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ABSTRACT

ADSORPTION OF AROMATIC MOLECULES ON RUTILE TiO2(110) SURFACES

Mesta, Murat

M.S., Department of Physics

Supervisor : Prof. Dr. Şinasi Ellialtıoğlu

September 2009, 49 pages

Transition metal oxides having high dielectric constants and wide band gaps find very im-

portant and interesting technological applications in surface physics. In particular, titania is

the most commonly used material in heterogeneous catalysis because of its stable and flat sur-

faces. Having Ti cations at different charge states within the system brings about various novel

electronic properties which are mainly surface related. Adsorption of catalytically important

or chemically useful molecules on titania surfaces are investigated, electronic energy bands

and charge densities are calculated from first principles using the density functional theory in

the GGA scheme. The comparisons with the leading theories and existing experimental data

are maid.

Keywords: Density functional theory, titanium dioxide, rutile, aromatic molecules, solar cell
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ÖZ

RUTİL TiO2(110) YÜZEYLERİNE AROMATİK MOLEKÜL TUTUNMASI

Mesta, Murat

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Şinasi Ellialtıoğlu

Eylül, 2009, 49 sayfa

Geçiş metal oksitleri, yüksek dielektrik sabitine ve geniş bant aralığına sahip olmaları ne-

deni ile yüzey fiziğinde çok önemli ve ilginç teknolojik uygulamalar bulmaktadır. Özellikle

titanya, kararlı ve düz yüzeyleri nedeniyle heterojen katalizde en çok kullanılan malzeme

olmuş durumdadır. Titanyum katyonlarının sistem içinde değişik yük-durumlarında bulun-

ması, yüzey bağlantılı çok çeşitli ve yeni elektronik özellikleri beraberinde getirir. Bu tez

çalışmasında, katalitik özellikli veya kimyasal ilginçliğe sahip moleküllerin rutil yapılı titanya

yüzeyine tutunmaları incelenmiş, elektronik enerji bantları ve yük yoğunlukları ilk pensipten

başlanarak GGA yordamında yoğunluk fonksiyoneli kuramı kullanılarak hesaplanmıştır. Sonuçlar,

diğer öndegelen teorilerle ve güncel deneysel verilerle karşılaştırılmıştır.

Anahtar Kelimeler: Yoğunluk fonksiyonel kuramı, titanyum dioksit, rutil, aromatik moleküller,

güneş pili
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Dr. Tuğrul Hakioğlu, for administration of the fruitful workshops at ITAP.

My special thanks go to my dear colleagues Kıvılcım Başak Vural, Engin Torun, Ceren Sibel
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CHAPTER 1

INTRODUCTION

In the early 1930s especially after the advent of quantum physics, the problem of many-body

quantum mechanics had been the major topic for the physicists pioneered by Bloch, Hartree,

Slater, and Dirac. They have been followed by many other scientists after solid state physics

(later condensed matter) was specialized as a branch. The inevitable idea is that in order to

describe the physical processes taking place in a real complex material equations of quantum

mechanics, which has been proven to be the theory of the atomic scale, have to be solved.

Unfortunately, except for the simplest systems, the equations are too complicated to be solved

analytically. This leads scientists to solve equations numerically by tackling the problem

on the computer with proper methods. Today Density Functional Theory (DFT), being one

of them, has become the major tool to investigate the physical and chemical properties of

condensed matter. This is due to the vast increase in computer power in addition to simplicity

and computational efficiency of DFT. The theory was established by a chemist, Walter Kohn,

published in a physics journal in 1964 [1] and was given the Nobel price in 1998 because of

its unquestionable applicability supported by computational improvements. The importance

of DFT lies under the fact that it is an ab initio method, that is, no empirical information

about the system is necessary to start with and quantitative results can be reachable from first

principles (a quantum mechanical description). Furthermore DFT can guide experimentalists

to obtain results that are foreseen or show a path to both development and manufacturing

processes of new materials (material science).

There are many implementations of DFT on the approximation of the theory (exchange–

correlation) and the usage of computer power. Projected Augmented Wave (PAW) method, [2]

which has been developed recently, is one of the most efficient ways to perform calculations
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with its elegant framework combining the pseudopotential and augmented wave methods.

The crucial point is that PAW enables one to have knowledge about not only the valence but

also the core electrons which is the reason why it is called an all-electron approximation. In

addition to this for the exchange–correlation, although there is no standard way to decide, in

general Generalized Gradient Approximation (GGA) gives results closer to the experiments.

Perdew–Burke–Enzherkof (PBE) parametrization [3] is the latest developed approximation

satisfying all the conditions that has to be met by an exchange-correlation functional. In

this study all of these implementations applied by the Vienna Ab-initio Simulation Package

(VASP) [4] and visualizations are done with the visualization program Xcrysden [5].

This work aims to investigate titanium dioxide which is one of the most intensely studied

metal oxide semiconductor from first principles. It is an inexpensive, non-toxic, and easy

to manufacture semiconductor having many diverse applications especially as photoelectro-

chemical converter (dye solar cell or photovoltaic) [6] and photocatalyst1 [8]. TiO2 is the main

component in the dye-sensitized solar cells as the electrode while the organic dyes are usually

the most effective way to be used as the photosensitizers. In this study adsorption properties

of aromatic hydrocarbons on rutile (110) surface are investigated. These molecules are the

main component of the organic dyes and finding a proper way to link these with the surface

has a very important place in these kinds of studies. To do so in this work two anchor groups

are investigated the first being the simplest carboxylic acid, namely the formic acid and the

second being a more complex adsorbate, the phosphonic acid. The purpose is to catch some

trend between the number of the aromatic rings and their effects on the electronic structure

when adsorbed on titania surface using these two different but well known anchors. The idea

is instead of delivering a new technology, to guide related researchers who need information

beyond the available experimental data.

1.1 DYE-SENSITIZED SOLAR CELL

Dye-sensitized solar cells (DSSC) are first developed by Grätzel and co-workers [6], [9].

Working principle is similar to the natural process, photosynthesis, where the dye is chloro-

phylls. A DSSC consists of three main parts namely substrate, photo-sensitizing dye and

1 Also TiO2 is used as white pigment in paints and cosmetics, as optical coating, in ceramics, as gas sensor, in
electronic circuit elements like MOSFETs, in bone implantation, etc. [7]
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electrolyte. The substrate is a cheap, easy to manufacture and chemically stable semicon-

ductor whose band gap is wide absorbing only a limitted range of solar emission beyond the

visible spectrum. The role of the dye is to lessen this gap allowing visible part of the spectrum

be absorbable which is a necessity because the intensity of solar radiation reaching earth is the

highest at this range. The important factor is that the excitations are happening through the

low-energy state to high-energy state of the dye, in other words, difference between HOMO

and LUMO of the dye has a crucial meaning in application. The excited electron has to be
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Figure 1.1: Schematic diagram of the electron transfer process in a typical DSSC

quickly injected into the conduction band of the semiconductor or else it would be recaptured

by the dye itself. Thus the injection time of the excited electron has also an important place in

application. The anchor group used for binding the dye to the surface function as a mediator

in the surface electron transfer and affect the injection hugely. After the excited electron in-

jected into the conduction band of the substrate, it has to return to the dye in order to prevent

decomposition of the dye and to have future excitations. This is done by the back-electrode

placed in the semiconductor and it is the major difference between a DSSC and a conven-

tional solar cell because the charge transfer is separated from the absorption process. In fact

the lost electron of the dye is covered by the electrolyte much before the excited one reaches

the counter electrode which at the end supplies required electron to the electrolyte (reduction).

Schematic diagram of a DSSC is represented in 1.1. The process starts from the excitation of

3



the electron in the dye from dye-LUMO to the HOMO which oxidizes the dye. The electron

moves on its way to the conduction band of substrate (TiO2) while the electrolyte supplies

the lost electron of the dye ending up with a oxidized state. The photoelectron passes to the

external load through the back-contact and continue to the counter-electrode where reduction

of the electrolyte is provided returning the system to its groundstate for further excitations.

The maximum output voltage is the difference between Fermi energy of the system and the

redox potential of the electrolyte.
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CHAPTER 2

MANY-BODY QUANTUM MECHANICS

For any condensed matter system a description of the physical phenomena comprised by elec-

trons and nuclei can be obtained only by solving the equations of quantum mechanics. How-

ever electrons and nuclei are mutually interacting because of their charges. If the treatment is

non-relativistic, one has to solve the Schrödinger equation constructed with the Hamiltonian

describing the interactions and at the end obtain a wave function depending on both electronic

and nuclear spatial coordinates. Considering this the Hamiltonian can be written as1,

H =

N∑
i=1

−
1
2
∇2

i +

M∑
k=1

−
1

2Mk
∇2

k +

N∑
i=1

N∑
j>i

1
| ri − r j |

−

N∑
i=1

M∑
k=1

Zk

| ri − Rk |

+

M∑
k=1

M∑
l=1

ZkZl

| Rk − Rl |
(2.1)

and the eigenvalue equation reads

Hψ(r,R) = Eψ(r,R) (2.2)

where the first two terms in the Hamiltonian are the kinetic energies of electrons and ions

and the rest are electron–electron, electron–nuclei and nuclei–nuclei interactions with r rep-

resenting all electronic coordinates and R all nuclear coordinates. If there are N electrons and

M ions obtaining such an exact wave function is not possible. The first simplification is the

so called Born–Oppenheimer approximation [10] which allows to separate the wave function

into electronic and nuclear parts owing to the large mass difference between electrons and

ions (10−5 ≤ m/M ≤ 10−3) (see Appendix A). Therefore the kinetic energy of nuclei Tn

vanishes. Moreover for a frozen lattice nuclear–nuclear repulsion is a constant bringing just

a phase factor to the wavefunction (in time dependent case) leaving all expectation values

1 Atomic units are used, i.e, m = e = ~ = 1, unit of length is Bohr and unit of energy is Hartree
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unchanged. Eliminating all of these the Hamiltonian now becomes

He =

N∑
i=1

−
1
2
∇2

i +

N∑
i=1

N∑
j>i

1
| ri − r j |

−

N∑
i=1

M∑
k=1

Zk

| ri − Rk |
. (2.3)

Thus the problem is reduced to an electronic problem where N electrons are in a static external

potential created by the nuclei. The positions of nuclei are now just parameters where for each

set of which the electronic Schrödinger equation has to be solved with the appropriate external

potential,

H = T + U + Vext

Hψ(r1, r2, ..., rN) = Eψ(r1, r2, ..., rN). (2.4)

Solution of (2.4) is the fundamental issue in the theory of electronic structure and DFT is a

feasible way to attack this problem. Before going into more details about DFT it is better to

introduce some preliminaries which are used largely in DFT calculations.

2.1 Variational Principle and Lagrange Multipliers

The Schrödinger equation with the Hamiltonian in (2.1) can be solved exactly in very few

cases due to the interaction terms. One way to obtain an approximate solution is the varia-

tional principle where for most of the case approximation is good enough to reproduce ex-

perimental conclusions. The method simply proposes that ground state energy obtained from

any trial wavefunction is always greater or equal to the exact ground state energy. The proof

[11] is as follows.

Exact eigenstates2 | ψn〉 of H form a complete set and any approximate wavefunction | φ〉 can

be expanded in terms of such basis functions

| φ〉 =
∑

n

cn | ψn〉, H | ψn〉 = En | ψn〉.

Assuming ψn’s are orthonormal

〈φ | φ〉 =
∑

m

∑
n

c∗mcn〈ψm | ψn〉 =
∑

n

| cn |
2 .

Similarly

〈φ | H | φ〉 =
∑

m

∑
n

c∗mcn〈ψm | H | ψn〉 =
∑

n

En | cn |
2 .

2 In general exact eigenfunctions of H are not known, thus the trial wave function is expanded in terms of other
known basis functions such as Gaussians or plane waves.
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Noting E0 ≤ E1 ≤ E2 . . . ∑
n

E0 | cn |
2≤

∑
n

En | cn |
2

and

E =
〈φ | H | φ〉
〈φ | φ〉

=

∑
n En | cn |

2∑
n | cn |

2 ≥

∑
n E0 | cn |

2∑
n | cn |

2 .

Therefore

E0 ≤ 〈φ | H | φ〉. (2.5)

Equation (2.5) indicates that for any trial wavefunction, the expectation value of H is an upper

bound to the ground state energy3 and by choosing a clever trial function it can be accurately

guessed. The best way to guess an accurate trial function is to introduce a large number

of adjustable parameters. Minimization over these parameters will yield the lowest possible

eigenvalue (λ) and thus a better guess to the ground state.

In order to satisfy wavefunction normalization (constraint) the variational problem can be

reformulated using Lagrange’s method of undetermined multipliers [12] which is largely used

in classical mechanics to solve constrainted variational problems. Define the functional

K[φ] = 〈φ | H | φ〉 − λ(〈φ | φ〉 − 1).

The coefficient λ is called Lagrange multiplier and it is clear that minimization over it guar-

anties the normalization. Although the coefficient λ seems arbitrary, it corresponds to a phys-

ically meaningful quantity. In order to see this consider minimizing the functional K[φ] with

respect to expansion coefficients cn. First writting K explicitly (a more general case where

basis functions | ψn〉 may not be orthonormal)

K =
∑

m

∑
n

c∗mcn〈ψm | H | ψn〉 − λ

∑
m

∑
n

c∗mcn〈ψm | ψn〉 − 1


=

∑
m,n

c∗mcnHmn − λ

∑
m,n

c∗mcnS mn − 1


where S is the overlap matrix containing all the inner products 〈ψm | ψn〉. Now, minimizing

gives

∂K
∂ck

=
∂K
∂c∗k

= 0

=
∑

n

Hkncn − λ
∑

n

S kncn = 0. (2.6)

3 Energy is now a functional of the approximate wavefunction φ(r)
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This can be written in matrix form as

H · C = λS · C (2.7)

which is a generalized eigenvalue equation and if the basis is orthonormal the matrix S is just

the identity matrix. Multiplying both sides of equation (2.6) with c∗k and summing over the

index k (or multiplying the matrix equation by C† from left) gives

λ =

∑
k,n c∗kcn〈ψk | H | ψn〉∑

k,n c∗kcn〈ψk | ψn〉
= 〈E〉. (2.8)

Equation (2.8) shows that the eigenvalues of (2.7) are not arbitrary numbers but they are

physically meaningfull energy eigenvalues of the Hamiltonian H.

2.2 The Hellmann–Feynman Theorem

This theorem first published by the German physicist Hans Hellmann. Feynman’s work,

which is an undergraduate thesis, published four years later independent from the former. In

this section the theorem is summarized following Feynman’s method [13] which is easier to

follow owing to usual Feynman style.

In order to calculate the force on a nucleus one should calculate the energy of the system (all

electrons and nuclei) for several different nuclear positions by the variational method or other

perturbation scheme. Then the slope of the energy vs. position plot will give the desired force.

However this calculation is cumbersome since energy calculation needs to be done for at least

two different configurations. Feynman suggested only one configuration, the one in question,

need have its wavefunctions computed to obtain the force.

Let λ be any one of the parameters specifying nuclear positions, for example x component of

the position of one of the nuclei. Requiring the system is in a steady state of energy E the

corresponding force fλ can be calculated as follows;

fλ = −
∂E
∂λ

= −
∂

∂λ
〈ψ | H | ψ〉 = −

〈
∂ψ

∂λ
| H | ψ

〉
−

〈
ψ |

∂H
∂λ
| ψ

〉
−

〈
ψ | H |

∂ψ

∂λ

〉
.

Since H is a self-adjoint operator〈
ψ | H |

∂ψ

∂λ

〉
=

〈
∂ψ

∂λ
| H | ψ

〉∗
8



and H | ψ〉 = E | ψ〉, 〈ψ | H† = 〈ψ | E with 〈ψ | ψ〉 = 1 so

fλ = −

〈
ψ |

∂H
∂λ
| ψ

〉
− E

∂

∂λ
〈ψ | ψ〉

fλ = −

〈
ψ |

∂H
∂λ
| ψ

〉
. (2.9)

Calculation of 〈∂H
∂λ 〉 is not too different from 〈H〉 and in practice it is easier to calculate the

force using this expectation value rather than an approximation of the derivative by using the

energy differences. In fact the Hamiltonian H depends on the nuclear positions explicitly

and in the frame work of Born-Oppenheimer approximation these are just parameters, thus

the theorem becomes an electrostatic theorem. The force on the nucleus α along the nuclear

position λ is determined by

f αλ =

〈
−

∂

∂λα

 M∑
l=1

ZαZl

| Rα − Rl |
−

N∑
i=1

Zα
| ri − Rα |

〉 (2.10)

which is the change in nuclear-nuclear repulsion and electron-ion attraction with respect to

the ion positions. Since both of the potentials are known in a DFT calculation, obtaining

forces on ions is not cumbersome. This can be trivially extended for any expectation value of

a Hermitian operator.
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CHAPTER 3

DENSITY FUNCTIONAL THEORY

Shortly after Schrödinger’s equation for the electronic wavefunction had been introduced

there a common belief among physicists that is well understood from P.A.M. Dirac famous

saying was;

The fundamental laws necessary for the mathematical treatment of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty
lies only in the fact that application of these laws leads to equations that are too
complex to be solved.

This is still valid if one tries to solve the Schrödinger equation written for a many electron

system. Density Functional Theory (DFT) comes in as an alternative approach to the the-

ory of electronic structure where the electronic density is the major tool to calculate all the

physical quantities in question. Rather than the many-body wave function itself, which is

constructed from single-particle orbitals as Slater determinants (a demanding process), the

electronic density is much more computationally efficient because it is a three dimensional

real space function (function of position vector). This makes DFT a versatile tool and due to

this it has turned out to be the main technique for the study of matter at the nanometric scale

for the last decade.

3.1 Thomas–Fermi Model

The idea of constructing the total energy in terms of the electronic density was originally

developed independently by Thomas in 1927 [14] and Fermi in 1928 [15]. In the original

work the purpose was stated as calculating observables of atoms (like effective electric field

10



inside the atom) without using any experimental fitting, thus to know effective electric field

inside the atom. There is a statistical consideration with the key assumption that electrons

of a nuclei are uniformly distributed over the phase space where for each electron a cube

of volume h3 is separated and the potential is determined by this distribution of electrons

which is a function of position vector only. As seen clearly there is no correlation between

electrons and they are just uniformly distributed over the space only considering a statistical

weight. Therefore this approximation may be valid for large densities or interior of heavy

atoms where correlation effects are low and the electrons form a Fermi sphere (fermionic

properties are more important than the correlation).

The derivation [16] simply follows from statistical properties of the homogeneous electron

gas and a local approximation to inhomogeneous system. For a uniform free-electron gas,

volume of occupied phase space is simply 4/3πp3
FV where V is the volume in real space and

pF is the largest momentum and the states having greater momenta are unfilled. Owing to

the uncertainty principle each state corresponds to a cell of volume h3 in phase space and for

the ground state each cell can be occupied by two electrons having opposite spins. Thus the

number of electrons and the density can be written as

N = 2
4πp3

F

3h3 V, n =
8π
3h3 p3

F .

This can be applied to an atomic system stating that pF is a function of the position vector

as well as the density. Next step is to denote the probability P of an electron at the postion r

having a momentum of magnitude between p and p + dp as

P dp =
4πp2

4/3πpF(r)
dp, p < pF(r).

Kinetic energy of the system is a statistical integration and can be written as

T =

∫
dr n(r)

∫ pF (r)

0
dp

p2

2m
3p2

p3
F(r)

.

Writing pF in terms of the density, the kinetic energy reduces to

TTF[n] = CF

∫
n5/3(r) dr, CF =

3h2

10m

(
3

8π

)2/3

. (3.1)

Also the total energy can be written as

ETF[n] = CF

∫
n5/3(r) dr + Z

∫
n(r)

r
dr +

1
2

"
n(r1)n(r2)
| r1 − r2 |

dr1dr2 (3.2)
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where the interactions are treated as classical Coulombic interactions and quantum mechani-

cal contributions are ignored (Hartree-type potential). Exchange can be included by a further

assumption that momenta and coordinates of electrons commute reducing the problem to a

classical one but keeping two electrons in the volume 2πh [17] and correlations can also be

approximated by a function of space only,for example [18]. However none of these correc-

tions provide higher accuracy than previous approximations like Hartree-Fock have been con-

structed. Also the kinetic energy (3.1) is constructed with a density not including correlations

and since the kinetic energy is the dominating term for a Coulombic system, Thomas-Fermi

approximation does not give accurate results for quantitative treatments if the correlations are

important. One last note is that although the energy is written in terms of density, Thomas-

Fermi approximation does not give any proof to that energy can always be written as a func-

tional of density.

3.2 The Hohenberg–Kohn Theorems

The formal starting point of DFT is the two simple theorems published by Hohenberg and

Kohn in 1964 [1]. The idea is to prove that ground state wavefunction of a many-body system

can always be linked to the corresponding ground state charge density. At first glance writing

down a function of N variables (coordinates of N electrons) using charge density, which is

a function of one variable (position vector), seems impossible but charge density is not an

arbitrary function. It includes all the information which can be extracted from the ground

state wave function. All of these need a proof showing that the density is the basic variable.

Hohenberg–Kohn Theorem I

For a given N-particle electronic density n(r) of a non-degenerate ground state
corresponding to an external potential Vext, the density determines this potential
uniquely.

Proof. Assume that two different potentials Vext(r) and V ′ext(r) with ground states ψ and ψ′

are determined by the same density. If Vext(r) − V ′ext(r) , const then clearly ψ , ψ′. Ground

state energies corresponding to each Hamiltonian can be written as E = 〈ψ | H | ψ〉 and

12



E′ = 〈ψ′ | H′ | ψ′〉, then by the variational principle

E < 〈ψ′ | H | ψ′〉 (3.3)

E′ < 〈ψ | H′ | ψ〉. (3.4)

Since H and H′ differ only in external potentials one can write

〈ψ′ | H | ψ′〉 = 〈ψ′ | H′ | ψ′〉 − 〈ψ′ | (Vext − V ′ext) | ψ
′〉

〈ψ | H′ | ψ〉 = 〈ψ | H | ψ〉 + 〈ψ | (Vext − V ′ext) | ψ〉.

Using above equalities and noting 〈ψ′ | (Vext − V ′ext) | ψ
′〉 =

∫
(Vext − V ′ext)n(r)d(r), (3.3) and

(3.4) can be written as

E < E′ +
∫

(Vext − V ′ext)n(r) dr

E′ < E −
∫

(Vext − V ′ext)n(r) dr.

Summing side by side leads to the contradiction

E + E′ < E′ + E (3.5)

which proves the initial assertion by reductio ad absurdum (proof by contradiction).

As a corollary one can assert that Vext(r) is a unique functional of n(r) and since H is classified

by Vext(r), n(r) also determines the ground state wave function. In other words, ground state

is also a unique functional of n(r) so be the expectation value of any operator calculated with

ψ. Total ground state energy thus can be written in functional form as

E[n] = 〈ψ[n] | H | ψ[n]〉 = 〈ψ[n] | T + U | ψ[n]〉 +
∫

Vext(r)n(r)dr

= F[n] +

∫
Vext(r)n(r)dr (3.6)

where F[n] is a universal functional which is the same for all N-electron interacting systems

with density n(r).

Hohenberg–Kohn Theorem II

Minimization with respect to density defines an upper bound to the exact ground
state, i.e E0 ≤ E[n′(r)].
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Proof. Using the first theorem a given density n′(r) determines its own potential therefore

the ground state wave function ψ′. If this wave function is used as a trial wave function to

calculate expectation value of the energy then by variational principle

E0 ≤ 〈ψ
′ | H | ψ′〉 = 〈ψ′[n′] | T + U | ψ′[n′]〉 + 〈ψ′[n′] | Vext | ψ

′[n]〉

= F[n′] +

∫
Vext(r)n′(r)dr = E[n′(r)].

Second theorem is a restatement of the variational principle and this time variation is a func-

tional one with the restriction
∫

n(r)dr = N.

3.3 The Kohn–Sham Equations

Density functional theory was constructed by Hohenberg and Kohn through two simple the-

orems but they are insufficient by themselves if one wants to consider DFT as a practical

scheme. This was done by Kohn and Sham [19] who succeeded in mapping the problem of

interacting electrons onto an auxiliary system of non-interacting electrons. The idea is that

there always exists a non-interacting system in an external potential whose density ns(r) is

equal to the density of interacting system n(r). The problem is now a Hartree–Fock like prob-

lem and a set of equations have to be solved self-consistently. The important point is that this

time exchange and correlations are included through a functional of density where application

of different kinds of approximation is possible.

The auxiliary non-interacting system can be described by the Hamiltonian

Hs = T + Vs

and energy

Es[n] = Ts[n] +

∫
drVs(r)n(r). (3.7)

Since there are no interactions between electrons the density of the system is simply the sum

of individual densities

ns(r) =

N∑
i=1

| φi(r) |2 (3.8)

where φi(r) are called Kohn–Sham orbitals and they are solutions to one-particle Schrödinger
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equation with the potential Vs(r)(
−

1
2
∇2 + Vs(r)

)
φi(r) = εiφi(r). (3.9)

The question, being at the heart of the formalism is what is the form of Vs(r) so that ns(r) =

n(r). It is possible to write the energy functional as

E[n] =

∫
drVext(r)n(r) +

1
2

"
drdr′

n(r)n(r′)
| r − r′ |

+ Ts[n] + Exc[n]. (3.10)

Here Ts[n] is the kinetic energy of non-interacting electrons with density ns(r) and Exc[n]

is the exchange–correlation energy of interacting system1. Approximation to the exchange–

correlation functional done by Kohn and Sham is now known as the local density approxima-

tion (see Subsection 3.4.1 for detailed discussion) but for a general treatment considering it

as in functional form

Exc[n] = T [n] − Ts[n] + U[n] −
1
2

"
drdr′

n(r)n(r′)
| r − r′ |

and define

Vxc(r) =
δExc[n]
δn(r)

. (3.11)

Minimization of the energy functional gives

δE[n]
δn(r)

=
δTs[n]
δn(r)

+

∫
dr′

n(r′)
| r − r′ |

+ Vext(r) + Vxc(r) = 0. (3.12)

Also from minimization of (3.7)

δEs[n]
δn(r)

=
δTs[n]
δn(r)

+ Vs(r) = 0.

Combining this with (3.12) gives Vs(r) as

Vs(r) = Vext(r) +

∫
dr′

n(r′)
| r − r′ |

+ Vxc(r). (3.13)

Note again that there no approximation has been done yet and Vxc(r) has to be approximated

to get solutions for interacting Coulombic system. The solutions have to be self-consistant,

i.e. for a trial density, Vs(r) is calculated from (3.13) then with this potential one-particle

Schrödinger equation (3.9) is solved to get Kohn–Sham orbitals φi(r) which gives the new

density from relation (3.8) and this iterative cycle continues until the difference between cal-

culated densities are small enough. Figuratively

n(r)→ Vs(r)→ one-particle Sch.→ φi(r)→ ns(r)→ if ns(r) ≈ n(r) stop.
1 Till here nothing is approximated but clearly to get a solution to the interacting problem Exc[n] has to be approx-

imated. In fact one can say that unlike Hartree-Fock theory which is built as an approximation and solved exactly,
DFT is an exact theory but the solution is an approximation due to Exc[n]
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3.4 Exchange and Correlation Functionals

In order for a DFT calculation to model a real system and to calculate the potential (3.11), an

accurate and workable approximation to exchange–correlation functional is necessary. In fact

being one of the greatest advantage of DFT, the formalism properly isolates the analytically

unsolvable part, the exchange–correlation. Today construction of more accurate functional

is an active research field especially for strongly correlated systems. Nevertheless, unlike

other wavefunction based methods, in DFT there is no standart way to improve these ap-

proximations, that is, DFT always needs a comparison with a more accurate method (such

as Configuration Interaction or Møller–Plesset(n)) to check the validity of the approximation.

This is the greatest disadvantage of DFT preventing it to be a full ab initio method but rather

a parametrization.

3.4.1 The Local Density Approximation

The first approximation to be suggested was the Local Density Approximation (LDA) [19].

As its name suggests LDA ignores non-local aspects of Vxc(r) whose correct form has to be

obtained from both the density at point r (local one) and the density at other points r′ (non-

local) which generally cannot be constructed. The idea is to have a computationally conve-

nient approximation to model the exchange–correlation of the system by using the properties

of homogeneous electron gas,

ELDA
xc [n] =

∫
dr n(r)εxc(r, n(r)). (3.14)

Here εxc[n] is the exchange–correlation energy per particle of a uniform electron gas with

the same density of the system n(r) 2. This integral is like a weighted average of εxc where

weighting function is n(r). The homogeneous electron gas is widely studied in literature and

its properties are well known which can also be implemented into LDA. One can start by

separating εxc into exchange and correlation,

εxc(n) = εx(n) + εc(n)

2 εxc(n) is not a functional of n(r) because whole function is not mapped to a number instead for each value of
position r εxc(r, n(r)) is calculated using n(r) which is a number for each value of r.
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Exchange part εx can be calculated from Hartree–Fock exchange as

Ex[n] = −
1
2

∑
i, j

"
drdr′

φ∗i (r)φ∗j(r
′)φ j(r)φi(r′)

| r − r′ |

giving the result

εx(n) = −
3

4π
(3π2n)1/3. (3.15)

This is first calculated by Dirac [17] as a correction to Thomas–Fermi method3 and later by

Slater [20] using HF. Unlike the exchange part, correlation energy can be calculated analyti-

cally only for certain limits of high and low density. The middle part is known from highly

accurate Monte Carlo simulation calculated by Ceperley and Alder [21] and its parametriza-

tion. The most widely used one is VWN [22] and the most recent and accurate one is PW

[23].

A slightly more complex version of LDA is the Local Spin Density Approximation (LSDA),

which includes the local spin densties. This time the exchange–correlation energy per particle

is per each spin and the functional is

ELSDA
xc [n] =

∫
drn(r)εxc(n↓(r), n↑(r)).

The LSDA is slightly better for systems having spin polarization.

From its construction, LDA is a good approximation if the density is varying slowly in which

case Vxc(r) has a local form. This condition makes LDA a very drastic approximation. How-

ever, LDA has proven to yield results better than expected even for systems where density is

not a constant. One of the first calculation done by DFT in the frame of LDA is by Lang and

Kohn[24] where surface4 energies of some metals are calculated. The results are in agree-

ment with experiments up to 75%. This is an improvement to HF which cannot predict the

correct sign for the energies of the systems considered saying that metals are not stable. This

mysterious success of the LDA is because of the error cancellation behavior of the method.

LDA typically under estimates Ec but overestimates Ex and the result is surprisingly good for

some of the systems. Also LDA meets the conditions necessary for an exchange–correlation

functional like the sum rule by construction because the homogeneous electron gas is a real

physical system [25]. This is the reason why LDA is still an option for DFT calculations.

3 This is so called Thomas–Fermi–Dirac method and if Ex[n] is multiplied by a strength parameter α then the
method is the so called Xα approximation.

4 Surface means the density is changing very rapidly especially at the surface boundary where the periodic structure
of the matter is suddenly truncated.
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3.4.2 The Generalized Gradient Approximation

Although the LDA works better than predicted and become the common choice in electronic

structure calculations, it is indeed insufficient for the systems having inhomogeneous density.

Also the treatment of the system as an homogeneous electron gas is very drastic and has lead

to search for a more accurate exchange-correlection functional. The first and very intuitive

attempt is to expand the exchange–correlation energy in terms of the density (Gradient Ex-

pansion Approximation)5. At first glance this gradient expansion seems to yield better result

because the LDA is the zeroth order term in the expansion [26];

Exc[n] = A
∫

dr n4/3 + C
∫

dr
| ∇n |2

n4/3 + . . .

where A = −3/4(3/π)1/3 and C = −7/[432π(3π2)1/3]. However inclusion of higher order

terms yields worst results than the LDA itself. The reason for this is that the exchange–

correlation energy has to meet some formal conditions like exchange–correlation sum rule

(equations (2)-(4) in [26]). In order to meet these conditions one has to consider only the

density and its first derivative, instead of a systematic gradient expansion. This approach is

the Generalized Gradient Approximation (GGA) and the exchange–correlation functional has

the form

EGGA
xc [n] =

∫
dr f (n(r),∇n(r)). (3.16)

In general the GGA is better than LDA in calculating bond dissociation energies, bulk moduli,

and lattice parameters. However there is no guarantee that the GGA will be better for some

specific calculation. In some systems the LDA gives better results compared to the GGA

which cannot be predicted. Thus, it is always worth to check both of the two methods to be

sure which one is more accurate for a certain calculation.

3.4.3 PBE Parametrization of the GGA

There is no unique way in choosing the function f (n(r),∇n(r)) in (3.16) and there are different

GGAs only differing in the choice of this function. The most widely used ones in physics are

by Perdew and Wang (PW91) [23] and Perdew, Burke and Enzerhof (PBE) [3]. PW91 is an

analytic fit to the numerical GGA that is calculated starting from the second-order density-

gradient expansion for the exchange–correlation hole surrounding the electron in a system of
5 This was first suggested in the original paper [19]
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slowly varying density, then cutting off its spurious long-range parts to satisfy the sum rules.

But PW91 incorporates some inhomogeneity effects and has some problems listed in Ref. [3]

mainly about the complexity of the analytic function, improper behavior at the high density

limit which are in comparison with the LSDA approximation. What is done by PBE is that

by sacrificing a correct but less important feature of PW91, which is the correct second-order

gradient coefficients for exchange and correlation energies in the slowly varying density limit,

correct features of LSDA are retained and combined with the gradient-corrected nonlocality.

In general PBE gives very similar results as PW91 (see Table I in Ref. [3]), but PBE has a

simpler form and derivation which makes it be easier to apply.

3.5 The Projected Augmented Wave Method

Projected augmented-wave (PAW) method [2] combines ideas of pseudopotential (PP) and

linearized augmented plane wave methods. It is an all-electron6 approximation giving infor-

mation about all electrons of the system but not only valance electrons. The wave functions

are full and the potential is determined from full charge densities.

In PAW method, space around each nucleus of the crystal is considered as two separate but

linked regions, namely, interstitial and atomic or augmented region (see fig. 3.1). This sep-

aration is due to the fact that electrons orbiting close to the nucleus affected much more by

the centered nuclear charge rather than the neighboring or surrounding crystal. In fact this

concept is the basic for most of the electronic structure calculation methods7 and results in

separation of valance electrons from the core (core is formed by rest of the electrons and

positively charged nucleus, i.e. a sphere with net positive charge and radius adjusted accord-

ingly in calculations). This separation however destroys all information about the electrons

considered in the core.

As stated in the original work a linear transformation operator is defined to transform physi-

cally relevant highly oscillating all-electron wave functions to numerically convenient pseudo

6 An all-electron wave function is not the many-electron wave function but a full one-electron Kohn-Sham wave
function

7 Note that for PP methods separation is inevitable because at regions closer to the nucleus, oscillations in the
wave function of free electron gas is very large, thus number of necessary basis functions (usually plane waves)
is large which makes calculation impractical if the core electrons are not treated as an effective potential
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ΩR1

| ψ〉 =
∑

i ci | φi〉

| ψ〉 =| ψ̃〉

ΩR2

| ψ〉 = T | ψ̃〉
| ψ̃〉 =

∑
i ci | φ̃i〉

Figure 3.1: Grey circular regions are the augmentation spheres surrounding the nucleus (black
points) and the remaining is the interstitial region. Transformation operator only acts in the
gray circles and outside pseudo and all-electron wave functions coinside.

wave functions

| ψλ〉 = T | ψ̃λ〉

where λ denotes a certain set of quantum numbers (global index). Ground state energy can be

obtained by variation with respect to these pseudo wave functions in the transformed Hilbert

space

Eλ = 〈ψλ | H | ψλ〉 = 〈ψλ | T†THT†T | ψλ〉 = 〈ψ̃λ | H̃ | ψ̃λ〉.

The transformation operator is particularly chosen so that it only acts within each of the aug-

mentation region (represented with R) where high oscillation of all-electron wave function

occurs

T = 1 +
∑

R

TR r ∈ Augmentation region, T(r) = 0 for r > rc. (3.17)

Therefore pseudo |ψ̃〉 and all-electron |ψ〉 wave functions have to coincide at interstitial region

but not necessarily in augmentation region. In the augmentation region, the wave function

is almost atom-like therefore it can be expanded in terms of the solutions of Schrödinger

equation for the isolated atom. These solutions or the basis functions are called all-electron

partial waves | φλ〉.

| ψλ〉 =
∑

i

cλi | φi〉.

In the interstitial region on the other hand, due to the periodic crystal structure there exists a

periodic potential, so the solution of electronic motion is rather simpler and obtainable by PP
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methods. Moreover, expansion of pseudo wave function in terms of a set of auxiliary func-

tions, called pseudo partial waves | φ̃λ〉, is also possible owing to the transformation operator

which can definitely transform the set of all-electron partial waves in the augmentation region.

| ψ̃λ〉 =
∑

i

cλi | φ̃i〉.

Note that these functions per construction coinside with the corresponding all-electron partial

waves |φλ〉 at interstitial region. Applying the transformation 3.17 one can obtain T in terms

of partial waves as

TR | φ̃i〉 =| φi〉− | φ̃i〉 (3.18)

for a definite augmentation region R where

T = 1 +
∑

a

Ta, Ta(r) = 0 r > rc

and a is the atomic index. It is now possible to write all electron wave function as

| ψλ〉 =
∑

i

cλiT | φ̃i〉 =
∑

i

cλi(1 + TR) | φ̃i〉

= | ψ̃λ〉 −
∑

i

cλi | φ̃i〉 +
∑

i

cλi | φi〉. (3.19)

Next step is to define the coefficients of the expansions which can be done by introducing

projector functions 〈p̃i | such that

〈p̃i | φ̃i〉 = δi j

∑
i

| p̃i〉〈φ̃i |= 1 (3.20)

inside the augmentation region8. Therefore

cλi = 〈p̃i | ψ̃λ〉 = 〈pi | ψλ〉. (3.21)

Substituting (3.21) into (3.19) all electron wave function with the contributions of all aug-

mentation regions can be obtained as9

| ψλ〉 =| ψ̃λ〉 +
∑

R

∑
i

〈p̃R
i | ψ̃λ〉

(
| φR

i 〉− | φ̃
R
i 〉

)
. (3.22)

In summary the main points of the PAW method are

8 Note that if all electron partial waves can be constructed exactly, i.e. they are not only defined inside the
augmentation regions then | p̃i〉 =| φ̃i〉.

9 Similar procedure can be followed to calculate expectation values of observables and charge density. See the
original paper [2] and a nice summary in [27] for more.
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Solutions of the isolated atom is used as a basis and all-electron wave function is ex-

panded in terms of them inside the augmentation region.

Instead of working with highly oscillating all-electron wave function, its more conve-

nient to construct rather smoother pseudo wave function which has to coincide with the

former at the interstitial region.

Projector operators (functions) is introduced in order to satisfy completeness relation

inside the augmentation region.
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CHAPTER 4

DESCRIPTION OF THE PROBLEM AND RESULTS

4.1 Rutile Structure

Titanium dioxide has three major crystalline structures in nature, namely rutile, anatase and

brookite. Rutile and anatase are the most important crystallographic structures and rutile is

the thermodynamically most stable phase. Its (110) surface has the lowest surface energy

and is the most studied single-crystal TiO2 surface [7, 28]. For this reason this particular

modification of titania is chosen to be investigated.

4.1.1 The Bulk

Rutile form of titanium dioxide crystal is constructed in a tetragonal lattice together with a ba-

sis of two titanium and four oxygen atoms. There are two cell parameters, first being one side

of the bottom square, a, and the second the height of the tetragon, c. Since pseudopotentials

are used in the present calculations, if experimental values are used as lattice parameters then

the unit cell would not be in equilibrium. Therefore cell parameters yielding the least stress

on the basis atoms should be determined by looking at the change of the total energy obtained

for different choices of lattice parameters. In this case there are two lattice parameters, a and

c, so a coupled minimization is necessary. The following calculation is based on a series of

nine volumes in the range between 1.1 and 0.83 times that of the experimental value [29] and

for each volume there is a series of nine c/a ratio again between 1.1 and 0.86 times that of

the experimental value. For each E versus c/a curve a cubic polynomial fit is used in order to

determine the c/a corresponding to the minimum energy. Next step is to calculate total ener-

gies using this calculated minimum c/a in the corresponding volumes and fit the so–obtained
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E versus V curve to the Murnaghan equation of state [30] (see Fig. 4.2). Calculated lattice

parameters are listed in Table 4.1 and compared with existing data.

Figure 4.1: Tetragonal unit cell of TiO2 with basis two Ti’s and four O’s
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Figure 4.2: Energy versus volume using optimized values of c/a (circles) and fit to Murnaghan
equation of state [30] (solid line).

From the electronic structure calculations the band structure of rutile are obtained along the

high-symmetry directions of the irreducible Brillouin zone and is normalized to Fermi level.

It is demonstrated with the density of states in Fig. 4.3(a). The lower valence bands are dom-

inated by O2s states where the upper valence band composed mainly of O2p orbitals mixed

with states of Ti3d. In addition to this, the lower conduction band almost completely con-

sists of the empty Ti3d states with a very little O2p mixture. The band width of the upper

valence band is 5.6 eV which is in agreement with the theoretical value of 5.7 eV [32] and
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Table 4.1: Structural parameters of TiO2

Parameter Expt.[29] PBE-GGA [31] This work
a(Å) 4.594 4.634 4.666
c(Å) 2.958 2.963 2.968
u(a) 0.305 − 0.305

V(Å3) 62.42 63.63 64.61

the experimental values which are in the range 5 − 6 eV [32]. The band gap of rutile bulk is

calculated to be 1.66 eV which is a direct-gap at the point Γ. The gap is largely underesti-

mated1 considering the experimental value of 3.03 eV [33], but it is consistent with another

DFT PAW-PBE calculation done by Labat et al. [34] who obtained 1.69 eV as well as other

ab-initio calculations that gave 1.78 eV [35], and 2.0 eV [32].
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Figure 4.3: Bulk energy bands for rutile along high symmetry lines in the Brillouin zone (b)
(from Ref. [32]) and the corresponding partial and total DOS.

1 In a DFT calculation the band structure is plotted from the eigenvalues of the Kohn–Sham system. But since this
system is an auxiliary non-interacting system, although the density and the total energy is correct and physically
meaningfull, the eigenvalues by themselves are not. Because of this the band gap is largely underestimated.
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4.1.2 The (110) Surface

Unit cell of rutile (110) surface is shown in Fig. 4.4(b). It consists of two different types of

oxygen and titanium atoms: Two-fold and three-fold coordinated oxygen atoms (3, and 4–7 in

Fig. 4.4(b)) and five-fold and six-fold coordinated titanium atoms (2, and 1, 8, 9). The latter

are connected through 3-fold oxygen atoms lying on the same plane and are called in-plane

oxygen atoms. The bridging two-fold coordinated oxygen atoms sit midway between two

6-fold coordinated titanium atoms along [001] direction and form the upper most region of

the surface. Bridging oxygen atoms and the 5-fold titanium atoms have dangling bonds and

are the best sites for adsorption.

(a) (b)

Figure 4.4: In order to construct (110) surface a cut is necessary along the lower dashed line.
In (a) up direction is the [110] direction where for bulk in Fig. 4.1 it is [001] and the unit
between the two dash lines is one charge-neutral surface layer; in (b) one unit cell of rutile
(110) surface is demonstrated. Labels are introduced for later use in Table 4.2.

Calculations are done using a surface unit cell constructed from a 3×1 orthogonal surface

slab with dimensions a = 8.90 Å and b = 6.60 Å. There are 24 titanium atoms and 48 oxygen

atoms in the cell and there is a periodicity along x ([001]) and y ([11̄0]) directions. In order to

prevent top-bottom interactions about 11 Å of vaccum is introduced along z ([110]) direction,

which is an adequate value compared with the recommended 4 Å [36]. In other words, the

surface is modelled in a repeated slab geometry. Each slab is thick enough and separated from

the neighboring by a vacuum thick enough in z direction, thereby guarantying the repeated

surfaces defining the slab do not interact with each other.

Relaxation of the surface is a rather controversial topic especially when explaining the dis-

placements of the surface atoms. Although the directions are predicted as the same, amount
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of the displacements vary depending on calculation method. The most important factor is the

slab thickness which has a direct impact on the surface relaxation as the displacement of the

titanium atoms on the top and bottom layers affect each other. In a slab with even number

of layers, 5-fold surface titanium atoms are located above the bottom 6-fold titanium atoms.

This causes them to relax more and to move deeper along [110] direction. On the contrary

when the number of layers is odd 5-fold titanium atoms of top and bottom layers are paired

resulting in an opposition and smaller amount of relaxation. This also holds for the 6-fold

titanium atoms and since the bridging oxygen atoms are bonded to 6-fold titanium atoms,

they exhibit similar behavior. As the number of layers increases this coupling between the top

and bottom surface loses its strength especially after the critical value of four [36]. Therefore

it is important to have similar setups in the number of layers when a comparison has to be

made. Because of this although in this study a four-layer slab is used, to make a comparison

a seven-layer surface is constructed with the same cell parameters and the results of the relax-

ation are listed in Table 4.2. For the comparison Ref. [36] is chosen because it is done with

VASP code and GGA exchange-correlation potential2. Also an x-ray diffraction experiment

is included for comparison. Since there is almost no displacement along x and y directions

([001] and [11̄0]), the listed values are along [110] direction except for the in-plane oxygen

atoms (4 and 5). Calculations show that 6-fold titanium atoms go up and 5-fold go down

with in-plane oxygen atoms compensating this through an upward motion. Bridging oxygen

atoms seem to be not relaxing at all. Comparison with the theoretical study seems reasonable

but agreement with the experimental results is half assured worst being the bridging oxygen

displacement. The reason for this is that in the calculations the positions of the nuclei can be

calculated exactly whereas for the x-ray diffraction experiments electron density distribution

is measured and positions of the nuclei are guessed through this information. However un-

like titanium atoms where the electrons are tightly bound to core states, highly asymmetric

bridging oxygen atoms may create a polarization on the valence electrons because most of

them are in 2s and 2p valence states. The nucleus and the valence electrons are localized at

different spatial positions leading to the discrepancy.

Fig. 4.5 presents both the band structure and DOS of rutile (110) surface calculated using

the 4-layer unit cell. Also local DOS for the surface atoms are included and multiplied by

2 For more comparisons see [7] p. 72–74.
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Table 4.2: Displacement (Å) of ions at the surface layer with comparisons

This work (PBE-GGA) PW91-GGA[36] Experiment [37]
Ti(1) 0.21 0.23 0.12 ± 0.05
Ti(2) −0.18 −0.11 −0.16 ± 0.05
Ti(8) 0.15 0.12 0.07 ± 0.04
Ti(9) −0.10 −0.06 −0.09 ± 0.04
O(3) 0.02 −0.02 −0.27 ± 0.08

O(4), O(5)
(along [110]) 0.16 0.18 0.16 ± 0.08
(along [11̄0]) ±0.05 ±0.05 ±0.05 ± 0.05

O(6) 0.01 0.03 0.03 ± 0.08
O(7) 0.00 0.03 0.00 ± 0.08

a factor of two to see the contributions more clearly. The case is similar to the bulk, that is

upper valence band contributions are mainly due to O-2p states and lower conduction bands

are due to Ti-3d states. Surface atoms contribute to the band structure largely at the edges of

valence and conduction bands.
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Figure 4.5: Band structure of rutile (110) 3 × 1 surface with total DOS and local DOS of
surface atoms (red and blue curves) and top–bottom surface (green and yellow curves). All
LDOS values are multiplied by a factor of 2 for convenience. Here O2c is 3, O3c is 4-5, Ti5c

is 2 and Ti6c is 1 in Fig. 4.4(b).

28



4.2 Anchor Groups

Some organic molecules and dyes can be directly adsorbed on the surface but the molecules

studied in this work are very stable3 and unlikely make chemical bonds with the surface. It

is thus more convenient to choose smaller functional groups for bonding. Since these groups

link the large molecule and the surface they are called anchor groups. Most importantly

these molecules assure a strong adsorption and easy to guess adsorption geometry because

the conncetion can only be done through the oxygen atoms and hydroxyl group of acids for

which the best adsorption site on the surface is over five-fold coordinated titanium atoms

(metal–oxygen bond) and the bridging oxygen atoms (hydrogen bond). Since the interaction

between master molecule, anchor and the surface has a fundamental role, knowledge of the

geometry and the strength of the bonds are crucial in application.

Carboxylic groups are frequently used as the anchors since photosensitizers are often synthe-

sized with carboxylic acid groups. One of the anchor groups used in this study is formic acid

that is the simplest carboxylic acid. Following the experimental findings [39] (and ref within)

there are mainly two favorable adsorption sites. The first one provides binding between 5-

fold titanium and the formic oxygen; 2-fold surface oxygen and the hydroxyl hydrogen of

the formic acid. This configuration is called monodentate binding (see Fig. 4.6(a)). The sec-

ond one includes two bonds that are between 5-fold titanium atoms and two oxygen atoms

of formic acid, but in this case formic acid is disassociated on the surface giving its hydroxyl

hydrogen to 2-fold surface oxygen. This is the bidantate binding (see Fig. 4.6(b)) and much

more favorable than the former whose adsorption energy is lower (see Table 4.3). This is the

reason why the aromatic rings are studied with the bidantate setup of formic acid (and also

phosphonic acid).

Carboxylic acids are highly efficient in solar cell applications but they slowly desorb from

the surface in the vicinity of water [40]. An alternative to carboxylic acids may be phos-

phonic acids which are less well-known than carboxylics not famous and have less studies

reported. In fact phosphonic acid groups are promissing candidates as an anchor group which

can also be used to bind a wide range of molecules to rutile surface. Following an intuitive

approach and the experimental studies refered in [40] monodantate and bidantate configura-

3 An example may be the Ref. [38] which investigates adsorption of benzene on rutile [110] and the calculations
show that adsorption energy is low (0.6 eV).
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(a) Monodentate Binding (b) Bidentate Binding

Figure 4.6: HCOOH adsorbed on rutile TiO2(110)–3×1 surface.

tions of formic acid can be applied to phosphonic acid adsorption (see Fig. 4.7(a) 4.7(b)). The

bidantate binding is more favorable with greater adsorption energy as predicted (Table 4.3).

Again there is a dissociation for this geometry where one of the hydroxyl hydrogen captured

by 2-fold surface oxygen creating another metal-oxygen bond with 5-fold titanium. The cru-

cial point is that the difference between the adsorption energies of the two groups is large and

phosphonic acid links the master molecule strongly to the surface which is the major role of

an anchor.

Electronic structure calculations show that all molecular orbital levels are merged into the

rutile valence band for both anchor groups. This indicates that there exists a strong electronic

coupling with the surface meaning that the anchors are good adsorbates. The adsorption of

the anchor groups does not shift or change the size of the band gap significantly, compared to

the corresponding clean surface (see Fig. 4.14 and 4.13).

4.3 Aromatic Rings Bound to TiO2 Surface through the Anchors

Aromatic hydrocarbons have a very important role in organic chemistry. They are classi-

fied according to the number of benzene rings that they contain. The name of this class of

molecules come from the fact that many of them have strong aromas which is due to a delocal-

ized orbital created by the circular arrangement of carbon atoms bonded through alternating
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(a) Monodentate Binding (b) Bidentate Binding

Figure 4.7: HPO3H2 adsorbed on rutile TiO2(110)–3×1 surface

Table 4.3: Adsorption energies (eV) of the anchor groups for different binding geometries

Anchor Group Monodentate binding Bidentate binding
Formic acid

This work (PBE-GGA) 1.134 1.299
Ref. [39] ( PW91-GGA) 1.243 1.358

Phosphonic acid
This work (PBE-GGA) 1.786 2.025

Ref. [41] (HF-DFT hybrid) 2.428 2.602

double and single bonds. Rather than a localized single–double bond pattern a delocalized

circular shaped orbital as combinations of the π-bonds normal to the plane of the ring ex-

ists which is proven by the fact that all six carbon–carbon bonds have the same length lying

between that of a single and that of a double carbon–carbon bonds (see Fig. 4.8).

In this study a group of dye molecules that are linearly formed by a number of benzene rings

are investigated. There are five different aromatic hydrocarbons that have been studied on

the rutile (110) 3×1 surface. As stated earlier these are attached to the surface not directly

but via formic or phosphonic acid groups which act as anchors. The orientation of the dye

relative to the TiO2 surface was determined by the direction of the nonbonded hydrogen (top

hydrogen) of the acids. An overview of these molecules is shown in the Fig. 4.9. Tetracene

and pentacene are the most important ones among them since they can be used as models
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Figure 4.8: Schematic diagram of benzene ring and charge density plot. Circular charge
density inside the ring indicates one delocalized circular bond instead of alternating single
and double carbon–carbon bonds.

(a) (b) (c)

(d) (e)

Figure 4.9: Dye molecules with linearly connected aromatic rings: (a) benzene (C6H6), (b)
naphthalene (C10H8), (c) anthracene (C14H10), (d) tetracene (C18H12), and (e) pentacene
(C22H14)

for the investigations of electron transfer in dye–metal oxide interfaces (a similar molecule

perylene is investigated in Ref. [41] for such purposes).

The adsorbate–substrate bond lengths are very similar to the adsorbate–substrate bond lengths

for adsorption of only the anchor group. The notable difference in the optimized geometries

occurs for the adsorption through phosphonic acid. Each molecule has a tilt from the surface

normal orienting the long axis of the molecule at angle of about 20◦. On the other hand all

molecules adsorbed through formic anchor preserved both the bond lengths and the angle (tilt

is smaller than 2◦) due to the upright orientation of the formic acid. A similar result has been

observed for some perylene based dyes bound to rutile (110) surface through the two anchor

groups [42].

Adsorption energies of aromatic rings which is bound to the surface via anchors are listed in

Table 4.4. The calculated adsorption energies are comparable to the energies for adsorption

of anchor group alone (Table 4.3). As an expected result the rings are bond more strongly
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Table 4.4: Adsorption Energies (eV) of the [Dye molecules]-[Anchor group] on (TiO2)

Number of Rings Formic acid Phosphonic acid
1 1.271 1.697
2 1.254 1.761
3 1.262 1.685
4 1.258 1.682
5 1.292 1.692

through the phosphonic acid than through formic acid.
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Figure 4.10: In (a) molecular levels (KS orbitals) of the dye molecules are represented. The
numbers denote the energy difference between HOMO and LUMO levels of each molecule.
The plot in (b) is ∆E, the energy difference between the HOMO of dyes and the conduction
band edge of rutile, versus the number of rings and the HOMO–LUMO difference of dyes
versus the number of rings they have.

Total and Local–DOS are presented in Fig. 4.13 for clean, anchor adsorbed and ring adsorbed

configurations. Clean surface contains large amount of valence and conduction states sepa-

rated by a large band gap (considering the underestimation of DFT). Although anchor groups

by themselves does not introduce any states in the band gap, with a ring number greater than

two there are occupied molecular levels in the gap. This is because the Fermi level is always

seen to be located just above of these molecular levels, thus they are the HOMO of the system.

From the band plots (Fig. 4.14) and the charge density plots (Fig. 4.15 and 4.17) it can be
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concluded that there exists no coupling between the surface and the aromatic molecules with

more than one ring. The coupling is only done by the used anchor group. For the case of

benzene, the HOMO of the molecule lies inside the valence band and it is hardly distinguish-

able from the valence states, thus the states of benzene ring is in resonance with the surface

valence. Also charge densities show that the HOMO levels are π-orbitals of the aromatic rings

and are delocalized being extended over the whole formic acid while this is partly seen for

the phosphonic group.

Table 4.5: Calculated energy values (all in eV) for the HOMO level EHOMO, the LUMO level
ELUMO, and HOMO–LUMO energy difference ∆EH-L of the molecules in gas phase.

EHOMO ELUMO ∆EH−L

C6H6 −5.77 −0.67 5.10
C10H8 −4.57 −1.17 3.40
C14H10 −3.87 −1.55 2.32
C18H12 −3.39 −1.76 1.63
C22H14 −3.74 −2.60 1.14

C6H6-COOH −5.99 −2.01 3.98
C10H8-COOH −5.22 −2.10 3.12
C14H10-COOH −4.59 −2.37 2.22
C18H12-COOH −4.13 −2.56 1.57
C22H14-COOH −3.80 −2.68 1.12

C6H6-PO3H2 −6.05 −1.51 4.54
C10H8-PO3H2 −5.13 −1.83 3.30
C14H10-PO3H2 −4.47 −1.18 2.29
C18H12-PO3H2 −4.01 −2.41 1.60
C22H14-PO3H2 −3.68 −2.55 1.13

The HOMO–LUMO difference of the adsorbates are the same as the gas phase of anchored

aromatic rings irrespective of anchor group. There is a slight difference between the HOMO–

LUMO gap of rings alone and the (adsorbed) anchored rings for number of rings greater than

four and this difference is noticible for smaller number of rings being largest for benzene.

The HOMO–LUMO′4 difference is almost the same with the gas phase of the anchored and

isolated rings although the HOMO and LUMO levels are different. This may be due to the

conclusion that the rings are not interacting with the surface but the anchor groups are. The

delocalization of the LUMO over the anchors results in LUMO′ level alignment. As the

delocalization extended, the LUMO′ level lowering, in other words, bindings through formic

acid have lower LUMO′ level which is due to the extended LUMO over the group. This can

4 LUMO′ is the LUMO level of the adsorbed molecule obtained from LDOS plots of the combined systems.
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Table 4.6: Calculated energy values (all in eV) for valence band maximum Vmax, conduction
band minimum Cmin, band gap Eg, and HOMO–LUMO′ energy difference ∆EH-L′ of the
adsorbates.

Vmax or EHOMO Cmin Eg ELUMO′ ∆EH-L′

TiO2(110)–3 × 1 slab −2.51 −0.65 1.86 - -

C6H6-COOH-(TiO2) −2.67 −0.84 1.83 1.36 4.25
C10H8-COOH-(TiO2) −2.12 −0.89 1.23 1.04 3.10
C14H10-COOH-(TiO2) −1.79 −1.03 0.76 0.35 2.11
C18H12-COOH-(TiO2) −1.54 −1.01 0.53 −0.02 1.53
C22H14-COOH-(TiO2) −1.43 −0.97 0.46 −0.26 1.07

C6H6-PO3H2-(TiO2) −2.70 −0.90 1.80 1.91 4.79
C10H8-PO3H2-(TiO2) −2.10 −0.95 1.15 1.21 3.25
C14H10-PO3H2-(TiO2) −1.61 −0.99 0.62 0.69 2.26
C18H12-PO3H2-(TiO2) −1.41 −0.95 0.46 0.22 1.57
C22H14-PO3H2-(TiO2) −1.31 −0.90 0.41 −0.13 1.14

also be seen from the PDOS plots Fig. 4.13 in addition to the values listed in the Table 4.6.
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Figure 4.11: Band structures with total and local DOS for (a) COOH-(TiO2), (b)
[benzene]-COOH-(TiO2), (c) [naphthalene]-COOH-(TiO2), (d) [anthracene]-COOH-(TiO2),
(e) [tetracene]-COOH-(TiO2), and (f) [pentacene]-COOH-(TiO2). All local DOS curves (in
red) are multiplied by 2
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Figure 4.12: Band structures with total and local DOS for (a) PO3H2-(TiO2), (b)
[benzene]-PO3H2-(TiO2), (c) [naphthalene]-PO3H2-(TiO2), (d) [anthracene]-PO3H2-(TiO2),
(e) [tetracene]-PO3H2-(TiO2), and (f) [pentacene]-PO3H2-(TiO2). All local DOS curves (in
red) are multiplied by 2.
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Figure 4.13: Total DOS (black) and adsorbate-projected DOS (red) for (a) aromatic rings
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Figure 4.15: Calculated Γ-point partial charge densities of HOMO of Dye-COOH-(TiO2)

Figure 4.16: Calculated Γ-point partial charge densities of LUMO′ of [Tetracene and
Pentacene]-COOH-(TiO2). Notice the contours between the anchor group and the first ring
indicating delocalization of the LUMO level.
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Figure 4.17: Calculated Γ-point partial charge densities of HOMO of Dye-PO3H2-(TiO2)

Figure 4.18: Calculated Γ-point partial charge densities of LUMO′ of [Tetracene and
Pentacene]-PO3H2-(TiO2).
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4.4 Conclusion

In order to study a dye-sensitized solar cell system, one has to know interfacial electronic

coupling of the dye or the spacer groups used for binding (see Appendix 1.1). In this work

this is done for aromatic hydrocarbons up to five benzene rings (pentacene), which are the

main constituents of the organic dyes. These are linked to the surface with two different an-

chors in order to strengthen adsorption and electronic coupling. After comparing the unit cell

parameters and relaxation of the constructed surface model with the experiment and other cal-

culations, electronic structure calculations of dyes bound to the rutile surface through formic

and phosphonic anchor groups have been conducted and some remarks are as follows;

• Both of the anchor groups have greater adsorption energies (adsorbs strongly to the

surface) for the bidantate setups. This is mainly due to the dissociation of the hydroxyl

hydrogen of the anchor groups over the surface (which then binds to a bridging oxygen)

and two metal–oxygen bindings.

• Formic acid binds more loosely than phosphonic acid which can be seen from the ad-

sorption energies and the difference is about 0.7 eV. On the otherhand, the adsorption

of formic acid can still be considered as strong with the adsorption energy as big as 1.3

eV.

• Adsorption properties of the aromatic rings are found to be determined by the adsorp-

tion properties of the anchor group itself. This is understandable from the adsorption

energies listed in Table 4.4 and Table 4.3. Because of the greater adsorption energy of

phosphonic acid, all of the rings are bond to the surface stronger than with formic acid.

• The HOMO and the LUMO′ levels of the combined systems are delocalized over formic

acid anchor which indicates stronger interfacial electronic coupling. This is the greatest

advantage of using formic acid as the anchor in addition to its fame that many of the

efficient ruthenium based dyes constitutes formic acid anchoring [6], [9]. Also the

LUMO′ levels are lower when formic acid is used especially for number of rings up to

four. Lower LUMO levels lead to lower gap between π and π∗ levels of the aromatic

rings.

• Anchor group addition to the rings lessens the HOMO–LUMO difference and this low-

ering is larger for formic acid with ring number smaller than four. The gap of the com-
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bined system is decreasing with the increasing ring number although the HOMO levels

are not changing largely (see Fig. 4.10(a)). The decrease in the gap is greatly affected

from the HOMO–LUMO difference of the rings alone (see Fig. 4.10(b)). Also the

HOMO–LUMO′ difference of the combined system is very similar to HOMO–LUMO

difference of anchored rings (see Table 4.6).
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APPENDIX A

BORN–OPPENHEIMER NONRELATIVISTIC

APPROXIMATION

Born–Oppenheimer approximation simplifies the complicated many-body Hamiltonian con-

sidering the huge mass difference between electron and nucleus. Since the ratio m/M is

smaller than 1/1000, electron response to nuclear motion can be approximated as instanta-

neous. To see this one can make a clever guess describing the nuclei motion as simple har-

monic oscillator, thus recommending the potential V(R) = 1
2 Mω2R2. If a nucleus displaced

from the equilibrium position by an amount of δ, change in potential is ∆V = 1
2 Mω2δ2 then

using Hellman–Feynman theorem 2.9, the force on the nucleus can be written as

fR = 〈ψnuc
ni |

1
2

Mω2δ2 | ψnuc
ni 〉 ≈ M.

Also disturbance in the nuclear position accounts for redistribution of electrons and again

the force goes like M. The ratio of change in velocities of the nucleus and the electron is

approximately δve/δvn ≈ 103. Therefore as far as electrons are concerned motion of nuclei

is negligible. In other words, solution to Schrödinger equation with many-body Hamiltonian

can be separated into nuclear and electronic wave functions. This is shown by Born and

Oppenheimer [10] by expanding the energy in terms of the fourth root of mass ratio (m/M)1/4

where nuclear vibrations are second order (m/M)1/2 which is around 10−2.

The approximation starts with the assumption that expands many body wave function in terms

of the solutions of electronic Hamiltonian but the coefficients as the nuclei wave functions

ψtot
n (r,R) =

∞∑
i=1

ψnuc
ni (R)ψel

i (r,R) (A.1)

with

Heψ
el
i (r,R) = Eel

i (R)ψel
i (r,R)
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and ∫
ψel∗

i (r,R)ψel
j (r,R)dr = δi j

where r shows electronic and R shows nuclear set of coordinates {ri}, {Rk}. In addition

ψel
i (r,R) is the solution to the Schrödinger equation for the electrons in a frozen lattice as R

denoting the postions of static nuclei. Applying the many body Hamiltonian (2.1)1

Hψtot
n (r,R) =

∞∑
i

Tn
(
ψnuc

ni (R)ψel
i (r,R)

)
+ ψnuc

ni (R)Eel
i ψ

el
i (r,R) = Etot

n

∞∑
i=1

ψnuc
ni (R)ψel

i (r,R).

(A.2)

For the kinetic energy operator2

∞∑
i

Tn
(
ψnuc

ni + ψel
i

)
= −

∞∑
i

M∑
k=1

1
2Mk

(
∇2

kψ
nuc
ni ψ

el
i + ψnuc

ni ∇
2
kψ

el
i + 2∇kψ

nuc
ni ∇kψ

el
i

)
= −

∞∑
i

ψel
i

M∑
k=1

1
2Mk
∇2

kψ
nuc
ni −

∞∑
i

M∑
k=1

1
2Mk

(
ψnuc

ni ∇
2
kψ

el
i + 2∇kψ

nuc
ni ∇kψ

el
i

)
.

Substituting this into (A.2), multiplying with ψel∗
j and integrating over electronic coordinates

gives

(
Tn + Eel

j

)
ψnuc

n j −

∞∑
i=1

M∑
k=1

1
2Mk

(
ψnuc

ni 〈ψ
el
j | ∇

2
k | ψ

el
i 〉 + 2∇kψ

nuc
ni 〈ψ

el
j | ∇k | ψ

el
i 〉

)
.

Second term and the first term in the double sum are called first and second order non-

adiabatic coupling elements and these terms are ignored in the frame of an approximation

which is the adiabatic approximation [43]. It says that nuclei move slow enough so that the

electrons are not excited due to these vibrational and rotational motions. In other words if

electronic energy levels are discrite enough or there exists no states close in energy then the

electronic wave function is invariant under nuclei motion. In order to show non-adiabatic

terms add small contributions to the energy, consider the first order non-adiabatic term which

contributes nothing to the energy, i. e.

∞∑
i=1

M∑
k=1

2∇kψ
nuc
ni 〈ψ

el
j | ∇k | ψ

el
i 〉 =

∞∑
i=1

M∑
k=1

2∇kψ
nuc
ni

∫
drψel∗

j ∇kψ
el
i

=

∞∑
i=1

M∑
k=1

2∇kψ
nuc
ni ∇k

∫
drψel∗

j ψ
el
i

= 0. (A.3)

1 Vn is removed from Hamiltonian since it only contributes as a constant in the frame of initial assumption (for
each case there is a defined set of nuclear position R)

2 Variables of the wave functions R and r are not written for convenience
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The second order term is largest when the electrons are tightly bounded to their ions thus

∇k → ∇I where I is electronic set of coordinates, then

∞∑
i=1

M∑
k=1

1
2Mk

ψnuc
ni 〈ψ

el
j | ∇

2
k | ψ

el
i 〉 =

∞∑
i=1

M∑
k=1

ψnuc
ni

1
Mk

∫
drψel

j
1
2
∇2

Iψ
el
i . (A.4)

Last integral in above equation is just the kinetic energy of electrons multiplied with 1/M

which is in atomic units and corresponds to ratio of electron and nuclear mass m/M in SI units.

This ratio is of the order 10−3 to 10−4 and together with (A.3) it is clarified that ignorance of

non-adiabatic terms does not change the results considerably.

Finaly returning to (A.2) and ignoring the non-adiabatic terms one can get the Schrödinger-

type equation for the neclei inside a effective potential due to the electrons

(
Tn + Eel

i (R) + Vn(R)
)
ψnuc

ni (R) = Etot
n ψnuc

ni (R). (A.5)

For each set o nuclear positions the Schrödinger equation with electronic Hamiltonian has to

be solved to get electronic ground state energy depending only on nuclei configuration and

after that (A.5) can be solved to get minimum energy configuration.
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