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abstract

CENTRALIZERS OF FINITE SUBGROUPS IN SIMPLE
LOCALLY FINITE GROUPS

Ersoy, Kıvanc.
Ph. D., Department of Mathematics

Supervisor: Prof. Dr. Mahmut Kuzucuoǧlu
Co-Advisor: Assoc. Prof. Dr. Ayşe Berkman

August 2009, 90 pages

A group G is called locally finite if every finitely generated subgroup of G

is finite. In this thesis we study the centralizers of subgroups in simple locally

finite groups. Hartley proved that in a linear simple locally finite group, the fixed

point of every semisimple automorphism contains infinitely many elements of

distinct prime orders. In the first part of this thesis, centralizers of finite abelian

subgroups of linear simple locally finite groups are studied and the following result

is proved: If G is a linear simple locally finite group and A is a finite d-abelian

subgroup consisting of semisimple elements of G, then CG(A) has an infinite

abelian subgroup isomorphic to the direct product of cyclic groups of order pi for

infinitely many distinct primes pi.

Hartley asked the following question: Let G be a non-linear simple locally

finite group and F be any subgroup of G. Is CG(F ) necessarily infinite? In the

second part of this thesis, the following problem is studied: Determine the non-

linear simple locally finite groups G and their finite subgroups F such that CG(F )

contains an infinite abelian subgroup which is isomorphic to the direct product

of cyclic groups of order pi for infinitely many distinct primes pi. We prove the

following: Let G be a non-linear simple locally finite group with a split Kegel
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cover K and F be any finite subgroup consisting of K-semisimple elements of G.

Then the centralizer CG(F ) contains an infinite abelian subgroup isomorphic to

the direct product of cyclic groups of order pi for infinitely many distinct primes

pi.

Keywords: Locally finite group, simple group, centralizer.
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öz

BASİT YEREL SONLU GRUPLARDA SONLU
ALTGRUPLARIN MERKEZLEYENLERİ

Ersoy, Kıvanc.
Doktora, Matematik

Tez Yöneticisi : Prof. Dr. Mahmut Kuzucuoǧlu
Ortak Tez Yöneticisi: Doc.. Dr. Ayşe Berkman

Aǧustos 2009, 90 sayfa

Sonlu sayıda eleman tarafından üretilen her altgrubu sonlu olan bir G grubuna

yerel sonlu grup denir. Bu tez basit yerel sonlu gruplarda altgrupların merke-

zleyenleriyle ilgilidir. Hartley, lineer basit yerel sonlu bir grupta her yarı-basit

otomorfizmanın sabit noktalarının birbirinden farklı asal mertebeleri olan sonsuz

sayıda eleman ic.erdiǧini kanıtladı. Bu tezin ilk bölümünde, lineer basit yerel sonlu

gruplarda sonlu deǧişmeli altgrupların merkezleyenleri incelenmiş ve aşaǧıdaki

sonuc. elde edilmiştir: Eǧer G lineer basit yerel sonlu bir grup ve A yarı basit ele-

manlardan oluşan, sonlu, d-deǧişmeli bir altgrupsa CG(A)’nın sonsuz sayıda bir-

birinden farkli pi asalı ic.in, pi mertebeli devirli grupların direk c.arpımına eşyapılı

sonsuz, deǧişmeli bir altgrubu vardır.

Hartley aşaǧıdaki soruyu sordu: G non-lineer, basit, yerel sonlu bir grup olsun

ve F altgrubu G’nin herhangi bir altgrubu olsun. CG(F ) her zaman sonsuz bir

grup mudur? Bu tezin ikinci kısmında c.alışılan problem: Hangi non-lineer ba-

sit yerel sonlu G gruplarında ve hangi sonlu altgruplary F ic.in CG(F )’in sonsuz

sayıda birbirinden farklı pi asalı icin, mertebesi pi olan devirli grupların direk

c.arpımıyla eşyapılı deǧişmeli bir altgrubu vardır sorusuna cevap bulmaktır. Bu

soru ile ilgili olarak aşaǧıdaki sonuc. kanıtlandı: G grubu K split Kegel örtüsüne
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sahip, non-lineer, basit, yerel sonlu bir grup ve F altgrubu K-yarıbasit (semisim-

ple) elemanlardan oluşan sonlu bir altgrup olsun. O zaman, CG(F )’nin son-

suz mertebeli öyle bir deǧişmeli altgrubu vardır ki, bu altgrup sonsuz sayıda

birbirinden farklı pi asalı icin, pi mertebeli devirli grupların direk c.arpımına

eşyapılıdır.

Anahtar Sözcükler: Yerel sonlu grup, basit grup, merkezleyen.
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chapter 1

introduction

A group G is called locally finite if every finitely generated subgroup of G is

finite. In this thesis, we prove some results on the centralizers of finite subgroups

in simple locally finite groups.

The study of centralizers of elements in simple groups was motivated by

Brauer-Fowler Theorem and it had a key role in the classification of finite simple

groups. Since every finite group has a composition series, finite simple groups

are the building blocks to understand the structure of a finite group. Feit and

Thompson showed in [8] that every group of odd order is solvable. Hence, every

finite non-abelian simple group must have even order, so, by Cauchy Theorem,

every finite non-abelian simple group has an element of order 2. The elements of

order 2 are called involutions. Centralizers of involutions are necessarily proper

subgroups of a finite simple group. Brauer and Fowler proved in [3] that the

order of a finite simple group is bounded by a function of the order of the cen-

tralizer of an involution. This theorem gave direction to group theorists during

the 20th century and the classification of finite simple groups was completed in

1980’s. According to the classification, a finite simple group belongs to one of the

following families:

1. Cyclic groups Zp of prime order p,

2. Alternating groups An of degree greater than 4,

3. Simple groups of Lie type (Chevalley and twisted Chevalley groups over

finite fields),

4. 26 sporadic groups.

Locally finite groups are infinite groups with a finiteness condition, hence it is

possible to use some information about finite groups to understand the structure
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of locally finite groups. Since finite simple groups are classified, it is natural to

ask if it is possible to classify all infinite simple locally finite groups too. The

experts think that we are far from an answer to this question. By [19, Corollary

6.12], there exist 2ℵ0 non-isomorphic countable simple locally finite groups which

can be obtained as direct limits of finite alternating groups. However, it may be

possible to obtain information about some “nice” families of simple locally finite

groups, and try to generalize the scope of this.

A group G is called linear if it has a faithful representation into GLn(k) for

some natural number n and for some field k. Linear simple locally finite groups

were classified independently by Belyaev, Borovik, Hartley-Shute and Thomas

(see [1, 2, 15, 37]). They proved that a linear simple locally finite group is a

Chevalley or a twisted Chevalley group over a locally finite field. By Theorem

2.31, we will see that a linear simple locally finite group over a locally finite field

k of characteristic p can be written as a union of finite simple groups of the same

Lie type over finite fields of characteristic p.

Hartley and Kuzucuoǧu proved in [14, Theorem A2] that in an infinite locally

finite simple group, the centralizer of every element is infinite. Hartley proved

a generalization of the Brauer-Fowler Theorem in [10, Theorem A′], namely, he

proved if G is a finite simple group with an automorphism α of order n with at

most k fixed points, then the order of G is bounded by a function of n and k. By

using this result, he proved in [10, Corollary A1] that if G is a locally finite group

containing an element with finite centralizer, then G contains a locally solvable

normal subgroup of finite index. By using the generalization of Brauer-Fowler

Theorem ([10, Theorem A′]), Hartley also proved in [10, Theorem C] that if G

is a simple locally finite group of Lie type over an infinite locally finite field of

characteristic p, and α is an automorphism of coprime order with p, then there

are infinitely many elements of distinct prime orders, which are fixed by α.

Hartley asked the following question in [11]:

Question 1.1. Let G be a non-linear simple locally finite group and F be a finite
subgroup of G. Is CG(F ) necessarily infinite?

In this work, our starting point was this question. First, we considered cen-

tralizers of finite subgroups in linear simple locally finite groups. In linear case,

2



by Remark 4.2 we will see that, if G is a linear simple locally finite group, it

is always possible to find a finite subgroup F with trivial centralizer. In fact,

in Section 4.2, for each n, we will present a method to construct a finite abelian

subgroup of PSLn(k) consisting of semisimple elements whose centralizer is itself.

So, for the linear case the question turns into the following:

Question 1.2. Let G be a linear simple locally finite group. Determine all the
finite abelian subgroups A consisting of semisimple elements such that CG(A)
contains an infinite abelian subgroup isomorphic to the direct product of cyclic
groups of order pi for infinitely many primes pi.

For the linear case, we need the following definition:

Definition 1.3. Let G be a simple linear algebraic group. A finite abelian sub-
group A consisting of semisimple elements of G is called a d-abelian subgroup if
it satisfies one of the following:

1. The root system associated with G has type Al and Hall-π-subgroup of A is
cyclic where π is the set of primes dividing l + 1

2. The root system associated with G has type Bl, Cl, Dl or G2 and the Sylow
2-subgroup of A is cyclic.

3. The root system associated with G has type E6, E7 or F4 and the Hall-{2, 3}-
subgroup of A is cyclic.

4. The root system associated with G has type E8 and the Hall-{2, 3, 5}-subgroup
of A is cyclic.

We proved the following result:

Theorem 1.4. Let G be a locally finite simple group of Lie type defined over an

infinite locally finite field of characteristic p. Let A be a d-abelian subgroup of G.

Then CG(A) contains an infinite abelian subgroup which is isomorphic to a direct

product of cyclic groups of order pi for infinitely many prime pi

A group G is called Černikov if it has a normal subgroup H of finite index

such that H ∼= Drni=1Cp∞i for a finite set of primes {p1, . . . pn}. Šunkov and Kegel-

Wehrfritz proved independently in [35] and [19, 20] respectively that a locally

finite group satisfying minimal condition on subgroups is necessarily a Černikov

group. By its definition, a Černikov group contains only finitely many elements

3



of distinct prime orders. Hence, in Theorem 1.4 we proved that in a locally finite,

simple group of Lie type, centralizer of a d-abelian subgroup can not be Černikov,

that is, it can not satisfy minimal condition.

The first part (Chapter 4) of this thesis is about this result. In the second

part, we study the centralizer of finite subgroups in non-linear simple locally finite

groups. Here, we study a different version of Hartley’s Question 1.1 :

Question 1.5. Let G be a non-linear simple locally finite group and F be a finite

subgroup. Does CG(F ) contain an infinite abelian subgroup isomorphic to the

direct product of cyclic groups of order pi for infinitely many distinct primes pi?

The answer of this question is not positive in the most general case, because

Meierfrankenfeld proved in [23] that there exists a non-linear simple locally finite

groupG with an element x such that the centralizer CG(x) is a p-group. Hence, we

restricted our attention to a smaller class of simple locally finite groups, namely,

we studied simple locally finite groups with a split Kegel cover. Recall that if

G is a locally finite group, a set {(Gi, Ni) | i ∈ I} consisting of pairs of subgroups

of G satisfying Ni E Gi, is called a Kegel cover of G provided that G can

be written as the union of Gi’s, the factors Gi/Ni are finite simple groups and

Gi ∩ Ni+1 = 1 (For the details see Section 2.2). Here, observe that Gi/Ni is a

finite simple group, so it is either an alternating group, or a simple groups of

Lie type or a sporadic group. Since there are finitely many sporadic groups, by

passing to a subsequence we may assume that the factors are either alternating

groups or simple groups of Lie type. (See Remark 2.29 for details.)

Definition 1.6. A Kegel cover K = {(Gi, Ni) : i ∈ I} is called a split Kegel

cover if CGi/Ni
(KNi/Ni) = CGi

(K)Ni/Ni for every subgroup K of Gi.

We need a general notion of a semisimple element in a simple locally finite

group:

Definition 1.7. Let G be a non-linear simple locally finite group and

K = {(Gi, Ni) : i ∈ I}

4



be a Kegel cover for G. An element x in G is called K-semisimple if K is a

Kegel cover consisting of alternating groups or Gi/Ni is a finite simple group of

Lie type and xNi is a semisimple element of Gi/Ni for every i ∈ I.

The main result of this thesis is the following:

Theorem 1.8. Let G be a non-linear simple locally finite group with a split Kegel

cover K and F be any finite subgroup of G consisting of K-semisimple elements.

The centralizer CG(F ) contains an infinite abelian subgroup isomorphic to a direct

product of cyclic groups of order pi for infinitely many prime pi.

In Chapter 5, the proof of this result is presented.

Hartley studied fixed points of semisimple automorphisms in linear simple

locally finite groups. In Chapter 3, we present some results about fixed points of

automorphisms in infinite alternating groups.
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chapter 2

preliminaries

In this chapter we will give the basic definitions and primary results which we

will use in Chapter 4 and Chapter 5.

2.1 Linear Algebraic Groups

In this section, the main definitions and basic results on linear algebraic groups

will be summarized. Let k denote an algebraically closed field of characteristic p.

Definition 2.1. An algebraic group G is an algebraic variety together with a

group structure such that the maps

µ :G ×G −→ G

(g, h) −→ gh

and

ι :G −→ G

g −→ g−1

are morphisms of varieties.

If an algebraic group G is an affine variety (that is, the set of zeros of finitely

many polynomials in kn), then G is called an affine algebraic group.

Remark 2.2. Let G = GL(n, k) denote the set of all n × n matrices over an

algebraically closed field k with non-zero determinant. Clearly, for every A ∈ G,

the function detA is a polynomial over k in n2 variables.

GLn(k) = {(aij) ∈ kn×n : det (aij) 6= 0}.
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To show that G is an affine variety, we need a polynomial over k whose zero

set is exactly G. Consider f(t, a11, a12 . . . , ann) = t. detA − 1. Clearly, f is a

polynomial in n
2

+ 1 variables over k. Now, G = GLn(k) = {(aij) ∈ kn×n :

f(t, a11, a12 . . . , ann) = t. detA − 1 = 0} defines GLn(k) as the zero set of a

polynomial n2 + 1 variables over k. Hence, G is a closed subset of An2+1, that is,

it is an affine variety. Also, the usual group operations on G are morphisms of

this variety, that is, G is a linear algebraic group.

An algebraic group G is called a linear algebraic group if it is a closed

subgroup of GLn(k) for some n. A closed subset of an affine variety is also an

affine variety. By Remark 2.2, GLn(k) is an affine algebraic group, so linear

algebraic groups, that is, the closed subgroups of GLn(k) are affine algebraic

groups. Conversely, by [31, Theorem 2.3.7], every affine algebraic group can

be embedded in GLn(k) as a closed subgroup for some n, that is, every affine

algebraic group is a linear algebraic group.

Definition 2.3. Let G be a linear algebraic group. The irreducible component

of G containing 1G is called the identity component and it is denoted by G◦. A

linear algebraic group G is called connected if G = G◦.

Proposition 2.4. [17, Section 7.3, Proposition] Let G be an algebraic group.

1. G◦ is a normal subgroup of finite index in G and its cosets are the connected

irreducible components of G.

2. If H is a closed subgroup of finite index in G then H contains G◦.

Definition 2.5. An algebraic group G is simple if it has no proper non-trivial

closed connected normal subgroup.

Example 2.6. The group of n× n matrices over k with determinant 1, which is

called the Special Linear Group, denoted by SLn(k), is a simple algebraic group.

One can see that the abstract group SLn(k) has a proper non-trivial normal

subgroup, namely the center Z(SLn(k)). But, Z(SLn(k)) is not connected.

Theorem 2.7. [17, Section 29.5, Corollary] If G is a simple algebraic group with

finite center Z then G/Z is simple as an abstract group.

7



By [30, Section 4.2], an algebraic group G is called an abelian variety if the

algebraic variety G is projective and irreducible. The following result of Chevalley

shows that, simple algebraic groups are affine, that is, by Remark 2.2 simple

algebraic groups are linear algebraic groups:

Theorem 2.8. [30, Section 4.2, Theorem C] Let G be an algebraic group over a

perfect field k. Then G has a unique normal closed subgroup N such that N is

an affine algebraic group and G/N is an abelian variety.

Hence, the study of simple algebraic groups reduces to the study of simple

linear algebraic groups.

Remark 2.9. By Proposition 2.4, if G is a simple algebraic group then G has

no closed connected proper non-trivial normal subgroups. By Corollary in [17],

(Section 29.4, page 182) if G is simple as an algebraic group then every proper

normal subgroup of the abstract group is contained in the center. So, if G is

a simple algebraic group over an algebraically closed field any proper normal

subgroup of the abstract group has infinite index. Then G◦ is necessarily equal

to G, since it has finite index. Hence, simple algebraic groups are connected.

By [17, Section 19.5, page 125], every algebraic group G has a unique largest

solvable closed subgroup K. The identity component K◦ of K, is the largest

connected normal solvable subgroup of G, and it is called the (solvable) radical

of G and denoted by R(G).

Definition 2.10. A non-trivial connected algebraic group is called semisimple

if its (solvable) radical is trivial.

By [17, Section 19.5, page 125], the subgroup of R(G) consisting of unipotent

elements is a normal subgroup of G, which is called the unipotent radical of

G (and denoted by Ru(G)). The unipotent radical of G is the largest connected

normal unipotent subgroup of G.

Definition 2.11. A non-trivial connected algebraic group is called reductive if

its unipotent radical is trivial.
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Example 2.12. We know that a proper normal subgroup of SLn(k) is contained

in its center (See Page 168, [17]). So, if it is connected, then it must be trivial.

Hence, SL(n, k) is semisimple. In fact, every simple algebraic group is necessarily

semisimple. Similarly, semisimple algebraic groups are reductive.

Let T be a torus in GL(n, k) where k is an algebraically closed field, that

is, T is a subgroup which is isomorphic to a direct product of copies of k×. It

is a linear algebraic group. Now, every element of T is conjugate to a diagonal

matrix, that is, T consist of semisimple elements. Hence, Ru(T ) = 1, that is, T

is a reductive group, but it is not semisimple since R(T ) = T .

We know that every linear algebraic group is isomorphic to a closed subgroup

of GL(n, k) for some n. Examples of simple linear algebraic groups include the

classical groups, SLl+1(k), Sp2l(k), SO2l+1(k), SO2l(k). The parameter l denotes

the dimension of the subgroup of diagonal matrices (maximal torus) in the cor-

responding group, and called the rank of the group.

Now, we will define the fundamental group of a simple linear algebraic group

(for details, see [28, Page 53]).

Definition 2.13. [28, Page 53] Let T be a maximal torus of the simple linear

algebraic group G over the algebraically closed field of characteristic p. Consider

the character group X(T ) = Hom(T, k×) ∼= Zn where n is the dimension of T .

Then X(T ) is a lattice in X(T )Q = X(T )
⊗

Z Q, containing the root lattice,

Choose a positive definite inner product X(T )Q which is invariant under the

Weyl group.

An element λ ∈ X(T )Q such that 〈λ, α〉 = 2〈λ, α〉〈α, α〉−1 for all roots α is

called a weight.

Let Λ be the set of weights, which forms another lattice in X(T )Q. So, ZΣ ≤
X(T ) ≤ Λ. Here, the finite group Λ/ZΣ is called the fundamental group of

G.

Now, if X(T ) = Λ, then G is called simply connected, if X(T ) = ZΣ, then

G is called adjoint type.

Simple linear algebraic groups are classified by Dynkin diagrams. A connected

semisimple group is simple iff its Dynkin diagram is connected. The possible
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connected Dynkin diagrams define possible types of simple linear algebraic groups

over algebraically closed fields: Al, Bl, Cl, Dl, E6, E7, E8, G2, F4.

In Table 2.1, the corresponding adjoint and simply connected groups, obtained

as fixed points of some Frobenius maps (see Section 2.3) in classical simple linear

algebraic groups are given. We will discuss how to obtain finite simple groups of

Lie type from simple linear algebraic groups in Section 2.3.

We will end the discussion about linear algebraic groups with definition of

semisimple and unipotent elements and the Jordan decomposition:

Let G be a simple linear algebraic group over an algebraically closed field of

characteristic p.

Definition 2.14. [5, Section 1.4] An element x ∈ G ≤ GLn(k) is called semisim-

ple if it is diagonalizable. An element x is called unipotent if all of its eigenvalues

are 1.

Remark 2.15. Here, since the group G is defined over a field of characteristic

p, we can further say that an element u is unipotent iff |u| = pm for some m and

an element s is semisimple iff (|s|, p) = 1.

Theorem 2.16. [17, Lemma B, page 96] Let x ∈ GLn(k).

1. There exists unique xs, xu ∈ GLn(k) satisfying x = xsxu = xuxs where xs

is semisimple, xu is unipotent.

2. If y ∈ CG(x), then y ∈ CG(xs) and y ∈ CG(xu).

The unique expression x = xsxu or x = xuxs is called the Jordan decomposi-

tion.

2.2 Simple Locally Finite Groups

In this section, we collect background information on simple locally finite

groups.

First, we consider some examples of simple locally finite groups:
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Example 2.17. Let Ω be an infinite set. The group of all even permutations

on the set Ω, which is denoted by Alt(Ω), is a simple locally finite group with

cardinality |Ω|.

Example 2.18. A field is called locally finite if every finitely generated subfield

is finite. Let F be an infinite locally finite field. The group PSLn(F) is a simple

locally finite group.

Example 2.19. Let F be a finite field. Observe that the map

φn :SLn(F) −→ SLn+1(F)

A 7−→

(
A 0

0 1

)

embeds SLn(F) into SLn+1(F).

The direct limit of the directed system (SLn(F), φn), is a simple locally finite

group denoted by SL0(F) and called the Stable Special Linear Group.

Definition 2.20. [19, Page 8] A set Σ of subgroups of a group G is called a local

system of G if

1. G =
⋃
S∈Σ S

2. if S, T ∈ Σ then there exists U ∈ Σ such that S, T ⊂ U .

The following result is very useful to understand the structure of infinite simple

groups:

Theorem 2.21. ([19, Theorem 4.4]) An infinite group G is simple iff it has a

local system consisting of countably infinite simple subgroups of G.

Remark 2.22. Our aim is to prove theorems about centralizers of finite sub-

groups in simple locally finite groups. But, by Theorem 2.21, we deduce that

any finite subgroup of a simple locally finite group is contained in a countable

simple group (which is clearly locally finite). Hence, for us, it is enough to find

the centralizer of a finite subgroup in a countable simple locally finite group.

Kegel-Wehrfritz asked the following question:
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Question 2.23. Does every simple locally finite group has a local system consist-

ing of finite simple groups?

Serezhkin and Zalesskii answered this question negatively in [39]. They proved

the following result:

Theorem 2.24. [13, Proposition 1.7] If k is a finite field of odd order then the

Stable Symplectic Group is an infinite simple locally finite group which can not

be written as a union of finite simple groups.

So, we can not write every simple locally finite group as a union of finite

simple groups. But still, we have a concept that connects the theory of finite

simple groups and the theory of locally finite simple groups:

Definition 2.25. [13, Definition 2.1, 2.2] Let G be a locally finite group and I

be an index set. A set {(Gi, Ni) | i ∈ I} consisting of pairs of finite subgroups of

G is called a Kegel cover of G if for all i, the subgroup Ni is a maximal normal

subgroup of Gi and for every finite subgroup F ≤ G there exists i ∈ I with F ≤ Gi

and F ∩Ni = 1.

The following form of Definition 2.25 for countable locally finite groups give

us more information about the structure of countable simple locally finite groups:

Definition 2.26. [13, Definition 2.2] Let G be a countable locally finite group.

A set {(Gi, Ni) | i ∈ N} consisting of pairs of finite subgroups of G satisfying

Ni E Gi, is called a Kegel cover of G if

G =
⋃
i∈I

Gi

the factors Gi/Ni are finite simple groups and Gi ∩Ni+1 = 1.

By Theorem 2.21, an infinite group is simple iff it has a local system of count-

ably infinite simple groups. Hence every finite subset of an infinite simple group

is contained in a countably infinite simple group. Hence, to answer Question 1.5,

it is enough to consider the centralizers of finite subgroups in countable simple

locally finite groups.
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By [13, Lemma 2.4], every simple locally finite group has a Kegel cover. In-

deed, Theorem 2.27 shows this result for countable simple locally finite groups.

Theorem 2.27. [19, Lemma 4.5] Every countable simple locally finite groups has

a Kegel cover K = {(Gi, Ni) | i ∈ N}.

We will use the following result to see that for every infinite simple locally

finite group we can choose a Kegel cover whose all factors are non-abelian finite

simple groups.

Theorem 2.28. [13, Corollary 2.5] Let G be an infinite, simple locally finite

group. Then

1. G has a Kegel cover K = {(Gi, Ni) | i ∈ N} where Gi’s are perfect.

2. Gi/Ni’s form a set of finite simple groups of unbounded orders.

Let G be a countably infinite simple locally finite group with a Kegel cover

K = {(Gi, Ni) | i ∈ N} where Gi’s are perfect. Since Gi’s are perfect, the factors

Gi/Ni’s are non-abelian finite simple groups. By the classification of finite simple

groups, we know that each factor is either an alternating group, or a simple group

of Lie type, or a sporadic group. Since there are only finitely many sporadic

groups, for any locally finite group G there exist a Kegel cover whose factors are

either alternating groups or simple groups of Lie type.

Remark 2.29. For a simple locally finite group G, there are only 4 possible

cases:

1. G has a Kegel cover with all Gi/Ni’s are alternating groups, or,

2. G has a Kegel cover with all Gi/Ni’s are are classical groups of the same

type with unbounded rank, or,

3. G has a Kegel cover with all Gi/Ni’s are are classical groups of the same

type with bounded rank, or,

4. G has a Kegel cover with all Gi/Ni’s are exceptional groups of the same

type.
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By [13, Theorem 2.6], in cases (3) and (4), the group is linear. So, if we have

a non-linear simple locally finite group, then the Kegel cover is either alternating

type or a fixed classical type with unbounded rank parameters.

2.3 Construction of a Simple Group of Lie type

over a Locally Finite Field

We will construct finite and locally finite simple groups of Lie type from the

corresponding type linear algebraic groups. First, we need the definition of a

Frobenius map, which is the major key of this construction.

Definition 2.30. Let G be a linear algebraic group over an algebraically closed

field k of characteristic p where p > 0. Let q = pm with k ≥ 1 and Fq be the map

given by

Fq : GL(n, k) −→ GL(n, k)

(aij) −→ (aqij).

Now, Fq is a group automorphism of GL(n, k). A homomorphism F : G → G

is called a standard Frobenius map if for some n the embedding i : G →
GL(n,K) satisfies i(F (g)) = Fq(i(g)) for some q = pk and for all g ∈ G.

A homomorphism is called a Frobenius map if some power of F is a standard

Frobenius map.

Now, by [5, page 31], Frobenius maps are algebraic endomorphisms with finite

fixed point group. Let G be a simple linear algebraic group of adjoint type over an

algebraically closed field k of characteristic p. Let σ be a Frobenius map on G and

CG(σ) its fixed point group. By [10, Section 3], the subgroup H = Op′(CG(σ))

is a finite simple group of Lie type of the same type with G and all finite simple

groups of Lie type can be obtained in this way.

Now, we will see a result of Turau which enables us to see the structure of

locally finite simple groups of Lie type.
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Theorem 2.31. [14, Lemma 4.3] Let G be a Chevalley group (or a twisted

Chevalley group) over an infinite locally finite field k of characteristic p and let

G be the simple algebraic group over the algebraic closure k of k constructed from

the same Lie algebra as G. Then there are a Frobenius map σ and a sequence

n1, n2, . . . of positive integers such that ni divides ni+1 and G = ∪∞i=1Gi where

Gi = Op′(CG(σni)).

Theorem 2.31 enables us to express a linear simple locally finite group as a

union of finite simple groups of the same Lie type. In fact, for any simple locally

finite group G of Lie type, the groups Gi constructed as in Theorem 2.31 form a

Kegel cover with Ni = 1 for all i.

Remark 2.32. The following Table 2.1, which is given in [5, p.40], shows the

identifications with the groups Gσ with classical groups over finite fields.

Table 2.1: Identifications adjoint and simply connected types of finite simple
groups of Lie type with classical groups

(Al)sc(q) SLl+1(q)
(Al)ad(q) PGLl+1(q)
(2Al)sc(q

2) SUl+1(q
2)

(2Al)ad(q
2) PUl+1(q

2)
(Bl)sc(q) Spin2l+1(q)
(Bl)ad(q) SO2l+1(q)
(Cl)sc(q) Sp2l(q)
(Cl)ad(q) PCSp2l(q)
(Dl)sc(q) Spin2l(q)
(Dl)ad(q) P (CO2l(q)

0)
(2Dl)sc(q

2) Spin−2l(q)
(2Dl)ad(q

2) P (CO−
2l(q)

0)

2.4 Regular Unipotent and Semisimple Elements

Let G be a connected reductive group. Recall that the dimension of a max-

imal torus in G is called the rank of G. An element x ∈ G is called regular
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if dimCG(x) = rank(G). Steinberg proved in [33] that for every x ∈ G the di-

mension of the centralizer of x in G is greater than or equal to the rank of G.

Moreover, Steinberg also proved that in every connected reductive group, there

exists regular elements.

In this section, first we will consider regular unipotent elements.

Proposition 2.33. [5, Proposition 5.1.2] Let G be a connected reductive

linear algebraic group. There exist regular unipotent elements in G and any two

of them are conjugate. Moreover, the set U of regular unipotent elements of G is

a dense open subset.

Proposition 2.34. [5, Proposition 5.1.3] Let G be a connected reductive

linear algebraic group and u be a unipotent element of G. Then the following are

equivalent:

1. u is regular.

2. u lies in a unique Borel subgroup of G.

3. u is conjugate to an element of the form
∏

α∈Φ+ xα(λα) with λαi
6= 0 for all

fundamental roots αi.

Example 2.35. Let G = SL3(k) where chark = p and u1 =


1 1 1

0 1 1

0 0 1

. Here,

CG(u1) = {


a b c

0 a b

0 0 a

 : a, b, c ∈ k a3 = 1}.

Now, dimCG(u1) is equal to the transcendence degree of the coordinate ring

k[a, b, c]/(a3 − 1). Hence, dimCG(u1) = 2. A maximal torus in is conjugate

to {


α 0 0

0 β 0

0 0 (αβ)−1

 | α, β, γ ∈ k}, which has dimension 2. Therefore, any

maximal torus in SL3(k) has dimension 2, that is, the rank of G is 2. We have

SL3(k) = A2(k).
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Since dimCG(u1) = 2, the element u1 is a regular unipotent element.

Indeed, u1 =


1 1 1

0 1 1

0 0 1

 =


1 1 0

0 1 0

0 0 1




1 0 0

0 1 1

0 0 1

 = xr(1)xs(1) where r and

s are the fundamental roots for the root system A2.

Observe that CG(u1) = Z(G).U where U = {


1 x y

0 1 x

0 0 1

 : x, y ∈ k}. Since U

is a p-group and Z(G) is finite, CG(u) can not contain infinitely many elements

of distinct prime orders. In fact, by Proposition 2.36, if u is a regular unipotent

element in G then every semisimple element in CG(u) is contained in Z(G) which

is a finite group.

Proposition 2.36. [5, Proposition 5.1.5] Let G be a connected reductive

linear algebraic group and u be a regular unipotent element of G. Then every

semisimple element of CG(u) belongs to the center of G.

Next, we will study the centralizers of regular semisimple elements in semisim-

ple linear algebraic groups.

Theorem 2.37. [32, Corollary III.1.7] Let G be a semisimple linear algebraic

group and s be a semisimple element of G. The following are equivalent:

1. s is a regular semisimple element.

2. CG(s)◦ is a maximal torus.

3. s is contained in a unique maximal torus.

4. CG(s) consists of semisimple elements.

5. α(s) 6= 1 for every root α relative to any maximal torus containing s.

The following easy lemma (which is an exercise in [32, Example 1.5.a]) will

be useful to construct examples of centralizers of regular semisimple elements:

Lemma 2.38. [32, Example 1.5.a] Let G = SLn(k) and s be a semisimple ele-

ment of G. The following are equivalent:
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1. s is a regular semisimple element.

2. The eigenvalues of s are all distinct.

Proof. (2 ⇒ 1) Let s be a semisimple element of G = SLn(k) such that all

eigenvalues of s are distinct. Then s is conjugate to the diagonal element s0 =

diag(λ1, λ2, . . . , λn) in G where λi 6= λj for every i, j. Since s and s0 are conjugate

in G, the subgroups CG(s) and CG(s0) are conjugate. Hence, they are isomorphic.

Let g =



a11 a12 . . . a1n

a21 a22 . . . a2n

...
... .

...
...

... .
...

an1 an2 . . . ann


be an element of CG(s0). Then,

s0g =



λ1

λ2

.

.

λn





a11 a12 . . . a1n

a21 a22 . . . a2n

...
... .

...
...

... .
...

an1 an2 . . . ann



=



a11 a12 . . . a1n

a21 a22 . . . a2n

...
... .

...
...

... .
...

an1 an2 . . . ann





λ1

λ2

.

.

λn


= gs0

We obtain,

λ1a11 λ1a12 . . . λ1a1n

λ2a21 λ2a22 . . . λ2a2n

...
... .

...
...

... .
...

λnan1 λnan2 . . . λnann


=



λ1a11 λ2a12 . . . λna1n

λ1a21 λ2a22 . . . λna2n

...
... .

...
...

... .
...

λ1an1 λ2an2 . . . λnann


.

So, for every i, j ∈ {1, 2, . . . n} we have λiaij = λjaij. Since all eigenvalues of
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s are distinct, λi 6= λj for every i 6= j. Then if i 6= j we have aij = 0. Hence,

CG(s0) = {diag(a11, a22, . . . ann) :
∏n

i=1 aii = 1} which is a maximal torus of G.

Hence, CG(s) is equal to a maximal torus T of G. Hence,

dimCG(s) = dimT = rank(G).

So, s is a regular semisimple element of SLn(k).

(1 ⇒ 2) Assume that s is a semisimple element such that at least two of the

eigenvalues of s are equal. Then s is conjugate to

s1 = diag(α, α, β1, . . . , βn−2).

Hence CG(s) is isomorphic to CG(s1).

Observe that

H = {



a b 0 . . . 0

c d 0 . . . 0

0 0 λ1 0 . . . 0
... .

...

.

0 0 . . . λn−2


: (ad− bc)

n−2∏
i=1

λi = 1} ≤ CG(s1).

Then dimH ≤ dim(CG(s1)). Now, dimH = n + 1, so dimCG(s1) ≥ n + 1 6=
n− 1 = rank(G). Therefore, s1 and s are not regular.

Lemma 2.39. ([32, III.2.1]) Let G = SLn(k) and x be a regular element of

G. Then the normal form of x is

0 0 . . . 0 1

−1 0 . . . c1

0 −1 c2

.
...

.

−1 cn−1


.
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The following result is a direct consequence of the definition of a regular

element in a simple linear algebraic group.

Lemma 2.40. Let G be a simply connected simple linear algebraic group and g

be a regular element of G. Then gZ is a regular element of G/Z.

Proof. Assume that g is a regular element of G. Then dim(CG(g)) = rankG.

Consider

CG/Z(gZ) = {xZ ∈ G/Z : [g, x] ∈ Z}.

As Z is finite, we can write Z = {z0, z1, z2, . . . zk} where z0 = 1G. Now,

CG/Z(gZ) =
⋃k
i=0Ci where Ci = {xZ ∈ G/Z | [g, x] = zi}. Here Ci’s are the

connected components of CG/Z(gZ) and C0 is the identity component. By [17,

7.3 Proposition], Ci’s are irreducible. Here C0
∼= CG(g), so dimC0 = rankG.

But since all Ci’s are distinct cosets of C0, they all have the same dimension,

so dim(CG/Z(gZ)) = dim(
⋃k
i=0Ci) = maxki=1(dimCi) = dim(C0) = rank(G) =

rank(G/Z). Hence, gZ is regular in G/Z.

2.5 Torsion Primes of Simple Linear Algebraic

Groups

We need the definition of a torsion prime and the list of torsion primes for

simple linear algebraic groups.

Definition 2.41. Let {a1, a2, . . . ar} be a simple system of roots for the root sys-

tem Σ. Let h∗ =
∑
m∗
i a
∗
i be the co-root of the highest root expressed in terms of

the co-roots of the simple roots. If a prime p divides one of the coefficients m∗
i ,

then p is called a torsion prime of the root system Σ.

The following examples may be useful to understand the definition.

Example 2.42. Consider the root system Al.

Let {ei : 1 ≤ i ≤ l + 1} be the standard basis for the Euclidean space of

dimension l+1. It is well-known that the set {ai : ai = ei−ei+1 where 1 ≤ i ≤ l}
is a simple system of roots for the root system of type Al. The complete set of
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positive roots of the root system Al is {ei− ej : 1 ≤ i ≤ j ≤ l}. Then, it is easy

to see that

ei − ej = (ei − ei+1) + (ei+1 − ei+2) + . . .+ (ej−1 − ej) =

j−1∑
k=i

ak.

Then the highest root is r =
∑l

k=1 ak = e1 − el+1. The co-root of the highest

root is 2r
(r,r)

. But since (r, r) = (ak, ak) for every 1 ≤ k ≤ l, we have

hr =
2r

(r, r)
=

l∑
k=1

2ak
(ak, ak)

=
l∑

k=1

hak
.

Now, we wrote the co-root of the highest root as a sum of co-roots of simple

roots and the coefficient of every co-root of a simple root is 1. Hence, there are

no torsion primes of the root system Al.

Example 2.43. Consider the root system of type C2. Here, we have two simple

roots, r and s with |r| = 1 and |s| =
√

2. Then (r, r) = 1 and (s, s) = 2.

Here, the set of positive roots is {r, 2r + s, r + s, s}. The highest root is

2r + s. The co-root of the highest root is h2r+s = 2(2r+s)
(2r+s,2r+s)

= 2(2r+s)
2

= 2r + s

since |2r + s| =
√

2. The co-roots the simple roots are hr = 2r
(r,r)

= 2r and

hs = 2s
(s,s)

= 2s
2

= s. Now, h2r+s = 2r + s = hr + hs.

So, when we write the co-root of the highest root as a sum of co-roots of simple

roots, the coefficients of hr and hs are all 1. Therefore, there are no torsion primes

of the root system C2.

The following table gives the list of torsion primes for various types of root

systems: (For further information see [32, 4.3]).

Table 2.2: Torsion primes for various type of irreducible root systems

Al, Cl none
Bl, Dl, G2 2
E6, E7, F4 2, 3
E8 2, 3, 5
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For a reductive linear algebraic group, there are two types of torsion primes,

namely, torsion primes of the root system and the torsion primes of the funda-

mental group. For this thesis, we will not need the definition of a torsion prime of

the fundamental group. For the torsion primes of a simple linear algebraic group

G, we will use the information in Corollary 2.45. For details, see [34, Section 2].

By the following two results of Steinberg, we obtain the complete list of the

torsion primes of a simple linear algebraic group:

Lemma 2.44. [34, Lemma 2.5] If G is a reductive linear algebraic group, the

torsion primes of G are the torsion primes of the root system Σ of G and the

primes dividing the order of the fundamental group of G.

Corollary 2.45. [34, Corollary 2.7] If G is a simple linear algebraic group of

adjoint type, beyond that the torsion primes of the root system, G has torsion

primes only in the following cases: for type Al, the primes p|(l + 1) and for type

Cl the prime 2.

2.6 Zsigmondy’s Theorem

We will use the following result of Zsigmondy:

Theorem 2.46. (Zsigmondy, 1892) Let a, b be two relatively prime natural

numbers with a > b ≥ 1 and n ≥ 1. Then:

1. There exists a prime p such that p divides an − bn and p does not divide

ak − bk for any 1 ≤ k < n, except the following cases:

• n = 1 and a− b = 1,

• n = 2 and a− b is a power of 2,

• n = 6, a = 2, b = 1.

2. There exists a prime p which divides an + bn and p does not divide ak + bk

for every 1 ≤ k < n, except the case n = 3, a = 2, b = 1.

Proof. See [36, P1.7].
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This result was first proved by Bang in 1886 for the particular case b = 1.

Zsigmondy proved this stronger version in 1892. For details see [24, Section 2.5,

p.88].

2.7 Orders of Maximal Tori in Finite Simple

Groups of Lie type

In this section, we collect information about orders of maximal tori in finite

simple groups of Lie type.

Definition 2.47. Let G be a finite simple group of Lie type given by

G = Op′(Gσ)

where G is an adjoint type simple linear algebraic group and σ is a Frobenius map

on G. Let T be a maximal torus of G. A subgroup T = T ∩G is called a maximal

torus of the finite group G.

For a simple linear algebraic group over an algebraically closed field, all maxi-

mal tori are conjugate. However, for a simple group of Lie type over a finite field,

there even exists maximal tori with different orders.

Example 2.48. Let G = PSL2(5). We will construct two non-isomorphic max-

imal tori with orders q−1
2

= 2 and q+1
2

= 3.

Let G be PGL2(k) where k is the algebraic closure of F5. Consider the

Frobenius map σ : (xij) −→ (x5
ij). Here, G = O5′(Gσ). First consider the

subgroup T1 = {

(
λ 0

0 λ−1

)
Z : λ ∈ F∗5} of PSL2(5). Clearly, T1 is a torus.

Next, we prove that T1 is a maximal torus of G.

Now, T = {

(
α 0

0 β

)
Z : α, β ∈ k∗} is a maximal torus of PGL2(k). Since

k is algebraically closed, we can write T = {

(
c 0

0 c

)(
a 0

0 b

)
Z : a, b, c ∈ k∗}
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where ca = α, cb = β, c2 = αβ and ab = 1. Hence we can write

T = {

(
a 0

0 b

)
Z : a, b ∈ k∗, ab = 1}.

(So, over an algebraically closed field k, PGLn(k) and PSLn(k) are the same

group).

Then T ∩G = {

(
a 0

0 b

)
Z : a5 = a, b5 = b, ab = 1} = T1 since b = a−1.

By this observation, T1 is a maximal torus of G.

The map

ψ :F∗5 −→ T1

λ −→

(
λ 0

0 λ−1

)
Z

is a group homomorphism with kernel {1,−1}. Hence, |T1| = 5−1
2

= 2.

But |PSL2(q)| = (52−1)(52−5)
2(5−1)

= 5(52−1)
2

= 60 = 22.3.5.

Now, a Sylow 2-subgroup of PSL2(5) is isomorphic to Z2 × Z2. Every invo-

lution in PSL2(5) is contained in a maximal torus of order 2, and the elements

of order 5 are unipotent. There are also elements of order 3 in G, which are also

semisimple since (3, 5) = 1. So, an element of order 3 in G must be contained in

a maximal torus of PSL2(k). In particular, let s =

(
0 2

2 4

)
Z. Now, s3 = Z,

that is, s is an element of order 3. The eigenvalues of s are λ and λ2 where

λ2 + λ+ 1 = 0.

By basic linear algebra, we can compute that

s =

(
0 2

2 4

)
Z =

(
3λ+ 2 2λ

2λ+ 1 1

)(
λ 0

0 λ2

)(
1 3λ

3λ+ 4 3λ+ 2

)
Z = P−1AP

where A is the diagonal matrix consisting of eigenvalues of s. Now, AZ ∈ T =

{

(
a 0

0 b

)
Z : a, b ∈ k∗, ab = 1}. Hence, s ∈ P−1TP , which is another maximal

torus of PGLn(k). By the result Lemma 4.6 of Steinberg, s is contained in a σ-
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invariant maximal torus T ′ of PGLn(k). But s ∈ T ′σ, so, T2 := T ′ ∩G has order

divisible by 3. By elementary computations, we observe that |T2| = 3. Indeed,

we know s, which is an element of order 3, is contained in T2 and T2 is abelian.

Then T2 ≤ CPSL2(5)(s). But PSL2(5) ∼= A5 and we know by Theorem 3.6 that

the centralizer of an element of order 3 in A5, has order 3. Hence, |T2| = 3.

Here, in Theorem 2.49, orders of maximal tori in simply connected finite

groups of Lie type are given. To obtain the orders of finite simple groups of Lie

type, these orders must be divided by the order of the center, which is bounded by

l+1. We would like to show that centralizers of some finite subgroups consisting

of semisimple elements contain an infinite abelian subgroup isomorphic toDrpi
Zpi

for infinitely many primes pi, hence the orders of maximal tori in simply connected

case will give us enough information for our purposes.

Theorem 2.49. [6, Proposition 7, 8, 9] The orders of the maximal tori of the

universal central extensions of the finite simple groups of classical Lie type are as

follows:

1. If G = Al(q) and T is a maximal torus of G, then

|T | = (
k∏
i=1

(qµi − 1))/(q − 1)

where
∑k

i=1 µi = l + 1.

2. If G =2 Al(q
2) and T is a maximal torus of G, then

|T | = (
∏

µi even

(qµi − 1))(
∏
λi odd

(qλi + 1))/(q + 1)

where
∑k

i=1 µi + λi = l + 1.

3. If G = Cl(q) and T is a maximal torus of G, then

|T | = (
∏
i

(qεi − 1))(
∏
j

(qηj + 1))

where
∑

i εi +
∑

j ηj = l.
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4. If G = Dl(q) and T is a maximal torus of G, then

|T | = (
∏
i

(qεi − 1))(
∏
j

(qηj + 1))

where
∑

i εi +
∑

j ηj = l.

5. If G =2 Dl(q) and T is a maximal torus of G, then

|T | = (
∏
i

(qεi − 1))(
∏
j

(qηj + 1))

where
∑

i εi +
∑

j ηj = l.

6. If G = Bl(q) with q odd and T is a maximal torus of G, then

|T | = (
∏
i

(qεi − 1))(
∏
j

(qηj + 1))

where
∑

i εi +
∑

j ηj = l.

7. If G = Bl(q) with q even and T is a maximal torus of G, then

|T | = (
∏
i

(qεi − 1))(
∏
j

(qηj + 1))

where
∑

i εi +
∑

j ηj = l.

For the orders of possible maximal tori in exceptional groups, we have the

following Tables 2.3, 2.4, 2.5, 2.6. In E6 and E7, the structures of the maximal

tori in the universal covering group is given, that is, (3, q − 1)E6 denotes the

central extension of E6 with its Schur multiplier. The information in this table

is given in [18]:

By [18, Section 2.8], the list of orders (and the cyclic structure) of maximal

tori in (3, q+1).2E6(q) is obtained by writing −q instead of q in the list of orders

of maximal tori of (3, q − 1).E6(q), given in Table 2.4.

Remark 2.50. Over an algebraically closed field all maximal tori are conjugate.

A maximal torus over an algebraically closed field k is isomorphic to direct prod-
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uct of finitely many k
∗
’s. But over finite fields, we saw that there are maximal

tori with even different orders. If a maximal torus T defined over a field k is iso-

morphic to direct product of finitely many copies k∗, then T is called a maximally

split torus. By [25, Proposition 1.2.2] and [26, page 18], if a maximal torus T is

defined over k, it splits over a finite Galois extension K of k. Now, [K : k] <∞
and dimT = dimT ′ is fixed. So, T is contained in a maximally split torus T ′ over

K with [T ′ : T ] < ∞. Hence, for each maximal torus T over a finite field Fq,
there exists a maximally split torus T ′ defined over a finite Galois extension of k

with [T ′ : T ] <∞ and |T ′| = (ql − 1)r for some l where r is the dimension of T ′.
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Table 2.3: Orders of maximal tori in 2B2(q), G2(q),
2G2(q),

3D4(q), F4(q)

G Cyclic structure of maximal tori
q − 1

2B2(q), q = 22m+1 q +
√

2q + 1
q −

√
2q + 1
q − 1

2G2(q), q = 32m+1 (q + 1/2)× 2
q +

√
3q + 1

q −
√

3q + 1
(q − 1)× (q − 1)

G2(q), q ≥ 3 q2 − 1
(q + 1)× (q + 1)

q2 − q + 1
q2 + q + 1

(q − 1)× (q3 − 1)
3D4(q) (q + 1)× (q3 + 1)

(q3 + 1)× (q − 1)
(q3 − 1)× (q + 1)

(q2 + q + 1)× (q2 + q + 1)
(q2 − q + 1)× (q2 − q + 1)

(q4 − q2 + 1)
(q − 1)× (q − 1)× (q − 1)× (q − 1)

F4(q), q odd (q − 1)× (q − 1)× (q2 − 1)
(q − 1)× (q + 1)× (q2 − 1)

(q − 1)2 × (q2 − 1)
(q − 1)× (q3 − 1)

(q + 1)× (q + 1)(q2 − 1)
(q4 − 1)/(2, q − 1)× (2, q − 1)

(q3 + 1)× (q − 1)
(q3 − 1)× (q + 1)

(q + 1)× (q + 1)× (q + 1)× (q + 1)
(q2 + q + 1)× (q2 + q + 1)

(q + 1)× (q2 + 1)(q + 1)
(q + 1)× (q3 + 1)

(q2 + 1)× (q2 + 1)
(q4 + 1)

(q4 − q2 + 1)
(q2 − q + 1)× (q2 − q + 1)
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Table 2.4: Orders of maximal tori in 2F4(q), (3, q − 1).E6(q)

G Cyclic structure of maximal tori
(q − 1)× (q − 1)

2F4(q), q = 22m+1 q2 − 1
(q − 1)× (q −

√
2q + 1)

(q − 1)× (q +
√

2q + 1)
(q2 + 1)

(q −
√

2q + 1)× (q −
√

2q + 1)
(q +

√
2q + 1)× (q +

√
2q + 1)

(q + 1)× (q + 1)
q2 − q + 1

q2 −
√

2q3 + q −
√

2q + 1

q2 +
√

2q3 + q +
√

2q + 1
(q − 1)× (q − 1)× (q − 1)× (q − 1)× (q − 1)× (q − 1)

(3, q − 1).E6(q) (q − 1)× (q − 1)× (q − 1)× (q − 1)× (q2 − 1)
(q − 1)× (q − 1)× (q2 − 1)× (q2 − 1)
(q − 1)× (q − 1)× (q − 1)× (q3 − 1)

(q2 − 1)× (q2 − 1)× (q2 − 1)
(q − 1)× (q2 − 1)× (q3 − 1)
(q − 1)× (q − 1)× (q4 − 1)

(q + 1)× (q + 1)× (q2 − 1)× (q2 − 1)
(q2 − 1)× (q + 1)(q3 − 1)

(q − 1)× (q2 + q + 1)× (q3 − 1)
(q2 − 1)× (q4 − 1)
(q − 1)× (q5 − 1)

(q2 − 1)× (q − 1)(q3 + 1)
(q − 1)(q2 + 1)× (q − 1)(q2 + 1)

(q2 + q + 1)× (q + 1)(q3 − 1)
(q + 1)× (q + 1)× (q4 − 1)

(q + 1)× (q5 − 1)
(q2 + q + 1)× (q − 1)(q3 + 1)

(q2 − 1)× (q4 + 1)
(q − 1)(q2 + 1)(q3 + 1)

(q2 + q + 1)× (q2 + q + 1)× (q2 + q + 1)
(q + 1)× (q5 + q4 + q3 + q2 + q + 1)

(q2 + q + 1)(q4 − q2 + 1)
q6 + q3 + 1

(q2 − q + 1)× (q4 + q2 + 1)
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Table 2.5: Orders of maximal tori in (2, q − 1).E7(q)

G Cyclic structure of maximal tori
(q − 1)× order of a torus of (3, q − 1)E6(q) listed in Table 2.4

(2, q − 1).E7(q) (q − 1)× (q + 1)× (q + 1)× (q2 − 1)× (q2 − 1)
(q − 1)× (q3 − 1)× (q3 − 1)
(q − 1)× (q2 − 1)× (q4 − 1)

(q3 − 1)× (q + 1)(q3 − 1)
(q − 1)× (q + 1)× (q + 1)× (q4 − 1)

(q − 1)× (q + 1)(q5 − 1)
(q − 1)× (q6 − 1)

(q − 1)× (q2 − 1)(q4 + 1)
(q2 + q + 11)× (q2 + q + 1)× (q3 − 1)

(q3 + 1)× (q3 − 1)× (q + 1)
(q3 − 1)(q4 − q2 + 1)
(q − 1)(q6 + q3 + 1)

(q2 − q + 1)× (q − 1)× (q4 + q2 + 1)
(q3 − 1)× (q4 − 1)

(q5 − 1)(q2 + q + 1)
(q − 1)(q2 + 1)× (q2 − 1)× (q2 + 1)

q7 − 1
(q4 + 1)× (q − 1)(q2 + 1)

also, the orders obtained by writing −q instead of q in this list
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Table 2.6: Orders of maximal tori in E8(q)

G Cyclic structure of maximal tori
(q − 1)× order of a torus of (2, q − 1)E7(q) listed in Table 2.5

E8(q) (q − 1)× (q3 − 1)× (q4 − 1)
(q − 1)× (q5 − 1)(q2 + q + 1)

(q2 − 1)× (q2 + 1)(q − 1)× (q2 + 1)(q − 1)
(q − 1)× (q7 − 1)

(q − 1)(q4 + 1)× (q − 1)(q2 + 1)
(q2 − 1)× (q2 − 1)× (q2 − 1)× (q2 − 1)

(q2 − 1)× (q2 − 1)× (q + 1)(q3 − 1)
(q2 − 1)× (q2 − 1)× (q4 − 1)

(q + 1)(q3 − 1)× (q + 1)(q3 − 1)
(q + 1)(q3 − 1)× (q4 − 1)

(q4 − 1)× (q4 − 1)
(q2 − 1)× (q2 − 1)× (q2 + 1)× (q2 + 1)

(q2 − 1)× (q + 1)(q5 − 1)
(q2 − 1)× (q6 − 1) (two conjugacy classes)

(q − 1)(q2 + 1)× (q2 + 1)(q3 − 1)
(q2 − 1)× (q2 − 1)(q4 + 1)

(q2 + q + 1)× (q2 + q + 1)× (q + 1)(q3 − 1)
(q + 1)(q2 + q + 1)(q5 − 1)

(q + 1)(q2 + 1)(q5 − 1)
(q + 1)(q7 − 1)

(q8 − 1)
(q2 − 1)× (q2 + 1)× (q4 + 1)
(q2 + 1)× (q2 + 1)× (q4 − 1)

(q + 1)(q3 − 1)(q4 + 1)
(q2 + 1)(q6 − 1)

(q2 − 1)(q2 + q + 1)(q4 − q2 + 1)
(q2 − 1)(q6 + q3 + 1)

(q2 − q + 1)× (q2 − q + 1)× (q + 1)(q3 − 1)
(q2 − 1)(q6 + 1)

(q2 + q + 1)× (q2 + q + 1)× (q2 + q + 1)× (q2 + q + 1)
(q4 + q3 + q2 + q + 1)× (q4 + q3 + q2 + q + 1)

(q2 + q + 1)× (q6 + q3 + 1)
(q2 + 1)× (q2 + 1)× (q2 + 1)× (q2 + 1)

(q2 + 1)× (q6 + 1)
(q4 + 1)× (q4 + 1)

(q4 − q2 + 1)(q2 + q + 1)× (q2 + q + 1)
(q4 + q2 + 1)× (q2 + q + 1)× (q2 − q + 1)

q8 + q7 − q5 − q4 − q3 + q + 1
q8 − q4 + 1

q8 − q6 + q4 − q2 + 1
(q4 − q2 + 1)× (q4 − q2 + 1)

also, the orders obtained by writing −q instead of q in this list
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chapter 3

fixed points of automorphisms

in infinite alternating groups

The structure of centralizers of elements in Alt(Ω) where Ω is a finite set is

well known (See [14, Lemma 2.4], or [21, 3.7] ). In this chapter, we investigate

the structure of fixed points of automorphisms of Sym(Ω) and Alt(Ω) where Ω

is an infinite set. We will prove that if α is a periodic element of Aut(G) when

G = Sym(Ω), then CG(α) contains infinite finitary symmetric group and hence

it contains infinite alternating group. Moreover, we will describe the centralizers

of all possible type of elements in Sym(Ω) and show that if Ω is uncountable,

the fixed point group of any automorphism of Sym(Ω) have the same cardinal-

ity with Sym(Ω). By [7, Theorem 8.2.A], if |Ω| 6= 6, every automorphism of

Sym(Ω) is inner and Aut(Alt(Ω)) = Sym(Ω). Hence, to find the fixed points of

automorphisms of Alt(Ω), we consider the centralizers of elements in Sym(Ω).

First we need to summarize the background results which we will use.

3.1 Automorphisms of Alt(Ω)

We will consider the fixed points of automorphisms of alternating groups. But

first of all, we will state the following result of Baer:

Theorem 3.1. [7, Theorem 8.1A] Let Ω be any set with |Ω| > 4. Then the

normal subgroups of Sym(Ω) are precisely 1, Alt(Ω), Sym(Ω) and the subgroups

of the form Sym(Ω, c) with ℵ0 ≤ c ≤ |Ω| where Sym(Ω, c) = {x ∈ Sym(Ω) :

|supp(x)| < c}.

Now, we will show that if |Ω| > 6 every automorphism of Sym(Ω) is inner.

This result remains true for |Ω| < 6 but fails for |Ω| = 6. The proof is based on
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the following lemmas:

Lemma 3.2. [7, Lemma 8.2A] Let |Ω| > 6 and G = Sym(Ω). Every auto-

morphism φ of Sym(Ω) maps Alt(Ω) onto itself, and so its restriction to Alt(Ω)

is an automorphism of Alt(Ω). Moreover, if C is the conjugacy class consisting

of all three cycles in Alt(Ω) then Cφ = C.

Proof. Let Alt(Ω) = A. Since |Ω| > 4, we know that A is simple. Let φ be an

automorphism of Sym(Ω). Since Aφ is isomorphic to A, it is also simple. Now,

since both A and Aφ are normal in G, we have A∩Aφ�A and A∩Aφ�Aφ. Since

both A and Aφ are simple, either A = Aφ or A∩Aφ = 1. But if A∩Aφ = 1 then

Aφ ∈ CSym(Ω)(A) = 1 which is not the case. So A = Aφ, that is, φ ∈ Aut(A).

It remains to show that Cφ = C.

Recall that C is the conjugacy class consisting of all 3-cycles. We claim that C

is the unique conjugacy class of A consisting of elements of order 3 such that for

all x, y ∈ C we have |xy| = 1, 2, 3, 5. First we need to show that product of any

3-cycles necessarily order 1, 2, 3 or 5. Let (a1 b1 c1), (a2 b2 c2) be two arbitrary

3-cycles in Alt(Ω). Then the product

(a1 b1 c1)(a2 b2 c2) =


(a1 b2 c2 b1 c1) if a1 = a2, b1 6= b2, c1 6= c2

(a1 c1)(b1 c2) if a1 = a2, b1 = b2, c1 6= c2

(a1 c2 c1) if a1 = b2, b1 = a2, c1 6= c2

Clearly, (a1 b2 c2 b1 c1) has order 5, (a1 c1)(b1 c2) has order 2 and (a1 c2 c1) has

order 3.

Let C ′ be another conjugacy class of A containing elements of order 3 with

C ′ 6= C. In symmetric groups each conjugacy class is uniquely determined by the

cycle type. Since C ′ 6= C and C ′ also contains elements of order 3, each element

of C ′ contains at least two 3-cycles, that is,

C ′ = {(a1b1c1) . . . (akbkck) : ai, bi, ci ∈ Ω, for some k ≥ 2}.
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Since |Ω| ≥ 7 we can find elements whose product is of the following form:

(a2 a5 a3)(a4 a6 a7) . . . (a1 a3 a7)(a2 a5 a4) = (a1 a2 a3 a4 a5 a6 a7 . . .).

So, there are two elements x, y ∈ C ′ such that xy has order greater than or

equal to 6. So C is the unique conjugacy class of A consisting of elements of

order 3 such that for all x, y ∈ C we have |xy| = 1, 2, 3, 5. Now, since φ is an

automorphism, it preserves the orders of the products. Then Cφ is a conjugacy

class conjugacy class of A consisting of elements of order 3 such that for all

x, y ∈ C we have |xy| = 1, 2, 3, 5. By the uniqueness of C, we have Cφ = C.

Hence, C is fixed under any automorphism of Sym(Ω).

Lemma 3.3. [7, Lemma 8.2B] Let G be a subgroup of symmetric group on

Ω which contains Alt(Ω) where Ω is a set whose cardinality is greater than 6. If

ψ ∈ Aut(G) fixes each element of Alt(Ω) then ψ = idG

Proof. Since Alt(Ω) is normal in Sym(Ω), it is necessarily normal in G. Then for

every y ∈ G, for every x ∈ Alt(Ω) we have y−1xy ∈ Alt(Ω). So;

y−1xy = (y−1xy)ψ = (yψ)−1x(y)ψ.

Therefore, yψy−1 ∈ CG(Alt(Ω)). But as CSym(Ω)(Alt(Ω)) = 1, we obtain CG(Alt(Ω)) =

1. So, yψ = y for every y ∈ G.

Now, we need to prove that every automorphism of Sym(Ω) is inner. In fact

we will give the following result due to Schreier and Ulam:

Theorem 3.4. [7, Theorem 8.2A] Let |Ω| > 6. Suppose that G satisfies

Alt(Ω) ≤ G ≤ Sym(Ω) and let N = NSym(Ω)(G). Then for each automorphism

φ of G there exists y ∈ N such that

xφ = y−1xy for all x ∈ G.

In particular, every automorphism of Sym(Ω) is inner.

Proof. For each α, β ∈ Ω consider the set of 3-cycles including α and β and define

L(α, β) = {(αβγ) ∈ C : γ ∈ Ω−{α, β}}. We saw in the proof of Lemma 3.2 that
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product of any 3-cycle have order 1,2,3 or 5. Now, unless the intersection of the

sets of elements occuring in these cycles have 2 element, the product have order

1, 3 or 5. Therefore S := L(α, β) is a maximal subset of C satisfying

if x, y ∈ S and x 6= y then xy has order 2.

The same calculations show that if S ⊆ C satisfies the above property and con-

tains (αβγ) then since in any two element of C two points must be common by

the same reason, S is a subset of L(α, β), L(β, γ) or L(γ, α). Therefore L(α, β)

are the unique maximal subsets of C satisfying the above property. Therefore,

since this property is invariant under automorphisms of Alt(Ω), Lemma 3.2 shows

that (L(α, β))φ = L(α′, β′) for some α′, β′ ∈ Ω.

Now define y ∈ Sym(Ω) by αy = α′, βy = β′, γy = γ′ such that (αβγ)φ =

(α′β′γ′) for all γ 6= α or β. Then

ψ : G −→ Sym(Ω)

x −→ yxφy−1

is a homomorphism which fixes each element of L(α, β). Since 〈L(α, β)〉 = Alt(Ω)

we say ψ acts trivially on Alt(Ω), so ψ = idG by Lemma 3.3.

xφ = y−1xy for every x ∈ G for some y ∈ N.

In particular, if we take G = Sym(Ω) we can conclude that every automor-

phism of Sym(Ω) is inner.

3.2 A result on fixed points of automorphisms

of finite alternating groups

Our aim is to prove the following result:

Theorem 3.5. Let G = Alt (Ω) where Ω is a finite set and A be a group of

automorphisms of G. If |G : CG(A)| ≤ n, then |G| ≤ f(n) for some function f
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of n.

In this setting, let α be any element of A, that is, let α be a single automor-

phism of G. Since |G : CG(α)| ≤ |G : CG(A)|, it is enough to show the result

when |G : CG(α)| = n.

We know by [7, Theorem 8.2.A] that the automorphism group of Alt(Ω) is

isomorphic to Sym(Ω) except the case |Ω| = 6. When |Ω| = 6 the automorphism

group of Alt(Ω) contain Sym(Ω) and |Aut(Alt(Ω)) : Sym(Ω)| = 2. Clearly, in

this case |Alt(Ω)| is finite, so, we can assume |Ω| 6= 6.

We will use the following result from [21] to calculate the index of the central-

izer of an element in Sym(Ω) where |Ω| is a finite set. In fact we will prove a more

general result including infinite permutation groups when we prove Theorem 3.13.

Theorem 3.6. [21, 3.7] Let Ω be a finite set with |Ω| = m. Let G = Sym(Ω)

and α be an element of order n in G. Then CG(α) = L1×L2× . . .×Lt where Lj

is isomorphic to Zk oSi such that k is the lenght of a cycle and i is the number of

cycles of lenght k in α.

Theorem 3.7. Let G be a symmetric group of degree n and α be an element of

G of order r. If |G : CG(α)| ≤ λ, then |G| is bounded by a function of λ.

Proof. We know the structure of centralizers of elements by Theorem 3.6. So, we

observe that the order |CG(α)| = Πt
k=1k.i! where k is the length of a cycle in α

and i is the number of cycles of length k in α. Now, if |Ω| = n ≥ 3 this order is

largest whenever the number of 0-cycles is largest, that is, |Ω\supp(α)| must be

largest.

Hence, the order of CG(α) is maximum if α is of the form (ab) for some a and

b. Then |CG(α)| = 2.(n − 2)!. Then n!
2.(n−2)!

= |Sn : CG(α)| ≤ λ. It follows that

n(n−1)
2

≤ λ. Then we obtain n2 − n− 2λ ≤ 0, so n1,2 =
1∓
√

1−4(−2λ)

2
. Therefore n

is bounded. It follows that |G| = n! is bounded by a function of λ.

When Ω is a finite set with |Ω| 6= 6, we have Aut(AltΩ) = Sym(Ω) and

CAlt(Ω)(α) = CSym(Ω)(α)∩Alt(Ω). It follows that |Alt(Ω) : CAlt(Ω)(α)| is bounded

by n, then |Alt(Ω)| is also bounded by a function of n.
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3.3 Fixed points of automorphisms of infinite

alternating groups

A result similar to Theorem 3.5 can not be true for infinite alternating groups

since if a group contains a subgroup of finite index then it must contain a normal

subgroup of finite index, but alternating groups are simple. Instead, we will first

investigate the structure of the fixed point group of a periodic automorphism of

the alternating group.

Theorem 3.8. Let Ω be an infinite set of cardinality κ. Let G = Sym(Ω) and

α be a periodic element of Aut(G). Then CG(α) contains an infinite symmetric

group isomorphic to Sym(κ).

Proof. We know by Theorem 3.4 that Aut(G) = Sym(Ω). If α ∈ FSym(Ω)

then |supp(α)| < ∞. Then |Ω\supp(α)| = |Ω| = κ. Now every element of

Sym(Ω\supp(α)) is fixed by α, which is an infinite symmetric group isomorphic to

Sym(κ). Similarly if |supp(α)| < κ then |Ω\supp(α)| = κ. Hence, if |supp(α)| <
κ, the set Ω\supp(α) is a subset of Ω with cardinality κ which is fixed by α,

that is, CG(α) contains Sym(Ω\supp(α)), which is an infinite symmetric group

isomorphic to Sym(κ).

Now, assume α is a periodic element of Aut(G) with |supp(α)| = κ. We

know that α can be written as a product of disjoint cycles. First we need to

show that lengths of these cycles are bounded. Now, the least common multiple

of the lengths of these cycles is equal to |α| which is finite. So, there are only

finitely many numbers n1, . . . , nk such that any cycle in α has length ni for some

i ∈ {1, . . . k}. Define Ki as the set of cycles of length ni which occur in the

disjoint cycle decomposition of α. As |
⋃k
i=1Ki| = κ, at least one of the Ki’s have

cardinality κ. Denote this set by K. Now,

K = {β = (a1 . . . ak) : β is a cycle of length k occuring in α}.

Observe that for any β ∈ K since β is a cycle occuring in α and α is written

as a product of disjoint cycles, we have βα = β.

Now, the elements of K have all the same length and they commute with
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α. Every element of K commutes with α we have K ≤ CG(α). We claim that

Sym(K) is contained in CG(α). Let f be a permutation on K. We have αf = α

since f only changes the place of two disjoint commuting cycles in the decompo-

sition of α. So, all the elements of Sym(K) commute with α, so CG(α) contains

a subgroup isomorphic to Sym(K) where |K| = κ .

Corollary 3.9. Let G = Alt(Ω) and α be a periodic automorphism of G. Then

CG(α) contains a subgroup which is isomorphic to an infinite alternating group.

Proof. By Theorem 3.8 we know that CSym(Ω)(α) contains an infinite symmetric

group Sym(K) where |K| = |Ω|. Observe that CAlt(Ω)(α) = CSym(Ω)(α)∩Alt(Ω).

So all of the even permutations in CSym(Ω)(α) are contained in CAlt(Ω)(α). There-

fore, the alternating group contained in Sym(K) is also contained in CAlt(Ω)(α),

hence CAlt(Ω)(α) contains an infinite simple group.

Example 3.10. Corollary 3.9 is not true in general for any torsion-free ele-

ment of Aut(Alt(Ω)). An automorphism of this form can even be fixed point

free. Now f : n −→ n + 1 is a permutation of Z, hence, by Theorem 3.4 f

is an automorphism of Alt(Z). Now, for any element in x ∈ Alt(Ω) we know

that x can be written as a product of finitely many disjoint cycles, that is, say

x = (a11 . . . a1n) . . . (ak1 . . . akm). We have (f−1xf).(aij − 1) = (f−1x).aij =

(f−1).ai,j+1 = ai,j+1 − 1 for 1 ≤ i, j ≤ n − 1. Similarly, (f−1xf).(ain − 1) =

(f−1x).ain = (f−1).ai,1 = ai,1 − 1.

Consider the image

f−1(a11 . . . a1n) . . . (ak1 . . . akm)f = (a11 − 1 . . . a1n − 1) . . . (ak1 − 1 . . . akm − 1).

Denote the sum a11 + . . . + a1n + . . . + akm = S. Now, if x ∈ CG(f), that is, if

f−1xf = x then the sums of the points occuring in x and f−1xf must be equal.

Observe that the sum of the points occuring in f−1xf is decreased by one for

each point in supp(x), hence if f−1xf = x then S must be equal to S−|supp(x)|,
that is, supp(x) = ∅. Therefore f only fixes the identity element, so, f is a

fixed-point-free automorphism in Aut(Alt(Ω)).
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3.4 Main result on automorphisms of infinite al-

ternating groups

We know that any two cycles (a1a2 . . . ak) and (b1b2 . . . bk) of the same lenght

k in Sym(Ω) are conjugate. In fact the element g = (a1b1)(a2b2) . . . (akbk) satisfy

(a1a2 . . . ak)
g = (b1b2 . . . bk). We will observe that this result is not true for cycles

of infinite lenght.

Remark 3.11. Observe that every element in Sym(Ω) can be written as a prod-

uct of disjoint cycles of at most countable lenght. Although any two cycle of

lenght k are conjugate in Sym(Ω), this is not true for any two infinite cycles of

Sym(Ω).

Consider f, g ∈ Sym(Z) such that f : n −→ n+ 1 and

g(n) =

2k + 2 if n = 2k.

2k + 1 if n = 2k + 1.

Now, f and g both can be written as infinite cycles, that is, f = (. . .− 3 − 2 −
1 0 1 2 . . .) and g = (. . .− 6 − 4 − 2 0 2 4 . . .).

Assume that they are conjugate, that is, there exists h ∈ Sym(Ω) such that

fh = g.

Then fh = hg. So hg(n) = fh(n) for every n ∈ Z. Now, if n is odd, we have

hg(n) = h(n) = fh(n) = h(n) + 1 which implies 1 = 0. Hence, any two arbitrary

infinite cycle in Sym(Z) need not be conjugate.

Theorem 3.12. Any two infinite cycles α, β ∈ Sym(Ω) are conjugate iff

card(Ω\supp(α)) = card(Ω\supp(β)).

Proof. Assume that α = (. . . a−2 a−1 a0 a1 a2 . . .) and β = (. . . b−2 b−1 b0 b1 b2 . . .)

are two infinite cycles in Sym(Ω) such that card(Ω\supp(α)) = card(Ω\supp(β)).

Then, since the cardinalities are equal, there exists a bijection ψ : Ω\supp(α) −→
Ω\supp(β).
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Now, construct

φ : supp(α) −→ supp(β)

ai −→ bi

which is a bijection from supp(α) to supp(β). Define δ : Ω −→ Ω such that

δ(x) =

φ(x) if x ∈ supp(α).

ψ(x) if x ∈ Ω\supp(α).

Clearly δ is a bijection from Ω to Ω, that is δ ∈ Sym(Ω). Now,

δ−1βδ(x) =

ai+1 if x ∈ supp(α), that is, x = ai for some i ∈ Z

x if x ∈ Ω\supp(α).

Therefore δ−1βδ(x) = α(x) for every x ∈ Ω, that is, δ−1βδ = α. Hence, α and β

are conjugate.

Conversely, assume that α, β are two conjugate infinite cycles in Sym(Ω).

Then there exists γ ∈ Sym(Ω) such that γ−1αγ = β. To show that card(Ω\supp(α)) =

card(Ω\supp(β)), we need to construct a bijection between Ω\supp(β) and Ω\supp(α).

Now, for every x ∈ Ω\supp(β) we have γ−1αγ(x) = β(x) = x since x is not an

element of supp(β). Then, we have αγ(x) = γ(x), that is, γ(x) is fixed by α.

Now, define

Φ : Ω\supp(β) −→ Ω\supp(α)

x −→ γ(x).

We need to prove that Φ is a bijection. Since γ is one-to-one, Φ is necessarily one-

to-one. Now, let y ∈ Ω\supp(α). Since γ is a bijection of Ω, there exists z ∈ Ω

such that y = γ(z). Consider β(z) = γ−1αγ(z) = γ−1α(y) since y = γ(z). Since

y ∈ Ω\supp(α) we have α(y) = y, so β(z) = γ−1α(y) = γ−1(y) = z. Therefore, Φ

is onto, hence card(Ω\supp(α)) = card(Ω\supp(β)).

So, we proved that any two infinite cycles are not necessarily conjugate. But,
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if α, β are two disjoint infinite cycles, then since supp(α) ∩ supp(β) = ∅ and

card(supp(α)) = card(supp(β)) = ℵ0. Now, since supp(β) ⊆ Ω\supp(α) and

supp(α) ⊆ Ω\supp(β) we have card(Ω\supp(α)) = card(Ω\supp(β)), that is, α

and β are conjugate. Therefore disjoint cycles of same lenght in Sym(Ω) are

conjugate.

We have not found a reference or information about the fixed points of au-

tomorphisms in infinite alternating groups. The following result follows from [7,

Exercise 4.2.4, 4.2.5], and it might be well-known but we will write the proof for

convenience. In the proof, we use the argument in [21, 3.7] with allowing the

cycle lengths to be infinite.

Proposition 3.13. Let G = Sym(Ω) and α be a possibly torsion-free element in

G then CG(α) = Drk∈N∪{∞}Lk where Lk is isomorphic to Hk oSym(Ωk) where Hk

is either isomorphic to Zk if k is the length of one cycle occurring in α or Z if

the length of the cycles are infinite (k = ∞) and Γk is the set of cycles of length

k (or the set of infinite cycles for k = ∞ ) in α.

Proof. Let G = Sym(Ω) and α be an automorphism of G. Since Theorem 3.7 in

[21] gives the result for the finite case of |Ω|, we can assume that Ω is infinite.

Let α = Πk∈N∪{∞}Πλi∈Γk
λki

be the cycle decomposition of α in G where for

each k the cycles λki
denotes cycles of length k occurring in α. Here k ∈ N∪{∞}.

Let Yk be the set of points in Ω occuring in a k cycle in α where k ∈ N ∪ {∞}.
So Yk’s are a partition of supp(α) into disjoint sets. Let x ∈ CG(α). Then since

Yi’s consist of points in cycles occurring in α, they are α-invariant, and they

are x-invariant also. Now, x can be written as x = Πk∈N∪{∞}xk where xk is the

restriction of x to the action on Yk. Since Yk’s are disjoint, xi and xj commute.

Now, x ∈ CG(α) iff xi commutes with αi where αi is the restriction of α to the

action on Yi for every i. So CG(α) = Drk∈N∪{∞} CSym(Yk)(αk). So, it is enough to

find CSym(Yk)(α) where α is an element written as a product of cycles of length

k ∈ N ∪ {∞} for some fixed k.

Let α be the product of |Γk| cycles of length k for k ∈ N ∪ {∞}. We need to

show that CG(α) = H o Sym(Yk) where H is isomorphic to Zk if k is finite and

isomorphic to Z if k = ∞.

Let α = Πi∈Γk j≤k(aij).

41



Now, if τ ∈ Sym(Yk) define τ ′ by aijτ
′ = ai.τ,j. Then f : τ −→ τ ′ is a

homomorphism from Sym(Yk) to CSym(Y ′k)(α) where Y ′
k is the set of all elements

in supp(Yk).

Let θl : ali −→ ali+1. Clearly θl ∈ CSym(Y ′k)(α).

Now, Wk = 〈f(τ), θl : l ∈ H, τ ∈ Sym(Yk)〉 is isomorphic to H o Sym(Yk).

Conversely if g ∈ CY ′k(α), then g permutes the cycles occurring in α. Then

there exists τ ∈ Sym(Yk) such that gτ ′ fixes every cycle of α. Since the cen-

tralizer in Sym(supp(x)) of a cycle x is a cyclic group generated by x, we have

(gτ ′)Πl∈Γ θkl
l = 1 where kl < |x|. So, g = (τ ′Πl∈N∪{∞} θ

kl
l )−1, that is g ∈ Wk.

Therefore CY ′k(α) = Wk is isomorphic to H o Sym(Yk).

In the next two examples we will construct some automorphisms of the sym-

metric group whose centralizer is of the form Zn o Sym(Ωγ) or Z o Sym(Ωγ) re-

spectively.

Example 3.14. Let G = Sym(Z) and αn be the automorphism given by αn =

Πj∈Z(jn jn + 1 . . . jn + n − 1)). So, α is written as a product of countably

many disjoint cycles of length n, hence by Theorem 3.13 we know that CG(α) is

isomorphic to Zn o Sym(Z).

By this way, for each n ∈ N we can construct a subgroup of symmetric group

Sym(Z) which is isomorphic to Zn o Sym(Z).

Example 3.15. Let Ω = {±pk : p prime, k ∈ N\{0}} and let Γ be the set of all

prime numbers. Now, let G = Sym(Ω) and α be the automorphism of G given

by

α = Πp∈Γ(. . .− p2 − p p p2 p3 . . .)

So, α is written as a product of countably many disjoint infinite cycles, hence

by Theorem 3.13 we know that CG(α) is isomorphic to Z o Sym(Γ). Since Γ is

countable, Sym(Γ) is isomorphic to Sym(Z).

We will show that card(CSym(Ω)(α)) = card(Sym(Ω)) for every uncountable

set Ω.
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Theorem 3.16. Let Ω be an uncountable set and α be an automorphism of

Sym(Ω). Then card(CSym(Ω)(α)) = card(Sym(Ω)).

Proof. Let Ω be a set with card(Ω) = κ where κ is an uncountable cardinal

number. Let G = Sym(Ω) and α be an automorphism of G. Let Yk be the set of

cycles of lenght k occuring in α and Y0 be the set of infinite cycles in α. Let

S = {k ∈ N : α contains a cycle of lenght k}.

By Theorem 3.13 we know that

CG(α) = (Drk∈S Zk o Sym(Yk))× (Z o Sym(Y0)).

Here, for the elements fixed by α, we write cycles of length 1, we assume the

corresponding Zk = 1.

Now, if card(supp(α)) is less than κ, then the cardinality of the set 0-cycles in

α is κ, so CG(α) involves Sym(κ) as a direct factor, that is card(CG(α)) = 2κ. If

card(supp(α)) = κ, then since S is countable and card(supp(α)) = ℵ0.card(Y0)+

Σk∈S k.cardYk
at least one of Yk’s have cardinality κ, hence CG(α) contains

Sym(κ). Therefore card(CSym(Ω)(α)) = card(Sym(Ω)) = 2κ for every uncount-

able set Ω.

Remark 3.17. This is not true when Ω is countable. For example, let G =

Sym(Z) and let α be the map from Z to Z sending each element to its successor.

Clearly α is the infinite cycle (. . . − 3 − 2 − 1 0 1 2 . . .), that is, CG(α) is

isomorphic to Z which is countable, but Sym(Z) is uncountable.

Finally we will prove the following result:

Theorem 3.18. Let Ω be an infinite set with cardinality κ. Denote G = Sym(Ω)

and α be an automorphism of G. Then CG(α) has a normal series involving

infinite simple factors.

Proof. By Theorem 3.13 we know that CG(α) = Drγ∈ΓLγ where Lγ is isomorphic

to Hγ oSym(Ωγ) where Hγ is either isomorphic to Zk if k is the lenght of one cycle

occuring in α or Z if the lenght of the cycles are infinite and Ωγ is the set of cycles
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of lenght n (or the set of infinite cycles ). Now, it is enough to construct such a

normal series for one of the direct factors, that is, consider Lγ = Hγ o Sym(Ωγ).

Denote B = Drβ∈Sym(Ωγ)H, that is, the base group B of the wreath product

is a direct sum of copies of Z or Zn.

By Theorem 3.1 we know that the normal subgroups of Sym(Ωγ) are exactly

1, Alt(Ω), Sym(Ω) and the subgroups of the form Sym(Ωγ, c) with ℵ0 ≤ c ≤ |Ω|
where Sym(Ω, c) = {x ∈ Sym(Ω) : |supp(x)| < c}. We know that under Axiom

of Choice the proper class of cardinal numbers are totally ordered (see [22, 2.21]),

hence the set of cardinal numbers less than card(Ωγ) is totally ordered. Now,

1�B�BhAlt(Ωγ)�BhSym(Ωγ,ℵ0)�BhSym(Ωγ,ℵ1) . . .�BhSym(Ωγ) = Lγ

is a normal series of length equal to order type of 2card(Ωγ).

When c′ < c < card(Ωγ), if there are no cardinals between c and c′, that is,

when c is the successor cardinal of c′, then by Theorem 3.1 Sym(Ωγ, c
′) is the

largest normal subgroup of Sym(Ωγ, c). Now, we need to show that the factor

group BSym(Ωγ, c)/BSym(Ωγ, c
′) is an infinite simple group. Consider

BSym(Ωγ, c)/BSym(Ωγ, c
′) ∼= BSym(Ωγ, c)Sym(Ωγ, c

′)/BSym(Ωγ, c
′)

∼= Sym(Ωγ, c)/(Sym(Ωγ, c) ∩BSym(Ωγ, c
′))

∼= Sym(Ωγ, c)/Sym(Ωγ, c
′)(B ∩ Sym(Ωγ, c)).

by the Third Isomorphism Theorem and the Dedekind Modular Law. But since

B ∩ Sym(Ωγ, c) is identity, we have

BSym(Ωγ, c)/BSym(Ωγ, c
′) ' Sym(Ωγ, c)/Sym(Ωγ, c

′)

which is isomorphic to an infinite simple group.

Hence, CSym(Ω)(α) has a normal series involving infinite simple factors.

Remark 3.19. By Theorem 3.1 we know that for any infinite successor cardinal

ℵα+1 the group Sym(Ω,ℵα+1)/Sym(Ω,ℵα) is simple. This is not the case when

c is a limit cardinal, that is, c = ℵβ where β is a limit ordinal. In this case,

for any cardinal a < c there exist b greater than a and less than c. Hence
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the factor group Sym(Ω, c/Sym(Ω, a) contains a normal subgroup of the form

Sym(Ω, b/Sym(Ω, a) by Theorem 3.1. So, in the normal series, the factor groups

Sym(Ω, c/Sym(Ω, a) where c is a limit cardinal can never be simple.
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chapter 4

centralizers of finite

subgroups in linear simple

locally finite groups

In this chapter we study centralizers of finite subgroups consisting of semisim-

ple elements in linear simple locally finite groups. Hartley asked Question 1.1

for non-linear simple locally finite groups. Naturally one wonders about linear

groups, that is, it is natural to ask the following:

Question 4.1. Is the centralizer of a finite subgroup in a linear simple locally

finite group necessarily infinite?

It is easy to see that the linear version of Hartley’s question has a negative

answer. In fact, the following observation shows that in a linear simple locally

finite group, we can always find finite subgroups with trivial centralizer:

Remark 4.2. By the result of Belyaev, Borovik, Hartley-Shute and Thomas, we

know that a linear simple locally finite group is a Chevalley or twisted Chevalley

group over a locally finite field. By Theorem 2.31, a linear simple locally finite

group is a subset of the fixed points of powers of a Frobenius map in a simple linear

algebraic group. Here, we can first find the centralizers in the linear algebraic

group, and then intersect with the fixed points of the Frobenius maps. A linear

algebraic group is an affine variety and the centralizers of elements are closed

subsets. By [30, Section 1.1, p.90], the closed subsets of an algebraic variety

satisfy descending chain condition. Now, let G be an adjoint type simple linear

algebraic group (it has trivial center), let g1 ∈ G and C1 = CG(g1). Since G has

trivial center, G 6= C1. Choose g2 ∈ G\C1 and let C2 = CG(g1, g2). Now, since
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g1 /∈ C2, we have C1 6= C2. Since C2 6= Z(G), there exists an element g3 ∈ G such

that CG(g3) � C2. Therefore, CG(g1, g2, g3) = CG(g1, g2) ∩ CG(g3) is a proper

subgroup of CG(g1, g2). Denote C3 = CG(g1, g2, g3). Assume Cn is constructed

and is non-trivial. Since Cn is not equal to the center, there exists gn+1 ∈ G such

that CG(gn+1) � Cn. Now, denote Cn+1 = CG(gn+1) ∩ Cn. Clearly, Cn+1 is a

proper subgroup of Cn. Here, all Ci’s are closed subsets of G. Then the chain

G > C1 > C2 > . . . must terminate at finitely many steps. By the constructions

of Ci’s, if the last element Cm of the chain is not equal to the center, we can always

construct a proper closed subgroup Cm+1. Hence the last element of the chain

is necessarily 1. Then, if G is an adjoint type simple linear algebraic group, we

can always construct a finite subgroup with trivial center, that is, a linear simple

locally finite group has a finite subgroup with trivial center. So, there exists a

finite subgroup with trivial center, that is, Question 4.1 is answered negatively.

Another way of seeing this is the following: It is easy to show that, if G = B(k)

is a locally finite, simple group of Lie type B over an infinite locally finite field k

of characteristic p, and F = B(Fp), then CG(F ) = 1. Indeed, F contains elements

χr(1) and χ−r(1) for every positive negative root r in the root system of G. Then

CG(F ) consists of elements commuting with χr(1) and χ−r(1) for every positive

root r. Then CG(F ) = Z(G) = 1.

But if the subgroup A itself is abelian, clearly CG(A) ≥ A. In linear case, we

study the centralizers of finite abelian subgroups. In Section 4.3 we will see that

centralizer of even a single unipotent element can easily fail to contain infinitely

many elements of distinct prime orders. So, we consider centralizers of finite

abelian subgroups consisting of semisimple elements.

4.1 Centralizers of d-abelian subgroups in sim-

ple locally finite groups of Lie type

We start with the definition of a d-abelian subgroup of a simple linear algebraic

group:
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Definition 4.3. Let G be a simple linear algebraic group. A finite abelian sub-

group A consisting of semisimple elements of G is called a d-abelian subgroup if

it satisfies one of the following:

1. The root system associated with G has type Al and Hall-π-subgroup of A is

cyclic where π is the set of primes dividing l + 1

2. The root system associated with G has type Bl, Cl, Dl or G2 and the Sylow

2-subgroup of A is cyclic.

3. The root system associated with G has type E6, E7 or F4 and the Hall-{2, 3}-
subgroup of A is cyclic.

4. The root system associated with G has type E8 and the Hall-{2, 3, 5}-subgroup
of A is cyclic.

Here, since A is a finite abelian group, it has Hall-{π}-subgroups for every set

of primes π.

In this section, our aim is to prove the following result:

Theorem 4.4. Let G be a locally finite simple group of Lie type defined over an

infinite locally finite field of characteristic p. Let A be a d-abelian subgroup of G.

Then CG(A) contains an abelian subgroup isomorphic to Drpi
Zpi

for infinitely

many distinct primes pi.

We will use the following result to see whether an abelian subgroup A of G is

contained in a maximal torus of G or not.

Theorem 4.5. (Steinberg, [34, Corollary 2.25]) Let G be a connected re-

ductive linear algebraic group over an algebraically closed field of characteris-

tic p and A a commutative subgroup consisting of semisimple elements. Write

A/A◦.(A ∩ Z(G)) as

A/A◦.(A ∩ Z(G)) ∼= Zn1 × Zn2 × . . .× Znk

where ni|ni+1.

Let ρ be the number of ni’s which are divisible by the torsion primes of G.
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1. If ρ ≤ 1 then A is a contained in a maximal torus of G.

2. If ρ ≤ 0 then CG(A) is connected and simply connected in G.

3. If G is simply connected, then the values of ρ in (1) and the first part of

(2) may be increased by 1.

By this result, we will see that a d-abelian subgroup A of G is always contained

in a maximal torus. The following result of Steinberg shows that, A is contained

in a σ-invariant maximal torus also.

Lemma 4.6. (Steinberg, [32, Lemma 5.9]) Let G be a connected linear

algebraic group and σ be a Frobenius map on G and A be a subset of G such that

aσ = a for every a ∈ A and contained in a maximal torus. Then A is contained

in a maximal torus T which is invariant under σ, that is, T σ = T .

Now, we present an example of a non-d-abelian subgroup A such that CG(A) =

A.

Example 4.7. Let G be the adjoint group A1(K) = PSL2(K) defined over an

algebraically closed field K of odd characteristic. For λ2 = −1, consider the

subgroup A of PSL(2, K) generated by the elements

x =

[
0 1

−1 0

]
Z and y =

[
λ 0

0 −λ

]
Z.

The subgroup A = 〈x, y〉 is isomorphic to Z2×Z2. G has Lie rank l = 1. The

order of A is 4 and l + 1 = 2. Therefore A is not d-abelian in PSL2(K) as A

(the Sylow-2-subgroup of A) is not cyclic. In particular, A is not contained in a

maximal torus of PSL2(K).

Here, one can easily observe that CG(A) = A. In this case |CG(A)| = 4, hence

CG(A) does not contain infinitely many elements of distinct prime orders. In

fact, in Section 4.2, we will observe that for every n, there exists a non-d-abelian

subgroup A of PSLn(k) with CPSLn(k)(A) = A.

We will use the following consequence of Theorem 2.46. It is proved by Hartley

in [12, Lemma 2.5], but we will give a different proof.
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Lemma 4.8. Let G be an adjoint type simple linear algebraic group, σ be a

Frobenius map on Gand T be a σ-invariant maximal torus of G. Let

G =
∞⋃
i=1

Op′(Gσni )

where ni|ni+1, and T =
⋃∞
i=1(T ∩ Op′(Gσni )). Then T contains infinitely many

elements of distinct prime orders.

Proof. Let G be an adjoint type simple linear algebraic group, σ be a Frobenius

map on Gand T be a σ-invariant maximal torus of G. Let

G =
∞⋃
i=1

Op′(Gσni )

where ni|ni+1, and T =
⋃∞
i=1(T ∩Op′(Gσni )). We first need to consider the orders

of Ti = T ∩ Op′(Gσni ). Observe that, since ni|ni+1, we have Ti ≤ Ti+1. Here, by

Definition 2.47 of a maximal torus of a finite simple group of Lie type, Ti is a

maximal torus of Gi = Op′(Gσni ). Recall that Gi is a simple group of Lie type

over a finite field of size qni .

Now, by the results in Section 2.7, we know the cyclic structures of possible

maximal tori in finite simple groups of Lie type. We observe that for a maximal

torus Ti of a finite simple group of Lie type Gi has order f(qni) where f is one of

the polynomials given in these results.

We observe from Theorem 2.49 and Tables 2.3, 2.4, 2.5 that there are 4 pos-

sibilities for f(q):

1. f(q) is divisible by qk − 1 for some k ∈ N: In this case, for each i ∈ N
we have fqni is divisible by (qkni − 1). By Theorem 2.46, for each power

m of q, there exists a prime p such that p divides qm − 1 and p does not

divide qs − 1 for any 1 ≤ s < m. Hence, for each i, there exists a prime

pi|qkni − 1 such that pi divides qkni − 1 and p does not divide qs− 1 for any

1 ≤ s < kni. Since for each i there exists such pi dividing |Ti|, the union

T =
⋃∞
i Ti contains infinitely many elements of distinct prime orders.

2. f(q) is divisible by qk + 1 for some k ∈ N: In this case, we will apply
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Theorem 2.46 for qk.ni + 1 and obtain the same result.

3. f(q) is divisible by qmk−1
qm−1

for some m, k ∈ N: In particular, m may be

1. In this case we use Theorem 2.46 for qmkni − 1. Then we conclude that

there exists a prime pi|qmkni − 1 such that pi divides qmkni − 1 and p does

not divide qs − 1 for any 1 ≤ s < mkni. Hence, pi can not divide qm − 1,

therefore, pi| q
mk−1
qm−1

.

4. The cases where we can not use Theorem 2.46 directly: These are

one of the non-split maximal tori in G =2 B2(q),
2F4(q) where q = 22m+1,

and f(q) = q+
√

2q+1 or q2±
√

2q3 + q±
√

2q+1, the non-split maximao

tori in G =2 G2(q) where q = 32m+1 and f(q) = q ±
√

3q + 1 and G = E8

and fq = q8 + q7− q5− q4− q3 + q+ 1. In fact, the proof of the theorem for

this case follows in all the cases, but to see the orders explicitly we wrote

them separately. Here, by Theorem 2.31, G is a linear simple locally finite

group over an infinite locally finite field K of characteristic p. By Remark

2.50 a maximal torus T over the locally finite field K splits over a finite

Galois extension L of K, say |L : K| = l < ∞. Here, since L is a finite

extension of K, it is a locally finite field. We have L =
⋃
Li where Li’s

are finite subfields of L with [Li : Li ∩ K] ≤ l. Now, Li ∩ K is a finite

field of size qi and |L∗i | = qli − 1. Since , L∗ =
⋃
L∗i , by Theorem 2.46, for

each i the polynomial qli − 1 has a primitive prime factor, so L∗ contains

infinitely many elements of distinct prime orders. Since T ′ is isomorphic to

a direct product of finitely many L∗, it contains an infinite abelian subgroup

isomorphic to Drpi
Zpi

for infinitely many primes pi. Now, [T ′ : T ] < ∞,

since [L : K] < ∞ and dimT = r ≤ ∞. So, T contains an infinite abelian

subgroup A isomorphic to Drpi
Zpi

for infinitely many primes pi.

Remark 4.9. Let G be a locally finite simple group of Lie type over an infinite

locally finite field K of characteristic p. In fact, for any non-trivial torus T of

G, the same result follows by the following: Recall that, by Theorem 2.31, there

exists an adjoint type simple linear algebraic group G, a Frobenius map σ on G
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and a sequence of integers ni|ni+1 such that

G =
∞⋃
i=1

Op′(Gσni ).

Let T be a σ-invariant torus of G. Then a torus T of G is T =
⋃∞
i=1(T ∩

Op′(Gσni )).

By [26, page 18], T splits over a finite Galois extension L of K, hence, there

exists a torus T ′ containing T such that |T ′ : T | is finite and T ′ contains infinitely

many elements of distinct prime orders by the same argument in Lemma 4.8.

The following result is an immediate consequence of Remark 4.9:

Corollary 4.10. Let F be a subgroup of G. If CG(F ) contains a non-trivial σ-

invariant torus T of G (which is not necessarily maximal), then CG(F ) contains

an infinite abelian subgroup isomorphic to Drpi
Zpi

for infinitely many distinct

primes pi.

Now, we are ready to prove Theorem 4.4:

Proof of Theorem 4.4

Proof. Let G be an infinite simple locally finite group of Lie type over an infinite

locally finite field K of characteristic p. Then, by Theorem 2.31, there exists a

simple linear algebraic group G of adjoint type, a Frobenius map σ on G and

an infinite sequence of integers ni|ni+1 for i = 1, 2, 3, . . . such that G =
⋃∞
i=1Gi

where Gi = Op′(Gσni ). Denote Gσni = Hi. If x ∈ Hi, that is, xσ
ni = x, then

xσ
ni+1

= x as ni|ni+1. Therefore, Hi ≤ Hi+1 and the union H =
⋃∞
i=1Hi of His

form an ascending chain of subgroups of G. Hence H is a subgroup of G. By [4],

Section 7.1, we know that |Hi/Gi| is bounded by l + 1.

Claim Op′(H) = G =
⋃∞
i=1Gi.

Recall that Op′(Hi) is the subgroup generated by all p-elements of Hi. Let

x ∈ Op′(H). There exist p-elements g1, ..., gk ∈ H such that x = g1 . . . gk. Since

the elements gj ∈ H =
⋃∞
i=1Hi, there exists some i such that gj ∈ Hi for all

1 ≤ j ≤ k. Since gjs are p-elements and there exists some i such that gj ∈ Hi

for all 1 ≤ j ≤ k, the elements gj’s are contained in Op′(Hi) = Gi ≤ G for all

1 ≤ j ≤ k. Hence x ∈ G.
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Conversely, if x ∈ G =
⋃∞
i=1Gi then x ∈ Gj for some j, so x ∈ Op′(Hj) = Gj.

Then x can be written as a product of p-elements in Hj, hence in H. So, x ∈
Op′(H) = G.

Claim |H/G| ≤ l + 1.

Now H =
⋃∞
i=1Hi and G =

⋃∞
i=1Gi. Denote |Hi/Gi| = ki. By [4], Section

7.1, we know that ki depends on the type of the associated Lie algebra and it

is bounded by l + 1. Since all Gj’s are constructed from G, the Lie algebras

associated with them are also the same for all j. So, the indices ki = |Hi/Gi| are

all equal for i = 1, 2, . . ., that is, |Hj/Gj| = k ≤ l + 1 for all j. We prove the

statement by contradiction. Assume that |H/G| > l + 1 and let x1, . . . , xl+2 be

l + 2 distinct coset representatives of G in H. Then there exists some m such

that xi ∈ Hm for all i = 1, 2, . . . l+ 2. Without loss of generality, we may assume

x1 ∈ G. Now, {x2, . . . , xl+2} ⊆ H − G, so xi /∈ Gm for all i = 2, 2, . . . l + 2. It

follows that |Hm/Gm| > l+1 which is a contradiction. So, the index |H/G| ≤ l+1.

We want to show that CG(A) contains infinitely many elements of distinct

prime order. Since

|CH(A)

CG(A)
| = |CH(A)/(G ∩ CH(A))| = |CH(A)G/G| ≤ |H/G| ≤ l + 1

it is enough to show that CH(A) contains infinitely many elements of distinct

prime order, then it follows that CG(A) contains infinitely many elements of

distinct prime order.

First, we need to calculate ρ for the finite d-abelian subgroup A. The identity

component of a linear algebraic group is contained in every closed subgroup of

finite index (See [17][7.3]). Since A is a finite subgroup of G and 1 is closed,

we have A◦ = 1. Since G is of adjoint type, Z(G) = 1. Hence, in our case,

[A/A◦.(A ∩ Z(G)) = A.

Write A ∼= Zn1 × Zn2 × . . .× Znk
where ni|ni+1.

First case: Let the root system of G have type Al. Then the root system

has no torsion prime. So, the torsion primes of G are the primes which divide

the order, l + 1, of the fundamental group. Denote the set of primes that divide

l + 1 by π. Since the root system of G has type Al and the Hall π-subgroup of
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the d-abelian subgroup A is cyclic, the number ni that are divisible by a torsion

prime of G is at most 1, that is, ρ = 1.

Second case: Let the root system of G have type Bl, Cl, Dl or G2. If the

type of the root system is Cl, the root system has no torsion prime, but 2 is a

torsion prime for the fundamental group. If the type of the root system of G is

Bl, Dl or G2 then the only torsion prime of the root system is 2.

Since A is a d-abelian subgroup and the type of the root system of G is

Bl, Cl, Dl or G2, the Sylow 2-subgroup of A is cyclic. When A is written as a

product of cyclic groups of order ni, the number of nis not relatively prime with

2 is at most 1, that is, ρ ≤ 1.

Third case: Let the root system of G have type E6, E7 or F4. Then the

torsion primes of G are 2 and 3. But since A is a d-abelian subgroup, Hall-{2, 3}-
subgroup of A is cyclic. Therefore, ρ ≤ 1. Similarly we can deduce that if G = E8

and A is d-abelian, ρ ≤ 1.

Hence, if A is a d-abelian subgroup, ρ is always less than 1. By Theorem 4.5,

A is contained in a maximal torus T ′ of G. Now, A is a subset of G fixed by σn1

and contained in a maximal torus T ′. By Lemma 4.6, there is a maximal torus T

of rank r ≥ 1 containing A which is invariant under σn1 . Since n1|ni for all i, we

have T is invariant under σni for all i = 1, 2, 3, . . .. Since T is an abelian group

containing A, we have T ≤ CG(A).

Now, by Lemma 4.8, since G is an adjoint type simple linear algebraic group,

σ is a Frobenius map on G with

G =
∞⋃
i=1

Gσni

where ni|ni+1, and T is a σ-invariant maximal torus of G, the subgroup T =⋃∞
i=1(T ∩ Gσni ) contains infinitely many elements of distinct prime orders. So,

T ≤
⋃∞
i=1(CG(A))σni , that is, T ≤ CG(A), hence CG(A) contains an infinite

abelian subgroup which can be written as Dr∞i=1Zpi
for infinitely many primes

pi.
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4.2 Construction of an infinite family of self cen-

tralizing finite abelian subgroups in PSLn(k)

In this section we will construct non-d-abelian subgroups of PSLn(k) for each

n.

If G is an infinite locally finite simple group of Lie type, that is, an infinite

linear locally finite simple group, then the structure of the centralizer of a finite

abelian subgroup necessarily depend on the number of the torsion primes dividing

|A|. If A is d-abelian, by Theorem 4.4, CG(A) contains infinitely many elements

of distinct prime orders. If A is not d-abelian, it may not be the case. The

following result will show that for every n, there exists an abelian subgroup of

order n2 in PSLn(k) whose centralizer is equal to itself.

Lemma 4.11. Let G = PSLn(k) where k is the algebraic closure of the finite

field of characteristic p. Assume (p, n) = 1. Let

xZ =



0 0 . . . 0 1

−1 0 . . . 0 0

0 −1 . . .

.
...

.

0 . . . −1 0


Z ∈ G.

If yZ is an element of CG(xZ)\CG(xZ)◦ of order n, then

CG(〈xZ, yZ〉) = 〈xZ, yZ〉.

Proof. Observe that for every n ∈ N the determinant of x =



0 0 . . . 0 1

−1 0 . . . 0 0

0 −1 . . .

.
...

.

0 . . . −1 0


is equal to 1, hence x ∈ SLn(k). So, xZ is an element of G = PSLn(k).
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By Lemma 2.39, x is a regular element of SLn(k). Then, by Lemma 2.40, xZ

is regular in PSLn(k). Observe that |xZ| = n, which is relatively prime with p.

So, xZ is semisimple.

Observe that CG(xZ) = {gZ ∈ G : [g, x] ∈ Z} where Z = Z(SLn(k)) =

{α.I : αn = 1}. Then CG(xZ) =
⋃n−1
k=0 Ck where

Ck = {gZ ∈ G : [g, x] = λk.I}

with λ a primitive n-th root of unity, and denote Ck the connected components

of the centralizer.

Since xZ is a regular semisimple element of G, the identity component of

CG(xZ) is a maximal torus, that is, CG(xZ)◦ = T . Since the identity component

CG(xZ)◦ of CG(xZ) is a normal subgroup in CG(xZ), the normalizer NG(T ) con-

tains CG(xZ). Since the centralizer of a maximal torus in a connected reductive

group is itself, we have CG(T ) = T .

Observe that [CG(x) : CG(x)◦] = n. Let yZ ∈ C1 where C1 = {gZ ∈ G :

[g, x] = λ.I}. Here yZ ∈ CG(x)/CG(x)◦.

Claim: |yZ| = n.

Assume (yZ)k ∈ CG(x)◦. Then [yk, x] = I. But since yZ ∈ C1, we have

[y, x] = λ.I. Here;

[yk, x] = y−kx−1ykx = y−k+1y−1x−1y(xx−1)yk−1x = y−k+1[y, x]x−1)yk−1x

= λ.I[yk−1, x].

Inductively, we deduce that [yk, x] = λk.I. But by assumption [yk, x] = 1.

Therefore, λk = 1, that is, k = n, so |yZ| = n.

Hence, there exist an element yZ ∈ CG(x)\CG(x)◦ such that |yZ| = n. Since

CG(x)◦ = T and CG(x) ≤ NG(T ), the element yZ induces an element w of order

n in NG(T )/T , namely the Weyl group.

Recall that since [xZ, yZ] = Z, the subgroup A = 〈xZ, yZ〉 is isomorphic to

Zn×Zn. Here, CT (yZ) = CCG(x)◦(yZ) is a subgroup of index at most n in CG(A).

Since the primes dividing n are torsion primes, A is not d-abelian (ρ = 2).

Our aim is to show that CT (yZ) has order n. Since yZ induces an element
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w ∈ W , we will consider CT (w). For simplicity, consider the maximal torus

T ′ = {



λ1

λ2

.

.

λn


Z :

n∏
k=1

λk = 1}.

The maximal tori T and T ′ are conjugate by an element h ∈ G. Now, w′ = wh ∈
NG(T ′)/T ′ is an element of order n in the Weyl group such that CT (w) ∼= CT ′(w

′).

Now, for s =



λ1

λ2

.

.

λn


Z ∈ CT ′(w′), we have

sw
′
= (



λ1

λ2

.

.

λn


Z)w

′
=



λ2

λ3

.

λn

λ1


Z.

Hence, λn = λ1z = λ2z
2 = . . . = λn−1z

n−1 for some z ∈ Z. So, for each z ∈ Z,

we have a unique element in CT ′(w
′), that is, |CT (w)| = |CT ′(w′)| = |Z| = n.

But CT (w) has index n in CG(A), so |CG(A)| ≤ n2. Since A = n2, we have

CG(A) = A.
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4.3 Centralizers of unipotent elements in simple

locally finite groups of classical Lie type in

odd characteristic

In this section, our aim is to obtain information about centralizers of unipotent

elements and answer the following question: If G is a simple locally finite group

of Lie type over an infinite locally finite field k of characteristic p and u ∈ G a

unipotent element, when does CG(u) contain infinitely many elements of distinct

prime orders?

By Remark 4.9, we deduced that when CG(u) contains a σ-invariant maximal

torus, then CG(u) contains infinitely many elements of distinct prime orders. So,

we need to analyse when CG(u) contains a non-trivial torus.

Recall that an element x of the simple linear algebraic group G is called

regular if dim(CG(x)) = rankG. By Proposition 2.36, the centralizers of regular

unipotents contain only central semisimple elements, we are interested in the cen-

tralizers of irregular unipotent elements in locally finite simple groups of classical

Lie type.

First, lets consider an example of an irregular unipotent element in a simple

linear algebraic group.

Example 4.12. Let G = SL(3, k) where chark = p and u2 =


1 1 0

0 1 0

0 0 1

. Then,

CG(u2) = {


a b c

0 a 0

0 d e

 : a, b, c, d, e ∈ k, a2e = 1}. Now, dimCG(u2) = 4 > 2 =

rank(G), hence, u2 is an irregular unipotent.

Observe that CG(u2) contains the subgroup

T = {


a 0 0

0 a 0

0 0 e

 : a, b, c, d, e ∈ k, a2e = 1}
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which is a torus.

The following theorem indicates that the unipotent classes of PSLn(k) is in

one-to-one correspondence with the unipotent classes of SLn(k).

Proposition 4.13. [5, Proposition 5.1.1] Let G be a connected reductive

linear algebraic group. The canonical epimorphism G −→ G/Z(G) restricts to

a bijective morphism from the unipotent variety of G to the unipotent variety

of G/Z(G) and induces a bijection between the unipotent classes of G and the

unipotent classes of G/Z(G).

Remark 4.14. Observe that for a periodic group G with a finite normal subgroup

N , the quotient group G/N contains infinitely many elements of distinct prime

orders if and only if G contains infinitely many elements of distinct prime orders.

Let π : SLn(k) −→ PSLn(k) be the canonical epimorphism. Let uZ be a

unipotent element in PSLn(k). By Proposition 4.13, there exists unique u ∈
SLn(k) such that π(u) = uZ. Now, if x ∈ CSLn(k)(u) then xZ ∈ CPSLn(k)(uZ).

Hence, π(CSLn(k)(u)) is a subgroup of CPSLn(k)(uZ). But

π(CSLn(k)(u)) ∼= CSLn(k)(u)/Z.

By Proposition 4.13, the conjugacy classes of unipotent elements in SLn(k) and

PSLn(k) are in one-to-one correspondence. Then, we may consider our unipotent

element as an element of SLn(k). Now, since the order of Z(SLn(k)) is bounded

by n, the centralizer of a unipotent element u in SLn(k) contains infinitely many

elements of distinct prime order if and only if the centralizer of uZ in PSLn(k)

contains infinitely many elements of distinct prime order. So, it is enough to

prove the result for CSLn(k)(u).

The following result will give us a useful characterization of irregular unipotent

elements in classical groups.

Lemma 4.15. [27, Lemma 1.2] Let G be a classical algebraic group over an

algebraically closed field of characteristic p and W be the underlying module of

G. Let d = dimW .
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1. If G = Al, Bl or Cl, then the regular unipotent elements in G have a unique

Jordan block on W .

2. If G = Dl and p is odd then the regular unipotent elements of G have two

Jordan blocks of size 1 and 2l − 1.

3. If G = Dl and p is even then the regular unipotent elements of G have two

Jordan blocks of size 2 and 2l − 2.

For the relation between d and l in various types of classical groups, see Table

2.1.

By Lemma 4.15, an irregular unipotent element of G must have at least 2

Jordan blocks.

We will prove the following result:

Lemma 4.16. Let G = SLn(k) or PSLn(k) where k is an infinite locally finite

field of characteristic p and u be an irregular unipotent element. Then CG(u)

contains infinitely many elements of distinct prime order.

Proof. By Remark 4.14, it is enough to prove for G = SLn(k). Let u be an irreg-

ular unipotent element in G. Clearly, u is contained in the corresponding linear

algebraic group G = SLn(k). Recall that, by Theorem 2.31, G =
⋃∞
i=1O

p′(Gσni )

for some Frobenius map σ on G and a sequence of natural numbers ni|ni+1. Since

G = SLn(k), the Frobenius map σ is standard. So, it remains to show that CG(u)

contains a non-trivial torus T . Since σ is standard, T is σ-invariant. Then, by

Corollary 4.10, CG(u) contains infinitely many elements of distinct prime order.

Let Ju =



J1

J2

.

.

.

.

Js



be the Jordan form of u with li × li

Jordan blocks Ji.
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Consider the torus

T2 = {



α1Il1

α2Il2

.

.

.

αsIls


:

s∏
i=1

αlii = 1}.

Since each αiIli commutes with the corresponding Jordan block Ji in GLli(k), the

subgroup T2 is contained in CG(u). Indeed T2 is a torus of dimension s− 1 in G.

Since the number of Jordan blocks of an irregular unipotent element in SLn(k)

is greater than 1, we have s− 1 > 0. Hence, CG(u) contains a non-trivial torus.

So, by Corollary 4.10, we conclude that CG(u) contains infinitely many elements

of distinct prime orders.

We will use Steinberg and Springer’s results on centralizers of unipotent ele-

ments in symplectic, orthogonal and unitary groups in odd characteristic.

Let k denote any field of odd characteristic and k be its algebraic closure.

We start with a finite dimensional vector space V over k of odd characteristic.

Let σ0 be an automorphism of k with σ2
0 = id. Let 〈 , 〉 be a non-degenerate

σ0-sesquilinear form on V × V . We assume that

〈x, y〉 = εσ0〈y, x〉

where ε2 = 1.

Theorem 4.17. [32, Springer-Steinberg, 2.19 ] Let X be a nilpotent element

in the Lie algebra g(k).

1. σ0 6= id. There exist vectors ei with 1 ≤ i ≤ s and integers di > 0 such that
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• Xdiei = 0 and Xaei with a < di and 1 ≤ i ≤ s form a k-basis for V ,

and,

• there exist non-zero elements ai ∈ k such that

〈Xaei, X
bej〉 = 0

if i 6= j or a+ b 6= di − 1,

〈Xaei, X
di−a−1ei〉 = (−1)aai.

2. σ0 = id. There exist vectors ei, fj, gj for 1 ≤ i ≤ s and 1 ≤ j ≤ t and

integers di, δj > 0 such that

• Xdiei = Xδjfj = Xδjgj = 0 and Xaeh, X
bfi, X

cgj for 0 ≤ a ≤ dk, 0 ≤
b ≤ δi, o ≤ c ≤ δj, 1 ≤ h ≤ s, 1 ≤ i, j ≤ t form a k-basis of V

• the value of 〈 , 〉 on a pair of these vectors is 0, except the following

ones:

〈Xaei, X
di−a−1ei〉 = (−1)aai

where ai ∈ k∗,

〈Xafj, X
δj−a−1gj〉 = ε〈Xδj−a−1gj, X

afj〉 = (−1)a

Remark 4.18. ([32, Springer-Steinberg, 2.22, 2.23, 2.25]) The algorithm to

find the centralizer of a unipotent element U in a simple linear algebraic group

G is as follows: We first consider the corresponding nilpotent element X in the

Lie algebra g. The Cayley transform X −→ (a −X)(a +X)−1 sends nilpotents

to the corresponding unipotent elements in G, where a ∈ k and σ0(a) = a−1.

By using the basis depending on the nilpotent element X in the Lie algebra g(k)

which is described in Theorem 4.17, we construct a torus S in G. Now, define a

k-homomorphism λ from the multiplicative group Gm to G as follows:

λ(x)Xaei = x1−di+2aXaei
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λ(x)Xbfj = x1−δj+2bXbfj

λ(x)Xbgj = x1−δj+2bXbgj

Here, λ(Gm) is a 1-dimensional k-torus in G0. Let Z = CG(X) and C = CZ(S).

Here C is the reductive part of CG(U), which has our particular interest. Denote

the k-rational points of C by C(k).

Theorem 4.19. ([32, Springer-Steinberg 2.25]) The structure of C(k) is

isomorphic to
d∏
i=1

Uhi
(k)

when G is a unitary group;

d∏
i=1, i odd

Spri(k)×
d∏

i=1, i even

O(hi, k)

where G is a symplectic group

d∏
i=1, i even

Spri(k)×
d∏

i=1, i odd

O(hi, k)

when G is an orthogonal group where rj denote the number of di and δi which are

equal to j.

For the details see [32, Springer-Steinberg, 2.22, 2.23, 2.25].

Theorem 4.20. ([29, Seitz, Proposition 3.6]) Let u be a unipotent element of

GL(V ). Write the decomposition of V under the action of u into Jordan blocks

V =
⊕
i

Vi =
⊕
i

(Ji)
ri

as each Vi is the sum of ri Jordan blocks of size i.

(i) A conjugate of u is contained in Sp(V ) iff ri is even whenever i is odd.

(ii) A conjugate of u is contained in O(V ) iff ri is even whenever i is even
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(iii) Two unipotent elements of Sp(V ) or O(V ) are conjugate iff they are conju-

gate in GL(V ).

The numbers di, θi, hi in Remark 4.18 correspond to the multiplicities of sizes

of Jordan blocks of u.

Definition 4.21. Let G be a simple locally finite group of classical type. A

unipotent element u is called a d−unipotent if:

( i) G is isomorphic to PSLn(k) and u is an irregular unipotent, or,

(ii) G is isomorphic to PSp2n(k), PSΩ2n+1(k) or PSUn(k) and the Jordan form

of u contains a repeated Jordan block of size i.

Remark 4.22. In particular, a regular unipotent element is necessarily not d-

unipotent. By [27, Lemma 1.2] a regular unipotent has a single Jordan block in

type Al, Bl and Cl and the sizes of Jordan blocks of a regular unipotent element

in type Dl is 1 and 2l − 1 in odd characteristic, which can not be equal. Hence,

in all cases, no size of Jordan blocks can be repeated.

Theorem 4.23. Let G be a simple locally finite group of classical Lie type and u

be a unipotent element in G. The following are equivalent:

1. u is d-unipotent

2. CG(u) contains infinitely many elements of distinct prime orders.

Proof. 1. First consider the case G = PSLn(k). Since for a periodic group

G with a finite normal subgroup N , the quotient group G/N contains in-

finitely many elements of distinct prime orders if and only if G contains

infinitely many elements of distinct prime orders, is enough to prove for

G = SLn(k). Let u be a d-unipotent element of SLn(k). Then it is an ir-

regular unipotent element. By Lemma 4.16, CG(u) contains infinitely many

elements of distinct prime orders.

Conversely, assume that CPSLn(k)(u) contains infinitely many elements of

distinct prime orders and u is not d-unipotent. But, in this case, since

G = PSLn(k), the element u must be a regular unipotent. Then all the
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semisimple elements of CG(u) are central. But Z(PSLn(k)) = 1, so it can

not contain infinitely many element, we get a contradiction.

2. Let G = PSp2n(k), PSΩ2n+1(k) or PSUn(k) and u be a d-unipotent. Then

the Jordan form of u contains a block size repeated at least twice. By

Theorem 4.19, the reductive part C(k) of CG(u) involves Sp2n(k) with n ≥
1, or O2n+1(k) with n ≥ 1 or Un(k) with n > 1. These groups all contain k-

tori when k is an infinite locally finite field. By Lemma 4.8, CG(u) contains

infinitely many elements of distinct prime orders.

Conversely, assume that CG(u) contains infinitely many elements of distinct

prime orders where G is a symplectic or orthogonal type simple group over

a locally finite field of odd characteristic. We know by Theorem 4.19 that if

u is not d-unipotent, then the reductive part of CG(u) is isomorphic to the

direct product of finitely many O1(k)’s, hence it is an elementary abelian 2-

group. Hence, if CG(u) contains infinitely many elements of distinct prime

orders then u must be d-unipotent. For unitary groups, if u is not a d-

unipotent, then by Theorem 4.19, the reductive part of the centralizer of

u is isomorphic to direct product of finitely many U1(k). Observe that

U1(k) = {x ∈ k : x.xα = 1} for some α ∈ Aut(k) with |α| = 2. Since a

quadratically closed field can not have an automorphism of order 2, unitary

groups over quadratically closed fields do not exist. Hence, we may regard

k as a vector space of dimension 2 over a subfield k0 of k where, k0 is the

fixed field of α.

We fix the basis {1, a} of k over k0. Write

k = k0 ∪ ak0.

Let x ∈ U1(k). Then x ∈ k with x.xα = 1. Now, if x ∈ k0, we have xα = x,

so x2 = 1. Therefore, in this case x = ±1.

If x /∈ k0, it is an element of ak0. Hence, there exists y ∈ k0 such that

x = ay. Now, 1 = x.xal = ayaαyα = (aaα)(yyα) = (aaα)y2 since y ∈ k0.

Then y−2 = aaα where a is the fixed basis element. Hence, y−1 is a root
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of the polynomial T 2 − aaα ∈ k[T ]. Therefore, |U1(k)| ≤ 4. So, if the

centralizer of a unipotent element in a unitary group contains infinitely

many elements of distinct prime orders, then it must be a d-unipotent.
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chapter 5

centralizers of finite

subgroups in non-linear simple

locally finite groups

In [14, Theorem A2], it is shown that in an infinite locally finite simple group,

the centralizer of every element is infinite. In this work we study the following

problem of Brian Hartley.

Question 5.1. Is the centralizer of every finite subgroup, in a simple non-linear

locally finite group infinite?

The counterpart of this question, whether the centralizer of every finite sub-

group in a simple non-linear locally finite group, involve an infinite non-linear

simple group is resolved negatively by Meierfrankenfeld in [23]. He proved in [23,

Corollary 7] that, for a given non-empty set Π of primes, there exists a non-linear,

locally finite simple group G such that

1. The centralizer of every non-trivial Π-element has a locally soluble Π-

subgroup of finite index.

2. There exists an element whose centralizer is a locally soluble Π-group.

In particular in the above groups there are elements whose centralizers can

not involve even finite non-abelian simple groups.

The stronger version of the Hartley’s question is the following:

Question 5.2. Determine all non-linear simple locally finite groups in which

centralizer of a finite subgroup has an abelian subgroup isomorphic to a direct

product of cyclic groups of order pi for infinitely many prime pi.
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By [19, Theorem 4.4], a non-linear simple locally finite group contains a count-

able non-linear locally finite simple group. Indeed, recall that by Remark 2.22,

we know that any finite subgroup of a simple locally finite group is contained in

a countable simple group. Hence, in this work, we may assume that the groups

we deal with are all countable.

Recall that, by Remark 2.29, if G is a countable non-linear simple locally

finite group then either G has a Kegel cover {(Gi, Ni) : i ∈ N} and Gi/Ni’s

are alternating groups or Gi/Ni are a fixed type classical groups with unbounded

rank parameters. We will prove our results for these two cases separately.

5.1 Centralizers in simple locally finite groups

with an alternating type Kegel cover

The following easy result may give idea about the method we will use in the

proofs of main results.

Theorem 5.3. Let Ω be an infinite set and G = Alt(Ω). Then, for any x ∈ G,

the centralizer CG(x) has an infinite abelian subgroup isomorphic to Dr∞i=1Zpi
,

where pi is the i-th prime and Zpi
is the cyclic group of order pi.

Proof. Let ∆ = supp(x). Since |∆| is finite, the set Ω\∆ is infinite. Hence,

Alt(Ω\∆) is an infinite alternating group contained in CG(x).

Since Ω\∆ is infinite, it has a countable subset T = {ti : i ∈ N}.
Now, let

α1 = (t1t2)(t3t4)

α2 = (t5t6t7)

α3 = (t8t9t10t11t12)

...

αi = (tλi−1+1 . . . tλi
)

where pi is the i-th prime and αi is a cycle of length pi. By construction, all

αj’s are mutually disjoint, hence they commute pairwise. Therefore, the group
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A = 〈αi : i ∈ N〉 is an abelian group and is isomorphic to Dr∞i=1Zpi
.

Countable non-linear locally finite groups which have a Kegel cover

{(Gi, Ni) : i ∈ N}

with Gi
∼= Alt(ni) and Ni = 1 for all i ∈ N need special attention.

Remark 5.4. Observe that the groups described in the next result Theorem 5.5

contains the class of simple groups constructed in [19, Chapter 6]. The direct

limits of alternating groups are contained in this class and there are 2ℵ0 non-

isomorphic simple locally finite groups of this type. For details, see [19, Chapter

6].

Theorem 5.5. Let G be a simple locally finite group which has a local system

consisting of alternating groups, that is,

G =
∞⋃
i=1

Alt(ni)

where Alt(ni) lies in Alt(ni+1).

Then for all finite F ≤ G, the centralizer CG(F ) has an infinite abelian sub-

group containing elements of order pi for any prime pi.

Proof. Let F ≤ G =
⋃∞
i=1Alt(ni). Clearly, this group need not be the finitary

alternating group since the embeddings need not be trivial.

We construct an infinite ascending sequence of finite subgroups Di such that

for every prime pi, Di has an element ρi of order pi and ρi ∈ CG(F ).

Let D0 = F . Assume that Di is already constructed. Then there exists ni ∈ N
such that Di ≤ Alt(ni) ≤ G. The subgroup Di is contained in Alt(ni+k) for every

k ≥ 1 and Di acts on the set Ωni+k
where |Ωni+k

| = ni+k. Since the number of

inequivalent transitive permutation representations of Di is equal to the number

of conjugacy classes of subgroups of Di, by choosing k sufficiently large, we may

assume that the orbits of Di on Ωni+k
can be written as

O1 ∪O2 ∪ . . . Opi+1
∪O′
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where each Oi gives equivalent transitive permutation representations of Di on

Ωni+k
. Now, let ρi+1 be the cycle (1 2 3 . . . pi+1) and let ρi+1 be the image of ρi+1

in Alt(ni+k) in the following way; the elements wj are fixed element in Oj cor-

responding to the stabilizer of a point which gives the equivalent representation.

Then for any c ∈ Di, we have

wj.cρi+1 = wj.ρi+1
.c

and ρi+1 fixes O′ elementwise.

Now, for any wj for j = 1, . . . pi+1 and for any x ∈ Di we have wj.(xρi+1) =

wj.ρi+1
= wj+1 and wj(ρi+1.x) = wj.ρi+1

.x = wj+1.x = wj+1. Hence, for any x ∈ Di

we have x.ρi+1 = ρi+1.x.

Let Di+1 = 〈F, ρ1, . . . , ρi+1〉 and Ai = 〈ρ1, . . . , ρi+1〉 where A0 = A1 = 1.

Then the union A =
⋃
Ai is the required abelian subgroup which is isomorphic

to Drpi
Zpi

for any prime pi.

Remark 5.6. This theorem works for embeddings or direct limits of alternating

groups. In particular, for Hall universal group and the groups constructed in [19,

Chapter 6].

Now, we will be able to prove the same result for a wider class of non-linear

simple locally finite groups with alternating Kegel factors.

Definition 5.7. A Kegel cover K = {(Gi, Ni) : i ∈ I} is called a split Kegel

cover if CGi/Ni
(KNi/Ni) = CGi

(K)Ni/Ni for every finite subgroup K of Gi.

In particular, observe that if (|Gi/Ni|, |Ni|) = 1, then the Kegel cover is a

split Kegel cover.

Corollary 5.8. Let G be a non-linear locally finite simple group with a split Kegel

cover K = {(Gi, Ni) | i ∈ N} and Gi/Ni is isomorphic to Alt(ni) for all i ∈ N. If

F is a finite subgroup of G, then CG(F ) contains an abelian subgroup isomorphic

to Drpi primeZpi
.
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Proof. We may assume that F ≤ G1 and let A0 = 1 and C0 = F. Then by

Theorem 5.5 there exists n1 such that CGn1/Nn1
(FNn1/Nn1) contains an ele-

ment of order p1. Now, K is a split Kegel cover, so, CGn1/Nn1
(FNn1/Nn1) =

CGn1
(F )Nn1/Nn1 . Hence, CGn1

(F ) contains an element of order p1.

Let C1 = 〈F, ρ1〉 and A1 = 〈ρ1〉 where ρ1 is an element of order p1 in CGn1
(F ).

C1 is a subgroup of Gn1 , and so there exists n2 such that CGn2/Nn2
(C1Nn2)/Nn2

contains an element of order p2. We have

CGn2/Nn2
(C1Nn2)/Nn2 = CGn2

(C1)Nn2/Nn2

since K is a split Kegel cover. Hence CGn2
(C1) contains an element ρ2 of order

p2. Let C2 = 〈C1, ρ2〉 and A2 = 〈ρ1, ρ2〉. Then C1 ≤ C2 ≤ C3 ≤ . . . and

A1 ≤ A2 ≤ A3 . . .. Then the union A =
⋃
Ai is the required abelian subgroup of

G which is isomorphic to Drpi primeZpi
.

5.2 Centralizers in simple locally finite groups

with a Kegel cover with Lie type factors

In this section we consider non-linear simple locally finite groups G whose

Kegel factors are finite simple groups of Lie type. By Remark 2.29, we know that

in this case G has a Kegel cover with all Gi/Ni’s are a fixed type classical group

with unbounded rank parameters.

We need a general notion of a K-semisimple element in a simple locally finite

group:

Definition 5.9. Let G be a non-linear simple locally finite group and

K = {(Gi, Ni) : i ∈ I}

be a Kegel cover for G. An element x in G is called K-semisimple if K is a

Kegel cover consisting of alternating groups or Gi/Ni is a finite simple group of

Lie type and xNi is a semisimple element of Gi/Ni for every i ∈ I.
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We will use the main idea of the following two results in the proof of the main

theorem:

Theorem 5.10. Let G = SLn(k), and

x =



a11 . . . a1s

...
...

as1 . . . ass

0

a11 . . . a1s

...
...

as1 . . . ass

0

.

.
...

a11 . . . a1s

...
...

as1 . . . ass

0 0 . . . 0 A′


be an element in G which contains m repeating blocks of size s. Then CG(x)

contains a subgroup isomorphic to SLm(k).

Proof. Let V be the natural module for G. Write

V = W1

⊕
W2

⊕
. . .
⊕

Wm

⊕
W ′

where each Wi is an 〈x〉-invariant submodule of dimension s and the action of 〈x〉
on Wi is equivalent, that is, if βi = {vi1, . . . , vis} is a basis for Wi, i = 1, 2, . . .m

then vijx = v1jx for all j.

Now, consider the linear transformation c̄ on W1

⊕
W2

⊕
. . .
⊕

Wm:

c̄ : W1

⊕
W2

⊕
. . .
⊕

Wm −→ W1

⊕
W2

⊕
. . .
⊕

Wm

vij −→ bi1v1j + bi2v2j + . . .+ bimvmj

on the direct sum of Wi’s for bij ∈ k.
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Now, c̄ =



b11Iss b12Iss . . . b1mIss

b21Iss b22Iss
... .

...

.

bm1Iss . . . bmmIss


A linear transformation which send vij to a linear combination of v1j, . . . vmj

defines a linear transformation of W1

⊕
W2

⊕
. . .
⊕

Wm.

Consider the invertible linear transformations obtained as c̄. Let

H = {



x11Iss x12Iss . . . x1mIss

x21Iss x22Iss
... .

...

.

xm1Iss . . . xmmIss


| xij ∈ k, det(xij) 6= 0}.

H is a subgroup in SLms(k).

It is easy to see that the map

ψ : H −→ GLm(k)

b11Iss b12Iss . . . b1mIss

b21Iss b22Iss
... .

...

.

bm1Iss . . . bmmIss


−→



b11 b12 . . . b1m

b21 b22
... .

...

.

bm1 . . . bmm


is a group isomorphism between the group of all invertible linear transformations

obtained as c̄ and GLm(k).

Hence, the group of all invertible linear transformations obtained as c̄ is iso-

morphic to GLm(k). One can see that for each element of ψ(c̄) ∈ GLm(k) we

can define a linear transformation c of V which acts on W1

⊕
W2

⊕
. . .
⊕

Wm

as linear transformations defined as above. We extend the action of c̄ from

W1

⊕
W2

⊕
. . .
⊕

Wm to V by assuming c̄ acts on W ′ trivially. We need to
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show that cx = xc. Here,

x =



A 0 0 . . . 0

A 0

.

.
...

A 0

0 0 . . . 0 A′



where A =


a11 . . . a1s

...
...

as1 . . . ass

. Observe that the linear transformation c̄ can be

written with respect to the ordered basis vij as

c =



b11Iss b12Iss . . . b1mIss 0

b21Iss b22Iss 0
... .

...
...

.

bm1Iss . . . bmmIss 0

0 0 . . . 0 IW ′


.

where Iss denotes the s× s identity block and IW ′ is the identity on W ′. Then

xc =



A 0 0 . . . 0

A 0

.

.
...

A 0

0 0 . . . 0 A′





b11Iss b12Iss . . . b1mIss 0

b21Iss b22Iss 0
... .

...
...

.

bm1Iss . . . bmmIss 0

0 0 . . . 0 IW ′


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=



b11A b12A . . . b1mA 0

b21A b22A b2mA 0
... .

...
...

.

bm1A bm2A . . . bmmA 0

0 0 . . . 0 A′


Similarly

cx =



b11Iss b12Iss . . . b1mIss 0

b21Iss b22Iss 0
... .

...
...

.

bm1Iss . . . bmmIss 0

0 0 . . . 0 IW ′





A 0 0 . . . 0

A 0

.
...

.

A 0

0 0 . . . 0 A′



=



b11A b12A . . . b1mA 0

b21A b22A b2mA 0
... .

...
...

.

bm1A bm2A . . . bmmA 0

0 0 . . . 0 A′


.

Hence, xc = cx.

The set of all invertible c defined as above give us GLm(k), if we choose the

linear transformations with determinant 1, we obtain SLm(k) ≤ CSLn(k).

Theorem 5.11. Let G = An−1(k) for some field k of characteristic p, and F be

a finite subgroup consisting of semisimple elements of G. If n > (r − 1)|F |2 + 1

then the centralizer of F in G contains a subgroup isomorphic to PSLr(k).

Proof. Let F be a finite subgroup consisting of semisimple in G = PSLn(k)

where k is a field of characteristic p. The vector space V of n× 1 column vectors

over the field k forms a natural module for k[SLn(k)]. Now, V as a k[SLn(k)]
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module is irreducible. Let v, w ∈ V . If {v, w} is not linearly independent, we have

w ∈ 〈v〉, that is, w = αv. If B1 = {v, v1, v2, . . . vn−1} be a basis for V , then v /∈
〈v1, . . . vn−1〉. Hence, w = αv /∈ 〈v1, . . . vn−1〉. Therefore, B2 = {w, v1, v2, . . . vn−1}
is also a basis for V . So, there exists g ∈ GLn(k) which sends v to w. In fact,

any element of the form g =

(
α 0

A

)
where A ∈ GLn−1(k) will send v to w,

hence we may choose detA = α−1 to have g ∈ SLn(k).
Now, we assume v and w are linearly independent. Since n > r|F |2 + 1, we

may assume that n > 2.

So, there exists u ∈ V \〈v, w〉, that is, {u, v} and {u,w} are linearly indepen-

dent. Now, there exists bases

β1 = {v, v1, v2, . . . , vk−2, u}

and

β2 = {w,w1, w2, . . . , wk−2, u}

for V . Since β1 and β2 are two bases, there exists an element g ∈ GLn(k) such

that which transforms β1 to β2, in particular g.v = w. By taking the last vector

λ.u instead of u in β2 we can arrange the determinant of the matrix g as 1,

that is, there exists g′ ∈ SLn(k) with g′.v = w. Hence, for any v 6= 0, we have

v.SLn(k) = V , so, V is an irreducible k[SLn(k)]-module.

Claim: Let L be the inverse image of F in SLn(k). An L−composition series

of V contains at most |F | isomorphism types of factors, each of dimension at

most |F |. This is proved in [11, Theorem B.c]. For the reader’s convenience, we

will give the proof in detail.

Indeed, since Z(SLn(k)) = Z consists of semisimple elements, L is a subgroup

of SLn(k) consisting of semisimple elements. We consider V as a k[L]-module.

Since L consists of semisimple elements, (p, |L|) = 1. By Maschke Theorem (see

[38, Corollary 1.6]), V is a completely reducible k[L]-module.

Since Z E SLn(k), by Clifford’s Theorem (see [38, Theorem 1.7]), V |Z is

a direct sum of irreducible k[Z]-modules each of dimension one, and V can be

written as a direct sum of homogeneous components.
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Since Z is the center of SLn(k), there exists only one homogeneous component.

Indeed, if V = W1

⊕
W2

⊕
. . .
⊕

Wk whereWi’s are homogeneous components of

V . Let Wi = Xi1

⊕
. . .
⊕

Xik where Xi1
∼= Xi2

∼= . . . ∼= Xik and each Xij, j =

1, 2, . . . , k is a one dimensional k[Z]-module.

Now, let g ∈ SLn(k). Then W g
i = Xg

i1 +Xg
i2 + . . .+Xg

ik.

Moreover, Xi1
∼= Xg

i1 as k[Z]-module.

Consider the map

θ : Xi1 −→ Xg
i1

v −→ vg.

Now,

θ(v1 + v2) = (v1 + v2)
g = vg1 + vg2 = θ(v1) + θ(v2)

and

θ(cv) = cvg = cθ(v).

For all z ∈ Z, since zg = gz, we have θ(vz) = (vz)g = (vg)z = θ(v)z Hence, θ

is a k[Z]-module isomorphism as Xi1 is irreducible.

Now, Xg
i1 ≤ Wi implies W g

i = Wi. Hence, there exists only one homogeneous

component and V |Z is a direct sum of a unique k[Z]-module W .

Let X be an irreducible k[L]-module. Then X|Z is a direct sum of irreducible

modules isomorphic to W . Hence, HomZ(XZ ,W ) 6= 0. Here, Z ≤ L and W is a

k[Z]-module. Let WL be the induced k[L]-module.

Now, by Nakayama’s Frobenius Reciprocity Theorem (see [16, V.16.6]), we

have HomL(X,WL) 6= 0. From this, it follows that X can be embedded into

WL. The number of irreducible k[L]-modules is less than or equal to the number

of irreducible modules in WL. Since W is unique, the number of irreducible

modules is less than or equal to the dimension of WL. But dim(WL) = |F |.
Hence, the number of distinct irreducible k[L]-modules is less than or equal to

|F | and the dimension of each irreducible k[L]-module is less than or equal to

|F |. This completes the proof of the claim, that is, an L-composition series of V

contains at most |F | isomorphism types of factors, each of dimension at most |F |
([11, Theorem B.c]).
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Therefore, if n > (r−1)|F |2+1 then at least one of the irreducible components

of L repeats r-times. Choosing the basis of V suitably we may say that at least r

blocks repeats in all elements of L and the elements which permute these blocks

generate a subgroup isomorphic to SLr(k) which is contained in CSLn(k)(L) by

the argument in Lemma 5.10. Therefore,

PSLr(k) ≤ SLr(k)Z/Z ≤ CPSLn(k)(F ).

The following consequence of Theorem 5.11 shows that if F is a finite subgroup

consisting of semisimple elements in PSLn(k) where n is sufficiently large, then

CG(F ) contains infinitely many elements of distinct prime order.

Corollary 5.12. Let G = An−1(k) over an infinite locally finite field k of char-

acteristic p, and F be a finite subgroup consisting of semisimple elements of G.

If n > |F |2 + 1 then the centralizer of F in G has an infinite abelian subgroup A

isomorphic to Drpi
Zpi

for infinitely many prime pi.

Remark 5.13. Observe that in Corollary 5.12, F need not be d-abelian. In

fact, it can even be non-abelian. We know that centralizers of finite d-abelian

subgroups contain a maximal torus of G. But here, even when F is not abelian,

but the rank is big enough, we can say that CG(F ) contains infinitely many

elements of distinct prime orders, but they are not necessarily contained in an

abelian subgroup.

Proof. (Proof of Corollary 5.12) Let G = An−1(k) over an infinite locally fi-

nite field k of characteristic p, and F be a finite subgroup consisting of semisimple

elements of G with n > |F |2 + 1. Write k as a union of finite fields Fpki where

ki|ki+1. We know by Theorem 2.31 that G =
⋃∞
i=1Gi where Gi

∼= PSLn(p
ki).

Since n > |F |2 + 1, by Theorem 5.11, CPSLn(pki )(F ) contains a subgroup isomor-

phic to Hi
∼= PSL2(p

ki). Then, since CG(F ) =
⋃∞
i=1CGi

(F ), for every i, the

centralizer CGi
(F ) contains a subgroup Hi isomorphic to PSL2(p

ki). The order

of PSL2(qi) is equal to
qi(q

2
i−1)

(2,qi−1)
for qi = pki .
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So, |Hi| and |CGi
(F )| are divisible by p2ki−1

2,p−1
. Since ki|ki+1, we have (p2ki − 1)

divides (p2ki+1 − 1). By Theorem 2.46, for each i there exists a prime qi which

divides (p2ki − 1) but does not divide pm − 1 if m < 2ki. Then for each Hi

contains an element xi of prime order qi, which is not contained in Hi−1. Then

the subgroup H = 〈xi | i ∈ N〉 is isomorphic to Drpi
Zpi

for infinitely many prime

pi and H ≤ CG(F ).

Now, we will prove the analogue of Theorem 5.5 for non-linear simple locally

finite groups with a local system consisting of classical groups with unbounded

rank.

Theorem 5.14. Let G be a non-linear simple locally finite group which has a

local system K = {Gi : i ∈ N} consisting of classical groups. Then for any finite

subgroup F consisting of K-semisimple elements in G , the centralizer CG(F ) has

an infinite abelian subgroup A isomorphic to Drpi
Zpi

for infinitely many prime

pi.

Proof. Since G is non-linear, the rank parameter of the groups in K is unbounded.

So, all the groups in K are of classical type. By Remark 2.29, Gi’s are of the

same fixed classical type, and the rank parameter is increasing.

For the characteristic of the fields where Gi is defined we have the following:

If the number of primes which appear as characteristic is finite, say q1, q2, . . . qn,

then let Jk = {Gi ∈ K : Gi is defined over a field of characteristic qk}.
Here, K = J1 ∪ J2 ∪ . . .∪ Jn, so at least one of the Jk’s is infinite. So, we may

assume that there exists a prime p such that all the Gi is defined over a fixed

prime p.

If infinitely many primes occur as characteristic, we may delete the repeating

ones and assume that each Gi is defined over different characteristic.

Hence, we have two cases:

1. All the groups in the local system is defined over a field of characteristic p

for a fixed prime p.

2. All the groups are defined over different characteristic.
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Case 1 for groups with a local system consisting of groups of type Al:

Here, Gi’s are PSLni
(k), where ni’s are increasing. Let F be a finite subgroup

of G consisting of K-semisimple elements. Then, by definition, F consists of

semisimple elements of Gi. If necessary, by deleting finitely many terms of the

local system, we may assume that F ≤ G1 that is, F ≤ Gi = PSLni
(ki) for all

i. We will construct an abelian subgroup A ≤ CG(F ) such that A is isomorphic

to the direct product of cyclic subgroups of order pi for infinitely many distinct

primes pi. For this, we start T0 = F . We work as in Theorem 5.11. Since F

consists of semisimple elements of PSLni
(ki), the inverse image of F in SLni

(ki)

also consists of semisimple elements where ki is a field of characteristic p for all

i, that is, (|F |, p) = 1. Let Γ = {p1 = 2, p2 = 3, p3 = 5 . . .} be the set of all

primes except p the characteristic of k, ordered by the usual order in N. By

Theorem 5.11, by choosing n1 > (p1 − 1)|F |2 + 1, we find a subgroup isomorphic

to PSLp1(k) which is contained in CPSLn1 (k)(F ). Then, let x1 be an element in

PSLp1(k) with order p1. We know that PSLn(k) contains an element of order n

by Lemma 4.11. Then, let g1 be an element in PSLp1(k) with order p1. Now, let

T1 = 〈g1, F 〉 and A1 = 〈g1〉. Here, since g1 and the elements of F commute and

〈g1〉 ∩ F = 1, we have T1 = 〈g1〉 × F . Therefore, since p1 and |F | are relatively

prime with p, T1 consists of semisimple elements in G2 = PSLn2(k). Now, apply

the same argument, that is, choose n2 > (p2−1)|T1|2 +1 = (p2−1)p2
1|F 2|+1, and

by Theorem 5.11, we obtain a subgroup isomorphic to PSLp2(k) in CG2(T1) =

CPSLn2 (k)(T1). We take an element g2 of order p2 in PSLp2(k) and T2 = 〈g2, 〉T1.

Denote 〈g1, g2〉 by A2.

Assume Ti−1 is already constructed. If we choose ni > (pi − 1)|Ti−1|2 + 1,

we can find a subgroup isomorphic to PSLpi
(k) in CGi

(T1−1) = CPSLni (k)
(Ti−1).

We take an element gi of order pi in PSLpi
(k) and Ti = 〈gi, 〉Ti−1 consists of

semisimple elements of Gi+1.

Continuing like this we obtain the chains of groups

T0 ≤ T1 ≤ T2 ≤ . . . and A1 ≤ A2 ≤ . . . .

Here, Ai is the abelian subgroup generated by {g1, . . . gi} which commutes with

F . Now, A =
⋃∞
i=1Ai is an infinite abelian subgroup contained in CG(F ) such
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that A ∼= Drpi∈ΓZpi
where Γ is the set of all primes except p = chark.

Case 2 for groups with a local system consisting of groups of type

Al: In this case infinitely many distinct primes occur as characteristics of the

fields ki’s where Gi = PSLni
(ki). In this case, every element is K-semisimple, so

every finite subgroup F consists of K-semisimple elements. Indeed, if F is a finite

subgroup of G, since the number of primes dividing |F | is finite, we may delete

the terms of the local system K in which the characteristic of the field divides |F |
and assume that F consists of semisimple elements of Gi for every Gi ∈ K. Then

we may assume that Gi
∼= PSLni

(qi) where qi 6= qj for all j ∈ N and (|F |, qi) = 1.

Let as before F = T0. Assume Ti−1 is already constructed. Here, if we

choose ni > |Ti−1|2 + 1, we can find a subgroup isomorphic to PSL2(ki) in

CGi
(Ti−1) = CPSLni (ki)(Ti−1) where charki = qi. Since qi divides |PSL2(qi)|, by

Cauchy Theorem, there exists an element gi of order qi in CGni
(Ti−1) ≤ CGni

(F ).

We take an element gi of order qi in PSLqi(k) and Ti = 〈gi, Ti−1〉 consists of

semisimple elements of Gi+1.

Again, continuing like this, we obtain the chains of groups

T0 ≤ T1 ≤ T2 ≤ . . . and A1 ≤ A2 ≤ . . . .

Here, Ai is the abelian subgroup generated by {g1, . . . gi} which commutes with F .

Now, A =
⋃∞
i=1Ai is an infinite abelian subgroup contained in CG(F ) such that

A ∼= DrqiZqi where the infinitely many distinct primes qi’s are the characteristics

of ki.

Case 1 for groups with a local system consisting of groups of type

Bl, Cl, Dl,
2Al,

2Dl:

In this case, for all Gi in the local system K, the characteristic of the field

over which Gi is defined is p. We will use the result [11, Theorem B.e]: Let F

be a finite subgroup of G which consists of semisimple elements of G, let L be

the inverse image of F in the universal central extension of G, that is, L/Z = F

where Z is the center of the universal central extension of G. Let m be the rank

of G over the field k. Let r be an arbitrary positive integer. By [11, Theorem

B.e], if m ≥ 2r|F |3 + 4|F |, the natural module V contains an k[L]-module U

which is direct sum of r isomorphic simple k[L]-modules and is totally isotropic
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(resp. totally singular).

Let U = U1

⊕
U2

⊕
. . .
⊕

Ur where Ui’s are copies of a single k[L]-module

and U is totally isotropic or totally singular subspace of V . Since L consists of

semisimple elements of the group G, by Maschke Theorem (see [38, Corollary

1.6]), V is a completely reducible k[L]-module.

If u1 ∈ U⊥, u ∈ U and g ∈ L then (u1.g, u) = (u1, u.g
−1) = 0 as U is an

k[L]-module and u1 ∈ U⊥. Hence, u1.g ∈ U⊥. Therefore, U⊥ is an k[L]-module.

Then U⊥ = U
⊕

W where W is another k[L]-module. Observe that the form

on V induces a non-degenerate form on U⊥/U . By decomposition on U⊥ we see

that the form induced on W is non-degenerate.

Since each Ui is an irreducible k[L]-module, we have dimUi ≤ |F |, hence

dimU ≤ |F |r. Then dim(U⊥/U) = dimU⊥ − dimU = dimV − 2 dimU = m −
2 dimU . In particular, if m is sufficiently large, we have dim(U⊥/U) is sufficiently

large, that is, dimW is sufficiently large. Let W = W1

⊕
W2

⊕
. . .
⊕

Wt.

Then we write V = U
⊕

W1

⊕
W2

⊕
. . .
⊕

Wt

⊕
Y where Wi’s are irre-

ducible k[L]-modules and U⊥ = U
⊕

W1

⊕
W2

⊕
. . .
⊕

Wt = U
⊕

W . Also,

Y is a direct sum of irreducible k[L]-modules.

Since Ui’s are isomorphic irreducible k[L]-modules, for each i we may find

a basis βi = {ui1, . . . , uik} for Ui and the action of each element g ∈ L to the

elements of the basis gives the same matrix representation, that is, if ui1.g =∑k
s=1 aisuis then uj1.g =

∑k
s=1 aisujs. As before in Theorem 5.11, we obtain for

each g ∈ L the matrix representation is the copies of the same matrix repeated r

times in the first r component.

Now, define the linear transformations on U which are induced from the action

on SLr(k) to U in the following way. The elements of SLr(k) acts on the block

as we done before in Theorem 5.11,

U −→ U1

⊕
. . .
⊕

Ur

ωi −→
r∑
i=1

λiωi

where ωi = (ui1, . . . , uik).

Extend the action on U and observe that the action of SLr(k) to U is by
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isometries of U as U is a totally isotropic (resp. totally singular) subspace of V .

We may extend this action on U⊥ by acting trivially on Wi. This action is also an

action by isometries: Indeed, if we take an element g ∈ SLr(k) and u1, u2 ∈ U⊥

then u1 = v1 + w1 and u2 = v2 + w2 where u1, u2 ∈ U and w1, w2 ∈ Wi’s.

Then

(u1, u2) = (v1 + w1, v2 + w2)

= (v1, v2) + (v1, w2) + (w1, v2) + (w1, w2) = (w1, w2)

since (v1, v2), (v1, w2), (w1, v2) are 0. Similarly,

(u1g, u2g) = ((v1 + w1)g, (v2 + w2)g)

= (v1g, v2g) + (v1g, w2g) + (w1g, v2g) + (w1g, w2g)

= (w1, w2).

Hence, SLr(k) act by isometries of U⊥. Now, by Witt Extension Theorem we

may extend the isometries of U⊥ to isometries of V .

As in the proof of [11, Theorem B.f], let C∗ = NT (U) ∩ CT (W ). Let D1 =

CC∗(U). Now, D1 acts trivially on V/U⊥ = Y, U⊥/U = W and U . Hence D1 = 1

and C = SLr(k) is in the centralizer of L. Hence C/Z ∼= SLr(k)/Z ≤ CG(F ).

Now, for Case 1, since the characteristics of the fields where Gi is defined is

a fixed prime p, let Γ be the set of all primes except p. Let F = T0. If n1 ≥
2(p1−1)|F |3 +4|F |, by the above argument, we can find SLp1(k) in CG(F ). Take

an element g1 of order p1 and let T1 = 〈F, g1〉. Assume Ti−1 is already constructed.

If we choose ni ≥ (pi − 1)|Ti−1|3 + 4|Ti−1|, we can embed SLpi
(k) ≤ CGi

(Ti−1)

and take an element gi of order pi in SLpi
(k). Then Ti = 〈gi, Ti−1〉 consists of

semisimple elements of Gi+1 and the proof follows as in type Al. The required

subgroup A = ∪∞i=1Ai where Ai = 〈g1, . . . gi〉.
Case 1 for groups with a local system consisting of groups of type

Bl, Cl, Dl,
2Al,

2Dl: For Case 2, that is, if the characteristic of the field is a differ-

ent prime pi for each Gi, then we observed that every subgroup is K-semisimple.

Let Γ = {qi : i ∈ N} be the set of all primes which does not divide |F |.
We take F = T0 and choose n1 ≥ 2(q1 − 1)|F |3 + 4|F | to find SLq1(k1) in
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CG1(F ). By the same argument in Case 1, we construct Ti’s and Ai’s. Here,

A =
⋃
i∈NAi

∼= Drqi∈ΓZqi is the required subgroup of CG(F ).

Now, we are able to prove the same result with non-linear simple locally finite

groups with a split Kegel cover.

Corollary 5.15. Let G be a non-linear simple locally finite group with a split

Kegel cover K = {(Gi, Ni) | i ∈ N} consisting of simple groups of Lie type.

Then for any subgroup F consisting of K-semisimple elements, the centralizer

CG(F ) has an infinite abelian subgroup A isomorphic to Drpi
Zpi

for infinitely

many prime pi.

Proof. We may assume that F ≤ G1 and let A0 = 1 and C0 = F. Then by The-

orem 5.14 there exists n1 such that CGn1/Nn1
(FNn1/Nn1) contains an element of

order p1. Since K is a split Kegel cover, CGn1/Nn1
(FNn1/Nn1) = CGn1

(F )Nn1/Nn1 .

So, CGn1
(F ) contains an element of order p1. Let C1 = 〈F, ρ1〉 and A1 = 〈ρ1〉

where ρ1 is an element of order p1 in CGn1
(F ). C1 is a subgroup of Gn1 , and so

there exists n2 such that CGn2/Nn2
(C1Nn2)/Nn2 contains an element of order p2.

We have

CGn2/Nn2
(C1Nn2)/Nn2 = CGn2

(C1)Nn2/Nn2

since K is a split Kegel cover. Hence CGn2
(C1) contains an element ρ2 of order

p2. Let C1 = 〈F, ρ1〉 and A1 = 〈ρ1〉 where ρ1 is an element of order p1 in

CG(F ). Let C2 = 〈C1, ρ2〉 and A2 = 〈ρ1, ρ2〉. Then C1 ≤ C2 ≤ C3 ≤ . . . and

A1 ≤ A2 ≤ A3 . . .. Then the union A =
⋃
Ai is the required abelian subgroup of

G which is isomorphic to Drpi primeZpi
.

Remark 5.16. Observe that the “split Kegel cover” assumption is necessary

as the groups constructed by Meierfrankenfeld in [23] are non-linear locally finite

simple groups but there are elements whose centralizer is a p-group for some fixed

prime p.

By Corollary 5.8 and Corollary 5.15 we reach conclusion of the thesis:
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Theorem 5.17. Let G be a non-linear simple locally finite group with a split Kegel

cover K and F be a finite subgroup consisting of K-semisimple elements. Then

CG(F ) has an infinite abelian subgroup A isomorphic to Drpi
Zpi

for infinitely

many prime pi.

Remark 5.18. Hall-Kulatilaka Theorem says that in an infinite locally finite

group, there are infinite abelian subgroups. (See [9]). Here we prove that in a non-

linear locally finite simple group which has a “nice” Kegel cover, the centralizers

of finite subgroups have abelian subgroups with elements of order pi for infinitely

many primes.
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[14] B. Hartley, M. Kuzucuoǧlu, “Centralizers of Elements in Locally Finite Sim-

ple Groups”, Proc. London Math. Soc. 62 (1991), 301-324.

[15] B. Hartley, G. Shute, “Monomorphisms and Direct Limits of Finite Groups

of Lie type”, Quart. J. Math. Oxford (2) 35 (1984). 49-71

[16] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1973.

[17] J. Humphreys, Linear algebraic groups, Springer-Verlag New York, 1975.

[18] W.M. Kantor, A.Seress, “Prime Power Graphs for Groups of Lie type”, J.

Algebra, 247, 370-434 (2002).

[19] O.H. Kegel, B.A.F. Wehrfritz, Locally Finite Groups, North-Holland Pub-

lishing Company, 1973.

[20] O.H. Kegel, B.A.F. Wehrfritz, “Strong finiteness conditions in locally finite

groups”, Math. Z. 117 (1970) 309-324.
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