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ABSTRACT

PARTICLE METHODS FOR BAYESIAN MULTI-OBJECT TRACKING AND
PARAMETER ESTIMATION

Ozkan, Emre
Ph.D., Department of Electrical and Electronics Engimegri

Supervisor : Prof. Dr. Mibeccel Demirekler

August 2009, 103 pages

In this thesis a number of improvements have been establighiespecific methods which

utilize sequential Monte Carlo (SMC), aka. Particle filtgri(PF) techniques. The first prob-
lem is the Bayesian multi-target tracking (MTT) problem fahnich we propose the use of
non-parametric Bayesian models that are based on timengagytension of Dirichlet pro-

cess (DP) models. The second problem studied in this theais important application area
for the proposed DP based MTT method; the tracking of voealt tresonance frequencies
of the speech signals. Lastly, we investigate SMC basedmes estimation problem of
nonlinear non-Gaussian state space models in which wedeavperformance improvement

for the path density based methods by utilizing regulaibnatechniques.

Keywords: Particle Filter, Dirichlet Process, Parametstir&ation, Target Tracking
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PARCACIK METODLARI ILE COKLU NESNEIZLEME VE PARAMETRE KESTRIMI

Ozkan, Emre
Doktora, Elektrik Elektronik Mithendisligi Bolumu

Tez Yoneticisi : Prof. Dr. Mubeccel Demirekler

Agustos 2009, 103 sayfa

Bu tezde belli problemlerin ¢oziimiinde parcacik fitr@larak da bilinen sirali Monte Carlo
(SMC) tekniklerini kullanan yontemlerde iyilestirmelgapiimistir. Ele alinan ilk problem
olan Bayes yaklasimli coklu hedef izleme (tgroblemi icin Dirichlet siireci (DS) temelli
parametrik olmayan Bayes modellerinin kullanimi dneistiin Ikinci problem, onerilen DS
temelli CH algoritmasi icin dnemli bir uygulama alani teskil edéwmnusma sinyallerinde
ses yolu rezonans frekanslarini izleme problemidir. Saraél dogrusal ve Gauss olmayan
durum uzay modellerinde parametre kestirimi amacli kultan SMC temelli bir algoritma
incelenmistir. Bu calisma kapsaminda iz yoringesémel olarak alan algoritmalar igin

regulerizasyon teknikleri kullanilarak iyilestirmegtanmistir.

Anahtar Kelimeler: Parcacik Filtresi, Dirichlet SiireRarametre Kestirimi, Hedéfleme
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CHAPTER 1

INTRODUCTION

Solution to many real life problems requires processingries®f observations which carry
information about the unknowns. The model used in des@itiie problem plays an impor-
tant role as it defines the implicit relation between the olaéns and the unknowns. The
state space models have been used widely in several apigathich aim to estimate a
hidden state that can only be observed, maybe partly, thrauget of measurements. The
examples for the application areas vary in a wide range ssitarget tracking, communica-
tions, econometrics, biometrics etc.. The widespread b state space models has created
a need of #icient estimation algorithms which require reasonable agatmn power while
producing an estimate of the unknown state with an acceptbbr range. The compromise
in between kept the subject matter popular among both thaifioaers and theoreticians and

a number of algorithms have been developed over the last/gfiys.

The Kalman filter (KF) is probably the most famous estimateghnique in this context. Un-
der certain linearity and Gaussian noise assumptionspitymes the optimal estimates of the
state vector, in the mean square sense, with minimum variambe increasing popularity
of the KF was only confined by its inapplicability to largeass of models. The use of KF
could be broadened into non-Gaussian models, as it iststilbest linear unbiased estima-
tor (BLUE) if the system is linear. However many practicablplems involve non-Gaussian
nonlinear models which can describe more sophisticatettrsydynamics or the complex
relations between the state and the observations. Numé&marsvements were proposed
which aim to adapt KF techniques to the estimation problermoofiplex system models in-
volving nonlinearities. The first idea was the local lineation of the nonlinear equations
which resulted the Extended Kalman filter (EKF) [23]. The a6&KF became standard for

the nonlinear models. Unfortunately, if the degree of thelinearity is high EKF becomes



unstable or shows poor performance as it only considers itsteofider terms in the Taylor
series expansion of the nonlinear functions. Under sevendinearities, where the higher
order terms are not negligible, the EKF approximation falls the modifications of EKF,
unscented transform was utilized which comprises the nadekihown as Unscented Kalman
Filter (UKF) [25] [26]. UKF uses carefully chosen sigma pisitto propagate the Gaussian
approximation of the filtering density at each time step @awdmn outperform EKF. The main
weakness of UKF and EKF is that the both algorithms approteértige posterior density with
a single Gaussian which might fail to represent the truegpimstdensity if it is bi-modal or,
for example, a mixture of Gaussians. This common problemkd Bnd UKF has limited
their application areas. Until the 90's, the literature wak lacking an estimation technique
to handle the complex non-linear systems. In 1993 Gordomlet[20] introduced the first
practical sequential Monte Carlo (SMC) based algorithm. uinher of algorithms which
share the similar ideas were proposed during the 90'sfarént fields and in dierent names
such as condensation [22], bootstrap filters [20], parfittkrs [7], survival of the fittest [27],
Monte Carlo filters [29], etc. These algorithms are now meféito as SMC methods or par-
ticle filters (PF). Being applicable to a very large class oidels, SMC algorithms provided
a powerful tool for the solution of the complex nonlinear f@aussian estimation problem.
Unlike UKF or EKF SMC methods do not rely on functional appnoations or local lin-
earizations. The relevant distributions are approximatediscrete random samples, namely
the particles, and their weights. As an examplep(e) be a probability density function to be
approximated byN particles. The particle approximation to the probabiligndity function

p(x) is in the form.
N . .
BOY ~ D wo(x—X) (1.2)
i=1

whereN is the number of particles used in the approximatieh, = 1 : N} is a set of support
points with associated weights, i = 1 : N} andds(.) is the Dirac delta function. A graphical
example is given in Figure 1.1 and Figure 1.2. The discrefgaqimation to continuous
density enjoys several properties. For example, the ccatiputof expectations is simplified

to summations.

&1 (X)) = f () p()dx 12)



is approximated by

N
EF() = > WH(X). (1.3)
i=1
wheref(.) is some useful function for estimation.

Furthermore, the SMC methods are quite easy to implementduputationally quite de-
manding. As the computational power got more available ddper the application areas
of SMC methods got wider. Now the SMC methods are standartiodstfor the problems
which involve complex nonlinear non-Gaussian models. Thazng increase in the compu-
tational power made the use of SMC possible even for the iraal applications. Moreover

SMC algorithms can be used to make inference from complesilaisons.
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Figure 1.1: True probability density function.



Particle Approximation

Figure 1.2: Approximated probability density function regpented by particles having equal
weights



This thesis presents solutions to problems of the statissignal processing algorithms that
utilize particle filtering methods in approximating comyplgistributions and the functions of
these distributions. The first problem we concentrate ohagptoblem of unknown number
of components in a mixture density estimation. This typeceihsrio appears in many prac-
tical signal processing examples. The specific applicattbat we will consider here is full

Bayesian multi-target tracking. The second applicatiat the will focus on is tracking of

formant frequencies in speech processing. The third pnolidethe estimation of unknown

parameters of general state space models which is encedritemost signal processing ap-
plications. We apply our particle filter based solution te garameter estimation of general
state space models. A brief summary of the topics covereklirwihis dissertation are as

follows.

1.1 Bayesian Nonparametric Models for Multi-target Tracking

In Chapter 2 we propose a Dirichlet process based multetargcking algorithm which

aims to track unknown number of targets in a surveillancéoregDirichlet processes are
widely used in classification, clustering and mixture dignestimation problems in statistics
[13, 24]. The proposed model relies on an extension of Digichrocesses, namely time
varying Dirichlet processes. The model naturally handtesttack initiatiofideletion tasks

of the multi-target tracking problem whereas the existilggpathms use either some ad-hoc
logic or their probabilistic variants. We define a user pngston logic which keeps the

identity of the targets by merging the best hypothesis prediy the algorithm in consecutive
time instants. In the Bayesian approach to multi-targekirg, probabilistic models are used
in order to cast the multi-target problem into a Bayesiaimregton problem. Consequently,
the resulting posterior distributions are too complex toelkpressed analytically hence the

sequential Monte Carlo methods are utilized to approxintaeelevant distributions.

6



1.2 Dynamic Speech Spectrum Representation and Tracking Viable Number
of Vocal Tract Resonance Frequencies with Time Varying Dirchlet Process

Mixture Models

In this research, we extend our previous study about marget tracking to the formant track-
ing problem in speech signal processing literature. Fotsaeing the resonance frequencies
of the vocal tract, carry important information about wtéspeech and the speaker. Existing
formant tracking algorithms aim to track fixed number of famts. The resulting model is
incapable of representing and adapting to the varying sireof the formants in speech sig-
nals. We develop a new approach for tracking vocal tracinasce (VTR) frequencies which
is based on representing the spectral density of the speg@iswith time varying Dirichlet
process mixture models. The method involves modeling tleedp signal spectrum by an
unknown number of mixture of Gaussians, for which the Digthprocess mixture model
is utilized. The vocal tract resonance frequencies arectigtefrom the estimated spectral
density and tracking of the resonance frequencies is paddrfor speech utterances. In this
work we assume that the number of mixture components in thetisp density of the speech
signals varies in time as the vocal tract resonance fredgeappeddisappear due to the pole
zero cancelations and observability issues. Thereforgimed to establish a method which
is flexible enough to allow varying number of mixture compaisein the estimated spectral
density. Dirichlet process defines a distribution over piality measures with possibly infi-
nite number of mixtures and is capable of adapting the nurabetixture components with
the incoming data. Consequently the prior knowledge of tiralver of mixture components

is obviated.

1.3 Regularized Particle Methods for Filter Derivative Approximation

Estimation of static parameters in non-linear non-Gaunsgéeneral state space models via the
particle methods have remained a long standing probleneilitérature. Various attempts are
made to achieve theftlicult task of jointly estimating both the state and the modeameters.
Here we consider a gradient based stochastic approximatgmrithm which aims to find

the maximum-likelihood estimate of the unknown static paters. The method proposed

7



here approximates the path-density and its derivative Bt afsparticles and utilize kernel
smoothing techniques to prevent the degeneracy of theithligowhich would cause error

accumulation and leads the algorithm to diverge in time.



CHAPTER 2

BAYESIAN NONPARAMETRIC MODELS FOR
MULTI-TARGET TRACKING

2.1 Introduction

This research is mainly focused on Dirichlet process angjgfication to Multi-target track-
ing (MTT) problem. Dirichlet processes are a very populasslof models in non-parametric
Bayesian statistics and are widely used in statistics, latipn genetics, machine learning,
etc. for density estimation and clustering. In this redeawe aimed to adapt Dirichlet pro-
cess models to the multi-target tracking problem. In a fal/8sian approach to multi-target
tracking, the time-varying number of targets and the dywarof these targets are modeled
using probabilistic models. Although this kind of approacight seem neat and well struc-
tured, the resulting posterior distributions are too carpb be expressed analytically there-
fore they are generally intractable. The ability of pagiéltering methods to approximate
the complex distributions made the realization of full Bsige approach to the multi-target
tracking problem possible. In this context, the probatidisnodels for the targets dynamics
are well-established. On the contrary, the models used tiehtbe time-varying number of
targets have been overlooked. The existing models arer dittsed on ad-hoc logic or their
probabilistic variations. The classical (M) logic oversimplifies the track initiatigdeletion
problem in MTT. Existing probabilistic models used for tanitiation/deletion procedures
are also somehow deficient as they may define non-statiomamg pWe propose the use of
a new class of models relying on time-varying Dirichlet ms®es which has attractive prop-
erties. The measurement to track association task anditritieition/deletion procedures are
handled naturally by Dirichlet process models. In most ef tdwrget tracking applications,

target identities are required to be maintained as newtseggpeddisappear in the surveil-
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lance region. The previous methods also lack the outpueptaton stage. In the proposed
algorithm we define a user presentation logic which aims &plke unique identity for each
of the active targets in the region by combining the best thg®is at consecutive time in-
stants. The resulting algorithm is novel in many ways andefings a complete tracking
system which is able to initigtéelete tracks in full Bayesian framework. The inference is
done using Rao-Blackwellized particle filtering techniguethat the algorithm can be imple-
mented éiciently and can be run real-time and on-line. In our expenitm&e show that the
algorithm performs better than joint probabilistic dataasation (JPDA) and global nearest
neighborhood (GNN) algorithms which use standardNMad-hoc logic for track initiation
and deletion procedures. In addition to its capability dirdeg a mathematical model for
track deletioyinitiation tasks, the proposed method can keep multiplethgses for track to
measuremertlutter association and it is able to outperform both JPDA@NN algorithms
under heavy clutter. The chapter is organized as followshérfirst section the background
information for the Bayesian Inference and the Dirichlaigasses are given. In the second
section, multi-target tracking problem is introduced,lir following sections the description
of the proposed algorithm is given and the chapter is coredudith the simulations and

discussions sections.

This research was conducted jointly with Francois Carah &amaud Doucet of University
of British Columbia (UBC), Vancouver Canada. The author lddike to thank for their

collaboration.

2.2 Background

2.2.1 Dirichlet Processes

In the Bayesian context, Dirichlet processes (DP) are kntmwpe a specific prior used for
mixture models. Among all the properties which makes DPiagple to wide range of areas,
probably the most important one is its capability to modelitifinite mixtures. The ability of
modeling the infinite mixtures, makes DP a good choice asoa gistribution, which is meant
to be flexible enough to capture the various structures inuréxmodels. Before proceeding

to the description of DP, some basics of Bayesian inferenceviewed here.
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2.2.2 Bayesian Inference

Bayesian inference is a statistical inference, in whichabserved data and the prior infor-
mation are used together to infer the probability of a balied hypothesis. The inference is
based on Bayes Rule which is formulated as follows:

p(DIG) x p(G) (2.1)

PGID) = F0s

In equation (2.1)p(G) is called theprior distribution; p(D|G) is called thelikelihood func-
tion; p(D) is called themarginal distributionof the observed data, arg{G|D) is called the
posterior distributionof G given the data D.

In Bayesian approach one first defines a prior distributiorcwIs intended to represent our
prior beliefs about the events before observing the datderAfbserving some data, Bayes
Rule is applied to obtain the posterior distribution whietkeés both the prior information
and the data into account. From this posterior distributor can also compute predictive

distributions for future observations.
posteriore prior X likelihood

Here we present a simple example, an extended version ohwhiicbe related to Dirichlet
Processes later in this chapter. This example is the sanidepraconsidered by Bayes in
proposition (9) of his essay published in 1¥64

In this example we consider the computation of the postealistribution of a binomial pa-
rameter. We are given observed success out of binomial trials and we want to find an
estimate for the probability of succeps

In frequentiest approach a reasonable estimatg faould be X which is also equal to the
maximum likelihood (ML) estimate. Suppose that the pridoimation about the parameter
p is given by a Beta distribution.

I'(a + B)

faxrg” P 22

Beta(p; @, B) =

Where0< p<1 aB8>0 T(2-= fow tZleldt is the standard Gamma function, amd

andp are called the shape parameters. The fractional term ipémdkent of p which acts as

1 Although Thomas Bayes lost his life in 1761, his works werblisiied posthumously by his friend Richard
Price in the Philosophical Transactions of the Royal Sg@ét.ondon in 1764.
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a normalizing constant such that the probability densihcfion sums up to 1. The posterior
distribution ofp is calculated as follows.
(ML= P)™" X sl (1 - pyt
p(D)
cx p*eid - p™™F1 ¢ constant

p(pID)

- pn+a/—l(1 _ p)m—n+,8—1

Betgp;n+a,m-n+p) (2.3)

The posterior distribution takes its maximum value foE m”_;n‘jﬁ, that is also equal to the

maximum a posteriori (MAP) estimate of p. The MAP estimat ofin be used to predict the
(n+1)" trial, based on the firstobservations and the prior. Note that the posterior distion

is also a Beta distribution with modified parameters whicults from the conjugacy between
the binomial and Beta distributions. A family of prior disuitions is conjugate to a particular
likelihood function if the posterior distribution belongsthe same family as the prior. Beta
family is conjugate to the Binomial likelihood.

At this point it is important to notice that the repeated Redhi trials of this form can also be

modeled using Hierarchical Bayesian models.

Lety; be the random variable indicating success forithgial.

1  with probability p
yi = _ N (2.4)
0 with probability (1-p)
Combining this definition with the prior distribution gfresults:
p~  Betdae,p) (2.5)
yi ~ Binomialp) (2.6)
or equivalently,
p~ Betda,p) (2.7)
yi~  G(lIp) (2.8)
Where 5
Gl ¢) = > midg,() (2.9)
i=1

andry = p, 12 = 1-p, ¢1 = 0,¢2 = 1 anddy(.) is the delta dirac function at poigt

Such a representation will be beneficial later in workingwtiite mixture models. Our aim is

to consider the variablp as the probability thay; is a member of group 1, and {1p) as the
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Figure 2.1: lllustration of the Hierarchical Bayesian mlod@) The prior distribution ofp,
Beta(p;1,4). (b) The distributio®(.|p) from which they;’s are sampled.

probability thaty; is a member of group 0.

2.2.3 Dirichlet - Multinomial Model

In the next example, the classification of a number of measengs,y;'s, which are orig-
inated fromK different classes will be investigated. The structure will benfdated as a
Hierarchical Bayesian Model and the Bayesian inferencé beilapplied with appropriate

prior distributions.

The model for the classification problem will be construcsdollows. There exid classes
which are of interest. Given a specific class and its releparameters, the distribution of the

measurements originating from that class is assumed toderkn

yilg, i ~ f(lopc) (2.10)

Whereg,, stands for the parameters of tt:fé class,c; is called the allocation variable and it

takes the values, 1. ., K. The allocation variable indicates the identity of the slassociated
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to the measuremept. Each measurement belongs to one ofl@asses with some unknown
probabilities denoted by the vecter Probability that theé!" observation is originated from
the class j is equal te;. i.e. p(ci = j|rj) = 7. xj’s are called the mixing cdgcients or the

weights which sum up to 1.

¢ ~ G(ln)
K
whereG(jr) = > xoj(), 7 =[m.72,..., 7], (2.11)
=1

We will assume a Dirichlet distribution as a prior distrilout for these unknown mixing coef-
ficientsz. Remember the variable p and the Beta distribution in Bedhwigls. The Dirichlet
distribution is a higher dimensional version of the Betdrdiation. The Beta distribution is
defined on 2-dimensional simplex, and it corresponds toptkeial case of the Dirichlet dis-
tribution where the dimension is equal to 2. The general fofra K-dimensional Dirichlet

distribution with parameteras, . .., ax is given by

1

k
Dirichlet(py, .. ., pdar, ..., o) = ——— | [ p"7 2.12
(P1..- ., Pl k) e g P (2.12)
T2, @)
. K D)) . - . S
The fractional term?(‘z‘ﬁ—(j‘; is constant and equal #)H'j‘_l p‘fJ 'q p, assuring that the distri-
j=1¢j -

bution integrates to 1. In standard applications, symmeélirichlet distribution in which the

a parameters are equal isused, ig=ax = ... =ak =

S

The parametersj;’s are sampled independently from thase distributionGo(.)

de, ~ Go(.): (2.13)

The base distribution provides our prior knowledge overghmmeters which are likely to

occur. With the above definitions, the resulting HierarahModel becomes

o, K~ Dirichlet(%), (2.14)
Glr ~ Multinomial(r), (2.15)
$ilGo ~ Go(.), (2.16)
vilg.ci ~ f(le). (2.17)

We can also writej|r ~ G(.|r),(see: equation (2.11)), instead of the Multinomial dlsttion.
Our next aim is to compute the prediction density of the allmn variable for the future

observations. Given the association of the finst 1 measurements to the classes (shown by
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Cm = {ci}i”;‘ll), we want to compute the conditional probabilip¢c, = jic1,...,Cmn-1). FOr
that purpose we want to integrate out the mixingfoentsz, in the joint distribution as
follows.

p(Cm = jlc-m, @, K) = f p(cm = jir)p(ric_m, @, K)dr (2.18)
Note thatp(ci = jlr) = ;. The second term in the integral is the posterior distrdsutf the
mixing codficientss, which is equal to

p(C-mim) p(rla, K)
p(c_mla, K)

p(ric_m, @, K) = (2.19)

Denominator term is constant therefore,
p(ﬂ'lC_m, a, K) o p(C_mlﬂ') p(ﬂ|a7 K)

m-1
(| | 7a) P K)
i=1

m-1

- (1_[ ng,) Dirichlet(r; @, K)

3 I'(a) K e
B (l_[ 7a) [T, (g )l_[

j 1

3 I'(@) a1
- R 1r(w)(l—[ c.)]_[ﬂ

Let n; indicate the number of measurements prewously asagnt%rdaudass i. Then,

F(cx) n; x-1
mlc_m, @, K) o '
p(ric )~ ErE )<]_[ )ﬂ

T(@) [ n+e1
p(ric-m, @, K) o —m—r AL
H|K:1 F(R) g .
(2.20)
which is a Dirichlet distribution with modified parameterst . The result follows from the
multinomial Dirichlet conjugacy. Returning back to eqoati(2.18),

F(ZiK:]_(% +Ny)) K L4n,-1
[T, T +n) 5

F(Z 1(K + I’])) g+n~1
1“(K + ;) f 1—[
F(Zizl(R + 1)) y nl =1i%] I(g +mI(g +nj +1)

M TE +m) DK +m)+ (& +nj + 1)
nj + %
m-1+a«a

p(Cn = jlccm @, K) = mj

(2.21)

Where the last line follows from the propeiiyy + 1) = yI'(y);
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2.2.4 Extension to infinite dimensional priors

So far we have seen that, based on the association of the@psewieasurements, our prior
for the future measurements to be associated with a claspipportional to the number of
measurements previously assigned to that classplZ21). The next step is to extend our
model for infinite number of classes. Our aim is to loose tistricions brought by breaking
the assumption of fixed and known number of classes, whichtisaalistic for the practical
cases. For the extension to the infinite dimensional caseapproach will be letting the
unknownK — oo. In this case, the vector of mixing cieientsr is of infinite dimension but
it is still possible to compute explicitly the marginal dibution of the allocation variables.

Returning back to equation (2.21),

|
5

p(cm = j|C—m, G,’)

= —1 (2.22)

The next step is to calculate the probability that the newsueanent to be originated from
one of the infinite number of classes, which has not been &teddo any of the measure-
ments yet. Suppose that omiyof the classes have been observed, and theri€ ara classes

having no measurements. Then,

K nz+
Cm = CnewlC—m, = lim _—
Pen = CredC-m @) = Jim > (=)

i
m—l+a/K—>oo( K

a
S — 2.2
m-1+a (2.23)

The resulting scheme is known as the Chinese Restaurar@$3r(iCRP) in whiclh customers
sit down in a Restaurant with an infinite number of tables. GBffeme can be summarized

as follows.

The first customer sits at the first table. The subsequenbmmess either sit at one of the
previously occupied tables or a new table. Suppose ther@radyn customers sitting &
tables. Lemn;, i = 1,..., K denote the number of customers sitting at tabM/hen @ + 1)th

customer enters the restaurant he sits at,
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e table 1 with probability-2-

o table K with probability-"-

e anew table with probability—

Figure 2.2: Chinese Restaurant Metaphor
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(b)

Figure 2.3: lllustration of the Chinese Restaurant PracéssThe customer sits one of the
previously occupied tables, with probability proportibtathe number of people sitting at
that table. (b)The customer sits at a new table with proltalgtoportional toa.

CRP is closely related to the predictive distribution ofi€hitet processes which is introduced

in the following subsection.

2.2.5 Dirichlet Process Definition

Formal definition of Dirichlet processes are given as folow

Let (Q, B) be a measurable space, wilip a probability measure on the space, andadet
be a positive real number. A Dirichlet process is the diatidn of a random probability

measure G overd], B) such that, for any finite partitiong, Ay, ..., A,) of Q, the random

18



vector G(A1), G(Ap), ..., G(An)) is distributed as a finite-dimensional Dirichlet distriton:

(G(A1), ..., G(An) ~ Dir (@Go(A1), . . ., aGo(An)). (2.24)

In order to illustrate the conditions implied by equatior2@, an example is given as follows.
LetQ beR, and B is defined in the usual way as the Borel Field includihgmen subsets of
the real line. LeGp be a normal distribution with zero mean and varianée Then for any
partitioning ofQ, G Measure of the partitions should be distributed accgrtiina Dirichlet
distribution with parameter@Go(A;). See Figure 2.4
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Figure 2.4: g. (a) The Base Distributi@y. (b) One random partitioning of the real line. (c)
G Measure of the partitions.
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Since G itself is a probability measure, Dirichlet Procesfnegs a distribution over probability
distributions. More specifically Dirichlet Process defiriee probability measure G to be

discrete with probability 1 [43].
G(®) = ) mdl(#),  where ®=[¢1,¢5..]. (2.25)
k=1

Therefore a more realistic picture for a probability dlafition G sampled from a Dirichlet

Process would look like the one in Figure 2.5-b.

Figure 2.5: (a)The Base Distributi@py. (b) G: One sample of a Dirichlet Process.

Returning back to our hierarchical model, for the infinitassles case, the model can be

specified with the following equations.

GlGo, ~ DP(Go,a) (2.26)
dlG ~ G() (2.27)
yilgi  ~  f(Igi). (2.28)
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What we are interested in is again the posterior distributbG after observing a number
of measurements. Similar to the finite dimensional caseausscof the mutinomial-dirichlet
conjugacy, the posterior distribution of G is again a DilgtHProcess with modified parame-

ters.

GlGo,a ~ DP(Go,a)

P(G) = DP(G|Gy,a)

_ P(@IG)P(G)
P(Gl®) = —P£ )
P(G|¢1’ e ¢n) = DP(GO’ &)
- a 1 <
Go = ——Go+ mn;é(cpi),
a = a+n

If we integrate out G, the prediction density for the+( 1) observation will be

Ponalds.. .00 Co.0) = [ [ [PoGIPG)G
i=1

1 n
(bialds.....60.Go.0) ~ ——Go+ —— " o(&). (2.29)
i=1

Notice that, the method for generating this sequence oformnehriables in (2.29) is exactly
the same as the Chineese Restaurant Process, where thetessani a new table is deter-

mined by the base distributidBg.

A sequence of parameters generated according to (2.29dssald to be sampled from a

Polya urn, which is described in the following section.

2.2.6 Polya Urn Representation

Polya urn scheme [6] is analogous to the Chineese RestdRiracess, and is used to model
the process of generating the samples from the predictstghaition of the Dirichlet process.
The metaphor used for describing the process of samplimg tine predictive distribution via

Polya urn scheme is as follows:

Suppose there ameballs in an urn withm different colors ¢olors are indicated by numbers
1 to m). Letn; denote the number of balls having the cdloAssume then™ color is black,

and the number of black balls in the um.,j is equal toa. Each time, one ball is picked
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from the urn. If that ball is black, we put a new ball with a neslar into the urn, otherwise
we put a ball having the same color into the urn. We put thelimdk into the urn as well.
Therefore, when we pick up a ball, the probability that itfocavill be one of the existing
colors is proportional to the number of balls sharing theesawlor, and the probability of

adding a new color to the urn is proportional to the numbedadioballs in the urn, i.ea.

2.2.7 Stick Breaking Representation

Another realization of the Dirichlet Processes can be damstick breaking representation of
the random probability measure G. Sethuraman showed iraipisrj43] a constructive way

of representing the samples from the Dirichlet Processédlaw/s.

G= i k0(¢k) (2.30)
Wher;:1¢k ~Go (2.31)
e = Pk ﬁ(l—ﬂj) (2.32)
Bk ~JzBleta(1, @) (2.33)

The definition of the weightsa(’s) in equation (2.32) can be visualized as an analogy to a
stick breaking process in the following way. We begin withtiaksof length 1. Generate a
random variablgs; from the Beta distribution. Break the stick into two pieceslsthat the
length of the resulting pieces gsg and (1- 31). The first weightry, is equal to the length of
the first piecep;. Take the other piece and break it into two pieces such tledetigth of the
resulting pieces are proportionale and (1- 3»), wheregs; is another random sample from
the Beta distribution. The length of the first piece is eqoatz Repeat the procedure with

a countably infinite number of brakes and generate the sequainweightsr’s. Note that,
since we began with a stick of length 1, the sum of the weigbtegated in this process will
be equal to 1. Therefore the resulting measure G, will be id ymbbability measure. The

pictorial representation of the stick breaking processvsrgin 2.6.

23



@

By | (1-8,)
- |
‘ B, | (1-5,)
TE2 |
B | (1-5,)
7, [
B, L -
|
T
) B, (1-B)
[ ]
[ ]
[ ]
(b)

Figure 2.6: Stick Breaking Representation®# },° ; md(¢k) (a) The samplegy’s sampled
from Gg. (b) Generating the weights in stick breaking represenati
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2.3 Multi-target Tracking

Multi-target tracking problem consists of estimating tteges of a possibly unknown number
of targets in a given surveillance region. The availablessengenerally collect several mea-
surements which may correspond to some clutter or the taafahterest if detected. The

sensors typically lack the ability to associate each me:

psent to its originating target or the
clutter. Hence, one has to solve simultaneously three @nodl data association, estimating
the number of targets in the surveillance region, and thenatibn of the target states. Nu-
merous algorithms have been proposed in the literature doead such problems and only
the ones that are most relevant to our approach will be reddvere; see [21] for a detailed

review of the literature or [5] for pre-particle filter era.

Here, we propose a new class of stationary models for thetangng number of targets.
Proposed class of prior models relies on a time-varyingreskba of Dirichlet Processes. In
scenarios where the number of targets is unknown, potgniiginite, but fixed, a DP prior

has recently been used to perform Bayesian multitargekitrgd17]. In these papers, batch
inference is performed using Markov chain Monte Carlo (MCW0e propose here an orig-
inal time-varying extension of DP to model the time-varyimgmber of targets. Moreover,
from a practical point of view, this process is easily intetpble and allows us to naturally
handle birtlideath of targets over time. We utilize Sequential Monte €gMC)-type algo-

rithms to approximate on-line the resulting posteriorriisitions.

2.4 Known Number of Targets

Assume there ar& targets of interest in the surveillance region. Ixgt denote the state

vector of targetj at timet. The target dynamics are defined by state dynamics equation.
Xjt Xje-1 ~ F(1%j-1) (2.34)

wheref (] X) is a probability density function for a given To define the measurement model,
we again introduce the set of unobserved allocation vaasdblt:} wherek = 1, ..., m; andm
is the number of measurements at titseich that ifck; = j thenyy; originates from targej.

Formally, conditional upom; = {ck:} andx; = {Xj’t}, we assume that the measurements are
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statistically independent and marginally distributedcaidang to

Yiet| (€6 %) ~ 9 (1 X t) (2.35)

whereg (-] X) is a probability density function for ary To simplify the presentation, we do

not include some clutter noise here. To complete this Bayesiodel, we need to define a
prior distribution for the allocation variablgsy:} . A simple assumption consists of assuming
that, at any timet, we have a vector of prior probabilitieg = {rj}, i.e. njy > 0 and

> i = Land that

.
p(cutlmT) = np(Cdﬂ't) (2.36)
t=1
where
My
pledm) = [ [p(cu|m) (2.37)
k=1
with
p(CKt = j|7Tt) =Tt (2.38)

that isc; follows a multinomial distribution of parametes) . The PMHT algorithm uses the
Expectation-Maximization algorithm to maximize the maajidistributionp ( Xy-1|y1.1,71.7)

for a fixedT [44, 19]. In [21], this model is completed by introducing aidaional prior
distribution formit. The vectorsr; are assumed independent and identically distributed ac-

cording to

T~ Dirichlet(%)

for somex > 0. Inthis case, the target distribution of interest at tiie p ( Xy, 7171 Y1.7). A
combination of MCMC and SMC algorithms is proposed in [213&mple from the sequence
of these target distributions dsincreases. The proposed algorithm is quite computatipnall

intensive as it requires running an MCMC algorithm until vergence at each time step.

We consider here for the sake of illustration and so as todiice later on the DP the static

case where = x for anyt and

T~ Dirichlet(%). (2.39)

Sincecy's follow multinomial distribution likewise the model deéd by equations (2.14)
and (2.15). The prediction distribution of the allocatiarigbles can be computed according

to the equation (2.21).
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Then for anyj € {1, ..., K} '
nJ—Kt + a/K

e TR (2.40)
Zi nl_kt +a

Pr(ckt = jlc_kt) =

Wheren‘_kt is the number of allocation variables with valjien c_x;. We definec_11 = @,

C_k1 = Cik-11 andfort > 1

{Crt-1, Cax-1t) Fk>1
Ckt = _
Cit-1 ifk=1

The main drawback of using such a model is that the numberrgétaK is assumed to
be known and constant. The DP based model presented in theuisection allows us to

remove this restrictive assumption.

2.4.1 Dirichlet Process Based Model

To deal with an unknown number of targd{s we again take the limit of the finite model
defined by (2.40) aK — ~. The conditional distributions of the allocation variablgill be

in accordance with the Chinese Restaurant or equivalenllygRJrn scheme.

i
Moyt

— if € c
Price; = jlcig) = { =™t (2.41)

a e s
Zi ni—k,t+a If J e C—k,t

This means that the measuremmgatis associated to an existing target c_; with probabil-
ity 5 r:]t‘tm and to a new target (with some arbitrary laped c_y ) with probability 5 niﬁw'

Note that the labeling of the targets is arbitrary here amd @ chosen for programming
convenience. The parametetunes the prior distribution of the number of targets. When
tends to 0, the number of expected targets will tend to 1,emafiena tends to infinity it will

tend to infinity. Note that although the prior probabilityiriinite dimensional, the number of
detected targets is at most equal to the number of measutenBynusing this nonparametric
approach, the number of targets does not have to be specifiedria but is estimated from

the measurements.

To complete the model, we initialize a target state only wihéntarget is created and assume

that the initial state is distributed according to a disttion v (-).
We consider in the next section that the veetois time-varying. In analogy to the static case
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(2.41), we present a modified Polya Urn scheme so that thetentimensional vector; is

integrated out.

2.4.2 Time-Varying DP

We introduce here a modified Polya urn scheme for the allocatariables. The evolution
model (2.41) defines a Polya urn scheme based on the wholé getvious allocation vari-
ables from time 1 to the current time step. This evolution etaday be modified by only
conditioning the new allocation variable on the allocati@miables sampled from time- r

to timet. Consider the following-order Markov model

Pr(ckt = jlckt) = Pr(Ct = jICkt-ri)

M e e
— i Moyt J ot (2.42)
+ if j¢ Ckt-r:t

wherenj_ Kiort is the number of allocation variables g taking the valuej. The allo-
cation variables at timeare thus only dependent on previous allocation variable® time
t — r. Note that with this model, targets may disappear over tikteeach timet, we forget
allocation variables;_,_1. If a target that was observed at titner — 1 has not been observed

anymore from timé—r to timet—1, then the target “disappear”, i.e. itis not tracked anyanor

2.4.3 Clutter Model

In practice, it is important to be able to model the clutteisao We assume that the clutter
noise is uniformly distributed on the surveillance area.&measuremernk; from the clutter,
we setcy = 0 and assume that Rkt = Olc_kt) = 1 — A. Under these assumptions, the

generalized Polya urn is given by

Pr(ct = jlc-kt) = Prickt = jlc-kt-r:t)
(1-21) if j =0,
= JM if jec
- i r‘li—k,t—r:t_"a/ J ket
/lm |f J ¢ C_k’t U {0}
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2.5 Sequential Bayesian Inference

As the number of possible associations increases expaltgrdiver time, inference in the
models described before cannot be performed exactly andee® t© approximate the pos-
terior distributions of interest. We present a simple datsistic approximation algorithm in

the linear Gaussian scenario and an SMC method to handlénear-non-Gaussian cases.

2.5.1 Linear Gaussian Model

We consider here the important case where the evolution bsereation equations (2.34)-

(2.35) of each target are linear and Gaussian; tha(¥ = N (X; X9, o) and
f (x’| xt_l) =N (X;Fx_1, %), (2.43)

gy x) = N (y; Hx, Zw) - (2.44)

The target distributions we are interested in estimatigggaren by

P (Crt, X1tly1t) = P(Crtlyrt) P(Xetlyrt, C1t) -

In this case, conditionally on the allocation variable® thodel is linear and Gaussian so
the distributionp (x1tly11t, C1t) iS @ Gaussian whose statistics can be computed using Kalman
filtering techniques.

In particular,p(xly11, C1x) = N (X Xt (Cr1) » Zyt (C11)) wherexys (Crt) andXys (Cy¢) are given

by the Kalman filter. Thus we only need to approximate therdtscdistribution of the allo-
cation variables which satisfies the following recursion

P (Ytly1:1-1, C11) P(CtlC1-1)
P (Vely1t-1)

p(C1ly1t) = p(Crr-1ly14-1)

with p(Vily1t-1, C1t) = NVt Yoe-1(Ca), Sye-1(Cat)) where yye-1(C11) and Sy—1(Cy1) are re-
spectively the predictive mean and covariance of the intimvavhich can be computed by

KF updates.

We consider a simple deterministic algorithm to approxarihis posterior distribution. At
each timet, we consider all possible values for the new allocationalde, compute the un-
normalized posterior distributiop (c1¢|y1t) which is known exactly for each possible value

and then prune to keep thé most likely trajectories. It can be interpreted as variant o
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the Rao-Blackwellised Particle Filter where we substitheesampling step with a full explo-
ration of the possible values and the resampling step wititerchinistic selection of the more
likely particles. It has been shown that in most scenariagsdimple algorithm outperforms

the RBPF.
. T . (i) _
The algorithm proceeds as follows. To initialise the altjon, we sewWy, o = 1/N for
ie{l,..N}.
N—best algorithm for Multitarget Tracking

Attimet> 1

o Setwy) = w)

m-q,t-1

eFork=1,...,m
e For each particlei = 1,..,N do

eForje c(') U {0} U {Chewt, Iet'(i(I 4 = j and compute the weight

A = w2, b (el v <0 ) p (] Y, ) (2.45)
e Keep the N particles (C('Lt,“(' J)) with highest weights, rename them ct )(k Dt and de-

note vv(lg')t the associated weights.

The target distributiorp (c1¢| y1+) is approximated using
N .
p(cutlyrt) = Z]; \Nt(l)5c$i) (C11)
i=

whereW o w) >N W('> 1 wherea (x| y1+1) is approximated through

m(t’

N

P(xlyt) = Z Wt(i)N(Xt; Xt (Cg:)t)’ztlt (Cg)t))
i—1

2.5.2 Non-Linear Non-Gaussian Model

In scenarios where the target dynamics/anthe measurement model are non-linear/and
non-Gaussian, it is typically impossible to comppte« y1+, C1+) in closed-form contrary to

the linear Gaussian case. We present here briefly a SMC mtitagmbroximate the distribu-

tions p (Xz|y1. C11)-
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In this approach the target posterior distributions ofriexé are approximated by a cloud of
random samples named particles which evolve over time wsitgmbination of importance
sampling and resampling steps. To design fiitient algorithm, it is necessary to design
an dficient importance distribution. The expression of the optiimportance distribution

is well-known. 1t is typically impossible or too computatilly intensive to use the exact
form but it can be approximated through the Extended KalnmiterKEKF) or the Unscented
Kalman Filter (UKF); see e.g. [11, 10, 21, 12] for details. We/e chosen here to sample
sequentially the measurememts, ..., ymt ONe-at-a time. In this case, the optimal importance

distribution forcy; is given by

a(Cr,tlYicts Ckit> Xt-1) o P(YictlCi,t> Xor.t-1) P(CktIC—k t)

where
! if gy =0
PWVitlCits Xoeet-1) =1 [ Q(YKt| Xck,t,t) f (Xck$t,t| Xck,t,t—l) dXgt i Ckt € Cky
T 9 (¥t %) v (Yo t) A i Gt = Coew

Where the clutter density is assumed uniform over the silamee regiony is the volume of
the surveillance region(.) is the distribution of the initial state. Fog; € C_ktU{Cnew}, We Can
build an approximation of botip(yit|Cit, Xo.,t-1) @and p(XitlYit> C—(kr1).t- Xkt) If Ckt € Cokt

or P(XctlYit, C—(k+1).t) if Gkt = Cnew Using EKF or UKF. Then the SMC method proceeds as
follows. To initialise the algorithm, we swg) =1/Nforie{l,.., N}.

SMC Algorithm for Multitarget Tracking
Attimet>1

e For each particlei = 1,..,N do

eFork=1,...,m, sample Eﬁ)t (CKt|YKt, kit XE? )

eForje cg)rt 1 sample Xt Jt ~ q(x,t|xJt Y66 iy

) =0

oForjec('rtl Yo )

, sample S({JI% ~ O(Xjtlyt, G
e Fori =1,..,N, update the weights as follows

i iy TRy POKCHX) TRy PIEAE 1S 0)
ng) S8 V"Ql —— & RO A
[T, @ |yktckltctrt1X )
HJ (|) . I)|X§|2 1)1_[ .t T:[(') Po Jt) (246)

|X“1yt~())1—[ (,) _(.)QC(,tIYt I))

X
I1

()]
JEC 1
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with 3N, &) = 1.

—in2] ™t . . . .
e Compute Negg = [Z (WE')) ] . If Neg < N/2, duplicate the particles with large weights
and remove the particles with small weights, resulting in a new set of particles denoted

-Ei) with weights Wg) = 1/N. Otherwise, rename the particles and weights by removing the

Details of the algorithm is given in Appendix section.

2.6 Target Identification

In most of the target tracking applications, target idésgitare required to be maintained as
new targets appealisappear in the surveillance region. This section dessribsimple user
presentation logic which aims to keep a unique identity fecheof the active targets in the
region. In this approach, a target-to-target associatiandde between the targetssters of
the particles having the highest weight at the current aagtbvious time instants. For this

purpose a target-to-target assignment matrix is formead|bsifs.

Construction of the Assignment Matrix
Attime t

e Pick the particle with the highest weight at time t — 1

e Extrapolate the state vector/sufficient statistics of the particle to the current time x_; —

Xt
e Pick the particle with the highest weight at time t
e Construct the Assignment Matrix as
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Targets Targets at time t-1 No Target
attimet 1 2 ... Ni1 1 2 . N
1 di1 di din, CN X X X
2 do1 dz N, X CN X
: : X X
Nt dn,.1 dn,.2 N, X X X CN

Whered; j = >“<ITjQ>“q,j, is the distance between the targetdj. X j = X — X;, is the state
prediction diference vector, and Q is any positive definite weighting mattiN is the cost
of not assigning any target from the previous time to a taageturrent time. X refers to
unallowable assignment. Posterior to the constructiomefassignment matrix, assignment
problem must be solved to find the optimal association. Tlsggasment problem here is

defined as follows. Given the elemeatg of an n x m matrix, find the particular mapping

i 230, 1l<i<n 1<E@i)<m

i#j = Z(i)#E())

such that the total cost function

n
Chotal = Z ai ()
i-1

is minimized over all permutatioris. Various algorithms are proposed to solve the problem
(see [5]). The auction algorithm is used to find the optimabamtions in our simulations.
Notice that, in order to minimize the cost, the assignmemaifeti to targetj can occur only

if dij; < CN. Therefore CN defines a gate on the defined distance betwedargets. If this
gate is exceeded, it is better to assign a new identity toattget rather than associating it to

the existing ones.
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2.7 Simulations

2.7.1 Linear Gaussian Model

Consider the following linear dynamic model

Xj,t+1 = FXj,t + GVj’t

Zk,t = HXj,t + Wk,t

Xit

X; oo
wherex;; = Y with (Xjt, Yjt) and X+, Yjt) being respectively the position and first
Yit
Yit
derivatives of the target j at time t in 2-D coordinates.

1TO0O Z o

01 0 T O 1000
F= ,G = , || H= :

00 1T o = 0010

00 1 o T

_ a2 0 o2 0
Vit ~ N(0,Q) andwy; ~ N(0,R) with Q = andR =
0 o

2 2
0 o7f o

]. T is the

sampling time.

The following values are seff = 1, 02 = 10, 03, = 5000,r = 8, @ = 1. The mean number
of clutter measurements per time index is set to 5. 3 targeks$rare simulated. The number
of active targets (i.e. targets that produce measuremantgch time step is represented in
Figure 2.10. The true target trajectory and the measuremantumulated over time steps,
are represented in Figure 2.7 and Figure 2.8. The detemifiiter is iterated with 1000
particles. Decision is made using the particle with the dgjhog-likelihood. The estimated
target trajectories are represented in Figure 2.9 and timbeuof estimated targets in Figure
2.10. One track is considered as detected when it has produdeast 7 measurements in the
last 8 steps. Once it has been detected, it is deleted whereasurements appear in the last

8 time steps.

For the same set of simulated data, a Joint Probabilistia Basociation (JPDA) filter and

the Global Nearest Neighbourhood (GNN) algorithm were rértrack is initiated when 7
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measurements are associated to this track over the lask8steps, and is deleted if it has
not produced measurements over the last 5 time steps. Tineatsd target tracks of the
algorithms are represented in Figures 2.11 and 2.13. Thédeuof estimated targets are

depicted in Figures 2.12 and 2.14.

. :
Target3 ——— Target2

200+ t=280 —f— Target3||
—+— Targetl
-400
Target2 y -L:H
t=1
-600
Target2
-800} t=100
Targetl
> t=65
-1000 -
-1200 Target3
t=20
-1400
-1600 eTar_getl
t=1
-1800 y y v y
500 1000 1500 2000 2500 3000

Figure 2.7: True Tracks.

2.7.2 Non-Linear Non-Gaussian Model

In the context of bearing only tracking, the target posiiare not fully observable to the
sensors, but a non-linear measurement equation existd wélmtes the state and the mea-
surements non-trivially. We assumed a similar model toitieal gaussian case for the target

dynamics. The resulting state space equations are as follow

X = FiXe-1 + W

—anlY”
Yt = tan (X_SX)+wt
T3 T2
1 TOO T T oo
0100 T T o0 o0
Fo= ;Qr=5x s = |[R= 1x10%

00 1T o o - L
0001 o 0o T

WhereT = 1, Q; andR; are the process noise and measurement noise covariandeesatr
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Figure 2.8: Measurements generated from time 1 to fimeMeasurements are produced
either by clutter or by a target.

respectively. In the scenario, there exist two targets whias target trajectories are depicted
in 2.15. There are two bearing only sensors, whose cooedingt, s,) are (-10000, 5000)
and (10000, -5000). There are 5 false alarms per scan whéchraformly distributed over
the region. The estimated target positions and estimateteuof targets for the DP based

algorithm is given in Figure 2.16 and 2.17 respectively.
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Figure 2.9: Estimated target trajectories using the DPdakgorithm.
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Figure 2.10: Estimated number of targets for DP based altgori
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Figure 2.11: Estimated target trajectories using JPDA.
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Figure 2.12: Estimated number of targets for JPDA
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Figure 2.13: Estimated target trajectories using GNN.
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Figure 2.14: Estimated number of targets for GNN
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2.8 Conclusion

In this study we propose a new class of models for Bayesiati-tatjet tracking which is
based on time varying extension of Dirichlet Process. Thaltieag algorithm is a complete
tracking system which naturally handles the track inibigtileletion and target to measure-
ment association tasks in a Bayesian framework by usingvamngng extension of Dirichlet
processes as the priors. We also introduce a new outputnpatisa logic for SMC based
multi-target tracking algorithms which tracks the idgntf the targets by combining the best
hypothesis in consecutive time instants. The algorithnestetd on simulated data and its
performance is compared with the conventional methodsehadDA and GNN algorithms
which utilize standard (I¥N) logic for track initiatiorideletion tasks. In the simulations, the
algorithm outperforms JPDA and GNN in heavy cluttered sdesavhere JPDA and GNN
algorithms fail to initiatégdelete tracks properly. The proposed algorithm is a goodbtom
nation of state of the art techniques and novel ideas suchttheomises a high chance of

showing good performance inftirent applications of signal processing.
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CHAPTER 3

NONPARAMETRIC BAYESIAN FOR DYNAMIC SPEECH
SPECTRUM REPRESENTATION AND TRACKING
VARIABLE NUMBER OF VOCAL TRACT RESONANCE

FREQUENCIES

3.1 Introduction

In this study, we extend our previous study on multi-targatking to the formant tracking
problem in speech signal processing literature. We proposew approach for dynamic
speech spectrum representation and tracking vocal trashasce (VTR) frequencies. The
method involves representing the spectral density of teedpsignals as a mixture of Gaus-
sians with unknown number of components. In the resultimgesentation, the number of
formants is allowed to vary in time. Under the assumptionxi$tence of varying number
of formants in the spectrum, we propose the use of the DPM hiiaded multi-target track-
ing algorithm for tracking unknown number of formants. Tleenfiant tracking problem is
defined as a hierarchical Bayesian model and the inferersenis using Rao-Blackwellized

particle filter.

The air path of speech production mechanism (the vocal)treatomposed of various ar-
ticulatory cavities (oral, pharyngeal, nasal, sinus et&pach cavity has particular natural
frequencies at which the contained air naturally tends boaté. If the air inside the vocal
tract is vibrated at natural frequencies, the vibratioresrainforced and the vocal tract res-
onates. That is, the vocal tract from glottis to lips actsraa@ustic resonator during speech
production [15] [16]. The resonance frequencies, also knasvformants, can be observed as

the peaks of the magnitude spectrum of the speech signal.
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Since formants are a rich source of information about uttspeech and the speaker, reliable
formant estimation is critical for a wide range of applicat, such as speech synthesis [15,
16, 39, 32, 31, 3], speech recognition [46, 18], voice casiver[40], vocal tract normalization

[8, 41], measuring vocal tract length [45], accent clasaifitn [47] and speech enhancement

[48].

The aim of our study is two-fold. First one is the dynamic esy@ntation of the speech spec-
trum as a Gaussian mixture with variable number of companélite second one is to track
variable number of formant frequencies using the givenasgmtation. The representation of
the speech spectrum with Gaussian mixture can also be sg0].itn [50], the parameters of
the Gaussian mixture model are first estimated by Expeatddimximization (EM) algorithm
then a reduction in the number of component stage is negessidle the order selection still
remains as a problem. In our approach the number of mixtungpoaents is determined
by the Dirichlet process naturally. We assume that the numbixture components in the
spectral density varies in time as the vocal tract resonfrageencies appeaisappear due to
either unexcited sections of the vocal tract or abrupt ceamgthe spectrum during nasaliza-
tion. In order to build a basis for our claim of varying numlbé&formants, we investigate the
effects of abrupt changes of the vocal tract in the state spanefwork. The analysis shows
that the number of formants appearing in the spectrum mayimaime [49]. Therefore, we
propose the use of a Dirichlet process based method whicxibl# enough to allow varying

number of mixture components in the estimated spectralityens

The following are the main contributions of this study.

e Dirichlet process based multi-target tracking algoritrsnused for tracking variable

number of formants where the inference is done via Rao-Blatlized particle filters.

e The speech spectrogram is represented as a Gaussian nairtutee number of mix-

ture components is determined dynamically.

The rest of this chapter is organized as follows. In Secti@n e definition of the formant
tracking problem is introduced. Section 3.3 presents tha&ildef the proposed method. The
experimental results are given in Section 3.4 and finally wectude the chapter with the

Discussions and Conclusion sections.
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3.2 Problem Definition

The problem of formant tracking involves the detection @& tbrmants in a given speech
spectrum. The formant frequencies are expected to appeheiregions of the spectrum
where the energy is relatively high. Generally, the peakb®fpectrum are chosen to be the
formant frequency candidates which are later eliminatemb@ting to their consistencies in
time. However, the shape of the spectrum changes signifjcdmting the open phase or the
close phase of the glottis due to resonance anti-resonamelation. Therefore, a reliable
estimation can not be done by simply detecting the peaksedfpkectrum. A smoothing stage

is necessary to minimize the variations in the peaks of teetsgpm from frame to frame.

In our approach, the spectrum smoothing and the formankitrgdasks are done jointly.
Dirichlet Process Mixture Model is used to represent thetsps by an unknown number
of Gaussians and the resulting mixture components aredemesi as the candidates to be the
formant frequencies. We assume that the vocal tract resenfaaquencies constituting the
mixture components of the spectrum evolve according to avkrgtate dynamics equation.
Also the measurements originating from a specific formaataamsumed to be produced ac-
cording to a known measurement equation. Both of the equatice specified by the general

state space representation of the VTR’s which is given helow

h(fj-1, V) (3.1)

a(fjt, W) (3.2)

~h
=
|

Yit

Here fj; denotes the state vector of ti& formant at timet. h(.) andg(.) are possibly non-
linear functions of the statev; and w; are the process noise and the measurement noise
sequences. A number offtBrent models can be chosen to define the dynamics of the forman
state and its relation with the measurements. These insingge linear Gaussian models as
well as complex non-linear models. In the linear Gaussiadehdhe state dynamics evolve
linearly and the noise sequences are assumed to be untenr@aussian white noise with
known covariance matrices. Under these assumptions, Kafitber produces the optimal
state estimate (in the mean square sense). A standard didieemodel can be the constant

velocity model given below.
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fitrr = Afje + Hvjy (3.3)

Yt = Cfjt + Wiy (3.4)

o Mt

wheref ¢ with fj and f.j’t being respectively the position and first derivatives of the

it
formantj at timet.

1T i
A= 0 1 , H = ‘|2' ,C=(1 0),vj,t~N(0,(r\2,),WKt~N(O,cr3\,)andTisthe

sampling time.

At each time step, we have a set of measuremewts, k = 1. .. m;, which are acquired from
the spectrum. Several alternatives are possible for meamsunt selectionsge: Section 3)5
Assume that the measurements are distributed with the toagnof the spectrum, i.e., they
are the samples generated from the magnitude of the spectaemFigure 3.1. In this case,
the magnitude of the spectrum becomes the target density apjproximated as a mixture.
In the model, the measurements are assumed to be origirffedimgan unknown number of

VTRs. The DPM model classifies the measurements into an wrknamber of formants.

Pdf
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’

(4
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=

Figure 3.1: Measurement Extraction Procedure: 1-The DFgnitade is normalized to be a
probability density function (pdf)(solid line) . 2- Samplacquired from this pdf are consid-
ered as the measurements (shown on x-axis). 3- The DPM miadslfees the measurements
into an unknown number of formants the resulting represientés shown by the dashed line.

From the target tracking perspective, three joint problee to be solved in order to be able

to track the formant frequencies accurately. These sublgms are:

e estimation of the number of VTRS,
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e association of the measurements with the VTRS,

e estimation of the state vector of the VTRs.

Each sub-problem has to be solved as accurately as possibkethe output of each step

affects the performance of another.

3.2.1 Known Number of VTRs

Under the assumption of a prior knowledge of the number of ¥,TiRe tracking problem
reduces to correctly associating each measuremenith one of the existing formants and
estimating the state vector of each formant given the aastmmtimeasurements. The structure
will be formulated as a Hierarchical Bayesian Model and thgdsian inference will be done
by using the prior distributions defined in previous chapkar ease of understanding, here
we make the analysis for a single frame of the spectrum, amyl tthe time index until the

end of Section 3.2.

3.2.1.1 Model

Suppose there ark formants in the spectrum and our aim is to specify the originmo
measurements which are taken from a single frame. For tmgopa we define thiabel g,

k = 1,...,mfor each measurememt, indicating the index of the associated formant. Labels
take values from 1 to K and they are assumed to have a prioibdison which is multinomial

with parametersr, 71) (whererr £ [r4, ..., 7k]) such that:
pck = jlm)=nj, j=1...K, k=1...m (3.5)
mj's are called the mixing cdkcients or the weights which sum up to 1.

In order to identify the origin of each measurement amongkttfermants, the relation be-
tween the measurements and the formant states should by diefined. The distribution of

the measurements originating from a specific formant israsdto be known.

Ykl6, ck ~ 9(.16q,) (3.6)
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whered £ [6y,...,6k] is the stacked vector of the formant states @igdstands for the
state vector of the{" formant. It is assumed that the initial state vectors of trenfints are

distributed according to the base distribution denotegly).
¢, ~ Go(.). (3.7)

As an exampleGo(.) can be a Gaussian distribution with a mean equal to the rcehtbe
spectrum and a covariance which idiiently large to cover the whole spectrum. Another
choice can be a mixture of Gaussians, in which the mixturepmorants are centered around
the nominal values of the formants. Given the definitionsvabthe resulting Hierarchical

Model becomes

Ao, K~ Dirichlet(%), (3.8)
Clmr ~ Multinomial(r), (3.9
6iiGo ~ Gol(.). (3.10)
o, ek ~  9(1bg,)- (3.11)

The conditional probabilityp(cy, = jlci,...,Cm 1), i.€. the prediction probability of the allo-

cation variable for the future observations is (see: (3.21)

L a
Nj+ ¢

p(Cm = jlc-m, @, K) = (3.12)

m-1+a«a

wheren; indicates the number of measurements previously assigrie formant;.

3.2.2 Extension to infinite dimensional priors

A standard approach for deriving the infinite dimensionabngrfor the model is letting the
number of formantK go to infinity [34]. It is important to notice that, althougheviry to
define a prior on infinite number of components, only a finitebar of these can be observed
given finite number of measurements. The resulting modeks#ie number of formants
now variable which will be updated according to the inconmimgasurements. This flexibility
enables the model to adapt unknown number of componentsn@esicalculation shows that,
in the limiting case, the resulting prediction density foe future observation is equal to (see:
(2.22),(2.23))

— _ nj
PCm = jle-m @) = ——— (3.13)
a
P(Cm = CnewC-m. @) 1o (3.14)
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That is, each measurement is either a member of one of thingXisrmants with probability
proportional to the number of measurements previouslgassito that formant, or it is one of
the unobserved infinite number of formants (i.e., new forthatith probability proportional
to a. The equations above also define the probabilities to safrgoie the famous Chinese

Restaurant Process and Polya Urn scheme which are intrddutiee previous chapter.

Returning back to our hierarchical model, for the infinitendnsional case, the model can be

specified by the following equations.

GlGo,a ~ DP(Go,a) (3.15)
G ~ G() (3.16)
YOk~ 9(.16k). (3.17)

Conditional on the previous values of the association tateg the predictive distribution of

a new association variable can be written as,

n

a 1
(CretlCs. . Cn. G0, @) ~ ——bma() + —— ; 8i() (3.18)

where, the association variables take positive integeregain increasing order, amdis the

number of distinct values taken by the previous associataiables. These probabilities
define the prior distribution of associating a new obseovatd the existing tracks or a new
track. The posterior distribution will later be calculategtaking the measurement likelihood

given the association into account.

3.3 Method

For the given model the inference is done via sequential M@drlo, aka. particle filter,
which approximates the joint density of the formant stat#mes and the association variables
in a Rao-Blackwellised fashion. The density to be approx@uiacan be decomposed into

linear and non-linear states.

P (f1t, Crtlyrt) = P(frelyat, Cut) P(Crelyrt) (3.19)

The formant states evolve linearly according to the stateadyc equation (3.1), and the
association variables depend on the past values in acamdaith Dirichlet process. Rao-

Blackwell idea make use of the fact that, conditional on #s»aiation variables, the&icient

49



statistics of the formant states can be computed by using&afiltering technique. On the
other hand, the marginal density of the association vatabhn be approximated by point
masses, i.e., particles with their weights.

N

Pledyid) = ) w8 (c1o) (3.20)

i=1
wherevv‘t and ci1:t are functions ofy11. From the target tracking point of view, each particle
defined as above corresponds to a hypothesis on the assosiatade between the formants
and the measurements. figirent hypotheses may conclude existence fént number of
formants in the spectrum. Each particle, keeps the fornmtate sectors with sficient statis-
tics and the past values of the association variables. Istdredard approach, the particle

filter update is done as follows.

Suppose we hawd particles with their states and weights at tffremet — 1.

0 0 0 () ()
{Cllt—l’ 1:t—l|t—l,l T ft—llt—l,Mi ’ z:t—l|t—l,l T 2t—llt—l,Mi

N fw)

N
i=1’ 1)

i=1
Here M; represents the number of formants of tfeparticle. f andX denote the state vec-
tor and the covariance matrix of the formants respectivély.time t we have a set ofn
measurements which are actually sampled from the magnitiittee spectrum. Prior to the
measurement update, theffstient statistics of each particle must be extrapolatedne ti
before processing the measurements of the frame

Stepl:Prediction update of the particles.

e fori=1:N

(i) (i) 0} 0}
— computelfy’ ;- fylome Zgews o Zgeam)
Once the prediction update for theflscient statistics is complete, we proceed with the mea-
surement update. In a generic Rao-Blackwellised Partitiier FRBPF) the next steps are the
sampling for the non-linear states (association varidplegsight update and the resampling
stages respectively. These steps are to be repeated foe atldasurements of the frame

Step2:Measurement update.

o for k=1:my
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— fori=1:N

% Sample fronq(cktlc( ke Ykt Y- k,t)-

Aoty el (el
t Q(thIC( eYitY-kt) '

% update the weights avs{g)‘ 1

— Normalize weightsv{} = —; k‘tN(J)

j=1 "kt

— Calculate &ective sample sizéNett =

Z:\l l(W(J)
— Resample ilNeft < Nthreshold
where,
t-1 -1
A A
Wot = Wi ,t-1, Yokt = U{yl:m,i} U{yl:k_l,t}, Ckt= U{Clzm,i} U{Cl:k—l,t}’
i=1 i=1

andq(ck,tlcgf(t,yk,t, Y_kt) is the importance distribution for the association vaeab

It is possible to sample from the optimal importance disiitm q(Cxt|C_kt, Ykt, Y-kt) =

p(cktlc—kt, Y-kt» Ykt)- By applying Bayes rule, one can factorize the optimalritistion into

P(CktlC-kt, Y-kt- Ykt) & P(VitlCit> Ckits Y-kt) X P(CktlC-kt)- (3.21)

Prior is calculated according to Polya Urn (see equatioriSjand (3.14)), and the likelihood

is:
P(YictlCkt- Cokts Yokt) = N (G, ) S, ) (3.22)

whereugk)t,t, ngt,t are the mean and the innovation covariance calculated bym#alFilter
(KF) using the previous measurements assigned to that farrifec,; corresponds to a new
formant, the likelihood is calculated by initiating a KF tvineanxy and covarianc®y. More

specifically one can write,

|f CKt = Cnew,
P(VktlCkts C-kt Y-kt) = N(CAx, [C(APAT + Q)CT +R]) (3.23)

After ¢y is sampled, the KF of the corresponding formant is immebjiatpdated by using

the measuremenyk;.

It is important to notice that at the sampling stage, eaclsnrement is either associated with
one of the existing formants or it is considered to be oriigafrom a new formant. There-

fore, the corresponding association variable can only takieite number of values which
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implies that it is possible to generate all possible hypeglse The sampling stage can be
replaced by a full exploration of the support pfcgt/c_x:) and N-best particles having the
highest weights can be used to represent the best hypotHagbsit case, the measurement

update step of the algorithm is modified as follows.

Step2:Measurement update for the modified algorithm.

e for k=1:m;

— fori=1:N
= for each possible value af; = j
. Calculate the weightei) = w{"; , p(YktlCkt, G-kt Y-kt) P(CitlC k).

— Keep N-best particles with the highest weights.

3.3.1 r-order Markov model

It is possible to model the association priors as-ander Markov Chain in which the associ-
ation priors are conditioned on the previous associatioadawithin the last frames [42].

Markov model implies,

p(CktlC_kt) = P(CktlC k1) (3.24)
t-1 -1

where cyt = U{Clzm,i} U{Cl:k—l,t}, Cxt = U {Cim,i} U{Cl:k—l,t}-
i=1 i=t-r

In this scheme, the association variables before tinteare forgotten. Therefore, if a formant
is not associated with any of the measurements betweent tinteandt, then it is deleted.
Consequently, the formants being tracked are allowed &pgisar enabling the algorithm to

track time-varying number of formants.

3.3.2 Output Presentation

Posterior to the measurement update, formant states yl@asitbe approximated by using

the particles, their weights and thefistient statistics as follows.

N M

B( fyae) = ZZ ONED, 200 (3.25)

i=1 j=1
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where M; represents the number of formants of iHeparticle andf?is the vector of all
formants. Considering the similarities of the algorithnthvMultiple Hypothesis Tracker
(MHT), it is also possible to use the particle with the highesight (best hypothesis) and
its estimate of the formant states for output presentatidg.mentioned earlier, among all
the clusters that represent the speech spectrum, onlyntieectbnsistent ones are declared to
be the formants. Therefore a consistency check has to beedgplthe formant candidates.
For this purpose, an association should be made betweeartharits of the particles having
the highest weight in consecutive frames. In order to aat®d¢he existing formants with
the new ones properly, the distance between the new and withfits are calculated and
the association is done by using the Auction algorithm (sBection 2.6. The formants
are included in the output presentation only if their traiék s long enough and siiciently
large number of measurements are associated with themr bxpariments only the formant
candidates which last over at least 11 frames and which aoeiased to at least 10% of the

incoming measurements on average are declared as the tsramehshown at the output.

3.4 Experimental Results

In this section, we illustrate the performance of the aliponi on examples chosen from
TIMIT database. These examples are representative of tems&xe tests performed on many
sentences in the database. The examples have been setecteatly illustrate the variation
of number of formants during speech utterance. In orderdwige a general understanding
of the performance of the algorithm infiirent speech utterances offdrent individuals, the
algorithm parameters are kept fixed (except for the largeasmement noise variance used
for female utterances to increase the formant bandwidthalicthe utterances. Moreover,
the output of the algorithm is depicted together with the ¥&wfer output and hand labeled
formants [9]. Additionally, we compare the output of ouraithm with the Wavesurfer, by
calculating the distance with the hand-labeled data in theelrlike regions of the utterances,
as those regions are considered to be the only regions wherasanable comparison can
be made between a variable number of formants tracker arehdastd one. Unfortunately
all the examples can not be included within this chapter bey tare available online. All
the results, including the larger versions of the figuregiin this section are available at

“http://www.eee.metu.edu/trozkaniDBFTFigures.pdf”.
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For all the given utterances, standard linear Gaussiartartngelocity model (see: Section
3.2) is used as the formant dynamics. The sampling frequencliosen to be 10KHz. A
pre-emphasis filter is used to reduce the spectral tilt betvike formant frequencies. After
the pre-emphasis stage, speech signal is divided into farsi@g Hamming window. The
frame length and frame rate are 40 msecs and 10 msecs regspechiagnitude spectrum
of each frame is found by using 512 points DFT. At most 100 measents per frame is
fed to the algorithm. Number of measurements per frame is fxegportional to the energy
of the frame. Low energy regions of the spectrum are trudctitezero. The concentration
variablea is chosen to be.Q, and the order of the Markov modeis chosen to be 5. Base
distributionGq is chosen to be a Gaussian distribution centered at 2.0 KHzandovariance
suficiently large to cover the whole spectrum. 100-best padicre kept at each update
and output presentation is done by using the particles pa¥ie highest weight. Only the
formant candidates which last over at least 11 frames andhwédie associated to at least 10%
of the incoming measurements on the average are declarbd &sinants and shown as the
output. The LPC order of the WaveSurfer algorithm is chossizaand 14 while tracking

four formants and five formants respectively.

In calculating the distance with the hand-labeled data imeldike regions, average absolute

error is computed by using the following formula.

Ej = ) F —Fl (3.26)

whereE; is the average absolute error of tjﬁ*(éformant,lfij andFij are the estimated and hand
labeled formant trajectories of th& formant at frame respectively and\; is the number

of frames in which the error is calculated. As mentionediearthe average absolute error
is calculated only for the vowel-like regions of the utteras for the first three formants. In
order to include ffects of missed formants we define the coverage ratio of eanafu by

simply computing the ratio of the length of the formant tcajey produced by Dirichlet Based
Formant Tracker (DBFT) and the whole length of the sectiowlmich the average error is

calculated. In the given figures, following vectors are dediim order to provide information
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about the tracking performance of the algorithms in the Vdike regions as follows.

Eperr £ [E1E2E3] (3.27)
whereE;’s, i = 1, .., 3, are calculated by using the DBFT formant trajectories.
Ews = [E1E2E3] (3.28)

whereE;’s, i = 1, .., 3, are calculated by using the WaveSurfer formant trajexgor

Epsrr andEws are the average absolute error vectors for the estimatetafis of DBFT
and the Wavesurfer respectively in vowel-like regions & whole utteranceCpggr is the
stacked vector holding the coverage ratio of the forman®BFT in vowel-like regions of

the whole utterance.

Firstly, an example utterance is given in which the changdémumber of formants can be
clearly observed. In Figure 3.2, the formant trajectorieBBFT ('dotted line’), WaveSurfer
('solid line’) and the hand labeled database (dashed )iae superimposed on the spectrum
of the utterance ’his head flopped back’ taken from the TIM&Tathase. At the beginning
of the sentence, both the proposed Dirichlet Based Formack&r (DBFT) and WaveSurfer
successfully detect and track the four formants until tee sff the fricative sound —z—. Be-
tween 0.25s and 0.35s, DBFT drops two low frequency formamndsinitiates a new formant
located around 4.5KHz whereas WaveSurfer misses the hegldncy formant as it tends to
preserve the continuity of the previously initiated forrgarAfter the sound —z—, in DBFT
output, the disappearing formants reappear and the highdrey formant disappears in the
spectrum. During the interval [0.5s-0.65s], DBFT dropslthrefrequency formant and tracks
the three high frequency formants. Between 0.64s and 0.BFsIracks three formants and
misses the formant located around 2.5KHz which is not ag.clBaring the closure part
of the plosive sound —b— (time [0.77s-0.91s]), no formaris®xin the spectrum due to
complete constriction of the vocal tract. In this region DBffacks no formants, whereas
WaveSurfer produces distorted formant trajectories ages to track non-existing four for-
mants. During [0.91s-1.1s], five formants are tracked fentbwel —ae— by DBFT, on the
other hand WaveSurfer misses one of the high frequency fasras it tracks fixed number
of four formants. At time 1.1s, two of the formants tend to geein the spectrum, which is
known as the 'velar pitch’ phenomenon that occurs beforeséii@ consonant —k—. Both
WaveSurfer and DBFT manage to track the changes succedsiuthese formants. Posterior

to the closure part of the consonant —k—, DBFT initiates a fmant around 2KHz which
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is the right location coinciding with the formant loci. Inwel-like regions of the utterance,

formant trajectories found by both algorithms coincidelhwviite hand labeled trajectories.

For this speech utterance, the coverage ratio of DBFT is 9% and 80% for the first
three formants respectively. The coverage ratio of thaltformant is lower than the first
two due to the missed track between 0.64s and 0.77s mentabhwe. The average absolute
error of DBFT, is 103Hz, 68Hz and 130Hz for the first three fants respectively. For the
same utterance average absolute error of WaveSurfer is, @8tz and 122Hz. Considering
the fact that WaveSurfer is known to be a good formant traogkeowel-like regions (see:
[9], [35]), the performance of the DBFT algorithm seemssatitory. Average absolute error
vectors of DBFT and Wavesurfer are given with the coveratie ch DBFT below each figure
in order to provide an information about the tracking parfance of the algorithm for a given

speech utterance.

Figure 3.3 is the speech utterance 'Where were you while we away’ which is composed
of all voiced sounds. This examplefidirs from the previous one as it includes long formant
trajectories. The proposed method manages to track theafurtrajectories continuously in
most of the regions. WaveSurfer tracks four formants a¢elyrédut misses the fifth one as it

tries to follow only four formants.

Figure 3.4 is the output of the algorithm for the speech attee 'Books are for schnooks’
from the TIMIT database. The spectrogram representatighi®fitterance is given in Figure
3.10.

3.4.1 Order Selection Problem

One of the main dficulties encountered by a fixed number of formants trackep imake

a decision on the number of formants that are expected to iexise spectrum in advance.
This problem can be examined clearly in Figures 3.5 and 316zidure 3.5, the number of
formants to be tracked by the WaveSurfer is fixed to 4. At thggriveéng of the utterance there
exist 5 formants which causes the Wavesurfer algorithm ticchvthe formant trajectories
among each other. More specifically, one can observe thatattBe estimated formant
trajectories around 2.5KHz and 3.0KHz make a jump to the & at higher frequencies

hence the third formant is missed during 0.5 and 0.7s. InrEi§w6 the number of formants
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to be tracked by the WaveSurfer is fixed to 5. In this case therdthm produces a redundant
track (second formant) at the beginning of the utteranceckivbauses errors (abrupt jumps
and track changes) during the whole utterance. The outpDB&T is also depicted on the
same figures 'dotted line’. The algorithm successfully keathe formants in both cases as
it is capable of determining the number of formants autora#lti and dynamically, which is

claimed to be the main advantage of our approach in trackingdnts.

3.4.2 Nasal Sounds

In nasal sounds, the air path of speech production mechan@udes the nasal cavity there-
fore the formants structure is changed. The resonancedneigs of the nasal cavity are
different from the oral cavity and this fact causefdilties when the formant tracks are con-
sidered to be fixed and continuous. The zoomed sections ofé-8)7 that are given in Figure
3.8 are the examples of the mentioned cases. As can be seethiee figures, Wavesurfer
looses the trajectory of the second formant because of tine faxmant produced during the
nasal sound. On the other hand the DBFT manages to followrdjectories given by the

hand labeled data correctly, and it initiates and deleteexitra formant successfully.

3.4.3 Spectrogram Representation

Figure 3.9 and 3.10 show a comparison of the original madaispectrogram and the esti-
mated spectrogram. In a single frame, proposed methodsesiethe noisy DFT as a mixture
of Gaussians as shown in Figure 3.11. The number of Gaussidhe mixture is not fixed

and it changes dynamically in time. As can be seen from thedgguhe resulting estimation
represents the spectrum with a good performance. It is asthwinentioning that the spectro-
gram is represented as an analytical expression which tembla used as an approximation

of the actual one in further processing of the signal, liketlsgsis, recognition, coding, etc.

1Definitions forEpget, Ews andCpgrr are given in equations (3.27), (3.28) and the paragrapwbelo
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Figure 3.2: DBFT’s (white dotted line), hand-labeled (redled line) and WaveSurfer’s (solid line) formant trajaée®superimposed on the spectrogram

of the utterance “His head flopped back”
(TIMIT \Train\dr6\mabcQSI11620.WAV) from TIMIT databaseEpgrT=[103 68 130],Ews=[99 54 122] andCpgr1=[95 99 80}
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Figure 3.3: DBFT’s (white dotted line), hand-labeled (redled line) and WaveSurfer’s (solid line) formant trajae®superimposed on the spectrogram

of the utterance “Where were you while we were away?”
(T||V||T \Test\dr8\ijnO\SX9.WAV) from TIMIT databaseEDBFT:[89 73 110],Ews—[62 65 73] andCpgeT [100 90 99}
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Figure 3.4: DBFT’s (white dotted line), hand-labeled (redlded line) and WaveSurfer’s (solid line) formant trajae®superimposed on the spectrogram

of the utterance “Books are for schnooks”
(TIMIT \Testdr1\mwbt0\S12183.WAV) from TIMIT databaseEpgrr=[109 63 120],Ews=[85 46 77] andCpgrr=[100 100 100}



T9

e .

4000
A |
500

000

2500

Fregueny )

2000 |—

1500

1000

500

Time (sec)

Figure 3.5: DBFT’s (white dotted line), hand-labeled (redlded line) and WaveSurfer’s (solid line) formant trajae®superimposed on the spectrogram

of the utterance “A few years later the dome fell in”
(TIMIT \Testdr2\mwew0,SI731.WAV) from TIMIT databaseEpgrt=[80 55 114],Ews=[78 43 299] andCpgr7=[97 97 85}
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Figure 3.6: DBFT's (white dotted line), hand-labeled (redlted line) and WaveSurfer’s ( solid line) formant trajaetosuperimposed on the spectrogram
of the utterance “| ate every oyster on Nora’'s plate.” (TINIF&in\dr7\fmah1\SX249.WAV) from TIMIT databaseEpgrr=[74 122 95],Ews=[52 70

63] andCpgr7=[100 100 99}. For this utterance only, the predetermined number of fotmt be tracked in WaveSurfer algorithm is fixed to five.
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Figure 3.7: DBFT’s (white dotted line), hand-labeled (redlded line) and WaveSurfer’s (solid line) formant trajeéemsuperimposed on the spectrogram

of the utterance “Laugh, dance, and sing if fortune smileswmwu” (TIMIT\Testdr5\mbpm0,SX407.WAV) from TIMIT database

Epser=[57 73 136],Ews=[45 53 79] andCpgr1=[96 94 87}
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Figure 3.8: Zoomed sections ([0.85s-1.15s] and [2.155s})4f the spectrogram given in
Figure 3.7. The output of DBFT and WaveSurfer are depictgeétteer for the nasal sound
—ng— and —n—.

Figure 3.9: DFT spectrogram of the utterance “Books aredonsoks” from TIMIT database
plotted in 3-D.

Figure 3.10: Estimated spectrogram of the utterance “Bao&gor schnooks” from TIMIT
database plotted in 3-D.

[
o

Figure 3.11: Estimated magnitude spectrum (solid line)esugosed on DFT spectrum
(dashed line) of the frame no. 166 of the utterance “Bookgarsechnooks”.

64



We would like to mention some mistakes done by the algoriterwell. As it is described in
more details in Section 3.5.1, the algorithm may produceamdent tracks in some cases. The
formants centered around 1KHz at 0.15s, 2.4KHz at 0.5s dfitpere 3.7, formant centered
around 0.75KHz at 1.4s of Figure 3.5 can be shown as the eraropthe redundant tracks.

A track miss might also occur and the examples are alreadyiomel in the results.

3.5 Discussion

3.5.1 Measurement Selection

Depending on the state space model that defines the formaatrdgs and the relation be-
tween the states and the measurement$erént types of measurements can be extracted
from the spectrum and can be fed to the algorithm to be cladsifito unknown number of
formants. Considering the joint task of spectrum repred@m and formant tracking, our
primary choice on the measurements is the samples gendratadthe magnitude of the
spectrum. Although such a choice of measurements let thogition perform very well in
spectrum representation, it might cause undesirgtdgets in formant tracking. The algorithm
tends to create clusters, which are actually the formandidates, at frequencies where the
spectrum is flat but nonzero. As stated earlier, the formardselated to the peaks of the
spectrum, therefore the convex parts of the spectrum migthibe the right place to look for
a formant candidate. On the other hand, another choice cdumements can be the peaks of
the envelope of the spectrum, which might lead the algoritimeh good formant candidates
but might cause the resulting representation of the spmctoube oversimplified. It is also
possible to assume a non-linear state space model for thfds. The formant states can
be directly related to LPC céigcients via nonlinear equations. In that case, th@ceant
statistics for the formant states can not be calculatedytically, therefore the use of Rao-
Blackwell idea becomes impossible. The use of particleréilig still possible but may not
be desired as an increase in the performance is not guatdiasmelethe computational power

required for the algorithm will increase significantly.

The choice of measurements mentioned above are not the osdjbities and are actually a
small portion of all possible alternatives. The algorithragented here stands as a generic one

and the choice on the measurements should be specified irdance with the requirements
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of the application.

3.5.2 o Parameter

a parameter determines the probability of creating new fotncandidates in the spectrum.
An increase inr will favor the particles creating new clusters from the meaments against
the particles which associates the measurements with iegngxformants. The output of
the algorithm is the consistent formant trajectories ofgghgicles having the highest weight
(i.e. consistent formant trajectories of the most likelgasation hypothesis). Even in case of
extra formant candidates are created, the resulting caredidnust be time consistent (must
last for multiple frames and must be supported fisiently large number of measurements)
to appear at the output. Depending on the nature of the mezasuts, this might cause the
algorithm to produce redundant formant trajectories inghectrum. Or in contrast, it
parameter is chosen to be very small, the particles whichedwetant to create new clusters
and having tendency to combine the closely spaced formatdsone will be favored. In
our experiments, where the measurements are chosen to santipées from DFT, the value
of @ does not alter the average performance significantly urniéssncreaseflecreased in
the order of tens or hundreds. This makes sentence independent parameter and it is kept

constant in all the utterances (including females) in oyeexnents.

3.6 Conclusion

In this study, we successfully apply the Dirichlet Proceased multi-target tracking algo-
rithm proposed in the first chapter to the problem of trackifitR frequencies in speech
signals. Our approach allows the disappearanaaeppearence of VTRs during the speech ut-
terance. Consequently, the number of VTRs that are beingddis allowed to change in
time. DPM model enables us to represent the spectrum as ai@ausixture with varying
number of components. VTRs are later estimated from thetgpeaepresentation consid-
ering the time consistency of the mixture components (fotncandidates). The algorithm
is tested on real data which are the sentences from TIMITbdata The experimental re-
sults show that the algorithm performs very well in tracki@gying number of VTRs in real

speech signals making the proposed method a practical tanleih the speech processing
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literature.
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CHAPTER 4

REGULARIZED PARTICLE METHODS FOR FILTER
DERIVATIVE APPROXIMATION

4.1 Introduction

Patrticle filters (PF) havefigciently been used in the state estimation problem of geséate

space models [11]. The applicability of the PF to the complen-linear systems has drew
much attention and their use became widespread in mafereiit areas. Although so much
is done for the use of PF in the state estimation problem, arfiéw studies focused on their
use in the estimation of the model parameters. The existntcfe filtering based parameter

estimation methods in the literature can be classified imtio $ubgroups as follows [28].

e Bayesian or Maximum Likelihood (ML)

e Off-line(Batch) or On-line

In Bayesian approach, suitable prior distributions arengefffor the unknown parameters and
inference is done from the posterior distribution. In ML édsnethods the likelihood of the
measurements given the parameters is maximized with regpéte unknown parameters.
The batch algorithms process the whole set of measurentepteduce their estimates of the
unknown parameters. The on-line methods update their &stiof the unknown parameters
sequentially with every available measurement. Here wieewilsider the filter gradient based
particle methods for parameter estimation which is an oa-ML method. In this group of
algorithms, the filter derivative is approximated via paeifilters by approximating either
the path density or the marginal density. The parametenattin algorithms which tend to

approximate the path density [1] [14]f8er from the so-calledegeneracy problemwhich re-
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sults in an accumulation of error in time. Here we suggestiigeof regularization techniques
to compensate for the error accumulation of the path baggatitims. In the context of the
path density based filter derivative approximation, tworsesi of error are identified in the
previous works. First type of error is the aforementiodedeneracy problemvhich is caused
by approximating a density of growing dimension by a finitenfoer of particles. The second
type of error will be referred as thmixing problemwhich is caused by the iffiiciency of the
path based algorithm by closely spacing the particles lgawieights with opposite signs in
filter derivative representation. The mixing problem cauar ingficient approximation of
the filter derivative as many particles whose weight mighm s1p to zero might be closely
spaced in a region of the state space that have low total ivem® importantly, this type of
error tends to build up in time hence the approximation eégalaimed to be less accurate
as the data length increases [36]. The method describedsichhpter aims to compensate
for the error caused by thamixing problem A regularization technique is utilized in order to
prevent thamixing of the particles with weights having opposite signs and tireesponding
error which would tend to accumulate in time. The reguldigraalgorithm we use diers
from the standard regularization in that it preserves time stiparticle weights before and af-
ter the regularization. Before introducing the details,nged to clarify the basic fierences
between two particle filtering based parameter estimatiethads, the path based and the

marginal PF algorithms.

4.2 Parameter Estimation using Particle Filters

The methodology addressed here is a stochastic approgmeltjorithm which tries to max-
imize the measurement likelihood with respect to the unknparameters, which leads to the
maximum likelihood estimate of the unknown parameters. Urilenown parameter estimates
are found iteratively. At each iteration one tries to maxienihe likelihood by updating the

latest estimates towards the local gradient direction.
Ont1 = On + ynDnVI1(6h) (4.1)

wheref, is an estimate of the vector of unknown paramefeastimen, VI(6,) is the noisy es-
timate of the gradient of the likelihood functidf#,) with respect t@ evaluated af, v, is the
step size an®, is a positive definite weighting matrix. Choosibg, to be equal to identity

matrix will lead to a stochastic approximation of the stestjgescent algorithm, whereas choos-
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ing Dy, as the inverse of Hessian matrix will lead to an approxinmatbd Newton-Rhapson
method. Below we introduce the likelihood function thatrigended to be maximized for

parameter estimation in the general state space model.

Consider the state space model defined by the given statenityeguation and the measure-

ment equation.

XalXn-1 ~ To(.IXn-1) (4.2)
YnlXn ~ Ga(.1Xn) (4.3)

The first equation determines the evolution of the state byagkbl transition densityy(.|x).
The second equation is the measurement equation which sldfirerelation between the
state vectorx, and the measuremenyg by the conditional densitgy(y|X). The measure-
mentsy, are assumed to be conditionally independent gixgerBoth f(.) andg(.) functions
may depend on unknown parametérand our aim is to estimate based on the observa-
tion sequenceg, by maximizing a series of log-likelihood functiorikg ps(yo:n)}. Notice
that the log-likelihood of the measurememts, can be written as a sum of the conditional

log-likelihoods as follows.
n
log Pa(yon) = 109 Pa(yilyox-1) (4.4)
k=0
Po(YnlYon—1) is known as the predictive likelihood and can be written as,

0o (yhlon1) = f f G (5l%e) Fo Xl Xe2) P 2Yom- 1)1 (.5)

Definingl(0) as

k
. 1
) = klggom;)mg Po(¥nlyon-1)- (4.6)

Our aim is to maximizé(#) by utilizing the aforementioned stochastic approxintatadgo-

rithm as follows.

On+1 = On + ynV 109 Pgo.,_; (YnlYon-1) 4.7)

where6,_1 is the parameter estimate at time- 1 andV log pg,,, ,(YnlYon-1) denotes the
gradient of logpy,,, ,(Ynlyon-1). Provided that the step sizg is a positive non-increasing
sequence, such thaly, = c andy y2 < o it can be shown that the iterations will converge
to the set of (global or local) maxima of the functit(@) [4], [33]. In this approach the
numerical approximation oV log pg,,, , (YnlYon-1) IS calculated using particle filters. Two

different approaches are given in the following sections.
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4.3 Path Based Method

In order to calculate the gradient of the predictive likebld given by equation (4.5) within the
particle filtering context, we need the numerical approxiames of p(Xon|yon) andV p(XonlYon),
such that the approximated distribution and the derivattan be represented by a set of par-

ticles and their weights [36].

1

P(XonlYomn) ah o)y (4.8)

1

Mz 1=

1
iy

YV p(XomlYon) Vs ) (4.9)

By applying the Bayes rule one can write the recursive egmador p(Xon|Yon) as follows.

P(XonlYon) = P(XonlYn, Yon-1)
P(YnlXomn, Yon-1) P(Xo:nlYo:n-1)
P(Ynlyon-1)
9(¥nlXn) f (XnlXn-1)
= n—1|Yomn— 4.10
DYnlYom-1) P(Xon-11yo:n-1) ( )
One can also expres®Xon|yon) as
pXonlYomn) = &(XomlYomn) (4.11)
nlYon) = .
ff(xo:n|y0:n)d)©:n
where
£(XonlYon) = 9¥nlXn) f (XalXn-1) P(Xo:n-11Yon-1) (4.12)
is defined as the unnormalized density. The gradiemi(xf.n|yo-n) is equal to
\Y nlYo: VE(XonlYo:n)dXo:
Vp(XonlYon) = £(Xonlyon) - p(XO:n|yO:n)f - - (4.13)
ff(xo:n|y0:n)dxo:n ff(xo:n|y0:n)dxo:n
where
Vé(XonlYon)

= V([9nl%n) f (XalXn-1)] P(X0n-11Yon-1))
= VI9Wnl%n) f (Xl Xa-2)] P(Xom-11Yon-1) + [9(YnlXn) f (XnlXn-1)]V P(Xo-11Y0:n-1)
= [90nP) FOalXa-1)I[V log g(ynlxn) + Vlog f (XalXn-1)] P(Xom-11Yon-1)
+[9(YnlXn) f (XnlXn-1)]V p(Xon-11Yo:n-1) (4.14)
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Substituting the particle approximations pfxo:n_1/Yon-1) and Vp(Xon-1yon-1) into (4.12)
and (4.14) results:

N . .
E(xonlyom) = D a1 [90nln) F (alxa-1)]60S), ¢ (4.15)
i=1

N .
VE(onlYon) = ), &% [90ynl%) F(xalXa-2)]X
i=1

[V 10g g(ynlXn) + V10g f (Xaln-1) + B 160 (4.16)

These functions are to be evaluated on the path sgagdor which x,'s will be generated

from an importance distribution. Then the resulting appr@tions will be:

N
Eonlyon) = > 860 (4.17)
i=1
N . .
Vé(onlyon) = > pPe0S)) (4.18)
i=1
where
(i) 0) g(Yn|Xg))f(Xg)|ngl)
= &y D0 (4.19)
0% IX;, 1 Yn)
pr = BV[VIoggWnxy) + Viog f(x 1)) + 47 ] (4.20)

Weight update equation for (4.8) and (4.9) will be as folldase equations (4.11) (4.13)).

. (1)
a) = (4.21)

N &)
o 0 3N )
M) _ Pn _ai)&i=tin

I= 1=

The gradient of the log-likelihood, also known as #uere can be approximated through the

particle approximation of the unnormalized density andi@svative as:

Vp(Ynlyon-1)
P(Ynlyon-1)

fvf(xo:n|y0:n)d)©:n
ff(xo:n|y0:n)d Xo:n

(1)
Zj1Pn 4.23)
N, &y

\Y IOg p(YnWO:n—l)
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4.4 Marginal Particle filter

In standard sequential Monte Carlo (SMC), the joint postattensity of the state is approxi-
mated by using sequential importance sampling. In thisaagtr, the dimension of the target
density (joint posterior density) grows with each time st€pis simple fact causes the algo-
rithm to degenerate quickly and the use of resampling sfiegebecomes necessary in order
to ensure a reasonable approximation of the target derfittyough the standard SMC ap-
proximates the joint posterior density, only the filteringndity is of interest in most of the
applications. Marginal particle filter [30] approximatdasedtly the marginal filtering density
where the dimension is fixed and it produces estimates witlllsnvariance than the conven-
tional particle filters. The second method that we will cdesihere is similar to the previous

one except that the recursive expressions are deriveddantrginal of the filtering density

(i.e., p(Xnlyon) instead ofp(Xonlyon)) and its derivativev p(xnlyon) [36].

Assume at time—1 we have the particle approximations fi{x,_1|Yo-n-1) andV p(Xn_1|Yon-1)-

1

N
D ale()) (4.24)

P(Xn-1Yon-1)

1
iy

N
VpOa-alon1) = . alpPse,) (4.25)
i=1
We write p(XnlYon) @s
E(XnlYon)
XnlYon) = ———— 4.26
Palvon) [ &(xalyor)dx, (4.25)
where
£0lYom) 2 I5nl%) f F (Xl X-1) P 1lYor_2)d %1 (4.27)

is defined as the unnormalized density. The gradiemi(xflyo:n) is equal to

[ VE(alyon)dx,
[ &(xalyon)dx,

VE(XalYon)

Te0ayorydr, PO

Vp(XalYon) = (4.28)

where

VE(XalYon)

= g% f F (Xl ¥ 1)V 100 0¥l ¥e) + V710G F (XelXn-1)] P(Xr-11Yom-1)d%e1

+ d(YnlXn) f f (Xl Xn-1)V P(Xn-11Yo:n-1)d %1 (4.29)
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Substituting the particle approximations gfx,-1|Yo:n-1) andVp(x,-1yon-1) into (4.27) and
(4.29) results:

E(XlYyon) = Zq&k>1[g<yn|xn)f(xn| X1
k=1

N
Véalon) = 8% [90nbxa) FOaIX DIV log glyalxa) + Vlog f (xalx{) + s8]
k=1

These functions are to be evaluated on the path spad®r which x,'s will be generated

from an importance distribution. Then the resulting appr@tions will be:

E(Xlyon) = Z &o() (4.30)
VE(alyon) = Zp%( v) (4.31)
where
(i) ® ¢ (I) (k)
ag) _ g(YnlXn )Zk 1800, FORIX2,) (4.32)

Sty A0E 1 i)
o o) IR, al f( DIV log glynlxn) + Viog (P 1) + Y1 “33)
n - .
Sty A0, y)
Weight update equation for (4.24) and (4.25) will be as fefidsee equations (4.26) (4.28)).

=(i)

| N
ah = S (4.34)

=1
0]

oY) (|)ZJ 110n

S S
=1 ]:l

The gradient of the log-likelihood can be approximated ulgtothe particle approximation of

)

(4.35)

the unnormalized density and its derivative as:

VD(VnIYo:n_l)
p(yn|YO:n—l)
[ VEalyon)dX,

f £0lYon)dy

N ~(J)
IR

Vlog p(ynlyo:n-1)

(4.36)

4.5 Path-based Approach vs Marginal Approach

The main diference between the path based and the marginal algoritisesdrom the di-

vert approaches in approximating the filter derivative tmpate the log-likelihood gradient.
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In [36] and [37] the authors claim that the algorithms whittempt to approximate the fil-
ter gradient through the sequence of path densities witlyowe error which accumulates in
time. The rationale behind this idea stems from the fact tti@aapproximated path density
p(XonlYon) is growing in dimension hence the approximation with a&mitmber of particles
will fail to represent the joint distribution. On the otheaurid, in standard SMC the approx-
imation to the densityp(x,lyo:n) Which is obtained through the path densfi{Xonlyon) by
discarding the firsh — 1 states is considered to bevalid approximation of the filtering den-
sity since a finite number of particles are used to represedenaity with a fixed dimension.
More specifically, it can be proved that the particle appr@ation of p(Xonlyon) Satisfies the
following bound [2]. For anyn > 1 and any test functior, : X" — R there exist some

constant, ¢(fn) such that for an\N > 1

ne(fn)

E( f o (Xom) B (XomlYom) — PoConlyom)])?] < 2 n) (4.37)

where N is the number of particles. The problem with the abdmwend is that the constant

Cno(fn) typically grows exponentially with n. So the error boundrigases in time, therefore

a proper approximation of the joint density(xo:nlyo:n)} can not be obtained using fixed and
finite number of particles. A similar bound can be derived fired-lag density estimates

(including the marginal density) where the bound is not afiom of n but dependant on the

fixed-lag.

d. 9( fn)

E[( f Ot L) [P Gl LenlYo) — PoCén_nlyom)]) ] < Setin) (4.38)

wherel is a positive integer representing the fixed-ldg,: X" — R is any test function
anddy 4(f,) is the error bound which is fixed for afl. Particle filters are able to represent
the densitiegp(X,_L|Yo:n) With fixed dimensiornL, with finite error which goes to zero in the
limiting case adN — oo. Therefore the standard path based particle filtering noetiam
properly approximate the filtering densify(x,lyon) by neglecting the firsh — 1 states to

obtain the marginal density.

Another main diterence between the two methods is the resulting represmgaf the filter
gradient. Path based methodxes(or closely spaces) the positively and negatively signed
particles in the approximation of the filter gradient. Tregults an infficient use of particles
and the approximation error tends to increase in time [38].t@ other hand, the marginal
algorithm keeps the positively and negatively signed pladiin separate regions of the state

space. This dierence is illustrated in Figures 4.1 and 4.2.
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Figure 4.1: Filter derivative estimate for the marginakfiltor a linear Gaussian model where
the true derivative is plotted as the red-line.
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Figure 4.2: Filter derivative estimate for the path-badgdrithm for a linear Gaussian model
where the true derivative is plotted as the red-line.

The experimental results show that including regularirasteps in filter derivative compu-
tations can prevent the error caused by the mixing problemchwil expected to build up in
time and it is possible to keep the log-likelihood gradigmpraximation of the path density

within a neighborhood of the true value.
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4.6 Proposed Method

4.6.1 Regularization

Particle filters approximate the posterior distributionsabset of discrete points and their
weights. However, it is also possible to construct a cowtirsuapproximation of the target
density by using kernel smoothing techniques. Adding adlesmoothing step to the PF
leads to regularized particle filters [9]. In the smoothitgge, Dirac delta functions in the

density approximation are replaced by kernel functions.

pd

POlYon) > D 8V5(x — %) (4.39)
i=1

pc(xn|y0n)~2 a0 Kn(0 — x7) (4.40)

whereKp(x) = h‘NXK(ﬁ), Ny is the dimension of the stat&, being a symmetric, unimodal
and smooth probability density function such ttfoezﬁ K(X)dx = 1 andh > 0 being the band-
width or the smoothing parameter of the kernel. The limihdasnds to zero results sum of
Dirac delta functions where as a large valueHawould lead to an approximation where the
details are obscured. The resulting continuous approiematill inherit all the continuity
and diferentiability properties of the kernel. If a Gaussian keisaised the resulting ap-
proximation will be a smooth curve having derivatives ofatlilers. Another famous choice

of kernel is Epanechnikov kernel.

Ny+2 2 .
X2 (1 — [|X if [|X|<1
K(x) = 2vNX( IX19) if [IX|
0 otherwise

Here we suggest the use of regularization techniques toowepthe approximation of the
filter derivative for the path-based density. We aim to inverthe filter derivative approxi-
mation of the path based algorithm by using regularizatemhniques. In the modification
scheme we propose, we apply kernel smoothing to the unnizedadlensityé(Xo-nlyon) and
its derivativeV&(XonlYon) Where the mixing problem occurs. In the smoothing stageinwe
terchange each particle with a kernel and distribute itghteamong all the particles such
that the total weight sum of the representations for bottutireormalized densit§(Xo:nlYon)

and its derivativeV&é(Xonlyon) are preserved. The kernel smoothing method we uSersli
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from the standard method in that if, in the standard regzdsion, new weights of the (old)
particles are calculated, the sum of these might not be equlaé sum of the weights before

regularization. The modified smoothing stage is descriletovb

At time n suppose we have the representation of the unnormalizedydé(s)n|yo:n) and its

derivativeV&(XonlYon) such that

N
E(onlyon) = ) a6(xon — XG,) (4.41)
i=1
VE(Xonlyon) = Zp(”a(x@n =X (4.42)
(4.43)

After the smoothing stage we use the same set of particlewibudifferent weights in the

representation of the functions.

N
£0onlyon) = ) @V6(x0n— X)) (4.44)
i=1
N . .
VE(xonlyon) = ) pY600n— X)) (4.45)
i=1
(4.46)
Whereaﬁ) andpﬁ) are calculated according to
, N (k) (i) _ (k)
30 - KO & (,-)) (4.47)
k=1 Zj:l K(Xn” = X5")
_ No Rk x® _ x®

X0
= 2 K - )

Itis easy to check thgtN, &) = ¥N. all andyN, o) = N, o0

N NN 0 @ 0
=() _ ( )

Z Z Z 9 _ 0 (4.49)
i—1 ==Y

ZN: ) Zizl K(Xg) - ng))

= 2K - X))

N
>a (4.50)
k=1

This step aims to decrease theflimency of the path based methods in representing the filter

£

derivative by mixing the oppositely signed particles. Gdesthe example given in the figures

below.
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$10° Filtering Density Estimate x10° Regularized Filtering Density Estimate
T T T T T T T T

Figure 4.3: Filtering density estimate and regularizeeriitty density estimate for the path-
based algorithm.

Filter Derivative Approximation Regularized Fiter Derivative Approximation
4 T T T T T T T

o T

Figure 4.4: Filter derivative estimate and regularizecfitierivative estimate for the path-
based algorithm.

The resulting approximation is the representation of avdévie of a probability measure
where the particles having opposite signs are placed inatepaegions of the state space. The
derivative of a probability measure is a signed measure ande expressed as dfdrence

of two probability measures = c(r1 — mp). This approach is known as weak derivative
decomposition and it is possible to decompose a given sigmegsure by using arbitrarily
many diferent probability measures. From weak derivative pointi@ivythis representation
corresponds to Hahn-Jordan decomposition of the filtewvdtve such that the probability
measures of the decomposition are concentrated in digjegions [38] for an appropriate

kernel bandwith. Consequently, the algorithm does nfiesfrom themixing problem
The mixing problemof the path based algorithm is caused by the fact that in tlathaoa
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each particle and its weight are updated separately. Démeod the MC realization at the

sampling stage, two particles which are closely spaced trhigNe opposite signs. By adding
the regularization step, the weights are computed by ceriamgl all the particles hence the
effects of MC realization is removed in weight calculations.isTiesults in more consistent
estimates of the filter gradient. Consider the example gbhelow. Here we compare log-

likelihood gradient estimate lagy(Yon) = Xg_o 109 Ps(Yilyox-1) of 30 runs of the path based
and the regularized path based algorithm. The linear Gaussodel given in 4.7 is used in
our example. It is evident that the regularized path baseatiedeoroduces more consistent

estimates having smaller variance.

Log-likelihood Gradient Estimate of the Path Based Method (Multi-Run)

20 40 60 80 100 120 140 160 180 200

600

400

200

—200
0

400

200

-200

-400
0

20 40 60 80 100 120 140 160 180 200
time steps

Figure 4.5: Log-likelihood gradient estimate of the patlsdthmethod on multi-runs. Log-
likelihood gradient w.r.t9 = [¢ o o] are depicted respectively from top to bottom.
'Pink’ line indicates the approximated log-likelihood drant by the path based algorithm.
'Green’ line indicates the true log-likelihood gradientmouted by Kalman filter.
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Log-likelihood Gradient Estimate of the Regularized Path Based Method (Multi-Run)
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200
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200 - *
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time steps

Figure 4.6: Log-likelihood gradient estimate of the regaked path based method on multi-
runs. Log-likelihood gradient w.rd = [¢ oy o] are depicted respectively from top to
bottom. 'Blue’ line indicates the approximated log-likedod gradient by the path based
algorithm. 'Green’ line indicates the true log-likelihogdadient computed by Kalman filter.

4.6.2 Bandwidth selection

Problems with the regularization methods are that theyéhice bias in the log-likelihood
derivative and one should determine the appropriate kdraetiwidth to approximate the
continuous distribution. In our method, a small bandwidtbuld lead to the same repre-
sentation of the path based method. On the other hand, clgpadarge bandwidth would
cause the resulting approximation to loose the importatatildeof the filter gradient leaving
an oversimplified representation behind. Adding the reggdfon step with a poor choice on
the bandwidth would result in a poor approximation of thewddive and causes a bias in the

log-likelihood gradient estimates.
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4.7 Simulation Results

4.7.1 Linear Gaussian Model

Here we illustrate thefiects of regularization on the gradient estimate of a lineangSian

state space model. Consider the model given below.

Xne1 =¢Xn + Vi (4.51)

Yn =Xn + Wn (4.52)

wherev, ~ N(0,0y) andw, ~ N(0,0). The unknown parameters afe= [¢, oy, on]-
For this linear Gaussian model, it is possible to computedthésative of the log-likelihood
analytically using Kalman filter and its derivative. We caang the log-likelihood gradient
estimate (score function) of the standard path based methddhe regularized path based
method depicted with the true value of the score in Figurd.4The results show that adding
the regularization step to the path based algorithm wiltdlpo® more consistent approxima-

tion of the log-likelihood gradient.

In our second experiment we assumed that the parametere ahadeld* = [¢, oy, ow]
are unknown and needed to be estimated online. The valud® d@ftte parameters are set
to# = [0.8,0.1,0.1]. Both the regularized algorithm and the path based dlgariare run
with 500 particles. The variable step size is chosenas yon‘%. A total number of 50
MC runs are made for each algorithm and we compare the RMEletoveen the estimated
values of the parameters and the true values in Figures 4.8 &n In the MC runs, the
regularized path based method produces more consistémbigst of the parameters with a
shorter convergence time and reduced RMS error when conhpaitbe standard path based
method. Typical outputs of the algorithms on a single runadse given in Figures 4.10 and
4.11. The noisy behavior of the unmodified path based meth@dident in its single run

output.

83



Log-likelihood Gradient Estimate

100 T T T T T T T T T
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_20000 5(‘)0 10‘00 15‘00 ZdOO 2500 3000 3500 4000 4500 5000
1000 T T T T T T T T T
0 _
-1000 - 1
~2000 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

time steps

Figure 4.7: Comparison of the algorithms: Three figurestesmonds to the log-likelihood
derivative w.r.t.¢, oy ando,. The red line is the true log-likelihood gradient. Greerelia
the approximation found by using the marginal density. The tine, which represents the
regularized path based method, remains within the neigitloal of the true log-likelihood
gradient, whereas the black line, which represents thelatdrpath based method, degener-
ates in time.
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RMS Error for the Path Based Method
0.7 T T T T T

0.6 i N
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0.3} || .

\
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0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
time steps

Figure 4.8: Comparison of the algorithms: RMS error of théhgaased algorithm for the
estimation of the unknown parametefs o ando, are depicted in 'blue’, 'green’ and
red’ lines respectively.
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RMS Error for the Regularized Path Based Method
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Figure 4.9: Comparison of the algorithms: RMS error of thgutarized path based algorithm
for the estimation of the unknown parameters o, ando, are depicted in 'blue’, 'green’
and 'red’ lines respectively.
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Typical Output of the Path Based Method on a Single Run
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Figure 4.10: A typical single run of the path based algoritfomthe estimation of the un-
known parameterg, o andoy. The estimated and true values are depicted in ’blue’,
'green’ and red’ lines respectively.
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Typical Output of the Regularized Path Based Method on a Single Run
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Figure 4.11: A typical single run of the regularized pathdshalgorithm for the estimation
of the unknown parameters o ando,. The estimated and true values are depicted in
'blue’, 'green’ and red’ lines respectively.
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4.7.2 Jump Markov Linear Systems

4.7.2.1 Switching Noise Model

Here we illustrate the performance improvement gained bgifyiog the path based method

on a switching noise model. Consider the jump Markov systeengoelow.

Xn+1 =PXn + 0 z,Vn (4.53)

Yn =Xn + Wn (4.54)

wherev, ~ N(0, 1) andw, ~ N(0, 10). The process noise variance is switching according to

underlying Markov chain. The transition probability mataf the Markov chain is

P(zn|Zn-1) = (4.55)

0.9

09 01 ]

wherez, € {1,2}. The unknown parameters afle= [¢ o1 0>]. True values of the

unknown parameters are set@d = [0.9 13 05]. The dfect of regularization can be
clearly observed by comparing the log-likelihood derivatapproximation of the path based
algorithm and the regularized algorithm. The standard-paged method diverges in time
whereas the approximation of the regularized path basedarieemains within the neighbor-
hood of the true log-likelihood derivative which in this exgle is approximated by running
the marginal algorithm with too many particles (blue lin@utput of the algorithm that uses

GPB approximation in filter derivative computations is allepicted on the figures.
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Figure 4.12: Comparison of the algorithms: The log-liketld derivative w.r.to-;. The pink
line, which represents the regularized path based meteatkins within the neighborhood
of the true log-likelihood gradient (blue line), whereas treen line, which represents the
standard path based method, degenerates in time.
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Figure 4.13: Comparison of the algorithms: The log-liketid derivative w.r.to,. The pink
line, which represents the regularized path based meteatkins within the neighborhood
of the true log-likelihood gradient (blue line), whereas treen line, which represents the
standard path based method, degenerates in time.
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Figure 4.14: Comparison of the algorithms: The log-liketld derivative w.r.t¢$. The pink
line, which represents the regularized path based meteatkins within the neighborhood
of the true log-likelihood gradient (blue line), whereas tjreen line, which represents the
standard path based method, degenerates in time.
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4.8 Conclusion

A new method is proposed for the static parameter estimafigieneral state space systems
via particle filters. The method proposed here approxintatpath-density and its derivative
by a set of particles and utilize kernel smoothing techrécioeprevent the degeneracy of the
algorithm which would cause error accumulation and leadsatborithm to diverge in time.
The regularization technique we propose is special in thegeps the weight sum constant
before and after the regularization step unlike the stahdegularization methods. Our ex-
periments show that the proposed algorithm is capable abappating the filter gradient
with a good performance. Moreover we show that includingptttosed regularization step
in the algorithm results more consistent approximationhef lbg-likelihood gradient. The
algorithm has been shown via a standard example to redudeMi& parameter estimation
error compared to the unmodified path based method. It isimigortant to emphasize that
our approach illustrates that the path based methods catilireclin parameter estimation

with much better accuracy than the ones in the literature.
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CHAPTER 5

CONCLUSION

In this research we study a number of problems which invobmplex non-linear models
which necessitate utilization of particle filtering teatpmés in the solution. We propose novel
ideas in the solution of these problems and contribute texisting methods in the literature.

The main contributions of the thesis work can be summariszddlbws.

e A new probabilistic model for full Bayesian multi-targeatking is proposed. The re-
sulting algorithm is a complete multi-target tracking gystwhich uses time varying
Dirichlet process based models. The proposed algorithrite qovel in many ways
as it combines state of the art techniques with novel ideasut experiments we show
that the algorithm performs better than joint probabiistata association (JPDA) and
global nearest neighborhood (GNN) algorithms which usedsted (MN) ad-hoc logic
for track initiation and deletion procedures. In additiorits capability of constructing
a mathematical model for track deletjonitiation tasks, the proposed method can keep
multiple hypotheses for track to measuremj@otter association and it is able to out-

perform both JPDA and GNN algorithms under heavy clutter.

e Dirichlet process based multi-target tracking algoritlsrauccessfully adapted for track-
ing variable number of vocal tract resonance frequencispaech signal spectrum. The
proposed method is an original approach to the formant imggiroblem as it repre-
sents the spectrum as a Gaussian mixture with varying nuofoesmponents. The
capability of the algorithm in formant tracking is shown anextensive set of real data

and the resulting paper is accepted to be published in IEEEBSkctions on Audio,
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Speech and Language Processing.

A new method is proposed for the static parameter estimatiageneral state space
systems via patrticle filters. The method proposed here &ppates the path-density
and its derivative by a set of particles and utilize kernebsthing techniques to prevent
the degeneracy of the algorithm which would cause errorractation and leads the
algorithm to diverge in time. The experimental results skiwat including the proposed
regularization method in the path based parameter estimatgorithm will produce

more consistent estimates and reduce the RMS parameteragsti error compared to

the unmodified path based algorithm.
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APPENDIX A

DETAILS OF THE ALGORITHM IN APPLICATION TO
NONLINEAR MODELS

Algorithm:

e Step 1 Initialization

e Fori=1,.,N
(i) 1
— Dowy' « §
e Step 2 Iterations
e Fort=1,2,...do

— For each particlé = 1,..,N do
« Fork=1,...,n, samplel) ~ q(CGetlykt: Sy Oy X0y)

x For | ec()

O 1 samplex’) ~ q(xx$)_ v, )

x Forje CE')H L ned, samplexj’t ~ g(Xjelye. €V)

— Fori =1, .., N, update the weights as follows

ng) o wi Ty POYKeE ) Ty PRI 16 2)

= Hk-lq(j lykteﬂ)ltcfl)rt v fl)l _
| I
Hjec(') ~ pﬁ |th 1)H ol po(f({“)
. o0 0 =0)
Hjec('_)m qﬁ Xt 1:Y6G )H (.) Y Qﬁ Ive.G")

with N, W) =

— ComputeNgs. If Ngg < 7, the duplicate the particles with large weight and re-
move the particles with small weights, resulting in a newddgdarticles denotes
-9) (without a~) with weightsvv?) = 1/N. Otherwise, rename the particles by

removing thé.
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At time step t, assume that we have N partic[eng_),l}i'\:'1 and their Weights{vv&}i’il to repre-

sent the posterior density. Let us define the state vectaadf particle as:

X = [0

wherel is the number of clusteftargets. Firstly the time update of the EKF’s are done for
each cluster of each target. L,@ijtt and Z‘jt represent the mean vector and the covariance

matrix of the EKF’s. In the prediction step the values araset
LEx® Y =
Hit = Pt 1» it =

The measurement prediction density is approximated b)@EsGIaussiari,\l(g(pij’t), (HZij’tH +
R)), whereg(.) is the non-linear function of the state aHdis the Jacobian evaluated,u%ﬁ.
After the prediction step is completed, the allocationalec,; is sampled from the optimal

importance density.

Sampling from optimal importance density: p(“Kt|th, T lt,cE)rt 1 x{')l)

One can factor the optimal importance density as:

(i) (i)

PCitlYict T C g X (M (i)

1) & p(yktrkts 1k 1t’ Ct rt=1° Xt 1) X p(ck,tlcl:k—l,ts Ct—l':t—l)

Prior is trivial, and the likelihood is:

p(y'@tr'@t’ 1k 1t E)rt i Xgl)l) = N(g(ﬂ(l)) Sj1)

where,u?}, S;t are the mean and the innovation covariance calculated by Usifg the pre-
vious measurements assigned to that clustex. if a new cluster, the likelihood is calculated

by initiating an EKF with mearxg and and covariancBy. More specifically one can write,

if Ckt € (Ct—rit-1 U Crk-1t)s

PkilBies S 1 Ot K1) = NG(Fx0), [H(FePoF{ + QH' + R)

After ¢y is sampled, the EKF of the corresponding cluster is immebjiatpdated by using

the measuremeryk;.
Sampling from p(x(')|yt, x?}_l,ﬁt(i))
Each sample is generated from the density approximatedebly k.

POy X)) = NG, =1
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Calculating the Measurement Likelihood p(yit|Cit, xﬁ'%)

B¥tlcir X = NG R)

00
Calculating the prior p(x Xt )

POSIX)_}) = N(g(Fod)_,), Q)

After the sampling stage is completed, the weight updatengdy using the given equation.

W) wd M 1F)(yk,t[—(kt '))HE lpr@')[—g)k o @)
Wt (06 t 1 = X (I)
[Tk-1 A |yl<tCkltcrtl )
IT.

RO,

p(‘ﬁtlle 1)1_1 _(|) po(_ﬁt)
r:t

) ') (0] =) =)
Hject(gr:t |X it 1YtG )1_[ m T:[(I) q Jtlyt )

In the last step, féective sample size is calculated and resampling is donedssary.
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