |G ∼= X ⊕ . . . ⊕X where X is an irreducible

KG-module, V |M ∼= X|M ⊕ . . . ⊕ X|M ∼= (T1 ⊕ . . . ⊕ Tf ) ⊕ . . . ⊕ (T1 ⊕ . . . ⊕ Tf ) where

T1, . . . , Tf are homogeneous M -components of X|M . Hence f = k and V |M = U1⊕. . .⊕Uk
∼=

(T1 ⊕ . . . ⊕ T1) ⊕ . . . ⊕ (Tk ⊕ . . . ⊕ Tk) and U1, . . . , Uk are permuted transitively by G/M

because V |G is homogeneous. Let x ∈ G/M with x ∈ StabG/M (U1), and let a ∈ A. Now

Ux
1 = U1 implies that Ux

i = Uy x
1 = Ux y

1 = Uy
1 = Ui for each i and for some y ∈ G/M ,

which is abelian. Then for any a ∈ A, Ua−1xa
1 = Uxa

j = Ua
j = U1 for some j. Then

X/M=StabG/M (U1) is A-invariant. Since G/M is abelian, [X/M,G/M ] = 1 in other words,

[X, G] ≤ M ≤ X. Thus X C G and also X is A-invariant, giving X = M or X = G by the

maximality of M . Hence either k = |G/M :StabG/M (U1)|=|G : M | or k = 1. First assume

that k = |G : M |. Write G = ∪k
i=1Mti, t1 = 1 and Ui = U ti

1 .

Since both GA/M and G/M acts transitively on {U1, . . . , Uk} and (|G|, |A|) = 1, by

Lemma 2.3.1, A leaves invariant some component, say U1, of V |M . Now B =Ker(A on

G/M) leaves each Ui fixed: for all b ∈ B, U b
i = U tib

1 = U bb−1tib
1 = U ti

1 = Ui. Moreover for

any a ∈ A, Ua
i = U tia

1 = Uaa−1tia
1 = U

tai
1 . That is, the elements of A permute {U1, . . . , Uk}

in exactly in the same manner in which the elements of A permute the elements, ti of G/M .

Now G/M represents A/B irreducibly and faithfully where A/B is cyclic of order n.

Any A-orbit of nonidentity element of G/M with respect to this action has length |A/B

: StabA/B(x)| for x lying in this orbit. If 1 6= a ∈StabA(x), then 1 6= x ∈ CG/M (a) is A/B-

invariant and so [G/M, a] = 1 giving that a ∈ B. Hence StabA/B(x) = 1 and so the length of

any such orbit is n. Since Ua
i = Ua−1tia

1 for any a ∈ A we see that all but one of the Ui’s are

permuted in cycles of length n (Recall that U1 is A-invariant). If n = 1, then A = B and so

each Ui is A-invariant. If n > 1, B 6= 1 since otherwise for any 0 6= ∑
a∈A ua ∈ CV (A) for an

u ∈ Ui, a contradiction. Thus if n > 1, B =StabA(Ui), because we know that B ≤StabA(Ui)

and also that Ui’s are permuted in cycles of length n, that is |A : StabA(Ui)| = n giving

that B =StabA(Ui). In both cases when n = 1 and n > 1, B is fixed point free on each

Ui. Because otherwise u ∈ CUi(B) we have 0 6= ∑s
j=1 uaj ∈ CV (A) where A = ∪s

j=1Baj , a

contradiction. We have NGA(Ui) = MB for all i. Then by Clifford’s theorem 2.2.7 Ui is an

irreducible MB-module such that Ui|M is homogeneous.
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Now consider Mi = Op(M/Ker(M on Ui)). Since Mi is a p-group and charK = p,

we have CX(Mi) 6= 1 where Ui
∼= X ⊕ . . . ⊕ X, a sum of irreducible M -modules. Thus

[X, Mi] = 1 and so [Ui,Mi] = 1 which implies that Mi = 1 as Ui is faithful for M/Ker(M

on Ui).

Since k = [G : M ] > 1 we can apply induction to the action of (M/Ker(M on Ui))B

on Ui and get a nontrivial subgroup B0 of B such that [M/Ker(M on Ui), B0] = 1. Since

[G/M, B] = 1 and (|G|, |B|) = 1, G/M = CG/M (B) = CG(B)M/M . Hence we see that

Uj (j = 1, . . . , k) are conjugate by the elements of CG(B). Now [CG(B), B0] = 1. Say

Uj = Ux
i for some x ∈ CG(B). As M C G, Mx = M . As [M,B0] ⊆Ker(M on Ui), we have

[M, B0]x = [Mx, Bx
0 ] = [M,B0] ⊆Ker(Mx on Ux

i )=Ker(M on Uj). Then [M, B0] ⊆ ∩k
j=1

Ker(M on Uj) = 1. Since [G, B0] = [G,B0, B0] ≤ [M,B0] = 1, we get a contradiction. Thus

k = 1 and so V |M is homogeneous.

(5) B =Ker (A on G/M) = 1, G = Q is an extraspecial q-group with [Z(Q), A] = 1 and

V |Q is homogeneous.

Op(G) = 1 implies that Op(M) = 1 and Ker(M on V )=1, that is, V is a faithful KM -

module on which A acts fixed point freely. By hypothesis |M | is not divisible by a prime

p such that pf + 1 is a divisor of |A| for some positive integer f because |G| is not. Since

|MA|+dimKV < |GA|+dimKV , we may apply induction to the action of MA on V , and

get [M,a] = 1 for some 1 6= a ∈ A. If [G/M, a] = 1 then we are done. So we need to show

that the following claim is true.

Claim. [G/M, a] = 1

Assume that [G/M, a] 6= 1. Then CG/M (a) 6= G/M and so CG/M (a) = 1 as G/M is an

irreducible A-module and A is abelian. Then CG(a) ≥ M ≥ CG(a) that is M = CG(a).

Since M C G, CG(M) C G and so MCG(M) is a normal A-invariant subgroup. By the

maximality of M we get CG(M) ≤ M or MCG(M) = G. The former is not true because

otherwise [M,a] = 1 implies by the three subgroup lemma 2.1.1 that [G, a] ≤ CG(M) ≤ M .

Thus MCG(M) = G. In fact, if (CG(M))q is an A-invariant Sylow q-subgroup of CG(M),

then M(CG(M))q = G because G/M = M(CG(M))q/M is a q-group. Let Q be a minimal

with respect to being an A-invariant subgroup of (CG(M))q such that MQ = G. Then since

[M, Q] = 1 we get Q C G. Also, then [Z(Q),MQ] = 1 and so 1 6= Z(Q) ≤ Z(G). Since V

is a homogeneous KG-module, where K is a splitting field for every subgroup of GA, Z(G)

acts by scalars on V . Thus [Z(Q), A] = 1 and Z(Q) ≤ CG(A) ≤ CG(a) = M . It is evident

that Q is nonabelian.

We shall observe that Q is an extraspecial q-group. Let D be any proper A-invariant
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subgroup of Q. By the minimality of Q, and the maximality of M , MD = M and so D ⊆ M .

Since [M,Q] = 1, D ⊆ Z(Q). It follows that Z(Q) is the unique maximal A-invariant

subgroup of Q and so Z(Q) is the intersection of all maximal A-invariant subgroups of

Q. Now Φ(Q)charQ C GA and so Φ(Q) is a proper A-invariant subgroup of Q. Thus

Φ(Q) ≤ Z(Q). Since Q/Φ(Q) is an irreducible A-module we have Φ(Q) = Z(Q). Consider

V |Z(Q). We know that V is an irreducible GA-module and Z(Q) ⊆ Z(GA). Thus V |Z(Q)

is homogeneous by Clifford’s theorem 2.2.7, that is, VZ(Q)
∼= X ⊕ . . . ⊕ X where X is an

irreducible Z(Q)-module. Now 1=Ker(Z(Q) on V )=Ker(Z(Q) on X), and so V has a faithful

and irreducible Z(Q)-module. Hence Z(Q) is cyclic.

We see also that V |Q is homogeneous: Since V |G ∼= Y ⊕ . . .⊕Y where Y is an irreducible

G-module and QCG, we can write V |Q ∼= Y |Q⊕ . . .⊕Y |Q with Y |Q = W1⊕ . . .⊕Ws where

W1, . . . , Ws are homogeneous Q-modules. Thus V |Q ∼= (W1 ⊕ . . .⊕W1)⊕ . . .⊕ (Ws ⊕ . . .⊕
Ws) = T1 ⊕ T2 ⊕ . . . ⊕ Ts where T1, T2, . . . , Ts are homogeneous Q-submodules. Now G/Q

acts transitively on {T1, T2, . . . , Ts}. By Clifford’s Theorem 2.2.7, CG(Q) stabilizes each Ti.

Hence QM = G stabilizes Ti. It follows that V |Q is homogeneous.

Now B fixes G/M elementwise. Since G/M ∼= Q/Φ(Q) as an A-isomorphism, we have

[Q/Φ(Q), B] = 1. Then [Q,B] = [Q,B, B] ≤ [Φ(Q), B] = [Z(Q), B] ≤ [Z(Q), A] = 1. Thus

[Q,B] = 1. Since CG(a) = M for some a ∈ A, we have B 6= A, because otherwise [Q,A] = 1

would imply that Q ⊆ M and so G = M , a contradiction. If CV (B) = 1, then B 6= 1. Since

V |GB is completely reducible as a sum of homogeneous GB-modules conjugate under A, we

may apply induction to GB on U , one of these components, and get a ∈ A such that [G, a]

is trivial on U . It follows that [G, a] = 1 as A is abelian. Hence we have CV (B) 6= 1. Since

[Q,B] = 1 and A is abelian, CV (B) is a KQA-module. Since V |Q is homogeneous CV (B)|Q
is also homogeneous and so CV (B) is faithful KQ-module. Also CCV (B)(A/B) = 1. We

may apply induction to the action of Q(A/B) on CV (B) and get a subgroup A1/B C A/B

such that [Q,A1/B] = 1. Now [Q,A1] = 1 as [Q,B] = 1. But then [G/M, A1] = 1 and

so A1 ≤ B =Ker(A on G/M)=Ker(A on Q/Φ(Q)). So B = A1, a contradiction. Thus

CV (B) = V and G = Q. Now B fixes all of G and so B = 1.

(6) V |Q is irreducible.

Since A/B is cyclic and B = 1 by (5), A is cyclic. Also since V |Q = V |G is homogeneous,

we can write V |Q ∼= U⊕. . .⊕U where U is an irreducible KQ-module. Now since QA/Q ' A

and U is an irreducible KQ-module, by Proposition 2.2.10, U is an irreducible KQA-module.

But by (2) we know that V is an irreducible KQA-module, a contradiction. Thus V |Q is

irreducible.
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(7) Final contradiction.

Since Q/Φ(Q) is an irreducible A-module, |Q/Φ(Q)| = qe where e is the exponent of q

modulo n(= |A|) and e is even. Let e = 2k. Then by Proposition 2.2.15, there exists δ = ∓1

such that n | qk − δ and a one dimensional KA-module U such that

(a) if δ = 1, then VA
∼= m(KA)⊕ U and

(b) if δ = −1, then VA ⊕m(KA) ∼= U

where m = (qk − δ)/|A| and m(KA) denotes the direct sum of m copies of the regular

module KA. If δ = −1, then n | qk + 1, that is, qk + 1 ≥ n. If qk + 1 = n, then we get a

contradiction. Hence qk + 1 > n. That is m ≥ 2. Hence if (b) holds, we have VA ⊇ KA. If

(a) holds we have already VA ⊇ KA. Both are impossible as CV (A) = 0.

Corollary 2.3.1. (A corollary of Shult’s Theorem) [8, Lemma 3.3] Let G be a solvable group

admitting an abelian group A such that (|G|, |A|) = 1. Suppose V is a finite-dimensional

KGA-module, where K is a splitting field for all subgroups of GA and charK - |A|. Suppose
further that

(1) VG is a faithful, homogeneous KG-module;

(2) A acts fixed point freely on V ;

(3) |G| is not divisible by any prime p such that pf + 1 is a divisor of the exponent of A

for some positive integer f .

Then there exists a nontrivial normal subgroup of A centralizing G.

Proof. We proceed by induction on dimKV . Consider a counterexample to the corollary

minimal with respect to this number. Then V is an irreducible KGA-module. For let W 6= 0

be an irreducible KGA-submodule of V . By Clifford’s theorem 2.2.7, WG is completely

reducible; so WG is a homogeneous KG-module since VG is by [10, Corollary 3.4.2], and WG

is a faithful KG-module since VG is a faithful, homogeneous KG-module. Thus W satisfies

hypothesis (1) of the corollary. Clearly hypotheses (2) and (3) are satisfied; so by minimality

of the counterexample, W = V .

Now since we have a counterexample to the corollary, A acts faithfully on G. Then by

Lemma 2.3.2 since VG is faithful KG-module, V is a faithful KGA-module. Finally, since

V is faithful, irreducible KGA-module, if charK = r 6= 0, Or(GA) = 1 by Proposition 2.2.2.

But Or(G)charG C GA; so Or(G) C GA and Or(G) ≤ Or(GA) = 1. Thus all the hypothesis

of Theorem 2.3.1 (Shult) are satisfied, while the conclusion fails to hold. This contradiction

establishes Corollary 2.3.1.

A theorem due to Gagola
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Proposition 2.3.1. (Thompson) Let G = PA be a semidirect product of a p-group P 6= 1

with a group A (here P C G) with the following properties:

1) (|P |, |A|) = 1,

2) [P, A] = P ,

3) [A,K] = 1 for any abelian, characteristic subgroup K of P .

Then P is a special group.

Proposition 2.3.2. Let P be a p-group and Q be a noncyclic abelian group of automorphisms

of P for some prime q 6= p. Then P = 〈 CP (a) | 1 6= a ∈ Q 〉.

Proof. [10] 5.3.16.

Theorem 2.3.2. [9, Lemma 2.2](Gagola’s Theorem) Let p, q, r be three distinct primes

and G = QA where A is a cyclic group of order p and Q is a nontrivial q-group with

[Q,A] = Q. Assume further that G acts on a vector space V over k = GF (r) in such a way

that [V, A] = V . Then

a) If [V, Q] 6= 0, then q = 2 and p is a Fermat prime

b)If G is faithful and irreducible on V , then Q is an extraspecial 2-group of order 2(p−1)2.

Proof. [V,Q] is a kG-submodule of V , since Q C G. Let U be an irreducible kG-submodule

of V contained in [V,Q]. As C[V,Q](Q) = 1, we have CU (Q) = 1. Then CG(U) is properly

contained in Q. Thus U is a faithful and irreducible k(G/CG(U))-module and G/CG(U) is

a group satisfying the hypothesis of the proposition. So to complete the proof, it suffices to

prove b).

Let H = V G be the natural semidirect product of G by V . Then V = F (H) is an

irreducible kH-module as V is a faithful and irreducible kG-module.

Let Q1 be any characteristic abelian subgroup of Q. Then Q1 = [Q1, A] × CQ1(A) by

Proposition 2.1.9 and hence CV [Q1,A](A) = CV (A)C[Q1,A](A) = 1 since (|A|, |V Q|) = 1. So

the group V [Q1, A] is nilpotent by Proposition 2.1.13 and hence [V, [Q1, A]] = 1. But since

V is a faithful G-module, we see that [Q1, A] = 1. Then by Proposition 2.3.1, Q is a special

q-group with [Z(Q), A] = 1. Since CV (x) is normalized by H for any x ∈ Z(Q) ≤ Z(G) and

V = F (H) is an irreducible kG-module we see that CV (x) = 1 for any 1 6= x ∈ Z(Q). If

Z(Q) is noncyclic, then V = 〈CV (x) | 1 6= x ∈ Z(Q)〉 by Proposition 2.3.2 and so V = 1,

which is impossible. Thus Z(Q) is cyclic and Q is an extraspecial q-group, A acts fixed point

freely and irreducibly on Q/Φ(Q), since [Q,A] = Q.
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Let k be a finite extension of k which is a splitting field for all subgroups of H. Let

V = V ⊗k k. Since [V, A] = V , we see that [V , A] = V .

Let M be an irreducible G-submodule of V . Then by Proposition 2.2.17 M is a faithful

G-module and [M,A] = M . If χ denotes the character of the representation of G on M , then

we have by Proposition 2.2.15, dimk(M) = χ(1) = qm, if |Q| = q2m+1, and χ|A = nρ + sµ.

Since [M, A] = M , χ|A does not contain the trivial character of A as a constituent. Since

s = ±1, this is possible only if, n = 1, s = −1 and µ is the trivial character of A. In

particular, qm = χ(1) = ρ(1) − 1 = p − 1. Since qm 6= 1, p is odd and hence q = 2. Then

p = 2m + 1 is a Fermat prime. Furthermore, |Q| = q2m+1 = 2(p− 1)2.

A theorem due to Gross

Lemma 2.3.3. Suppose that pa = qb+1, where p, q are primes and a, b are positive integers.

Then either

a) p = 2, b = 1, a is a prime and q = 2a − 1 is a Mersenne prime, or

b) q = 2, a = 1, b = 2m and p = 22m
+ 1 is a Fermat prime, or

c) pa = 9, qb = 8.

Proof. [13, IX. 2. 4].

Lemma 2.3.4. Let V be a vector space of dimension n over a field K of qf elements. Let

A be a cyclic group of K linear transformations of V and V be a faithful module. Then |A|
divides qnf − 1. If V is irreducible then n is the least such integer.

Proof. [14] pages 165-166.

Lemma 2.3.5. [10, Lemma 11.1.3]. The pn × pn permutation matrix

A =




0 1 0 . . . 0

0 0 1 . . . 0
...

...

0 0 0 . . . 1

1 0 0 . . . 0




with coefficient in Zp has minimal polynomial (X − 1)pn .

Theorem 2.3.3. (Gross’ Theorem) Let G = Q〈y〉 be a group where y is a p-element of order

pn and Q is a nontrivial normal q-subgroup for distinct primes p and q, p odd or p = 2,

pn = 4. Assume that G acts faithfully and irreducibly on a kG-module V where k is a field
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of characteristic r, r a prime, and that z = ypn−1 does not centralize Q. Then CQ(y) 6= 1

provided one of the following conditions hold:

(i) r 6= p, and y acts fixed-point-freely on V ,

(ii) r = p, and the minimum polynomial of y is not (X − 1)pn .

Proof. Consider the case p 6= 2. Assume that first condition (i) holds. Since the condi-

tions remain unchanged under an extension of k, we may assume that k is algebraically closed.

We suppose that the theorem is false and choose a counterexample for which dimk(V ) + |G|
is minimal.

(1) Q is a special group, [Q′, z] = 1, CQ/Q′(z) = 1 and 〈y〉 acts irreducibly Q/Q′.

Let Q1 be the minimal element of {H | H ≤ Q , H is 〈y〉-invariant , [H, z] 6= 1}. Now

Q1/Q′
1 is an irreducible 〈y〉-module with [Q1, z] = Q1, Q′

1 = Φ(Q1), [Φ(Q1), z] = 1, Q1 is

special, CQ1/Q′1(z) = 1 by Proposition 2.2.9.

Set G1 = Q1〈y〉. By Clifford’s theorem 2.2.7, V |G1 is completely reducible. Choose

an irreducible kG1-submodule of V . Apply induction to the action of kG1 on V where

G1 = G1/Ker(G1 on W ). Then CQ1
(y) 6= 1 which implies that CQ1(y) 6= 1 as (|y|, |Q|) = 1,

which is impossible. Thus Q1 = Q.

(2)

Let V |Q = W1 ⊕ . . .⊕Wl be the Wedderburn decomposition of V into homogeneous Q-

components. Since V is irreducible as kG-module, 〈y〉 acts transitively on Ω = {W1, . . . , Wl}.
Let 〈ypm〉 = stabG(W1) ∩ 〈y〉. Put c = ypm . Now |〈y〉 : 〈c〉| = pm = l is the number of

Wedderburn components of V |Q and Wi is an irreducible kQ〈c〉-module for i = 1, . . . , l.

(3) 〈c〉 is nontrivial, i.e. z stabilizes each Wi for i ∈ {1, . . . , l}.
Now c acts fixed point freely on each Wi because otherwise for each 0 6= v ∈ CWi(c) we

have v + vy + . . . + vypm−1 as a nontrivial fixed point of y, a contradiction. Then m < n, i.e.

c 6= 1.

(4) Let Ki=Ker(Q〈c〉 on Wi). Now Ki ≤ Q and Q/Ki is extraspecial and Wi is a faithful

and irreducible k(Q/Ki)-module for each i.

Note that ∩l
i=1Ki=Ker(Q〈c〉 on V )=1. Assume that K1 ∩ 〈c〉 6= 1. So z ∈ K1. As 〈y〉

is transitive on Ω, z ∈ Ki for each i and so z = 1, a contradiction. Thus K1 ∩ 〈c〉 = 1.

This means that K1 ≤ Q and so Ki ≤ Q for each i. Let Q = Q/Ki. We know that Wi is

an irreducible and faithful kQ〈c〉-module for each i. By Proposition 2.2.10, we get Wi is an

irreducible and faithful kQ-module. Since k is an algebraically closed field, Z(Q) acts scalarly

on Wi. Thus [Z(Q), c] = 1 and [Z(Q), z] = 1. Since CQ/Q′(z) = 1, we get CQ/Q′Ki
(z) = 1 and
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so Z(Q) ≤ Q′. Since Q is special, Q′ ≤ Z(Q) = Z(Q) and Φ(Q) = Φ(Q) = Q′ = Q
′. Hence

Z(Q) = Q
′ = Φ(Q). Since Q 6= 1, we have that Q is extraspecial. Also Q/Q

′ ∼= Q/Q′Ki

gives that C
Q/Q

′(z) = 1.

Let |Q| = q2d+1.

(5) p is a Fermat prime and q = 2. Also |Q/Q′| = 22dpm and Q/Q
′ is irreducible

〈c〉-module.

By Proposition 2.2.15, there exists δ = ±1 such that |〈c〉| = pn−m divides qd − δ and a

1-dimensional k〈c〉-module U such that

(i) If δ = 1, then Wi|〈c〉 ∼= s(k〈c〉)⊕ U , and

(ii) If δ = −1, then Wi|〈c〉 ⊕ U ∼= s(k〈c〉)
where s = qd−δ

pn−m and s(k〈c〉) denotes the direct sum of s copies of k〈c〉.
Since CWi(c) = 0 for each i, i ∈ {1, . . . , l}, Wi has no component isomorphic to k〈c〉.

Thus δ = −1 and so qd + 1 = pn−m = |c|. In particular q < pn. Since p is odd, we get q = 2

and p is a Fermat prime by Lemma 2.3.3.

Any irreducible component of 〈c〉 on Q/Q
′ is faithful, because otherwise z fixes a nontriv-

ial element of Q/Q
′ which is not the case as C

Q/Q
′(z) = 1. Let U be any faithful irreducible

〈c〉-module. By Lemma 2.3.4 above |c| divides 2dimU − 1 and dimU is the least such integer.

Now pn−m = 2d + 1 gives that pn−m | 22d − 1 = (2d + 1)(2d − 1). Since pn−m - 2d − 1, we

have the fact that any faithful and irreducible representation of 〈c〉 over Z2 has degree 2d.

Similarly again by Lemma 2.3.4, any faithful and irreducible representation of 〈y〉 over
Z2 has degree 2dpm. It follows that |Q/Q′| = 22dpm .

(6) 〈c〉 < 〈y〉.
If 〈c〉 = 〈y〉, then l = 1, i.e. V = W1 is irreducible as a kQ-module by Proposition 2.2.7,

and so K1=Ker(Q〈y〉 on W1)=1 giving Ki = 1 for each i. Thus Q = Q/Ki = Q and by (4),

Z(Q) ≤ Z(G) as [Z(Q), z] = 1. This leads to a contradiction because CQ(y) 6= 1.

(7) Let Li = ∩j 6=iQ
′Kj (i = 1, . . . , pm). Then Q′ = L′1 × . . .× L′pm , (j = 1, . . . , l).

Observe that [Li, Q] ≤ [Q′Kj , Q] = [Kj , Q] ≤ Kj for each j 6= i and the equality holds

because Q′ ≤ Z(Q). Thus [Li, Q] acts trivially on Wj for each j 6= i.

Since |Q : Q′Kj | = |Q : Q
′| = 22d, we have |Q : Li| ≤ 22d(pm−1). If Li ≤ Q′, then

22dpm
= |Q : Q′| ≤ 22dpm−2d, not the case. Thus Li > Q′ and so Q ≥ L1 . . . Lpm > Q′.

But Ly
i = ∩j 6=iQ

′Ky
j = ∩j 6=iQ

′Ker(Q on W y
j ). Then (L1 . . . Lpm)y = (L1 . . . Lpm) and so

Q = L1 . . . Lpm as Q/Q′ is an irreducible 〈y〉-module.

Hence Q′ = L′1 . . . L′pm(
∏

i6=j [Li, Lj ]). Now with i 6= j, [Li, Lj ] ⊆Ker(Q on Wk) for all

k. So |Li, Lj ] = 1 and Q′ = L′1 . . . L′pm . Also L′i ∩
∏

j 6=i L
′
j ⊆Ker(Q on Wk) for each k
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because L′i ⊆Ker(Q on Wj) for all j 6= i and so
∏

j 6=i L
′
j ⊆Ker(Q on Wi). It follows that

L′i ∩
∏

j 6=i L
′
j = 1, i.e. Q′ = L′1 × . . .× L′pm .

(8) Final contradiction.

If x ∈ L′i, then x ∈ Q′, x ∈ Q
′ and so 〈x〉 = Q

′ as |Q′| = 2 by (5). It follows that x is

represented on Wi by ±1. Since x is represented on Wj by 1 for all j 6= i, x2 ∈ ∩l
j=1Kj = 1.

Thus |L′i| ≤ 2. If L′i = 1 for some i, then L′i = 1 for all i, i ∈ {1, . . . , pm}, because they are

all conjugate and so Q′ = 1, not the case. Thus |L′i| = 2. Now |Q′| = 2pm ≡ 2 (mod p).

If the lengths of all the orbits of 〈y〉 on Q′ other than {1} are divisible by p, then

|Q′| = sp + 1 ≡ 2 (mod p) for some s ∈ N, not possible. Thus there is an orbit of 〈y〉 on Q′

other than {1} whose length is not divisible by p. Now such an orbit has length 1 and so

there is 1 6= x ∈ CQ(y), a contradiction.

Now we assume condition (ii) holds when p is odd. Again we suppose that the theorem

is false and choose a counterexample for which dimk(V ) + |G| is minimal.

(1) We may assume that k is algebraically closed.

If K is an algebraic closure of k, then G can be regarded as a group of linear transfor-

mation of VK = V ⊗k K. Since a basis of V is also a basis of VK , y is represented by the

same matrix on VK as it is on V and consequently y has the same minimal polynomial on

VK as it does on V . Hence we may assume that k is algebraically closed.

(2) By Hall-Higman reduction we may assume that Q = [Q, ypn−1
], Q/Q′ is irreducible

under the action of 〈y〉, CQ/Q′(z) = 1, Q is a special group.

Let Q1 be the minimal element of

{H | H ≤ Q , H is 〈y〉-invariant , [H, z] 6= 1}

Now Q1/Q′
1 is an irreducible 〈y〉-module with [Q1, z] = Q1, Q′

1 = Φ(Q1), [Φ(Q1), z] = 1,

CQ1/Q′1(z) = 1 and Q1 is special by Proposition 2.2.9. Set G1 = Q1〈y〉 and assume that

Q 6= Q1. By Clifford’s theorem 2.2.7 V |G1 is a sum of irreducible kG1-modules. Let W be

an irreducible kG1-submodule of V . Now apply induction argument to the action of G1 on

W , where G1 = G1/Ker(G1 on W ). Now W is a faithful and irreducible kG1-module. Then

CQ1
(y) 6= 1. As (|Q|, |y|) = 1, CQ1(y) 6= 1. This leads to a contradiction CQ(y) 6= 1. Thus

Q1 = Q.

(3)

Let V |Q = W1 ⊕ . . . ⊕ Wl be the Wedderburn decomposition of V into homogeneous

Q-components by Clifford’s theorem 2.2.7. Since V is irreducible as a kG-module, 〈y〉 acts
transitively on {W1, . . . ,Wl}. Let 〈ypm〉 = stabG(W1) ∩ 〈y〉. Put c = ypm . By Clifford’s
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theorem 2.2.7 Wi is an irreducible kQ〈y〉-module for 1 ≤ i ≤ l.

(4) c 6= 1 and so z = ypn−1 stabilizes each Wi, i ∈ {1, . . . , l}.
If c = 1, then l = pn. This means that if {vi|, 1 ≤ i ≤ h} is a basis of W1, then

B = {viy
j |1 ≤ i ≤ h, 1 ≤ j ≤ pn} is a basis of V . With respect to this basis, the matrix of y

is

xB =




A1 0

A2

. . .

0 Ah




where Ai, 1 ≤ i ≤ h, is the pn × pn permutation matrix of the Lemma 2.3.5. Hence by that

lemma, the minimal polynomial of y on V is (Y − 1)pn , which is impossible. Thus c 6= 1.

(5) Let Ki=Ker(Q〈c〉 on Wi). Now Ki ≤ Q and Q/Ki is extraspecial and Wi is a faithful

and irreducible k(Q/Ki)-module for each i.

This follows exactly in the same way as in (4) of the case when p is odd and the condition

(i) holds.

Let |Q| = q2d+1.

(6) p is a Fermat prime and q = 2.

Let W be a homogeneous Q-component of V . Consider G1 = Q〈y〉. Since W is an

irreducible kQ〈y〉-module and faithful for Q and since the minimal polynomial of c is not

(Y − 1)pn−m
= Y pn−m − 1, by Hall-Higman theorem [13, Theorem IX.2.6], qd + 1 = pn−m.

Since p is odd, we get q = 2 and p is a Fermat prime by Lemma 2.3.3.

Therefore we show that when p is odd and condition (ii) holds, by Hall-Higman reduction

we may assume that Q = [Q, ypn−1
], Q/Q′ is irreducible under the action of 〈y〉, Q is a special

group, p is Fermat prime and q = 2. Now the arguments (5), (6), (7) and (8) in the proof

of case (i) when p is odd, follow CQ(y) 6= 1. But this is impossible by the minimality of

|G|+dimk(V ).

Thus let pn = 4. We may assume that k is algebraically closed because taking p = 2

does not affect the reduction steps when p is odd. We suppose that the theorem is false and

choose a counterexample for which dimk(V ) + |G| is minimal.

Let V |Q = W1 ⊕ . . . ⊕ Ws be the Wedderburn decomposition of V into homogeneous

Q-components. Let 〈c〉 = stabG(W1) ∩ 〈y〉. Then 〈c〉 can be either 1, 〈y2〉 or 〈y〉.
Assume that V is a homogeneous Q-module. Then after the usual reductions as in the

case when p is odd, Q = [Q, y2] is extraspecial. Since k is algebraically closed, Proposition

2.2.10 implies that V is an irreducible and faithful kQ-module. Then Schur’s lemma gives
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that Z(Q) acts scalarly on V . Hence [Z(Q), y] = 1. In particular Z(Q) ≤ Z(G). Thus

CQ(y) 6= 1, a contradiction.

Assume that V is decomposed into the sum of four Q-homogeneous components permuted

by 〈y〉. Then 〈y〉 is represented regularly on V , because V is an irreducible kG-module. Then

CV (y) 6= 0. This implies that (i) does not holds. Assume that (ii) holds. Then following the

arguments of proof when p is odd and (ii) holds we find that p must be a Fermat prime and

q = 2. But in our case 2 = p 6= q.

Assume 〈c〉 = 〈y2〉. Then V is a direct sum of two homogeneous Q-components, say

W1 and W2. Then Wi is an irreducible kQ〈c〉-module for i = 1, 2 as V is an irreducible

kG-module. Let 1 6= a ∈ CW1(y
2), then a + ay is in CV (y). Thus (i) does not hold. So

assume (ii) holds. The same arguments in the case p is odd follow that 2 − 1 = p − 1 = qd

where |Q/Ker(Q〈c〉onW1)| = q2d+1. So Q = 1, which is impossible. Thus CWi(y
2) = 1

for i = 1, 2. Since W1 is an irreducible kQ〈y2〉-module and [W1, y
2] = W1, Theorem 2.3.2

implies that q = 2, which is also impossible as q 6= p.
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2.4 An example due to Turull

In order to show that the bound we give in our main result is the best possible one, we

shall present an example due to Turull ([24]). This shows that for any finite group A, there

exists a solvable group G having coprime order to A, such that A acts fixed point freely on

G and the Fitting height of G is exactly the number of primes dividing the order of |A|.

Definition 2.4.1. Let A be a finite group and B any subgroup of A. Define l(A : B) to be

the largest integer n such that there is a sequence of subgroups B = C0 ⊂ C1 ⊂ . . . Cn = A

each properly contained in the following one.

It should be noted that if A is solvable, then l(A) = l(A : 1) is the number of primes

dividing |A| counted with multiplicities. This is because an abelian series whose factors are

abelian can be refined to a composition series whose factors are of prime order.

Theorem 2.4.1. Let A be any finite group and B a proper subgroup of A. Let n = l(A : B)

(Definition 2.4.1) and let p1, p2, . . . , pn be a sequence of primes such that pi 6= pi+1, for

i = 1, . . . , n− 1 and pi - |A|, for i = 1, . . . , n.

Then there exists a solvable group G, and an action of A on G, and subgroups Pi, i =

1, . . . , n of G such that:

1) For each i = 1, . . . , n, Pi is an elementary abelian pi-subgroup of G which is invariant

under Pi+1 . . . PnA and if i > 1, [Pi−1, Pi] = Pi−1;

2) G = P1 . . . Pn;

3) CG(A) = 1;

4) ∩a∈A[B,G]a = 1;

5)P1 6= 1 and f(G) = n.

We shall need the following lemma and theorem in the proof of Theorem 2.4.1.

Lemma 2.4.1. Let G be a finite solvable group and assume that, for i = 1, . . . , h, Pi is a

pi-subgroup of G (pi a prime) and for i = 1, . . . , h− 1 we have pi 6= pi+1 and [Pi, Pi+1] = Pi.

Then if P1 6= 1, we have f(G) ≥ h.

Proof. Use induction on |G|. If h = 1, then the lemma follows. Thus we may take

G satisfying the hypothesis of the lemma with h ≥ 2. Assume that P2 ⊆ F (G), then

P1 = [P2, P1] ⊆ [F (G), P1] ⊆ F (G). Thus both P2 and P1 are in F (G). Since F (G) is nilpo-

tent and p1 6= p2, [P2, P1] = 1, which is impossible. So P2 * F (G). Now PiF (G)/F (G) is a

sequence of subgroups of G/F (G) for i = 1, . . . , h. Since [PiF (G)/F (G), Pi+1F (G)/F (G)] =
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[Pi, Pi+1]F (G)/F (G) = PiF (G)/F (G) we can apply induction to G/F (G), and get f(G/F (G)) ≥
h− 1. Hence the lemma.

Theorem 2.4.2. Let A be any finite group, B1 any subgroup of A and B a subgroup of B1,

B1 6= B. Suppose G is a finite group and A acts on G, Q ⊆ G is a normal subgroup of GA

such that [B1, G] + Q. Then for any prime p - |QA| there exists an FpGA-module M with

the following properties.

1) [Q,M ] = M ;

2) CM (A) = 0;

3) [B,GM ] +M .

Proof. Let V be an Fp(G/[B1, G])-module on which Q acts nontrivially. Consider the

G/[G,B1]-composition series for V . If Q acts trivially on each composition factor, then

Q acts trivially on V as p - |Q|(see Proposition 2.2.5), which is a contradiction. Thus there

exists an irreducible Fp(G/[B1, G])-module N on which Q acts nontrivially. Since B1 6= B

we may take R a cyclic subgroup of B1 not contained in B. Let N0 be a nontrivial irreducible

Fp(R/R ∩ B)-module. Set N1 = NB1
0 and take M0 = N1 ⊗ N . Since [B1, G] acts trivially

on N we may consider M0 as an irreducible FpGB1-module such that [G,B1] ⊆KerM0. It

satisfies the following:

a) [Q,M0] = M0.

Since Q does not lie in [B1, G] and acts nontrivially on N , [N, Q] = N , and so [Q,M0] =

M0.

b) CM0(B1) = 0.

First, CN0(R) = 0 because otherwise by the irreducibility of N0 as a (R/R∩B)-module,

CN0(R) = N0, and so [N0, R] = 1 which is impossible. Now by Frobenius reciprocity

CN0(R) = 0 implies that CN1(B1) = 0 as HomFpB1(N
B1
0 , T r) ∼=HomFpR(N0, T r|R) where Tr

denotes the trivial B1-module. Since the action of B1 on M0 is defined by (n⊗m)b1 = nb1⊗m

for all n ∈ N1, m ∈ N and b1 ∈ B1, we have CM0(B1) = 0, as CN1(B1) = 0.

c) CN1(B) 6= 0 and so CM0(B) is a nonzero GB-module.

Let K =Ker(M0). CM0(B) is G/[G,B]-invariant because G/[G, B] is centralized by B.

By Mackey’s theorem 2.2.18, N1|B ∼= ∑
Nx

0 |Rx∩B|B where the sum is over x, representatives

of the double cosets RxB in B1. In particular N1|B ⊇ N0|R∩B|B and hence CN1(B) 6= 0. So

CM0(B) is a nonzero GB-module.

d) The theorem follows.
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Define M = MGA
0 . 1) follows from a), 2) follows from b) as

0 = HomFpB1(M0, T r|B1) ∼= HomFpA(M, Tr)

where Tr is the trivial A-module. By the definition of M and Mackey’s theorem 2.2.18

applied to (GB1, G) we see that M |G is completely reducible. More precisely,

M |G = M0
GA|G =

m⊕

i=1

(M0 ⊗ xi)(GB1)xi∩G|G =
m⊕

i=1

(M0 ⊗ xi)G

as xi, i = 1, . . . , m form a set of double coset representatives for (GB1, G). As M0 is

irreducible as GB1module we have the result. So by Maschke’s theorem 2.2.6 M |GB is

completely reducible: To see this let W be a GB-submodule of M |GB. Then M |GB = W ⊕U

for some G-submodule U . By Maschke’s theorem 2.2.6 there exists a GB-invariant subspace

U0 such that M = W ⊕ U0. Set C = CM0(B). By c), C is a nonzero GB-submodule of

M . We can take a GB-submodule S of M such that C ⊕ S = M because of the completely

reducibility of M . We have S[B, G] C SGB. Since C ⊆ M0 and [G,B1] ⊆KerM0, we get

S[B, G] ⊆ CMG(C) so that S[B, G] C MGB. Now [B, M ] ⊆ S since C ⊆ CM (B). Hence

[B,MG] ⊆ S[B,G] and [B, MG] ∩M ⊆ S. By c) S 6= M . This concludes the proof of the

theorem.

Proof of Theorem 2.4.1

Use induction on l(A : B). If l(A : B) = 1, take a cyclic subgroup R of A which is not in

B, a nontrivial irreducible Fp1(R/R ∩ B)-module N and set NA = M . Then by Frobenius

reciprocity HomFp1A(NA, T r) ∼=HomFp1R(N, Tr|R), where Tr is a trivial A-module and so

CM (A) = 0 as CN (R) = 0 and CM (B) 6= 0. Take G = P1 = M/ ∩a∈A [B,M ]a. Since

CM (B) 6= 0 we have [M, B] 6= M and so P1 6= 0. Thus 1)-5) are satisfied in this case.

Hence we may assume that n > 1. Take B1 > B a subgroup of A such that l(A : B1) =

l(A : B)− 1. Then by induction, we may take G = P2 . . . Pn satisfying the conclusion of the

theorem for A and B1 and the sequence p2, . . . , pn. Since ∩a∈A[B1, G]a = 1 and 1 6= P2 CGA

we have that P2 * [B1, G] because otherwise P a
2 = P2 ⊆ [B1, G]a for all a ∈ A, which is

impossible. Set Q = P2 and p = p1. By Theorem 2.4.2, there is an FpP2 . . . Pn-module M

with [M,Q] = [M,P2] = M . Now CG(A) = 1 by induction and CM (A) = 0 by Theorem

2.4.2 so that we have CMG(A) = 1. Take H = MG/∩a∈A [B, MG]a. Set P1 to be the image

of M in H. Now P1 6= 1 by 3) of Theorem 2.4.2. We consider the image of P2, . . . , Pn in

H and see that H provides a group of the form described in the statement of the theorem

except possibly f(H) = n. By Lemma 2.4.1 since P1 6= 1 and so f(H) ≥ n. Also f(H) ≤ n

because f(G) = n− 1. Thus f(G) = l(A : B) = n.
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CHAPTER 3

SOME TECHNICAL LEMMAS

PERTAINING THE MAIN RESULT

In this section we shall present some technical results pertaining the proof of our main result.

All of them are new except the first one.

Let G be a finite group. If S is a subgroup of G and a ∈ G, then for any positive integer

n we denote by [S, a]n the commutator subgroup [S, a, . . . , a] with a repeated n times.

Lemma 3.0.2. ([4, Lemma 2]) Let H = ST , where S /H, S is a p-group and T is a t-group

for distinct primes p and t, and let α be an automorphism of H of order pn which leaves

T invariant. Assume that CT/T0
(z) = 1 where T0 = CT (S) and z = αpn−1. Let V be a

kH〈α〉-module on which S acts faithfully, and k a field of characteristic different from p. If

[CV (z), CS(z)] = 1, then [S, T ] = 1.

Lemma 3.0.3. Let S CSA where A is an abelian group and S is an s-group for some prime

s which is coprime to |A|. Assume that S is abelian when s = 2. Let V be an irreducible

kSA-module where k is a splitting field for all subgroups of SA and has characteristic not

dividing |SA|. Suppose that S acts nontrivially and A acts fixed point freely on V . Then

there is a nontrivial subgroup D of A such that [S, D] acts trivially on V .

Proof. Assume that S is abelian. By induction on |S|, we may assume that S is faithful on

V . Since S is abelian, S acts scalarly on V over k. Hence [Z(S), D] = [S,D] acts trivially on

V . So we may assume that S is a nonabelian group of odd order. By induction on |S|, we
may also assume that S is faithful on V . Since V is a irreducible kSA-module and S C SA,

by Clifford’s theorem 2.2.7, V is a sum of homogenous S-modules. Consider a homogeneous

S-submodule W of V . S acts faithfully on W since V is a faithful S-module. Now we can
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apply Corollary 2.3.1 to the action of SA on W and so there exists a nontrivial normal

subgroup of A centralizing S. This completes the proof.

The following theorem is a sligth modification of Theorem 2 in [5].

Lemma 3.0.4. Let S〈α〉 be a group such that S C S〈α〉, S is an s-group, 〈α〉 is cyclic of

order p for distinct primes p and s, Φ(Φ(S)) = 1, Φ(S) ≤ Z(S). Assume that S is abelian

whenever s = 2. Let V be an irreducible kS〈α〉-module on which [S, α] acts nontrivially

where k is a field of characteristic different from s. Then [V, α]p−1 6= 0 and Ker(CS(α) on

V )= Ker(CS(α) on [V, α]p−1).

Proof. Assume that lemma is false and consider a counterexample with dimV + |S〈α〉| is
minimal. Set C = CS(α).

Claim 1. We may assume that k is a splitting field for all subgroups of S〈α〉.
Since S〈α〉 has only a finite number of subgroups, we may choose a finite algebraic

extension field K of k so that K is a splitting field for all subgroups of S〈α〉. Let U

be an irreducible KS〈α〉-submodule of the extension V ⊗k K of V to a KS〈α〉-module.

If dimU<dimV ⊕k K=dimV , then we get that [U,α]p−1 is a nonzero KS〈α〉-module and

Ker(CS(α) on [U,α]p−1)=Ker(CS(α) on U) by induction. Since V is irreducible, U ∼= n× V

as a kS〈α〉-module for some positive integer n. So we have [U,α]p−1 = n × [V, α]p−1 and

Ker(CS(α) on V )=Ker(CS(α) on U). Hence we have [V, α]p−1 6= 0 and Ker(CS(α) on V )=

Ker(CS(α) on [V, α]p−1), a contradiction. Thus we may now assume that dimU=dimV ⊕k

K=dimV . Now V is an irreducible KS〈α〉-module. And all the hypothesis of lemma are

satisfied by the action of KS〈α〉 on V , an irreducible KS〈α〉-module. Thus we may assume

that k is a splitting field for all subgroups of S〈α〉.
Claim 2. [Z(S), α] = 1.

Assume that [Z(S), α] 6= 1. Then the stabilizer of any homogeneous component of V |Z(S)

is S. By Clifford’s theorem 2.2.7, V is induced from an irreducible S-module W . Then by

Mackey’s theorem 2.2.18 we have that V |C×〈α〉 and W |C⊗k〈α〉 are C×〈α〉-isomorphic and so

[V, α]p−1 ∼= WC ⊗ [k〈α〉, α]p−1. It follows that [V, α]p−1 6= 0 and Ker(C on [V, α]p−1)=Ker(C

on V ) because [k〈α〉, α]p−1 6= 0 and both [V, α]p−1 and V are multiples of the same C-module,

namely W |C . This contradiction shows that [Z(S), α] = 1.

Let S = S/Ker(S on V ). Now C 6= 1 and S is nonabelian with Φ(S) ≤ Z(S〈α〉). Then

s is an odd prime because S is nonabelian.

Now we show that S〈α〉 is a central product of [S, α]〈α〉 and C = CS(α). by the
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coprimeness, S = [S, α]CS(α). Let [S, α] = 〈x−1xa〉 and take y ∈ CS(α). Then

[x−1xa, y] = [x−1, y]x
a
[xa, y] = [x−1, y][x, ya−1

]a = [x−1, y][x, y] = 1

That is, [CS(α), [S, α]] = 1. Let S̃ = S/Φ(S). Also since S̃ = [S̃, α] ⊕ C
S̃
(α) and by

coprimeness, [S, α] ∩ CS(α) ⊆ Φ(S) ⊆ Z(S〈α〉). Thus S〈α〉 is a central product of [S, α]〈α〉
and C = CS(α).

As V is irreducible as S〈α〉-module and CCS〈α〉, we can write V as a sum of homogeneous

C-modules by Clifford’s theorem 2.2.7. Since C centralizes [S, α]〈α〉, V |C is homogeneous.

This would supply Ker(C on [V, α]p−1)=Ker(C on V ) = 1 if [V, α]p−1 6= 0 and so Ker(C

on [V, α]p−1)=Ker(C on V ) if [V, α]p−1 6= 0. Hence we may assume that [V, α]p−1 = 0. If

chark 6= p, then [V, α] = 0 and since [S, α] acts nontrivially on V we get [S, α] = 1, which is

impossible. Thus p is the characteristic of the field k.

Since V is an irreducible S〈α〉-module on which S acts faithfully, Φ(S) is cyclic by

Proposition 2.2.4. Since Φ(Φ(S)) = 1, Φ(S) is cyclic of order s.

Set S1 = [S, α] and Z = [Z(S1), α]. We claim that Z = 1. Otherwise we consider V |Z .
It is completely reducible as Z C S〈α〉 and α can not stabilize a homogeneous component as

[Z,α] = [Z(S1), α, α] = Z 6= 1. Since [CS(α), Z] = 1 and [S1, Z] = 1 by the three subgroup

lemma 2.1.1 and by Proposition 2.1.9 and since S = [S, α]CS(α) by the coprimeness, S

centralizes Z. Then by Clifford’s theorem 2.2.7, V is induced from an irreducible S-module

W . Then by Mackey’s theorem 2.2.18 we obtain that V |C×〈α〉 ' W |C ⊗ k〈α〉 as C × 〈α〉-
modules and so [V, α]p−1 ∼= WC ⊗ [k〈α〉, α]p−1. Thus [V, α]p−1 6= 0 because [k〈α〉, α]p−1 6= 0

and both [V, α]p−1 and V are multiples of the same C-module, namely W |C . Then again

Ker(C on [V, α]p−1)=Ker(C on V ) as V |C is homogeneous. This supplies a contradiction

and hence Z = 1.

In particular, S1 is nonabelian and Z(S1) ≤ CS1(α) ≤ Φ(S1) ≤ Z(S1) deducing that

Z(S1) = Φ(S1) = CS1(α) ≥ S′1 6= 1. Since Φ(S1) ≤ Φ(S), we also have S′1 = Φ(S1) = Z(S1)

is cyclic of order s. That is S1 is extraspecial. Recall that S〈α〉 is a central product of

[S, α]〈α〉 and C = CS(α). Then V = U1 ⊗k U2 for an irreducible S1〈α〉-module U1 and

an irreducible C-module U2 by [10, Theorem 3.7.1]. Since [V, α]p−1 = 0, the degree of the

minimum polynomial is less than p. And it is also true for U1. Appealing to Theorem IX.3.2

in [13] for the action of S1〈α〉 on U1 together with the fact that S1 is extraspecial with

[Z(S1), α] = 1, we get that s = 2, a contradiction.

Lemma 3.0.5. [5, Lemma 2] Let S C S〈α〉 where 〈α〉 is cyclic of prime order and let V be

an irreducible kS〈α〉-module. If E is an 〈α〉-invariant subgroup of Z(S) and U is a nonzero
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E〈α〉-submodule of V , then Ker(E on V )=Ker(E on U).

Lemma 3.0.6. [5, Lemma 3] Let S〈α〉 be a group such that S C S〈α〉 where 〈α〉 is of prime

order p. Suppose that V is a kS〈α〉-module for a field k of characteristic different from p,

and Ω is an S〈α〉-stable subset of V ∗. Set V0 = ∩{Kerf | f ∈ Ω− CΩ(α)}. If there exists a

nonzero f in Ω and x ∈ S such that f(V0) 6= 0 and [x, a, α] /∈ CS(f) for each 1 6= a ∈ 〈α〉,
then CV (α) * V0.

Lemma 3.0.7. Let A = 〈a〉 be a cyclic group of order pn for some prime p, and let G be a

group acted on by A. Suppose that S CGA is an s-group and T is an A-invariant t-subgroup

of G for distinct primes s and t which are both different from p such that [S, T ] 6= 1 and

[T, z] = T where z = apn−1. If Φ(T/T0) 6= 1 where T0 = CT (S), then assume that there is an

A-invariant h-subgroup H of G for a prime h different from p such that H ≤ CG(Φ(T/T0)),

H/CH(T/T0) is elementary abelian and [T/T0,H] = T/T0. Let V be a kGA-module on

which S acts nontrivially and k is a field of characteristic not dividing |STHA|. Then

[CV (A), CS(A)] 6= 1.

Proof. We use induction on |SA|+dimkV . Set S = S/Ker(S on V ). Let S1 be a minimal

T 〈α〉-invariant subgroup of S on which T acts nontrivially. As s 6= t, [S1, T ] = S1, S1/Φ(S1)

is an irreducible T 〈α〉-module, [Φ(S1), T ] = 1 and S1 is special by Proposition 2.2.9. If

|S1| < |S|, an induction argument gives that [CV (A), CS1
(A)] = [CV (A), CS1(A)] 6= 1, that

is [CV (A), CS(A)] 6= 1. Thus S1 = S.

We may also assume that G = STH. Let S̃ = S/Φ(S). Notice that [T, z] = T acts

nontrivially on each irreducible component of S̃|T . It is easy to see that Ω = { f ∈ (S̃) |
there exists an irreducible component N of V |S such that Ker(S on N)Φ(S)/Φ(S) ⊆ Kerf}
is a GA-invariant subset which linearly spans the dual space (S̃)∗. Apply Proposition 2.2.14

to the action of (T/T0)A on S̃ with Ω we see that CS̃(A) * ∩{Kerf | f ∈ Ω−CΩ(z)}. This
gives an x̃ ∈ CS̃(A) and an f ∈ Ω − CΩ(z) such that f(x̃) 6= 0. Now x̃ /∈Ker(S̃ on N) for

some irreducible component N of V |S by the definition Ω.

On the other hand, one more application of Proposition 2.2.14 to the action of GA

on V gives that CS(A) = CCS(A)(CV (A)) is contained in the kernel of each irreducible

component of V |S on which [S, z] acts nontrivially. It follows that [S, z] is trivial on N , that

is, [S, z] ⊆Kerf and so f ∈ CΩ(z), a contradiction.

Lemma 3.0.8. [5, Lemma 1] Let S〈α〉 be a group such that S C S〈α〉, S is an s-group for

some prime s, Φ(S) ≤ Z(S), 〈α〉 is cyclic of order p for some odd prime p. Suppose that V
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is a kS〈α〉-module for a field of characteristic different from s. Then CV (α) 6= 0 if one of

the following is satisfied:

(i) [Z(S), α] is nontrivial on V .

(ii) [S, α]p−1 is nontrivial on V and p = s.

Furthermore, if S〈α〉 acts irreducibly on V or the characteristic of k is different from p,

then we also have Ker(C on CV (α))= Ker(C on V ) where C = CD(α) for

D =





[S, α]p−1 when (ii) holds,

S when (i) holds.

Lemma 3.0.9. Let SA be a group where S C SA, S is a q-group for an odd prime q,

Φ(S) ≤ Z(S), A is cyclic of order pq for some prime p. Suppose that [S, Aq]q−1 � Φ(S) and

[S,Ap] = S where Ap and Aq denote the Sylow p- and q-subgroups of A respectively. Let V

be a CSA-module on which [S,Aq]q−1 acts nontrivially. Then CV (A) 6= 0.

Proof. Assume the contrary. Set S = S/ Ker(S on V ). By Lemma 3.0.8 applied to the action

of SAq on V , we see that CV (Aq) 6= 0 and Ker(CD(Aq) on CV (Aq)) = Ker(CD(Aq) on V )

where D = [S, Aq]q−1. This supplies that Ker([CD(Aq), Ap] on CV (Aq)) = Ker([CD(Aq), Ap]

on V ) also. If [CD(Aq), Ap] 6= 1, then we apply Lemma 3.0.3 to the action of [CD(Aq), Ap]Ap

on CV (Aq) and get a contradiction. Hence [CD(Aq), Ap] = 1 forcing that [D, Ap] = 1 by

Thompson’s A×B Lemma 2.1.15. But then D ≤ Φ(S) = Φ(S), which is not the case. ¤

The following lemma is a sligth modification of Theorem 1 in [5].

Lemma 3.0.10. Let S〈α〉 be a group such that S CS〈α〉, S is an s-group with Φ(Φ(S)) = 1,

Φ(S) ≤ Z(S) and 〈α〉 is cyclic of order p for primes s and p. Assume either s = p ≥ 5 or

s 6= p, p is odd and S is abelian whenever s = 2. Let V be a kS〈α〉-module where k is a

field of characteristic not dividing ps such that [S, α]p−1 acts nontrivially on each irreducible

submodule of V |S. Let Ω be an S〈α〉-stable subset of V ∗ which linearly spans V ∗ and set

V0 = {Kerf | f ∈ Ω − CΩ(α)}. Then CV (α) * V0 and Ker(CD(α) on CV (α)/CV0(α))=

Ker(CD(α) on V ) where

D =





[S, α]p−1 when s = p

S otherwise

Proof. Assume that the lemma is false and consider a counterexample with dimV +|S〈α〉|
minimal. Set X = CV (α)/CV0(α) and C = CD(α).

Claim 1. We may assume that S〈α〉 acts irreducibly on V and k is the splitting field for

all subgroups of S〈α〉.
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Since chark - ps, V is completely reducible as an S〈α〉-module and so we have a collection

{V1, . . . , Vl} of irreducible S〈α〉-submodules of V such that V =
⊕l

i=1 Vi. Now [S, α]p−1 acts

nontrivially on each irreducible constituent of Vi|S and hence [S, α]p−1 acts nontrivially on

each Vi for i = 1, . . . , l. Fix j ∈ {1, . . . , l}. Set Vj = U and ΩU = {f |U | : f ∈ Ω} ⊆ U∗.

Now we show that 〈Ω|U 〉 = U∗ :

Consider γ : V ∗ → U∗ with γ(g) = g|U . γ is onto; to see this let U = 〈e1, . . . , en〉 and
V = 〈e1, . . . , en, . . . , em〉 and V ∗ = {f1, . . . , fm} where fi : V → k with

∑
i=1,...,m aiei 7→ aj ,

for j = 1, . . . , m. Let f ′j(
∑

i=1,...,n aiei) = aj , j = 1, . . . , n. Then f ′j = fj |U for j = 1, . . . , n

and fj |U = 0 for j = n + 1, . . . , m. Also 〈f ′j〉 = U∗ and 〈fj〉 = V ∗. Take f ∈ U∗ then

f =
∑

i=1,...,n gif
′
i , let F =

∑
i=1,...,n gifi then γ(F ) = f . Second, ΩU spans U∗. Let

Ω = {f1, . . . , fm} and ΩU = {f1|U , . . . , fm|U}. Let h ∈ U∗. Then there exists g ∈ V ∗ such

that g|U = h. As Ω spans V ∗, g = c1f1 + . . . + cmfm and h = g|U = c1f1|U + . . . + cmfm|U .
So, ΩU spans U∗. Let f |U ∈ ΩU and x ∈ S〈α〉. Now g = xf ∈ Ω since Ω is S〈α〉-invariant,
and hence (xf)(v) = f(x−1v) = g(v) for all v ∈ V implying (xf |U )(v) = g|U (v). So

ΩU is S〈α〉-invariant. Thus Ω|Vi is an S〈α〉-stable subset of V ∗
i and 〈Ω|Vi〉 = V ∗

i for each

i = 1, . . . , l.

If V is not irreducible as an S〈α〉-module, we apply induction to the action of S〈α〉
on Vi for each i and get CVi(α) * (Vi)0 and Ker(C on CVi(α)/C(Vi)0(α))=Ker(C on Vi).

Set Xi = CVi(α)/CVi∩V0(α). Now Ker(C on Xi)=Ker(C on Vi) since (Vi)0 = ∩{Kerg|
g ∈ Ωi − CΩi(α)} ⊇ Vi ∩ V0. As V =

⊕l
i=1 Vi and X ' ⊕l

i=1 Xi, it follows that Ker(C on

X)=Ker(C on V ). Therefore we can regard V as an irreducible S〈α〉-module.

Since S〈α〉 has only a finite number of subgroups, we may choose a finite algebraic

extension field K of k so that K is a splitting field for all subgroups of S〈α〉. Let U =

V ⊗k K. If one could show that CU (α) * U0 = V0⊗k K and Ker(CD(α) on CU (α)/CU0(α))=

Ker(CD(α) on U), as CU (α) = CV (α) ⊗k K by Proposition 2.2.17. It would follow that

CV (α) * V0 and Ker(CD(α) on CV (α)/CV0(α))= Ker(CD(α) on V ). Thus we may assume

that k is a splitting field for all subgroups of S〈α〉.
Let S = S/Ker(S on V ) and C = CD(α).

Claim 2. [Z(S), α, α] = 1.

Assume the contrary. Set S1 = Z(S)C. Then S1 is an 〈α〉-invariant subgroup of S

and V |S1〈α〉 is completely reducible as chark - |S1〈α〉|. Note that C C S1〈α〉. Let Vi be an

irreducible S1〈α〉-submodule of V and W be a homogeneous component of Vi|C .
Now Z(S)〈α〉 ≤ CS1〈α〉(C) ≤ NS〈α〉(W ) by Clifford’s theorem 2.2.7. This yields that Vi|C

is homogeneous. We also observe that Ker(Z(S) on Vi)=Ker(Z(S) on V )=1 by applying
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Lemma 3.0.5 to the action of S〈α〉 on V .

We shall prove that CZ(S)(f) = 1 for each 0 6= f ∈ CΩ(α): Consider 〈f〉 = {cf | c ∈ k},
a CZ(S)(f)-submodule of V ∗. Appealing to Lemma 3.0.5 together with 〈f〉 and CZ(S)(f),

we get CZ(S)(f) =Ker(CZ(S)(f) on V ∗) = 1, as desired.

Since [Z(S), α] 6= 1, [Z(S1), α] is nontrivial on Vi. Applying Lemma 3.0.8 to the ac-

tion of S1〈α〉 on Vi, we obtain CVi(α) 6= 0. If CVi(α) * V0, it follows that Ker(C on

CVi(α)/CVi∩V0(α))=Ker(C on Vi) as Vi|C is homogeneous. Hence Ker(C on CVi(α)/CVi∩V0(α))

=Ker(C on Vi). This forces that there is an irreducible S1〈α〉-submodule Vi of the completely

reducible module VS1〈α〉 such that CVi(α) ⊆ V0. Since 0 6= CVi(α), we have Vi ∩ V0 6= 0. Set

Ωi = Ω|Vi . Now Ωi is an S1〈α〉-stable subset of V ∗
i , and (Vi)0 = ∩{Kerh | h ∈ Ωi−CΩi(α)} 6=

0 as Vi∩V0 ⊆ (Vi)0. Let f ∈ Ω be such that f((Vi)0) 6= 0. Then fi = f |Vi ∈ CΩi(α). Consider

〈fi〉 = {cfi | c ∈ k}, a CZ(S)(fi)〈α〉-submodule of V ∗
i . Appealing Lemma 3.0.5 together with

〈fi〉 and CZ(S)(fi), we get CZ(S)(fi) =Ker(CZ(S)(fi) on V ∗
i ) = 1. On the other hand, there

exists x ∈ Z(S) such that [x, α, α] 6= 1, as [Z(S), α, α] 6= 1. It follows that [x, a, α] 6= 1 for

any 1 6= a ∈ 〈α〉, that is [x, a, α] /∈ CS1(fi), for any 1 6= a ∈ 〈α〉. Now Lemma 3.0.6 applied

to the action of S1〈α〉 on Vi, together with fi and Ωi, gives that CVi(α) * (Vi)0. This is a

contradiction as Vi ∩ V0 ⊆ (Vi)0 and CVi(α) ⊆ V0. Thus we have the claim.

Now assume that s = p ≥ 5. Since [S, α]p−1 6= 1, [S, α]p−3 6= 1. Set S1 = [S, α]p−3. We

can prove that [S1, [S, α]p−1] ≤ [Φ(S), α]p−3 = 1 (see ([3],5.37)). Hence [S, α]p−1 ≤ Z(S1).

We have a collection {V1, . . . , Vl} of irreducible S1〈α〉-modules such that V =
⊕l

i=1 Vi.

Fix i ∈ {1, . . . , l}. We notice that C = C[S,α]p−1(α) C S1〈α〉 implying V |C is completely

reducible. In particular, C ≤ Z(S1〈α〉) and so Vi|C is homogeneous.

Set Xi = CVi(α)/CVi∩V0(α) and assume that Ker(C on Xi) 6= Ker(C on CVi(α)). If

[S, α]p−1 is trivial on Vi, then C acts trivially on Vi, and this is a contradiction. Hence

[S, α]p−1 is not trivial on Vi. If Vi ∩ V0 = 0, then Ker(C on Xi)=Ker(C on CVi(α)), and

again we have a contradiction. Hence, Vi ∩ V0 6= 0, and there exists some f ∈ Ω such that

f(Vi∩V0) 6= 0. Now f ∈ CΩ(α). Set f |Vi = fi. Now 〈fi〉 = {cfi | c ∈ k} is a C[S,α]p−1(fi)〈α〉-
submodule of V ∗

i . Appealing Lemma 3.0.5, we get CZ(S1)(fi) =Ker(CZ(S1)(fi) on V ∗
i ). We

also have C[S,α]p−1(fi) ≤ CZ(S1)(fi). Thus C[S,α]p−1(fi) is properly contained in [S, α]p−1,

that is, there is 1 6= y ∈ [S, α]p−1−C[S,α]p−1(fi), and x ∈ [S, α]p−3 such that y = [x, α, α]. It

follows that 1 6= [x, a, α] /∈ C[S,α]p−1(fi) for any 1 6= a ∈ 〈α〉. Now we can apply Lemma 3.0.6

to the action of S1〈α〉 on Vi together with Ωi = Ω|Vi and fi and obtain that CVi(α) * V0.

As Vi|C is homogeneous, we already have Ker(C on Xi)=Ker(C on CVi(α)).

Therefore we conclude that Ker(C on CV (α)/CV0(α))=Ker(C on CV (α)). Appealing
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Lemma 3.0.8 together with V and S〈α〉, we also see that CV (α) 6= 0 and Ker(C on

CV (α))=Ker(C on V )=1 hold. Thus Ker(C on CV (α)/CV0(α))=Ker(C on V )=1. Thus

Ker(C on CV (α)/CV0(α))=Ker(C on V ). Since [S, α]p−1 6= 1 and s = p, C 6= 1. Hence C is

nontrivial on V and so is on CV (α)/CV0(α). This supplies that CV (α) * V0, a contradiction.

Thus s 6= p, p is odd and S is abelian whenever s = 2.

Now [Φ(S), α] = 1. Then Φ(S) ≤ Z(S〈α〉). Since [S, α]∩CS(α) ≤ Φ(S) and [[S, α], CS(α)] =

1, S is a central product of [S, α] and CS(α). As C = CS(α) C S〈α〉, V |C is completely

reducible. In fact V |C is homogeneous, because any homogeneous component is stabilized by

S〈α〉 as C is centralized by [S, α]〈α〉. It follows that Ker(C on CV (α)/CV0(α))=Ker(C on

V )=1 if CV (α) * V0, that is Ker(C on CV (α)/CV0(α))=Ker(C on V ) if CV (α) * V0. Hence

CV (α) ⊆ V0. Note that CV (α) 6= 0: Assume that CV (α) = 0. Since [S, α] acts nontrivially

on V we can apply Theorem 2.3.2 (Gagola) to the action of [S, α]〈α〉 on V . Then we get

s = 2. By hypothesis, S is abelian and by claim 2, [S, α] = [S, α, α] = 1, that is [S, α] acts

trivially on V , a contradiction. Then there exists 0 6= f ∈ CΩ(α) with f(V0) 6= 0. Now

CZ(S)(f)=Ker(CZ(S)(f) on V ∗) = 1 by Lemma 3.0.5. It follows that CZ([S,α])(f) = 1, as

[CS(α), [S, α]] = 1. Then C[S,α](f) is properly contained in [S, α]. Let M be a maximal α-

invariant subgroup of [S, α] containing C[S,α](f). The abelian group [S, α]/M = [̃S, α] forms

an irreducible 〈α〉-module on which 〈α〉 acts fixed point freely. Thus we have [x̃, a] 6= 0 for

any 0 6= x̃ ∈ [̃S, α]. It follows that [x̃, a, α] 6= 0 for each 1 6= a ∈ 〈α〉. Put x̃ = xM for

x ∈ [S, α]. Then [x, a, α] /∈ M . In particular, [x, a, α] /∈ C[S,α](f) for each 1 6= a ∈ 〈α〉.
Recall that V |C is homogeneous. Then Lemma 3.0.6 applied to the action of S〈α〉 on V

gives that CV (α) * V0. This contradiction completes the proof.

Before the next result we need to give the following definitions due to Dade [3].

Definition 3.0.2. Suppose a group K acts on a finite solvable group G denoted by (K on G).

Then each K-composition factor A/B of G is an elementary abelian p-group, for some prime

p. So it can be viewed as an irreducible module which is called an irreducible component of

(K on G). If K also acts on another finite solvable group H, then (K on G) and (K on H)

are weakly equivalent if each nontrivial irreducible component of (K on G) is K-isomorphic

to an irreducible component of (K on H) and vice versa.

Let a group K act on a group G and another group L act on both K and G. We say that

(K on G) is L-invariant if (στ ) = (σρ)τρ, for all σ ∈ G, τ ∈ K, ρ ∈ L. In that case we may

form the triple semi direct product LKG.

If K acts on G and L acts on K, then (K on G) is weakly L-invariant if the actions (K
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on G) and (K on G)σ, the latter given by

τ → (K on G)(τσ−1
)for τ ∈ K,

are weakly equivalent for all σ ∈ L.

Definition 3.0.3. A Fitting chain consists of groups A1, . . . , At and actions Ai on Ai+1 for

i = 1, . . . , t− 1 satisfying:

1) Each Ai is a nontrivial pi-group for some prime pi, for i = 1, . . . , t.

2) Φ(Ai) ≤ Z(Ai), for i = 1, . . . , t.

3) Φ(Φ(Ai)) = 1, for i = 1, . . . , t.

4) If pi is odd, then Ai has exponent pi, for i = 1, . . . , t.

5) pi 6= pi+1, for i = 1, . . . , t− 1.

6) [Φ(Ai+1), Ai] = 1, for i = 1, . . . , t− 1.

7) Ker(Ai on Ai+1) = 1, for i = 1, . . . , t− 1.

8) (Ai+1 on Ai+2/Φ(Ai+2) is weakly Ai-invariant, for i = 1, . . . , t− 2.

Lemma 3.0.11. Let G C GA and 〈a〉 E A of prime order p. Assume that P1, . . . , Pt is an

A-Fitting chain of G such that [P1, a] 6= 1, Pi is a pi-group for a prime piand t ≥ 3. We also

assume that Pi is abelian whenever pi = 2 and p ≥ 5 whenever pi = p for some i ∈ {1, . . . , t}.
Then there are sections Di0 , . . . , Dt of Pi0 , . . . , Pt respectively, forming an A-Fitting chain

of G such that a centralizes each Dj for j = i0, . . . , t where i0 =





2 if p1 6= p

3 if p1 = p

Proof. It will be sufficient to demonstrate Claim 1 and Claim 2 appearing in the proof of

[5, Theorem 3] with the hypothesis as revised above. One can observe that these claims can

be restated and proven as by-products of Lemma 3.0.10 and Lemma 3.0.4 which are slightly

altered versions of Theorem 1 and Theorem 2 in [5] by an analogous reasoning.
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CHAPTER 4

MAIN RESULT

In this chapter we shall state and prove our main result. A contradiction will be deduced

over a series of steps from the assumption of the existence of a counterexample. This chapter

also contains a corollary as an immediate consequence of the main result.

Main Theorem. Let G be finite group admitting a fixed point free automorphism group

〈α〉 whose order is a product of three primes which are coprime to 6. If the Sylow 2-subgroups

of G are abelian, then G has Fitting length at most 3.

Proof of the theorem. If 〈α〉 is a p-group for a prime p, because of fixed point free

action |G| is not divisible by p. Since 〈α〉 is abelian of order coprime to |G|, 〈α〉 acts with

regular orbits on G by a remark given in introduction. Then the result follows by Turull’s

work in [26]. Also if |〈α〉| is a product of three distinct primes, a theorem due to Ercan and

Güloğlu [4] (see also [5]) gives the result. Thus we may assume that |〈α〉| = p2q for two

distinct primes p and q. Set 〈α〉 = 〈αp〉× 〈αq〉 where |αp| = p2 and |αq| = q and z = αp
p. Let

G be a minimal counterexample to the theorem. Then we may assume that F4(G) = G. As

CG(α) = 1, for any prime dividing |G| we have a unique 〈α〉-invariant Sylow subgroup of G

by Proposition 2.1.11.

(1) There is an irreducible 〈α〉-tower (Ci), i = 1, 2, 3, 4 in the sense of [25] satisfying the

following:

(i) π(Ci) = {pi} consists of a single prime for i = 1, 2, 3, 4 and pi 6= pi+1 for i = 1, 2, 3.

(ii) Ci is 〈α〉-invariant for i = 1, 2, 3, 4 and Ci is normalized by Cj for j > i and

i = 1, 2, 3.

(iii) Ci = Ci/Di is a special group on the Frattini factor group of which (
∏

j>i Cj)〈α〉
acts irreducibly for i = 1, 2, 3 where Di = CCi(Ci−1/Di−1) for i > 1 and D1 = 1;

(iv) [Ci, Ci+1] = Ci for i = 1, 2, 3.

Let M be a minimal normal subgroup of G〈α〉 contained in G. Since 〈α〉 acts fixed point

42



free on G by the classification of finite simple groups, G is solvable. Thus M is nontrivial.

Now M is an elementary abelian p-group for some prime p and it is the unique minimal

normal subgroup of G〈α〉 contained in G. Because if M1 and M2 are two distinct minimal

normal subgroups of G〈α〉 contained in G, then G can be embedded into G/M1×G/M2 and so

by induction applied to both G/M1 and G/M2 with 〈α〉 we have f(G) ≤ 3, a contradiction.

Since M is unique, F (G) = Op(G) because otherwise M ≤ Op′(F (G)), impossible as M

is a p-group. Now if Φ(F (G)) 6= 1, then f(G) ≤ 3 by induction applied to G/Φ(G), a

contradiction. Thus F (G) is an elementary abelian p-group. Now if M < F (G), then by

Proposition 2.1.7, we can write

1 6= F (G)/M < F (G/M) = Op(F (G/M))×Op′(F (G/M)) = F (G)/M × TM/M

where T is a Hall p′-subgroup of the inverse image of F (G/M) in G.

Since [F (G), T ] = [F (G), TM ] ≤ M , we have that [F (G), T ] ≤ M . As M is the unique

minimal normal subgroup of G〈α〉 contained in G and [F (G), TM ] / G〈α〉, [F (G), TM ] is 1

or M . If [F (G), TM ] = 1, then [F (G), T ] = 1 and T ≤ CG(F (G)) ≤ F (G). And this implies

that T = 1. But then F (G/M) = F (G)/M and f(G) ≤ 3, which is not the case. Thus

[F (G), T ] = M . Since (|F (G)|, |T |) = 1, F (G) = MCF (G)(T ). As T is a Hall p′-subgroup of

the inverse image of F (G/M) in G, we use Frattini’s argument (see Proposition 2.1.1 a)) to

write G = F (G)NG(T ). Thus CF (G)(T ) is normal in G〈α〉. Since M is the unique minimal

normal subgroup of G〈α〉 contained in G, CF (G)(T ) is 1 or M . Thus F (G) = M in any case.

Let K/F3(G) be a proper minimal normal 〈α〉-invariant subgroup of the nilpotent group

G/F3(G). Since 〈α〉 acts fixed point freely on G/F3(G), K/F3(G) is non-trivial because we

know that there exists a unique 〈α〉-invariant Sylow subgroup of G/F3(G) of order dividing

|G/F3(G)| by Proposition 2.1.11. Since G/F3(G) is nilpotent, K/F3(G) is an elementary

abelian t-group for some prime t. Thus K/F3(G) can be regarded as a vector space over a

field of characteristic t. If K is a proper subgroup of G, then the minimality of G implies

that f(K) ≤ 3. However since F3(G) � K = F3(K) ≤ G, f(K) > 3, a contradiction. Thus

G/F3(G) is a nontrivial irreducible 〈α〉-module as being an elementary abelian t-group for

some prime t.

Let T be an 〈α〉-invariant Sylow t-subgroup of G. Then TF3(G) = G and so T * F3(G).

If T acts trivially on Ot′(F3(G)/F2(G)), then TF2(G)/F2(G)×Ot′(F3(G)/F2(G)) is nilpo-

tent. Now G/F2(G) = TF3(G)/F2(G) = (TF2(G)/F2(G))(F3(G)/F2(G)) or equivalently

G/F2(G) = TF2(G)/F2(G)[Ot(F3(G)/F2(G))×Ot′(F3(G)/F2(G))]. As Ot(F3(G)/F2(G)) =

Ot(G/F2(G)) is contained in Sylow t-subgroup TF2(G)/F2(G), we conclude that G/F2(G)
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is in TF2(G)/F2(G) × Ot′(F3(G)/F2(G)). Thus the quotient group G/F2(G) is nilpotent

(or equivalently, T ⊆ F3(G)), a contradiction. Therefore there exists a prime s, which is

different from t, such that T acts non-trivially on Os(F3(G)/F2(G)).

Let S be an 〈α〉-invariant Sylow s-subgroup of F3(G). Since F3(G)/F2(G) is nilpo-

tent, SF2(G)/F2(G) = Os(F3(G)/F2(G)) where [T, SF2(G)/F2(G)] 6= 1. SF2(G) / G

because SF2(G)/F2(G) / G/F2(G). Now [SF2(G)/F2(G), T ] = [S, T ]F2(G)/F2(G). Set

K = [S, T ]F2(G). Obviously, [SF2(G)/F2(G), Os′(F (G/F2(G)))] = 1. Moreover since

[SF2(G)/F2(G), T ] is normal in STF2(G)/F2(G), we conclude that

K/F2(G) / [F3(G)/F2(G)][TF2(G)/F2(G)] = G/F2(G).

Since K = F2(G)[S, T ] / G, F2(K) ≤ F2(G) � K. If KT < G, then the minimality

of G implies that f(KT ) ≤ 3. Now K is normal in KT because [[SF2(G)/F2(G), T ], T ] =

[SF2(G)/F2(G), T ]. Then F2(K) ≤ F2(KT ).

As F (K) is a characteristic subgroup of K, which is normal in G, F (K) is normal in G.

Also since F (G) is in K, we have F (K) = F (G). Now since F2(K)/F (K) = F2(K)/F (G) ≤
F (G/F (G)) = F2(G)/F (G) ≤ K/F (G) = K/F (K), we have F2(K) = F2(G). Then as the

Fitting length of KT is at most 3, KT/F2(KT ) is nilpotent and so we have F2(K) = F2(KT ).

This leads to a contradiction because T acts non-trivially on SF2(G)/F2(G). Thus G = KT ,

that is G = F2(G)[S, T ]T . Assume that [S, T ] acts trivially on Os′(F2(G)/F (G)). Then

the normal subgroup [[S, T ]F (G)/F (G)][Os′(F2(G)/F (G))][Os(F2(G)/F (G))] in G/F (G) is

nilpotent. This forces that f(G/F (G)) is at most 2, leading to a contradiction because the

Fitting length of G/F (G) is equal to 3 by the assumption.

Hence we can find a prime r, which is different from s, such that S acts non-trivially on

Or(F2(G)/F (G)). Let R be an α-invariant Sylow r-subgroup of F2(G). Then RF (G)/F (G) =

Or(F2(G)/F (G)). Note that T also acts non-trivially on RF (G)/F (G) because otherwise

we can apply the three subgroup lemma (see Proposition 2.1.1 b)) with S, and we get that

[S, T ] acts trivially on RF (G)/F (G), a contradiction. RF (G) C G because RF (G)/F (G)

is normal in G/F (G). Write G = G/F (G) and put K/F (G) = K = [R, [S, T ]]. Since

[Or′(F (G)), K] ≤ [Or′(F (G)), Or(F (G))] = 1, [K, Or′(F (G))] = 1. Due to the coprime-

ness, [K, [S, T ]] = K. Also [K, T ] ≤ K. Thus K is normal in G. If H = K[S, T ]T < G,

then by induction the Fitting length of K[S, T ]T is at most three. As F (G) ≤ K and K

is normal in G, F (K) = F (G). Now H/F (H) is nilpotent, then [S, T ] ≤ F (H). More

precisely, [S, T ]F (G)/F (G) ≤ F2(H)/F (G). Also K = [K, [S, T ]] ≤ F (H). Thus both

[S, T ]F (G)/F (G) and [R, [S, T ]]F (G)/F (G) are contained in F (H/F (H)) which is a nilpo-
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tent group. Coprimeness implies that [S, T ] acts trivially on [R, [S, T ]]F (G)/F (G), a con-

tradiction. Therefore

G = F (G)[R, [S, T ]][S, T ]T

It should be noted that p 6= r because otherwise F (G)[R, [S, T ]] is a normal p-subgroup of

G implying that [R, [S, T ]] is contained in the unique minimal normal subgroup F (G). This

leads to a contradiction because if [R, [S, T ]] ≤ F (G), then f(G) ≤ 3.

Write C1 = F (G), C2 = [R, [S, T ]], C3 = [S, T ] and C4 = T . Then we may assume that

G = C1C2C3C4 where Ci (i = 1, 2, 3, 4) satisfy the following:

(i) π(Ci) = {pi} for i = 1, 2, 3, 4 and pi 6= pi+1 for i = 1, 2, 3;

(ii) Ci is 〈α〉-invariant for i = 1, 2, 3, 4 and Ci is normalized by Cj for i < j and i = 1, 2, 3;

(iii) [Ci, Ci+1] = Ci for i = 1, 2, 3.

Moreover we will show that Ci/Di is a special group on the Frattini factor group of

which (
∏

j>i Cj)〈α〉 acts irreducibly for i = 1, 2, 3 where Di = CCi(Ci−1/Di−1)) for i > 1

and D1 = 1;

C1 = F (G) is an elementary abelian p1-group being the minimal normal subgroup of

G〈α〉 contained in G with D1 = 1 . Then we may consider C1 as a vector space over a

field of characteristic p1 and φ(C1) = 1. Thus C1 is a special group and an irreducible

C2C3C4〈α〉-module. As G is solvable D2 = CC2(C1) ≤ C1. As p1 6= p2, we have D2 = 1.

Let M be the minimal element of the following set

{A|A ≤ C2,A is C3C4〈α〉-invariant and [A,C3] 6= 1}

Then M/φ(M) is an irreducible C3C4〈α〉-module with [M,C3] = M , [φ(M), C3] = 1 and M

is special by Proposition 2.2.9. Our aim is to show that M = C2.

If H = C1MC3C4 < C1C2C3C4, then f(H) ≤ 3 by induction and so H/F2(H) is

nilpotent. Then C3 = [C3, C4] ≤ F2(H) and M = [M, C3] ≤ F2(H). Thus both C3 and M

are in F2(H). Since F2(H)/F (H) is nilpotent, M = [M, C3] ≤ F (H). Since F (H)charH /G

and F (G) = C1 ≤ H, F (H) = C1. Then M = [M,C3] ≤ F (G). Thus M ≤ F (G) which is

impossible. Therefore M = C2.

Let N be the minimal element of

{A|A ≤ C3/D3, A is C4〈α〉-invariant and [A,C4] 6= 1}

Then N/φ(N) is an irreducible C4〈α〉-module with [N, C4] = N , [φ(N), C4] = 1 and N is

special by Proposition 2.2.9. Let S be the inverse image of N in C3. If H = C1C2SC4 <
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C1C2C3C4, then by induction the Fitting length of H is at most 3. Then S = [S,C4] ≤
F2(H).

Note that F (H) = F (G) = C1, C1C2/C1 is a normal and p2-subgroup of H/F (H) and

so it is in F (H/F (H)). Then C1C2 ≤ F2(H). As F2(H)/F (G) is nilpotent, [S, C2] ≤
F (G) = C1, this leads to a contradiction because [S,C2] ≤ [C3, C2] = C2 and [S, C2] 6= 1.

Thus S = C3.

Let Ωp4(C4/D4) = T/D4. Then T/D4 is a nontrivial elementary abelian p4-subgroup of

C4/D4. Assume that T 6= C4 and set H = C1C2C3T . By induction the Fitting length of H is

at most 3. Then F2(H)/F (H) = F2(H)/F (G) is nilpotent and so [C2, [C3, T ]] ≤ F (G) = C1.

Since C1 is abelian, [C1, [C2, [C3, T ]]] ≤ [C1, C1] = 1. But this implies that [C3, T ] ≤ D2 = 1

or equivalently, T ≤ D4, which is impossible. Thus C4 = T that is, C4/D4 is an elementary

abelian p4-group. Hence (1) follows.

(2) Set H = C2C3C4. We may assume that (|C1|, |H〈α〉|) = 1. Moreover, there exists

a proper subgroup B of 〈α〉 such that (|H|, |B|) = 1, CC1(B) = 1 and |B| is either pq or a

divisor of p2.

Now CH(C1) = 1. As C1 is an irreducible H〈α〉-module, by the Fong-Swan Theorem

2.2.8, we may assume that (|C1|, |H〈α〉|) = 1.

Let W be a homogeneous H-component of C1 on which C2 acts nontrivially. Put B =

N〈α〉(W ) and H = H/Ker(H on W). Then W is a homogeneous and faithful H-module.

We have also CW (B) = 0 as CC1(α) = 1 by Proposition 2.2.12. Therefore B 6= 1 and

CC1(B) = 0.

If (|H|, |B|) = 1, we see that CW (CB(suppB(H))) = 0 by Proposition 2.2.16. Then

CB(suppB(H)) 6= 1 and by the definition of support subgroup we have also 1 6= C2 ≤
suppB(H). It follows that CB(suppB(H)) ≤ CB(C2). Now assume that CB(C2) 6= 1. As

[CB(C2), C2] = 1, we have by the three subgroup lemma 2.1.1 that [[CB(C2), C3], C2] = 1,

that is [[CB(C2), C3], C2] ≤Ker(C2 on W ). It follows that [[CB(C2), C3], C2] is contained

in the kernel of each homogeneous component of C1 because they are all 〈α〉-congruent to

each other. Then [CB(C2), C3] = 1. By the three subgroup lemma 2.1.1 again, we get

[CB(C2), C4] = 1 and so by the coprimeness condition on |H| and |B|, [H, CB(C2)] = 1. On

the other hand, the centralizer of a Sylow subgroup of 〈α〉 has Fitting length at most 2 by

[4, Corollary]. This leads to a contradiction because f(H) = 3. Thus we have (|H|, |B|) 6= 1.

Now B = 〈α〉, then C1 is a homogeneous H-module and so irreducible by Proposition

2.2.10. Now we apply Theorem 2.2.13 and get CH(α) 6= 1, a contradiction. Thus 1 6= B <

〈α〉. First assume that B = 〈αq〉. Then Y = C1CH(αp) is nilpotent since B is fixed point
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free on Y . This forces that CH(αp) = 1 because CH(C1) = 1 and so H has Fitting length

at most 2, a contradiction. Therefore we have |B| is pq or a divisor of p2.

(3) C̃2 = C2/Φ(C2) is centralized by neither z nor αq.

Assume that [C̃2, z] = 1. Then both C3/D3 and C4/D4 are centralized by z. If C4 is

a p′-group, then we may assume that [C4, z] = 1. Now C̃2(C3/D3)C4, as a group on which

〈α〉/〈z〉 acts fixed point freely, has Fitting length at most two, a contradiction. Hence C4 is a

p-group. If C3 is a q-group, then we may consider the action of (C3/D3)C4〈αq〉 on C̃2, and get

[CC̃2
(αq), CC3/D3

(αq)] 6= 1 by Lemma 3.0.2. This contradicts the fact that CC̃2(C3/D3)(αq) is

a group on which 〈α〉/〈zαq〉 acts fixed point freely. Thus C3 is an s-group for some prime

s different from both p and q. If C2 is a q′-group, then CC1(αq)CC2(αq)CC3(αq) is the only

tower inside CG(αq) by Theorem 2.1.14, contradicting the fact that CG(αq) has Fitting length

at most two, as a group on which 〈αp〉 acts fixed point freely. This supplies that C2 is a

q-group. Notice that [C3/D3, αp] = C3/D3 because otherwise [C3/D3, αp] = 1 and so αq acts

fixed point freely on (C3/D3)C4 which is impossible. Suppose that C3/D3 is abelian. Then

CC3/D3
(αp) = 1. Now C̃2(C3/D3) must be nilpotent as a group on which 〈αp〉/〈z〉 acts fixed

point freely, a contradiction. It follows that C3/D3 is a nonabelian special group. Let W

be a homogeneous component of C̃2|Φ(C3/D3). Now (C3/D3)C4〈z〉 ≤ N = N(C3/D3)C4〈α〉(W )

since Φ(C3/D3) lies in the center of (C3/D3)C4〈z〉. Notice that N is the stabilizer of each

such homogeneous component. Put A = N ∩ 〈α〉. We have CW (A) = 0 as CC̃2
(α) = 0 by

Proposition 2.2.12. This yields that CC̃2
(A) = CC̃2

(A/〈z〉) = 0.

We have [Φ(C3/D3), A] = 1, as Φ(C3/D3) acts by scalars. Hence A is a nontrivial proper

subgroup of 〈α〉 containing 〈z〉. Since CC̃2
(αq) = CC̃2

(zαq) 6= 0, we see that A � 〈zαq〉 and
so A = 〈αp〉. Now, CC̃2

(〈αp〉/〈z〉) = 0 and [C3/D3, 〈αp〉/〈z〉] = C3/D3. Now we may apply

Theorem 2.3.2 to the action of (C3/D3)〈αp〉/〈z〉 on C̃2. Then π(C3) = {2} and so C3 is

abelian, a contradiction. Therefore [C̃2, z] 6= 1.

We next assume that [C̃2, αq] = 1. Then CC̃2
(αp) = 1. So C2 is not a p-group. We also

have (C3/D3)(C4/D4) is centralized by αq. Now C3 should be a p′-group because otherwise

we would have CC3/D3
(α) 6= 1, a contradiction. If [C3/D3, z] = 1, then [C4/D4, z] = 1

and so 〈α〉/〈zαq〉 acts fixed point freely on (C3/D3)(C4/D4), which is impossible. Thus

[C3/D3, z] 6= 1. Since C̃2 is completely reducible as a C3/D3〈αp〉-module, we can write

C̃2 = X1 ⊕ . . . ⊕ Xm where Xi are irreducible C3/D3〈αp〉-module, for i = 1, . . . , m. We

may assume that [C3/D3, z] acts nontrivially on X1. By Gross’ theorem 2.3.3, we get a

contradiction because CC̃2
(αp) = 1 = CC3/D3

(αp). Thus [C̃2, αq] 6= 1.
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(4) The theorem follows when |B| divides p2.

Assume that |B| divides p2. Then CC1(αp) = 0. Assume that C2 is a p′-group. Since C1

is completely reducible as a C2〈αp〉-module by Maschke’s theorem (see Proposition 2.2.6),

we may consider an irreducible C2〈αp〉-submodule X of C1. Now we apply Lemma 3.0.3 to

the action of C2〈αp〉 on X and get [C2, z] = 1 which is impossible by (3). Hence C2 is a

p-group. Then C3 is a p′-group. Now applying Lemma 3.0.3 to the action of C3〈αp〉 on an

irreducible C3〈αp〉-submodule of C1 gives that [C3, z] = 1. It follows that [C4, z] ≤ D4. If C4

is a p-group, then D4 = CC4(C̃2) and so [C4, z] ≤ D4 = CC4(C̃2). If C4 is a p′-group, then

we may assume that [C4, z] = 1. Thus as [C3/D3, z] = 1, in any case [C̃2, z] is 1 or C̃2 by

the irreducibility of C̃2 as a (C3/D3)C4〈α〉-module. As p2 = p, we should have [C̃2, z] = 1

which is impossible by (3).

From now on we assume that B = 〈zαq〉.
(5) C2 is not a p-group.

Assume that C2 is a p-group. Then CC2(αq) = 1. We first suppose that [C4/D4, αq] =

C4/D4. Then p4 6= q and also we may assume that [C4, αq] = C4. If p3 = q, then Lemma

3.0.2 applied to the action of (C3/D3)C4〈αq〉 on C̃2 gives that CC̃2
(αq) 6= 1, a contradiction.

Now G is a q′-group. If [C3/D3, αq] = 1, then [C4/D4, αq] = 1, a contradiction. Thus

[C3/D3, αq] 6= 1. Since C̃2 is completely reducible [C3/D3, αq]〈αq〉-module by Maschke’s

theorem 2.2.6, we choose an irreducible [C3/D3, αq]〈αq〉-submodule X of C̃2. Now we may

apply Gross’ theorem 2.3.3 to the action of [C3/D3, αq]〈αq〉 on X, and get C
[C3/D3,αq ]

(αq) 6= 1

where [C3/D3, αq]〈αq〉 = [C3/D3, αq]〈αq〉/Ker([C3/D3, αq]〈αq〉 on X). Since (|C3|, |αq|) = 1,

C
[C3/D3,αq ]

(αq) = C[C3/D3,αq ](αq) and so C[C3/D3,αq ](αq) 6= 1, a contradiction.

Thus [C4/D4, αq] = 1. If p4 = p, then [C4/D4, α] = 1, a contradiction. Hence p4 6= p. If

[C3/D3, z] = 1, then [C4/D4, z] = 1. Since p4 6= p, we have [C4, z] = 1 and so [C̃2, z] = 1 or

C̃2. As p2 = p we have [C̃2, z] = 1 which is impossible by (3). Thus [C3/D3, z] 6= 1. Now,

applying Lemma 3.0.4 to the action of (C3/D3)〈z〉 on C̃2 we get [C̃2, z]p−1 6= 0. That is,

[C2, z]p−1 � Φ(C2). Also [C2, αq] = C2, since, CC2(αq) = 1. Then we apply Lemma 3.0.9 to

the action of C2B on C1 and get CC1(B) 6= 1, a contradiction.

(6) Either [C4/D4, z] 6= 1 or [C4/D4, αq] 6= 1.

Assume that C4/D4 is centralized by both z and αq. It follows that p4 6= p, because

otherwise CC4/D4
(α) 6= 1, which is impossible. Thus we may assume that [C4, z] = 1.

First we shall observe that p2 = q:

Assume that C2 is an s-group where s is a prime different from both p and q. Now

we consider an irreducible [C2, z]B-submodule Y of C1 on which [C2, z] acts nontrivially.
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It follows by Lemma 3.0.3 that [C2, z, αq] is trivial on Y . In fact [C2, z, αq] is trivial on

each irreducible [C2, z]B-constituent of C1 and hence it is trivial on C1. It follows that

[C2, z, αq] = 1 by the faithful action of C2 on C1. Then [C2, z] 6= C2 by (3). Hence we must

have [C3/D3, z] 6= 1 because otherwise by the irreducibility of C̃2 as a (C3/D3)C4〈α〉-module

we would have either [C̃2, z] = 1 or [C̃2, z] = C̃2, both are impossible.

It follows that p3 6= p because otherwise [C̃3/D3, z] = 1 by the irreducibility of C̃3/D3 =

C3/D3/Φ(C3/D3) as a (C4/D4)〈α〉-module. Now we can apply Lemma 3.0.7 to the action

of C2[C3, z]C4〈αp〉 on C1 and get [CC1(αp), CC2(αp)] 6= 1, contradicting the fact that αq acts

fixed point freely on CC1C2(αp) and hence it is nilpotent. This shows that p2 = q.

Next we shall observe that [C3/D3, αq] 6= 1:

Assume that [C3/D3, αq] = 1. If p4 6= q, then we may assume that [C4, αq] = 1. So we

have [C̃2, αq] = 1, as C̃2 is irreducible as a (C3/D3)C4〈α〉-module. This is not the case by (3)

and so p4 = q. Now D4 = CC4(C̃2) and so C̃2 is an irreducible (C3/D3)(C4/D4)〈α〉-module.

It follows that [C̃2, αq] = 1 again, as p2 = q, which is impossible. Hence [C3/D3, αq] 6= 1.

Applying Lemma 3.0.4 to the action of (C3/D3)〈αq〉 on C̃2, we see that [C2, αq]q−1 �

Φ(C2). If [C2, z] = C2, then Lemma 3.0.9 applies to the action of C2B on an irreducible

C2B-submodule C1 on which [C2, αq]q−1 acts nontrivially, and gives that CC1(B) 6= 1, a

contradiction. Hence [C2, z] 6= C2. This forces that p3 6= p and [C3/D3, z] = C3/D3,

as [C4, z] = 1, by the fact that C̃2 is an irreducible (C3/D3)C4〈α〉-module. Now Lemma

3.0.7 applied to the action of C2C3〈αp〉 on C1 supplies that CC1C2(αp) is not nilpotent,

contradicting the fact that αq acts fixed point freely on this group.

(7) The theorem follows.

We may assume that [C4/D4, a] 6= 1, where a = z or a = αq. Now p4 6= |a| where |a|
denotes the order of a. By Lemma 3.0.11 there are 〈α〉-invariant sections U1, U2, U3 of C1,

C2, C3/D3 respectively such that Ui normalizes Ui−1, Ker(Ui on Ui−1) = 1 for i = 2, 3 and

each Ui is centralized by a for i = 1, 2, 3.

Now 〈α〉/〈a〉 acts fixed point freely on each Ui for i = 1, 2, 3. |〈α〉/〈a〉| is either pq or

p2. We may assume that U3 is an elementary abelian group on which A = 〈α〉/〈a〉 acts

irreducibly. If every element b ∈ A of prime order centralizes U3, then A must be cyclic of

order p2: For if |A| = pq, then 〈z〉, 〈αp〉/〈z〉 and 〈αq〉 all centralize U3 and so 〈α〉 is not fixed
point free on U3, which is impossible. Hence we may assume that A = 〈αp〉 and a = αq.

Now [U2, z] 6= 1, because otherwise [U2U3, zαq] = 1 and so A/〈z〉 acts fixed point freely on

U2U3. This is impossible as A/〈z〉 is of prime order and [U2, U3] 6= 1. Since 〈αq〉 centralizes
U1 and CU1(zαq) = 1, CU1(z) = 1. We can apply Gagola’s theorem 2.3.2 to the action of
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[U2, z]〈z〉 on U1 and get U2 is a 2-group. It follows that U2 is abelian and so C[U2,z](z) = 1.

This forces that [[U2, z], U1] = 1 and so [U2, z] = 1, a contradiction.

Thus |A| = pq and there exists x ∈ A of prime order such that [U3, x] 6= 1. Now

[U3, x] = U3 by the irreducibility of U3 as an irreducible A-module and so p3 6= |x|. We

first consider the case p2 = |x|. Then Lemma 3.0.4 applied to the action of U3〈x〉 on U2

gives that [U2, x]|x|−1 6= 1. This enables us to apply Lemma 3.0.8 to the action of U2〈x〉 on
U1. It follows that [CU1(x), C[U2,x]|x|−1(x)] 6= 1, which is impossible as A/〈x〉 is fixed point

free on CU1U2(x). Hence p2 6= |x|. Notice that CU2(x) 6= 1 because otherwise 〈x〉 acts fixed
point freely on U2U3, a contradiction. Applying Lemma 3.0.10 to the action of U2〈x〉 on

U1 respectively, we see that [CU1(x), CU2(x)] 6= 1, which is not the case because A/〈x〉 acts
fixed point freely on CU1U2(x).

As an immediate consequence of our main result we state the following.

Corollary. Let A be a finite abelian group whose order is a product of three primes

coprime to 6. Assume that A acts fixed point freely on a finite group G of odd order. Then

f(G) ≤ 3.

Proof of the corollary. There are four possible cases for A: Either (i) A is of order

p3 for some prime p, or (ii) A is a cyclic group whose order is a product of three distinct

primes, or (iii) A is of order p2q for two distinct primes p and q and its Sylow p-subgroups

are elementary abelian, or (iv) A is cyclic of order p2q for distinct primes p and q. In cases

(ii) and (iv), A is cyclic and so the result follows by the main theorem. When (i) holds, A

acts with regular orbits on G because (|G|, |A|) = 1 and CG(A) = 1. So we have the result

by Turull’s work in [26]. Finally the result follows by Ercan and Güloğlu [5] in case (iii).
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