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ABSTRACT

PRICING DEFAULT AND PREPAYMENT RISKS OF FIXED-RATE MORTGAGES IN
TURKEY: AN APPLICATION OF EXPLICIT FINITE DIFFERENCE METHOD

Cetinkaya, Ozgenay
M.S., Department of Financial Mathematics

Supervisor : Assist. Prof. Dr. Isil Erol

July 2009, 113 pages

The mortgage system has been used for many years in many countries of the world. Although
the system has undergone many changes over the passing years, the basics remain the same.
So, it can be thought that the earlier systems form the basis of today’s mortgage system even
though it represents some differences in practice among the countries. However, this system
is very new for Turkish financial market as compared with developed countries. The aim of
this study is estimating the default and prepayment risk of mortgage contract and pricing the

contract in emerging markets like Turkey.

In this study, a classical option pricing technique based on Cox, Ingersoll and Ross [8] is used
in order to evaluate Turkish fixed-rate mortgages. In this methodology, the spot interest rate
and the house price are used as state variables and it is assumed that the termination decision
of mortgage is driven by a economic rationale. Under this framework, the model evaluates the
embedded options, namely prepayment and default options, and the future payments which
corresponds to the mortgage monthly payments. Another aim of this study is the pricing

of mortgage insurance policy which has not been used yet in Turkish mortgage market but

v



thought as potential derivative in this market. Therefore, the model used in the study also

provides values for mortgage insurance policy.

The partial differential equation which is derived for the mortgage, its components and mort-
gage insurance policy does not have closed form solutions. To cope with this problem, an
explicit finite difference method is used to solve the partial differential equation. Numerical
results for the value of mortgage-related assets are determined under different economic sce-
narios. Results obtained in the basic economic scenario show that Turkish banks apply lower
contract rates as compared with the optimal ones. This observation indicates that the primary
mortgage market in Turkey is still in its infancy stage. Numerical results also suggest that it
is beneficial for the lenders to have mortgage default insurance, especially for the high LTV

ratio mortgages.

Keywords: FRMs, Default Option, Prepayment Option, Turkish Mortgage Market, Explicit

Finite Difference Method
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TURKIYE’DE SABIT FAIZLI MORTGAGE KONTRATLARININ GERi ODEMEME VE
ERKEN ODEME OPSIYONLARININ FIYATLANDIRILMASI: ACIK SONLU
FARKLAR YONTEMI UYGULAMASI

Cetinkaya, Ozgenay
Yiiksek Lisans, Finansal Matematik Bolimii

Tez Yoneticisi : Yrd. Dog. Dr. Isil Erol

Temmuz 2009, 113 sayfa

Mortgage sistemi diinyanin bir¢ok iilkesinde uzun yillardan beri uygulanmaktadir. Her ne
kadar sistem gecen yillar icerisinde bircok degisiklige ugramis olsada, sistemin temelleri ayni
kalmigtir. Dolayisiyla, uygulama acisindan iilkeler arasinda farkliliklar goriilsede, gecmiste
uygulanan sistemler giiniimiiz mortgage sisteminin temelini olusturmaktadir. Ancak bu sis-
temin Tiirk finans piyasasi icerisinde yerini almasi diger gelismis iilkelere kiyasla ¢ok yeni-
dir. Bu calismanin temel amaci sabit faizli mortgage kredilerinin Tiirkiye gibi enflasyonist
ortamlarda geri 6denmeme ve vadesiden once 6denme risklerinin hesaplanmasi ve kredilerin

degerlerinin belirlenmesidir.

Bu calismada Tiirkiye’deki sabit faiz oranli mortgage kontratlarinin fiyatlamasinda Cox, In-
gersoll ve Ross [8]’un caligmasini baz alan klasik opsiyon fiyatlama teknigi kullanilmaktadir.
Model icerisinde faiz oranlar1 ve ev fiyatlari temel degiskenler olarak ele alinmig ve mo-
delleme, mortgage kontratinin sonlandirma kararinin ekonomik gerekceler nedeniyle alindig:
varsayimi altinda yapilmistir. Bu gercevede olusturulan model erken 6deme ve geri denmeme

opsiyonlart ile ileri tarihli 6demeleri hesaplamaktadir. Bu calismamin bir diger amaci da
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Tiirkiye mortgage piyasasinda heniiz yerini almayan ancak potansiyel tiirev iiriinii olarak

diisiiniilen mortgage sigorta kontratlarinin fiyatlandirilmasidir.

Mortgage, mortgage bilesenlerini ve mortgage sigorta kontratlarin1 hesaplamak amaciyla olug-
turulmus kismi diferansiyel denklemin kapali form c¢oziimleri bulunmamaktadir. Bu prob-
lemin {iistesinden gelebilmek amaciyla, kismi diferansiyel denklem c¢oziimiinde acik sonlu
farklar metodu uygulanmaktadir. Mortgage bagimli varliklar i¢in niimerik sonuglar farkli
ekonomik senaryolar altinda elde edilmistir. Temel ekonomik senaryo varsayimi altinda elde
edilen sonuglar, Tiirk bankalarinin mortgage kredilerinde olmasi gerekenden daha diigiik faiz
orant uyguladigini gostermektedir. Bu gozlem {ilkemizdeki birincil mortgage piyasasinin
heniiz baglangi¢ agsamasinda oldugunun da bir gostergesidir. Niimerik sonuclar ayn1 zamanda
mortgage sigorta poligesinin 6zellikle yiiksek LTV rasyolarinin uygulandigi durumlarda kredi

veren tarafa yarar sagladigini da gostermektedir.

Anahtar Kelimeler: Sabit Faiz Oranli Mortgage Kredileri, Geri Odenmeme Opsiyonu, Erken

Odeme Opsiyonu, Tiirkiye Mortgage Piyasasi, A¢ik Sonlu Farklar Yontemi
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CHAPTER 1

INTRODUCTION

1.1 An Overview to the Mortgage Markets

1.1.1 Mortgage Markets in Developed Economies

It is known that the mortgage system has been used for many years in many countries of the
world. Although the system has undergone many changes over the passing years, the basics
remain the same. So, it can be thought that the earlier systems form the basis of today’s

mortgage system even though it represents some differences in practice among the countries.

Today, in most developed economies, especially in the US and UK economies, the mortgage
market is an important component of the capital markets. In the academic literature, there are
many researchers sustaining this implication. The study of Warnock V. and Warnock F. [41]
shows that the average mortgage debt-to-GDP ratio for the 2001-2005 period is 67.4 percent

for the US economy and 66.6 percent for UK economy.

Jaffee and Renauld [25] state that mortgage development is likely to be a key factor in overall
financial market development since an efficient mortgage market acts as a positive externality
for other capital markets, creating pressure for higher efficiency in these markets. Actually,
this explains why the mortgage market has an important role among the capital markets in

developed economies.

In the United States, the development of mortgage market began in early 1900s. Before the
Great Depression, residential mortgages in the United States were available only for a short
term and featured bullet payments of principal at term. However, during the Great Depression,

the value of the properties declined and consequently borrowers defaulted [21]. So, it can



be said that lenders had no money to lend and borrowers had no money to pay during the
Great Depression. At this point, the federal government had to intervene the housing finance
market. For this purpose, the Home Owner’s Loan Corporation (HOLC) was established in
1933. Subsequently, the Federal Housing Administration (FHA) and the Federal National
Mortgage Association (Fannie Mae) were created in 1936 and 1938 respectively. While the
purpose of FHA was to insure the lenders against defaulting borrowers, the mission of Fannie
Mae was to provide liquidity and stability to the US housing and mortgage markets. In 1970,
the Federal Home Loan Mortgage Corporation (Freddie Mac) was created to provide more

funds for the growth mortgage market.

The United Kingdom mortgage market is one of the biggest mortgage markets in Europe
and it offers a wide choice of mortgage products to borrowers. According to Douetil [14],
between the mid-1970s and 1990, approximately 75 percent of all UK mortgages were on the
endowment basis. In the endowment mortgage, borrower pays interest on the loan but the
principal is repaid at the end of the mortgage. Moreover, Miles [35] states that at December
2003, the fixed rate mortgages accounted for 25 percent of the total mortgage loan in UK

while the variable rate mortgages accounted for 35 percent.

With the growth in mortgage markets in 1980s, the secondary mortgage markets (SMMs)
began to play an important role in developed economies. In SMMs, residential mortgages are
sold by their originators to the financial investors. Therefore, SMM system provides more
liquidity to the mortgage lenders. In the United States, the SMM is dominated by the federal
agencies. These are Federal National Mortgage Association (Fannie Mae), Federal Home
Loan Mortgage Corporation (Freddie Mac) and Government National Mortgage Association
(Ginnie Mae). However, SMM also includes private companies which buy mortgages from

the originators.

SMM systems have many different forms changing according to type of instrument and in-
vestors. Mortgage securitization is one of the most common form for the SMM. Jaffee and
Renaud [24] give the definition of the mortgage securitization as the aggregation of individual
mortgages into a security format, thus allowing mortgage assets to be sold more efficiently
to capital market investors. By that aggregation, the risk on the individual loan is reduced.
Mortgage securitization has a dominant role in the United States mortgage markets. However,

this system is not preferred so much in the European markets like in the US markets.



1.1.2 Mortgage Markets in Emerging Economies

In both developed and emerging economies, the mortgage lenders are faced with different
kinds of risks. Credit risk, interest rate risk and liquidity risk are the most important ones.
However, these risks are more acute in emerging economies as compared with developed
economies because of the volatile inflation and some political approaches which control the
interest rates. For this reason, the development of mortgage systems in emerging economies

is slow and inadequate.

Jaffee and Renauld [25] state that credit risk in other words default risk is usually measured by
loan to value ratio (the ratio of the loan amount to the property value) and payment to income
ratio (the ratio of annual mortgage payment to the borrower’s annual income). Low loan to
value ratios decrease the credit risk since the lender can recover the principal by selling the
property in the case of default. However, property rights and foreclosure procedures are not
well specified in emerging economies. Furthermore, estimation of property value is difficult
in an inflationary environment. They also state that in most developed countries, the average
income to property value ratio ranges from 1/4 to 1/3 while in most emerging economies this
ratio tends to be 1/10 or lower. This indicates that mortgage loans are more risky in emerging

economies rather than developed economies.

Interest rate risk is another type of risk which lenders faced with. In developed economies,
interest rate risk can be eliminated by using other financial instruments. However, transactions
have a high cost. Therefore, the adjustable rate mortgages are alternatively used to eliminate
the interest rate risk. In emerging economies, the capital markets are not sufficient to eliminate
whole risk and using the adjustable rate mortgages is more risky since the probability of
default is higher. Moreover, high and more volatile real interest rates in emerging economies

tend to increase the credit risk on adjustable rate mortgages.

The depositors in emerging economies are likely to value of liquidity. If the depositors with-
draw their funds at the same time, the banks have to sell their assets at a discount to finance
the deposit outflows. Government securities are good assets for this purpose, since they are
traded in active and liquid markets. However, mortgages do not have short term maturities
and they do not easily traded in SMMs. Furthermore, mortgage lenders incur a liquidity risk

because of maturity mismatch between the funding sources and the mortgage loans. As is



known, the funding sources generally have short maturities while the mortgage loans have

significantly long maturities.

In conclusion, housing is a major purchase requiring long-term financing, and the factors
that are associated with well-functioning housing finance systems are those that enable the
provision of long-term finance. Across all countries, countries with stronger legal rights for
borrowers and lenders, deeper credit information systems, and a more stable macroeconomic
environment have deeper housing finance system. These same factors also help explain the

variation in housing finance across emerging economies [41].

1.2 Turkish Mortgage Market

In Turkey, the housing credit sector began to develop in late 1990s. Basically, high inflation
risk, economic uncertainty and the lack of a well-organized and deep enough mortgage market
in Turkey have slowed down the growth of this sector since long term crediting under these
conditions are very risky. However,in resent years, this sector has made up of about 10 percent
of the country’s Gross National Product (GNP), which has grown to 539.9 Billion TRY (US$
381 Billion) in 2006. One of the reasons for this significant increase is the economic recovery

in Turkish economy.

In fact, the inflation rate in Turkey has stabilized within a band of 15-20 within the last few
years. The economy has been growing by around 6 per cent a year for the last five years, which
is faster than many developed economies and most emerging markets. These recent improve-
ments in Turkish economy enabled the Turkish finance sector to offer long-term funding at
relatively cheap prices. According to the Banks Association of Turkey, mortgages represented
only 7.64 per cent of the overall loan portfolio in 2003, whereas today mortgages have a share

of 29.5 per cent.

The development of the mortgage system required new adjustments in Turkish housing fi-
nance system. For this purpose, the new housing finance system was created and carried into
effect at 6 March 2007. The most important property of the new system is that it allows to cre-
ate the secondary mortgage markets. By this way, banks and other financial institutions have
a chance to offer low interest rates to their customers for the mortgage loans since funding the

mortgage loans will be more cheaper.



Currently, Turkish banks offer a variety of mortgage products including Turkish Lira (TRY)-
denominated fixed-rate, adjustable rate, and graduated payment mortgages and US Dollar,
and, Euro-denominated mortgages. The most popular mortgage products are fixed rate mort-
gages (FRMs) with 60 to 120 month contract maturity, and the prevailing mortgage coupon
rates range from 1.2 to and 1.53 percent in September, 2007. As the FRMs are popular
mortgage products over the past few years, this study concentrates on pricing the fixed-rate
mortgages based on structural option pricing models. In order to determine the basic FRM
contract to price in our study, we collect information on the FRM contract details of eight
deposit banks with the largest mortgage portfolios, namely, Finansbank, Oyak Bank, HSBC
Bank, Akbank, Yap1 Kredi Bank, Garanti Bank, Vakif Bank, 1§ Bank. More specifically, we
collect data for the contract maturity, coupon rate, loan-to-value (LT V) ratio, arrangement

fee, prepayment penalty and the available insurance policies of these deposit banks.

Table 1.1 illustrates that, with the exception of Finansbank and Yap1 Kredi Bank, the maxi-
mum Loan-to-Value (LTV) ratio is 75 for the FRMs. Finansbank and Yap1 Kredi Bank orig-
inate FRMs with a maximum LTV of 95 to 100. The amount of upfront arrangement fee
significantly varies among the banks. While Finansbank does not charge any arrangement
fee, other banks may charge 1 to 5 of the loan amount as the arrangement and service fee. All
the banks except for Yapi Kredi Bank charge a prepayment penalty of 2 of the outstanding
loan balance at the time of prepayment. In terms of insurance policies, hazard and earthquake
insurance is required by all lenders. This has been a requirement since 1999 and is provided
by Turkish Catastrophe Insurance Pool (TCIP). Most of the lenders also require a life insur-
ance policy that would remain in effect over the term of the mortgage. Such a policy would
help to cover the full repayment of the loan in the event of borrower’s death. Borrowers are
required to renew their policy annually (at least during the term of the loan). Mortgage default
insurance products are not prevalent in Turkey. The existing sectoral studies suggest that there

is no urgent need for mortgage insurance as this will increase the cost of funds for borrowers.

1.3 Literature Review

In the academic literature, there is a vast number of studies using contingent claims approach
to explain either prepayment or default or both of the mortgage termination behaviors of the

borrowers. Among these studies, two basic approaches, namely reduced-form and structural



models, are used for the valuation of mortgage. While the common goal of both modeling
strategies is to account for all the embedded options in the mortgage contract they represent

different features for the termination decision of the mortgage.

In the structural models, the termination of the embedded options in the mortgage are pre-
dictable from the information contained in the mortgage. For instance, in case of prepayment
option, the prepayment decision of the borrower is directly related with the market value of
the loan since the main aim of the borrower is minimizing the cost of the loan. If the borrower
has a chance to refinance his/her loan at a favorable rate, then he/she would prefer to exercise
prepayment option. In other words, a prepayment takes a place whenever the market value of
the mortgage exceeds the market value of the refinancing loan. In the literature, this type of

prepayment decision is called as the optimal prepayment.

The study of Findlay and Capozza [19] is one of the earliest studies which analyze only
the prepayment options of the holders. In their study, they use both variable rate mortgage
(VRM) and fixed rate mortgage (FRM) to analyze the prepayment behavior. Jackson and
Kaserman [23] conclude that the equity position of the mortgage is the primary determinant
of the default behavior of the borrower. Quigley and Van Order [37] use contingent claims
approaches to model mortgage default and like Jackson and Kaserman, they also conclude that
equity will still be a major factor in explaining default although exercise will also depend on
the personal characteristics of the borrower. Erol and Patel [18] analyses default risk of wage-
indexed payment mortgage (WIPM) in Turkey in comparison with other standard mortgage

contracts originated in high inflationary economies.

The study of Cunningham and Capone [10] focuses on the household-specific choice of ad-
justable rate mortgage (ARM) termination and fixed rate mortgage (FRM) termination during
periods of volatile interest rates and volatile house price changes. The results support that cur-
rent equity net of moving costs dominates in the case of the default decision while mortgage

and equity variables dominate in the case of prepayment.

Kau et al. [27, 29] emphasize the importance of the joint option which consists of prepayment
and default options. In the joint option, there is an interaction between the prepayment and
the default options in terms of their terminations. In other words, borrowers have the right
to prepay the loan while ruling out the possibility of default and similarly, they also have the

right to consider default by eliminating the possibility of prepayment. Therefore, contracts



with only one of these options lead the borrower to behave differently from when both are

present.

Kau et al. [28] evaluate the US adjustable rate mortgages (ARMs) with the embedded default
and prepayment options. This study provide a theoretical valuation model for adjustable rate
residential mortgages and uses numerical methods in order to price mortgage contract and
the jointly exercise of the embedded options. Pereira-Azevedo [2, 3] use a similar framework
for the mortgage valuation. However, in these studies, the authors focus on UK fixed rate

mortgages (FRMs).

Dunsky and Ho [17] use a multinomial logit model to describe the mortgagors’ behavior
in dealing with the competing refinancing and default risks, and then utilizes a two factor
arbitrage-free interest rate model to value the mortgages. The result identifies the competing

effects of default and prepayment on the valuation of a mortgage loan.

Sharp et al. [40] develop a mortgage valuation model which includes the potential for early
prepayment and for default. In the study, an improved finite-difference procedure is presented,
together with a perturbation analysis based on the assumption of numerically small volatility
of house price and interest rate, which leads to closed-form solutions and the results show that
perturbation theory is a very efficient and effective tool in the solution of a contingent claims

mortgage valuation model.

In the reduced-form approach, it is assumed that termination of the mortgage may occur for
non-financial (personal) reasons, such as divorce, a new job, or death in the family. In other
words, the termination of mortgage in this approach is an unpredictable stopping time. There-
fore, the probability of termination should be taken into account in the mortgage valuation
at each point time. For this purpose, the proportional hazards model, introduced by Cox [6]
is used in modeling termination decision of the mortgage. The proportional hazards model
assumes that, at each point in time during the mortgage contract period, the mortgage has a
certain probability of termination condition on the survival of the mortgage. Since the ter-
mination decision is an unpredictable stopping time perfect hedging is not possible in such

approach.

The early study, Schwartz and Torous [39], is an example of the reduced-form literature. In

their study, they do not impose an optimal, value-minimizing call condition to price these se-



curities. Rather, they assume that at each point in time there exists a probability of prepaying,
this conditional probability depending upon the prevailing state of the economy. By integrat-
ing this prepayment function into the valuation framework, they provide a complete model to

value mortgage-backed securities.

Deng et al. [11] present a unified model of the default and prepayment behavior of homeown-
ers in a proportional hazard framework. The authors model uses the option-based approach to
analyze default and prepayment, and considers these two interdependent hazards as compet-
ing risks. Deng [12] adopt a proportional hazard framework to analyze these competing and
interdependent risks, in a model with time-varying covariates. The study of Deng er al. [13]
models default and prepayment as dependent competing risks to effectively examine the joint

nature of the put and call options.

Ciochetti et al. [5] examine the factors driving the borrower’s decision to terminate commer-
cial mortgage contracts with the lender through either prepayment or default. Using loan-level
data, the authors estimate prepayment and default functions in a proportional hazard frame-
work with competing risks. They conclude that high value of the put/call option is found to
significantly reduce the call/put risk since the borrower forfeits both options by exercising

one.

Kau et al. [30] extend the traditional hazard technique of estimating prepayment and default
by allowing their baselines to be stochastic processes, rather than known paths of time, as is
typically assumed. By working in the reduced form, this method offers an alternative to the
empirical valuation of mortgages more easily implemented than the standard structural form

approach of options pricing.

The recent study of Liao et al. [32] develop a reduced-form model which is able to value the
mortgage without setting boundary conditions and derive a closed-form solution of the mort-
gage valuation equation under a general reduced-form model that embeds relevant economic

variables.

This study uses the traditional option-based pricing model rather than reduced-form approach
to price FRM contracts in an emerging economy. The main objective of this study is to price
both the default risk and the prepayment risk of the FRMs, from the lenders’ perspective, using

the well-known option pricing model. This study also aims to price mortgage insurance policy



which has not been used yet in Turkish mortgage market but thought as potential derivative in

this market.

In the valuation framework, the partial differential equation which is derived for pricing the
derivative asset does not have closed form solutions. In such cases, to cope with this prob-
lem, the analysts use other methods to approximate the value of the asset. The basic methods
mostly used by the analysts are the Monte Carlo method (forward-pricing method) advocated
by Boyle [4], finite difference approximation to the differential equation (backward-pricing
method) suggested by Schwartz [38] and lattice (or tree) approach suggested by Cox et al. [7].
Despite the recent advances in forward pricing methods for pricing American options, back-
ward pricing method is well established, and so has been used more extensively. Although it
is computationally more complex, many researchers adopt backward pricing approach as the

appropriate procedure to valuing mortgages with embedded default and prepayment options.

Given the specific details of the contract, the values of the financial assets embedded in a
mortgage, namely default option, prepayment option and insurance product, are known at
the expiry. Using appropriately small time steps, the partial differential equation derived for
these assets can be used to work backwards from the final mortgage payment, calculating
the asset values sequentially to the previous mortgage payment, then using that new set of
terminal conditions to work back to a still earlier payment until eventually the origination of

the contract is reached (Azevedo-Pereira et al. [2, 3]).
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CHAPTER 2

MORTGAGE AND MORTGAGE INSURANCE VALUATION

2.1 Contingent Claims Framework

2.1.1 Modeling the Term Structure of Interest Rate and House Prices

In mortgage valuation model, there are two state variables, namely, the spot interest rate, r(f),
and the value of underlying house, H(¢). According to assumptions in the model, the spot
interest rate follows mean reverting square root diffusion process [8] and house price follows
log-normal diffusion process [34]. The mean reverting square root process for the interest rate

is given by the following equation:
dr = k(6 - r)dt + o, Vrdw, (2.1)

where « is the speed of adjustment in mean reverting process, 6 denotes the steady state spot
rate (average rate), o, represents the standard deviation of the interest rate disturbance and w,
is the standardized Wiener process for the interest rate. Similarly, Equation 2.2 represents the
log-normal diffusion process followed by the house prices,

dH
- (u = 0)dt + opdwy 2.2)

where u is the instantaneous average rate of return on house prices, ¢ denotes the per unit
service flow, oy is the standard deviation of the house price disturbance, and wy represents
the standardized Wiener process for house prices. Moreover, it is also assumed that there is a

relation between two Wiener processes and this relation is represented as follows:
dw,dwy = pdt (2.3)
where p is the instantaneous correlation coefficient between two Wiener processes.
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In this study, mortgage prices are assumed to depend on the term structure of interest rates
and house prices. Therefore, the mortgages are perceived as derivative assets. However, there
are two other important factors which would affect the mortgage prices, namely, market price
of risk associated with the spot interest rates and the house prices. However, since the state
variable, H, is a traded asset the risk adjustment does not exist [2]. So, the only measurement
of the investor’s preferences would be the market price of risk associated with the spot interest
rates. However, it should be noted that option pricing theory requires a risk-neutral economic
environment. In a risk-neutral world, expected return on all securities is the risk free rate of
interest, r, by reason of the fact that investors require no risk premium for their investments.

In other words, market price of risk is null in risk-neutral environment.

It should be noted that a derivative can be valued in a risk neutral world by discounting
expected payoff at the risk free interest rate. When we move from a risk-neutral world to a
risk-averse world, both expected growth rate in the underlying variable and the discount rate
that must be used for any payoft from the derivative change and these two changes always
offset each other exactly [22]. Consequently, the price obtained in risk neutral world is also

correct in real world.

Under this framework, it is known from standard arguments in finance that the value of any
derivative asset, F(r, H,t), depending only on the mentioned state variables and time must

satisfy the following partial differential equation: (PDE) [8, 9, 27, 28, 29],

1, 5 6°F *F 1 262
-H o, —— H -
S Ty + PHNIO RO, Sas 4 510y o
oF OoF 0F
+K(0—r)—+(r—5)Hd—H+E—rF 0. (24)

Path dependency is one of the most common problem in standard valuation procedures, espe-
cially ones using backward techniques. If the value of an asset depends on its previous values,
then there will a problem in backward valuation procedure since the values are not available
when they are required. In these cases, forward valuation procedures are more appropriate to
use, since they do not create any path dependency problem. However, these procedures work
well when no termination is allowed [26]. Mortgage valuation framework under this study al-
lows two types of endogenous termination prior to maturity, namely, prepayment and default.
Therefore, it is not possible to use forward valuation techniques. In this case, it should be used

backward valuation procedures in which the path dependency problem are circumvented.
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2.1.2 An Overview to the Mortgage Contract and Mortgage Insurance

2.1.2.1 General Notations

In this work, the following notations will be used for the valuation of mortgage contract and

mortgage insurance:

n = the life of the mortgage in months,

L = amount of the loan,

¢ = the fixed coupon rate,

m = early termination penalty,

f = fraction for insurance coverage,

¢ = arrangement fee,

n(i) = i"" payment date,

OB(i) = outstanding balance after i payment date,
MP = monthly payment

T D(t) = borrower’s total dept at time ¢.

2.1.2.2 The Components of the Mortgage Value

In the mortgage valuation framework, the future payments that have to be paid by the borrower
are not enough alone to determine the mortgage value. In order to determine the mortgage
value, the value of options covered by the mortgage contract should also be known. In the
next sections of the study, the following notations will be used for the components of the

mortgage contract:

V(r, H, t) = value of the mortgage to the borrower at time ¢ for given » and H,
A(r, t) = value of the remaining mortgage payments at time ¢ for given r,

D(r, H, t) = value of the default option at time ¢ for given r and H,

C(r, H, t) = value of the prepayment option at time ¢ for given r and H,

J(r, H,t) = value of the joint option at time ¢ for given r and H.

The value of the joint option at any point in time can be expressed as:

J(r,H,t) = C(r,H,t) + D(r, H, 1) (2.5)

13



So, the value of mortgage to the borrower at time t will be given as follows:

Ve(r,H,t) = A(r,H,t) — C(r,H,t) — D(r, H,t) = A(r, H,t) — J(r, H, 1). (2.6)

The value of the mortgage insurance is depend on the value of mortgage since the default
decision is determined by the value of the mortgage. However, it is not a component of the
mortgage as a result of the fact that the mortgage insurance provides the benefit just for the
lender in the case of default. Therefore, it is a part of the mortgage value to the lender. For this
reason, the mortgage value to the lender is different from the mortgage value to the borrower.

This relation can be formalized by:
Vi(r,H,t) = Vg(r,H,t) + I(r, H, 1) 2.7)

where I(r, H, t) is the value of the mortgage insurance at time ¢ for given r and H.

At payment dates, there is a distinction between the value of an asset immediately before
and immediately after each payment. The following notations will be used to determine this
distinction,

F~(r, H, t) = value of the asset F immediately before the payment,

F*(r, H,t) = value of the asset F immediately after the payment.

2.2 Pricing the Fixed-Rate Mortgage and Mortgage Insurance

2.2.1 Valuation of Monthly Payments and Outstanding Balance'

The mortgage contract used in this work is a fixed rate mortgage. Therefore, the monthly
payments remain the same during the life of the mortgage and each payment, M P, is given by

the following equation:

<\(14+ <)
o ()15

(1+5) -1
where OB(0) is the amount of debt at the origination of the loan.

0B(0) (2.8)

The outstanding balance after each payment date, n(i), is expressed as follows:
e\ i
((1+E) —(1+1—CZ))

(1+5) -1

OB(i) = OB(0). 2.9

! See Appendix A for the details.
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2.2.2 Valuation of Future Payments

The valuation of the promised payments is easier as compared with the other components
of the mortgage. This valuation can be considered as a bond valuation. In a bond valuation
process, the only element that affects its value is the term structure of interest rates for given
cash flows. Additionally, using the fixed payments also makes this valuation easy since there

is no need to adjust the payments at each payment date.

The valuation process differs between the maturity of the loan and other payment dates. At
termination, the value of the promised payments is equivalent to M P, unpaid balance at that

moment. So, the terminal condition for the loan is
A~ (r,t)= MP for t = n(n) (2.10)

In each payment date, the value of the debt is decreased by the amount paid, MP. For this

reason, for all other payment dates the terminal condition is given by the following equation:

A™(r,1) = Ay(r,t) + MP fort = n(1),...,n(n—1). (2.11)

2.2.3 Mortgage Value

In the previous section, the mortgage value is represented as a function of the amortizing
payments and the value of the joint option (see Equation 2.6). As is known, the value of the
joint option is determined by r and H directly since these state variables have an important

role in the evaluation of the options embedded in the joint option.

If the house price is less than the value of the remaining payments, a rational borrower will
prefer to default since the amount obtained by selling the house will not cover all remaining
payments. It can be said that, house prices have a direct impact on the default option value.
However, in the prepayment option, the main factor that affects the value of option is the term
structure of the interest rates. If the interest rates decrease, the borrower has a chance to pay
the remaining payments by getting into debt at a lower interest rate. So, house price is not
considered directly in the valuation of prepayment option. However, in the case of default, the
prepayment option will be valueless automatically since the loan is terminated by the default
option. This means that the prepayment option is affected by the house price indirectly. The

same arguments are also hold for the default option. Namely, the exercise of the prepayment

15



option makes the default option valueless. As a result of this relation between these two

options, they can not be considered separately.

At termination, the borrower has two alternatives, to pay or to default. So, the value of

mortgage at termination is given by:
Vg(r,H,t) = max{MP, H} for t = n(n) (2.12)
as the same value for the other payment dates is formalized as follows:

Vg (r,H, 1) = max{(V4(r, H,7) + MP), H} for t = n(1),....,n(n — 1). (2.13)

2.2.4 The Value of the Borrower’s Total Debt in Case of Early Termination

At any point in time, the borrower’s total debt equals the sum of the unpaid principal and the
accrued interest on this amount. However, in the case of prepayment, the borrower should pay
an additional amount required by the lender. Actually, this amount is a kind of penalty since
the mortgage is terminated by the borrower before the maturity. The early termination penalty
can be determined in different ways. For example, it can be required as a fixed amount or a
percentage of the unpaid principle. However, in this study, the latter is used to calculate the
borrower’s total debt in case of early termination. So, the amount of the total debt will be

given by:
TD(@) = (1 +m{l + c(t — n(i))}OB@) forn(i) <t <n(+1). (2.14)

where 7 is the early termination penalty required by the lender.

2.2.5 Valuation of the Default Option

The default decision is assumed to occur when the value of the mortgage to the borrower,
not the value of the remaining payments, exceeds the house price. In the case of default, the
borrower not only loses the house but also loses the options that gives a change to terminate
the mortgage before maturity. Therefore, in the default, both options will be valueless since

the loan is terminated.

On payment dates, the value of the default option is reduced as a result of the reduction

in promised payments. Moreover, if the house price exceeds the monthly payment at the
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maturity, the value of the default option will be equal to zero. So, the default value at the

maturity of the loan and on other payments dates can be calculated by:

D™ (r,H,t) = max{0,(MP — H)} for ¢t = n(n) (2.15)
and
D*(r,H, 1),
ifV=(r,H,t) = V¥(r,H,f) + MP  (no default)
D~ (r,H,t) =
A™(r,H) - H, (2.16)
if V7(r,H,t) = H (default)
fort =n(1),...,n(n—-1)
respectively.

2.2.6 Valuation of the Prepayment Option

At the maturity of the loan, the prepayment option is valueless since it can not provide any

profit to the borrower. So, the terminal condition at maturity is given by:

C (rhH,t)=0 for t = n(n). 2.17)

The value of the prepayment option at any payment date, except the maturity, will be equal to
its future value if defaulting does not occur at that time. Therefore, the value of the prepay-

ment on other payment dates will be as follows:

C*(r,H,1),
if V- (r,H,t) =V (r,H,t) + MP  (no default)
0, (2.18)
if V7(r,H,t) = H (default)
fort = n(1),...,n(n—1)

C (r,H,1) =

It should be noted that the value of the prepayment option is the only unknown in Equation 2.4.
So, its value can be represented as a function of the mortgage value and the other components
of the mortgage value. In other words, the value of the prepayment option can be calculated

by C=A-Vgz—-D.
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2.3 Pricing the Mortgage Insurance

As mentioned in Section 2.1.2.2, the mortgage insurance is not a part of the mortgage although
its value is directly affected by the mortgage value. By the mortgage insurance, the mortgage
lender is protected against the default risk since the insurer guarantees to pay a certain amount
for the loss. The high level of this amount is determined by a fraction on which the mortgage
lender and the insurer agreed. In the case of default, the mortgage lender will hold the house.
Therefore, the total loss suffered by the lender will be equal to the difference between the
borrower’s total debt and the value of the house. Under this framework, the value of the

mortgage insurance at the maturity is given by:
I (r, H,t) = max{0, min{MP — H, M P}} for t = n(n) (2.19)
where ¢ is the fraction determined by the insurance contract.

On other payment dates, the same argument holds. So, the terminal condition for the value of

the mortgage insurance at any other payment date can be expressed by:

I+(r’ H? t)’
if V- (r,H,t) = V*(r,H,t) + MP  (no default)
I"(r,H,1) =
max{0, min{TD; — H, T D; }}, (2.20)
if V-(r,H,t) = H (default)

fort =n(1),...n(n—-1)

where T D is the total debt of the borrower.

2.4 The Equilibrium Condition

The mortgage valuation under this study offers no-arbitrage opportunity. For this reason, the
equilibrium condition, in other words, no-arbitrage condition, should be satisfied in mortgage
valuation. To satisfy the equilibrium condition, the value of the mortgage to the lender must
be equal to the amount lent. However, in some cases, the borrower pays an additional amount
called arrangement fee at the origination of the mortgage. Therefore, this amount should
also be taken into account in the equilibrium condition. The no-arbitrage condition for the

mortgage is given by:
Vi(r(0), H(0), 0) = Vg(r(0), H(0),0) + 1(r(0), H(0),0) = (1 = ¢)L (2.21)
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where £ is the arrangement fee expressed as a percentage of the amount lent.

The main aim of this section is to find a contract rate which satisfy Equation 2.21. For this
purpose, the secant iteration technique is used in the calculation of the equilibrium contract

rates.
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CHAPTER 3

NUMERICAL SOLUTION OF A TWO-STATE VARIABLE
CONTINGENT CLAIMS MORTGAGE VALUATION MODEL
USING THE EXPLICIT FINITE DIFFERENCE METHOD

3.1 Finite Difference Methodology

Finite difference methods approximate the solutions to differential equations by replacing the
each partial derivative with a difference quotient. The difference quotients used in the method
are derived from the Taylor’s series expansions. The basic idea behind the finite difference
methodology is dividing the domain of the problem into a grid and using the nodes obtained

by this way to approximate the derivative terms.

3.1.1 Notations

Assume that u(x) is a continuous function of a single variable x. Then, the function at any of

the grid points is given by:

u(x;) = u(ih) = u; for i=0,1,2,...

where 4 is the constant grid spacing in x dimension. In the equation, the integer i denotes the
position of the mesh point along the x coordinate. Therefore, any point can be represented
by the product of the integer i and the grid spacing 2. When the time dimension is taken into
consideration, the difference and differential equations at the point x = ik and t = nk will be

denoted by U}’ and u? respectively.
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In two-dimensional case, the functions for the grid points can be expressed as:
u(yj, x;) = u(jl,ih) = uj; for j=0,1,2,... and i=0,1,2,...

where [ and h are the grid spacings in y and x dimensions respectively. In this case, the
difference and differential equations at the point y = jl, x = ih and ¢ = nk will be represented

by U%; and u’}; respectively.

3.1.2 Finite Difference Approximations

Taylor series expansions have an important role in the finite difference methods since they are
used in order to approximate the derivative expressions in differential equations. According

to Taylor’s theorem, a function f(x) which is infinitely differentiable can be expressed as:

ﬂwmzﬂmwfm+%#fm+%#ﬁuy- (3.1)

If the terms of order 4% and higher are neglected, then the following equation is obtained:

fx+h)-f®
h

() = + O(h) (3.2)

where O(h) is the order of truncation error determined by the size of largest term of the

truncated series. So, the relation

can be used to approximate first-order derivative of f at point x. This is the forward difference
approximation. There are some other ways to approximate partial derivatives, namely, back-
ward difference and central difference methods. The derivation of finite difference formulas
for these models are similar to the derivation of forward difference formula. In the backward
difference method, Taylor’s theorem is applied to the function f(x — k) with & > 0. Taylor’s
series expansion for f(x — h) is

"

7’ 1 7’ 1
fa=h) = )= hf () + Sh°f (0 = I f () + - (3.4)
So, the backward difference formula will be

fx) =

[ = =) 45)

The central difference method is a technique in which the functions f(x + k) and f(x — h)

are used together. Therefore, it can be considered as a combination of forward and backward
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difference methods. In the derivation of the central difference formula, Equations 3.1 and 3.4
are added and the obtained equation is solved for f (x). Consequently, the difference formula

for this method will be given by:

fat+h) = fe=m)

f ~ -

(3.6)

The central difference formula has truncation errors of order O(h?). It should be noted that the
accuracy of the approximations is proportional to the order of the error. Therefore, whenever

possible, it is common to use central differences in finite difference algorithms [1].

The approximations to the higher-order derivatives are obtained in the same way. However,

in this case, the order of truncation error will be higher.

Under this framework, the forward difference approximations to first-order partial derivatives
of the function u(x, y) are given by

Uii1 —U;:

Unji = —‘/’th e 3.7)
Uii—Uji

u)zlj’[ = %. (3.8)

8

Equations 3.7 and 3.8 have truncation errors of O(h) and O(l) respectively.

Similarly, the backward approximations to the same derivatives will be represented by:

Uji=Uji
Uxji = % (39)

Uji—Uj1,
Uyji ® % (3.10)

2

where the orders of truncation errors are O(h) and O(/) respectively. Moreover, the following
equations represent the central difference approximations to second-order partial derivatives:

Ujis1 —2U;; +Uji

Uxx|ji =~ 2 (3.11)
Upii—2U; + Ujy,
iy & (3.12)

In this case, the truncation errors have orders O(h?) and O(/%) respectively.

Finally, the last extension required in Equation 2.4 is the mixed derivative terms. By using the
Taylor’s theorem, the following result is obtained:

Ujr,iv1 = Uj-1,ir1 = Ujsric1 + Ujyi1

Uyxji ™ vy, (3.13)

The truncation error is of dimension O(h?) + O(1?).
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3.1.3 Numerical Solution

The original PDE expressed in Equation 2.4 has an infinite domain. However, working with
infinite domains in numerical methods causes some problems in terms of infinite boundary
conditions. Therefore, the state variables of interest rates and house prices should be trans-
formed to cope with the problems caused by infinite boundary conditions. For this purpose,
the infinite area (0, c0) X (0, c0) is mapped onto the unit square (0, 1) x (0,1). By follow-

ing the study of Azevedo-Pereira [1], the subsequent transformations are chosen for the state

variables:
1
= .14
y T+ 0r Yy >0 (3.14)
1
x= T ol w>0 (3.15)

As can be seen from Equation 3.14, the variable y will have a value of O for r = o0 and a
value of 1 for r = 0. The same argument also holds for the house price transformation. This
means that the transformed variable x will have a value of 0 for H = co and a value of 1 for
H = 0. Consequently, the following equations represent the inverse transformations of » and

H dimensions respectively:

_ 1=y w>0 (3.16)
vy

= loX w>0 (3.17)
wX

The values used for the scale factors ¢ and w affect the density of the points in the grid. As the
values of ¥ and w increase, the number of points that correspond to small r and H values will
increase. On the other hand, the smaller the values of y and w, the less points that correspond
to small r and H values will be in the solution grid. Therefore, the values for these scale
factors should be chosen according to the possible values of the state variables in the market.
In this study, the values of r ranging from 2%-3% and 20%-25% are required. For this reason,
the value ¥ = 10 was chosen in the interest rate transformation. Consequently, the middle
point of the y grid corresponds to r = 10%. Moreover, w = 1 was used in the house price
transformation. In this case, the middle point in the x grid corresponds to the initial value of

H=1.

Wilmott et al. [42] state that parabolic PDEs should be solved in the forward dimension. For

this purpose, the time variable was also transformed. The transformation for the time variable
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is given by:
=T —¢ (3.18)
where T is the maturity of the loan. So, the inverse transformation is
t=T-1 (3.19)
The original function of the asset value can be expressed in terms of the new variables as
follows:
W(x,y,7) = F(r(y), H(x), t(1)). (3.20)

The derivatives of the original function should also be expressed in terms of the new variables.

Equations 3.21 and 3.22 give the new forms of the derivatives in » dimension:

oF  O0W dy
— === 3.21
or 0Oy or (3-21)
2F 2 2 2
i = oW (oy + 9y (oW (3.22)
or:  0y? \or or? \ dy
The first and second derivatives with respect to H can be expressed in a similar way:
OF OW ox
- 27 3.23
OH 0x OH (3.23)
2 2 2 2
PE_PW(ox\ Px (0W) o)
O0H?  ox* \OH O0H? \ 0x
The transformed version of the mixed derivative can be represented as follows:
2F 2
9 = W () (0x . (3.25)
OHOr  Oxoy \or)\0H

Consequently, it is necessary to determine the derivatives of new state variables with respect

to the original ones. The derivatives in » dimension can be written as:

9

—ay = —yy? (3.26)
,,

&y 2.3

— =23, 3.27

52 = 20y (3.27)

Similarly, the first and second derivatives in the H dimension can be expressed as:

d
6_1)-; = —wx® (3.28)
% x

7o 20753 (3.29)
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respectively.

After all these transformations and substitutions, the fundamental PDE (2.4) can be written in

the following form:

2
—H(x)zo'Ha) X G_W + pH(x) \r(y)opopwx’y* —— 6 W

o dxdy
W ow
+§V(y)0'%¢2y4 dy? {H(X)Z‘T o' x [(r 0) - 6)H(x)wx2]} Ox
ow
o0 o o
ow
w0 (3.30)

3.1.4 Finite Difference Representation of Fundamental

Partial Differential Equation

In this section, the finite difference representation of the transformed PDE will be derived at
the interior points and the boundary points. For this purpose, this section is divided into four
parts, namely, the interior points, the lower boundaries, the upper boundaries and the corners

of the grid.

3.1.4.1 Interior Points

As mentioned in Section 3.1.3, the domain of the PDE has been mapped onto the unit square.
So, the new state space is uniformly represented as follows. For the transformed house price,
unit space [0, 1] is subdivided into 7 intervals such that /4 = x; = 1 and ih = x;. Similarly,
unit space for the transformed interest rate variable is subdivided into J intervals such that
Jl =y; = 1and jl = y;. Moreover, for the time to maturity, the interval [0, T] is subdivided
into N intervals such that Ns = 7y = 1 and ns = 7,. So, the asset value, F(r, h,t) will be
approximated by U ;‘l In this study, 50 steps are used to for subdivision of the unit space. In
other words, the numerical solution is obtained from the 50 x 50 grid where & = [ = 0.02. In

addition to this, 66 time steps are used to satisfy the numerical stability'.

Using the notation, U ;?l., and difference approximations defined in Section 3.1.2, the trans-

! This is inline with the study of Kau et al. [28].
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formed PDE (3.30) is approximated by the following difference equation:

u” —2U” + U,

H()c)2o'Ha)2 4 it h2 i1
R U" + U
+pH(X) \/r(y O'Ha'r(’ba)x y JrLitl J- 11+14lh Jj+1,i—-1 j-1,i-1
1 Ul =205+ Ujvi
+§r(y)0'fw2y4 It l2
U U,
H)Po%w0? - [(r(y) - §)H(wa? |} 241
+HHOP 3 - [00) - HH@we ]|
vr..-u" ..
1, —1,
O ~ [0~ ) = o, | y?)
U}’l+1 + Un

In this approximation, the central difference method is used for the space derivatives while
the forward difference approximation is used for the time derivative. This difference between
the time derivative and space derivatives is engendered by the impossibility of using central
method in the time derivative approximation [42]. If Equation 3.31 is rearranged, it is possible
to see the value of the asset at a certain time-step as a function of its own value at the previous

time steps. The following equation gives this relation:

U ={ H(X)zanzx“( h2) r(y)ofwzy“(l%)—r(y)S} Ut

+= H(x) ol Wiy (hz)(U",+1 +U))

+;r(y)0'r1//2y4( )(Uj+1,+Uj L)

+{H@ ohw’s - [(r(y)—6)H(x)wx2]}(i)(Ujl+l Uty)
ety = k0 = 1) = e T ) (5) (Usrs - UL1)

+pH(X) \r)oho pwx’y (4hl)( bt U Ui + U 1)
(3.32)

Moreover, there is an alternative representation of Equation 3.32 in which the coefficients of
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U ;.’l.s are perfectly isolated. That is

U'.’;rl = { H()C)ZO'HLL)2)C4 (h ) r(y)oylyt (—) - r(y)s}

{ H(x)ZO'szx4( (Hx 00’ = (1) - HH(x)wx*

)
{ H(x)*0%,w*x ( ) (H(x o0 = (1) - H(x)wx’

{—r(y)cnwzy“ ( ) +

{—r(y)ar v (5)-

s
+oH () Nr()ouo pwx’y (4hl)(U;l+1,i+1 — U~ Ui + U i 1)

roy?y’ = [k(0 = 1)) = o re)A | W

;_4 —_ —_—— ——
[}%]

{
{

TRy = (kO - 1) = o rO)A,

(3.33)

In the main PDE 3.30, the coefficients of the second derivative terms are always positive.
However, the same argument is not true for the first derivative terms. In order to keep the
errors associated with finite difference representation inside acceptable bounds, it is necessary
to guarantee that all the U" coefficients are positive [36]. So, the finite difference scheme in
Equation 3.33 has some stability problems because of that reason. According to Morton and
Mayers [36], there is an alternative way to avoid this problem. The general idea behind the
method is using the forward or backward differences for the first derivative terms instead of
using cental differences. In other words, a forward difference approximation is used when
the coefficient of the first derivative term is positive and a backward difference approximation
is used when the coefficient of the first derivative term is negative. The use of one-sided
differences depending on the sign of the first derivative term is called ‘upwind differencing’

method.

The sign of the coefficient of the first derivative terms changes across the grid and the PDE
used in this study is two dimensional PDE. For this reason, there are four alternatives for the
combination of the first derivative signs. Actually, under normal conditions, two of them will
tend to occur. However, Matlab program code (see Appendix B) used to solve the problem

was written by considering all alternatives.

It is possible to see an example of the application of this type of procedure in Equation 3.34.
In this example, backward approach was used to approximate the first derivative term in house

price dimension and the forward approach was used to approximate the first derivative term
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in interest rate dimension:

Ut = {1 — H(x)?o%0’x* ( - )— royty* ( 7 )— r(y)S} Uy
H(x)ZO'Hw X (hz)U;lHl

+ H(x) O'Ha) X = (r(y) - 5)H(x)wx2}(2h)U”

+ {%H(x)ZO'szx4 (hz) {H(x)ZO'%{wsz - (r(y) - 6)H(x)wx2} %)} U;’l |

+ {;r@)a Yy )+ {roe2y®y® = [0 = ry) = o re)A] wyz}(zil)} Ul
1

+2r(y)0' WPy ( )U;1 Li

~{ro)a2uy? = [0 - r) = o T} (35 U

+oH(x) Vr()ouopwx’y? (4hl)(U;l+1 i1~ Ui — Ul + U;l—l,i—l)'

(3.34)

3.1.4.2 Upper Boundary Conditions

In the transformed version of the main PDE, the upper boundary conditions of the transformed
variables correspond with the lower boundary conditions of the original state variables. There-
fore, this section actually gives the details of lower boundary conditions in the original state

variables.

House Price Dimension When H = 0, the value of the mortgage will be obviously greater
than the value of the house. In this case, a national borrower will lead to default. Conse-

quently, prepayment option will have no value and so,

C(r,0) =0. (3.35)

Moreover, in case of default, the value of the mortgage will be equal to the value of the house
and consequently, the value of the default will be equal to the value of the promised payments

because of the relation represented in the Equation (2.6). So,

Ve(r,0)=H =0

D(r,0) = A(r, 1). (3.36)
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Under these circumstances, the degenerate version of the main PDE (2.4) for the value of

insurance is

1 L al o al
§V0'r87 + k(6 — F)E + E —rl =0. (3.37)

Interest Rate Dimension When r = 0, there will be no discounting. Therefore, at any
point in time, the value of interest rate in the next moment will be equal to xfs where s is the
dimension of the time step. Consequently, the value of the promised payments on boundaries

will be given by:
A(0,1) = A(kBs,t + ). (3.38)

In the valuation of the other assets, the degenerate form of the main PDE (2.4) will be used.

The following equation represents this degenerate form:

1, , OF OF OF OF
S ) L LA ) 3.39
2 T T oM ey T T e (3.39)

3.1.4.3 Lower Boundary Conditions

Like in the previous Section 3.1.4.2, the lower boundary conditions in the transformed vari-

ables correspond to the upper boundary conditions of the original state variables.

House Price Dimension When H — oo, the value of the default option will be equal to
zero. However, the value of the prepayment option will take a value which is different than
zero as a result of the relation represented in Equation 2.6. So, the degenerate form for the

value of the prepayment option is

1 oC oc  ocC
or 0Ot

As mentioned before, the value of default option is zero under the condition that house price

goes to infinity:
hl’im D(r,H) = 0. (3.41)
So, by the Equation (2.6), the value of the mortgage contract will be given by:

I}im Ve(r,H) = A(r) — bl{im C(r, H). (3.42)
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In addition, the value of the insurance policy will be valueless since there is no default. That

is:
f}im I(r,H)=0. (3.43)
Interest Rate Dimension As r goes to infinity, the value of any future payment will be

equal to zero. Consequently, the values of all other assets will be valueless since all of them

contain the term of future payments:

lim A(r) =0 (3.44)
lim V(r, H) = 0 (3.45)
lim D(r, H) = 0 (3.46)
lim C(r,H) =0 (3.47)
lim 1(r, H) = 0. (3.48)

3.1.4.4 Corners of the Grid

The corners of the grid are the points on which both state variables reach extreme values. In
other words, they are the points corresponding to the cases in which H = 0 or H = oo and

r=0orr=o0.

Corners in the Upper Boundary of the Interest Rate Dimension The corners of the upper
boundary of the interest rate dimension are points at which » = 0 and H = 0 or H = 0. So,

the value of any asset at point r = 0 and H = 0 is given by the following equation:
F(0,0,1) = F(k0s,0,1 + 5). (3.49)
Similarly, when H — oo, the value of the assets will be given by:

hl’irn FO,H,t)= F(kfs,H,t + s). (3.50)

Corners in the Lower Boundary of the Interest Rate Dimension In this case, the points
corresponding to the case in which r — co will be considered. The argument is the same with

the one mentioned in Section 3.1.4.3. This means that as r goes to infinity, the value of any
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future payment and the value of any asset which involve future payment will be equal to zero.

Consequently, the values of the assets will be given by:

lim A(r) = 0 (3.51)
lim Vi(r, H) = 0 (3.52)
lim D(r, H) = 0 (3.53)
lim C(r, H) = 0 (3.54)
lim 1(r, H) = 0. (3.55)

3.2 Free Boundary

3.2.1 Prepayment Region

Prepayment can take place at any moment in time. For this reason, it is necessary to determine
the prepayment region. A rational borrower will be averse the prepayment while the value of

the total debt is greater than the mortgage value. In other words, there is no need to prepay if

Ve < TD. (3.56)

So, the boundary of the prepayment region will be given by the following equality:
Vg =TD. (3.57)

According to Merton [34], it is also required that the slopes of the functions Vp and TD
should equal to each other at the boundary. The derivatives of 7D with respect to the space

variables are equal to zero since it is independent from the state variables. Therefore,

oTD

=0 (3.58)
D

orD _ (3.59)
or

So, when Vg = T D, the following conditions will be hold:

oVp oTD
om0~ om - ° (3.60)
Vg oTD
275 _ =0 3.61
or or ( )
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Under this framework, the valuation equation will be expressed by:

ov
—Birve=0 if Vy<TD
ot
Veg=TD otherwise

where £ is the second-order linear operator in Equation 2.4. In case of Vp = T D,

TD
% + LVp = % +LTD=(+n)cO - rTD.

Therefore, the valuation equation can be written as:

0, if Vg <TD
% + LVB =
(1 +m)cO —rTD, if Vg =TD.

3.2.2 Default Region

(3.62)

(3.63)

(3.64)

(3.65)

It should be noted that default makes sense only on payment dates and it will also be taken into

consideration outside the prepayment region since it is impossible to default the prepaid loan.

Therefore, the terminal conditions given by Equations 2.16 and 2.17 are enough to determine

the boundary conditions for the default region.

32



CHAPTER 4

ANALYSIS OF THE NUMERICAL SOLUTIONS

4.1 Basic Mortgage Contract

Table 4.1 represents the values of the parameters used in the construction of base case eco-
nomic environment and the basic properties of the mortgage contract. As can be seen from
the table, two different types of fixed rate mortgage contract have been used in this study.
In the first type, the lender requires only the arrangement fee from the borrowers. However,
in the second type, the lender also requires the early termination penalty in case of prepay-
ment in addition to the arrangement fee. Both contract have the same maturity, 10 years, and
the par value of the house has been determined as 100 000 TRY. It should be noted that these

parameters have determined according to the data set obtained from different banks of Turkey.

In this section, the numerical solutions will be analyzed by using 3-D figures. The aim of
this kind of procedure is to investigate the smoothness of the solutions and their consistency
in economic sense. For an accurate analysis, we have focused on the center of (51 x 51)
dimensional grid since working with whole grid may cause some misconceptions. Therefore,
the figures have been constructed by a set of results corresponding to (41 X 41) nodes situated

in the center of the grid.

Figures 4.1 and 4.2 represent the values of the promised payments for the mortgage contract
without and with early termination penalty, respectively. In the model, the value of the future
payments, A(r,t), is expressed as a function of interest rates only. So, it is expected that
changes in house prices do not have an effect on its value. This argument is also supported by
figures. As can be seen from the figures, the value of the future payments is constant along

the H dimension. Another observable feature in figures is that there is an inverse relationship

33



with the interest rates since higher interest rates cause lower present values.

The value of the default option for both type of mortgage contract is represented in Figures
4.5 and 4.6. As it is seen in both figures, when the house prices decrease under certain level
the probability of default increases and so this causes positive default values. For high house
prices, the value of the default option is equal to zero since the default risk decreases as the
house prices increase. According to figures, the highest level of the default value corresponds

to the environment in which both state variables have small values.

The mortgage crisis in the US has began to seem in an economic environment in which low
house prices and high interest rates exist. Therefore, the claim mentioned above can be seen to
contradict with the main reason of the sub-prime mortgage crisis in the US. However, there is a
distinction between two event. In the US, the most important reason for the crisis is that higher
interest rates cause low house prices. So, the borrowers had some difficulties to refinance their
credit. Higher interest rates especially affect adjustable rate mortgages rather than fixed rate
mortgages. In this work, fixed rate mortgages have been studied. Therefore, using fixed
rate mortgages rather than adjustable rate mortgages can be thought as a explanation of this

contradiction.

Figures 4.9 and 4.10 represent the value of the mortgage insurance. The value of the mortgage
insurance takes the value zero for high house prices since the probability of defaulting also
decreases in this area. Moreover, the value of the default option increases as the value of the
house price decreases. Consequently, the value of the mortgage insurance also decreases since
its value is directly related with the case of defaulting. Another important property in figures
is that interest rates do not have a crucial effect on the value of the mortgage insurance for
low house prices since under these circumstances the default decision will be more superior

as compared with the prepayment decision.

The value of the prepayment option is represented in Figures 4.7 and 4.8. As mentioned
above, default decision terminating the prepayment option is more preferable decision in case
of low house prices. Therefore, in figures, the value of the call option is equal to zero and
it is not affected by the changes in interest rate dimension for low house prices. However,
the value of the prepayment option begins to be affected by the interest rates when the house
prices reach a certain value since there is no need to default when the house price is higher

enough. At low level of interest rates, rational borrowers prefer to refinance their loan. For

34



this reason, the value of the call option will be increase as the interest rates decrease.

Finally, Figures 4.3 and 4.4 represent the value of mortgage contract without and with early
termination penalty, respectively. As mentioned in previous sections, the value of the mort-
gage contract depends on A(r, ), D(r, H,t) and C(r, H,t). So, analyzing the solutions for the
mortgage value is difficult because of its complex structure. At low levels of house price,
increasing default value causes a decrease in the mortgage value since there is an inverse
relationship between the value of the default option and the value of the mortgage contract.
Moreover, the interest rate effect does not exist in this situation as a result of high default
risk. Consequently, the value of the mortgage contract will increase as the house price in-
creases. After a certain level of house prices, the effect of interest rate can be followed easily.
The increase in the level of interest rates leads to decrease in the value of mortgage contract.
Actually, higher interest rates decrease the value of future payments and the value of the pre-
payment option together. However, the decrease in the promised payments is superior. For
this reason, the mortgage value calculated as (Vg = A — D — C) is decreasing at high levels of

interest rate.

4.2 Equilibrium Contract Rates

In the equilibrium framework, the crucial point is that a mortgage contract can only be ac-
ceptable if there is no-arbitrage opportunity for both agents. In other words, the lender and
the borrower is not able to make an immediate profit at the origination of the loan. The gen-
eral equilibrium condition was given in Section 2.4. However, this condition does not hold
for all type of mortgage contracts since some of them do not require any arrangement fee or
mortgage insurance. For this reason, the general equilibrium condition has different forms

adjusted to each type of mortgage contract. Adjusted equilibrium conditions are given below:

1) Mortgage Contract Without Arrangement Fee and Mortgage Insurance

Vp(r(0), H(0),0) = L 4.1

In this type of mortgage contract, the mortgage value to the borrower should be equal to the
amount lent at time zero. Therefore, the lender’s position will be equal to V(r(0), H(0),0)—L

atr = 0.
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2) Mortgage Contract With Arrangement Fee and Without Mortgage Insurance
Vi(r(0), H(0),0) = (1 - §)L (4.2)

According to above equation, the value of the mortgage to the borrower should be equal
to the amount obtained by subtracting arrangement fee. So, the lender’s position will be

Ve(r(0), H),0) = (1 - &)L att=0.
3) Mortgage Contract Without Arrangement Fee and With Mortgage Insurance
V(r(0), H(0),0) + I(r(0), H(0),0) = L (4.3)

As can be seen from above equation, the value of the mortgage to the lender, VB + I, should
be equal to amount lent. This indicates that the lender’s position at t = 0 will be equal to

Ve(r(0), H(0),0) + 1(r(0), H(0),0) = L.
4) Mortgage Contract With Arrangement Fee and Mortgage Insurance
Vi(r(0), H(0),0) + 1(r(0), H(0),0) = (1 - )L 4.4)

Actually, this type of mortgage contract can be called as ‘full mortgage’ and it can be seen
that its equilibrium condition is exactly the same with the condition given by Equation 2.21.

So, the lender’s position at ¢t = 0 will be equal to Vg(r(0), H(0), 0)+ 1(r(0), H(0),0) = (1-¢)L.

Now, it is possible to calculate equilibrium contract rates for each type of mortgage contract

described above.

Tables 4.2, 4.4 and 4.6 give the lender’s position for each type of mortgage contract with
different LTV (Loan to Value) ratios. However, these tables have been obtained by using
mortgage contracts not requiring early termination penalty. To see the effect of early ter-
mination penalty on the equilibrium rates, the same processes have been also applied to the
mortgages which require early termination penalty (Tables 4.3, 4.5 and 4.7). In all tables, it is

also possible to see intervals in which equilibrium contract rates lie.

Tables 4.2 and 4.3 have been prepared under the assumption that LTV ratio is equal to 75% .
As can be seen from tables, the default value lies between 0 and 3 which indicates that mort-
gage contract with 75% LTV ratio has low default risk. Therefore, the mortgage insurance

has also low values.

! According to data set obtained from some biggest banks of Turkey, most of the Turkish banks use 75%
maximum loan-to-value ratio.
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If we compare the lender’s position in the second type of mortgage (mortgage contract with
arrangement fee and mortgage insurance) with the lender’s position in the fourth type of
mortgage (mortgage contract with arrangement fee and without mortgage insurance), we will
see that the equilibrium contract rates for both type of mortgages lie between 19.52% and
20%. In fact, this is the result of low insurance values. In other words, requiring mortgage
insurance does not provide any benefit to lender since the probability of default is low for

75% LTV ratio.

According to above results, monthly optimal contract rate for 10 year mortgage loan with
75% LTV ratio should be lie between 1.63% and 1.67%. However, Turkish banks which give
10 year mortgage loan with 75% LTV ratio require contract rates lying between 1.26% and
1.53% in monthly basis. As considering the economic environment in the period 2002-2007,
it can be said that Turkish banks applied lower contract rates as compared with the optimal
ones. This indicates that in Turkey, conditions are not sufficient to construct an efficient

primary mortgage market.

Tables 4.4 and 4.5 represent the results for 95% LTV ratio. Although most of the Turkish
banks have determined their maximum LTV ratio as 75%, there are some banks which use
95% and 100% as a maximum level for LTV ratio. In both tables, the value of the default
option changes between the values 0 and 1432. This result indicates that 95% LTV Ratio is

considerably risky. Therefore, the mortgage insurance for 95% LTV ratio takes higher values.

If the lender’s position in the second type of mortgage (mortgage contract with arrangement
fee and mortgage insurance) is compared with the lender’s position in the fourth type of
mortgage (mortgage contract with arrangement fee and without mortgage insurance), it will be
seen that the optimal contract rate for the mortgage contract requiring insurance lies between
19.00% and 19.44%. However, it takes a value between 19.44% and 20.00% for the contract
not requiring any mortgage insurance. According to these results, lenders using 95% LTV
ratio in their mortgage contract and having mortgage insurance can reach the same contract
value by using lower contract rates. Furthermore, the value of the lender’s position obtained
by using 19.44% contract rate turns from negative to positive when the lender have a mortgage
insurance. Consequently, having a mortgage insurance increase the value of the lender’s

position especially for higher LTV ratios.

The last study under basic economic scenario is referring the relationship between the com-
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ponents of mortgage contract. The main components which determine the structure of the
contract are early termination penalty, arrangement fee and optimal contract rate. So, the
banks need to determine these components accurately. Even though the trade-off calculations
require some complex methods, the basic idea behind these methods is the optimization pro-
cess. Table 4.8 represents the optimal contract rates for different early termination penalty
and arrangement fee combinations. As can be seen from the table, banks can offer a lower

contract rate if they demand higher arrangement fee or early termination penalty.

Turkish banks giving mortgage loan apply 2% early termination penalty and arrangement fees
ranging from 1% to 3% of the loan. Finansbank is a good example to analyze the trade-off
results in Turkish mortgage market since it offers a mortgage contract which is very similar
to contract used in the construction of the trade-off table. Finansbank apply 1.27% contract
rate in monthly basis for their mortgage contract which have 10 year maturity, 95% LTV
ratio, 2% early termination penalty and no arrangement fee. However, according to Table
4.8, the optimal contract rate for the same mortgage contract is 20.09% in annual basis which
is approximately equal to 1.67% in monthly basis. As mentioned before, the contract rates

applied by Turkish banks are lower than the equilibrium contract rates.

4.3 Effects of Changes in Economic Environment

As noted in section 4.1, the economic environment used in mortgage valuation is described
by a series of parameters. In this section, our aim is to get different economic environments
by changing the values of these parameters and analyze the numerical results of mortgage

valuation model obtained under new economic environments.

4.3.1 Volatility of State Variables

4.3.1.1 Interest Rate Volatility

Interest rate volatility affects all components of the mortgage contract since all of them are
defined as a function of interest rate (see, Chapter 2). Table 4.9 and 4.10 represent the rela-
tionship between the interest rate volatility and mortgage components. As can be seen from

the tables and figures, the value of the future payments increases with increases in interest
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rate volatility. Actually, this is an unexpected result. However, Pereira [1] explains this result
by the fact that the gain obtained by a fall in the discount rate will exceeds the loss generated
by an increase of the same magnitude in the discount rate and so an increase in the interest

rate volatility increases the expected value of future payments due to the Jensen’s inequality.

The options, C and D, are affected by the future payments (see, Chapter 2). So, it would be
expected that their values tend to increase as the interest rate volatility increases. However,
it should be also noted that the changes in interest rate volatility affects the sizes of both
prepayment and default regions. In addition to this, the option values, C and D, are also related
to each other. Under this framework, the value of the call option has a direct relationship with
the changes in interest rate volatility. However, the same argument does not hold for the
default option since the increase in the option value, D, does not continue for high levels of
interest rate volatility. This can be explained by the fact that the changes in the value of the

prepayment option has an effect on the default value more than the future payments value.

Increases in interest rate volatility induce higher levels of prepayment and consequently a
reduction in the probability of defaulting. Moreover, the value of mortgage insurance is not
affected by the value of future payments since its value is entirely determined by the unpaid
principle. Due to these reasons, an increase in interest rate volatility, o, will tend to increase

the value of mortgage insurance.

4.3.1.2 House Price Volatility

Changes in house price volatility have significantly different effects on the components of the
mortgage contract as compared with those induced by interest rate variation. Such a difference
is mainly related with the valuation of future payments, A. As mentioned before, r is the only
state variable affecting A and so the value of the future payments is entirely independent of

house price price, H, and consequently its volatility, o g.

In that case, changes in the joint option, C + D, due to changes in house price volatility is the
only determinant for the value of mortgage contract, V. As can be seen from Tables 4.11 and
4.12, the value of the default option, D, tend to increase as house price volatility increases.
This can be explained by the fact that contract will reach the default region rather than pre-

payment or continuation regions in case of higher house price volatilities. Additionally, this
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fact also explains the decline in the value of the prepayment option, C. So, it can be obviously
said that changes in house price volatility induce opposite effects in the components of the
joint option. However, according to tables, the decreases in the prepayment option value will
surpass the increases in the default option value. Consequently, there will be a decline in the
value of the joint option as house price volatility increases. As mentioned in the previous
chapters, the relation between the mortgage contract value and the joint option value is ex-
pressed by equation Vg = A — (D + C). Under this condition, a decline in the joint option
will produce an increase in the value of the contract and consequently there will be an inverse

relationship between the mortgage contract value and house price volatility.

According to tables, the mortgage insurance has a direct relationship with the house price
volatility. This is explained by the fact that the house price volatility impacts default much
more directly than prepayment and mortgage insurance value is directly related with the prob-

ability of default.

4.3.1.3 Combined Effects Induced by the Volatilities of State Variables

Tables 4.13 and 4.14 give the numerical results for different combinations of LTV ratio, in-

terest rate volatility and house price volatility.

As mentioned in Section 4.3.1.1, an increase in the interest rate volatility produce a direct
effect in the value of future payments, A, and consequently default option, D, and prepayment
option C. Additionally, the value of the mortgage to the borrower, Vp, and the insurance value
is decreasing for higher interest rate volatilities except for the LTV ratio 100%. As a result,
there will be a decline in the value of Vg + I. As is known, the value of the mortgage to the
lender depends on the value of mortgage to the borrower and the mortgage insurance and in
order to satisfy equilibrium condition, the contract rate should be increased to compensate the
declines in Vz and I. An increase in the house price volatility induces an increase in the default
value, D, and a decrease in the prepayment value, C. So, the total effect of the joint option
on Vp is a reduction since the future payments does not have any effect on V. Moreover,
mortgage insurance value, /, tends to increase for higher house price volatilities. However,
the magnitude of increase in [ is slightly dominating the magnitude of decline in V. This
means that there will be a small increase in the value of the lender’s position. Consequently,

in order to compensate this small increase in the value of mortgage to lender, it is necessary
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to decrease the contract rate.

4.3.2 Different Levels of Loan-to-Value (L7V) Ratio

The analysis of this section will be given according Tables 4.13 and 4.14.

For a given house price, the amount of the loan will be increase as the LTV ratio increases.
Therefore, under normal circumstances, the value of future payments, A, tends to increase

since the amount of the loan increases.

In case of higher LTV ratios, it is expected that the probability of default increases since it
is more possible to reach a situation in which the outstanding dept surpasses the value of the
house. However, on the other hand, an increase in the LTV ratio will correspond to an increase
in the total dept and consequently an extension in the prepayment region. It is obvious that an
extension in the prepayment region makes the default area smaller. According to Tables 4.13
and 4.14, the default option value, D, has a direct relationship with LTV ratio and this results

indicates that the former effect dominates the latter.

The relationship between the value of the prepayment option, C, and LTV ratio is not obvious
like in the default option. The prepayment option value represents a direct relationship with
the future payments value for low LTV ratios, however, for higher levels of LTV, its value

decreases as a result of the great extension in the default region.

It is known that the mortgage insurance is directly related with the default option. Therefore,

its direct relation with the LTV ratio is not a surprising result.

The changes in LTV ratio produce an increase in both Vp and I, and consequently require
lower equilibrium contract rates. However, as the LTV ratio rises, there will be a significant

growth in both Vg and I, and this causes a sharp decline in the equilibrium contract rate.

4.3.3 Effects of Spot Rate

Tables 4.15, 4.16, 4.17, 4.18, 4.19 and 4.20 represent the numerical results for different levels
of spot rate. It should be noted that for 75% LTV ratio, Vp — (1 — &)L is used to find the

equilibrium contract rates since the US mortgage insurance system require no insurance for
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LTV ratios which are less than 80%. According to numerical results, V and I tend to decrease
for higher levels of spot rate, r(0). Obviously, this effect produces a decline in both Vg — (1 —
&L+ I and Vp — (1 — é)L and consequently in order to satisfy equilibrium condition, it is
necessary to increase the coupon rate. In other words, there is a direct relationship between
the level of the initial spot rate and the contract rate under the assumption that long term

average of the interest rate, 6 is constant.

The prepayment option value, C, increases as the spot rate increases. This can be explained
by the fact that higher levels of spot rate make the prepayment region larger. Under normal
conditions, there will be a reduction in the default option value because of the extension in
the prepayment region. However, higher coupon rates tend to increase the value of the future
payments, A. As is known, the value of the default option has a direct relation with the value
of A and so default option value tend to increase for higher levels of initial spot rate since the

effect of A dominates the effects of prepayment region.

As mentioned in Section 4.3.1.1, an increase in the interest rate volatility produces a decline
in Vg and I, and consequently Vg — (1 — &)L+ 1 and Vg — (1 — &)L for all types of yield curves.
As aresult, in order to reach equilibrium condition, the coupon rate should be increased. This
means that the coupon rate tends to increase and to reach the levels of 6 for higher levels of

interest rate volatility.

Higher levels of house price volatility have opposite effects in the evolution of D and C,
and this produces an increase in Vjp since the overall effect in the joint option tends to be a
reduction. Additionally, the mortgage insurance value, I represents a direct relationship with
higher levels of house price volatility. Therefore, these two effect produce a reduction in

coupon rate as a result of the increase in Vg — (1 — &)L + [ and Vg — (1 — &)L.

4.3.4 Effects of Correlation Coefficient Between Two State Variables

Tables 4.21 and 4.22 represent the effects induced by changes in the correlation coefficient
between two state variables, p. It is normally expected that there is a direct relationship
between the state variables r and H. This means that in case of an increase in r, the probability
of default tends to decrease due to the increase in H. However, a decline in r with low house

prices will increase the probability of default. As a consequence, this makes the prepayment
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region smaller. Therefore, an increase in p tends to increase the default option value while

decreasing the prepayment option value.

As is known, under normal conditions, the mortgage insurance, /, move in a direct relationship

with D. Therefore, it will also have a direct relation with changes in p.

Changes in D, C and I well compensate each other. Therefore, the value of Vg — (I — &)L + 1
remains almost the same and this induces slight movements, mostly no movements, in coupon

rates to satisfy the equilibrium.
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2%; the spot interest rate (r(0)) is 10%; the long term average of the interest rate (6) is 24%; the speed of reversion («) is 56%; the interest rate volatility (o) is 12%;

The following parameters were used in the constraction of the figure: the arrangement fee (£) is 2%; the contract rate (¢) is 18%; the early termination penalty () is
the house price volatility (o) is 9%; the house service flow (6) is 4%; LTV ratio is 95% and the correlation coefficient (p) is 0.

Figure 4.8: Value of Prepayment Option (C)
(Mortgage With Early Termination Penalty)
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CHAPTER 5

CONCLUSION

This study develops a model for the valuation of fixed-rate mortgages in emerging markets
like Turkey. During the evaluation process, the default and prepayment risk of mortgage
contract are also estimated. In addition to these, the model used in this study also prices
the mortgage insurance policy which has not been used yet in Turkish mortgage market but

thought as a potential derivative in this market.

In the preliminary stage of the study, we collect information on the FRM contract details of
eight deposit banks with the largest mortgage portfolios in Turkey, namely, Finansbank, Oyak
Bank, HSBC Bank, Akbank, Yapr Kredi Bank, Garanti Bank, Vakif Bank, I§ Bank. More
specifically, we collect data for the contract maturity, coupon rate, loan-to-value (LT'V) ratio,
arrangement fee, prepayment penalty and the available insurance policies of these deposit

banks.

The work starts with a brief summary of the mortgage markets which is categorized according
to the development level of the countries and an overview of the Turkish mortgage market.
Subsequently, a brief review and discussion of the literature on mortgage valuation is present,
giving special emphasis to term structure modeling and the modeling of mortgage compo-

nents.

Considering the studies mentioned in the literature review, a decision was made to employ
a contingent claims framework. Both early termination options, namely, prepayment and
default option are taken into consideration in the valuation process. It should also be noted
that in the model, suboptimal prepayment behavior is not considered. In other words, it is

assumed that the termination decision of mortgage is driven by a economic rationale.
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A framework based on Cox, Ingersoll and Ross [8] equilibrium model is used in order to eval-
uate fixed-rate mortgages and mortgage related assets. In this methodology, the spot interest
rate and the house price are used as state variables. The corresponding partial differential
equation which is derived for the mortgage, its components and mortgage insurance policy
does not have closed form solutions. Consequently, to cope with this problem, an explicit
finite difference method is used to solve the partial differential equation. In this valuation
process, the value of the monthly payments, the value of the borrower’s debt in case of early
termination, the equilibrium condition and the terminal condition on each of the payment
date are determined. The explicit finite difference method is applied using backward solution
techniques due to the fact that the mortgage related assets is present at the termination of the

mortgage contract.

In the numerical method, the original PDE is transformed and its original infinite domain
is mapped into a unit square. After this process, the common boundary conditions and the
prepayment free boundary are formulated. However, since the free boundary creates some
difficulties in working, the problem is converted in a non-linear PDE with a fixed boundary.
Subsequently, difference equations for the first and second derivative components are gener-
ated and to satisfy the stability of the algorithm ‘upwind diffrencing’ scheme is used in the

approximation process. Finally, in order to solve PDE, the Matlab code is developed.

Numerical results for the value of mortgage-related assets are determined under different eco-
nomic scenarios. In this implementation, it is seen that every economic scenario leads to
different equilibrium contract rates and different values for the mortgage related assets. Re-
sults obtained in the basic economic scenario show that Turkish banks apply lower contract
rates as compared with the optimal ones. This observation indicates that the primary mort-
gage market in Turkey is still in its infancy stage. Numerical results also suggest that it is
beneficial for the lenders to have mortgage default insurance, especially for the high LTV

ratio mortgages.
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Appendix A

Derivation of the Formulas for the Valuation of the Monthly

Payments and the Outstanding Balance

A.1 Formula for the Value of the Monthly Payments

The basic rule used to find the monthly payments is shown below:

2 n
1 1 1
OB(0) = MP + MP+ ...+ MP. A.l
© (1+%) (1+ﬁ) (1+%) (A-D

To get a simple formula for OB(0), the following equation is obtained:

1 1 Ly Ly
OB(O)—(1+L)OB(0)=((1+L)MP+(1+£) MP+...+(1+L) +MP]

12 12 12 12

1 2 1 3 1 n+1
—(( = MP+( c) MP+...+( c) MP]. (A.2)
1+E 1+ﬁ 1+E

Obviously, all terms except the first and the last one cancel out each other and it follows that

1 1 n+1
OB(0) - ( - )OB(O) = ( - )MP - ( - ) MP (A.3)
1+ iV 1+ iV 1+ v
or equivalently,
(1 —(1+ E)‘)
OB(0) = = MP. (A4)
12
If MP is written in terms of OB(0), then
c
MpP=—2__0B(). (A.5)
1
(- (w%))
It is also possible to write Equation A.5 as
C C n
(5)(1+ 1)
MP = —0B(0) (A.6)



A.2 Formula for the Value of the Outstanding Balance

The outstanding balance value immediately after a payment date, n(i) can be expressed as

following:
1-(1+35)" i
OB(i) = 03@)———1—712—Au3(1+11). (A7)
< 12
Then, by substituting M P, it is possible to get
= (1+5)" ) ((s)(1+5) ;
OB(i) = | 0B(0) - ( 012) () nlﬁ 0B(0) (1+1i) (A.8)
12 (1 + ﬁ) - 12

or equivalently,

omm@+ﬁf—omm—@+ﬁfomm+@+ﬁymej@+ﬁy(A%
(1+5) -1

12
The first and third terms cancel out each other and consequently,

omn:{

(@+ﬁf—@+ﬁﬁomm.

OB(i) = —
(1+5) -1

(A.10)
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Appendix B

Matlab Code for Mortgage Valuation

function [H R 01dA 01dV 01dD 01dC 0ldI]=MortgageValuation(InputData)

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/O/O/O/O/0/O/O/0/O/O/O/O/O/O/O,
. . . . . . . .

%./0/0/0.

%0/0/0/0

%’ InputData’ is the matrix of external parameters in the valuation of

%fixed rate repayment mortgage. The rows of the matrix are composed as

%following;

%
%
%

InputData(l) =
InputData(2) =
InputData(3) =
InputData(4) =
InputData(5) =
InputData(6) =
InputData(7) =
InputData(8) =
InputData(9) =
InputData(10)=
InputData(ll)=
InputData(12)=
InputData(1l3)=
InputData(14)=
InputData(15)=
InputData(16)=
InputData(l7)=
InputData(18)=

contract maturity

time step per month

long-term mean reversion rate of interest rate
long-term mean of interest rate

interest rate volatility

market price of risk

house service flow

house price volatility

scale factor for interest rate transformation
scale factor for house price transformation
correlation coefficient

early termination penalty

loan to value ratio

coupon rate

fraction(for insurance)

number of grid points in x dimension

number of grid points in y dimension

arrangement fee

%67676%6%67667606%676.7676069676.76676%696. 767660696 76.76760696 767676696 96.76.6606 967666696 76.76.6696. 76766696 6.76.6.606 676660696 76.76606 6676
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%%9%69%6%6%6%6%%%%%%2%6%6%%%%%%

%Internal Parameters%

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0,
%./0/0/0. . . 0/0/0

n "

%In the following part,'"cn" is the counter for months, "cs" is the counter
%for time steps, "cx" is the counter for house price dimension and "cy" is

%the counter for interest rate dimension. Moreover "...inc" represents the
%increment for the variable " "
cnmin=1;

cnmax=InputData(l);

cninc=1;

s=1/(12*InputData(2)); %time increment
csmin=1;
csmax=csmin+InputData(2);

csinc=1;

cxmin=1;
cxmax=cxmin+InputData(16);

cxinc=1;

cymin=1;
cymax=cymin+InputData(l7);

cyinc=1;

%"x" is the transformed variable in the house price dimension. So, the grid
%will be linear in x but not in H Chouse price)

xmin=0;

xmax=1;

xinc=1/InputData(16);

X=xXmin:xinc:xmax;

%"y" is the transformed variable in the interest rate dimention. The grid

%is linear in y but not in R (interest rate)

ymin=0;
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ymax=1;
yinc=1/InputData(l17);

y=ymin:yinc:ymax;

cxhal f=cxmin+round(InputData(16)/2);

cyhalf=cymin+round(InputData(17)/2);

%6767696%676676%696%6.76760696%6.7660696%6.76.16606%6

%Preliminary Calculations%

R R IR IR KR KKK KSR AKBALAA%

%The value of house price
H(cxmax)=0;

H(cxmin)=inf;

for cx=cxmin+1:cxmax-1
H(cx)=(1-x(cx))/(InputData(1®)*x(cx));

end

%The value of interest rate
R(cymax)=0;
R(cymin)=inf;

for cy=cymin+1:cymax-1
R(cy)=(1-y(cy))/(InputData(9)*y(cy));

end

%9%69%69%6%6%6%%%%%%6%6%6%6%%%%6%6%6%%%%%%

%Final Terminal Conditions%

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/O,
%./0/0/0. . . .

%Valuation of monthly payment
M=(((InputData(14)/12)*(1+(InputData(14)/12)) "cnmax)/...
((1+(InputData(14)/12)) "cnmax-1))*InputData(13);

%Borrower’s total debt

TD=NM;
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for cy=cymin:cymax
NewA(cy)=NM;
01dA(cy)=NewA(cy);

end

for cy=cymin:cymax
for cx=cxmin+1:cxmax
01dvV(cy,cx)=min(H(cx),M);
01dC(cy,cx)=0;
0ldD(cy, cx)=max(0®,M-H(cx));
01dI(cy,cx)=max(0,min(TD-H(cx),InputData(15)*TD));

end
%H is infinite(cx=cxmin)
0ldD(cy,cxmin)=0;
01dC(cy,cxmin)=0;
01dV(cy, cxmin)=min(TD,01dA(cy)-01dD(cy, cxmin)-01dC(cy,cxmin));
01dI(cy,cxmin)=0;
end
K6I6V 66T 066760667676 676766767606 7676 0667606676066 76%6 %6

% The Beginning Of The Last Month%

0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/O,
. . %0/0

%./0/0/0.

cn=cnmin;

for cs=csmin:csmax

%Valuation of outstanding balance
TermOB1=(1+InputData(14)/12) "cnmax;
TermOB2=(1+InputData(14)/12) " (cnmax-1);
TermOB3=((1+InputData(14)/12) "cnmax)-1;
OB(cn)=((TermOB1-TermOB2) /TermOB3) *InputData(13);

%Borrower’s total debt

TD=(1+InputData(14)*((csmax-cs)/(InputData(2)*12)))*0B(cn);

%PDE solution for A(r)
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for cy=cymin+l:cymax-1

Terml=1-R(cy)* (InputData(5) “2)*(InputData(9) "2)*...
(y(cy) "4)*(s/(yinc"2))-R(cy) *s;

Term2=0.5*R(cy)*(InputData(5) "2)*(InputData(9)"2)...
*(y(cy) "4)*(s/(yinc"2));

Term3=(R(cy) * (InputData(5) "2)* (InputData(9) "2)*...
(y(cy) "3)-(InputData(3)*(InputData(4)-R(cy))-...
InputData(6)*R(cy))*InputData(9)*(y(cy) "2))*(s/yinc);

EQ1=(R(cy)*(InputData(5) "2)*(InputData(9) "2)*(y(cy)"3)-...

(InputData(3)*(InputData(4)-R(cy))-InputData(6)*R(cy))*...

InputData(9)*(y(cy) "2));

if EQ1<0
NewA(cy)=Terml*01dA(cy)+Term2*(01ldA(cy+1)+01ldA(cy-1))+...
Term3*(01dA(cy)-01dA(cy-1));
else
NewA(cy)=Terml*01dA(cy)+Term2*(01ldA(cy+1)+01ldA(cy-1))+...
Term3*(01dA(cy+1)-01dA(cy));
end

end

%Boundary Conditions

%The Value of A(r) at the corners
NewA (cymin)=0;
NewA (cymax)=01dA(cymax-1);

%%%Corners of the grid%%%

%Corner of the grid in which H=0,R=0%
NewV(cymax, cxmax)=01dV(cymax-1,cxmax) ;
NewC(cymax, cxmax)=01dC(cymax-1,cxmax) ;
NewD (cymax, cxmax)=01dD (cymax-1,cxmax) ;
NewI(cymax,cxmax)=01dI(cymax-1,cxmax);
01dV(cymax, cxmax)=NewV(cymax,cxmax) ;

01dC(cymax, cxmax)=NewC(cymax,cxmax) ;
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01dD(cymax, cxmax)=NewD(cymax,cxmax) ;

01dI(cymax,cxmax)=NewI (cymax,cxmax) ;

%Corner of the grid in which H=inf,R=0%
NewV(cymax,cxmin)=01dV(cymax-1,cxmin);
NewC(cymax, cxmin)=01dC(cymax-1,cxmin);
NewD (cymax, cxmin)=01dD (cymax-1,cxmin) ;
NewI(cymax,cxmin)=01dI(cymax-1,cxmin);
01dV(cymax, cxmin)=NewV(cymax,cxmin) ;
01dC(cymax, cxmin)=NewC(cymax,cxmin) ;
01ldD(cymax, cxmin)=NewD (cymax,cxmin) ;

01dI(cymax,cxmin)=NewI(cymax,cxmin);

%Corner of the grid in which H=inf,R=inf%
NewV(cymin, cxmin)=0;

NewC(cymin, cxmin)=0;

NewD (cymin, cxmin)=0;

NewI(cymin,cxmin)=0;

01dV(cymin, cxmin)=NewV(cymin,cxmin) ;
01dC(cymin, cxmin)=NewC(cymin, cxmin) ;
01dD(cymin, cxmin)=NewD (cymin, cxmin) ;

01dI(cymin, cxmin)=NewI(cymin,cxmin) ;

%Corner of the grid in which H=0,R=inf%
NewV(cymin, cxmax)=0;

NewC(cymin, cxmax)=0;

NewD (cymin, cxmax)=0;

NewI(cymin, cxmax)=0;

01dV(cymin, cxmax)=NewV(cymin, cxmax) ;
01dC(cymin, cxmax)=NewC(cymin, cxmax) ;
01dD(cymin, cxmax)=NewD (cymin, cxmax) ;

01dI(cymin, cxmax)=NewI(cymin,cxmax) ;

%%%Edges of the grid¥%¥%%

%H=0, R varies%

for cy=cymin+1:cymax-1
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NewC(cy,cxmax)=0;
NewD (cy, cxmax)=NewA(cy);

NewV(cy, cxmax)=0;

Term4=1-R(cy)* (InputData(5) "2)*(InputData(9) "2)*(y(cy) "4)*...
(s/(yinc”2))-R(cy)*s;

Term5=0.5*R(cy) * (InputData(5) "2) * (InputData(9) "2)*(y(cy) "4)*...
(s/(yinc"2));

Term6=(R(cy)*(InputData(5) "2) *(InputData(9) "2)*(y(cy)"3)-...
(InputData(3)*(InputData(4)-R(cy))-InputData(6)*R(cy))*...
InputData(9)*(y(cy) "2))*(s/yinc);

EQ2=R(cy) *(InputData(5) "2)*(InputData(9) "2)*(y(cy) "3)-...
(InputData(3)*(InputData(4)-R(cy))-InputData(6)*R(cy))*...
InputData(9)*(y(cy)"2);

if EQ2<0
NewI(cy,cxmax)=Term4*01dI(cy,cxmax)+Term5*(01ldI(cy+1,cxmax)+...
01dI(cy-1,cxmax))+Term6*(01dI(cy,cxmax)-01dI(cy-1,cxmax));
else
NewI(cy,cxmax)=Term4*01dI(cy,cxmax)+Term5*(01ldI(cy+1,cxmax)+...
01dI(cy-1,cxmax))+Term6* (01dI(cy+1,cxmax)-01dI(cy,cxmax));

end

01dC(cy, cxmax)=NewC(cy,cxmax) ;
01dD(cy, cxmax)=NewD(cy,cxmax) ;
01dV(cy, cxmax)=NewV(cy, cxmax) ;
01dI(cy, cxmax)=NewI(cy,cxmax) ;

end

%R=0, H varies%
for cx=cxmin+1:cxmax-1
Term7=1-(H(cx) "2) * (InputData(8) "2)*(InputData(10) "2)*...
(x(cx)"4)*(s/(xinc"2));
Term8=0.5* (H(cx) "2)*(InputData(8) “2)*(InputData(10) "2)*...
(x(cx)"4)*(s/(xinc"2));
Term9=((H(cx) "2) *(InputData(8) "2)*(InputData(10) "2)*...

89



(x(cx) "3)+InputData(7)*H(cx) *InputData(10)*(x(cx) "2))*(s/xinc);
Term10=-InputData(3)*InputData(4)*InputData(9)*(y(cy) "2)*(s/yinc);

NewV(cymax,cx)=Term7*01dV(cymax,cx)+Term8*(0ldV(cymax,cx+1)+...
01dvV(cymax,cx-1))+Term9*(01dV(cymax,cx+1)-01dV(cymax,cx))+...
Term10*(01dV(cymax,cx)-01dV(cymax-1,cx));

01dV(cymax, cx)=NewV(cymax,cx) ;

NewD (cymax, cx)=Term7*01dD(cymax, cx)+Term8*(01ldD(cymax,cx+1)+...
0ldD(cymax,cx-1))+Term9*(01dD(cymax,cx+1)-01dD(cymax,cx))+...
Term10*(01dD(cymax,cx)-01dD(cymax-1,cx));

0ldD(cymax, cx)=NewD(cymax,cx) ;

NewC(cymax, cx)=max(0®,NewA(cymax)-01dV(cymax,cx)-01dD(cymax,cx));

01dC(cymax, cx)=NewC(cymax,cx) ;

NewI(cymax,cx)=Term7*01dI(cymax,cx)+Term8*(0ldI(cymax,cx+1)+...
01dI(cymax,cx-1))+Term9*(01dI(cymax,cx+1)-01dI(cymax,cx))+...
Term10*(01dI(cymax,cx)-01dI(cymax-1,cx));

01dI(cymax,cx)=NewI(cymax,cx);

end

%H=inf, R varies%
for cy=cymin+1:cymax-1
Term11=1-R(cy)* (InputData(5) "2)*(InputData(9) "2)*...
(y(cy)"4)*(s/(yinc"2))-R(cy)*s;
Term12=0.5*R(cy) *(InputData(5) "2) *(InputData(9) "2)*...
(y(cy)"4)*(s/(yinc"2));
Term13=(R(cy) * (InputData(5) "2) *(InputData(9) "2)*(y(cy) "3)-....
(InputData(3)* (InputData(4)-R(cy))-InputData(6)*R(cy))*...
InputData(9)*(y(cy) "2))*(s/yinc);

EQ3=R(cy) *(InputData(5) "2)*(InputData(9) "2)*(y(cy)"3)-...
(InputData(3)* (InputData(4)-R(cy))-InputData(6)*R(cy))*...
InputData(9)*(y(cy)"2);

if EQ3<0
NewC(cy,cxmin)=Term11*01dC(cy,cxmin)+. ..
Term12*(01dC(cy+1,cxmin)+01dC(cy-1,cxmin))+. ..
Term13*(01dC(cy, cxmin)-01dC(cy-1,cxmin));
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else
NewC(cy,cxmin)=Term11*01dC(cy,cxmin)+. ..
Term12*(01dC(cy+1,cxmin)+01dC(cy-1,cxmin))+. ..
Term13*(01dC(cy+1,cxmin)-01dC(cy,cxmin));

end

01dC(cy, cxmin)=NewC(cy,cxmin) ;
NewV(cy, cxmin)=NewA(cy)-01dC(cy,cxmin) ;
NewD(cy,cxmin)=0;

NewI(cy,cxmin)=0;

01dV(cy,cxmin)=NewV(cy,cxmin) ;
01dD(cy, cxmin)=NewD(cy,cxmin) ;
01dI(cy,cxmin)=NewI(cy,cxmin);

end

%R=inf, H varies%

for cx=cxmin+1:cxmax-1
NewC(cymin,cx)=0;
NewD (cymin, cx)=0;
NewV(cymin,cx)=0;
NewI(cymin,cx)=0;
01dC(cymin, cx)=NewC(cymin, cx);
01dD(cymin, cx)=NewD(cymin, cx) ;
01dV(cymin, cx)=NewV(cymin,cx);
01dI(cymin,cx)=NewI(cymin,cx);

end

%The main algorithm to solve the main PDE for V(H,r),D(H,r) and I(H,r)

%In the following part, ’state’ is related with the prepayment region

%state=1 is used for the boundary of the prepayment region and state=2

%is used for the interior points of the prepayment region.

cx_first=cxmin;

cy_first=cymax;

91



for cx=cxmin+l:cxmax-1
state=1;
for cy=cymin+1:cymax-1
Terml4=1-(H(cx)"2)*(InputData(8)"2)*(InputData(l0®)"2)*...
(x(cx) "4)*(s/(xinc"2))-R(cy) * (InputData(5) "2)*. ..
(InputData(9) "2)*(y(cy) "4)*(s/(yinc"2))-R(cy) *s;

Term15=0.5* (H(cx) “2)*(InputData(8) "2)*(InputData(10) "2)*...

(x(cx)"4)*(s/(xinc"2));

Term16=((H(cx) "2)*(InputData(8) "2)*(InputData(10)"2)*...
(x(cx)"3)-(R(cy)-InputData(7))*H(cx) *InputData(10)*...
(x(cx)"2))*(s/xinc);

Term17=0.5*R(cy) *(InputData(5) "2) *(InputData(9) "2)*...
(y(cy)"4)*(s/(yinc"2));

Term18=(R(cy)* (InputData(8) "2) *(InputData(9) "2)*...
(y(cy) "3)-(InputData(3)*(InputData(4)-R(cy))-...
InputData(6)*R(cy))*InputData(9)*(y(cy) "2))*(s/yinc);

Term19=InputData(11)*H(cx)*sqrt(R(cy))*InputData(8)*...
InputData(5)*InputData(9)*InputData(1®)*(x(cx)"2)*...
(y(cy)"2)*(s/(4*xinc*yinc));

EQ4=(H(cx) "2)*(InputData(8) "2) *(InputData(l®) "2)*...
(x(cx)"3)-(R(cy)-InputData(7))*...
H(cx) *InputData(10)*(x(cx) "2);

EQ5=R(cy) *(InputData(5) "2)*(InputData(9) "2)*(y(cy)"3)-...
(InputData(3)*(InputData(4)-R(cy))-InputData(6)*...
R(cy)) *InputData(9)*(y(cy) "2);

if EQ4>=0 && EQ5>=0
NewV(cy,cx)=Terml14*01dV(cy,cx)+...
Term15*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term16*(01dV(cy,cx+1)-01dV(cy,cx))+...
Terml17+*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term18+*(01dV(cy+1,cx)-01dV(cy,cx))+...
Term19*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...
01dvV(cy-1,cx+1)+01dV(cy-1,cx-1));
elseif EQ4<0 && EQ5>=0
NewV(cy,cx)=Terml14*01dV(cy,cx)+...
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Terml15*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term16*(01dV(cy,cx)-01dV(cy,cx-1))+...
Term17+*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term18+*(01dV(cy+1,cx)-01dV(cy,cx))+...

Term19*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...

01dvV(cy-1,cx+1)+01dV(cy-1,cx-1));

elseif EQ4>=0 && EQ5<0

else

end

NewV(cy,cx)=Terml14*01dV(cy,cx)+...

Term15*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term16*(01dV(cy,cx+1)-01dV(cy,cx))+...
Terml17*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Terml18+*(01dV(cy,cx)-01dV(cy-1,cx))+...

Term19*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...

01dv(cy-1,cx+1)+01dV(cy-1,cx-1));

NewV(cy,cx)=Term14*01dV(cy,cx)+...

Term15*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term16*(01dV(cy,cx)-01dV(cy,cx-1))+...
Terml17+*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term18+*(01dV(cy,cx)-01dV(cy-1,cx))+...

Term19*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...

01dv(cy-1,cx+1)+01dV(cy-1,cx-1));

%Borrower’s total debt in case of early termination

TD=(1+InputData(1l2))*(1+InputData(14)*((csmax-cs)/...

(InputData(2)*12)))*0B(cn);

%Continuation region in terms of prepayment

if NewV(cy,cx)<TD

01dvV(cy,cx)=NewV(cy,cx);

EQ4>=0 && EQ5>=0
NewD(cy,cx)=Terml14*01dD(cy,cx)+...

Term15*(01dD(cy,cx+1)+01dD(cy,cx-1))+...
Term16*(01dD(cy,cx+1)-01dD(cy,cx))+...
Terml17*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Terml18+*(01dD(cy+1,cx)-01dD(cy,cx))+...
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Term19*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...

01dD(cy-1,cx+1)+01dD(cy-1,cx-1));

01dD(cy, cx)=NewD(cy,cx);

NewC(cy, cx)=max(0®,NewA(cy)-01dV(cy,cx)-...
01dD(cy,cx));

01dC(cy, cx)=NewC(cy,cx);

NewI(cy,cx)=Terml4*01dI(cy,cx)+...
Terml15*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term16*(01dI(cy,cx+1)-01dI(cy,cx))+...
Term17*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
Term18+*(01dI(cy+1,cx)-01dI(cy,cx))+...

Term19*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...

01dI(cy-1,cx+1)+01dI(cy-1,cx-1));

01dI(cy,cx)=NewI(cy,cx);

elseif EQ4<0 && EQ5>=0

NewD(cy, cx)=Term14*01dD(cy,cx)+...
Term15*(01dD(cy,cx+1)+01dD(cy,cx-1))+...
Term16*(01dD(cy,cx)-01dD(cy,cx-1))+...
Terml17*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Term18+*(01dD(cy+1,cx)-01dD(cy,cx))+...

Term19*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...

0ldD(cy-1,cx+1)+01dD(cy-1,cx-1));

01dD(cy, cx)=NewD(cy,cx);

NewC(cy, cx)=max(0®,NewA(cy)-01dV(cy,cx)-...
0ldD(cy,cx));

01dC(cy, cx)=NewC(cy,cx);

NewI(cy,cx)=Terml14*01dI(cy,cx)+...
Term15*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term16*(01dI(cy,cx)-01dI(cy,cx-1))+...
Term17*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
Term18+*(01dI(cy+1,cx)-01dI(cy,cx))+...

Term19*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...

01dI(cy-1,cx+1)+01dI(cy-1,cx-1));
01dI(cy,cx)=NewI(cy,cx);
elseif EQ4>=0 && EQ5<0
NewD(cy, cx)=Terml14*01dD(cy,cx)+...
Terml15*(01dD(cy,cx+1)+01dD(cy,cx-1))+...
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Term16*(01dD(cy,cx+1)-01dD(cy,cx))+...
Term17*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Term18+*(01dD(cy,cx)-01dD(cy-1,cx))+...

Term19*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...

01dD(cy-1,cx+1)+01dD(cy-1,cx-1));

01dD(cy, cx)=NewD(cy,cx);

NewC(cy, cx)=max(0®,NewA(cy)-01dV(cy,cx)-...
01dD(cy,cx));

01dC(cy, cx)=NewC(cy,cx);

NewI(cy,cx)=Terml14*01dI(cy,cx)+...
Term15*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term16*(01dI(cy,cx+1)-01dI(cy,cx))+...
Term17*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
Term18+*(01dI(cy,cx)-01dI(cy-1,cx))+...

Term19*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...

01dI(cy-1,cx+1)+01dI(cy-1,cx-1));

01dI(cy,cx)=NewI(cy,cx);

else

NewD(cy,cx)=Terml14*01dD(cy,cx)+...
Term15*(01dD(cy,cx+1)+01dD(cy,cx-1))+...
Term16*(01dD(cy,cx)-01dD(cy,cx-1))+...
Terml17*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Term18+*(01dD(cy,cx)-01dD(cy-1,cx))+...

Term19*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...

01ldD(cy-1,cx+1)+01dD(cy-1,cx-1));

01dD(cy, cx)=NewD(cy,cx);

NewC(cy, cx)=max(0®,NewA(cy)-01dV(cy,cx)-...
01dD(cy,cx));

01dC(cy, cx)=NewC(cy,cx);

NewI(cy,cx)=Terml14*01dI(cy,cx)+...
Term15*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term16*(01dI(cy,cx)-01dI(cy,cx-1))+...
Terml17*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
Term18+*(01dI(cy,cx)-01dI(cy-1,cx))+...

Term19*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...

01dI(cy-1,cx+1)+01dI(cy-1,cx-1));
01dI(cy,cx)=NewI(cy,cx);
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end

%Prepayment region
elseif state==
Term20=1-(H(cx) “2)*(InputData(8) "2)*(InputData(10)"2)*...
(x(cx) "4)*(s/(xinc"2))-R(cy) *(InputData(5) "2)*...
(InputData(9)"2)*(y(cy) "4)*(s/(yinc"2))-R(cy)*s;
Term21=0.5%(H(cx) "2) *(InputData(8) "2)*...
(InputData(1®) "2)*(x(cx) "4)*(s/(xinc"2));
Term22=((H(cx) "2)* (InputData(8) "2)* (InputData(10) "2)*...
(x(cx)"3))*(s/xinc);
Term23=0.5*R(cy)*(InputData(5)"2)*(InputData(9)"2)*...
(y(cy)"4)*(s/(yinc"2));
Term24=R(cy) * (InputData(8) "2) * (InputData(9) "2)*...
(y(cy)"3)*(s/yinc);
Term25=InputData(11)*H(cx)*sqrt(R(cy))*InputData(8)*...
InputData(5)*InputData(9) *InputData(1®)*. ..
(x(cx)"2)* (y(cy) "2)*(s/(4*xinc*yinc));
Term26=- (1+InputData(12)) *InputData(14)*0B(cn) *s+...
R(cy) *TD*s;

NewV(cy,cx)=Term20*01dV(cy,cx)+...
Term21*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term22*(01dV(cy,cx+1)-01dV(cy,cx))+...
Term23*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term24*(01dV(cy,cx)-01dV(cy-1,cx))+...
Term25*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...
01dvV(cy-1,cx+1)+01dV(cy-1,cx-1))+Term26;

01dv(cy,cx)=NewV(cy,cx);

NewD(cy,cx)=Term20*01dD(cy,cx)+....
Term21*(01dD(cy,cx+1)+01dD(cy,cx-1))+...
Term22*(01dD(cy,cx+1)-01dD(cy,cx))+...
Term23*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Term24*(01dD(cy,cx)-01dD(cy-1,cx))+...
Term25*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...
0ldD(cy-1,cx+1)+01dD(cy-1,cx-1));

01dD(cy, cx)=NewD(cy,cx);
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NewC(cy, cx)=max(0,NewA(cy)-01dV(cy,cx)-01dD(cy,cx));
01dC(cy,cx)=NewC(cy,cx);
NewI(cy,cx)=Term20*01dI(cy,cx)+...
Term21*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term22*(01dI(cy,cx+1)-01dI(cy,cx))+...
Term23*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
Term24*(01dI(cy,cx)-01dI(cy-1,cx))+...
Term25*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...
01dI(cy-1,cx+1)+01dI(cy-1,cx-1));
01dI(cy,cx)=NewI(cy,cx);

state=2;

cx_first=max(cx,cx_first);

cy_first=min(cy,cy_£first);

else

Term20=1-(H(cx) "2)* (InputData(8) "2)* (InputData(l0) "2)*...
(x(cx)"4)*(s/(xinc"2))-R(cy)*(InputData(5)"2)*...
(InputData(9) "2)*(y(cy) "4)*(s/(yinc"2))-R(cy)*s;

Term21=0.5*(H(cx) "2)*(InputData(8) "2)*...
(InputData(10) "2)*(x(cx) "4)*(s/(xinc"2));

Term22=C(H(cx) "2) *(InputData(8) "2)*(InputData(10) "2)*...
(x(cx)"3))*(s/xinc);

Term23=0.5*R(cy)* (InputData(5) "2)*(InputData(9) "2)*...
(y(ecy)"4)*(s/(yinc"2));

Term24=R(cy)* (InputData(8) "2) *(InputData(9)"2)*...
(y(cy) "3)*(s/yinc);

Term25=InputData(ll) *H(cx)*sqrt(R(cy))*InputData(8)*...
InputData(5)*InputData(9) *InputData(1®)*(x(cx)"2)*...
(y(cy)"2)*(s/(4*xinc*yinc));

Term26=- (1+InputData(12))*InputData(14)*0B(cn)*s+...
R(cy) *TD*s;

NewV(cy,cx)=Term20*01dV(cy,cx)+...
Term21*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term22*(01dV(cy,cx+1)-01dV(cy,cx))+...
Term23*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term24*(01dV(cy,cx)-01dV(cy-1,cx))+...
Term25*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...
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01dv(cy-1,cx+1)+01dV(cy-1,cx-1))+Term26;
01dvV(cy,cx)=NewV(cy,cx);
NewD(cy,cx)=0;
01ldD(cy,cx)=NewD(cy,cx);
NewC(cy,cx)=max(0®,NewA(cy)-01dV(cy,cx)-01dD(cy,cx));
01dC(cy,cx)=NewC(cy,cx);
NewI(cy,cx)=0;
01dI(cy,cx)=NewI(cy,cx);
state=2;

end

01dA(cy)=NewA(cy);
end

end

if cy_first<=cymax
for cy=cy_first:cymax-1
01dvV(cy, cxmin)=TD;
01dC(cy,cxmin)=max(®,NewA(cy)-01dV(cy,cxmin)-01dD(cy,cxmin));
end

end

if cx_first>cxmin
for cx=cxmin:cx_first
01dV(cymax,cx)=TD;
0ldD(cymax,cx)=0;
01dC(cymax, cx)=max(0,NewA(cymax)-01dV(cymax,cx)-...
0ldD(cymax,cx));
01dI(cymax,cx)=0;
end
end
01dA(cymin)=NewA(cymin) ;
01dA(cymax)=NewA(cymax) ;

end

70/0/0/0/0707070707070/070707070/0/070/0/0/07/0/07/070/0707/070/07070/070/0/0/0

%The Remaining Months of the Contract%
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%67676%69676676%69676766769696.766760696.76.6606%6 96766696 96.76.16606 9676

for cn=cnmin+1:cnmax

%Valuation of outstanding balance
TermOB4=(1+InputData(14)/12) "cnmax;
TermOB5=(1+InputData(14)/12) " (cnmax-cn) ;
TermOB6=((1+InputData(14)/12) "cnmax)-1;
0B(cn)=((TermOB4-TermOB5) /TermOB6) *InputData(13);

%Borrower’s total debt

TD=0B(cn-1)+M;

%Terminal Conditions

for cy=cymin:cymax
NewA(cy)=01dA(cy)+M;
01dA(cy)=NewA(cy);

end

for cy=cymin:cymax
for cx=cxmin+l:cxmax
% 'VBLP’ represents the value of the contract just before
%the last payment date
VBLP=01dV(cy,cx)+M;
NewV(cy, cx)=min(VBLP,H(cx));
01dv(cy,cx)=NewV(cy,cx);

%Continuation region in terms of default
if 01dv(cy,cx)==VBLP
NewD(cy, cx)=01dD(cy,cx);
NewC(cy, cx)=01dC(cy,cx);
NewI(cy,cx)=01dI(cy,cx);
0ldD(cy, cx)=NewD(cy,cx);
01dC(cy, cx)=NewC(cy,cx);
01dI(cy,cx)=NewI(cy,cx);
%Default region (V=H)

else
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NewC(cy,cx)=0;
NewD(cy,cx)=01dA(cy)-H(cx);
NewI(cy,cx)=max(0®,min(TD-H(cx) ,InputData(15)*TD));
0ldD(cy,cx)=NewD(cy,cx);
01dC(cy,cx)=NewC(cy,cx);
01dI(cy,cx)=NewI(cy,cx);
end
end
%H is infinite(cx=cxmin)
NewV(cy,cxmin)=01dV(cy, cxmin)+M;
NewD(cy,cxmin)=0;
NewC(cy,cxmin)=01dA(cy)-NewV(cy,cxmin)-NewD(cy,cxmin) ;
NewI(cy,cxmin)=0;
01dV(cy, cxmin)=NewV(cy,cxmin) ;
0l1dD(cy, cxmin)=NewD(cy,cxmin) ;
01dC(cy, cxmin)=NewC(cy,cxmin) ;
01dI(cy,cxmin)=NewI(cy,cxmin);

end

for cs=csmin:csmax

%Valuation of outstanding balance
TermOB4=(1+InputData(14)/12) "cnmax;
TermOB5=(1+InputData(14)/12) " (cnmax-cn);
TermOB6=((1+InputData(14)/12) "cnmax)-1;
0B(cn)=((TermOB4-TermOB5) /TermOB6) *InputData(13);

%Borrower’s total debt

TD=(1+InputData(1l4)*((csmax-cs)/(InputData(2)*12)))*0B(cn);

%PDE solution for A(r)
for cy=cymin+1:cymax-1
Terml=1-R(cy)* (InputData(5)"2)*(InputData(9) "2)*...
(y(cy)"4)*(s/(yinc"2))-R(cy) *s;
Term2=0.5*R(cy)*(InputData(5)"2)*(InputData(9)"2)*. ..
(y(cy)"4)*(s/(yinc"2));
Term3=(R(cy)*(InputData(5) "2)*(InputData(9) "2)*...
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(y(cy) "3)-(InputData(3)*(InputData(4)-R(cy))-...
InputData(6)*R(cy))*InputData(9)*(y(cy) "2))*(s/yinc);

EQ1=(R(cy)*(InputData(5) "2)*(InputData(9)"2)*...
(y(cy) "3)-(InputData(3)*(InputData(4)-R(cy))-...

InputData(6)*R(cy))*InputData(9)*(y(cy) "2));

if EQ1<0

NewA(cy)=Terml*01dA(cy)+Term2*(01dA(cy+1)+01dA(cy-1))+...

Term3*(01dA(cy)-01dA(cy-1));

else

NewA(cy)=Terml*01dA(cy)+Term2*(01ldA(cy+1)+01dA(cy-1))+...

Term3*(01dA(cy+1)-01dA(cy));
end

end

%Boundary Conditions

%The Value of A(r) at the corners
NewA(cymin)=0;
NewA(cymax)=01dA(cymax-1);

%%%Corners of the grid%%%

%Corner of the grid in which H=0,R=0%
NewV (cymax,cxmax)=01dV(cymax-1,cxmax) ;
NewC(cymax, cxmax)=01dC(cymax-1,cxmax) ;
NewD (cymax, cxmax)=01dD (cymax-1,cxmax) ;
NewI(cymax,cxmax)=01dI(cymax-1,cxmax);
01dV(cymax, cxmax)=NewV(cymax,cxmax) ;
01dC(cymax, cxmax)=NewC(cymax,cxmax) ;
01dD(cymax, cxmax)=NewD (cymax,cxmax) ;

01dI(cymax,cxmax)=NewI(cymax,cxmax) ;

%Corner of the grid in which H=inf,R=0%

NewV(cymax,cxmin)=01dV(cymax-1,cxmin);

NewC(cymax,cxmin)=01dC(cymax-1,cxmin) ;
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NewD (cymax,cxmin)=01dD(cymax-1,cxmin) ;
NewI(cymax,cxmin)=01dI(cymax-1,cxmin);
01dV(cymax, cxmin)=NewV(cymax,cxmin) ;
01dC(cymax, cxmin)=NewC(cymax,cxmin) ;
01dD(cymax, cxmin)=NewD (cymax,cxmin) ;

01dI(cymax,cxmin)=NewI (cymax,cxmin) ;

%Corner of the grid in which H=inf,R=inf%
NewV(cymin, cxmin)=0;

NewC(cymin, cxmin)=0;

NewD (cymin, cxmin)=0;

NewI(cymin,cxmin)=0;

01dV(cymin, cxmin)=NewV(cymin,cxmin) ;
01dC(cymin, cxmin)=NewC(cymin, cxmin) ;
0ldD(cymin, cxmin)=NewD(cymin,cxmin) ;

01dI(cymin,cxmin)=NewI(cymin,cxmin);

%Corner of the grid in which H=0,R=inf%
NewV(cymin, cxmax)=0;

NewC(cymin, cxmax)=0;

NewD (cymin, cxmax)=0;

NewI(cymin, cxmax)=0;

01dV(cymin, cxmax)=NewV(cymin, cxmax) ;
01dC(cymin, cxmax)=NewC(cymin, cxmax) ;
01dD(cymin, cxmax)=NewD (cymin, cxmax) ;

01dI(cymin, cxmax)=NewI(cymin, cxmax) ;

%%%Edges of the grid%¥%%

%H=0, R varies%

for cy=cymin+1:cymax-1
NewC(cy, cxmax)=0;
NewD(cy, cxmax)=NewA(cy);

NewV(cy, cxmax)=0;

Term4=1-R(cy) * (InputData(5) "2) * (InputData(9) "2)*(y(cy) "4)*...
(s/(yinc”2))-R(cy)*s;
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end

Term5=0.5*R(cy) * (InputData(5) "2) * (InputData(9) "2)*(y(cy) "4)*...
(s/(yinc"2));

Term6=(R(cy)* (InputData(5) "2) *(InputData(9) "2)*(y(cy)"3)-...
(InputData(3)*(InputData(4)-R(cy))-InputData(6)*R(cy))*...
InputData(9)*(y(cy)"2))*(s/yinc);

EQ2=R(cy)*(InputData(5) "2)*(InputData(9) "2)*(y(cy) "3)-...
(InputData(3)*(InputData(4)-R(cy))-InputData(6)*R(cy))*...
InputData(9)*(y(cy)"2);

if EQ2<0
NewI(cy,cxmax)=Term4*01dI(cy,cxmax)+. ..
Term5*(01dI(cy+1,cxmax)+01dI(cy-1,cxmax))+...
Term6*(01dI(cy,cxmax)-01dI(cy-1,cxmax));
else
NewI(cy,cxmax)=Term4*01dI(cy,cxmax)+...
Term5*(01dI(cy+1,cxmax)+01dI(cy-1,cxmax))+...
Term6*(01dI(cy+1,cxmax)-01dI(cy,cxmax));

end

01dC(cy, cxmax)=NewC(cy, cxmax) ;
0l1dD(cy, cxmax)=NewD(cy, cxmax) ;
01dvV(cy, cxmax)=NewV(cy, cxmax) ;
01dI(cy,cxmax)=NewI(cy,cxmax) ;

%R=0, H varies%

for

cx=cxmin+1:cxmax-1

Term7=1-(H(cx) "2)*(InputData(8) "2)*(InputData(10)"2)*...
(x(cx)"4)*(s/(xinc"2));

Term8=0. 5% (H(cx) "2)* (InputData(8) "2)* (InputData(10) "2)*...
(x(cx)"4)*(s/(xinc"2));

Term9=((H(cx) "2)*(InputData(8) "2)*(InputData(10) "2)*...
(x(cx) "3)+InputData(7)*H(cx) *InputData(l®)*. ..
(x(cx)"2))*(s/xinc);

Terml@=-InputData(3)*InputData(4)*InputData(9)*...

(y(cy) "2>*(s/yinc);
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NewV(cymax, cx)=Term7*01dV(cymax,cx)+...
Term8* (01dV(cymax,cx+1)+01dV(cymax,cx-1))+...
Term9* (01dV(cymax,cx+1)-01dV(cymax,cx))+...
Term10*(01dV(cymax,cx)-01dV(cymax-1,cx));
01dV(cymax, cx)=NewV(cymax,cx);
NewD (cymax, cx)=Term7*01dD(cymax,cx)+...
Term8* (01dD(cymax,cx+1)+01dD(cymax,cx-1))+...
Term9* (01dD(cymax,cx+1)-01dD(cymax,cx))+. ..
Term10*(01dD(cymax,cx)-01dD(cymax-1,cx));
0ldD(cymax, cx)=NewD(cymax,cx);
NewC(cymax,cx)=max(0®,NewA(cymax)-01dV(cymax,cx)-...
0ldD(cymax,cx));
0ldC(cymax, cx)=NewC(cymax,cx);
NewI(cymax,cx)=Term7*01ldI(cymax,cx)+...
Term8* (01dI(cymax,cx+1)+01dI(cymax,cx-1))+...
Term9* (01dI(cymax,cx+1)-01dI(cymax,cx))+...
Term10*(01dI(cymax,cx)-01dI(cymax-1,cx));
01dI(cymax,cx)=NewI(cymax,cx);

end

%H=inf, R varies%
for cy=cymin+1:cymax-1
Terml1=1-R(cy)* (InputData(5)"2)*(InputData(9) 2)*...
(y(cy) "4)*(s/(yinc"2))-R(cy) *s;
Term12=0.5*R(cy)*(InputData(5)"2)*(InputData(9)"2)*...
(y(cy) "4)*(s/(yinc"2));
Term13=(R(cy)* (InputData(5)"2)*(InputData(9) "2)*...
(y(cy) "3)-(InputData(3)* (InputData(4)-R(cy))-...
InputData(6)*R(cy))*InputData(9)*(y(cy) "2))*(s/yinc);

EQ3=R(cy)*(InputData(5) "2)*(InputData(9) "2)*(y(cy) "3)-...

(InputData(3)*(InputData(4)-R(cy))-InputData(6)*R(cy))*...

InputData(9)*(y(cy)"2);

if EQ3<0

NewC(cy,cxmin)=Term11*01dC(cy,cxmin)+. ..
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Terml12*(01dC(cy+1,cxmin)+01dC(cy-1,cxmin))+...
Term13*(01dC(cy,cxmin)-01dC(cy-1,cxmin));
else
NewC(cy,cxmin)=Term11*01dC(cy,cxmin)+. ..
Term12*(01dC(cy+1,cxmin)+01dC(cy-1,cxmin))+. ..
Term13*(01dC(cy+1,cxmin)-01dC(cy,cxmin));

end

01dC(cy, cxmin)=NewC(cy,cxmin) ;
NewV(cy, cxmin)=NewA(cy)-01dC(cy, cxmin) ;
NewD(cy,cxmin)=0;

NewI(cy,cxmin)=0;

01dvV(cy, cxmin)=NewV(cy,cxmin) ;
0l1dD(cy, cxmin)=NewD(cy,cxmin) ;
01dI(cy,cxmin)=NewI(cy,cxmin);

end

%R=inf, H varies%

for cx=cxmin+1:cxmax-1
NewC(cymin, cx)=0;
NewD(cymin, cx)=0;
NewV(cymin,cx)=0;
NewI(cymin,cx)=0;
01dC(cymin, cx)=NewC(cymin,cx);
01dD(cymin, cx)=NewD(cymin, cx) ;
01dV(cymin, cx)=NewV(cymin, cx);
01dI(cymin,cx)=NewI(cymin,cx);

end

%The main algorithm to solve the main PDE for V(H,r),D(H,r)
%and I(H,r)

%In the following part, ’state’ is related with the prepayment
%region state=1 is used for the boundary of the prepayment region
%and state=2 is used for the interior points of the prepayment

%region.
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cx_first=cxmin;

cy_first=cymax;

for cx=cxmin+l1:cxmax-1
state=1;
for cy=cymin+1:cymax-1
Term14=1-(H(cx)"2)*(InputData(8) "2)*(InputData(10)"2)*...
(x(cx)"4)*(s/(xinc"2))-R(cy) *(InputData(5) "2)*. ..
(InputData(9) "2)*(y(cy) "4)*(s/(yinc"2))-R(cy)*s;

Term15=0.5* (H(cx) "2)*(InputData(8) "2)*(InputData(10) "2)*...

(x(cx)"4)*(s/(xinc"2));

Term16=((H(cx) "2)*(InputData(8) "2)*(InputData(l10) "2)*...
(x(cx) "3)-(R(cy) -InputData(7))*H(cx) *InputData(10)*. ..
(x(cx)"2))*(s/xinc);

Term17=0.5*R(cy)*(InputData(5) "2)*(InputData(9)"2)*...
(y(ey)"4)*(s/(yinc"2));

Terml18=(R(cy)*(InputData(8) "2)* (InputData(9) "2)*...
(y(cy) "3) -(InputData(3) *(InputData(4)-R(cy))-...
InputData(6)*R(cy))*InputData(9)*(y(cy) "2))*(s/yinc);

Terml9=InputData(11)*H(cx)*sqrt(R(cy))*InputData(8)*...
InputData(5)*InputData(9)*InputData(10)*(x(cx)"2)*...
(y(cy) "2)*(s/(4*xinc*yinc));

EQ4=(H(cx) "2)*(InputData(8) "2)* (InputData(l0) "2)*...
(x(cx)"3)-(R(cy)-InputData(7))*H(cx)*..
InputData(10)*(x(cx)"2);

EQ5=R(cy) *(InputData(5) "2)* (InputData(9) "2)*...
(y(cy) "3)-(InputData(3)*(InputData(4)-R(cy))-...
InputData(6)*R(cy)) *InputData(9)*(y(cy) "2);

if EQ4>=0 && EQ5>=0
NewV(cy,cx)=Term14*01dV(cy,cx)+...
Term15*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term16*(01dV(cy,cx+1)-01dV(cy,cx))+...
Terml7*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term18*(01dV(cy+1,cx)-01dV(cy,cx))+...
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Term19*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...

01dv(cy-1,cx+1)+01dV(cy-1,cx-1));
elseif EQ4<0 && EQ5>=0
NewV(cy,cx)=Terml4*01ldV(cy,cx)+...
Term15*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term16*(01dV(cy,cx)-01dV(cy,cx-1))+...
Terml17*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term18*(01dV(cy+1,cx)-01dV(cy,cx))+...

Term19*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...

01dv(cy-1,cx+1)+01dV(cy-1,cx-1));
elseif EQ4>=0 && EQ5<0
NewV(cy,cx)=Term14*01dV(cy,cx)+...
Term15*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term16*(01dV(cy,cx+1)-01dV(cy,cx))+...
Terml7*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term18+*(01dV(cy,cx)-01dV(cy-1,cx))+...

Term19*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...

01dv(cy-1,cx+1)+01dV(cy-1,cx-1));
else
NewV(cy,cx)=Terml14*01dV(cy,cx)+...
Term15*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term16*(01dV(cy,cx)-01dV(cy,cx-1))+...
Term17*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term18*(01dV(cy,cx)-01dV(cy-1,cx))+...

Term19*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...

01dv(cy-1,cx+1)+01dV(cy-1,cx-1));

end

%Borrower’s total debt in case of early termination
TD=(1+InputData(12))*(1+InputData(14)*((csmax-cs)/...
(InputData(2)*12)))*0B(cn);

%Continuation region in terms of prepayment
if NewV(cy,cx)<TD
01dV(cy, cx)=NewV(cy,cx);
if EQ4>=0 && EQ5>=0
NewD(cy,cx)=Term14*01dD(cy,cx)+...
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Terml15*(01dD(cy,cx+1)+01dD(cy,cx-1))+...
Term16*(01dD(cy,cx+1)-01dD(cy,cx))+...
Terml17*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Term18+*(01ldD(cy+1,cx)-01dD(cy,cx))+...
Term19*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...
01dD(cy-1,cx+1)+01dD(cy-1,cx-1));

01dD(cy,cx)=NewD(cy,cx);

NewC(cy, cx)=max(0,NewA(cy)-01dvV(cy,cx)-...
0l1dD(cy,cx));

01dC(cy,cx)=NewC(cy,cx);

NewI(cy,cx)=Terml4*01ldI(cy,cx)+...
Term15*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term16*(01dI(cy,cx+1)-01dI(cy,cx))+...
Terml17*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
Term18+*(01dI(cy+1,cx)-01dI(cy,cx))+...
Term19*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...
01dI(cy-1,cx+1)+01dI(cy-1,cx-1));

01dI(cy,cx)=NewI(cy,cx);

elseif EQ4<0® && EQ5>=0

NewD(cy,cx)=Term14*01dD(cy,cx)+. ..
Term15*(01dD(cy,cx+1)+01dD(cy,cx-1))+...
Term16*(01dD(cy,cx)-01dD(cy,cx-1))+...
Term17*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Term18+*(01dD(cy+1,cx)-01dD(cy,cx))+...
Term19*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...
01dD(cy-1,cx+1)+01dD(cy-1,cx-1));

01dD(cy,cx)=NewD(cy,cx);

NewC(cy, cx)=max(0,NewA(cy)-01dV(cy,cx)-...
0ldD(cy,cx));

01dC(cy,cx)=NewC(cy,cx);

NewI(cy,cx)=Terml14*01dI(cy,cx)+...
Term15*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term16*(01dI(cy,cx)-01dI(cy,cx-1))+...
Term17*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
Term18*(01dI(cy+1,cx)-01dI(cy,cx))+...
Term19*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...
01dI(cy-1,cx+1)+01dI(cy-1,cx-1));
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01dI(cy,cx)=NewI(cy,cx);
elseif EQ4>=0 && EQ5<0
NewD(cy,cx)=Terml14*01dD(cy,cx)+. ..
Term15*(01dD(cy,cx+1)+01dD(cy,cx-1))+...
Term16*(01dD(cy,cx+1)-01dD(cy,cx))+...
Term17*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Term18+*(01dD(cy,cx)-01dD(cy-1,cx))+...

Term19*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...

01dD(cy-1,cx+1)+01dD(cy-1,cx-1));

01dD(cy,cx)=NewD(cy,cx);

NewC(cy, cx)=max(0,NewA(cy)-01dV(cy,cx)-...
01dD(cy,cx));

01dC(cy,cx)=NewC(cy,cx);

NewI(cy,cx)=Terml4*01dI(cy,cx)+...
Term15*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term16*(01dI(cy,cx+1)-01dI(cy,cx))+...
Term17*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
Term18+*(01dI(cy,cx)-01dI(cy-1,cx))+...

Term19*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...

01dI(cy-1,cx+1)+01dI(cy-1,cx-1));

01dI(cy,cx)=NewI(cy,cx);

else

NewD(cy,cx)=Term14*01dD(cy,cx)+. ..
Term15*(01dD(cy,cx+1)+01dD(cy,cx-1))+...
Term16*(01dD(cy,cx)-01dD(cy,cx-1))+...
Term17*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Term18+*(01dD(cy,cx)-01dD(cy-1,cx))+...

Term19*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...

0ldD(cy-1,cx+1)+01dD(cy-1,cx-1));
01dD(cy,cx)=NewD(cy,cx);
NewC(cy,cx)=max(0,NewA(cy)-01dV(cy,cx)-...
01dD(cy,cx));
01dC(cy, cx)=NewC(cy,cx);
NewI(cy,cx)=Terml14*01dI(cy,cx)+...
Term15*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term16*(01dI(cy,cx)-01dI(cy,cx-1))+...
Term17*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
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Term18*(01dI(cy,cx)-01dI(cy-1,cx))+...

Term19*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...

01dI(cy-1,cx+1)+01dI(cy-1,cx-1));
01dI(cy,cx)=NewI(cy,cx);

end

%Prepayment region
elseif state==1
Term20=1-(H(cx) "2)*(InputData(8)"2)*...
(InputData(10)"2)*(x(cx)"4)*(s/(xinc"2))-. ..
R(cy)*(InputData(5)"2)*(InputData(9) "2)*...
(y(cy) "4)*(s/(yinc"2))-R(cy) *s;
Term21=0. 5% (H(cx) "2)* (InputData(8) "2)*. ..
(InputData(10) "2)*(x(cx) "4)*(s/(xinc"2));
Term22=((H(cx) "2)*(InputData(8) "2)*...
(InputData(10) "2)*(x(cx) "3))*(s/xinc);

Term23=0.5*R(cy) * (InputData(5) "2)*(InputData(9) "2)*...

(y(ey)"4)*(s/(yinc"2));

Term24=R(cy)* (InputData(8) "2)*(InputData(9) "2)*...
(y(cy) "3)*(s/yinc);

Term25=InputData(11)*H(cx)*sqrt(R(cy))*...
InputData(8) *InputData(5) *InputData(9)*...
InputData(10)*(x(cx) " 2)*(y(cy)"2)*...
(s/(4*xinc*yinc));

Term26=-(1+InputData(12))*InputData(14)*0B(cn)*s+...
R(cy) *TD*s;

NewV(cy, cx)=Term20*01dV(cy,cx)+...
Term21*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term22*(01dV(cy,cx+1)-01dV(cy,cx))+...
Term23*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term24*(01dV(cy,cx)-01dV(cy-1,cx))+...
Term25*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...
01dvV(cy-1,cx+1)+01dV(cy-1,cx-1))+Term26;

01dV(cy,cx)=NewV(cy,cx);

NewD(cy, cx)=Term20*01dD(cy,cx)+...
Term21*(01dD(cy,cx+1)+01dD(cy,cx-1))+...

110



Term22*(01dD(cy,cx+1)-01dD(cy,cx))+...
Term23*(01dD(cy+1,cx)+01dD(cy-1,cx))+...
Term24*(01dD(cy,cx)-01dD(cy-1,cx))+...
Term25*(01dD(cy+1,cx+1)-01dD(cy+1,cx-1)-...
01dD(cy-1,cx+1)+01dD(cy-1,cx-1));

01dD(cy, cx)=NewD(cy,cx);

NewC(cy, cx)=max(0®,NewA(cy)-01dV(cy,cx)-01dD(cy,cx));

01dC(cy, cx)=NewC(cy,cx);

NewI(cy,cx)=Term20*01dI(cy,cx)+...
Term21*(01dI(cy,cx+1)+01dI(cy,cx-1))+...
Term22*(01dI(cy,cx+1)-01dI(cy,cx))+...
Term23*(01dI(cy+1,cx)+01dI(cy-1,cx))+...
Term24+*(01dI(cy,cx)-01dI(cy-1,cx))+...
Term25*(01dI(cy+1,cx+1)-01dI(cy+1,cx-1)-...
01dI(cy-1,cx+1)+01dI(cy-1,cx-1));

01dI(cy,cx)=NewI(cy,cx);

state=2;

cx_first=max(cx,cx_first);

cy_first=min(cy,cy_first);

else

Term20=1- (H(cx) "2) *(InputData(8) "2)*...
(InputData(10) "2)*(x(cx) "4)*(s/(xinc"2))-...
R(cy) *(InputData(5) "2)*(InputData(9) "2)*...
(y(cy)"4)*(s/(yinc"2))-R(cy)*s;

Term21=0.5*(H(cx) "2)*(InputData(8) "2)*...
(InputData(10) "2)*(x(cx) "4)*(s/(xinc"2));

Term22=C(H(cx) "2) *(InputData(8) "2)*...
(InputData(10) "2)*(x(cx) "3))*(s/xinc);

Term23=0.5*R(cy) * (InputData(5)"2)*...
(InputData(9)"2)*(y(cy) "4)*(s/(yinc"2));

Term24=R(cy)* (InputData(8) "2) *(InputData(9) "2)*...
(y(cy)"3)*(s/yinc);

Term25=InputData(11)*H(cx)*sqrt(R(cy))*...
InputData(8) *InputData(5)*InputData(9)*...
InputData(10)*(x(cx) " 2)*(y(cy)"2)*...
(s/(4*xinc*yinc));

Term26=- (1+InputData(12))*InputData(14)*0B(cn) *s+...
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R(cy) *TD*s;

NewV(cy, cx)=Term20*01dV(cy,cx)+...
Term21*(01dV(cy,cx+1)+01dV(cy,cx-1))+...
Term22*(01dV(cy,cx+1)-01dV(cy,cx))+...
Term23*(01dV(cy+1,cx)+01dV(cy-1,cx))+...
Term24*(01dV(cy,cx)-01dV(cy-1,cx))+...
Term25*(01dV(cy+1,cx+1)-01dV(cy+1,cx-1)-...
01dv(cy-1,cx+1)+01dV(cy-1,cx-1))+Term26;

01dV(cy,cx)=NewV(cy,cx);

NewD(cy,cx)=0;

01dD(cy, cx)=NewD(cy,cx);

NewC(cy, cx)=max(0,NewA(cy)-01dV(cy,cx)-01dD(cy,cx));

01dC(cy, cx)=NewC(cy,cx);

NewI(cy,cx)=0;

01dI(cy,cx)=NewI(cy,cx);

state=2;

end

01dA(cy)=NewA(cy);
end

end

if cy_first<=cymax
for cy=cy_first:cymax-1
01dv(cy,cxmin)=TD;
01dC(cy, cxmin)=max (®,NewA(cy)-01dV(cy,cxmin)-...
01dD(cy,cxmin));
end

end

if cx_first>cxmin
for cx=cxmin:cx_first
01dV(cymax,cx)=TD;
01dD(cymax,cx)=0;
01dC(cymax, cx)=max(0,NewA(cymax)-01dV(cymax,cx)-...
0ldD(cymax,cx));
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01dI(cymax,cx)=0;
end
end
0l1dA(cymin)=NewA(cymin);
01dA(cymax)=NewA(cymax) ;
end

end
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