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ABSTRACT

CENTRALIZERS OF FINITE SUBGROUPS IN SIMPLE
LOCALLY FINITE GROUPS

Ersoy, Kivanc
Ph. D., Department of Mathematics
Supervisor: Prof. Dr. Mahmut Kuzucuoglu
Co-Advisor: Assoc. Prof. Dr. Ayse Berkman

August 2009, 90 pages

A group G is called locally finite if every finitely generated subgroup of G
is finite. In this thesis we study the centralizers of subgroups in simple locally
finite groups. Hartley proved that in a linear simple locally finite group, the fixed
point of every semisimple automorphism contains infinitely many elements of
distinct prime orders. In the first part of this thesis, centralizers of finite abelian
subgroups of linear simple locally finite groups are studied and the following result
is proved: If G is a linear simple locally finite group and A is a finite d-abelian
subgroup consisting of semisimple elements of G, then Cg(A) has an infinite
abelian subgroup isomorphic to the direct product of cyclic groups of order p; for

infinitely many distinct primes p;.

Hartley asked the following question: Let G be a non-linear simple locally
finite group and F' be any subgroup of G. Is Cg(F') necessarily infinite? In the
second part of this thesis, the following problem is studied: Determine the non-
linear simple locally finite groups G and their finite subgroups F' such that C(F")
contains an infinite abelian subgroup which is isomorphic to the direct product
of cyclic groups of order p; for infinitely many distinct primes p;. We prove the

following: Let G be a non-linear simple locally finite group with a split Kegel

v



cover K and F' be any finite subgroup consisting of K-semisimple elements of G.
Then the centralizer C(F') contains an infinite abelian subgroup isomorphic to

the direct product of cyclic groups of order p; for infinitely many distinct primes

Di-

Keywords: Locally finite group, simple group, centralizer.



oY/

BASIT YEREL SONLU GRUPLARDA SONLU
ALTGRUPLARIN MERKEZLEYENLERI

Ersoy, Kivanc
Doktora, Matematik
Tez Yoneticisi : Prof. Dr. Mahmut Kuzucuoglu
Ortak Tez Yoneticisi: Doc. Dr. Ayse Berkman

Agustos 2009, 90 sayfa

Sonlu sayida eleman tarafindan tiretilen her altgrubu sonlu olan bir G grubuna
yerel sonlu grup denir. Bu tez basit yerel sonlu gruplarda altgruplarin merke-
zleyenleriyle ilgilidir. Hartley, lineer basit yerel sonlu bir grupta her yari-basit
otomorfizmanin sabit noktalarinin birbirinden farkl asal mertebeleri olan sonsuz
sayida eleman icerdigini kanitladi. Bu tezin ilk boliimiinde, lineer basit yerel sonlu
gruplarda sonlu degismeli altgruplarin merkezleyenleri incelenmis ve agagidaki
sonuc elde edilmigtir: Eger G lineer basit yerel sonlu bir grup ve A yar1 basit ele-
manlardan olugan, sonlu, d-degigmeli bir altgrupsa Cz(A)nin sonsuz sayida bir-
birinden farkli p; asali icin, p; mertebeli devirli gruplarin direk carpimina egyapil

sonsuz, degismeli bir altgrubu vardir.

Hartley agagidaki soruyu sordu: G non-lineer, basit, yerel sonlu bir grup olsun
ve F' altgrubu G'nin herhangi bir altgrubu olsun. Cg(F') her zaman sonsuz bir
grup mudur? Bu tezin ikinci kisminda caligilan problem: Hangi non-lineer ba-
sit yerel sonlu G gruplarinda ve hangi sonlu altgruplary F' icin Cg(F')’in sonsuz
sayida birbirinden farkli p; asali icin, mertebesi p; olan devirli gruplarin direk
carpimiyla egyapili degismeli bir altgrubu vardir sorusuna cevap bulmaktir. Bu

soru ile ilgili olarak asagidaki sonuc kanmitlandi: G grubu K split Kegel ortiistine

vi



sahip, non-lineer, basit, yerel sonlu bir grup ve F' altgrubu K-yaribasit (semisim-
ple) elemanlardan olugan sonlu bir altgrup olsun. O zaman, Cg(F)nin son-
suz mertebeli Oyle bir degismeli altgrubu vardir ki, bu altgrup sonsuz sayida
birbirinden farkli p; asali icin, p; mertebeli devirli gruplarin direk carpimina

esyapilidir.

Anahtar Sozciikler: Yerel sonlu grup, basit grup, merkezleyen.
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CHAPTER 1

INTRODUCTION

A group G is called locally finite if every finitely generated subgroup of G is
finite. In this thesis, we prove some results on the centralizers of finite subgroups
in simple locally finite groups.

The study of centralizers of elements in simple groups was motivated by
Brauer-Fowler Theorem and it had a key role in the classification of finite simple
groups. Since every finite group has a composition series, finite simple groups
are the building blocks to understand the structure of a finite group. Feit and
Thompson showed in [8] that every group of odd order is solvable. Hence, every
finite non-abelian simple group must have even order, so, by Cauchy Theorem,
every finite non-abelian simple group has an element of order 2. The elements of
order 2 are called involutions. Centralizers of involutions are necessarily proper
subgroups of a finite simple group. Brauer and Fowler proved in [3] that the
order of a finite simple group is bounded by a function of the order of the cen-
tralizer of an involution. This theorem gave direction to group theorists during
the 20th century and the classification of finite simple groups was completed in
1980’s. According to the classification, a finite simple group belongs to one of the

following families:
1. Cyclic groups Z, of prime order p,
2. Alternating groups A, of degree greater than 4,

3. Simple groups of Lie type (Chevalley and twisted Chevalley groups over
finite fields),

4. 26 sporadic groups.

Locally finite groups are infinite groups with a finiteness condition, hence it is

possible to use some information about finite groups to understand the structure



of locally finite groups. Since finite simple groups are classified, it is natural to
ask if it is possible to classify all infinite simple locally finite groups too. The
experts think that we are far from an answer to this question. By [19, Corollary
6.12], there exist 2% non-isomorphic countable simple locally finite groups which
can be obtained as direct limits of finite alternating groups. However, it may be
possible to obtain information about some “nice” families of simple locally finite
groups, and try to generalize the scope of this.

A group G is called linear if it has a faithful representation into G L, (k) for
some natural number n and for some field k. Linear simple locally finite groups
were classified independently by Belyaev, Borovik, Hartley-Shute and Thomas
(see [1, 2, 15, 37]). They proved that a linear simple locally finite group is a
Chevalley or a twisted Chevalley group over a locally finite field. By Theorem
2.31, we will see that a linear simple locally finite group over a locally finite field
k of characteristic p can be written as a union of finite simple groups of the same
Lie type over finite fields of characteristic p.

Hartley and Kuzucuogu proved in [14, Theorem A2] that in an infinite locally
finite simple group, the centralizer of every element is infinite. Hartley proved
a generalization of the Brauer-Fowler Theorem in [10, Theorem A’], namely, he
proved if GG is a finite simple group with an automorphism « of order n with at
most k fixed points, then the order of G is bounded by a function of n and k. By
using this result, he proved in [10, Corollary A1] that if G is a locally finite group
containing an element with finite centralizer, then GG contains a locally solvable
normal subgroup of finite index. By using the generalization of Brauer-Fowler
Theorem ([10, Theorem A']), Hartley also proved in [10, Theorem C] that if G
is a simple locally finite group of Lie type over an infinite locally finite field of
characteristic p, and « is an automorphism of coprime order with p, then there
are infinitely many elements of distinct prime orders, which are fixed by «.

Hartley asked the following question in [11]:

Question 1.1. Let G be a non-linear simple locally finite group and F' be a finite
subgroup of G. Is Cq(F) necessarily infinite?

In this work, our starting point was this question. First, we considered cen-

tralizers of finite subgroups in linear simple locally finite groups. In linear case,



by Remark 4.2 we will see that, if G is a linear simple locally finite group, it

is always possible to find a finite subgroup F' with trivial centralizer. In fact,

in Section 4.2, for each n, we will present a method to construct a finite abelian

subgroup of PSL, (k) consisting of semisimple elements whose centralizer is itself.
So, for the linear case the question turns into the following:

Question 1.2. Let G be a linear simple locally finite group. Determine all the

finite abelian subgroups A consisting of semisimple elements such that Cg(A)

contains an infinite abelian subgroup isomorphic to the direct product of cyclic
groups of order p; for infinitely many primes p;.

For the linear case, we need the following definition:

Definition 1.3. Let G be a simple linear algebraic group. A finite abelian sub-
group A consisting of semisimple elements of G is called a d-abelian subgroup if
it satisfies one of the following:

1. The root system associated with G has type A; and Hall--subgroup of A is
cyclic where w is the set of primes dividing | + 1

2. The root system associated with G has type By, C;, D; or G and the Sylow
2-subgroup of A is cyclic.

3. The root system associated with G has type Eg, E7 or Fy and the Hall-{2,3}-
subgroup of A is cyclic.

4. The root system associated with G has type Eg and the Hall-{2, 3, 5}-subgroup
of A is cyclic.

We proved the following result:

Theorem 1.4. Let G be a locally finite simple group of Lie type defined over an
infinite locally finite field of characteristic p. Let A be a d-abelian subgroup of G.
Then Cg(A) contains an infinite abelian subgroup which is isomorphic to a direct

product of cyclic groups of order p; for infinitely many prime p;

A group G is called Cernikov if it has a normal subgroup H of finite index
such that H = Drj.,Cpe for a finite set of primes {p1,...p,}. Sunkov and Kegel-
Wehrfritz proved independently in [35] and [19, 20] respectively that a locally
finite group satisfying minimal condition on subgroups is necessarily a Cernikov

group. By its definition, a Cernikov group contains only finitely many elements



of distinct prime orders. Hence, in Theorem 1.4 we proved that in a locally finite,
simple group of Lie type, centralizer of a d-abelian subgroup can not be Cernikov,
that is, it can not satisfy minimal condition.

The first part (Chapter 4) of this thesis is about this result. In the second
part, we study the centralizer of finite subgroups in non-linear simple locally finite

groups. Here, we study a different version of Hartley’s Question 1.1 :

Question 1.5. Let G be a non-linear simple locally finite group and F be a finite
subgroup. Does Cq(F) contain an infinite abelian subgroup isomorphic to the

direct product of cyclic groups of order p; for infinitely many distinct primes p; ¢

The answer of this question is not positive in the most general case, because
Meierfrankenfeld proved in [23] that there exists a non-linear simple locally finite
group G with an element x such that the centralizer C(z) is a p-group. Hence, we
restricted our attention to a smaller class of simple locally finite groups, namely,
we studied simple locally finite groups with a split Kegel cover. Recall that if
G is a locally finite group, a set {(G;, N;) | @ € I} consisting of pairs of subgroups
of G satisfying N; < G, is called a Kegel cover of GG provided that G can
be written as the union of G,’s, the factors G;/N; are finite simple groups and
G; N N;z1 = 1 (For the details see Section 2.2). Here, observe that G;/N; is a
finite simple group, so it is either an alternating group, or a simple groups of
Lie type or a sporadic group. Since there are finitely many sporadic groups, by
passing to a subsequence we may assume that the factors are either alternating

groups or simple groups of Lie type. (See Remark 2.29 for details.)

Definition 1.6. A Kegel cover K = {(Gi, N;) : i € I} is called a split Kegel
cover if Cg,/n,(KN;/N;) = Cq,(K)N;/N; for every subgroup K of G;.

We need a general notion of a semisimple element in a simple locally finite

group:

Definition 1.7. Let G be a non-linear simple locally finite group and



be a Kegel cover for G. An element x in G is called K-semisimple if K is a
Kegel cover consisting of alternating groups or G;/N; is a finite simple group of

Lie type and xN; is a semisimple element of G;/N; for every i € I.
The main result of this thesis is the following:

Theorem 1.8. Let G be a non-linear simple locally finite group with a split Kegel
cover IC and F' be any finite subgroup of G consisting of K-semisimple elements.
The centralizer Cq(F) contains an infinite abelian subgroup isomorphic to a direct

product of cyclic groups of order p; for infinitely many prime p;.

In Chapter 5, the proof of this result is presented.
Hartley studied fixed points of semisimple automorphisms in linear simple
locally finite groups. In Chapter 3, we present some results about fixed points of

automorphisms in infinite alternating groups.



CHAPTER 2

PRELIMINARIES

In this chapter we will give the basic definitions and primary results which we

will use in Chapter 4 and Chapter 5.

2.1 Linear Algebraic Groups

In this section, the main definitions and basic results on linear algebraic groups

will be summarized. Let k denote an algebraically closed field of characteristic p.

Definition 2.1. An algebraic group G is an algebraic variety together with a

group structure such that the maps

w:G xG— G
(9, h) — gh

and

1:G— @G

g— 9"

are morphisms of varieties.

If an algebraic group G is an affine variety (that is, the set of zeros of finitely

many polynomials in k™), then G is called an affine algebraic group.

Remark 2.2. Let G = GL(n,k) denote the set of all n x n matrices over an
algebraically closed field k£ with non-zero determinant. Clearly, for every A € G,

the function det A is a polynomial over k in n? variables.

GLn (k) = {(ai;) € k™" : det (ai;) # O}



To show that G is an affine variety, we need a polynomial over k£ whose zero
set is exactly G. Consider f(t,a11,a12...,0n,) = t.det A — 1. Clearly, f is a
polynomial in n° + 1 variables over k. Now, G = GL,(k) = {(a;;) € k" :
f(t,ai1,a12. .., ap,) = t.det A — 1 = 0} defines GL, (k) as the zero set of a
polynomial n? + 1 variables over k. Hence, G is a closed subset of A™**!, that is,
it is an affine variety. Also, the usual group operations on GG are morphisms of

this variety, that is, G is a linear algebraic group.

An algebraic group G is called a linear algebraic group if it is a closed
subgroup of GL, (k) for some n. A closed subset of an affine variety is also an
affine variety. By Remark 2.2, GL,(k) is an affine algebraic group, so linear
algebraic groups, that is, the closed subgroups of GL, (k) are affine algebraic
groups. Conversely, by [31, Theorem 2.3.7], every affine algebraic group can
be embedded in GL,(k) as a closed subgroup for some n, that is, every affine

algebraic group is a linear algebraic group.

Definition 2.3. Let G be a linear algebraic group. The irreducible component
of G containing 1 is called the identity component and it is denoted by G°. A

linear algebraic group G is called connected if G = G°.
Proposition 2.4. [17, Section 7.3, Proposition] Let G be an algebraic group.

1. G° is a normal subgroup of finite index in G and its cosets are the connected

wrreducible components of G.
2. If H 1s a closed subgroup of finite index in G then H contains G°.

Definition 2.5. An algebraic group G is stmple if it has no proper non-trivial

closed connected normal subgroup.

Example 2.6. The group of n x n matrices over k with determinant 1, which is
called the Special Linear Group, denoted by SL,(k), is a simple algebraic group.
One can see that the abstract group SL,(k) has a proper non-trivial normal
subgroup, namely the center Z(SL,(k)). But, Z(SL,(k)) is not connected.

Theorem 2.7. [17, Section 29.5, Corollary] If G is a simple algebraic group with

finite center Z then G/Z is simple as an abstract group.



By [30, Section 4.2], an algebraic group G is called an abelian variety if the
algebraic variety G is projective and irreducible. The following result of Chevalley
shows that, simple algebraic groups are affine, that is, by Remark 2.2 simple

algebraic groups are linear algebraic groups:

Theorem 2.8. [30, Section 4.2, Theorem C| Let G be an algebraic group over a
perfect field k. Then G has a unique normal closed subgroup N such that N is

an affine algebraic group and G/N is an abelian variety.

Hence, the study of simple algebraic groups reduces to the study of simple

linear algebraic groups.

Remark 2.9. By Proposition 2.4, if G is a simple algebraic group then G has
no closed connected proper non-trivial normal subgroups. By Corollary in [17],
(Section 29.4, page 182) if GG is simple as an algebraic group then every proper
normal subgroup of the abstract group is contained in the center. So, if G is
a simple algebraic group over an algebraically closed field any proper normal
subgroup of the abstract group has infinite index. Then G° is necessarily equal

to G, since it has finite index. Hence, simple algebraic groups are connected.

By [17, Section 19.5, page 125], every algebraic group G has a unique largest
solvable closed subgroup K. The identity component K° of K, is the largest
connected normal solvable subgroup of G, and it is called the (solvable) radical
of G and denoted by R(G).

Definition 2.10. A non-trivial connected algebraic group is called semisimple

if its (solvable) radical is trivial.

By [17, Section 19.5, page 125], the subgroup of R(G) consisting of unipotent
elements is a normal subgroup of GG, which is called the unipotent radical of
G (and denoted by R,(G)). The unipotent radical of G is the largest connected

normal unipotent subgroup of G.

Definition 2.11. A non-trivial connected algebraic group is called reductive if

its unipotent radical is trivial.



Example 2.12. We know that a proper normal subgroup of SL, (k) is contained
in its center (See Page 168, [17]). So, if it is connected, then it must be trivial.
Hence, SL(n, k) is semisimple. In fact, every simple algebraic group is necessarily
semisimple. Similarly, semisimple algebraic groups are reductive.

Let T be a torus in GL(n,k) where k is an algebraically closed field, that
is, T" is a subgroup which is isomorphic to a direct product of copies of k*. It
is a linear algebraic group. Now, every element of T' is conjugate to a diagonal
matrix, that is, 7' consist of semisimple elements. Hence, R,(T) = 1, that is, T

is a reductive group, but it is not semisimple since R(T) = T.

We know that every linear algebraic group is isomorphic to a closed subgroup
of GL(n, k) for some n. Examples of simple linear algebraic groups include the
classical groups, SLiy1(k), Spa(k), SOgy1(k), SO (k). The parameter [ denotes
the dimension of the subgroup of diagonal matrices (maximal torus) in the cor-
responding group, and called the rank of the group.

Now, we will define the fundamental group of a simple linear algebraic group
(for details, see [28, Page 53]).

Definition 2.13. [28, Page 53] Let T be a maximal torus of the simple linear
algebraic group G over the algebraically closed field of characteristic p. Consider
the character group X (T) = Hom(T,k*) = Z" where n is the dimension of T
Then X(T') is a lattice in X(T)g = X(T) @, Q, containing the root lattice,

Choose a positive definite inner product X (T')q which is invariant under the
Weyl group.

An element A € X(T)q such that (A, o) = 2(\, a){(a, @)™ for all roots a is
called a weight.

Let A be the set of weights, which forms another lattice in X (T)q. So, ZX <
X(T) < A. Here, the finite group N/ZY is called the fundamental group of
G.

Now, if X(T') = A, then G is called simply connected, if X(T') = ZX, then
G is called adjoint type.
Simple linear algebraic groups are classified by Dynkin diagrams. A connected

semisimple group is simple iff its Dynkin diagram is connected. The possible



connected Dynkin diagrams define possible types of simple linear algebraic groups
over algebraically closed fields: A;, By, C;, Dy, Eg, Fr7, Eg, G, Fy.

In Table 2.1, the corresponding adjoint and simply connected groups, obtained
as fixed points of some Frobenius maps (see Section 2.3) in classical simple linear
algebraic groups are given. We will discuss how to obtain finite simple groups of
Lie type from simple linear algebraic groups in Section 2.3.

We will end the discussion about linear algebraic groups with definition of
semisimple and unipotent elements and the Jordan decomposition:

Let G be a simple linear algebraic group over an algebraically closed field of

characteristic p.

Definition 2.14. [5, Section 1.4] An element x € G < GL, (k) is called semisim-
ple if it is diagonalizable. An element x is called unipotent if all of its eigenvalues

are 1.

Remark 2.15. Here, since the group G is defined over a field of characteristic
p, we can further say that an element u is unipotent iff |u| = p™ for some m and

an element s is semisimple iff (|s],p) = 1.
Theorem 2.16. [17, Lemma B, page 96] Let x € GL, (k).

1. There exists unique xs,z, € GL,(k) satisfying x = xsx, = x,x5 where x4

18 semaisimple, ., is unipotent.
2. Ify € Cg(x), theny € Cg(xs) and y € Cg(xy,).

The unique expression x = z,x, or x = x,x, is called the Jordan decomposi-

tion.

2.2 Simple Locally Finite Groups

In this section, we collect background information on simple locally finite
groups.

First, we consider some examples of simple locally finite groups:

10



Example 2.17. Let €2 be an infinite set. The group of all even permutations
on the set 2, which is denoted by Alt(€2), is a simple locally finite group with
cardinality |€2].

Example 2.18. A field is called locally finite if every finitely generated subfield
is finite. Let F be an infinite locally finite field. The group PSL,(F) is a simple
locally finite group.

Example 2.19. Let F be a finite field. Observe that the map

& :SLy(F) — SL,,4(F)

Ar— 40
0 1
embeds SL,(F) into SL,1(F).
The direct limit of the directed system (SL,(F),¢,), is a simple locally finite
group denoted by SLO(F) and called the Stable Special Linear Group.

Definition 2.20. [19, Page 8] A set 3 of subgroups of a group G is called a local
system of G if
1. G=Ugex S

2. if S,'T € X then there exists U € ¥ such that S, T C U.

The following result is very useful to understand the structure of infinite simple

groups:

Theorem 2.21. ([19, Theorem 4.4]) An infinite group G is simple iff it has a

local system consisting of countably infinite simple subgroups of G.

Remark 2.22. Our aim is to prove theorems about centralizers of finite sub-
groups in simple locally finite groups. But, by Theorem 2.21, we deduce that
any finite subgroup of a simple locally finite group is contained in a countable
simple group (which is clearly locally finite). Hence, for us, it is enough to find

the centralizer of a finite subgroup in a countable simple locally finite group.

Kegel-Wehrfritz asked the following question:
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Question 2.23. Does every simple locally finite group has a local system consist-

ing of finite simple groups?

Serezhkin and Zalesskii answered this question negatively in [39]. They proved

the following result:

Theorem 2.24. [13, Proposition 1.7] If k is a finite field of odd order then the
Stable Symplectic Group is an infinite simple locally finite group which can not

be written as a union of finite simple groups.

So, we can not write every simple locally finite group as a union of finite
simple groups. But still, we have a concept that connects the theory of finite

simple groups and the theory of locally finite simple groups:

Definition 2.25. [13, Definition 2.1, 2.2] Let G be a locally finite group and I
be an indez set. A set {(G;, N;) | i € I} consisting of pairs of finite subgroups of
G is called a Kegel cover of G if for all i, the subgroup N; is a mazimal normal
subgroup of G; and for every finite subgroup F' < G there exists 1 € I with F' < G;
and FNN; = 1.

The following form of Definition 2.25 for countable locally finite groups give

us more information about the structure of countable simple locally finite groups:

Definition 2.26. [13, Definition 2.2] Let G be a countable locally finite group.
A set {(G;, N;) | i € N} consisting of pairs of finite subgroups of G satisfying
N; < Gy, is called a Kegel cover of G if

G=JG
iel
the factors G;/N; are finite simple groups and G; N\ Ny = 1.
By Theorem 2.21, an infinite group is simple iff it has a local system of count-
ably infinite simple groups. Hence every finite subset of an infinite simple group
is contained in a countably infinite simple group. Hence, to answer Question 1.5,

it is enough to consider the centralizers of finite subgroups in countable simple

locally finite groups.
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By [13, Lemma 2.4], every simple locally finite group has a Kegel cover. In-

deed, Theorem 2.27 shows this result for countable simple locally finite groups.

Theorem 2.27. [19, Lemma 4.5] Every countable simple locally finite groups has
a Kegel cover K = {(Gi, N;) | i € N}.

We will use the following result to see that for every infinite simple locally
finite group we can choose a Kegel cover whose all factors are non-abelian finite

simple groups.

Theorem 2.28. [13, Corollary 2.5] Let G be an infinite, simple locally finite
group. Then

1. G has a Kegel cover K = {(G;, N;) | i € N} where G;’s are perfect.
2. G;/N;’s form a set of finite simple groups of unbounded orders.

Let G be a countably infinite simple locally finite group with a Kegel cover
K ={(Gi, N;) | i € N} where G;’s are perfect. Since G;’s are perfect, the factors
G;/N;’s are non-abelian finite simple groups. By the classification of finite simple
groups, we know that each factor is either an alternating group, or a simple group
of Lie type, or a sporadic group. Since there are only finitely many sporadic
groups, for any locally finite group G there exist a Kegel cover whose factors are

either alternating groups or simple groups of Lie type.

Remark 2.29. For a simple locally finite group G, there are only 4 possible

cases:
1. G has a Kegel cover with all G;/N;’s are alternating groups, or,

2. G has a Kegel cover with all G;/N;’s are are classical groups of the same

type with unbounded rank, or,

3. G has a Kegel cover with all G;/N,’s are are classical groups of the same

type with bounded rank, or,

4. G has a Kegel cover with all G;/N;’s are exceptional groups of the same

type.
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By [13, Theorem 2.6], in cases (3) and (4), the group is linear. So, if we have
a non-linear simple locally finite group, then the Kegel cover is either alternating

type or a fixed classical type with unbounded rank parameters.

2.3 Construction of a Simple Group of Lie type

over a Locally Finite Field

We will construct finite and locally finite simple groups of Lie type from the
corresponding type linear algebraic groups. First, we need the definition of a

Frobenius map, which is the major key of this construction.

Definition 2.30. Let G be a linear algebraic group over an algebraically closed
field k of characteristic p where p > 0. Let ¢ = p™ with k > 1 and F;, be the map
given by

F,:GL(n,k) — GL(n, k)

(aij) — (af;).

Now, Fy is a group automorphism of GL(n, k). A homomorphism F : G — G
1s called a standard Frobenius map if for some n the embedding i : G —
GL(n, K) satisfies i(F(g)) = F,(i(g)) for some q = p* and for all g € G.

A homomorphism is called a Frobenius map if some power of F is a standard

Frobenius map.

Now, by [5, page 31], Frobenius maps are algebraic endomorphisms with finite
fixed point group. Let G be a simple linear algebraic group of adjoint type over an
algebraically closed field k of characteristic p. Let o be a Frobenius map on G and
Cx(0) its fixed point group. By [10, Section 3], the subgroup H = O (C5(0))
is a finite simple group of Lie type of the same type with G and all finite simple
groups of Lie type can be obtained in this way.

Now, we will see a result of Turau which enables us to see the structure of

locally finite simple groups of Lie type.
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Theorem 2.31. [14, Lemma 4.3] Let G be a Chevalley group (or a twisted
Chevalley group) over an infinite locally finite field k of characteristic p and let
G be the simple algebraic group over the algebraic closure k of k constructed from
the same Lie algebra as G. Then there are a Frobenius map o and a sequence
Ny, Na, ... of positive integers such that n; divides n;11 and G = U2, G; where

G, = 07 (C5(0™).

Theorem 2.31 enables us to express a linear simple locally finite group as a
union of finite simple groups of the same Lie type. In fact, for any simple locally
finite group G of Lie type, the groups G; constructed as in Theorem 2.31 form a
Kegel cover with N; =1 for all 1.

Remark 2.32. The following Table 2.1, which is given in [5, p.40], shows the

identifications with the groups G, with classical groups over finite fields.

Table 2.1: Identifications adjoint and simply connected types of finite simple
groups of Lie type with classical groups

(AI)SC(Q) SLl-H(Q)
(A1)ada(q) PGLi1(q)
(*A)se(q®) SU(q%)
(*A1)aalq®) PU(q%)
(Bi)se(q) Sping1(q)
(Bt)aa(q) SO911(q)
(C1)se(q) Spai(q)
(C1)aa(q) PCSpa(q)
(Dl)SC(Q) Spinﬂ(q)
(D1)aa(q) P(CO(q)?)
(*Dy)se(q?) Spingy(q)
(*D1)aa(q?) P(CO5(q)")

2.4 Regular Unipotent and Semisimple Elements

Let G be a connected reductive group. Recall that the dimension of a max-

imal torus in G is called the rank of G. An element z € G is called regular

15



if dim Cg(r) = rank(G). Steinberg proved in [33] that for every » € G the di-
mension of the centralizer of # in G is greater than or equal to the rank of G.
Moreover, Steinberg also proved that in every connected reductive group, there
exists regular elements.

In this section, first we will consider regular unipotent elements.

Proposition 2.33. [5, Proposition 5.1.2] Let G be a connected reductive
linear algebraic group. There exist reqular unipotent elements in G and any two
of them are conjugate. Moreover, the set U of reqular unipotent elements of G is

a dense open subset.

Proposition 2.34. [5, Proposition 5.1.3] Let G be a connected reductive
linear algebraic group and u be a unipotent element of G. Then the following are

equivalent:

1. wu s reqular.
2. u lies in a unique Borel subgroup of G.

3. w is conjugate to an element of the form [] o+ Ta(Xa) with Ao, # 0 for all

fundamental roots «.

1 11
Example 2.35. Let G = SLs(k) where chark =pandu; = [0 1 1. Here,
0 01
a b c
Colu))={]0 a b|: abcck a®=1}
0 0 a

Now, dim Cx(uy) is equal to the transcendence degree of the coordinate ring

kla,b,c]/(a® — 1). Hence, dim Cg(u;) = 2. A maximal torus in is conjugate
a 0 0

to{|0 B 0 | a,3,7 € k}, which has dimension 2. Therefore, any
0 0 (aB)™!

maximal torus in SL3(k) has dimension 2, that is, the rank of G is 2. We have

SLy(k) = As(k).
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Since dim Cx(u1) = 2, the element u; is a regular unipotent element.

1 11 1 10 1 00
Indeed,us = |0 1 1| =[0 1 0] [0 1 1| =ua(1)xs(1) wherer and
0 01 0 01 0 0 1
s are the fundamental roots for the root system A,.
1 2y
Observe that Cx(u;) = Z(G).U where U = {|0 1 z | :2,y € k}. Since U
0 0 1

is a p-group and Z(G) is finite, Cz(u) can not contain infinitely many elements
of distinct prime orders. In fact, by Proposition 2.36, if v is a regular unipotent
element in G then every semisimple element in Cz(u) is contained in Z(G) which

is a finite group.

Proposition 2.36. [5, Proposition 5.1.5] Let G be a connected reductive
linear algebraic group and u be a regular unipotent element of G. Then every

semisimple element of C(u) belongs to the center of G.

Next, we will study the centralizers of regular semisimple elements in semisim-

ple linear algebraic groups.

Theorem 2.37. [32, Corollary III.1.7] Let G be a semisimple linear algebraic

group and s be a semisimple element of G. The following are equivalent:
1. s is a reqular semisimple element.
2. Cg(s)° is a maximal torus.
3. s is contained in a unique mazximal torus.
4. Cx(s) consists of semisimple elements.

5. a(s) # 1 for every root a relative to any mazimal torus containing s.

The following easy lemma (which is an exercise in [32, Example 1.5.a]) will

be useful to construct examples of centralizers of regular semisimple elements:

Lemma 2.38. /32, Ezample 1.5.a] Let G = SL,(k) and s be a semisimple ele-

ment of G. The following are equivalent:
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1. s is a reqular semisimple element.

2. The eigenvalues of s are all distinct.

Proof. (2 = 1) Let s be a semisimple element of G = SL, (k) such that all
eigenvalues of s are distinct. Then s is conjugate to the diagonal element sq =
diag(Mi, A2, - . ., \n) in G where \; # ), for every i, j. Since s and sy are conjugate

in G, the subgroups Cx(s) and Cx(sg) are conjugate. Hence, they are isomorphic.

ai a2 ... Q1n
21 A22 ... Qon
Let g = f D : be an element of Cx(sp). Then,
anp1  Ap2 Ann
A1 a;; a2 ... QAin
Ao Q21 Q22 ... Q2p,
Sog =
/\n Ap1 Ap2 ... Anpn
a; a2 ... Q1n A1
a1 Q22 ... Qan Ag
= =950
Ap1 Apo ... QAnn )\n
We obtain,
Aar Aag ... Ay, Aair Aaaig ... AnGin
Aoho1  Agage ... Aaa2y, Alagr  Agage ... AnQ2p
>\nan1 )\nan2 cee )\nann )\lanl )\2an2 CREI )\nann

So, for every i,j € {1,2,...n} we have \;a;; = \ja;;. Since all eigenvalues of
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s are distinct, A\; # A; for every ¢ # j. Then if ¢ # j we have a;; = 0. Hence,
Cs(s0) = {diag(a1, as, ... an,) : [}, @i = 1} which is a maximal torus of G.

Hence, C5(s) is equal to a maximal torus T of G. Hence,
dim Cx(s) = dim T = rank(G).

So, s is a regular semisimple element of SL, (k).
(1 = 2) Assume that s is a semisimple element such that at least two of the

eigenvalues of s are equal. Then s is conjugate to

51 = dZCLg(Oé, «, 517 cee 7/6n—2)-

Hence Cg(s) is isomorphic to Cg(sy).
Observe that

a b
d 0 ..
00 X O ... 0 no2
H={| ! C | @d=po TTx =13 < Catsn).
. . . ,[/:1
00 ... s

Then dim H < dim(Cg(s1)). Now, dimH =n + 1, so dim Cg(s;) > n+ 1 #

n — 1 = rank(G). Therefore, s; and s are not regular. O

Lemma 2.39. (/32, II1.2.1]) Let G = SL,(k) and x be a regular element of

G. Then the normal form of x is

0 0 1

-1 0 c. C1

0 —1 Co
-1 Cn—1
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The following result is a direct consequence of the definition of a regular

element in a simple linear algebraic group.

Lemma 2.40. Let G be a simply connected simple linear algebraic group and g

be a reqular element of G. Then gZ is a reqular element of G /Z.

Proof. Assume that g is a regular element of G. Then dim(Cz(g)) = rankG.
Consider
Ca2(97) = {22 €7« [g,0) € 2},

As Z is finite, we can write Z = {zy, 21, 22, ... 2} where zp = 1lz. Now,
Ca/7(92) = UL, Ci where C; = {#Z € G/Z | [g,x] = z}. Here Cy’s are the
connected components of Cx /Z(gZ ) and Cj is the identity component. By [17,
7.3 Proposition], C;’s are irreducible. Here Cy = Cz(g), so dimCy = rankG.
But since all C;’s are distinct cosets of Cj, they all have the same dimension,
so dim(Cg,/4(97)) = dim(Uf:0 C;) = mazt_ (dim C;) = dim(Cy) = rank(G) =
rank(G/Z). Hence, gZ is regular in G/Z. O

2.5 Torsion Primes of Simple Linear Algebraic

Groups

We need the definition of a torsion prime and the list of torsion primes for

simple linear algebraic groups.

Definition 2.41. Let {ay,as,...a,.} be a simple system of roots for the root sys-
tem X. Let h* =Y mlaf be the co-root of the highest root expressed in terms of
the co-roots of the simple roots. If a prime p divides one of the coefficients m},

then p s called a torsion prime of the root system .
The following examples may be useful to understand the definition.

Example 2.42. Consider the root system A;.
Let {e; : 1 < i <1+ 1} be the standard basis for the Euclidean space of
dimension [+1. Tt is well-known that the set {a; : a; = e;—e; 11 where 1 <i <[}

is a simple system of roots for the root system of type A;. The complete set of
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positive roots of the root system A; is {e; —e; : 1 <i < j <[}. Then, it is easy
to see that

j—1

e; —ej = (e — eip1) + (eip1 — €ig2) + ...+ (ejo1 —€5) = Za’“'
k=i

Then the highest root is r = 22:1 ap = e; — e;41. The co-root of the highest

root is (f—’;) But since (r,7r) = (ag, ax) for every 1 < k <[, we have

2(1,k o Z hak.

l
h, = = —
' (arar) 2=

B
Il

—~

RN
5=

SN—

1

Now, we wrote the co-root of the highest root as a sum of co-roots of simple
roots and the coefficient of every co-root of a simple root is 1. Hence, there are

no torsion primes of the root system A;.

Example 2.43. Consider the root system of type C5. Here, we have two simple
roots, r and s with |r| = 1 and |s| = v/2. Then (r,r) = 1 and (s,s) = 2.

Here, the set of positive roots is {r,2r + s,r + s,s}. The highest root is

2(2r+s)  _ 2(2r+s) __
(2r+s2r+s) 2 2r +s
2r
(r,r)

2r + s. The co-root of the highest root is hg, s =

= 2r and

since |2r + s| = v/2. The co-roots the simple roots are h, =

hs = (5255) = % =s. Now, hopis = 2r +s = h, + hs.

So, when we write the co-root of the highest root as a sum of co-roots of simple

roots, the coefficients of h, and hg are all 1. Therefore, there are no torsion primes

of the root system Cs.

The following table gives the list of torsion primes for various types of root

systems: (For further information see [32, 4.3]).

Table 2.2: Torsion primes for various type of irreducible root systems

A, G none
B, D, Go 2
Eg, E7, Fy 2,3
Eg 2,35
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For a reductive linear algebraic group, there are two types of torsion primes,
namely, torsion primes of the root system and the torsion primes of the funda-
mental group. For this thesis, we will not need the definition of a torsion prime of
the fundamental group. For the torsion primes of a simple linear algebraic group
G, we will use the information in Corollary 2.45. For details, see [34, Section 2].

By the following two results of Steinberg, we obtain the complete list of the

torsion primes of a simple linear algebraic group:

Lemma 2.44. [34, Lemma 2.5] If G is a reductive linear algebraic group, the
torsion primes of G are the torsion primes of the root system ¥ of G and the

primes dividing the order of the fundamental group of G.

Corollary 2.45. [34, Corollary 2.7] If G is a simple linear algebraic group of
adjoint type, beyond that the torsion primes of the root system, G has torsion
primes only in the following cases: for type Ay, the primes p|(I+ 1) and for type
C; the prime 2.

2.6 Zsigmondy’s Theorem

We will use the following result of Zsigmondy:

Theorem 2.46. (Zsigmondy, 1892) Let a,b be two relatively prime natural
numbers with a >b>1 andn > 1. Then:

1. There exists a prime p such that p divides a™ — 0" and p does not divide

ab —b* for any 1 < k < n, except the following cases:

en=1anda—b=1,
e n=2anda— b is a power of 2,

en=06a=2b=1.

2. There exists a prime p which divides a™ + b" and p does not divide a* + b*

for every 1 < k < n, except the casen =3, a=2,b=1.

Proof. See [36, P1.7]. O
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This result was first proved by Bang in 1886 for the particular case b = 1.
Zsigmondy proved this stronger version in 1892. For details see [24, Section 2.5,
p.88].

2.7 Orders of Maximal Tori in Finite Simple
Groups of Lie type

In this section, we collect information about orders of maximal tori in finite

simple groups of Lie type.

Definition 2.47. Let G be a finite simple group of Lie type given by
G = 0" (G,)

where G is an adjoint type simple linear algebraic group and o is a Frobenius map
on G. LetT be a mazimal torus of G. A subgroup T =T NG is called a mazimal

torus of the finite group G.

For a simple linear algebraic group over an algebraically closed field, all maxi-
mal tori are conjugate. However, for a simple group of Lie type over a finite field,

there even exists maximal tori with different orders.

Example 2.48. Let G = PSLy(5). We will construct two non-isomorphic max-

imal tori with orders q;—l = 2 and ‘1'2'“—1 = 3.

Let G be PGLy(k) where k is the algebraic closure of Fs. Consider the

Frobenius map o : (i) — (x7;). Here, G = O%(G,). First consider the
A0

subgroup 17 =

' {( 0 A

Next, we prove that T} is a maximal torus of G.

_ a 0
NOW,T:{(O 5

. . L= c 0 a 0
k is algebraically closed, we can write T = { ( 0 ) < 0 ) Z: a,bcek*}
c

> Z: XNeFt} of PSLy(5). Clearly, T; is a torus.

) Z: «a,f € k*} is a maximal torus of PG Ly (k). Since
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where ca = o, cb = 3, c* = a3 and ab = 1. Hence we can write

— 0

T={ ¢ Z: a,bek* ab=1}.
0 b

(So, over an algebraically closed field k, PGL, (k) and PSL,(k) are the same

group).

Then TNG = { oV
0 b

By this observation, 77 is a maximal torus of G.

)Z: a®=a, b>=0, ab=1} =T, since b =a'.

The map

v F— T

A — AD A
0 A\t

is a group homomorphism with kernel {1, —1}. Hence, |T}| = 32+ = 2.

But |PSLy(q)| = E5PE = 2620 — 60 = 2235,

Now, a Sylow 2-subgroup of PSLy(5) is isomorphic to Zy X Zs. Every invo-

lution in PSLs(5) is contained in a maximal torus of order 2, and the elements
of order 5 are unipotent. There are also elements of order 3 in G, which are also

semisimple since (3,5) = 1. So, an element of order 3 in G must be contained in
2

4
that is, s is an element of order 3. The eigenvalues of s are A and A\?> where

N4+ A+1=0.

By basic linear algebra, we can compute that

0 2 a+2 2\ /A 0 1 3\
o 7 _ + 7 = PLAP
9 4 IA+1 1 0 A2 3A+4 3\+2

where A is the diagonal matrix consisting of eigenvalues of s. Now, AZ € T =

0
a maximal torus of PSLy(k). In particular, let s = ( ) Z. Now, s® = Z,

0 b
torus of PGL, (k). By the result Lemma 4.6 of Steinberg, s is contained in a o-

0 _
{( ¢ ) Z: a,bek* ab=1}. Hence, s € P~'TP, which is another maximal
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invariant maximal torus 7" of PGL, (k). But s € T/, so, T := T" N G has order
divisible by 3. By elementary computations, we observe that |73 = 3. Indeed,
we know s, which is an element of order 3, is contained in 7T, and 75 is abelian.
Then T5 < Cpgr,5)(s). But PSLy(5) = As and we know by Theorem 3.6 that

the centralizer of an element of order 3 in A, has order 3. Hence, |T5| = 3.

Here, in Theorem 2.49, orders of maximal tori in simply connected finite
groups of Lie type are given. To obtain the orders of finite simple groups of Lie
type, these orders must be divided by the order of the center, which is bounded by
[+ 1. We would like to show that centralizers of some finite subgroups consisting
of semisimple elements contain an infinite abelian subgroup isomorphic to Dry, Z,,
for infinitely many primes p;, hence the orders of maximal tori in simply connected

case will give us enough information for our purposes.

Theorem 2.49. [6, Proposition 7, 8, 9] The orders of the maximal tori of the
universal central extensions of the finite simple groups of classical Lie type are as

follows:
1. If G = Ai(q) and T is a mazximal torus of G, then
k
Tl = (e —)/g-1)
i=1

where Zle wi =1+ 1.

2. If G =2 Ai(¢®) and T is a mazimal torus of G, then

71 = IT @ =] (@ +1)/(a+1)

i even A; odd

where Zle i+ XN =1+ 1.

3. If G =Ci(q) and T is a mazimal torus of G, then

7 = ([ Tta = ([ T(a” + 1)

{ J

where Y 6+ ;m = 1.
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4. If G = Dy(q) and T is a maximal torus of G, then

7] = ([Tt = ([ [(a" + 1)

i J
where 6+ 5 = 1
5. If G =2 Dy(q) and T is a mazimal torus of G, then
71 = ([Tt ~ )Tt +1)
i j
where Y 6+ ;m = 1.

6. If G = By(q) with q odd and T is a mazimal torus of G, then

7 = ([T = ) Ta" + 1)

i J
where Y e+ m; =1

7. If G = By(q) with q even and T is a maximal torus of G, then

7] = ([ [t =) e +1)

i J
where 3 €+ m = 1.

For the orders of possible maximal tori in exceptional groups, we have the
following Tables 2.3, 2.4, 2.5, 2.6. In Eg and FE;, the structures of the maximal
tori in the universal covering group is given, that is, (3,q¢ — 1)Fs denotes the
central extension of Ey with its Schur multiplier. The information in this table
is given in [18]:

By [18, Section 2.8], the list of orders (and the cyclic structure) of maximal
tori in (3,q+ 1).2Es(q) is obtained by writing —¢q instead of ¢ in the list of orders
of maximal tori of (3,¢ — 1).E4(q), given in Table 2.4.

Remark 2.50. Over an algebraically closed field all maximal tori are conjugate.

A maximal torus over an algebraically closed field k is isomorphic to direct prod-
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uct of finitely many % ’s. But over finite fields, we saw that there are maximal
tori with even different orders. If a maximal torus T defined over a field k is iso-
morphic to direct product of finitely many copies k*, then T is called a maximally
split torus. By [25, Proposition 1.2.2] and [26, page 18], if a maximal torus 7" is
defined over k, it splits over a finite Galois extension K of k. Now, [K : k| < oo
and dimT = dimT" is fixed. So, T' is contained in a maximally split torus 7" over
K with [T" : T] < oco. Hence, for each maximal torus 7" over a finite field F,
there exists a maximally split torus 7" defined over a finite Galois extension of k

with [T : T] < oo and |T"| = (¢' — 1)" for some [ where r is the dimension of T”.

27



Table 2.3: Orders of maximal tori in 2Bs(q), G2(q),2 G2(q),® Da(q), Fu(q)

G | Cyclic structure of maximal tori
qg—1
*Bay(q), q = 2>""" q++2q+1
¢—v2q+1
qg—1
*Gy(q), q = 3*"* (¢+1/2) x2
qg++/3q¢+1
q—+V3q+1
(g—1)x(¢—1)
Ga(q), ¢ =3 ¢ —1
(¢+1)x(¢+1)

(=) x(g—1)x(¢g—=1)x(g—1
Fy(q), q odd (q—1)x(g—1) x(
(q—1) x (g+1)x(
(g—1)*x(q
(q—1) x (g
(g+1) x (g+1)(
(¢*=1)/(2,g—1)x (2,q -1
(¢* +

1)

1)
(g+1) x(g+1)x(g+1) %
(@ +q+1)x(q
(q+1) x (¢*+1
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Table 2.4: Orders of maximal tori in 2Fy(q), (3,9 —1).Fg(q)

G

Cyclic structure of maximal tori

2F4(q), q= 22m+1

(g—1) x(¢g—1)

¢ —1

(q—1) x (¢ —+2q¢+1)
(—1)x(¢g++2¢+1)

(¢ +1)

(¢—+v2q¢+1) x(q—+2q+1)
(¢+v2¢+1) x(g++v2¢+1)

(g+1)x (¢+1)

¢ —q+1
¢ —V2¢+q-2q+1
¢ +V2¢ +q+2¢+1

(3, —1).Es(q)

(g—1) x

(¢q—1)
(q—1) %
(

(

(@ +q+ 1) x(@P+qg+1)x(P+q+1

Xx(@—1)x(@—1)x(g—1)x(¢—1)

(q=1)x(g—=1)x(g—1) x(
g—1)x(g—=1)x(¢*=1)x (q
(g=1) x(g—=1)x(¢g—1) % (q
(°=1)x(¢"=1)x(q
(q—1)x (¢ —=1)x(q
(g—1)x(g—1)x(q

g+ 1) x(g+1)x(¢"—=1) x (g
(¢ —1) x (q+1)(q
(q—1)x(¢®+q+1)x(q

(> —=1) x (g

(q—1) x(

(¢ — 1) x (g —1)(
(¢—1)(¢*+1) x (¢ —1)(
(¢*+q+1) x (g+1)(
(q+1) x (q+DXE

(¢°

(¢*

(@ +q+1)x(g—1)
(¢*—1) x
(- D@+ +1

g+ D) x (@P+t+E+P+q+1
(¢ +q+1)(¢" —¢*+1)

¢+ +1

(> —q+1) x(¢*+¢+1)
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Table 2.5: Orders of maximal tori in (2,¢ — 1).E7(q)

G

Cyclic structure of maximal tori

(2,4 = 1)-Ex(q)

(¢ — 1)x order of a torus of (3,q — 1)FEg(q) listed in Table 2.4
(¢—1) x(g+1) x(¢g+1)x (q—l)

(¢—1) x (¢* = 1) x

(g—1) x (¢° = 1) x
(¢ =1) x (¢g+1)(q

(g—1) x(g+1) x (¢ +1) x

(—1)x (¢" +
(¢° = 1) x (¢*
(@ =1)(¢*+q

X (> = 1) x (¢ +

(*—q+1)x

(¢—1)(¢*+1)

(¢"+1) x (¢ —1)(¢*+1)
also, the orders obtained by writing —¢q instead of ¢ in this list
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Table 2.6: Orders of maximal tori in Fg(q)

G Cyclic structure of maximal tori
(¢ — 1)x order of a torus of (2,q — 1)E7(q) listed in Table 2.5
Es(q) (=1 x(¢*=1) x (¢" = 1)

(=) x(@—-1)(¢+q+1)
(*—1) x (¢ +1)(g—1) x (¢? )+ 1)(q
1 q7

)

)

+1)

-1)

-1)

—1)

—1)

3
(q2—1)><(q2—1)xq+1) +1)
(¢ —1) x (¢ + 1)(q - 1)

(> —=1) x(¢®—=1) (two conjugacy classes)
(¢—D(@+1) x(¢*+1)(¢" — 1)

(¢ —=1) x (¢ = 1)(¢* +1)

(@ +q+1)x(P+q+1) x(g+1)(¢°—1)
(@+D(*+q+1)(¢ 1)
(¢+D(*+1)(¢° - 1)

) —1)

—1)

)

)

)

)

)

(@ =P +q+1)(¢*

(¢ = 1)(¢°

(*—q+1)x(¢*—q+1)x (q+1)(
(q2—1)(

(¢ +q+1)x (q +q+1) (@ +q+1)x(¢*+¢q
"+ 4+ +q+1) x (¢! +q3+q +q
(¢®+q+1)x (

(@ +1) x(+1)x (¢ +1

(q2+1
(¢*+1
(" =+ 1)(@® +q+1) x(q
(a"+ ¢+ 1) x (¢* Fatl)x(q
E+qd - —q -

)

~— — —

FHEF A LA+

)
)
)
)
)
)
)
)
)
)
1
1
1

N
+ o+

*—q

f—f+¢ q

(' = +1) x(¢" = ¢ +1)

also, the orders obtained by writing —¢q instead of ¢ in this list

+
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CHAPTER 3

FIXED POINTS OF AUTOMORPHISMS

IN INFINITE ALTERNATING GROUPS

The structure of centralizers of elements in Alt(£2) where 2 is a finite set is
well known (See [14, Lemma 2.4, or [21, 3.7] ). In this chapter, we investigate
the structure of fixed points of automorphisms of Sym(§2) and Alt(Q2) where Q
is an infinite set. We will prove that if « is a periodic element of Aut(G) when
G = Sym(Q), then Cg(«r) contains infinite finitary symmetric group and hence
it contains infinite alternating group. Moreover, we will describe the centralizers
of all possible type of elements in Sym(Q2) and show that if © is uncountable,
the fixed point group of any automorphism of Sym(2) have the same cardinal-
ity with Sym(Q2). By [7, Theorem 8.2.A], if || # 6, every automorphism of
Sym(€2) is inner and Aut(Alt(Q)) = Sym(Q2). Hence, to find the fixed points of
automorphisms of Alt(2), we consider the centralizers of elements in Sym(£2).

First we need to summarize the background results which we will use.

3.1 Automorphisms of Alt(S2)

We will consider the fixed points of automorphisms of alternating groups. But

first of all, we will state the following result of Baer:

Theorem 3.1. [7, Theorem 8.1A] Let Q2 be any set with |Q)| > 4. Then the
normal subgroups of Sym(Y) are precisely 1, Alt(2), Sym(Q2) and the subgroups
of the form Sym(Q,c) with Xy < ¢ < |Q| where Sym(Q,¢) = {z € Sym(Q) :
|supp(x)| < c}.

Now, we will show that if |2] > 6 every automorphism of Sym((2) is inner.

This result remains true for |€2| < 6 but fails for |2] = 6. The proof is based on
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the following lemmas:

Lemma 3.2. [7, Lemma 8.2A] Let |Q)| > 6 and G = Sym(Q2). Every auto-
morphism ¢ of Sym(Q2) maps Alt(S2) onto itself, and so its restriction to Alt(§2)

is an automorphism of Alt(Q2). Moreover, if C' is the conjugacy class consisting

of all three cycles in Alt(Q) then C¢ = C.

Proof. Let Alt(2) = A. Since |Q| > 4, we know that A is simple. Let ¢ be an
automorphism of Sym(Q). Since A? is isomorphic to A, it is also simple. Now,
since both A and A? are normal in G, we have ANA? <A and ANA? <1 A?. Since
both A and A? are simple, either A = A? or AN A® = 1. But if AN A? = 1 then
A? € Csym(n)(A) = 1 which is not the case. So A = A%, that is, ¢ € Aut(A).

It remains to show that C¢ = C.

Recall that C'is the conjugacy class consisting of all 3-cycles. We claim that C'
is the unique conjugacy class of A consisting of elements of order 3 such that for
all x,y € C' we have |ry| = 1,2,3,5. First we need to show that product of any
3-cycles necessarily order 1,2,3 or 5. Let (a; by 1), (as by c2) be two arbitrary
3-cycles in Alt(€2). Then the product

(Gl by o by 01) if ay = ag, b1 # by, c1 # ¢
(Cll bl Cl)(GQ b2 02) = ((11 61)(b1 CQ) if ay = a9, bl = bQ,Cl 7£ Cy

(al Co 01) it a; = bg, b1 = ag, 1 7é Co

Clearly, (aj by co by ¢1) has order 5, (ay ¢1)(by ¢2) has order 2 and (a; ¢z ¢1) has
order 3.

Let C" be another conjugacy class of A containing elements of order 3 with
C'" # C. In symmetric groups each conjugacy class is uniquely determined by the
cycle type. Since C" # C and C” also contains elements of order 3, each element

of C’ contains at least two 3-cycles, that is,

C" ={(a1bicr) ... (agbrer) : ai, b, c; € Q, for some k > 2},
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Since |Q2] > 7 we can find elements whose product is of the following form:

(CLQ Qs a3)(a4 Qg CL7> . (Cbl as a7)(a2 Qs CL4) = (CLl Q9 A3z A4 Qs Ag A7 . . )

So, there are two elements x,y € C’ such that zy has order greater than or
equal to 6. So C' is the unique conjugacy class of A consisting of elements of
order 3 such that for all x,y € C' we have |zy| = 1,2,3,5. Now, since ¢ is an
automorphism, it preserves the orders of the products. Then C? is a conjugacy
class conjugacy class of A consisting of elements of order 3 such that for all
z,y € C we have |zy| = 1,2,3,5. By the uniqueness of C, we have C? = C.
Hence, C' is fixed under any automorphism of Sym(€2). O

Lemma 3.3. [7, Lemma 8.2B] Let G be a subgroup of symmetric group on
Q which contains Alt(2) where Q is a set whose cardinality is greater than 6. If
W € Aut(G) fizes each element of Alt(Q) then ¢ = idg

Proof. Since Alt(£2) is normal in Sym(£), it is necessarily normal in G. Then for

every y € G, for every x € Alt(Q)) we have y~txy € Alt(Q). So;

y oy = (yay) = () laly)Y.

Therefore, y*y = € Cq(Alt(2)). But as Cgymq)(Alt(Q2)) = 1, we obtain Cg(Alt(Q)) =
1. So, y¥ =y for every y € G. O

Now, we need to prove that every automorphism of Sym(f) is inner. In fact

we will give the following result due to Schreier and Ulam:

Theorem 3.4. [7, Theorem 8.2A] Let |Q)] > 6. Suppose that G satisfies
Alt(Q) < G < Sym(Q2) and let N = Ngym)(G). Then for each automorphism
¢ of G there exists y € N such that

z? =y ey for all x € G.

In particular, every automorphism of Sym()) is inner.

Proof. For each «, 8 € €) consider the set of 3-cycles including o and 3 and define
L(a, ) ={(apy) € C:v € Q—{a,F}}. Wesaw in the proof of Lemma 3.2 that
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product of any 3-cycle have order 1,2,3 or 5. Now, unless the intersection of the
sets of elements occuring in these cycles have 2 element, the product have order

1,3 or 5. Therefore S := L(«, 3) is a maximal subset of C' satisfying
if x,y € S and = # y then xy has order 2.

The same calculations show that if S C C' satisfies the above property and con-
tains (ay) then since in any two element of C' two points must be common by
the same reason, S is a subset of L(«, ), L(83,7) or L(v,«). Therefore L(a, 3)
are the unique maximal subsets of C' satisfying the above property. Therefore,
since this property is invariant under automorphisms of Alt(€2), Lemma 3.2 shows
that (L(«, 3))? = L(d/, 3') for some o/, 3 € Q.

Now define y € Sym(Q) by a¥ = o/, 3Y =3, +¥ =+ such that (af3y)? =
(o/ ') for all v # a or 3. Then

v G — Sym(Q)

r — yx‘by’l

is a homomorphism which fixes each element of L(«, 3). Since (L(a, 3)) = Alt(Q2)
we say ¢ acts trivially on Alt(2), so ¢ = idg by Lemma 3.3.

z? =y~ 'ay for every x € G for some y € N.
In particular, if we take G = Sym(2) we can conclude that every automor-

phism of Sym(2) is inner. O

3.2 A result on fixed points of automorphisms
of finite alternating groups

Our aim is to prove the following result:

Theorem 3.5. Let G = Alt(Q2) where Q is a finite set and A be a group of
automorphisms of G. If |G : Cq(A)| < n, then |G| < f(n) for some function f
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of n.

In this setting, let o be any element of A, that is, let a be a single automor-
phism of G. Since |G : Cg(a)| < |G : Cg(A)], it is enough to show the result
when |G : Cg(a)| = n.

We know by [7, Theorem 8.2.A] that the automorphism group of Alt(£2) is
isomorphic to Sym(2) except the case |Q2] = 6. When || = 6 the automorphism
group of Alt(§2) contain Sym(§2) and |Aut(Alt(2)) : Sym(2)| = 2. Clearly, in
this case |Alt(€2)] is finite, so, we can assume || # 6.

We will use the following result from [21] to calculate the index of the central-
izer of an element in Sym/(§2) where || is a finite set. In fact we will prove a more

general result including infinite permutation groups when we prove Theorem 3.13.

Theorem 3.6. [21, 3.7] Let Q be a finite set with |Q2| = m. Let G = Sym(Q)
and o be an element of order n in G. Then Cg(a) = Ly x Ly X ... X Ly where L;
18 isomorphic to Zi1S; such that k is the lenght of a cycle and 1 is the number of
cycles of lenght k in «.

Theorem 3.7. Let G be a symmetric group of degree n and o be an element of
G of order r. If |G : Cg(a)| < A, then |G| is bounded by a function of .

Proof. We know the structure of centralizers of elements by Theorem 3.6. So, we
observe that the order |Cq(a)| = IIL_, k.i! where k is the length of a cycle in «
and ¢ is the number of cycles of length k in oe. Now, if 2| = n > 3 this order is
largest whenever the number of O-cycles is largest, that is, |Q\supp(a)| must be
largest.

Hence, the order of C () is maximum if « is of the form (ab) for some a and
b. Then |Cg(a)| = 2.(n — 2)!. Then 2 =[S, : Ca(a)| < A. It follows that

2.(n—2)!
—"(n;l) < \. Then we obtain n? —n — 2\ <0, so nyy = e V1;4(_2)‘), Therefore n
is bounded. It follows that |G| = n! is bounded by a function of A.

]

When Q is a finite set with |Q] # 6, we have Aut(AltQ2) = Sym(f2) and
Cana)() = Csyma) (o) NAlt(Q). It follows that |Alt(Q) : Cape)(e)| is bounded
by n, then |Alt(2)| is also bounded by a function of n.
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3.3 Fixed points of automorphisms of infinite

alternating groups

A result similar to Theorem 3.5 can not be true for infinite alternating groups
since if a group contains a subgroup of finite index then it must contain a normal
subgroup of finite index, but alternating groups are simple. Instead, we will first
investigate the structure of the fixed point group of a periodic automorphism of

the alternating group.

Theorem 3.8. Let ) be an infinite set of cardinality k. Let G = Sym(S2) and
a be a periodic element of Aut(G). Then Cg(a) contains an infinite symmetric

group isomorphic to Sym(k).

Proof. We know by Theorem 3.4 that Aut(G) = Sym(2). If a € FSym(Q)
then |supp(a)| < oo. Then |Q\supp(a)| = |2 = k. Now every element of
Sym(Q\supp(«)) is fixed by «, which is an infinite symmetric group isomorphic to
Sym(k). Similarly if |supp(a)| < & then |Q\supp(«a)| = k. Hence, if |supp(a)| <
Kk, the set Q\supp(«) is a subset of Q with cardinality £ which is fixed by «,
that is, Cg(«) contains Sym(Q\supp(«)), which is an infinite symmetric group
isomorphic to Sym(k).

Now, assume « is a periodic element of Aut(G) with |supp(a)] = k. We
know that o can be written as a product of disjoint cycles. First we need to
show that lengths of these cycles are bounded. Now, the least common multiple
of the lengths of these cycles is equal to || which is finite. So, there are only
finitely many numbers ny, ..., n, such that any cycle in a has length n; for some
i € {1,...k}. Define K; as the set of cycles of length n; which occur in the
disjoint cycle decomposition of . As ||Jf_, K;| = &, at least one of the K,’s have

cardinality «. Denote this set by K. Now,
K ={f=(ay...ax) : B is a cycle of length k occuring in «a}.

Observe that for any § € K since 3 is a cycle occuring in o and « is written
as a product of disjoint cycles, we have 3% = f3.

Now, the elements of K have all the same length and they commute with
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a. Every element of K commutes with o we have K < Cg(«). We claim that
Sym(K) is contained in Cg(a). Let f be a permutation on K. We have of = «
since f only changes the place of two disjoint commuting cycles in the decompo-
sition of a. So, all the elements of Sym(K) commute with a, so Cg(«) contains

a subgroup isomorphic to Sym(K) where |K| = & . O

Corollary 3.9. Let G = Alt(Q2) and « be a periodic automorphism of G. Then

Cq(a) contains a subgroup which is isomorphic to an infinite alternating group.

Proof. By Theorem 3.8 we know that Cgymq)() contains an infinite symmetric
group Sym(K) where |K| = [Q|. Observe that Capo) () = Csym) () N AlL(Q).
So all of the even permutations in C’Sym(g)(a) are contained in C' Alt(Q)(O{). There-
fore, the alternating group contained in Sym(K) is also contained in C a0 (),

hence Cup(q)(«) contains an infinite simple group. O

Example 3.10. Corollary 3.9 is not true in general for any torsion-free ele-
ment of Aut(Alt(Q2)). An automorphism of this form can even be fixed point
free. Now f : m — n + 1 is a permutation of Z, hence, by Theorem 3.4 f
is an automorphism of Alt(Z). Now, for any element in z € Alt(2) we know
that = can be written as a product of finitely many disjoint cycles, that is, say
z = (a11-..a1n) .. (a1 ... agm). We have (frzf).(a;; — 1) = (f'2).a;; =
(f™Y.aij41 = aijp1 — 1 for 1 < i,j < n—1. Similarly, (f'zf).(a;, — 1) =
(f'2).as;m = (f1)a;1 = a;q — 1.
Consider the image

fHay . carm) .. (ap ) f = (a1 — 1. cap — 1) .. (ag — 1. . g — 1).

Denote the sum a3 + ...+ ay, + ... + agm = S. Now, if z € Cq(f), that is, if
f~lazf = x then the sums of the points occuring in = and f~'zf must be equal.

Observe that the sum of the points occuring in f~'a f is decreased by one for
each point in supp(z), hence if f~'zf = z then S must be equal to S — |supp(z),
that is, supp(x) = (). Therefore f only fixes the identity element, so, f is a
fixed-point-free automorphism in Aut(Alt(S2)).
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3.4 Main result on automorphisms of infinite al-

ternating groups

We know that any two cycles (ajas ... ax) and (bibs ... by) of the same lenght
k in Sym(2) are conjugate. In fact the element g = (a1by)(az2b2) . .. (arby) satisfy
(a1as . ..ax)? = (biby...b;). We will observe that this result is not true for cycles

of infinite lenght.

Remark 3.11. Observe that every element in Sym({2) can be written as a prod-
uct of disjoint cycles of at most countable lenght. Although any two cycle of

lenght k are conjugate in Sym(€2), this is not true for any two infinite cycles of
Sym(Q).
Consider f,g € Sym(Z) such that f :n — n+ 1 and

2k +2 if n=2k.
2k+1 ifn=2k+1.

Now, f and g both can be written as infinite cycles, that is, f=(...—3 —2 —
1012..)andg=(...—6 —4 —2 024 ...).
Assume that they are conjugate, that is, there exists h € Sym/(2) such that

f'=g.
Then fh = hg. So hg(n) = fh(n) for every n € Z. Now, if n is odd, we have
hg(n) = h(n) = fh(n) = h(n)+ 1 which implies 1 = 0. Hence, any two arbitrary

infinite cycle in Sym(Z) need not be conjugate.

Theorem 3.12. Any two infinite cycles a, f € Sym(QQ) are conjugate iff

card(Q\supp(a)) = card(Q\supp(3)).

Proof. Assumethata = (...a_sa_1apa;as ...)and 3= (...b_ob_1 by by by ...)
are two infinite cycles in Sym(Q2) such that card(Q\supp(«a)) = card(Q\supp(5)).

Then, since the cardinalities are equal, there exists a bijection ¢ : Q\supp(a) —
Q\supp().
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Now, construct

¢ @ supp(a) — supp(f3)

a; —>bl

which is a bijection from supp(a) to supp(3). Define § :  — € such that

o(x) if z € supp(a).
Y(z) if x € Q\supp(a).

o(x) =

Clearly ¢ is a bijection from €2 to 2, that is § € Sym(2). Now,

5738y = if # € supp(a), that is, z = a; for some i € Z
x if z € Q\supp().

Therefore 671 36(z) = a(z) for every z € , that is, 67135 = . Hence, o and 3
are conjugate.

Conversely, assume that «, 3 are two conjugate infinite cycles in Sym(2).
Then there exists v € Sym(Q) such that v 'ay = 3. To show that card(Q\supp(a)) =
card(Q\supp(3)), we need to construct a bijection between Q\ supp(3) and Q\ supp(«).
Now, for every z € Q\supp(3) we have v lay(x) = B(z) = x since x is not an
element of supp(3). Then, we have ay(x) = ~(z), that is, v(x) is fixed by «a.
Now, define

® - N\supp(3) — Q\supp()
r — v(x).

We need to prove that ® is a bijection. Since 7y is one-to-one, ® is necessarily one-
to-one. Now, let y € Q\supp(«). Since « is a bijection of €2, there exists z € Q
such that y = y(z). Consider 3(z) = v tay(z) = v 'a(y) since y = v(z). Since
y € Q\supp(a) we have a(y) =y, so 3(z) =y 'a(y) = v '(y) = 2. Therefore, ®
is onto, hence card(Q\supp(a)) = card(Q\supp(3)). O

So, we proved that any two infinite cycles are not necessarily conjugate. But,
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if a, 3 are two disjoint infinite cycles, then since supp(a) N supp(f) = O and
card(supp(a))) = card(supp(B)) = Ng. Now, since supp() C Q\supp(a) and
supp(a) € Q\supp(F) we have card(Q\supp(a)) = card(Q\supp(B)), that is, «
and [ are conjugate. Therefore disjoint cycles of same lenght in Sym(Q2) are
conjugate.

We have not found a reference or information about the fixed points of au-
tomorphisms in infinite alternating groups. The following result follows from [7,
Exercise 4.2.4, 4.2.5], and it might be well-known but we will write the proof for
convenience. In the proof, we use the argument in [21, 3.7] with allowing the

cycle lengths to be infinite.

Proposition 3.13. Let G = Sym(Q)) and « be a possibly torsion-free element in
G then Cg(o) = Dryenugoo} L where Ly, is isomorphic to HQ Sym(§,) where Hy,
is either isomorphic to Zy if k is the length of one cycle occurring in o or Z if
the length of the cycles are infinite (k = 0o) and Ty is the set of cycles of length
k (or the set of infinite cycles for k =00 ) in «.

Proof. Let G = Sym(2) and « be an automorphism of G. Since Theorem 3.7 in
[21] gives the result for the finite case of ||, we can assume that (2 is infinite.

Let a = Ilrenufoo} Iz, e, Ak, be the cycle decomposition of o in G where for

ieTk
each k the cycles A, denotes cycles of length k occurring in . Here k € NU{oo}.
Let Y} be the set of points in  occuring in a k cycle in a where & € N U {oo}.
So Y}’s are a partition of supp(«) into disjoint sets. Let z € Cg(a). Then since
Y;’s consist of points in cycles occurring in «, they are a-invariant, and they
are z-invariant also. Now, x can be written as = Ilyenujoc) i Where xy is the
restriction of z to the action on Yj. Since Y}’s are disjoint, x; and z; commute.
Now, = € Cg(a) iff z; commutes with a; where «; is the restriction of a to the
action on Y; for every i. So Cg(a) = Drpenuioo} Csym(vy) (k). So, it is enough to
find Cgym(y,)(a) where « is an element written as a product of cycles of length
k € NU {oo} for some fixed k.

Let a be the product of || cycles of length k for £ € NU {oco}. We need to
show that Cg(a) = H 1 Sym(Yy) where H is isomorphic to Zj if k is finite and
isomorphic to Z if k = oo.

Let a = Iler,, jgkz(aij)-
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Now, if 7 € Sym(Y}) define 7" by a;;7" = a;r;. Then f : 7 — 7' is a
homomorphism from Sym(Yy) to Csym(vy)(a) where Y} is the set of all elements
in supp(Yy).

Let 0, : aj; — ay4q. Clearly 6, € ngm(yk/)(Od).

Now, Wi, = (f(7),6,: 1 € H,7 € Sym(Y})) is isomorphic to H ! Sym(Yy).

Conversely if g € C’yk/(oz), then g permutes the cycles occurring in a. Then
there exists 7 € Sym(Y}) such that g7’ fixes every cycle of a. Since the cen-
tralizer in Sym(supp(z)) of a cycle x is a cyclic group generated by xz, we have
(97" er 07" = 1 where k < |z|. So, g = (T'Thenu{oo} 0;)~", that is g € W.
Therefore Cys(a) = W), is isomorphic to H ¢ Sym(Y},).

0

In the next two examples we will construct some automorphisms of the sym-
metric group whose centralizer is of the form Z, ¢ Sym(€2,) or Z 1 Sym(€2,) re-

spectively.

Example 3.14. Let G = Sym(Z) and «,, be the automorphism given by «,, =
Wiez(jnjn + 1... jn +n — 1)). So, « is written as a product of countably
many disjoint cycles of length n, hence by Theorem 3.13 we know that Cg(«) is
isomorphic to Z, ! Sym(Z).

By this way, for each n € N we can construct a subgroup of symmetric group

Sym(Z) which is isomorphic to Z, ¢ Sym(Z).

Example 3.15. Let Q = {+p* : p prime, k € N\{0}} and let T be the set of all
prime numbers. Now, let G = Sym(2) and « be the automorphism of G given
by
a=Ter(...—p* —ppp° p°...)
So, « is written as a product of countably many disjoint infinite cycles, hence
by Theorem 3.13 we know that Cg(«) is isomorphic to Z ! Sym(I"). Since I' is
countable, Sym(T") is isomorphic to Sym(Z).

We will show that card(Cgymq)(a)) = card(Sym(§2)) for every uncountable
set €.
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Theorem 3.16. Let €2 be an uncountable set and o be an automorphism of

Sym(§2). Then card(Cgyma)(e)) = card(Sym(£2)).

Proof. Let € be a set with card(2) = k where s is an uncountable cardinal
number. Let G = Sym(2) and a be an automorphism of G. Let Y} be the set of

cycles of lenght k occuring in a and Y be the set of infinite cycles in a. Let
S ={k € N: «contains a cycle of lenght k}.
By Theorem 3.13 we know that
Ca(a) = (Dryes Zi 1 Sym(Yy)) X (Z 2 Sym(Yy)).

Here, for the elements fixed by «, we write cycles of length 1, we assume the
corresponding Zj = 1.

Now, if card(supp(a)) is less than k, then the cardinality of the set 0-cycles in
a is Kk, so Cg(a) involves Sym(k) as a direct factor, that is card(Ce(a)) = 2%. If
card(supp(a)) = K, then since S is countable and card(supp(a)) = Ng.card(Yy) +
Yres k.cardy, at least one of Y,’s have cardinality s, hence Cg(a) contains
Sym(k). Therefore card(Csyma)(a)) = card(Sym(§2)) = 2 for every uncount-
able set (2. O

Remark 3.17. This is not true when €2 is countable. For example, let G =
Sym(Z) and let a be the map from Z to Z sending each element to its successor.
Clearly « is the infinite cycle (... —3 —2 —10 1 2...), that is, Cg(«) is

isomorphic to Z which is countable, but Sym(Z) is uncountable.
Finally we will prove the following result:

Theorem 3.18. Let Q2 be an infinite set with cardinality k. Denote G = Sym(€2)
and o be an automorphism of G. Then Cg(a) has a normal series involving

infinite simple factors.

Proof. By Theorem 3.13 we know that C¢(a) = Dr.er L, where L., is isomorphic
to H,0Sym(S),) where H,, is either isomorphic to Zj, if k is the lenght of one cycle

occuring in « or Z if the lenght of the cycles are infinite and €2, is the set of cycles
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of lenght n (or the set of infinite cycles ). Now, it is enough to construct such a
normal series for one of the direct factors, that is, consider L., = H, ! Sym(£2,).

Denote B = Drgecsym(q,)H, that is, the base group B of the wreath product
is a direct sum of copies of Z or Z,.

By Theorem 3.1 we know that the normal subgroups of Sym(§2,) are exactly
1, Alt(€2), Sym(§2) and the subgroups of the form Sym(§2,,c) with Xy, < ¢ < |Q]
where Sym(Q,¢) = {z € Sym(Q) : |supp(z)| < ¢}. We know that under Axiom
of Choice the proper class of cardinal numbers are totally ordered (see [22, 2.21]),

hence the set of cardinal numbers less than card(€2,) is totally ordered. Now,
1B <aBXNAIlt(S2,) ABXNSym(Q,, Ro) <BXSym(§,,Xy) .. .<BXSym(Q,) = L,

is a normal series of length equal to order type of 26474

When ¢ < ¢ < card(S),), if there are no cardinals between ¢ and ¢, that is,
when c¢ is the successor cardinal of ¢/, then by Theorem 3.1 Sym(£,,c) is the
largest normal subgroup of Sym(£2,,c). Now, we need to show that the factor

group BSym(2,,c)/BSym(€2,,c) is an infinite simple group. Consider
BSym(§2,,¢)/BSym(Q,, ) = BSym(Q,, c)Sym(§,, ')/ BSym(§2,, )

= Sym($y, ¢)/(Sym(2y, ) N BSym(Q,, )
= Sym(§,, ¢)/Sym(,, ¢)(B N Sym(S,, c)).

by the Third Isomorphism Theorem and the Dedekind Modular Law. But since
B N Sym(£Y,, c) is identity, we have

BSym(§,,¢)/BSym(Q,, ) ~ Sym(8,,c)/Sym(§,, )

which is isomorphic to an infinite simple group.

Hence, Cgym(0)(a) has a normal series involving infinite simple factors. ]

Remark 3.19. By Theorem 3.1 we know that for any infinite successor cardinal
Noi1 the group Sym(Q,R,41)/Sym(2,R,,) is simple. This is not the case when
c is a limit cardinal, that is, ¢ = Nz where 3 is a limit ordinal. In this case,

for any cardinal a < c¢ there exist b greater than a and less than c¢. Hence
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the factor group Sym(,c¢/Sym(§2,a) contains a normal subgroup of the form
Sym(2,b/Sym(Q2, a) by Theorem 3.1. So, in the normal series, the factor groups

Sym(2, ¢/Sym(£2, a) where ¢ is a limit cardinal can never be simple.
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CHAPTER 4

CENTRALIZERS OF FINITE
SUBGROUPS IN LINEAR SIMPLE

LOCALLY FINITE GROUPS

In this chapter we study centralizers of finite subgroups consisting of semisim-
ple elements in linear simple locally finite groups. Hartley asked Question 1.1
for non-linear simple locally finite groups. Naturally one wonders about linear

groups, that is, it is natural to ask the following:

Question 4.1. Is the centralizer of a finite subgroup in a linear simple locally

finite group mecessarily infinite?

It is easy to see that the linear version of Hartley’s question has a negative
answer. In fact, the following observation shows that in a linear simple locally

finite group, we can always find finite subgroups with trivial centralizer:

Remark 4.2. By the result of Belyaev, Borovik, Hartley-Shute and Thomas, we
know that a linear simple locally finite group is a Chevalley or twisted Chevalley
group over a locally finite field. By Theorem 2.31, a linear simple locally finite
group is a subset of the fixed points of powers of a Frobenius map in a simple linear
algebraic group. Here, we can first find the centralizers in the linear algebraic
group, and then intersect with the fixed points of the Frobenius maps. A linear
algebraic group is an affine variety and the centralizers of elements are closed
subsets. By [30, Section 1.1, p.90], the closed subsets of an algebraic variety
satisfy descending chain condition. Now, let G’ be an adjoint type simple linear
algebraic group (it has trivial center), let g; € G and C; = Cg(g1). Since G has
trivial center, G # C;. Choose go € G\C; and let Cy = Cg(g1,g2). Now, since
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g1 ¢ Cs, we have Cy # Cy. Since Cy # Z(G), there exists an element g3 € G such
that Cg(gs) # Cs. Therefore, Ca(91,92,93) = Cal(g1,92) N Ca(gs) is a proper
subgroup of Cg(g1,g2). Denote C5 = Cg(g1, g2, 93). Assume C,, is constructed
and is non-trivial. Since C), is not equal to the center, there exists g, € G such
that Cg(gnt1) #? Cn. Now, denote Cpp1 = Cg(gnt1) N Cy. Clearly, Cppy is a
proper subgroup of C,,. Here, all C;’s are closed subsets of G. Then the chain
G > C7 > (5 > ... must terminate at finitely many steps. By the constructions
of Cy’s, if the last element C,,, of the chain is not equal to the center, we can always
construct a proper closed subgroup C),,1. Hence the last element of the chain
is necessarily 1. Then, if G is an adjoint type simple linear algebraic group, we
can always construct a finite subgroup with trivial center, that is, a linear simple
locally finite group has a finite subgroup with trivial center. So, there exists a
finite subgroup with trivial center, that is, Question 4.1 is answered negatively.
Another way of seeing this is the following: It is easy to show that, if G = B(k)
is a locally finite, simple group of Lie type B over an infinite locally finite field %k
of characteristic p, and F' = B(F,), then C¢(F) = 1. Indeed, F contains elements
X-(1) and x_,(1) for every positive negative root r in the root system of G. Then
Ce(F) consists of elements commuting with x,(1) and x_,(1) for every positive

root 7. Then Cq(F) = Z(G) = 1.

But if the subgroup A itself is abelian, clearly Cz(A) > A. In linear case, we
study the centralizers of finite abelian subgroups. In Section 4.3 we will see that
centralizer of even a single unipotent element can easily fail to contain infinitely
many elements of distinct prime orders. So, we consider centralizers of finite

abelian subgroups consisting of semisimple elements.

4.1 Centralizers of d-abelian subgroups in sim-

ple locally finite groups of Lie type

We start with the definition of a d-abelian subgroup of a simple linear algebraic

group:
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Definition 4.3. Let G be a simple linear algebraic group. A finite abelian sub-
group A consisting of semisimple elements of G is called a d-abelian subgroup if

it satisfies one of the following:

1. The root system associated with G has type A; and Hall-m-subgroup of A is

cyclic where m 1s the set of primes dividing | + 1

2. The root system associated with G has type By, C;, D; or Go and the Sylow
2-subgroup of A is cyclic.

3. The root system associated with G has type Eg, E7 or Fy and the Hall-{2,3}-
subgroup of A is cyclic.

4. The root system associated with G has type Eg and the Hall-{2, 3, 5}-subgroup
of A is cyclic.

Here, since A is a finite abelian group, it has Hall-{7 }-subgroups for every set
of primes 7.

In this section, our aim is to prove the following result:

Theorem 4.4. Let G be a locally finite simple group of Lie type defined over an
infinite locally finite field of characteristic p. Let A be a d-abelian subgroup of G.
Then Cg(A) contains an abelian subgroup isomorphic to Dr, Z,, for infinitely

many distinct primes p;.

We will use the following result to see whether an abelian subgroup A of G is

contained in a maximal torus of G or not.

Theorem 4.5. (Steinberg, [34, Corollary 2.25]) Let G be a connected re-
ductive linear algebraic group over an algebraically closed field of characteris-

tic p and A a commutative subgroup consisting of semisimple elements. Write

AJA° (AN Z(G)) as
AJA° (AN Z(G)) = Ly X Ly X ... X Lo,

where n;|n;. .

Let p be the number of n;’s which are divisible by the torsion primes of G.
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1. If p <1 then A is a contained in a maximal torus of G.
2. If p <0 then Cq(A) is connected and simply connected in G.

3. If G is simply connected, then the values of p in (1) and the first part of
(2) may be increased by 1.

By this result, we will see that a d-abelian subgroup A of G is always contained
in a maximal torus. The following result of Steinberg shows that, A is contained

in a o-invariant maximal torus also.

Lemma 4.6. (Steinberg, [32, Lemma 5.9]) Let G be a connected linear
algebraic group and o be a Frobenius map on G and A be a subset of G such that
a’ = a for every a € A and contained in a mazximal torus. Then A is contained

i a mazimal torus T which is invariant under o, that is, T =T.

Now, we present an example of a non-d-abelian subgroup A such that Cx(A) =

A.

Example 4.7. Let G be the adjoint group A;(K) = PSLy(K) defined over an

algebraically closed field K of odd characteristic. For A\> = —1, consider the
subgroup A of PSL(2, K) generated by the elements
0 1 A0
xr = Z and y = Z.
-1 0 0 —A

The subgroup A = (z,y) is isomorphic to Zy X Z. G has Lie rank [ = 1. The
order of Ais 4 and [ + 1 = 2. Therefore A is not d-abelian in PSLy(K) as A
(the Sylow-2-subgroup of A) is not cyclic. In particular, A is not contained in a
maximal torus of PSLy(K).

Here, one can easily observe that C(A) = A. In this case |Cg(A)| = 4, hence
Cg(A) does not contain infinitely many elements of distinct prime orders. In

fact, in Section 4.2, we will observe that for every n, there exists a non-d-abelian
subgroup A of PSL, (k) with Cpgy, )(A) = A.

We will use the following consequence of Theorem 2.46. It is proved by Hartley

in [12, Lemma 2.5], but we will give a different proof.
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Lemma 4.8. Let G be an adjoint type simple linear algebraic group, o be a

Frobenius map on Gand T be a o-invariant mazimal torus of G. Let
G =JO"(Gom)
i=1

where niniy1, and T = 2, (T N OY (Goni)). Then T contains infinitely many

elements of distinct prime orders.

Proof. Let G be an adjoint type simple linear algebraic group, o be a Frobenius

map on Gand T be a o-invariant maximal torus of G. Let
G=[JO"(Gom)
i=1

where n|n;y1, and T = |22, (T NOY (G,n:)). We first need to consider the orders
of Ty = T N OP (Gyn:). Observe that, since n;|n;y1, we have T} < Tj,,. Here, by
Definition 2.47 of a maximal torus of a finite simple group of Lie type, T; is a
maximal torus of Gy = O (G,n). Recall that G; is a simple group of Lie type
over a finite field of size ¢™.

Now, by the results in Section 2.7, we know the cyclic structures of possible
maximal tori in finite simple groups of Lie type. We observe that for a maximal
torus 7; of a finite simple group of Lie type G; has order f(¢") where f is one of
the polynomials given in these results.

We observe from Theorem 2.49 and Tables 2.3, 2.4, 2.5 that there are 4 pos-
sibilities for f(q):

1. f(q) is divisible by ¢* — 1 for some k € N: 1In this case, for each i € N
we have f,n: is divisible by (¢*" — 1). By Theorem 2.46, for each power
m of ¢, there exists a prime p such that p divides ¢™ — 1 and p does not
divide ¢®* — 1 for any 1 < s < m. Hence, for each i, there exists a prime
pilg"™™ — 1 such that p; divides ¢"*" — 1 and p does not divide ¢° — 1 for any
1 < s < kn;. Since for each i there exists such p; dividing |7;|, the union

T = U;° T; contains infinitely many elements of distinct prime orders.

2. f(q) is divisible by ¢* + 1 for some k € N: In this case, we will apply
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Theorem 2.46 for ¢"™ + 1 and obtain the same result.

3. f(q) is divisible by

1. In this case we use Theorem 2.46 for ¢"*™ — 1. Then we conclude that

L for some m, k € N: In particular, m may be

there exists a prime p;|¢™*™ — 1 such that p; divides ¢™*" — 1 and p does

not divide qs — 1 for any 1 < s < mkn;. Hence, p; can not divide ¢™ — 1,
gk -1

qm -1

therefore, p;|%

4. The cases where we can not use Theorem 2.46 directly: These are
one of the non-split maximal tori in G =2 Bsy(q), 2Fy(q) where ¢ = 22™*1,
and f(q) = q¢++/2q+1 or ¢> +/2¢3 + ¢+ +/2¢+ 1, the non-split maximao
tori in G =2 Go(q) where ¢ = 3?"*! and f(q) = ¢+ /3¢ + 1 and G = Ej
and f, = ¢®+q¢"—¢° —¢* — ¢* + ¢+ 1. In fact, the proof of the theorem for
this case follows in all the cases, but to see the orders explicitly we wrote
them separately. Here, by Theorem 2.31, GG is a linear simple locally finite
group over an infinite locally finite field K of characteristic p. By Remark
2.50 a maximal torus T' over the locally finite field K splits over a finite
Galois extension L of K, say |L : K| =1 < oco. Here, since L is a finite
extension of K, it is a locally finite field. We have L = |JL; where L;’s
are finite subfields of L with [L; : L; N K] < I. Now, L; N K is a finite
field of size ¢; and |L}| = ¢! — 1. Since , L* = |J L}, by Theorem 2.46, for
each i the polynomial ¢/ — 1 has a primitive prime factor, so L* contains
infinitely many elements of distinct prime orders. Since 7" is isomorphic to
a direct product of finitely many L*, it contains an infinite abelian subgroup
isomorphic to Dry,Z,, for infinitely many primes p,. Now, [T" : T] < oo,
since [L : K| < oo and dimT = r < co. So, T contains an infinite abelian

subgroup A isomorphic to Dry,Z,, for infinitely many primes p;.
[

Remark 4.9. Let GG be a locally finite simple group of Lie type over an infinite
locally finite field K of characteristic p. In fact, for any non-trivial torus 7' of
G, the same result follows by the following: Recall that, by Theorem 2.31, there

exists an adjoint type simple linear algebraic group G, a Frobenius map ¢ on G
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and a sequence of integers n;|n; 1 such that

Let T be a o-invariant torus of G. Then a torus T of G is T = [J°,(T N
OP' (Gyni)).

By [26, page 18], T splits over a finite Galois extension L of K, hence, there
exists a torus 7" containing 7" such that |7” : T'| is finite and T contains infinitely

many elements of distinct prime orders by the same argument in Lemma 4.8.
The following result is an immediate consequence of Remark 4.9:

Corollary 4.10. Let F' be a subgroup of G. If C5(F) contains a non-trivial o-
invariant torus T of G (which is not necessarily mazimal), then Cgq(F) contains
an infinite abelian subgroup isomorphic to Dry,Z,, for infinitely many distinct

primes p;.

Now, we are ready to prove Theorem 4.4:
Proof of Theorem 4.4

Proof. Let G be an infinite simple locally finite group of Lie type over an infinite
locally finite field K of characteristic p. Then, by Theorem 2.31, there exists a
simple linear algebraic group G of adjoint type, a Frobenius map ¢ on G and
an infinite sequence of integers n;|n; . for ¢ = 1,2,3,... such that G = |J;°, G;
where G; = O (Gyn:i). Denote Gyn; = H;. If x € H;, that is, 27" = 2, then
2 = 1 as n;|n;y1. Therefore, H; < H;,1 and the union H = Uf; H; of H;s
form an ascending chain of subgroups of G. Hence H is a subgroup of G. By [4],
Section 7.1, we know that |H;/G;| is bounded by [ + 1.

Claim O (H) = G = J2, G..

Recall that O (H;) is the subgroup generated by all p-elements of H;. Let
T e Op/(H). There exist p-elements g1, ..., g € H such that z = ¢;...¢g,. Since
the elements g; € H = |J;-, H;, there exists some ¢ such that g; € H; for all
1 < j < k. Since g;s are p-elements and there exists some ¢ such that g; € H;
for all 1 < j < k, the elements g;’s are contained in Opl(HZ-) = G,; < G for all
1 <75 <k. Hencex € (.
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Conversely, if + € G = |J°, G; then z € G| for some j, so z € O” (H;) = G;.
Then z can be written as a product of p-elements in H;, hence in H. So, x €
O"(H)=G.

Claim |H/G| <1+ 1.

Now H = |J;2, H; and G = |J;2, G;. Denote |H;/G;| = k;. By [4], Section
7.1, we know that k; depends on the type of the associated Lie algebra and it
is bounded by [ + 1. Since all G;’s are constructed from G, the Lie algebras
associated with them are also the same for all j. So, the indices k; = |H;/G;| are
all equal for ¢ = 1,2,..., that is, |H;/G,| = k < [+ 1 for all j. We prove the
statement by contradiction. Assume that |H/G| > [+ 1 and let xq,...,x142 be
[ + 2 distinct coset representatives of G in H. Then there exists some m such
that z; € H,,, for all i = 1,2,...14+ 2. Without loss of generality, we may assume
x1 € G. Now, {z9,...,20} CH -G, 80 x; ¢ Gy, forall i =2,2,...1+2. It
follows that | H,, /G| > I+1 which is a contradiction. So, the index |H/G| < [+1.

We want to show that Cg(A) contains infinitely many elements of distinct

prime order. Since

Cu(A)
| Ca(A)

| = 1Cu(A)/(GNCr(A))| = [Cr(A)G/G| < [H/G| <1+1

it is enough to show that Cy(A) contains infinitely many elements of distinct
prime order, then it follows that Cg(A) contains infinitely many elements of
distinct prime order.

First, we need to calculate p for the finite d-abelian subgroup A. The identity
component of a linear algebraic group is contained in every closed subgroup of
finite index (See [17][7.3]). Since A is a finite subgroup of G and 1 is closed,

we have A° = 1. Since G is of adjoint type, Z(G) = 1. Hence, in our case,

[AJA° (AN Z(G)) = A.

Write A = Z,,, X Zp, X ... X Z,, where n;|n;;1.

First case: Let the root system of G have type A;. Then the root system
has no torsion prime. So, the torsion primes of GG are the primes which divide
the order, [ + 1, of the fundamental group. Denote the set of primes that divide
[+ 1 by m. Since the root system of G has type A; and the Hall m-subgroup of
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the d-abelian subgroup A is cyclic, the number n; that are divisible by a torsion
prime of G is at most 1, that is, p = 1.

Second case: Let the root system of G have type B, C;, D; or Go. If the
type of the root system is Cj, the root system has no torsion prime, but 2 is a
torsion prime for the fundamental group. If the type of the root system of G is
By, D; or G5 then the only torsion prime of the root system is 2.

Since A is a d-abelian subgroup and the type of the root system of G is
By, Cy, Dy or Gy, the Sylow 2-subgroup of A is cyclic. When A is written as a
product of cyclic groups of order n;, the number of n;s not relatively prime with
2 is at most 1, that is, p < 1.

Third case: Let the root system of G have type FEg, By or Fy. Then the
torsion primes of G are 2 and 3. But since A is a d-abelian subgroup, Hall-{2, 3}-
subgroup of A is cyclic. Therefore, p < 1. Similarly we can deduce that if G = Ey
and A is d-abelian, p < 1.

Hence, if A is a d-abelian subgroup, p is always less than 1. By Theorem 4.5,
A is contained in a maximal torus 7" of G. Now, A is a subset of G fixed by o™
and contained in a maximal torus 7. By Lemma 4.6, there is a maximal torus T’
of rank r > 1 containing A which is invariant under o™ . Since ni|n; for all ¢, we
have T is invariant under o™ for all i = 1,2,3,.... Since T is an abelian group
containing A, we have T < Cg(A).

Now, by Lemma 4.8, since G is an adjoint type simple linear algebraic group,

o is a Frobenius map on G with

G = G ao—ni
1=1

where n;|n;,, and T is a o-invariant maximal torus of G, the subgroup 7 =
U2, (T N G,ni) contains infinitely many elements of distinct prime orders. So,
T < U=, (Ca(A))gni, that is, T < Cg(A), hence Ci(A) contains an infinite
abelian subgroup which can be written as Dr°,Z,, for infinitely many primes
Pi- O
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4.2 Construction of an infinite family of self cen-

tralizing finite abelian subgroups in PSL,(k)

In this section we will construct non-d-abelian subgroups of PSL, (k) for each

If G is an infinite locally finite simple group of Lie type, that is, an infinite
linear locally finite simple group, then the structure of the centralizer of a finite
abelian subgroup necessarily depend on the number of the torsion primes dividing
|Al. If A is d-abelian, by Theorem 4.4, C(A) contains infinitely many elements
of distinct prime orders. If A is not d-abelian, it may not be the case. The
following result will show that for every n, there exists an abelian subgroup of

order n* in PSL, (k) whose centralizer is equal to itself.

Lemma 4.11. Let G = PSL,(k) where k is the algebraic closure of the finite
field of characteristic p. Assume (p,n) =1. Let

0 0 1
—1 0
o -1 ...
xZ = | Zed.
0 ... -1 0

If yZ is an element of Ca(xZ)\Ca(xZ)° of order n, then

0
-1 0 0
0 -1
Proof. Observe that for every n € N the determinant of x =
0 ... -1

is equal to 1, hence x € SL, (k). So, Z is an element of G = PSL, (k).
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By Lemma 2.39, x is a regular element of SL, (k). Then, by Lemma 2.40, 27
is regular in PSL, (k). Observe that |xZ| = n, which is relatively prime with p.
So, xZ is semisimple.

Observe that Cq(2Z) = {gZ € G : [g,z] € Z} where Z = Z(SL,(k)) =
{a.I : a® =1}. Then Cu(2Z) = J;—} Cy where

Cv=1{9Z€G : [g,7] =TI}

with A\ a primitive n-th root of unity, and denote C} the connected components
of the centralizer.

Since zZ is a regular semisimple element of G, the identity component of
Cq(xZ) is a maximal torus, that is, Cq(xZ)° = T'. Since the identity component
Ce(22)° of Ce(xZ) is a normal subgroup in Cg(xZ), the normalizer Ng(T') con-
tains Cg(xZ). Since the centralizer of a maximal torus in a connected reductive
group is itself, we have C(T) =T.

Observe that [Cg(z) : Cg(z)°] = n. Let yZ € Cy where Cy = {9Z € G
lg,z] = A.I}. Here yZ € Cg(z)/Cq(x)°.

Claim: |yZ| =n.

Assume (yZ)F € Cg(x)°. Then [y* z] = I. But since yZ € C), we have
ly, 2] = A\.1. Here;

-1

k—1 karl[y?Q;]l,fl)yk T

Wr 2] =y Py =y My ey (e )y e =y

= A1y ).

Inductively, we deduce that [y* 2] = A*.I. But by assumption [y*, 2] = 1.
Therefore, \¥ = 1, that is, k = n, so |yZ| = n.

Hence, there exist an element yZ € Cg(2)\Cq(z)° such that |yZ| = n. Since
Cg(x)° =T and Cg(x) < Ng(T), the element yZ induces an element w of order
n in Ng(T)/T, namely the Weyl group.

Recall that since [2Z,yZ] = Z, the subgroup A = (xZ,yZ) is isomorphic to
Ly X Ly Here, Cp(yZ) = Ceoy(2)e(yZ) is a subgroup of index at most n in C(A).
Since the primes dividing n are torsion primes, A is not d-abelian (p = 2).

Our aim is to show that Cr(yZ) has order n. Since yZ induces an element
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w € W, we will consider Cp(w). For simplicity, consider the maximal torus

At
Ao .
T ={ . Z: [[aw=1}
k=1

An

The maximal tori 7 and 7" are conjugate by an element h € G. Now, w' = w" €
Ng(T")/T' is an element of order n in the Weyl group such that Cp(w) = Cp (w').
A1

A2

Now, for s = ) Z € Cp(w'), we have

)\1 >\2
A2 Az

An
An Al

Hence, A\, = \iz = \o2? = ... = \,_12" ! for some 2z € Z. So, for each z € Z,
we have a unique element in Cp/(w’), that is, |Cr(w)| = |Cpr(w')| = |Z| = n.
But Cr(w) has index n in Cg(A), so |Cq(A)| < n?. Since A = n?, we have
Ce(A) = A. O
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4.3 Centralizers of unipotent elements in simple
locally finite groups of classical Lie type in

odd characteristic

In this section, our aim is to obtain information about centralizers of unipotent
elements and answer the following question: If GG is a simple locally finite group
of Lie type over an infinite locally finite field k of characteristic p and u € G a
unipotent element, when does Cg(u) contain infinitely many elements of distinct
prime orders?

By Remark 4.9, we deduced that when C(u) contains a o-invariant maximal
torus, then C(u) contains infinitely many elements of distinct prime orders. So,
we need to analyse when Cx(u) contains a non-trivial torus.

Recall that an element z of the simple linear algebraic group G is called
regular if dim(Cgz(z)) = rankG. By Proposition 2.36, the centralizers of regular
unipotents contain only central semisimple elements, we are interested in the cen-
tralizers of irregular unipotent elements in locally finite simple groups of classical
Lie type.

First, lets consider an example of an irregular unipotent element in a simple

linear algebraic group.

110
Example 4.12. Let G = SL(3, k) where chark =pandus = [0 1 0. Then,
0 0 1
a b c
Colug) ={[0 a 0] :a,bc,deck, a’e=1}. Now, dimCq(uy) =4 > 2 =
0 d e

rank(G), hence, usy is an irregular unipotent.

Observe that Cg(ug) contains the subgroup

a 0 0
T={|0 a 0| :a,bcdeck, a*e=1}
0 0 e
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which is a torus.

The following theorem indicates that the unipotent classes of PSL, (k) is in

one-to-one correspondence with the unipotent classes of SL,, (k).

Proposition 4.13. [5, Proposition 5.1.1] Let G be a connected reductive
linear algebraic group. The canonical epimorphism G — G/Z(G) restricts to
a bijective morphism from the unipotent variety of G to the unipotent variety
of G/Z(G) and induces a bijection between the unipotent classes of G and the
unipotent classes of G/Z(G).

Remark 4.14. Observe that for a periodic group G with a finite normal subgroup
N, the quotient group G/N contains infinitely many elements of distinct prime
orders if and only if G contains infinitely many elements of distinct prime orders.

Let 7 : SL,(k) — PSL,(k) be the canonical epimorphism. Let uZ be a
unipotent element in PSL,(k). By Proposition 4.13, there exists unique u €
SL,(k) such that 7(u) = uZ. Now, if x € Cgp,a)(u) then 2Z € Cpgr, 1) (uZ).
Hence, m(Csy, ) (u)) is a subgroup of Cpgy, k) (uZ). But

T(Csp, k) (1) = Csr,my(w)/Z.

By Proposition 4.13, the conjugacy classes of unipotent elements in SL, (k) and
PSL, (k) are in one-to-one correspondence. Then, we may consider our unipotent
element as an element of SL, (k). Now, since the order of Z(SL,(k)) is bounded
by n, the centralizer of a unipotent element u in SL, (k) contains infinitely many
elements of distinct prime order if and only if the centralizer of uZ in PSL, (k)
contains infinitely many elements of distinct prime order. So, it is enough to

prove the result for Cgp,)(u).

The following result will give us a useful characterization of irregular unipotent

elements in classical groups.

Lemma 4.15. [27, Lemma 1.2] Let G be a classical algebraic group over an
algebraically closed field of characteristic p and W be the underlying module of
G. Letd=dimW.
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1. If G = Ay, By or C, then the reqular unipotent elements in G have a unique
Jordan block on W.

2. If G = D; and p is odd then the regular unipotent elements of G have two
Jordan blocks of size 1 and 21 — 1.

3. If G = D; and p is even then the reqular unipotent elements of G have two
Jordan blocks of size 2 and 2] — 2.

For the relation between d and [ in various types of classical groups, see Table
2.1.
By Lemma 4.15, an irregular unipotent element of G must have at least 2

Jordan blocks.

We will prove the following result:

Lemma 4.16. Let G = SL, (k) or PSL,(k) where k is an infinite locally finite
field of characteristic p and u be an irreqular unipotent element. Then Cg(u)

contains infinitely many elements of distinct prime order.

Proof. By Remark 4.14, it is enough to prove for G = SL,, (k). Let u be an irreg-
ular unipotent element in G. Clearly, u is contained in the corresponding linear
algebraic group G' = SL, (k). Recall that, by Theorem 2.31, G = |2, OP (G )
for some Frobenius map ¢ on G and a sequence of natural numbers n;|n; ;. Since
G = SL,(k), the Frobenius map o is standard. So, it remains to show that Cg(u)
contains a non-trivial torus 7'. Since ¢ is standard, T is o-invariant. Then, by
Corollary 4.10, Cz(u) contains infinitely many elements of distinct prime order.
Ji

Jo

Let J, = ) be the Jordan form of u with [; x [;

Jordan blocks J;.
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Consider the torus

oIy,

062112

aslls

Since each a;[;, commutes with the corresponding Jordan block J; in GL;,(k), the
subgroup Ty is contained in Cg(u). Indeed T is a torus of dimension s — 1 in G.
Since the number of Jordan blocks of an irregular unipotent element in SL, (k)
is greater than 1, we have s —1 > 0. Hence, Cz(u) contains a non-trivial torus.
So, by Corollary 4.10, we conclude that Cg(u) contains infinitely many elements

of distinct prime orders.

]

We will use Steinberg and Springer’s results on centralizers of unipotent ele-
ments in symplectic, orthogonal and unitary groups in odd characteristic.

Let k denote any field of odd characteristic and k be its algebraic closure.
We start with a finite dimensional vector space V over k of odd characteristic.
Let 0y be an automorphism of k with 02 = id. Let ( , ) be a non-degenerate

og-sesquilinear form on V' x V. We assume that

<ZL‘, y) = 60_0<ya ZL‘>

where €2 = 1.

Theorem 4.17. [32, Springer-Steinberg, 2.19 | Let X be a nilpotent element
in the Lie algebra g(k).

1. 09 #id. There exist vectors e; with 1 < i < s and integers d; > 0 such that
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o X%e, =0 and X,e; with a < d; and 1 < i < s form a k-basis for V,

and,

e there exist non-zero elements a; € k such that
(X%, X;) =0
ifi#jora+b#d; —1,
(X%, X5 1e)) = (=1)%,.

2. 09 = id. There exist vectors e;, fj,g; for 1 < i < sand1l < j <t and
integers d;, 0; > 0 such that

o Xbie; = X%f; = X%g; =0 and X%y, X"fi, X¢g; for 0 < a <dj, 0<
b<d;,0<c<é;, 1<h<s, 1<14,5<t form ak-basis of V

e the value of (, ) on a pair of these vectors is 0, except the following

ones:.

<Xa€¢, Xdi_a_16i> = (—l)aai

where a; € k¥,
<Xafj’X6jfaflgj> — €<X5jfaflgj’Xafj> — (_1>a

Remark 4.18. ([32, Springer-Steinberg, 2.22, 2.23, 2.25]) The algorithm to
find the centralizer of a unipotent element U in a simple linear algebraic group
G is as follows: We first consider the corresponding nilpotent element X in the
Lie algebra g. The Cayley transform X — (a — X)(a + X)~! sends nilpotents
to the corresponding unipotent elements in G, where a € k and og(a) = a™ .
By using the basis depending on the nilpotent element X in the Lie algebra g(k)
which is described in Theorem 4.17, we construct a torus S in G. Now, define a

k-homomorphism A from the multiplicative group G,, to G as follows:

Mz)X%; = o' HT2e X,

62



)\(l,)bej — x175j+2bbej
/\(J})ngj — $1_5j+2bngj
Here, \(G,,) is a 1-dimensional k-torus in G°. Let Z = Cg(X) and C = Cz(9).

Here C' is the reductive part of C(U), which has our particular interest. Denote
the k-rational points of C' by C(k).

Theorem 4.19. (/32, Springer-Steinberg 2.25]) The structure of C(k) is

1somorphic to
d

when G 1s a unitary group;

d d
IT sp.to)x T[] O(hik)
i=1, i odd =1, 7 even

where G is a symplectic group
d d
[T sp.e)x J[ O(hik)
i=1, i even i=1, i odd

when G is an orthogonal group where r; denote the number of d; and d; which are

equal to j.
For the details see [32, Springer-Steinberg, 2.22, 2.23, 2.25].

Theorem 4.20. ([29, Seitz, Proposition 3.6]) Let u be a unipotent element of
GL(V). Write the decomposition of V' under the action of u into Jordan blocks

v=Pvi=Pu

as each V; is the sum of r; Jordan blocks of size 1.

(i) A conjugate of u is contained in Sp(V') iff r; is even whenever i is odd.

(ii) A conjugate of u is contained in O(V') iff r; is even whenever i is even
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(iii) Two unipotent elements of Sp(V') or O(V') are conjugate iff they are conju-
gate in GL(V).

The numbers d;, 6;, h; in Remark 4.18 correspond to the multiplicities of sizes

of Jordan blocks of .

Definition 4.21. Let G be a simple locally finite group of classical type. A

unipotent element u s called a d—unipotent if:
(i) G is isomorphic to PSL, (k) and u is an irregular unipotent, or,

(ii) G is isomorphic to PSpa,(k), PSQs,11(k) or PSU, (k) and the Jordan form

of u contains a repeated Jordan block of size i.

Remark 4.22. In particular, a regular unipotent element is necessarily not d-
unipotent. By [27, Lemma 1.2] a regular unipotent has a single Jordan block in
type A;, B; and )] and the sizes of Jordan blocks of a regular unipotent element
in type D; is 1 and 2/ — 1 in odd characteristic, which can not be equal. Hence,

in all cases, no size of Jordan blocks can be repeated.

Theorem 4.23. Let G be a simple locally finite group of classical Lie type and u

be a unipotent element in G. The following are equivalent:
1. u is d-unipotent
2. Cq(u) contains infinitely many elements of distinct prime orders.

Proof. 1. First consider the case G = PSL,(k). Since for a periodic group
G with a finite normal subgroup N, the quotient group G/N contains in-
finitely many elements of distinct prime orders if and only if G contains
infinitely many elements of distinct prime orders, is enough to prove for
G = SL,(k). Let u be a d-unipotent element of SL, (k). Then it is an ir-
regular unipotent element. By Lemma 4.16, Cs(u) contains infinitely many

elements of distinct prime orders.

Conversely, assume that Cpgr, ) (u) contains infinitely many elements of
distinct prime orders and u is not d-unipotent. But, in this case, since

G = PSL,(k), the element v must be a regular unipotent. Then all the
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semisimple elements of Cg(u) are central. But Z(PSL,(k)) = 1, so it can

not contain infinitely many element, we get a contradiction.

. Let G = PSpa,(k), PSQpni1(k) or PSU, (k) and u be a d-unipotent. Then
the Jordan form of w contains a block size repeated at least twice. By
Theorem 4.19, the reductive part C'(k) of Cg(u) involves Spo, (k) with n >
1, or Ogp41(k) with n > 1 or U, (k) with n > 1. These groups all contain k-
tori when k is an infinite locally finite field. By Lemma 4.8, Cz(u) contains

infinitely many elements of distinct prime orders.

Conversely, assume that Cg(u) contains infinitely many elements of distinct
prime orders where G is a symplectic or orthogonal type simple group over
a locally finite field of odd characteristic. We know by Theorem 4.19 that if
u is not d-unipotent, then the reductive part of Cg(u) is isomorphic to the
direct product of finitely many O;(k)’s, hence it is an elementary abelian 2-
group. Hence, if Cs(u) contains infinitely many elements of distinct prime
orders then u must be d-unipotent. For unitary groups, if u is not a d-
unipotent, then by Theorem 4.19, the reductive part of the centralizer of
u is isomorphic to direct product of finitely many U;(k). Observe that
Ui(k) ={z € k: z.a* = 1} for some a € Aut(k) with |a| = 2. Since a
quadratically closed field can not have an automorphism of order 2, unitary
groups over quadratically closed fields do not exist. Hence, we may regard

k as a vector space of dimension 2 over a subfield ky of k where, ky is the

fixed field of a.
We fix the basis {1, a} of k over ky. Write

k= k’ank’o.

Let x € Uy(k). Then = € k with z.2® = 1. Now, if x € kg, we have z* = x,

so 2 = 1. Therefore, in this case r = £1.

If x ¢ ko, it is an element of aky. Hence, there exists y € kg such that
r = ay. Now, 1 = z.2% = aya®y® = (aa®)(yy®) = (aa®)y? since y € k.

Then y=2 = aa® where a is the fixed basis element. Hence, y~! is a root
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of the polynomial 7% — aa® € k[T]. Therefore, |U;(k)| < 4. So, if the
centralizer of a unipotent element in a unitary group contains infinitely
many elements of distinct prime orders, then it must be a d-unipotent.

O
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CHAPTER 5

CENTRALIZERS OF FINITE
SUBGROUPS IN NON-LINEAR SIMPLE

LOCALLY FINITE GROUPS

In [14, Theorem A2], it is shown that in an infinite locally finite simple group,
the centralizer of every element is infinite. In this work we study the following

problem of Brian Hartley.

Question 5.1. Is the centralizer of every finite subgroup, in a simple non-linear

locally finite group infinite?

The counterpart of this question, whether the centralizer of every finite sub-
group in a simple non-linear locally finite group, involve an infinite non-linear
simple group is resolved negatively by Meierfrankenfeld in [23]. He proved in [23,
Corollary 7] that, for a given non-empty set II of primes, there exists a non-linear,

locally finite simple group G such that

1. The centralizer of every non-trivial Il-element has a locally soluble II-

subgroup of finite index.
2. There exists an element whose centralizer is a locally soluble II-group.

In particular in the above groups there are elements whose centralizers can
not involve even finite non-abelian simple groups.

The stronger version of the Hartley’s question is the following:

Question 5.2. Determine all non-linear simple locally finite groups in which
centralizer of a finite subgroup has an abelian subgroup isomorphic to a direct

product of cyclic groups of order p; for infinitely many prime p;.
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By [19, Theorem 4.4], a non-linear simple locally finite group contains a count-
able non-linear locally finite simple group. Indeed, recall that by Remark 2.22,
we know that any finite subgroup of a simple locally finite group is contained in
a countable simple group. Hence, in this work, we may assume that the groups
we deal with are all countable.

Recall that, by Remark 2.29, if G is a countable non-linear simple locally
finite group then either G has a Kegel cover {(G;, N;) : i € N} and G;/N;’s
are alternating groups or G;/N; are a fixed type classical groups with unbounded

rank parameters. We will prove our results for these two cases separately.

5.1 Centralizers in simple locally finite groups

with an alternating type Kegel cover

The following easy result may give idea about the method we will use in the

proofs of main results.

Theorem 5.3. Let Q be an infinite set and G = Alt(Q2). Then, for any x € G,
the centralizer Cg(x) has an infinite abelian subgroup isomorphic to Dri® Z,,,

where p; is the i-th prime and Z,, is the cyclic group of order p;.

Proof. Let A = supp(z). Since |A| is finite, the set Q\A is infinite. Hence,
Alt(Q\A) is an infinite alternating group contained in Cg(z).

Since Q\A is infinite, it has a countable subset T"= {t;, : i € N}.

Now, let

(t1t2)(tsts)
s = (tstetr)
as = (tstotioti1t12)

7

o; = (t)\i—1+1 C tk,-)

where p; is the ¢-th prime and «; is a cycle of length p;. By construction, all

a;’s are mutually disjoint, hence they commute pairwise. Therefore, the group
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A= (a;: i €N)is an abelian group and is isomorphic to Dr{°,Z,,. O

Countable non-linear locally finite groups which have a Kegel cover

with G; = Alt(n;) and N; = 1 for all ¢ € N need special attention.

Remark 5.4. Observe that the groups described in the next result Theorem 5.5
contains the class of simple groups constructed in [19, Chapter 6]. The direct
limits of alternating groups are contained in this class and there are 2% non-
isomorphic simple locally finite groups of this type. For details, see [19, Chapter
6].

Theorem 5.5. Let G be a simple locally finite group which has a local system

consisting of alternating groups, that is,

G = At(n)
i=1
where Alt(n;) lies in Alt(n;iq).
Then for all finite F' < G, the centralizer Co(F') has an infinite abelian sub-

group containing elements of order p; for any prime p;.

Proof. Let F < G = |J;2, Alt(n;). Clearly, this group need not be the finitary
alternating group since the embeddings need not be trivial.

We construct an infinite ascending sequence of finite subgroups D; such that
for every prime p;, D; has an element p; of order p; and p; € Cq(F).

Let Dy = F. Assume that D; is already constructed. Then there exists n; € N
such that D; < Alt(n;) < G. The subgroup D; is contained in Alt(n;,y) for every
k > 1 and D; acts on the set Q2

inequivalent transitive permutation representations of D; is equal to the number

niy, Where [Q,. | = n;ip. Since the number of
of conjugacy classes of subgroups of D;, by choosing k sufficiently large, we may

assume that the orbits of D; on 2 can be written as

Nit+k

O,UO0,U...O, . U0

* T Pit1
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where each O; gives equivalent transitive permutation representations of D; on
Q

in Alt(n;4y) in the following way; the elements w; are fixed element in O; cor-

nesr- Now, let p;q be the cycle (12 3...p;41) and let pi;1 be the image of pi
responding to the stabilizer of a point which gives the equivalent representation.

Then for any ¢ € D;, we have
W;.CP41 = wj-Pi+1 .C

and p;;1 fixes O’ elementwise.

Now, for any w; for j = 1,...p;11 and for any € D; we have w,.(zp;i11) =
Wjpsyy = Wit1 and w;(Pig1.0) = W p,,, - = Wjp1.2 = wjy1. Hence, for any & € D;
we have x.p; 11 = pit1.2.

Let Dix1 = (F,p1,...,pi1) and A; = (p1,...,pi1) where Ag = Ay = 1.
Then the union A = | J A; is the required abelian subgroup which is isomorphic
to Dry,Z, for any prime p;.

O

Remark 5.6. This theorem works for embeddings or direct limits of alternating
groups. In particular, for Hall universal group and the groups constructed in [19,
Chapter 6].

Now, we will be able to prove the same result for a wider class of non-linear

simple locally finite groups with alternating Kegel factors.

Definition 5.7. A Kegel cover K = {(G;, N;) : 1 € 1} is called a split Kegel
cover if Cq,/n,(KN;/N;) = Cq,(K)N;/N; for every finite subgroup K of G;.

In particular, observe that if (|G;/N;|,|N;|) = 1, then the Kegel cover is a
split Kegel cover.

Corollary 5.8. Let G be a non-linear locally finite simple group with a split Kegel
cover K = {(G;, N;) | i € N} and G;/N; is isomorphic to Alt(n;) for all i € N. If
F is a finite subgroup of G, then Cq(F') contains an abelian subgroup isomorphic

to Drp, primeZyp

i
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Proof. We may assume that FF < G and let Ag = 1 and Cy = F. Then by
Theorem 5.5 there exists n; such that Cg, /v, (FNp,/Ny,,) contains an ele-
ment of order p;. Now, K is a split Kegel cover, so, Cg, /N, (F'Np,/Np,) =
Ca,, (F')Np, /Ny,. Hence, Cg, (F') contains an element of order p;.

Let Cy = (F, p1) and A; = (p1) where p; is an element of order p; in Cg,, (F).
Cy is a subgroup of Gy, and so there exists ny such that Cg,, /n,, (C1Nn,)/Nn,

contains an element of order p,. We have
CG’ILQ/NTLQ (Canz)/an = OG'n2 (Ol)an/Nn2

since K is a split Kegel cover. Hence Cg, (C)) contains an element py of order
pe. Let Cy = (Ch,p2) and Ay = (p1,p2). Then C; < Cy < C3 < ... and
A; < Ay < Asz.... Then the union A = J A; is the required abelian subgroup of
G which is isomorphic to Dry, primeZp, -

]

5.2 Centralizers in simple locally finite groups

with a Kegel cover with Lie type factors

In this section we consider non-linear simple locally finite groups G whose
Kegel factors are finite simple groups of Lie type. By Remark 2.29, we know that
in this case G has a Kegel cover with all G;/N;’s are a fixed type classical group
with unbounded rank parameters.

We need a general notion of a K-semisimple element in a simple locally finite

group:

Definition 5.9. Let G be a non-linear simple locally finite group and
K={(Gi,N;) : iel}

be a Kegel cover for G. An element x in G s called K-semisimple if K is a

Kegel cover consisting of alternating groups or G;/N; is a finite simple group of

Lie type and xN; is a semisimple element of G;/N; for every i € I.

71



We will use the main idea of the following two results in the proof of the main

theorem:

Theorem 5.10. Let G = SL,(k), and

ai; ... Qg
0
Gs1 Qss
al;y ... Qg
0
Gs1 Uss
Tr =
aip ... Qig
Qg1 ... Qgg
0 0 0 A

be an element in G which contains m repeating blocks of size s. Then Cg(x)

contains a subgroup isomorphic to SL, (k).

Proof. Let V' be the natural module for GG. Write

V=P .. Pw.pw

where each W is an (z)-invariant submodule of dimension s and the action of (x)
on W is equivalent, that is, if 3; = {vi1,..., v} is a basis for W;, i =1,2,...m
then vz = vyjz for all j.

Now, consider the linear transformation ¢ on W, @ Wo @@ ... P W,

Wi PP . Pw. — Wi Pn.P.. Pwa

Vij — bﬂvlj + bi2v2j + ...+ bimvmj

on the direct sum of W;’s for b;; € k.
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blllss b12Iss ce blmIss
b2ljss b22]ss

Now, ¢ =

bmllss s bmmIss
A linear transformation which send v;; to a linear combination of vy, ... Uy,

defines a linear transformation of Wy @ Wo @ ... W,,..

Consider the invertible linear transformations obtained as ¢. Let

xlljss leIss s xlm[ss
x21]ss xQZIss

xmljss v xmm[ss

H is a subgroup in SL,,,(k).
It is easy to see that the map

(3 H — GL,(k)
bllIss bl2Iss s blm[ss bll 612 s blm
b21[ss b22Iss b21 622
. N .
brmilss - b ss b1 - b

is a group isomorphism between the group of all invertible linear transformations
obtained as ¢ and G L, (k).

Hence, the group of all invertible linear transformations obtained as ¢ is iso-
morphic to GL,,(k). One can see that for each element of 1(¢) € GL,,(k) we
can define a linear transformation ¢ of V' which acts on W, @ Wo @ ... W,
as linear transformations defined as above. We extend the action of ¢ from
Wi@PWwe@P... W, to V by assuming ¢ acts on W’ trivially. We need to
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show that cx = xzc. Here,

where A =

Qg1

A 0
0 A

. Observe that the linear transformation ¢ can be

A 0
xr =

0 0
ais
aSS

written with respect to the ordered basis v;; as

blllss b12]ss
b?llss b22[ss

bmllss
0 0

blmlss 0
bmm]ss 0
0 Ty

where I, denotes the s x s identity block and Iy is the identity on W’. Then

xIrc =

A

0

0

A 0
0 A

blljss leIss s blm[ss 0
b21[ss b22[ss

bmljss e bmm[ss 0
0 0 0 Ty
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bllA blgA blmA 0
b21A bggA bgmA 0
b1 A by A L .. bymA 0
0 0 - 0 A
Similarly
blllss leIss blmIss 0 A O 0
b21]ss b22Iss 0 A 0
CTr =
bml ]ss bmmlss 0 A 0
0 0 e 0 Ty 0 0 0 A
bllA b12A blmA 0
bglA b22A meA 0
bmlA meA bmmA 0
0 0 . 0 A

Hence, zc = cx.
The set of all invertible ¢ defined as above give us GL,,(k), if we choose the
linear transformations with determinant 1, we obtain SL,,(k) < Csy, (k).
O

Theorem 5.11. Let G = A, _1(k) for some field k of characteristic p, and F' be
a finite subgroup consisting of semisimple elements of G. If n > (r — 1)|F|* + 1
then the centralizer of F in G contains a subgroup isomorphic to PSL,.(k).

Proof. Let F' be a finite subgroup consisting of semisimple in G = PSL, (k)
where k£ is a field of characteristic p. The vector space V' of n x 1 column vectors
over the field k forms a natural module for k[SL,(k)]. Now, V as a k[SL, (k)]
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module is irreducible. Let v,w € V. If {v, w} is not linearly independent, we have
w € (v), that is, w = aw. If By = {v,v1,v9,...v,_1} be a basis for V, then v ¢
(v1,...Up—1). Hence,w = av ¢ (vq,...v,_1). Therefore, By = {w,vy,va,... 01}

is also a basis for V. So, there exists g € GL,,(k) which sends v to w. In fact,
0
any element of the form g = ( “ p where A € GL,_1(k) will send v to w,

hence we may choose det A = a~! to have g € SL,, (k).

Now, we assume v and w are linearly independent. Since n > r|F|* + 1, we
may assume that n > 2.

So, there exists u € V\ (v, w), that is, {u,v} and {u,w} are linearly indepen-

dent. Now, there exists bases

1 =A{v,v1,09,...,05-2,u}

and

62 = {w,wl,wg, Ce ,'LU]C,Q,U}

for V. Since ; and (3 are two bases, there exists an element g € GL, (k) such
that which transforms (3; to (35, in particular g.v = w. By taking the last vector
A.u instead of w in B, we can arrange the determinant of the matrix g as 1,
that is, there exists ¢’ € SL, (k) with ¢".v = w. Hence, for any v # 0, we have
v.SL,(k) =V, so, V is an irreducible k[SL,(k)]-module.

Claim: Let L be the inverse image of F'in SL, (k). An L—composition series
of V' contains at most |F| isomorphism types of factors, each of dimension at
most |F'|. This is proved in [11, Theorem B.c|. For the reader’s convenience, we
will give the proof in detail.

Indeed, since Z(SL,(k)) = Z consists of semisimple elements, L is a subgroup
of SL, (k) consisting of semisimple elements. We consider V' as a k[L]-module.
Since L consists of semisimple elements, (p, |L|) = 1. By Maschke Theorem (see
[38, Corollary 1.6]), V' is a completely reducible k[L]-module.

Since Z < SL,(k), by Clifford’s Theorem (see [38, Theorem 1.7]), V| is
a direct sum of irreducible k[Z]-modules each of dimension one, and V' can be

written as a direct sum of homogeneous components.
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Since Z is the center of SL,(k), there exists only one homogeneous component.
Indeed, if V =W, @ WP ... Wy where W;’s are homogeneous components of
V. Let W; = X @ ... 0 Xip where X3 = X;o = ... = X;; and each X;;, j =
1,2,...,k is a one dimensional k[Z]-module.

Now, let g € SL, (k). Then W/ = X + X%, + ... + X},

Moreover, X;; & X7 as k[Z]-module.

Consider the map

9X11—>Xg

v — VY.

Now,

9(1)1 + ?JQ) = (’Ul + ’Ug)g = U‘i] + Ug = 9(1)1) + 9(212)

and
O(cv) = cv? = ch(v).

For all z € Z, since zg = gz, we have 0(v*) = (v*)? = (v9)* = 0(v)* Hence, 6
is a k[Z]-module isomorphism as Xj; is irreducible.

Now, X < W, implies W¢ = W,. Hence, there exists only one homogeneous
component and V|z is a direct sum of a unique k[Z]-module W.

Let X be an irreducible k[L]-module. Then X| is a direct sum of irreducible
modules isomorphic to W. Hence, Homz(Xz, W) # 0. Here, Z < L and W is a
k[Z]-module. Let W be the induced k[L]-module.

Now, by Nakayama’s Frobenius Reciprocity Theorem (see [16, V.16.6]), we
have Homp(X,W¥%) # 0. From this, it follows that X can be embedded into
WE. The number of irreducible k[L]-modules is less than or equal to the number
of irreducible modules in W¥. Since W is unique, the number of irreducible
modules is less than or equal to the dimension of W*. But dim(W%) = |F].
Hence, the number of distinct irreducible k[L]-modules is less than or equal to
|F'| and the dimension of each irreducible k[L]-module is less than or equal to
|F'|. This completes the proof of the claim, that is, an L-composition series of V'
contains at most |F| isomorphism types of factors, each of dimension at most |F|
([11, Theorem B.c]).

77



Therefore, if n > (r—1)|F|?+1 then at least one of the irreducible components
of L repeats r-times. Choosing the basis of V' suitably we may say that at least r
blocks repeats in all elements of L and the elements which permute these blocks
generate a subgroup isomorphic to SL,(k) which is contained in Csyp, ) (L) by

the argument in Lemma 5.10. Therefore,
PSL.(k) < SL.(k)Z/Z < Cpsr, ) (F).

]

The following consequence of Theorem 5.11 shows that if F'is a finite subgroup
consisting of semisimple elements in PSL, (k) where n is sufficiently large, then

C¢(F') contains infinitely many elements of distinct prime order.

Corollary 5.12. Let G = A,,_1(k) over an infinite locally finite field k of char-
acteristic p, and F' be a finite subgroup consisting of semisimple elements of G.
If n > |F|> + 1 then the centralizer of F in G has an infinite abelian subgroup A

isomorphic to Dry, Z,, for infinitely many prime p;.

Remark 5.13. Observe that in Corollary 5.12, F' need not be d-abelian. In
fact, it can even be non-abelian. We know that centralizers of finite d-abelian
subgroups contain a maximal torus of G. But here, even when F' is not abelian,
but the rank is big enough, we can say that Cg(F') contains infinitely many
elements of distinct prime orders, but they are not necessarily contained in an

abelian subgroup.

Proof. (Proof of Corollary 5.12) Let G = A,,_1(k) over an infinite locally fi-
nite field k£ of characteristic p, and F be a finite subgroup consisting of semisimple
elements of G' with n > [F|* + 1. Write k as a union of finite fields F,x where
kilkit1. We know by Theorem 2.31 that G = |J;2, G; where G; = PSL,(p").
Since n > |F|* 41, by Theorem 5.11, Cpgy, (ki) (F) contains a subgroup isomor-
phic to H; & PSLy(p*). Then, since Cq(F) = Jio, Cq,(F), for every i, the
centralizer Cg,(F) contains a subgroup H; isomorphic to PSLy(p*i). The order

. i(g2—1 )
of PSLy(g;) is equal to %2(,‘;171)) for q; = ph.
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So, | Hy| and |Ce,(F)| are divisible by 2=t Since kilky+1, we have (p* — 1)
divides (p?+!' — 1). By Theorem 2.46, for each i there exists a prime ¢ which
divides (p*i — 1) but does not divide p™ — 1 if m < 2k;. Then for each H;

contains an element x; of prime order ¢;, which is not contained in H;_;. Then

the subgroup H = (z; | ¢ € N) is isomorphic to Dry,Z,, for infinitely many prime
pi and H < Cg(F). O

Now, we will prove the analogue of Theorem 5.5 for non-linear simple locally
finite groups with a local system consisting of classical groups with unbounded

rank.

Theorem 5.14. Let G be a non-linear simple locally finite group which has a
local system KK = {G; : i € N} consisting of classical groups. Then for any finite
subgroup F' consisting of KC-semisimple elements in G, the centralizer Cq(F') has

an infinite abelian subgroup A isomorphic to Dry,Z,, for infinitely many prime

Di-

Proof. Since G is non-linear, the rank parameter of the groups in X is unbounded.
So, all the groups in K are of classical type. By Remark 2.29, G,’s are of the
same fixed classical type, and the rank parameter is increasing.

For the characteristic of the fields where G; is defined we have the following:
If the number of primes which appear as characteristic is finite, say qi, qo, . - . ¢n,
then let J, = {G; € K : G, is defined over a field of characteristic g }.

Here, K = J;UJyU...UJ,, so at least one of the J,’s is infinite. So, we may
assume that there exists a prime p such that all the G; is defined over a fixed
prime p.

If infinitely many primes occur as characteristic, we may delete the repeating
ones and assume that each G, is defined over different characteristic.

Hence, we have two cases:

1. All the groups in the local system is defined over a field of characteristic p

for a fixed prime p.

2. All the groups are defined over different characteristic.
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Case 1 for groups with a local system consisting of groups of type A;:
Here, G;’s are PSL,,(k), where n;’s are increasing. Let F' be a finite subgroup
of G consisting of KC-semisimple elements. Then, by definition, F' consists of
semisimple elements of G;. If necessary, by deleting finitely many terms of the
local system, we may assume that F' < G that is, F' < G; = PSL,,(k;) for all
i. We will construct an abelian subgroup A < Cg(F') such that A is isomorphic
to the direct product of cyclic subgroups of order p; for infinitely many distinct
primes p;. For this, we start Ty = F. We work as in Theorem 5.11. Since F
consists of semisimple elements of PSL,,(k;), the inverse image of F' in SL,,(k;)
also consists of semisimple elements where k; is a field of characteristic p for all
i, that is, (|F|,p) = 1. Let I' = {p1 = 2,ps = 3,p3 = 5...} be the set of all
primes except p the characteristic of k, ordered by the usual order in N. By
Theorem 5.11, by choosing ny > (p; — 1)|F|> + 1, we find a subgroup isomorphic
to PSLy, (k) which is contained in Cpgr, )(F). Then, let x; be an element in
PSL,, (k) with order p;. We know that PSL, (k) contains an element of order n
by Lemma 4.11. Then, let ¢g; be an element in PSL,, (k) with order p;. Now, let
Ty = (g1, F) and A; = (g1). Here, since g; and the elements of F' commute and
(1) N F =1, we have Ty = (g;) x F. Therefore, since p; and |F| are relatively
prime with p, T} consists of semisimple elements in Gy = PSL,,(k). Now, apply
the same argument, that is, choose ny > (po —1)|T1|*+1 = (p2 — 1)pi|F?|+1, and
by Theorem 5.11, we obtain a subgroup isomorphic to PSL,,(k) in Cg,(T1) =
Cpsi,, k) (T1). We take an element g, of order py in PSLy, (k) and Ty = (go,)Th.
Denote (g1, g2) by As.

Assume T, ; is already constructed. If we choose n; > (p; — 1)|Ti1|> + 1,
we can find a subgroup isomorphic to PSL,, (k) in Cg,(Ti-1) = Cpsv,, k) (Ti-1)-
We take an element g; of order p; in PSL, (k) and T; = (g;,)Ti—1 consists of
semisimple elements of G, 1.

Continuing like this we obtain the chains of groups
Tong STZS ... and Al SAZS

Here, A; is the abelian subgroup generated by {gi,...¢;} which commutes with
F. Now, A = |J;Z, A; is an infinite abelian subgroup contained in Cg(F') such
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that A = Dr,crZ,, where I' is the set of all primes except p = chark.

Case 2 for groups with a local system consisting of groups of type
Aj;: In this case infinitely many distinct primes occur as characteristics of the
fields k;’s where G; = PSLy,,(k;). In this case, every element is K-semisimple, so
every finite subgroup F consists of K-semisimple elements. Indeed, if F' is a finite
subgroup of G, since the number of primes dividing |F| is finite, we may delete
the terms of the local system K in which the characteristic of the field divides | F|
and assume that F' consists of semisimple elements of GG; for every G; € K. Then
we may assume that G; = PSL,,(q;) where ¢; # ¢; for all j € N and (|F|,¢;) = 1.

Let as before F' = T,. Assume T, ; is already constructed. Here, if we
choose n; > |T;_1|*> + 1, we can find a subgroup isomorphic to PSLy(k;) in
Ce,(Ti—y) = CPSLni(ki)(Ti,l) where chark; = ¢;. Since ¢; divides |PSLs(g;)|, by
Cauchy Theorem, there exists an element g; of order ¢; in Cg, (T;-1) < Cg, (F).

We take an element g; of order ¢; in PSL,, (k) and T; = (g;, T;—1) consists of
semisimple elements of G;1.

Again, continuing like this, we obtain the chains of groups
Tong STZS ... and Al SAZS

Here, A, is the abelian subgroup generated by {gi, ... g;} which commutes with F'.
Now, A = |J;2, 4; is an infinite abelian subgroup contained in C¢g(F') such that
A = Dry, Z,, where the infinitely many distinct primes ¢;’s are the characteristics
of k;.

Case 1 for groups with a local system consisting of groups of type
B, Cy, D2 A2 Dy

In this case, for all G; in the local system K, the characteristic of the field
over which G} is defined is p. We will use the result [11, Theorem B.e|: Let F
be a finite subgroup of G which consists of semisimple elements of G, let L be
the inverse image of F' in the universal central extension of G, that is, L/Z = F
where Z is the center of the universal central extension of GG. Let m be the rank
of G over the field k. Let r be an arbitrary positive integer. By [11, Theorem
B.e|, if m > 2r|F[> 4+ 4|F|, the natural module V contains an k[L]-module U

which is direct sum of r isomorphic simple k[L]-modules and is totally isotropic
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(resp. totally singular).

Let U =U,PUEP... DU, where U;’s are copies of a single k[L]-module
and U is totally isotropic or totally singular subspace of V. Since L consists of
semisimple elements of the group G, by Maschke Theorem (see [38, Corollary
1.6]), V is a completely reducible k[L]-module.

If uy € U, weUandge Lthen (u;.g,u) = (uj,u.g”') =0 as U is an
k[L]-module and u; € U+. Hence, u;.g € U, Therefore, U is an k[L]-module.
Then Ut = U@ W where W is another k[L]-module. Observe that the form
on V induces a non-degenerate form on U+ /U. By decomposition on U+ we see
that the form induced on W is non-degenerate.

Since each U; is an irreducible k[L]-module, we have dimU; < |F|, hence
dimU < |F|r. Then dim(U+/U) = dim U+ —dimU = dimV — 2dimU = m —
2dim U. In particular, if m is sufficiently large, we have dim (U~ /U) is sufficiently
large, that is, dim W is sufficiently large. Let W =W, @ WL P ... P W;.

Then we write V.= UPW, WP ... W, PY where W;’s are irre-
ducible k[L]-modules and U+ = UPW, WP ... PW, = UPW. Also,
Y is a direct sum of irreducible k[L]-modules.

Since U;’s are isomorphic irreducible k[L]-modules, for each i we may find
a basis i = {u;1,...,uy} for U; and the action of each element g € L to the
elements of the basis gives the same matrix representation, that is, if u;.g =
Zle aisuis then uji.9 = Z’;zl a;sujs. As before in Theorem 5.11, we obtain for
each g € L the matrix representation is the copies of the same matrix repeated r
times in the first » component.

Now, define the linear transformations on U which are induced from the action
on SL,(k) to U in the following way. The elements of SL, (k) acts on the block

as we done before in Theorem 5.11,

v—u .. . pu.
W; — i)\lwl
=1

where w; = (w1, .. ., Uig)-

Extend the action on U and observe that the action of SL,.(k) to U is by
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isometries of U as U is a totally isotropic (resp. totally singular) subspace of V.
We may extend this action on U+ by acting trivially on W;. This action is also an
action by isometries: Indeed, if we take an element g € SL,(k) and uy,uy € U+
then uy = vy + wy and uy = vy + wy where uq,uy € U and wy, wy € Wy's.

Then

(ul,u2) = (Ul + Wi, Vo + wz)

= (v, v2) + (v1, w2) + (wi, v2) + (w1, wo) = (wy, wy)
since (v1,vq), (v1,ws), (wy,ve) are 0. Similarly,

(u1g, u2g) = ((v1 + w1)g, (v2 + w2)g)
= (v19,v29) + (v19, w2g) + (w19, v2g) + (w19, w2g)

= (wl,wg).

Hence, SL,(k) act by isometries of U+. Now, by Witt Extension Theorem we
may extend the isometries of U+ to isometries of V.

As in the proof of [11, Theorem B.f], let C* = Np(U) N Cr(W). Let D; =
Cc+(U). Now, Dy acts trivially on V/U+ =Y, U+/U =W and U. Hence D; = 1
and C' = SL,(k) is in the centralizer of L. Hence C/Z = SL,(k)/Z < Ca(F).

Now, for Case 1, since the characteristics of the fields where G; is defined is
a fixed prime p, let I' be the set of all primes except p. Let F' = Ty. If ny >
2(p1 —1)|F|>+4|F|, by the above argument, we can find SL,, (k) in Cg(F). Take
an element g; of order p; and let T} = (F, ¢1). Assume T;_; is already constructed.
If we choose n; > (p; — 1)|Ti—1]* + 4|T;—1|, we can embed SL,, (k) < Cg,(T;-1)
and take an element g; of order p; in SL,. (k). Then T; = (g;,T;—1) consists of
semisimple elements of G;,; and the proof follows as in type A;. The required
subgroup A = U°, A; where A; = (g1, ... gi)-

Case 1 for groups with a local system consisting of groups of type
By, Cy, D2 A2 Dy: For Case 2, that is, if the characteristic of the field is a differ-
ent prime p; for each G;, then we observed that every subgroup is K-semisimple.
Let I'={g; : i € N} be the set of all primes which does not divide |F.

We take F' = Ty and choose n; > 2(q; — 1)|F|> + 4|F| to find SL,, (k) in
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Cg,(F). By the same argument in Case 1, we construct T;’s and A;’s. Here,
A = J;en Ai & DryerZy, is the required subgroup of Ce(F).
[

Now, we are able to prove the same result with non-linear simple locally finite

groups with a split Kegel cover.

Corollary 5.15. Let G be a non-linear simple locally finite group with a split
Kegel cover K = {(G;, N;) | i € N} consisting of simple groups of Lie type.
Then for any subgroup F consisting of K-semisimple elements, the centralizer
Ce(F) has an infinite abelian subgroup A isomorphic to Dr, Z,, for infinitely

many prime p;.

Proof. We may assume that F' < G and let Ag = 1 and Cy = F. Then by The-
orem 5.14 there exists n; such that Cg, /n, (F'Ny,/Ny,,) contains an element of
(F)Nyy /Ny,
So, Cg, (F') contains an element of order p;. Let Cy = (F,p;) and A, = (p)

order p;. Since K is a split Kegel cover, Cg, /v, (F Ny, /Ny,) = Caq,,
where p; is an element of order p; in Cg, (F). Ci is a subgroup of G,,, and so
there exists ny such that Cg,, /n,, (C1Ny,) /Ny, contains an element of order ps.
We have

CGn2/Nn2 (CanQ)/Nn2 = CGn2 (Cl)an/NnQ

since I is a split Kegel cover. Hence Cg,, (C1) contains an element p, of order
pe. Let C7 = (F,p;) and A; = (p1) where p; is an element of order p; in
Cg(F). Let Cy = (C1,p2) and Ay = (p1,p2). Then C; < Cy < C3 < ... and
Ay < Ay < Asz.... Then the union A = [J A; is the required abelian subgroup of
G which is isomorphic to Dry, primeZy, -

[

Remark 5.16. Observe that the “split Kegel cover” assumption is necessary
as the groups constructed by Meierfrankenfeld in [23] are non-linear locally finite
simple groups but there are elements whose centralizer is a p-group for some fixed

prime p.

By Corollary 5.8 and Corollary 5.15 we reach conclusion of the thesis:
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Theorem 5.17. Let G be a non-linear simple locally finite group with a split Kegel
cover K and F be a finite subgroup consisting of K-semuisimple elements. Then
Ce(F) has an infinite abelian subgroup A isomorphic to Dr, Z,, for infinitely

many prime p;.

Remark 5.18. Hall-Kulatilaka Theorem says that in an infinite locally finite
group, there are infinite abelian subgroups. (See [9]). Here we prove that in a non-
linear locally finite simple group which has a “nice” Kegel cover, the centralizers
of finite subgroups have abelian subgroups with elements of order p; for infinitely

many primes.
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