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ABSTRACT

NONLINEAR DYNAMIC MODELING AND ANALYSIS OF

SPINDLE-TOOL ASSEMBLIES IN MACHINING CENTERS

Kılıç, Zekai Murat

M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr. H. Nevzat Özgüven

Co-Supervisor : Prof. Dr. Yusuf Altıntaş

August 2009, 100 pages

Chatter is unwanted since it causes deteriorating effects on the milling pro-

cess. Stability lobe diagrams are developed in order to determine the stable

cutting conditions at which chatter-free machining can be made. The need

of cutting away more chips to make milling operations quicker has brought

the concept of high-speed milling. This increased the importance of esti-

mating stability lobe diagrams of the milling process more accurately. The

state-of-art chatter and spindle-toolholder-tool models predict the stability

lobe diagram for milling process quite effectively. However, sometimes chatter

might occur even at cutting conditions selected using theoretically obtained

stability lobe diagrams. One of the reasons for that may be nonlinearities

in the system. This being the motivation, in this work, nonlinearities at the

bearings of spindle-toolholder-tool system are investigated. In this thesis,

cubic nonlinearity is assumed to represent stiffness of a bearing in a spindle-

toolholder-tool system. Effects of nonlinearity on stability lobe diagram of a

milling process are studied by using the mathematical model developed for
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such a system. Frequency response function of spindle-toolholder-tool system

without bearings is obtained using Timoshenko beam model. Then, bearings

are modeled by using describing function theory and coupled to the dynamics

of spindle-toolholder-tool modeled. Solution of the equations of motion of the

system in frequency domain is obtained via Newton’s method with ALC. It is

an effective frequency domain method in which turning points on frequency

response function are traced. This is important for the system studied, as

bearing nonlinearity may introduce turn backs in the response of the sys-

tem. Case studies are carried out to study the effects of bearing nonlinearity

on stability lobe diagram. The effects of the following factors are studied:

Magnitude of cutting force, degree of nonlinearity and number of teeth on

cutter. Displacement amplitude dependent stiffness of bearings affects the

dynamic response due to rigid body modes of the system. It is observed that

an increase in cutting force magnitude or in coefficient of bearing nonlinearity

results in increase of natural frequencies, thus showing hardening behavior.

Shifting of frequencies in the response curve shifts stability lobes related to

the affected modes, to the right. For increased number of flutes on cutter,

effect of nonlinearity at bearings on stability of the milling process becomes

lower. Experimental studies to determine the changes in dynamics of a system

during cutting are also carried out in this thesis. Inverse chatter analysis is

conducted to obtain modal parameters of a single-degree-of-freedom system

using the experiment data. Decrease in natural frequency is observed at high

cutting speeds for the particular spindle used. This shift may be due to speed-

dependent bearing dynamics and real time adjustment of preload on bearings.

Keywords : Chatter Stability, End Milling, Bearing Nonlinearity, Inverse

Chatter Analysis, Chatter in Nonlinear Systems
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ÖZ

İŞLEME MERKEZLERİNDE MİL-TAKIM SİSTEMLERİNİN

İNCELENMESİ VE DOĞRUSAL OLMAYAN DİNAMİK MODELLEMESİ

Kılıç, Zekai Murat

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. H. Nevzat Özgüven

Ortak Tez Yöneticisi : Prof. Dr. Yusuf Altıntaş

Ağustos 2009, 100 sayfa

İşleme sırasında yarattığı kötü etkilerinden dolayı tırlama frezede istenmeyen

bir olgudur. Hangi durumlarda tırlama olmadan işleme yapılacağını tah-

min edebilmek için, sürecin kararlılık diyagramı hesaplanır. Frezede süreci

hızlandırmak için gereken fazla talaş kaldırma ihtiyacı yüksek hız frezeleri

gündeme getirmiştir. Böylece, hesaplanan kararlılık diyagramlarının hassasi-

yetinin önemi daha da artmıştır. Günümüzde kararlılık diyagramlarını bul-

makta kullanılan tırlama ve iş mili-takım tutucu-takım sistemi modelleri ol-

dukça iyi sonuçlar vermektedir. Ancak bazen kesme koşulları teorik olarak bu-

lunan kararlılık diyagramına göre kararlı bölgede bile sistemde tırlama gözlem-

lenebilmektedir. Bu olgunun sebeplerinden biri, sistemdeki doğrusal olmayan

etkiler olarak açıklanabilir. Buradan yola çıkarak, bu tezde, iş mili-takım

tutucu-takım sisteminin rulmanlarındaki doğrusal olmayan parametrelerin et-

kileri incelenmiştir. Bu çalışmada, iş mili üzerindeki rulmanın, kuvvet-yer

değiştirme ilişkisinin kübik davranış gösterdiği kabul edilmiştir. Geliştirilen

matematiksel model kullanılarak, doğrusal olmayan özellikteki sistemlerde
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freze işleminin kararlılık diyagramına etkisi incelenmiştir. Rulmanlar hariç iş

mili-takım tutucu-takım sisteminin doğrusal modellemesi Timoshenko çubuk

teorisi kullanılarak yapılmış, ardından doğrusal olmayan rulmanlar tanımlama

fonksiyonu teorisi kullanılarak modellenerek, önceden frekans tepki fonksi-

yonu bulunan rulmansız iş mili-takım tutucu-takım sisteminin dinamiği ile

birleştirilmiştir. Sistemin elde edilen hareket denklemi, Newton’un metodu

yay uzunluğu sürekliliği kullanılarak frekans bölgesinde çözülmüştür. Uygu-

lanan etkili frekans bölgesi metodu sayesinde sistemin frekans tepki fonksiy-

onundaki geri kıvrılma olan bölgelerde de çözüm elde edilebilmiştir. Bu çözüm,

üzerinde çalışılan sistem için, rulmanlardaki doğrusal olmayan etkilerden dola-

yı sistemin frekans tepki fonksiyonunda geri kıvrılmalara yol açabileceğinden

büyük önem taşımaktadır. Rulmanlardaki doğrusal olmayan dinamik özel-

liklerin kararlılık diyagramına etkisini incelemek için vaka analiz çalışmaları

yapılmıştır. Çalışmalarda şu parametrelerin etkileri incelenmiştir: Kesme

kuvveti büyüklüğü, doğrusal olmayan parametrelerin derecesi ve kalem ü-

zerindeki kesici sayısı. Rulmanların yer değiştirme miktarına bağlı diren-

genliği, sistemin rijit cisim modlarına bağlı dinamik tepkisini etkilemektedir.

Kesme kuvveti büyüklüğü ya da rulmanın doğrusal olmayan parametresinin

katsayısı arttırıldığında doğal frekansların arttığı gözlemlenmiştir. Modların

tepki eğrisinde sağa kayması kararlılık loblarını da sağa kaydırmıştır. Kalem ü-

zerindeki kesici sayısı arttırıldığında rulmanlardaki doğrusal olmayan parame-

trelerin freze kararlılığına etkisi azalmaktadır. Bu çalışmada aynı zamanda,

sistem dinamiğinin işleme sırasındaki değişimlerini gözlemlemek için deneysel

çalışmalar da yapılmıştır. Tek serbestlik dereceli bir sistemin modal değiş-

kenlerini elde etmek için deney verileri kullanılarak ters tırlama analizi uygu-

lanmıştır. Yüksek hızlarda test yapılan sistemin doğal frekansında azalma

gözlemlenmiştir. Bu kaymanın hıza bağlı rulman dinamiği veya işleme sıra-

sında değişen rulman gerginliğine bağlı olabileceği sonucuna varılmıştır.

Anahtar Kelimeler : Tırlama Kararlılığı, Parmak Frezeleme, Doğrusal Ol-

mayan Rulman, Ters Tırlama Analizi, Doğrusal Olmayan Sistemlerde Tırlama
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

x



1.3 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 12

2 MODELING OF SPINDLE-BEARING SYSTEM . . . . . . . . . . 14

2.1 Modeling of Spindle-Toolholder-Tool . . . . . . . . . . . . . . 14

2.1.1 Governing Equations . . . . . . . . . . . . . . . . . . . 15

2.1.1.1 Kinetic Energy of the Beam . . . . . . . . . . 17

2.1.1.2 Potential Energy of the Beam . . . . . . . . . 20

2.1.1.3 Work Done by External Forces on the Beam . 22

2.1.1.4 Equations of Motion of Timoshenko Beam . . 23

2.1.2 Substructure Analysis . . . . . . . . . . . . . . . . . . 24

2.1.2.1 Continuous Beam Model . . . . . . . . . . . . 25

2.1.3 Receptance Coupling of Beam Elements . . . . . . . . 33

2.1.3.1 Rigid Coupling Keeping Connection Points . 35

2.1.3.2 Flexible FRF Coupling . . . . . . . . . . . . . 39

2.2 Modeling of Bearings . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Describing Function Theory . . . . . . . . . . . . . . . 41

2.2.2 Quasi-Linearization of Cubic Stiffness Element . . . . . 43

2.2.3 Solution of Equation of Motion . . . . . . . . . . . . . 47

3 APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 The Spindle-Toolholder-Tool System . . . . . . . . . . . . . . 52

3.2 Nonlinear Bearing Properties . . . . . . . . . . . . . . . . . . 54

xi



3.3 Linear Response of the SHT system . . . . . . . . . . . . . . . 54

3.4 Effects of Magnitude of Cutting Force . . . . . . . . . . . . . . 55

3.4.1 Effects of Cutting Force Magnitude on Response . . . . 56

3.4.2 Effects of Cutting Force Magnitude on Stability . . . . 58

3.5 Effects of Coefficient of Cubic Stiffness Nonlinearity . . . . . . 62

3.5.1 Effects of Coefficient of Nonlinearity on Response . . . 62

3.5.2 Effects of Coefficient of Nonlinearity on Stability . . . . 64

3.6 Effects of Number of Teeth on the Cutter on Stability . . . . . 68

4 EXPERIMENTAL METHODS . . . . . . . . . . . . . . . . . . . . 69

4.1 Run Up Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Measurement Equipment . . . . . . . . . . . . . . . . . 72

4.1.2 Use of Campbell Diagrams . . . . . . . . . . . . . . . . 74

4.2 Slope Cutting Test . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Inverse Analysis Using Experimental Data . . . . . . . 78

4.2.2 An Application . . . . . . . . . . . . . . . . . . . . . . 83

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Mathematical Model and Solution Method . . . . . . . . . . . 87

5.2 Effect of Magnitude of the Cutting Force . . . . . . . . . . . . 89

5.3 Effect of Coefficient of Nonlinearity of Bearing Stiffness . . . . 90

5.4 Effect of Number of Flutes on the Cutter . . . . . . . . . . . . 90

xii



5.5 Assessment of Experimental Study . . . . . . . . . . . . . . . 91

5.6 Suggestions for Future Studies . . . . . . . . . . . . . . . . . . 92

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiii



LIST OF FIGURES

Figure

1.1 A typical stability lobe diagram . . . . . . . . . . . . . . . . . 2

1.2 A motorized spindle having bearings with fixed outer rings . . 7

2.1 3D Timoshenko beam element . . . . . . . . . . . . . . . . . . 16

2.2 Deformed Timoshenko beam . . . . . . . . . . . . . . . . . . . 17

2.3 Deformation of Timoshenko beam . . . . . . . . . . . . . . . . 20

2.4 Representation of segments A and B to be coupled . . . . . . 35

2.5 SHT system considered . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Static load applied to nonlinear element . . . . . . . . . . . . 44

3.1 Representation of the model of a motorized SHT system . . . 52

3.2 Linear tool tip FRF of the SHT system . . . . . . . . . . . . . 55

3.3 Tool tip pseudo-FRFs for high cutting forces . . . . . . . . . . 56

3.4 Zoomed views of the rigid body modes . . . . . . . . . . . . . 57

3.5 Effect of ALC on the FRF and SLD of first mode . . . . . . . 59

3.6 Zoomed views of the real parts of FRFs of rigid body modes . 60

3.7 SLD of the linear SHT system . . . . . . . . . . . . . . . . . . 61

3.8 Effect of nonlinearity on stability lobe of the first mode . . . . 62

xiv



3.9 Comparison of SLDs . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Tool tip pseudo-FRFs for different coefficients of nonlinearity . 64

3.11 Zoomed views of the rigid body modes for F=150 N . . . . . . 65

3.12 Zoomed views of the real parts of FRFs for F=150 N . . . . . 66

3.13 Comparison of SLDs for F=150 N . . . . . . . . . . . . . . . . 67

3.14 Change in SLD when number of teeth on the cutter is four . . 67

4.1 Sketch of the process during run up test . . . . . . . . . . . . 71

4.2 Theoretical harmonics of cutting force at 6000 rpm . . . . . . 73

4.3 Direct FRFs of the system in x and y directions . . . . . . . . 73

4.4 Velocity response of housing tip in x and y directions . . . . . 75

4.5 Tool tip FRF of the system . . . . . . . . . . . . . . . . . . . 77

4.6 Schematic view of slope cutting test . . . . . . . . . . . . . . . 78

4.7 Analytical SLD and cutting test results . . . . . . . . . . . . . 83

4.8 Comparison of analytical and re-plotted SLDs . . . . . . . . . 84

4.9 Comparison of SLDs including prediction for zeroth lobe . . . 85

xv



LIST OF TABLES

Table

3.1 Dimensions of the beams in the SHT system . . . . . . . . . . 53

3.2 Cutting conditions of end milling process . . . . . . . . . . . . 53

4.1 Technical details of run up test . . . . . . . . . . . . . . . . . 72

4.2 Technical details of slope cutting test . . . . . . . . . . . . . . 76

4.3 Results of slope cutting test . . . . . . . . . . . . . . . . . . . 79

4.4 Results of inverse chatter analysis . . . . . . . . . . . . . . . . 84

xvi



LIST OF ACRONYMS

2D two-dimensional

3D three-dimensional

ALC arc length continuation

CBM continuous beam model

DF describing function

EVP eigenvalue problem

FEM finite element model

FRF frequency response function

HSM high-speed milling

SHT spindle-holder-tool

SLD stability lobe diagram

xvii



LIST OF SYMBOLS

[α] Receptance matrix of segment A

[β] Receptance matrix of segment B

[γ] Receptance matrix of system C

[Φ] Transfer function matrix in inverse chatter analysis

[Kl]b Linear part of the bearing stiffness in matrix form

[Z] Dynamic stiffness matrix including linear bearing stiffness

α Directional cutting coefficients

δ(x) Dirac delta function

ηr(t) r-th modal coordinate

γ Loss factor

γy Shear distortion angle on x-z plane

γz Shear distortion angle on x-y plane

Λ Eigenvalues of characteristic equation

ν Poisson’s ratio

ω Excitation frequency

ωc Chatter frequency

ωn Natural frequency

ωr r-th natural frequency

xviii



θzr(x) r-th mass normalized rotational eigenfunction

vr(x) r-th mass normalized transverse eigenfunction

ρ Density

θ ωt

θz(x, t) Bending rotation of two-dimensional beam

ζ Damping ratio

{F} Magnitude of external harmonic force

{Fnl} Nonlinear bearing force vector

{q} Vector of unknowns in arc length continuation

A Cross sectional area of beam

Ar Coefficient for mass normalizing r-th eigenfunction

alim Limiting depth of cut

Arot Coefficient for mass normalizing rotational rigid body eigenfunction

Atr Coefficient for mass normalizing translational rigid body eigenfunction

E Modulus of elasticity of beam

F (t) Harmonic force in transverse direction

G Modulus of rigidity of beam

Hmn Receptance relating translation at point m to unit force at point n

I Moment of inertia of beam

J Polar moment of inertia of beam

ki Equivalent damping of nonlinear bearing

kl Coefficient of linear part of bearing stiffness

xix



kn Coefficient of nonlinear part of bearing stiffness

kr Equivalent stiffness of nonlinear bearing

ks Shear coefficient

L Length

Lmn Receptance relating translation at point m to unit moment at point n

m Modal mass

M(t) Harmonic moment on x-y plane

my Distributed moment on the beam on x-z plane

mz Distributed moment on the beam on x-y plane

Nmn Receptance relating rotation at point m to unit force at point n

Pmn Receptance relating rotation at point m to unit moment at point n

qx Distributed load on the beam in axial x direction

qy Distributed load on the beam in transverse y direction

qz Distributed load on the beam in transverse z direction

R, g Residual functions

T Kinetic energy of Timoshenko beam

V Potential energy of Timoshenko beam

v(x, t) Transverse displacement of two-dimensional beam

We Work done by external forces

xx



CHAPTER 1

INTRODUCTION

1.1 General

The demand of cutting away more chips to make milling operations quicker

has brought the concept of high-speed milling. By the introduction of high-

speed milling (HSM) it is possible to have larger depths of cut and higher

cutting speeds. But, HSM arouse the importance of an already existing prob-

lem, self-excited chatter vibration. The spindle-holder-tool (SHT) system vi-

brates under the cutting load applied. The vibrations in the system causes

variation in the chip-thickness. Under special conditions, the variation of the

chip thickness becomes unstable and chip thickness starts to increase. This

condition is named as chatter vibration; it is the special condition in which

self-excited vibration of the SHT system occurs. Self-excited increase of chip

thickness results in cutting forces which are much larger than the normal val-

ues. Higher cutting forces cause higher forces at supports of the structure and

higher deflection of tool-tip of SHT system. Chatter has deteriorating effect

on milling process such as premature tool failure, shortened bearing life, poor

surface quality, and dimensional inaccuracy. To avoid chatter, the operation

parameters should be selected properly. In other words, conditions of chatter

must be understood.

There are different models proposed in the literature to predict conditions of

chatter for milling. The models generally predict the stability lobe diagrams

(SLDs) of the milling process. SLD is a tool to select the stable cutting

1
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Figure 1.1. A typical stability lobe diagram to determine stable cutting conditions

conditions at which no chatter occurs. A typical example of SLD is shown in

Figure 1.1.

During machining the very first tooth of the milling cutter takes away a layer

from the workpiece. Since dynamic cutting forces excite the structure during

machining, the surface left on the workpiece is wavy. “The wavy surface finish

left by the previous tooth is removed during the succeeding tooth period, which

also leaves a wavy surface owing to structural vibrations. Depending on the

phase shift between two successive waves, the maximum chip thickness may

exponentially grow while oscillating at a chatter frequency close to but not

equal to a dominant structural mode in the system” [1]. If the wavy surface

left by previous cutter and the wavy surface generated by the next cutter are

in-phase, chip thickness does not change during the process. Such a condition

is called forced vibration, and it is stable. If the left and generated surfaces

are out-of-phase the process excites itself, and the waves generated become

deeper. The latter condition involves unstable increase of chip thickness, and

it is called chatter. Thus, the model of the process and the dynamics of the

structure need to be known in order to predict the chatter.

The mechanism of the milling process has been under research for more than

50 years. However, more than a century ago Taylor [2] was the first one

reporting chatter. Arnold [3] explained chatter by negative damping effect.
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Tlusty and Polacek [4] and Tobias and Fishwick[5, 6] stated the reasons of

chatter as regeneration of chip thickness and mode coupling. Merritt [7] came

up with a similar solution using feedback control theory. But, the methods

proposed were only suitable for orthogonal cutting processes which involve

constant cutting force and direction.

Milling is a complicated process to model. During milling, direction and mag-

nitude of cutting forces change. Milling can be considered as interrupted

turning with cutter having entry and exit angles. Hence, directional cutting

coefficients are not constant. Additionally, in milling process multiple num-

ber of teeth might be cutting at the same time. After understanding the

mechanism of chatter researchers focused more on modeling milling process.

Koenigsberger and Tlusty [8] considered an average direction, and average

number of teeth during modeling. In other words, an analogy was made

to turning operations in which cutting coefficients are constant. Opitz and

Bernardi [9] introduced a similar but an improved model giving more accu-

rate results. Sridhar et al. [10] carried out a more comprehensive study in

which numerical integration of dynamic milling equations is done for one rev-

olution of the cutter. In later studies, the milling process is analyzed in time

domain [11, 12, 13]. Carrying out computations in time-domain made it pos-

sible to include the nonlinearities of milling process in chatter models. Tlusty

and Ismail [11] included the effect of tool jump in their time domain study.

They stated that loss of contact between tool and workpiece might occur dur-

ing milling. When the contact is lost the chip thickness and cutting force

become zero instantaneously. So, their study was more accurate than the

previous ones. For low speed milling another nonlinearity is process damping

[14, 15], which still waits to be resolved [16]. Minis and Yanushevsky [17] used

Floquet’s theorem and Fourier series for the formulation of milling stability

on a two degree-of-freedom cutter model with point contact, and solved it

numerically using Nyquist criterion.

Later, Altıntaş and Budak [18] developed a stability method in frequency

domain. They determined stability of end milling operations by avoiding time

consuming time-domain calculations. It has been very useful for industry
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because of being fast and comprehensive as well as being accurate. Then,

the same method used in the model was applied to three-dimensional cases

to consider face milling operations [19, 20]. The studies mentioned up to

this point considered milling operations involving high immersion of cutter

into the workpiece. For slotting operation, for example, the cutting force

can be well approximated by its zeroth harmonic, and accurate predictions

for stability can be made as studied in [18] (zeroth order approximation).

However, for low immersion cutting, cutting forces are highly interrupted and

this affects accuracy of the prediction made by zeroth order approximation,

significantly [21]. Merdol and Altıntaş [22] conducted a study considering

the effect of multiple harmonics of the interrupted cutting force in frequency

domain. Bayly et al. [23] and Insperger and Stépán [24] introduced different

methods to solve the delayed differential equations. Later, Insperger and

Stépán [25] developed semi-discretization method. Stability predictions based

on zeroth-order approximation, and predictions based on studies considering

highly interrupted cutting may give different results due to the effect of higher

harmonics of interrupted cutting force.

In this thesis, end milling process with large immersion of cut is considered.

So, the method of Altıntaş and Budak [18] is adopted for stability analysis.

Also, since the cutting speeds considered in this study are not low, effect of

process damping is assumed to be negligible as stated by Altıntaş and Weck

[16].

Chatter involves the vibrations of the structure, so, stability is highly depen-

dent on the flexibility of the structure which performs cutting. The frequency

of vibration of the structure while chatter occurs is called chatter frequency.

It is expected to be close to the natural frequency of the mode of the struc-

ture which dominates during chatter. Thus, one of the most important factors

affecting chatter stability is the dynamics of the structure.

From all the components of the milling machine, SHT system has the most

influence on the dynamic response of the structure. Hence, it is important

to make accurate predictions for the dynamics of the SHT system. There
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are experimental and analytical methods to predict the dynamics of a SHT

system. The most widely used experimental technique is impact hammer

test. It is a common method used, especially in industry. In hammer test

the tool tip of the structure is excited by an instrumented hammer (input

signal is obtained) and the response is recorded by a sensor located at the

tool-tip (output signal is obtained). Then, after signal conditioning the input

and output signals are correlated and tool tip FRF is obtained. Thus, the

frequency response function (FRF) of the tool tip of SHT is measured, and

SLD of the process is obtained.

Sometimes chatter occurs even when the cutting conditions are selected in the

stable zone of the theoretically obtained SLD by using experimental FRFs

[26]. The reasons that cause difference between predicted SLD and actual

SLD are due to the factors that arise during machining. Therefore, it may not

be possible to see their effect by impact hammer test. To estimate the FRF

and SLD of a SHT system during rotation or machining there are different

methods proposed in the literature. The FRF of the SHT system during

rotation is called rotating FRF. It can be measured by making impact hammer

test during rotation of spindle [27, 28]. Non-contact FRF measurement was

achieved by Rantatalo et al. [29] by exciting the tool tip with electro-magnets

and recording response using inductive sensors. The difference between FRFs

measured at static and dynamic conditions were reported by Brecher and

Esser [30]. An interesting study was reported by Quintana et al. [31] in which

SLD was obtained directly during cutting. However, when SLD or FRF is

obtained during cutting, the effect of the process is also included in the results.

So, additional effects of the process may be seen other than the effects of

the dynamics of the SHT system. Kruth et al. [32] and Suzuki et al. [33]

proposed inverse methodology to identify dynamic system parameters directly

by making a few experiments during cutting.

Apart from the experimental methods, research has been done on analyti-

cal methods to determine the FRF of the SHT system. If the computation

involves experiment in addition to analytical model, the method is called semi-

analytical. Before continuing with the models introduced in literature, a SHT
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system is explained below briefly.

Spindle is the most important element of a SHT system. There are gener-

ally two types of spindles used in the modern milling machines: Belt-driven

spindles and motorized spindles. In belt-driven spindles the power is trans-

mitted from the motor to the spindle by a belt or gear. Because of the speed

limitations coming from the use of belt or gear, belt-driven spindles cannot

be used at high-speed machining, i.e. for speeds greater than about 10,000

rpm. In motorized spindles the spindle is directly driven by a motor located

on the spindle housing. The axes of the motor and the spindle coincide, and

no power transmission element such as belt or gear is used. Thus, motorized

spindles are used in high-speed machining.

The spindle shaft is confined in and supported by spindle housing, which joins

the spindle assembly to the body of the machine. Generally, during modeling

spindle housing is considered to be fixed to the machine tool. However, Cao

and Altıntaş [34] considered the housing coupled to the machine tool by spring

elements giving an additional mode to the system. This brings the requirement

for making a modal test to determine the values of the stiffness and damping

at the connections. For motorized spindles, the spring elements connecting

spindle housing to the machine tool are taken as very stiff. It is possible to

assume housing as fixed to the ground. In other words, the outer rings of the

bearings are considered fixed to the ground for motorized spindles.

High-speed milling spindle shafts are supported by angular contact ball bear-

ings. When compared to other types of bearings angular contact ball bearings

are very stable at high speeds, and they can also withstand axial cutting forces

satisfactorily. Spindle shaft is supported by two sets of bearings: front set and

rear set. O-arrangement (as shown in Figure 1.2) is selected for the bearings

in order to add more rigidity to the set for resisting tilting moments. The

bearings at the front set virtually take all the axial cutting load acting in the

positive z-direction, which is because of the arrangement of the bearings.

Preload should be applied to the bearings in order to use them under optimum

conditions. Minimum preload that should be applied to the bearings is given
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Preloaded front bearings Preloaded rear bearingsy

zx

Figure 1.2. A motorized spindle having bearings in O-arrangement with fixed
outer rings

by the bearing manufacturer (e.g. as given by [35]). Main reasons for applying

preload to the bearings are:

• increasing the rigidity of the bearing, therefore decreasing run-out and

deflection of the spindle.

• eliminating the internal clearance.

• preventing skidding of the bearing balls at high accelerations.

There are two ways for applying preload to the bearing on a spindle: Rigid

preload and spring preload. Rigid preload is applied using the elements in

the structure. The distance between inner and outer rings of the bearing is

decreased by putting a spacer or lock-ring. In case of spring preload, a spring

is attached to the outer rings of the rear set of the bearings. The spring ad-

justs the axial force on the outer rings of the bearings of the spindle. The

preload force is introduced by displacing the spring (e.g. by using a hydraulic

system). The main difference between these two ways of applying preload is

that preload on the rigidly preloaded bearings depends on the thermal distor-

tion of the spindle, whereas spring preloaded bearings have almost constant

preload during the machining operation. For rigid preloaded bearings the

temperature difference between spindle and housing inevitably affects the dis-

tance between the inner and outer rings of the bearings. However, for spring
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preload the spring is not much affected by the thermal expansion due to the

difference in temperatures of spindle and housing. Although it shows higher

radial and axial rigidity, rigid preload is not used at high speed applications.

Spring preload is preferred for high-speed cutting.

Other than contacts at bearings, there are contacts at toolholder-tool and

spindle-toolholder interfaces. According to the toolholder type, the effect of

these contacts change. Namazi [36] carried out an extensive study on the

effects of different types of toolholders. Both contacts are important for mod-

eling. These contacts are modeled as both single-point (first-generation) or

multiple-point (second-generation) contacts. They are modeled using stiff-

ness and damping elements, which are named as contact parameters. Namazi

[36], Cao [37] and Schmitz and Duncan [38] used second-generation modeling,

whereas Budak et al. [39] and Özşahin et al. [40] used first-generation model.

Type of toolholder, length of tool outside holder (tool overhang length), and

tool material affect the values of contact parameters. Identification of stiffness

and damping parameters to represent the contacts is usually achieved by using

nonlinear least-squares best fit method. That is, the analytical FRF is tried

to be matched to experimental FRF by changing contact parameter values.

Cao [37] used rigid coupling instead of elastic contact, so he took the contact

parameter values as infinite. He reported small changes in the accuracy of the

FRF prediction by not assuming elastic contact. Namazi [36] and Schmitz and

Duncan [38] used nonlinear least-squares fit in order to predict the contact pa-

rameters. Cheng [41] correlated contact stiffness with tool overhang length in

his study and stated that stiffness decreases linearly with increasing overhang

length. Özşahin et al. [42] used a different algorithm for predicting the contact

parameters. He made experiments for different tool overhang lengths. Then,

using these data he used neural networks to predict contact parameters any

tool overhang length. By this way, the number of experiments is minimized.

Spindle, holder and tool are taken as constant cross-section beams coupled to

each other. Each component of SHT is assumed axisymmetric, which gives

close results to the real case. In reality, all the components of the system

except the cutting tool are symmetric. That is why the modal tests are some-
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times done by using blank tools (without flutes) to get rid of the effects of the

non-axisymmetric cutter. In the model, a constant diameter tool is taken to

approximate the fluted tool. Spindle is taken as the main structure and its

constant cross-section components are taken as substructures. So, the prob-

lem is to model each substructure of the spindle individually. Then, coupling

of the substructures gives the whole spindle. Substructures of SHT system are

beam elements with constant cross-sections. The boundary condition of each

beam is free-free (free at both sides). To investigate a beam element there are

four effective beam theories in the literature [43]: Euler-Bernoulli, Rayleigh,

Shear and Timoshenko.

Euler-Bernoulli beam theory is also known as classical beam theory. It consid-

ers only the bending effect of a beam element. The transverse vibration and

rotational vibration of the beam element are coupled, and defining one of the

motions, transverse or rotation, is enough for defining the other one. In case

of Rayleigh model the area moment of inertia of the beam element is addition-

ally considered in the equation of motion of the beam element. In shear model

the shear distortion is considered in addition to the bending effect, but this

time it neglects the effect of the rotation of the cross-section. In Rayleigh and

shear models the Euler-Bernoulli is modified, but Timoshenko beam theory is

a very powerful tool to estimate the response of a beam element. It considers

both rotary and shear effects, thus making the analysis more accurate at high

speeds for beams having low slenderness ratio, i.e. beams having low “length

to radius of gyration ratio”. Han et al. [43] discussed these beam theories

comprehensively.

Almost all of the recent studies in the literature (e.g. [37, 41, 44]) use Tim-

oshenko beam theory since it is more accurate than the other beam models.

There are generally two models used to obtain the response of a constant cross-

section Timoshenko beam: Continuous beam model or CBM [39], and finite

element model or FEM [34]. CBM considers the actual mode shapes of the

beam. It applies eigenfunction expansion to obtain the FRF matrix of a beam.

In eigenfunction expansion, the response of the beam is obtained by summing

the effects of its infinite number of modes, but considering only the modes
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having considerable effect. FEM takes finite number of nodes (cross-sections)

on a beam element, and obtains the response of the beam as a function of the

displacements of these nodes. It applies Galerkin’s method (Meirovitch [45])

to obtain system matrices of the beam element.

To obtain the response of a SHT system, there are two methods to couple

beam elements: Receptance coupling (Schmitz and Donaldson [46]) or FRF

coupling, and dynamic stiffness coupling (Ewins [47]). The use of the former

method keeps only the necessary nodes on the SHT system, whereas use of

the latter keeps all the nodes that are involved in the analysis. FRF coupling

decreases the calculation time at each step as the matrix size is smaller com-

pared to the dynamic stiffness coupling method. The main objective in many

of the recent studies is to model the whole SHT system analytically. However,

there is a semi-analytical method, inverse receptance coupling technique. In

this method, conducting one experiment at the tip of the spindle, to which

holder is connected, is necessary. Then, the response at the tool-tip is pre-

dicted by coupling different holder geometries analytically. Namazi [36] used

this method.

In their study, Budak et al. [39] and Cao and Altıntaş [34] used Timoshenko

beams and determined the FRF of the whole SHT system analytically. Ertürk

[44] used 2D model and computed eigenfunctions of the beam element based

on the study of Aristizabal-Ochoa [48]. The calculations are made in frequency

domain and FRF coupling is used. The bearings at the supports of the spindle

are modeled as linear springs. Cao [37] used 3D model to include speed effects

and used FEM. System matrices are considered and the response is calculated

in time-domain. The bearings at the supports are modeled as nonlinear by

using the model of Jones [49].

In addition to the nonlinearities related to process, structural nonlinearities

(NL) may have effect on stability of the milling process. The main causes of

structural NL are heating-up of the spindle [50, 51] and bearings located at

the supports of the SHT system.

It is argued by the researchers that bearing nonlinearity is one of the strongest
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which directly alters the spindle dynamics. The bearings are highly nonlinear

such that both the changes in speed and cutting force have strong effects on

the dynamic characteristics of bearings. The speed dependent characteristics

of bearings is not yet fully understood. Shin [52] presented a study on speed

effects on chatter stability considering bearing nonlinearity. Rantatalo et al.

[29], Schmitz et al. [53] and Jorgensen and Shin [54] investigated the effects

of speed on the dynamics of spindles. Rantatalo et al. [29] and Jorgensen and

Shin [54] argues that the stiffness of a bearing decreases with increasing speed.

The same argument was made by Cao [37], but experimental verification was

left for further research. The changes in the magnitude of the cutting force

also have nonlinear effect on the bearing dynamics. Hertzian contact theory

is taken to define the contact between bearing balls and the inner and outer

races. According to the theory, the force and deformation relation is nonlinear.

This brings about nonlinear stiffness matrix for the bearing itself [49]. The

effect of cutting load was investigated by Jorgensen and Shin [54], but the

experimental verification was not made.

Linear component of the angular contact ball bearing comes from the axial

preload applied. Nonlinear part depends on its deflection. Its dependance on

speed is explained by dependance on load as well. When speed of rotation

is increased centrifugal force applied by the balls of the bearing on its outer

ring increases. This brings about more deflection at higher speeds with the

same force applied on the bearing. In other words, stiffness of the bearing

decreases with increasing speed. However, at constant speed radial deflection

of an angular contact ball bearing may be assumed to show cubic behavior

under increasing load. A study on this subject was conducted by Fleming and

Poplawski [55].

Dynamic analysis of systems involving nonlinear elements can be made in

frequency domain by using describing function (DF) theory. Such studies

were carried out in different application areas by Ferreira [56], Gürkan [57] and

Orbay [58]. In DF method the response of a nonlinear element is approximated

by Fourier series expansion. For weak nonlinearities taking low number of

harmonics or single harmonic may be sufficient to represent the response. In
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SHT systems, nonlinearity mainly affects the modes caused by bearings (rigid

body modes of the spindle in the housing). If the nonlinearity is high, jumps

might be seen in the FRF of the SHT system. The zones at which jumps occur

can be investigated clearly by using numerical continuation method ([58, 59]).

1.2 Objective

The aim of this study is to investigate the effect of nonlinearities in spin-

dle bearings on the stability of milling process. The study of the effect of

nonlinearities on milling stability is carried out both analytically and experi-

mentally. In the analytical part, whole spindle-toolholder-tool (SHT) system

is mathematically modeled, where the bearings of the spindle are taken as

nonlinear elements with cubic stiffness behavior. Effects of magnitude of cut-

ting force, degree of nonlinearity at the bearing and number of teeth on cutter

on the stability lobe diagram (SLD) of the milling process is studied by us-

ing the nonlinear mathematical model developed. The importance of bearing

nonlinearity from the stability point of view is investigated with case studies.

In the experimental part, an SHT system is modeled as a single-degree-of-

freedom (SDOF) system. Changes in the system dynamics during milling are

investigated, and a method is proposed to predict SLD during cutting.

1.3 Scope of the Thesis

The thesis is organized as below:

In Chapter 2, theory used in this thesis is given. Frstly equations of motion

for a Timoshenko beam element are derived. Then, response of a general

spindle-toolholder-tool system is determined. Describing function theory is

very briefly summarized, and nonlinearity in a bearing is linearized by using

describing function theory. Lastly, numerical solution method used in solving

the equations of motion of the system is explained.
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In Chapter 3, a motorized SHT system is analyzed to study the effect of the

nonlinearities on system response and, more importantly, on chatter stability.

Changes in stability lobe diagram of the process are investigated considering

effects of magnitude of cutting force, degree of nonlinearity at the bearing,

and number of flutes on the cutter.

In Chapter 4, experimental methods used in studying the response and sta-

bility of real SHT systems are explained. A method is proposed to estimate

SLD for an SHT system which has only one dominating mode in its FRF.

In the last chapter, Chapter 5, conclusions based on studies carried out in

Chapter 3 and Chapter 4 are summarized. Also, some recommendations are

made for future studies.
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CHAPTER 2

MODELING OF

SPINDLE-BEARING SYSTEM

In this chapter at first general modeling procedure of a spindle-toolholder-tool

(SHT) system is presented. Modeling of SHT is conducted using Timoshenko

beam theory. After obtaining linear model of SHT system, nonlinear spring

elements representing angular contact ball bearings are linearized using de-

scribing function theory. Finally, system of equations obtained by coupling

the SHT model and linearized spring elements are solved in frequency domain

using a special numerical continuation (path following) method, Newton’s

method with arc length continuation (ALC).

2.1 Modeling of Spindle-Toolholder-Tool

In this thesis Timoshenko beams are used to model a SHT. The beams forming

the SHT are modeled as Timoshenko beams, then these beam models are

coupled to obtain the frequency response function (FRF) of the spindle. In

this section the equations of motion (governing equations) of the beams are

derived. Later, the method for obtaining FRF of the SHT using FRF of beam

elements is introduced.
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2.1.1 Governing Equations

Lagrangian of the Timoshenko beam element includes the effects of bending

moment, lateral displacement, rotary inertia and shear distortion. Nelson and

McVaugh [60] and Nelson [61] used Timoshenko beams to investigate dynamics

of rotor shafts accurately in their finite element models. In a recent study, Cao

and Altıntaş [34] used 3D Timoshenko beam model with 5 degrees-of-freedom

as shown in Figure 2.1. For the 2D model, the effects of lateral displacement

in y-direction, bending moment in x-y plane, and axial displacement can be

considered. For 3D spindle model the effects of lateral displacement in z-

direction and bending moment on x-z plane are additionally considered. Thus

the 3D model considered in this work includes the speed effect or effect of

the gyroscopic moment; but 2D model does not. However, as seen in the

study of Movahhedy and Mosaddegh [62], the effects of the speed on the

spindle response can be disregarded because of the high slenderness ratio of

the spindle. Effects of the speed is considered to be more important for the

balls of bearings of a spindle. In this part, the Timoshenko beam theory will

be given.

Let us consider an infinitesimal beam element as shown in Figure 2.1. Its

freedoms are:

• translation in x-axis (axial freedom)

• translation in y-axis (lateral freedom)

• translation in z-axis (lateral freedom)

• rotation around y-axis (rotational freedom)

• rotation around z-axis (rotational freedom)

The Lagrangian of a Timoshenko beam consists of two parts: Kinetic energy

and potential energy. During modeling an infinitesimal disk element of a Tim-

oshenko beam is considered (Figure 2.2). The extended Hamilton’s equation
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Figure 2.1. 3D Timoshenko beam element

of the system is given as follows [45]:

δ

t2∫

t1

(T − V + We) dt = 0 (2.1)

where,

T : kinetic energy of the beam

V : potential energy of the beam

We : work done by external forces on the beam

In the following two sections the components of the extended Hamilton’s prin-

ciple is derived.
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2.1.1.1 Kinetic Energy of the Beam

Firstly the kinetic energy of an infinitesimal disk element of the beam (see

Figure 2.2) is calculated. Yuzhong Cao [34] considered the point P on the

infinitesimal disk element shown in Figure 2.2 for finding the kinetic energy of

the disk element. Thus, the gyroscopic effects are also included. In this thesis,

a 2D model is considered for spindle. However, for the completeness of the

derivation calculations are carried out for the 3D model of Cao and Altıntaş

[34]. The point P is subjected to rotations around y-axis, θy, and around

z-axis, θz, in addition to translations in x, y and z directions. Coordinate

transformation is required to determine the position of point P relative to the

x-y-z coordinate system given in the Figure 2.2.
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Figure 2.2. Deformed Timoshenko beam
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The position of the point P relative to the x − y − z coordinates is:
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(2.2)

where,

x0 : initial position of the disk element on x-axis (of x-y-z system)

[T ] : transformation matrix for transforming x” − y” − z” to x − y − z system

φ : angular position of point P on the disk element

Translational displacements of the disk element are u, v and w in positive x, y

and z directions, respectively (shown in Figure 2.2). x” − y” − z” coordinate

system is located on the disk element. Angular deformation of x” − y” − z”

by θy results in x′− y′− z′. Similarly, angular deformation of x′− y′− z′ by θz

results in x−y−z. [T ] transforms the displacements with respect to x”−y”−z”

of the disk element into x − y − z of the Timoshenko beam. Making small

angle assumptions and neglecting higher order terms in Equation 2.2 gives,







x

y

z







=







u + x0 − r cos φ sin θz + r sin φ sin θy

v + r cos φ cos θz

w + r sin φ cos θy







(2.3)

Taking time derivative of Equation 2.3 and applying small rotation assumption

give the velocity terms required for computing the kinetic energy of the beam

as,







ẋ

ẏ

ż







=







u̇ + Ωrθz sin φ + Ωrθy cos φ − rθ̇z cos φ + rθ̇y sin φ

v̇ − Ωr sin φ − rθz θ̇z cos φ

ẇ + Ωr cos φ − rθyθ̇y sin φ







(2.4)

After finding velocity terms, now the kinetic energy of the beam can be deter-

mined. Let point P in Figure 2.2 has an infinitesimal (differential) mass dm.
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Kinetic energy of the dm element is,

dT =
1

2
dm(ẋ2 + ẏ2 + ż2) (2.5)

where,

dm = ρrdrdφdx

dx : thickness of the disk

ρ : density of the disk

So, the kinetic energy of the whole beam is determined by integrating Equation

2.5 as,

T =

L∫

0

b∫

a

2π∫

0

1

2
tρr(ẋ2 + ẏ2 + ż2)drdφdx (2.6)

where,

a : inner radius of the disk

b : outer radius of the disk

Kinetic energy of the Timoshenko beam element is obtained by substituting

Equation 2.4 into Equation 2.6

T =

L∫

0

1

2
JρΩ2dx +

L∫

0

1

2
ρA(u̇2 + v̇2 + ẇ2)dx+

L∫

0

1

2
Iρ(θ̇y

2
+ θ̇z

2
) +

1

2
ΩJρ(θz θ̇y − θ̇zθy)dx

(2.7)
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where,

A = π(b2 − a2) : area of the cross-section of the beam

I =
1

4
π(b4 − a4) : moment of inertia

J = 2I =
1

2
π(b4 − a4) : polar moment of inertia

2.1.1.2 Potential Energy of the Beam

For finding the kinetic energy of the Timoshenko beam the disk element on

the beam is considered to be rigid. The potential energy of the beam comes

from its ability to deform. The deformation occurs on x-y and x-z planes as

shear deformation and in x-direction as axial deformation. The point P on

the beam can be considered again.

dv__
dxγ

z

θz

v

u

x

y

dx
__dw−γ

y

−θy

w

u

x

z

Figure 2.3. Deformation of Timoshenko beam

The deformed beam is shown in Figure 2.3. The coordinates of point P after
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deformation are expressed as

u(x, y, z, t) = u(x, t) + θyz − θzy (2.8)

v(x, y, z, t) = v(x, t) (2.9)

w(x, y, z, t) = w(x, t) (2.10)

where the angular deformations on x-y and x-z planes are

θz = γz +
∂v

∂x
(2.11a)

θy = γy −
∂w

∂x
(2.11b)

The strains at point P are given below (second-order strains are neglected):

γyx =
∂v

∂x
+

∂u

∂y
= −γz (2.12a)

γzx =
∂w

∂x
+

∂u

∂z
= γy (2.12b)

εxx =
∂u

∂x
+

∂θy

∂x
z − ∂θz

∂x
y (2.12c)

Then, the potential energy of the beam can be written as

V =

∫∫∫
1

2
Eε2

xxdxdydz +

L∫

0

1

2
ksAGγ2

yxdx +

L∫

0

1

2
ksAGγ2

zxdx (2.13)

where ksA is the effective shear area in which ks is given by Cowper [63] as

shown below

ks =
6(1 + ν)(1 + p2)2

(7 + 6ν)(1 + p2)2 + (20 + 12ν)p2
where, p =

Di

Do

where ν is the Poisson’s ratio of the material of the beam element. Di and Do

are inner and outer diameters of the beam element, respectively.

Substituting Equations 2.11 and 2.12 into Equation 2.13 and rearranging them
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give

V =

L∫

0

1

2
EA(

∂u

∂x
)2dx +

L∫

0

1

2
EI[(

∂θy

∂x
)2 + (

∂θz

∂x
)2]dx+

L∫

0

1

2
ksAG(θz −

∂v

∂x
)2dx +

L∫

0

1

2
ksAG(θy +

∂w

∂x
)2dx

(2.14)

2.1.1.3 Work Done by External Forces on the Beam

Last term in extended Hamilton’s equation (Equation 2.1) is energy due to

external forces applied on the beam. The work done by external forces is:

We =

L∫

0

(qxu + qyv + qzw + myθy + mzθz)dx +

L∫

0

1

2
Ω2v2ρAdx +

L∫

0

1

2
Ω2w2ρAdx

(2.15)

where qx, qy and qz are distributed loads per unit length on the beam in x,

y and z directions, respectively, and my and mz are distributed moments per

unit length on x-z and x-y planes, respectively. The last two terms in Equation

2.15 are work done by unbalance forces on the beam (when considering speed

effects), where the unbalance comes from the translational deformation of the

beam.
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2.1.1.4 Equations of Motion of Timoshenko Beam

Substituting Equations 2.7, 2.14 and 2.15 into Equation 2.1 and rearranging

the integrals give the equations of motion of the Timoshenko beam as below,

ρA
∂2u

∂t2
− EA

∂2u

∂x2
− qx = 0 (2.16a)

ρA
∂2v

∂t2
− ∂

∂x

[

ksAG(
∂v

∂x
− θz)

]

− qy − Ω2ρAv = 0 (2.16b)

ρA
∂2w

∂t2
− ∂

∂x

[

ksAG(
∂w

∂x
+ θy)

]

− qz − Ω2ρAw = 0 (2.16c)

ρI
∂2θy

∂t2
+ ΩJρ

∂θz

∂t
− EI

∂2θy

∂x2
+ ksAG(

∂w

∂x
+ θy) − my = 0 (2.16d)

ρI
∂2θz

∂t2
− ΩJρ

∂θy

∂t
− EI

∂2θz

∂x2
− ksAG(

∂v

∂x
− θz) − mz = 0 (2.16e)

Boundary conditions for free-free Timoshenko beam are,

[

EA
∂u

∂x
δu

]

x=0,x=L

= 0 (2.17a)

[

EI
∂θy

∂x
δθy

]

x=0,x=L

= 0 (2.17b)

[

EI
∂θz

∂x
δθz

]

x=0,x=L

= 0 (2.17c)

[

(
∂v

∂x
− θz)δv

]

x=0,x=L

= 0 (2.17d)

[

(
∂w

∂x
− θy)δw

]

x=0,x=L

= 0 (2.17e)

If only Equations 2.16a, 2.16b and 2.16e are taken while setting Ω = 0, the

analysis would be 2D. Taking all of the governing equations found leads to 3D

analysis including speed effects.
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2.1.2 Substructure Analysis

In Section 2.1.1 the equations of motion of the Timoshenko beam (Equations

2.16a, 2.16b, 2.16c, 2.16d and 2.16e) are found via Hamilton’s principle and

considering the kinetic and deformation energies on specified directions and

planes. The equations of motion found do not consider large deformations

(or large strains) and thermal deformations. Therefore this model is generally

called as linear model since it does not include the nonlinear strain and time-

dependent thermal effects. In this section the frequency response function

(FRF) of the beam is found by solving the equations of motion. Analyzing

different beams separately, as substructures and then combining the separate

solutions to determine response of the complete system is called substructure

coupling. There are two effective models to consider the FRF of substructures:

Finite element model (FEM) and continuous beam model (CBM).

2D analysis of the spindle is made by taking Ω = 0 and not considering axial

effects. Therefore only Equations 2.16b and 2.16e are taken into consideration

in the analysis. The reasons for making these simplifications are:

• Motion on x-y and x-z planes are uncoupled as inferred from the equa-

tions of motion (Equations 2.16b to 2.16e).

• Effects of speed are not significant on the motion of the spindle as the

slenderness ratio of the whole spindle is large enough, so, it is possible

to take Ω = 0

• Effect of the axial deformation is insignificant when compared to other

effects, and equation of axial motion (Equation 2.16a) is uncoupled from

the other equations. Additionally, the cutting force considered in this

study acts only in transverse direction.

Rewriting Equations 2.16b and 2.16e by setting Ω = 0 gives,

ρA
∂2v

∂t2
− ksAG(

∂2v

∂x2
− ∂θz

∂x
) − qy(x, t) = 0 (2.18a)

ρI
∂2θz

∂t2
− EI

∂2θz

∂x2
− ksAG(

∂v

∂x
− θz) − mz(x, t) = 0 (2.18b)
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Equation 2.18 is solved and FRFs are obtained by using CBM. Using FEM

requires discretization of the beam element, and then response of the beam

element is determined by using interpolation functions, or trial functions.

However, in CBM distributed parameter model is considered (without dis-

cretization) and the response is determined by using the exact modeshapes

of the structure. That is, partial differential equations in Equation 2.18 are

solved analytically.

2.1.2.1 Continuous Beam Model

In FEM the response of the beam is approximated by using special trial func-

tions multiplied by undetermined coefficients. For instance, trial functions

of Timoshenko beam can be taken as lowest degree admissible polynomial

functions (e.g. cubic polynomials for translation and quadratic polynomials

for rotation). FEM discretizes beam element and considers finite number of

nodes (cross-sections for this study) on the beam. The problem is to find

the undetermined coefficients of the function which relates the nodal displace-

ments with the response on any point on the beam. In CBM, unlike FEM,

the beam element is analyzed considering its original mode shapes. So, CBM

gives the exact response at any point on the beam.

Eigenfunction expansion is used in CBM analysis. Eigenfunction expansion

is a method in which the response of the structure is taken as combination of

its eigenfunctions. Contribution of each eigenfunction is taken by multiplying

it with a coefficient. The aim is to obtain these coefficients in CBM analysis.

The differential equations are decoupled and following set of equations is ob-

tained.

∂4v

∂x4
− (

ρ

E
+

ρ

ksG
)

∂4v

∂x2∂t2
+

ρA

EI

∂2v

∂t2
+

ρ2A

ksEG

∂4v

∂t4
= 0 (2.19a)

∂4θz

∂x4
− (

ρ

E
+

ρ

ksG
)

∂4θz

∂x2∂t2
+

ρA

EI

∂2θz

∂t2
+

ρ2A

ksEG

∂4θz

∂t4
= 0 (2.19b)
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Since harmonic response is assumed, v(x, t) and θz(x, t) can be expressed as

{

v(x, t)

θz(x, t)

}

=

{

v(x)

θz(x)

}

eiωt

So, Equation 2.19 becomes

d4v

dx4
+ ω2(

ρ

E
+

ρ

ksG
)
d2v

dx2
− ω2(

ρA

EI
− ω2 ρ2A

ksEG
)v = 0 (2.20a)

d4θz

dx4
+ ω2(

ρ

E
+

ρ

ksG
)
d2θz

dx2
− ω2(

ρA

EI
− ω2 ρ2A

ksEG
)θz = 0 (2.20b)

Among the terms in Equation 2.17 the terms including δv and δθz give the

boundary conditions for the free-free beam used in derivation,

EI
∂θz

∂x

∣
∣
∣
∣
x=0

= 0 (2.21a)

ksAG(
∂v

∂x
− θz)

∣
∣
∣
∣
x=0

= 0 (2.21b)

EI
∂θz

∂x

∣
∣
∣
∣
x=L

= 0 (2.21c)

ksAG(
∂v

∂x
− θz)

∣
∣
∣
∣
x=L

= 0 (2.21d)

Eigenvalue problem (EVP) is obtained by substituting the solution of Equa-

tion 2.20 in Equation 2.21. The numerical solution of the EVP is obtained

by using the method proposed by Aristizabal-Ochoa [48]. The characteristic

equation of the EVP can be expressed as

det

[

D11 D12

D21 D22

]

= D11 · D22 − D12 · D21 = 0 (2.22)
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where,

D11 = (α − λ)(cos α − cosh β)

D12 = (λ − α) sin α +
λα

βδ
(β − δ) sinh β

D21 = −λα sin α +
α − λ

δ − β
δβ sinh β

D22 = λα(cosh β − cos α)

α =
√

Υ + ε β =
√
−Υε

Υ =
b2(s2 + R2)

2
ε = b

√

1

4
b2(s2 + R2)2 − (b2s2R2 − 1)

b2 =
ρAω2L4

EI
s2 =

EI

ksAGL2
R2 =

I

AL2

The eigenfunctions of the rth elastic mode (excluding rigid body modes) having

natural frequency ωr can be expressed as

{

vr(x)

θzr(x)

}

= Ar

[{

C1

−λr

L
C2

}

sin(
αr

L
x) +

{

C2

λr

L
C1

}

cos(
αr

L
x)+

{

C3

δr

L
C4

}

sinh(
αr

L
x) +

{

C4

δr

L
C3

}

cosh(
αr

L
x)

] (2.23)

where,

λr = αr −
b2s2

αr

δr = βr +
b2s2

βr

C1 = L C2 =
−D11

D12

C1 C3 =
αr − λr

δr − βr

C1 C4 = −λrαr

βrδr

D11

D12

C1

r = 1, 2, 3, . . .

The eigenfunctions expressed by Equation 2.23 are orthogonal with respect

to the differential operators of the EVP. The mass normalized eigenfunctions
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(modes) satisfy the following orthogonality condition:

L∫

0

{

vs(x)

θzs(x)

}T [

ρA 0

0 ρI

]{

vr(x)

θzr(x)

}

dx =

{
1, s = r

0, s 6= r
(2.24)

Ar in Equation 2.23 is obtained by inserting Equation 2.23 into Equation 2.24

(while setting s = r) and conducting numerical integration. After finding Ar,

mass normalized eigenfunction is obtained for the rth elastic mode. In addition

to the elastic modes, Timoshenko beam also has rigid body modes. For the

model in this study, there are two rigid body eigenfunctions, translational and

rotational. Both Euler-Bernoulli and Timoshenko beams have two rigid body

modes: Translational and rotational. However, their mass normalization are

different. Since Timoshenko beam model includes rotary inertia of the beam in

addition to mass effect, its normalization coefficients are different than those

of Euler-Bernoulli beam. To find the rigid body eigenfunctions of Timoshenko

beam the eigenvalue is taken as zero (ω = 0) in Equation 2.20a:

d4v

dx4
= 0 (2.25)

It should be noted that, since the rigid body modes are analyzed, eigenfunction

for rotation is the derivative of the eigenfunction for translation. Solving

Equation 2.25 considering boundary conditions in Equation 2.21 gives the

following eigenfunctions:

vtr(x) = Atr (2.26a)

θz,tr(x) =
d

dx
vtr(x) = 0 (2.26b)

vrot(x) = Arot

(

x − L

2

)

(2.26c)

θz,rot(x) =
d

dx
vrot(x) = Arot (2.26d)

where the subscript tr stands for translational rigid body mode, and the sub-

script rot stands for rotational rigid body mode about the centroid of the

beam. Coefficients Atr and Arot are determined by mass normalization. For
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Atr, eigenfunctions related to translational rigid body mode (given by Equa-

tions 2.26a and 2.26b) are inserted into Equation 2.24, which yields

L∫

0

{

vtr(x)

θz,tr(x)

}T [

ρA 0

0 ρI

]{

vtr(x)

θz,tr(x)

}

dx = 1 (2.27a)

L∫

0

[ρAvtr(x)2 + ρIθz,tr(x)2]dx = 1 (2.27b)

L∫

0

(ρAA2
tr)dx = 1 (2.27c)

Atr =
1√
ρAL

(2.27d)

Similarly, for rotational rigid body mode

L∫

0

{

vrot(x)

θz,rot(x)

}T [

ρA 0

0 ρI

]{

vrot(x)

θz,rot(x)

}

dx = 1 (2.28a)

L∫

0

[ρAA2
rot(x − L

2
)2 + ρIA2

rot]dx = 1 (2.28b)

Arot =
1

√
ρAL3

12
+ ρIL

(2.28c)

After obtaining all mass normalized mode shapes for rigid and elastic modes,

the next step is to use eigenfunctions in order to determine the response of

the beam. Eigenfunction expansion assumes that solutions of Equation 2.20,

v(x, t) and θz(x, t), can be represented as a summation of the eigenfunctions

multiplied by functions of time as,

{

v(x, t)

θz(x, t)

}

=
∞∑

r=0

{

vr(x)

θzr(x)

}

ηr(t) (2.29)

To obtain the steady state response to a harmonic force excitation, qy(x, t) in
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Equation 2.18 is written as

qy(x, t) = F (t)δ(x − xn) (2.30)

where, F (t) is a harmonic force with magnitude F0, frequency ω, and applied

at an arbitrary point x = xn (F (t) = F0e
iωt), and δ(x − xn) is Dirac delta

function defined as

δ(x − xn) =







1 if x = xn,

0 if x 6= xn.

Inserting Equations 2.29 and 2.30 into Equation 2.18 and using orthogonality

of eigenfunctions with respect to the differential operators and selfadjointness

of the differential operators involved, time component of Equation 2.29 is

found (for harmonic force applied at x = xn) as,

ηr(t) =
vr(xn)F0e

iωt

(1 + iγ)ω2
r − ω2

(2.31)

where, γ is the loss factor of the material of the beam element. Substituting

Equation 2.31 into Equation 2.29 and taking x = xm gives the response of the

beam element at any point x = xm on the beam element

v(xm, t) =
vr(xm)vr(xn)

(1 + iγ)ω2
r − ω2

F0e
iωt (2.32)

θz(xm, t) =
θzr(xm)vr(xn)

(1 + iγ)ω2
r − ω2

F0e
iωt (2.33)

Similarly, to obtain the steady state response to a harmonic moment excita-

tion, mz(x, t) in Equation 2.18 is written as

mz(x, t) = M(t)δ(x − xn) (2.34)

where, M(t) is a harmonic moment applied at an arbitrary point x = xn

(M(t) = M0e
iωt). For harmonic moment applied at x = xn steady state

30



response of the beam at any arbitrary point x = xm is,

v(xm, t) =
vr(xm)θzr(xn)

(1 + iγ)ω2
r − ω2

M0e
iωt (2.35)

θz(xm, t) =
θzr(xm)θzr(xn)

(1 + iγ)ω2
r − ω2

M0e
iωt (2.36)

The receptance functions of the beam are defined as,

Hmn =
vm

fn

Nmn =
θzm

fn

Lmn =
vm

fn

Pmn =
θzm

mn

where,

fn = F0e
iωt at x = xn

mn = M0e
iωt at x = xn

vm = v(xm, t) and θzm = θz(xm, t)

Points 1 and 2 on the beam correspond to x1 = L and x2 = 0, respectively.

In order to find the end point receptance functions, m and n are taken as

m = 1, 2 and n = 1, 2. The beam is free-free. So, since there is no shear

deformation at the boundaries of the beam at x = x1 = L and x = x2 = 0,

dvr(x)

dx
= vr

′(x) = θzr(x) (2.37)

End point receptance function at point 1 relating the forcing applied at point

1 and response at point 1, H11, is,

H11 =
vm

fn

=
∞∑

r=0

vr(x1)vr(x1)

(1 + iγ)ω2
r − ω2

=
vtr(L)vtr(L)

−ω2
+

vrot(L)vrot(L)

−ω2
+

∞∑

r=1

vr(L)vr(L)

(1 + iγ)ω2
r − ω2

(2.38)
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Substituting Equations 2.26a and 2.26c into Equation 2.38 gives,

H11 =
AtrAtr + Arot

L
2
Arot

L
2

−ω2
+

∞∑

r=1

vr(L)vr(L)

(1 + iγ)ω2
r − ω2

= − 1

ρALω2
− 3L

(ρAL2 + 12ρI)ω2
+

∞∑

r=1

vr(L)vr(L)

(1 + iγ)ω2
r − ω2

(2.39)

Similar to obtaining Equation 2.39, remaining end point receptance functions

can be determined as follows,

H12 = − 1

ρALω2
+

3L

(ρAL2 + 12ρI)ω2
+

∞∑

r=1

vr(L)vr(0)

(1 + iγ)ω2
r − ω2

(2.40a)

H22 = − 1

ρALω2
− 3L

(ρAL2 + 12ρI)ω2
+

∞∑

r=1

vr(0)vr(0)

(1 + iγ)ω2
r − ω2

(2.40b)

L11 = − 6

(ρAL2 + 12ρI)ω2
+

∞∑

r=1

vr(L)vr
′(L)

(1 + iγ)ω2
r − ω2

(2.40c)

L12 = − 6

(ρAL2 + 12ρI)ω2
+

∞∑

r=1

vr(L)vr
′(0)

(1 + iγ)ω2
r − ω2

(2.40d)

L22 =
6

(ρAL2 + 12ρI)ω2
+

∞∑

r=1

vr(0)vr
′(0)

(1 + iγ)ω2
r − ω2

(2.40e)

P11 = − 12

(ρAL3 + 12ρIL)ω2
+

∞∑

r=1

vr(L)vr
′(0)

(1 + iγ)ω2
r − ω2

(2.40f)

P12 = − 12

(ρAL3 + 12ρIL)ω2
+

∞∑

r=1

vr
′(L)vr

′(0)

(1 + iγ)ω2
r − ω2

(2.40g)

P22 = − 12

(ρAL3 + 12ρIL)ω2
+

∞∑

r=1

vr
′(0)vr

′(0)

(1 + iγ)ω2
r − ω2

(2.40h)

N12 =
6

(ρAL2 + 12ρI)ω2
+

∞∑

r=1

vr
′(L)vr(0)

(1 + iγ)ω2
r − ω2

(2.40i)

Using Equation 2.40, end point receptance matrix (or simply FRF matrix) of
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the beam, [A(ω)], is obtained,

[α(ω)] =









H11 L11 H12 L12

N11 P11 N12 P12

H21 L21 H22 L22

N21 P21 N22 P22









=









H11 L11 H12 L12

P11 N12 P12

H22 L22

sym P22









(2.41)

where,

Hmn :Harmonic transverse displacement response of the beam at x = xm

for a harmonic forcing excitation at x = xn

Lmn :Harmonic transverse displacement response of the beam at x = xm

for a harmonic moment excitation at x = xn

Nmn :Harmonic angular rotation response of the beam at x = xm

for a harmonic forcing excitation at x = xn

Pmn :Harmonic angular rotation response of the beam at x = xm

for a harmonic moment excitation at x = xn

xm = 0, L and xn = 0, L

2.1.3 Receptance Coupling of Beam Elements

The SHT system is modeled by using constant cross-section beam elements. In

order to obtain the FRF of the whole SHT system by using structural coupling,

FRF of each beam element need to be found first. General FRF matrix of

a Timoshenko beam element is found in the previous section. Receptance

coupling (or FRF coupling) is applied to combine FRF matrices of beam

elements to obtain the FRF matrix of the SHT.

FRF coupling of two elements can be applied by taking them rigidly fixed

to each other. Then, no relative motion is assumed between two elements,

and it is called rigid FRF coupling. Rigid FRF coupling is usually used for

coupling beam elements of the same main component of the SHT. Spindle,
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toolholder and tool can be considered as main components of the SHT system.

For instance, for obtaining FRF of a spindle, beam elements of spindle are

coupled rigidly.

However, the main components of the SHT are not rigidly fixed to each other.

Instead, they apply high pressures to each other to assure no loss of contact

during milling process. For example, for some type of toolholders, toolholder

is at first heated up. When the hole of toolholder expands then the tool is put

inside of toolholder and thus shrink fit occurs between toolholder and tool.

For spindle-toolholder contact, loss of contact is prevented by a force applied

on toolholder which pulls it towards the spindle. Therefore, coupling of main

components is to be carried out considering the contact zones between them.

Equivalent contact parameters (equivalent stiffness and damping) are assigned

to define the contact at spindle-toolholder and toolholder-tool contacts. Cou-

pling two elements considering defined contact parameters in between is called

flexible FRF coupling.

It should be noted that when two constant cross-section (constant diameter)

beam elements (segments) with different diameters are coupled, the resulting

beam element has no longer constant-cross section. The procedure of coupling

segments with different diameters to each other one after the other is called

chain coupling. When Timoshenko beam elements with free-free boundary

conditions are coupled, the resulting SHT also has free-free boundary condi-

tions. Spindle of a SHT is supported by angular contact ball bearings. In this

study bearings are modeled as nonlinear elements. Stiffness of each bearing

depends on its displacement amplitude. Therefore, receptance information for

the points on the spindle where bearings are located is necessary for iterative

solution of the equations of motion of the system. After performing coupling

of beam elements while keeping the receptance information for the bearing

connection points on the SHT, bearing dynamics can be coupled to the dy-

namics of the rest of the system to obtain the whole SHT system model with

bearing supports.
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2.1.3.1 Rigid FRF Coupling Without Losing FRF Information at

Connection Points

When two beam elements are coupled using flexible FRF coupling, displace-

ments of connection points are not identical because of having springs and

dampers (equivalent contact parameters) between the connection points of

segments. Rigid FRF coupling can be considered as flexible coupling with in-

finitely large stiffness between connection points. Motion of connection points

on the coupled beam elements are identical at rigid FRF coupling. For classi-

cal rigid FRF coupling connection points are not kept on the resulting element.

However, by applying a modified rigid FRF coupling procedure explained in

this section, connection points can be kept for the resulting element. The

formulation for applying rigid FRF coupling without losing connection points

is based on works of Ferreira [56] and Liu [64].

Generalized FRF coupling without losing connection points is explained by

analyzing an intermediate step of a chain coupling. Let us consider two beams,

A and B, as shown in Figure 2.4. A is the beam formed by segments coupled

by chain coupling. B is the constant diameter beam element to be coupled

to A. So, B has only two points on it, and A has k points on it. k − 2 is the

number of connection points kept during chain coupling before coupling with

B. FRF matrices of A and B are represented by [α] and [β], respectively. FRF

matrices of A and B include point and transfer receptance functions of both

beams.

AB

2 1 k

rigid or flexible connection

k-1,......2  1

p

Figure 2.4. Representation of segments A and B to be coupled
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[α] =

[

αkk αkp

αpk αpp

]

(2.42)

[β] =

[

β22 β21

β12 β11

]

(2.43)

In order to keep the connection points an extended matrix [β′] is formed by

adding duplicate of point 1 (point 1 ≡ point 1′) to [β] as,

[β′] =







β22 β21

9
9
9β21

β12 β11

9
9
9β11

β12 β11

9
9
9β11







(2.44)

Because of the rigid connection between beams A and B, point k on beam A

and point 1 on beam B have equal displacement. Displacement vectors of the

beams can be expressed as

{qA} = {qp} (2.45)

{qB} =
{

q2 q1

}T

(2.46)

Similar to expression for displacement vectors force vectors are formed as

{FA} = {Fp} (2.47)

{FB} =
{

F2 F1

}T

(2.48)

Displacements can be related to forces as follows:

{

qk

qA

}

=

[

αaa αab

αba αbb

]{

Fk

FA

}

(2.49)

{

qB

q1′

}

=

[

βaa βab

βba βbb

]{

FB

F1′

}

(2.50)
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where,

αaa = [αkk] βaa =

[

β22 β21

β12 β11

]

αab = [αkp] βab =

[

β21

β11

]

αba = [αpk] βab =
[

β12 β11

]

αbb = [αpp] βbb = [β11]

Connection between the beams is rigid, so, displacements of point 1 (also,

duplicate of point 1) and point k are equal to each other.

{q1′} = {qk} (2.51)

At connection points the forces are equal in magnitude and opposite in direc-

tion.

{F1′} = −{Fk} (2.52)

From Equations 2.49, 2.50 and 2.51, it is possible to write

[

βba βbb

]
[

FB

F1′

]

=
[

αaa αab

]
[

Fk

FA

]

(2.53)

Combining Equation 2.52 with Equation 2.53 gives,

βba{FB} − βbb{Fk} = αaa{Fk} + αab{FA}

{Fk} = (αaa + βbb)
−1(βba{FB} − αab{FA}) (2.54)

From Equation 2.52 and Equation 2.54,

{F1′} = (αaa + βbb)
−1(αab{FA} − βba{FB}) (2.55)
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Inserting Equation 2.54 into Equation 2.49 gives

{qA} = [αbb − αba(αaa + βbb)
−1αab]{FA} + αba(αaa + βbb)

−1βba{FB} (2.56)

Using Equation 2.55 in Equation 2.50 yields

{qB} = βab(αaa + βbb)
−1αba{FA} − [βaa − βab(αaa + βbb)

−1βba]{FB} (2.57)

[γ] the FRF matrix of the resulting multiple-segment beam, C. From Equation

2.56 related components can be written as

γAA = γpp = αpp − αpk(αkk + β11)
−1αkp (2.58)

γAB =
[

γp2 γp1

]

= αpk(αkk + β11)
−1
[

β12 β11

]

(2.59)

Similarly, from Equation 2.57,

γBA =

[

γ2p

γ1p

]

=

[

β21

β11

]

(αkk + β11)
−1αkp (2.60)

γBB =

[

γ22 γ21

γ12 γ11

]

=

[

β22 β21

β12 β11

]

−
[

β21

β11

]

(αkk + β11)
−1
[

β12 β11

]

(2.61)

So, elements of the FRF matrix of the combined system, C, is

γ22 = β22 − β21(αkk + β11)
−1β12 (2.62a)

γ21 = β21 − β21(αkk + β11)
−1β11 (2.62b)

γ2p = β21(αkk + β11)
−1αkp (2.62c)

γ11 = β11 − β11(αkk + β11)
−1β11 (2.62d)

γ1p = β11(αkk + β11)
−1αkp (2.62e)

γpp = αpp − αpk(αkk + β11)
−1αkp (2.62f)
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Then, [γ] matrix is formed as

[γ] =






γ22 γ21 γ2p

γ11 γ1p

sym γpp




 (2.63)

For the next coupling procedure, elements of the [γ] matrix are renamed as

shown below:

γ22 −→ αkk
[

γ21 γ2p

]

−→ αkp

[

γ12

γp2

]

−→ αpk

[

γ11 γ1p

γp1 γpp

]

−→ αpp

The procedure explained above can also be used by eliminating the connection

point information. The point 1′ in the above formulation should not be added

to FRF matrix of beam element B.

2.1.3.2 Flexible FRF Coupling

If a duplicate connection point is not added to the beams to keep the con-

nection point information, classical coupling procedure is obtained. In this

section, classical coupling for flexible connection is given. Then the FRF in-

formation for the connection points are lost in the resulting model. For the

SHT system it is not necessary to keep the points at the connection of the

main components (spindle, toolholder and tool). The connection parameters

used in flexible coupling are called contact parameters since they represent

contacts between spindle-toolholder, and between toolholder-tool.

The procedure is similar to that given at Section 2.1.3.1. However, FRF
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information of duplicate connection points are not added to β in this analysis

since connection points are not kept for resulting element.

When there are elastic elements between the connection points, the displace-

ments of these points will not be equal to each other. They are related to each

other as shown below:

[KAB]({q1} − {qk}) = {F1} (2.64)

where,

[KAB] =

[

kAB
y + iωcAB

y 0

0 kAB
θ + iωcAB

θ

]

kAB
y : translational contact stiffness parameter

kAB
θ : rotational contact stiffness parameter

cAB
y : translational contact damping parameter

cAB
θ : rotational contact damping parameter

The force equilibrium yields the relation between the forces at the connection

points as

{F1} = −{Fk} (2.65)

Applying a similar procedure as in Section 2.1.3.1 yields the FRF matrix, γ,

of the combined system, C:

γpp = αpp − αpk(αkk + β11 + [KAB]−1)αkp (2.66a)

γp2 = αpk(αkk + β11 + [KAB]−1)β12 (2.66b)

γ2p = β21(αkk + β11 + [KAB]−1)αkp (2.66c)

γ22 = β22 − β21(αkk + β11 + [KAB]−1)β12 (2.66d)
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Elements of [γ] are renamed for next coupling process as,

γpp −→ αpp

γp2 −→ αpk

γ2p −→ αkp

γ22 −→ αkk

It should be noted that, if [KAB] is taken very stiff making [KAB]−1 ≈ 0 in

[γ], results of rigid FRF coupling will be obtained.

2.2 Modeling of Bearings

The receptance coupling (FRF coupling) is used to obtain linear FRF matrix of

a SHT system without bearing supports (free-free). The receptance analysis

and the coupling procedure described in Section 2.1 are valid for a linear

system. However, the spindle of the SHT is supported by angular contact

ball bearings, which can be modeled by displacement amplitude dependent

stiffness elements. Cubic stiffness element is taken to represent the bearings

supporting the SHT system. Nonlinear element representing a bearing in the

SHT system has freedom in transverse direction only.

When there is a nonlinear element in the system, harmonic vibration analysis

can be achieved by using describing function (DF) theory. It is a common

method used for harmonic vibration analysis of a nonlinear system.

2.2.1 Describing Function Theory

Let us consider the SHT system shown in Figure 2.5. Angular contact ball

bearings are modeled by cubic stiffness elements in transverse direction. The

coefficient of its linear part depends on the magnitude of the preload applied

on the bearing [34]. The coefficient of nonlinear part of cubic stiffness element
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Tool tip

6 5 4 3 2 1

Figure 2.5. SHT system considered

can be predicted using bearing models [55]. Cubic stiffness is assumed for

the nonlinear part, and its equivalent stiffness and equivalent damping are

determined using describing function theory [65]. Then, equivalent quasi-

linear form of the nonlinear bearing force vector is determined using equivalent

stiffness of the bearings. The determined quasi-linear force vector is identified

only for the considered displacement amplitude, i.e. it is response-dependent.

Thus, quasi-linear bearing force vector is determined at each iteration step

during solution, when displacement amplitude is modified.

Force on each bearing can be represented as,

fb,j(vj) = klvj + knv3
j (2.67)

where,

kl : coefficient of linear component of the stiffness

kn : coefficient of nonlinear component of the stiffness

fb,j : reaction force of bearing in transverse direction at point j

vj : deformation or displacement in transverse direction at point j

j = 2, 3, 4, 5 (for Figure 2.5)

In order to make frequency domain analysis using nonlinear bearings, the

bearing force vector need to be put into quasi-linear form. With nonlinear

bearing forces the equation of motion of the dynamic system may be written

as

[Z]{x} + {fb({x})} = {F} cos(ωt) (2.68)
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where,

[Z] : dynamic stiffness matrix of the SHT (inverse of receptance of the SHT)

{x} : response vector

{fb({x})} : bearing force vector (expressed as a function of the response vector)

{F} : magnitude of external harmonic forces

ω : excitation frequency

After obtaining quasi-linear bearing force vector using describing function the-

ory, the equation of motion becomes suitable for the analysis in the frequency

domain:

[Z]{x} + [Kl]b{x} + {Fnl({x})} = {F} cos(ωt) (2.69)

where,

[Kl]b : linear part of the bearing stiffness in matrix form

{Fnl({x})} : force vector representing nonlinear bearing force

The bearings can be considered as local nonlinearities coupled to the linear

SHT system. After finding equivalent stiffness and equivalent damping of

the bearings, they can be coupled to dynamics of the SHT. In the following

section, quasi-linear form of a single bearing is determined using DF theory.

2.2.2 Quasi-Linearization of Cubic Stiffness Element

A single nonlinear cubic stiffness element, which exerts a force of magnitude

proportional to its deformation to the third power, is considered. To make

the derivation simple, the linear part of the cubic stiffness element is not

considered in the analysis.

If a static load is applied to the cubic stiffness element in Figure 2.6(a), re-

sponse of the element would be as shown in Figure 2.6(b). If harmonic forcing,

F (θ) = F (ωt) = F cos(ωt), is applied to the element the response of the non-
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Figure 2.6. Static load applied to nonlinear element

linear element would also be harmonic. However, generally, the difference of

response of a nonlinear element from response of a linear element is that its

response would not only include fundamental harmonic (at frequency ω) but

also include zeroth and higher harmonics (at frequencies ω, 2ω, 3ω . . .),

y(θ) = Y0 +
∞∑

m=1,2,3,...

[Ymc cos(mθ) + Yms sin(mθ)] (2.70)

The equation of motion for the cubic stiffness element is

F (θ) = kny(θ)3 (2.71)

Cubic stiffness element is a special element which gives odd and symmetric

response. For the symmetric nonlinearity zeroth component (average value)

of the response is zero, and for the odd nonlinearity even harmonics of the

response are all zero. For cubic stiffness, it is fair enough to approximate the

response by using only the first (fundamental) harmonic since the nonlinearity

is not heavy. So, representation of the response in Equation 2.70 becomes,

y(θ) =
∞∑

m=1,3,...

[Ymc cos(mθ) + Yms sin(mθ)] ≈ Yc cos(θ) + Ys sin(θ) (2.72)
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Inserting Equation 2.72 into Equation 2.71 gives,

F (θ) = kn[Yc cos(θ) + Ys sin(θ)]3 (2.73)

The applied harmonic force may be expressed as

Fc cos(θ) + Fs sin(θ) = Re[(Fc − iFs)e
iθ] (2.74)

where,

Fc : magnitude of cosine component of the forcing

Fs : magnitude of sine component of the forcing

Similarly, the harmonic response is represented as

Yc cos(θ) + Ys sin(θ) = Re[(Yc − iYs)e
iθ] (2.75)

where,

Yc : magnitude of cosine component of the response

Ys : magnitude of sine component of the response

The aim in describing function theory is to relate force to response linearly at a

specified frequency and for a specific vibration amplitude, for each harmonic

term. Only fundamental harmonic of the response is used in this analysis.

The value which relates force to displacement response is called equivalent

stiffness, and it may be complex if it also has imaginary part representing

equivalent damping. This relation can be written as

Re[(Fc − iFs)e
iθ] = Re[ (kr + i · ki)

︸ ︷︷ ︸

linearized stiffness

(Yc − iYs)e
iθ]

Fc − iFs = (kr + i · ki)(Yc − iYs) (2.76)
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where,

kr : equivalent stiffness [65]

ki : equivalent damping [65]

Equation 2.76 gives Fc and Fs as follows

Fc = krYc + kiYs (2.77a)

Fs = krYs − kiYc (2.77b)

When written in matrix form Equation 2.77 becomes

[

Fc

Fs

]

=

[

kr ki

−ki kr

][

Yc

Ys

]

(2.78)

The matrix multiplied by response vector to obtain force vector in Equation

2.78 is response-dependent and it is called ”nonlinearity matrix” in DF theory

[66]. Gelb et al. [67] formulated the values of kr and ki as,

kr =
1

πY

2π∫

0

F (θ)cos(θ)dθ (2.79)

ki = − 1

πY

2π∫

0

F (θ)sin(θ)dθ (2.80)

where, Y is the magnitude (amplitude) of displacement response. Inserting

Equation 2.73 into Equations 2.79 and 2.80 and integrating analytically gives

kr =
3

4
knY 2 =

3

4
kn(Y 2

c + Y 2
s ) (2.81)

ki = 0 (2.82)
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Another way of expressing Equation 2.78 is

{F}T
{

cos(θ) sin(θ)
}T

=

([

kr ki

−ki kr

]

{Y }
)T
{

cos(θ) sin(θ)
}T

(2.83)

In Equation 2.83 it is clear that the cosine and sine components of displace-

ment response and forcing are separated. So, they are no longer complex in

the equation of motion. This fact is used in applying numerical path following

(continuation) method. For cubic stiffness, knowing that equivalent damping

is zero,

{F} =

[

kr 0

0 kr

]

{Y } (2.84)

{F} =
3

4
kn

[

Y 3
c + YcY

2
s

Y 3
s + YsY

2
c

]

(2.85)

Jacobian matrix of the nonlinear bearing force vector (or the partial derivative)

used in numerical analysis can additionally be obtained,

∂{F}
∂{Y } =

[{

∂{F}
∂Yc

}{

∂{F}
∂Ys

}]

(2.86)

∂{F}
∂{Y } =

3

4
kn

[

3Y 2
c + Y 2

s YcYs

YcYs 3Y 2
s + Y 2

c

]

(2.87)

2.2.3 Solution of Equation of Motion

In the previous section, elements of quasi-linear bearing force vector {Fnl({x})}
in Equation 2.69 and its Jacobian are determined. After obtaining equation of

motion of the SHT system including dynamics of nonlinear bearings, numerical

analysis is used to obtain the FRF of the system. Amplitudes of displacements

in the SHT system are small for small external forces applied. Generally, when

small external forces are applied effects of displacement amplitude-dependent

nonlinearities are considered to be insignificant. In that case, solution of equa-
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tion of motion gives linear response of the structure. When applied forces take

larger values, displacement amplitudes become considerable so that cubic stiff-

ness nonlinearity affects the response and makes it nonlinear.

Then, the FRF of the system becomes different than linear FRF, and it also

becomes a function of response. The FRF may be affected so much that

turn-backs may occur in the response. Note that for a nonlinear system it

is not possible to talk about FRF, which is basically a transfer function (in

control theory). Therefore, it may be appropriate to call these curves pseudo-

receptance function or pseudo-FRF. In this study, pseudo-FRFs of the SHT

system under different conditions are obtained.

If a numerical method (e.g. Newton’s method) is used without path following

in the analysis, jumps or discontinuities are observed in FRF at the parts where

turn-back occurs. Therefore, a numerical continuation method should be used

to follow the solution curve of the FRF and observe turn-back behavior.

Newton’s method with arc length continuation (ALC) is a method which

yields a solution curve that is continuous. The classical numerical methods

involve sweeping of the whole frequency domain with a fixed direction of

solution (low-to-high or high-to-low frequency sweeps). In Newton’s method

with ALC the solution is searched within a sphere centered at the current

iteration point. This makes it possible to change the direction of the solution

curve (FRF in this study). When Newton’s method is used with ALC, instead

of observing discontinuities (jumps), turn-backs occur at such points. In this

study, adaptive step size between solution points is used. Step size is updated

at each solution point according to the error at the end of the iterations carried

out to obtain previous solution point.

In Newton’s method with ALC, Newton’s method is used together with the

first order predictors. By using Newton’s method, the next solution point

at the intersection of the sphere (centered at previous solution point) and

solution curve is obtained.

Including the linear part of the stiffness of bearings in [Z(ω)] the residual
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vector is written from Equation 2.69 as

{R({X}, ω)} = [Z(ω)]{X} + {Fnl({X})} − {F} (2.88)

The purpose is to seek solution where residual is zero. So, ALC solves the

curve defined by

{R({X}, ω)} = {0} (2.89)

Newton-Raphson method is applied to use jth estimate to obtain (j + 1)th

estimate as,

{X}j+1 = {X}j −
[
∂{R({X}, ω)}

∂{X}

]−1
∣
∣
∣
∣
∣
({X}j ,ω)

{R({X}j, ω)} (2.90)

where, Jacobian of the residual matrix is,

∂{R({X}, ω)}
∂{X} = [Z(ω)] +

∂{Fnl}
∂{X} (2.91)

In this study Jacobian of the residual vector and nonlinear force vector, {Fnl},
are determined analytically. It is also possible to find them numerically. In-

verse of the Jacobian of the residual vector is needed in Equation 2.90. Ja-

cobian of the nonlinear force vector contains many zero components, so, it

would be time-consuming to take inverse of matrices twice. Instead, method

proposed by Özgüven [68] can be used to modify the inverse of the Jacobian

of the residual matrix by Jacobian of the force vector.

The next frequency point is searched on the boundary of a sphere (having

radius s) centered at the kth solution point.

{∆q}T
k {∆q}k = s2 (2.92)
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where,

{q} =

{

{X}
ω

}

s : radius of the sphere

Then, another residual equation may be introduced and its solution is sought:

g({X}k, ωk) = {∆q}T
k {∆q}k − s2 = 0 (2.93)

The corrector can be redefined as,

{q}j+1
k = {q}j

k −
[

∂{R({X},ω)}
∂{X}

∂{R({X},ω)}
∂ω

∂{g({X},ω)}
∂{X}

∂{g({X},ω)}
∂ω

]−1∣
∣
∣
∣
∣
({X}j

k
,ω

j

k
)

{

{R({X}j
k, ω

j
k)}

{g({X}j
k, ω

j
k)}

}

(2.94)

where,

[
∂{g({X},ω)}

∂{X}
∂{g({X},ω)}

∂ω

]

=
[

2{∆q}jT

k

]

{∆q}j
k = {q}j

k − {q}k−1

In order to improve convergence at sharp points, step-length is modified at

each step as suggested in [69],

sk = sk−1

√

niter
nom

niter
k−1

(2.95)

where,

sk : step length at kth solution point

sk−1 : step length at (k − 1)th solution point

niter
nom : nominal number of iterations

niter
k−1 : number of iterations done at (k − 1)th solution point

The Newton’s method with ALC is very sensitive to sharp corners. Deter-
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mining tolerance level and niter
nom mainly affects convergence of the method.

For some cases, solution curve is followed up to a sharp corner (turn-back

point), then follows back the same curve that has already been determined.

The reason is that there are actually two stable solutions for turning back,

the previously determined solution curve and the solution curve that should

be followed. In order to force the solution points to follow the solution curve,

direction of the solution curve may be set for each solution point. Thus, in-

stead of returning to the initial point, solution path can be followed up to the

end point.

Newton’s method with ALC is used to solve equation of motion of the SHT

system in frequency domain, and determine the FRF of the SHT system. New-

ton’s method with ALC is introduced by Crisfield [69] to carry out nonlinear

finite element analysis of statically loaded structures. In a recent study, Or-

bay [58] used Newton’s method with ALC to determine response of nonlinear

dynamic structures (bladed-disk assemblies).
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CHAPTER 3

APPLICATIONS

3.1 The Spindle-Toolholder-Tool System

A motorized spindle-toolholder-tool (SHT) system is analyzed in this chapter.

The model of the SHT is adapted from thesis of Cao [37]. The SHT system

used is shown in Figure 3.1. Spindle, toolholder, and tool are considered

as rigidly coupled to each other. For this study, contact stiffness values are

assumed to be infinitely high. In reality, contact parameters are determined

by carrying out an experiment. An experimental FRF is fitted to analytically

obtained FRF by setting proper contact parameters. The SHT system is

supported by four bearings in the front, and one bearing at the rear. The

effect of the rotor mounted on spindle shaft is assumed to have negligible

effect, and it is not considered in this analysis.

The SHT shown in Figure 3.1 is first separated into constant cross-section

beam elements. Bearing connection points are also kept as the end points of

Preloaded front bearings
Preloaded rear bearing

Rotor

Figure 3.1. Representation of the model of a motorized SHT system
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Table 3.1. Dimensions (in mm) of the constant cross-section beam elements in the
SHT system (starting from the right hand side)

Beam number 1 2 3 4 5 6 7 8 9 10 11 12
Length 67 48 50 15 23 23 35 23 15 150 45 102
Outer diameter 19.05 57 85 70 70 70 70 70 65 65 65 65
Inner diameter 0 0 0 35 35 35 35 35 35 35 35 35

beam elements by dividing constant cross-section beam elements into multiple

pieces. For the SHT system used in this chapter, starting from the right hand

side of the system, dimensions of the constant cross-section beam elements

are given in Table 3.1.

During end milling process, cutting force is applied at the tool tip of the SHT.

In this application chapter, the effect of the following system parameters are

studied:

• Magnitude of the cutting force

• Coefficient of nonlinearity of the bearing stiffness

• Number of teeth on the cutter

Type of milling is taken as slotting. In slotting, the cutter is fully immersed

(100% immersion) into the workpiece during cutting, where the cutter entry

and exit angles are 0 and 180 degrees, respectively. The cutting conditions

are given in Table 3.2.

Table 3.2. Cutting conditions of end milling process

Material of the workpiece Al7075-T6
Cutter diameter 19.05[mm]
Number of flutes on the cutter 1
Type of milling Slotting
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In this chapter, firstly, the linear response of SHT system is presented. Sec-

ondly, the effect of magnitude of cutting force on response of SHT and on

chatter stability are investigated, while keeping coefficient of cubic stiffness

nonlinearity constant. Thirdly, the effect of coefficient of cubic stiffness non-

linearity on response of SHT and on chatter stability are investigated, while

keeping magnitude of cutting force constant. Lastly, the effect of number

of cutter flutes on chatter stability of milling process is analyzed for a given

cutting force magnitude and coefficient of nonlinearity.

3.2 Nonlinear Bearing Properties

The angular contact ball bearings support the SHT system. Each bearing is

modeled as a spring acting in transverse direction with cubic stiffness non-

linearity. The coefficient of linear part of the cubic stiffness nonlinearity is

determined by the applied preload on a bearing. The linear stiffness of the

front bearings are taken 2.1 · 108[N/m] each, and of the rear bearing is taken

1.8 · 108[N/m]. The coefficients of nonlinear components of front bearings are

stated in each section, since different values are taken in the analysis.

3.3 Linear Response of the SHT system

Cubic stiffness element which represents bearings in the system has displace-

ment amplitude dependent stiffness. For low forces acting on the SHT system,

displacement response of the bearings is low. So, the effect of nonlinearity on

the FRF of the system is not considerable for low reaction forces on bearings

due to cutting force. For such cases, the system response can be considered

as linear. Linear FRF of the tool tip of the SHT can easily be obtained by

neglecting nonlinear components of the bearing stiffness, and taking only the

linear parts of the bearing stiffnesses. The linear analysis of the system gives

the FRF shown in Figure 3.2. The linear FRF of the system can be con-
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Figure 3.2. Linear tool tip FRF of the SHT system (log vs. linear)

sidered as the frequency response of the system under low force. When the

forces acting on the system becomes higher, effect of structural nonlinearities

increases.

The first two modes (two peaks) are namely rigid body modes of the SHT.

They are due to the almost rigid body motion of the SHT on flexible bearings.

The nonlinearities at the bearings mainly affect the rigid body modes of the

SHT system. So, the cubic stiffness at the bearings is expected to affect the

first two peaks of the FRF curve.

3.4 Effects of Magnitude of Cutting Force

During milling, the cutting forces are applied at the tool tip in one axial and

two transverse directions. For the 2D model used in this study, the cutting

force is applied at the tool tip in transverse direction only. The cutting force is

considered as harmonic force with time invariant magnitude. In this section,

the magnitude of the cutting force is increased to observe the effect of the
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Figure 3.3. Tool tip pseudo-FRFs of the SHT system under high cutting forces
(log vs. linear)

nonlinearity at the bearings better.

3.4.1 Effects of Cutting Force Magnitude on Response

The cutting force magnitudes are taken as F = 70[N ], F = 100[N ] and

F = 150[N ]. The coefficient of nonlinearity is set constant for all cases as

kn = 1.0 · 1014[N/m3] and kn = 0.86 · 1014[N/m3] for front and rear bearings,

respectively. Pseudo-FRFs for these two cases are compared in Figure 3.3.

As the magnitude of the cutting force increases, the first two modes of the

system shift to the right because of the hardening effect of the cubic stiffness.

For better view, the first two modes are zoomed in Figure 3.4.

The first mode of the system is more flexible than the second one. This causes

the difference in the amount of shift of the peaks. The magnitude of response

of the first mode is larger than that of the second one making first mode more

sensitive to the stiffness nonlinearity at the bearings. Therefore, the first mode

is more sensitive to increase in magnitude of cutting force.
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Figure 3.4. Zoomed views of the rigid body modes (log vs. linear). Solid: Low
force. Dashed: F=70[N]. Dotted: F=100[N]. Dash-dotted: F=150[N]
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3.4.2 Effects of Cutting Force Magnitude on Stability

Method of Altıntaş and Budak [18] is used for obtaining the stability lobes

from the pseudo-FRFs calculated. For the stability analysis real parts of the

FRFs are needed. The effect of cutting force magnitude on the real parts of

first two modes can be seen in Figure 3.6.

Effect of using arc length continuation in Newton’s method is shown in Figure

3.5. If ALC is not used with Newton’s method, the jump from point A to

point B in FRF curve corresponds to jumps in each lobe as shown in Figure

3.5.

The stability lobe diagram (SLD) of the linear system (under low cutting

load) is obtained by trimming the stability lobes of the dominant modes with

respect to each other. In Figure 3.7, SLDs before and after trimming are

shown. As seen in Figure 3.7, the most flexible modes (first, second and

fourth modes) affect the stability of the SHT system. Among these modes,

the first mode has the most important effect on the SLD. So, the largest

effect of cubic nonlinearity on the lobes related to the first mode, since the

other lobes remains almost constant under the effect of the nonlinearity. The

stability lobe related to first mode also shifts to the right as shown in Figure

3.8. Comparison of SLDs of the milling process is carried out in Figure 3.9.
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Figure 3.5. Effect of ALC on the FRF and SLD of first mode for F=100[N]. Solid:
Newton’s method with ALC. Dashed: Newton’s method without ALC (low-to-high
sweep)
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Figure 3.7. SLD of the linear SHT system. Red: First mode, Green: Second
mode, Blue: Fourth mode, Cyan: Fifth mode
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Figure 3.8. Effect of nonlinearity on the stability lobe related to the first mode.
Solid: Low force. Dashed: F=70[N]. Dotted: F=100[N]. Dash-dotted: F=150[N]

3.5 Effects of Coefficient of Cubic Stiffness Non-

linearity

The coefficient of cubic stiffness nonlinearity of a bearing determines the sen-

sitivity of its stiffness to displacement amplitude. For higher coefficient of

nonlinearity, higher increase of stiffness is observed for an increase in displace-

ment amplitude. Similar to the analysis done in Section 3.4, in this section,

the coefficient of cubic nonlinearity is increased to observe its effects.

3.5.1 Effects of Coefficient of Nonlinearity on Response

The coefficient of nonlinearities are taken as kn = 1.0 · 1014[N/m3], kn =

0.70 · 1014[N/m3] and kn = 0.40 · 1014[N/m3] for the front bearings, and kn =
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Figure 3.9. Comparison of SLDs. Red: Low force. Blue: F=100[N]. Green:
F=150[N]

0.86 · 1014[N/m3], kn = 0.60 · 1014[N/m3] and kn = 0.34 · 1014[N/m3] for the

rear bearing. The magnitude of cutting force is set constant as F = 150[N ]

for all cases. Pseudo-FRFs for the two cases are compared in Figure 3.10. As

the magnitude of the cutting force increases the first two modes of the system

shift to the right because of the hardening effect of the cubic stiffness. For

better view, first two modes are zoomed in Figure 3.11.

Similar to the analysis done in Section 3.4, the first mode of the system is

more flexible than the second one. This causes the difference in the amount of

shift of the peaks. The magnitude of response of the first mode is larger than

that of the second one making the first mode more sensitive to the stiffness

nonlinearity at the bearings. Therefore, the first mode is more sensitive to

increase in the coefficient of cubic stiffness nonlinearity.
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Figure 3.10. Tool tip pseudo-FRFs for different coefficients of nonlinearity (log
vs. linear)

3.5.2 Effects of Coefficient of Nonlinearity on Stability

The effect of coefficient of nonlinearity on the real parts of first two modes

can be seen in Figure 3.12. Comparison of SLDs of the milling process is

carried out in Figure 3.13. The effect of increased coefficient of nonlinearity

is same as the effect of increased magnitude of cutting force. The stability

lobes related to the modes (rigid body modes), which are under the effect of

nonlinearity, shift to the right because of the hardening effect. However, some

stable zones do not shift to the right. This is because the lobes related to

modes other than the rigid body modes that which do not change under the

effect of nonlinearity.
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Figure 3.11. Zoomed views of the rigid body modes for F = 150[N ] (log
vs. linear). Solid: Linear. Dashed: kn = {0.40 0.34}[N/m3]. Dotted:
kn = {0.70 0.60}[N/m3]. Dash-dotted: kn = {1.0 0.86}[N/m3]
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Figure 3.12. Zoomed views of the real parts of FRFs of rigid body modes for
F = 150[N ] (log vs. linear). Solid: Linear. Dashed: kn = {0.40 0.34}[N/m3].
Dotted: kn = {0.70 0.60}[N/m3]. Dash-dotted: kn = {1.0 0.86}[N/m3]
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Figure 3.13. Comparison of SLDs F = 150[N ]. Red: Linear. Blue: kn =
{0.70 0.60}[N/m3]. Green: kn = {1.0 0.86}[N/m3]

Figure 3.14. Change in SLD when highest nonlinearity is applied and the number
of teeth on the cutter is four. Red: Linear. Blue: Nonlinear
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3.6 Effects of Number of Teeth on the Cutter

on Stability

The number of flutes on the cutter has a positive effect on chatter stability

of the milling process. The magnitude of cutting force and the coefficient of

bearing nonlinearity are taken F = 150[N ] and kn = {1.0 0.86}[N/m3] in

this section. When the number of flutes are increased from one to four in

the equations of Altıntaş and Budak [18], the stability lobe diagram obtained

from nonlinear analysis is almost the same as the diagram found from linear

analysis. The comparison is shown in Figure 3.14.
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CHAPTER 4

EXPERIMENTAL METHODS

In order to carry out an accurate stability analysis, frequency response func-

tion (or transfer function) of a system must be obtained accurately. Analytical

modeling of the whole machine tool system of a milling machine is the most

challenging part of conducting stability analysis of the milling process. Prac-

tically, analytical modeling of whole machine considering all effects (including

effects of milling process) is hardly possible. Without modeling whole ma-

chine it is still possible to estimate chatter free cutting zones semi-analytically

by identifying response, or frequency response function (FRF), of tool tip of

spindle-toolholder-tool (SHT) experimentally.

Carrying out hammer test (tap test) at tool tip under static conditions is the

most common method used in industry to obtain FRF for conducting chatter

analysis. However, if static tap test is conducted, some important effects

might be disregarded. Because of the nonlinearities of the structure, cutting

forces and spindle speed during cutting might have an effect on the FRF of

the structure. Under high speed conditions, for speeds above 15,000 rpm,

gyroscopic effects of balls of bearings may have an effect on stiffness values

of bearings. As a second effect, if high cutting forces are involved, stiffness

of bearings might change resulting in altered FRF of structure. Speed and

cutting force may introduce other effects such as altered bearing damping and

additional damping at tool-workpiece contact during milling. Apparently,

static tap test do not consider speed and force effects since it is carried out at

0 rpm spindle speed and low excitation force is applied by hammer.

A practical method to determine the dynamics of SHT is to conduct hammer

69



test while the spindle rotates. The FRF obtained by this way is usually

called rotating FRF. Similarly, the FRF obtained by static tap test is called

non-rotating FRF. By carrying out hammer test under dynamic conditions

FRF of the structure can be estimated at different speeds and change of FRF

depending on spindle speed can be seen. But, since tool tip is hit by hammer,

there is an obligation of using a dummy tool. Possible changes might occur in

natural frequencies and damping values related to the modes of cutting tool.

So, replacing real cutter with a dummy tool might clear out some of its effects.

Moreover, use of this method does not include the effects of milling.

In order to observe the effects on milling process on dynamics of the structure

two types of experiments are done in this study. Experiments conducted in

this study involve real cutting tests to include effects of milling in addition

to nonlinearities of the structure. First study is to observe shifts in natural

frequencies of the structure during milling. Cutting is done at different cutting

speeds, then changes in dynamics of the structure are determined. Secondly,

an experimental chatter test is explained to determine stability lobe diagram

(SLD) at a certain speed experimentally. Then, a method to predict whole

SLD of system using experimental data of the chatter test is introduced.

4.1 Run Up Test

Run up test is an experimental method to determine shifts in natural frequen-

cies of the structure. Data collection is carried out while the SHT performs

stable (chatter free) milling. Run-up test is widely used in rotor dynamics (ex-

plained by Swanson et al. [70]) to determine dependency of natural frequencies

of the structure on rotational speed.

During milling, the structure is excited by the harmonics of the cutting force.

For instance, if cutter has one tooth and spindle speed is 200Hz, cutting

force excites the structure at 200Hz, 400Hz, 600Hz. . .. Usually, magnitude of

first harmonic of cutting force is much larger than its higher harmonics. So,

70



generally, higher harmonics of cutting force can be neglected, and it is assumed

to be composed of single harmonic. However, for highly intermittent cutting

(low immersion cut), magnitudes of higher harmonics become considerably

high, so higher harmonics of response of structure become relatively large as

well. In this experiment, the workpiece is cut at low immersion to obtain

response characteristics of the structure at a wider frequency band.

Figure 4.1 shows sketch of process during milling. In the experiment, the

workpiece is cut by tool along x-direction at a constant y distance. During

milling, the axial depth of cut is kept constant. The same cutting process with

equal cutting time is conducted at each designed cutting speed. If the cutter

takes all the material at the specified y, an incremental step is added to y

distance and cutter performs another cut at new y distance along x-direction.

Initial and final cutting speeds are 6,000 rpm and 20,000 rpm, respectively,

and speed increment is set as 300 rpm. Thus, material is cut 48 times having

the same cutting conditions except cutting speed (or feed per minute). Thus,

frequency range that is swept is 100Hz-105Hz-. . .-295Hz-300Hz-333Hz.

x

y

z

Figure 4.1. Sketch of the process during run up test
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Table 4.1. Technical details of run up test

Material of the workpiece Al7075-T6
Type of the cutter single-insert carbide milling cutter
Cutter diameter 25 mm
Radial width of cut 5 mm
or tool engagement
Axial depth of cut 5 mm
Maximum chip thickness 150 µm
Feed rate 188 µm/rev
Cutting time 2.5 s
Type of toolholder HSK63A, Thermic (shrink-fit) toolholder
Name of Machine Mori Seiki
Type of Spindle Electro (motorized) spindle
Maximum speed of Spindle 20,000 rpm

The technical details are listed in Table 4.1. In order to observe the response

of system at high frequencies, the cutting force need to have strong harmonics,

i.e. the magnitudes of higher harmonics of cutting force should be compara-

ble to magnitude of its first harmonic. This can be satisfied by selecting low

tool engagement, hence, conducting intermittent cutting. However, the tool

engagement should not be too low otherwise magnitude of cutting force be-

comes very low. To choose a sensible immersion, time domain simulation is

carried out to estimate cutting force harmonics. For the selected engagement,

the first six harmonics of cutting force are satisfactorily strong as shown in

Figure 4.2. With six strong harmonics the frequency bandwidth of the exper-

iment becomes 100Hz to 2000Hz (333 × 6 = 2000).

4.1.1 Measurement Equipment

Acceleration sensors (accelerometers) are used to obtain the response of the

structure during milling. Since the spindle housing is stationary, they are

mounted on tip of the spindle housing. At static conditions, the tool tip FRF of
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Figure 4.2. Theoretical harmonics of cutting force at 6000 rpm
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Figure 4.3. Direct FRFs of the system in x and y directions. Solid line: Hit and
measured at tool tip. Dashed line: Hit at tool tip and measured at housing tip

the system is obtained by hitting the tool tip and measuring tool tip response.

As shown in Figure 4.3, the same vibration modes are observed when tool tip

is hit and response at housing tip is measured. So, putting the accelerometers

at housing tip is reasonable since that location does not coincide with any of

the vibration modes (within the frequency range of interest). Accelerometers,

generally, have no dominant modes which have adverse effects on measured

data.

Another instrument that can be used for improving the experiment is force

dynamometer. Force dynamometer is a device to collect force data during op-

eration. The main disadvantage of using a force dynamometer is its frequency

bandwidth. Unlike accelerometers, resonance frequencies of force dynamome-

ters are close to frequency range of interest. For frequencies higher than 1000
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Hz, the measured force values are not reliable because of having too much dis-

turbance from the modes of the dynamometer itself. Thus, force dynamometer

can measure force accurately up to 1000 Hz.

4.1.2 Use of Campbell Diagrams

Campbell diagrams or waterfall plots are tools for investigating shifts in nat-

ural frequencies of rotors during operation. For a rotor shaft with a large disk

on it and fixed from two ends, unbalance on the disk creates forced vibra-

tion response of structure while rotor rotates at a certain speed. Firstly, time

domain response of structure at a certain speed is measured, then Fourier

transform (FT) is applied to the measured time data. Thus, magnitudes of

harmonics of response data is obtained. Conducting same procedure at dif-

ferent speeds gives FTs of response data at different speeds (or frequencies

of rotation). A 3D plot is formed with x, y and z axes being spindle speed,

frequency of harmonics, and magnitude of harmonics, respectively. In other

words, it is formed by putting FTs of responses side-by-side on the same graph.

The formed 3D graph is called Campbell diagram or waterfall plot.

In this experiment, at each spindle speed forced vibration response (caused by

cutting force) of tip of spindle housing is measured, and FT of the response is

determined. 48 sets of FT analysis are put side-by-side and waterfall plot is

obtained as shown in Figure 4.4.

The dashed lines of Figure 4.4 are drawn for determining shift in natural

frequencies obtained by static tap test (hammer test). The constant slope

solid lines in Figure 4.4 represent harmonics of response that are coherent

to cutting force. For instance, the solid line which is closest to x-axis gives

the change in first harmonic of response with increasing spindle speed. The

first harmonic makes its first peak at natural frequency of first structural

mode. Since the first six harmonics of cutting force are strongest, the first

six harmonics of response have the strongest signals in Figure 4.4. Thus, it is

only possible to make comments for frequencies up to 1500Hz.
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Figure 4.4. Velocity response of housing tip in x and y directions. Horizontal
dashed lines represent natural frequencies determined by static hammer test (Figure
4.3)

From Figure 4.4 it can be inferred that modes of the SHT system do not

change significantly. In order to determine deviations from dashed lines more
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Table 4.2. Technical details of slope cutting test

Material of the workpiece Al7075-T6
Type of the cutter Cylindrical end milling cutter
Cutter diameter 16 mm
Number of flutes on the cutter 4
Type of milling Half immersion down milling
Maximum axial depth of cut 0.5 mm
Tool overhang length 116 mm
Type of toolholder HSK63, Thermic (shrink-fit) toolholder
Name of machine tool Danobat, Solaruze, SV6000
Type of spindle Electro (motorized) spindle
Maximum speed of Spindle 18,000 rpm

clearly, cutting test can be performed with finer resolution of cutting speed

increment.

4.2 Slope Cutting Test

Run up test is for determining shifts in natural frequencies of system. After

observing changes in the stiffness of the modes, changes in stability of the

milling process can be predicted. The stability of a milling process can directly

be checked by cutting sloped materials. In this experiment, stability of an

SHT system with long tool overhang is analyzed. FRF of the system has one

dominant mode which is related to long overhang of cutting tool. Technical

details of the process are listed in Table 4.2.

Before the experiment, the tap test is conducted to determine the natural

frequency of the system. The tool tip FRF is shown in Figure 4.5. As seen

in the figure, FRF of the system can be approximated as single-degree-of-

freedom system. The dominant mode of the system is around 800Hz. The

chatter frequency is close to natural frequency of the related mode. For this

76



400 600 800 1000 1200 1400 1600 1800 2000
0

1

2
x 10

−5

|F
R

F
|[

m
/
N

]

400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1
x 10

−5
R

e(
F
R

F
)

400 600 800 1000 1200 1400 1600 1800 2000
−2

−1

0
x 10

−5

frequency [Hz]

Im
(F

R
F
)

Figure 4.5. Tool tip FRF of the system. Solid: Point FRF in x-direction. Dashed:
Point FRF in y-direction

system, flexibility of the dominant mode is very high such that chatter is

always expected to occur at this mode. Hence, chatter frequency is supposed

to be close to the natural frequency of the dominant mode, it is around 800Hz.

The schematic view of the experiment is shown in Figure 4.6. Cutting takes

place along x-direction at constant y distance. The cutting speed is set con-

stant while cutting at constant y distance. The axial depth of cut first in-

creases up to mid point, then decreases until the end during milling at con-

stant speed at constant y. At each spindle speed, the response of housing

tip is measured. Similar to run up test a plot is formed by putting FTs of

response acquired at each time step side-by-side (as shown in Figure 4.6).

When the axial depth of cut exceeds a certain value, chatter occurs and val-

ues of response data become very large relative to the values of stable cutting

(forced vibration response). While chatter occurs values of FT become very

large not only at a single frequency. However, among the frequencies at which

response is high, chatter frequency is sought around 800Hz, natural frequency

of dominant mode of the system.
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Figure 4.6. Schematic view of slope cutting test

In this study, the limiting depth of cut values, alim, obtained while the depth

of cut increases (increasing slope) are listed in the results. The results ob-

tained by slope cutting test is given in Table 4.3. The predicted alim values

are determined by using FRF data (given in Figure 4.5) and the method of

Altıntaş and Budak [18].

4.2.1 Inverse Analysis Using Experimental Data

Actual limiting depth of cut values at certain speeds are obtained via slope

cutting test. For a system with single dominant mode, i.e. that can be

approximated by an equivalent SDOF system, an inverse method to predict

stability of the milling process using experimental data is introduced in this
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Table 4.3. Results of slope cutting test

Data point A B C D E F G
Spindle speed [rpm] 4200 4500 5200 6500 7500 9000 14000
Predicted alim [mm] 0.20 0.14 0.25 0.25 0.13 0.22 0.42
Measured alim [mm] 0.20 0.16 0.21 0.21 0.14 0.27 0.25
Chatter frequency [Hz] 783 791 819 769 783 806 790

section. The method is inverse analysis of method proposed by Altıntaş and

Budak [18]. The purpose of the inverse method is to find parameters (mass,

stiffness and damping) of equivalent SDOF system. Each lobe of SLD is

analyzed separately. Inverse analysis is applied to each set of experimental

data collected from each lobe, separately. In other words, for each lobe of

SLD, a different set of system parameters are found. Inverse method can be

considered as fitting curves (lobes) to experimental data.

The main assumption of the method is to consider the system to have cylin-

drical symmetry in its response. When Figure 4.5 is examined it is seen that

only damping of the modes in x and y directions are slightly different, so,

assuming cylindrical symmetry is reasonable. Then, transfer function matrix

(tool tip FRF) identified at the cutter-workpiece contact zone becomes as in

Equation 4.1.

[

Φ(iω)
]

=

[

Φxx(iω) Φxy(iω)

Φyx(iω) Φyy(iω)

]

(4.1)

where,

Φxx(iω) : FRF obtained by exciting and measuring in x-direction

Φyy(iω) : FRF obtained by exciting and measuring in y-direction

Φxx(iω) = Φyy(iω) = Φ - cylindrical symmetry

Φxy(iω) = Φyx(iω) = 0 - uncoupled modes
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Frequency response function (FRF) of a SDOF system, Φ, is

Φ =
1

m(ω2
n − ω2 + i2ζωnωc)

(4.2)

where,

m : modal mass

ωn : natural frequency

ζ : damping ratio

So, eigenvalues become as

Λ = − 1

2a0

(

a1 ±
√

a2
1 − 4a0

)

(4.3)

where,

a0 = Φ2(αxxαyy − αxyαyx)

a1 = Φ(αxx + αyy)

Λ = αeq
︸︷︷︸

αR±iαI

1

Φ
(4.4)

where, αeq is the equivalent directional coefficient of the process and it is

αeq = − 1

2(αxxαyy − αxyαyx)

[

αxx + αyy ±
√

(αxx + αyy)2 − 4(αxxαyy − αxyαyx)

]

(4.5)

Expressing Equation 4.4 in complex form gives,

Λ =
αR ± iαI

G + iH
=

(αR ± iαI)(G − iH)

G2 + H2
(4.6)
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First and second eigenvalues are written from Equation 4.6 as

Λ1 =
(αR − iαI)(G − iH)

G2 + H2
=

[(αRG − αIH) + i(−αRH − αIG)]

G2 + H2
(4.7a)

Λ2 =
(αR + iαI)(G − iH)

G2 + H2
=

[(αRG + αIH) + i(−αRH + αIG)]

G2 + H2
(4.7b)

where,

αeq : equivalent directional coefficient

αR : real part of αeq

αI : imaginary part of αeq

G : real part of FRF of SDOF system

H : imaginary part of FRF of SDOF system

G =
ω2

n − ω2
c

m
(
(ω2

n − ω2
c )

2 + 4(ζωnωc)2
)

H = − 2ζωnωc

m
(
(ω2

n − ω2
c )

2 + 4(ζωnωc)2
)

κ is defined as

κ =
ΛI

ΛR

=
−αRH ± αIG

αRG ± αIH
=

−2ζωnωcαR ∓ (ω2
n − ω2

c )αI

−(ω2
n − ω2

c )αR ± 2ζωnωcαI

(4.8)

Solving the equation gives,

C1(ω
2
n − ω2

c ) = C22ζωnωc (4.9)

where, C1 and C2 are constants,

C1 = −καR ± αI

C2 = −αR ∓ καI

In Equation 4.9 κ is defined in terms of known variables as

κ =
sin(ωcT )

1 − cos(ωcT )
(4.10)
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where, T is tooth passing period of cutter ( period of spindle rotation
number of flutes on cutter

).

κ is a function of tooth passing period, T , and chatter frequency, ωc. Equation

4.9 shows that ωn and ζ depend on ωc, T , αR and αI . In a typical chatter

experiment ωc, T , and alim can be determined. αR and αI are calculated

quite accurately for milling processes, so, they are also known. Therefore, by

conducting two chatter experiments (e.g. test of cutting slopes) in same lobe

ωn and ζ of system can be predicted. It is important to keep the engagement

same during experiments, since directional coefficients depend directly on tool

engagement. Thus, only cutting speed and depth of cut is changed (as done

in test of cutting slopes).

The only remaining system parameter is modal mass, m. It is determined

from the limiting depth of cut, alim, relation.

alim = −2πΛR

NKt

(1 + κ2) (4.11)

where, ΛR is real part of eigenvalue, N is number of flutes (teeth) on cutter,

and Kt is tangential cutting coefficient.

The real part of eigenvalues is determined from Equation 4.7 as below

ΛR =
αRG ± αIH

G2 + H2
(4.12)

In order to determine modal mass, it is extracted from G and H before putting

into Equation 4.11. Λ′
R is defined as

Λ′
R =

ΛR

m
=

−(ω2
n − ω2

c )αR ± 2ζωnωcαI

(ω2
n − ω2

c )
2 + 4(ζωnωc)2

(4.13)

Inserting variables into Figure 4.11and rearranging the equation gives the

expression for modal mass.

m = −NKt

2π

alim

Λ′
R(1 + κ2)

(4.14)

Modal mass depends on all experimental data. Both of the experiments give
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close values of m, so Equation 4.14 is solved after determining ωn and ζ from

Equation 4.9.

4.2.2 An Application

The inverse method is applied to the results of slope cutting test (presented in

Table 4.3). Analytical stability lobe diagram (SLD) of the system including

chatter test results is presented in Figure 4.7.
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Figure 4.7. Analytical SLD computed based on [18] (solid curve) and slope cutting
tests results (data points)

Experimental data points A, B and C are on the second lobe of the SLD. D,

E and F are on first lobe of the SLD. G is on zeroth lobe. The data points at

same lobes are analyzed separately using inverse method. Since the number

of data points on zeroth lobe is less than two, point G could not be used in the

analysis. The first and second lobes of Figure 4.7 are re-plotted with respect

to the results of inverse method. The results of inverse chatter analysis using
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Figure 4.8. Comparison of analytical (solid curve) and re-plotted (dashed curve)
SLDs

data in Table 4.3 are given in Table 4.4.

The obtained system parameters are used for re-plotting lobes of the SLD

(shown in Figure 4.8). Modal mass values of SDOF systems representing both

lobes are tried to kept almost constant during inverse analysis. Therefore,

damping and stiffness values of SDOF system change for fitting stability lobes

to experimental data. Parameters of the system are very sensitive to changes

in chatter frequency values. The measured values of chatter frequency are

Table 4.4. Results of inverse chatter analysis using results of test of cutting slopes

Identified parameters First lobe Second lobe
of SDOF system (using D, E and F) (using A, B and C)
Natural frequency [Hz] 778 792
Damping ratio 0.0265 0.0250
Modal mass [kg] 0.0766 0.0764
Modal stiffness [N/m] 1.83 · 106 1.89 · 106
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Figure 4.9. Comparison of analytical (solid curve) and re-plotted (dashed curve)
SLDs including prediction for zeroth lobe

not as accurate as limiting depth of cut and cutting speed, and parameters

found are not very sensitive to changes in limiting depth of cut and cutting

speed. So, minor change is applied to chatter frequency values in order to get

reasonable values for system parameters such as constant modal mass.

The reduction of stiffness from the second lobe to the first lobe is 0.06·106N/m.

If the same reduction is applied from first lobe to zeroth lobe, and the stiffness

of zeroth lobe is taken as 1.77 ·106N/m, and other parameters are taken same

as parameters of the first lobe, the zeroth lobe fits the remaining data point

as shown in Figure 4.9. However, if there were another data point on zeroth

lobe, fit could be done more accurately.

From the two experimental study conducted in this chapter, it can be inferred

that natural frequencies of spindles (SHT systems of the machines) do not

change so much during operation. However, even small changes in dynamics

of the SHT system have influence on chatter stability of the milling process.

If changes in natural frequencies are considerable (as in rotor dynamics), they

can be determined by conducting run up test. Since the error of measurement

data of run up test is considerable, it can be hard to determine whether the
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system characteristics change during milling. Slope cutting test directly de-

termines chatter stability of the process. For systems with single dominant

modes, inverse chatter analysis can be conducted to determine changes in

system dynamics. For the machine tool used in the experiment, drop in nat-

ural frequency is observed for speeds above 10,000 rpm. Although there has

not been significant changes observed in the FRFs for these machines used

in cutting tests, it has been reported that the FRFs of the electro-spindles

(motorized spindles) change significantly beyond 12,000 rpm due to real time

preload adjustments of bearings.
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CHAPTER 5

CONCLUSION

In this study, the effects of nonlinearity in the bearing supports of a typical

motorized spindle-toolholder-tool (SHT) system on the chatter stability of the

milling process are investigated. For this purpose, the analytical model of a

SHT system suggested in an earlier study is developed further by including

the nonlinear model of bearing supports. Changes in stability lobe diagram

(SLD) due to nonlinear effects are studied. As nonlinearity, the nonlinear stiff-

ness at bearings are considered. The changes in SLD due to the magnitude of

the cutting force involved in the milling process, coefficient of nonlinearity of

bearings, and number of flutes on the end milling cutter are considered. Fur-

thermore, an experimental study is also conducted, and changes in dynamics

of the SHT system during milling process are determined by carrying out

cutting experiments on particular machines. Run up test involving chatter-

free cutting and slope cutting test involving chatter are conducted to observe

changes in dynamic parameters of the SHT system. Effects of the milling pro-

cess are considered in addition to nonlinearities of the structure. Afterwards,

an inverse chatter analysis is performed to analyze dynamics during milling

using measured data.

5.1 Mathematical Model and Solution Method

The SHT system is modeled as Timoshenko beam elements coupled to each

other. Frequency response function (FRF) matrix of each beam element is

found using continuous beam model (CBM). CBM is an accurate method to
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determine the response of a beam element of any length. FRF matrix of the

SHT is found by coupling FRF matrices of Timoshenko beam elements to each

other. In order to keep the points of bearing locations in the coupled FRF

matrices, a modified FRF coupling method is applied. Thus, it is possible to

keep the connection points in the coupled system formulation after coupling

two elements.

The angular contact ball bearings are modeled as cubic stiffness elements

composed of linear and nonlinear parts. Linear FRF of the SHT is obtained

by coupling linear part of the stiffness with the previously obtained FRF

matrix of the SHT system. The linear stiffnesses of bearings are coupled to

the SHT at the points of bearing locations which were kept during the coupling

of FRF matrices of the SHT system. The remaining nonlinear force vector

representing nonlinear reaction forces of the bearings is put into response-

dependent quasi-linear via describing function theory.

The equation of motion of the system is solved in frequency domain with

numerical methods without path following, and jumps are observed in the

frequency response function (FRF) of the SHT system when there is high

nonlinearity. Therefore, a special numerical method, Newton’s method with

arc length continuation (ALC) method, is utilized in numerical solution of

the equations. As a result, instead of observing discontinuities (jumps), turn

points (turn-backs) are obtained in the frequency response curve (FRF) of the

SHT. Since jumps in an FRF result in jumps in obtained SLD, it is observed

that it is not possible to carry out stability analysis using FRFs having jumps.

This difficulty is overcome by using Newton’s method with ALC, with which

the response around the frequencies at which jumps occur can easily be ob-

tained. Thus, conducting stability analysis becomes possible using the FRFs

with turn-backs.

Convergence of Newton’s method with ALC method mainly depends on the

selected error tolerance and nominal number of iterations. This brings diffi-

culty while obtaining results for different cases. Another drawback of using

Newton’s method with ALC is that sometimes obtaining results might take
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too long compared to using numerical methods without path following. Com-

putation time naturally depends on how much the nonlinearity affects the

response of the system. Higher nonlinearity causes sharper turns in the FRF,

thus needs more solution steps at the turning points of the FRF.

5.2 Effect of Magnitude of the Cutting Force

The cutting force (cutting load) applied at tool tip of the SHT in transverse

direction is assumed as a harmonic force with constant magnitude. Setting the

coefficient of nonlinearity constant, increase in the magnitude of the force is

investigated and it is observed that an increase in force increases displacements

of the SHT system. Increase in the displacement at the bearing locations

increases the effect of the nonlinearity defined. The cubic nonlinearity used

in this thesis has a hardening effect on the structure. In other words, its

stiffness increases with thane increased displacement. Since the bearings in

the system have nonlinearity, the modes related to the bearings are affected by

the increased cutting force. Modes of the SHT system related to the stiffness

of bearings are rigid body modes of the SHT. Natural frequencies of the rigid

body modes shift to the right with an increase in magnitude of cutting force.

Since cubic nonlinearity is not dominant at low response level, only peaks of

the rigid body modes shift to the right. This special condition of shifting is

called snap-through.

The same snap-through behavior is seen in the SLD of the milling process.

The lobes related to the rigid body modes shift to the right. The left sides of

the lobes shifts more than the right sides. The lobes related to the modes other

than rigid body modes do not shift to the right, they stay almost constant.

Therefore, increase in the cutting force shifts the stable zones falling to the

right of the lobes staying constant in the SLD to the right because of the

hardening effect. Stable zones falling to the left of the unaffected lobes stay

almost constant while getting little narrower. For the nonlinearity used in the

case studies, 50% increase in cutting force magnitude causes the most affected
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stable zone shift around 250 rpm to the right.

5.3 Effect of Coefficient of Nonlinearity of Bear-

ing Stiffness

Similar conclusions made for increased cutting force can be made for increased

coefficient of cubic nonlinearity. Increasing cutting force brings about in-

creased displacements at the bearing locations. Similarly, increasing coefficient

of nonlinearity while keeping cutting force constant increases the sensitivity of

the displacement amplitude-dependent stiffness to increased response. Higher

coefficient means the nonlinearity is more dominant at lower response levels.

50% increase in coefficient of nonlinearity of bearing stiffness causes the most

affected stable zones shift about 125 rpm to the right.

5.4 Effect of Number of Flutes on the Cutter

The number of flutes (or number of teeth) has a different effect on the stability

of the process. Increased number of teeth on the cutter decreases the effect of

nonlinearity on the SLD. Increased number of flutes increases the number of

lobes needed to consider for the range of interest (e.g. between 5,000 Hz and

20,000 Hz). The effect of shift in the FRF of the SHT is lower at higher lobes.

At higher lobes frequency of rotation of spindle is much lower than frequency

of vibration waves imprinted on the cut arc. Thus, if the lobe number is higher

at the same spindle speed the effect of change in FRF is lower because of the

higher difference between frequency of excitation and frequency of rotation.

Quadrupling number of flutes decreases the shift in the lobes corresponding

to rigid body modes. Almost no shift occurs in SLD after increasing number

of flutes from one to four, even when highest nonlinearity used is applied.

Physical meaning of lobe number on a SLD is that it determines phase differ-
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ence between waves on left and generated surfaces while system vibrates at

chatter frequency (cutting conditions are selected just on stability lobe curve).

Higher the phase difference, higher the tooth passing period and higher the

lobe number at fixed chatter frequency. Therefore, increase of lobe number

(tooth passing period) results in decrease of spindle speed. At higher lobe

numbers (at left side of SLD) tooth passing frequency is higher, thus spindle

speed is lower during chatter. For instance, if a possible shift in natural fre-

quency of a system shifts tooth passing period at first lobe by T1, it will shift

tooth passing period of second lobe about 2 ·T1. Shift in tooth passing period

is higher on second lobe than on first lobe. Therefore, shift in frequency of

second lobe is lower than of first lobe.

For a fixed interested spindle speed range on SLD, say 10,000-15,000 rpm,

corresponding lobe number in the interested range is higher for higher number

of flutes on cutter (for higher chatter frequency). Higher lobe is affected less

by a frequency shift in the first lobe. Therefore, for higher number of flutes,

SLD is expected to be affected less in the spindle speed range of interest.

5.5 Assessment of Experimental Study

Two experimental methods, run up and slope cutting tests, are investigated

in this study. Both of the experiments involve cutting, so, the test results

include the effects of the milling process. Some electro-spindles used in the

industry have preload mechanism changing during milling process depending

on the conditions of cutting. For such electro-spindles change in the SLDs

can be considerable due to real time preload adjustment of bearings. For the

spindles of the machines tested there has not been a significant change in

natural frequencies. Results of run up test are almost confirmed with results

of conducted FRF measurements. Changes in dynamics of the system is so

small that errors involving in run up test makes it hard to make comments.

Results of cutting slopes test is clearer as the SLD of the system is obtained

directly. For systems having only one dominant modes (e.g. SHT with long
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tool overhang) inverse chatter analysis is applied to obtain modal parameters

representing the system. It is observed that even 14 Hz change in natural

frequency of the system may lead to 500 rpm shift of SLD to the left (for

speeds above 10,000 rpm). This shift might be because of the speed-dependent

characteristics of ball bearings or real time preload adjustment of ball bearings.

5.6 Suggestions for Future Studies

The bearing model used in this study has one degree of freedom. It is con-

sidered to have hardening effect on the structure. However, in some cases

because of the bending moment applied on the bearings, they might show

softening effect (decreased stiffness). Bearing models used in literature can

be implemented into this study to have more realistic results. However, the

solution algorithm should be modified to be used in order to solve equations

of motion in frequency domain.

The solution method used in this thesis can be improved to be faster and

more stable. This can be done by forcing the numerical continuation method

to converge at each step by using more effective algorithm such as assigning a

predictor for the direction of the solution path. Furthermore, numerical path

following can only be applied at the frequency ranges where turn-backs occur

in the solution curve. Thus, computation time can be decreased significantly.

The inverse chatter analysis used may be modified for predicting stability

of systems involving two dominant modes instead of one. An optimization

algorithm can be implemented for fitting best curve to experimental data and

obtaining system parameters accordingly.
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[16] Y. Altıntaş and M. Weck. Chatter stability of metal cutting and grinding.

Annals of the CIRP, 53(2):619–642, 2004.

[17] I. Minis and R. Yanushevsky. A new theoretical approach for the predic-

tion of machine-tool chatter in milling. Transactions of ASME - Journal

of Engineering for Industry, 115(1):1–8, February 1993.
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[20] Y. Altıntaş. Analytical prediction of three dimensional chatter stability

in milling. JSME International Journal Series C Mechanical Systems,

Machine Elements and Manufacturing, 44(3):717–723, 2001.

94



[21] M.A. Davies, J.R. Pratt, B. Dutterer, and T.J. Burns. Stability prediction

for low radial immersion milling. Transactions of ASME - Journal of

Manufacturing Science and Engineering, 124(2):217–225, May 2002.
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