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ABSTRACT

NONLINEAR DYNAMIC MODELING AND ANALYSIS OF
SPINDLE-TOOL ASSEMBLIES IN MACHINING CENTERS

Kilig, Zekai Murat
M.S., Department of Mechanical Engineering
Supervisor : Prof. Dr. H. Nevzat Ozgiiven

Co-Supervisor : Prof. Dr. Yusuf Altintas

August 2009, 100 pages

Chatter is unwanted since it causes deteriorating effects on the milling pro-
cess. Stability lobe diagrams are developed in order to determine the stable
cutting conditions at which chatter-free machining can be made. The need
of cutting away more chips to make milling operations quicker has brought
the concept of high-speed milling. This increased the importance of esti-
mating stability lobe diagrams of the milling process more accurately. The
state-of-art chatter and spindle-toolholder-tool models predict the stability
lobe diagram for milling process quite effectively. However, sometimes chatter
might occur even at cutting conditions selected using theoretically obtained
stability lobe diagrams. Omne of the reasons for that may be nonlinearities
in the system. This being the motivation, in this work, nonlinearities at the
bearings of spindle-toolholder-tool system are investigated. In this thesis,
cubic nonlinearity is assumed to represent stiffness of a bearing in a spindle-
toolholder-tool system. Effects of nonlinearity on stability lobe diagram of a

milling process are studied by using the mathematical model developed for
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such a system. Frequency response function of spindle-toolholder-tool system
without bearings is obtained using Timoshenko beam model. Then, bearings
are modeled by using describing function theory and coupled to the dynamics
of spindle-toolholder-tool modeled. Solution of the equations of motion of the
system in frequency domain is obtained via Newton’s method with ALC. It is
an effective frequency domain method in which turning points on frequency
response function are traced. This is important for the system studied, as
bearing nonlinearity may introduce turn backs in the response of the sys-
tem. Case studies are carried out to study the effects of bearing nonlinearity
on stability lobe diagram. The effects of the following factors are studied:
Magnitude of cutting force, degree of nonlinearity and number of teeth on
cutter. Displacement amplitude dependent stiffness of bearings affects the
dynamic response due to rigid body modes of the system. It is observed that
an increase in cutting force magnitude or in coefficient of bearing nonlinearity
results in increase of natural frequencies, thus showing hardening behavior.
Shifting of frequencies in the response curve shifts stability lobes related to
the affected modes, to the right. For increased number of flutes on cutter,
effect of nonlinearity at bearings on stability of the milling process becomes
lower. Experimental studies to determine the changes in dynamics of a system
during cutting are also carried out in this thesis. Inverse chatter analysis is
conducted to obtain modal parameters of a single-degree-of-freedom system
using the experiment data. Decrease in natural frequency is observed at high
cutting speeds for the particular spindle used. This shift may be due to speed-

dependent bearing dynamics and real time adjustment of preload on bearings.

Keywords : Chatter Stability, End Milling, Bearing Nonlinearity, Inverse
Chatter Analysis, Chatter in Nonlinear Systems



OZ

ISLEME MERKEZLERINDE MIL-TAKIM SISTEMLERININ
INCELENMESI VE DOGRUSAL OLMAYAN DINAMIK MODELLEMESI

Kilig, Zekai Murat
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi : Prof. Dr. H. Nevzat Ozgﬁven
Ortak Tez Yoneticisi : Prof. Dr. Yusuf Altintas

Agustos 2009, 100 sayfa

Isleme sirasinda yarattigi kotii etkilerinden dolay: tirlama frezede istenmeyen
bir olgudur. Hangi durumlarda tirlama olmadan igleme yapilacagini tah-
min edebilmek i¢in, stirecin kararhilik diyagrami hesaplanir. Frezede siireci
hizlandirmak igin gereken fazla talag kaldirma ihtiyaci yiiksek hiz frezeleri
glindeme getirmistir. Boylece, hesaplanan kararlilik diyagramlarinin hassasi-
yetinin 6nemi daha da artmigtir. Giiniimiizde kararlilik diyagramlarimi bul-
makta kullanilan tirlama ve ig mili-takim tutucu-takim sistemi modelleri ol-
dukca iyi sonuclar vermektedir. Ancak bazen kesme kosullar: teorik olarak bu-
lunan kararhilik diyagramina gore kararh bolgede bile sistemde tirlama gozlem-
lenebilmektedir. Bu olgunun sebeplerinden biri, sistemdeki dogrusal olmayan
etkiler olarak aciklanabilir. Buradan yola cikarak, bu tezde, ig mili-takim
tutucu-takim sisteminin rulmanlarindaki dogrusal olmayan parametrelerin et-
kileri incelenmigtir. Bu c¢aligmada, ig mili tizerindeki rulmanin, kuvvet-yer
degistirme iligkisinin kiibik davranig gosterdigi kabul edilmistir. Geligtirilen

matematiksel model kullanilarak, dogrusal olmayan ozellikteki sistemlerde
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freze igleminin kararhlik diyagramina etkisi incelenmigtir. Rulmanlar harig ig
mili-takim tutucu-takim sisteminin dogrusal modellemesi Timoshenko ¢ubuk
teorisi kullanilarak yapilmis, ardindan dogrusal olmayan rulmanlar tanimlama
fonksiyonu teorisi kullanilarak modellenerek, onceden frekans tepki fonksi-
yonu bulunan rulmansiz is mili-takim tutucu-takim sisteminin dinamigi ile
birlestirilmistir. Sistemin elde edilen hareket denklemi, Newton’un metodu
yay uzunlugu siirekliligi kullanilarak frekans bolgesinde ¢oziilmiigtiir. Uygu-
lanan etkili frekans bolgesi metodu sayesinde sistemin frekans tepki fonksiy-
onundaki geri kivrilma olan bolgelerde de ¢oziim elde edilebilmigtir. Bu ¢oziim,
iizerinde ¢aligilan sistem icin, rulmanlardaki dogrusal olmayan etkilerden dola-
y1 sistemin frekans tepki fonksiyonunda geri kivrilmalara yol acabileceginden
biiyiik onem tasimaktadir. Rulmanlardaki dogrusal olmayan dinamik ozel-
liklerin kararhlik diyagramina etkisini incelemek igin vaka analiz ¢aligmalari
yapilmigtir. Caligmalarda su parametrelerin etkileri incelenmistir: Kesme
kuvveti buyikligi, dogrusal olmayan parametrelerin derecesi ve kalem 1i-
zerindeki kesici sayisi. Rulmanlarin yer degistirme miktarina bagh diren-
genligi, sistemin rijit cisim modlarina bagl dinamik tepkisini etkilemektedir.
Kesme kuvveti biiyiikligi ya da rulmanin dogrusal olmayan parametresinin
katsayis1 arttirildiginda dogal frekanslarin arttigi gézlemlenmistir. Modlarin
tepki egrisinde saga kaymasi kararlilik loblarini da saga kaydirmigtir. Kalem 1i-
zerindeki kesici sayist arttirildiginda rulmanlardaki dogrusal olmayan parame-
trelerin freze kararlihigina etkisi azalmaktadir. Bu caligmada ayni zamanda,
sistem dinamiginin isleme sirasindaki degisimlerini gozlemlemek i¢in deneysel
caligmalar da yapilmigtir. Tek serbestlik dereceli bir sistemin modal degis-
kenlerini elde etmek i¢in deney verileri kullanilarak ters tirlama analizi uygu-
lanmigtir.  Yiiksek hizlarda test yapilan sistemin dogal frekansinda azalma
gozlemlenmigtir. Bu kaymanin hiza bagh rulman dinamigi veya isleme sira-

sinda degisen rulman gerginligine baglh olabilecegi sonucuna varilmigtir.

Anahtar Kelimeler : Tirlama Kararlihgi, Parmak Frezeleme, Dogrusal Ol-

mayan Rulman, Ters Tirlama Analizi, Dogrusal Olmayan Sistemlerde Tirlama
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CHAPTER 1

INTRODUCTION

1.1 General

The demand of cutting away more chips to make milling operations quicker
has brought the concept of high-speed milling. By the introduction of high-
speed milling (HSM) it is possible to have larger depths of cut and higher
cutting speeds. But, HSM arouse the importance of an already existing prob-
lem, self-excited chatter vibration. The spindle-holder-tool (SHT) system vi-
brates under the cutting load applied. The vibrations in the system causes
variation in the chip-thickness. Under special conditions, the variation of the
chip thickness becomes unstable and chip thickness starts to increase. This
condition is named as chatter vibration; it is the special condition in which
self-excited vibration of the SHT system occurs. Self-excited increase of chip
thickness results in cutting forces which are much larger than the normal val-
ues. Higher cutting forces cause higher forces at supports of the structure and
higher deflection of tool-tip of SHT system. Chatter has deteriorating effect
on milling process such as premature tool failure, shortened bearing life, poor
surface quality, and dimensional inaccuracy. To avoid chatter, the operation
parameters should be selected properly. In other words, conditions of chatter

must be understood.

There are different models proposed in the literature to predict conditions of
chatter for milling. The models generally predict the stability lobe diagrams
(SLDs) of the milling process. SLD is a tool to select the stable cutting
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Figure 1.1. A typical stability lobe diagram to determine stable cutting conditions

conditions at which no chatter occurs. A typical example of SLD is shown in

Figure 1.1.

During machining the very first tooth of the milling cutter takes away a layer
from the workpiece. Since dynamic cutting forces excite the structure during
machining, the surface left on the workpiece is wavy. “The wavy surface finish
left by the previous tooth is removed during the succeeding tooth period, which
also leaves a wavy surface owing to structural vibrations. Depending on the
phase shift between two successive waves, the maximum chip thickness may
exponentially grow while oscillating at a chatter frequency close to but not
equal to a dominant structural mode in the system” [1]. If the wavy surface
left by previous cutter and the wavy surface generated by the next cutter are
in-phase, chip thickness does not change during the process. Such a condition
is called forced vibration, and it is stable. If the left and generated surfaces
are out-of-phase the process excites itself, and the waves generated become
deeper. The latter condition involves unstable increase of chip thickness, and
it is called chatter. Thus, the model of the process and the dynamics of the

structure need to be known in order to predict the chatter.

The mechanism of the milling process has been under research for more than
50 years. However, more than a century ago Taylor [2] was the first one

reporting chatter. Arnold [3] explained chatter by negative damping effect.



Tlusty and Polacek [4] and Tobias and Fishwick[5, 6] stated the reasons of
chatter as regeneration of chip thickness and mode coupling. Merritt [7] came
up with a similar solution using feedback control theory. But, the methods
proposed were only suitable for orthogonal cutting processes which involve

constant cutting force and direction.

Milling is a complicated process to model. During milling, direction and mag-
nitude of cutting forces change. Milling can be considered as interrupted
turning with cutter having entry and exit angles. Hence, directional cutting
coefficients are not constant. Additionally, in milling process multiple num-
ber of teeth might be cutting at the same time. After understanding the
mechanism of chatter researchers focused more on modeling milling process.
Koenigsberger and Tlusty [8] considered an average direction, and average
number of teeth during modeling. In other words, an analogy was made
to turning operations in which cutting coefficients are constant. Opitz and
Bernardi [9] introduced a similar but an improved model giving more accu-
rate results. Sridhar et al. [10] carried out a more comprehensive study in
which numerical integration of dynamic milling equations is done for one rev-
olution of the cutter. In later studies, the milling process is analyzed in time
domain [11, 12, 13]. Carrying out computations in time-domain made it pos-
sible to include the nonlinearities of milling process in chatter models. Tlusty
and Ismail [11] included the effect of tool jump in their time domain study.
They stated that loss of contact between tool and workpiece might occur dur-
ing milling. When the contact is lost the chip thickness and cutting force
become zero instantaneously. So, their study was more accurate than the
previous ones. For low speed milling another nonlinearity is process damping
[14, 15], which still waits to be resolved [16]. Minis and Yanushevsky [17] used
Floquet’s theorem and Fourier series for the formulation of milling stability
on a two degree-of-freedom cutter model with point contact, and solved it

numerically using Nyquist criterion.

Later, Altintag and Budak [18] developed a stability method in frequency
domain. They determined stability of end milling operations by avoiding time

consuming time-domain calculations. It has been very useful for industry



because of being fast and comprehensive as well as being accurate. Then,
the same method used in the model was applied to three-dimensional cases
to consider face milling operations [19, 20]. The studies mentioned up to
this point considered milling operations involving high immersion of cutter
into the workpiece. For slotting operation, for example, the cutting force
can be well approximated by its zeroth harmonic, and accurate predictions
for stability can be made as studied in [18] (zeroth order approximation).
However, for low immersion cutting, cutting forces are highly interrupted and
this affects accuracy of the prediction made by zeroth order approximation,
significantly [21]. Merdol and Altintag [22] conducted a study considering
the effect of multiple harmonics of the interrupted cutting force in frequency
domain. Bayly et al. [23] and Insperger and Stépan [24] introduced different
methods to solve the delayed differential equations. Later, Insperger and
Stépén [25] developed semi-discretization method. Stability predictions based
on zeroth-order approximation, and predictions based on studies considering
highly interrupted cutting may give different results due to the effect of higher

harmonics of interrupted cutting force.

In this thesis, end milling process with large immersion of cut is considered.
So, the method of Altintag and Budak [18] is adopted for stability analysis.
Also, since the cutting speeds considered in this study are not low, effect of
process damping is assumed to be negligible as stated by Altintag and Weck
[16].

Chatter involves the vibrations of the structure, so, stability is highly depen-
dent on the flexibility of the structure which performs cutting. The frequency
of vibration of the structure while chatter occurs is called chatter frequency.
It is expected to be close to the natural frequency of the mode of the struc-
ture which dominates during chatter. Thus, one of the most important factors

affecting chatter stability is the dynamics of the structure.

From all the components of the milling machine, SHT system has the most
influence on the dynamic response of the structure. Hence, it is important

to make accurate predictions for the dynamics of the SHT system. There



are experimental and analytical methods to predict the dynamics of a SHT
system. The most widely used experimental technique is impact hammer
test. It is a common method used, especially in industry. In hammer test
the tool tip of the structure is excited by an instrumented hammer (input
signal is obtained) and the response is recorded by a sensor located at the
tool-tip (output signal is obtained). Then, after signal conditioning the input
and output signals are correlated and tool tip FRF is obtained. Thus, the
frequency response function (FRF) of the tool tip of SHT is measured, and
SLD of the process is obtained.

Sometimes chatter occurs even when the cutting conditions are selected in the
stable zone of the theoretically obtained SLD by using experimental FRFs
[26]. The reasons that cause difference between predicted SLD and actual
SLD are due to the factors that arise during machining. Therefore, it may not
be possible to see their effect by impact hammer test. To estimate the FRF
and SLD of a SHT system during rotation or machining there are different
methods proposed in the literature. The FRF of the SHT system during
rotation is called rotating FRF'. It can be measured by making impact hammer
test during rotation of spindle [27, 28]. Non-contact FRF measurement was
achieved by Rantatalo et al. [29] by exciting the tool tip with electro-magnets
and recording response using inductive sensors. The difference between FRFs
measured at static and dynamic conditions were reported by Brecher and
Esser [30]. An interesting study was reported by Quintana et al. [31] in which
SLD was obtained directly during cutting. However, when SLD or FRF is
obtained during cutting, the effect of the process is also included in the results.
So, additional effects of the process may be seen other than the effects of
the dynamics of the SHT system. Kruth et al. [32] and Suzuki et al. [33]
proposed inverse methodology to identify dynamic system parameters directly

by making a few experiments during cutting.

Apart from the experimental methods, research has been done on analyti-
cal methods to determine the FRF of the SHT system. If the computation
involves experiment in addition to analytical model, the method is called semi-

analytical. Before continuing with the models introduced in literature, a SHT



system is explained below briefly.

Spindle is the most important element of a SHT system. There are gener-
ally two types of spindles used in the modern milling machines: Belt-driven
spindles and motorized spindles. In belt-driven spindles the power is trans-
mitted from the motor to the spindle by a belt or gear. Because of the speed
limitations coming from the use of belt or gear, belt-driven spindles cannot
be used at high-speed machining, i.e. for speeds greater than about 10,000
rpm. In motorized spindles the spindle is directly driven by a motor located
on the spindle housing. The axes of the motor and the spindle coincide, and
no power transmission element such as belt or gear is used. Thus, motorized

spindles are used in high-speed machining.

The spindle shaft is confined in and supported by spindle housing, which joins
the spindle assembly to the body of the machine. Generally, during modeling
spindle housing is considered to be fixed to the machine tool. However, Cao
and Altintag [34] considered the housing coupled to the machine tool by spring
elements giving an additional mode to the system. This brings the requirement
for making a modal test to determine the values of the stiffness and damping
at the connections. For motorized spindles, the spring elements connecting
spindle housing to the machine tool are taken as very stiff. It is possible to
assume housing as fixed to the ground. In other words, the outer rings of the

bearings are considered fixed to the ground for motorized spindles.

High-speed milling spindle shafts are supported by angular contact ball bear-
ings. When compared to other types of bearings angular contact ball bearings
are very stable at high speeds, and they can also withstand axial cutting forces
satisfactorily. Spindle shaft is supported by two sets of bearings: front set and
rear set. O-arrangement (as shown in Figure 1.2) is selected for the bearings
in order to add more rigidity to the set for resisting tilting moments. The
bearings at the front set virtually take all the axial cutting load acting in the

positive z-direction, which is because of the arrangement of the bearings.

Preload should be applied to the bearings in order to use them under optimum

conditions. Minimum preload that should be applied to the bearings is given
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Figure 1.2. A motorized spindle having bearings in O-arrangement with fixed
outer rings

by the bearing manufacturer (e.g. as given by [35]). Main reasons for applying

preload to the bearings are:

e increasing the rigidity of the bearing, therefore decreasing run-out and
deflection of the spindle.
e climinating the internal clearance.

e preventing skidding of the bearing balls at high accelerations.

There are two ways for applying preload to the bearing on a spindle: Rigid
preload and spring preload. Rigid preload is applied using the elements in
the structure. The distance between inner and outer rings of the bearing is
decreased by putting a spacer or lock-ring. In case of spring preload, a spring
is attached to the outer rings of the rear set of the bearings. The spring ad-
justs the axial force on the outer rings of the bearings of the spindle. The
preload force is introduced by displacing the spring (e.g. by using a hydraulic
system). The main difference between these two ways of applying preload is
that preload on the rigidly preloaded bearings depends on the thermal distor-
tion of the spindle, whereas spring preloaded bearings have almost constant
preload during the machining operation. For rigid preloaded bearings the
temperature difference between spindle and housing inevitably affects the dis-

tance between the inner and outer rings of the bearings. However, for spring



preload the spring is not much affected by the thermal expansion due to the
difference in temperatures of spindle and housing. Although it shows higher
radial and axial rigidity, rigid preload is not used at high speed applications.
Spring preload is preferred for high-speed cutting.

Other than contacts at bearings, there are contacts at toolholder-tool and
spindle-toolholder interfaces. According to the toolholder type, the effect of
these contacts change. Namazi [36] carried out an extensive study on the
effects of different types of toolholders. Both contacts are important for mod-
eling. These contacts are modeled as both single-point (first-generation) or
multiple-point (second-generation) contacts. They are modeled using stiff-
ness and damping elements, which are named as contact parameters. Namazi
[36], Cao [37] and Schmitz and Duncan [38] used second-generation modeling,
whereas Budak et al. [39] and Ozsahin et al. [40] used first-generation model.
Type of toolholder, length of tool outside holder (tool overhang length), and
tool material affect the values of contact parameters. Identification of stiffness
and damping parameters to represent the contacts is usually achieved by using
nonlinear least-squares best fit method. That is, the analytical FRF is tried
to be matched to experimental FRF by changing contact parameter values.
Cao [37] used rigid coupling instead of elastic contact, so he took the contact
parameter values as infinite. He reported small changes in the accuracy of the
FRF prediction by not assuming elastic contact. Namazi [36] and Schmitz and
Duncan [38] used nonlinear least-squares fit in order to predict the contact pa-
rameters. Cheng [41] correlated contact stiffness with tool overhang length in
his study and stated that stiffness decreases linearly with increasing overhang
length. Ozsgahin et al. [42] used a different algorithm for predicting the contact
parameters. He made experiments for different tool overhang lengths. Then,
using these data he used neural networks to predict contact parameters any

tool overhang length. By this way, the number of experiments is minimized.

Spindle, holder and tool are taken as constant cross-section beams coupled to
each other. Each component of SHT is assumed axisymmetric, which gives
close results to the real case. In reality, all the components of the system

except the cutting tool are symmetric. That is why the modal tests are some-



times done by using blank tools (without flutes) to get rid of the effects of the
non-axisymmetric cutter. In the model, a constant diameter tool is taken to
approximate the fluted tool. Spindle is taken as the main structure and its
constant cross-section components are taken as substructures. So, the prob-
lem is to model each substructure of the spindle individually. Then, coupling
of the substructures gives the whole spindle. Substructures of SHT system are
beam elements with constant cross-sections. The boundary condition of each
beam is free-free (free at both sides). To investigate a beam element there are
four effective beam theories in the literature [43]: Euler-Bernoulli, Rayleigh,

Shear and Timoshenko.

Euler-Bernoulli beam theory is also known as classical beam theory. It consid-
ers only the bending effect of a beam element. The transverse vibration and
rotational vibration of the beam element are coupled, and defining one of the
motions, transverse or rotation, is enough for defining the other one. In case
of Rayleigh model the area moment of inertia of the beam element is addition-
ally considered in the equation of motion of the beam element. In shear model
the shear distortion is considered in addition to the bending effect, but this
time it neglects the effect of the rotation of the cross-section. In Rayleigh and
shear models the Euler-Bernoulli is modified, but Timoshenko beam theory is
a very powerful tool to estimate the response of a beam element. It considers
both rotary and shear effects, thus making the analysis more accurate at high
speeds for beams having low slenderness ratio, i.e. beams having low “length
to radius of gyration ratio”. Han et al. [43] discussed these beam theories

comprehensively.

Almost all of the recent studies in the literature (e.g. [37, 41, 44]) use Tim-
oshenko beam theory since it is more accurate than the other beam models.
There are generally two models used to obtain the response of a constant cross-
section Timoshenko beam: Continuous beam model or CBM [39], and finite
element model or FEM [34]. CBM considers the actual mode shapes of the
beam. It applies eigenfunction expansion to obtain the FRF matrix of a beam.
In eigenfunction expansion, the response of the beam is obtained by summing

the effects of its infinite number of modes, but considering only the modes



having considerable effect. FEM takes finite number of nodes (cross-sections)
on a beam element, and obtains the response of the beam as a function of the
displacements of these nodes. It applies Galerkin’s method (Meirovitch [45])

to obtain system matrices of the beam element.

To obtain the response of a SHT system, there are two methods to couple
beam elements: Receptance coupling (Schmitz and Donaldson [46]) or FRF
coupling, and dynamic stiffness coupling (Ewins [47]). The use of the former
method keeps only the necessary nodes on the SHT system, whereas use of
the latter keeps all the nodes that are involved in the analysis. FRF coupling
decreases the calculation time at each step as the matrix size is smaller com-
pared to the dynamic stiffness coupling method. The main objective in many
of the recent studies is to model the whole SHT system analytically. However,
there is a semi-analytical method, inverse receptance coupling technique. In
this method, conducting one experiment at the tip of the spindle, to which
holder is connected, is necessary. Then, the response at the tool-tip is pre-
dicted by coupling different holder geometries analytically. Namazi [36] used
this method.

In their study, Budak et al. [39] and Cao and Altintag [34] used Timoshenko
beams and determined the FRF of the whole SHT system analytically. Ertiirk
[44] used 2D model and computed eigenfunctions of the beam element based
on the study of Aristizabal-Ochoa [48]. The calculations are made in frequency
domain and FRF coupling is used. The bearings at the supports of the spindle
are modeled as linear springs. Cao [37] used 3D model to include speed effects
and used FEM. System matrices are considered and the response is calculated
in time-domain. The bearings at the supports are modeled as nonlinear by

using the model of Jones [49].

In addition to the nonlinearities related to process, structural nonlinearities
(NL) may have effect on stability of the milling process. The main causes of
structural NL are heating-up of the spindle [50, 51] and bearings located at
the supports of the SHT system.

It is argued by the researchers that bearing nonlinearity is one of the strongest
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which directly alters the spindle dynamics. The bearings are highly nonlinear
such that both the changes in speed and cutting force have strong effects on
the dynamic characteristics of bearings. The speed dependent characteristics
of bearings is not yet fully understood. Shin [52] presented a study on speed
effects on chatter stability considering bearing nonlinearity. Rantatalo et al.
[29], Schmitz et al. [53] and Jorgensen and Shin [54] investigated the effects
of speed on the dynamics of spindles. Rantatalo et al. [29] and Jorgensen and
Shin [54] argues that the stiffness of a bearing decreases with increasing speed.
The same argument was made by Cao [37], but experimental verification was
left for further research. The changes in the magnitude of the cutting force
also have nonlinear effect on the bearing dynamics. Hertzian contact theory
is taken to define the contact between bearing balls and the inner and outer
races. According to the theory, the force and deformation relation is nonlinear.
This brings about nonlinear stiffness matrix for the bearing itself [49]. The
effect of cutting load was investigated by Jorgensen and Shin [54], but the

experimental verification was not made.

Linear component of the angular contact ball bearing comes from the axial
preload applied. Nonlinear part depends on its deflection. Its dependance on
speed is explained by dependance on load as well. When speed of rotation
is increased centrifugal force applied by the balls of the bearing on its outer
ring increases. This brings about more deflection at higher speeds with the
same force applied on the bearing. In other words, stiffness of the bearing
decreases with increasing speed. However, at constant speed radial deflection
of an angular contact ball bearing may be assumed to show cubic behavior
under increasing load. A study on this subject was conducted by Fleming and
Poplawski [55].

Dynamic analysis of systems involving nonlinear elements can be made in
frequency domain by using describing function (DF) theory. Such studies
were carried out in different application areas by Ferreira [56], Giirkan [57] and
Orbay [58]. In DF method the response of a nonlinear element is approximated
by Fourier series expansion. For weak nonlinearities taking low number of

harmonics or single harmonic may be sufficient to represent the response. In
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SHT systems, nonlinearity mainly affects the modes caused by bearings (rigid
body modes of the spindle in the housing). If the nonlinearity is high, jumps
might be seen in the FRF of the SHT system. The zones at which jumps occur

can be investigated clearly by using numerical continuation method ([58, 59]).

1.2 Objective

The aim of this study is to investigate the effect of nonlinearities in spin-
dle bearings on the stability of milling process. The study of the effect of
nonlinearities on milling stability is carried out both analytically and experi-
mentally. In the analytical part, whole spindle-toolholder-tool (SHT) system
is mathematically modeled, where the bearings of the spindle are taken as
nonlinear elements with cubic stiffness behavior. Effects of magnitude of cut-
ting force, degree of nonlinearity at the bearing and number of teeth on cutter
on the stability lobe diagram (SLD) of the milling process is studied by us-
ing the nonlinear mathematical model developed. The importance of bearing
nonlinearity from the stability point of view is investigated with case studies.
In the experimental part, an SHT system is modeled as a single-degree-of-
freedom (SDOF) system. Changes in the system dynamics during milling are
investigated, and a method is proposed to predict SLD during cutting.

1.3 Scope of the Thesis

The thesis is organized as below:

In Chapter 2, theory used in this thesis is given. Frstly equations of motion
for a Timoshenko beam element are derived. Then, response of a general
spindle-toolholder-tool system is determined. Describing function theory is
very briefly summarized, and nonlinearity in a bearing is linearized by using
describing function theory. Lastly, numerical solution method used in solving

the equations of motion of the system is explained.
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In Chapter 3, a motorized SHT system is analyzed to study the effect of the
nonlinearities on system response and, more importantly, on chatter stability.
Changes in stability lobe diagram of the process are investigated considering
effects of magnitude of cutting force, degree of nonlinearity at the bearing,

and number of flutes on the cutter.

In Chapter 4, experimental methods used in studying the response and sta-
bility of real SHT systems are explained. A method is proposed to estimate
SLD for an SHT system which has only one dominating mode in its FRF.

In the last chapter, Chapter 5, conclusions based on studies carried out in
Chapter 3 and Chapter 4 are summarized. Also, some recommendations are

made for future studies.

13



CHAPTER 2

MODELING OF
SPINDLE-BEARING SYSTEM

In this chapter at first general modeling procedure of a spindle-toolholder-tool
(SHT) system is presented. Modeling of SHT is conducted using Timoshenko
beam theory. After obtaining linear model of SHT system, nonlinear spring
elements representing angular contact ball bearings are linearized using de-
scribing function theory. Finally, system of equations obtained by coupling
the SHT model and linearized spring elements are solved in frequency domain
using a special numerical continuation (path following) method, Newton’s
method with arc length continuation (ALC).

2.1 Modeling of Spindle-Toolholder-Tool

In this thesis Timoshenko beams are used to model a SHT. The beams forming
the SHT are modeled as Timoshenko beams, then these beam models are
coupled to obtain the frequency response function (FRF) of the spindle. In
this section the equations of motion (governing equations) of the beams are
derived. Later, the method for obtaining FRF of the SHT using FRF of beam

elements is introduced.
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2.1.1 Governing Equations

Lagrangian of the Timoshenko beam element includes the effects of bending
moment, lateral displacement, rotary inertia and shear distortion. Nelson and
McVaugh [60] and Nelson [61] used Timoshenko beams to investigate dynamics
of rotor shafts accurately in their finite element models. In a recent study, Cao
and Altintag [34] used 3D Timoshenko beam model with 5 degrees-of-freedom
as shown in Figure 2.1. For the 2D model, the effects of lateral displacement
in y-direction, bending moment in x-y plane, and axial displacement can be
considered. For 3D spindle model the effects of lateral displacement in z-
direction and bending moment on x-z plane are additionally considered. Thus
the 3D model considered in this work includes the speed effect or effect of
the gyroscopic moment; but 2D model does not. However, as seen in the
study of Movahhedy and Mosaddegh [62], the effects of the speed on the
spindle response can be disregarded because of the high slenderness ratio of
the spindle. Effects of the speed is considered to be more important for the
balls of bearings of a spindle. In this part, the Timoshenko beam theory will

be given.

Let us consider an infinitesimal beam element as shown in Figure 2.1. Its

freedoms are:

translation in x-axis (axial freedom)

translation in y-axis (lateral freedom)

translation in z-axis (lateral freedom)

rotation around y-axis (rotational freedom)

rotation around z-axis (rotational freedom)

The Lagrangian of a Timoshenko beam consists of two parts: Kinetic energy
and potential energy. During modeling an infinitesimal disk element of a Tim-

oshenko beam is considered (Figure 2.2). The extended Hamilton’s equation
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Figure 2.1. 3D Timoshenko beam element

of the system is given as follows [45]:

5/(T—V+We)dt:0 (2.1)

t1

where,

T : kinetic energy of the beam
V' : potential energy of the beam

W, : work done by external forces on the beam

In the following two sections the components of the extended Hamilton’s prin-

ciple is derived.
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2.1.1.1 Kinetic Energy of the Beam

Firstly the kinetic energy of an infinitesimal disk element of the beam (see
Figure 2.2) is calculated. Yuzhong Cao [34] considered the point P on the
infinitesimal disk element shown in Figure 2.2 for finding the kinetic energy of
the disk element. Thus, the gyroscopic effects are also included. In this thesis,
a 2D model is considered for spindle. However, for the completeness of the
derivation calculations are carried out for the 3D model of Cao and Altintas
[34]. The point P is subjected to rotations around y-axis, 6,, and around
z-axis, 6., in addition to translations in x, y and z directions. Coordinate
transformation is required to determine the position of point P relative to the

x-y-z coordinate system given in the Figure 2.2.

Figure 2.2. Deformed Timoshenko beam
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The position of the point P relative to the x — y — z coordinates is:

T U To 0
yb=dubilolby [T} rsin ¢ (2.2)
z w 0 7 COS ¢

where,

xo : initial position of the disk element on x-axis (of x-y-z system)
[T] : transformation matrix for transforming z” — y” — 2” to z — y — 2z system

¢ : angular position of point P on the disk element

Translational displacements of the disk element are u, v and w in positive z, y
and z directions, respectively (shown in Figure 2.2). 2”7 — y” — 2”7 coordinate
system is located on the disk element. Angular deformation of 7 — y” — 2”
by 0, results in 2’ —y' — 2’. Similarly, angular deformation of 2’ —y' — 2’ by 0,
results in z—y—z. [T] transforms the displacements with respect to 2”7 —y” —2”
of the disk element into z — y — 2z of the Timoshenko beam. Making small

angle assumptions and neglecting higher order terms in Equation 2.2 gives,

x U+ x9 — rcos¢sing, + rsin¢sind,
Yy = v+ 1rcospcost, (2.3)
z

w + 7sin ¢ cos 0,

Taking time derivative of Equation 2.3 and applying small rotation assumption
give the velocity terms required for computing the kinetic energy of the beam

as,

T U+ Qrf, sin ¢ + Qro, cos ¢ — 6, cos ¢ + réy sin ¢
Y= 0 — Qrsin¢ — 6.0, cos ) (2.4)
Z w + Qrcos ¢ — reyéy sin ¢

After finding velocity terms, now the kinetic energy of the beam can be deter-

mined. Let point P in Figure 2.2 has an infinitesimal (differential) mass dm.
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Kinetic energy of the dm element is,
1 2 2 s2
dT = §dm(x +y°+ £9) (2.5)
where,

dm = prdrdedx
dx : thickness of the disk
p : density of the disk

So, the kinetic energy of the whole beam is determined by integrating Equation

2.5 as,
2w

L b
1
T:///itpr(a’sz—l—g)gjtzz)drdaﬁdx (2.6)
0 a O

where,

a : inner radius of the disk

b : outer radius of the disk

Kinetic energy of the Timoshenko beam element is obtained by substituting

Equation 2.4 into Equation 2.6

L L
1 1
T= / 5JpQQda: + / §pA(u2 + 9% + ) dz+
0 0 (2.7)

1 . . 1 . .
§Ip(9y2 +6.%) + 5QIp(0.6, — 6.6,)da

St~
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A =7 —d?) . area of the cross-section of the beam
1
I= Zﬂ'(b4 —a*) : moment of inertia
1
J=2I = 577(64 —a%) : polar moment of inertia

2.1.1.2 Potential Energy of the Beam

For finding the kinetic energy of the Timoshenko beam the disk element on
the beam is considered to be rigid. The potential energy of the beam comes
from its ability to deform. The deformation occurs on x-y and x-z planes as
shear deformation and in x-direction as axial deformation. The point P on

the beam can be considered again.

— <
ﬂ I
I
I
>
<
N

Figure 2.3. Deformation of Timoshenko beam

The deformed beam is shown in Figure 2.3. The coordinates of point P after
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deformation are expressed as

u(z,y, z,t) =u(x,t) + 60,2 — 0,y 2.8
v(x,y, z,t) = v(x,t) 2.9)
w(z,y, z,t) = w(z,1) (2.10)

where the angular deformations on x-y and x-z planes are

ov

b. =7+ 5 (2.11a)
ow
by =%~ 5 (2.11b)

The strains at point P are given below (second-order strains are neglected):

Tyz = % + Z_Z == (2.12a)
e = g_: + % =T (2.12b)
o = G e (2.12¢)
Then, the potential energy of the beam can be written as
L L
V= /// %Eaixdxdydz + / %kSAnyjmd:c + / %ksAG’yfxdx (2.13)
0 0

where k A is the effective shear area in which k£, is given by Cowper [63] as
shown below
6(1+v)(1+p?)? D;

7+6]j ]__|_ 22_|_ 2O+12V B Where, pzﬁo
( )(1+p »

ks =

where v is the Poisson’s ratio of the material of the beam element. D, and D,

are inner and outer diameters of the beam element, respectively.

Substituting Equations 2.11 and 2.12 into Equation 2.13 and rearranging them
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give

L
[l ou, 100, 00,
v_/iEA(%) d +/§El[(%) (Gt
0 0 (2.14)

’ 1 0 ’ 1 ow
1 OV 1 oW, 9
ShAG(0. — =)o + / ShAG(O, + 5-) e

0 0

2.1.1.3 Work Done by External Forces on the Beam

Last term in extended Hamilton’s equation (Equation 2.1) is energy due to

external forces applied on the beam. The work done by external forces is:

1
§sz2 pAdx

DO | —

L L L
We = /(Q:vu + q,v + q.w + my0, + m.0,)dx + / O*v?pAdr + /
0 0 0

(2.15)

where ¢,, g, and ¢, are distributed loads per unit length on the beam in x,
y and z directions, respectively, and m, and m, are distributed moments per
unit length on x-z and x-y planes, respectively. The last two terms in Equation
2.15 are work done by unbalance forces on the beam (when considering speed
effects), where the unbalance comes from the translational deformation of the

beam.
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2.1.1.4 Equations of Motion of Timoshenko Beam

Substituting Equations 2.7, 2.14 and 2.15 into Equation 2.1 and rearranging

the integrals give the equations of motion of the Timoshenko beam as below,

pAg; - EA% =0 (2.16a)

pAZ—iZ — % [kSAG(g—Z — 02)1 —q,— PpAv=0 (2.16b)
pA%Q—;U - a% [kSAG((;—w + ey)l —q. — VpAw = (2.16¢)
fiz zz §0+kAG@ 0)—my =0 (216d)
ﬁﬂiﬁ %1 %9 (%3—9) L—0 (2160)

Boundary conditions for free-free Timoshenko beam are,

|:EA@5U =0 (2.17a)
817 r=0,2=L
[Ef%ae =0 (2.17h)
3x z=0,x=L
[Elae 50, =0 (2.17¢)
Ox r=0,z=L
ov 1
(=— —0,)ov =0 (2.17d)
|: 833 Jd x=0,2=L
2 _ g \5u] —0 (2.17¢)
3x ! w_ z=0,x=L a e

If only Equations 2.16a, 2.16b and 2.16e are taken while setting {2 = 0, the
analysis would be 2D. Taking all of the governing equations found leads to 3D

analysis including speed effects.
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2.1.2 Substructure Analysis

In Section 2.1.1 the equations of motion of the Timoshenko beam (Equations
2.16a, 2.16b, 2.16¢, 2.16d and 2.16e) are found via Hamilton’s principle and
considering the kinetic and deformation energies on specified directions and
planes. The equations of motion found do not consider large deformations
(or large strains) and thermal deformations. Therefore this model is generally
called as linear model since it does not include the nonlinear strain and time-
dependent thermal effects. In this section the frequency response function
(FRF) of the beam is found by solving the equations of motion. Analyzing
different beams separately, as substructures and then combining the separate
solutions to determine response of the complete system is called substructure
coupling. There are two effective models to consider the FRF of substructures:
Finite element model (FEM) and continuous beam model (CBM).

2D analysis of the spindle is made by taking {2 = 0 and not considering axial
effects. Therefore only Equations 2.16b and 2.16e are taken into consideration

in the analysis. The reasons for making these simplifications are:

e Motion on x-y and x-z planes are uncoupled as inferred from the equa-
tions of motion (Equations 2.16b to 2.16e).

e Effects of speed are not significant on the motion of the spindle as the
slenderness ratio of the whole spindle is large enough, so, it is possible
to take 2 =0

e Effect of the axial deformation is insignificant when compared to other
effects, and equation of axial motion (Equation 2.16a) is uncoupled from
the other equations. Additionally, the cutting force considered in this

study acts only in transverse direction.

Rewriting Equations 2.16b and 2.16e by setting €2 = 0 gives,

82'0 821) a@z
pASE —kAG(G 5 — 5=) — a4y, t) =0 (2.18a)
2 2
mraa f; _ E]—aa 52 - kSAG(% —0,) —ma(z,t) =0 (2.18D)
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Equation 2.18 is solved and FRFs are obtained by using CBM. Using FEM
requires discretization of the beam element, and then response of the beam
element is determined by using interpolation functions, or trial functions.
However, in CBM distributed parameter model is considered (without dis-
cretization) and the response is determined by using the exact modeshapes
of the structure. That is, partial differential equations in Equation 2.18 are

solved analytically.

2.1.2.1 Continuous Beam Model

In FEM the response of the beam is approximated by using special trial func-
tions multiplied by undetermined coefficients. For instance, trial functions
of Timoshenko beam can be taken as lowest degree admissible polynomial
functions (e.g. cubic polynomials for translation and quadratic polynomials
for rotation). FEM discretizes beam element and considers finite number of
nodes (cross-sections for this study) on the beam. The problem is to find
the undetermined coefficients of the function which relates the nodal displace-
ments with the response on any point on the beam. In CBM, unlike FEM,
the beam element is analyzed considering its original mode shapes. So, CBM

gives the exact response at any point on the beam.

Eigenfunction expansion is used in CBM analysis. Eigenfunction expansion
is a method in which the response of the structure is taken as combination of
its eigenfunctions. Contribution of each eigenfunction is taken by multiplying

it with a coefficient. The aim is to obtain these coefficients in CBM analysis.

The differential equations are decoupled and following set of equations is ob-

tained.
ot ) p . O pAD%  prA 9%
794 \F ey = 2.1
o Bt oo TEroe Thacon (2.192)
0. p  p | D% pAde.  p*A D',
-5 23t 7 = 2.1
ort BV 1 a0e "B 0r T hEG on " (2.19b)
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Since harmonic response is assumed, v(z,t) and 6,(x,t) can be expressed as

{v(w,t) } _ {ux) }
0.(,t)f | 8:a)

So, Equation 2.19 becomes

d'v p 2 PA 5 pPA
~ _ A V= 2.2
i Tt d S ey EG)” 0 (2.202)
d*0. p 20, pA , PPA
- _ 9
T G e Y G Y e (2.20p)

Among the terms in Equation 2.17 the terms including dv and 06, give the

boundary conditions for the free-free beam used in derivation,

00,
= 2.21
| =0 (221a)
ov
ksAG(— —0,) =0 (2.21b)
a =0
80
— 21
8x 0 (2.21¢)
k AG(a —40,) =0 (2.21d)
ox N . N ’

Eigenvalue problem (EVP) is obtained by substituting the solution of Equa-
tion 2.20 in Equation 2.21. The numerical solution of the EVP is obtained
by using the method proposed by Aristizabal-Ochoa [48]. The characteristic

equation of the EVP can be expressed as

Dy D
det[ 11 P2

] — Dll . DQQ - D12 . D21 — O (222)
21 D22
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where,

Dy = (o — N)(cosa — cosh 3)

Dy = (A —a)sina + 2_(:;(5 — §)sinh 3
Dy = —dasina + ?T_;éﬁ sinh (3

Dys = Aav(cosh 8 — cos )

S 5= VT

b2(s2 4+ R2 1
T:w ezb\/zlﬂ(s?—i—R?)?—(b252R2—1)
Aw?L* ET I
b2 _ P 2_ = 2 _ _t
EI Y =hace T ar

The eigenfunctions of the 7" elastic mode (excluding rigid body modes) having

natural frequency w, can be expressed as

m Cl . O 02 Qp
{m} =A, {{_%02} sm(fx) + {%01} COS(fZL‘)—I—
C a

(2.23)
. (7% 04
sinh(—x) + cosh(—=x
{‘”04} T {%03} ’ )}
where,
2.2 2.2
/\r:Oér—bS 57«:67«—1‘68
o 3,
_Dll Q. — )\r )\ra'r Dll
Ch=L Cy= ¢, Cy= ¢, O=-—-—57C
: ‘" Dp ' 7 6-p " Bo D
r=1,2,3,...

The eigenfunctions expressed by Equation 2.23 are orthogonal with respect

to the differential operators of the EVP. The mass normalized eigenfunctions
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(modes) satisfy the following orthogonality condition:

[ fu@) w@), _ fLs=r
J{a@& {E@J“’{@5¢r 224

A, in Equation 2.23 is obtained by inserting Equation 2.23 into Equation 2.24

pA 0
0 pl

(while setting s = r) and conducting numerical integration. After finding A,
mass normalized eigenfunction is obtained for the 7" elastic mode. In addition
to the elastic modes, Timoshenko beam also has rigid body modes. For the
model in this study, there are two rigid body eigenfunctions, translational and
rotational. Both Euler-Bernoulli and Timoshenko beams have two rigid body
modes: Translational and rotational. However, their mass normalization are
different. Since Timoshenko beam model includes rotary inertia of the beam in
addition to mass effect, its normalization coefficients are different than those
of Euler-Bernoulli beam. To find the rigid body eigenfunctions of Timoshenko

beam the eigenvalue is taken as zero (w = 0) in Equation 2.20a:

d*o

It should be noted that, since the rigid body modes are analyzed, eigenfunction
for rotation is the derivative of the eigenfunction for translation. Solving
Equation 2.25 considering boundary conditions in Equation 2.21 gives the

following eigenfunctions:

V() = Agyr (2.26a)
d
oir(@) = <7 (z) = 0 (2.26b)
_ L
Urot(x> - Arot (ZL’ - 5 (226C)
0 ron(2) = () = A (2260)
z,rot xr) = dI‘UTOt €)= Aot .

where the subscript ¢r stands for translational rigid body mode, and the sub-
script rot stands for rotational rigid body mode about the centroid of the

beam. Coefficients Ay and A,, are determined by mass normalization. For
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Ay, eigenfunctions related to translational rigid body mode (given by Equa-
tions 2.26a and 2.26b) are inserted into Equation 2.24, which yields

/{v_““(x) } pA 0 {E@ }da; ~1 (2.27a)
) 0, () 0 pl| |O.0r(2)

/[pAv_tr(x)2 + pl0, . (2)*)dr = 1 (2.27Db)

/ (pAAZ Ydr =1 (2.27¢)

Ay = 2 (2.27d)

Similarly, for rotational rigid body mode

L T
- " .
/ Trail) L pA O ) Trae) L (2.28a)
0 ez,rot (.I) 0 ,0] ez,rot(x)
’ L
Jloaz o= 57 4 pla2 )iz =1 (2.28)
0
1
Apgp = — e (2.28¢)
“1"—2” +plL

After obtaining all mass normalized mode shapes for rigid and elastic modes,
the next step is to use eigenfunctions in order to determine the response of
the beam. Eigenfunction expansion assumes that solutions of Equation 2.20,
v(x,t) and 0,(x,t), can be represented as a summation of the eigenfunctions

multiplied by functions of time as,

v(w,t) | >~ ( o(z)
{W’ t>} 2 {e_zm} 0 (2:29)

To obtain the steady state response to a harmonic force excitation, ¢,(z,t) in
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Equation 2.18 is written as
4y(w,1) = F(H)d(z — 2,) (2.30)

where, F'(t) is a harmonic force with magnitude Fp, frequency w, and applied
at an arbitrary point z = z,, (F(t) = Fye™'), and §(z — x,,) is Dirac delta
function defined as

1 if x = x,,

0 if x# x,.

e —x,) =

Inserting Equations 2.29 and 2.30 into Equation 2.18 and using orthogonality
of eigenfunctions with respect to the differential operators and selfadjointness
of the differential operators involved, time component of Equation 2.29 is

found (for harmonic force applied at = = z,,) as,

U_T<xn>FO eiwt

1+iy)w? — w?

ne(t) = ( (2.31)
where, 7 is the loss factor of the material of the beam element. Substituting
Equation 2.31 into Equation 2.29 and taking x = x,, gives the response of the

beam element at any point x = x,, on the beam element

_ (@) (@n)
V(T t) = 0+ )0l — Foe (2.32)
0. (1) = e Tm)Tr(Zn) i (2.33)

(1+iy)w? — w?

Similarly, to obtain the steady state response to a harmonic moment excita-

tion, m,(z,t) in Equation 2.18 is written as
m,(x,t) = M(t)d(x — z,) (2.34)

where, M (t) is a harmonic moment applied at an arbitrary point z = x,

(M(t) = Mpe™"). For harmonic moment applied at z = z, steady state
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response of the beam at any arbitrary point x = x,, is,

Moe™ (2.35)

Moye™* (2.36)

The receptance functions of the beam are defined as,

U’)’TL ezm
Hmn = Nmn -
fn In
Um ezm
Lmn = < Pmn -
fn my
where,
fn = Fpe™t at T =T,
my, = Mye™! at T =z,

U = 0(Ty, t) and 0,, = 0.(x,,1t)

Points 1 and 2 on the beam correspond to x1 = L and x5 = 0, respectively.
In order to find the end point receptance functions, m and n are taken as
m = 1,2 and n = 1,2. The beam is free-free. So, since there is no shear

deformation at the boundaries of the beam at x = 1 = L and z = x4 = 0,

dv;(z)
dx

=7/(2) = 0., (2) (2.37)

End point receptance function at point 1 relating the forcing applied at point

1 and response at point 1, Hyq, is,

Hy = ﬁ
o Te(w)u(an)
B ; (1 +i7)w2 — w? (2.38)
(L) (L) | UL Ur(L) | s~ T (L)or(L)
N —w? + —w? Z (1+1iy)w? — w?

r=1
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Substituting Equations 2.26a and 2.26¢ into Equation 2.38 gives,

AtrAtr + ArotéArotL = Uy Uy )
Hy = 2 2
H —w? * Zl 1 + iv)w? — w?
' N (2.39)
- pALw?  (pAL? + 12pI)w? (14 iy)w? — w?

Similar to obtaining Equation 2.39, remaining end point receptance functions

can be determined as follows,

Hh = _pA;w2 * (pAL? iLﬁlQpI)wQ o z_: (1 ?Es));;?((i) w2 (2.40a)
Ha = _pAzwz  (pAL? iLlQpI)wQ M 2 (1 :J?Z(S;Z?(O—) w? (2.40b)
bun==r"7313 +612p])w2 * i (12%))@_@;;(5)& (2.40c)
by =— (pAL? —|—612p[)w2 * i (1?@%22/(2)& (2.40d)
L= (pAL? —|—612pl)w2 * Ti:; (1 fi?ﬁ;@wz (2.40e)
Pu=- (pAL? +1122pIL)w2 * i (1U_+T(ziiz(g)w2 (2.40f)
Pro =~ (pAL? +1122,0]L)w2 * i (1?,25)3?/(3122 (240g)

= )
12 — 7/(0)z,(0)
Py = T AL + 1291 D)2 + ; 0+i7) (2.40h)
(

6 = o/ (L)u:(0) :
Npy = 2.4
2 AL 12pD)e? 2 (1 + iv)w? (2.401)

Using Equation 2.40, end point receptance matrix (or simply FRF matrix) of
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the beam, [A(w)], is obtained,

Hyy Ly Hyg Lo Hyy Ly Hig Lo
Ni1 Py Nig Py Py Ny Pro
[a(w)] = = (2.41)
Hyy Loy Hog Lo Hay Lo
Nai Poy Nog Pao sym Py

where,

H,,, :Harmonic transverse displacement response of the beam at x = z,,
for a harmonic forcing excitation at x = x,,

L., :Harmonic transverse displacement response of the beam at x = x,,
for a harmonic moment excitation at r = x,,

Ny :Harmonic angular rotation response of the beam at © = x,,
for a harmonic forcing excitation at z = z,,

P,., :Harmonic angular rotation response of the beam at x = x,,
for a harmonic moment excitation at r = x,,

Tm =0,L and x, =0, L

2.1.3 Receptance Coupling of Beam Elements

The SHT system is modeled by using constant cross-section beam elements. In
order to obtain the FRF of the whole SHT system by using structural coupling,
FRF of each beam element need to be found first. General FRF matrix of
a Timoshenko beam element is found in the previous section. Receptance
coupling (or FRF coupling) is applied to combine FRF matrices of beam
elements to obtain the FRF matrix of the SHT.

FRF coupling of two elements can be applied by taking them rigidly fixed
to each other. Then, no relative motion is assumed between two elements,
and it is called rigid FRF coupling. Rigid FRF coupling is usually used for

coupling beam elements of the same main component of the SHT. Spindle,
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toolholder and tool can be considered as main components of the SHT system.
For instance, for obtaining FRF of a spindle, beam elements of spindle are

coupled rigidly.

However, the main components of the SHT are not rigidly fixed to each other.
Instead, they apply high pressures to each other to assure no loss of contact
during milling process. For example, for some type of toolholders, toolholder
is at first heated up. When the hole of toolholder expands then the tool is put
inside of toolholder and thus shrink fit occurs between toolholder and tool.
For spindle-toolholder contact, loss of contact is prevented by a force applied
on toolholder which pulls it towards the spindle. Therefore, coupling of main
components is to be carried out considering the contact zones between them.
Equivalent contact parameters (equivalent stiffness and damping) are assigned
to define the contact at spindle-toolholder and toolholder-tool contacts. Cou-
pling two elements considering defined contact parameters in between is called
flexible FRF coupling.

It should be noted that when two constant cross-section (constant diameter)
beam elements (segments) with different diameters are coupled, the resulting
beam element has no longer constant-cross section. The procedure of coupling
segments with different diameters to each other one after the other is called
chain coupling. When Timoshenko beam elements with free-free boundary
conditions are coupled, the resulting SHT also has free-free boundary condi-
tions. Spindle of a SHT is supported by angular contact ball bearings. In this
study bearings are modeled as nonlinear elements. Stiffness of each bearing
depends on its displacement amplitude. Therefore, receptance information for
the points on the spindle where bearings are located is necessary for iterative
solution of the equations of motion of the system. After performing coupling
of beam elements while keeping the receptance information for the bearing
connection points on the SHT, bearing dynamics can be coupled to the dy-
namics of the rest of the system to obtain the whole SHT system model with

bearing supports.
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2.1.3.1 Rigid FRF Coupling Without Losing FRF Information at

Connection Points

When two beam elements are coupled using flexible FRF coupling, displace-
ments of connection points are not identical because of having springs and
dampers (equivalent contact parameters) between the connection points of
segments. Rigid FRF coupling can be considered as flexible coupling with in-
finitely large stiffness between connection points. Motion of connection points
on the coupled beam elements are identical at rigid FRF coupling. For classi-
cal rigid FRF coupling connection points are not kept on the resulting element.
However, by applying a modified rigid FRF coupling procedure explained in
this section, connection points can be kept for the resulting element. The
formulation for applying rigid FRF coupling without losing connection points
is based on works of Ferreira [56] and Liu [64].

Generalized FRF' coupling without losing connection points is explained by
analyzing an intermediate step of a chain coupling. Let us consider two beams,
A and B, as shown in Figure 2.4. A is the beam formed by segments coupled
by chain coupling. B is the constant diameter beam element to be coupled
to A. So, B has only two points on it, and A has k points on it. k — 2 is the
number of connection points kept during chain coupling before coupling with
B. FRF matrices of A and B are represented by [o] and [3], respectively. FRF
matrices of A and B include point and transfer receptance functions of both

beams.

—\/\
—— R = i—{—k———+—r\\—
1 Kk

rigid or flexible connection S— T

Figure 2.4. Representation of segments A and B to be coupled



o] = Zk: Z’“p] (2.42)
:522 621

_ 2.43

[6] _ﬁlQ ﬁll] ( )

In order to keep the connection points an extended matrix ['] is formed by

adding duplicate of point 1 (point 1 = point 1’) to [5] as,

Pz P1 i521
(8] = | iz Bu1 16n (2.44)

512 611 i 511

Because of the rigid connection between beams A and B, point k£ on beam A
and point 1 on beam B have equal displacement. Displacement vectors of the

beams can be expressed as

{aa} = {ap} (2.45)
{a} = {Q2 Q1}T (2.46)

Similar to expression for displacement vectors force vectors are formed as

{Fa} = {Fp} (2.47)

{Fp} = {Fz Fl}T (2.48)

Displacements can be related to forces as follows:
I aa a F

Tk \ _ |Yaa Yab k (2.49)
qa | Qb aup | | Fa

B _ ﬁaa ﬁab FB (250)
qu | Boa O | | Fvv
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where,

_ (82 8
Qgq = [akl{] ﬂaa -512 ﬁH]
Qgp = [akp] ﬁab - -gjil
Qpg = [Oépk] Bab = _512 511}
gy = [0p] By = [B11]

Connection between the beams is rigid, so, displacements of point 1 (also,

duplicate of point 1) and point k are equal to each other.

{(h'} = {Qk}

(2.51)

At connection points the forces are equal in magnitude and opposite in direc-

tion.
{Fv} = —{F}
From Equations 2.49, 2.50 and 2.51, it is possible to write

Fp
Fy

F,

= |:aaa aabi| F
A

[ﬁba ﬁbb]

Combining Equation 2.52 with Equation 2.53 gives,
BralFB} — Bt Fr} = Qaal Fi} + aap{ Fa}

{Fi} = (aa + Bi) " (Boa{FB} — @ap{Fa})

From Equation 2.52 and Equation 2.54,

{Fi} = (qaa + Bow) " (@ap{Fa} — Boa{Fp})
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Inserting Equation 2.54 into Equation 2.49 gives
{aa} = low — Ava(@aa + Biw) "] {Fa} + Wa(aa + )~ Bra{ Fs}  (2.56)
Using Equation 2.55 in Equation 2.50 yields

{aB} = Buv(aa + Bow) " wa{Fa} — [Baa — Bav(Qaa + Bw) Bl {F5} (2.57)

[7] the FRF matrix of the resulting multiple-segment beam, C. From Equation

2.56 related components can be written as

Yaa = Ypp = Opp — (i + B11) " gy (2.58)

YAB = [’sz ’ym] = apk(akk + ﬁn)_l [512 511} (2-59)

Similarly, from Equation 2.57,

YBA = ’72p] _ [521] (o, + 511)—1%]0 (2.60)
| T1p B

_ _722 V1| _ oo a1 B Boy » -

BB 12 %1] [512 By [ﬂn] (akr + Bin) [ﬁm 511} (2.61)

So, elements of the FRF matrix of the combined system, C, is

Yoz = Baz — Bor (e + B11) ' o (2.62a)
Va1 = Ba1 — Bor (e + Pur) B (2.62b)
Yop = Bor(arr + B11) (2.62c)
Y1 = Bu1 — Pu(awe + B11) " B (2.62d)
Yip = Br1 (e + ) oy (2.62¢)
Vow = pp — k(g + 1) iy (2.62f)
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Then, [y] matrix is formed as

Y22 V21 V2p
] = Vi1 Yip (2.63)

sym “Vpp

For the next coupling procedure, elements of the [y] matrix are renamed as

shown below:

Y22 — Ok

[721 Yop| T Qkp
Y12
[71)2_

711 Yip
Vp1 'Vpp_

> Qpp

The procedure explained above can also be used by eliminating the connection
point information. The point 1’ in the above formulation should not be added

to FRF matrix of beam element B.

2.1.3.2 Flexible FRF Coupling

If a duplicate connection point is not added to the beams to keep the con-
nection point information, classical coupling procedure is obtained. In this
section, classical coupling for flexible connection is given. Then the FRF in-
formation for the connection points are lost in the resulting model. For the
SHT system it is not necessary to keep the points at the connection of the
main components (spindle, toolholder and tool). The connection parameters
used in flexible coupling are called contact parameters since they represent

contacts between spindle-toolholder, and between toolholder-tool.

The procedure is similar to that given at Section 2.1.3.1. However, FRF
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information of duplicate connection points are not added to [ in this analysis

since connection points are not kept for resulting element.

When there are elastic elements between the connection points, the displace-
ments of these points will not be equal to each other. They are related to each

other as shown below:

[Kasl({a} —{a}) = {F1} (2.64)
where,
kAP 4 dwcAB 0
[Kagl=| " Y AB . AB
0 kg™ +iwc

ij : translational contact stiffness parameter

kP - rotational contact stiffness parameter

CAB

g translational contact damping parameter

cg“B : rotational contact damping parameter
The force equilibrium yields the relation between the forces at the connection

points as
{F} =—{F} (2.65)

Applying a similar procedure as in Section 2.1.3.1 yields the FRF matrix, 7,

of the combined system, C:

Vop = pp — k(i + i1 + [Kan] ™y (2.66a)
Vo2 = (e + B+ [Kap] ™) Bz (2.66b)
Yop = Bor (o + Bi1 + [Kap) ™" )aw (2.66¢)
Yoo = Baz — Por(ark + B + [Kap] ") Bz (2.66d)
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Elements of [y] are renamed for next coupling process as,

Vpp > Qpp
Vp2 > Qipk
Yop — Qp

Y22 — Qg

It should be noted that, if [K4p] is taken very stiff making [Kap]™' ~ 0 in
[7], results of rigid FRF coupling will be obtained.

2.2 Modeling of Bearings

The receptance coupling (FRF coupling) is used to obtain linear FRF matrix of
a SHT system without bearing supports (free-free). The receptance analysis
and the coupling procedure described in Section 2.1 are valid for a linear
system. However, the spindle of the SHT is supported by angular contact
ball bearings, which can be modeled by displacement amplitude dependent
stiffness elements. Cubic stiffness element is taken to represent the bearings
supporting the SHT system. Nonlinear element representing a bearing in the

SHT system has freedom in transverse direction only.

When there is a nonlinear element in the system, harmonic vibration analysis
can be achieved by using describing function (DF) theory. It is a common

method used for harmonic vibration analysis of a nonlinear system.

2.2.1 Describing Function Theory

Let us consider the SHT system shown in Figure 2.5. Angular contact ball
bearings are modeled by cubic stiffness elements in transverse direction. The
coefficient of its linear part depends on the magnitude of the preload applied

on the bearing [34]. The coefficient of nonlinear part of cubic stiffness element
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Figure 2.5. SHT system considered

can be predicted using bearing models [55]. Cubic stiffness is assumed for
the nonlinear part, and its equivalent stiffness and equivalent damping are
determined using describing function theory [65]. Then, equivalent quasi-
linear form of the nonlinear bearing force vector is determined using equivalent
stiffness of the bearings. The determined quasi-linear force vector is identified
only for the considered displacement amplitude, i.e. it is response-dependent.
Thus, quasi-linear bearing force vector is determined at each iteration step

during solution, when displacement amplitude is modified.

Force on each bearing can be represented as,

foi(v3) = kv + ko (2.67)

k; : coefficient of linear component of the stiffness

k,, : coefficient of nonlinear component of the stiffness
f; 1 reaction force of bearing in transverse direction at point j

v; : deformation or displacement in transverse direction at point j

Jj=2,3,4,5 (for Figure 2.5)

In order to make frequency domain analysis using nonlinear bearings, the
bearing force vector need to be put into quasi-linear form. With nonlinear
bearing forces the equation of motion of the dynamic system may be written

as

(21w} + {fi{z})} = {F} cos(wt) (2.68)
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[Z] : dynamic stiffness matrix of the SHT (inverse of receptance of the SHT)
{z} : response vector
{fo({x})} : bearing force vector (expressed as a function of the response vector)
{F} : magnitude of external harmonic forces

w : excitation frequency

After obtaining quasi-linear bearing force vector using describing function the-
ory, the equation of motion becomes suitable for the analysis in the frequency

domain:

[Z ) + [Kilp{a} + {Eu({z})} = {F} cos(wt) (2.69)

where,

[K]p : linear part of the bearing stiffness in matrix form

{Fu({z})} : force vector representing nonlinear bearing force

The bearings can be considered as local nonlinearities coupled to the linear
SHT system. After finding equivalent stiffness and equivalent damping of
the bearings, they can be coupled to dynamics of the SHT. In the following

section, quasi-linear form of a single bearing is determined using DF' theory.

2.2.2 Quasi-Linearization of Cubic Stiffness Element

A single nonlinear cubic stiffness element, which exerts a force of magnitude
proportional to its deformation to the third power, is considered. To make
the derivation simple, the linear part of the cubic stiffness element is not

considered in the analysis.

If a static load is applied to the cubic stiffness element in Figure 2.6(a), re-
sponse of the element would be as shown in Figure 2.6(b). If harmonic forcing,

F(0) = F(wt) = F cos(wt), is applied to the element the response of the non-
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Load

cubic
stiffness

element .
Static
E 2 response

(a) (b)

Figure 2.6. Static load applied to nonlinear element

linear element would also be harmonic. However, generally, the difference of
response of a nonlinear element from response of a linear element is that its
response would not only include fundamental harmonic (at frequency w) but

also include zeroth and higher harmonics (at frequencies w, 2w, 3w . . .),

y(0) =Yy + Z (Y cos(mB) + Yy, sin(md)] (2.70)

m=1,2,3,...

The equation of motion for the cubic stiffness element is
F(0) = koy(6)? (2.71)

Cubic stiffness element is a special element which gives odd and symmetric
response. For the symmetric nonlinearity zeroth component (average value)
of the response is zero, and for the odd nonlinearity even harmonics of the
response are all zero. For cubic stiffness, it is fair enough to approximate the
response by using only the first (fundamental) harmonic since the nonlinearity
is not heavy. So, representation of the response in Equation 2.70 becomes,

o0

y(0) = [YVine cos(mb) + Y5 sin(mb)] = Y. cos(f) + Yysin(6)  (2.72)

m=1,3,...
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Inserting Equation 2.72 into Equation 2.71 gives,
F(0) = kp[Yecos(#) + Yy sin(6)]? (2.73)
The applied harmonic force may be expressed as
F,cos(f) + F,sin(f) = Re[(F, — iF,)e"] (2.74)
where,

F. : magnitude of cosine component of the forcing

F : magnitude of sine component of the forcing
Similarly, the harmonic response is represented as
Y. cos(f) + Yisin(0) = Re[(Y, — iY;)e”] (2.75)
where,

Y, : magnitude of cosine component of the response

Y, : magnitude of sine component of the response

The aim in describing function theory is to relate force to response linearly at a
specified frequency and for a specific vibration amplitude, for each harmonic
term. Only fundamental harmonic of the response is used in this analysis.
The value which relates force to displacement response is called equivalent
stiffness, and it may be complex if it also has imaginary part representing

equivalent damping. This relation can be written as

Re[(F, —iF,)e®] = Re| (k, +i-k;) (Y. —iY,)e")
li ized stiff;
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where,

k. : equivalent stiffness [65]
k; : equivalent damping [65]

Equation 2.76 gives F,. and Fj as follows

F, = kY. + kY, (2.77a)
Fy=kY, — kY, (2.77b)

When written in matrix form Equation 2.77 becomes

o kr kz
=k K,

The matrix multiplied by response vector to obtain force vector in Equation

F.
F

Ye

v (2.78)

2.78 is response-dependent and it is called "nonlinearity matrix” in DF theory
[66]. Gelb et al. [67] formulated the values of k, and k; as,

1
b= / F(0)cos(6)d0 (2.79)
1 21 .
k; = —— F(6)sin(6)do (2.80)

0

where, Y is the magnitude (amplitude) of displacement response. Inserting

Equation 2.73 into Equations 2.79 and 2.80 and integrating analytically gives

k, = anyz = %kzn(Yf +Y2) (2.81)
ki =0 (2.82)
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Another way of expressing Equation 2.78 is

T

b ki {Y}) {cos(o) sin(e)} (2.83)

o ot oy -( [,

In Equation 2.83 it is clear that the cosine and sine components of displace-
ment response and forcing are separated. So, they are no longer complex in
the equation of motion. This fact is used in applying numerical path following

(continuation) method. For cubic stiffness, knowing that equivalent damping

is zero,
k. O
F} = Y 2.84
=1, |0 (284
3. |Y3+Y.Y2
Fl=-k,| ¢ y 2.85
(Fh =Tk |y oy (2.85)

Jacobian matrix of the nonlinear bearing force vector (or the partial derivative)

used in numerical analysis can additionally be obtained,

ory | Jo{rF}y () o{F}

o [{om o) o
o{F} 3 |3V24+Y? Y.,

vy A vy, mvzave (2.87)

2.2.3 Solution of Equation of Motion

In the previous section, elements of quasi-linear bearing force vector { F,;({z})}
in Equation 2.69 and its Jacobian are determined. After obtaining equation of
motion of the SHT system including dynamics of nonlinear bearings, numerical
analysis is used to obtain the FRF of the system. Amplitudes of displacements
in the SHT system are small for small external forces applied. Generally, when
small external forces are applied effects of displacement amplitude-dependent

nonlinearities are considered to be insignificant. In that case, solution of equa-
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tion of motion gives linear response of the structure. When applied forces take
larger values, displacement amplitudes become considerable so that cubic stiff-

ness nonlinearity affects the response and makes it nonlinear.

Then, the FRF of the system becomes different than linear FRF, and it also
becomes a function of response. The FRF may be affected so much that
turn-backs may occur in the response. Note that for a nonlinear system it
is not possible to talk about FRF, which is basically a transfer function (in
control theory). Therefore, it may be appropriate to call these curves pseudo-
receptance function or pseudo-FRF. In this study, pseudo-FRFs of the SHT

system under different conditions are obtained.

If a numerical method (e.g. Newton’s method) is used without path following
in the analysis, jumps or discontinuities are observed in FRF at the parts where
turn-back occurs. Therefore, a numerical continuation method should be used

to follow the solution curve of the FRF and observe turn-back behavior.

Newton’s method with arc length continuation (ALC) is a method which
yields a solution curve that is continuous. The classical numerical methods
involve sweeping of the whole frequency domain with a fixed direction of
solution (low-to-high or high-to-low frequency sweeps). In Newton’s method
with ALC the solution is searched within a sphere centered at the current
iteration point. This makes it possible to change the direction of the solution
curve (FRF in this study). When Newton’s method is used with ALC, instead
of observing discontinuities (jumps), turn-backs occur at such points. In this
study, adaptive step size between solution points is used. Step size is updated
at each solution point according to the error at the end of the iterations carried

out to obtain previous solution point.

In Newton’s method with ALC, Newton’s method is used together with the
first order predictors. By using Newton’s method, the next solution point
at the intersection of the sphere (centered at previous solution point) and

solution curve is obtained.

Including the linear part of the stiffness of bearings in [Z(w)]| the residual
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vector is written from Equation 2.69 as

{R{X} W)} = [Z(@H{X} +{Ea({X D)} = {F} (2.88)

The purpose is to seek solution where residual is zero. So, ALC solves the

curve defined by
{R{X},w)} = {0} (2.89)

Newton-Raphson method is applied to use j* estimate to obtain (j + 1)

estimate as,

a{R({X},w)}]_ (RUX},0)) (2.90)

(X = (), - | B

({X}50)
where, Jacobian of the residual matrix is,
= 291
S = 2+ 5 (291)

In this study Jacobian of the residual vector and nonlinear force vector, {F,,;},
are determined analytically. It is also possible to find them numerically. In-
verse of the Jacobian of the residual vector is needed in Equation 2.90. Ja-
cobian of the nonlinear force vector contains many zero components, so, it
would be time-consuming to take inverse of matrices twice. Instead, method
proposed by Ozgiiven [68] can be used to modify the inverse of the Jacobian

of the residual matrix by Jacobian of the force vector.

The next frequency point is searched on the boundary of a sphere (having

radius s) centered at the k' solution point.

{Ag}i{Ag}y = 5° (2.92)

49



where,
{X}
{q} = {
w
s : radius of the sphere
Then, another residual equation may be introduced and its solution is sought:

9{ X e wi) = {Aq}i{Aghy — s* =0 (2.93)

The corrector can be redefined as,

H{RUX}w)} {RUX}w)}T ! o
fb = () [ o S }] {{R({X}i,wb}}
ko= sk Hg(UXJw)} g X} w i

{gg{{x}} )} {g({aw} )} ) {g({X}, W)}

(2.94)

where,

w W i
[a{gaX}, )} a{g({i;i} >}} — [Q{Aq}i ]

9{X]
{Ag}, = {a}, — {a}r

In order to improve convergence at sharp points, step-length is modified at
cach step as suggested in [69],

niter

Sk = Sk—1{[ —ror (2.95)

iter
g

where,

si : step length at k™ solution point

sp_1 : step length at (k — 1) solution point

n " nominal number of iterations

nier . number of iterations done at (k — 1) solution point

The Newton’s method with ALC is very sensitive to sharp corners. Deter-
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iter

wer. mainly affects convergence of the method.

mining tolerance level and n
For some cases, solution curve is followed up to a sharp corner (turn-back
point), then follows back the same curve that has already been determined.
The reason is that there are actually two stable solutions for turning back,
the previously determined solution curve and the solution curve that should
be followed. In order to force the solution points to follow the solution curve,
direction of the solution curve may be set for each solution point. Thus, in-
stead of returning to the initial point, solution path can be followed up to the

end point.

Newton’s method with ALC is used to solve equation of motion of the SHT
system in frequency domain, and determine the FRF of the SHT system. New-
ton’s method with ALC is introduced by Crisfield [69] to carry out nonlinear
finite element analysis of statically loaded structures. In a recent study, Or-
bay [58] used Newton’s method with ALC to determine response of nonlinear

dynamic structures (bladed-disk assemblies).
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CHAPTER 3

APPLICATIONS

3.1 The Spindle-Toolholder-Tool System

A motorized spindle-toolholder-tool (SHT) system is analyzed in this chapter.
The model of the SHT is adapted from thesis of Cao [37]. The SHT system
used is shown in Figure 3.1. Spindle, toolholder, and tool are considered
as rigidly coupled to each other. For this study, contact stiffness values are
assumed to be infinitely high. In reality, contact parameters are determined
by carrying out an experiment. An experimental FRF is fitted to analytically
obtained FRF by setting proper contact parameters. The SHT system is
supported by four bearings in the front, and one bearing at the rear. The
effect of the rotor mounted on spindle shaft is assumed to have negligible

effect, and it is not considered in this analysis.

The SHT shown in Figure 3.1 is first separated into constant cross-section

beam elements. Bearing connection points are also kept as the end points of

Preloaded front bearings

TRRY
DM

Preloaded rear bearing

NN

-

S|

NI I
- i ALl AL

Figure 3.1. Representation of the model of a motorized SHT system
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Table 3.1. Dimensions (in mm) of the constant cross-section beam elements in the
SHT system (starting from the right hand side)

Beam number 1 2131456 781191011 12

Length 67 |48 |50 | 15|23 23 |35]23| 15| 150 | 45| 102

Outer diameter | 19.05 | 57 [ 85 | 70 | 70 | 70 | 70 | 70 | 65 | 65 | 65 | 65

Inner diameter 0 0 0 1351351353535 35| 35 | 35| 35

beam elements by dividing constant cross-section beam elements into multiple
pieces. For the SHT system used in this chapter, starting from the right hand
side of the system, dimensions of the constant cross-section beam elements

are given in Table 3.1.

During end milling process, cutting force is applied at the tool tip of the SHT.
In this application chapter, the effect of the following system parameters are
studied:

e Magnitude of the cutting force
e Coefficient of nonlinearity of the bearing stiffness

e Number of teeth on the cutter

Type of milling is taken as slotting. In slotting, the cutter is fully immersed
(100% immersion) into the workpiece during cutting, where the cutter entry
and exit angles are 0 and 180 degrees, respectively. The cutting conditions

are given in Table 3.2.

Table 3.2. Cutting conditions of end milling process

Material of the workpiece Al7075-T6
Cutter diameter 19.05[mm]
Number of flutes on the cutter 1
Type of milling Slotting
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In this chapter, firstly, the linear response of SHT system is presented. Sec-
ondly, the effect of magnitude of cutting force on response of SHT and on
chatter stability are investigated, while keeping coefficient of cubic stiffness
nonlinearity constant. Thirdly, the effect of coefficient of cubic stiffness non-
linearity on response of SHT and on chatter stability are investigated, while
keeping magnitude of cutting force constant. Lastly, the effect of number
of cutter flutes on chatter stability of milling process is analyzed for a given

cutting force magnitude and coefficient of nonlinearity.

3.2 Nonlinear Bearing Properties

The angular contact ball bearings support the SHT system. Each bearing is
modeled as a spring acting in transverse direction with cubic stiffness non-
linearity. The coefficient of linear part of the cubic stiffness nonlinearity is
determined by the applied preload on a bearing. The linear stiffness of the
front bearings are taken 2.1 - 10%[N/m] each, and of the rear bearing is taken
1.8 - 108[N/m]. The coefficients of nonlinear components of front bearings are

stated in each section, since different values are taken in the analysis.

3.3 Linear Response of the SHT system

Cubic stiffness element which represents bearings in the system has displace-
ment amplitude dependent stiffness. For low forces acting on the SHT system,
displacement response of the bearings is low. So, the effect of nonlinearity on
the FRF of the system is not considerable for low reaction forces on bearings
due to cutting force. For such cases, the system response can be considered
as linear. Linear FRF of the tool tip of the SHT can easily be obtained by
neglecting nonlinear components of the bearing stiffness, and taking only the
linear parts of the bearing stiffnesses. The linear analysis of the system gives
the FRF shown in Figure 3.2. The linear FRF of the system can be con-
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Figure 3.2. Linear tool tip FRF of the SHT system (log vs. linear)

sidered as the frequency response of the system under low force. When the
forces acting on the system becomes higher, effect of structural nonlinearities

mcreases.

The first two modes (two peaks) are namely rigid body modes of the SHT.
They are due to the almost rigid body motion of the SHT on flexible bearings.
The nonlinearities at the bearings mainly affect the rigid body modes of the
SHT system. So, the cubic stiffness at the bearings is expected to affect the
first two peaks of the FRF curve.

3.4 Effects of Magnitude of Cutting Force

During milling, the cutting forces are applied at the tool tip in one axial and
two transverse directions. For the 2D model used in this study, the cutting
force is applied at the tool tip in transverse direction only. The cutting force is
considered as harmonic force with time invariant magnitude. In this section,

the magnitude of the cutting force is increased to observe the effect of the
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Figure 3.3. Tool tip pseudo-FRFs of the SHT system under high cutting forces
(log vs. linear)

nonlinearity at the bearings better.

3.4.1 Effects of Cutting Force Magnitude on Response

The cutting force magnitudes are taken as ' = TO[N]|, ' = 100[N] and
F = 150[N]. The coefficient of nonlinearity is set constant for all cases as
k, =1.0-10"[N/m?] and k, = 0.86 - 10"[N/m3] for front and rear bearings,
respectively. Pseudo-FRFs for these two cases are compared in Figure 3.3.
As the magnitude of the cutting force increases, the first two modes of the
system shift to the right because of the hardening effect of the cubic stiffness.

For better view, the first two modes are zoomed in Figure 3.4.

The first mode of the system is more flexible than the second one. This causes
the difference in the amount of shift of the peaks. The magnitude of response
of the first mode is larger than that of the second one making first mode more
sensitive to the stiffness nonlinearity at the bearings. Therefore, the first mode

is more sensitive to increase in magnitude of cutting force.
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Figure 3.4. Zoomed views of the rigid body modes (log vs. linear). Solid: Low
force. Dashed: F=70[N]. Dotted: F=100[N]. Dash-dotted: F=150[N]
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3.4.2 Effects of Cutting Force Magnitude on Stability

Method of Altintag and Budak [18] is used for obtaining the stability lobes
from the pseudo-FRF's calculated. For the stability analysis real parts of the
FRFs are needed. The effect of cutting force magnitude on the real parts of

first two modes can be seen in Figure 3.6.

Effect of using arc length continuation in Newton’s method is shown in Figure
3.5. If ALC is not used with Newton’s method, the jump from point A to
point B in FRF curve corresponds to jumps in each lobe as shown in Figure
3.5.

The stability lobe diagram (SLD) of the linear system (under low cutting
load) is obtained by trimming the stability lobes of the dominant modes with
respect to each other. In Figure 3.7, SLDs before and after trimming are
shown. As seen in Figure 3.7, the most flexible modes (first, second and
fourth modes) affect the stability of the SHT system. Among these modes,
the first mode has the most important effect on the SLD. So, the largest
effect of cubic nonlinearity on the lobes related to the first mode, since the
other lobes remains almost constant under the effect of the nonlinearity. The
stability lobe related to first mode also shifts to the right as shown in Figure

3.8. Comparison of SLDs of the milling process is carried out in Figure 3.9.
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Figure 3.5. Effect of ALC on the FRF and SLD of first mode for F=100[N]. Solid:
Newton’s method with ALC. Dashed: Newton’s method without ALC (low-to-high
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Figure 3.6. Zoomed views of the real parts of FRFs of rigid body modes (log

vs. linear). Solid: Low force. Dashed: F=70[N]. Dotted: F=100[N]. Dash-dotted:
F=150[N]
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3.5 Effects of Coefficient of Cubic Stiffness Non-

linearity

The coefficient of cubic stiffness nonlinearity of a bearing determines the sen-
sitivity of its stiffness to displacement amplitude. For higher coefficient of
nonlinearity, higher increase of stiffness is observed for an increase in displace-
ment amplitude. Similar to the analysis done in Section 3.4, in this section,

the coefficient of cubic nonlinearity is increased to observe its effects.

3.5.1 Effects of Coefficient of Nonlinearity on Response

The coefficient of nonlinearities are taken as k, = 1.0 - 10M[N/m?], k, =

0.70 - 10"[N/m3] and k,, = 0.40 - 10" [N/m?] for the front bearings, and k, =
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Figure 3.9. Comparison of SLDs. Red: Low force. Blue: F=100[N]. Green:
F=150[N]

0.86 - 10" [N/m?], k, = 0.60 - 10"*[N/m?] and k, = 0.34 - 10"[N/m?] for the
rear bearing. The magnitude of cutting force is set constant as F = 150[V]
for all cases. Pseudo-FRF's for the two cases are compared in Figure 3.10. As
the magnitude of the cutting force increases the first two modes of the system
shift to the right because of the hardening effect of the cubic stiffness. For

better view, first two modes are zoomed in Figure 3.11.

Similar to the analysis done in Section 3.4, the first mode of the system is
more flexible than the second one. This causes the difference in the amount of
shift of the peaks. The magnitude of response of the first mode is larger than
that of the second one making the first mode more sensitive to the stiffness
nonlinearity at the bearings. Therefore, the first mode is more sensitive to

increase in the coefficient of cubic stiffness nonlinearity.
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Figure 3.10. Tool tip pseudo-FRFs for different coefficients of nonlinearity (log
vs. linear)

3.5.2 Effects of Coefficient of Nonlinearity on Stability

The effect of coefficient of nonlinearity on the real parts of first two modes
can be seen in Figure 3.12. Comparison of SLDs of the milling process is
carried out in Figure 3.13. The effect of increased coefficient of nonlinearity
is same as the effect of increased magnitude of cutting force. The stability
lobes related to the modes (rigid body modes), which are under the effect of
nonlinearity, shift to the right because of the hardening effect. However, some
stable zones do not shift to the right. This is because the lobes related to
modes other than the rigid body modes that which do not change under the

effect of nonlinearity.
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Figure 3.11. Zoomed views of the rigid body modes for F' = 150[N] (log

vs. linear). Solid: Linear. Dashed: k, = {0.40 0.34}[N/m?]. Dotted:
kn = {0.70 0.60}[N/m?]. Dash-dotted: k, = {1.0 0.86}[N/m3]
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Figure 3.12. Zoomed views of the real parts of FRFs of rigid body modes for
F = 150[N] (log vs. linear). Solid: Linear. Dashed: k, = {0.40 0.34}[N/m3].
Dotted: k, = {0.70 0.60}[N/m?]. Dash-dotted: k, = {1.0 0.86}[N/m?]
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Figure 3.14. Change in SLD when highest nonlinearity is applied and the number
of teeth on the cutter is four. Red: Linear. Blue: Nonlinear
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3.6 Effects of Number of Teeth on the Cutter
on Stability

The number of flutes on the cutter has a positive effect on chatter stability
of the milling process. The magnitude of cutting force and the coefficient of
bearing nonlinearity are taken F' = 150[N] and k, = {1.0 0.86}[N/m?] in
this section. When the number of flutes are increased from one to four in
the equations of Altintag and Budak [18], the stability lobe diagram obtained
from nonlinear analysis is almost the same as the diagram found from linear

analysis. The comparison is shown in Figure 3.14.
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CHAPTER 4

EXPERIMENTAL METHODS

In order to carry out an accurate stability analysis, frequency response func-
tion (or transfer function) of a system must be obtained accurately. Analytical
modeling of the whole machine tool system of a milling machine is the most
challenging part of conducting stability analysis of the milling process. Prac-
tically, analytical modeling of whole machine considering all effects (including
effects of milling process) is hardly possible. Without modeling whole ma-
chine it is still possible to estimate chatter free cutting zones semi-analytically
by identifying response, or frequency response function (FRF), of tool tip of

spindle-toolholder-tool (SHT) experimentally.

Carrying out hammer test (tap test) at tool tip under static conditions is the
most common method used in industry to obtain FRF for conducting chatter
analysis. However, if static tap test is conducted, some important effects
might be disregarded. Because of the nonlinearities of the structure, cutting
forces and spindle speed during cutting might have an effect on the FRF of
the structure. Under high speed conditions, for speeds above 15,000 rpm,
gyroscopic effects of balls of bearings may have an effect on stiffness values
of bearings. As a second effect, if high cutting forces are involved, stiffness
of bearings might change resulting in altered FRF of structure. Speed and
cutting force may introduce other effects such as altered bearing damping and
additional damping at tool-workpiece contact during milling. Apparently,
static tap test do not consider speed and force effects since it is carried out at

0 rpm spindle speed and low excitation force is applied by hammer.

A practical method to determine the dynamics of SHT is to conduct hammer
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test while the spindle rotates. The FRF obtained by this way is usually
called rotating FRF. Similarly, the FRF obtained by static tap test is called
non-rotating FRF. By carrying out hammer test under dynamic conditions
FRF of the structure can be estimated at different speeds and change of FRF
depending on spindle speed can be seen. But, since tool tip is hit by hammer,
there is an obligation of using a dummy tool. Possible changes might occur in
natural frequencies and damping values related to the modes of cutting tool.
So, replacing real cutter with a dummy tool might clear out some of its effects.

Moreover, use of this method does not include the effects of milling.

In order to observe the effects on milling process on dynamics of the structure
two types of experiments are done in this study. Experiments conducted in
this study involve real cutting tests to include effects of milling in addition
to nonlinearities of the structure. First study is to observe shifts in natural
frequencies of the structure during milling. Cutting is done at different cutting
speeds, then changes in dynamics of the structure are determined. Secondly,
an experimental chatter test is explained to determine stability lobe diagram
(SLD) at a certain speed experimentally. Then, a method to predict whole

SLD of system using experimental data of the chatter test is introduced.

4.1 Run Up Test

Run up test is an experimental method to determine shifts in natural frequen-
cies of the structure. Data collection is carried out while the SHT performs
stable (chatter free) milling. Run-up test is widely used in rotor dynamics (ex-
plained by Swanson et al. [70]) to determine dependency of natural frequencies

of the structure on rotational speed.

During milling, the structure is excited by the harmonics of the cutting force.
For instance, if cutter has one tooth and spindle speed is 200Hz, cutting
force excites the structure at 200Hz, 400Hz, 600Hz. ... Usually, magnitude of

first harmonic of cutting force is much larger than its higher harmonics. So,
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generally, higher harmonics of cutting force can be neglected, and it is assumed
to be composed of single harmonic. However, for highly intermittent cutting
(low immersion cut), magnitudes of higher harmonics become considerably
high, so higher harmonics of response of structure become relatively large as
well. In this experiment, the workpiece is cut at low immersion to obtain

response characteristics of the structure at a wider frequency band.

Figure 4.1 shows sketch of process during milling. In the experiment, the
workpiece is cut by tool along x-direction at a constant y distance. During
milling, the axial depth of cut is kept constant. The same cutting process with
equal cutting time is conducted at each designed cutting speed. If the cutter
takes all the material at the specified y, an incremental step is added to y
distance and cutter performs another cut at new y distance along x-direction.
Initial and final cutting speeds are 6,000 rpm and 20,000 rpm, respectively,
and speed increment is set as 300 rpm. Thus, material is cut 48 times having
the same cutting conditions except cutting speed (or feed per minute). Thus,
frequency range that is swept is 100Hz-105Hz-. . .-295Hz-300Hz-333Hz.

Figure 4.1. Sketch of the process during run up test
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Table 4.1. Technical details of run up test

Material of the workpiece Al7075-T6

Type of the cutter single-insert carbide milling cutter
Cutter diameter 25 mm

Radial width of cut 5 mm

or tool engagement

Axial depth of cut 5 mm

Maximum chip thickness 150 pum

Feed rate 188 pm/rev

Cutting time 2.5 s

Type of toolholder HSK63A, Thermic (shrink-fit) toolholder
Name of Machine Mori Seiki

Type of Spindle Electro (motorized) spindle
Maximum speed of Spindle 20,000 rpm

The technical details are listed in Table 4.1. In order to observe the response
of system at high frequencies, the cutting force need to have strong harmonics,
i.e. the magnitudes of higher harmonics of cutting force should be compara-
ble to magnitude of its first harmonic. This can be satisfied by selecting low
tool engagement, hence, conducting intermittent cutting. However, the tool
engagement should not be too low otherwise magnitude of cutting force be-
comes very low. To choose a sensible immersion, time domain simulation is
carried out to estimate cutting force harmonics. For the selected engagement,
the first six harmonics of cutting force are satisfactorily strong as shown in
Figure 4.2. With six strong harmonics the frequency bandwidth of the exper-
iment becomes 100Hz to 2000Hz (333 x 6 = 2000).

4.1.1 Measurement Equipment
Acceleration sensors (accelerometers) are used to obtain the response of the

structure during milling. Since the spindle housing is stationary, they are

mounted on tip of the spindle housing. At static conditions, the tool tip FRF of
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Figure 4.2. Theoretical harmonics of cutting force at 6000 rpm
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Figure 4.3. Direct FRFs of the system in x and y directions. Solid line: Hit and
measured at tool tip. Dashed line: Hit at tool tip and measured at housing tip

the system is obtained by hitting the tool tip and measuring tool tip response.
As shown in Figure 4.3, the same vibration modes are observed when tool tip
is hit and response at housing tip is measured. So, putting the accelerometers
at housing tip is reasonable since that location does not coincide with any of
the vibration modes (within the frequency range of interest). Accelerometers,

generally, have no dominant modes which have adverse effects on measured
data.

Another instrument that can be used for improving the experiment is force
dynamometer. Force dynamometer is a device to collect force data during op-
eration. The main disadvantage of using a force dynamometer is its frequency
bandwidth. Unlike accelerometers, resonance frequencies of force dynamome-

ters are close to frequency range of interest. For frequencies higher than 1000
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Hz, the measured force values are not reliable because of having too much dis-
turbance from the modes of the dynamometer itself. Thus, force dynamometer

can measure force accurately up to 1000 Hz.

4.1.2 Use of Campbell Diagrams

Campbell diagrams or waterfall plots are tools for investigating shifts in nat-
ural frequencies of rotors during operation. For a rotor shaft with a large disk
on it and fixed from two ends, unbalance on the disk creates forced vibra-
tion response of structure while rotor rotates at a certain speed. Firstly, time
domain response of structure at a certain speed is measured, then Fourier
transform (FT) is applied to the measured time data. Thus, magnitudes of
harmonics of response data is obtained. Conducting same procedure at dif-
ferent speeds gives FTs of response data at different speeds (or frequencies
of rotation). A 3D plot is formed with x, y and z axes being spindle speed,
frequency of harmonics, and magnitude of harmonics, respectively. In other
words, it is formed by putting F'T's of responses side-by-side on the same graph.

The formed 3D graph is called Campbell diagram or waterfall plot.

In this experiment, at each spindle speed forced vibration response (caused by
cutting force) of tip of spindle housing is measured, and FT of the response is
determined. 48 sets of FT analysis are put side-by-side and waterfall plot is

obtained as shown in Figure 4.4.

The dashed lines of Figure 4.4 are drawn for determining shift in natural
frequencies obtained by static tap test (hammer test). The constant slope
solid lines in Figure 4.4 represent harmonics of response that are coherent
to cutting force. For instance, the solid line which is closest to x-axis gives
the change in first harmonic of response with increasing spindle speed. The
first harmonic makes its first peak at natural frequency of first structural
mode. Since the first six harmonics of cutting force are strongest, the first
six harmonics of response have the strongest signals in Figure 4.4. Thus, it is

only possible to make comments for frequencies up to 1500Hz.
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Figure 4.4. Velocity response of housing tip in x and y directions. Horizontal

dashed lines represent natural frequencies determined by static hammer test (Figure
4.3)

From Figure 4.4 it can be inferred that modes of the SHT system do not

change significantly. In order to determine deviations from dashed lines more
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Table 4.2. Technical details of slope cutting test

Material of the workpiece Al7075-T6

Type of the cutter Cylindrical end milling cutter
Cutter diameter 16 mm

Number of flutes on the cutter 4

Type of milling Half immersion down milling
Maximum axial depth of cut 0.5 mm

Tool overhang length 116 mm

Type of toolholder HSK63, Thermic (shrink-fit) toolholder
Name of machine tool Danobat, Solaruze, SV6000
Type of spindle Electro (motorized) spindle
Maximum speed of Spindle 18,000 rpm

clearly, cutting test can be performed with finer resolution of cutting speed

increment.

4.2 Slope Cutting Test

Run up test is for determining shifts in natural frequencies of system. After
observing changes in the stiffness of the modes, changes in stability of the
milling process can be predicted. The stability of a milling process can directly
be checked by cutting sloped materials. In this experiment, stability of an
SHT system with long tool overhang is analyzed. FRF of the system has one
dominant mode which is related to long overhang of cutting tool. Technical

details of the process are listed in Table 4.2.

Before the experiment, the tap test is conducted to determine the natural
frequency of the system. The tool tip FRF is shown in Figure 4.5. As seen
in the figure, FRF of the system can be approximated as single-degree-of-
freedom system. The dominant mode of the system is around 800Hz. The

chatter frequency is close to natural frequency of the related mode. For this
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Figure 4.5. Tool tip FRF of the system. Solid: Point FRF in x-direction. Dashed:
Point FRF in y-direction

system, flexibility of the dominant mode is very high such that chatter is
always expected to occur at this mode. Hence, chatter frequency is supposed

to be close to the natural frequency of the dominant mode, it is around 800Hz.

The schematic view of the experiment is shown in Figure 4.6. Cutting takes
place along x-direction at constant y distance. The cutting speed is set con-
stant while cutting at constant y distance. The axial depth of cut first in-
creases up to mid point, then decreases until the end during milling at con-
stant speed at constant y. At each spindle speed, the response of housing
tip is measured. Similar to run up test a plot is formed by putting F'Ts of
response acquired at each time step side-by-side (as shown in Figure 4.6).
When the axial depth of cut exceeds a certain value, chatter occurs and val-
ues of response data become very large relative to the values of stable cutting
(forced vibration response). While chatter occurs values of FT become very
large not only at a single frequency. However, among the frequencies at which
response is high, chatter frequency is sought around 800Hz, natural frequency

of dominant mode of the system.
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Figure 4.6. Schematic view of slope cutting test

In this study, the limiting depth of cut values, a,,, obtained while the depth
of cut increases (increasing slope) are listed in the results. The results ob-
tained by slope cutting test is given in Table 4.3. The predicted ay;,, values
are determined by using FRF data (given in Figure 4.5) and the method of
Altintag and Budak [18].

4.2.1 Inverse Analysis Using Experimental Data

Actual limiting depth of cut values at certain speeds are obtained via slope
cutting test. For a system with single dominant mode, i.e. that can be
approximated by an equivalent SDOF system, an inverse method to predict

stability of the milling process using experimental data is introduced in this
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Table 4.3. Results of slope cutting test

Data point A B C D E F G

Spindle speed [rpm)] 4200 | 4500 | 5200 | 6500 | 7500 | 9000 | 14000
Predicted qay;,, [mm] 0.20 | 0.14 | 0.25 | 0.25 | 0.13 | 0.22 | 0.42
Measured a;;,;, [mm] 0.20 | 0.16 | 0.21 | 0.21 | 0.14 | 0.27 | 0.25
Chatter frequency [Hz] | 783 | 791 | 819 | 769 | 783 | 806 790

section. The method is inverse analysis of method proposed by Altintag and
Budak [18]. The purpose of the inverse method is to find parameters (mass,
stiffness and damping) of equivalent SDOF system. Each lobe of SLD is
analyzed separately. Inverse analysis is applied to each set of experimental
data collected from each lobe, separately. In other words, for each lobe of
SLD, a different set of system parameters are found. Inverse method can be

considered as fitting curves (lobes) to experimental data.

The main assumption of the method is to consider the system to have cylin-
drical symmetry in its response. When Figure 4.5 is examined it is seen that
only damping of the modes in x and y directions are slightly different, so,
assuming cylindrical symmetry is reasonable. Then, transfer function matrix
(tool tip FRF) identified at the cutter-workpiece contact zone becomes as in

Equation 4.1.

] | Pualiw) Puy(iw)
o] = [0 2 w

where,
®,.,.(iw) : FRF obtained by exciting and measuring in x-direction
®,,(iw) : FRF obtained by exciting and measuring in y-direction
O, (lw) = @,y (iw) =@ - cylindrical symmetry
O, (iw) = &y (iw) =0 - uncoupled modes
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Frequency response function (FRF) of a SDOF system, @, is

b — ! (4.2)

m(w? — w? + i2(w,w,)

n_

where,

m : modal mass
w, : natural frequency

¢ : damping ratio

So, eigenvalues become as

1
A= a0 (a1 +4/a} — 4a0) (4.3)

where,

(4.4)

A= apy ~
NG

aprptiar

where, a., is the equivalent directional coefficient of the process and it is

1
eq — — o + \/ a 2_ Y o —a, N
ea 2( Oty — Oty Qtyy) {a + gy (Cea + ayy) (Ol Oty — Qg Oty
(4.5)
Expressing Equation 4.4 in complex form gives,
. (JéR:l:ia[ . (ozR:I:z'Oq)(G—iH) (4 6)

- G+iH G2 + H?
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First and second eigenvalues are written from Equation 4.6 as

(&R—i&j)(G—iH) [(O!RG—OCIH>+’i(—C¥RH—a[G)]

Ay = = 4.7
' G2 + H? G2 + H? (4.72)
(CYR—i—?:Oé])(G—iH) [(CMRG+CM[H)+i(—CYRH+a1G)]

Ay = = (4.7b)
G2+ H? G2 + H?
where,
Qg : equivalent directional coefficient
ap : real part of o,
ag @ imaginary part of g
G : real part of FRF of SDOF system
H :imaginary part of FRF of SDOF system
G = w727, B wg
m((w — w?)? + 4(Cwpwe)?)
e _ 20wnwe
m((w} - w?)? + 4(Cwpwe)?)
k is defined as
A —apH +a0;G  —20wywear F (W2 —w?)ag (4.8)
R = — = = .
Ar  agrG+a/H — (w2 —w?)ag + 2¢wuwear
Solving the equation gives,
C1(w? — w?) = Cy2¢wnwe (4.9)
where, (' and Cy are constants,
Cy = —karp ar
Cy = —ar F kag
In Equation 4.9 k is defined in terms of known variables as
(w.T
__sin(wel) (4.10)
1 — cos(w.T)
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period of spindle rotation )

where, T" is tooth passing period of cutter (2o 2imee oaeon

k is a function of tooth passing period, T', and chatter frequency, w.. Equation
4.9 shows that w, and ¢ depend on w., T, ar and a;. In a typical chatter
experiment w., T, and a;,, can be determined. «apr and «; are calculated
quite accurately for milling processes, so, they are also known. Therefore, by
conducting two chatter experiments (e.g. test of cutting slopes) in same lobe
wy, and ¢ of system can be predicted. It is important to keep the engagement
same during experiments, since directional coefficients depend directly on tool
engagement. Thus, only cutting speed and depth of cut is changed (as done

in test of cutting slopes).

The only remaining system parameter is modal mass, m. It is determined

from the limiting depth of cut, ay;,, relation.

27TAR

“NE, (1+ K% (4.11)

Alim =

where, Ap is real part of eigenvalue, N is number of flutes (teeth) on cutter,

and K; is tangential cutting coefficient.

The real part of eigenvalues is determined from Equation 4.7 as below

o OéRG + a[H

A= =G (4.12)

In order to determine modal mass, it is extracted from G and H before putting
into Equation 4.11. A’; is defined as
, Ar (W2 —wHag + 2wwear

B (W2 — w2)? 1 4(Cwnwe)? (4.13)

Inserting variables into Figure 4.11and rearranging the equation gives the
expression for modal mass.
NKt Qlim

= — 4.14
" o Ar(1+ r2) (4.14)

Modal mass depends on all experimental data. Both of the experiments give
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close values of m, so Equation 4.14 is solved after determining w,, and ¢ from

Equation 4.9.

4.2.2 An Application

The inverse method is applied to the results of slope cutting test (presented in
Table 4.3). Analytical stability lobe diagram (SLD) of the system including

chatter test results is presented in Figure 4.7.
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Figure 4.7. Analytical SLD computed based on [18] (solid curve) and slope cutting
tests results (data points)

Experimental data points A, B and C are on the second lobe of the SLD. D,
E and F are on first lobe of the SLD. G is on zeroth lobe. The data points at
same lobes are analyzed separately using inverse method. Since the number
of data points on zeroth lobe is less than two, point G could not be used in the
analysis. The first and second lobes of Figure 4.7 are re-plotted with respect

to the results of inverse method. The results of inverse chatter analysis using
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data in Table 4.3 are given in Table 4.4.

The obtained system parameters are used for re-plotting lobes of the SLD
(shown in Figure 4.8). Modal mass values of SDOF systems representing both
lobes are tried to kept almost constant during inverse analysis. Therefore,
damping and stiffness values of SDOF system change for fitting stability lobes
to experimental data. Parameters of the system are very sensitive to changes

in chatter frequency values. The measured values of chatter frequency are

Table 4.4. Results of inverse chatter analysis using results of test of cutting slopes

Identified parameters First lobe Second lobe

of SDOF system (using D, E and F) | (using A, B and C)
Natural frequency [Hz] 778 792
Damping ratio 0.0265 0.0250
Modal mass [kg] 0.0766 0.0764
Modal stiffness [N/m)] 1.83-10° 1.89 - 10°
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Figure 4.9. Comparison of analytical (solid curve) and re-plotted (dashed curve)
SLDs including prediction for zeroth lobe

not as accurate as limiting depth of cut and cutting speed, and parameters
found are not very sensitive to changes in limiting depth of cut and cutting
speed. So, minor change is applied to chatter frequency values in order to get

reasonable values for system parameters such as constant modal mass.

The reduction of stiffness from the second lobe to the first lobe is 0.06-106 N /m.
If the same reduction is applied from first lobe to zeroth lobe, and the stiffness
of zeroth lobe is taken as 1.77- 106 N/m, and other parameters are taken same
as parameters of the first lobe, the zeroth lobe fits the remaining data point
as shown in Figure 4.9. However, if there were another data point on zeroth

lobe, fit could be done more accurately.

From the two experimental study conducted in this chapter, it can be inferred
that natural frequencies of spindles (SHT systems of the machines) do not
change so much during operation. However, even small changes in dynamics
of the SHT system have influence on chatter stability of the milling process.
If changes in natural frequencies are considerable (as in rotor dynamics), they
can be determined by conducting run up test. Since the error of measurement

data of run up test is considerable, it can be hard to determine whether the
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system characteristics change during milling. Slope cutting test directly de-
termines chatter stability of the process. For systems with single dominant
modes, inverse chatter analysis can be conducted to determine changes in
system dynamics. For the machine tool used in the experiment, drop in nat-
ural frequency is observed for speeds above 10,000 rpm. Although there has
not been significant changes observed in the FRFs for these machines used
in cutting tests, it has been reported that the FRFs of the electro-spindles
(motorized spindles) change significantly beyond 12,000 rpm due to real time

preload adjustments of bearings.
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CHAPTER 5

CONCLUSION

In this study, the effects of nonlinearity in the bearing supports of a typical
motorized spindle-toolholder-tool (SHT) system on the chatter stability of the
milling process are investigated. For this purpose, the analytical model of a
SHT system suggested in an earlier study is developed further by including
the nonlinear model of bearing supports. Changes in stability lobe diagram
(SLD) due to nonlinear effects are studied. As nonlinearity, the nonlinear stiff-
ness at bearings are considered. The changes in SLD due to the magnitude of
the cutting force involved in the milling process, coefficient of nonlinearity of
bearings, and number of flutes on the end milling cutter are considered. Fur-
thermore, an experimental study is also conducted, and changes in dynamics
of the SHT system during milling process are determined by carrying out
cutting experiments on particular machines. Run up test involving chatter-
free cutting and slope cutting test involving chatter are conducted to observe
changes in dynamic parameters of the SHT system. Effects of the milling pro-
cess are considered in addition to nonlinearities of the structure. Afterwards,
an inverse chatter analysis is performed to analyze dynamics during milling

using measured data.

5.1 Mathematical Model and Solution Method

The SHT system is modeled as Timoshenko beam elements coupled to each
other. Frequency response function (FRF) matrix of each beam element is

found using continuous beam model (CBM). CBM is an accurate method to
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determine the response of a beam element of any length. FRF matrix of the
SHT is found by coupling FRF matrices of Timoshenko beam elements to each
other. In order to keep the points of bearing locations in the coupled FRF
matrices, a modified FRF coupling method is applied. Thus, it is possible to
keep the connection points in the coupled system formulation after coupling

two elements.

The angular contact ball bearings are modeled as cubic stiffness elements
composed of linear and nonlinear parts. Linear FRF of the SHT is obtained
by coupling linear part of the stiffness with the previously obtained FRF
matrix of the SHT system. The linear stiffnesses of bearings are coupled to
the SHT at the points of bearing locations which were kept during the coupling
of FRF matrices of the SHT system. The remaining nonlinear force vector
representing nonlinear reaction forces of the bearings is put into response-

dependent quasi-linear via describing function theory.

The equation of motion of the system is solved in frequency domain with
numerical methods without path following, and jumps are observed in the
frequency response function (FRF) of the SHT system when there is high
nonlinearity. Therefore, a special numerical method, Newton’s method with
arc length continuation (ALC) method, is utilized in numerical solution of
the equations. As a result, instead of observing discontinuities (jumps), turn
points (turn-backs) are obtained in the frequency response curve (FRF) of the
SHT. Since jumps in an FRF result in jumps in obtained SLD, it is observed
that it is not possible to carry out stability analysis using FRFs having jumps.
This difficulty is overcome by using Newton’s method with ALC, with which
the response around the frequencies at which jumps occur can easily be ob-
tained. Thus, conducting stability analysis becomes possible using the FRF's

with turn-backs.

Convergence of Newton’s method with ALC method mainly depends on the
selected error tolerance and nominal number of iterations. This brings diffi-
culty while obtaining results for different cases. Another drawback of using

Newton’s method with ALC is that sometimes obtaining results might take

88



too long compared to using numerical methods without path following. Com-
putation time naturally depends on how much the nonlinearity affects the
response of the system. Higher nonlinearity causes sharper turns in the FRF,

thus needs more solution steps at the turning points of the FRF.

5.2 Effect of Magnitude of the Cutting Force

The cutting force (cutting load) applied at tool tip of the SHT in transverse
direction is assumed as a harmonic force with constant magnitude. Setting the
coefficient of nonlinearity constant, increase in the magnitude of the force is
investigated and it is observed that an increase in force increases displacements
of the SHT system. Increase in the displacement at the bearing locations
increases the effect of the nonlinearity defined. The cubic nonlinearity used
in this thesis has a hardening effect on the structure. In other words, its
stiffness increases with thane increased displacement. Since the bearings in
the system have nonlinearity, the modes related to the bearings are affected by
the increased cutting force. Modes of the SHT system related to the stiffness
of bearings are rigid body modes of the SHT. Natural frequencies of the rigid
body modes shift to the right with an increase in magnitude of cutting force.
Since cubic nonlinearity is not dominant at low response level, only peaks of
the rigid body modes shift to the right. This special condition of shifting is
called snap-through.

The same snap-through behavior is seen in the SLD of the milling process.
The lobes related to the rigid body modes shift to the right. The left sides of
the lobes shifts more than the right sides. The lobes related to the modes other
than rigid body modes do not shift to the right, they stay almost constant.
Therefore, increase in the cutting force shifts the stable zones falling to the
right of the lobes staying constant in the SLD to the right because of the
hardening effect. Stable zones falling to the left of the unaffected lobes stay
almost constant while getting little narrower. For the nonlinearity used in the

case studies, 50% increase in cutting force magnitude causes the most affected
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stable zone shift around 250 rpm to the right.

5.3 Effect of Coefficient of Nonlinearity of Bear-
ing Stiffness

Similar conclusions made for increased cutting force can be made for increased
coefficient of cubic nonlinearity. Increasing cutting force brings about in-
creased displacements at the bearing locations. Similarly, increasing coefficient
of nonlinearity while keeping cutting force constant increases the sensitivity of
the displacement amplitude-dependent stiffness to increased response. Higher
coefficient means the nonlinearity is more dominant at lower response levels.
50% increase in coefficient of nonlinearity of bearing stiffness causes the most
affected stable zones shift about 125 rpm to the right.

5.4 Effect of Number of Flutes on the Cutter

The number of flutes (or number of teeth) has a different effect on the stability
of the process. Increased number of teeth on the cutter decreases the effect of
nonlinearity on the SLD. Increased number of flutes increases the number of
lobes needed to consider for the range of interest (e.g. between 5,000 Hz and
20,000 Hz). The effect of shift in the FRF of the SHT is lower at higher lobes.
At higher lobes frequency of rotation of spindle is much lower than frequency
of vibration waves imprinted on the cut arc. Thus, if the lobe number is higher
at the same spindle speed the effect of change in FRF is lower because of the
higher difference between frequency of excitation and frequency of rotation.
Quadrupling number of flutes decreases the shift in the lobes corresponding
to rigid body modes. Almost no shift occurs in SLD after increasing number

of flutes from one to four, even when highest nonlinearity used is applied.

Physical meaning of lobe number on a SLD is that it determines phase differ-
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ence between waves on left and generated surfaces while system vibrates at
chatter frequency (cutting conditions are selected just on stability lobe curve).
Higher the phase difference, higher the tooth passing period and higher the
lobe number at fixed chatter frequency. Therefore, increase of lobe number
(tooth passing period) results in decrease of spindle speed. At higher lobe
numbers (at left side of SLD) tooth passing frequency is higher, thus spindle
speed is lower during chatter. For instance, if a possible shift in natural fre-
quency of a system shifts tooth passing period at first lobe by T}, it will shift
tooth passing period of second lobe about 2-7}. Shift in tooth passing period
is higher on second lobe than on first lobe. Therefore, shift in frequency of

second lobe is lower than of first lobe.

For a fixed interested spindle speed range on SLD, say 10,000-15,000 rpm,
corresponding lobe number in the interested range is higher for higher number
of flutes on cutter (for higher chatter frequency). Higher lobe is affected less
by a frequency shift in the first lobe. Therefore, for higher number of flutes,
SLD is expected to be affected less in the spindle speed range of interest.

5.5 Assessment of Experimental Study

Two experimental methods, run up and slope cutting tests, are investigated
in this study. Both of the experiments involve cutting, so, the test results
include the effects of the milling process. Some electro-spindles used in the
industry have preload mechanism changing during milling process depending
on the conditions of cutting. For such electro-spindles change in the SLDs
can be considerable due to real time preload adjustment of bearings. For the
spindles of the machines tested there has not been a significant change in
natural frequencies. Results of run up test are almost confirmed with results
of conducted FRF measurements. Changes in dynamics of the system is so
small that errors involving in run up test makes it hard to make comments.
Results of cutting slopes test is clearer as the SLD of the system is obtained

directly. For systems having only one dominant modes (e.g. SHT with long
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tool overhang) inverse chatter analysis is applied to obtain modal parameters
representing the system. It is observed that even 14 Hz change in natural
frequency of the system may lead to 500 rpm shift of SLD to the left (for
speeds above 10,000 rpm). This shift might be because of the speed-dependent

characteristics of ball bearings or real time preload adjustment of ball bearings.

5.6 Suggestions for Future Studies

The bearing model used in this study has one degree of freedom. It is con-
sidered to have hardening effect on the structure. However, in some cases
because of the bending moment applied on the bearings, they might show
softening effect (decreased stiffness). Bearing models used in literature can
be implemented into this study to have more realistic results. However, the
solution algorithm should be modified to be used in order to solve equations

of motion in frequency domain.

The solution method used in this thesis can be improved to be faster and
more stable. This can be done by forcing the numerical continuation method
to converge at each step by using more effective algorithm such as assigning a
predictor for the direction of the solution path. Furthermore, numerical path
following can only be applied at the frequency ranges where turn-backs occur

in the solution curve. Thus, computation time can be decreased significantly.

The inverse chatter analysis used may be modified for predicting stability
of systems involving two dominant modes instead of one. An optimization
algorithm can be implemented for fitting best curve to experimental data and

obtaining system parameters accordingly.
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