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ABSTRACT

PARTICLE METHODS FOR BAYESIAN MULTI-OBJECT TRACKING AND
PARAMETER ESTIMATION

Özkan, Emre

Ph.D., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Mübeccel Demirekler

August 2009, 103 pages

In this thesis a number of improvements have been established for specific methods which

utilize sequential Monte Carlo (SMC), aka. Particle filtering (PF) techniques. The first prob-

lem is the Bayesian multi-target tracking (MTT) problem forwhich we propose the use of

non-parametric Bayesian models that are based on time varying extension of Dirichlet pro-

cess (DP) models. The second problem studied in this thesis is an important application area

for the proposed DP based MTT method; the tracking of vocal tract resonance frequencies

of the speech signals. Lastly, we investigate SMC based parameter estimation problem of

nonlinear non-Gaussian state space models in which we provide a performance improvement

for the path density based methods by utilizing regularization techniques.

Keywords: Particle Filter, Dirichlet Process, Parameter Estimation, Target Tracking
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ÖZ

PARÇACIK METODLARI İLE ÇOKLU NESNEİZLEME VE PARAMETRE KESṪIRİM İ

Özkan, Emre

Doktora, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Mübeccel Demirekler

Ağustos 2009, 103 sayfa

Bu tezde belli problemlerin çözümünde parçacık filtresi olarak da bilinen sıralı Monte Carlo

(SMC) tekniklerini kullanan yöntemlerde iyileştirmeler yapılmıştır. Ele alınan ilk problem

olan Bayes yaklaşımlı çoklu hedef izleme (ÇHİ) problemi için Dirichlet süreci (DS) temelli

parametrik olmayan Bayes modellerinin kullanımı önerilmiştir. İkinci problem, önerilen DS

temelli ÇḢI algoritması için önemli bir uygulama alanı teşkil eden, konuşma sinyallerinde

ses yolu rezonans frekanslarını izleme problemidir. Son olarak, doğrusal ve Gauss olmayan

durum uzay modellerinde parametre kestirimi amaçlı kullanılan SMC temelli bir algoritma

incelenmiştir. Bu çalışma kapsamında iz yörüngesinitemel olarak alan algoritmalar için

regülerizasyon teknikleri kullanılarak iyileştirme sağlanmıştır.

Anahtar Kelimeler: Parçacık Filtresi, Dirichlet Süreci, Parametre Kestirimi, Hedefİzleme
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influence as a mentor goes far beyond my academic life. I hope that I could be as inspiring.

I am so grateful to Eren Akdemir for all his support and friendship throughout my years in

METU. He was the one I can always trust.

I am deeply indebted to Umut Orguner who never hesitated to lend a hand whenever I needed

and made the hard times bearable.

I also would like to thank to all of my friendṡI. Yücel Özbek, EvreṅImre, UmutÖzertem,
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CHAPTER 1

INTRODUCTION

Solution to many real life problems requires processing a series of observations which carry

information about the unknowns. The model used in describing the problem plays an impor-

tant role as it defines the implicit relation between the observations and the unknowns. The

state space models have been used widely in several applications which aim to estimate a

hidden state that can only be observed, maybe partly, through a set of measurements. The

examples for the application areas vary in a wide range such as target tracking, communica-

tions, econometrics, biometrics etc.. The widespread use of the state space models has created

a need of efficient estimation algorithms which require reasonable computation power while

producing an estimate of the unknown state with an acceptable error range. The compromise

in between kept the subject matter popular among both the practitioners and theoreticians and

a number of algorithms have been developed over the last fiftyyears.

The Kalman filter (KF) is probably the most famous estimationtechnique in this context. Un-

der certain linearity and Gaussian noise assumptions, it produces the optimal estimates of the

state vector, in the mean square sense, with minimum variance. The increasing popularity

of the KF was only confined by its inapplicability to larger class of models. The use of KF

could be broadened into non-Gaussian models, as it is still the best linear unbiased estima-

tor (BLUE) if the system is linear. However many practical problems involve non-Gaussian

nonlinear models which can describe more sophisticated system dynamics or the complex

relations between the state and the observations. Numerousimprovements were proposed

which aim to adapt KF techniques to the estimation problem ofcomplex system models in-

volving nonlinearities. The first idea was the local linearization of the nonlinear equations

which resulted the Extended Kalman filter (EKF) [23]. The useof EKF became standard for

the nonlinear models. Unfortunately, if the degree of the nonlinearity is high EKF becomes

1



unstable or shows poor performance as it only considers the first order terms in the Taylor

series expansion of the nonlinear functions. Under severe nonlinearities, where the higher

order terms are not negligible, the EKF approximation fails. In the modifications of EKF,

unscented transform was utilized which comprises the method known as Unscented Kalman

Filter (UKF) [25] [26]. UKF uses carefully chosen sigma points to propagate the Gaussian

approximation of the filtering density at each time step and it can outperform EKF. The main

weakness of UKF and EKF is that the both algorithms approximate the posterior density with

a single Gaussian which might fail to represent the true posterior density if it is bi-modal or,

for example, a mixture of Gaussians. This common problem of EKF and UKF has limited

their application areas. Until the 90’s, the literature wasstill lacking an estimation technique

to handle the complex non-linear systems. In 1993 Gordon et.al. [20] introduced the first

practical sequential Monte Carlo (SMC) based algorithm. A number of algorithms which

share the similar ideas were proposed during the 90’s in different fields and in different names

such as condensation [22], bootstrap filters [20], particlefilters [7], survival of the fittest [27],

Monte Carlo filters [29], etc. These algorithms are now referred to as SMC methods or par-

ticle filters (PF). Being applicable to a very large class of models, SMC algorithms provided

a powerful tool for the solution of the complex nonlinear non-Gaussian estimation problem.

Unlike UKF or EKF SMC methods do not rely on functional approximations or local lin-

earizations. The relevant distributions are approximatedby discrete random samples, namely

the particles, and their weights. As an example, letp(x) be a probability density function to be

approximated byN particles. The particle approximation to the probability density function

p(x) is in the form.

p̃(x) ≈
N∑

i=1

wiδ(x− xi) (1.1)

whereN is the number of particles used in the approximation,{xi , i = 1 : N} is a set of support

points with associated weights{wi , i = 1 : N} andδ(.) is the Dirac delta function. A graphical

example is given in Figure 1.1 and Figure 1.2. The discrete approximation to continuous

density enjoys several properties. For example, the computation of expectations is simplified

to summations.

E{ f (x)} =
∫

f (x)p(x)dx (1.2)
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is approximated by

Ẽ{ f (x)} =
N∑

i=1

wi f (xi). (1.3)

where f (.) is some useful function for estimation.

Furthermore, the SMC methods are quite easy to implement butcomputationally quite de-

manding. As the computational power got more available and cheaper the application areas

of SMC methods got wider. Now the SMC methods are standard methods for the problems

which involve complex nonlinear non-Gaussian models. The amazing increase in the compu-

tational power made the use of SMC possible even for the real time applications. Moreover

SMC algorithms can be used to make inference from complex distributions.
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Figure 1.1: True probability density function.
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This thesis presents solutions to problems of the statistical signal processing algorithms that

utilize particle filtering methods in approximating complex distributions and the functions of

these distributions. The first problem we concentrate on is the problem of unknown number

of components in a mixture density estimation. This type of scenario appears in many prac-

tical signal processing examples. The specific applications that we will consider here is full

Bayesian multi-target tracking. The second application that we will focus on is tracking of

formant frequencies in speech processing. The third problem is the estimation of unknown

parameters of general state space models which is encountered in most signal processing ap-

plications. We apply our particle filter based solution to the parameter estimation of general

state space models. A brief summary of the topics covered within this dissertation are as

follows.

1.1 Bayesian Nonparametric Models for Multi-target Tracking

In Chapter 2 we propose a Dirichlet process based multi-target tracking algorithm which

aims to track unknown number of targets in a surveillance region. Dirichlet processes are

widely used in classification, clustering and mixture density estimation problems in statistics

[13, 24]. The proposed model relies on an extension of Dirichlet processes, namely time

varying Dirichlet processes. The model naturally handles the track initiation/deletion tasks

of the multi-target tracking problem whereas the existing algorithms use either some ad-hoc

logic or their probabilistic variants. We define a user presentation logic which keeps the

identity of the targets by merging the best hypothesis produced by the algorithm in consecutive

time instants. In the Bayesian approach to multi-target tracking, probabilistic models are used

in order to cast the multi-target problem into a Bayesian estimation problem. Consequently,

the resulting posterior distributions are too complex to beexpressed analytically hence the

sequential Monte Carlo methods are utilized to approximatethe relevant distributions.
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1.2 Dynamic Speech Spectrum Representation and Tracking Variable Number

of Vocal Tract Resonance Frequencies with Time Varying Dirichlet Process

Mixture Models

In this research, we extend our previous study about multi-target tracking to the formant track-

ing problem in speech signal processing literature. Formants, being the resonance frequencies

of the vocal tract, carry important information about uttered speech and the speaker. Existing

formant tracking algorithms aim to track fixed number of formants. The resulting model is

incapable of representing and adapting to the varying structure of the formants in speech sig-

nals. We develop a new approach for tracking vocal tract resonance (VTR) frequencies which

is based on representing the spectral density of the speech signals with time varying Dirichlet

process mixture models. The method involves modeling the speech signal spectrum by an

unknown number of mixture of Gaussians, for which the Dirichlet process mixture model

is utilized. The vocal tract resonance frequencies are detected from the estimated spectral

density and tracking of the resonance frequencies is performed for speech utterances. In this

work we assume that the number of mixture components in the spectral density of the speech

signals varies in time as the vocal tract resonance frequencies appear/disappear due to the pole

zero cancelations and observability issues. Therefore, weaimed to establish a method which

is flexible enough to allow varying number of mixture components in the estimated spectral

density. Dirichlet process defines a distribution over probability measures with possibly infi-

nite number of mixtures and is capable of adapting the numberof mixture components with

the incoming data. Consequently the prior knowledge of the number of mixture components

is obviated.

1.3 Regularized Particle Methods for Filter Derivative Approximation

Estimation of static parameters in non-linear non-Gaussian general state space models via the

particle methods have remained a long standing problem in the literature. Various attempts are

made to achieve the difficult task of jointly estimating both the state and the model parameters.

Here we consider a gradient based stochastic approximationalgorithm which aims to find

the maximum-likelihood estimate of the unknown static parameters. The method proposed
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here approximates the path-density and its derivative by a set of particles and utilize kernel

smoothing techniques to prevent the degeneracy of the algorithm which would cause error

accumulation and leads the algorithm to diverge in time.

8



CHAPTER 2

BAYESIAN NONPARAMETRIC MODELS FOR

MULTI-TARGET TRACKING

2.1 Introduction

This research is mainly focused on Dirichlet process and itsapplication to Multi-target track-

ing (MTT) problem. Dirichlet processes are a very popular class of models in non-parametric

Bayesian statistics and are widely used in statistics, population genetics, machine learning,

etc. for density estimation and clustering. In this research, we aimed to adapt Dirichlet pro-

cess models to the multi-target tracking problem. In a full Bayesian approach to multi-target

tracking, the time-varying number of targets and the dynamics of these targets are modeled

using probabilistic models. Although this kind of approachmight seem neat and well struc-

tured, the resulting posterior distributions are too complex to be expressed analytically there-

fore they are generally intractable. The ability of particle filtering methods to approximate

the complex distributions made the realization of full Bayesian approach to the multi-target

tracking problem possible. In this context, the probabilistic models for the targets dynamics

are well-established. On the contrary, the models used to model the time-varying number of

targets have been overlooked. The existing models are either based on ad-hoc logic or their

probabilistic variations. The classical (M/N) logic oversimplifies the track initiation/deletion

problem in MTT. Existing probabilistic models used for track initiation/deletion procedures

are also somehow deficient as they may define non-stationary priors. We propose the use of

a new class of models relying on time-varying Dirichlet processes which has attractive prop-

erties. The measurement to track association task and trackinitiation/deletion procedures are

handled naturally by Dirichlet process models. In most of the target tracking applications,

target identities are required to be maintained as new targets appear/disappear in the surveil-
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lance region. The previous methods also lack the output presentation stage. In the proposed

algorithm we define a user presentation logic which aims to keep a unique identity for each

of the active targets in the region by combining the best hypothesis at consecutive time in-

stants. The resulting algorithm is novel in many ways and it defines a complete tracking

system which is able to initiate/delete tracks in full Bayesian framework. The inference is

done using Rao-Blackwellized particle filtering techniqueso that the algorithm can be imple-

mented efficiently and can be run real-time and on-line. In our experiments we show that the

algorithm performs better than joint probabilistic data association (JPDA) and global nearest

neighborhood (GNN) algorithms which use standard (M/N) ad-hoc logic for track initiation

and deletion procedures. In addition to its capability of defining a mathematical model for

track deletion/initiation tasks, the proposed method can keep multiple hypotheses for track to

measurement/clutter association and it is able to outperform both JPDA and GNN algorithms

under heavy clutter. The chapter is organized as follows. Inthe first section the background

information for the Bayesian Inference and the Dirichlet processes are given. In the second

section, multi-target tracking problem is introduced, in the following sections the description

of the proposed algorithm is given and the chapter is concluded with the simulations and

discussions sections.

This research was conducted jointly with François Caron and Arnaud Doucet of University

of British Columbia (UBC), Vancouver Canada. The author would like to thank for their

collaboration.

2.2 Background

2.2.1 Dirichlet Processes

In the Bayesian context, Dirichlet processes (DP) are knownto be a specific prior used for

mixture models. Among all the properties which makes DP applicable to wide range of areas,

probably the most important one is its capability to model the infinite mixtures. The ability of

modeling the infinite mixtures, makes DP a good choice as a prior distribution, which is meant

to be flexible enough to capture the various structures in mixture models. Before proceeding

to the description of DP, some basics of Bayesian inference is reviewed here.
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2.2.2 Bayesian Inference

Bayesian inference is a statistical inference, in which theobserved data and the prior infor-

mation are used together to infer the probability of a beliefor a hypothesis. The inference is

based on Bayes Rule which is formulated as follows:

p(G|D) =
p(D|G) × p(G)

p(D)
(2.1)

In equation (2.1),p(G) is called theprior distribution; p(D|G) is called thelikelihood func-

tion; p(D) is called themarginal distributionof the observed data, andp(G|D) is called the

posterior distributionof G given the data D.

In Bayesian approach one first defines a prior distribution which is intended to represent our

prior beliefs about the events before observing the data. After observing some data, Bayes

Rule is applied to obtain the posterior distribution which takes both the prior information

and the data into account. From this posterior distributionone can also compute predictive

distributions for future observations.

posterior∝ prior × likelihood

Here we present a simple example, an extended version of which will be related to Dirichlet

Processes later in this chapter. This example is the same problem considered by Bayes in

proposition (9) of his essay published in 17641.

In this example we consider the computation of the posteriordistribution of a binomial pa-

rameter. We are givenn observed success out ofm binomial trials and we want to find an

estimate for the probability of successp.

In frequentiest approach a reasonable estimate forp would be n
m which is also equal to the

maximum likelihood (ML) estimate. Suppose that the prior information about the parameter

p is given by a Beta distribution.

Beta(p;α, β) =
Γ(α + β)
Γ(α) × Γ(β)

pα−1(1− p)β−1 (2.2)

Where 0≤ p ≤ 1, α, β > 0, Γ(z) =
∫ ∞
0 tz−1e−tdt is the standard Gamma function, andα

andβ are called the shape parameters. The fractional term is independent of p which acts as

1 Although Thomas Bayes lost his life in 1761, his works were published posthumously by his friend Richard
Price in the Philosophical Transactions of the Royal Society of London in 1764.
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a normalizing constant such that the probability density function sums up to 1. The posterior

distribution ofp is calculated as follows.

p(p|D) =

(
m
n

)
pn(1− p)m−n ×

Γ(α+β)
Γ(α)×Γ(β) pα−1(1− p)β−1

p(D)

= c× pn+α−1(1− p)m−n+β−1, c→ constant

∝ pn+α−1(1− p)m−n+β−1

= Beta(p; n+ α,m− n+ β) (2.3)

The posterior distribution takes its maximum value forp = n+α
m−n+β , that is also equal to the

maximum a posteriori (MAP) estimate of p. The MAP estimate ofp can be used to predict the

(n+1)th trial, based on the firstn observations and the prior. Note that the posterior distribution

is also a Beta distribution with modified parameters which results from the conjugacy between

the binomial and Beta distributions. A family of prior distributions is conjugate to a particular

likelihood function if the posterior distribution belongsto the same family as the prior. Beta

family is conjugate to the Binomial likelihood.

At this point it is important to notice that the repeated Bernoulli trials of this form can also be

modeled using Hierarchical Bayesian models.

Let yi be the random variable indicating success for theith trial.

yi =


1 with probability p

0 with probability (1-p)


(2.4)

Combining this definition with the prior distribution ofp results:

p ∼ Beta(α, β) (2.5)

yi ∼ Binomial(p) (2.6)

or equivalently,

p ∼ Beta(α, β) (2.7)

yi ∼ G(.|p) (2.8)

Where

G(.|π, φ) =
2∑

i=1

πiδφi (.) (2.9)

andπ1 = p, π2 = 1− p, φ1 = 0,φ2 = 1 andδφ(.) is the delta dirac function at pointφ.

Such a representation will be beneficial later in working with the mixture models. Our aim is

to consider the variablep as the probability thatyi is a member of group 1, and (1− p) as the
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Figure 2.1: Illustration of the Hierarchical Bayesian model. (a) The prior distribution ofp,
Beta(p;1,4). (b) The distributionG(.|p) from which theyi ’s are sampled.

probability thatyi is a member of group 0.

2.2.3 Dirichlet - Multinomial Model

In the next example, the classification of a number of measurements,yi ’s, which are orig-

inated fromK different classes will be investigated. The structure will be formulated as a

Hierarchical Bayesian Model and the Bayesian inference will be applied with appropriate

prior distributions.

The model for the classification problem will be constructedas follows. There existK classes

which are of interest. Given a specific class and its relevantparameters, the distribution of the

measurements originating from that class is assumed to be known.

yi |φ, ci ∼ f (.|φci ) (2.10)

Whereφci stands for the parameters of thecth
i class,ci is called the allocation variable and it

takes the values 1, . . . ,K. The allocation variable indicates the identity of the class associated
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to the measurementyi . Each measurement belongs to one of theK classes with some unknown

probabilities denoted by the vectorπ. Probability that theith observation is originated from

the class j is equal toπ j. i.e. p(ci = j|π j) = π j . π j ’s are called the mixing coefficients or the

weights which sum up to 1.

ci ∼ G(.|π)

whereG(.|π) =
K∑

j=1

π jδ j(.), π = [π1, π2, . . . , πK]. (2.11)

We will assume a Dirichlet distribution as a prior distribution for these unknown mixing coef-

ficientsπ. Remember the variable p and the Beta distribution in Bernoulli trials. The Dirichlet

distribution is a higher dimensional version of the Beta distribution. The Beta distribution is

defined on 2-dimensional simplex, and it corresponds to the special case of the Dirichlet dis-

tribution where the dimension is equal to 2. The general formof a K-dimensional Dirichlet

distribution with parametersα1, . . . , αk is given by

Dirichlet(p1, . . . , pk|α1, . . . , αk) =
1

∏k
j=1 Γ(α j )

Γ(
∑k

j=1 α j )

k∏

j=1

p
α j−1
j (2.12)

The fractional term
∏k

j=1 Γ(α j )

Γ(
∑k

j=1 α j )
is constant and equal to

∫ ∏k
j=1 p

α j−1
j dp, assuring that the distri-

bution integrates to 1. In standard applications, symmetric dirichlet distribution in which the

α parameters are equal is used, i.e.α1 = α2 = . . . = αK =
α
K .

The parameters,φ j ’s are sampled independently from thebase distribution, G0(.)

φci ∼ G0(.). (2.13)

The base distribution provides our prior knowledge over theparameters which are likely to

occur. With the above definitions, the resulting Hierarchical Model becomes

π|α,K ∼ Dirichlet(
α

K
), (2.14)

ci |π ∼ Multinomial(π), (2.15)

φ j |G0 ∼ G0(.), (2.16)

yi |φ, ci ∼ f (.|φci ). (2.17)

We can also writec j |π ∼ G(.|π),(see: equation (2.11)), instead of the Multinomial distribution.

Our next aim is to compute the prediction density of the allocation variable for the future

observations. Given the association of the firstm− 1 measurements to the classes (shown by
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c−m , {ci}
m−1
i=1 ), we want to compute the conditional probabilityp(cm = j|c1, . . . , cm−1). For

that purpose we want to integrate out the mixing coefficientsπ, in the joint distribution as

follows.

p(cm = j|c−m, α,K) =
∫

p(cm = j|π)p(π|c−m, α,K)dπ (2.18)

Note thatp(ci = j|π) = π j. The second term in the integral is the posterior distribution of the

mixing coefficientsπ, which is equal to

p(π|c−m, α,K) =
p(c−m|π)p(π|α,K)

p(c−m|α,K)
(2.19)

Denominator term is constant therefore,

p(π|c−m, α,K) ∝ p(c−m|π)p(π|α,K)

= (
m−1∏

i=1

πci ) p(π|α,K)

= (
m−1∏

i=1

πci ) Dirichlet(π;α,K)

= (
m−1∏

i=1

πci )
Γ(α)

∏K
l=1 Γ(

α
K )

K∏

j=1

π
α
K −1
j

=
Γ(α)

∏K
l=1 Γ(

α
K )

(
m−1∏

i=1

πci )
K∏

j=1

π
α
K −1
j

Let ni indicate the number of measurements previously assigned tothe class i. Then,

p(π|c−m, α,K) ∝
Γ(α)

∏K
l=1 Γ(

α
K )

(
K∏

j=1

π
nj

j )
K∏

j=1

π
α
K −1
j

p(π|c−m, α,K) ∝
Γ(α)

∏K
l=1 Γ(

α
K )

K∏

j=1

π
nj+

α
K −1

j

(2.20)

which is a Dirichlet distribution with modified parametersn j +
α
K . The result follows from the

multinomial Dirichlet conjugacy. Returning back to equation (2.18),

p(cm = j|c−m, α,K) =
∫
π j
Γ(
∑K

i=1( αK + ni))
∏K

i=1 Γ(
α
K + ni)

K∏

z=1

π
α
K +nz−1
z dπ

=
Γ(
∑K

i=1( αK + ni))
∏K

i=1 Γ(
α
K + ni)

∫
π j

K∏

z=1

π
α
K +nz−1
z dπ

=
Γ(
∑K

i=1( αK + ni))
∏K

i=1 Γ(
α
K + ni)

×

∏K
i=1,i, j Γ(

α
K + ni)Γ( αK + n j + 1)

Γ(
∑K

i=1,i, j (
α
K + ni) + ( αK + n j + 1))

=
n j +

α
K

m− 1+ α
(2.21)

Where the last line follows from the propertyΓ(y+ 1) = yΓ(y);
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2.2.4 Extension to infinite dimensional priors

So far we have seen that, based on the association of the previous measurements, our prior

for the future measurements to be associated with a class j, is proportional to the number of

measurements previously assigned to that class plusα
K (2.21). The next step is to extend our

model for infinite number of classes. Our aim is to loose the restrictions brought by breaking

the assumption of fixed and known number of classes, which is not realistic for the practical

cases. For the extension to the infinite dimensional case, our approach will be letting the

unknownK → ∞. In this case, the vector of mixing coefficientsπ is of infinite dimension but

it is still possible to compute explicitly the marginal distribution of the allocation variables.

Returning back to equation (2.21),

p(cm = j|c−m, α) = lim
K→∞

(
n j +

α
K

m− 1+ α
)

=
n j

m− 1+ α
(2.22)

The next step is to calculate the probability that the new measurement to be originated from

one of the infinite number of classes, which has not been associated to any of the measure-

ments yet. Suppose that onlyn of the classes have been observed, and there areK − n classes

having no measurements. Then,

p(cm = cnew|c−m, α) = lim
K→∞

K∑

z=n+1

(
nz +

α
K

m− 1+ α
)

= lim
K→∞

K∑

z=n+1

(
0+ αK

m− 1+ α
)

=
α

m− 1+ α
lim

K→∞
(
K − n

K
)

=
α

m− 1+ α
(2.23)

The resulting scheme is known as the Chinese Restaurant Process (CRP) in whichncustomers

sit down in a Restaurant with an infinite number of tables. CRPscheme can be summarized

as follows.

The first customer sits at the first table. The subsequent customers either sit at one of the

previously occupied tables or a new table. Suppose there arealreadyn customers sitting atK

tables. Letni , i = 1, . . . ,K denote the number of customers sitting at tablei. When (n + 1)th

customer enters the restaurant he sits at,
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• table 1 with probability n1
n+α

...

• table K with probability nK
n+α

• a new table with probability αn+α

Figure 2.2: Chinese Restaurant Metaphor
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(a)

(b)

Figure 2.3: Illustration of the Chinese Restaurant Process. (a) The customer sits one of the
previously occupied tables, with probability proportional to the number of people sitting at
that table. (b)The customer sits at a new table with probability proportional toα.

CRP is closely related to the predictive distribution of Dirichlet processes which is introduced

in the following subsection.

2.2.5 Dirichlet Process Definition

Formal definition of Dirichlet processes are given as follows.

Let (Ω, B) be a measurable space, withG0 a probability measure on the space, and letα

be a positive real number. A Dirichlet process is the distribution of a random probability

measure G over (Ω, B) such that, for any finite partition (A1,A2, ...,An) of Ω, the random
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vector (G(A1),G(A2), ...,G(An)) is distributed as a finite-dimensional Dirichlet distribution:

(G(A1), . . . ,G(An)) ∼ Dir (αG0(A1), . . . , αG0(An)). (2.24)

In order to illustrate the conditions implied by equation (2.24), an example is given as follows.

LetΩ beR, and B is defined in the usual way as the Borel Field including all open subsets of

the real line. LetG0 be a normal distribution with zero mean and varianceσ2
v. Then for any

partitioning ofΩ, G Measure of the partitions should be distributed according to a Dirichlet

distribution with parametersαG0(Ai). See Figure 2.4
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Figure 2.4: g. (a) The Base DistributionG0. (b) One random partitioning of the real line. (c)
G Measure of the partitions.
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Since G itself is a probability measure, Dirichlet Process defines a distribution over probability

distributions. More specifically Dirichlet Process definesthe probability measure G to be

discrete with probability 1 [43].

G(Φ) =
∞∑

k=1

πkδ(φk), where Φ = [φ1, φ2, ...]. (2.25)

Therefore a more realistic picture for a probability distribution G sampled from a Dirichlet

Process would look like the one in Figure 2.5-b.
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Figure 2.5: (a)The Base DistributionG0. (b) G: One sample of a Dirichlet Process.

Returning back to our hierarchical model, for the infinite classes case, the model can be

specified with the following equations.

G|G0, α ∼ DP(G0, α) (2.26)

φi |G ∼ G(.) (2.27)

yi |φi ∼ f (.|φi). (2.28)
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What we are interested in is again the posterior distribution of G after observing a number

of measurements. Similar to the finite dimensional case, because of the mutinomial-dirichlet

conjugacy, the posterior distribution of G is again a Dirichlet Process with modified parame-

ters.

G|G0, α ∼ DP(G0, α)

P(G) = DP(G|G0, α)

P(G|Φ) =
P(Φ|G)P(G)

P(Φ)

P(G|φ1, . . . , φn) = DP(Ḡ0, ᾱ)

Ḡ0 =
α

α + n
G0 +

1
α + n

n∑

i=1

δ(φi),

ᾱ = α + n

If we integrate out G, the prediction density for the (n+ 1)th observation will be

P(φn+1|φ1, . . . , φn,G0, α) ∝
∫ n∏

i=1

P(φi |G)p(G)dG

(φn+1|φ1, . . . , φn,G0, α) ∼
α

α + n
G0 +

1
α + n

n∑

i=1

δ(φi ). (2.29)

Notice that, the method for generating this sequence of random variables in (2.29) is exactly

the same as the Chineese Restaurant Process, where the parameters of a new table is deter-

mined by the base distributionG0.

A sequence of parameters generated according to (2.29) is also said to be sampled from a

Polya urn, which is described in the following section.

2.2.6 Polya Urn Representation

Polya urn scheme [6] is analogous to the Chineese RestaurantProcess, and is used to model

the process of generating the samples from the predictive distribution of the Dirichlet process.

The metaphor used for describing the process of sampling from the predictive distribution via

Polya urn scheme is as follows:

Suppose there aren balls in an urn withm different colors (colors are indicated by numbers

1 to m). Let ni denote the number of balls having the colori. Assume themth color is black,

and the number of black balls in the urn (nm) is equal toα. Each time, one ball is picked
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from the urn. If that ball is black, we put a new ball with a new color into the urn, otherwise

we put a ball having the same color into the urn. We put the ballback into the urn as well.

Therefore, when we pick up a ball, the probability that its color will be one of the existing

colors is proportional to the number of balls sharing the same color, and the probability of

adding a new color to the urn is proportional to the number of black balls in the urn, i.e.α.

2.2.7 Stick Breaking Representation

Another realization of the Dirichlet Processes can be done via stick breaking representation of

the random probability measure G. Sethuraman showed in his paper [43] a constructive way

of representing the samples from the Dirichlet Processes asfollows.

G =
∞∑

k=1

πkδ(φk) (2.30)

where φk ∼ G0 (2.31)

πk = βk

k−1∏

j=1

(1− β j) (2.32)

βk ∼ Beta(1, α) (2.33)

The definition of the weights (πi ’s) in equation (2.32) can be visualized as an analogy to a

stick breaking process in the following way. We begin with a stick of length 1. Generate a

random variableβ1 from the Beta distribution. Break the stick into two pieces such that the

length of the resulting pieces areβ1 and (1− β1). The first weightπ1, is equal to the length of

the first piece,β1. Take the other piece and break it into two pieces such that the length of the

resulting pieces are proportional toβ2 and (1− β2), whereβ2 is another random sample from

the Beta distribution. The length of the first piece is equal to π2. Repeat the procedure with

a countably infinite number of brakes and generate the sequence of weightsπi ’s. Note that,

since we began with a stick of length 1, the sum of the weights generated in this process will

be equal to 1. Therefore the resulting measure G, will be a valid probability measure. The

pictorial representation of the stick breaking process is given in 2.6.
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(a)

(b)

Figure 2.6: Stick Breaking Representation ofG =
∑∞

k=1 πkδ(φk) (a) The samplesφk’s sampled
from G0. (b) Generating the weights in stick breaking representation.
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2.3 Multi-target Tracking

Multi-target tracking problem consists of estimating the states of a possibly unknown number

of targets in a given surveillance region. The available sensors generally collect several mea-

surements which may correspond to some clutter or the targets of interest if detected. The

sensors typically lack the ability to associate each measurement to its originating target or the

clutter. Hence, one has to solve simultaneously three problems: data association, estimating

the number of targets in the surveillance region, and the estimation of the target states. Nu-

merous algorithms have been proposed in the literature to address such problems and only

the ones that are most relevant to our approach will be reviewed here; see [21] for a detailed

review of the literature or [5] for pre-particle filter era.

Here, we propose a new class of stationary models for the time-varying number of targets.

Proposed class of prior models relies on a time-varying extension of Dirichlet Processes. In

scenarios where the number of targets is unknown, potentially infinite, but fixed, a DP prior

has recently been used to perform Bayesian multitarget tracking [17]. In these papers, batch

inference is performed using Markov chain Monte Carlo (MCMC). We propose here an orig-

inal time-varying extension of DP to model the time-varyingnumber of targets. Moreover,

from a practical point of view, this process is easily interpretable and allows us to naturally

handle birth/death of targets over time. We utilize Sequential Monte Carlo (SMC)-type algo-

rithms to approximate on-line the resulting posterior distributions.

2.4 Known Number of Targets

Assume there areK targets of interest in the surveillance region. Letx j,t denote the state

vector of targetj at timet. The target dynamics are defined by state dynamics equation.

x j,t

∣∣∣ x j,t−1 ∼ f
(
·| x j,t−1

)
(2.34)

wheref ( ·| x) is a probability density function for a givenx. To define the measurement model,

we again introduce the set of unobserved allocation variables
{
ck,t
}

wherek = 1, ...,mt andmt

is the number of measurements at timet such that ifck,t = j thenyk,t originates from targetj.

Formally, conditional uponct =
{
ck,t
}

andxt =
{
x j,t

}
, we assume that the measurements are
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statistically independent and marginally distributed according to

yk,t

∣∣∣ (ct, xt) ∼ g
(
·| xck,t ,t

)
(2.35)

whereg ( ·| x) is a probability density function for anyx. To simplify the presentation, we do

not include some clutter noise here. To complete this Bayesian model, we need to define a

prior distribution for the allocation variables
{
ck,t
}
. A simple assumption consists of assuming

that, at any timet, we have a vector of prior probabilitiesπt = {π j,t}, i.e. π j,t ≥ 0 and
∑K

j=1 π j,t = 1 and that

p (c1:T | π1:T) =
T∏

t=1

p (ct | πt) (2.36)

where

p (ct | πt) =
mk∏

k=1

p
(
ck,t

∣∣∣ πt

)
(2.37)

with

p
(
ck,t = j

∣∣∣ πt

)
= π j,t, (2.38)

that isct follows a multinomial distribution of parameters(πt) . The PMHT algorithm uses the

Expectation-Maximization algorithm to maximize the marginal distributionp ( x1:T | y1:T , π1:T)

for a fixedT [44, 19]. In [21], this model is completed by introducing an additional prior

distribution forπ1:T . The vectorsπt are assumed independent and identically distributed ac-

cording to

πt ∼ Dirichlet
(
α

K

)

for someα > 0. In this case, the target distribution of interest at timeT is p ( x1:T , π1:T | y1:T ). A

combination of MCMC and SMC algorithms is proposed in [21] tosample from the sequence

of these target distributions asT increases. The proposed algorithm is quite computationally

intensive as it requires running an MCMC algorithm until convergence at each time step.

We consider here for the sake of illustration and so as to introduce later on the DP the static

case whereπt = π for any t and

π ∼ Dirichlet
(
α

K

)
. (2.39)

Sinceck,t ’s follow multinomial distribution likewise the model defined by equations (2.14)

and (2.15). The prediction distribution of the allocation variables can be computed according

to the equation (2.21).
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Then for anyj ∈ {1, ...,K}

Pr(ck,t = j|c−k,t) =
n j
−k,t + α/K∑
i ni
−k,t + α

(2.40)

wheren j
−k,t is the number of allocation variables with valuej in c−k,t. We definec−1,1 = ∅,

c−k,1 = c1:k−1,1 and fort > 1

c−k,t =


{c1:t−1, c1:k−1,t} if k > 1

c1:t−1 if k = 1

The main drawback of using such a model is that the number of targets K is assumed to

be known and constant. The DP based model presented in the next subsection allows us to

remove this restrictive assumption.

2.4.1 Dirichlet Process Based Model

To deal with an unknown number of targetsK, we again take the limit of the finite model

defined by (2.40) asK → ∞. The conditional distributions of the allocation variables will be

in accordance with the Chinese Restaurant or equivalently Polya Urn scheme.

Pr(ck,t = j|c−k,t) =



nj
−k,t∑

i ni
−k,t+α

if j ∈ c−k,t

α∑
i ni
−k,t+α

if j < c−k,t

(2.41)

This means that the measurementyk,t is associated to an existing targetj ∈ c−k,t with probabil-

ity
nj
−k,t∑

j nj
−k,t+α

and to a new target (with some arbitrary labelj < c−k,t) with probability α∑
j nj
−k,t+α

.

Note that the labeling of the targets is arbitrary here and can be chosen for programming

convenience. The parameterα tunes the prior distribution of the number of targets. Whenα

tends to 0, the number of expected targets will tend to 1, while whenα tends to infinity it will

tend to infinity. Note that although the prior probability isinfinite dimensional, the number of

detected targets is at most equal to the number of measurements. By using this nonparametric

approach, the number of targets does not have to be specified apriori, but is estimated from

the measurements.

To complete the model, we initialize a target state only whenthis target is created and assume

that the initial state is distributed according to a distribution v (·).

We consider in the next section that the vectorπt is time-varying. In analogy to the static case
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(2.41), we present a modified Polya Urn scheme so that the infinite dimensional vectorπt is

integrated out.

2.4.2 Time-Varying DP

We introduce here a modified Polya urn scheme for the allocation variables. The evolution

model (2.41) defines a Polya urn scheme based on the whole set of previous allocation vari-

ables from time 1 to the current time step. This evolution model may be modified by only

conditioning the new allocation variable on the allocationvariables sampled from timet − r

to timet. Consider the followingr-order Markov model

Pr(ck,t = j|c−k,t) = Pr(ck,t = j|c−k,t−r :t)

=



nj
−k,t−r:t∑

i ni
−k,t−r:t+α

if j ∈ c−k,t−r :t

α∑
i ni
−k,t−r:t+α

if j < c−k,t−r :t

(2.42)

wheren j
−k,t−r :t is the number of allocation variables inc−k,t−r :t taking the valuej. The allo-

cation variables at timet are thus only dependent on previous allocation variables upto time

t − r. Note that with this model, targets may disappear over time.At each timet, we forget

allocation variablesct−r−1. If a target that was observed at timet− r −1 has not been observed

anymore from timet−r to timet−1, then the target “disappear”, i.e. it is not tracked anymore.

2.4.3 Clutter Model

In practice, it is important to be able to model the clutter noise. We assume that the clutter

noise is uniformly distributed on the surveillance area. For a measurementyk,t from the clutter,

we setck,t = 0 and assume that Pr(ck,t = 0|c−k,t) = 1 − λ. Under these assumptions, the

generalized Polya urn is given by

Pr(ck,t = j|c−k,t) = Pr(ck,t = j|c−k,t−r :t)

=



(1− λ) if j = 0,

λ
nj
−k,t−r:t∑

i ni
−k,t−r:t+α

if j ∈ c−k,t,

λ α∑
i ni
−k,t−r:t+α

if j < c−k,t ∪ {0}.
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2.5 Sequential Bayesian Inference

As the number of possible associations increases exponentially over time, inference in the

models described before cannot be performed exactly and we need to approximate the pos-

terior distributions of interest. We present a simple deterministic approximation algorithm in

the linear Gaussian scenario and an SMC method to handle non-linear non-Gaussian cases.

2.5.1 Linear Gaussian Model

We consider here the important case where the evolution and observation equations (2.34)-

(2.35) of each target are linear and Gaussian; that isν (x) = N (x; x0,Σ0) and

f
(
x′
∣∣∣ xt−1

)
= N
(
x′; Fxt−1,Σv

)
, (2.43)

g (y| xt) = N (y; Hxt,Σw) . (2.44)

The target distributions we are interested in estimating are given by

p (c1:t, x1:t |y1:t) = p (c1:t |y1:t) p (x1:t |y1:t, c1:t) .

In this case, conditionally on the allocation variables, the model is linear and Gaussian so

the distributionp (x1:t |y1:t, c1:t) is a Gaussian whose statistics can be computed using Kalman

filtering techniques.

In particular,p(xt |y1:t, c1:t) = N(xt; xt|t (c1:t) ,Σ t|t (c1:t)) wherext|t (c1:t) andΣ t|t (c1:t) are given

by the Kalman filter. Thus we only need to approximate the discrete distribution of the allo-

cation variables which satisfies the following recursion

p (c1:t |y1:t) = p (c1:t−1|y1:t−1)
p (yt |y1:t−1, c1:t) p (ct |c1:t−1)

p (yt |y1:t−1)

with p (yt |y1:t−1, c1:t) = N(yt; yt|t−1(c1:t),St|t−1(c1:t)) where ;yt|t−1(c1:t) andSt|t−1(c1:t) are re-

spectively the predictive mean and covariance of the innovation which can be computed by

KF updates.

We consider a simple deterministic algorithm to approximate this posterior distribution. At

each timet, we consider all possible values for the new allocation variable, compute the un-

normalized posterior distributionp (c1:t |y1:t) which is known exactly for each possible value

and then prune to keep theN most likely trajectories. It can be interpreted as variant of
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the Rao-Blackwellised Particle Filter where we substitutethe sampling step with a full explo-

ration of the possible values and the resampling step with a deterministic selection of the more

likely particles. It has been shown that in most scenarios this simple algorithm outperforms

the RBPF.

The algorithm proceeds as follows. To initialise the algorithm, we setw(i)
m0,0

= 1/N for

i ∈ {1, ...,N} .

N−best algorithm for Multitarget Tracking

At time t≥ 1

• Set w(i)
0,t = w(i)

mt−1,t−1

• For k = 1, . . . ,mt

• For each particle i = 1, ..,N do

• For j ∈ c(i)
−k,t ∪ {0} ∪ {cnew}, let c̃(i, j)

k,t = j and compute the weight

w̃(i, j)
k,t = w(i)

k−1,t p
(
yk,t

∣∣∣ y−k:t , c
(i)
−k,t, c̃

(i, j)
k,t

)
p
(
c̃(i, j)

k,t

∣∣∣∣ c(i)
−k,t

)
(2.45)

• Keep the N particles
(
c(i)
−k,t, c̃

(i, j)
k,t

)
with highest weights, rename them c(i)

−(k+1),t and de-

note w(i)
k,t the associated weights.

The target distributionp (c1:t | y1:t) is approximated using

p̂ (c1:t | y1:t) =
N∑

i=1

W(i)
t δc(i)

t
(c1:t)

whereW(i)
t ∝ w(i)

mt ,t,
∑N

i=1 W(i)
t = 1 whereasp ( xt | y1:t) is approximated through

p̂ ( xt| y1:t) =
N∑

i=1

W(i)
t N
(
xt; xt|t

(
c(i)

1:t

)
,Σ t|t

(
c(i)

1:t

))
.

2.5.2 Non-Linear Non-Gaussian Model

In scenarios where the target dynamics and/or the measurement model are non-linear and/or

non-Gaussian, it is typically impossible to computep (x1:t |y1:t, c1:t) in closed-form contrary to

the linear Gaussian case. We present here briefly a SMC methodto approximate the distribu-

tions p (x1:t |y1:t, c1:t).
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In this approach the target posterior distributions of interest are approximated by a cloud of

random samples named particles which evolve over time usinga combination of importance

sampling and resampling steps. To design an efficient algorithm, it is necessary to design

an efficient importance distribution. The expression of the optimal importance distribution

is well-known. It is typically impossible or too computationally intensive to use the exact

form but it can be approximated through the Extended Kalman Filter (EKF) or the Unscented

Kalman Filter (UKF); see e.g. [11, 10, 21, 12] for details. Wehave chosen here to sample

sequentially the measurementsy1,t, ..., ymt,t one-at-a time. In this case, the optimal importance

distribution forck,t is given by

q(ck,t |yk,t, c−k,t, xt−1) ∝ p(yk,t |ck,t, xck,t ,t−1)p(ck,t |c−k,t)

where

p(yk,t |ck,t, xck,t ,t−1) =



1
V if ck,t = 0
∫

g
(
yk,t

∣∣∣ xck,t ,t

)
f
(
xck,t ,t

∣∣∣ xck,t ,t−1

)
dxck,t ,t if ck,t ∈ c−k,t

∫
g
(
yk,t

∣∣∣ xck,t ,t

)
ν
(
xck,t ,t

)
dxck,t ,t if ck,t = cnew.

Where the clutter density is assumed uniform over the surveillance region,V is the volume of

the surveillance region,ν(.) is the distribution of the initial state. Forck,t ∈ c−k,t∪{cnew}, we can

build an approximation of bothp(yk,t |ck,t, xck,t ,t−1) and p(xk,t |yk,t, c−(k+1),t, x−k,t) if ck,t ∈ c−k,t

or p(xk,t |yk,t, c−(k+1),t) if ck,t = cnew using EKF or UKF. Then the SMC method proceeds as

follows. To initialise the algorithm, we setw(i)
0 = 1/N for i ∈ {1, ...,N} .

SMC Algorithm for Multitarget Tracking

At time t≥ 1

• For each particle i = 1, ..,N do

• For k = 1, . . . ,mt, sample c̃(i)
k,t ∼ q

(
ck,t

∣∣∣ yk,t, c
(i)
−k,t, x

(i)
t−1

)

• For j ∈ c(i)
t−r :t−1, sample x̃(i)

j,t ∼ q(x j,t |x
(i)
j,t−1, yt, c̃

(i)
t )

• For j ∈ c(i)
t−r :t−1 ∩ c̃(i)

t , sample x̃(i)
j,t ∼ q(x j,t |yt, c̃

(i)
t )

• For i = 1, ..,N, update the weights as follows

w̃(i)
t ∝ w(i)

t−1

∏n
k=1 p(yk,t |̃c

(i)
k,t ,̃x

(i)
t )
∏n

k=1 Pr(̃c(i)
k,t |̃c

(i)
1:k−1,t ,c

(i)
t−r:t−1)

∏n
k=1 q(̃c(i)

k,t |yk,t ,̃c
(i)
k−1,t ,c

(i)
t−r:t−1,x

(i)
t−1)

×

∏
j∈c(i)

t−r:t−1
p(̃x(i)

j,t |x
(i)
j,t−1)

∏
j∈c(i)

t−r:t−1∩̃c(i)
t

p0(̃x(i)
j,t )

∏
j∈c(i)

t−r:t−1
q(̃x(i)

j,t |x
(i)
j,t−1,yt ,̃c

(i)
t )
∏

j∈c(i)
t−r:t−1∩̃c(i)

t

q(̃x(i)
j,t |yt ,̃c

(i)
t )

(2.46)
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with
∑N

i=1 w̃(i)
t = 1.

• Compute Neff =

[∑ (
w̃(i)

t

)2]−1
. If Neff ≤ N/2, duplicate the particles with large weights

and remove the particles with small weights, resulting in a new set of particles denoted

·
(i)
t with weights w(i)

t = 1/N. Otherwise, rename the particles and weights by removing the

·̃.

Details of the algorithm is given in Appendix section.

2.6 Target Identification

In most of the target tracking applications, target identities are required to be maintained as

new targets appear/disappear in the surveillance region. This section describes a simple user

presentation logic which aims to keep a unique identity for each of the active targets in the

region. In this approach, a target-to-target association is made between the targets/clusters of

the particles having the highest weight at the current and the previous time instants. For this

purpose a target-to-target assignment matrix is formed as follows.

Construction of the Assignment Matrix

At time t

• Pick the particle with the highest weight at time t − 1

• Extrapolate the state vector/sufficient statistics of the particle to the current time xt−1→

x̂t.

• Pick the particle with the highest weight at time t

• Construct the Assignment Matrix as
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

Targets Targets at time t-1 No Target

at time t 1 2 . . . Nt−1 1 2 . . . Nt

1 d1,1 d1,2 d1,Nt−1 CN X X X

2 d2,1 d2,2 d2,Nt−1 X CN X X
...

...
... X X

. . . X

Nt dNt ,1 dNt ,2 dNt ,Nt−1 X X X CN



Wheredi, j = x̃T
i, jQx̃i, j , is the distance between the targetsi and j. x̃i, j = x̂i − x̂ j, is the state

prediction difference vector, and Q is any positive definite weighting matrix. CN is the cost

of not assigning any target from the previous time to a targetat current time. X refers to

unallowable assignment. Posterior to the construction of the assignment matrix, assignment

problem must be solved to find the optimal association. The assignment problem here is

defined as follows. Given the elementsai, j of an n x m matrix, find the particular mapping

i 7→ Ξ(i), 1 ≤ i ≤ n, 1 ≤ Ξ(i) ≤ m,

i , j ⇒ Ξ(i) , Ξ( j)

such that the total cost function

Ctotal =

n∑

i=1

ai,Ξ(i)

is minimized over all permutationsΞ. Various algorithms are proposed to solve the problem

(see [5]). The auction algorithm is used to find the optimal associations in our simulations.

Notice that, in order to minimize the cost, the assignment oftargeti to targetj can occur only

if di, j < CN. Therefore CN defines a gate on the defined distance between the targets. If this

gate is exceeded, it is better to assign a new identity to the target rather than associating it to

the existing ones.
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2.7 Simulations

2.7.1 Linear Gaussian Model

Consider the following linear dynamic model

x j,t+1 = Fx j,t +Gv j,t

zk,t = Hx j,t + wk,t

wherex j,t =



X j,t

Ẋ j,t

Yj,t

Yj,t



with (X j,t,Yj,t) and (Ẋ j,t, Ẏj,t) being respectively the position and first

derivatives of the target j at time t in 2-D coordinates.

F =



1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1



, G =



T2

2 0

T 0

0 T2

2

0 T



, H =


1 0 0 0

0 0 1 0

,

v j,t ∼ N(0,Q) andwk,t ∼ N(0,R) with Q =


σ2

v 0

0 σ2
v

 andR =


σ2

w 0

0 σ2
w

. T is the

sampling time.

The following values are set:T = 1, σ2
v = 10,σ2

w = 5000,r = 8, α = 1. The mean number

of clutter measurements per time index is set to 5. 3 target tracks are simulated. The number

of active targets (i.e. targets that produce measurements)at each time step is represented in

Figure 2.10. The true target trajectory and the measurements, accumulated over time steps,

are represented in Figure 2.7 and Figure 2.8. The deterministic filter is iterated with 1000

particles. Decision is made using the particle with the highest log-likelihood. The estimated

target trajectories are represented in Figure 2.9 and the number of estimated targets in Figure

2.10. One track is considered as detected when it has produced at least 7 measurements in the

last 8 steps. Once it has been detected, it is deleted when no measurements appear in the last

8 time steps.

For the same set of simulated data, a Joint Probabilistic Data Association (JPDA) filter and

the Global Nearest Neighbourhood (GNN) algorithm were run.A track is initiated when 7
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measurements are associated to this track over the last 8 time steps, and is deleted if it has

not produced measurements over the last 5 time steps. The estimated target tracks of the

algorithms are represented in Figures 2.11 and 2.13. The number of estimated targets are

depicted in Figures 2.12 and 2.14.
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Figure 2.7: True Tracks.

2.7.2 Non-Linear Non-Gaussian Model

In the context of bearing only tracking, the target positions are not fully observable to the

sensors, but a non-linear measurement equation exists which relates the state and the mea-

surements non-trivially. We assumed a similar model to the linear gaussian case for the target

dynamics. The resulting state space equations are as follows.

xt = Ftxt−1 + vt

yt = tan−1(
y− sy

x− sx
) + wt

Ft =



1 T 0 0

0 1 0 0

0 0 1 T
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

,Qt = 5×



T3

3
T2

2 0 0

T2

2 T 0 0

0 0 T3

3
T2

2

0 0 T2

2 T



,Rt = 1× 10−4

WhereT = 1, Qt andRt are the process noise and measurement noise covariance matrices
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Figure 2.8: Measurements generated from time 1 to timeT. Measurements are produced
either by clutter or by a target.

respectively. In the scenario, there exist two targets whose true target trajectories are depicted

in 2.15. There are two bearing only sensors, whose coordinates (sx, sy) are (-10000, 5000)

and (10000, -5000). There are 5 false alarms per scan which are uniformly distributed over

the region. The estimated target positions and estimated number of targets for the DP based

algorithm is given in Figure 2.16 and 2.17 respectively.
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Figure 2.9: Estimated target trajectories using the DP based algorithm.
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Figure 2.10: Estimated number of targets for DP based algorithm.
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Figure 2.11: Estimated target trajectories using JPDA.
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Figure 2.12: Estimated number of targets for JPDA
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Figure 2.13: Estimated target trajectories using GNN.
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Figure 2.14: Estimated number of targets for GNN
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Figure 2.15: True Tracks for the bearing only tracking scenario.
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Figure 2.16: Estimated target trajetories using the DP based algorithm.
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Figure 2.17: Estimated number of targets for DP based algorithm.
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2.8 Conclusion

In this study we propose a new class of models for Bayesian multi-target tracking which is

based on time varying extension of Dirichlet Process. The resulting algorithm is a complete

tracking system which naturally handles the track initiation/deletion and target to measure-

ment association tasks in a Bayesian framework by using timevarying extension of Dirichlet

processes as the priors. We also introduce a new output presentation logic for SMC based

multi-target tracking algorithms which tracks the identity of the targets by combining the best

hypothesis in consecutive time instants. The algorithm is tested on simulated data and its

performance is compared with the conventional methods, namely JPDA and GNN algorithms

which utilize standard (M/N) logic for track initiation/deletion tasks. In the simulations, the

algorithm outperforms JPDA and GNN in heavy cluttered scenarios where JPDA and GNN

algorithms fail to initiate/delete tracks properly. The proposed algorithm is a good combi-

nation of state of the art techniques and novel ideas such that it promises a high chance of

showing good performance in different applications of signal processing.
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CHAPTER 3

NONPARAMETRIC BAYESIAN FOR DYNAMIC SPEECH

SPECTRUM REPRESENTATION AND TRACKING

VARIABLE NUMBER OF VOCAL TRACT RESONANCE

FREQUENCIES

3.1 Introduction

In this study, we extend our previous study on multi-target tracking to the formant tracking

problem in speech signal processing literature. We proposea new approach for dynamic

speech spectrum representation and tracking vocal tract resonance (VTR) frequencies. The

method involves representing the spectral density of the speech signals as a mixture of Gaus-

sians with unknown number of components. In the resulting representation, the number of

formants is allowed to vary in time. Under the assumption of existence of varying number

of formants in the spectrum, we propose the use of the DPM model based multi-target track-

ing algorithm for tracking unknown number of formants. The formant tracking problem is

defined as a hierarchical Bayesian model and the inference isdone using Rao-Blackwellized

particle filter.

The air path of speech production mechanism (the vocal tract) is composed of various ar-

ticulatory cavities (oral, pharyngeal, nasal, sinus etc.). Each cavity has particular natural

frequencies at which the contained air naturally tends to vibrate. If the air inside the vocal

tract is vibrated at natural frequencies, the vibrations are reinforced and the vocal tract res-

onates. That is, the vocal tract from glottis to lips acts as an acoustic resonator during speech

production [15] [16]. The resonance frequencies, also known as formants, can be observed as

the peaks of the magnitude spectrum of the speech signal.
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Since formants are a rich source of information about uttered speech and the speaker, reliable

formant estimation is critical for a wide range of applications, such as speech synthesis [15,

16, 39, 32, 31, 3], speech recognition [46, 18], voice conversion [40], vocal tract normalization

[8, 41], measuring vocal tract length [45], accent classification [47] and speech enhancement

[48].

The aim of our study is two-fold. First one is the dynamic representation of the speech spec-

trum as a Gaussian mixture with variable number of components. The second one is to track

variable number of formant frequencies using the given representation. The representation of

the speech spectrum with Gaussian mixture can also be seen in[50]. In [50], the parameters of

the Gaussian mixture model are first estimated by Expectation Maximization (EM) algorithm

then a reduction in the number of component stage is necessary while the order selection still

remains as a problem. In our approach the number of mixture components is determined

by the Dirichlet process naturally. We assume that the number of mixture components in the

spectral density varies in time as the vocal tract resonancefrequencies appear/disappear due to

either unexcited sections of the vocal tract or abrupt changes in the spectrum during nasaliza-

tion. In order to build a basis for our claim of varying numberof formants, we investigate the

effects of abrupt changes of the vocal tract in the state space framework. The analysis shows

that the number of formants appearing in the spectrum may vary in time [49]. Therefore, we

propose the use of a Dirichlet process based method which is flexible enough to allow varying

number of mixture components in the estimated spectral density.

The following are the main contributions of this study.

• Dirichlet process based multi-target tracking algorithm is used for tracking variable

number of formants where the inference is done via Rao-Blackwellized particle filters.

• The speech spectrogram is represented as a Gaussian mixtureand the number of mix-

ture components is determined dynamically.

The rest of this chapter is organized as follows. In Section 3.2, the definition of the formant

tracking problem is introduced. Section 3.3 presents the details of the proposed method. The

experimental results are given in Section 3.4 and finally we conclude the chapter with the

Discussions and Conclusion sections.
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3.2 Problem Definition

The problem of formant tracking involves the detection of the formants in a given speech

spectrum. The formant frequencies are expected to appear inthe regions of the spectrum

where the energy is relatively high. Generally, the peaks ofthe spectrum are chosen to be the

formant frequency candidates which are later eliminated according to their consistencies in

time. However, the shape of the spectrum changes significantly during the open phase or the

close phase of the glottis due to resonance anti-resonance cancelation. Therefore, a reliable

estimation can not be done by simply detecting the peaks of the spectrum. A smoothing stage

is necessary to minimize the variations in the peaks of the spectrum from frame to frame.

In our approach, the spectrum smoothing and the formant tracking tasks are done jointly.

Dirichlet Process Mixture Model is used to represent the spectrum by an unknown number

of Gaussians and the resulting mixture components are considered as the candidates to be the

formant frequencies. We assume that the vocal tract resonance frequencies constituting the

mixture components of the spectrum evolve according to a known state dynamics equation.

Also the measurements originating from a specific formant are assumed to be produced ac-

cording to a known measurement equation. Both of the equations are specified by the general

state space representation of the VTR’s which is given below.

f j,t = h( f j,t−1, vt) (3.1)

y j,t = g( f j,t,wt) (3.2)

Here f j,t denotes the state vector of thejth formant at timet. h(.) andg(.) are possibly non-

linear functions of the state.vt and wt are the process noise and the measurement noise

sequences. A number of different models can be chosen to define the dynamics of the formant

state and its relation with the measurements. These includesimple linear Gaussian models as

well as complex non-linear models. In the linear Gaussian model, the state dynamics evolve

linearly and the noise sequences are assumed to be uncorrelated Gaussian white noise with

known covariance matrices. Under these assumptions, Kalman filter produces the optimal

state estimate (in the mean square sense). A standard choiceof the model can be the constant

velocity model given below.
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f j,t+1 = Af j,t + Hv j,t (3.3)

yk,t = Cf j,t + wk,t (3.4)

wheref j,t ,


f j,t

ḟ j,t

 with f j,t and ḟ j,t being respectively the position and first derivatives of the

formant j at timet.

A =


1 T

0 1

, H =


T2

2

T

, C =
(

1 0
)
, v j,t ∼ N(0, σ2

v) , wk,t ∼ N(0, σ2
w) andT is the

sampling time.

At each time stept, we have a set of measurementsyk,t, k = 1 . . .mt, which are acquired from

the spectrum. Several alternatives are possible for measurement selection (see: Section 3.5).

Assume that the measurements are distributed with the magnitude of the spectrum, i.e., they

are the samples generated from the magnitude of the spectrum, see: Figure 3.1. In this case,

the magnitude of the spectrum becomes the target density to be approximated as a mixture.

In the model, the measurements are assumed to be originatingfrom an unknown number of

VTRs. The DPM model classifies the measurements into an unknown number of formants.
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Figure 3.1: Measurement Extraction Procedure: 1-The DFT magnitude is normalized to be a
probability density function (pdf)(solid line) . 2- Samples acquired from this pdf are consid-
ered as the measurements (shown on x-axis). 3- The DPM model classifies the measurements
into an unknown number of formants the resulting representation is shown by the dashed line.

From the target tracking perspective, three joint problemshave to be solved in order to be able

to track the formant frequencies accurately. These sub-problems are:

• estimation of the number of VTRs,
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• association of the measurements with the VTRs,

• estimation of the state vector of the VTRs.

Each sub-problem has to be solved as accurately as possible since the output of each step

affects the performance of another.

3.2.1 Known Number of VTRs

Under the assumption of a prior knowledge of the number of VTRs, the tracking problem

reduces to correctly associating each measurementyk with one of the existing formants and

estimating the state vector of each formant given the associated measurements. The structure

will be formulated as a Hierarchical Bayesian Model and the Bayesian inference will be done

by using the prior distributions defined in previous chapter. For ease of understanding, here

we make the analysis for a single frame of the spectrum, and drop the time indext until the

end of Section 3.2.

3.2.1.1 Model

Suppose there areK formants in the spectrum and our aim is to specify the origin of m

measurements which are taken from a single frame. For this purpose we define thelabel ck,

k = 1, ...,m for each measurementyk, indicating the index of the associated formant. Labels

take values from 1 to K and they are assumed to have a prior distribution which is multinomial

with parameters (m, π̄) (whereπ̄ , [π1, . . . , πK]) such that:

p(ck = j|π̄) = π j , j = 1 . . .K, k = 1 . . .m (3.5)

π j ’s are called the mixing coefficients or the weights which sum up to 1.

In order to identify the origin of each measurement among theK formants, the relation be-

tween the measurements and the formant states should be clearly defined. The distribution of

the measurements originating from a specific formant is assumed to be known.

yk|θ, ck ∼ g(.|θck) (3.6)
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whereθ , [θ1, . . . , θK ] is the stacked vector of the formant states andθck stands for the

state vector of thecth
k formant. It is assumed that the initial state vectors of the formants are

distributed according to the base distribution denoted byG0(.).

θck ∼ G0(.). (3.7)

As an example,G0(.) can be a Gaussian distribution with a mean equal to the center of the

spectrum and a covariance which is sufficiently large to cover the whole spectrum. Another

choice can be a mixture of Gaussians, in which the mixture components are centered around

the nominal values of the formants. Given the definitions above, the resulting Hierarchical

Model becomes

π|α,K ∼ Dirichlet(
α

K
), (3.8)

ck|π ∼ Multinomial(π), (3.9)

θ j |G0 ∼ G0(.), (3.10)

yk|θ, ck ∼ g(.|θck). (3.11)

The conditional probabilityp(cm = j|c1, . . . , cm−1), i.e. the prediction probability of the allo-

cation variable for the future observations is (see: (2.21))

p(cm = j|c−m, α,K) =
n j +

α
K

m− 1+ α
(3.12)

wheren j indicates the number of measurements previously assigned to the formantj.

3.2.2 Extension to infinite dimensional priors

A standard approach for deriving the infinite dimensional priors for the model is letting the

number of formantsK go to infinity [34]. It is important to notice that, although we try to

define a prior on infinite number of components, only a finite number of these can be observed

given finite number of measurements. The resulting model makes the number of formantsK

now variable which will be updated according to the incomingmeasurements. This flexibility

enables the model to adapt unknown number of components. A simple calculation shows that,

in the limiting case, the resulting prediction density for the future observation is equal to (see:

(2.22),(2.23))

p(cm = j|c−m, α) =
n j

m− 1+ α
(3.13)

p(cm = cnew|c−m, α) =
α

m− 1+ α
(3.14)
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That is, each measurement is either a member of one of the existing formants with probability

proportional to the number of measurements previously assigned to that formant, or it is one of

the unobserved infinite number of formants (i.e., new formant) with probability proportional

to α. The equations above also define the probabilities to samplefrom the famous Chinese

Restaurant Process and Polya Urn scheme which are introduced in the previous chapter.

Returning back to our hierarchical model, for the infinite dimensional case, the model can be

specified by the following equations.

G|G0, α ∼ DP(G0, α) (3.15)

θk|G ∼ G(.) (3.16)

yk|θk ∼ g(.|θk). (3.17)

Conditional on the previous values of the association variables, the predictive distribution of

a new association variable can be written as,

(cn+1|c1, . . . , cn,G0, α) ∼
α

α + n
δm+1(.) +

1
α + n

n∑

i=1

δi(.) (3.18)

where, the association variables take positive integer values in increasing order, andm is the

number of distinct values taken by the previous associationvariables. These probabilities

define the prior distribution of associating a new observation to the existing tracks or a new

track. The posterior distribution will later be calculatedby taking the measurement likelihood

given the association into account.

3.3 Method

For the given model the inference is done via sequential Monte Carlo, aka. particle filter,

which approximates the joint density of the formant state vectors and the association variables

in a Rao-Blackwellised fashion. The density to be approximated can be decomposed into

linear and non-linear states.

p ( f1:t, c1:t |y1:t) = p ( f1:t |y1:t, c1:t) p (c1:t |y1:t) (3.19)

The formant states evolve linearly according to the state dynamic equation (3.1), and the

association variables depend on the past values in accordance with Dirichlet process. Rao-

Blackwell idea make use of the fact that, conditional on the association variables, the sufficient

49



statistics of the formant states can be computed by using Kalman filtering technique. On the

other hand, the marginal density of the association variables can be approximated by point

masses, i.e., particles with their weights.

p̂ (c1:t | y1:t) =
N∑

i=1

w(i)
t δc(i)

1:t
(c1:t) (3.20)

wherewi
t andci

1:t are functions ofy1:t. From the target tracking point of view, each particle

defined as above corresponds to a hypothesis on the associations made between the formants

and the measurements. Different hypotheses may conclude existence of different number of

formants in the spectrum. Each particle, keeps the formant state vectors with sufficient statis-

tics and the past values of the association variables. In thestandard approach, the particle

filter update is done as follows.

Suppose we haveN particles with their states and weights at time/framet − 1.

{c(i)
1:t−1, f̂ (i)

t−1|t−1,1 . . . f̂
(i)
t−1|t−1,Mi

, Σ
(i)
t−1|t−1,1 . . .Σ

(i)
t−1|t−1,Mi

}Ni=1, {w(i)
t−1}

N
i=1

HereMi represents the number of formants of theith particle. f andΣ denote the state vec-

tor and the covariance matrix of the formants respectively.At time t we have a set ofmt

measurements which are actually sampled from the magnitudeof the spectrum. Prior to the

measurement update, the sufficient statistics of each particle must be extrapolated to time t

before processing the measurements of the framet.

Step1:Prediction update of the particles.

• for i=1:N

– compute{ f̂ (i)
t|t−1,1 . . . f̂

(i)
t|t−1,Mi

, Σ
(i)
t|t−1,1 . . .Σ

(i)
t|t−1,Mi

}

Once the prediction update for the sufficient statistics is complete, we proceed with the mea-

surement update. In a generic Rao-Blackwellised Particle Filter (RBPF) the next steps are the

sampling for the non-linear states (association variables), weight update and the resampling

stages respectively. These steps are to be repeated for all the measurements of the framet.

Step2:Measurement update.

• for k=1:mt
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– for i=1:N

∗ sample fromq(ck,t |c
(i)
−k,t, yk,t, y−k,t).

∗ update the weights as ˜w(i)
k,t ∝ w(i)

k−1,t

p
(
yk,t |y−k,t ,c

(i)
k,t ,c

(i)
−k,t

)
p
(
c(i)

k,t |c
(i)
−k,t

)

q(ck,t |c
(i)
−k,t ,yk,t ,y−k,t)

.

– Normalize weightsw(i)
k,t =

w̃(i)
k,t∑N

j=1 w̃( j)
k,t

.

– Calculate effective sample size,Ne f f =
1∑N

j=1(w( j)
k,t )

2
.

– Resample ifNe f f < NThreshold

where,

w0,t , wmt−1,t−1, y−k,t ,

t−1⋃

i=1

{y1:mi ,i}
⋃
{y1:k−1,t}, c−k,t ,

t−1⋃

i=1

{c1:mi ,i}
⋃
{c1:k−1,t},

andq(ck,t |c
(i)
−k,t, yk,t, y−k,t) is the importance distribution for the association variables.

It is possible to sample from the optimal importance distribution q(ck,t |c−k,t, yk,t, y−k,t) =

p(ck,t |c−k,t, y−k,t, yk,t). By applying Bayes rule, one can factorize the optimal distribution into

p(ck,t |c−k,t, y−k,t, yk,t) ∝ p(yk,t |ck,t, c−k,t, y−k,t) × p(ck,t |c−k,t). (3.21)

Prior is calculated according to Polya Urn (see equations (3.13) and (3.14)), and the likelihood

is:

p(yk,t |ck,t, c−k,t, y−k,t) = N(g(µ(i)
ck,t ,t),S

(i)
ck,t ,t) (3.22)

whereµ(i)
ck,t ,t,S

(i)
ck,t ,t are the mean and the innovation covariance calculated by Kalman Filter

(KF) using the previous measurements assigned to that formant. If ck,t corresponds to a new

formant, the likelihood is calculated by initiating a KF with meanx0 and covarianceP0. More

specifically one can write,

if ck,t = cnew,

p(yk,t |ck,t, c−k,t, y−k,t) = N(CAx0, [C(AP0AT + Q)CT + R]) (3.23)

After ck,t is sampled, the KF of the corresponding formant is immediately updated by using

the measurementyk,t.

It is important to notice that at the sampling stage, each measurement is either associated with

one of the existing formants or it is considered to be originating from a new formant. There-

fore, the corresponding association variable can only takea finite number of values which
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implies that it is possible to generate all possible hypotheses. The sampling stage can be

replaced by a full exploration of the support ofp(ck,t |c−k,t) and N-best particles having the

highest weights can be used to represent the best hypotheses. In that case, the measurement

update step of the algorithm is modified as follows.

Step2:Measurement update for the modified algorithm.

• for k=1:mt

– for i=1:N

∗ for each possible value ofck,t = j

· Calculate the weightsw(i)
k,t = w(i)

k−1,t p(yk,t |ck,t, c−k,t, y−k,t)p(ck,t |c−k,t).

– Keep N-best particles with the highest weights.

3.3.1 r-order Markov model

It is possible to model the association priors as anr-order Markov Chain in which the associ-

ation priors are conditioned on the previous associations made within the lastr frames [42].

Markov model implies,

p(ck,t |c−k,t) = p(ck,t |c̃−k,t) (3.24)

where, c−k,t ,

t−1⋃

i=1

{c1:mi ,i}
⋃
{c1:k−1,t}, c̃−k,t ,

t−1⋃

i=t−r

{c1:mi ,i}
⋃
{c1:k−1,t}.

In this scheme, the association variables before timet−r are forgotten. Therefore, if a formant

is not associated with any of the measurements between timet − r and t, then it is deleted.

Consequently, the formants being tracked are allowed to disappear enabling the algorithm to

track time-varying number of formants.

3.3.2 Output Presentation

Posterior to the measurement update, formant states density can be approximated by using

the particles, their weights and the sufficient statistics as follows.

p̂
(

f̄t
∣∣∣ y1:t

)
=

N∑

i=1

Mi∑

j=1

w(i)
t N( f̂ (i)

t|t, j ,Σ
(i)
t|t, j ) (3.25)
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where Mi represents the number of formants of theith particle and f̄t is the vector of all

formants. Considering the similarities of the algorithm with Multiple Hypothesis Tracker

(MHT), it is also possible to use the particle with the highest weight (best hypothesis) and

its estimate of the formant states for output presentation.As mentioned earlier, among all

the clusters that represent the speech spectrum, only the time-consistent ones are declared to

be the formants. Therefore a consistency check has to be applied to the formant candidates.

For this purpose, an association should be made between the formants of the particles having

the highest weight in consecutive frames. In order to associate the existing formants with

the new ones properly, the distance between the new and old formants are calculated and

the association is done by using the Auction algorithm (see:Section 2.6). The formants

are included in the output presentation only if their track life is long enough and sufficiently

large number of measurements are associated with them. In our experiments only the formant

candidates which last over at least 11 frames and which are associated to at least 10% of the

incoming measurements on average are declared as the formants and shown at the output.

3.4 Experimental Results

In this section, we illustrate the performance of the algorithm on examples chosen from

TIMIT database. These examples are representative of our extensive tests performed on many

sentences in the database. The examples have been selected to clearly illustrate the variation

of number of formants during speech utterance. In order to provide a general understanding

of the performance of the algorithm in different speech utterances of different individuals, the

algorithm parameters are kept fixed (except for the larger measurement noise variance used

for female utterances to increase the formant bandwidth) for all the utterances. Moreover,

the output of the algorithm is depicted together with the WaveSurfer output and hand labeled

formants [9]. Additionally, we compare the output of our algorithm with the Wavesurfer, by

calculating the distance with the hand-labeled data in the vowel-like regions of the utterances,

as those regions are considered to be the only regions where areasonable comparison can

be made between a variable number of formants tracker and a standard one. Unfortunately

all the examples can not be included within this chapter but they are available online. All

the results, including the larger versions of the figures given in this section are available at

“http://www.eee.metu.edu.tr/∼ozkan/DBFTFigures.pdf”.
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For all the given utterances, standard linear Gaussian constant velocity model (see: Section

3.2) is used as the formant dynamics. The sampling frequencyis chosen to be 10KHz. A

pre-emphasis filter is used to reduce the spectral tilt between the formant frequencies. After

the pre-emphasis stage, speech signal is divided into frames using Hamming window. The

frame length and frame rate are 40 msecs and 10 msecs respectively. Magnitude spectrum

of each frame is found by using 512 points DFT. At most 100 measurements per frame is

fed to the algorithm. Number of measurements per frame is kept proportional to the energy

of the frame. Low energy regions of the spectrum are truncated to zero. The concentration

variableα is chosen to be 0.2, and the order of the Markov modelr is chosen to be 5. Base

distributionG0 is chosen to be a Gaussian distribution centered at 2.0 KHz with a covariance

sufficiently large to cover the whole spectrum. 100-best particles are kept at each update

and output presentation is done by using the particles having the highest weight. Only the

formant candidates which last over at least 11 frames and which are associated to at least 10%

of the incoming measurements on the average are declared as the formants and shown as the

output. The LPC order of the WaveSurfer algorithm is chosen as 12 and 14 while tracking

four formants and five formants respectively.

In calculating the distance with the hand-labeled data in vowel-like regions, average absolute

error is computed by using the following formula.

E j =
1
Nc

Nc∑

i=1

|F̂i
j
− F j

i | (3.26)

whereE j is the average absolute error of thejth formant,F̂i
j
andF j

i are the estimated and hand

labeled formant trajectories of thejth formant at framei respectively andNc is the number

of frames in which the error is calculated. As mentioned earlier, the average absolute error

is calculated only for the vowel-like regions of the utterances for the first three formants. In

order to include effects of missed formants we define the coverage ratio of each formant by

simply computing the ratio of the length of the formant trajectory produced by Dirichlet Based

Formant Tracker (DBFT) and the whole length of the section inwhich the average error is

calculated. In the given figures, following vectors are defined in order to provide information
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about the tracking performance of the algorithms in the vowel-like regions as follows.

EDBFT , [E1E2E3] (3.27)

whereEi ’s, i = 1, .., 3, are calculated by using the DBFT formant trajectories.

EWS , [E1E2E3] (3.28)

whereEi ’s, i = 1, .., 3, are calculated by using the WaveSurfer formant trajectories.

EDBFT andEWS are the average absolute error vectors for the estimated formants of DBFT

and the Wavesurfer respectively in vowel-like regions of the whole utterance.CDBFT is the

stacked vector holding the coverage ratio of the formants ofDBFT in vowel-like regions of

the whole utterance.

Firstly, an example utterance is given in which the change inthe number of formants can be

clearly observed. In Figure 3.2, the formant trajectories of DBFT (’dotted line’), WaveSurfer

(’solid line’) and the hand labeled database (’dashed line’) are superimposed on the spectrum

of the utterance ’his head flopped back’ taken from the TIMIT database. At the beginning

of the sentence, both the proposed Dirichlet Based Formant Tracker (DBFT) and WaveSurfer

successfully detect and track the four formants until the start of the fricative sound —z—. Be-

tween 0.25s and 0.35s, DBFT drops two low frequency formantsand initiates a new formant

located around 4.5KHz whereas WaveSurfer misses the high frequency formant as it tends to

preserve the continuity of the previously initiated formants. After the sound —z—, in DBFT

output, the disappearing formants reappear and the high frequency formant disappears in the

spectrum. During the interval [0.5s-0.65s], DBFT drops thelow frequency formant and tracks

the three high frequency formants. Between 0.64s and 0.77s DBFT tracks three formants and

misses the formant located around 2.5KHz which is not as clear. During the closure part

of the plosive sound —b— (time [0.77s-0.91s]), no formant exists in the spectrum due to

complete constriction of the vocal tract. In this region DBFT tracks no formants, whereas

WaveSurfer produces distorted formant trajectories as it tries to track non-existing four for-

mants. During [0.91s-1.1s], five formants are tracked for the vowel —ae— by DBFT, on the

other hand WaveSurfer misses one of the high frequency formants as it tracks fixed number

of four formants. At time 1.1s, two of the formants tend to merge in the spectrum, which is

known as the ’velar pitch’ phenomenon that occurs before thevelar consonant —k—. Both

WaveSurfer and DBFT manage to track the changes successfully for these formants. Posterior

to the closure part of the consonant —k—, DBFT initiates a newformant around 2KHz which
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is the right location coinciding with the formant loci. In vowel-like regions of the utterance,

formant trajectories found by both algorithms coincide with the hand labeled trajectories.

For this speech utterance, the coverage ratio of DBFT is 95%,99% and 80% for the first

three formants respectively. The coverage ratio of the third formant is lower than the first

two due to the missed track between 0.64s and 0.77s mentionedabove. The average absolute

error of DBFT, is 103Hz, 68Hz and 130Hz for the first three formants respectively. For the

same utterance average absolute error of WaveSurfer is 99Hz, 54Hz and 122Hz. Considering

the fact that WaveSurfer is known to be a good formant trackerin vowel-like regions (see:

[9], [35]), the performance of the DBFT algorithm seems satisfactory. Average absolute error

vectors of DBFT and Wavesurfer are given with the coverage ratio of DBFT below each figure

in order to provide an information about the tracking performance of the algorithm for a given

speech utterance.

Figure 3.3 is the speech utterance ’Where were you while we were away’ which is composed

of all voiced sounds. This example differs from the previous one as it includes long formant

trajectories. The proposed method manages to track the formant trajectories continuously in

most of the regions. WaveSurfer tracks four formants accurately but misses the fifth one as it

tries to follow only four formants.

Figure 3.4 is the output of the algorithm for the speech utterance ’Books are for schnooks’

from the TIMIT database. The spectrogram representation ofthis utterance is given in Figure

3.10.

3.4.1 Order Selection Problem

One of the main difficulties encountered by a fixed number of formants tracker is to make

a decision on the number of formants that are expected to exist in the spectrum in advance.

This problem can be examined clearly in Figures 3.5 and 3.6. In Figure 3.5, the number of

formants to be tracked by the WaveSurfer is fixed to 4. At the beginning of the utterance there

exist 5 formants which causes the Wavesurfer algorithm to switch the formant trajectories

among each other. More specifically, one can observe that at 0.5s the estimated formant

trajectories around 2.5KHz and 3.0KHz make a jump to the formants at higher frequencies

hence the third formant is missed during 0.5 and 0.7s. In Figure 3.6 the number of formants
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to be tracked by the WaveSurfer is fixed to 5. In this case the algorithm produces a redundant

track (second formant) at the beginning of the utterance which causes errors (abrupt jumps

and track changes) during the whole utterance. The output ofDBFT is also depicted on the

same figures ’dotted line’. The algorithm successfully tracks the formants in both cases as

it is capable of determining the number of formants automatically and dynamically, which is

claimed to be the main advantage of our approach in tracking formants.

3.4.2 Nasal Sounds

In nasal sounds, the air path of speech production mechanismincludes the nasal cavity there-

fore the formants structure is changed. The resonance frequencies of the nasal cavity are

different from the oral cavity and this fact causes difficulties when the formant tracks are con-

sidered to be fixed and continuous. The zoomed sections of Figure 3.7 that are given in Figure

3.8 are the examples of the mentioned cases. As can be seen from these figures, Wavesurfer

looses the trajectory of the second formant because of the extra formant produced during the

nasal sound. On the other hand the DBFT manages to follow the trajectories given by the

hand labeled data correctly, and it initiates and deletes the extra formant successfully.

3.4.3 Spectrogram Representation

Figure 3.9 and 3.10 show a comparison of the original magnitude spectrogram and the esti-

mated spectrogram. In a single frame, proposed method represents the noisy DFT as a mixture

of Gaussians as shown in Figure 3.11. The number of Gaussiansin the mixture is not fixed

and it changes dynamically in time. As can be seen from the figures, the resulting estimation

represents the spectrum with a good performance. It is also worth mentioning that the spectro-

gram is represented as an analytical expression which can later be used as an approximation

of the actual one in further processing of the signal, like synthesis, recognition, coding, etc.

1Definitions forEDBFT, EWS andCDBFT are given in equations (3.27), (3.28) and the paragraph below.
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Figure 3.2: DBFT’s (white dotted line), hand-labeled (red dashed line) and WaveSurfer’s (solid line) formant trajectories superimposed on the spectrogram

of the utterance “His head flopped back”

(TIMIT \Train\dr6\mabc0\SI1620.WAV) from TIMIT database.EDBFT=[103 68 130],EWS=[99 54 122] andCDBFT=[95 99 80]1
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Figure 3.3: DBFT’s (white dotted line), hand-labeled (red dashed line) and WaveSurfer’s (solid line) formant trajectories superimposed on the spectrogram

of the utterance “Where were you while we were away?”

(TIMIT \Test\dr8\mjln0\SX9.WAV) from TIMIT database.EDBFT=[89 73 110],EWS=[62 65 73] andCDBFT=[100 90 99]1
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Figure 3.4: DBFT’s (white dotted line), hand-labeled (red dashed line) and WaveSurfer’s (solid line) formant trajectories superimposed on the spectrogram

of the utterance “Books are for schnooks”

(TIMIT \Test\dr1\mwbt0\SI2183.WAV) from TIMIT database.EDBFT=[109 63 120],EWS=[85 46 77] andCDBFT=[100 100 100]1
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Figure 3.5: DBFT’s (white dotted line), hand-labeled (red dashed line) and WaveSurfer’s (solid line) formant trajectories superimposed on the spectrogram

of the utterance “A few years later the dome fell in”

(TIMIT \Test\dr2\mwew0\SI731.WAV) from TIMIT database.EDBFT=[80 55 114],EWS=[78 43 299] andCDBFT=[97 97 85]1

61



q ay ey tclt epiq eh v r iy q oy s tclt axrq ao n ao r ah s pclp l ey

Freg
uenc

y (H
z)

Time (sec)
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 3.6: DBFT’s (white dotted line), hand-labeled (red dashed line) and WaveSurfer’s ( solid line) formant trajectories superimposed on the spectrogram

of the utterance “I ate every oyster on Nora’s plate.” (TIMITTrain\dr7\fmah1\SX249.WAV) from TIMIT database.EDBFT=[74 122 95],EWS=[52 70

63] andCDBFT=[100 100 99]1. For this utterance only, the predetermined number of formants to be tracked in WaveSurfer algorithm is fixed to five.
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Figure 3.7: DBFT’s (white dotted line), hand-labeled (red dashed line) and WaveSurfer’s (solid line) formant trajectories superimposed on the spectrogram

of the utterance “Laugh, dance, and sing if fortune smiles upon you” (TIMIT\Test\dr5\mbpm0\SX407.WAV) from TIMIT database.

EDBFT=[57 73 136],EWS=[45 53 79] andCDBFT=[96 94 87]1
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Figure 3.8: Zoomed sections ([0.85s-1.15s] and [2.15s-2.45s]) of the spectrogram given in
Figure 3.7. The output of DBFT and WaveSurfer are depicted together for the nasal sound
—ng— and —n—.

Figure 3.9: DFT spectrogram of the utterance “Books are for schnooks” from TIMIT database
plotted in 3-D.

Figure 3.10: Estimated spectrogram of the utterance “Booksare for schnooks” from TIMIT
database plotted in 3-D.
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Figure 3.11: Estimated magnitude spectrum (solid line) superimposed on DFT spectrum
(dashed line) of the frame no. 166 of the utterance “Books arefor schnooks”.
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We would like to mention some mistakes done by the algorithm as well. As it is described in

more details in Section 3.5.1, the algorithm may produce redundant tracks in some cases. The

formants centered around 1KHz at 0.15s, 2.4KHz at 0.5s of theFigure 3.7, formant centered

around 0.75KHz at 1.4s of Figure 3.5 can be shown as the examples of the redundant tracks.

A track miss might also occur and the examples are already mentioned in the results.

3.5 Discussion

3.5.1 Measurement Selection

Depending on the state space model that defines the formant dynamics and the relation be-

tween the states and the measurements, different types of measurements can be extracted

from the spectrum and can be fed to the algorithm to be classified into unknown number of

formants. Considering the joint task of spectrum representation and formant tracking, our

primary choice on the measurements is the samples generatedfrom the magnitude of the

spectrum. Although such a choice of measurements let the algorithm perform very well in

spectrum representation, it might cause undesirable effects in formant tracking. The algorithm

tends to create clusters, which are actually the formant candidates, at frequencies where the

spectrum is flat but nonzero. As stated earlier, the formantsare related to the peaks of the

spectrum, therefore the convex parts of the spectrum might not be the right place to look for

a formant candidate. On the other hand, another choice of measurements can be the peaks of

the envelope of the spectrum, which might lead the algorithmfind good formant candidates

but might cause the resulting representation of the spectrum to be oversimplified. It is also

possible to assume a non-linear state space model for the formants. The formant states can

be directly related to LPC coefficients via nonlinear equations. In that case, the sufficient

statistics for the formant states can not be calculated analytically, therefore the use of Rao-

Blackwell idea becomes impossible. The use of particle filters is still possible but may not

be desired as an increase in the performance is not guaranteed and the computational power

required for the algorithm will increase significantly.

The choice of measurements mentioned above are not the only possibilities and are actually a

small portion of all possible alternatives. The algorithm presented here stands as a generic one

and the choice on the measurements should be specified in accordance with the requirements
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of the application.

3.5.2 α Parameter

α parameter determines the probability of creating new formant candidates in the spectrum.

An increase inα will favor the particles creating new clusters from the measurements against

the particles which associates the measurements with the existing formants. The output of

the algorithm is the consistent formant trajectories of theparticles having the highest weight

(i.e. consistent formant trajectories of the most likely association hypothesis). Even in case of

extra formant candidates are created, the resulting candidates must be time consistent (must

last for multiple frames and must be supported by sufficiently large number of measurements)

to appear at the output. Depending on the nature of the measurements, this might cause the

algorithm to produce redundant formant trajectories in thespectrum. Or in contrast, ifα

parameter is chosen to be very small, the particles which arereluctant to create new clusters

and having tendency to combine the closely spaced formants into one will be favored. In

our experiments, where the measurements are chosen to be thesamples from DFT, the value

of α does not alter the average performance significantly unlessit is increased/decreased in

the order of tens or hundreds. This makesα a sentence independent parameter and it is kept

constant in all the utterances (including females) in our experiments.

3.6 Conclusion

In this study, we successfully apply the Dirichlet Process based multi-target tracking algo-

rithm proposed in the first chapter to the problem of trackingVTR frequencies in speech

signals. Our approach allows the disappearance/reappearence of VTRs during the speech ut-

terance. Consequently, the number of VTRs that are being tracked is allowed to change in

time. DPM model enables us to represent the spectrum as a Gaussian mixture with varying

number of components. VTRs are later estimated from the spectrum representation consid-

ering the time consistency of the mixture components (formant candidates). The algorithm

is tested on real data which are the sentences from TIMIT database. The experimental re-

sults show that the algorithm performs very well in trackingvarying number of VTRs in real

speech signals making the proposed method a practical noveltool in the speech processing
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literature.
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CHAPTER 4

REGULARIZED PARTICLE METHODS FOR FILTER

DERIVATIVE APPROXIMATION

4.1 Introduction

Particle filters (PF) have efficiently been used in the state estimation problem of generalstate

space models [11]. The applicability of the PF to the complexnon-linear systems has drew

much attention and their use became widespread in many different areas. Although so much

is done for the use of PF in the state estimation problem, onlya few studies focused on their

use in the estimation of the model parameters. The existing particle filtering based parameter

estimation methods in the literature can be classified into four subgroups as follows [28].

• Bayesian or Maximum Likelihood (ML)

• Off-line(Batch) or On-line

In Bayesian approach, suitable prior distributions are defined for the unknown parameters and

inference is done from the posterior distribution. In ML based methods the likelihood of the

measurements given the parameters is maximized with respect to the unknown parameters.

The batch algorithms process the whole set of measurements to produce their estimates of the

unknown parameters. The on-line methods update their estimate of the unknown parameters

sequentially with every available measurement. Here we will consider the filter gradient based

particle methods for parameter estimation which is an on-line ML method. In this group of

algorithms, the filter derivative is approximated via particle filters by approximating either

the path density or the marginal density. The parameter estimation algorithms which tend to

approximate the path density [1] [14] suffer from the so-calleddegeneracy problemwhich re-
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sults in an accumulation of error in time. Here we suggest theuse of regularization techniques

to compensate for the error accumulation of the path based algorithms. In the context of the

path density based filter derivative approximation, two sources of error are identified in the

previous works. First type of error is the aforementioneddegeneracy problemwhich is caused

by approximating a density of growing dimension by a finite number of particles. The second

type of error will be referred as themixing problemwhich is caused by the inefficiency of the

path based algorithm by closely spacing the particles having weights with opposite signs in

filter derivative representation. The mixing problem causes an inefficient approximation of

the filter derivative as many particles whose weight might sum up to zero might be closely

spaced in a region of the state space that have low total mass.More importantly, this type of

error tends to build up in time hence the approximation erroris claimed to be less accurate

as the data length increases [36]. The method described in this chapter aims to compensate

for the error caused by themixing problem. A regularization technique is utilized in order to

prevent themixingof the particles with weights having opposite signs and the corresponding

error which would tend to accumulate in time. The regularization algorithm we use differs

from the standard regularization in that it preserves the sum of particle weights before and af-

ter the regularization. Before introducing the details, weneed to clarify the basic differences

between two particle filtering based parameter estimation methods, the path based and the

marginal PF algorithms.

4.2 Parameter Estimation using Particle Filters

The methodology addressed here is a stochastic approximation algorithm which tries to max-

imize the measurement likelihood with respect to the unknown parameters, which leads to the

maximum likelihood estimate of the unknown parameters. Theunknown parameter estimates

are found iteratively. At each iteration one tries to maximize the likelihood by updating the

latest estimates towards the local gradient direction.

θn+1 = θn + γnDn∇l(θn) (4.1)

whereθn is an estimate of the vector of unknown parametersθ at timen,∇l(θn) is the noisy es-

timate of the gradient of the likelihood functionl(θn) with respect toθ evaluated atθn, γn is the

step size andDn is a positive definite weighting matrix. ChoosingDn to be equal to identity

matrix will lead to a stochastic approximation of the steepest ascent algorithm, whereas choos-
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ing Dn as the inverse of Hessian matrix will lead to an approximation of Newton-Rhapson

method. Below we introduce the likelihood function that is intended to be maximized for

parameter estimation in the general state space model.

Consider the state space model defined by the given state dynamic equation and the measure-

ment equation.

xn|xn−1 ∼ fθ(.|xn−1) (4.2)

yn|xn ∼ gθ(.|xn) (4.3)

The first equation determines the evolution of the state by a Markov transition densityfθ(.|x).

The second equation is the measurement equation which defines the relation between the

state vectorxn and the measurementsyn by the conditional densitygθ(y|x). The measure-

mentsyn are assumed to be conditionally independent givenxn. Both f (.) andg(.) functions

may depend on unknown parametersθ and our aim is to estimateθ based on the observa-

tion sequenceyn by maximizing a series of log-likelihood functions{log pθ(y0:n)}. Notice

that the log-likelihood of the measurementsy0:n can be written as a sum of the conditional

log-likelihoods as follows.

log pθ(y0:n) =
n∑

k=0

log pθ(yk|y0:k−1) (4.4)

pθ(yn|y0:n−1) is known as the predictive likelihood and can be written as,

pθ(yn|y0:n−1) =
∫ ∫

gθ(yn|xn) fθ(xn|xn−1)pθ(xn−1|y0:n−1)dxn−1dxn. (4.5)

Defining l(θ) as

l(θ) = lim
k→∞

1
k+ 1

k∑

n=0

log pθ(yn|y0:n−1). (4.6)

Our aim is to maximizel(θ) by utilizing the aforementioned stochastic approximation algo-

rithm as follows.

θn+1 = θn + γn∇ log pθ0:n−1(yn|y0:n−1) (4.7)

whereθn−1 is the parameter estimate at timen − 1 and∇ log pθ0:n−1(yn|y0:n−1) denotes the

gradient of logpθ0:n−1(yn|y0:n−1). Provided that the step sizeγn is a positive non-increasing

sequence, such that
∑
γn = ∞ and

∑
γ2

n < ∞ it can be shown that the iterations will converge

to the set of (global or local) maxima of the functionl(θ) [4], [33]. In this approach the

numerical approximation of∇ log pθ0:n−1(yn|y0:n−1) is calculated using particle filters. Two

different approaches are given in the following sections.
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4.3 Path Based Method

In order to calculate the gradient of the predictive likelihood given by equation (4.5) within the

particle filtering context, we need the numerical approximations ofp(x0:n|y0:n) and∇p(x0:n|y0:n),

such that the approximated distribution and the derivatives can be represented by a set of par-

ticles and their weights [36].

p(x0:n|y0:n) ≃
N∑

i=1

a(i)
n δ(x

(i)
0:n) (4.8)

∇p(x0:n|y0:n) ≃
N∑

i=1

a(i)
n β

(i)
n δ(x

(i)
0:n) (4.9)

By applying the Bayes rule one can write the recursive expression for p(x0:n|y0:n) as follows.

p(x0:n|y0:n) = p(x0:n|yn, y0:n−1)

=
p(yn|x0:n, y0:n−1)p(x0:n|y0:n−1)

p(yn|y0:n−1)

=
g(yn|xn) f (xn|xn−1)

p(yn|y0:n−1)
p(x0:n−1|y0:n−1) (4.10)

One can also expressp(x0:n|y0:n) as

p(x0:n|y0:n) =
ξ(x0:n|y0:n)∫
ξ(x0:n|y0:n)dx0:n

(4.11)

where

ξ(x0:n|y0:n) , g(yn|xn) f (xn|xn−1)p(x0:n−1|y0:n−1) (4.12)

is defined as the unnormalized density. The gradient ofp(x0:n|y0:n) is equal to

∇p(x0:n|y0:n) =
∇ξ(x0:n|y0:n)∫
ξ(x0:n|y0:n)dx0:n

− p(x0:n|y0:n)

∫
∇ξ(x0:n|y0:n)dx0:n∫
ξ(x0:n|y0:n)dx0:n

(4.13)

where

∇ξ(x0:n|y0:n)

= ∇([g(yn|xn) f (xn|xn−1)]p(x0:n−1|y0:n−1))

= ∇[g(yn|xn) f (xn|xn−1)]p(x0:n−1|y0:n−1) + [g(yn|xn) f (xn|xn−1)]∇p(x0:n−1|y0:n−1)

= [g(yn|xn) f (xn|xn−1)][∇ logg(yn|xn) + ∇ log f (xn|xn−1)]p(x0:n−1|y0:n−1)

+[g(yn|xn) f (xn|xn−1)]∇p(x0:n−1|y0:n−1) (4.14)
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Substituting the particle approximations ofp(x0:n−1|y0:n−1) and∇p(x0:n−1|y0:n−1) into (4.12)

and (4.14) results:

ξ(x0:n|y0:n) =
N∑

i=1

a(i)
n−1[g(yn|xn) f (xn|xn−1)]δ(x(i)

0:n−1) (4.15)

∇ξ(x0:n|y0:n) =
N∑

i=1

a(i)
n−1[g(yn|xn) f (xn|xn−1)]×

[∇ logg(yn|xn) + ∇ log f (xn|xn−1) + β(i)
n−1]δ(x(i)

0:n−1) (4.16)

These functions are to be evaluated on the path spacex0:n, for which xn’s will be generated

from an importance distribution. Then the resulting approximations will be:

ξ(x0:n|y0:n) ≃
N∑

i=1

ã(i)
n δ(x

(i)
0:n) (4.17)

∇ξ(x0:n|y0:n) ≃
N∑

i=1

ρ
(i)
n δ(x

(i)
0:n) (4.18)

where

ã(i)
n = a(i)

n−1

g(yn|x
(i)
n ) f (x(i)

n |x
(i)
n−1)

q(x(i)
n |x

(i)
n−1, yn)

(4.19)

ρ
(i)
n = ã(i)

n [∇ logg(yn|x
(i)
n ) + ∇ log f (x(i)

n |x
(i)
n−1) + β(i)

n−1] (4.20)

Weight update equation for (4.8) and (4.9) will be as follows(see equations (4.11) (4.13)).

a(i)
n =

ã(i)
n∑N

j=1 ã( j)
n

(4.21)

a(i)
n β

(i)
n =

ρ
(i)
n∑N

j=1 ã( j)
n

− a(i)
n

∑N
j=1 ρ

( j)
n

∑N
j=1 ã( j)

n

(4.22)

The gradient of the log-likelihood, also known as thescore, can be approximated through the

particle approximation of the unnormalized density and itsderivative as:

∇ log p(yn|y0:n−1) =
∇p(yn|y0:n−1)
p(yn|y0:n−1)

=

∫
∇ξ(x0:n|y0:n)dx0:n∫
ξ(x0:n|y0:n)dx0:n

≃

∑N
j=1 ρ

( j)
n

∑N
j=1 ã( j)

n

(4.23)
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4.4 Marginal Particle filter

In standard sequential Monte Carlo (SMC), the joint posterior density of the state is approxi-

mated by using sequential importance sampling. In this approach, the dimension of the target

density (joint posterior density) grows with each time step. This simple fact causes the algo-

rithm to degenerate quickly and the use of resampling strategies becomes necessary in order

to ensure a reasonable approximation of the target density.Although the standard SMC ap-

proximates the joint posterior density, only the filtering density is of interest in most of the

applications. Marginal particle filter [30] approximates directly the marginal filtering density

where the dimension is fixed and it produces estimates with smaller variance than the conven-

tional particle filters. The second method that we will consider here is similar to the previous

one except that the recursive expressions are derived for the marginal of the filtering density

(i.e., p(xn|y0:n) instead ofp(x0:n|y0:n)) and its derivative∇p(xn|y0:n) [36].

Assume at timen−1 we have the particle approximations forp(xn−1|y0:n−1) and∇p(xn−1|y0:n−1).

p(xn−1|y0:n−1) ≃
N∑

i=1

a(i)
n δ(x

(i)
n−1) (4.24)

∇p(xn−1|y0:n−1) ≃
N∑

i=1

a(i)
n β

(i)
n δ(x

(i)
n−1) (4.25)

We write p(xn|y0:n) as

p(xn|y0:n) =
ξ(xn|y0:n)∫
ξ(xn|y0:n)dxn

(4.26)

where

ξ(xn|y0:n) , g(yn|xn)
∫

f (xn|xn−1)p(xn−1|y0:n−1)dxn−1 (4.27)

is defined as the unnormalized density. The gradient ofp(xn|y0:n) is equal to

∇p(xn|y0:n) =
∇ξ(xn|y0:n)∫
ξ(xn|y0:n)dxn

− p(xn|y0:n)

∫
∇ξ(xn|y0:n)dxn∫
ξ(xn|y0:n)dxn

(4.28)

where

∇ξ(xn|y0:n)

= g(yn|xn)
∫

f (xn|xn−1)[∇ logg(yn|xn) + ∇ log f (xn|xn−1)]p(xn−1|y0:n−1)dxn−1

+ g(yn|xn)
∫

f (xn|xn−1)∇p(xn−1|y0:n−1)dxn−1 (4.29)
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Substituting the particle approximations ofp(xn−1|y0:n−1) and∇p(xn−1|y0:n−1) into (4.27) and

(4.29) results:

ξ(xn|y0:n) =
N∑

k=1

a(k)
n−1[g(yn|xn) f (xn|x

(k)
n−1)]

∇ξ(xn|y0:n) =
N∑

k=1

a(k)
n−1[g(yn|xn) f (xn|x

(k)
n−1)][∇ logg(yn|xn) + ∇ log f (xn|x

(k)
n−1) + β(k)

n−1]

These functions are to be evaluated on the path spacexn, for which xn’s will be generated

from an importance distribution. Then the resulting approximations will be:

ξ(xn|y0:n) ≃
N∑

i=1

ã(i)
n δ(x

(i)
n ) (4.30)

∇ξ(xn|y0:n) ≃
N∑

i=1

ρ
(i)
n δ(x

(i)
n ) (4.31)

where

ã(i)
n =

g(yn|x
(i)
n )
∑N

k=1 a(k)
n−1 f (x(i)

n |x
(k)
n−1)

∑N
k=1 q(x(i)

n |x
(k)
n−1, yn)

(4.32)

ρ
(i)
n =

g(yn|x
(i)
n )
∑N

k=1 a(k)
n−1 f (x(i)

n |x
(k)
n−1)[∇ logg(yn|xn) + ∇ log f (x(i)

n |x
(k)
n−1) + β(k)

n−1]
∑N

k=1 q(x(i)
n |x

(k)
n−1, yn)

(4.33)

Weight update equation for (4.24) and (4.25) will be as follows (see equations (4.26) (4.28)).

a(i)
n =

ã(i)
n∑N

j=1 ã( j)
n

(4.34)

a(i)
n β

(i)
n =

ρ
(i)
n∑N

j=1 ã( j)
n

− a(i)
n

∑N
j=1 ρ

( j)
n

∑N
j=1 ã( j)

n

(4.35)

The gradient of the log-likelihood can be approximated through the particle approximation of

the unnormalized density and its derivative as:

∇ log p(yn|y0:n−1) =
∇p(yn|y0:n−1)
p(yn|y0:n−1)

=

∫
∇ξ(xn|y0:n)dxn∫
ξ(xn|y0:n)dxn

≃

∑N
j=1 ρ

( j)
n

∑N
j=1 ã( j)

n

(4.36)

4.5 Path-based Approach vs Marginal Approach

The main difference between the path based and the marginal algorithm arises from the di-

vert approaches in approximating the filter derivative to compute the log-likelihood gradient.
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In [36] and [37] the authors claim that the algorithms which attempt to approximate the fil-

ter gradient through the sequence of path densities will produce error which accumulates in

time. The rationale behind this idea stems from the fact thatthe approximated path density

p(x0:n|y0:n) is growing in dimension hence the approximation with a finite number of particles

will fail to represent the joint distribution. On the other hand, in standard SMC the approx-

imation to the densityp(xn|y0:n) which is obtained through the path densityp(x0:n|y0:n) by

discarding the firstn− 1 states is considered to be avalid approximation of the filtering den-

sity since a finite number of particles are used to represent adensity with a fixed dimension.

More specifically, it can be proved that the particle approximation ofp(x0:n|y0:n) satisfies the

following bound [2]. For anyn ≥ 1 and any test functionfn : Xn → R there exist some

constantcn,θ( fn) such that for anyN ≥ 1

E[(
∫

Xn
fn(x0:n)[ p̂N

θ (x0:n|y0:n) − pθ(x0:n|y0:n)])2] ≤
cn,θ( fn)

N
(4.37)

where N is the number of particles. The problem with the abovebound is that the constant

cn,θ( fn) typically grows exponentially with n. So the error bound increases in time, therefore

a proper approximation of the joint density{p(x0:n|y0:n)} can not be obtained using fixed and

finite number of particles. A similar bound can be derived forfixed-lag density estimates

(including the marginal density) where the bound is not a function of n but dependant on the

fixed-lag.

E[(
∫

Xn
fn(xn−L:n)[ p̂N

θ (xn−L:n|y0:n) − pθ(xn−L:n|y0:n)])2] ≤
dL,θ( fn)

N
(4.38)

whereL is a positive integer representing the fixed-lag,fn : Xn → R is any test function

anddL,θ( fn) is the error bound which is fixed for alln. Particle filters are able to represent

the densitiesp(xn−L|y0:n) with fixed dimensionL, with finite error which goes to zero in the

limiting case asN → ∞. Therefore the standard path based particle filtering method can

properly approximate the filtering densityp(xn|y0:n) by neglecting the firstn − 1 states to

obtain the marginal density.

Another main difference between the two methods is the resulting representations of the filter

gradient. Path based methodmixes(or closely spaces) the positively and negatively signed

particles in the approximation of the filter gradient. That results an inefficient use of particles

and the approximation error tends to increase in time [38]. On the other hand, the marginal

algorithm keeps the positively and negatively signed particles in separate regions of the state

space. This difference is illustrated in Figures 4.1 and 4.2.
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Figure 4.1: Filter derivative estimate for the marginal filter for a linear Gaussian model where
the true derivative is plotted as the red-line.
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Figure 4.2: Filter derivative estimate for the path-based algorithm for a linear Gaussian model
where the true derivative is plotted as the red-line.

The experimental results show that including regularization steps in filter derivative compu-

tations can prevent the error caused by the mixing problem which is expected to build up in

time and it is possible to keep the log-likelihood gradient approximation of the path density

within a neighborhood of the true value.
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4.6 Proposed Method

4.6.1 Regularization

Particle filters approximate the posterior distributions by a set of discrete points and their

weights. However, it is also possible to construct a continuous approximation of the target

density by using kernel smoothing techniques. Adding a kernel smoothing step to the PF

leads to regularized particle filters [9]. In the smoothing stage, Dirac delta functions in the

density approximation are replaced by kernel functions.

p(xn|y0:n) ≃
N∑

i=1

ã(i)
n δ(xn − x(i)

n ) (4.39)

pc(xn|y0:n) ≃
N∑

i=1

ã(i)
n Kh(xn − x(i)

n ) (4.40)

whereKh(x) = h−NxK( x
h), Nx is the dimension of the state,K being a symmetric, unimodal

and smooth probability density function such that
∫ ∞
∞

K(x)dx = 1 andh > 0 being the band-

width or the smoothing parameter of the kernel. The limit ash tends to zero results sum of

Dirac delta functions where as a large value forh would lead to an approximation where the

details are obscured. The resulting continuous approximation will inherit all the continuity

and differentiability properties of the kernel. If a Gaussian kernel is used the resulting ap-

proximation will be a smooth curve having derivatives of allorders. Another famous choice

of kernel is Epanechnikov kernel.

K(x) =



Nx+2
2VNx

(1− ‖x‖2) if ‖x‖ < 1

0 otherwise

Here we suggest the use of regularization techniques to improve the approximation of the

filter derivative for the path-based density. We aim to improve the filter derivative approxi-

mation of the path based algorithm by using regularization techniques. In the modification

scheme we propose, we apply kernel smoothing to the unnormalized densityξ(x0:n|y0:n) and

its derivative∇ξ(x0:n|y0:n) where the mixing problem occurs. In the smoothing stage, wein-

terchange each particle with a kernel and distribute its weight among all the particles such

that the total weight sum of the representations for both theunnormalized densityξ(x0:n|y0:n)

and its derivative∇ξ(x0:n|y0:n) are preserved. The kernel smoothing method we use differs
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from the standard method in that if, in the standard regularization, new weights of the (old)

particles are calculated, the sum of these might not be equalto the sum of the weights before

regularization. The modified smoothing stage is described below.

At time n suppose we have the representation of the unnormalized density ξ(x0:n|y0:n) and its

derivative∇ξ(x0:n|y0:n) such that

ξ(x0:n|y0:n) ≃
N∑

i=1

a(i)
n δ(x0:n − x(i)

0:n) (4.41)

∇ξ(x0:n|y0:n) ≃
N∑

i=1

ρ
(i)
n δ(x0:n − x(i)

0:n) (4.42)

(4.43)

After the smoothing stage we use the same set of particles butwith different weights in the

representation of the functions.

ξ(x0:n|y0:n) ≃
N∑

i=1

ā(i)
n δ(x0:n − x(i)

0:n) (4.44)

∇ξ(x0:n|y0:n) ≃
N∑

i=1

ρ̄
(i)
n δ(x0:n − x(i)

0:n) (4.45)

(4.46)

whereā(i)
n andρ̄(i)

n are calculated according to

ā(i)
n =

N∑

k=1

a(k)
n K(x(i)

n − x(k)
n )

∑N
j=1 K(x(k)

n − x( j)
n )

(4.47)

ρ̄
(i)
n =

N∑

k=1

ρ
(k)
n K(x(i)

n − x(k)
n )

∑N
j=1 K(x(k)

n − x( j)
n )

(4.48)

It is easy to check that
∑N

i=1 ā(i)
n =
∑N

i=1 a(i)
n and

∑N
i=1 ρ̄

(i)
n =
∑N

i=1 ρ
(i)
n .

N∑

i=1

ã(i)
n =

N∑

i=1

N∑

k=1

a(k)
n K(x(i)

n − x(k)
n )

∑N
j=1 K(x(k)

n − x( j)
n )

(4.49)

=

N∑

k=1

a(k)
n

∑N
i=1 K(x(i)

n − x(k)
n )

∑N
j=1 K(x(k)

n − x( j)
n )

=

N∑

k=1

a(k)
n (4.50)

This step aims to decrease the inefficiency of the path based methods in representing the filter

derivative by mixing the oppositely signed particles. Consider the example given in the figures

below.
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Figure 4.3: Filtering density estimate and regularized filtering density estimate for the path-
based algorithm.
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Figure 4.4: Filter derivative estimate and regularized filter derivative estimate for the path-
based algorithm.

The resulting approximation is the representation of a derivative of a probability measure

where the particles having opposite signs are placed in separate regions of the state space. The

derivative of a probability measure is a signed measure and can be expressed as a difference

of two probability measuresv = c(π1 − π2). This approach is known as weak derivative

decomposition and it is possible to decompose a given signedmeasure by using arbitrarily

many different probability measures. From weak derivative point of view, this representation

corresponds to Hahn-Jordan decomposition of the filter derivative such that the probability

measures of the decomposition are concentrated in disjointregions [38] for an appropriate

kernel bandwith. Consequently, the algorithm does not suffer from themixing problem.

The mixing problemof the path based algorithm is caused by the fact that in this method
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each particle and its weight are updated separately. Depending on the MC realization at the

sampling stage, two particles which are closely spaced might have opposite signs. By adding

the regularization step, the weights are computed by considering all the particles hence the

effects of MC realization is removed in weight calculations. This results in more consistent

estimates of the filter gradient. Consider the example givenbelow. Here we compare log-

likelihood gradient estimate logpθ(y0:n) =
∑n

k=0 log pθ(yk|y0:k−1) of 30 runs of the path based

and the regularized path based algorithm. The linear Gaussian model given in 4.7 is used in

our example. It is evident that the regularized path based method produces more consistent

estimates having smaller variance.
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Figure 4.5: Log-likelihood gradient estimate of the path based method on multi-runs. Log-
likelihood gradient w.r.tθ = [φ σv σw] are depicted respectively from top to bottom.
’Pink’ line indicates the approximated log-likelihood gradient by the path based algorithm.
’Green’ line indicates the true log-likelihood gradient computed by Kalman filter.
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Figure 4.6: Log-likelihood gradient estimate of the regularized path based method on multi-
runs. Log-likelihood gradient w.r.tθ = [φ σv σw] are depicted respectively from top to
bottom. ’Blue’ line indicates the approximated log-likelihood gradient by the path based
algorithm. ’Green’ line indicates the true log-likelihoodgradient computed by Kalman filter.

4.6.2 Bandwidth selection

Problems with the regularization methods are that they introduce bias in the log-likelihood

derivative and one should determine the appropriate kernelbandwidth to approximate the

continuous distribution. In our method, a small bandwidth would lead to the same repre-

sentation of the path based method. On the other hand, choosing a large bandwidth would

cause the resulting approximation to loose the important details of the filter gradient leaving

an oversimplified representation behind. Adding the regularization step with a poor choice on

the bandwidth would result in a poor approximation of the derivative and causes a bias in the

log-likelihood gradient estimates.
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4.7 Simulation Results

4.7.1 Linear Gaussian Model

Here we illustrate the effects of regularization on the gradient estimate of a linear Gaussian

state space model. Consider the model given below.

xn+1 =φxn + vn (4.51)

yn =xn + wn (4.52)

wherevn ∼ N(0, σv) and wn ∼ N(0, σw). The unknown parameters areθ = [φ, σv, σw].

For this linear Gaussian model, it is possible to compute thederivative of the log-likelihood

analytically using Kalman filter and its derivative. We compare the log-likelihood gradient

estimate (score function) of the standard path based methodand the regularized path based

method depicted with the true value of the score in Figure 4.14. The results show that adding

the regularization step to the path based algorithm will produce more consistent approxima-

tion of the log-likelihood gradient.

In our second experiment we assumed that the parameters of the modelθ∗ = [φ, σv, σw]

are unknown and needed to be estimated online. The values of the true parameters are set

to θ = [0.8, 0.1, 0.1]. Both the regularized algorithm and the path based algorithm are run

with 500 particles. The variable step size is chosen asγn = γ0n−
5
6 . A total number of 50

MC runs are made for each algorithm and we compare the RMS error between the estimated

values of the parameters and the true values in Figures 4.8 and 4.9. In the MC runs, the

regularized path based method produces more consistent estimates of the parameters with a

shorter convergence time and reduced RMS error when compared to the standard path based

method. Typical outputs of the algorithms on a single run arealso given in Figures 4.10 and

4.11. The noisy behavior of the unmodified path based method is evident in its single run

output.
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Figure 4.7: Comparison of the algorithms: Three figures, corresponds to the log-likelihood
derivative w.r.t.φ, σv andσw. The red line is the true log-likelihood gradient. Green line is
the approximation found by using the marginal density. The blue line, which represents the
regularized path based method, remains within the neighborhood of the true log-likelihood
gradient, whereas the black line, which represents the standard path based method, degener-
ates in time.
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Figure 4.8: Comparison of the algorithms: RMS error of the path based algorithm for the
estimation of the unknown parametersφ, σv andσw are depicted in ’blue’, ’green’ and
’red’ lines respectively.
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Figure 4.9: Comparison of the algorithms: RMS error of the regularized path based algorithm
for the estimation of the unknown parametersφ, σv andσw are depicted in ’blue’, ’green’
and ’red’ lines respectively.
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Figure 4.10: A typical single run of the path based algorithmfor the estimation of the un-
known parametersφ, σv andσw. The estimated and true values are depicted in ’blue’,
’green’ and ’red’ lines respectively.
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Figure 4.11: A typical single run of the regularized path based algorithm for the estimation
of the unknown parametersφ, σv andσw. The estimated and true values are depicted in
’blue’, ’green’ and ’red’ lines respectively.
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4.7.2 Jump Markov Linear Systems

4.7.2.1 Switching Noise Model

Here we illustrate the performance improvement gained by modifying the path based method

on a switching noise model. Consider the jump Markov system given below.

xn+1 =φxn + σznvn (4.53)

yn =xn + wn (4.54)

wherevn ∼ N(0, 1) andwn ∼ N(0, 10). The process noise variance is switching according to

underlying Markov chain. The transition probability matrix of the Markov chain is

p(zn|zn−1) =


0.9 0.1

0.1 0.9

 . (4.55)

wherezn ǫ {1, 2}. The unknown parameters areθ = [φ σ1 σ2]. True values of the

unknown parameters are set toθ∗ = [0.9 1.3 0.5]. The effect of regularization can be

clearly observed by comparing the log-likelihood derivative approximation of the path based

algorithm and the regularized algorithm. The standard path-based method diverges in time

whereas the approximation of the regularized path based method remains within the neighbor-

hood of the true log-likelihood derivative which in this example is approximated by running

the marginal algorithm with too many particles (blue line).Output of the algorithm that uses

GPB approximation in filter derivative computations is alsodepicted on the figures.
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Figure 4.12: Comparison of the algorithms: The log-likelihood derivative w.r.t.σ1. The pink
line, which represents the regularized path based method, remains within the neighborhood
of the true log-likelihood gradient (blue line), whereas the green line, which represents the
standard path based method, degenerates in time.
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Figure 4.13: Comparison of the algorithms: The log-likelihood derivative w.r.t.σ2. The pink
line, which represents the regularized path based method, remains within the neighborhood
of the true log-likelihood gradient (blue line), whereas the green line, which represents the
standard path based method, degenerates in time.
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Figure 4.14: Comparison of the algorithms: The log-likelihood derivative w.r.t.φ. The pink
line, which represents the regularized path based method, remains within the neighborhood
of the true log-likelihood gradient (blue line), whereas the green line, which represents the
standard path based method, degenerates in time.
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4.8 Conclusion

A new method is proposed for the static parameter estimationof general state space systems

via particle filters. The method proposed here approximatesthe path-density and its derivative

by a set of particles and utilize kernel smoothing techniques to prevent the degeneracy of the

algorithm which would cause error accumulation and leads the algorithm to diverge in time.

The regularization technique we propose is special in that it keeps the weight sum constant

before and after the regularization step unlike the standard regularization methods. Our ex-

periments show that the proposed algorithm is capable of approximating the filter gradient

with a good performance. Moreover we show that including theproposed regularization step

in the algorithm results more consistent approximation of the log-likelihood gradient. The

algorithm has been shown via a standard example to reduce theRMS parameter estimation

error compared to the unmodified path based method. It is alsoimportant to emphasize that

our approach illustrates that the path based methods can be utilized in parameter estimation

with much better accuracy than the ones in the literature.
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CHAPTER 5

CONCLUSION

In this research we study a number of problems which involve complex non-linear models

which necessitate utilization of particle filtering techniques in the solution. We propose novel

ideas in the solution of these problems and contribute to theexisting methods in the literature.

The main contributions of the thesis work can be summarized as follows.

• A new probabilistic model for full Bayesian multi-target tracking is proposed. The re-

sulting algorithm is a complete multi-target tracking system which uses time varying

Dirichlet process based models. The proposed algorithm is quite novel in many ways

as it combines state of the art techniques with novel ideas. In our experiments we show

that the algorithm performs better than joint probabilistic data association (JPDA) and

global nearest neighborhood (GNN) algorithms which use standard (M/N) ad-hoc logic

for track initiation and deletion procedures. In addition to its capability of constructing

a mathematical model for track deletion/initiation tasks, the proposed method can keep

multiple hypotheses for track to measurement/clutter association and it is able to out-

perform both JPDA and GNN algorithms under heavy clutter.

• Dirichlet process based multi-target tracking algorithm is successfully adapted for track-

ing variable number of vocal tract resonance frequencies inspeech signal spectrum. The

proposed method is an original approach to the formant tracking problem as it repre-

sents the spectrum as a Gaussian mixture with varying numberof components. The

capability of the algorithm in formant tracking is shown on an extensive set of real data

and the resulting paper is accepted to be published in IEEE Transactions on Audio,
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Speech and Language Processing.

• A new method is proposed for the static parameter estimationof general state space

systems via particle filters. The method proposed here approximates the path-density

and its derivative by a set of particles and utilize kernel smoothing techniques to prevent

the degeneracy of the algorithm which would cause error accumulation and leads the

algorithm to diverge in time. The experimental results showthat including the proposed

regularization method in the path based parameter estimation algorithm will produce

more consistent estimates and reduce the RMS parameter estimation error compared to

the unmodified path based algorithm.
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APPENDIX A

DETAILS OF THE ALGORITHM IN APPLICATION TO

NONLINEAR MODELS

Algorithm:

• Step 1 Initialization

• For i = 1, ..,N

– Do w(i)
0 ←

1
N

• Step 2 Iterations

• For t = 1, 2, . . . do

– For each particlei = 1, ..,N do

∗ For k = 1, . . . , n, samplẽc(i)
k,t ∼ q(ck,t |yk,t, c̃

(i)
1:k−1,t, c

(i)
t−r :t−1, x

(i)
t−1)

∗ For j ∈ c(i)
t−r :t−1, samplẽx(i)

j,t ∼ q(x j,t |x
(i)
j,t−1, yt, c̃

(i)
t )

∗ For j ∈ c(i)
t−r :t−1 ∩ c̃(i)

t , samplẽx(i)
j,t ∼ q(x j,t |yt, c̃

(i)
t )

– For i = 1, ..,N, update the weights as follows

w̃(i)
t ∝ w(i)

t−1

∏n
k=1 p(yk,t |̃c

(i)
k,t ,̃x

(i)
t )
∏n

k=1 Pr(̃c(i)
k,t |̃c

(i)
1:k−1,t ,c

(i)
t−r:t−1)

∏n
k=1 q(̃c(i)

k,t |yk,t ,̃c
(i)
k−1,t ,c

(i)
t−r:t−1,x

(i)
t−1)

∏
j∈c(i)

t−r:t−1
p(̃x(i)

j,t |x
(i)
j,t−1)

∏
j∈c(i)

t−r:t−1∩̃c(i)
t

p0(̃x(i)
j,t )

∏
j∈c(i)

t−r:t−1
q(̃x(i)

j,t |x
(i)
j,t−1,yt ,̃c

(i)
t )
∏

j∈c(i)
t−r:t−1∩̃c(i)

t

q(̃x(i)
j,t |yt ,̃c

(i)
t )

with
∑N

i=1 w̃(i)
t = 1.

– ComputeNeff. If Neff ≤ η, the duplicate the particles with large weight and re-

move the particles with small weights, resulting in a new setof particles denotes

·
(i)
t (without a ·̃) with weightsw(i)

t = 1/N. Otherwise, rename the particles by

removing thẽ·.
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At time step t, assume that we have N particles,{x(i)
t−1}

N
i=1 and their weights,{w(i)

t−1}
N
i=1 to repre-

sent the posterior density. Let us define the state vector of each particle as:

x(i)
t =
[
x̄(i)

1,t · · · x̄
(i)
l,t

]T

wherel is the number of clusters/targets. Firstly the time update of the EKF’s are done for

each cluster of each target. Letµi
j,t andΣi

j,t represent the mean vector and the covariance

matrix of the EKF’s. In the prediction step the values are setto:

µi
j,t = Ftx

(i)
j,t−1, Σ

i
j,t = Qt

The measurement prediction density is approximated by a single Gaussian,N(g(µi
j,t), (HΣ

i
j,tH
′+

R)), whereg(.) is the non-linear function of the state andH is the Jacobian evaluated atµ(i)
j,t.

After the prediction step is completed, the allocation variableck,t is sampled from the optimal

importance density.

Sampling from optimal importance density: p(̃ck,t |yk,t, c̃
(i)
1:k−1,t , c

(i)
t−r :t−1, x

(i)
t−1)

One can factor the optimal importance density as:

p(̃ck,t |yk,t, c̃
(i)
1:k−1,t, c

(i)
t−r :t−1, x

(i)
t−1) ∝ p(yk,t |̃ck,t, c̃

(i)
1:k−1,t, c

(i)
t−r :t−1, x

(i)
t−1) × p(ck,t |c1:k−1,t, ct−r :t−1)

Prior is trivial, and the likelihood is:

p(yk,t |̃ck,t, c̃
(i)
1:k−1,t , c

(i)
t−r :t−1, x

(i)
t−1) = N(g(µ(i)

j,t),S j,t)

whereµ(i)
j,t,S j,t are the mean and the innovation covariance calculated by EKFusing the pre-

vious measurements assigned to that cluster. Ifck is a new cluster, the likelihood is calculated

by initiating an EKF with meanx0 and and covarianceP0. More specifically one can write,

i f ck,t ∈ (ct−r :t−1 ∪ c1:k−1,t),

p(yk,t |̃ck,t, c̃
(i)
1:k−1,t, c

(i)
t−r :t−1, x

(i)
t−1) = N(g(Ft x0), [H(FtP0F′t + Q)H′ + R])

After ck,t is sampled, the EKF of the corresponding cluster is immediately updated by using

the measurementyk,t.

Sampling from p̂(x(i)
j,t |yt, x

(i)
j,t−1, c̃

(i)
t )

Each sample is generated from the density approximated by the EKF.

p̂(x(i)
j,t |yt, x

(i)
j,t−1, c̃

(i)
t ) = N(µ(i)

j,t ,Σ
(i)
j,t)
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Calculating the Measurement Likelihood p̂(yk,t |ck,t, x
(i)
j,t)

p̂(yk,t |ck,t, x
(i)
j,t) = N(g(x(i)

k,t),R)

Calculating the prior p̂(x(i)
j,t |x

(i)
j,t−1)

p̂(x(i)
j,t |x

(i)
j,t−1) = N(g(Ft x

(i)
j,t−1),Q)

After the sampling stage is completed, the weight update is done by using the given equation.

w̃(i)
t ∝ w(i)

t−1

∏n
k=1 p(yk,t |̃c

(i)
k,t ,̃x

(i)
t )
∏n

k=1 Pr(̃c(i)
k,t |̃c

(i)
1:k−1,t ,c

(i)
t−r:t−1)

∏n
k=1 q(̃c(i)

k,t |yk,t ,̃c
(i)
k−1,t ,c

(i)
t−r:t−1,x

(i)
t−1)

∏
j∈c(i)

t−r:t−1
p(̃x(i)

j,t |x
(i)
j,t−1)

∏
j∈c(i)

t−r:t−1∩̃c(i)
t

p0(̃x(i)
j,t )

∏
j∈c(i)

t−r:t−1
q(̃x(i)

j,t |x
(i)
j,t−1,yt ,̃c

(i)
t )
∏

j∈c(i)
t−r:t−1∩̃c(i)

t

q(̃x(i)
j,t |yt ,̃c

(i)
t )

In the last step, effective sample size is calculated and resampling is done if necessary.
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