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  ABSTRACT 

 

 

      CLASSIFICATION OF REMOTELY SENSED DATA  

                    BY USING 2D LOCAL DISCRIMINANT BASES  

 

 

 

Tekinay, Çağrı 

M.Sc., Department of Information Systems 

Supervisor: Prof. Dr. Yasemin Yardımcı 

 

 

 

July 2009, 104 pages 

 

 

 

In this thesis, 2D Local Discriminant Bases (LDB) algorithm is used 

to 2D search structure to classify remotely sensed data. 2D Linear 

Discriminant Analysis (LDA) method is converted into an M-ary 

classifier by combining majority voting principle and linear distance 

parameters. The feature extraction algorithm extracts the relevant 

features by removing the irrelevant ones and/or combining the ones 

which do not represent supplemental information on their own. The 

algorithm is implemented on a remotely sensed airborne data set 

from Tippecanoe County, Indiana to evaluate its performance. The 

spectral and spatial-frequency features are extracted from the 

multispectral data and used for classifying vegetative species like 

corn, soybeans, red clover, wheat and oat in the data set.  
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Keywords: Remote Sensing, Local Discriminant Bases, Linear 
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ÖZ 

 

 

UZAKTAN ALGILANAN VERİLERİN 2 BOYUTLU YEREL  

AYIRTAÇ TABANLARI İLE AYRILMASI 

 

 

 

Tekinay, Çağrı 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Danışmanı: Prof. Dr. Yasemin Yardımcı 

 

 

 

Temmuz 2009, 104 sayfa 

 

 

 

Bu tezde, 2B Yerel Ayırtaç Tabanları algoritması kullanılarak uzaktan 

algılanan verinin sınıflandırılması sağlanmıştır. İkili sınıflandırma 

formundaki Doğrusal Ayırtaç Analizi yöntemi, çoğunluk analizi ve 

doğrusal uzaklık bileşenleri birlikte kullanılarak, ikiden fazla sınıfın 

sınıflandırılması işlemine uygun hale getirilmiştir. Kullanılan öznitelik 

çıkarımı algoritması, hiperspektral görüntüleri oluşturan çok sayıda 

spektral bandın içerisinden, ayırt edici bantların seçilmesi, gereksiz 

olanların elenmesi veya tek başlarına ayrımsallığı olmayanların 

birleştirilerek daha yüksek ayrımsallığa sahip bantların oluşturması 

işlemlerini gerçekleştirmektedir. Algoritmanın performansı, 

Tippecanoe County, Indiana’ya ait uzaktan algılanmış bir görüntü 

üzerinde test edilmiştir. Multispektral veriden spektral ve uzamsal-
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frekans öznitelikler çıkarılarak görüntü içerisindeki mısır, soya 

fasülyesi, buğday, kızılyonca ve yulaf ayrıştırılmıştır.  

 

Anahtar Kelimeler:  Uzaktan Algılama, Yerel Ayırtaç Tabanları, 

Doğrusal Ayırtaç Analizi, Hiperspektral Görüntüleme. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

Hyperspectral and multispectral images, which are obtained from 

hyperspectral sensors located in planes, aircrafts and satellites, have a 

variety of usage like food safety, both military and civilian purposes. 

Nowadays, the development in the sensor technology leads to the 

problem that the amount of the provided information and the complexity 

of the data are rapidly increasing. However, the extensive availability 

and accessibility of such data encourage the researchers to understand 

the necessity of machine learning algorithms. In order to analyze the 

data, automated feature extraction algorithms are used to obtain the 

necessary content from the hyperspectral images.  

 

The hyperspectral imaging devices are called spectroradiometers. 

Spectroradiometers not only collect the visible sunlight energy reflected 

from the surfaces, but also detect and gather a substantial amount of 

information revealed from the reflected energy in the infrared spectrum 

that is not visible to the human eye. This widely covered spectrum of 
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reflected energy which forms the hyperspectral images consists of 

hundreds of adjacent bands [1].   

  

Hyperspectral images are represented as high dimensional data which 

can be used to obtain both spectral and spatial information of a scene. 

Furthermore, hyperspectral imagers reveal considerably more detailed 

spectral information about the scene of interest than the traditional 

multispectral sensors [2].  

 

In land use/cover classification problems in remote sensing, the high 

dimensional data is expected to increase the effectiveness of the 

classification. However, when the training data is insufficient, increasing 

the number of spectral bands causes a decrease in the classification 

accuracy and an increase in the computational complexity and 

processing time. This is termed by Bellman [3] as “curse of 

dimensionality” which leads to the “Hughes phenomenon” [4] when the 

design of classifiers is matter. Additionally, the great amount of 

information obtained from hyperspectral images causes redundancies 

due to the repetition of spectral data [2, 5, 6].  

 

In order to overcome these drawbacks, dimension of the available data 

set should be optimized by not only eliminating the irrelevant bands but 

also by combining the ones which have no additional information on 

their own. 
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1.1 Thesis Statement 
 

In this thesis, Local Discriminant Bases based feature extraction 

method is applied to classify a land cover data in order to locate the 

most discriminative contents out of a 12-band multispectral remote 

sensing image. The dimensionality reduction process is applied to the 

data set by pruning the spectral and spatial-frequency features along 

both spectral and spatial axes. The extracted most discriminative 

features are used for the classification of five different vegetation 

species inside the data set: corn, soybeans, wheat, oat and red clover. 

 

1.2  Thesis Overview 
 

Chapter 2 introduces the common literature about feature extraction 

methods. It also presents the Best Bases algorithm and the Local 

Discriminant Bases algorithm for feature extraction. Some feature 

selection algorithms and classification methods are also reviewed  

Chapter 3 provides a brief overview on the feature extraction and 

classification techniques used in remote sensing.  

Chapter 4 presents the methodology behind the feature extraction, 

selection and classification steps used in this study. This section 

describes the specific steps and explanations about the proposed 

algorithm. 
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Chapter 5 provides detailed information about the multispectral data set 

used in the experiment. This section describes the specific properties of 

the data set and gives information about the pre processing phase. 

Chapter 6 presents the outputs of feature extraction step. The 

classification results are given for the LDB approach for two different 

test and training sets. 

Chapter 7 presents conclusions and recommendations for future works. 
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CHAPTER 2 

 

Literature Review and Background 

 

 

2.1 Feature Extraction and Feature Selection 

 

The process of dimensionality reduction in the literature can be grouped 

as feature extraction and feature selection. The feature extraction can 

be defined as the transformation of an N dimensional feature to an M 

dimensional feature vector [7] where N is greater or equal than M.  

 

In one perspective, feature selection can be thought as a subset of 

feature extraction [8] through a selection procedure realized by 

assigning ones and zeros to the feature coefficients. Although it 

minimizes/optimizes the feature set, this condition may not always lead 

to desired classification accuracy [9, 10]. The accuracy and the 

development of the feature extraction algorithms mostly depends on the 

structure of the problem and the type of the data [11].  
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There is an extensive literature on feature extraction and feature 

selection algorithms. Not only both supervised and unsupervised 

feature extraction algorithms exist [12] and used for dimensionality 

reduction, but also this separation can be extended by grouping the 

supervised and unsupervised methods into linear and non-linear feature 

extraction methods [13].  

 

The commonly used linear methods for extracting features from an 

original data set are the common-mean feature extraction [14], the 

decision boundary feature extraction (DBFE) [6] and, probably the most 

widely preferred linear method, Linear Discriminant Analysis Feature 

Extraction (LDA or DAFE) [15,16,17]. Based on the Fisher distance, the 

LDA is a fast and simple method. These methods are also known as 

statistic-based feature extraction methods because the extraction of 

features relies on the statistical theory. However, some of the well 

known drawbacks of LDA and training set dependencies [18, 19, 20, 21] 

reduces its usability.  

 

Another popular feature extraction algorithm in remote sensing 

applications is the Principle Component Analysis (PCA) [22]. The PCA 

algorithm converts the correlated variables into a small size of 

uncorrelated variables by using Karhunen-Loeve transformation. The 

basic PCA has the drawback of using all of the data set for converting 

process. Instead the segmented PCA method is proposed by Jia and 

Richards [23]. Also a Kernel PCA was introduced for remote sensing 

purposes by Fauvel, Channussot and Benediktsson [12]. PCA is also 
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known as a statistic-based feature extraction method. Statistic-based 

feature extraction methods are evaluated by the results of classification 

process [24]. 

 

Additionally, a valuable method for feature extraction is the Fourier 

Transfrom (FT). Fourier Transform is a frequency based feature 

extraction method. Basically, frequency based methods are used to 

represent the  hyperspectral signal, which is infact a hyperspectral 

curve of each pixel, from spectrum based to frequency based [25]. 

Similarly, another frequency based method for feature extraction is the 

wavelet transform (WT) [26]. One of the most important reason why the 

wavelet features can be suitable for image classification is its 

multiresolution approach [27]. When extracting the wavelet features, 

mostly orthogonal and representatively unique wavelet basis functions 

are used and low and high pass filters are applied along the specified 

rows and columns of the image for decomposition. Each combination of 

bidirectional filtering gives the information about the image. For 

example applying high-pass filters in both directions (HH) gives details 

along the diagonal direction. Also HL, LH filtering gives horizontal, 

vertical details of the image. LL filtering enhances low frequencies.  

 

Feature selection algorithms can also be grouped as filter and wrapper 

methods. The wrapper methods use a predefined induction algorithm 

and cross-validation to select the final set of features out of the whole 

set. Filter methods, on the other hand, use general properties of the 

features and they do not use any learning algorithm [28]. Sanmay 
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proposed a new boosting-based hybrid feature selection method in 

2001 which combines the filter and wrapper methods [29]. Another way 

of applying feature selection is searching for maximum difference 

between the classes. Method based on Fisher distance can be used for 

such discrimination and can be used as a basis for feature selection 

[30]. 

 

Commonly used feature selection methods based on filter approach are 

discretization based feature selection [31], correlation based feature 

selection (CFS) [31]. Some feature selection methods based on 

information theory are also used [32]. 

 

2.2 Best Basis Algorithm 

 

A best orthogonal basis algorithm was introduced by Coifman and 

Wickerhauser to reach the goal of efficient signal compression [33]. As 

a first step, the original signal is represented by an orthonormal 

wavelet-packets or trigonometric basis in a binary tree. At the second 

step, the algorithm computes the value of each node of the binary tree 

to reach minimum entropy transform. Then, using a leaf to root 

approach, the tree is pruned by using the entropies of nodes. Three 

main parts of the algorithm can be summarized as [34, 35, 36]: 
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1. Expansion of the original signal in a binary tree after selecting a 

decomposition method (orthonormal wavelet-packets or localized 

trigonometric functions) to obtain a coefficient vector. 

 

2. Computation of the entropy of each node using the coefficients 

determined in the previous step. The entropy H of a sequence 

{p} with ∑pi = 1 is : 

 

 

                 

3. Comparison of frequency subbands with respect to their entropy 

and pruning of the binary tree in order to achieve the minimum 

cost. 

 

The parent and the children nodes change adaptively during the 

pruning process. At the beginning, the children nodes are the bottom 

level leaves of the binary tree and the parent nodes are the ones 

located at the one upper level of these children nodes. Then, the 

decision is made according to the cumulative value of the children 

nodes and compared with the entropy of the parent node. If the parent 

has greater entropy than the cumulative value of its children, then the 

children nodes are omitted and the parent node is assigned as a new 

child for upper levels of the binary tree. At the end of the pruning 
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process, the remaining nodes are the best bases for signal 

representation and compression.  

 

2.3 Local Discriminant Basis Algorithm 

 

Different from the best-basis algorithm [33] which uses the entropy 

values of the binary tree components as an information measurement at 

the pruning phase to obtain the local information out of the signals 

representation, the LDB algorithm maximizes the distinguishing ability 

of classes in time-frequency energy distributions by using a distance 

function [37].  

 

At the beginning of the LDB algorithm, the given training signal is 

decomposed into a dictionary of orthonormal bases by using either 

localized wavelet packets or local trigonometric functions in binary tree 

form. After the decomposition of the signal, the discrimination power of 

each binary tree component is calculated by using a distance function. 

Most commonly used distance (dissimilarity) measures are J-

divergence, Fisher Distance, Euclidean Distance and Hellinger 

Distance. The LDB algorithm locates the best bases by pruning the 

binary tree.  
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Eliminating a parent node or eliminating the children from the binary 

tree depends on their discriminative powers. Child nodes are eliminated 

only if their cumulative discrimination power is smaller than their parent 

node. In that case, the parent node remains as a child node of an upper 

level node. Otherwise, the child nodes remain in the binary tree 

whenever their cumulative discrimination power is greater than their 

parent. In this situation, the discrimination power will be carried by the 

parent node.  

 

2.4 Classification  

 

Classification process in image analysis can be defined as assigning 

samples to groups based on their features and parameters [38]. 

Classification methods can be categorized as supervised and 

unsupervised methods. The aim of supervised classification is to match 

the samples to the previously selected classes. On the other hand, 

unsupervised classification algorithms promote the use of clustering 

based approaches because they try to define the class boundaries by 

grouping the samples with similar characteristics together [39]. If a 

classifier takes advantage of predefined labeled data, it is considered 

as a supervised classifier. For example, a simple LDA classifier can be 

considered as a supervised classification algorithm because it uses the 

labeled class samples as a training data. On the other hand, if a 

classifier has a tendency to ignore the labels when classifying, it can be 
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defined as an unsupervised classifier. A commonly used PCA classifier 

can be an example of an unsupervised classification algorithm.  

 

In the literature, there is a variety of classification algorithms like k-

Nearest Neighbor (kNN), Hidden Markov Model (HMM), Principle 

Component Analysis (PCA), Linear Discriminant Analysis (LDA), etc...  

These classifiers require working with relevant and orthogonal feature 

sets. In this thesis, a simple LDA classifier is used for the analysis of the 

multispectral data because the main focus of this study is the extraction 

of most discriminative features for classification purposes. 

 

As a simple and one of the most common statistics based classifiers 

[40], LDA computes the best hyperplane to separate the N dimensional 

data which is assumed to be linearly separable from each other. An 

example decision boundary line for a linearly separable sample class 1 

and class 2 is given in Figure 2.1. 
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Figure 2.1 – The decision boundary for the class 1 and class 2 

obtained by LDA. 

 

Although the LDA algorithm has low computational complexity and it is 

easy to implement, it has some major drawbacks which can directly 

affect the classification accuracy. One of the most important 

disadvantages of applying LDA is the small sample size problem. In 

order to make the LDA applicable and prevent the between-class 

scatter matrix from becoming singular, the number of the inputs should 

be smaller than the number of samples [21].  
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Furthermore, the LDA algorithm can only separate the classes with 

hyper-planes only if they are linearly separable. A more sophisticated 

Quadrature Discriminate Analysis (QDA) is proven to be more effective 

[20] because of its ability to separate classes with parabolas and 

hyperbolas. Also Support Vector Machine (SVM) classifier statistically 

outperformed the LDA classifier in [20] experimentally on a number of 

data sets. In order to overcome the requirements of training samples 

and complete class knowledge, the original algorithm was modified by 

Qian Du [19]. 
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   CHAPTER 3 

 

Hyperspectral and Multispectral 

Imaging in Remote Sensing 

Literature 

 

 

3.1 Multispectral and Hyperspectral Imaging for 

Land Cover/Use Studies 

 

Classification and mapping studies from remotely sensed hyperspectral 

and multispectral satellite and airborne imageries have long been used 

by the remote sensing community for land use/cover analysis, instead 

of the conventional classification methods requiring land surveys [41, 

42, 43, 44]. Classification of the land cover areas is one of the most 

important study areas in remote sensing [45, 46]. Some of the image 

classification studies use the spectral discrimination of classes because 

most of the land cover types have their own characteristic intensity 

values [46, 47]. Although the intensity values of the land cover types is 



16 

 

an important parameter, spatial composition can also be used for a 

deeper analysis and better accuracies [48].  

 

Multispectral and Hyperspectral sensors can scan the surface of the 

earth from satellites and aircrafts. One of the main differences between 

these two platforms is the spatial resolutions that they provide. Different 

from the spectral resolution which gives the number and positions of the 

spectral bands located in the electromagnetic spectrum, the spatial 

resolution represents the level of spatial detail presented in an image. 

Spatial resolution not only has a relation with the image pixel size but 

also dependent of the viewing angle and altitude of the sensor systems 

[49, 50].  

 

Sensor systems receive the reflectance energy from small areas on the 

earth surface known as patches. Size of an individual patch gives the 

spatial resolution. That means smaller patches provide higher spatial 

resolution [50]. Nowadays, the commercial satellite systems may have 

spatial resolutions in the order of 50 cm and better. 

 

Multispectral sensor systems located inside different platforms like 

aircrafts and satellites have been used for agricultural and other 

classification studies over a half century [51].  

 

On the other hand, the traditional multispectral systems have a limited 

number of spectral bands which can only be increased up to six 

spectral bands covering visible and near-infrared part of the spectrum. 
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However, there are some available multispectral systems adding 

thermal infrared bands to their spectrum coverage [49]. Because of 

those limitations of multispectral systems, hyperspectral technologies 

have become the area of interest for almost over two decades.  

 

The results from different studies which compare the accuracy of 

multispectral and hyperspectral sensors for agricultural and other 

parametric classifications is given at [52]. Offering the ability to collect 

data from more than 200 spectrally adjacent bands, which are also 

ordered by their wavelengths, hyperspectral data cover the visible, 

near-infrared, mid-infrared, and short-wave infrared domains [53]. On 

the other hand, the difficulty of processing the huge amount of data, 

limited training samples comparing to the high dimension and high data 

correlation  between the adjacent spectral bands are the concerns of 

hyperspectral classification [4, 54]. 

 

3.2 Feature Extraction and Feature Selection 

from Remotely Sensed Hyperspectral/Multispectral 

Data 

 

Feature extraction from remotely sensed data is important since it 

extracts the key attributes for an area of interest before the 

classification step and it helps to discriminate the land cover areas in 

the scene. In land use/cover classification problems, availability of high 
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dimensional data is expected to increase the effectiveness of the 

classification. On the other hand, when the training data is insufficient, 

increasing number of spectral bands causes a decrease in the 

classification accuracy and an increase in the computational complexity 

[5, 6].  

Hyperspectral sensors gather images from the earth surface by picking 

great number of adjacent spectral bands continually. Although this high 

dimensional data seems very beneficial for remote sensing, the 

information in close spectral bands is highly correlated and the images 

often tend to be highly redundant. Also this high dimensional data 

consumes great amount of computational time and performance [8, 55].  

To solve this limitation, feature vector size is decreased by removing 

the irrelevant features obtained from the raw data and/or combining the 

ones together which do not represent supplemental information on their 

own [56, 23, 36]. There are a great number of studies in remote sensing 

literature using different kinds of feature extraction and feature selection 

problems. The performances of feature extraction methods are usually 

compared by their classification accuracies [24].  

Hui Hsu and Hsing Tseng [25] compare the accuracy of frequency 

based feature extraction algorithms, best basis algorithm and two 

versions of LDB algorithm (cross entropy based and L2 norm)  to 

classify the four vegetation classes in the Aviris Indiana Land Cover 

data set. The results show that non-linear methods give better results 

than linear methods. Also LDB algorithm classifies the classes with 93% 
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accuracy by using 12 extracted features and also reduces the data 

dimension dramatically.  

Pal [57] proposed a margin-based feature selection method and 

compared it with the SVM based algorithm in order to classify two 

different hyperspectral data. DAIS data consists of 65 spectral bands 

containing 8 vegetation classes and Aviris data consists of 185 bands 

containing 9 vegetation classes. The results show that two margin-

based feature selection methods reduced the data dimension from 65 to 

24 and 185 to 65 by reaching 92.6% and 82.4% classification accuracy, 

respectively.  

 

Bruce, Koger and Li [26] proposed a dyadic discrete wavelet transform 

to classify the vegetative classes from hyperspectral data taken with a 

portable hand-held spectroradiometer. Although the reflectance signal 

between 350 nm and 2500 nm contains 2151 contiguous spectral 

bands, only the first 1000 bands were used for the experiment. The 

algorithm reaches 95% and 80% classification accuracy for end 

member and mixed-signature applications by using the extracted 

features from the proposed algorithm.  

 

Fauvel, Channussot and Benediktsson [12] developed an unsupervised 

Kernel Principle Component Method to analyze the hyperspectral 

remote sensing land cover data. The proposed method increases the 

classification accuracy from 79% to 96% for one data set. Borra [58] 

used the Robust Principle Component Analysis method to a 60 bands 
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hyperspectral land cover data. The presented results show that the 60 

bands were reduced to 17 by using a hierarchical dimensionality 

reduction method. After applying PCA to the reduced data set, the 

number of bands dropped to 5.  

 

Tian, Guo and Lyu [59] evaluated five feature extraction methods in the 

order of the classification results. The evaluated feature extraction 

methods are Euclid Distance Measurement (EDM), Discrete 

Measurement Criteria Function (DMCF), Probability Distance Criterion 

(PDC), Minimum Differentiated Entropy (MDE) and Principle 

Component Analysis. For the experiment, 5 different Landsat-5 

thematic mapper (TM) images of Beijing, China with 7 spectral bands 

were used. After the experiments, the data dimension was reduced to 3 

bands and all the classification accuracies were over 90% for all the 

images. The results show that the EDM and PDC algorithms were 

better when extracting the key features while MDE reached an average 

performance and DMCF and PCA methods were the worst among all. 

 

 3.3 Classification Problem in Hyperspectral and 

Multispectral Remotely Sensed Data 

 

Classification of remotely sensed data is a very important procedure as 

it provides results relevant for many environmental and economical 

applications. Although the number and the variety of researches on 
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classification of remotely sensed data using statistical, structural 

methods is rapidly increasing [60, 6], the recent study of Wilkinson [44] 

stated that the classification rates of the presented methodologies in the 

last 15 years showed no significant improvements.  

 

A widely encountered problem which was studied by Hughes [4] for 

remotely sensed data classification is the inconsistency in the 

classification accuracy when the number of available training samples is 

limited and the dimension of the data is increasing. The situation where 

an increase which is followed by a decrease in the classification 

performance caused by the small ratio of number of training samples to 

the number of spectral features is known as the Hughes Phenomenon. 

 

Different from the Hughes Phenomenon, selection of training samples 

that are poorly representative of the features of interest is another 

common problem in remote sensing studies. This kind of drawback 

occurs when the training samples of a class are gathered from a limited 

region, although the class samples are distributed all over the region of 

interest. In order to overcome the limited and unrepresentative training 

sample problem, Jackson and Landgrebe developed and proposed an 

adaptive classifier and improved the classification accuracy up to 93.4% 

for the Flight Line C1 data set after 5 iterations [61].  

 

In pixel-based approaches, each pixel is evaluated individually based 

on its spectral reflectance value in order to classify the whole remotely 

sensed data [62]. The comparison is made between the reflectance 
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value of a single pixel and the spectral representation of a predefined 

land cover area.  

 

Since the spectral information gathered from a single pixel does not 

have the ability to represent the remotely sensed land covers by itself 

and some complex land cover areas can only be identified by the 

combination of many pixels, the spatial information is a very important 

component for remotely sensed image classification. Image 

segmentation techniques are the approaches for the usage of spatial 

information to classify the land cover types [60, 63]. Some of the most 

common image segmentation approaches are region growing, Markov 

random field model and fuzzy rule-based classification [64, 65, 66]. 

 

There is an extensive literature on land cover classification in remote 

sensing. Some of the studies for land cover classification using 

hyperspectral and multispectral data are given as an example. Jackson 

and Landgrebe [61] presented a self-learning and self-improving 

adaptive classifier for 12 vegetative classes from the 12-band Flightline 

C1 dataset and reached 93.4% classification accuracy with only 5 

iterations. 

 

Brodley, Friedl and Strahler [67] compared the classification accuracies 

of three different decision tree classifiers using three different 

hyperspectral land cover data sets. The Univariate Decision Tree 

(UDT), Multivariate Decision Tree (MDT) and Hybrid Decision Tree 

(HDT). A linear classifier was used as a reference and the results show 



23 

 

that three decision tree algorithms outperformed the linear classifier. 

The classification accuracies for UDT, MDT, HBT and linear classifier 

were 85.61%, 86.39%, 87.70% and 78.66% respectively for the first 

data set. The other results for the other two data sets were also similar. 

 

Dundar and Landgrebe [68] developed a supervised classification 

algorithm based on Bayes rule with kernel to reach high classification 

accuracy by using 3 different hyperspectral data sets. The data sets are 

the 12-band Flightline C1 vegetation data set, the 220 contiguous 

banded Washington DC mall HYDICE data set and the 126-band 

Purdue University West Lafayette Campus data set. The proposed 

algorithm produced a considerably low mean error after being applied to 

all data sets. 

 

Karakahya, Yazgan and Ersoy [62] proposed a new spectral-spatial 

classifier for remote sensing data and compared the results over 

traditional per-pixel classifiers and Extraction and Classification of 

Homogenous Objects (ECHO) algorithm. The accuracies were tested 

using 12-band Flightline C1 dataset and the results show that the 

algorithm outperformed the Minimum Distance to Mean (MD), Maximum 

Likelihood (ML) and Fisher Linear Likelihood methods and was slightly 

better than the ECHO algorithm by reaching 92.1% classification 

accuracy using only the first 3 features. 

 

 



24 

 

CHAPTER 4 

 

  METHODOLOGY 

 

 

4.1  Feature Extraction from Hyperspectral Data 

by 2D Structured LDB Algorithm 

 

Most discriminative features in hyperspectral data are extracted by the 

LDB algorithm which is used as a representation of 2D signals. The 

previous version of the LDB algorithm finds the discriminative features 

by decomposing the time axis into local cosine packets or frequency 

axis into wavelet packets. However, in the hyperspectral imaging 

perspective, both the local cosine packets and wavelet packets are 

valuable and instead of the time axis the spectral axis is used [60, 70, 

71]. 

Without knowing any prior spectral and spatial-frequency location 

information, the modified 2D structured LDB algorithm gets the exact 

location of these discriminative features. After pruning both axes, the 

algorithm combines the irrelevant features which do not contain useful 
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information on their own, to get the most discriminative features.  After 

the pruning step, the feature selection algorithm selects the most 

discriminative features for classification.  

 



26 

 

 

Figure 4.1: The block diagram of the 2D LDB based feature extraction 

for hyperspectral data [11]. 
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4.1.1    Generation of the Feature Tree 

 

Although the features are important for the classification of 

hyperspectral images, repetitive features from the adjacent spectral 

bands should be eliminated in order to increase the classification 

accuracy of the algorithm. Furthermore, reduction in the dimensionality 

also plays an important role. During the feature tree generation process, 

two feature trees on both axes are generated in order to get the 

candidate feature set. 

 

4.1.2    Generation of the Spectral Feature Tree 

 

In the generation of the spectral feature tree phase of the algorithm, the 

reflectance energies of images are placed at the bottom (nth) level of the 

binary tree from left to right. If the number of spectral bands in the 

hyperspectral image are smaller than the number of leaves at an nth 

level binary tree, remaining leaves should be set to null. An n=4 levels 

spectral feature binary tree with 16 spectral bands is shown in Figure 

4.2. 

 



28 

 

 

 Figure 4.2: Spectral Band Binary Tree for 4 levels. 

 

4.1.3    Generation of the Spatial-Frequency Feature Tree 

 

The second sub step of the feature tree generation phase is 

decomposing the spectral segments into frequency subbands in order 

to get the frequency information of the signals. The reason behind that 

is to locate and process the local patterns in signals. Therefore, the 

spectral images separated into k level wavelet subbands of LL, LH, HL 

and HH in a quad tree formation to generate the spatial-frequency 

feature tree. L stands for “low” which represents row directional filtering 

and H stands for “high” which shows column directional filtering. For (k 

= 4) level full wavelet decomposition of a spectral image results in 

obtaining (2k = 4 = 341) features and a 3 level decomposition generates 

85 features. A 4 level full wavelet decomposition quad tree illustration is 

given in Figure 4.3. 
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Figure 4.3: Three level full wavelet decomposition quad tree with 85 

subbands. 
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4.1.4   Spectral Axis Pruning 

 

A leaf to root approach is used to prune the binary spectral tree to 

obtain the spectral bands which have better discrimination power. In 

order to reach that goal, the algorithm combines some of the spectral 

bands which have lower classification accuracy on their own. The 

energy of the frequency components of the spectral bands which were 

combined in spectral pruning are averaged before the spatial-frequency 

quad tree pruning.  

The binary spectral tree pruning algorithm consists of two main steps: 

 

1.  If exists max{ dchild_node1  , dchild_node2 }  where  

max{ dchild_node1  , dchild_node2 }  > dmother_node 

2. Assign  max{ dchild_node1  , dchild_node2 }  as new dmother_node 

 else delete children nodes 

 

In the pruning algorithm, di stands for “the distance of ith node feature 

between the classes”. The cumulative probability distribution of the 

nodes is calculated by using Euclidean Distance.  The Euclidean 

Distance is calculated by using:  
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where xn and yn are normalized energy distributions of features from 

class 1 and class 2.     

 

4.1.5   Spatial - Frequency Axis Pruning 

 

Because of the spatial-frequency feature tree’s quadrature structure, 

the pruning algorithm for spectral tree given in Section 2.1.3 is modified 

to four children scales. The modified leaf to root approach can be 

formulated as: 

 

1. If exists max{ dchild_node1  , dchild_node2,  dchild_node3  , dchild_node4}  

where  

           max{ dchild_node1  , dchild_node2,  dchild_node3  , dchild_node4}  > dmother_node 

 

2. Assign  max{ dchild_node1  , dchild_node2,  dchild_node3  , dchild_node4}   

as new dmother_node 

 else delete children nodes 
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In this modified pruning algorithm child_node1, child_node2, 

child_node3 and child_node4 represents the LL, LH, HL and HH 

wavelet subbands of the parent node. The algorithm compares the 

discrimination accuracy of the wavelet subbands to their mother node 

and decides to keep them if their cumulative potential is greater than 

that of the mother node. Otherwise, the child nodes will be deleted from 

the spatial-frequency feature quad tree. 

 

4.1.6   Selection of Located Spectral & Spatial-Frequency 

Features 

 

Although the feature extraction process prunes both the spectral and 

spatial-frequency axes and obtains the best combination of features 

located in both axes, the process does not remove the irrelevant 

features. For this reason, the feature extraction process is followed by a 

feature selection algorithm that selects relevant features and feeds 

them into the linear classifier one after another. This feature selection 

phase finds out the optimal feature subset.  

 

The feature extraction phase should minimize the classification error by 

using this best feature subset. Approaching the ideal of reaching a 

higher classification accuracy with as fewer number of features as 

possible. In this thesis, the LDA statistical classifier is used to reach this 

high classification accuracy.  
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In the beginning of the 2D structured LDA method, two classes out of N 

number of classes and an observation data with j number of features 

like f1, f2, f3, ... , fj are known. The classes are called dependent 

variables and the features are called independent variables. In this 

phase, a solid line L which maximizes the separation between class 

projections, the decision boundary, is identified as a hyperplane. Using 

this hyperplane, the algorithm gives a positive or negative value to the 

observation pattern based on whether the given observation pattern is 

located on its positive or negative side, respectively.  

 

Based on the result, the observation pattern is assigned to the first 

class or the second class. This can be called as the membership 

parameter. Furthermore, the method not only determines the 

membership of the pattern to one of these classes, but also reveals the 

distance of the observation pattern to the decision hyperplane. This 

distance parameter is used as a complementary parameter to the 

membership parameter to evaluate the strength of the assumption of 

this membership. 

 

In this thesis, we deal with more than two classes; therefore, the 2D 

structured LDA algorithm is modified to a multi-class separation 

structure. The modified version of LDA basically has the same 

fundamental steps that 2D structured LDA has. The main difference is 

in the membership decision step. The differences are: 
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1. The original 2D structured LDA identifies the location and 

orientation of the hyperplane, the boundary line, by only using 

the class projections. After the hyperplane is identified, the 

observation pattern is assigned to a class based on its location 

with respect to the hyperplane.  The result shows the 

membership of the pattern to a class.  

However, there are more than two different classes in the 

dataset. Therefore, a final decision can be made by applying 

majority voting rule to the final result set in order to obtain the 

membership information for a given observation pattern. The 

result set is in N-to-N matrix where N is the number of classes. 

This matrix is called the decision matrix, MR. The decision matrix 

only contains  number of relevant results because some 

elements of the matrix contain duplications and some are 

useless for the case. For example, both MD(j,m) and MD(m,j), 

identify the same selections where m and k represent different 

classes. Also the results located on the diagonal axis of the 

decision matrix are irrelevant for this particular application like 

MD(m,m) or MD(j,j).  

For the three-class LDA classifier problem, the decision matrix 

should be 3x3 matrix. For example, MD(1,3) represents the 

membership result, obtained after applying 2D structured LDA 

between the first and third classes. Also, MD(2,3) contains the 

membership result, after applying 2D structured LDA between 

the second and third classes for a given pattern. The elements of 
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the decision matrix are either +1 or -1 depends on the 

observation pattern’s location with respect to the hyperplane.  

At this stage, we made an assumption that the small numbered 

class should always be located at the negative side of the 

hyperplane for not causing any misconceptions. For instance, 

class1 is always located at the negative side when it is compared 

to class2 or class3, as well as class 2 is located at the negative 

side when it is compared to class 3 in a three class LDA 

integration.  An example 3x3 decision matrix is given in below for 

explanatory purposes: 

MD  =  

The elements located at the diagonal axis of the decision matrix 

and located below the diagonal axis are assigned as 0 (zero). 

This means that these members are irrelevant for our application. 

The reason behind this assignment is that, for example, MD(2,3)  

and MD(3,2)  represents the same pairwise selection by choosing 

both the second and the third class. Also the combinations 

located along the diagonal axis of the decision matrix; MD(1,1),  

MD(2,2) and MD(3,3) are irrelevant for this problem. After 

eliminating these matrix elements, the only remaining 

combinations are  MD(1,2),  MD(1,3) and MD(2,3) for this 

particular case.   
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The result “+1” at the  MD(1,2) means that after applying the 2D 

structured LDA algorithm to the observation pattern for the first 

and second classes, the pattern is located at the positive side of 

the hyperplane where the second class is located. The result “+1” 

at the MD(1,3) means that, after applying the 2D structured LDA 

algorithm to the observation pattern for the first and third classes, 

the pattern is located at the positive side of the hyperplane where 

the third class is located. Finally, the result “-1” at the MD(2,3) 

means that, after applying the 2D structured LDA algorithm to the 

observation pattern for second and third classes, the pattern is 

located on the negative side of the hyperplane where the second 

class is located. The negative and positive side placement 

decisions are based on our previous assumption about assigning 

the lower numbered classes to the negative side of the 

hyperplane.  

Application of the majority voting rule to the decision matrix is 

expected to give the sought solution. The modified 2D structured 

LDA algorithm decides that the pattern belongs to the second 

class for the example decision matrix MD. This decision is made 

because the second class has 2 votes while the first class has 1 

vote and the third class has no (zero) vote. The majority of the 

votes lead to this decision. 
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2. If there is more than one class that has the same number of 

votes, then the majority voting could create a deadlock. Another 

parameter is needed for verifying the membership decision. 

Therefore, not only the location of the observation pattern is 

used, but also the distance with respect to the hyperplane is 

taken into consideration when deciding the membership of a 

pattern. Also for a multi-class comparison, the distance 

parameter helps to increase the certainty of membership 

assignments.  

The distance result set is also an N-to-N matrix, DD, which 

contains the axial distance of patterns with respect to the LDA 

hyperplane. Distance matrix has exactly the same properties that 

decision matrix, MD, has. A different 3x3 decision matrix and its 

3x3 distance matrix are given below for explanatory purposes: 

 

            MD  =   DD  =  

 

The “-1” value at the MD(1,2) and MD(2,3) matrix elements 

means, applying the 2D structured LDA algorithm to the 

observation pattern for the first and second and second and third 

classes shows that the pattern could be a member of the first 

class or the third class. Furthermore, the  “+1” value at the 

MD(1,3) matrix element means, applying the 2D structured LDA 

algorithm to the observation pattern for the first and third classes 



38 

 

shows that the pattern could be a member of the third class. It is 

observed that each class has the same number of votes which 

will lead the application to a decision deadlock. In order to avoid 

this deadlock, the distance parameter is used.  

 

For the complementary distance parameter, it is assumed that 

maximizing the axial distance for the observation pattern with 

respect to the hyperplane maximizes the certainty of the 

membership. DD(2,3) = 2.0012 has the maximum axial distance 

for the above example. For that reason, the class which the 

observation pattern belongs to is given by MD(2,3) = -1 which 

corresponds to the 2nd class. 
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CHAPTER 5 

 

THE EXPERIMENTAL 

 DATASET 

 

 

5.1  The Dataset 

 

Flightline C1 (FLC1), a historically significant 12-band multispectral data 

set, is used to evaluate the performance of the proposed algorithm [72].  

This RGB color coded multispectral data covers the southern part of 

Tippecanoe County, Indiana. The flight line follows a county road from 

the Grandville Bridge over the Wabash River just south of South River 

Road (West Lafayette) to near State Highway 25. Although the data 

were obtained by using the M7 airborne scanner in June 1966, the data 

remains contemporary because of its key attributes.  

 

The FLC1 data set not only contains a satisfactory number of different 

vegetation classes but also consists of more than a few spectral bands 

(12 bands) which make it a very valuable for illustrative purposes. The 
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12-band multispectral image which consists of 949 scan lines with 220 

pixels per scan line was collected by scanning the terrain at an altitude 

of 2600 ft. More information about this data set can be gathered from 

[73]. Table 5.1 shows the spectral bands of the FLC1 data set: 

 

Table 5.1 -  Spectral Sensitivity of the multispectral Flightline C1 data 

set. 

 

Band 
Number 

Wavelength 
Interval 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.40 - 0.44 μm 
0.44 - 0.46 μm 
0.46 - 0.48 μm 
0.48 - 0.50 μm 
0.50 - 0.52 μm 
0.52 - 0.55 μm 
0.55 - 0.58 μm 
0.58 - 0.62 μm 
0.62 - 0.66 μm 
0.66 - 0.72 μm 
0.72 - 0.80 μm 
0.80 - 1.00 μm 

 

The images belonging to each band of the FLC1 data set are given in 

Figure 5.1, Figure 5.2 and Figure 5.3 respectively.  
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 Figure 5.1 - Four spectral band images between 0.40 μm - 0.50 μm in 

grayscale format are given respectively.  
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Figure 5.2 - Four spectral band images between 0.50 μm - 0.62 μm in 

grayscale format are given respectively.  
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Figure 5.3 - Four spectral band images between 0.62 μm - 1.00 μm in 

grayscale format are given respectively.  
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The availability of ground truth information makes the FLC1 data set 

ideal for the application of feature extraction and classification 

algorithms. Based on the ground truth data, the data set was divided 

into five classes. Every class in the experimental data set represents 

different vegetative species. These five vegetative classes are corn, 

soybeans, wheat, oat and red clover.  

 

5.2 Preprocessing the Data Set 

 

In order to prepare the test and training images, binary masks for each 

class are generated. These masks are used to extract the class 

samples from the whole image and separate this class samples from 

the other class samples. This process is applied to every class and 

every spectral band. In fact, a binary mask of a specific class is a 

ground truth map of this class. Figure 5.4 and Figure 5.5 shows the 

masks for every class. 
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Figure 5.4 – Ground Truth Masks of corn, soybeans and wheat classes 

extracted from spectral band 1 image. 
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Figure 5.5 – Ground Truth Masks of oat and red clover classes 

extracted from spectral band 1 image. 
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CHAPTER 6 

 

RESULTS AND DISCUSSIONS 

 

 

6.1  Classification of the Data Set 

 

In order to find the most discriminative features for the classification 

from the multispectral airborne image (FLC1), the developed algorithm 

based on the 2D Structured LDB approach is implemented. Flightline 

C1 (FLC1)  data set is divided into five vegetative species: corn, 

soybeans, wheat, oat and red clover. In the first step, a binary spectral 

tree is generated and each spectral band of the image (12 bands 

between 0.40 μm – 1.0 μm) is placed at the bottom level (4th level) of 

this spectral tree.  

 

The images are placed based on their reflectance values from left to 

right. However, the bottom level of a binary tree with four depth consists 

of 16 nodes. Therefore, the remaining 4 nodes are assigned as null. 

Assigning null to these four remaining nodes sets their discriminative 

power as 0 (zero) and makes them ineffective in the pruning process. In 
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the spectral axis pruning process, the merged spectral features are 

averaged according to their energies before beginning the spatial-

frequency axis pruning. Figure 6.1 shows the spectral pruning. 

 

 
Figure 6.1 – The spectral bands between 0.40 μm – 0.50 μm and 0.62 

μm – 1.00 μm are pruned (The last four remaining null nodes are 

ignored). 

 

In the second step of the proposed algorithm, Daubechies 8 tap filter 

was used in order to form the two level wavelet decomposition quad 

trees. A two level wavelet quad tree consists of 21 subbands images. 

For the FLC1 12-band multispectral airborne dataset, total of 252 

spatial-frequency patterns were placed on the spatial-frequency 

decomposition quad tree before the spatial axis pruning process.  

 

The most discriminative features can be observed after completing both 

spectral and spatial-frequency pruning processes. In order to select the 

best discriminative features for a given class, two different preparations 

were made when assigning the fields as test and training sets. When 

preparing the test and training labels, two main rules are applied. The 
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first rule is that for the two different preparations, half of the labeled 

fields containing half of the total number of pixels are assigned as the 

training set and the other half is assigned as the test set. The second 

rule is that the test and training fields are completely different from each 

other. It means that none of the training labels are used for testing. Two 

types of pixel sampling methods were proposed for the formation of the 

test and training sets. 

 

In the first formation of the test and training sets, every main labeled 

vegetation field which is extracted from the original ground truth image 

is divided into smaller sub fields. For example, a labeled rectangular 

corn field is divided into smaller rectangles. The training and test fields 

are selected randomly from these sub labels. 

 

In the second formation of test and training set, all of the samples 

belonging to that class are divided into two parts without dividing the 

labels into sub labels. After that, one half (50% percentages of all 

samples) is assigned as the training set and the remaining half 

(remaining 50% percentage of all samples) is assigned as the testing 

set. The process is repeated two times until every single part is 

assigned as a testing set and the other three parts are assigned as the 

training set.  

 

Training and testing set assignment procedure is applied to all other 

classes. The classification accuracy is the average from all results 

obtained from each binary classification. At the end, one feature map is 
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built for each training set of a given class. A resulting feature map of 

oat-red clover discriminative features after applying the first and second 

formation of the test and training sets are given in Figure 6.2 and Figure 

6.3 respectively. 

  

 

 

Figure 6.2 – An example “Feature Map” of oat - red clover 

discrimination features when using the first formation of the test and 

training set. The map shows the location of spectral bands and 

decomposed wavelet components.   
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The maximum number of candidate feature dimension for the lowest 

(fourth) level for a 12-band multispectral data is 192 (12 spectral bands 

x 16 frequency sub-bands). For the given oat-red clover feature map, 

the number of spectral-frequency feature dimension reduced from 192 

to 33. The percentage of this dimension reduction gain is 82.81%. 

Although none of the spectral bands are pruned along spectral axis, 

every spatial frequency features except 0.40 μm - 0.44 μm and 0.44 μm 

- 0.46 μm are merged in spatial-frequency axis. The 0.40 μm - 0.44 μm 

spectral interval is decomposed into 12 spatial-frequency sub 

components and the 0.40 μm - 0.44 μm spectral interval is decomposed 

into 16 spatial frequency sub components. Another feature map of oat-

red clover discriminative features is given in Figure 6.3. 

 

 



52 

 

 

Figure 6.3 – An example “Feature Map” of oat - red clover 

discrimination features when using the second formation of the test and 

training set.  

 

It can be observed from the Figure 6.3 that after the pruning operations, 

the number of spectral-frequency feature dimension reduced from 192 

to 27. The percentage of this dimension reduction gain is 85.93% for 

the given oat-red clover feature map. Similar to the feature map in 

Figure 6.2, none of the spectral bands are pruned along spectral axis in 

this feature map and every spatial-frequency sub band except 0.52 μm - 

0.55 μm wavelet band’s spatial-frequency components are merged in 
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spatial-frequency axis. The 0.52 μm - 0.55 μm spectral interval is 

decomposed into 16 spatial-frequency components.  

 

From different training sets and different pairs of classes, the feature 

extraction phase delivers different numbers and types of discriminative 

features to the classification step. The implementation of the proposed 

algorithm generates a total number of 10 feature maps for the  

pairwise combinations where 5 is the selected number of vegetative 

classes from the data set. Some of these pairwise combinations are 

corn-soybeans, corn-wheat, soybeans-oat, wheat-red clover etc.  

 

Each feature has a feature-score based on its discrimination powers. 

For the given feature maps of oat-red clover discriminative features in 

Figure 6.2 and Figure 6.3, the extracted 33 and 32 features are ranked 

using the Fisher Distance Based Feature Selection (FDB) algorithm. 

After the ranking process, these 33 and 32 features are sorted by the 

feature selection algorithm based on their discriminative powers and fed 

into the linear classifier. The process is repeated for all of the 10 

pairwise class combinations. After applying the FDS algorithm, the 

features are given a color and a number. Both the darkness of the 

feature color and the number on each rectangular area in the feature 

tree show the feature’s relevance. Figure 6.4 and Figure 6.5 show the 

spectral spatial-frequency feature map of oat-red clover and oat-red 

clover discriminative features given in Figure 6.2 and Figure 6.3 with 

their colors and their numbers on them ranked by FDS. All of the 
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generated and ranked spectral spatial-frequency feature maps with 

feature colors and feature numbers are given in Appendix A. 

 

 

Figure 6.4 - Spectral Spatial-Frequency feature map of oat-red clover 

features ranked by the FDS algorithm when using the first type of test 

and training sets. 
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Figure 6.5 - Spectral Spatial-Frequency feature map of oat-red clover 

features ranked by the FDS algorithm when using the second type of 

test and training set. 

 

In order to find the optimal number of features for the classification 

process, the spectral spatial-frequency features which are ranked by 

FDS are fed into the linear classifier one by one. This process is 

repeated for all 10 generated feature maps. After calculating the 

classification error percentage for each class, the mean error is 

calculated. The mean classification error curve is given in Figure 6.6. 
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 Figure 6.6 – The mean classification error curves of in percentage 

when using the first and second format of test and training sets. The 

graph shows the average of all pairwise classification results. 

 

It can be seen from the Figure 6.6 that the minimum classification error 

with minimum number of features is 8.85%. This error rate is obtained 

only with 3 features using the first type of test and training data. The 

minimum classification error with minimum number of features is 

18.75% when using the second type of test-training set. This error rate 

is also obtained with 3 features. The results are given in Table 6.1 

below. 
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Table 6.1 - Mean errors obtained by using 3 features.   

 

 
Number of Features Classification Error (%) 

Proposed Algorithm 

(with first type of test-training 

set) 

3 8.85 

Proposed Algorithm 

(with second type of test-

training set) 

3 18.75 

 

In order to compare the accuracy of the feature extraction algorithm 

with a well-known algorithm, the PCA algorithm is also implemented as 

an alternative feature extraction method and tested on the same data 

set. To do the comparison appropriately, the remaining LDA classifier 

part is completely identical with the LDB algorithm’s implementation. 

The mean classification error provided by both feature extraction 

methods when using the first test-training formation is given in Figure 

6.7. 
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Figure 6.7 - The general mean classification error curves of in 

percentage when using the LDB algorithm for feature extraction and 

PCA method for feature extraction.  

 

A total number of 66534 pixels are labeled as corn, soybeans, oat, 

wheat and red clover based on the ground truth images given in Figure 

5.4 and Figure 5.5 in Chapter 5. The distribution of all the pixels to each 

class and all the wrong decisions made during the classification process 

when using the first and second test-training sets are given in two 

different decision matrices in Table 6.2 and Table 6.3. 
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Table 6.2 – Decision Matrix for the FLC1 data set when using 3 

features with the first type of test-training set combination. 

 

 True Class 

Classified As Corn Soybeans Oat Wheat Red Clover 

Corn 11536 0 285 0 0 

Soybeans 713 23193 208 0 0 

Oat 182 0 7119 0 0 

Wheat 0 0 190 11174 0 

Red Clover 0 0 0 0 13512 

 

*All of the given numbers are representing the number of pixels for that 

decision. 
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Table 6.3 – Decision Matrix for the FLC1 data set when using 3 

features with the second type of test-training set combination. 

 

 True Class 

Classified As Corn Soybeans Oat Wheat Red Clover 

Corn 11536 0 493 1813 528 

Soybeans 300 23193 585 0 1323 

Oat 128 3308 7119 0 0 

Wheat 0 0 0 11174 0 

Red Clover 0 1768 0 2160 13512 

 

*All of the given numbers are representing the number of pixels for that 

decision. 

 

The decision matrix in Table 6.2 shows that approximately 1578 pixels 

out of 66534 pixels are classified incorrectly by the proposed algorithm 

by using 3 features for classification. The results are given for 3 

features because the minimum mean error is obtained by using 3 

features. The results show that approximately 713 pixels from corn 

class are misclassified as soybean, approximately 182 pixels from corn 
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class are misclassified as oat, approximately 502 pixels from oat class 

are misclassified as wheat, 285 pixels from oat class are misclassified 

as corn and 208 pixels from oat class are misclassified as soybeans. 

The proposed algorithm did not misclassify almost any of the pixels 

from soybeans wheat and red clover classes.  

 

Also it can be seen from the given decision matrix in Table 6.3 that 

approximately 12406 pixels out of 66534 pixels are classified incorrectly 

by the proposed algorithm by using 4 features for classification when 

using the second type of test-training set formation. The results for the 

second type of test-train set are also given for 3 features because the 

minimum mean error is obtained using 3 features. The results show that 

total number of 3436 pixels from soybeans and corn classes are 

misclassified as oat. 3928 soybeans and wheat pixels  are misclassified 

as red clover, 2834 oats, wheat and red clover pixels are misclassified 

as corn and 2151 corn, oat and red clover pixels are misclassified as 

soybeans. The proposed algorithm did not misclassify almost any of the 

wheat pixels. The classification maps which show the comparison of 

original ground truth maps and the classification maps based on the 

decision matrices in Tables 6.2 and 6.3 are given in Figure 6.8 and 

Figure 6.9 respectively.  
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Figure 6.8- The comparison of original ground truth map belonging to 

the 12th spectral band and the classification maps based on these 

results is given decision matrix in Table 6.2. First image shows the 

training fields. Misclassified areas are shown in black color in the 

second image. The third image shows the misclassified areas with the 

misclassified vegetation class color on them. 
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Figure 6.9- The comparison of original ground truth map belongs to the 

12th spectral band and the classification maps based on these results is 

given decision matrix in Table 6.3. First image shows the training fields. 

Misclassified areas are shown in black color in the second image. The 

third image shows the misclassified areas with the misclassified 

vegetation class color on them. 
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Obtaining the best spatial spectral-frequency decomposition of the data 

and bands to be retained for classification is a computationally 

demanding step. In order to classify M-ary data, this binary step has to 

be carried out for  times. When the first 3 features providing the best 

classiffication rate is employed, all 178 samples need to be processed. 

In this case, the computations for feature extraction and classification 

require 2102.5 msec on a dedicated Intel Core Duo 1.66GHz processor. 

It can be concluded that a single labelled sample is processed in 

approximately 11.3 msec. The computation times are calculated by 

using the “cputime” function of Matlab 7.1 software.  
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CHAPTER 7 

 

CONCLUSIONS 

 

 

The 2D Local Discriminant Bases (LDB) algorithm used to classify 

remotely sensed data. The LDB algorithm extracts the relevant features 

by removing the irrelevant ones and/or combining the ones together 

which do not contain supplemental information on their own. The aim of 

our study is reaching the minimum mean error with fewer numbers of 

features. In order to test this goal, the 2D LDA classifier is modified to 

M-ary form by combining the Majority Voting Principle and the linear 

distance parameters to classify more than two classes appropriately in 

the remotely sensed data. Better classification accuracies are predicted 

to be obtained by using more complex classifiers like other non-linear 

classifiers, Support Vector Machines or Neural Networks with extracted 

features. Also one can try to develop his own adaptive [61] or 

estimation based classifiers [68] for this kind of problems where limited 

numbers of training samples are available.  

 

The proposed method is implemented on a multispectral airborne data 

set, also known as Flight Line C1 (FLC1), from Tippecanoe County, 
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Indiana to evaluate its performance. The spectral and spatial-frequency 

features are extracted from the image and used for classifying corn, 

soybeans, red clover, wheat, and oat in the data set. The motivation 

behind this study is enabling a low cost but highly accurate remote 

sensing system which uses fewer numbers of bands with fewer 

amounts of data. 

 

During the experimental study, in order to select the best discriminative 

features for a given class, two different preparations were made when 

assigning the fields as test and training sets. We used half of the 

labeled fields that contain the half of the total number of pixels are 

assigned as training set and the other half is assigned as test set for 

each preparation. Also, we completely separate the test and training 

fields from each other. The feature extraction step generates a total 

number of 20 feature maps where 10 of the feature maps resulted from 

using the first type of training set and the other 10 feature maps are 

belong to the second type of training set.  

 

In the best case scenario, our proposed algorithm reduced the number 

of spectral spatial-frequency features from 192 to 10 when generating 

the feature map for soybeans and red clover using the fist type of 

training set. The result means that both of the classes can be easily 

separated from each other using fewer numbers of features. 

Additionally, it can be understood from the generated feature map of 

soybeans and red clover that because the feature map was not divided 
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into any spatial-frequency component, both classes can be separated 

from each other only by using spectral features.   

 

In the first formation of the test and training set, every labeled 

vegetation field extracted from the original ground truth image is divided 

into smaller sub fields. This kind of test and train data combination gives 

the advantage of testing our algorithm with characteristically similar 

pixels included in the training set. Therefore, this train-test set formation 

provided a small classification mean error which is 8.85%. On the other 

hand, the second formation of the test-training set only contains the 

main labeled fields. The fields were not divided into any smaller sub 

fields. The correlation between the characteristics for this test and train 

set is a lot smaller than the previously prepared test-training set. This 

situation leads to a bigger mean error for classification which is 18.75%.  

 

When using the first training set formation, total number 1578 pixels out 

of 66534 are misclassified. Expectedly, when the second training set is 

used for classification, the number of misclassified pixels is increased to 

12406. Although both of the training sets reach the minimum 

classification mean error by using only 3 features, the reason behind 

this 10% difference between two mean errors is the correlation of pixel 

characteristics between the test and train sets. An almost similar study 

was proposed in [74], using a similar five-class data set approach. In 

this study, using Binary Tree Edge Sensing Demosaicking (BTES) and 

Binary Tree Bilinear Interpolation (BTBI) methods, the obtained mean 

errors for classification when using 3 features were 21.57% and 22.21% 
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respectively. Although their classification methods are different, the 

results show that our mean errors when using the same amount of test 

and training pixels and same number of features is smaller. This shows 

that instead of using only spectral features, combining the information 

both along the spectral and spatial-frequency axes and selecting the 

most discriminative ones can provide better performance for 

classification. Also, one can try to use the BTES and BTBI methods as 

a classifier after using 2D LDB algorithm and compare the results. 

The PCA algorithm is also implemented as a feature extraction method 

to compare the classification results with the LDB algorithm. To do the 

comparison appropriately, the LDA classifier part remains completely 

identical with the LDB algorithm’s implementation. Because the PCA 

method converts the correlated variables into a small size of 

uncorrelated variables by using Karhunen-Loeve transformation and 

only first a few components which represent the whole data set are 

selected and used for classification, it is expected that until the 3rd 

feature where minimum mean error is reached for LDB, the PCA can 

provide smaller classification mean error. However, when the 3rd feature 

is added to the LDA classifier, the LDB provides smaller mean error 

than PCA. The results show that the mean error of LDB is 8.85% 

whereas the PCA algorithm gives an error of 14.73% when both of them 

are used for feature extraction. 
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The feature extraction algorithm can be applied to different kinds of 

hyperspectral/multispectral data with different characteristics to observe 

the accuracy of the algorithm in different fields of study. During this 

study, the proposed methods are also tried using the hyperspectral 

HYDICE Washington DC Mall data set which is obtained by .an 

airborne flight line over Washington DC Mall. This data is provided with 

the permission of Spectral Information Technology Application Center of 

Virginia who was responsible for its collection. The useful part of the 

data, however, was very limited because the visual bands are corrupted 

by noise. In addition; only a small portion of the data is annotated. We 

attempted to annotate the remaining parts by hand but possible errors 

at this stage have the potential of misleading the train stage. Yet 

promising results are obtained with the limited trials. Reliable prior 

information is needed before these results can be reported.  

 

 

7.1  Future Works 

 

A single LDA classifier is selected for the analysis of this multispectral 

remotely sensed data set because the main focus of this study is 

extracting the most discriminative features for classification purposes 

and emphasizing the power of this feature extraction algorithm by using 

with a basic classifier. On the other hand, the overall performance of the 

proposed algorithm can be increased by using more complex classifiers 

like SVM, Neural Networks, and other non-linear classifiers. 
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In our study, the correlation between features is not taken into 

consideration when extracting the discriminative features. From that 

perspective, the feature extraction algorithm can be modified to get the 

most discriminative and also independent features by considering the 

correlation between them. Furthermore, only filtering technique is 

considered here, but the wrapper technique could also be used. 

Different feature selection algorithms can be used or modified 

specifically for this problem in order to find the best results and prove 

the robustness of the algorithm by comparing the accuracy of each 

method. 

For the wavelet decomposition step, Daubechies 8 tap filter was used. 

One can also use different filters for decomposing the spectral bands 

into the wavelet subbands. 

The feature extraction algorithm can be applied to different kinds of 

hyperspectral/multispectral data with different characteristics to observe 

the accuracy of the algorithm in different fields of study. Obtaining 

reliable hyperspectral data with accurate classification of the spatial 

regions in the data set is necessary. Unfortunately, such data is rarely 

publicly available. 
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APPENDIX 

 

 

Appendix A Generated Spectral Spatial-Frequency 

Feature Maps  

 

All of the generated and ranked spectral spatial-frequency feature maps 

with feature colors and feature numbers are given below for the first 

type of test-training set.  
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Figure 1 – 165 Spectral Spatial-Frequency Features located in the 

corn-soybeans feature map ranked by FDS algorithm. 
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Figure 2 – 48 Spectral Spatial-Frequency Features located in the corn-

oat feature map ranked by FDS algorithm. 
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Figure 3 – 69 Spectral Spatial-Frequency Features located in the corn-

wheat feature map ranked by FDS algorithm. 
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Figure 4 – 23 Spectral Spatial-Frequency Features located in the 

feature map of corn-red clover features ranked by FDS algorithm. 



89 

 

 

Figure 5 – 69 Spectral Spatial-Frequency Features located in the 

soybeans-oat feature map ranked by FDS algorithm. 
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Figure 6 – 42 Spectral Spatial-Frequency Features located in the  

soybeans-wheat feature map ranked by FDS algorithm 



91 

 

 

Figure 7 – 10 Spectral Spatial-Frequency Features located in the 

soybeans-red clover feature map ranked by FDS algorithm. 
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Figure 8 – 95 Spectral Spatial-Frequency Features located in the oat-

wheat feature map ranked by FDS algorithm. 
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Figure 9 – 33 Spectral Spatial-Frequency Features located in the oat-

red clover feature map ranked by FDS algorithm. 
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Figure 10 - 46 Spectral Spatial-Frequency Features located in the 

wheat-red clover feature map ranked by FDS algorithm. 
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All of the generated and ranked spectral spatial-frequency 

feature maps with feature colors and feature numbers are given 

below for the second type of test-training set. 

 

 

 

Figure 11 – 143 Spectral Spatial-Frequency Features located in the 

corn-soybeans feature map ranked by FDS algorithm. 
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Figure 12 – 68 Spectral Spatial-Frequency Features located in the 

corn-oat feature map ranked by FDS algorithm. 
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Figure 13 – 64 Spectral Spatial-Frequency Features located in the 

corn-wheat feature map ranked by FDS algorithm. 

 



98 

 

 

Figure 14 – 32 Spectral Spatial-Frequency Features located in the 

feature map of corn-red clover features ranked by FDS algorithm. 
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Figure 15 – 38 Spectral Spatial-Frequency Features located in the 

soybeans-oat feature map ranked by FDS algorithm. 
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Figure 16 – 33 Spectral Spatial-Frequency Features located in the  

soybeans-wheat feature map ranked by FDS algorithm. 
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Figure 17 – 21 Spectral Spatial-Frequency Features located in the 

soybeans-red clover feature map ranked by FDS algorithm. 
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Figure 18 – 86 Spectral Spatial-Frequency Features located in the oat-

wheat feature map ranked by FDS algorithm. 
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Figure 19 – 27 Spectral Spatial-Frequency Features located in the oat-

red clover feature map ranked by FDS algorithm. 
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Figure 20 - 50 Spectral Spatial-Frequency Features located in the 

wheat-red clover feature map ranked by FDS algorithm. 

 


