
  

MULTIOBJECTIVE HUB LOCATION PROBLEM 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF  
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 

BY 
 
 
 
 

ARAS BARUTÇUOĞLU 
 
 

 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

INDUSTRIAL ENGINEERING  
 
 
 
 
 
 

JULY 2009 



  

 
Approval of the thesis: 

MULTIOBJECTIVE HUB LOCATION PROBLEM 
 
 
 
 

submitted by ARAS BARUTÇUOĞLU in partial fulfillment of the 
requirements for the degree of Master of Science in Industrial Engineering 
Department, Middle East Technical University by, 
 
 
Prof. Dr. Canan Özgen                  _______________ 
Dean, Graduate School of Natural and Applied Sciences 
 
Prof. Dr. Nur Evin Özdemirel       _______________ 
Head of Department, Industrial Engineering 
 
Prof. Dr. Murat Köksalan        _______________ 
Supervisor, Industrial Engineering Dept., METU 
 
 
Examining Committee Members: 
 
 
Asst. Prof. Müge Avşar        _______________ 
Industrial Engineering Dept, METU  
 
Prof. Dr. Murat Köksalan        _______________ 
Industrial Engineering Dept, METU  
 
Prof. Dr. Sencer Yeralan        _______________ 
Agricultural and Biological Engineering, University of Florida  
 
Asst. Prof. İsmail Bakal        _______________ 
Industrial Engineering Dept, METU  
 
Asst. Prof. Seçil Savaşaneril        _______________ 
Industrial Engineering Dept, METU  
 
       

Date:     _______________
  



 

iii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I hereby declare that all information in this document has been obtained 
and presented in accordance with academic rules and ethical conduct. I 
also declare that, as required by these rules and conduct, I have fully cited 
and referenced all material and results that are not original to this work. 
 
 
 

        Name, Last name : Aras Barutçuoğlu 
 
 
                                                                   Signature : 
 

 



 

iv 

ABSTRACT 

MULTIOBJECTIVE HUB LOCATION PROBLEM 
 
 
 
 

Barutçuoğlu, Aras 

M.S. Department of Industrial Engineering 

Supervisor: Prof. Dr. Murat Köksalan 

 

July 2009, 80 pages 

 

In this study, we propose a two-phase solution approach for approximating the 

efficient frontier of a bicriteria hub location problem. We develop an 

evolutionary algorithm to locate the hubs on the network as the first phase. In 

the second phase, we develop a bounding procedure based on dominance 

relations and using the determined bounds, we solve the allocation subproblem 

for each located hub set. The two-phase approach is tested on the Australian 

Post data set and it is observed that our approach approximates the entire 

efficient frontier well. In addition, we suggest an interactive procedure to find 

the solutions that are in the decision maker’s preferred region of the solution 

space. In this procedure, we progressively incorporate the preferences of the 

decision maker and direct the search towards the preferred regions. Based on 

some computational experiments, it is observed that the interactive procedure 

converges to the preferred regions. 

 

 

 

 

Keywords: Multiobjective Evolutionary Algorithms, Hub Location, 

Multiobjective Hub Location  
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ÖZ 
 

ÇOK AMAÇLI MERKEZ ÜSSÜ YER SEÇİMİ PROBLEMİ 

 

 
 
 

Barutçuoğlu, Aras 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Murat Köksalan 

 

Temmuz 2009, 80 Sayfa 

 

 
Bu çalışmada iki amaçlı merkez üssü yer seçimi probleminin etkin yüzeyine 

yaklaşmayı amaçlayan iki aşamalı bir çözüm yaklaşımı önerilmiştir. Birinci 

aşamada merkez üslerinin ağ üzerindeki yerlerini belirlemek için bir evrimci 

algoritma geliştirilmiştir. İkinci aşamada ise, baskınlık ilişkilerine dayalı bir 

sınırlama prosedürü geliştirilmiş ve yerleri belirlenen merkez üslerinin atama 

alt problemleri belirlenen sınırlara göre çözdürülmüştür. İki aşamalı yaklaşım 

Avusturalya Postası verileriyle denenmiş ve yaklaşımın etkin yüzeylere 

başarıyla yaklaştığı görülmüştür. Buna ek olarak, karar vericinin ilgilendiği 

alanlardaki çözümleri bulmak için etkileşimli bir prosedür önerilmiştir. Bu 

prosedürde, karar vericinin tercihleri kademeli olarak kullanılmakta ve arama 

ilgilenilen alanlara doğru yönlendirilmektedir. Yapılan bazı testler sonucunda, 

etkileşimli prosedürün karar vericinin ilgilendiği alanlara yakınsadığı 

gözlenmiştir. 

 
 
 
 
 
 

Anahtar Kelimeler: Çok Amaçlı Evrimci Algoritmalar, Merkez Üssü Yer 

Seçimi, Çok Amaçlı Merkez Üssü Yer Seçimi  
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CHAPTER 1 

INTRODUCTION 

Hubs are central facilities that act as consolidation, sorting and switching 

points in many-to-many distribution systems, where flows of mail, passenger, 

or information are directed from origins to destinations. The set of hubs that are 

located on the network is called hub set. Hub networks offer economies of 

scale via concentration of flows between fully-interconnected hub facilities in 

the hub set, eliminating the need for establishing a direct link between each 

origin-destination pair. Concentration of flow on a small number of hubs is 

enabled with larger, faster and high capacity transportation media available in 

inter-hub transfers. In hub networks, flows of origins (collection flows) are first 

consolidated at the hubs assigned to these origins, then the flows are directed to 

hubs assigned to destinations of these flows (transfer flows), and lastly they are 

distributed to the destinations (distribution flows). Thus, all flows have to be 

directed via either one hub or two hubs (depending on the identicalness of the 

two hubs assigned to origin and destination points), not allowing any direct 

link between non-hub nodes in the network. 

The two main decisions in hub location problems (HLP) are concerned with 

locating the hubs on the network (location subproblem) and allocating non-hub 

nodes to the located hubs (allocation subproblem). However, these two 

subproblems are not independent since the two decisions heavily interact with 

each other when designing a hub network. This interaction adds more difficulty 

to the combinatorial nature of HLPs.  

HLPs have many applications in businesses such as postal/cargo delivery 

systems, air transportation, telecommunication systems, and emergency 

services (Ebery et al., 2000). In postal/cargo delivery systems, the speed of 

delivery is at least as important as the cost of delivery (Tan and Kara, 2007). 

Thus, time-efficiency should also be considered as another criterion besides the 



2 

 

traditional total cost minimization objective in hub network design of these 

systems. In these systems, sorting of the incoming mail from non-hub nodes to 

hub nodes is the main time consuming operation that is done at hub facilities 

and hence, this operation accounts for the main capacity restriction at hubs 

(Ernst and Krishnamoorthy, 1999). Then, designing the network considering 

the total time spent for sorting operation besides total cost minimization would 

yield promising results for postal/cargo delivery systems.   

In this study, we consider a bicriteria hub location problem for a postal/cargo 

delivery system. The first objective is the minimization of the total cost to 

serve the network (total transportation cost and fixed hubbing cost) and the 

second objective is the minimization of the total time to process the flows at 

hubs due to sorting operations as in Costa et al. (2008). We assume that non-

hub nodes can only be assigned to a single hub and the number of hubs to be 

opened is a decision variable to be determined using fixed costs of opening a 

hub. Different than Costa et al. (2008), we try to approximate the entire set of 

efficient solutions for relatively more difficult problem instances. We propose 

an evolutionary algorithm that locates the hubs on the network using 

representative allocation structures of each hub set similar to Soylu and 

Köksalan (2006). Then for each located hub set, we find an efficient way to 

solve the allocation problem to avoid overlaps in generating nondominated 

solutions. We solve the allocation subproblem with Cplex using bounds 

determined based on dominance relationships. 

In Chapter 2, we review the related literature. In Chapter 3, we give the 

definition and the mathematical formulation of the problem. In Chapter 4, we 

give the solution approach, which tries to approximate the entire efficient 

frontier. In Chapter 5, we propose an interactive procedure to converge to the 

preferred region of the decision maker. Lastly, we give the conclusions and the 

future research directions in Chapter 6.    
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CHAPTER 2 

LITERATURE REVIEW 

HLPs have been the focus of many researchers because there are many 

applications of these problems to distribution networks and implementable 

results can be obtained, which promise economies of scale via inter-hub 

transfers. HLPs can be categorized into two main headings with respect to 

allocation restrictions. Single allocation problems limit assignment of a non-

hub node only to one hub, whereas multiple allocation problems do not, so that 

each non-hub node can be assigned to more than one hub. Another 

classification of HLPs is done according to the existence of capacity 

restrictions. There can be capacities on the flows that flow through a hub or on 

the links (arcs) in the hub network. In addition, the number of hubs to be 

opened (p) can be known in advance -making the problem a p-hub location 

problem- or not. If p is not known a priori, then the solution procedure 

determines how many hubs to open using fixed costs of opening a hub without 

constraining the number of hubs to any predetermined number. A recent and 

comprehensive literature review on network hub location problems (Alumur 

and Kara, 2008) gives different types of HLPs and discusses the salient issues 

considered when solving these problems.  

2.1 Single Objective HLPs 

O’Kelly (1987) is the first to give a mathematical formulation of an HLP. He 

introduced a quadratic integer programming formulation of the single 

allocation p-hub median problem that tries to minimize the total transportation 

cost. In this study, he also provided the Civil Aeronautics Board (CAB) data 

set, which is used by nearly all of the researchers who studied HLPs (Alumur 

and Kara, 2008).  
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O’Kelly (1992) introduced the uncapacitated single allocation hub location 

problem (USAHLP), where number of hubs to be opened is a decision variable. 

He formulated the problem as a quadratic integer program and used fixed costs 

for hub openings. Then Campbell (1994) made a linearization of this 

formulation, which happened to be the first linear programming formulation 

for USAHLP. Campbell (1994) also provided the capacitated version of this 

problem with additional capacity constraints on the total flow that is directed 

through hubs. 

An efficient mixed integer linear programming formulation of the capacitated 

single allocation hub location problem (CSAHLP) is presented by Ernst and 

Krishnamoorthy (1999). Their formulation is based on the idea formerly used 

in the p-hub median formulations of the same authors. This formulation 

handles the inter-hub transfers as multi-commodity flows and requires fewer 

variables and constraints than the one suggested by Campbell (1994). 

Moreover, the authors change the capacity constraints such that hubs are 

capacitated only in terms of the collection flows, that is, the flows from non-

hub nodes to hub nodes. They offer two heuristics based on simulated 

annealing (SA) and random descent (RDH) and test these approaches on the 

Australian Post (AP) data set, consisting of instances up to 200 nodes.  

Labbe et al. (2005) consider the single assignment hub location problems with 

fixed capacities on the amount of traffic that flows through hubs in 

telecommunication networks. The authors make a polyhedral analysis of the 

problem and define some valid inequalities. They also develop a branch and 

cut algorithm based on their findings. 

Randall (2008) proposes an ant colony optimization algorithm to solve the 

CSAHLP. He develops four modeling variations and conducts computational 

experiments on the AP data set with up to 50 nodes. He obtains the optimal 

solutions in almost all of the runs within short computation times. 
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Chen (2008) suggests an effective heuristic for the CSAHLP. The heuristic 

performs in three levels. First, the number of hubs to be opened, p, is 

determined using upper bounds on p. Second, p hubs having the highest 

capacity are located on the network and lastly, the hub locations are improved 

by the so called restricted single location exchange procedure. He makes the 

experiments using the AP data set with up to 200 nodes and reports that the 

proposed heuristic outperforms the SA method of Ernst and Krishnamoorthy 

(1999) in 100 and 200 node problem instances.  

2.2 Evolutionary Algorithms for HLPs 

Having been used to solve numerous combinatorial optimization problems, 

evolutionary algorithms are also employed as a solution approach to HLPs. 

Abdinnour-Helm and Venkataramanan (1998) is one of the earliest studies that 

provide an evolutionary algorithm for an HLP. The authors solve the single 

allocation uncapacitated hub location problem with fixed costs via a genetic 

algorithm (GA) and find near-optimal solutions quickly and efficiently. 

Another GA is proposed by Abdinnour-Helm (1998) combined with a tabu 

search heuristic (GATS) for the same problem. She uses the GA to determine 

the number and location of the hubs, then she assigns non-hub nodes to its 

nearest hub to construct a starting solution to tabu search.  

Topcuoglu et al. (2005) is another study that proposes a GA to solve the 

uncapacitated single allocation hub location problem. In the GA, each 

individual has a hub array and an assign array both of size n, that is, number of 

nodes in the network. Element j of the hub array takes a value of 1 or 0, 

indicating either thj node is a hub or not. On the other hand, the thj element of 

the assign array takes value k if this node is assigned to hub k, and k j=  holds 

if node j is a hub. They provide a procedure to generate the initial population, 

which suggests locating the nodes that have the highest total flow as hubs, and 

assignment of non-hub nodes to the nearest hubs. In our study, we also make 

use of a variation of their procedure to generate the initial population. The 
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authors report that their GA outperforms GATS heuristic of Abdinnour-Helm 

(1998). 

Cunha and Silva (2007) also propose a GA that is combined with a SA 

heuristic which outperforms the ones proposed in Abdinnour-Helm (1998) and 

Abdinnour-Helm and Venkataramanan (1998). However, they do not compare 

their hybrid heuristic with the GA of Topcuoglu et al. (2005). 

2.3 Multiobjective HLPs 

Almost all of the literature on HLPs considers a single objective, except for 

several studies. One study that considers multiple objectives in an HLP is due 

to Çamlar (2005). He considers the uncapacitated single assignment hub 

location problem without fixed charges for opening a hub. The objectives are 

to minimize the overall network cost and to minimize the maximum delivery 

time between origin/destination pairs. To find good solutions regarding both 

objectives, he uses two well known Multi-objective Evolutionary Algorithms 

(MOEA), namely SPEA2 (Zitzler et al., 2002) and NSGA-II (Deb et al., 2002).  

Another study that respects multiple objectives in HLPs is Soylu and Köksalan 

(2006). In this study, two uncapacitated multiple allocation p-hub median 

problems are considered. In the first problem, total transportation cost 

minimization (p-hub median) is the first objective and total collection and 

distribution cost minimization (p-median) is the second objective. In the 

second problem, they consider minimization of maximum delay over all hubs 

as the second objective in addition to the first objective in the first problem. 

Here, delay for a hub refers to demand (collection flow to the hub)/capacity 

ratio for that hub. To solve the problems, they propose the Favorable Weights 

Evolutionary Algorithm (FWEA). The idea in this algorithm is to make each 

solution compete with the others through their relative strengths. Relative 

strength of a solution is defined by measuring the closeness of the solution 

(relative to others) to an ideal point in its favorite direction. This direction is 
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defined by the favorable weights of the solution that minimize the weighted 

Tchebycheff distance ( L∞  norm) to the ideal point. Moreover, eliminating the 

need for an explicit diversity preserving operator, nearest neighbor information 

is also added to the relative strength of solutions. The algorithm also uses the 

nondominated sorting concept in NSGA-II.  

Costa et al. (2008) propose two interactive solution approaches for two 

bicriteria single allocation hub location problems (BSAHLP). In the first 

problem, they convert CSAHLP into BSAHLP1 by treating the hard capacity 

constraints as a soft constraint via taking it to the objective. In addition to the 

total cost minimization objective (including fixed hubbing costs), they try to 

minimize the time to process total collection flow (service time) entering a hub 

since these flows account for the capacity usage due to sorting operation. In the 

second problem, with the same first objective, they try to minimize the 

maximum service time spent at any hub. The authors test their approaches on 

the AP data set. 
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CHAPTER 3 

PROBLEM DEFINITION 

Recall that we consider a bicriteria hub location problem for a postal/cargo 

delivery system. One of the objectives is the minimization of the total cost, 

which consists of total transportation cost and fixed hubbing cost and the other 

objective is the minimization of the total time to process the flows at hubs due 

to sorting operations. We assume that non-hub nodes can be assigned to a 

single hub and the number of hubs to be opened is not known a priori. The 

problem can be regarded as a combination of two subproblems: location of 

hubs on the network and allocation of the located hubs to non-hub nodes.    

In this chapter, we first state the motivation for the study, then define the 

problem, and finally give the mathematical formulation of the problem. 

3.1 Motivation 

When making location and allocation decisions in hub location problems, an 

important consideration is the capacity restriction on the hubs. For postal 

service applications, these restrictions are due to the processing times of the 

flows directed from non-hub nodes to hub nodes. There are similar capacity 

restrictions in other systems. Sorting of cargos/packages is the major activity 

that constitute the flow processing times (service times) at hubs of postal 

delivery systems. (Alumur and Kara (2008)). Thus, sorting capacity of a hub 

determines the maximum number of cargos/packages that can be directed from 

non-hub nodes to that hub in a day. 

Until recent years, the common approach has been to solve the Capacitated 

Single Allocation Hub Location Problem (CSAHLP) using hard capacity 

constraints (see Campbell 1994, Ernst and Krishnamoorthy 1999, Labbé et al. 
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2005). However, the hub capacities may be flexible and it may be possible, 

although undesirable, to use larger capacities. In real life applications, there is 

the possibility of excess utilization of hubs via overtime of workers and the 

machinery. A different approach is suggested in Costa et al. (2008) that points 

out the possible benefits of treating the capacity constraint as a soft constraint. 

They regard the capacity as the second objective that measures the time hubs 

take to process collected flows in addition to the usual cost minimization 

objective. They propose two interactive procedures to converge to the preferred 

region of the decision maker (DM) in the criterion space. First procedure uses 

the idea of minimizing the weighted sum of objective functions, whereas the 

second procedure employs the minimization of the Tchebycheff distance to a 

reference point. In both procedures, they iteratively find new nondominated 

solutions and ask the DM for the reservation and reference points to clarify the 

search direction and continue the procedure until s/he is satisfied with the 

results.  

Our study differs from Costa et al. (2008) in the sense that we try to 

approximate the entire set of efficient solutions for the problem. We use an 

evolutionary algorithm that locates the hubs on the network. Then for each 

located hub set, we find an efficient way to solve the allocation problem to 

avoid overlaps in generating nondominated solutions. Moreover, we generate 

problem instances having more efficient solutions from the AP data set. We 

also propose a different interactive procedure to converge to the preferred 

region of the decision maker. 

By handling the CSAHLP in multi-objective context, compared to the optimal 

solution obtained from capacitated single objective version of the problem, we 

may have the opportunity to find solutions that are far better in cost objective at 

the expense of a little excess utilization of the hubs regarding their capacity. 

Thus, with this approach, we can highlight the improvement potentials and 

provide more information as opposed to the common approach for solving the 

CSAHLP. 
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3.2 Definitions 

In this study, we address the Bi-criteria Single Allocation Hub Location 

Problem (BSAHLP). Minimization of total cost is the first objective and 

minimization of flow process times summed over all hubs is the second 

objective. These are the same two objectives considered in BSAHLP-1 of 

Costa et al. (2008). 

In combinatorial optimization problems with multiple criteria, the optimality of 

any solution is difficult to state since it is hardly possible to find a unique 

solution that gives the best criterion values in all of the conflicting criteria. The 

following definitions are given to clarify the nature of combinatorial 

optimization problems with multiple criteria. These problems can be 

formulated as: 

{ }1 2"Min" ( ), ( ),..., ( )

subject to

kz x z x z x

x X∈

                                                                         (3.1)                                                              

where ( )
j

z x denotes the jth objective function value corresponding to the 

decision variable vector x , X  is the feasible solution space, and k (≥2) is the 

number of objectives. If there exists a criterion vector ( ')
j

z x  such that 

( ') ( )
j j

z x z x≤  for j=1,2,…,k and ( ') ( )
j j

z x z x<  holds for at least one j, then 

( ')
j

z x  dominates ( )
j

z x . If no x’ exists satisfying these conditions, then ( )
j

z x  

is a nondominated solution and x is an efficient solution. Provided that 

( ') ( )
j j

z x z x<  holds for all j, then ( ')
j

z x  strongly dominates ( )
j

z x . If there 

does not exist any solution x’ such that ( ')
j

z x  strongly dominates ( )
j

z x , then 

the criterion vector ( )z x  is said to be weakly nondominated, and the decision 

vector x is said to be a weakly efficient solution. Hence, there may be 

dominated solutions as well as nondominated solutions in the set of weakly 

nondominated solutions.  
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All nondominated solutions of a problem form the Pareto-optimal (efficient) 

frontier for that problem. Ideal point ( **z ) is a vector of size k (i.e., ** k
z ∈ℜ ),   

which is obtained by combining the optimal objective function values of all 

criteria. Nadir point, on the other hand, is a vector again of size k, which is 

obtained by the combination of the worst objective function values of each 

criterion j among the nondominated solutions. Ideal and nadir point vectors and 

the efficient frontier are illustrated in Figure 3.1. 

 

 

 
 

Figure 3.1 Illustration of ideal and nadir points  

 

Lq-Metrics 

Metrics are used for measuring the distance between two points x and y in the 

space. Lq-metric measures the distance between x and y as follows:   

 Minimize Z2 

 Minimize Z1 

 Nadir Point 

 

Ideal Point 

Efficient Frontier 
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1

1

k

j j

j

qq

q
x y x y

=

 
− = − 

  
∑                                      (3.2) 

A weighted Lq-metric is computed as follows: 

                                      

1

1

( )
k

w

j j jq
j

q
qx y w x y

=

 
− = − 

  
∑                              (3.3) 

where 0jw ≥  for all j and  
1

1
k

j

j

w
=

=∑ . 

3.3 The Problem 

On the network, we have a set of n demand points that act as origin/destination 

points, which also exhaust the possible hub location alternatives, assuring that 

no hub can be located at any point other than these n points. There is flow 

between each origin-destination pair, all of which needs to be directed through 

the located hub nodes. When hubs are allowed to interchange the flows of 

demand nodes, there is a potential of decrease in transportation costs due to 

economies of scale. According to Campbell (1996), the cost of transportation 

using hubs is less than it is with direct transportation between each pair of non-

hub nodes, since it reduces the number of links and thus fixed costs of 

establishing a system allowing a smaller fleet of vehicles. Besides, the 

availability of specialized and high capacity transportation facilities (i.e., trucks, 

airplanes) motivates companies to use hubs in many-to-many distribution 

systems to enjoy economies of scale through inter-hub transfers. An example 

illustration of a hub network is given in Figure 3.2. The thick lines depict the 

concentrated flows between hub nodes (transfer flows), whereas the thin ones 

depict collection and distribution flows from non-hub nodes to hub nodes and 

from hub nodes to non-hub nodes, respectively. These advantages all 
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contribute to the need for solving hub location problems for the practitioners of 

the problem.  

The problem in this study is to locate the hub(s) in the network such that the 

total cost and the total flow process time objectives are minimized. The number 

of hubs to be opened is not known a priori. Thus, the model determines that 

number with respect to fixed costs of opening hubs. Fixed costs incurred for 

opening hubs added to total transportation cost defines the total cost for the 

problem. Total flow process time represents the service times spent at hubs to 

sort the flows collected from non-hub nodes. Since the problem is of single 

allocation type, any non-hub node is assumed to be assigned to only one hub 

node and multiple assignments are only possible for hub nodes.   

 

 

 
Figure 3.2 Hub network illustration 
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Mathematical Formulation 

We give the mathematical formulation with hard capacity constraints first, and 

then the bi-objective model based on Costa et al.’s (2008) formulation, each 

using the notation of Ernst and Krishnamoorthy (1999). 

The assumptions of the model are stated below. 

- All nodes are fully interconnected, so that a direct link between any two 

demand points can be exercised. 

- There is capacity on the hubs that restricts the total amount of flow that 

can be collected from the non-hub nodes. 

- The inter-hub transfers are discounted by a factor that is between zero 

and one.  

- A non-hub node can only be assigned to a single hub node. 

 

Sets 

i, j, k, l ∈  N,  

where N is the set of nodes in the network and  N = {1, 2, …, n) 

 

Parameters 

Fk: fixed cost of opening a hub at node k 

Γk: capacity of hub k on the total amount of collected flow  

α: coefficient of the transfer cost between any two hubs (per unit flow)  

χ : coefficient of the collection cost from any non-hub node to any hub node 

(per unit flow) 

δ : coefficient of the distribution cost from any hub node to any non-hub node 

(per unit flow) 

dij: distance between nodes i and j 
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Wij: total flow from location i to location j  

Oi: total flow originating from node i 

Di: total flow destined to node i 

(Oi = ∑
j

ijW  and Di =∑
j

jiW ) 

 

Decision Variables 

Zik: takes value 1 if ith node is assigned to hub at node k, 0 o/w  

Yi
kl: total amount of flow routed from location i (origin) through hubs k and l  

 

CSAHLP:  

 

Min  ( )ik ik i i

i N k N

d Z O Dχ δ
∈ ∈

+∑∑ + i

kl kl

i N k N l N

d Yα
∈ ∈ ∈
∑∑∑ + k kk

k N

F Z
∈
∑                       

 

s.t. 

1ik

k N

Z
∈

=∑       i = 1,…,n                                                                                 (3.4) 

kkik ZZ ≤       i = 1,…,n   k = 1,…,n                                                               (3.5) 

i ik k kk

i N

O Z Z
∈

≤ Γ∑       k = 1,…,n                                                        (3.6) 

jk

j

ijiki

l

i

lk

l

i

kl ZWZOYY ∑∑∑ −=−     i = 1,…,n   k = 1,…,n                          (3.7) 

}1,0{∈ikZ  1,..., 1,...,i n k n= =                                                               (3.8)                                    

Y
i
kl ≥ 0    1,..., 1,..., 1,...,i n k n l n= = =                                                    (3.9) 

 

The objective function tries to minimize the total cost, which includes 

transportation costs and fixed costs of hubbing. Constraints (3.4) allocate each 

demand node to a single hub node. Constraints (3.5) ensure that the allocation 

is done to a node if there is a hub at that node. Constraints (3.6) are to ensure 

that collected flows that are directed to any hub cannot exceed that hub’s 

capacity. Constraints (3.7) are the divergence equations and relate flow 
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variables to binary variables. Constraints (3.8) are to assure the values of Zik 

variables to be either zero or one, and finally Constraints (3.9) assure the non-

negativity of Yi
kl variables.    

This formulation can be modified so that the capacity constraint is treated as a 

soft constraint rather than a hard constraint by regarding it as the second 

objective of the problem. The modified model as suggested in Costa et al. 

(2008) can be given as follows:   

 

Additional Parameters 

Tk: the time for hub k to process one unit of flow  

Pk: fixed time to initiate the service at hub k 

 

 

 

 

 

BSAHLP: 

Min ( ) i

ik ik i i kl kl k kk

i N k N i N k N l N k N

d Z O D d Y F Zχ δ α
∈ ∈ ∈ ∈ ∈ ∈

+ + +∑∑ ∑∑∑ ∑  

Min i k ik k kk

i N k N k N

O T Z P Z
∈ ∈ ∈

+∑ ∑ ∑   

s.t. 

(3.4), (3.5), (3.7), (3.8), and (3.9). 

The second objective measures the total service (flow process) time hubs spend 

to process collected flows. Note that the capacity of a hub is defined as the 

amount of collected flow the hub can process in CSAHLP, whereas in 

BSAHLP, it is defined as the time the hub takes to process all the collected 

flow. To make this conversion, Costa et al. (2008) define parameters Tk and Pk, 
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which are generated as a function of the capacity values of hubs and assuming 

that hub capacities are expressed in units of flow for one day comprised of 

eight hours of work. The details of how these parameters are found will be 

given in the computational results part in Chapter 4.   

Uncapacitated Single Allocation Hub Location Problem (USAHLP) is proven 

to be NP-Hard in Kara and Tansel (1998). Moreover, Stanimirović (2008) 

states that CSAHLP is NP-Complete.  
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CHAPTER 4 

SOLUTION APPROACH 

Location and allocation decisions are the two components that need to be 

considered together to solve the hub location problems. The main reason is that 

to locate the hubs, we need to evaluate the allocation decisions, which makes 

location decisions strictly based on the allocation decisions. This adds to the 

complexity of these problems. Research shows that even with fixed hub 

locations and a single objective, the allocation subproblem is difficult (Alumur 

and Kara, 2008). In our case, we try to solve a biobjective problem which does 

not have a single optimal solution. To overcome the difficulty, we suggest a 

two-phase solution approach to BSAHLP. In the first phase, the location of 

hubs, i.e., hub sets, are determined with an evolutionary algorithm heuristically. 

Then in the second phase, for each fixed hub set, we solve the allocation 

subproblem to generate the efficient solutions of that hub set. To do this, we 

put one of the objectives to the constraint, solve the problem exactly with 

Cplex, find an efficient solution and continue changing the right hand side of 

the constraint iteratively to find all the efficient solutions. By doing so, we 

eliminate the difficulty of simultaneously making the location-allocation 

decisions and only solve the allocation subproblem under fixed hub locations, 

which significantly reduces the computation time.  

In this chapter, a solution approach is suggested and explained for the 

BSAHLP. This approach tries to generate all the solutions on the efficient 

frontier. One of the reasons for approximating all the efficient solutions is to 

present the decision maker a visual representation of the available solutions, 

which may be helpful to give an idea in some cases. Another reason is to test 

the performance of the evolutionary algorithm. 
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4.1 Solving the Location Subproblem 

In the first phase, to determine the set of located hubs for BSAHLP, we make 

modifications to FWEA_loc, an evolutionary algorithm developed in Soylu and 

Köksalan (2006) for solving bicriteria uncapacitated multiple allocation p-hub 

location problems. Our aim is to approximate the efficient hub sets (hub sets 

with at least one allocation which is an efficient solution) via the evolutionary 

algorithm in the first phase, and then using these hub sets, solve the allocation 

subproblem in the second phase. As a result of the two phases, we intend to 

approximate the efficient frontier of the problem.  

In general, evolutionary algorithms maintain a population of solutions instead 

of a single solution during the search. Each of these solutions is referred to as a 

member of the population. The evolutionary algorithm we suggest uses the idea 

in Köksalan (1999), which is to fit some Lq curves in the criteria space that 

intends to represent the possible locations of nondominated solutions. 

Borrowing this idea, we fit Lq curves to the hub sets to represent their efficient 

allocations in the criteria space. Since location decisions are highly dependent 

on the allocation decisions, if we can well represent the efficient allocations of 

the hub sets, then we can find desirable locations of the hubs on the network. 

The structure and details of our evolutionary algorithm are given below. 

Representation      

In the evolutionary algorithm, we use binary representation to represent the hub 

nodes. Each chromosome consists of an array of size n (number of nodes in the 

network), and each element of the array -corresponding to a node- takes value 

1 if the node is a hub node and takes value 0, otherwise. An example 

representation is shown in Figure 4.1 for n=10. Here nodes 3 and 7 are the hub 

nodes, and the remaining nodes are non-hub nodes 
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binary var. 0 0 1 0 0 0 1 0 0 0

node 1 2 3 4 5 6 7 8 9 10i
 

 
Figure 4.1 Binary representation of located hubs 

 
 

Representing the Allocations of Hub Sets via Lq Curves 

To represent the efficient allocations of hub sets, we use Lq curves. In this 

procedure, we fit Lq curves to hub sets as in Soylu and Köksalan (2006). We 

need two extreme efficient (or approximately efficient) points ( *
1z = 

( 1
lower

f , 2
upper

f ) and ( *
2z = ( 1

upper
f , 2

lower
f )  and a midpoint ( , )a b  of the hub set 

to fit an Lq curve. We develop heuristic procedures to find these points, which 

are discussed later in detail. After these three points are obtained, they are 

scaled to the interval [0, 1] with respect to hub set’s ideal point ( 1
lower

f , 

2
lower

f ) and nadir point ( 1
upper

f , 2
upper

f ) through the following equation: 

                        1 2

1 1 2 2

( ) ( )
( ', ') ,

( ) ( )

lower lower

upper lower upper lower

a f b f
a b

f f f f

 − − 
=  

− −  
                    (4.1)   

 

After scaling, we have three scaled points as illustrated in Figure 4.2 below, 

which is similar to the figure in Soylu (2007, p.60).  
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Figure 4.2 Demonstration of the Lq Curve 
 
 

The following equation can be used to define an Lq distance function: 

                                          (1 ') (1 ') 1q qa b− + − =                                           (4.2) 

We try to fit a curve that passes through a known point ( ', ')a b  on the curve. In 

doing so, the equation is solved by trial and error to find the value of q. The 

fitted Lq curve is used to symbolize the efficient frontier of the hub set. On the 

fitted curve, we take equally spaced hypothetical points to represent efficient 

allocations of the hub set as in Köksalan (1999). To take k+1 equally spaced 

points, the 90�  angle �* *
1 2( ) ' '( ) 'z y z  is divided into k equal angles iα , where 

iα = 90 /i k  for i=0,1,..,k. A point ( ' , ' )i ia b  at iα degree from *
2'( ) 'y z can be 

generated by 

                                   ' 1 sini i ia r α= −     and    ' 1 cosi i ib r α= −                    (4.3) 

( ', ')a b   

 *
1( ) ' (0,1)z =  

 *
2( ) ' (1,0)z =  

 ' (1,1)y =  

' (0,0)o =  

( ' , ' )i ia b   

iα  

ir

 Lq curve 
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where ri is the Euclidean distance from 'y  to ( ' , ' )i ia b . The normalized 

coordinates of these hypothetical points ( ' , ' )i ia b  should be backtransformed to 

the original range of criteria space so as to find ( , )i ia b . This can be done easily 

if we solve equation (4.1) for ai and bi.  

In Figure 4.3, we give an illustration of the fitted Lq curves and the 

representative points (circular points) taken for three efficient hub sets of an 

instance of the AP data set. This figure shows that the Lq distance functions 

represent the solutions well. 

After approximating the efficient frontier of a member’s hub set with 

hypothetical points on the Lq curve, we select one of these points 

deterministically and mark as member_ideal (MI), which is then used to 

represent the overall performance of the member. The MI is selected among 

the least dominated points of the member, where the degree of dominance is 

indicated by the front identification numbers (front IDs) assigned to points. The 

least dominated point of a member has the smallest front ID. The determination 

of front IDs is described under “Fitness of Members”. If there are more than 

one point of the member having the best front ID, then the point that has the 

minimum Tchebycheff distance to the ideal point is selected as the MI to break 

the tie. The fitness calculations and fitness value related functions operate on 

the representative MIs. 
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Figure 4.3 Illustration of solutions and fitted Lq curves for the AP data set. 

Fitness of Members 

In the proposed EA, the fitness assignment strategy in Soylu and Köksalan 

(2006) is used. According to this strategy, a raw-fitness value is assigned to 

members according to their relative strength over the other members in the 

population. Authors compute the relative strength ( )ix∆  of a member �x  over 

any other member i
x X∈  using weighted Tchebycheff distances, ( , )w xφ , of 

these members’ MIs to an ideal point by 

                                      � � �( ) ( , ) ( , )i i
x w x w xφ φ∆ = −                                         (4.4) 

where  

                                     { }*

1,2,...,
( , ) max ( ( ) )j j j

j k
w x w z x zφ

=
= −                           (4.5)            



24 

 

, X is the set of feasible solutions and *
jz  is an ideal point in objective j. 

Here the weight ( �w ) is the favorable weight of member �x , meaning that this 

weight minimizes the weighted Tchebycheff distance of �x  to the ideal point. 

Thereby, finding favorable weights of a member and using these weights to 

compare this member with another member help us find out if the latter 

member is better (closer to ideal point) with the direction that favors the former  

member. If it is not, this means the former member performs better in its 

favorite direction. With this approach we can have members contend with each 

other on the field they are good at, and assign raw-fitness values accordingly. 

We can find the favorable weights of a solution to minimize a weighted 

Tchebycheff distance function with the following closed form solution (Steuer, 

1986 p.425):   

1

**
** **

1

**

** **

1 1
( ) ( )

1

0

j

k

i i
ij j i i

j j

j j i i

w

if z z for all i
z z z z

if z z

if z z but i z z

−

=

  
  
  
  
 
 
 
 
  

≠
− −

= =

≠ ∃ ∋ =

∑

             (4.6) 

Here jz  is the thj objective function value of the ( thj  element of criterion 

vector of solution z) and **
jz  is an ideal point in criterion j. 

In other words, the relative strength of �x  over i
x shows how much member �x  

is closer to ideal point than member i
x  with its own favorable weights. Note 

that ( )ix∆  can take a negative value implying that even with favorable weights 

of �x , i
x  is the favored member considering the weighted Tchebycheff 

distances. The raw-fitness values of members are assigned with the following 

equation: 
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                                       �
minrawfitness( ) = (1 )x α α∆ + − ∆                            (4.7) 

Here ∆  denotes the average relative strength and is computed by 

( )
i

i

x X

x

X

∈

∆

∆ =

∑
 and min∆  is a worst case measure which can be found by 

{ }min min ( )
i

i

x X

x
∈

∆ = ∆ . The parameter α  defines the weights (importance) of 

average relative strength and minimum relative strength in determining the 

raw-fitness of the member. By means of the minimum strength measure, a 

point far from its neighbors will be favored simply by being promoted with a 

larger min∆ value, attempting to preserve diversity during the search of the EA.  

We also use the nondominated sorting based fitness assignment to adjust the 

raw fitness values of members as in FWEA_loc (Soylu and Köksalan, 2006). 

Nondominated sorting principle is first proposed by Goldberg (1989) and it has 

been used in some well known multi-objective evolutionary algorithms such as 

NSGA I-II (Srinivas and Deb, 1994, Deb et al., 2002). The idea in 

nondominated sorting is to put the nondominated members of the population 

on the first front (assign their front ID as 1), then temporarily take out these 

members and put the nondominated members in the remaining population on 

the second front and continue this classification until all members are assigned 

a front ID.  

After all members are classified onto a front, the raw-fitness values of 

members are adjusted in order not to allow a member in a worse front have a 

better fitness value than a member in a better front. To prevent this, the raw-

fitness values of the members in the first front are left as they are and the 

following adjustment is done for members in the remaining fronts: 

� { } { } �
_ 1 _

fitness( ) min fitness( ) max rawfitness( ) rawfitness( )
front j front jx X x X

x x x x ε
−∈ ∈

= − + −  
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where _front jX  denotes the set of solutions on front j, 2,3,...,j N=  and ε  is a 

small positive constant. This adjustment assures that the minimum fitness value 

on a better front is at least an amount ε  better than the maximum fitness value 

in a worse front.  

Scaling of Objectives 

As stated before, we use distance functions in the EA to assign fitness values to 

individuals. If we use the real criterion values for calculating the distances to 

the ideal point instead of scaled values, then we cannot escape favoring the 

objective having larger range. This is illustrated in Figure 4.4.  

     
 

Figure 4.4 A hypothetical example to illustrate scaling of objectives 

Suppose F1 is in the range (100000, 200000) and F2 is in range (1000000, 

2000000) and suppose we want to select the solution having the minimum 

weighted Tchebycheff distance to the ideal point (0, 0) using weights (0.5, 0.5). 

With using equal weights our intention is to make an unbiased selection (do not 
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favor either of the objectives for minimization) with respect to the two criteria. 

Using equation (4.5), the resulting distance values of S1, S2, and S3 are 

1000000, 750000, and 500000, respectively. So, our selection would be S3, 

which has the minimum value in the objective that has the larger range, namely 

F2. However, we would expect to select S2 under equal importance of criteria, 

since it tries to minimize both objectives. To remove such biases, we can scale 

down the objectives in range zero-one. Let  1 2( , )j j j
z z z=  be a solution in the 

objective space. The scaled values can be found as: 

                                      ( ) ' , 1, 2
( )

j lower
j i i

i upper lower
i i

z z
z i

z z

−
= =

−
                           (4.8) 

where ( , )lower upper
i iz z  defines the range for objective i. To find lower

iz , we can 

solve LP relaxation for objective i,  and for upper
iz , we can take the worst value 

in the initial population (Soylu and Köksalan, 2006).  After scaling the 

objectives, the weighted Tchebycheff distances for S1, S2, and S3 with the 

same weight set become 0.5, 0.25, and 0.5, respectively, thereby leading us to 

select the expected solution, which is S2. 

Initial Population 

We generate a predetermined number of chromosomes for the initial 

population. Recall that the members of our EA represent the location of hubs.  

Since number of hubs to be opened is unknown beforehand in BSAHLP, we 

first need to determine the number of hubs and then locate them. To generate 

the initial population, we apply the strategy suggested in Topçuoğlu et al. 

(2005) with the required modifications. For 75% of the initial population, the 

number of hubs is selected at random from the interval [ ]1,2,..., / 4n , n being 

the node size of the problem. The number of nodes for the remaining 25% of 

the initial population is selected from the interval [ ]/ 4,..., / 2n n , leading to 
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generation of chromosomes having more hubs. This strategy states that number 

of hubs of a member can be at most half of the node size n. 

What comes next is to divide the initial population into three portions and 

make hub location decisions differently in each of the portions. In the first 

portion, corresponding to three eights of the initial population, hubs are located 

so as to favor the total cost criterion. To do this, we sort the nodes in 

decreasing order of total flow of each node. Total flow for a node i is 

calculated by summing total flow that originates from node i and total flow that 

is destined to node i. Then for this portion, the nodes from the top two thirds of 

the sorted list are selected as hubs, starting with the node that has the highest 

total flow value. This selection rules gives priority to nodes that have higher 

total flow to become a hub, and by doing so, we have more chance to benefit 

economies of scale via the inter-hub transfer in favor of total cost objective.  

For the second portion, for another three eights of the initial population, hubs 

are located to favor the total flow process time objective. For selection of hubs, 

again a list of nodes is formed, this time in increasing order of Tk values of the 

nodes. Remember that Tk denotes the time node k (if selected as hub) takes to 

process one unit of flow. In the same manner as in first portion, nodes that 

reside in the top two thirds of the sorted list (starting with the lowest Tk value) 

are selected as hubs in favor of the total flow process time objective.  

In the last portion, consisting of the remaining two eights of the initial 

population, we assign the hubs on the chromosome totally randomly, that is, 

favoring neither of the objectives. When selecting the hub nodes, we do not 

allow any two chromosomes to appear in the initial population. The reason for 

this precaution is to initialize the EA with as many different hub sets as 

possible and not let any node be overrepresented when there are nodes not 

selected as hub even once in the initial population. Note that if any node does 

not exist in the initial population, we may never see that node as a hub during 

the search, since the search is mainly directed via crossover of chromosomes.       
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Crossover 

We apply single point crossover in the EA with probability 1. According to this 

procedure, a single random point is selected on the strings of the chromosomes 

and the parts on the same side (right side in our case) are interchanged between 

the two chromosomes as shown in Figure 4.5. 

 

Parent 1 0 1 0 0 0 0 0 0 0 1
 

Parent 2 1 0 0 0 0 1 0 0 0 0
 

 

Offspring 1 0 1 0 0 0 1 0 0 0 0

Offspring 2 1 0 0 0 0 0 0 0 0 1
 

 
Figure 4.5 An example crossover for n=10 

 

Note that there is the possibility of obtaining an offspring without a hub after 

the crossover operation, which is infeasible. In such a case, we discard the 

offspring that has no hubs to preserve feasibility of solutions.  

Mutation 

After the population starts to converge over as number of generations gets 

larger, only crossover itself becomes incapable of diversifying the search. At 

this point, mutating the offspring becomes more dominant at diversity 

Randomly Selected Point 
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preservation. In this study, for the mutation of offspring, the value of a 

randomly chosen gene on the offspring chromosome is changed to 1 if the 

value is 0 at then or it is changed to 0, otherwise. 

Selection 

In selection of parents for performing crossover, we apply binary tournament 

selection. In this method, two members of the population are selected at 

random and a tournament is played between them. The member with higher 

fitness becomes the first parent for crossover. Then again a couple of members 

are selected at random and the winner is promoted as the second parent unless 

it is the same member with the first parent (has the same hub set). If two 

parents are the same, a different couple is selected to play a tournament until 

the parents are distinct. The winners are then recombined for offspring 

generation.  

Insertion and Replacement   

We use the insertion strategy suggested in Köksalan and Phelps (2006). 

According to their suggestion, insertion of an offspring into the population is 

performed until a preset upper limit on population cardinality is reached and if 

the offspring is neither “duplicate” (in the decision space) nor “stillborn”. The 

“stillborn” status in our study applies to an offspring if it is dominated by any 

of the members in the worst frontier. The “duplicate” status, on the other hand, 

applies to offspring which has the same hub set with a member in the 

population. If the predetermined upper limit is reached and if the offspring is 

neither a “duplicate” nor a “stillborn”, it replaces a member on the worst 

frontier to keep the population size constant.  

We use steady-state replacement strategy; thereby we produce two offspring at 

each generation and replace each of them with a randomly selected member 

amongst the ones on the worst frontier.  
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Finding Upper and Lower Bounds (for Members) in the Criteria Space 

To be able to fit the Lq curves to members having more than one hub, we need 

three allocations (points) on the efficient frontier of these members as 

represented with empty circles in Figure 4.2. These points correspond to the 

extreme efficient (or almost efficient) solution in the first objective, the 

extreme efficient (or almost efficient) solution in the second objective, and a 

midpoint in between these two extremes. Below heuristic procedures are 

developed to find these points. Note that if the member has only one hub, we 

cannot fit an Lq curve. Thus, single hub members are represented by a single 

point in the criteria space.  

To find the minimum total flow process time (referred to as minservt hereby) 

allocation of a hub set, we use the following proposition to make the allocation 

decision.  

Proposition.  Given a set S of fixed hub locations of a member, assigning all 

the non-hub nodes to the hub having the smallest Tk value is an optimal 

solution to minimize total flow process time objective for that member. 

Proof.   Let [ ] [ ] [ ]1 1... ...
i i S

T T T T+   
≤ ≤ ≤ ≤ ≤  denote the list of times hubs take to 

process one unit of flow sorted in the increasing order and PT* denote the 

optimal value of the total flow process time objective. Assume that we assign 

all non-hub nodes to the hub in S having the smallest Tk value, namely [ ]1T . If 

we can show that assigning non-hub nodes to another hub i in S with larger unit 

flow processing time, such as replacing [ ]1T  with [ ]iT , cannot reduce PT* under 

constant total flow, then the optimality of PT* will be proven. Let PTnew be the 

new value of the total flow process time objective after replacement.         

PTnew ≤ PT* is true if and only if [ ] [ ]1
1 1 1 1

( )* ( )*
N N N N

ij iji
i j i j

W T W T
= = = =

≤∑∑ ∑∑  is true. 

Since ijW ≥ 0 for all i and for all j, and [ ]iT  ≥ [ ]1T , PT* ≤ PTnew. 
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This proves our proposition. 

Thus, the minservt allocation of the member can be found simply by assigning 

all non-hub nodes to the hub node with the smallest Tk value (minservt_hub) in 

the hub set of the member.  

The solution found above is inputted to the heuristic procedure as a starting 

solution to find the minimum total cost (referred to as mincost hereby) 

allocation. Since the number of hubs is not restricted in our problem, single 

hub members can also exist, which do not need any of the treatments suggested 

in the heuristic. Thus, there are two cases to be considered when finding the 

mincost allocation: 

Case 1.  Number of hubs of the member is equal to one. 

When this is the case, we only have one allocation possibility, thus, no need for 

calculation of mincost extreme since mincost and minservt allocations are the 

same for single hub solutions. 

Case 2.  Number of hubs of the member is more than one. 

Under this condition we have as many as N pp − allocation alternatives, where p 

is the number of fixed hub locations. To find the mincost allocation, for each 

non-hub node j, we first find the hub that is at minimum distance to node j, 

min_dist j , and then calculate a savings measure (Savings j ) for node j. This 

measure is an indicator to the expected improvement in total cost objective if 

node j were assigned to min_dist j  instead of minservt_hub assuming the two 

hubs are distinct. Savings for node j can be calculated as follows: 

                                 
minservt_hub min_dist

minservt_hubmin_dist

Savings
j

j

j jj
d d

T T

−
=

−
                             (4.9) 
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The numerator gives the difference of distances from node j to minservt_hub 

and from node j to its closest hub, showing how much closer node j will get to 

its hub if it its assignment is changed from minservt_hub to min_dist j . The 

larger this difference the more the possibility of reducing total transportation 

cost since non-hub to hub transfers have a bigger cost factor (see 4.1.13 for 

cost parameters). The denominator, on the other hand, gives the difference of 

unit flow processing times between min_dist j  and minservt_hub. This 

measure intends to indicate the potential of improvement in total cost objective 

with a unit sacrifice from the total flow process time objective if we change the 

assignment of a node j from the minservt_hub to min_dist j . Therefore, positive 

savings lead to changing of the assignments.  

After finding Savings j for each non-hub node j, savings are sorted in 

decreasing order. Starting with the biggest savings giving node and for all j 

such that Savings j >0, the assignments are changed from minservt_hub to 

min_dist j step by step until a non-improving step is encountered. Here, a non-

improving step refers to an assignment change that leads to an increase in total 

cost. At the end of improving steps, the solution we find becomes the mincost 

allocation for the member. Note that there is the possibility of obtaining no 

improvement in the first step. In that case, we regard the member as a single 

hub member and no Lq curve is fitted to such members. Another possibility is 

the existence of only one improving step. If this is the case, with two 

allocations at hand, we do not find a midpoint but join the two extremes with a 

straight line (take p = 1.0 in Lq equation).    

In processing the above heuristic, starting with the minservt allocation, we find 

a sequence of solutions until the mincost allocation is reached. This sequence 

of solutions is also used for finding a midpoint between the two extremes. The 

solution with least difference in scaled objective values (the one that minimizes 

weighted Tchebycheff distance to the ideal point (0, 0) with equal weights) is 

marked as the midpoint to be used in Lq curve fitting.  
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The Steps of the Evolutionary  Algorithm 

The parameters used in the algorithm are as follows: 

 

- PopSize1: cardinality of the initial population. 

- PopSize2: upper limit on the cardinality of the population. 

- pc: crossover probability 

- pm: mutation probability 

- Maxgens: maximum number of generations 

 

Below is the sketch of the algorithm: 

 

0.      Generate an initial population of size PopSize1. 

1.      For each member of the population, 

   1.1 Solve the allocation problem for each criterion and find extreme                                                        

efficient solutions (allocations). Also find another solution (a, b) of 

this member. 

   1.2  Scale the objectives. 

   1.3 Find an Lq distance function passing from the three points of the 

member found in Step 1.1. 

   1.4  Take k equally spaced representative points on the fitted Lq curve.  

   1.5  Determine the frontier of each point on the Lq curve.  

   1.6  Determine the member_ideal for each member. 

          For each MI in the initial population, 

   1.7  Compute the favorable weights and the raw-fitness scores. 

   1.8   Adjust the raw-fitness scores according to frontiers. 

2.       Select two parents according to the selection operator.  

3.    Apply crossover with probability pc to generate two offspring at each 

generation and apply mutation to the offspring with probability pm. 

4.      Check if the offspring is in “duplicate” status, discard the duplicate one.  

If both offspring are duplicates, then discard both and go to Step 9.  

5.       Repeat Steps 1.1-1.4. 
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6.      Check if the offspring is dominated by any of the member_ideals on the           

worst frontier (“stillborn”), discard the stillborn offspring. If both         

offspring are stillborn, then discard both and go to Step 9.   

7.     Insert the offspring one by one into the population until the population 

cardinality reaches PopSize2. Then, to keep the population size constant, 

replace the offspring with one of the members on the worst frontier. 

8.        Repeat Steps 1.5-1.8. 

9.    If Maxgens is not reached, go to Step 2, terminate the simulation, 

otherwise. 

4.2 Solving the Allocation Subproblem  

At the end of the simulation run, the set of members having front ID 1 in the 

final population corresponds to the set of efficient or approximately efficient  

hub sets for the problem. Having solved the location problem, the next step is 

to find the allocations of each of these hub sets to approximate the entire 

Pareto-optimal frontier of the problem. Note that solving the allocation 

problem for a hub set, we can find the efficient allocations (frontier) for that 

specific hub set. However, efficient allocations of a hub set may be inefficient 

in the presence of other hub sets’ efficient solutions. This is illustrated in 

Figure 4.6. Each of the three hub sets has its own efficient frontier consisting of 

their (locally) efficient allocations, and some of these locally efficient 

allocations are globally inefficient, which are represented with dashed lines.  

Knowing this fact, we can argue that solving the allocation problem for each 

hub set and finding all the locally efficient allocations would be ineffective in 

two senses. First, it needs too much computational effort to find all allocations 

for a given hub set. Second, some of these allocations will be inefficient in the 

global sense. To overcome these shortcomings, we propose a bounding 

procedure and try to find only the likely to be globally efficient allocations for 

each hub set. 
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Figure 4.6 Efficiency of hub sets’ allocations 
 

In the suggested procedure, we make use of the generated representative 

(hypothetical) points on the formerly fitted Lq curves for the hub sets. For an 

efficient hub set, using all efficient hub sets’ representative points, we find the 

dominated portions of the (locally) efficient frontier for that hub set. Then, we 

eliminate these portions, determine bounds, and solve the allocation problem 

for each hub set within the determined bounds. These bounds restrict the 

criteria space in an attempt to help us find only the allocations that are globally 

efficient.  

The details of the procedure are given using the following notation: 

 

- ( )H p :efficient hub set of the representative point p. 

- S : set of representative points sorted in decreasing order of 2F  values. 

- [ ]sp : representative point at sequence s  in list S . 

- ( ) iF
p : ith objective function value of representative point p. 

- a, b: the sequence indices of the two points compared in list S.  

 1F  

 2F  

 Hub Set 1 

 Hub Set 2 

 Hub Set 3 
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- _ ( )( ) i lower upperF
H p : the minimum (maximum) value of i

th objective on the 

efficient frontier of hub set H.  

- SIZE: number of nondominated representative points of all efficient hub sets. 

Before implementing the bounding procedure, we do some preprocessing to 

eliminate the representative points that are nondominated among the set of all 

representative points but that are dominated by the Lq curves of the efficient 

hub sets. The outline of elimination procedure is given below. 

 

1.      Set 0 and 1a b= = . Form a list S of representative points [ ]sp  that 

are nondominated among all [ ]sp  and sorted in decreasing order of 

2F  values. Set SIZE S= . 

2.        Set and 1a b b b= = + . 

3.      If b > SIZE, go to Step 6; otherwise, test if the hub sets of points 

[ ] anda bp p
  

 are the same. If [ ]( )aH p = ( )bH p
  

, return to Step 2; 

otherwise, go to Step 4. 

4.      Take horizontal projection of [ ]ap  onto the Lq curve of ( )bH p
  

. If 

there is an intersection point and 1F  value of the projection 

(intersection point) is less than [ ]
1F

ap , then eliminate [ ]ap and return 

to Step 2; otherwise, go to Step 5.     

      5.       Take vertical projection of bp
  

 onto the Lq curve of [ ]( )aH p . If there 

is an intersection point and 2F  value of the projection (intersection 

point) is less than 2F
bp
  

, eliminate bp
  

, set 1b b= + , and return to 

Step 3; otherwise, return to Step 2.  

      6.    End of elimination procedure. Update list S by taking out the 

eliminated points and form the list 'S . 
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After obtaining the updated list using the elimination procedure, we implement 

the steps below to determine the bounds on efficient hub sets. 

 

1.     Set 0s = . Use the updated list 'S  of points [ ]sp  obtained from the 

elimination procedure. Set 'SIZE S= . 

2.        Set s = s +1.   

3.        Test if the hub sets of the successive points are the same.  

            If [ ]( )sH p = [ ]1( )sH p + , return to Step 2; otherwise, continue. 

4.   Test if [ ] [ ] [ ]
_ _1 1 1

1( ) ( ) ( )lower upperF F F
s ssH p p H p+< < . If true, go             

to Step 5; otherwise, go to Step 6. 

5.  Find [ ]( )LB
sH p  by projecting [ ]1sp +  onto the Lq curve 

of [ ]( )sH p vertically.  The point of intersection gives [ ]( )LB
sH p  in 

2F .  

6.    Set [ ]1( )UB
sH p + = [ ]

2( )F
sp . If  1s +  < SIZE, return to Step 2;              

otherwise, end the procedure.  

 

A hypothetical example of the bounding procedure is illustrated in Figure 

4.7 below.  
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Figure 4.7 A hypothetical example for the bounding procedure 

 
 

Point 5 of Hub Set 1 is already dominated by points 8 and 9, thus it is discarded 

even before the preprocessing. The preprocessing part would eliminate points 6, 

4, and 10 since these points are not dominated by other representative points 

but are dominated by the fitted Lq curves. Eliminating these points is logical 

because they do not dominate any portion on the Lq curves, hence, they have 

no help in setting bounds on hub sets’ allocations. Next, we determine the 

bounds by performing the steps of the bounding procedure. After iterating the 

steps, we determine the following bounds on the hub sets (Figure 4.8): 
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Figure 4.8 Demonstration of the bounds determined 

 

 

- LB on Hub Set 1 (LB1) is the F2 value of the intersection point found 

by vertical projection of point 7 onto the Lq curve of this hub set.  

- UB on Hub Set 2 (UB2) is the F2 value of point 3. 

- LB on Hub Set 2 (LB2) is the F2 value of the intersection point found 

by vertical projection of point 11 onto the Lq curve of this hub set.  

- UB on Hub Set 3 (UB3) is the F2 value of point 9, which in this case 

does not bound allocations of this hub set. 

 

To test whether this procedure brings savings or not, we selected the problem 

instance 40TT_0.1FC (what the abbreviation stands for is described in section 

4.4) and did some computations. First, we ran the EA to find the efficient or 
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approximately efficient hub sets and found 71 such hub sets. Then, we tried to 

solve (with Cplex) the allocation problem for each of these hub sets without 

bounds. As expected, finding all allocations of hub sets consumed too much 

time. In fact, we could only find the allocations of 47 hub sets in 77.4 hours, 

and the model stopped running due to memory requirements. The number of 

allocations found corresponding to these hub sets was 25,562. However, the 

problem has 1135 efficient allocations in total, which points out that much of 

the allocations found are inefficient in the global sense. Finally, we used the 

bounding procedure and solved the allocation problem for each hub set within 

the determined bounds. As a result, we obtained 1549 allocations in about 2 

hours, and 903 of these allocations appeared to be globally efficient. Thus, 

based on the results, we concluded that the bounding procedure brings much 

savings.             

4.3 Performance Evaluation 

To evaluate the performance of our solution procedure, we generated the 

efficient frontier (ie., all efficient hub sets and their efficient allocations) using 

the constraintε − method suggested in Haimes et al. (1971). In this method, 

one of the objectives is regarded as a constraint and by parametrically 

restricting the value of this objective, the resulting single objective problem is 

solved repeatedly until all efficient solutions are obtained. The constrained 

objective is also augmented to the optimized objective with a sufficiently small 

positive constant (γ) in order to eliminate weakly nondominated but dominated 

solutions. The resulting augmented single objective model is as follows: 

constraint model:ε −   

 Min 1 2( ) . ( )f x f xγ+  

s.t. 

(3.4), (3.5), (3.7), (3.8), and (3.9) 
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2 ( )f x ε≤                                                                                                      (4.10) 

1( )f x = ( )ik ik i i

i N k N

d Z O Dχ δ
∈ ∈

+∑∑ + i

kl kl

i N k N l N

d Yα
∈ ∈ ∈
∑∑∑ + k kk

k N

F Z
∈
∑                (4.11) 

2 ( ) i k ik k kk

i N k N k N

f x O T Z P Z
∈ ∈ ∈

= +∑ ∑ ∑                                                              (4.12)  

ε  is the parameter that is used to set an upper bound on the second objective. 

We find ε  by subtracting a sufficiently small positive constant (c) - we took c 

as 0.1 in the experiments - from the second objective value of previously found 

efficient solution. Thus, ε  is not constant and takes a smaller value at each 

iteration.  Suppose that we first solve the problem without bounding 2 ( )f x . Let 

1 2( , )lower upper
z z z=  be the resulting optimal (extreme efficient) solution that 

minimizes 1( )f x . Then this gives the worst 2 ( )f x value, 2
upper

z , due to the 

confliction between the two objectives. Next, we solve the problem this time 

by setting 2
upperz cε = − . ε  in this case forces the model to find the adjacent 

efficient solution having smaller 2 ( )f x value through sacrificing from 

(worsening) the total cost. Using this method, we guarantee generation of all 

efficient allocations.  

For the evaluation of our two-phase approach, we used a performance indicator 

based on the Hypervolume metric (Zitzler and Thiele, 1998). This metric 

measures the volume of the objective space that is dominated by a set of 

solutions with respect to a reference point. An illustration of the Hypervolume 

(HV) measure is given in Figure 4.9. The shaded region shows the total volume 

dominated by the four inferior solutions on the figure. This volume would 

increase if we had more converging and diverse set of efficient solutions as 

represented by the points that are more distant to the reference point, W. We 

can select the reference point as the nadir point. Since we scale our objectives 

to range zero-one, we use W= (1, 1). To measure how close is our set of 

solutions S to the set of Pareto-optimal solutions P, we use HVR (Veldhuizen, 

1999), which is the ratio of HVs for the two sets as given below: 
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HV of S

HVR
HV of P

=                                             (4.13) 

Then, we want bigger values of HVR, which can be at most 1 in the ideal case.  

 

 
Figure 4.9 Hypervolume demonstration 

 
 

4.4 Computational Results 

We test our two-phase solution approach with the Australian Post (AP) data set, 

which is a commonly used data set by the hub location researchers (Alumur 

and Kara, 2008). This data set was first used in Ernst and Krishnamoorthy 

(1996). Different than the CAB data set, another commonly used data set on 

this field, the AP data set includes fixed hubbing costs and capacities for hubs, 

which is the reason why we prefer the AP data set. Another data set that has 

been recently brought into the literature is the Turkish PTT data set (TPDS), 

however, it does not involve the capacity information for hubs. All three data 

sets can be accessed via OR_Library, 

(http://people.brunel.ac.uk/~mastjjb/jeb/orlib/phubinfo.html). 

W 2F  

 1F   
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The AP data set consists of 200 nodes representing the postal districts in 

Sydney, Australia. Smaller-sized instances can be generated via a C code 

available in the OR_Library. In the data set, the mail flows are not symmetric 

( ij jiW W≠ ) and there is also flow within a city ( 0iiW ≠ ). The data set involves 

the coordinates of the districts and we used them to compute the Euclidean 

distances between each pair of districts. The costs per unit flow for collection, 

transfer, and distribution are 3, 0.75, and 2, respectively. Two types of fixed 

hubbing costs and capacities are present in the data set, namely tight (T) and 

loose (L). To compute parameters Tk and Pk to be able to build the second 

objective function, Costa et al. (2008) use the capacity values in Australian 

Post (AP) data set. For example, if a hub has a capacity value of 2500, they 

assume that 2500 mails/cargos can be sorted in a day comprised of 8 hours 

(28800 seconds). Then they generate Tk values, the time hub k takes to process 

unit flow, simply by dividing 28800 by 2500. Thereby, Tk values denote how 

many seconds hub k needs to process one unit of flow. Note that smaller the Tk 

larger the capacity of hub k. Using the computed Tk values, they generate the Pk 

values, fixed time to initiate service at hub k, by fitting an increasing (concave) 

function  on the capacity of the nodes.  

We attempted to apply our solution approach on a 40 node problem instance 

with tight fixed costs (FC) and capacity parameters (BSAHLP_40TT). We first 

used the constraintε − method to generate the efficient frontier.  However, we 

noticed that at most three hubs were opened in the efficient solutions to this 

problem. This observation led us to the conclusion that opening more than 

three hubs, which would reduce the transportation cost via increased volume of 

inter-hub transfers, is not preferred due to high FC of opening a hub. Hence, to 

force the model open more hubs and to make the problem more conflicting, we 

deliberately decreased the fixed hubbing costs and solved the problem with 

new cost parameters. This manipulation added to the difficulty of the problem 

significantly. Nevertheless, with increased number of efficient solutions and 

increased number of hubs opened, the problem became more challenging, thus 

more suitable to test the performance of the EA. We sequentially applied 60% 
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(0.4FC), 70% (0.3FC), 80% (0.2FC), and 90% (0.1FC) reduction to fixed 

hubbing costs of the 40 node problem and did the computations for these four 

problems. Note that more reduction brought more difficulty to the problem. 

Moreover, five replications are done for each problem instance using different 

seeds for the random number generator and the performance analysis is done 

for one randomly selected replication and for the merged results of the five 

replications.  

In the evolutionary algorithm, we set crossover probability to 1.0 and mutation 

probability to 0.05. In the raw-fitness function, we use the same β  level set in 

FWEA_loc. The number of hypothetical points on the fitted Lq curves to 

represent the allocations of a hub set is selected as 5. Initial population size and 

the upper limit (PopSize1, PopSize2) are selected differently for each instance 

of the problem. We set maximum number of generations to 20,000 as the 

termination condition. All the computations are done on a Pentium IV 2.8 GHz 

PC with 2GB RAM. 

BSAHLP_40TT_0.4FC 

The fixed costs of hubbing are reduced by the factor 0.6 for this problem. 

When we generate the entire efficient frontier for the problem using the 

constraintε − method, we observe 15 efficient hub sets. The efficient solutions 

are plotted in Figure 4.10. Since the problem is the easiest one among the four, 

we took the initial population size and the cardinality of the final population as 

20 and 25, respectively.  

Table 4.1 gives the hub sets that are found by each replication of the 

evolutionary algorithm. Note that all replications were capable of finding all 

efficient hub sets of the problem, promising a good approximation of the entire 

efficient frontier via the use of any single replication and solving the 

corresponding allocation problems. We also observe that each replication has 

the same three inefficient hub sets (marked with *) that are put in the first front 
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by the EA. In the presence of all efficient hub sets, one would expect these hub 

sets to have higher front ID. However, since we find the mincost extreme 

heuristically, the mincost extreme solution of an efficient hub set can fail to 

dominate the mincost extreme of the inefficent solution due to the 

suboptimality of the heuristic solution. 
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Figure 4.10 Efficient solutions of 40TT_0.4FC 

 
 

Due to the fact that all replications have the same hub sets in the final 

population, we only solve the allocation problem for a selected replication 

since merging the hub sets would make no difference. Replication 5 is selected 

for computation. After the bounding procedure is applied, the allocations found 

are plotted in Figure 4.11.    
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Table 4.1 Efficient hub sets vs. the algorithm’s hub sets for 40TT_0.4FC 

 

Replication1 Replication2 Replication3 Replication4 Replication5
32,40 32,40 32,40 32,40 32,40 32,40
25,40 25,40 25,40 25,40 25,40 25,40
25,32 25,32 25,32 25,32 25,32 25,32
14,29 14,29 14,29 14,29 14,29 14,29
14,25,40 14,25,40 14,25,40 14,25,40 14,25,40 14,25,40
14,25,38 14,25,38 14,25,38 14,25,38 14,25,38 14,25,38
14,25,29 14,25,29 14,25,29 14,25,29 14,25,29 14,25,29
14,19,40 14,19,40 14,19,40 14,19,40 14,19,40 14,19,40
14,19,38 14,19,38 14,19,38 14,19,38 14,19,38 14,19,38
10,40 14,19,29* 14,19,29* 14,19,29* 14,19,29* 14,19,29*
10,25,40 10,40 10,40 10,40 10,40 10,40
10,14,40 10,32* 10,32* 10,32* 10,32* 10,32*
10,14,29 10,25,40 10,25,40 10,25,40 10,25,40 10,25,40
40 10,14,40 10,14,40 10,14,40 10,14,40 10,14,40
32 10,14,38* 10,14,38* 10,14,38* 10,14,38* 10,14,38*

10,14,29 10,14,29 10,14,29 10,14,29 10,14,29
40 40 40 40 40
32 32 32 32 32

# of Efficient Hub Sets 
found by EA / Total # of 
Efficient Hub Sets

15/15 15/15 15/15 15/15 15/15

CPU (sec) 28.7 20.8 30.2 18.3 18.9

BSAHLP_40TT_0.4FC 
Efficient Hub Sets

Hub Sets found by the EA

*Almost efficient but inefficient hub sets with front ID 1 as set by the EA  
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Figure 4.11 Allocations of Replication 5’s hub sets for 40TT_0.4FC 

Although we use all the efficient hub sets and solve the allocation problem for 

each, we cannot find all the efficient solutions on the Pareto-optimal front. The 
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reason for that is the bounding procedure. Remember that we determine the 

bounds based on dominance with respect to the hypothetical points on the Lq 

curve. Thus, exclusion of some portion of a hub set using bounds may result in 

loss of efficient points on that portion since the assumption that there is an 

efficient solution very close to the hypothetical point may not hold. But, since 

this is a heuristic procedure, these losses are tolerable and actually, they do not 

have a significant effect on the performance of the suggested procedure. 

In Table 4.2, we show the performance of our solution approach based on how 

good our approach approximated the efficient frontier. Looking at the 

dominated Hypervolume, the efficient solutions found dominate 99.83% of the 

objective space that is dominated by the true Pareto-optimal solutions. 

Moreover, the time spent for computation is about 5 times less with our 

procedure.     

 

Table 4.2  Performance of the two-phase approach for 40TT_0.4FC 
 

H.V.R (%) CPU Time (hr)
Finding all efficient solutions with Cplex 100.00 4.95
Replication 5 + Bounded allocations 99.83 1.03  

 

BSAHLP_40TT_0.3FC 

This problem has 24 efficient hub sets in total as found by the 

constraintε − method. The Pareto-optimal solutions are given on Figure 4.12. 

In the EA, we took the initial population size and the upper limit for the final 

population as 40 and 50, respectively. Table 4.3 gives the hub sets found by 

EA in each of the five replications. According to the results, we are able to find 

most of the efficient hub sets in all replications. Moreover, the hub sets which 

are actually inefficient but put in the first front by EA contribute also to 
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converging and diversity objectives in the absence of and as alternatives to 

efficient hub sets that could not be found by the algorithm.  
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Figure 4.12 Efficient Solutions of 40TT_0.3FC 

 

 

We first inputted the hub sets found by Replication 1 to the bounding 

procedure and solved the allocation problem within the determined bounds for 

each hub set, which generated the solutions on Figure 4.13. Then we did the 

same computations for the hub sets obtained by merging all five replications’ 

hub sets. Figure 4.14 shows the solutions generated via merging of hub sets.   
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Table 4.3 Efficient hub sets vs. the algorithm’s hub sets for 40TT_0.3FC 
 

Replication1 Replication2 Replication3 Replication4 Replication5
6,19,22,29 6,10,22,29* 32,40 6,11,22,29 6,11,22,29 6,11,22,29
6,11,22,29 32,40 25,40 6,10,22,29* 32,40 6,10,22,29*
32,40 25,40 25,32 32,40 25,40 32,40
25,40 25,32 14,25,40 25,40 25,32 25,40
25,32 14,26,38* 14,25,38 25,32 14,26,38* 25,32
14,25,40 14,25,40 14,25,30 14,26,38* 14,25,40 14,25,40
14,25,38 14,25,38 14,25,29 14,25,40 14,25,38 14,25,38
14,25,30 14,25,30 14,19,40 14,25,38 14,25,30 14,25,30
14,25,29 14,25,29 14,19,38 14,25,30 14,25,29 14,25,29
14,19,40 14,22,29* 14,19,30* 14,25,29 14,22,29* 14,22,29*
14,19,38 14,19,40 14,19,29 14,22,29* 14,19,40 14,19,40
14,19,29 14,19,38 10,40 14,19,40 14,19,38 14,19,38
11,22,29 14,19,30* 10,32* 14,19,38 14,19,30* 14,19,30*
10,40 14,19,29 10,25,40 14,19,30* 14,19,29 14,19,29
10,25,40 14,19,22,29* 10,14,40 14,19,29 14,19,22,29* 14,19,22,29*
10,14,40 11,14,22,29* 10,14,38 14,19,22,29* 11,22,29 11,22,29
10,14,38 10,40 10,14,30 11,22,29 11,14,29* 10,40
10,14,30 10,32* 10,14,29 10,40 10,40 10,32*
10,14,29 10,25,40 10,14,25,40 10,32* 10,32* 10,25,40
10,14,25,40 10,14,40 10,14,25,29 10,25,40 10,25,40 10,14,40
10,14,25,38 10,14,38 40 10,14,40 10,14,40 10,14,38
10,14,25,29 10,14,30 32 10,14,38 10,14,38 10,14,30
40 10,14,29 10,14,30 10,14,30 10,14,29
32 10,14,25,40 10,14,29 10,14,29 10,14,25,40

10,14,25,29 10,14,25,40 10,14,25,40 10,14,25,29
40 10,14,25,29 10,14,25,29 40
32 40 40 32

32 32
# of Efficient Hub Sets 
found by EA / Total # of 
Efficient Hub Sets

20/24 20/24 22/24 22/24 22/24

CPU (sec) 128.8 96.1 156.9 97.1 115.8
*Almost efficient but inefficient hub sets with front ID 1 as set by the EA

BSAHLP_40TT_0.3FC 
Efficient Hub Sets

Hub Sets found by the EA

 

 

Figure 4.13 indicates that solutions obtained via Replication 1 well represent 

the efficient frontier except for those solutions on the minimum cost extreme. 

However, note that these solutions are not expected to be of much interest to 

the decision maker since they worsen the total service time objective too much 

to save only a little from the total cost. Thus, they are almost dominated 

solutions. 
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Figure 4.13 Allocations of Replication 1’s hub sets for 40TT_0.3FC 

 

We are able to find even the solutions on the minimum cost extreme (Figure 

4.14) with the allocations of merged hub sets of replications.  

In Table 4.4, we present the performance of our solution approach in finding 

the efficient allocations. Looking at the dominated Hypervolume, our 

procedure performs very well in approximating the efficient frontier. Moreover, 

the computation is about 5 times faster with our procedure.     
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Figure 4.14 Allocations of all replication’s hub sets for 40TT_0.3FC 
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Table 4.4  Performance of the two-phase approach for 40TT_0.3FC 
 

H.V.R (%) CPU Time (hr)

Finding all efficient solutions with Cplex 100 5.97
Replication 1 + Bounded allocations 98.8 1.03
Merged Seeds + Bounded allocations 99.8 1.22  

 

BSAHLP_40TT_0.2FC 

We observe that the number of efficient hub sets is increased to 30 (Table 4.5) 

when fixed hubbing costs are decreased by 80%. The number of inefficient hub 

sets having front ID 1 also increases, which is expected due to the increased 

cardinality of the efficient hub sets. That is, one may find a hub set that 

behaves similar to an efficient hub set (consisting of relatively more hubs) by 

changing or deleting (adding) a single hub of (to) the efficient hub set. An 

example to these hub sets would be 6,10,14,26,29* in Replication 5, which 

might represent the region of Pareto front in the absence of the efficient hub set 

6,10,14,29,35.    

The spread of solutions found via Replication 2 is good (Figure 4.16) but as 

expected, not as good as of the solutions found via merging of hub sets (Figure 

4.17).  
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Table 4.5 Efficient hub sets vs. the algorithm’s hub sets for 40TT_0.2FC 
 

Replication1 Replication2 Replication3 Replication4 Replication5
6,11,22,25,29 6,10,22,29,35 6,14,19,29* 6,10,22,29,35 6,10,22,29,35 6,14,19,22,29*
6,10,22,29,35 6,10,22,29 6,14,19,24,29* 6,10,22,29 6,10,22,29 6,14,19,22,25,29*
6,10,22,29 6,10,14,29,35 6,14,19,24,25,38* 6,10,14,29,35 6,10,14,29,35 6,10,22,29
6,10,22,25,29 6,10,14,29 6,14,19,22,29* 6,10,14,29 6,10,14,29 6,10,22,25,29
6,10,14,29,35 6,10,14,26,29* 6,14,19,22,29,35* 6,10,14,26,29* 6,10,14,26,29* 6,10,14,29
6,10,14,29 6,10,14,25,40 6,14,19,22,25,29* 6,10,14,25,40 6,10,14,25,40 6,10,14,26,29*
6,10,14,25,40 6,10,14,25,38,40* 6,10,14,29,35 6,10,14,25,38 6,10,14,25,38 6,10,14,25,40
6,10,14,25,38 6,10,14,25,38 6,10,14,29 6,10,14,25,30 6,10,14,25,30 6,10,14,25,38
6,10,14,25,30 6,10,14,25,29,40 6,10,14,26,29* 6,10,14,25,29,40 6,10,14,25,29,40 6,10,14,25,30
6,10,14,25,29,40 6,10,14,25,29 6,10,14,25,40 6,10,14,25,29 6,10,14,25,29 6,10,14,25,29,40
6,10,14,25,29 6,10,14,22,29,35 6,10,14,25,38 6,10,14,24,29,35* 6,10,14,24,29,35* 6,10,14,25,29
6,10,14,24,25,38 6,10,14,22,29 6,10,14,25,30 6,10,14,24,29* 6,10,14,24,29* 6,10,14,24,29*
6,10,14,22,29,35 6,10,14,22,25,29 6,10,14,25,29,40 6,10,14,24,25,38 6,10,14,24,25,38 5,25,40
6,10,14,22,29 5,25,40 6,10,14,25,29 6,10,14,22,29,35 6,10,14,22,29,35 5,14,25,40*
6,10,14,22,25,29 5,14,26,38* 6,10,14,24,29* 6,10,14,22,29 6,10,14,22,29 5,14,25,30*
5,25,40 5,14,25,40* 6,10,14,24,29,35* 6,10,14,22,25,29 6,10,14,22,25,29 5,10,25,40*
32,40 5,10,25,40* 6,10,14,24,25,38 5,25,40 5,25,40 32,40
25,40 32,40 6,10,14,22,29,35 5,10,25,40* 5,14,25,40* 25,40
25,32,40 25,40 6,10,14,22,29 32,40 5,14,25,30* 25,32
25,32 25,32 5,25,40 25,40 5,10,25,40* 10,40
10,40 10,40 5,14,25,40* 25,32 32,40 10,32*
10,25,40 10,32* 5,14,25,30* 10,40 25,40 10,25,40
10,14,40 10,25,40 5,10,25,40* 10,32* 25,32 10,14,40
10,14,25,40 10,14,40 32,40 10,25,40 10,40 10,14,26,29*
10,14,25,38 10,14,38* 25,40 10,14,40 10,32* 10,14,25,40
10,14,25,30 10,14,26,38* 25,32 10,14,26,30* 10,25,40 10,14,25,38,40*
10,14,25,29,40 10,14,26,29* 10,40 10,14,26,29* 10,14,40 10,14,25,38
10,14,25,29 10,14,25,40 10,32* 10,14,25,40 10,14,26,30* 10,14,25,30
40 10,14,25,38,40* 10,25,40 10,14,25,38,40* 10,14,26,29* 10,14,25,29,40
32 10,14,25,38 10,14,40 10,14,25,38 10,14,25,40 10,14,25,29,32*

10,14,25,29,40 10,14,26,30* 10,14,25,30 10,14,25,38,40* 10,14,25,29
10,14,25,29,32* 10,14,26,29* 10,14,25,29,40 10,14,25,38 1,32*
10,14,25,29 10,14,25,40 10,14,25,29,32* 10,14,25,30 1,14,19,22,25,29*
10,14,22,29,35* 10,14,25,38,40* 10,14,25,29 10,14,25,29,40 1,10,14,26,29*
10,14,22,29* 10,14,25,38 10,14,24,25,38* 10,14,25,29,32* 40
10,14,22,25,29* 10,14,25,30 10,14,22,29,35* 10,14,25,29 32
1,32* 10,14,25,29,40 10,14,22,29* 10,14,24,25,38*
1,10,14,26,29* 10,14,25,29,32* 10,14,22,25,29* 10,14,22,29,35*
40 10,14,25,29 1,32* 10,14,22,29*
32 10,14,24,25,38* 1,10,14,26,29* 10,14,22,25,29*

1,32* 40 1,32*
1,10,14,26,29* 32 1,10,14,26,29*
40 40
32 32

# of Efficient Hub Sets 
found by EA / Total # of 
Efficient Hub Sets

24/30 24/30 27/30 27/30 22/30

CPU (sec) 91.8 104.1 106.3 66.1 58.4

BSAHLP_40TT_0.2FC 
Efficient Hub Sets

Hub Sets found by the EA

*Almost efficient but inefficient hub sets with front ID 1 as set by the EA
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Figure 4.15 Efficient Solutions of 40TT_0.2FC 
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Figure 4.16 Allocations of Replication 2’s hub sets for 40TT_0.2FC 
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Figure 4.17 Allocations of all replication’s hub sets for 40TT_0.2FC 



55 

 

Table 4.6 shows that the Hypervolume ratio is very close to 100% in both cases 

indicating that the solutions obtained are converging to the Pareto front and 

have good diversity in the criteria space. Moreover, the computation time with 

our procedure is about one sevenths of the time required for generating all 

efficient solutions with Cplex MIP solver.     

 

Table 4.6  Performance of the two-phase approach for 40TT_0.2FC 
 

H.V.R (%) CPU Time (hr)
Finding all efficient solutions with Cplex 100.00 14.55
Replication 2 + Bounded allocations 99.26 1.97
Merged Seeds + Bounded allocations 99.70 1.87  

 

BSAHLP_40TT_0.1FC 

As mentioned before, this is the most difficult one of the four problem 

instances. Thereby, we took the initial population size as 60 and the upper limit 

as 75. In this problem, the number of efficient hub sets increased as expected 

and amounted to 59 grounding to a significant increase in the number of 

efficient solutions. The plot of the efficient solutions is presented in Figure 

4.18. Moreover, the efficient solutions to this problem involve hub sets with as 

many as 10 hubs (see Table A.1 in Appendix), pointing out the increased 

conflict in the problem nature, which also creates a handicap for the search of 

the EA.  

The solutions obtained via Replication 4 only (Figure 4.19) have a good 

approximation of the efficient frontier, if not as good as those obtained from 

merging of all replications (Figure 4.20).  
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Figure 4.18 Efficient solutions of 40TT_0.1FC 

 

Referring to Table 4.7, the performance of our approach is good in both of the 

single replication and the merged replications cases. Using the hub sets of 

Replication 4 only, we are able to generate efficient solutions that dominate 

97.67% of the unit square in 7.6% of the time required for generating all 

efficient solutions via the constraintε − method. If we can tolerate 15.8% of 

31.23 hours, then we can generate efficient solutions that dominate 99.59% of 

the unit square, which may be preferred since location decisions are strategic 

level decisions. 
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Figure 4.19 Allocations of Replication 4’s hub sets for 40TT_0.1FC 
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Figure 4.20 Allocations of all replication’s hub sets for 40TT_0.1FC 

 
 
 

Table 4.7  Performance of the two-phase approach for 40TT_0.1FC 
 

H.V.R (%) CPU Time (hr)
Finding all efficient solutions with Cplex 100.00 31.23
Replication 4 + Bounded allocations 97.67 2.37
Merged Seeds + Bounded allocations 99.59 4.92  

 
 

 
 
Discussion 

In this chapter, a two-phase solution approach is proposed to approximate the 

efficient frontier. The set of located hubs are determined with an EA in the first 

phase. The members having front ID 1 in the final population of the EA are 

regarded as the efficient hub sets of the problem. However, at the end of the 

run, it is possible that hub sets with a higher front ID (i.e., with front ID 2) may 

also yield solutions on the global efficient frontier, since front IDs are 

determined based on hypothetical points on the representative Lq curves. But, 

this is seldom encountered in the computational experiments. In fact, we 

observed only one such hub set, which shows that the fitted Lq curves 

effectively represent the allocations of hub sets.  
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In the formulation of the problem, we ensure that each non-hub node is 

assigned to a hub node. This constraint prevents the no-hub case to be 

considered as an efficient solution of the problem. Note that comparing the no-

hub case with a single-hub case would be meaningful since we do not enjoy 

economies of scale via inter-hub transfers in single hub case although we incur 

the fixed cost of hubbing.  

There are different aspects that affect the performance of the two-phase 

approach. One of them is related with how well we fit the Lq curves to hub sets. 

The graphical analysis showed that the curves represent the allocations of hub 

sets well implying that the procedures we suggest to find the three solutions 

used to fit the curves proved effective. Thus, the suggested procedures are 

among the major contributions of this study. The evolutionary algorithm itself 

is another aspect that affects the performance since it constructs a basis via the 

located hub sets for the generation of efficient allocations. Thus, the higher the 

number of efficient hub sets found is with the EA, the larger the Hypervolume 

ratio is. Looking at the computational results, we can find most of the efficient 

hub sets with the EA, indicating a high performance for the approach. The 

bounding procedure is another major contribution of this study, which has 

important computational effects on the performance of the two-phase approach. 

Although we can find most of the efficient hub sets using the EA, finding all 

the allocations of these hub sets is neither effective nor efficient as discussed at 

the end of section 4.2. Determination of bounds for the efficient hub sets and 

solving the allocation problems within these bounds brings many savings by 

avoiding generation of globally inefficient allocations and thus, reducing the 

computation time. One other aspect would be the initial population generation. 

The procedure used in this work may be compared with others as a future 

research to find out how different ways of generating the initial population 

affect the overall performance.  
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CHAPTER 5 

INTERACTIVE PROCEDURE 

5.1 Introduction 

Interactive procedures are iterative approaches, where we incorporate the 

preferences of the decision maker (DM) to the solution procedure progressively 

through the course of finding satisfactory solutions. In each iteration of an 

interactive procedure, a set of solutions are found and the decision maker is 

asked to select one of these solutions that represents his/her preference most. 

Then, using this information as an indicator of the DM’s utility function and 

assuming the DM is consistent with his decisions, the search is directed 

through the preferred region of the DM, and the procedure continues until the 

DM is satisfied with the presented solutions. In this sense, interactive 

procedures are good for allowing the decision maker to make improved 

judgments using new information and for allowing corrections to the search 

process (Steuer, 1986).  

With the availability of an interactive procedure, instead of spending much 

computational effort to generate all efficient solutions, we can just try to 

converge to the solutions that are of interest to the DM by directing the search 

towards his/her preferred region. Thus, the interactive procedures save us the 

time spent for generating the efficient solutions that do not have much utility to 

the DM.   

In this chapter, we first explain the details of the interactive procedure and then 

give some computational examples. 
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5.2 The Interactive Procedure 

We implement a variation of the interactive procedure suggested in Steuer and 

Choo (1983, pp.326-344), namely the Interactive Weighted Tchebycheff 

Procedure (IWTP). The IWTP is a weight space reduction based algorithm, 

which consists of sampling a number of λ-weighting vectors, solving the 

corresponding augmented weighted Tchebycheff programs, presenting the 

resulting diverse solutions to the DM and reducing the weight space around the 

preferred solutions of the DM. Different than IWTP, we run our EA for a short 

while and present the most diverse 5 nondominated solutions from the resulting 

criterion vectors to the DM. Thus, we do not select and utilize the λ-weights to 

find diverse solutions that are to be presented to the DM. After the DM chooses 

his/her preferred solution ( )hz from diverse set of solutions, the ( )hλ  vector 

corresponding to this solution is given by 
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where hr  is the weight space reduction factor that gets smaller as the number 

of iterations increase. 

This weight interval is an approximate representation of the DM’s preferred 

region in the solution space. Thus, we employ the weight interval in the 

evolutionary algorithm to favor the solutions that reside in the correspondent 

solution space of this weight interval as in Karahan (2008). Iteratively, this 

procedure allows us to get closer to the solutions that are most valuable to the 

DM.  

The evolutionary algorithm is modified so as to keep those solutions in the 

final population, which are in the preferred weight space of the DM. To assure 

this, we simply increment the front ID of the solutions by 1 that reside out of 

the weight space. By doing so, only the nondominated solutions that belong to 

this weight space will have front ID 1, which will keep them in the final 

population.  

At the end of each iteration, if the DM desires to continue the search by 

selecting a solution among those we present, then via narrowing down the 

weight space further we aim to converge to the solution or solutions that 

maximize the DM’s utility. The procedure continues until the DM is happy 

with the results. 

5.3 Some Computational Experiments 

To illustrate the implementation of the approach, we give three example 

solutions on the efficient frontier of the 0.3FC 40TT problem (Figure 5.1), each 

of which is assumed to be the one that maximizes the DM’s utility function. 

Hence, each solution is the one we want the procedure to converge to at the end 

of iterations. The DM is assumed to have an underlying Tchebycheff utility 

function and assumed to select consistently the solution maximizing this utility 

function each time we ask to choose one. 
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Example 1: Suppose that solution S1 is the most appealing solution to the DM. 

Then the underlying utility function of the DM is defined by the favorable 

weights of this solution, which we can find with equation (5.1). S1 has the 

scaled 
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Figure 5.1 Example efficient solutions of 40TT_0.3FC  

 
 

objective function values (0.016409, 0.018423) with favorable weights 

(0.528910, 0.471090) and it is an allocation of the hub set (14, 19, 29). After 

running the algorithm for a short time (1.5 seconds), the diverse set of five 

solutions selected among the nondominated solutions in the final population 

are shown in Table 5.1 with borders. We made the selection based on dividing 

the total cost range into equal intervals. Among these solutions (1, 9, 14, 17, 

19), the DM is expected to choose the first one since it has the closest weights 

to the favorable weights of S1. Note that we only compare the first weight in 

the weight vector since the second weight (λ2) is equal to 1-λ1. 

Next, we narrow down the weight space around the favorable weights of the 

selected solution using equation (5.2) and the weight interval becomes 
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(2) (2)
1 1 (0.220862,0.668075),l u  =  . Then, we run the algorithm for 5000 

generations (40 sec) giving this weight space as an input. The obtained 

nondominated solutions are presented in Table 5.2. 

 

Table 5.1 Diverse set of solutions presented to the DM 
 

No Total Cost
Total Service 

Time

Tchebycheff 
Weight (λ1)

Hub Sets

1 0.023219 0.018577 0.444468 14,29
2 0.052511 0.018057 0.255881 14,19,29,34
3 0.077455 0.017673 0.185781 14,23,25,29
4 0.088817 0.016422 0.156045 14,19,29,40
5 0.102687 0.014018 0.120115 14,25,29,40
6 0.135544 0.011145 0.075977 14,19,29,40
7 0.139130 0.009548 0.064219 14,25,29,40
8 0.217641 0.003040 0.013776 14,40
9 0.283596 0.002381 0.008326 14,40

10 0.344972 0.002348 0.006760 1,14,40
11 0.349408 0.001895 0.005394 14,40
12 0.421084 0.001450 0.003432 14,40
13 0.486555 0.001379 0.002826 1,40
14 0.492373 0.001270 0.002573 1,40
15 0.495548 0.000770 0.001551 40
16 0.650371 0.000632 0.000971 32,40
17 0.743586 0.000487 0.000655 32,40
18 0.844384 0.000354 0.000419 32,40
19 1.000000 0.000000 0.000000 32  

 
 

 
 

Table 5.2 Solutions presented to the DM at Iteration 2 
 

Total Cost
Total Service 

Time

Tchebycheff 
Weight (λ1)

Hub Set

1 0.019557 0.018018 0.479521 14,19,29
2 0.026026 0.016448 0.387249 10,14,29
3 0.033565 0.015615 0.317507 14,25,29
4 0.047816 0.015281 0.242183 10,14,25,29  

 

Here, we observe that the first solution, having the same hub set with S1 and 

being the closest hypothetical point to S1, is the one that the DM would like to 
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achieve. This shows that at Iteration 2, we converged to the solution that 

represents the utility maximizing real solution, S1, well. However, for the sake 

of completeness, we iterate once more to be sure that this solution keeps 

standing in the final population.  

As we expect, the DM chooses the first solution in Table 5.2. We restrict the 

weight space further around this solution using equation (5.2) again. The new 

weight interval becomes (3) (3)
1 1 (0.379521,0.579521),l u  =  . After we run the 

algorithm for 5000 generations, the resulting nondominated solutions are as 

shown in Table 5.3.  

 

Table 5.3 Solutions Presented to the DM at Iteration 3 
 

Total Cost
Total Service 

Time

Tchebycheff 
Weight (λ1)

Hub Set

1 0.019557 0.018018 0.479520958 14,19,29
2 0.026026 0.016448 0.38724867 10,14,29  

 

We finalize the procedure with this iteration since we converged to the desired 

solution of the DM. 

Example 2: This time suppose that the DM’s underlying Tchebycheff utility 

function is maximized with S2. It is an allocation of hub set (14, 19, 38) and 

the solution has the criterion vector (0.074166, 0.010706) with favorable 

weights (0.126145, 0.873855).  Suppose also that we present the same diverse 

set of solutions (Table 5.1) initially. The DM will select solution number 9 in 

Table 5.1 since its favorable weight (0.008326) is the closest one to that of S2 

(0.074166). The weight space is now reduced around solution 9, and the 

algorithm is run. The solutions that are within this weight space and the most 

diverse five are shown in Table 5.4.  Among the diverse set of five solutions (1, 

14, 21, 23, 27), the DM will select solution number 14. After reducing the 
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weight space around this solution, the solutions obtained and the most diverse 

five are shown in Table 5.5.  Now, the DM’s preference will be the solution 

having number 1 and note that this solution is actually the one the DM is 

willing to reach based on his/her Tchebycheff utility function. Since the weight 

space will be reduced around this solution’s weight, it is guaranteed that this 

solution will remain in the population, thus convergence to the representative 

solution of S2 (solution 1) is assured in this example.  

 

Table 5.4 Solutions Presented to the DM at Iteration 2 
 

No Total Cost
Total Service 

Time
Tchebycheff 
Weight (λ1)

Hub Set

1 0.026026 0.016448 0.387249 10,14,29
2 0.033565 0.015615 0.317507 14,25,29
3 0.047816 0.015281 0.242183 10,14,25,29
4 0.075415 0.010620 0.123438 14,19,38
5 0.086393 0.008357 0.088201 14,25,38
6 0.092934 0.008106 0.080226 10,14,38
7 0.137932 0.007729 0.053062 14,19,30
8 0.140993 0.006422 0.043564 14,19,40
9 0.149531 0.005535 0.035694 10,14,30

10 0.150084 0.003277 0.021368 14,25,40
11 0.164510 0.003117 0.018595 10,14,25,40
12 0.183140 0.002916 0.015673 10,14,40
13 0.230573 0.001995 0.008578 10,25,40
14 0.251246 0.001795 0.007094 10,40
15 0.293816 0.001509 0.005110 10,40
16 0.360661 0.001286 0.003553 10,40
17 0.403150 0.001243 0.003074 25,40
18 0.436943 0.001124 0.002566 25,40
19 0.443466 0.001106 0.002488 10,40
20 0.480724 0.001032 0.002142 25,40
21 0.495548 0.000770 0.001551 40
22 0.650371 0.000632 0.000971 32,40
23 0.743586 0.000487 0.000655 32,40
24 0.794377 0.000477 0.000600 10,32
25 0.810237 0.000364 0.000449 25,32
26 0.844384 0.000354 0.000419 32,40
27 1.000000 0.000000 0.000000 32  

Example 3: In this last example, solution S3 is assumed to be the one the DM is 

willing to reach. S3 is an allocation of hub set (14, 25, 40). The criterion vector 

of this solution is (0.153911, 0.003144) and it has the favorable weights 
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(0.020021, 0.979979). We continued the iterations until convergence in this 

example. Based on the results, the representative solution that is closest to S3 is 

observed to remain in the population at each iteration. Hence, we could 

converge to the ideal solution of the DM under the assumed utility function in 

this example as well. All the tables of this example are included in the 

Appendix B.  

In conclusion, we can state that converging to the preferred region of the DM 

through employing his/her preferences during the search is an effective 

alternative to approximating the entire efficient frontier. However, one should 

pay attention to the assumption the interactive procedure works under, which 

states that the DM is consistent with his decisions. In reality, this assumption 

may not hold with all the DMs. Hence, developing a mechanism to allow the 

DM change his decisions during the search could make the interactive 

procedure more realistic.  

 

Table 5.5 Solutions Presented to the DM at Iteration  
 

No Total Cost
Total Service 

Time
Tchebycheff 
Weight (λ1)

Hub Set

1 0.075415 0.010620 0.123438 14,19,38
2 0.086393 0.008357 0.088201 14,25,38
3 0.092934 0.008106 0.080226 10,14,38
4 0.140993 0.006422 0.043564 14,19,40
5 0.150084 0.003277 0.021368 14,25,40
6 0.164510 0.003117 0.018595 10,14,25,40
7 0.183140 0.002916 0.015673 10,14,40
8 0.230573 0.001995 0.008578 10,14,38
9 0.251246 0.001795 0.007094 10,40

10 0.293816 0.001509 0.005110 10,40
11 0.360661 0.001286 0.003553 10,40
12 0.403150 0.001243 0.003074 25,40
13 0.436943 0.001124 0.002566 25,40
14 0.443466 0.001106 0.002488 10,40
15 0.480724 0.001032 0.002142 25,40
16 0.495548 0.000770 0.001551 40
17 0.650371 0.000632 0.000971 32,40
18 0.743586 0.000487 0.000655 32,40
19 0.794377 0.000477 0.000600 10,32
20 0.810237 0.000364 0.000449 25,32
21 0.844384 0.000354 0.000419 32,40
22 1.000000 0.000000 0.000000 32
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CHAPTER 6 

CONCLUSIONS  
 

In this study, we propose a two-phase solution approach for solving a bicriteria 

single allocation hub location problem with time and cost related objectives. 

This problem is derived from the capacitated single allocation hub location 

problem, which is a well known problem having many applications in postal 

delivery systems. We develop an evolutionary algorithm to locate the hubs on 

the network as the first phase and then in the second phase, we employ a 

bounding procedure based on dominance relations. Using the determined 

bounds, we solve the allocation subproblem for each located hub set with 

Cplex MIP solver.  

Involving both location and allocation decision components, the problem is 

combinatorial and gets more difficult to solve when the number of nodes 

increase. However, the results show that the evolutionary algorithm solves the 

location subproblem effectively in a small amount of computational time, and 

solving the corresponding allocation problems takes much less time than 

finding all efficient solutions just by using Cplex. Thus, solving large scale 

realistic problems becomes possible with our solution approach.  

We also propose an interactive procedure that incorporates the preferences of 

the decision maker progressively and tries to converge to the solutions that are 

in the preferred region of the decision maker. The procedure worked well 

based on the computational results of three illustrative examples.    

When solving the problem, in fact we seek the solutions that may reduce the 

total cost via excess utilization of some hub facilities or total service time via 

sacrificing from the total cost objective. These solutions are not observable 

when we use hard capacity constraints. However, our problem is more valid for 
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designing a network from scratch, because we also find solutions that slightly 

improve one objective while significantly worsening the other. These solutions 

may be impractical for the networks that are not subject to change.  

As a future research, the two-phase approach can be tested with larger scale 

problems (ie., problems up to 100 nodes). Since the number of efficient hub 

sets is not expected to increase sharply with a larger problem size, the 

corresponding allocation problems may be solved in a reasonable amount of 

time.     

Instead of solving the allocation problems with Cplex, developing another 

evolutionary algorithm to consider both the locations of hubs and the 

corresponding efficient allocations is another future research direction. Such an 

algorithm would have a significant potential in reducing the total computation 

time.  

For the hub networks that are already set up, minimization of the maximum 

service time at any hub may be worth being considered as the second objective 

instead of minimizing the total service time and the results can be compared 

with those of the existing work. In fact, this minmax type objective may even 

be considered as a third objective besides the two criteria handled in this study. 
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APPENDIX A 
 
 

RESULTS FOR 40TT_0.1FC PROBLEM 
 

Table A.1  Efficient hub sets vs. the algorithm’s hub sets for 40TT_0.1FC 

Replication1 Replication2 Replication3 Replication4 Replication5
5,8,10,14,26,40 9,32* 5,8,10,25,40* 5,8,10,14,26,40 5,8,10,14,26,40 5,8,10,14,26,40
5,8,10,14,26,30,32 5,8,10,14,26,40 5,8,10,14,26,40 5,8,10,14,26,32,40* 5,8,10,14,26,32,40* 5,8,10,14,26,30,32
5,8,10,14,26,30 5,8,10,14,26,32,40* 5,8,10,14,26,32,40* 5,8,10,14,26,30,32 5,8,10,14,26,30,32 5,8,10,14,26,30
5,8,10,14,26,29,40 5,8,10,14,26,30,32 5,8,10,14,26,30,32 5,8,10,14,26,30 5,8,10,14,26,30 5,8,10,14,26,29,40
5,8,10,14,26,29,32 5,8,10,14,26,30 5,8,10,14,26,30 5,8,10,14,26,29,40 5,8,10,14,26,29,40 5,8,10,14,26,29,32
5,8,10,14,24,26,30 5,8,10,14,26,29,40 5,8,10,14,26,29,40 5,8,10,14,26,29,32 5,8,10,14,26,29,32 5,8,10,14,25,40*
5,8,10,14,24,26,29 5,8,10,14,26,29,32 5,8,10,14,26,29,32 5,8,10,14,25,40* 5,8,10,14,25,40* 5,8,10,14,25,29,32*
5,8,10,14,24,25,29 5,8,10,14,25,40* 5,8,10,14,25,40* 5,8,10,14,25,29,32* 5,8,10,14,25,29,32* 5,8,10,14,24,26,30
5,10,25,40 5,8,10,14,25,29,32* 5,8,10,14,25,29,32* 5,8,10,14,24,26,30 5,8,10,14,24,26,30 5,8,10,14,24,26,29,40*
5,10,25,32,40 5,8,10,14,24,26,30 5,8,10,14,24,26,30 5,8,10,14,24,26,29,40* 5,8,10,14,24,26,29,40* 5,8,10,14,24,26,29
5,10,25,30,32 5,8,10,14,24,26,29,40* 5,8,10,14,24,26,29,40* 5,8,10,14,24,26,29 5,8,10,14,24,26,29 5,8,10,14,24,25,29
5,10,14,26,40 5,8,10,14,24,26,29 5,8,10,14,24,26,29 5,8,10,14,24,25,29 5,8,10,14,23,26,30* 5,8,10,14,23,26,30*
5,10,14,26,30,32 5,8,10,14,23,26,30* 5,8,10,14,24,25,29 5,8,10,14,23,26,30* 5,8,10,14,23,26,29,40* 5,8,10,14,23,26,29,40*
5,10,14,26,30 5,8,10,14,23,26,29,40* 5,8,10,14,23,26,30* 5,8,10,14,23,25,29* 5,8,10,14,21,26,29,40* 5,8,10,14,23,25,29*
5,10,14,26,29,40 5,8,10,14,21,26,29,40* 5,8,10,14,23,26,29* 5,8,10,14,22,24,25,29* 5,6,10,14,26,40* 5,8,10,14,22,24,25,29*
5,10,14,26,29,32 5,6,10,14,26,40* 5,8,10,14,23,26,29,40* 5,6,10,14,26,40* 5,6,10,14,26,29,32* 5,6,10,14,26,40*
5,10,14,25,40 5,6,10,14,26,29,32* 5,8,10,14,23,25,29* 5,6,10,14,26,29,32* 5,6,10,14,25,40* 5,6,10,14,26,29,32*
5,10,14,25,30,40 5,6,10,14,25,40* 5,8,10,14,22,25,29* 5,6,10,14,25,29,32* 5,6,10,14,25,29,32* 5,6,10,14,25,40*
5,10,14,25,30,32 5,6,10,14,25,29,32* 5,8,10,14,21,26,29,40* 5,6,10,14,24,25,29* 5,26,30,32* 5,6,10,14,25,29,32*
5,10,14,25,30 5,25,40* 5,25,40* 5,14,26,32,40* 5,25,40* 5,6,10,14,24,25,29*
5,10,14,24,26,29 5,14,26,40* 5,25,32,40* 5,14,26,30* 5,25,32,40* 5,26,30,32*
32,40 5,10,26,40* 5,14,26,32,40* 5,10,26,40* 5,14,26,40* 5,25,40*
25,32,40 5,10,26,30,32* 5,14,26,30,32* 5,10,26,30* 5,14,26,32,40* 5,25,32,40*
25,32 5,10,26,30* 5,14,26,30,32,40* 5,10,26,30,32* 5,14,26,30,40* 5,14,26,40*
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Table A.1 (cont’d)  Efficient hub sets vs. the algorithm’s hub sets for 40TT_0.1FC 

Replication1 Replication2 Replication3 Replication4 Replication5
10,40 5,10,25,40 5,14,25,40* 5,10,25,40 5,14,26,30,32* 5,14,26,30,32*
10,32,40 5,10,25,32,40 5,10,26,30* 5,10,25,32,40 5,14,26,30,32,40* 5,14,26,30,32,40*
10,25,40 5,10,14,26,40 5,10,25,40 5,10,14,26,40 5,14,25,40* 5,10,26,30*
10,25,32,40 5,10,14,26,38,40* 5,10,25,32,40 5,10,14,26,32,40* 5,10,26,40* 5,10,25,40
10,14,25,40 5,10,14,26,32,40* 5,10,14,26,40 5,10,14,26,30,32 5,10,26,30* 5,10,25,32,40
10,14,25,30,32 5,10,14,26,30,32 5,10,14,26,38,40* 5,10,14,26,30 5,10,26,30,32* 5,10,25,30,32
1,5,8,14,19,24,25,30 5,10,14,26,30 5,10,14,26,32,40* 5,10,14,26,29,40 5,10,25,40 5,10,14,26,40
1,5,8,14,19,24,25,29 5,10,14,26,29,40 5,10,14,26,30,32 5,10,14,26,29,32 5,10,25,32,40 5,10,14,26,32,40*
1,5,8,10,14,26,30 5,10,14,26,29,32 5,10,14,26,30 5,10,14,25,32,40* 5,10,14,26,40 5,10,14,26,30,32
1,5,8,10,14,26,29,40 5,10,14,25,40 5,10,14,26,29,40 5,10,14,23,26,30* 5,10,14,26,32,40* 5,10,14,26,30
1,5,8,10,14,26,29,32 5,10,14,25,38,40* 5,10,14,26,29,32 40* 5,10,14,26,30,32 5,10,14,26,29,40
1,5,8,10,14,24,26,30 5,10,14,23,26,30* 5,10,14,25,40 32,40 5,10,14,26,30 5,10,14,26,29,32
1,5,8,10,14,24,26,29 40* 5,10,14,25,38,40* 25,40* 5,10,14,26,29,40 5,10,14,25,40
1,5,8,10,14,24,25,29 32,40 5,10,14,23,26,30* 25,32 5,10,14,26,29,32 5,10,14,23,26,30*
1,5,8,10,14,21,24,29,35 25,40* 40* 10,40 5,10,14,25,40 40*
1,5,8,10,14,21,24,25,29 25,32 32,40 10,32* 5,10,14,23,26,30* 32,40
1,5,8,10,14,19,24,25,30 10,40 25,40* 10,32,40 40* 25,40*
1,5,8,10,14,19,24,25,29 10,32,40 25,32 10,25,40 32,40 25,32
1,5,8,10,14,16,26,30 10,32* 10,40 10,14,26,30* 25,40* 10,40
1,5,10,14,26,40 10,25,40 10,32* 10,14,25,40 25,32 10,32*
1,5,10,14,26,30 10,25,32,40 10,32,40 1,5,8,10,14,26,40* 10,40 10,32,40
1,5,10,14,26,29,40 10,14,26,30* 10,25,40 1,5,8,10,14,26,30,32* 10,32* 10,25,40
1,5,10,14,26,29,32 10,14,25,40 10,25,32,40 1,5,8,10,14,26,30 10,32,40 10,25,32,40
1,5,10,14,24,26,29 1,5,8,10,14,26,40* 10,14,26,30* 1,5,8,10,14,26,29,40 10,25,40 10,14,26,30*
1,3,8,14,19,22,25,29 1,5,8,10,14,26,30,32* 1,5,8,10,14,26,30,32* 1,5,8,10,14,26,29,32 10,25,32,40 1,5,8,10,14,26,40*
1,3,8,14,19,22,24,25,29 1,5,8,10,14,26,30 1,5,8,10,14,26,30 1,5,8,10,14,25,29,32* 10,14,26,30* 1,5,8,10,14,26,30,32*
1,3,8,14,18,22,29,35 1,5,8,10,14,26,29,40 1,5,8,10,14,26,29,40 1,5,8,10,14,24,26,30 1,5,8,10,14,26,40* 1,5,8,10,14,26,30
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Table A.1 (cont’d)  Efficient hub sets vs. the algorithm’s hub sets for 40TT_0.1FC 

Replication1 Replication2 Replication3 Replication4 Replication5
1,3,8,14,18,22,25,29 1,5,8,10,14,26,29,32 1,5,8,10,14,26,29,32 1,5,8,10,14,24,26,29,40* 1,5,8,10,14,26,30,32* 1,5,8,10,14,26,29,40
1,3,8,14,18,22,24,29,35 1,5,8,10,14,25,29,32* 1,5,8,10,14,24,26,30 1,5,8,10,14,24,26,29 1,5,8,10,14,26,30 1,5,8,10,14,26,29,32
1,3,8,14,18,22,24,25,29 1,5,8,10,14,24,26,30 1,5,8,10,14,24,26,29,40* 1,5,8,10,14,24,25,29 1,5,8,10,14,26,29,40 1,5,8,10,14,25,29,32*
1,3,8,11,14,18,22,29,35 1,5,8,10,14,24,26,29,40* 1,5,8,10,14,24,26,29 1,5,8,10,14,23,26,30* 1,5,8,10,14,26,29,32 1,5,8,10,14,24,26,30
1,3,8,11,14,18,22,25,29 1,5,8,10,14,24,26,29 1,5,8,10,14,24,25,29 1,5,8,10,14,23,26,29* 1,5,8,10,14,25,29,32* 1,5,8,10,14,24,26,29,40*
1,3,8,11,14,18,22,24,29,351,5,8,10,14,23,26,30* 1,5,8,10,14,23,26,30* 1,5,8,10,14,23,26,29,40* 1,5,8,10,14,24,26,30 1,5,8,10,14,24,26,29
1,3,8,11,14,18,22,24,25,291,5,8,10,14,23,26,29,40* 1,5,8,10,14,23,26,29* 1,5,8,10,14,23,25,29* 1,5,8,10,14,24,26,29,40* 1,5,8,10,14,24,25,29
32 1,5,8,10,14,23,26,29* 1,5,8,10,14,23,26,29,40* 1,5,8,10,14,22,25,29* 1,5,8,10,14,24,26,29 1,5,8,10,14,23,26,29*

1,5,8,10,14,21,23,26,29* 1,5,8,10,14,23,25,29* 1,5,8,10,14,22,24,25,29* 1,5,8,10,14,23,26,30* 1,5,8,10,14,23,26,29,40*
1,5,10,26,30,32* 1,5,8,10,14,22,25,29* 1,5,8,10,14,21,23,25,29* 1,5,8,10,14,23,26,29* 1,5,8,10,14,23,25,29*
1,5,10,25,32,40* 1,5,8,10,14,21,24,26,29,40*1,5,8,10,14,21,22,24,25,29*1,5,8,10,14,23,26,29,40* 1,5,8,10,14,22,24,25,29*
1,5,10,14,26,40 1,5,8,10,14,21,23,25,29* 1,5,10,26,30,32* 1,5,10,25,32,40* 1,5,8,10,14,19,24,29,34*
1,5,10,14,26,30,32* 1,5,8,10,14,21,22,25,29* 1,5,10,25,32,40* 1,5,10,14,26,40 1,5,10,25,32,40*
1,5,10,14,26,30 1,5,10,25,32,40* 1,5,10,14,26,40 1,5,10,14,26,30,32* 1,5,10,14,26,40
1,5,10,14,26,29,40 1,5,10,14,26,40 1,5,10,14,26,30,32* 1,5,10,14,26,30 1,5,10,14,26,30,32*
1,5,10,14,26,29,32 1,5,10,14,26,30,32* 1,5,10,14,26,30 1,5,10,14,26,29,40 1,5,10,14,26,30
1,5,10,14,25,40* 1,5,10,14,26,30 1,5,10,14,26,29,40 1,5,10,14,26,29,32 1,5,10,14,26,29,40
1,5,10,14,25,29,32* 1,5,10,14,26,29,40 1,5,10,14,26,29,32 1,5,10,14,25,40* 1,5,10,14,26,29,32
1,5,10,14,23,26,30* 1,5,10,14,26,29,32 1,5,10,14,25,40* 1,5,10,14,25,29,32* 1,5,10,14,25,40*
1,32* 1,5,10,14,25,40* 1,5,10,14,25,29,32* 1,5,10,14,23,26,30* 1,5,10,14,25,29,32*
32 1,5,10,14,25,29,32* 1,5,10,14,23,26,30* 1,32* 1,5,10,14,23,26,30*

1,32* 1,32* 32 1,32*
32 32 32

# of Efficient Hub Sets 
found by EA / Total # of 
Efficient Hub Sets

32/59 33/59 32/59 31/59 34/59

CPU (sec) 278.4 252.1 361.4 349.1 326.2
*Almost efficient but inefficient hub sets with front ID 1 as set by the EA

BSAHLP_40TT_0.1FC 
Efficient Hub Sets

Hub Sets found by the EA
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APPENDIX B 
 
 

RESULTS FOR INTERACTIVE PROCEDURE 
 
 
 
 

Table B.1 Diverse set of solutions presented to the DM at iteration1  
 

No Total Cost
Total Service 

Time

Tchebycheff 
Weight (λ1)

Hub Sets

1 0.023219 0.018577 0.444468 14,29
2 0.052511 0.018057 0.255881 14,19,29,34
3 0.077455 0.017673 0.185781 14,23,25,29
4 0.088817 0.016422 0.156045 14,19,29,40
5 0.102687 0.014018 0.120115 14,25,29,40
6 0.135544 0.011145 0.075977 14,19,29,40
7 0.139130 0.009548 0.064219 14,25,29,40
8 0.217641 0.003040 0.013776 14,40
9 0.283596 0.002381 0.008326 14,40

10 0.344972 0.002348 0.006760 1,14,40
11 0.349408 0.001895 0.005394 14,40
12 0.421084 0.001450 0.003432 14,40
13 0.486555 0.001379 0.002826 1,40
14 0.492373 0.001270 0.002573 1,40
15 0.495548 0.000770 0.001551 40
16 0.650371 0.000632 0.000971 32,40
17 0.743586 0.000487 0.000655 32,40
18 0.844384 0.000354 0.000419 32,40
19 1.000000 0.000000 0.000000 32  
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Table B.2 Diverse set of solutions presented to the DM at iteration 2  

No Total Cost
Total Service 

Time
Tchebycheff 
Weight (λ1)

Hub Set

1 0.026026 0.016448 0.387249 10,14,29
2 0.033565 0.015615 0.317507 14,25,29
3 0.047816 0.015281 0.242183 10,14,25,29
4 0.075415 0.010620 0.123438 14,19,38
5 0.086393 0.008357 0.088201 14,25,38
6 0.092934 0.008106 0.080226 10,14,38
7 0.137932 0.007729 0.053062 14,19,30
8 0.140993 0.006422 0.043564 14,19,40
9 0.149531 0.005535 0.035694 10,14,30

10 0.150084 0.003277 0.021368 14,25,40
11 0.164510 0.003117 0.018595 10,14,25,40
12 0.183140 0.002916 0.015673 10,14,40
13 0.230573 0.001995 0.008578 10,25,40
14 0.251246 0.001795 0.007094 10,40
15 0.293816 0.001509 0.005110 10,40
16 0.360661 0.001286 0.003553 10,40
17 0.403150 0.001243 0.003074 25,40
18 0.436943 0.001124 0.002566 25,40
19 0.443466 0.001106 0.002488 10,40
20 0.480724 0.001032 0.002142 25,40
21 0.495548 0.000770 0.001551 40
22 0.650371 0.000632 0.000971 32,40
23 0.743586 0.000487 0.000655 32,40
24 0.794377 0.000477 0.000600 10,32
25 0.810237 0.000364 0.000449 25,32
26 0.844384 0.000354 0.000419 32,40
27 1.000000 0.000000 0.000000 32  

 

 

The solution the DM is willing to reach resides in the above population. It is 

solution number 10 with hub set (14, 25, 40). The DM prefers solution number 

14, which has the closest favorable weight to S3.     
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Table B.3 Diverse set of solutions presented to the DM at iteration 3 

No Total Cost
Total Service 

Time
Tchebycheff 
Weight (λ1)

Hub Set

1 0.075415 0.010620 0.123438 14,19,38
2 0.086393 0.008357 0.088201 14,25,38
3 0.092934 0.008106 0.080226 10,14,38
4 0.140993 0.006422 0.043564 14,19,40
5 0.150084 0.003277 0.021368 14,25,40
6 0.164510 0.003117 0.018595 10,14,25,40
7 0.183140 0.002916 0.015673 10,14,40
8 0.230573 0.001995 0.008578 10,14,38
9 0.251246 0.001795 0.007094 10,40

10 0.293816 0.001509 0.005110 10,40
11 0.360661 0.001286 0.003553 10,40
12 0.403150 0.001243 0.003074 25,40
13 0.436943 0.001124 0.002566 25,40
14 0.443466 0.001106 0.002488 10,40
15 0.480724 0.001032 0.002142 25,40
16 0.495548 0.000770 0.001551 40
17 0.650371 0.000632 0.000971 32,40
18 0.743586 0.000487 0.000655 32,40
19 0.794377 0.000477 0.000600 10,32
20 0.810237 0.000364 0.000449 25,32
21 0.844384 0.000354 0.000419 32,40
22 1.000000 0.000000 0.000000 32  

 

 

The solution we aim to reach is still in the population, this time with number 5.  

The DM prefers solution number 10 in this iteration and the weight space is 

reduced accordingly. 
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Table B.4 Diverse set of solutions presented to the DM at iteration 4 

No Total Cost
Total Service 

Time
Tchebycheff 
Weight (λ1)

Hub Set

1 0.086393 0.008357 0.088201 14,25,38
2 0.092934 0.008106 0.080226 10,14,38
3 0.135360 0.007911 0.055217 14,26,38
4 0.140993 0.006422 0.043564 14,19,40
5 0.150084 0.003277 0.021368 14,25,40
6 0.164510 0.003117 0.018595 10,14,25,40
7 0.183140 0.002916 0.015673 10,14,40
8 0.230573 0.001995 0.008578 10,25,40
9 0.251246 0.001795 0.007094 10,40

10 0.293816 0.001509 0.005110 10,40
11 0.360661 0.001286 0.003553 10,40
12 0.403150 0.001243 0.003074 25,40
13 0.436943 0.001124 0.002566 25,40
14 0.443466 0.001106 0.002488 10,40
15 0.480724 0.001032 0.002142 25,40
16 0.495548 0.000770 0.001551 40
17 0.650371 0.000632 0.000971 32,40
18 0.743586 0.000487 0.000655 32,40
19 0.794377 0.000477 0.000600 10,32
20 0.810237 0.000364 0.000449 25,32
21 0.844384 0.000354 0.000419 32,40
22 0.909091 0.000000 0.000000 32  

 

 

The reduced weight space could only eliminate the first solution in Table B.3 

and the algorithm found an additional solution (No 3 in Table B.4) besides 

those found at iteration 3. Coincidentally, the comments are exactly the same 

with those made in the above iteration.  
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Table B.5 Diverse set of solutions presented to the DM at iteration 5 

No Total Cost
Total Service 

Time
Tchebycheff 
Weight (λ1)

Hub Set

1 0.150084 0.003277 0.021368 14,25,40
2 0.164510 0.003117 0.018595 10,14,25,40
3 0.183140 0.002916 0.015673 10,14,40
4 0.230573 0.001995 0.008578 10,25,40
5 0.251246 0.001795 0.007094 10,40
6 0.293816 0.001509 0.005110 10,40
7 0.360661 0.001286 0.003553 10,40
8 0.403150 0.001243 0.003074 25,40
9 0.436943 0.001124 0.002566 25,40

10 0.443466 0.001106 0.002488 10,40
11 0.480724 0.001032 0.002142 25,40
12 0.495548 0.000770 0.001551 40
13 0.650371 0.000632 0.000971 32,40
14 0.743586 0.000487 0.000655 32,40
15 0.794377 0.000477 0.000600 10,32
16 0.810237 0.000364 0.000449 25,32
17 0.844384 0.000354 0.000419 32,40
18 1.000000 0.000000 0.000000 32  

 

 

At this iteration, the number of solutions in the population is reduced to 18 

from 22. The solution representing S3 is still in the population with number 1. 

This time the DM will select this solution, which is presented to him/her as a 

diverse solution. Continuing the iterations, the solutions in Table B.6 are 

obtained. 

 

 

Table B.6 Diverse set of solutions presented to the DM at iteration 6 

No Total Cost
Total Service 

Time
Tchebycheff 
Weight (λ1)

Hub Set

1 0.183140 0.002916 0.015673 10,14,40
2 0.164510 0.003117 0.018595 10,14,25,40
3 0.150084 0.003277 0.021368 14,25,40  

 

 

This finalizes the iterations since we converged to the solution (No 3 in Table 

B.6) that best represents solution S3. 


