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ABSTRACT 
 
 
 

DESIGN AND DEVELOPMENT OF A MECHANICALLY ADJUSTABLE 

LINEAR TORSION SPRING USING CAMS 

 
 
 

Kılıç, Mehmet 

M. Sc., Department of Mechanical Engineering 

Supervisor      : Asst. Prof. Dr. Yiğit Yazıcıoğlu 

Co-Supervisor: Asst. Prof. Dr. Dilek Funda Kurtuluş 

 
September 2009, 82 pages 

 
 
 
Linear springs with variable stiffnesses find some key roles in robotic applications. 

They are implemented into robotic devices for two main reasons, to increase energy 

efficiency of walking-running robots and prosthesis, and to get safe human-robot 

interaction at industrial robots. Being inspired from the human actuation system, a 

mathematical method to get mechanically adjustable linear springs is noted in the 

literature; antagonistically working two quadratic springs method. But the proposed 

solution requires two non-linear springs with quadratic spring characteristics and 

they are not readily available. Several solutions have been noted in the literature for 

the acquisition of such non-linear springs. At this thesis work, the solution is realized 

with a string wrapping around cam mechanism. Two different prototypes were 

designed and constructed and the second one was physically tested to validate the 

linear spring behavior. The results displayed good linear spring characteristics with 

different levels of adjustable spring stiffness. Beside the antagonistically working 

two quadratic springs method, three novel methods to get mechanically adjustable 

linear springs are introduced at this thesis. They are based on using hanging weights, 
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an exponential characteristic spring and a linear translation spring respectively. The 

real prototypes were not manufactured but sample designs using string wrapping 

around cam mechanisms are made. 

 
 
 
Keywords: Variable Stiffness, Non-Linear Springs, String Wrapping Around Cam 

Mechanism, Antagonistic Actuation 
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ÖZ 
 
 
 
YAY SABİTİ AYARLANABİLİR LİNEER BURMALI YAYIN KAM ÜZERİNE 

SARILAN İP MEKANİZMASI İLE TASARIMI VE İMALATI 

 
 
 

Kılıç, Mehmet 

M. Sc., Makina Mühendisliği Bölümü 

Tez Yöneticisi           : Asst. Prof. Dr. Yiğit Yazıcıoğlu 

Ortak Tez Yöneticisi: Asst. Prof. Dr. Dilek Funda Kurtuluş 

 
Eylül 2009, 82 sayfa 

 
 
 
Yay sabiti ayarlanabilir lineer yaylar robotik çalışmalarında önemli kullanım alanları 

bulmaktadır. Ayarlanabilir yaylar robotlara iki temel amaç için uygulanmaktadır; 

yürüyen-koşan robotlar ve uzuv protezlerinde enerji verimini artırmak ve endüstriyel 

robotlarda güvenli insan-robot etkileşimi sağlamak. Bu konuda iskelet-kas 

sisteminden esinlenen ve düşman olarak çalışan yaylar metodu diye isimlendirilen 

matematiksel bir metot bulunmaktadır. Fakat bu çözüm, yay karakteristiği parabolik 

olan iki tane lineer olmayan yay gerektirmektedir ve bu tür yaylar piyasada 

kolaylıkla bulunamamaktadır. Literatürde bu yaylar için çeşitli çözümler 

sunulmuştur. Bu tez çalışmasında, problem kam üzerine sarılan ip mekanizması ile 

çözülmektedir. Bu şekilde çalışan iki değişik ayarlanabilir yay tasarlanmış, imal 

edilmiş ve elde edilen yaya karakteristiklerinin doğrusallığı fiziksel olarak test 

edilmiştir. Deney sonuçları imal edilen yayın değişik yay sertliklerinde lineer yay 

davranışı sergilediğini göstermiştir. Bu tezde, birbirine düşman çalışan yaylar 

metodunun dışında ayarlanabilir lineer yay elde etmek için üç yeni metot daha 

sunulmaktadır. Bu üç yeni metot sırasıyla asılı ağırlıklar, üstel karakteristikli yay ve 
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lineer yay kullanmaya dayanmaktadır. Tez kapsamında, bu üç yeni metot için ilk 

örnekler imal edilmemiş fakat kam üstüne sarılan ip mekanizması ile örnek 

tasarımları yapılmıştır. 

 
 
 
Anahtar Kelimeler: Değişebilen Yay Sabiti, Lineer Olmayan Yaylar, Kam Üstüne 

Sarılan İp Mekanizması, Düşman Çalışan Yaylar 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
1.1 Applications of mechanically adjustable springs 
 

In real life, mechanically adjustable springs find their main uses in robotic 

applications. They are embedded into robotic devices for two different purposes; to 

increase energy efficiency of walking-running robots and prosthesis, and to get safe 

human-robot interaction at industrial robots. These fields are explained briefly at the 

following subsections and the necessity of mechanically adjustable springs is 

expressed. 

 

1.1.1 Walking-running robots 
 

When it is first said “walking-running robots”, the first robots come to the minds are 

the ASIMO of Honda and QRIO of Sony (Figure 1.1). These robots have 

demonstrated smooth and versatile motions and have proven themselves with their 

interesting abilities like dancing, serving food to people at a restaurant and playing 

violin. Besides their astonishing capabilities, these robots suffer from energy 

inefficiency. They actuate their limbs with continuously controlled electric motors. 

When the limb is going to accelerate, the electric motor provides power. When the 

limb is going to decelerate, the electric motor again provides power to stop the limb. 

Thus, the electric gear motors continuously consume power. This type of walking 

strategy is named as active dynamic walking. As an alternative to active dynamic 

walking, a new design and control paradigm, passive dynamic walking, was 

proposed [3]. Several passive dynamic walkers have been designed (Figure 1.2). 
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Fig.1.1: ASIMO (Honda) [1] and QRIO (Sony) [2]. 
 
 
 
These walkers have neither an actuation nor a control on them but able to perform 

stable walking with the aid of their special dynamics. It should be mentioned here 

that they still need a slight actuation to overcome the friction at their joints and that is 

given to the walkers by making them walk down a slight slope. As the passive 

dynamic walkers are observed (Figure 1.2), they include nothing but some swinging 

pendulums. 

 
 
 

     
 

Fig.1.2: The walker of A. Sano [4] and the walker of Garcia [5]. 
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Fig.1.3: Pendulum swinging due to gravity (Left) and due to torsion spring (Right). 

 
 
 
A simple swinging pendulum under the effect of gravity swings with the natural 

frequency given in Equation (1.1) (Figure 1.3 – Left). 

 

 g
l

ω =  (1.1) 

 
A passive dynamic walker is designed for a specific step frequency, strike length and 

the stiffness of the ground. To change any of these parameters requires changing the 

natural dynamics of the pendulum links and as Equation (1.1) suggests, this can be 

realized changing the link lengths only. A robot with changing link lengths is not that 

logical. On the other hand, the pendulum links of a passive dynamic walker do not 

necessarily rely on the gravity to swing but can rely on a torsion spring that works on 

the pendulum (Figure 1.3 – Right). The new pendulum system then has the following 

natural frequency, 

 

 2

k
ml

ω =  (1.2) 

 
This time not only l  but also m  and k  can be played with. With the same reasoning 

to l , it is not logical to play with m , then the spring constant k  remains as a 

g

l

k

m m

l
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valuable control parameter to change the step frequency or the strike length of the 

passive dynamic walker. 

 
Starting from these principles, several walking running robots have been built 

(Figure 1.4). The main idea in minds is; the passive dynamic walkers are able to 

make stable walks even without actuation or control. Then, instead of continuously 

controlled actuators, using slight control and actuation into the system, like changing 

the spring constant or setting the touch down angle of the leg before touching the 

ground, it may be possible for these passive dynamic walkers to make more versatile 

motions and they still stay energy efficient. The research on the topic still goes on 

and the passive dynamic walkers as satisfactory as the active dynamic walkers have 

not been noted yet. But they highlight the necessity of adjustable springs. 

 
 
 

   
 

Fig.1.4: BiMASC [6], Veronica [7] and Lucy [8]. 
 
 
 

1.1.2 Prosthesis and orthesis 
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Prosthesis and orthesis are another area that the adjustable springs have a use. 

Nowadays, most prostheses are still passive, that is, they include only an elastic 

element (Figure 1.5). But the more advanced ones have a spring element and plus an 

actuator (Figure 1.6). The stiffness of these prostheses is fixed during the design 

phase and set to an average value, such that the natural frequency of the device is 

fixed. Thus only for a certain stiffness of the ground and walking speed the user will 

feel comfortable walk. When the walking conditions change, the user will not only 

have an uncomfortable walk but also consume more power. To overcome these 

problems, novel designs are proposed by several researchers (Figure 1.7). Hollander 

et al. have introduced the Jack Spring Actuator, an actuator with an adjustable spring 

 
 
 

   
 

Fig.1.5: Constant stiffness foot prosthesis [9]. 
 
 
 

   
 

Fig.1.6: Powered ankle-foot prosthesis with an actuator and spring element [10]. 
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Fig.1.7: The adjustable robotic tendon concept (Left) [11] and Intelligent Prosthesis 
actuated by pleated Pneumatic Artificial Muscles: IPPAM (Right) [12]. 
 
 
 
in series with it, to use it in the adjustable robotic tendon concept (Figure 1.7) [11]. 

They also proved it with simulations that by tuning the adjustable spring at the 

prosthesis, both the highest power needed during walk and the total energy consumed 

per step is lowered [11]. Similarly, Versluys et al. develops foot prosthesis actuated 

with pneumatic artificial muscles (Figure 1.7) [12]. These devices are still under 

development and are not commercially available yet. 

 

1.1.3 Safe human-robot interaction 
 

An industrial robot is expected to be fast and accurate while working. To fulfill these 

requirements, these robots are actuated with stiff actuators. But stiff actuators do not 

comply with impacts and are a threat to humans in working environment so they are 

placed in human free environments. But, for some applications it is useful to have 

robots and humans fulfilling tasks together. Machines that interact with humans must 

be safe against all possible accidents. One solution to the problem is to use actuators 

with adjustable compliance. A machine that moves fast is typically more dangerous 

than a slow moving machine. The idea is; the stiffness is adjusted to be high at low 

speeds, allowing for high positional accuracy, and low at high speeds, resulting in a 

softer impact. Tonietti et al. have introduced the Variable Stiffness Actuator for 

robotic manipulators concerning the safe human-robot interaction (Figure 1.8) [13]. 
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Fig.1.8: A robotic arm prototype actuated with Variable Stiffness Actuator [13] 
 
 
 
1.2 Contributions 
 

Three contributions have been made to the subject and explained in this thesis. The 

discussion begins with the examination of the Mechanically Adjustable Springs 

appeared in the literature in Chapter 2. The samples seen in the literature are first 

divided into two; the ones that rely on the antagonistically working two non-linear 

springs concept and the ones besides these. The antagonistically working two non-

linear springs concept is a powerful mathematical tool that guaranties mechanically 

adjustable springs with perfect linearity. In the literature, it is a well known fact that 

these non-linear springs must be quadratic springs and this is always shown by 

inserting a quadratic spring equation into the antagonistic set-up equations and the 

adjustable linear spring equation is seen in return. But in Chapter2, it was proven 

mathematically that those non-linear springs must be quadratic springs if this set-up 

is to give linear behaviors and it is in fact the unique solution to the problem. This is 

the first contribution to the subject. Quadratic springs are a kind of non-linear springs 

and they are not easily available. In Chapter 3, the general method to realize any non-

linear spring characteristic by using a mechanism is explained. And it was introduced 

there that the string wrapping around cam mechanism is a possible and powerful 

candidate for this purpose. At the following subsections, the design of the cam 

surface is explained in detail. This is the second contribution to the subject. In 

Chapter 4, four different methods to obtain mechanically adjustable linear springs 
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have been discussed. The first method is the well known method; the antagonistically 

working two quadratic springs method. In Chapter 4.1, it was explained how to get 

quadratic springs by using string wrapping around cam mechanism and how to 

embed them into an antagonistic set-up to get mechanically adjustable linear torsion 

springs. A prototype was also manufactured and tested for linearity and spring 

constant adjustment. In Chapters 4.2, 4.3 and 4.4, three new methods to get 

adjustable springs have been described. These three methods are as powerful as the 

antagonistically working two quadratic springs method and they are the third 

contribution to the subject. The common thing at these four different works is that all 

of them use cams and gives mechanically adjustable torsion springs in return. 

Something important should be mentioned here; the antagonistically working two 

quadratic springs method only gives adjustable linear springs but the remaining three 

works can also be designed for any kind of adjustable spring characteristics. There is 

nothing comparable to these works in the literature and the author thinks that this is 

in fact the most important contribution to the subject among the ones cited above. 
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CHAPTER 2 
 
 

MECHANICALLY ADJUSTABLE SPRINGS 
 
 
 
In literature, several different mechanically adjustable springs have been designed 

and constructed. In all applications, the demand is for adjustable linear springs 

because linear springs are mathematically simple to express and they simplify the 

equations of motion. Acquiring perfect linear behaviors for all spring constants is not 

always possible so most works that will be discussed at this chapter are just 

approximations to linear behavior. Here, the works appeared in the literature are 

categorized into two groups; the ones that rely on antagonistically working two non-

linear springs and the ones beside these. This division is fair because antagonistically 

working two non-linear springs concept guaranties adjustable springs with perfect 

linearity whereas the ones that will be discussed under the other methods are just 

approximations to linear behavior (except the very last one). 

 

2.1 Antagonistically working two non-linear springs method 
 

Interestingly, everything has started observing human actuation system. It is a well 

known fact that human muscles can only pull but not push. So at least two muscles

 
 
 

 
 

Fig.2.1: Antagonistic setup of biceps and triceps in human arm [14]. 
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are required to actuate a rotational joint and they work antagonistically (Figure 2.1). 

When the biceps contracts and the triceps relax, the arm is flexed. When the triceps 

contracts and the biceps relax, the arm extends. However, this set-up achieves 

something more mystic than that. When both muscles contract, the arm orientation 

does not change but the stiffness of the elbow joint increases and when both relaxes, 

the stiffness of the elbow joint decreases. This fact have been experimentally verified

 
 
 

 
 

Fig.2.2: Tendons and Ligaments [15]. 
 
 
 

 
 
Fig.2.3: The passive stress-strain curves for the tendons [18]. (test results of the 
tibialis anterior muscle tendon complex of 15 female Holtzman rats). 
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at numerous publications [16]-[19]. The explanation to the phenomena hides behind 

the muscle-tendon units (Figure 2.2). The muscles are not attached to the bones 

directly but via tendons. Besides attaching muscles to bones, tendons serve as 

excellent elastic energy stores during motions thus behave like springs. But their 

spring characteristics have a strong non-linear behavior (Figure 2.3) and it is this 

property that makes them able to change the joint stiffness when either muscles 

contract or relax [18], [19]. 

 
 
 

 
 

Fig.2.4: Two springs working antagonistically. 
 
 
 
Being inspired from the human actuation system and its capabilities, researchers 

have noticed that in fact with a similar mechanical set-up, it may be possible to 

obtain adjustable linear springs mathematically and came up with the pulley spring 

system shown in Figure 2.4. Two identical springs with an arbitrary spring 

characteristic are attached to a pulley with a string wrapping around it. A handle on 

the pulley can rotate it with respect to point O . Then a torsion spring behavior is 

obtained at the handle. At this point, a critical question is asked; with what kind of 

springs do the torsion spring behavior becomes a linear one and is it possible that the 

pretension given to the springs can change the stiffness of this torsion spring? The 

answer is that a quadratic spring satisfies the two requirements together. This can 

x

O

O O

θ

( )f xΔ

r 0x
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easily be shown by putting the quadratic spring equation into the calculations and 

have been made like that at numerous publications. But at this work, the necessary 

spring function will be found directly and it will be proven that no other springs can 

satisfy the two requirements together but the quadratic one. 

 
Let ( )f xΔ  be the force displacement characteristic of the translational springs and r  

be the radius of the pulley. Let the pulley be pulled in x  direction by an amount of 

0x  and rotated in CCW direction by an angle of θ  (Figure 2.4). Then the resulting 

moment acting on the pulley with respect to point O  is, 

 
 ( ) ( ) ( )0 0M r f x r f x rθ θ θ= − − +⎡ ⎤⎣ ⎦  (2.1) 

 
Let ( )M θ  be a linear function of θ  and the stiffness of it be a function of 0x . Then, 

 
 ( ) ( ) ( )0 0 0r f x r f x r k xθ θ θ− − + = −⎡ ⎤⎣ ⎦  (2.2) 

 
At this point, the possible f functions that will satisfy Equation (2.2) are sought. 

However Equation (2.2) can not say anything meaningful about the nature of the f 

function. But, if it were not for the right hand side of the Equation (2.2), it would say 

something meaningful. Then, to eliminate the right hand side of the equation, take its 

derivative with respect to θ  two times. 

 
( ) ( ) ( )2

0 0 0' 'r f x r f x r k xθ θ→ − − − + = −⎡ ⎤⎣ ⎦  

( ) ( )3
0 0'' '' 0r f x r f x rθ θ→ − − + =⎡ ⎤⎣ ⎦  

( ) ( )0 0'' ''f x r f x rθ θ→ − = +  (2.3) 

 
Now Equation (2.3) tells something meaningful. It includes the second derivative of 

the f function and states that, ''f  function is symmetric with respect to 0x xΔ =  line 

(Figure 2.5.a). However 0x  is not a fixed value and ''f  function must be symmetric 

with respect to every 0x xΔ =  line regardless of what 0x  is. 
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Fig.2.5: Graphical depiction of ( )''f xΔ  
 
 
 
Then, the only possible ''f  function satisfying Equation (2.3) is a constant function 

(Figure 2.5.b). 

 
Let ( )'' 2f x AΔ = . Integrating twice, 

 
( )'' 2f x A→ Δ =  

( ) ( )' 2f x A x B→ Δ = Δ +  

( ) ( ) ( )2f x A x B x C→ Δ = Δ + Δ +  (2.4) 

 
Putting Equation (2.4) back into Equation (2.1) and simplifying the result, 

 
( ) ( ) ( ) ( ) ( )2 2

0 0 0 0M r A x r B x r C A x r B x r Cθ θ θ θ θ⎡ ⎤= − + − + − + − + −⎣ ⎦  

                    [ ]
( )0

2
02 2

k x

r Ax B θ= − +   (2.5) 

 
As it is seen ( )M θ  turns out to be a linear function of θ  and the corresponding 

stiffness is a function of the pretension 0x . Thus, antagonistically working two 

quadratic springs set-up is a smart mathematical model that gives adjustable torsion 

springs with perfect linearity. However this method still suffers from a difficulty 

because it requires two quadratic translation springs and their commercial 

( )''f xΔ ( )''f xΔ

0x 0xxΔ xΔ

rθrθ rθ rθ

( )a ( )b
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availability is limited. At the below subsections, some mechanically adjustable linear 

springs appearing in the literature are discussed. All of the following works rely on 

the antagonistically working two non-linear springs method and they only differ in 

the way how they obtain a quadratic behavior non-linear spring. 

 

2.1.1 The work of Migliore et. al. 
 

Migliore et al. [20] have described a novel spring mechanism that can be designed to 

obtain a quadratic spring characteristic and used it at an antagonistically working two 

quadratic springs set-up. The spring mechanism is based on the motion of rollers 

rolling on an expanding contour (Figure 2.6). The rollers are attached to each other 

with some linear helical springs. When a stretching force is applied to the device, the 

rollers start to get apart and stretch the helical springs (Figure 2.6). That expanding 

contour can be calculated such that any kind of non-linear spring characteristic can 

be obtained. After getting a quadratic translation spring by this mechanism, they used 

it at the antagonistically working two quadratic springs set-up to obtain a 

mechanically adjustable linear torsion spring (Figure 2.7 – Left). The set-up can 

adjust the stiffness and the equilibrium position by controlling two position

 
 
 

   
 
Fig.2.6: The schematic drawing and picture of a quadratic spring device with 
expanding contour mechanism 
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Fig.2.7: The picture of the antagonistically working two quadratic springs set-up 
using the design given in Figure 2.6 (Left) and the experimental results of the set-up 
(Right). 
 
 
 
controlled servo motors together. The experimental results of the set-up are shown in 

Figure 2.7 – Right. As it is seen, the experimental data have significant discrepancy 

from the linear behavior especially at low deflections. It is attributed to the 

manufacturing errors of the parts and the system friction. 

 
Migliore et al. have also published a second way to obtain non-linear spring 

characteristics based on a roller rolling on a cam surface [21]. But their work suffers 

from poor explanations and was not explained here. 

 

2.1.2 The work of Hurst et. al. 
 

Hurst et al. ([22], [23]) designed and manufactured a knee joint called AMASC 

(Figure 2.9) whose compliance or the spring constant can be adjusted mechanically. 

Again the stiffness adjustment relies on the antagonistically working two quadratic 

springs method. Two novel ideas have been embedded in the AMASC and they 

worth to be mentioned here. First, with a rather complicated mechanism of pulleys 

and cables, AMASC is able to adjust its stiffness and equilibrium position



 16

 
 

Fig.2.9: AMASC: Actuator with Mechanically Adjustable Series Compliance 
 
 
 
independently (Figure 2.10). Their second novel idea is on the acquisition of the 

quadratic springs. AMASC uses two bending fiberglass plates as energy storage 

elements (Figure 2.9). These bending plates give a stiffening spring characteristic but 

not necessarily a quadratic behavior. To convert that stiffening function into a 

quadratic spring behavior, a spiral pulley mesh is added to the AMASC mechanism 

(Figure 2.11). The two spiral pulley surfaces can be calculated such that any pulley 

function, that is, the angular rotation of one pulley as a function of the other’s 

angular rotation, can be calculated. That pulley function must be selected as the one 

that converts the spring function of the bending plates into a quadratic behavior. This 

derivation is given in the PhD thesis [23] but less in detail. That thesis guides to [24]

 
 
 

 
 

Fig.2.10: The Schematic drawing of AMASC mechanism 
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Fig.2.11: The schematic drawing and the picture of the spiral pulleys 
 
 
 
for further reference. The best part of these spiral pulleys is that, they just roll on 

each other without sliding. Therefore, they do not result in extra friction and differ 

from a spur gear mesh in this sense. It is interesting that Hurst et al. have never made

 
 
 

 
 

Fig.2.12: Experimental results of AMASC 
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those calculations although derived them in the PhD thesis. Instead they selected the 

logarithmic spiral pulleys arbitrarily. So, the spiral pulley mesh bending fiberglass 

assembly does not give a perfect quadratic behavior but an approximation of it. That 

is why their experimental results are not able to show perfect linear behaviors (Figure 

2.12). Also observe Figure 2.12 that, using many pulleys and cables abundantly 

returns as significant friction and backlash in the overall performance. 

 

2.1.3 The work of Yamaguchi et. al. 
 

Yamaguchi et al. [25] designed a robot leg whose stiffnesses at its joints are 

adjustable. They used the antagonistically working two quadratic springs set-up as 

the stiffness adjustment method in their design (Figure 2.13 – Left). The necessary 

non-linear springs are obtained with an ingenious combination of two different

 
 
 

     
 
Fig.2.13: Antagonistic driven joint with non-linear spring mechanism (Left). Design 
of straight type non-linear spring mechanism (Right). 
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Fig.2.14: Theoretical spring characteristics of the straight type non-linear spring 
 
 
 
pulley-cable systems shown in Figure 2.13 – Right. The first pulley-cable system in 

Figure 2.13.a gives a stiffness between the range 2K  and ∞ . The second pulley-

cable system in Figure 2.13.b gives a stiffness between the range 0 and K . Then the 

combination of these two mechanisms in Figure 2.13.c also combines these 

properties and gives a stiffness between the range 0 and ∞ . The overall spring 

characteristic of the final non-linear spring mechanism is shown in Figure 2.14. 

Observe Figure 2.14 that, the spring characteristic curve is quite dissimilar to a 

parabola. Then, the antagonistic set-up of these two such springs will not able to give 

perfect linear behaviors but the springs obtained will still be adjustable. They also 

designed a rotary type of this non-linear spring but was not mentioned here. The 

second curve seen in Figure 2.14 is about that mechanism. 

 

2.1.4 The work of Tonietti et. al. 
 

Tonietti et al. [13] have designed and manufactured an adjustable compliant robotic 

arm called Variable Stiffness Actuator for safe human-robot interaction purposes. 

Two CAD views of this actuator are shown in Figure 2.15. Three pulleys shown with 

1, 2 and 3 in Figure 2.15 are connected to each other with a timing belt and this belt
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Fig.2.15: Two CAD views of the Variable Stiffness Actuator 
 
 
 

 
 

Fig.2.16: The non-linear spring mechanism used in the Variable Stiffness Actuator 
 
 
 
is tensioned with three spring systems shown with 7, 8 and 9. Pulley 1 is connected 

to the robotic arm and the pulleys 2 and 3 are connected to two position controlled 

servo motors. The two identical pulley-timing belt-spring systems, 1-8-2 and 1-9-3, 

give a non-linear spring characteristic and actuate pulley 1 antagonistically. When 

the two servo motors rotate in the same direction, the robotic arm rotates in 

thatdirection with the same stiffness. Whereas when they rotate in reverse directions, 

the stiffness of the robotic arm changes. The schematic detail of pulley-timing belt-

spring system is shown in Figure 2.16. Notice that this is exactly the same non-linear 

spring mechanism shown in Figure 2.13.a. So, as for the work of Yamaguchi et al. 

the Variable Stiffness Actuator is not able to give perfect linear behaviors. However 
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as the authors argue at the Reference [13], one main achievement of their design is 

its compactness. 

 

2.1.5 The work of Koganezawa et. al. 
 

Koganezawa et al. [26] have designed and tested a multi-dof forearm prosthesis with 

adjustable compliance at its joints. They noticed that a conical spring have a 

stiffening spring characteristic at compression as shown in Figure 2.17 and used it at 

 
 
 

 
Fig.2.17: Shape and non-linear elasticity of the conical spring 

 
 
 

 
 

Fig.2.18: Mechanical model of the skeleton-muscular system 
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an antagonistic set-up shown in Figure 2.18. Note that this antagonistically working 

non-linear spring set-up is a bit different than the one shown in Figure 2.4; the strings 

that the springs are attached do not wrap around a pulley but actuates a lever arm 

instead (Figure 2.18). In summary, the stiffnesses obtained with this set-up are 

adjustable but does not give perfect linear behaviors. 

 

2.2 The other methods 
 

The works discussed under the previous subsections were all based on the 

antagonistically working two non-linear springs set-up and required somewhat a 

complicated mechanical system. Despite this fact, only the works under Sections 

2.1.1 and 2.1.2 claimed adjustable springs with perfect linearity but the reaming ones 

were sill just approximations to linear behavior. To obtain an adjustable spring with a 

less complicated mechanical system, some different methods were suggested as an 

alternative to antagonistically working two non-linear springs set-up and they are 

discussed in the following subsections. 

 

2.2.1 The work of Van Ham et. al. 
 

To use it in a bipedal walking research, Van Ham et al. have introduced the Me-

chanically Adjustable Compliance and Controllable Equilibrium Position Actuator or 

simply MACCEPA [27][7]. The schematic drawing of MACCEPA is shown in Fig-

ure 2.19. The crank arm AB  with length b  is able to rotate around point A . Point B  

of this arm is attached to point C  with a linear helical spring. Let the stiffness of this 

spring be k . A tiny pin at point C  guides the string and at the equilibrium position, 

this spring is pre-tensioned by an amount of p . When the crank arm is rotated by an 

angle of α , a torsion spring characteristic occurs at the crank arm. After some 

geometric analysis, the torque on the crank arm is calculated as, 

 

 ( ) ( )
( )2 2

sin 1
2 cos

p c b
T kbc

b c bc
α α

α

⎛ ⎞− −⎜ ⎟= +
⎜ ⎟+ −⎝ ⎠

 (2.6) 
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Fig.2.19: The schematic drawing of the MACCEPA 
 
 
 
Note that this is quite a complicated equation and it is clear that it will not able to 

give us prefect linear behaviors. But Van Ham et al. have noticed that this equation 

in fact gives quite successful linear spring approximations up to 045α = ±  and better 

than that the stiffnesses obtained can be adjusted with changing the pretension p . In 

Figure 2.19, a numerical simulation is shown. Observe how well the obtained 

characteristics approximate linear behavior and the stiffnesses change with the initial 

pretension p . In Figure 2.20, a CAD drawing is given for MACCEPA. The gears 

seen at the left are for equilibrium position adjustment and at the right a spool is put 

to adjust the pretension of the spring. So MACCEPA is able to adjust its stiffness and

 
 
 

 
 

Fig.2.19: Torque as a function of angle α  when pretension is altered. 

αA B

b

p

k
c

C
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Fig.2.20: CAD drawing of the MACCEPA slimline variant. 
 
 
 
equilibrium position independently. MACEPA is distinguished with its simplicity 

and well enough linear spring approximation. These merits make it one of the best 

works among the ones cited here. 

 

2.2.2 The work of Morita et. al. 
 

Morita et al. have developed a device called Mechanical Compliance Adjuster to use 

it at their robotic finger [28]. The spring unit consists of a leaf spring, a slider and a 

feed screw. The schematic drawing of the Mechanical Compliance Adjuster is shown 

in Figure 2.21. The leaf spring is bended or deflected with a wire cable then a spring 

characteristics is obtained at the wire cable. It is observed that the cable pulling 

direction is in fact parallel to the leaf spring at the equilibrium position. So the leaf 

spring is not bended as a conventional bending beam. On the other hand, the active 

leaf spring length is able to be adjusted with the slider position (Figure 2.21). If the 

active leaf spring length is long, it gives a compliant spring in return and if it is short, 

it gives a stiff spring. This set-up has experimentally investigated for the spring 

characteristics acquired (Figure 2.22). Observe successful linear spring approxima-

tions up to 040  and again see how the stiffness changes with adjusting the slider 

position. This device is distinguished by one of its aspects; very stiff spring 

characteristics are possible and even when the slider is at the very left end, it gives in 

fact a rigid spring. This fact well conforms to the default requirement of a robotic 

finger; a compliant finger while grasping and a rigid finger when accurate 

positioning. 
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Fig.2.21: The conceptual design of the Mechanical Compliance Adjuster 
 
 
 

 
 

Fig.2.22: Variation of spring constant 
 
 
 
2.2.3 The work of Hollander et. al. 
 

The research of Hollander et al. has focused on the mechanics of orthosis, prosthesis 

and developing new kinds of powered assistance devices for disabled people. They 

have developed a novel actuator called Jack Spring Actuator to use it at an ankle gait 

assistance device [11]. The stiffness of a helical spring can be calculated with 
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Equation (2.7) where D  is the coil diameter, d  is the wire diameter, an  is the 

number of active coils and G  is the shear modulus. 

 

 
4

38 a

G dK
D n
⋅

=
⋅ ⋅

 (2.7) 

 
After this point, the Jack Spring Actuator has a very straight forward idea to change 

the stiffness; if an , the number of the active coils of the helical spring, is controlled, 

so is the stiffness of the helical spring. The schematic drawing of the Jack Spring 

Actuator is given in Figure 2.23. 

 
 
 

    
 

Fig.2.23: The schematic drawing of the Jack Spring Actuator 
 
 
 
According to the idea of Hollander et al., the yellow shaft seen in Figure 2.23 works 

as a lead screw and the helical spring is rotating around it as a nut mesh. Rotating the 

shaft with respect to the helical spring, new coils are added or subtracted from the 

active coil region. Hollander et al. have said less about the real design of this 

mechanism in Reference [11]. However during actuation, some forces will be 

working on the spring and the mechanism will prone to high friction and 

deformation. On the other hand, if such problems are overcome, the Jack Spring 

Actuator offers a compact and easy to implement design. 
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2.3 Conclusion 
 

In this chapter, the adjustable springs appeared in the literature were first divided into 

two; the ones that rely on the antagonistically working two non-linear springs and the 

ones other than these. In Section 2.1, it was first derived that if the antagonistically 

working two non-linear spring set-up were to give a linear spring characteristic, the 

non-linear springs must be quadratic springs and this was the only solution. Then, 

five significant works appeared in the literature that uses this concept were 

explained. In Section 2.2, three works that do not rely on the antagonistically 

working two non-linear springs concept but still giving adjustable springs were 

discussed. 
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CHAPTER 3 
 
 

NON-LINEAR TORSION SPRINGS USING CAMS 
 
 
 

If you can't explain it simply, you don't understand it well enough. 

(Albert Einstein) 

 

3.1 Non-linear springs using mechanisms 
 

Let’s say there is a one degree of freedom mechanism and let x  be the input variable 

and y  be the output variable (Figure 3.1). Keep in mind that x  and y  not 

necessarily be translation variables but can be rotational as well. The mechanism 

relates these two variables kinematically such that a relation like ( )y y x=  can be 

found. These variables are started to be measured from the datum at the initial 

position, that is, ( )0 0y y= = . Let’s say there is an arbitrary spring with spring 

characteristic function F . We want to attach this spring to y  end of the mechanism.

 
 
 

 
 

 
 

Fig.3.1: A hypothetical mechanism and insertion of a spring to its output end. 
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With the most general case, this spring is pre-tensioned by an amount of 0y  and is 

attached to y  end (Figure 3.1). Then a spring characteristics function ( )G x  occurs 

at the x  end of the mechanism. These two springs are in a static equilibrium with the 

mechanism. Then the virtual works of these two springs must be equal. 

 
 ( ) ( )0F y y dy G x dx+ =  (3.1) 

 
Integrating Equation (3.1) by keeping in mind that ( )0 0y y= = , 

 

 ( ) ( )0
0 0

y x

F y y dy G x dx+ =∫ ∫  (3.2) 

 
Notice that the last equation is nothing but the work expression. It states that the 

work done by the F  function is equal to the work done by the G  function. 

 
Three functions appear in Equation (3.2); ( )F y , ( )y x  and ( )G x . If two of these 

functions are known, the remaining one can be calculated with Equation (3.2). For 

example, a mechanism and the spring attached to its y  end can be given and the 

spring characteristic occurring at the x  end can be asked. That means that, ( )y x  and 

( )F y  are known and ( )G x  is going to be calculated. This is a mechanism analysis. 

Similarly, the two spring characteristics can be given and the required mechanism 

can be asked. That means that, ( )F y  and ( )G x  are known and ( )y x  is going to be 

calculated. This is a mechanism synthesis. The second scenario has technical 

importance, because a mechanism that will transform a given spring characteristic to 

another required spring characteristic is asked. Thus, by designing a mechanism that 

makes this transformation, any spring characteristics can be realized in return. But 

this process is not that straight forward. The critical question here is; are there such 

mechanisms that can be designed for any ( )y x  given? Yes there are. Two of them 

have already appeared in Sections 2.1.1 and 2.1.2. They were reproduced for clarity 

in Figure 3.2. For the first one, the equation of the rolling surface can be calculate for
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Fig.3.2: The mechanisms appeared in Section 2.1.1 (Left) and Section 2.1.2 (Right). 
 
 
 
a given ( )y x . Note that the path that the center of the rollers follow is directly 

( ) 2y x . Then the real paths that the rollers roll on are easily calculated. Similarly 

for the second one, the spiral pulley surfaces can be calculated for a given ( )y x . 

Again an analytic solution to the problem is available and given in the Reference of 

Section 2.1.2. It will not be reproduced here but the reader should be clarified about a 

point. Those two spiral pulley surfaces just roll on each other but not slide. The 

necessary and sufficient condition for pure rolling is that the contact point always lies 

on the axis passing through the rotation centers. There is also a third mechanism that 

has this flexibility; the string wrapping around cam mechanism and it is the main 

topic of the following section. 

 

3.2 String wrapping around cam mechanism 
 

Compound bows use some noncircular pulleys or cams to change the spring 

characteristic that occurs while drawing an arrow. At a classic bow, this spring 

characteristic is an increasing function. But at a compound bow, the force on the 

arrow first increases then takes a maximum value and then decreases. So the archer 

withstands a lower force at the full draw case, that is, when he is about to aim the 

target and release the arrow. That is why archers make better shoots with a 

x

2
y

2
y

x

y
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compound bow then a classic bow. Although, both the classic bow and compound 

bow store potential energy in similar structural elements, with a pulley and cam 

arrangement, the compound bow changes the shape of force draw curve. Being 

inspired from compound bow cams, the simplest string wrapping around cam 

mechanism can be constructed as in Figure 3.3. 

 
 
 

 
 

Fig.3.3: String wrapping around cam mechanism. 
 
 
 
Take a cam with an arbitrary cam profile turning around point O . While cam makes 

CW rotation, a string passing around a pulley at A  wraps around the cam profile. 

This mechanism relates the string deflection su  to the cam rotation α . When a 

( )su α  variation is given, the necessary cam profile is hoped to be calculated. 

 
When a translation spring with the spring characteristic ( )F xΔ  is attached to the su  

end of the mechanism, a torsion spring characteristic ( )G α  occurs on the cam. At 

the initial position, a pretension ts  can be given to the translation spring and attached 

to su  end. Then Equations (3.1) and (3.2) reduce to, 

 
 ( ) ( )s t sF u s du G dα α+ =  (3.3) 

or 

O A
α su

( )tF s

( )G α
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 ( )
( )

s

s t

Gdu
d F u s

α
α

=
+

 (3.4) 

and, 

 ( ) ( )
0 0

su

s t sF u s du G d
α

α α+ =∫ ∫  (3.5) 

 
So, the corresponding ( )su α  variation satisfying the spring characteristics ( )F xΔ  

and ( )G α  is found with Equation (3.5). Then the necessary cam profile is calculated 

as follows. 

 
 
 

 
 

Fig.3.4: The dimensions and the notation. 
 
 
 
Let’s look at the motion from the cam frame. Instead of different CW cam rotations, 

now there are CCW rotations of OA  (Figure 3.4). Let the tangency point of the string 

on the cam be B . This point is also the place where the string is attached to the cam. 

After OA  rotates by an angle of α  in CCW direction, point A  comes to 'A  and 

point B  comes to 'B . During this motion, the string wraps around the cam profile by 

an amount of ws . Let the coordinates of the tangency point 'B  be x  and y , the 

length of the straight part of the string be s , the angle it makes with the horizontal 

beβ , the radius of the pulley be r  and the length of OA  be a . So for the profile 

x

α β
s

ws

a

( )( )2r π β α− −r

y

Re

Im

O A

'A

B
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there are the two unknowns, x  and y . The remaining parameters defining the 

system are ws , s  andβ . These total 5 variables are functions of α  only and are 

expected to be calculated for the desired ( )su α  variation. 

 
The length of the string wrapped around the pulley is calculated as ( )( )2r π β α− −  

(observe Figure 3.4). When the cam is rotated by an angle of α , the elongation of 

the string will be, 

 

( ) ( )0 0 0 02 2s w wu s s r s s rπ πβ α β α⎛ ⎞ ⎛ ⎞→ = + + − − − − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( ) ( )0 0 0 0s w wu s s r s s rβ α β α→ = + − − − − + −  (3.6) 

 
Due to tangency relation, 

 
 ( )coswdx ds β=  (3.7) 

 ( )sinwdy ds β=  (3.8) 

 
And the loop closure equation in complex form is, 

 
 ( ) i ix iy s ir e aeβ α+ + + =  (3.9) 

 
There were 5 variables defining the system; x , y , ws , s  andβ . And Equations (3.6) 

to (3.9) are the 5 equations relating these 5 variables to each other (remember that 

Equation (3.9) includes two relations). But there is a disharmony among these 

equations; although Equations (3.7) and (3.8) are in the differential form, Equations 

(3.6) and (3.9) are not. Thus, we take the derivatives of Equations (3.6) and (3.9) 

respectively, 

 
 ( )s wdu ds ds r d dβ α= + − −  (3.10) 

 ( ) i i idx idy s ir e i d ds e ae i dβ β αβ α+ + + + =  (3.11) 
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Inserting Equations (3.7) and (3.8) into Equation (3.11) and simplifying the result, 

 
( ) ( ) ( )cos sin i i i

w wds i ds s ir e i d ds e ae i dβ β αβ β β α→ + + + + =  

( )i i i i
wds e s ir e i d ds e ae i dβ β β αβ α→ + + + =  

( ) i i
wds ds r d s d i e a d ieβ αβ β α→ + − + =  

( )i
wds ds r d s d i a d ie α ββ β α −→ + − + =  (3.12) 

 
The real and the imaginary parts of Equation (3.12) give us two identities, 

 
 ( )sinwds ds rd a dβ β α α+ − = −  (3.13) 

 ( )cosad d
s

β β α α= −  (3.14) 

 
Using Equations (3.13) and (3.10), 

 
 ( )( )sinsdu a r dβ α α= − +  (3.15) 

 
Remembering Equation (3.4), β  is found as follows, 

 

 ( ) ( )
( )

sins

s t

Gdu a r
d F u s

α
β α

α
= − + =

+
 (3.16) 

or 

 ( )
( )

1sin
s t

G r
aF u s a

α
β α− ⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

 (3.17) 

 
Knowing the analytic solution of β , the analytic solution to s  can be found using 

Equation (3.14). But it requires the derivative of β . The derivative of β  can be 

obtained by taking the derivative of Equation (3.16), 

 

 ( )
( ) ( ) ( ) ( )

( )2

' '
cos 1

s
s t s t

s t

duG F u s G F u sd da
d F u s

α αβ αβ α
α

+ − +⎛ ⎞− − =⎜ ⎟
⎝ ⎠ +

 (3.18) 
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Inserting Equation (3.16) into Equation (3.18) and simplifying it, 

 

 ( ) ( ) ( ) ( )
( ) ( )

2 2

3

' '
1

cos
s t s t

s t

G F u s G F u sd
d a F u s

α αβ
α β α

+ − +
= +

− +
 (3.19) 

 
Inserting Equation (3.19) into Equation (3.14), the analytic solution to s  is found, 

 

 ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2

3

' '
cos 1

cos
s t s t

s t

G F u s G F u s
s a

a F u s
α α

β α
β α

⎛ ⎞+ − +
= − +⎜ ⎟⎜ ⎟− +⎝ ⎠

 (3.20) 

 
Knowing the analytic solutions of β  and s , analytic solutions to x  and y  can now 

be found by using Equation (3.9), 

 
 ( ) ( ) ( )cos cos sinx a s rα β β= − +  (3.21) 

 ( ) ( ) ( )sin sin cosy a s rα β β= − −  (3.22) 

 
And if it is needed ws  is found using Equation (3.6), 

 
 ( ) ( )( )0 0 0 0w s w ts u s r s s r sβ α β α= − − − − − + − +  (3.23) 

 
In summary, when a translation spring with spring characteristic ( )F xΔ  is given and 

a torsion spring characteristic ( )G α  is desired, a string wrapping around cam 

mechanism can be designed to realize it. A stepwise analytical solution is available 

to the problem and it is the unique solution. And the corresponding cam profile is 

obtained by calculating the below equations in the given order. 

 

 ( ) ( )
0 0

su

s t sF u s du G d
α

α α+ =∫ ∫  (3.24) 

 ( )
( )

1sin
s t

G r
aF u s a

α
β α− ⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

 (3.25) 
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 ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2

3

' '
cos 1

cos
s t s t

s t

G F u s G F u s
s a

a F u s
α α

β α
β α

⎛ ⎞+ − +
= − +⎜ ⎟⎜ ⎟− +⎝ ⎠

 (3.26) 

 ( ) ( ) ( )cos cos sinx a s rα β β= − +  (3.27) 

 ( ) ( ) ( )sin sin cosy a s rα β β= − −  (3.28) 

 ( ) ( )( )0 0 0 0w s w ts u s r s s r sβ α β α= − − − − − + − +  (3.29) 

 
Note here that there is less flexibility at the cam design. When the F  and G  

functions are given, the only inherent design flexibility is the initial pretension ts . 

However, the coefficients of G  function may not be very certain but its behavior 

may be important. As it will be seen at some examples later, the coefficients of G  

function are going to offer several valuable design freedoms. 

 
When the equations to calculate the cam profile are observed, it is seen that the first 

derivative of F  and G  functions appear at the formulas. So one of the necessary 

requirements to continue calculation is that F  and G  functions must be 

differentiable. 

 
When the calculations are made, sometimes cusps are seen at the cam profiles. Cusps 

must be avoided by playing the design freedoms. 

 

3.3 State of art examples 
 

Two sate of art examples are given at this subsection. The first one is a cubic spring 

and the second one is a constant moment spring (Figures 3.5 and 3.6). 

 
Both of these spring characteristics are desired to be obtained from a linear helical 

spring. Then, with the most general case, a string wrapping around cam mechanism 

will be designed for ( ) 3 2G A B C Dα α α α= + + +  and ( )F x K xΔ = Δ . Note here that 

the given G  function can handle both the cubic spring and the constant moment 

spring together; when A , B  and C  are taken zero, it expresses the constant moment 

spring. As it was explained in Section 3.2, the necessary cam profile is calculated 
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making the calculations given in Equations (3.24) to (3.29) in this order. After 

selecting a suitable pretension, ts , the integral in Equation (3.24) is taken as follows. 

 

( ) ( )3 2

0 0

su

s t sK u s du A B C D d
α

α α α α→ + = + + +∫ ∫  

( )2 4 3 2

0 02 4 3 2

su

s t
K A B Cu s D

α

α α α α→ + = + + +  

( )( )2 2 4 3 2

2 4 3 2s t t
K A B Cu s s Dα α α α→ + − = + + +  

4 3 2 22
4 3 2s t t
A B Cu D s s

K
α α α α⎛ ⎞→ = + + + + −⎜ ⎟

⎝ ⎠
 (3.30) 

 
Together with Equation (3.30), the remaining equations are calculated for a given α  

range and the corresponding cam profile is obtained. 

 
At the first example, the cam profile transforms a linear translation spring into a 

cubic torsion spring (Figure 3.5). Observe that G  function first increases then 

decreases and then increases again. Having such a spring behavior is not easy to get 

with some other ways. 

 
At the second example, the cam profile transforms a linear translation spring into a 

constant moment spring (Figure 3.6). It is observed that the cam profile follows a 

shrinking spiral and compensates for the increasing ( )F xΔ  to hold the resulting 

moment constant. To obtain a constant moment spring, one of the default solutions is 

hanging a known weight on a pulley with a string. The solution made here is a 

smarter solution that can be used instead. The main advantage of this solution is that 

it does not harness gravity but a linear translation spring. So it also works at zero 

gravity environments. 

 
The interesting point here is that the two examples use the same linear translation 

spring but the torsion springs obtained in return have no apparent relation. So, 

distinct spring characteristics are easily obtained just by changing the cam. 
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Fig.3.5: State of art calculation for ( ) 3 20.04 0.18 0.15 0.35G α α α α= − + + , 

( ) 239.5F x xΔ = Δ  and 0.04ts m= . The dimensions are 0.1a m=  and 0.005r m= . 

The calculations are made for the range 00 240α≤ ≤ . The cam is given at two 
configurations; when 00α =  and 0120α = . The below graphs under each 
configuration show the corresponding operation points of F  and G  functions. 
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Fig.3.6: State of art calculation for ( ) 0.35G α = , ( ) 239.5F x xΔ = Δ  and 

0.05ts m= . The dimensions are 0.1a m=  and 0.005r m= . The calculations are 
made for the range 00 240α≤ ≤ . The cam is given at two configurations; when 

00α =  and 0120α = . The below graphs under each configuration show the 
corresponding operation points of F  and G  functions. 
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CHAPTER 4 
 
 

MECHANICALLY ADJUSTABLE LINEAR TORSION SPRING 

USING CAMS 
 
 
 

Simplicity is the ultimate sophistication. 

(Leonardo DaVinci) 

 

In this Chapter, four different methods of obtaining mechanically adjustable linear 

torsion spring are discussed; with antagonistically working two quadratic springs set-

up, with hanging weights, with an exponential characteristic spring and with a linear 

translation spring. All of them are based on string wrapping around cam mechanism. 

 

4.1 With antagonistically working two quadratic springs set-up 
 

4.1.1 Insertion of cams into antagonistically working two quadratic 

springs set-up 
 

The antagonistically working non-linear springs set-up used in Chapter 2.1 is given 

in Figure 4.1.a and 4.1.b again. The pulley was translated by an amount of 0x  in x  

direction and it was derived in Chapter 2.1 that if ( )f xΔ  was a quadratic spring, the 

corresponding torsion spring behavior occurring at the pulley would become a linear 

one and its stiffness would be a function of 0x . So translating the pulley is the main 

motion that enables us to adjust the stiffness. In fact, when the pulley is translated, 

the two identical quadratic springs are stretched with the same amount of pretension 

and the equilibrium position of the pulley does not change. There can be several 

ways to give the same effect to the two springs, but here we will focus on the pulley.
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Fig.4.1: The evolution of antagonistically working two quadratic springs set-up. 
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Let the strings of the springs do not wrap around the same pulley but around two 

identical concentric pulleys (Figure 4.1.c). Then, instead of translating one pulley by 

an amount of 0x , now the two identical pulleys will be rotated in reverse directions 

by an equal amount (Figure 4.1.d) and still the springs are stretched symmetrically 

and the equilibrium position of the pulley pairs does not change. So both set-ups 

given at Figures 4.1.a and 4.1.c have the same effect on the springs. The only 

difference is that at the second set-up the pulleys do not move but turn around a fixed 

axis. Besides that, the second set-up introduces a new property that the first one does 

not have. Notice at the first set-up, the two quadratic translation springs must operate 

parallel to each other. But by decoupling the pulleys of the two quadratic torsion 

springs, such a requirement is eliminated at the second set-up. The second set-up can 

be perceived as two quadratic spring-string-pulley units working antagonistically. 

Such two units can be attached to each other with any angle at point O  and it 

eliminates the parallel orientation requirement of the quadratic springs (Figures 4.1.c 

and 4.1.e). New ideas can be further build up on the second set-up as follows. The 

difficulty of the antagonistically working spring set-up is the quadratic spring 

requirement. Then a very critical question is asked right here; why not the translation 

springs are linear springs but the surface that the string wraps around is not a pulley 

but a well calculated cam surface (Figure 4.1.e and 4.1.f). This problem has already 

been solved in Section 3.2 and it is known how to calculate the cam profile that 

transforms a linear translation spring into a quadratic torsion spring. Then, the most 

general case of the string wrapping around cam mechanism given in Figure 3.3 can 

be applied to our set-up as shown in Figure 4.1.g. 

 
It is better to verify that the set-up give in Figure 4.1.g really gives us a mechanically 

adjustable linear torsion spring, since it was a long evolution from Figure 4.1.a to 

4.1.g. With the teachings of Section 3.2, the cam profile can be calculated such that 

( ) 2G A B Cα α α= + +  is satisfied for the given ( )F x K xΔ = Δ . First turn the two 

cams in reverse direction by angle of φ  (Figure 4.1.h) and fix them to each other. 

Then turn the two cams in CCW direction by angle of θ  (Figure 4.1.i). So the right 

hand cam has rotated by angle of φ θ+  in CCW direction and the left hand cam has 
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rotated by angle of φ θ−  in CW direction. The resultant moment acting on the 

pulleys with respect to their rotation axis is, 

 
( ) ( ) ( ) ( ) ( )2 2M A B C A B Cθ φ θ φ θ φ θ φ θ= − + − + − + − + −  

                             ( )2 2A Bφ θ= − +   (4.1) 

 
As expected, the resultant torsion spring behavior is linear and the stiffness of it is a 

function of the pretension, φ . 

 
Using cams instead of pulleys at the antagonistically working two non-linear springs 

set up has an inherent claim of being compact. In fact, the acquisition of the 

quadratic springs makes the system complicated and less compact as was seen at the 

literature examples in Chapter 2. But for our case, the springs that are used are linear 

springs and can be obtained easily as linear helical springs. The only thing that 

changes is the shape of the pulleys that the strings wrap around and this does not 

result in significant complication. 

 
Although complicated quadratic springs were eliminated, another problem appeared; 

the two cams must be rotated in reverse directions by an equal amount and need a 

mechanism to do that. Two possible solutions will be given in Section 4.1.4. 

 
The overall picture can be looked at from another point. The main logic of the 

antagonistically working two non-linear springs set-up is that it transforms two 

quadratic springs into an adjustable linear spring. There can be two such set-up types. 

Either two quadratic torsion springs are used and an adjustable linear torsion spring 

is obtained or two quadratic translation springs are used and an adjustable linear 

translation spring is obtained. Reverse set-ups can also be built. But, to obtain an 

adjustable linear torsion spring using quadratic translation springs, first quadratic 

translation springs must be converted into quadratic torsion springs. In fact, the string 

and the pulley used at the set-up given in Figure 4.1.a just does that. So the main use 

of the pulley string pair is a transformation from translation to torsion behavior. In 

summary, if there were two quadratic torsion springs available as simple as linear 
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helical springs, they would result in the most compact mechanically adjustable linear 

torsion spring. 

 

4.1.2 Notes on cam design for quadratic torsion springs 
 

To construct a mechanically adjustable linear torsion spring, one must first have two 

quadratic torsion springs and as it was pointed out in Section 4.1.1, they can be 

realized by designing string wrapping around cam mechanism. So with the most 

general case, ( )F x K xΔ = Δ  and ( ) 2G A B Cα α α= + +  will be satisfied. There are 

several notes on designing the cam profile for parabolic characteristic torsion spring. 

 

Note 1: 0B =  can be selected beforehand. Because the selection of the cam 

orientation where α  is zero is quite arbitrary. To understand how, observe Figure 

4.2. The same cam string set-up is given at two different positions in Figures 4.2.a 

and 4.2.b. If the cam rotations are started to be measured from these positions, the 

parabolic spring characteristics shown at the right hand graphs are obtained 

respectively. The only difference is that the same pink parabola shifts to the left. 

Although the cam string set-ups are the same, two different torsion spring behaviors 

are obtained. To overcome the obscurity, the vertical ( )G α  axis can be selected 

congruent with the axis of the parabola and that means 0B =  (Figure 4.2.c). 

 

Note 2: Not K , A  and C  but A
K

 and C
K

 are important. Remember Equation (3.3). 

When ( )F x K xΔ = Δ  and ( ) 2G A Cα α= +  are inserted into it, 

 
 ( ) ( )2

s t sK u s du A C dα α⋅ + = +  (4.2) 

 
Dividing both sides with K , 

 

 ( ) 2
s t s

A Cu s du d
K K
α α⎛ ⎞+ = +⎜ ⎟

⎝ ⎠
 (4.3) 
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Fig.4.2: Different selection of the cam orientations where 0α = . 
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introduces two further design freedoms. In summary, to obtain a quadratic torsion 

spring using cams, there are in total three design freedoms, namely; ts , A
K

 and C
K

. 

 

Note 3: The left hand branch of the parabola, ( ) 2G A Cα α= + , is shorter than the 

right hand branch. A sample calculation is given in Figure 4.3 to show it. Notice that 

the left hand branch of the cam grows faster than the right hand branch. The reason 

is, although ( )F x K xΔ = Δ  decreases here, ( ) 2G A Cα α= +  insist on increasing. So 

the cam prefers to increase the effective moment arm faster to compensate the 

decreasing F  function and catch up with the increasing G  function. This situation 

on the cam results in a shorter left hand branch of ( ) 2G A Cα α= +  than the right 

hand branch. 

 

Note 4: C  must be non-zero or new design problems are ahead. A sample cam 

design for a negative C  is given in Figure 4.4. Since C  is negative, G  function is 

able to become zero at two different positions. At these two positions, the straight 

part of the string points to the rotation axis of the cam. When G  function is positive, 

the straight part of the string lies above the rotation axis and when G  function is 

negative, it lies below the rotation axis. So during the operation, the string sweeps the 

rotation axis and it means that the string will pass inside a shaft that the cam is 

rotating around. The problem can be solved as in the case of the crank shaft of the 

internal combustion engine, but this solution complicates the design and 

manufacturing. To facilitate the design, it is better to work with positive C  values. 

 
Although positive C  is fostered here, negative C  has also some merits. Compare the 

cam designs given in Figures 4.3 and 4.4. The two calculations are made for the 

same design parameters except the C  values. When the F  function graphs are 

compared, the maximum deflection decreases which is quite important when the 

limits of linear translation springs are concerned. Another merit is that the size of the 

cam decreases. 
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Fig.4.3: Demonstration of the left hand branch of the cam. ( ) 20.08 0.08G α α= + , 

( ) 239.5F x xΔ = Δ  and 0.05ts m= . The dimensions are 0.1a m=  and 0.005r m= . 

The upper figure shows the solution for 00 180α≤ ≤ . The lower figure shows the 
solution for 060 180α− ≤ ≤ . The below graphs under each configuration show the 
corresponding operation points of F  and G  functions. 
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Fig.4.4: A case when C  is negative. ( ) 20.08 0.04G α α= − , ( ) 239.5F x xΔ = Δ  and 

0.05ts m= . The dimensions are 0.1a m=  and 0.005r m= . The cam profile was 
calculated for 0 060 180α− ≤ ≤ . The cam is give at two configurations; when 00α =  
and 060α = − . The below graphs under each configuration show the corresponding 
operation points of F  and G  functions. 
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Note 5: r  can be selected zero to eliminate pulleys and to reduce friction. The main 

goal of the pulley at the string wrapping around cam mechanism was guiding the 

string so that the translation spring would be put anywhere suitable (Figure 3.3). But 

the pulleys add to the friction with their revolute joints. They can be eliminated to 

reduce the friction; however the solution comes with the price of increased a  value. 

Remember that if the pulley is eliminated, at the most tensed position, the length of 

the straight part of the string must be higher than the released length of the 

translation spring plus the maximum deflection of it. Eliminating the pulley at the 

calculations is quite easy; just assign zero to r . Also notice that r  can be assigned 

negative. This time the string rolls around the pulley not from below but from above. 

 

Note 6: The string thickness can be taken into account in the calculations. The 

equations were derived for a string with zero thickness but in real life it will always 

have a finite thickness. It can be assumed that the string’s neutral axis is at its center. 

Then the cam profile calculated here is for the neutral axis. The real cam surface will 

then be half the string thickness below. This can be adapted to the calculations easily 

because β  is calculated at each step. 

 

4.1.3 The operation region 
 

There is an operation region for the adjustable linear torsion spring. Since the cams 

will have limits, so will the adjustable linear torsion spring that uses them. Before 

going further, Equation (4.1) must be updated first, since B  was selected zero at 

Section 4.1.2 – Note 1. Then, Equation (4.1) becomes, 

 
 ( ) 4M Aθ φθ= −  (4.4) 

 
See how simple the Equation (4.4) is. The stiffness of the adjustable linear torsion 

spring is linearly related to A  and φ . It could be a complex function of φ  either. It 

facilitates the effort if the real adjustable linear torsion spring is needed to be 

calibrated experimentally. 
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Remember that the cams were calculated for an α  range like min maxα α α≤ ≤ . If the 

cam is rotated with the pretension φ  in CW direction, then it will able to rotate at 

most by an angle of maxα φ−  in CW direction and minφ α−  in CCW direction. The 

mechanically adjustable linear torsion spring using cams uses two mirror image cams 

that work antagonistically (Figure 4.1.g). That is, when they are rotated together in 

one direction, one cam rotates towards its maxα  edge and the other rotates towards its 

minα  edge. So the mirror image cam couple can rotate at most either by an angle of 

maxα φ−  or minφ α− . The smaller one rules. 

 
 [ ]max max min;Minθ α φ φ α= − −  (4.5) 

 
Equation (4.5) can be restated as follows, 

 

For max min
min 2

α αα φ +
≤ ≤ ,             max minθ φ α= −  (4.6) 

For max min
max2

α α φ α+
≤ ≤ ,             max maxθ α φ= −  (4.7) 

 
A representative sketch is given in Figure 4.5 for the cam calculated in Figure 4.3. 

Observe how different edges of the cam constrain the maximum deflection, the maxθ . 

 
Inserting Equations (4.6)and (4.7) into Equation (4.4), the moment limits are found 

(negative sign is eliminated). 

 

For max min
min 2

α αα φ +
≤ ≤ , 

 ( ) ( )max max min max max4 4M A Aθ φθ α θ θ= = +  (4.8) 

 

For max min
max2

α α φ α+
≤ ≤ , 

 ( ) ( )max max max max max4 4M A Aθ φθ α θ θ= = −  (4.9) 
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Fig.4.5: (a) The quadratic torsion spring using cam himself. This is the one given in 
Figure 4.3 and calculated for 060 180α− ≤ ≤ . (b) Two such quadratic torsion 
springs are working antagonistically. (c) The cams are rotated by 050φ =  in reverse 
directions at the equilibrium position. (d) Cam pairs can be rotated at most by 

0
max 110θ = . minα  edge of the cam constrain maxθ . (e) The cams are rotated by 

080φ =  in reverse directions at the equilibrium position. (f) Cam pairs can be 
rotated at most by 0

max 100θ = . maxα  edge of the cam constrain maxθ . 
 
 
 
Equations (4.8) and (4.9) represent two parabolas that constitute the borders of the 

operation region of the mechanically adjustable linear torsion spring using cams. The 

operation region graph for the cases given in Figure 4.5 is shown in Figure 4.6. 
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Observe how the two obtained linear torsion springs are limited by two different 

parabolas expressed with Equations (4.8) and (4.9). 

 
The possible stiffness range is min max4 4A k Aα α≤ ≤ . Yet, the springs with stiffnesses 

min4Aα  and max4Aα  can not be deflected since they have the maximum deflection 

max 0θ = . The maximum deflectable spring is obtained when max min

2
α αφ +

= . The 

stiffness obtained for this case is ( )max min2k A α α= +  and that spring can be 

deflected at most max min
max 2

α αθ −
= . 

 
Observe that negative stiffnesses can be obtained if minα  is negative (Figure 4.6). The 

negative stiffness may not have a practical use, but in our case, negative minα  widens 

the operation region of the soft springs (Figure 4.6). Remember that negative minα  is 

harder to obtain than maxα  as explained in Section 4.1.2 – Note 3. 
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Fig.4.6: The operation region of the antagonistically working two quadratic torsion 
springs set-up given in Figure 4.5. 0.08A = , 0

min 60α = −  and 0
max 180α = . The pink 

and the blue straight lines show the linear torsion springs obtained when 050φ =  
and 080φ =  respectively. 
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4.1.4 Mechanical details of the prototypes 
 

After calculating the necessary cam profile satisfying the operation region 

requirements of the mechanically adjustable linear torsion spring, there remains some 

other mechanical problems that must be solved. A good mechanical design is quite 

crucial because a reliable, light, low inertia and low friction machine is deeply 

affected from the quality of the design and manufacturing. Since our prototypes will 

be just for demonstration purposes, there is no apparent requirement like fitting the 

whole system into a confined space. Here, making the prototypes as compact as 

possible was adopted. Two different prototypes were manufactured for this purpose. 

At the first prototype, the manufacturing skills were tested and the nature of the 

prototype was perceived better. The second prototype was manufactured to overcome 

the problems seen at the first prototype and the ideal design was tried to be reached. 

 
When it is settled to manufacture a prototype of the mechanically adjustable linear 

torsion spring, the first thing it must be thought about is the stiffness tuning 

mechanism. Nothing has been said about it up to now, but it is not as straight forward 

as it is first thought. First of all, it needs a non-back drivable mechanism element 

since stiffness must not change during the adjustable spring operates. Two possible 

non-back drivable mechanisms can be the screw-nut mesh and the worm-gear mesh. 

Secondly, the cams must rotate in reverse directions by an equal amount. One 

solution can be realized using symmetrically operating slider crank mechanisms. 

Crank arms rotate the cams in reverse directions by an equal amount and the stiffness 

is tuned with translating their common slider. When the slider is translated with 

screw-nut mesh, a non-back drivable stiffness tuning mechanism is obtained. This 

method is applied at the first prototype. The second and in fact the default solution to 

the problem is to use two bevel gears which are driven by the same pinion gear. Two 

bevel gears rotate the cams in reverse directions equal amount and their common 

pinion gear can be rotated with a worm gear. Again a non-back drivable stiffness 

tuning mechanism is obtained and this method is used at the second prototype. 
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Prototype #1 

 

Basic components of the Prototype #1 are shown in Figure 4.7. The cams were 

calculated for ( ) 20.05 0.034875G α α= + , ( ) 232.5F x xΔ = Δ  and 0.03ts m= . The 

cam calculations are made for the range 0 040 200α− ≤ ≤ . The dimensions are 

0.08a m=  and 0.005r m= . As it is seen in Figure 4.7, the string wraps around a 

second pulley so that the linear helical spring used is placed horizontally just below 

the cams. For this set-up, a long dimension is unavoidable. The free length of the 

helical spring is 5.9 cm  and it elongates 9 cm  at the most loaded position. So it 

requires a 14.9 cm  long space to operate. Here a second pulley was quite crucial to 

save space but it comes with the price of friction of a new element. Initial pretension, 

ts , of this spring is given with the pretension adjustment handle. 

 
 
 

 
 

Fig.4.7: Basic components of Prototype #1. 
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Fig.4.8: Symmetrically operating slider crank mechanisms powered by a nut-screw 
mesh (Left). Symmetrically operating slider crank mechanism plus a four bar 
mechanism powered by a nut-screw mesh (Right). The symmetric portion was 
eliminated for clarity. 
 
 
 
At prototype #1, stiffness tuning is made with symmetrically operating slider crank 

mechanisms powered by a nut-screw mesh (Figure 4.8 – Left). At the design stage, 

the cams were asked to rotate 0120  in reverse directions and this angular deflection is 

quite high for a slider crank mechanism that does not suffer from transmission angle 

problem. So, a four bar mechanism added serially to the slider crank mechanism 

(Figure 4.8 – Right). Slider crank mechanism rotate its crank 060  meanwhile the 

rocker arm of the four bar mechanism rotates 0120 . These two mechanisms were 

designed for keeping the torque transmissions as constant as possible. That is, 

approximating the gear meshes. 

 
The performance of the prototype #1 was quite unsatisfactory so no experiments 

were conducted on it to verify linear behavior. The major problem was the friction of 

the system. Dry friction resulted in significant backlash and thus a useless spring yet 
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it is still adjustable. No roller bearings were used at the revolute joints and worse 

than that, the pulleys and the adjustable torsion spring handle itself rotate around 

3 mm  thick shafts whereas 2 mm  shafts were possible. 

The main material used for manufacturing the cams and other parts for the first 

prototype was Plexiglas. It is thought that, since Plexiglas was a transparent material, 

it would show the details inside of the mechanism and since it was a soft material, it 

could be machined easily. However, making most of the parts transparent did not 

make the inside details visible but everything invisible and at high cutting speeds 

Plexiglas tended to melt and resulted in low surface quality. With the teachings of the 

first prototype, the second prototype was manufactured from aluminum, which is a 

light and heat conductive material. 

 

Prototype #2 

 

The general view of the Prototype #2 is shown in Figure 4.9. The cams were 

calculated for ( ) 20.08 +0.02514G α α= , ( ) 239.5F x xΔ = Δ  and 0.05ts m= . The 

cam calculations are made for the range of 0 070 180α− ≤ ≤ . The dimensions are 

0.18a m=  and 0r m= . As it seen in Figure 4.9, the string does not wrap around 

any pulley so that the system is free of pulley friction. The free length of the spring is 

6 cm  and it elongates 10 cm  at the most loaded position. So it requires a 16 cm  long 

space to operate. This space was acquired by making 0.18a m= . 

 
The stiffness adjustment mechanism is shown in Figure 4.10. Two bevel gears 

connected to the two cams are driven by the same pinion gear. The cams are able to 

rotate in reverse directions with equal amounts. The pinion gear is driven by a non-

back drivable worm-gear mesh. While the adjustable spring operates under load, the 

bevel gears-pinion mesh was not able to keep its contact. It is due to the pressure 

angle of the teeth since it creates an axial force on the bevel gears. The problem was 

solved by introducing gear holders (Figure 4.10). They imposed a kinematic 

constrain on the bevel gears-pinion contact. 
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Fig.4.9: The picture of the prototype (Left) and the CAD model (Right). 
 
 
 
On the main spring handle, a half pulley was added for experimental measurements 

(Figure 4.10 – lower right). So, during the experiments, not the angular deflection but 

the deflection of the string that wraps around it was measured. A half pulley was 

enough because the spring handle can rotate at most 0125±  (Refer to Section 4.1.3). 

 
At the first prototype, the base arms were connected to each other by two cylindrical 

parts that pass outside the string operation region (Figure 4.7). Since the main 

objective of the prototypes was the compactness, a better way to separate the base 

arms were found and applied at the second prototype. Observe how the middle part 

seen at Figure 4.11 – Left connects the base arms by passing between the strings .So 

the second prototype was able become thinner and more compact (Compare Figures 

4.7 and 4.9). 
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Fig.4.10: The stiffness adjustment mechanism. 
 
 
 

 
 
Fig.4.11: Close views of the part that separates the two base arms (Left) and the 
pretension adjustment tool (Right). 
 
 
 
Initial pretension, ts , is given to the two helical springs used in the second prototype 

with the pretension adjustment system shown in Figure 4.11 – Right. As it is 
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observed, a more effective and smaller system is introduced for spring pretension 

adjustment at the second prototype than the first prototype. 

 
To decrease the effects of the friction on the system performance, roller bearings 

were used at the rotational joints. Since there are no pulleys in the second prototype, 

the only revolute joint used is at the main spring handle. The roller bearings are not 

visible in Figure 4.9 because they are embedded inside the base arms. 

 
Notice an important thing here. The cams are connected to the bevel gears rigidly. 

Then, while the adjustable spring operates, they are the teeth of the bevel gears that 

will transfer the force created at the cams to the main spring handle. So the weak 

chain of this design is the strength of the teeth. It is better to manufacture them from 

a metal, but for our case they are made up of plastic. 

 

4.1.5 Experimental verification of the linearity 
 

As it was noted before, the first prototype was quite unsatisfactory and was suffering 

from significant backlash, thus no experiments were conducted on it, and instead the 

second prototype was designed and manufactured. This time the performance of the 

prototype was satisfactory and experiments were conducted on it. The results are 

given in this section. 

 
The pictures of the experimental set-up are shown in Figure 4.12. As it was 

expressed before, on the main spring handle, a half pulley was added for 

experimental measurements (Figure 4.10 – lower right). A string that wraps around 

this half pulley is loaded with some known weights at the other end and the 

mechanically adjustable linear torsion spring is loaded by this way. A black spot was 

made on this string and its deflections were measured with a ruler of 0.5 mm 

accuracy (Figure 4.12). Knowing the radius of the half pulley and the deflections of 

the string, the torsion spring behavior was obtained. 

 
When the experiments started, a striking problem was encountered. The first results 

spilled over the operation region which was an impossible conclusion. Then it was
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Fig.4.12: Experimental set-up 
 
 
 
realized that the strings that were used had significant elasticity. The work done up to 

that time was questioned and noticed that some critical calculation values were even 

wrong. For example, the stiffness of the helical spring used at the quadratic spring 

calculations was not correct because the experiments made to find its stiffness also 

included that string. Thanks to the merits of the set-up that all the work up to the 

experiments was not thrown to the dustbin, although the second prototype had 

already been manufactured with rigid string assumption. 

 
The strings come into the picture at two points. Firstly, the helical springs are 

attached to the cams with these springs. So their finite stiffness must be added to the 

stiffness of the helical spring and the stiffness appearing at ( )F x K xΔ = Δ  must be 
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refined like that. Of course, the string must have a linear spring behavior. As it was 

noted in Section 4.1.2 – Note 2, the value K  himself was not an important parameter 

for the cam profile calculations. As long as ( )F xΔ  has a linear spring behavior and 

it is pre-tensioned correctly as ts  much, the antagonistically working two quadratic 

springs set-up will continue to give adjustable linear springs. Secondly, the 

adjustable linear torsion spring is experimented by hanging weights to the pulley on 

the main spring handle with such a string. Then the string works as a spring attached 

serially to the adjustable linear torsion spring. So the experimental data must be 

corrected for its stiffness. 

 
First the spring behavior of the string was measured. It was a quite slow responding 

spring. When a weight is hanged on its one end, it takes some time to come to an 

equilibrium. So it was waited approximately 1 minute at every loading and the 

elongation was noted. 

 
As observed in Figure 4.13, the string shows strong linear behavior. Then the 

stiffness of the helical spring was measured (Figure 4.14). Again it showed strong 

linear behavior. But the stiffness that is obtained in Figure 4.14 is spoiled by a 10 cm
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Fig.4.13: Spring characteristic of 30.6 cm long string. 
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Fig.4.14: Spring characteristic of 5.9 cm long helical spring with 10 cm long string. 

 
 
 
long string. When the result is refined, the stiffness of the helical spring is found as 

219.36 N m . At the quadratic torsion spring, this helical spring is attached to the 

cam with 16 cm long string. Then effective F  function is found as 

( ) 212.11F x xΔ = Δ . The F  function was noted in Section 4.1.4 as 

( ) 239.5F x xΔ = Δ . So the spring coefficients given in Section 4.1.4 are totally wrong 

and must be corrected with ( ) 212.11F x xΔ = Δ  and ( ) 20.07085 +0.02227G α α= . 

 
The second prototype was tested for three different stiffnesses (Figure 4.15). It is 

observed that the springs showed strong linear behavior as it is expected. 

 
The experimental procedure followed like this. The stiffness tuning button was 

rotated 12 times and the first linear spring was obtained. It was rotated for another 12 

times and the second linear spring was obtained. Likewise, it was rotated for another 

12 times and the third linear spring was obtained. Since the numbers of teeth of the 

gears are known (bevel gears have 66 teeth, pinion has 10 teeth and worm gear has24 

teeth), the φ  values are calculated as 027.27 , 054.55  and 081.82  respectively. By 

using Equation (4.4), the stiffnesses of the linear springs are calculated as
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Fig.4.15: Experimental results of the mechanically adjustable linear torsion spring 

using cams for three different stiffnesses. 
 
 
 
0.002354 degNm , 0.004709 degNm  and 0.007063 degNm  respectively. It is 

observed that these values are in good agreement with the experimental results 

(Figure 4.15). Manufacturing quality of the prototype is proven by these results. 

 

4.2 With hanging weights 
 

Remember that cam design starts with integrating Equation (3.3). Equations (3.3) can 

also be written in the following form; 

 

 ( ) ( )s
s t

du F u s G
d

α
α

+ =  (4.10) 

 
As long as Equation (4.10) stays the same, the integration of it will give the same 

( )su α  variation, and remember from Section 3.2 that after this point the calculations 

will result in a unique cam profile. For example, scaling Equation (4.10) with a 

constant does not change the ( )su α  variation obtained so the cam that is designed 

for it stays the same. This idea has already been stated in Section 4.1.2 – Note 2. 
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Remember that the K  value there was just scaling Equation (4.10). That is, if 

another linear spring with a different spring constant is used, the same cam will again 

give a quadratic torsion spring but with the coefficients scaled this time. Similarly 

adjusting something at F  function and keeping Equation (4.10) the same, adjustable 

G  functions can be obtained by using the same cam. This is the idea that the works 

at this section and at the following two sections are going to rely on. 

 
Let’s F  and G  functions be ( )F x WΔ =  and ( )G Aα α= . That is, the designed 

cam will transform a constant force function to a linear torsion spring. Keep in mind 

that a constant force function can be obtained with hanging weights. Inserting these 

two functions into Equation (4.10), 

 

 sdu W A
d

α
α

=  (4.11) 

or 

 sdu A
d W

α ηα
α

= =  (4.12) 

 
where η  is a constant. Solving the cam profile problem stated in Equation (4.12) 

with η  is a constant, a specific cam profile is obtained. That cam profile will then 

have the following torsion spring behavior, 

 
 ( )G A Wα α ηα= =  (4.13) 

 
Note that, the stiffness obtained includes W  as a multiplier. Then, changing the 

weight that hangs down the string will have a tuning effect on the linear torsion 

spring obtained at the cam. The schematic of a sample design is given at Figure 4.16. 

 
The cusp on the cam profile in Figure 4.16.a has a technical importance because the 

string must be attached to the cam at that cusp. And again observe how the string 

wraps around the upper part and the lower part of the cam when α  is positive and 

negative respectively (Figures 4.16.b and 4.16.c). 
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Fig.4.16: Mechanically adjustable linear torsion spring with hanging weights. The 
dimensions are 0.1a m=  and 0.005r m= − . The cam profile was calculated for 

0.02η =  and with the limits 0 090 90α− ≤ ≤ . Then, the corresponding torsion spring 
behavior is ( ) 0.02G Wα α= . The cam is given at three configurations; (a) when 

00α = , (b) when 060α =  and (c) when 075α = − . 
 
 
 

4.3 With an exponential characteristic spring 
 

Let’s turn back to Equation (4.10) again; 

 

 ( ) ( )s
s t

du F u s G
d

α
α

+ =  (4.10) 

 
It was seen in Section 4.2 that if F  function were a constant function, Equation 

(4.10) could be scaled and the scaling factor (it was the weight W  there) turned out 

to be a tuning tool for the obtained linear torsion spring. The same idea can also work 

if the F  function satisfies the identity given in Equation (4.14). 

 
 ( ) ( ) ( )s t t sF u s h s F u+ = ⋅  (4.14) 

060

075−

( )b ( )c
W W

W( )a

g
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Remember that the exponential function satisfies this identity. Let’s F  and G  

functions be ( ) L xF x Ke ⋅ΔΔ =  and ( )G Aα α= . Inserting these two functions into 

Equation (4.10), 

 

 ( )s tL u ssdu Ke A
d

α
α

⋅ + =  (4.15) 

or 

 s

t

L us
L s

du AKe
d e

α ηα
α

⋅
⋅= =  (4.16) 

 
where η  is a constant. Solving the cam profile problem stated in Equation (4.16) 

with η  is a constant, a specific cam profile is obtained. That cam profile will then 

have the following torsion spring behavior, 

 
 ( ) tL sG A eα α ηα⋅= =  (4.17) 

 
Note that, the stiffness obtained includes tL se ⋅  as a multiplier. Then, changing the 

pretension of the F  function, “ ts ”, will have a tuning effect on the linear torsion 

spring obtained at the cam. 

 
The mathematics is fine up to now. But is there a translation spring with an 

exponential spring characteristic? Not yet, but a string wrapping around cam 

mechanism can easily be design to realize it. In short, two cams will be designed 

through out the way. The design of mechanically adjustable linear torsion spring with 

an exponential characteristic spring is explained step by step as follows. 

 

Step 1: First, an exponential characteristic torsion spring will be designed using 

string wrapping around cam mechanism. A sample design is given in Figure 4.17. 

 
If the cam rotations are started to be measured from the horizontal axis, the cam will 

have the following torsion spring behavior (Figures 4.17.a and 4.17.b), 

 
 ( ) 1 1

1 1 1
BG A e αα = ×  (4.18) 
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Fig.4.17: 1st cam design; exponential characteristic torsion spring. The dimensions 
are 1 0.1a m=  and 1 0.005r m= . The cam profile was calculated for 

( ) 10.8
1 1 0.04G e αα = , ( )1 1 1219.36F x xΔ = Δ  and 1 0.02ts m= . The calculation limits 

are 0 0
190 120α− ≤ ≤ . The cam is given at four configurations; (a) when 0

1 0α = , (b) 
when 0

1 50α = , (c) when 020φ =  and (d) when 020φ =  and 0
1 50α = . 

 
 
 
If the cam is rotated by an angle of φ  and the cam rotations are started to be 

measured from that new configuration, the cam is going to have the following torsion 

spring behavior (Figures 4.16.c and 4.16.d), 

 
 ( ) ( )1 1 1 1 1

1 1 1 1
B B BG A e A e eφ α φ αα += × = ×  (4.19) 

 
Thus, the same spring characteristic behavior appears again, “ 1 1Be α ”, but it is scaled 

with “ 1Be φ ” this time. In summary, exponential characteristic torsion spring is scaled 

with pre-tensioning its cam some amount and starting to measure the 1α  from that 

configuration. This property is in its nature. 

 

( )a ( )b

( )d( )c

1α

1α
φ

φ
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Step 2: If this exponential characteristic torsion spring is desired to be used at a 

second cam design, it must be converted into a translational one first. That 

conversion can easily be made via a pulley attached to it (Figure 4.18). A string 

attached to that pulley will then have a translation spring characteristic as derived 

below. 

 
 2 2 1s rαΔ =  (4.20) 

 ( ) ( ) 1
2

1 21 1 1
2 2

2 2

B
x

B rG AF x e e
r r

φα Δ

Δ = = ×  (4.21) 

 
It is observed in Equation (4.21) that 1Be φ  still stays as a scaling factor. 
 
 
 

 
 
 

 
 
 
Fig.4.18: Exponential characteristic translation spring. It is obtained by attaching a 

2 0.03r m=  radius pulley to the exponential characteristic torsion spring given in 
Figure 4.17. The system is given at there configurations; (a) when 00φ =  and 

0
1 0α = , (b) when the cam is rotated by 020φ =  with respect the pulley and (c) when 

the cam-pulley assembly is rotated 0
1 40α = . The string attached to the pulley gives 

us the following translation spring characteristic; ( ) 226.670.8
2 2 1.33 xF x e eφ ΔΔ = × . 

( )c( )b

1α
φ

φ

( )a

2F

2F
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2xΔ
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Step 3: Since an exponential characteristic translation spring in now available, it can 

readily be used in the second cam design. Let the F  function be the ( )2F xΔ  

function given in Equation (4.21) and the G  function that will be obtained be 

( )2 2 2 2G Aα α= . Inserting these two functions into Equation (4.10), 

 

 
1

2
1 22 1

2 2
2 2

s
B

u
B rsdu A e e A

d r
φ α

α
× =  (4.22) 

or 

 
1

2
2

1

2 2
2 2

12

2

s
B

u
rs

B

du Ae Ad e
r

φ
α ηα

α
= =  (4.23) 

 
where η  is a constant. Solving the cam profile problem stated in Equation (4.23) 

with η  is a constant, a specific cam profile is obtained. That cam profile will then 

have the following torsion spring behavior, 

 

 ( ) 11
2 2 2 2 2

2

BAG A e
r

φα α η α= =  (4.24) 

 
Then, adjusting the orientation of the first cam with respect to the second pulley, that 

is, “φ ”, will have a tuning effect on the linear torsion spring obtained at the cam as 

expressed in Equation (4.24). A sample design is given in Figure 4.19. 

 
The logic of mechanically adjustable linear torsion spring using an exponential 

characteristic spring can be expressed in a different manner. As it was already 

expressed in Step 1, the exponential characteristic torsion spring is self-adjustable in 

nature, but with an exponential characteristic which does not have an apparent use. 

Then this spring can be converted into a linear torsion spring with a second string 

cam arrangement and the obtained linear torsion spring becomes an adjustable one 

just as the exponential torsion spring was. 
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Fig.4.19: Mechanically adjustable linear torsion spring using an exponential 
characteristic translation spring. The exponential characteristic translation spring is 
the one given in figure 4.18. The remaining dimensions are 2 0.1a m=  and 

2 0.03r m= . The second cam profile was calculated for 0.02η = . Then, the 
corresponding torsion spring behavior is ( ) 0.8

2 2 20.02667G e φα α= × . The 

calculation limits of the second cam are 0 0
290 90α− ≤ ≤ . The cam system is given at 

four configurations; (a) at the equilibrium position when 00φ = , it corresponds to 
( )2 2 20.02667G α α= ×  (b) when the second cam is rotated 0

2 90α = , meanwhile the 

first cam rotates by an angle of 0
1 36.21α =  (c) at the equilibrium position when 

1α
φ2α

2α

φ

1α

( )a

( )b

( )c

( )d
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020φ = , it corresponds to ( )2 2 20.03526G α α= ×  (d) when the second cam is rotated 
0

2 90α = , meanwhile the first cam rotates by an angle of 0
1 36.21α = . 

 
 
 
Note that the second pulley, the bigger one seen in Figure 4.18, never makes a full 

rotation. So, it can be made a pulley portion to make the whole system lighter and 

compact. 

 

4.4 With a linear translation spring 
 

Say, it has been calculated a cam profile for the given ( )G α , ( )F xΔ  and ts . Then 

the question is; what is the new torsion spring characteristic that this cam profile will 

give if the F  function is pre-tensioned differently then ts ? No doubt that the new 

spring characteristic changes with ts , but can not it be calculated beforehand, that is, 

before calculating the cam profile himself? The answer is as follows. 

 
Remember Equation (4.10) here again, 
 

 ( ) ( )s
s t

du F u s G
d

α
α

+ =  (4.10) 

 
First integrate Equation (4.10) for the given ( )G α , ( )F xΔ  and ts  and find su . Note 

that, su  function is quite specific to the cam geometry and does not change unless the 

cam surface changes. Then put the su  function and the new pretension value into 

Equation (4.10) and find the new ( )G α  function. 

 
Now it is clear how to calculate the new torsion spring characteristic occurring at the 

cam when the pretension is changed from the cam calculation values. So the new ts  

value somehow makes the torsion spring characteristic obtained at the cam 

adjustable. Then the second critical question is; can not it be controlled? Can not it 

be made to give an adjustable linear spring for example? The answer is yes. But a 
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revolutionary move must be made first. Up to here, always su  was calculated for the 

given ( )G α , ( )F xΔ  and ts . What about calculating ( )G α  for the given su , ( )F xΔ  

and ts ? 

 
To see the adjustment effect of ts  on ( )G α  barely at the calculations, it is better su  

and ts  separable at ( )s tF u s+  in Equation (4.10). The linear F  function meets this 

requirement and Equation (4.10) becomes, 

 

 ( ) ( )s
s t

du K u s G
d

α
α

⋅ + =  (4.25) 

or 

 ( )s s
s t

du duK u K s G
d d

α
α α

⋅ + ⋅ =  (4.26) 

 
If an adjustable linear spring is desired, 

 

 sdu
d

η α
α

= ⋅  (4.27) 

 
where η  is a constant. 

 
Then integrate Equation (4.27) to find su . Keep in mind that ( )0 0su = . 

 

 2

2su η α= ⋅  (4.28) 

 
Inserting Equations (4.27) and (4.28) into Equation (4.26) 

 

 ( )
2

3

2 tK s K Gη α η α α⋅ + ⋅ =  (4.29) 

 
So the adjustment effect of ts  on ( )G α  became linear but with the price of an 

excess cubic function. Fortunately it will not make a significant problem because 
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there is a very trivial routine to eliminate it. A second cam can easily be designed 

with the following spring characteristic, 

 

 ( )
2

3
22

K Gη α α− ⋅ =  (4.30) 

 
and can be used together with the cam of Equation (4.29). So the cubic terms cancel 

out and only the linear term remains. 

 
 ( ) ( )2ts K G Gη α α α⋅ = +  (4.31) 

 
For the cam profile that will have the torsion spring characteristic given in Equation 

(4.29), the cam problem must be solved for ( )
2

3

2
G Kηα α= ⋅ , ( )F x K xΔ = Δ  and 

0ts = . It is interesting that the cam profile problem for ( )G α η α= ⋅  and ( ) 1F xΔ =  

can also be calculated instead of it by observing Equation (4.27). Both equations 

result in the same su  expressed in Equation (4.28) so will result in the same cam 

profile. In summary, the cam profile that converts a constant force function to a 

linear torsion spring also converts a linear translation spring to a cubic spring. 

Remember here that this problem have already been solved in Section 4.2. So exactly 

the same cam profile given in Figure 4.16 is going to be get if the η  values are 

selected the same. A sample design is given in Figure 4.20. 

 
A sample design for minus cubic behavior is shown in Figure 4.21.a. The cam profile 

has a cusp on it as had the cam profile given in Figure 4.20. That cam profile was 

easily actuated with one string only, but it is not possible for this case. A solution 

with two translation springs is shown in Figure 4.21.b. Observe how the strings wrap 

around two separate branches of the cam surface and also observe that when one of 

the strings produces a moment on the cam, the other produces zero moment. 

 
The combination of the cam systems shown in Figures 4.20 and 4.21 is given in 

Figure 4.22.a. Since those cam surfaces are fixed to each other here, a one piece cam 

is obtained in return, yet it is actuated by three strings. Then the overall torsion
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Fig.4.20: The cam profile was calculated for ( )
2

3

2
G Kηα α= ⋅ , ( )F x K xΔ = Δ  and 

0ts =  where 0.02η =  and 219.36K N m= . The remaining dimensions are 
0.1a m=  and 0.005r m= − . The calculation limits are 0 090 90α− ≤ ≤ . The cam is 

given at two configurations; (a) at the equilibrium position (b) when 055α = . 
 
 
 
 

 
 
 

 
 
 

Fig.4.21: The cam profile was calculated for ( )
2

3

2
G Kηα α= − ⋅ , ( )F x K xΔ = Δ  and 

0.07ts =  where 0.02η =  and 219.36K N m= . The remaining dimensions are 
0.1a m=  and 0.005r m= . The calculation limits are 0 090 90α− ≤ ≤ . (a) the cam 

profile himself (b) at the equilibrium position (c) when 055α =  (d) when 055α = − . 

( )a

ts

( )b

ts
055

( )a ( )b

( )c ( )d

055

055−



 75

 
 
 

 
 
 
Fig.4.22: The cam profiles in Figures 4.20 and 4.21 together. The cam assembly has 
the linear spring characteristic ( ) tG s Kα η α= ⋅  in total where 0.02η =  and 

219.36K N m= . The cam assembly is given at three configurations, (a) at the 
equilibrium position (b) when 055α =  (c) when 055α = − . 
 
 
 
spring behavior occurring on this cam assembly becomes the one that is expressed in 

Equation (4.31). ts  appears as an apparent adjustment parameter. It is interesting to 

note here that, if ts  is selected zero, the overall moment that occurs on the cam 

assembly will be zero regardless of the orientation of that strange looking cam 

assembly. The cam assembly system is shown in two different deflected positions in 

Figures 4.22.b and 4.22.c.  

 

4.5 General discussions 
 

Four different ways of obtaining a mechanically adjustable linear torsion spring was 

explained in this chapter. They were obtained with the antagonistically working two 

quadratic springs, with hanging weights, with an exponential characteristic spring 

( )b ( )c

ts ts
055

055−

ts

( )a
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and with a linear translation spring respectively. The main actors in action were 

always the string wrapping around cam mechanisms and they made it possible to get 

some critical non-linear spring characteristics with a striking simplicity. 

 
The last three ways to obtain mechanically adjustable linear springs are distinguished 

from the first one in a very important sense. The antagonistically working two 

quadratic springs set-up can only be used to get adjustable linear spring 

characteristics. But the last three methods can also be designed to give us any 

adjustable characteristics wanted. At the hanging weights method, the G  function 

can easily be selected as any other function than the linear function selected in 

Equation (4.11). At the exponential characteristic spring method, similarly the 2G  

function can easily be selected as any other function than the linear function selected 

in Equation (4.22). Note here that, for this case, the designs made in Step 1 and Step 

2 remain the same and only the cam designed in Step 3 changes in Section 4.3. 

Finally, at the fourth method, the linear function selected in Equation (4.27) can 

easily be selected as different function and again an adjustable version of that 

different function can be obtained. 

 
In this Chapter, all the mechanically adjustable linear torsion springs were realized 

designing string wrapping around cam mechanisms. It was stated in Section 3.2 that 

for the antagonistically working two quadratic springs method, some other 

mechanisms like the ones given in Figure 3.2 can be used to get quadratic springs. 

Similarly, the remaining three methods do not have to use string wrapping around 

cam mechanisms. Although the sample designs were always made using string 

wrapping around cam mechanisms, the mechanisms given in Figure 3.2 can also be 

used instead. 

 
What about the stiffness adjustment capabilities of these 4 different mechanically 

adjustable linear spring methods? As it was mentioned in Section 4.1.3, the method 

with antagonistically working two quadratic springs can adjust the stiffneses even for 

negative values. Hanging weights method can give us stiffness at least zero or higher. 

The exponential spring method can not give us zero stiffness because 1Be φ  in 
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Equation (4.24) can never ever be zero or negative. So the lower and higher bounds 

of the stiffness are positive. The fourth method is similar to the hanging weights 

method, at least zero or higher but not negative stiffnesses. 

 

The stiffness tuning mechanisms possible for the antagonistic set-up of two quadratic 

springs have already been discussed in Section 4.1.4. For the second method, such a 

mechanism is not required because the stiffness tuning is made by changing the 

weights. For the third case, the cam and the pulley shown in Figure 4.18 must be 

rotated with respect to each other to tune the stiffness. The mechanisms discussed for 

the antagonistic set-up of two quadratic springs can readily be used. For the last 

method, the stiffness is tuned by adjusting the pretension of a linear translation 

spring. It can be realized by the method of MACCEPA (Section 2.2.1), that is, a 

spool that the string attached to the linear translation spring rolls up. 

 
At these four different methods, the equilibrium positions do not change with the 

stiffness adjustment. But, at the first case, if the two cams are not manufactured 

identical or the pretensions of the strings are not given the same, the equilibrium 

position will surely shift slightly. But for the remaining 3 methods, this is not a case. 

Even if the cams that were manufactured are unsatisfactory, the equilibrium positions 

would not be affected by that. Because the equilibrium positions are forced 

kinematically and not rely on the manufacturing quality. 

 
Then the question is; which method is the best to obtain mechanically adjustable 

linear springs? Basically, it changes from application to application. For example, the 

second method does not suit to robotic applications but may be to physical therapy 

activities. But an important thing should be here. For robotic applications, the fourth 

method gives the least complicated mechanism although it uses a strange looking 

cam assembly. Because, there are less number of moving parts. 
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CHAPTER 5 
 
 

CONCLUSIONS 
 
 
 
At this thesis work, mechanically adjustable linear springs were discussed in detail. 

There are essentially three reasons why a reader will consult this thesis. The first one 

is the derivation made in Section 2.1 for the necessity of quadratic springs at 

antagonistically working two non-linear springs set-up. It was derived there that it 

was only when the non-linear springs were quadratic ones; the antagonistic set-up 

would give mechanically adjustable springs with perfect linearity in return and this 

was the unique solution. The second reason is the string wrapping around cam 

mechanism discussed in Section 3.2. The string wrapping around cam mechanism 

can be designed to get any non-linear spring characteristics and it provides this 

astonishing task with a very simple mechanical system. Remember that there were 

only two rotating parts; the cam and an optional pulley to guide the string. And may 

be this is our chance that there is a stepwise anlytical solution for the cam profile 

calculations. The third reason is the three new mechanically adjustable spring 

philosophies introduced in Sections 4.2, 4.3 and 4.4. These novel methods have a 

revolutionary importance; in the past, there were only the antagonistically working 

two quadratic springs set-up that can give adjustable springs with perfect linearity. 

Now there are three more. And they can easily be implemented designing string 

wrapping around cam mechanisms. As it was argued before, the author thinks that 

they are in fact the most important contribution to the subject cited at this thesis. 

 
The objective of this thesis work was just presenting the design details of 

mechanically adjustable springs but not designing one of them for a specific task. 

But still, a prototype based on the antagonistically working two quadratic springs set-

up was designed, manufactured and tested for adjustable linear spring behavior. The 
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nature of the mechanical system was perceived better and important rule of thumbs 

were given on the topic in Section 4.1. 
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